1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC. 23 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER). 24 * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>. 25 * LLNL-CODE-403049. 26 * 27 * ZFS volume emulation driver. 28 * 29 * Makes a DMU object look like a volume of arbitrary size, up to 2^64 bytes. 30 * Volumes are accessed through the symbolic links named: 31 * 32 * /dev/<pool_name>/<dataset_name> 33 * 34 * Volumes are persistent through reboot and module load. No user command 35 * needs to be run before opening and using a device. 36 * 37 * Copyright 2014 Nexenta Systems, Inc. All rights reserved. 38 * Copyright (c) 2016 Actifio, Inc. All rights reserved. 39 * Copyright (c) 2012, 2019 by Delphix. All rights reserved. 40 * Copyright (c) 2024, Klara, Inc. 41 */ 42 43 /* 44 * Note on locking of zvol state structures. 45 * 46 * These structures are used to maintain internal state used to emulate block 47 * devices on top of zvols. In particular, management of device minor number 48 * operations - create, remove, rename, and set_snapdev - involves access to 49 * these structures. The zvol_state_lock is primarily used to protect the 50 * zvol_state_list. The zv->zv_state_lock is used to protect the contents 51 * of the zvol_state_t structures, as well as to make sure that when the 52 * time comes to remove the structure from the list, it is not in use, and 53 * therefore, it can be taken off zvol_state_list and freed. 54 * 55 * The zv_suspend_lock was introduced to allow for suspending I/O to a zvol, 56 * e.g. for the duration of receive and rollback operations. This lock can be 57 * held for significant periods of time. Given that it is undesirable to hold 58 * mutexes for long periods of time, the following lock ordering applies: 59 * - take zvol_state_lock if necessary, to protect zvol_state_list 60 * - take zv_suspend_lock if necessary, by the code path in question 61 * - take zv_state_lock to protect zvol_state_t 62 * 63 * The minor operations are issued to spa->spa_zvol_taskq queues, that are 64 * single-threaded (to preserve order of minor operations), and are executed 65 * through the zvol_task_cb that dispatches the specific operations. Therefore, 66 * these operations are serialized per pool. Consequently, we can be certain 67 * that for a given zvol, there is only one operation at a time in progress. 68 * That is why one can be sure that first, zvol_state_t for a given zvol is 69 * allocated and placed on zvol_state_list, and then other minor operations 70 * for this zvol are going to proceed in the order of issue. 71 * 72 */ 73 74 #include <sys/dataset_kstats.h> 75 #include <sys/dbuf.h> 76 #include <sys/dmu_traverse.h> 77 #include <sys/dsl_dataset.h> 78 #include <sys/dsl_prop.h> 79 #include <sys/dsl_dir.h> 80 #include <sys/zap.h> 81 #include <sys/zfeature.h> 82 #include <sys/zil_impl.h> 83 #include <sys/dmu_tx.h> 84 #include <sys/zio.h> 85 #include <sys/zfs_rlock.h> 86 #include <sys/spa_impl.h> 87 #include <sys/zvol.h> 88 #include <sys/zvol_impl.h> 89 90 unsigned int zvol_inhibit_dev = 0; 91 unsigned int zvol_volmode = ZFS_VOLMODE_GEOM; 92 93 struct hlist_head *zvol_htable; 94 static list_t zvol_state_list; 95 krwlock_t zvol_state_lock; 96 97 typedef enum { 98 ZVOL_ASYNC_REMOVE_MINORS, 99 ZVOL_ASYNC_RENAME_MINORS, 100 ZVOL_ASYNC_SET_SNAPDEV, 101 ZVOL_ASYNC_SET_VOLMODE, 102 ZVOL_ASYNC_MAX 103 } zvol_async_op_t; 104 105 typedef struct { 106 zvol_async_op_t op; 107 char name1[MAXNAMELEN]; 108 char name2[MAXNAMELEN]; 109 uint64_t value; 110 } zvol_task_t; 111 112 uint64_t 113 zvol_name_hash(const char *name) 114 { 115 uint64_t crc = -1ULL; 116 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 117 for (const uint8_t *p = (const uint8_t *)name; *p != 0; p++) 118 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (*p)) & 0xFF]; 119 return (crc); 120 } 121 122 /* 123 * Find a zvol_state_t given the name and hash generated by zvol_name_hash. 124 * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise, 125 * return (NULL) without the taking locks. The zv_suspend_lock is always taken 126 * before zv_state_lock. The mode argument indicates the mode (including none) 127 * for zv_suspend_lock to be taken. 128 */ 129 zvol_state_t * 130 zvol_find_by_name_hash(const char *name, uint64_t hash, int mode) 131 { 132 zvol_state_t *zv; 133 struct hlist_node *p = NULL; 134 135 rw_enter(&zvol_state_lock, RW_READER); 136 hlist_for_each(p, ZVOL_HT_HEAD(hash)) { 137 zv = hlist_entry(p, zvol_state_t, zv_hlink); 138 mutex_enter(&zv->zv_state_lock); 139 if (zv->zv_hash == hash && strcmp(zv->zv_name, name) == 0) { 140 /* 141 * this is the right zvol, take the locks in the 142 * right order 143 */ 144 if (mode != RW_NONE && 145 !rw_tryenter(&zv->zv_suspend_lock, mode)) { 146 mutex_exit(&zv->zv_state_lock); 147 rw_enter(&zv->zv_suspend_lock, mode); 148 mutex_enter(&zv->zv_state_lock); 149 /* 150 * zvol cannot be renamed as we continue 151 * to hold zvol_state_lock 152 */ 153 ASSERT(zv->zv_hash == hash && 154 strcmp(zv->zv_name, name) == 0); 155 } 156 rw_exit(&zvol_state_lock); 157 return (zv); 158 } 159 mutex_exit(&zv->zv_state_lock); 160 } 161 rw_exit(&zvol_state_lock); 162 163 return (NULL); 164 } 165 166 /* 167 * Find a zvol_state_t given the name. 168 * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise, 169 * return (NULL) without the taking locks. The zv_suspend_lock is always taken 170 * before zv_state_lock. The mode argument indicates the mode (including none) 171 * for zv_suspend_lock to be taken. 172 */ 173 static zvol_state_t * 174 zvol_find_by_name(const char *name, int mode) 175 { 176 return (zvol_find_by_name_hash(name, zvol_name_hash(name), mode)); 177 } 178 179 /* 180 * ZFS_IOC_CREATE callback handles dmu zvol and zap object creation. 181 */ 182 void 183 zvol_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) 184 { 185 zfs_creat_t *zct = arg; 186 nvlist_t *nvprops = zct->zct_props; 187 int error; 188 uint64_t volblocksize, volsize; 189 190 VERIFY(nvlist_lookup_uint64(nvprops, 191 zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) == 0); 192 if (nvlist_lookup_uint64(nvprops, 193 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize) != 0) 194 volblocksize = zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE); 195 196 /* 197 * These properties must be removed from the list so the generic 198 * property setting step won't apply to them. 199 */ 200 VERIFY(nvlist_remove_all(nvprops, 201 zfs_prop_to_name(ZFS_PROP_VOLSIZE)) == 0); 202 (void) nvlist_remove_all(nvprops, 203 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE)); 204 205 error = dmu_object_claim(os, ZVOL_OBJ, DMU_OT_ZVOL, volblocksize, 206 DMU_OT_NONE, 0, tx); 207 ASSERT(error == 0); 208 209 error = zap_create_claim(os, ZVOL_ZAP_OBJ, DMU_OT_ZVOL_PROP, 210 DMU_OT_NONE, 0, tx); 211 ASSERT(error == 0); 212 213 error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize, tx); 214 ASSERT(error == 0); 215 } 216 217 /* 218 * ZFS_IOC_OBJSET_STATS entry point. 219 */ 220 int 221 zvol_get_stats(objset_t *os, nvlist_t *nv) 222 { 223 int error; 224 dmu_object_info_t *doi; 225 uint64_t val; 226 227 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &val); 228 if (error) 229 return (SET_ERROR(error)); 230 231 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLSIZE, val); 232 doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP); 233 error = dmu_object_info(os, ZVOL_OBJ, doi); 234 235 if (error == 0) { 236 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLBLOCKSIZE, 237 doi->doi_data_block_size); 238 } 239 240 kmem_free(doi, sizeof (dmu_object_info_t)); 241 242 return (SET_ERROR(error)); 243 } 244 245 /* 246 * Sanity check volume size. 247 */ 248 int 249 zvol_check_volsize(uint64_t volsize, uint64_t blocksize) 250 { 251 if (volsize == 0) 252 return (SET_ERROR(EINVAL)); 253 254 if (volsize % blocksize != 0) 255 return (SET_ERROR(EINVAL)); 256 257 #ifdef _ILP32 258 if (volsize - 1 > SPEC_MAXOFFSET_T) 259 return (SET_ERROR(EOVERFLOW)); 260 #endif 261 return (0); 262 } 263 264 /* 265 * Ensure the zap is flushed then inform the VFS of the capacity change. 266 */ 267 static int 268 zvol_update_volsize(uint64_t volsize, objset_t *os) 269 { 270 dmu_tx_t *tx; 271 int error; 272 uint64_t txg; 273 274 tx = dmu_tx_create(os); 275 dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL); 276 dmu_tx_mark_netfree(tx); 277 error = dmu_tx_assign(tx, TXG_WAIT); 278 if (error) { 279 dmu_tx_abort(tx); 280 return (SET_ERROR(error)); 281 } 282 txg = dmu_tx_get_txg(tx); 283 284 error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, 285 &volsize, tx); 286 dmu_tx_commit(tx); 287 288 txg_wait_synced(dmu_objset_pool(os), txg); 289 290 if (error == 0) 291 error = dmu_free_long_range(os, 292 ZVOL_OBJ, volsize, DMU_OBJECT_END); 293 294 return (error); 295 } 296 297 /* 298 * Set ZFS_PROP_VOLSIZE set entry point. Note that modifying the volume 299 * size will result in a udev "change" event being generated. 300 */ 301 int 302 zvol_set_volsize(const char *name, uint64_t volsize) 303 { 304 objset_t *os = NULL; 305 uint64_t readonly; 306 int error; 307 boolean_t owned = B_FALSE; 308 309 error = dsl_prop_get_integer(name, 310 zfs_prop_to_name(ZFS_PROP_READONLY), &readonly, NULL); 311 if (error != 0) 312 return (SET_ERROR(error)); 313 if (readonly) 314 return (SET_ERROR(EROFS)); 315 316 zvol_state_t *zv = zvol_find_by_name(name, RW_READER); 317 318 ASSERT(zv == NULL || (MUTEX_HELD(&zv->zv_state_lock) && 319 RW_READ_HELD(&zv->zv_suspend_lock))); 320 321 if (zv == NULL || zv->zv_objset == NULL) { 322 if (zv != NULL) 323 rw_exit(&zv->zv_suspend_lock); 324 if ((error = dmu_objset_own(name, DMU_OST_ZVOL, B_FALSE, B_TRUE, 325 FTAG, &os)) != 0) { 326 if (zv != NULL) 327 mutex_exit(&zv->zv_state_lock); 328 return (SET_ERROR(error)); 329 } 330 owned = B_TRUE; 331 if (zv != NULL) 332 zv->zv_objset = os; 333 } else { 334 os = zv->zv_objset; 335 } 336 337 dmu_object_info_t *doi = kmem_alloc(sizeof (*doi), KM_SLEEP); 338 339 if ((error = dmu_object_info(os, ZVOL_OBJ, doi)) || 340 (error = zvol_check_volsize(volsize, doi->doi_data_block_size))) 341 goto out; 342 343 error = zvol_update_volsize(volsize, os); 344 if (error == 0 && zv != NULL) { 345 zv->zv_volsize = volsize; 346 zv->zv_changed = 1; 347 } 348 out: 349 kmem_free(doi, sizeof (dmu_object_info_t)); 350 351 if (owned) { 352 dmu_objset_disown(os, B_TRUE, FTAG); 353 if (zv != NULL) 354 zv->zv_objset = NULL; 355 } else { 356 rw_exit(&zv->zv_suspend_lock); 357 } 358 359 if (zv != NULL) 360 mutex_exit(&zv->zv_state_lock); 361 362 if (error == 0 && zv != NULL) 363 zvol_os_update_volsize(zv, volsize); 364 365 return (SET_ERROR(error)); 366 } 367 368 /* 369 * Update volthreading. 370 */ 371 int 372 zvol_set_volthreading(const char *name, boolean_t value) 373 { 374 zvol_state_t *zv = zvol_find_by_name(name, RW_NONE); 375 if (zv == NULL) 376 return (ENOENT); 377 zv->zv_threading = value; 378 mutex_exit(&zv->zv_state_lock); 379 return (0); 380 } 381 382 /* 383 * Update zvol ro property. 384 */ 385 int 386 zvol_set_ro(const char *name, boolean_t value) 387 { 388 zvol_state_t *zv = zvol_find_by_name(name, RW_NONE); 389 if (zv == NULL) 390 return (-1); 391 if (value) { 392 zvol_os_set_disk_ro(zv, 1); 393 zv->zv_flags |= ZVOL_RDONLY; 394 } else { 395 zvol_os_set_disk_ro(zv, 0); 396 zv->zv_flags &= ~ZVOL_RDONLY; 397 } 398 mutex_exit(&zv->zv_state_lock); 399 return (0); 400 } 401 402 /* 403 * Sanity check volume block size. 404 */ 405 int 406 zvol_check_volblocksize(const char *name, uint64_t volblocksize) 407 { 408 /* Record sizes above 128k need the feature to be enabled */ 409 if (volblocksize > SPA_OLD_MAXBLOCKSIZE) { 410 spa_t *spa; 411 int error; 412 413 if ((error = spa_open(name, &spa, FTAG)) != 0) 414 return (error); 415 416 if (!spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) { 417 spa_close(spa, FTAG); 418 return (SET_ERROR(ENOTSUP)); 419 } 420 421 /* 422 * We don't allow setting the property above 1MB, 423 * unless the tunable has been changed. 424 */ 425 if (volblocksize > zfs_max_recordsize) 426 return (SET_ERROR(EDOM)); 427 428 spa_close(spa, FTAG); 429 } 430 431 if (volblocksize < SPA_MINBLOCKSIZE || 432 volblocksize > SPA_MAXBLOCKSIZE || 433 !ISP2(volblocksize)) 434 return (SET_ERROR(EDOM)); 435 436 return (0); 437 } 438 439 /* 440 * Replay a TX_TRUNCATE ZIL transaction if asked. TX_TRUNCATE is how we 441 * implement DKIOCFREE/free-long-range. 442 */ 443 static int 444 zvol_replay_truncate(void *arg1, void *arg2, boolean_t byteswap) 445 { 446 zvol_state_t *zv = arg1; 447 lr_truncate_t *lr = arg2; 448 uint64_t offset, length; 449 450 ASSERT3U(lr->lr_common.lrc_reclen, >=, sizeof (*lr)); 451 452 if (byteswap) 453 byteswap_uint64_array(lr, sizeof (*lr)); 454 455 offset = lr->lr_offset; 456 length = lr->lr_length; 457 458 dmu_tx_t *tx = dmu_tx_create(zv->zv_objset); 459 dmu_tx_mark_netfree(tx); 460 int error = dmu_tx_assign(tx, TXG_WAIT); 461 if (error != 0) { 462 dmu_tx_abort(tx); 463 } else { 464 (void) zil_replaying(zv->zv_zilog, tx); 465 dmu_tx_commit(tx); 466 error = dmu_free_long_range(zv->zv_objset, ZVOL_OBJ, offset, 467 length); 468 } 469 470 return (error); 471 } 472 473 /* 474 * Replay a TX_WRITE ZIL transaction that didn't get committed 475 * after a system failure 476 */ 477 static int 478 zvol_replay_write(void *arg1, void *arg2, boolean_t byteswap) 479 { 480 zvol_state_t *zv = arg1; 481 lr_write_t *lr = arg2; 482 objset_t *os = zv->zv_objset; 483 char *data = (char *)(lr + 1); /* data follows lr_write_t */ 484 uint64_t offset, length; 485 dmu_tx_t *tx; 486 int error; 487 488 ASSERT3U(lr->lr_common.lrc_reclen, >=, sizeof (*lr)); 489 490 if (byteswap) 491 byteswap_uint64_array(lr, sizeof (*lr)); 492 493 offset = lr->lr_offset; 494 length = lr->lr_length; 495 496 /* If it's a dmu_sync() block, write the whole block */ 497 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) { 498 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr); 499 if (length < blocksize) { 500 offset -= offset % blocksize; 501 length = blocksize; 502 } 503 } 504 505 tx = dmu_tx_create(os); 506 dmu_tx_hold_write(tx, ZVOL_OBJ, offset, length); 507 error = dmu_tx_assign(tx, TXG_WAIT); 508 if (error) { 509 dmu_tx_abort(tx); 510 } else { 511 dmu_write(os, ZVOL_OBJ, offset, length, data, tx); 512 (void) zil_replaying(zv->zv_zilog, tx); 513 dmu_tx_commit(tx); 514 } 515 516 return (error); 517 } 518 519 static int 520 zvol_replay_err(void *arg1, void *arg2, boolean_t byteswap) 521 { 522 (void) arg1, (void) arg2, (void) byteswap; 523 return (SET_ERROR(ENOTSUP)); 524 } 525 526 /* 527 * Callback vectors for replaying records. 528 * Only TX_WRITE and TX_TRUNCATE are needed for zvol. 529 */ 530 zil_replay_func_t *const zvol_replay_vector[TX_MAX_TYPE] = { 531 zvol_replay_err, /* no such transaction type */ 532 zvol_replay_err, /* TX_CREATE */ 533 zvol_replay_err, /* TX_MKDIR */ 534 zvol_replay_err, /* TX_MKXATTR */ 535 zvol_replay_err, /* TX_SYMLINK */ 536 zvol_replay_err, /* TX_REMOVE */ 537 zvol_replay_err, /* TX_RMDIR */ 538 zvol_replay_err, /* TX_LINK */ 539 zvol_replay_err, /* TX_RENAME */ 540 zvol_replay_write, /* TX_WRITE */ 541 zvol_replay_truncate, /* TX_TRUNCATE */ 542 zvol_replay_err, /* TX_SETATTR */ 543 zvol_replay_err, /* TX_ACL */ 544 zvol_replay_err, /* TX_CREATE_ATTR */ 545 zvol_replay_err, /* TX_CREATE_ACL_ATTR */ 546 zvol_replay_err, /* TX_MKDIR_ACL */ 547 zvol_replay_err, /* TX_MKDIR_ATTR */ 548 zvol_replay_err, /* TX_MKDIR_ACL_ATTR */ 549 zvol_replay_err, /* TX_WRITE2 */ 550 zvol_replay_err, /* TX_SETSAXATTR */ 551 zvol_replay_err, /* TX_RENAME_EXCHANGE */ 552 zvol_replay_err, /* TX_RENAME_WHITEOUT */ 553 zvol_replay_err, /* TX_CLONE_RANGE */ 554 }; 555 556 /* 557 * zvol_log_write() handles synchronous writes using TX_WRITE ZIL transactions. 558 * 559 * We store data in the log buffers if it's small enough. 560 * Otherwise we will later flush the data out via dmu_sync(). 561 */ 562 static const ssize_t zvol_immediate_write_sz = 32768; 563 564 void 565 zvol_log_write(zvol_state_t *zv, dmu_tx_t *tx, uint64_t offset, 566 uint64_t size, boolean_t commit) 567 { 568 uint32_t blocksize = zv->zv_volblocksize; 569 zilog_t *zilog = zv->zv_zilog; 570 itx_wr_state_t write_state; 571 uint64_t sz = size; 572 573 if (zil_replaying(zilog, tx)) 574 return; 575 576 if (zilog->zl_logbias == ZFS_LOGBIAS_THROUGHPUT) 577 write_state = WR_INDIRECT; 578 else if (!spa_has_slogs(zilog->zl_spa) && 579 size >= blocksize && blocksize > zvol_immediate_write_sz) 580 write_state = WR_INDIRECT; 581 else if (commit) 582 write_state = WR_COPIED; 583 else 584 write_state = WR_NEED_COPY; 585 586 while (size) { 587 itx_t *itx; 588 lr_write_t *lr; 589 itx_wr_state_t wr_state = write_state; 590 ssize_t len = size; 591 592 if (wr_state == WR_COPIED && size > zil_max_copied_data(zilog)) 593 wr_state = WR_NEED_COPY; 594 else if (wr_state == WR_INDIRECT) 595 len = MIN(blocksize - P2PHASE(offset, blocksize), size); 596 597 itx = zil_itx_create(TX_WRITE, sizeof (*lr) + 598 (wr_state == WR_COPIED ? len : 0)); 599 lr = (lr_write_t *)&itx->itx_lr; 600 if (wr_state == WR_COPIED && dmu_read_by_dnode(zv->zv_dn, 601 offset, len, lr+1, DMU_READ_NO_PREFETCH) != 0) { 602 zil_itx_destroy(itx); 603 itx = zil_itx_create(TX_WRITE, sizeof (*lr)); 604 lr = (lr_write_t *)&itx->itx_lr; 605 wr_state = WR_NEED_COPY; 606 } 607 608 itx->itx_wr_state = wr_state; 609 lr->lr_foid = ZVOL_OBJ; 610 lr->lr_offset = offset; 611 lr->lr_length = len; 612 lr->lr_blkoff = 0; 613 BP_ZERO(&lr->lr_blkptr); 614 615 itx->itx_private = zv; 616 617 (void) zil_itx_assign(zilog, itx, tx); 618 619 offset += len; 620 size -= len; 621 } 622 623 if (write_state == WR_COPIED || write_state == WR_NEED_COPY) { 624 dsl_pool_wrlog_count(zilog->zl_dmu_pool, sz, tx->tx_txg); 625 } 626 } 627 628 /* 629 * Log a DKIOCFREE/free-long-range to the ZIL with TX_TRUNCATE. 630 */ 631 void 632 zvol_log_truncate(zvol_state_t *zv, dmu_tx_t *tx, uint64_t off, uint64_t len) 633 { 634 itx_t *itx; 635 lr_truncate_t *lr; 636 zilog_t *zilog = zv->zv_zilog; 637 638 if (zil_replaying(zilog, tx)) 639 return; 640 641 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr)); 642 lr = (lr_truncate_t *)&itx->itx_lr; 643 lr->lr_foid = ZVOL_OBJ; 644 lr->lr_offset = off; 645 lr->lr_length = len; 646 647 zil_itx_assign(zilog, itx, tx); 648 } 649 650 651 static void 652 zvol_get_done(zgd_t *zgd, int error) 653 { 654 (void) error; 655 if (zgd->zgd_db) 656 dmu_buf_rele(zgd->zgd_db, zgd); 657 658 zfs_rangelock_exit(zgd->zgd_lr); 659 660 kmem_free(zgd, sizeof (zgd_t)); 661 } 662 663 /* 664 * Get data to generate a TX_WRITE intent log record. 665 */ 666 int 667 zvol_get_data(void *arg, uint64_t arg2, lr_write_t *lr, char *buf, 668 struct lwb *lwb, zio_t *zio) 669 { 670 zvol_state_t *zv = arg; 671 uint64_t offset = lr->lr_offset; 672 uint64_t size = lr->lr_length; 673 dmu_buf_t *db; 674 zgd_t *zgd; 675 int error; 676 677 ASSERT3P(lwb, !=, NULL); 678 ASSERT3U(size, !=, 0); 679 680 zgd = kmem_zalloc(sizeof (zgd_t), KM_SLEEP); 681 zgd->zgd_lwb = lwb; 682 683 /* 684 * Write records come in two flavors: immediate and indirect. 685 * For small writes it's cheaper to store the data with the 686 * log record (immediate); for large writes it's cheaper to 687 * sync the data and get a pointer to it (indirect) so that 688 * we don't have to write the data twice. 689 */ 690 if (buf != NULL) { /* immediate write */ 691 zgd->zgd_lr = zfs_rangelock_enter(&zv->zv_rangelock, offset, 692 size, RL_READER); 693 error = dmu_read_by_dnode(zv->zv_dn, offset, size, buf, 694 DMU_READ_NO_PREFETCH); 695 } else { /* indirect write */ 696 ASSERT3P(zio, !=, NULL); 697 /* 698 * Have to lock the whole block to ensure when it's written out 699 * and its checksum is being calculated that no one can change 700 * the data. Contrarily to zfs_get_data we need not re-check 701 * blocksize after we get the lock because it cannot be changed. 702 */ 703 size = zv->zv_volblocksize; 704 offset = P2ALIGN_TYPED(offset, size, uint64_t); 705 zgd->zgd_lr = zfs_rangelock_enter(&zv->zv_rangelock, offset, 706 size, RL_READER); 707 error = dmu_buf_hold_noread_by_dnode(zv->zv_dn, offset, zgd, 708 &db); 709 if (error == 0) { 710 blkptr_t *bp = &lr->lr_blkptr; 711 712 zgd->zgd_db = db; 713 zgd->zgd_bp = bp; 714 715 ASSERT(db != NULL); 716 ASSERT(db->db_offset == offset); 717 ASSERT(db->db_size == size); 718 719 error = dmu_sync(zio, lr->lr_common.lrc_txg, 720 zvol_get_done, zgd); 721 722 if (error == 0) 723 return (0); 724 } 725 } 726 727 zvol_get_done(zgd, error); 728 729 return (SET_ERROR(error)); 730 } 731 732 /* 733 * The zvol_state_t's are inserted into zvol_state_list and zvol_htable. 734 */ 735 736 void 737 zvol_insert(zvol_state_t *zv) 738 { 739 ASSERT(RW_WRITE_HELD(&zvol_state_lock)); 740 list_insert_head(&zvol_state_list, zv); 741 hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash)); 742 } 743 744 /* 745 * Simply remove the zvol from to list of zvols. 746 */ 747 static void 748 zvol_remove(zvol_state_t *zv) 749 { 750 ASSERT(RW_WRITE_HELD(&zvol_state_lock)); 751 list_remove(&zvol_state_list, zv); 752 hlist_del(&zv->zv_hlink); 753 } 754 755 /* 756 * Setup zv after we just own the zv->objset 757 */ 758 static int 759 zvol_setup_zv(zvol_state_t *zv) 760 { 761 uint64_t volsize; 762 int error; 763 uint64_t ro; 764 objset_t *os = zv->zv_objset; 765 766 ASSERT(MUTEX_HELD(&zv->zv_state_lock)); 767 ASSERT(RW_LOCK_HELD(&zv->zv_suspend_lock)); 768 769 zv->zv_zilog = NULL; 770 zv->zv_flags &= ~ZVOL_WRITTEN_TO; 771 772 error = dsl_prop_get_integer(zv->zv_name, "readonly", &ro, NULL); 773 if (error) 774 return (SET_ERROR(error)); 775 776 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize); 777 if (error) 778 return (SET_ERROR(error)); 779 780 error = dnode_hold(os, ZVOL_OBJ, zv, &zv->zv_dn); 781 if (error) 782 return (SET_ERROR(error)); 783 784 zvol_os_set_capacity(zv, volsize >> 9); 785 zv->zv_volsize = volsize; 786 787 if (ro || dmu_objset_is_snapshot(os) || 788 !spa_writeable(dmu_objset_spa(os))) { 789 zvol_os_set_disk_ro(zv, 1); 790 zv->zv_flags |= ZVOL_RDONLY; 791 } else { 792 zvol_os_set_disk_ro(zv, 0); 793 zv->zv_flags &= ~ZVOL_RDONLY; 794 } 795 return (0); 796 } 797 798 /* 799 * Shutdown every zv_objset related stuff except zv_objset itself. 800 * The is the reverse of zvol_setup_zv. 801 */ 802 static void 803 zvol_shutdown_zv(zvol_state_t *zv) 804 { 805 ASSERT(MUTEX_HELD(&zv->zv_state_lock) && 806 RW_LOCK_HELD(&zv->zv_suspend_lock)); 807 808 if (zv->zv_flags & ZVOL_WRITTEN_TO) { 809 ASSERT(zv->zv_zilog != NULL); 810 zil_close(zv->zv_zilog); 811 } 812 813 zv->zv_zilog = NULL; 814 815 dnode_rele(zv->zv_dn, zv); 816 zv->zv_dn = NULL; 817 818 /* 819 * Evict cached data. We must write out any dirty data before 820 * disowning the dataset. 821 */ 822 if (zv->zv_flags & ZVOL_WRITTEN_TO) 823 txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0); 824 (void) dmu_objset_evict_dbufs(zv->zv_objset); 825 } 826 827 /* 828 * return the proper tag for rollback and recv 829 */ 830 void * 831 zvol_tag(zvol_state_t *zv) 832 { 833 ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock)); 834 return (zv->zv_open_count > 0 ? zv : NULL); 835 } 836 837 /* 838 * Suspend the zvol for recv and rollback. 839 */ 840 zvol_state_t * 841 zvol_suspend(const char *name) 842 { 843 zvol_state_t *zv; 844 845 zv = zvol_find_by_name(name, RW_WRITER); 846 847 if (zv == NULL) 848 return (NULL); 849 850 /* block all I/O, release in zvol_resume. */ 851 ASSERT(MUTEX_HELD(&zv->zv_state_lock)); 852 ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock)); 853 854 atomic_inc(&zv->zv_suspend_ref); 855 856 if (zv->zv_open_count > 0) 857 zvol_shutdown_zv(zv); 858 859 /* 860 * do not hold zv_state_lock across suspend/resume to 861 * avoid locking up zvol lookups 862 */ 863 mutex_exit(&zv->zv_state_lock); 864 865 /* zv_suspend_lock is released in zvol_resume() */ 866 return (zv); 867 } 868 869 int 870 zvol_resume(zvol_state_t *zv) 871 { 872 int error = 0; 873 874 ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock)); 875 876 mutex_enter(&zv->zv_state_lock); 877 878 if (zv->zv_open_count > 0) { 879 VERIFY0(dmu_objset_hold(zv->zv_name, zv, &zv->zv_objset)); 880 VERIFY3P(zv->zv_objset->os_dsl_dataset->ds_owner, ==, zv); 881 VERIFY(dsl_dataset_long_held(zv->zv_objset->os_dsl_dataset)); 882 dmu_objset_rele(zv->zv_objset, zv); 883 884 error = zvol_setup_zv(zv); 885 } 886 887 mutex_exit(&zv->zv_state_lock); 888 889 rw_exit(&zv->zv_suspend_lock); 890 /* 891 * We need this because we don't hold zvol_state_lock while releasing 892 * zv_suspend_lock. zvol_remove_minors_impl thus cannot check 893 * zv_suspend_lock to determine it is safe to free because rwlock is 894 * not inherent atomic. 895 */ 896 atomic_dec(&zv->zv_suspend_ref); 897 898 if (zv->zv_flags & ZVOL_REMOVING) 899 cv_broadcast(&zv->zv_removing_cv); 900 901 return (SET_ERROR(error)); 902 } 903 904 int 905 zvol_first_open(zvol_state_t *zv, boolean_t readonly) 906 { 907 objset_t *os; 908 int error; 909 910 ASSERT(RW_READ_HELD(&zv->zv_suspend_lock)); 911 ASSERT(MUTEX_HELD(&zv->zv_state_lock)); 912 ASSERT(mutex_owned(&spa_namespace_lock)); 913 914 boolean_t ro = (readonly || (strchr(zv->zv_name, '@') != NULL)); 915 error = dmu_objset_own(zv->zv_name, DMU_OST_ZVOL, ro, B_TRUE, zv, &os); 916 if (error) 917 return (SET_ERROR(error)); 918 919 zv->zv_objset = os; 920 921 error = zvol_setup_zv(zv); 922 if (error) { 923 dmu_objset_disown(os, 1, zv); 924 zv->zv_objset = NULL; 925 } 926 927 return (error); 928 } 929 930 void 931 zvol_last_close(zvol_state_t *zv) 932 { 933 ASSERT(RW_READ_HELD(&zv->zv_suspend_lock)); 934 ASSERT(MUTEX_HELD(&zv->zv_state_lock)); 935 936 if (zv->zv_flags & ZVOL_REMOVING) 937 cv_broadcast(&zv->zv_removing_cv); 938 939 zvol_shutdown_zv(zv); 940 941 dmu_objset_disown(zv->zv_objset, 1, zv); 942 zv->zv_objset = NULL; 943 } 944 945 typedef struct minors_job { 946 list_t *list; 947 list_node_t link; 948 /* input */ 949 char *name; 950 /* output */ 951 int error; 952 } minors_job_t; 953 954 /* 955 * Prefetch zvol dnodes for the minors_job 956 */ 957 static void 958 zvol_prefetch_minors_impl(void *arg) 959 { 960 minors_job_t *job = arg; 961 char *dsname = job->name; 962 objset_t *os = NULL; 963 964 job->error = dmu_objset_own(dsname, DMU_OST_ZVOL, B_TRUE, B_TRUE, 965 FTAG, &os); 966 if (job->error == 0) { 967 dmu_prefetch_dnode(os, ZVOL_OBJ, ZIO_PRIORITY_SYNC_READ); 968 dmu_objset_disown(os, B_TRUE, FTAG); 969 } 970 } 971 972 /* 973 * Mask errors to continue dmu_objset_find() traversal 974 */ 975 static int 976 zvol_create_snap_minor_cb(const char *dsname, void *arg) 977 { 978 minors_job_t *j = arg; 979 list_t *minors_list = j->list; 980 const char *name = j->name; 981 982 ASSERT0(MUTEX_HELD(&spa_namespace_lock)); 983 984 /* skip the designated dataset */ 985 if (name && strcmp(dsname, name) == 0) 986 return (0); 987 988 /* at this point, the dsname should name a snapshot */ 989 if (strchr(dsname, '@') == 0) { 990 dprintf("zvol_create_snap_minor_cb(): " 991 "%s is not a snapshot name\n", dsname); 992 } else { 993 minors_job_t *job; 994 char *n = kmem_strdup(dsname); 995 if (n == NULL) 996 return (0); 997 998 job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP); 999 job->name = n; 1000 job->list = minors_list; 1001 job->error = 0; 1002 list_insert_tail(minors_list, job); 1003 /* don't care if dispatch fails, because job->error is 0 */ 1004 taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job, 1005 TQ_SLEEP); 1006 } 1007 1008 return (0); 1009 } 1010 1011 /* 1012 * If spa_keystore_load_wkey() is called for an encrypted zvol, 1013 * we need to look for any clones also using the key. This function 1014 * is "best effort" - so we just skip over it if there are failures. 1015 */ 1016 static void 1017 zvol_add_clones(const char *dsname, list_t *minors_list) 1018 { 1019 /* Also check if it has clones */ 1020 dsl_dir_t *dd = NULL; 1021 dsl_pool_t *dp = NULL; 1022 1023 if (dsl_pool_hold(dsname, FTAG, &dp) != 0) 1024 return; 1025 1026 if (!spa_feature_is_enabled(dp->dp_spa, 1027 SPA_FEATURE_ENCRYPTION)) 1028 goto out; 1029 1030 if (dsl_dir_hold(dp, dsname, FTAG, &dd, NULL) != 0) 1031 goto out; 1032 1033 if (dsl_dir_phys(dd)->dd_clones == 0) 1034 goto out; 1035 1036 zap_cursor_t *zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP); 1037 zap_attribute_t *za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP); 1038 objset_t *mos = dd->dd_pool->dp_meta_objset; 1039 1040 for (zap_cursor_init(zc, mos, dsl_dir_phys(dd)->dd_clones); 1041 zap_cursor_retrieve(zc, za) == 0; 1042 zap_cursor_advance(zc)) { 1043 dsl_dataset_t *clone; 1044 minors_job_t *job; 1045 1046 if (dsl_dataset_hold_obj(dd->dd_pool, 1047 za->za_first_integer, FTAG, &clone) == 0) { 1048 1049 char name[ZFS_MAX_DATASET_NAME_LEN]; 1050 dsl_dataset_name(clone, name); 1051 1052 char *n = kmem_strdup(name); 1053 job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP); 1054 job->name = n; 1055 job->list = minors_list; 1056 job->error = 0; 1057 list_insert_tail(minors_list, job); 1058 1059 dsl_dataset_rele(clone, FTAG); 1060 } 1061 } 1062 zap_cursor_fini(zc); 1063 kmem_free(za, sizeof (zap_attribute_t)); 1064 kmem_free(zc, sizeof (zap_cursor_t)); 1065 1066 out: 1067 if (dd != NULL) 1068 dsl_dir_rele(dd, FTAG); 1069 dsl_pool_rele(dp, FTAG); 1070 } 1071 1072 /* 1073 * Mask errors to continue dmu_objset_find() traversal 1074 */ 1075 static int 1076 zvol_create_minors_cb(const char *dsname, void *arg) 1077 { 1078 uint64_t snapdev; 1079 int error; 1080 list_t *minors_list = arg; 1081 1082 ASSERT0(MUTEX_HELD(&spa_namespace_lock)); 1083 1084 error = dsl_prop_get_integer(dsname, "snapdev", &snapdev, NULL); 1085 if (error) 1086 return (0); 1087 1088 /* 1089 * Given the name and the 'snapdev' property, create device minor nodes 1090 * with the linkages to zvols/snapshots as needed. 1091 * If the name represents a zvol, create a minor node for the zvol, then 1092 * check if its snapshots are 'visible', and if so, iterate over the 1093 * snapshots and create device minor nodes for those. 1094 */ 1095 if (strchr(dsname, '@') == 0) { 1096 minors_job_t *job; 1097 char *n = kmem_strdup(dsname); 1098 if (n == NULL) 1099 return (0); 1100 1101 job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP); 1102 job->name = n; 1103 job->list = minors_list; 1104 job->error = 0; 1105 list_insert_tail(minors_list, job); 1106 /* don't care if dispatch fails, because job->error is 0 */ 1107 taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job, 1108 TQ_SLEEP); 1109 1110 zvol_add_clones(dsname, minors_list); 1111 1112 if (snapdev == ZFS_SNAPDEV_VISIBLE) { 1113 /* 1114 * traverse snapshots only, do not traverse children, 1115 * and skip the 'dsname' 1116 */ 1117 (void) dmu_objset_find(dsname, 1118 zvol_create_snap_minor_cb, (void *)job, 1119 DS_FIND_SNAPSHOTS); 1120 } 1121 } else { 1122 dprintf("zvol_create_minors_cb(): %s is not a zvol name\n", 1123 dsname); 1124 } 1125 1126 return (0); 1127 } 1128 1129 /* 1130 * Create minors for the specified dataset, including children and snapshots. 1131 * Pay attention to the 'snapdev' property and iterate over the snapshots 1132 * only if they are 'visible'. This approach allows one to assure that the 1133 * snapshot metadata is read from disk only if it is needed. 1134 * 1135 * The name can represent a dataset to be recursively scanned for zvols and 1136 * their snapshots, or a single zvol snapshot. If the name represents a 1137 * dataset, the scan is performed in two nested stages: 1138 * - scan the dataset for zvols, and 1139 * - for each zvol, create a minor node, then check if the zvol's snapshots 1140 * are 'visible', and only then iterate over the snapshots if needed 1141 * 1142 * If the name represents a snapshot, a check is performed if the snapshot is 1143 * 'visible' (which also verifies that the parent is a zvol), and if so, 1144 * a minor node for that snapshot is created. 1145 */ 1146 void 1147 zvol_create_minors_recursive(const char *name) 1148 { 1149 list_t minors_list; 1150 minors_job_t *job; 1151 1152 if (zvol_inhibit_dev) 1153 return; 1154 1155 /* 1156 * This is the list for prefetch jobs. Whenever we found a match 1157 * during dmu_objset_find, we insert a minors_job to the list and do 1158 * taskq_dispatch to parallel prefetch zvol dnodes. Note we don't need 1159 * any lock because all list operation is done on the current thread. 1160 * 1161 * We will use this list to do zvol_os_create_minor after prefetch 1162 * so we don't have to traverse using dmu_objset_find again. 1163 */ 1164 list_create(&minors_list, sizeof (minors_job_t), 1165 offsetof(minors_job_t, link)); 1166 1167 1168 if (strchr(name, '@') != NULL) { 1169 uint64_t snapdev; 1170 1171 int error = dsl_prop_get_integer(name, "snapdev", 1172 &snapdev, NULL); 1173 1174 if (error == 0 && snapdev == ZFS_SNAPDEV_VISIBLE) 1175 (void) zvol_os_create_minor(name); 1176 } else { 1177 fstrans_cookie_t cookie = spl_fstrans_mark(); 1178 (void) dmu_objset_find(name, zvol_create_minors_cb, 1179 &minors_list, DS_FIND_CHILDREN); 1180 spl_fstrans_unmark(cookie); 1181 } 1182 1183 taskq_wait_outstanding(system_taskq, 0); 1184 1185 /* 1186 * Prefetch is completed, we can do zvol_os_create_minor 1187 * sequentially. 1188 */ 1189 while ((job = list_remove_head(&minors_list)) != NULL) { 1190 if (!job->error) 1191 (void) zvol_os_create_minor(job->name); 1192 kmem_strfree(job->name); 1193 kmem_free(job, sizeof (minors_job_t)); 1194 } 1195 1196 list_destroy(&minors_list); 1197 } 1198 1199 void 1200 zvol_create_minor(const char *name) 1201 { 1202 /* 1203 * Note: the dsl_pool_config_lock must not be held. 1204 * Minor node creation needs to obtain the zvol_state_lock. 1205 * zvol_open() obtains the zvol_state_lock and then the dsl pool 1206 * config lock. Therefore, we can't have the config lock now if 1207 * we are going to wait for the zvol_state_lock, because it 1208 * would be a lock order inversion which could lead to deadlock. 1209 */ 1210 1211 if (zvol_inhibit_dev) 1212 return; 1213 1214 if (strchr(name, '@') != NULL) { 1215 uint64_t snapdev; 1216 1217 int error = dsl_prop_get_integer(name, 1218 "snapdev", &snapdev, NULL); 1219 1220 if (error == 0 && snapdev == ZFS_SNAPDEV_VISIBLE) 1221 (void) zvol_os_create_minor(name); 1222 } else { 1223 (void) zvol_os_create_minor(name); 1224 } 1225 } 1226 1227 /* 1228 * Remove minors for specified dataset including children and snapshots. 1229 */ 1230 1231 /* 1232 * Remove the minor for a given zvol. This will do it all: 1233 * - flag the zvol for removal, so new requests are rejected 1234 * - wait until outstanding requests are completed 1235 * - remove it from lists 1236 * - free it 1237 * It's also usable as a taskq task, and smells nice too. 1238 */ 1239 static void 1240 zvol_remove_minor_task(void *arg) 1241 { 1242 zvol_state_t *zv = (zvol_state_t *)arg; 1243 1244 ASSERT(!RW_LOCK_HELD(&zvol_state_lock)); 1245 ASSERT(!MUTEX_HELD(&zv->zv_state_lock)); 1246 1247 mutex_enter(&zv->zv_state_lock); 1248 while (zv->zv_open_count > 0 || atomic_read(&zv->zv_suspend_ref)) { 1249 zv->zv_flags |= ZVOL_REMOVING; 1250 cv_wait(&zv->zv_removing_cv, &zv->zv_state_lock); 1251 } 1252 mutex_exit(&zv->zv_state_lock); 1253 1254 rw_enter(&zvol_state_lock, RW_WRITER); 1255 mutex_enter(&zv->zv_state_lock); 1256 1257 zvol_remove(zv); 1258 zvol_os_clear_private(zv); 1259 1260 mutex_exit(&zv->zv_state_lock); 1261 rw_exit(&zvol_state_lock); 1262 1263 zvol_os_free(zv); 1264 } 1265 1266 static void 1267 zvol_free_task(void *arg) 1268 { 1269 zvol_os_free(arg); 1270 } 1271 1272 void 1273 zvol_remove_minors_impl(const char *name) 1274 { 1275 zvol_state_t *zv, *zv_next; 1276 int namelen = ((name) ? strlen(name) : 0); 1277 taskqid_t t; 1278 list_t delay_list, free_list; 1279 1280 if (zvol_inhibit_dev) 1281 return; 1282 1283 list_create(&delay_list, sizeof (zvol_state_t), 1284 offsetof(zvol_state_t, zv_next)); 1285 list_create(&free_list, sizeof (zvol_state_t), 1286 offsetof(zvol_state_t, zv_next)); 1287 1288 rw_enter(&zvol_state_lock, RW_WRITER); 1289 1290 for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) { 1291 zv_next = list_next(&zvol_state_list, zv); 1292 1293 mutex_enter(&zv->zv_state_lock); 1294 if (name == NULL || strcmp(zv->zv_name, name) == 0 || 1295 (strncmp(zv->zv_name, name, namelen) == 0 && 1296 (zv->zv_name[namelen] == '/' || 1297 zv->zv_name[namelen] == '@'))) { 1298 /* 1299 * By holding zv_state_lock here, we guarantee that no 1300 * one is currently using this zv 1301 */ 1302 1303 /* 1304 * If in use, try to throw everyone off and try again 1305 * later. 1306 */ 1307 if (zv->zv_open_count > 0 || 1308 atomic_read(&zv->zv_suspend_ref)) { 1309 zv->zv_flags |= ZVOL_REMOVING; 1310 t = taskq_dispatch( 1311 zv->zv_objset->os_spa->spa_zvol_taskq, 1312 zvol_remove_minor_task, zv, TQ_SLEEP); 1313 if (t == TASKQID_INVALID) { 1314 /* 1315 * Couldn't create the task, so we'll 1316 * do it in place once the loop is 1317 * finished. 1318 */ 1319 list_insert_head(&delay_list, zv); 1320 } 1321 mutex_exit(&zv->zv_state_lock); 1322 continue; 1323 } 1324 1325 zvol_remove(zv); 1326 1327 /* 1328 * Cleared while holding zvol_state_lock as a writer 1329 * which will prevent zvol_open() from opening it. 1330 */ 1331 zvol_os_clear_private(zv); 1332 1333 /* Drop zv_state_lock before zvol_free() */ 1334 mutex_exit(&zv->zv_state_lock); 1335 1336 /* Try parallel zv_free, if failed do it in place */ 1337 t = taskq_dispatch(system_taskq, zvol_free_task, zv, 1338 TQ_SLEEP); 1339 if (t == TASKQID_INVALID) 1340 list_insert_head(&free_list, zv); 1341 } else { 1342 mutex_exit(&zv->zv_state_lock); 1343 } 1344 } 1345 rw_exit(&zvol_state_lock); 1346 1347 /* Wait for zvols that we couldn't create a remove task for */ 1348 while ((zv = list_remove_head(&delay_list)) != NULL) 1349 zvol_remove_minor_task(zv); 1350 1351 /* Free any that we couldn't free in parallel earlier */ 1352 while ((zv = list_remove_head(&free_list)) != NULL) 1353 zvol_os_free(zv); 1354 } 1355 1356 /* Remove minor for this specific volume only */ 1357 static void 1358 zvol_remove_minor_impl(const char *name) 1359 { 1360 zvol_state_t *zv = NULL, *zv_next; 1361 1362 if (zvol_inhibit_dev) 1363 return; 1364 1365 rw_enter(&zvol_state_lock, RW_WRITER); 1366 1367 for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) { 1368 zv_next = list_next(&zvol_state_list, zv); 1369 1370 mutex_enter(&zv->zv_state_lock); 1371 if (strcmp(zv->zv_name, name) == 0) 1372 /* Found, leave the the loop with zv_lock held */ 1373 break; 1374 mutex_exit(&zv->zv_state_lock); 1375 } 1376 1377 if (zv == NULL) { 1378 rw_exit(&zvol_state_lock); 1379 return; 1380 } 1381 1382 ASSERT(MUTEX_HELD(&zv->zv_state_lock)); 1383 1384 if (zv->zv_open_count > 0 || atomic_read(&zv->zv_suspend_ref)) { 1385 /* 1386 * In use, so try to throw everyone off, then wait 1387 * until finished. 1388 */ 1389 zv->zv_flags |= ZVOL_REMOVING; 1390 mutex_exit(&zv->zv_state_lock); 1391 rw_exit(&zvol_state_lock); 1392 zvol_remove_minor_task(zv); 1393 return; 1394 } 1395 1396 zvol_remove(zv); 1397 zvol_os_clear_private(zv); 1398 1399 mutex_exit(&zv->zv_state_lock); 1400 rw_exit(&zvol_state_lock); 1401 1402 zvol_os_free(zv); 1403 } 1404 1405 /* 1406 * Rename minors for specified dataset including children and snapshots. 1407 */ 1408 static void 1409 zvol_rename_minors_impl(const char *oldname, const char *newname) 1410 { 1411 zvol_state_t *zv, *zv_next; 1412 int oldnamelen; 1413 1414 if (zvol_inhibit_dev) 1415 return; 1416 1417 oldnamelen = strlen(oldname); 1418 1419 rw_enter(&zvol_state_lock, RW_READER); 1420 1421 for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) { 1422 zv_next = list_next(&zvol_state_list, zv); 1423 1424 mutex_enter(&zv->zv_state_lock); 1425 1426 if (strcmp(zv->zv_name, oldname) == 0) { 1427 zvol_os_rename_minor(zv, newname); 1428 } else if (strncmp(zv->zv_name, oldname, oldnamelen) == 0 && 1429 (zv->zv_name[oldnamelen] == '/' || 1430 zv->zv_name[oldnamelen] == '@')) { 1431 char *name = kmem_asprintf("%s%c%s", newname, 1432 zv->zv_name[oldnamelen], 1433 zv->zv_name + oldnamelen + 1); 1434 zvol_os_rename_minor(zv, name); 1435 kmem_strfree(name); 1436 } 1437 1438 mutex_exit(&zv->zv_state_lock); 1439 } 1440 1441 rw_exit(&zvol_state_lock); 1442 } 1443 1444 typedef struct zvol_snapdev_cb_arg { 1445 uint64_t snapdev; 1446 } zvol_snapdev_cb_arg_t; 1447 1448 static int 1449 zvol_set_snapdev_cb(const char *dsname, void *param) 1450 { 1451 zvol_snapdev_cb_arg_t *arg = param; 1452 1453 if (strchr(dsname, '@') == NULL) 1454 return (0); 1455 1456 switch (arg->snapdev) { 1457 case ZFS_SNAPDEV_VISIBLE: 1458 (void) zvol_os_create_minor(dsname); 1459 break; 1460 case ZFS_SNAPDEV_HIDDEN: 1461 (void) zvol_remove_minor_impl(dsname); 1462 break; 1463 } 1464 1465 return (0); 1466 } 1467 1468 static void 1469 zvol_set_snapdev_impl(char *name, uint64_t snapdev) 1470 { 1471 zvol_snapdev_cb_arg_t arg = {snapdev}; 1472 fstrans_cookie_t cookie = spl_fstrans_mark(); 1473 /* 1474 * The zvol_set_snapdev_sync() sets snapdev appropriately 1475 * in the dataset hierarchy. Here, we only scan snapshots. 1476 */ 1477 dmu_objset_find(name, zvol_set_snapdev_cb, &arg, DS_FIND_SNAPSHOTS); 1478 spl_fstrans_unmark(cookie); 1479 } 1480 1481 static void 1482 zvol_set_volmode_impl(char *name, uint64_t volmode) 1483 { 1484 fstrans_cookie_t cookie; 1485 uint64_t old_volmode; 1486 zvol_state_t *zv; 1487 1488 if (strchr(name, '@') != NULL) 1489 return; 1490 1491 /* 1492 * It's unfortunate we need to remove minors before we create new ones: 1493 * this is necessary because our backing gendisk (zvol_state->zv_disk) 1494 * could be different when we set, for instance, volmode from "geom" 1495 * to "dev" (or vice versa). 1496 */ 1497 zv = zvol_find_by_name(name, RW_NONE); 1498 if (zv == NULL && volmode == ZFS_VOLMODE_NONE) 1499 return; 1500 if (zv != NULL) { 1501 old_volmode = zv->zv_volmode; 1502 mutex_exit(&zv->zv_state_lock); 1503 if (old_volmode == volmode) 1504 return; 1505 zvol_wait_close(zv); 1506 } 1507 cookie = spl_fstrans_mark(); 1508 switch (volmode) { 1509 case ZFS_VOLMODE_NONE: 1510 (void) zvol_remove_minor_impl(name); 1511 break; 1512 case ZFS_VOLMODE_GEOM: 1513 case ZFS_VOLMODE_DEV: 1514 (void) zvol_remove_minor_impl(name); 1515 (void) zvol_os_create_minor(name); 1516 break; 1517 case ZFS_VOLMODE_DEFAULT: 1518 (void) zvol_remove_minor_impl(name); 1519 if (zvol_volmode == ZFS_VOLMODE_NONE) 1520 break; 1521 else /* if zvol_volmode is invalid defaults to "geom" */ 1522 (void) zvol_os_create_minor(name); 1523 break; 1524 } 1525 spl_fstrans_unmark(cookie); 1526 } 1527 1528 static zvol_task_t * 1529 zvol_task_alloc(zvol_async_op_t op, const char *name1, const char *name2, 1530 uint64_t value) 1531 { 1532 zvol_task_t *task; 1533 1534 /* Never allow tasks on hidden names. */ 1535 if (name1[0] == '$') 1536 return (NULL); 1537 1538 task = kmem_zalloc(sizeof (zvol_task_t), KM_SLEEP); 1539 task->op = op; 1540 task->value = value; 1541 1542 strlcpy(task->name1, name1, sizeof (task->name1)); 1543 if (name2 != NULL) 1544 strlcpy(task->name2, name2, sizeof (task->name2)); 1545 1546 return (task); 1547 } 1548 1549 static void 1550 zvol_task_free(zvol_task_t *task) 1551 { 1552 kmem_free(task, sizeof (zvol_task_t)); 1553 } 1554 1555 /* 1556 * The worker thread function performed asynchronously. 1557 */ 1558 static void 1559 zvol_task_cb(void *arg) 1560 { 1561 zvol_task_t *task = arg; 1562 1563 switch (task->op) { 1564 case ZVOL_ASYNC_REMOVE_MINORS: 1565 zvol_remove_minors_impl(task->name1); 1566 break; 1567 case ZVOL_ASYNC_RENAME_MINORS: 1568 zvol_rename_minors_impl(task->name1, task->name2); 1569 break; 1570 case ZVOL_ASYNC_SET_SNAPDEV: 1571 zvol_set_snapdev_impl(task->name1, task->value); 1572 break; 1573 case ZVOL_ASYNC_SET_VOLMODE: 1574 zvol_set_volmode_impl(task->name1, task->value); 1575 break; 1576 default: 1577 VERIFY(0); 1578 break; 1579 } 1580 1581 zvol_task_free(task); 1582 } 1583 1584 typedef struct zvol_set_prop_int_arg { 1585 const char *zsda_name; 1586 uint64_t zsda_value; 1587 zprop_source_t zsda_source; 1588 zfs_prop_t zsda_prop; 1589 } zvol_set_prop_int_arg_t; 1590 1591 /* 1592 * Sanity check the dataset for safe use by the sync task. No additional 1593 * conditions are imposed. 1594 */ 1595 static int 1596 zvol_set_common_check(void *arg, dmu_tx_t *tx) 1597 { 1598 zvol_set_prop_int_arg_t *zsda = arg; 1599 dsl_pool_t *dp = dmu_tx_pool(tx); 1600 dsl_dir_t *dd; 1601 int error; 1602 1603 error = dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL); 1604 if (error != 0) 1605 return (error); 1606 1607 dsl_dir_rele(dd, FTAG); 1608 1609 return (error); 1610 } 1611 1612 static int 1613 zvol_set_common_sync_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 1614 { 1615 zvol_set_prop_int_arg_t *zsda = arg; 1616 char dsname[ZFS_MAX_DATASET_NAME_LEN]; 1617 zvol_task_t *task; 1618 uint64_t prop; 1619 1620 const char *prop_name = zfs_prop_to_name(zsda->zsda_prop); 1621 dsl_dataset_name(ds, dsname); 1622 1623 if (dsl_prop_get_int_ds(ds, prop_name, &prop) != 0) 1624 return (0); 1625 1626 switch (zsda->zsda_prop) { 1627 case ZFS_PROP_VOLMODE: 1628 task = zvol_task_alloc(ZVOL_ASYNC_SET_VOLMODE, dsname, 1629 NULL, prop); 1630 break; 1631 case ZFS_PROP_SNAPDEV: 1632 task = zvol_task_alloc(ZVOL_ASYNC_SET_SNAPDEV, dsname, 1633 NULL, prop); 1634 break; 1635 default: 1636 task = NULL; 1637 break; 1638 } 1639 1640 if (task == NULL) 1641 return (0); 1642 1643 (void) taskq_dispatch(dp->dp_spa->spa_zvol_taskq, zvol_task_cb, 1644 task, TQ_SLEEP); 1645 return (0); 1646 } 1647 1648 /* 1649 * Traverse all child datasets and apply the property appropriately. 1650 * We call dsl_prop_set_sync_impl() here to set the value only on the toplevel 1651 * dataset and read the effective "property" on every child in the callback 1652 * function: this is because the value is not guaranteed to be the same in the 1653 * whole dataset hierarchy. 1654 */ 1655 static void 1656 zvol_set_common_sync(void *arg, dmu_tx_t *tx) 1657 { 1658 zvol_set_prop_int_arg_t *zsda = arg; 1659 dsl_pool_t *dp = dmu_tx_pool(tx); 1660 dsl_dir_t *dd; 1661 dsl_dataset_t *ds; 1662 int error; 1663 1664 VERIFY0(dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL)); 1665 1666 error = dsl_dataset_hold(dp, zsda->zsda_name, FTAG, &ds); 1667 if (error == 0) { 1668 dsl_prop_set_sync_impl(ds, zfs_prop_to_name(zsda->zsda_prop), 1669 zsda->zsda_source, sizeof (zsda->zsda_value), 1, 1670 &zsda->zsda_value, tx); 1671 dsl_dataset_rele(ds, FTAG); 1672 } 1673 1674 dmu_objset_find_dp(dp, dd->dd_object, zvol_set_common_sync_cb, 1675 zsda, DS_FIND_CHILDREN); 1676 1677 dsl_dir_rele(dd, FTAG); 1678 } 1679 1680 int 1681 zvol_set_common(const char *ddname, zfs_prop_t prop, zprop_source_t source, 1682 uint64_t val) 1683 { 1684 zvol_set_prop_int_arg_t zsda; 1685 1686 zsda.zsda_name = ddname; 1687 zsda.zsda_source = source; 1688 zsda.zsda_value = val; 1689 zsda.zsda_prop = prop; 1690 1691 return (dsl_sync_task(ddname, zvol_set_common_check, 1692 zvol_set_common_sync, &zsda, 0, ZFS_SPACE_CHECK_NONE)); 1693 } 1694 1695 void 1696 zvol_remove_minors(spa_t *spa, const char *name, boolean_t async) 1697 { 1698 zvol_task_t *task; 1699 taskqid_t id; 1700 1701 task = zvol_task_alloc(ZVOL_ASYNC_REMOVE_MINORS, name, NULL, ~0ULL); 1702 if (task == NULL) 1703 return; 1704 1705 id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP); 1706 if ((async == B_FALSE) && (id != TASKQID_INVALID)) 1707 taskq_wait_id(spa->spa_zvol_taskq, id); 1708 } 1709 1710 void 1711 zvol_rename_minors(spa_t *spa, const char *name1, const char *name2, 1712 boolean_t async) 1713 { 1714 zvol_task_t *task; 1715 taskqid_t id; 1716 1717 task = zvol_task_alloc(ZVOL_ASYNC_RENAME_MINORS, name1, name2, ~0ULL); 1718 if (task == NULL) 1719 return; 1720 1721 id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP); 1722 if ((async == B_FALSE) && (id != TASKQID_INVALID)) 1723 taskq_wait_id(spa->spa_zvol_taskq, id); 1724 } 1725 1726 boolean_t 1727 zvol_is_zvol(const char *name) 1728 { 1729 1730 return (zvol_os_is_zvol(name)); 1731 } 1732 1733 int 1734 zvol_init_impl(void) 1735 { 1736 int i; 1737 1738 list_create(&zvol_state_list, sizeof (zvol_state_t), 1739 offsetof(zvol_state_t, zv_next)); 1740 rw_init(&zvol_state_lock, NULL, RW_DEFAULT, NULL); 1741 1742 zvol_htable = kmem_alloc(ZVOL_HT_SIZE * sizeof (struct hlist_head), 1743 KM_SLEEP); 1744 for (i = 0; i < ZVOL_HT_SIZE; i++) 1745 INIT_HLIST_HEAD(&zvol_htable[i]); 1746 1747 return (0); 1748 } 1749 1750 void 1751 zvol_fini_impl(void) 1752 { 1753 zvol_remove_minors_impl(NULL); 1754 1755 /* 1756 * The call to "zvol_remove_minors_impl" may dispatch entries to 1757 * the system_taskq, but it doesn't wait for those entries to 1758 * complete before it returns. Thus, we must wait for all of the 1759 * removals to finish, before we can continue. 1760 */ 1761 taskq_wait_outstanding(system_taskq, 0); 1762 1763 kmem_free(zvol_htable, ZVOL_HT_SIZE * sizeof (struct hlist_head)); 1764 list_destroy(&zvol_state_list); 1765 rw_destroy(&zvol_state_lock); 1766 } 1767