1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC. 23 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER). 24 * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>. 25 * LLNL-CODE-403049. 26 * 27 * ZFS volume emulation driver. 28 * 29 * Makes a DMU object look like a volume of arbitrary size, up to 2^64 bytes. 30 * Volumes are accessed through the symbolic links named: 31 * 32 * /dev/<pool_name>/<dataset_name> 33 * 34 * Volumes are persistent through reboot and module load. No user command 35 * needs to be run before opening and using a device. 36 * 37 * Copyright 2014 Nexenta Systems, Inc. All rights reserved. 38 * Copyright (c) 2016 Actifio, Inc. All rights reserved. 39 * Copyright (c) 2012, 2019 by Delphix. All rights reserved. 40 */ 41 42 /* 43 * Note on locking of zvol state structures. 44 * 45 * These structures are used to maintain internal state used to emulate block 46 * devices on top of zvols. In particular, management of device minor number 47 * operations - create, remove, rename, and set_snapdev - involves access to 48 * these structures. The zvol_state_lock is primarily used to protect the 49 * zvol_state_list. The zv->zv_state_lock is used to protect the contents 50 * of the zvol_state_t structures, as well as to make sure that when the 51 * time comes to remove the structure from the list, it is not in use, and 52 * therefore, it can be taken off zvol_state_list and freed. 53 * 54 * The zv_suspend_lock was introduced to allow for suspending I/O to a zvol, 55 * e.g. for the duration of receive and rollback operations. This lock can be 56 * held for significant periods of time. Given that it is undesirable to hold 57 * mutexes for long periods of time, the following lock ordering applies: 58 * - take zvol_state_lock if necessary, to protect zvol_state_list 59 * - take zv_suspend_lock if necessary, by the code path in question 60 * - take zv_state_lock to protect zvol_state_t 61 * 62 * The minor operations are issued to spa->spa_zvol_taskq queues, that are 63 * single-threaded (to preserve order of minor operations), and are executed 64 * through the zvol_task_cb that dispatches the specific operations. Therefore, 65 * these operations are serialized per pool. Consequently, we can be certain 66 * that for a given zvol, there is only one operation at a time in progress. 67 * That is why one can be sure that first, zvol_state_t for a given zvol is 68 * allocated and placed on zvol_state_list, and then other minor operations 69 * for this zvol are going to proceed in the order of issue. 70 * 71 */ 72 73 #include <sys/dataset_kstats.h> 74 #include <sys/dbuf.h> 75 #include <sys/dmu_traverse.h> 76 #include <sys/dsl_dataset.h> 77 #include <sys/dsl_prop.h> 78 #include <sys/dsl_dir.h> 79 #include <sys/zap.h> 80 #include <sys/zfeature.h> 81 #include <sys/zil_impl.h> 82 #include <sys/dmu_tx.h> 83 #include <sys/zio.h> 84 #include <sys/zfs_rlock.h> 85 #include <sys/spa_impl.h> 86 #include <sys/zvol.h> 87 #include <sys/zvol_impl.h> 88 89 unsigned int zvol_inhibit_dev = 0; 90 unsigned int zvol_volmode = ZFS_VOLMODE_GEOM; 91 92 struct hlist_head *zvol_htable; 93 static list_t zvol_state_list; 94 krwlock_t zvol_state_lock; 95 96 typedef enum { 97 ZVOL_ASYNC_REMOVE_MINORS, 98 ZVOL_ASYNC_RENAME_MINORS, 99 ZVOL_ASYNC_SET_SNAPDEV, 100 ZVOL_ASYNC_SET_VOLMODE, 101 ZVOL_ASYNC_MAX 102 } zvol_async_op_t; 103 104 typedef struct { 105 zvol_async_op_t op; 106 char name1[MAXNAMELEN]; 107 char name2[MAXNAMELEN]; 108 uint64_t value; 109 } zvol_task_t; 110 111 uint64_t 112 zvol_name_hash(const char *name) 113 { 114 int i; 115 uint64_t crc = -1ULL; 116 const uint8_t *p = (const uint8_t *)name; 117 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 118 for (i = 0; i < MAXNAMELEN - 1 && *p; i++, p++) { 119 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (*p)) & 0xFF]; 120 } 121 return (crc); 122 } 123 124 /* 125 * Find a zvol_state_t given the name and hash generated by zvol_name_hash. 126 * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise, 127 * return (NULL) without the taking locks. The zv_suspend_lock is always taken 128 * before zv_state_lock. The mode argument indicates the mode (including none) 129 * for zv_suspend_lock to be taken. 130 */ 131 zvol_state_t * 132 zvol_find_by_name_hash(const char *name, uint64_t hash, int mode) 133 { 134 zvol_state_t *zv; 135 struct hlist_node *p = NULL; 136 137 rw_enter(&zvol_state_lock, RW_READER); 138 hlist_for_each(p, ZVOL_HT_HEAD(hash)) { 139 zv = hlist_entry(p, zvol_state_t, zv_hlink); 140 mutex_enter(&zv->zv_state_lock); 141 if (zv->zv_hash == hash && 142 strncmp(zv->zv_name, name, MAXNAMELEN) == 0) { 143 /* 144 * this is the right zvol, take the locks in the 145 * right order 146 */ 147 if (mode != RW_NONE && 148 !rw_tryenter(&zv->zv_suspend_lock, mode)) { 149 mutex_exit(&zv->zv_state_lock); 150 rw_enter(&zv->zv_suspend_lock, mode); 151 mutex_enter(&zv->zv_state_lock); 152 /* 153 * zvol cannot be renamed as we continue 154 * to hold zvol_state_lock 155 */ 156 ASSERT(zv->zv_hash == hash && 157 strncmp(zv->zv_name, name, MAXNAMELEN) 158 == 0); 159 } 160 rw_exit(&zvol_state_lock); 161 return (zv); 162 } 163 mutex_exit(&zv->zv_state_lock); 164 } 165 rw_exit(&zvol_state_lock); 166 167 return (NULL); 168 } 169 170 /* 171 * Find a zvol_state_t given the name. 172 * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise, 173 * return (NULL) without the taking locks. The zv_suspend_lock is always taken 174 * before zv_state_lock. The mode argument indicates the mode (including none) 175 * for zv_suspend_lock to be taken. 176 */ 177 static zvol_state_t * 178 zvol_find_by_name(const char *name, int mode) 179 { 180 return (zvol_find_by_name_hash(name, zvol_name_hash(name), mode)); 181 } 182 183 /* 184 * ZFS_IOC_CREATE callback handles dmu zvol and zap object creation. 185 */ 186 void 187 zvol_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) 188 { 189 zfs_creat_t *zct = arg; 190 nvlist_t *nvprops = zct->zct_props; 191 int error; 192 uint64_t volblocksize, volsize; 193 194 VERIFY(nvlist_lookup_uint64(nvprops, 195 zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) == 0); 196 if (nvlist_lookup_uint64(nvprops, 197 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize) != 0) 198 volblocksize = zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE); 199 200 /* 201 * These properties must be removed from the list so the generic 202 * property setting step won't apply to them. 203 */ 204 VERIFY(nvlist_remove_all(nvprops, 205 zfs_prop_to_name(ZFS_PROP_VOLSIZE)) == 0); 206 (void) nvlist_remove_all(nvprops, 207 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE)); 208 209 error = dmu_object_claim(os, ZVOL_OBJ, DMU_OT_ZVOL, volblocksize, 210 DMU_OT_NONE, 0, tx); 211 ASSERT(error == 0); 212 213 error = zap_create_claim(os, ZVOL_ZAP_OBJ, DMU_OT_ZVOL_PROP, 214 DMU_OT_NONE, 0, tx); 215 ASSERT(error == 0); 216 217 error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize, tx); 218 ASSERT(error == 0); 219 } 220 221 /* 222 * ZFS_IOC_OBJSET_STATS entry point. 223 */ 224 int 225 zvol_get_stats(objset_t *os, nvlist_t *nv) 226 { 227 int error; 228 dmu_object_info_t *doi; 229 uint64_t val; 230 231 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &val); 232 if (error) 233 return (SET_ERROR(error)); 234 235 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLSIZE, val); 236 doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP); 237 error = dmu_object_info(os, ZVOL_OBJ, doi); 238 239 if (error == 0) { 240 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLBLOCKSIZE, 241 doi->doi_data_block_size); 242 } 243 244 kmem_free(doi, sizeof (dmu_object_info_t)); 245 246 return (SET_ERROR(error)); 247 } 248 249 /* 250 * Sanity check volume size. 251 */ 252 int 253 zvol_check_volsize(uint64_t volsize, uint64_t blocksize) 254 { 255 if (volsize == 0) 256 return (SET_ERROR(EINVAL)); 257 258 if (volsize % blocksize != 0) 259 return (SET_ERROR(EINVAL)); 260 261 #ifdef _ILP32 262 if (volsize - 1 > SPEC_MAXOFFSET_T) 263 return (SET_ERROR(EOVERFLOW)); 264 #endif 265 return (0); 266 } 267 268 /* 269 * Ensure the zap is flushed then inform the VFS of the capacity change. 270 */ 271 static int 272 zvol_update_volsize(uint64_t volsize, objset_t *os) 273 { 274 dmu_tx_t *tx; 275 int error; 276 uint64_t txg; 277 278 tx = dmu_tx_create(os); 279 dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL); 280 dmu_tx_mark_netfree(tx); 281 error = dmu_tx_assign(tx, TXG_WAIT); 282 if (error) { 283 dmu_tx_abort(tx); 284 return (SET_ERROR(error)); 285 } 286 txg = dmu_tx_get_txg(tx); 287 288 error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, 289 &volsize, tx); 290 dmu_tx_commit(tx); 291 292 txg_wait_synced(dmu_objset_pool(os), txg); 293 294 if (error == 0) 295 error = dmu_free_long_range(os, 296 ZVOL_OBJ, volsize, DMU_OBJECT_END); 297 298 return (error); 299 } 300 301 /* 302 * Set ZFS_PROP_VOLSIZE set entry point. Note that modifying the volume 303 * size will result in a udev "change" event being generated. 304 */ 305 int 306 zvol_set_volsize(const char *name, uint64_t volsize) 307 { 308 objset_t *os = NULL; 309 uint64_t readonly; 310 int error; 311 boolean_t owned = B_FALSE; 312 313 error = dsl_prop_get_integer(name, 314 zfs_prop_to_name(ZFS_PROP_READONLY), &readonly, NULL); 315 if (error != 0) 316 return (SET_ERROR(error)); 317 if (readonly) 318 return (SET_ERROR(EROFS)); 319 320 zvol_state_t *zv = zvol_find_by_name(name, RW_READER); 321 322 ASSERT(zv == NULL || (MUTEX_HELD(&zv->zv_state_lock) && 323 RW_READ_HELD(&zv->zv_suspend_lock))); 324 325 if (zv == NULL || zv->zv_objset == NULL) { 326 if (zv != NULL) 327 rw_exit(&zv->zv_suspend_lock); 328 if ((error = dmu_objset_own(name, DMU_OST_ZVOL, B_FALSE, B_TRUE, 329 FTAG, &os)) != 0) { 330 if (zv != NULL) 331 mutex_exit(&zv->zv_state_lock); 332 return (SET_ERROR(error)); 333 } 334 owned = B_TRUE; 335 if (zv != NULL) 336 zv->zv_objset = os; 337 } else { 338 os = zv->zv_objset; 339 } 340 341 dmu_object_info_t *doi = kmem_alloc(sizeof (*doi), KM_SLEEP); 342 343 if ((error = dmu_object_info(os, ZVOL_OBJ, doi)) || 344 (error = zvol_check_volsize(volsize, doi->doi_data_block_size))) 345 goto out; 346 347 error = zvol_update_volsize(volsize, os); 348 if (error == 0 && zv != NULL) { 349 zv->zv_volsize = volsize; 350 zv->zv_changed = 1; 351 } 352 out: 353 kmem_free(doi, sizeof (dmu_object_info_t)); 354 355 if (owned) { 356 dmu_objset_disown(os, B_TRUE, FTAG); 357 if (zv != NULL) 358 zv->zv_objset = NULL; 359 } else { 360 rw_exit(&zv->zv_suspend_lock); 361 } 362 363 if (zv != NULL) 364 mutex_exit(&zv->zv_state_lock); 365 366 if (error == 0 && zv != NULL) 367 zvol_os_update_volsize(zv, volsize); 368 369 return (SET_ERROR(error)); 370 } 371 372 /* 373 * Sanity check volume block size. 374 */ 375 int 376 zvol_check_volblocksize(const char *name, uint64_t volblocksize) 377 { 378 /* Record sizes above 128k need the feature to be enabled */ 379 if (volblocksize > SPA_OLD_MAXBLOCKSIZE) { 380 spa_t *spa; 381 int error; 382 383 if ((error = spa_open(name, &spa, FTAG)) != 0) 384 return (error); 385 386 if (!spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) { 387 spa_close(spa, FTAG); 388 return (SET_ERROR(ENOTSUP)); 389 } 390 391 /* 392 * We don't allow setting the property above 1MB, 393 * unless the tunable has been changed. 394 */ 395 if (volblocksize > zfs_max_recordsize) 396 return (SET_ERROR(EDOM)); 397 398 spa_close(spa, FTAG); 399 } 400 401 if (volblocksize < SPA_MINBLOCKSIZE || 402 volblocksize > SPA_MAXBLOCKSIZE || 403 !ISP2(volblocksize)) 404 return (SET_ERROR(EDOM)); 405 406 return (0); 407 } 408 409 /* 410 * Replay a TX_TRUNCATE ZIL transaction if asked. TX_TRUNCATE is how we 411 * implement DKIOCFREE/free-long-range. 412 */ 413 static int 414 zvol_replay_truncate(void *arg1, void *arg2, boolean_t byteswap) 415 { 416 zvol_state_t *zv = arg1; 417 lr_truncate_t *lr = arg2; 418 uint64_t offset, length; 419 420 if (byteswap) 421 byteswap_uint64_array(lr, sizeof (*lr)); 422 423 offset = lr->lr_offset; 424 length = lr->lr_length; 425 426 dmu_tx_t *tx = dmu_tx_create(zv->zv_objset); 427 dmu_tx_mark_netfree(tx); 428 int error = dmu_tx_assign(tx, TXG_WAIT); 429 if (error != 0) { 430 dmu_tx_abort(tx); 431 } else { 432 zil_replaying(zv->zv_zilog, tx); 433 dmu_tx_commit(tx); 434 error = dmu_free_long_range(zv->zv_objset, ZVOL_OBJ, offset, 435 length); 436 } 437 438 return (error); 439 } 440 441 /* 442 * Replay a TX_WRITE ZIL transaction that didn't get committed 443 * after a system failure 444 */ 445 static int 446 zvol_replay_write(void *arg1, void *arg2, boolean_t byteswap) 447 { 448 zvol_state_t *zv = arg1; 449 lr_write_t *lr = arg2; 450 objset_t *os = zv->zv_objset; 451 char *data = (char *)(lr + 1); /* data follows lr_write_t */ 452 uint64_t offset, length; 453 dmu_tx_t *tx; 454 int error; 455 456 if (byteswap) 457 byteswap_uint64_array(lr, sizeof (*lr)); 458 459 offset = lr->lr_offset; 460 length = lr->lr_length; 461 462 /* If it's a dmu_sync() block, write the whole block */ 463 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) { 464 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr); 465 if (length < blocksize) { 466 offset -= offset % blocksize; 467 length = blocksize; 468 } 469 } 470 471 tx = dmu_tx_create(os); 472 dmu_tx_hold_write(tx, ZVOL_OBJ, offset, length); 473 error = dmu_tx_assign(tx, TXG_WAIT); 474 if (error) { 475 dmu_tx_abort(tx); 476 } else { 477 dmu_write(os, ZVOL_OBJ, offset, length, data, tx); 478 zil_replaying(zv->zv_zilog, tx); 479 dmu_tx_commit(tx); 480 } 481 482 return (error); 483 } 484 485 static int 486 zvol_replay_err(void *arg1, void *arg2, boolean_t byteswap) 487 { 488 (void) arg1, (void) arg2, (void) byteswap; 489 return (SET_ERROR(ENOTSUP)); 490 } 491 492 /* 493 * Callback vectors for replaying records. 494 * Only TX_WRITE and TX_TRUNCATE are needed for zvol. 495 */ 496 zil_replay_func_t *const zvol_replay_vector[TX_MAX_TYPE] = { 497 zvol_replay_err, /* no such transaction type */ 498 zvol_replay_err, /* TX_CREATE */ 499 zvol_replay_err, /* TX_MKDIR */ 500 zvol_replay_err, /* TX_MKXATTR */ 501 zvol_replay_err, /* TX_SYMLINK */ 502 zvol_replay_err, /* TX_REMOVE */ 503 zvol_replay_err, /* TX_RMDIR */ 504 zvol_replay_err, /* TX_LINK */ 505 zvol_replay_err, /* TX_RENAME */ 506 zvol_replay_write, /* TX_WRITE */ 507 zvol_replay_truncate, /* TX_TRUNCATE */ 508 zvol_replay_err, /* TX_SETATTR */ 509 zvol_replay_err, /* TX_ACL */ 510 zvol_replay_err, /* TX_CREATE_ATTR */ 511 zvol_replay_err, /* TX_CREATE_ACL_ATTR */ 512 zvol_replay_err, /* TX_MKDIR_ACL */ 513 zvol_replay_err, /* TX_MKDIR_ATTR */ 514 zvol_replay_err, /* TX_MKDIR_ACL_ATTR */ 515 zvol_replay_err, /* TX_WRITE2 */ 516 zvol_replay_err, /* TX_SETSAXATTR */ 517 }; 518 519 /* 520 * zvol_log_write() handles synchronous writes using TX_WRITE ZIL transactions. 521 * 522 * We store data in the log buffers if it's small enough. 523 * Otherwise we will later flush the data out via dmu_sync(). 524 */ 525 static const ssize_t zvol_immediate_write_sz = 32768; 526 527 void 528 zvol_log_write(zvol_state_t *zv, dmu_tx_t *tx, uint64_t offset, 529 uint64_t size, int sync) 530 { 531 uint32_t blocksize = zv->zv_volblocksize; 532 zilog_t *zilog = zv->zv_zilog; 533 itx_wr_state_t write_state; 534 uint64_t sz = size; 535 536 if (zil_replaying(zilog, tx)) 537 return; 538 539 if (zilog->zl_logbias == ZFS_LOGBIAS_THROUGHPUT) 540 write_state = WR_INDIRECT; 541 else if (!spa_has_slogs(zilog->zl_spa) && 542 size >= blocksize && blocksize > zvol_immediate_write_sz) 543 write_state = WR_INDIRECT; 544 else if (sync) 545 write_state = WR_COPIED; 546 else 547 write_state = WR_NEED_COPY; 548 549 while (size) { 550 itx_t *itx; 551 lr_write_t *lr; 552 itx_wr_state_t wr_state = write_state; 553 ssize_t len = size; 554 555 if (wr_state == WR_COPIED && size > zil_max_copied_data(zilog)) 556 wr_state = WR_NEED_COPY; 557 else if (wr_state == WR_INDIRECT) 558 len = MIN(blocksize - P2PHASE(offset, blocksize), size); 559 560 itx = zil_itx_create(TX_WRITE, sizeof (*lr) + 561 (wr_state == WR_COPIED ? len : 0)); 562 lr = (lr_write_t *)&itx->itx_lr; 563 if (wr_state == WR_COPIED && dmu_read_by_dnode(zv->zv_dn, 564 offset, len, lr+1, DMU_READ_NO_PREFETCH) != 0) { 565 zil_itx_destroy(itx); 566 itx = zil_itx_create(TX_WRITE, sizeof (*lr)); 567 lr = (lr_write_t *)&itx->itx_lr; 568 wr_state = WR_NEED_COPY; 569 } 570 571 itx->itx_wr_state = wr_state; 572 lr->lr_foid = ZVOL_OBJ; 573 lr->lr_offset = offset; 574 lr->lr_length = len; 575 lr->lr_blkoff = 0; 576 BP_ZERO(&lr->lr_blkptr); 577 578 itx->itx_private = zv; 579 itx->itx_sync = sync; 580 581 (void) zil_itx_assign(zilog, itx, tx); 582 583 offset += len; 584 size -= len; 585 } 586 587 if (write_state == WR_COPIED || write_state == WR_NEED_COPY) { 588 dsl_pool_wrlog_count(zilog->zl_dmu_pool, sz, tx->tx_txg); 589 } 590 } 591 592 /* 593 * Log a DKIOCFREE/free-long-range to the ZIL with TX_TRUNCATE. 594 */ 595 void 596 zvol_log_truncate(zvol_state_t *zv, dmu_tx_t *tx, uint64_t off, uint64_t len, 597 boolean_t sync) 598 { 599 itx_t *itx; 600 lr_truncate_t *lr; 601 zilog_t *zilog = zv->zv_zilog; 602 603 if (zil_replaying(zilog, tx)) 604 return; 605 606 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr)); 607 lr = (lr_truncate_t *)&itx->itx_lr; 608 lr->lr_foid = ZVOL_OBJ; 609 lr->lr_offset = off; 610 lr->lr_length = len; 611 612 itx->itx_sync = sync; 613 zil_itx_assign(zilog, itx, tx); 614 } 615 616 617 static void 618 zvol_get_done(zgd_t *zgd, int error) 619 { 620 (void) error; 621 if (zgd->zgd_db) 622 dmu_buf_rele(zgd->zgd_db, zgd); 623 624 zfs_rangelock_exit(zgd->zgd_lr); 625 626 kmem_free(zgd, sizeof (zgd_t)); 627 } 628 629 /* 630 * Get data to generate a TX_WRITE intent log record. 631 */ 632 int 633 zvol_get_data(void *arg, uint64_t arg2, lr_write_t *lr, char *buf, 634 struct lwb *lwb, zio_t *zio) 635 { 636 zvol_state_t *zv = arg; 637 uint64_t offset = lr->lr_offset; 638 uint64_t size = lr->lr_length; 639 dmu_buf_t *db; 640 zgd_t *zgd; 641 int error; 642 643 ASSERT3P(lwb, !=, NULL); 644 ASSERT3P(zio, !=, NULL); 645 ASSERT3U(size, !=, 0); 646 647 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP); 648 zgd->zgd_lwb = lwb; 649 650 /* 651 * Write records come in two flavors: immediate and indirect. 652 * For small writes it's cheaper to store the data with the 653 * log record (immediate); for large writes it's cheaper to 654 * sync the data and get a pointer to it (indirect) so that 655 * we don't have to write the data twice. 656 */ 657 if (buf != NULL) { /* immediate write */ 658 zgd->zgd_lr = zfs_rangelock_enter(&zv->zv_rangelock, offset, 659 size, RL_READER); 660 error = dmu_read_by_dnode(zv->zv_dn, offset, size, buf, 661 DMU_READ_NO_PREFETCH); 662 } else { /* indirect write */ 663 /* 664 * Have to lock the whole block to ensure when it's written out 665 * and its checksum is being calculated that no one can change 666 * the data. Contrarily to zfs_get_data we need not re-check 667 * blocksize after we get the lock because it cannot be changed. 668 */ 669 size = zv->zv_volblocksize; 670 offset = P2ALIGN_TYPED(offset, size, uint64_t); 671 zgd->zgd_lr = zfs_rangelock_enter(&zv->zv_rangelock, offset, 672 size, RL_READER); 673 error = dmu_buf_hold_by_dnode(zv->zv_dn, offset, zgd, &db, 674 DMU_READ_NO_PREFETCH); 675 if (error == 0) { 676 blkptr_t *bp = &lr->lr_blkptr; 677 678 zgd->zgd_db = db; 679 zgd->zgd_bp = bp; 680 681 ASSERT(db != NULL); 682 ASSERT(db->db_offset == offset); 683 ASSERT(db->db_size == size); 684 685 error = dmu_sync(zio, lr->lr_common.lrc_txg, 686 zvol_get_done, zgd); 687 688 if (error == 0) 689 return (0); 690 } 691 } 692 693 zvol_get_done(zgd, error); 694 695 return (SET_ERROR(error)); 696 } 697 698 /* 699 * The zvol_state_t's are inserted into zvol_state_list and zvol_htable. 700 */ 701 702 void 703 zvol_insert(zvol_state_t *zv) 704 { 705 ASSERT(RW_WRITE_HELD(&zvol_state_lock)); 706 list_insert_head(&zvol_state_list, zv); 707 hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash)); 708 } 709 710 /* 711 * Simply remove the zvol from to list of zvols. 712 */ 713 static void 714 zvol_remove(zvol_state_t *zv) 715 { 716 ASSERT(RW_WRITE_HELD(&zvol_state_lock)); 717 list_remove(&zvol_state_list, zv); 718 hlist_del(&zv->zv_hlink); 719 } 720 721 /* 722 * Setup zv after we just own the zv->objset 723 */ 724 static int 725 zvol_setup_zv(zvol_state_t *zv) 726 { 727 uint64_t volsize; 728 int error; 729 uint64_t ro; 730 objset_t *os = zv->zv_objset; 731 732 ASSERT(MUTEX_HELD(&zv->zv_state_lock)); 733 ASSERT(RW_LOCK_HELD(&zv->zv_suspend_lock)); 734 735 zv->zv_zilog = NULL; 736 zv->zv_flags &= ~ZVOL_WRITTEN_TO; 737 738 error = dsl_prop_get_integer(zv->zv_name, "readonly", &ro, NULL); 739 if (error) 740 return (SET_ERROR(error)); 741 742 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize); 743 if (error) 744 return (SET_ERROR(error)); 745 746 error = dnode_hold(os, ZVOL_OBJ, zv, &zv->zv_dn); 747 if (error) 748 return (SET_ERROR(error)); 749 750 zvol_os_set_capacity(zv, volsize >> 9); 751 zv->zv_volsize = volsize; 752 753 if (ro || dmu_objset_is_snapshot(os) || 754 !spa_writeable(dmu_objset_spa(os))) { 755 zvol_os_set_disk_ro(zv, 1); 756 zv->zv_flags |= ZVOL_RDONLY; 757 } else { 758 zvol_os_set_disk_ro(zv, 0); 759 zv->zv_flags &= ~ZVOL_RDONLY; 760 } 761 return (0); 762 } 763 764 /* 765 * Shutdown every zv_objset related stuff except zv_objset itself. 766 * The is the reverse of zvol_setup_zv. 767 */ 768 static void 769 zvol_shutdown_zv(zvol_state_t *zv) 770 { 771 ASSERT(MUTEX_HELD(&zv->zv_state_lock) && 772 RW_LOCK_HELD(&zv->zv_suspend_lock)); 773 774 if (zv->zv_flags & ZVOL_WRITTEN_TO) { 775 ASSERT(zv->zv_zilog != NULL); 776 zil_close(zv->zv_zilog); 777 } 778 779 zv->zv_zilog = NULL; 780 781 dnode_rele(zv->zv_dn, zv); 782 zv->zv_dn = NULL; 783 784 /* 785 * Evict cached data. We must write out any dirty data before 786 * disowning the dataset. 787 */ 788 if (zv->zv_flags & ZVOL_WRITTEN_TO) 789 txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0); 790 (void) dmu_objset_evict_dbufs(zv->zv_objset); 791 } 792 793 /* 794 * return the proper tag for rollback and recv 795 */ 796 void * 797 zvol_tag(zvol_state_t *zv) 798 { 799 ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock)); 800 return (zv->zv_open_count > 0 ? zv : NULL); 801 } 802 803 /* 804 * Suspend the zvol for recv and rollback. 805 */ 806 zvol_state_t * 807 zvol_suspend(const char *name) 808 { 809 zvol_state_t *zv; 810 811 zv = zvol_find_by_name(name, RW_WRITER); 812 813 if (zv == NULL) 814 return (NULL); 815 816 /* block all I/O, release in zvol_resume. */ 817 ASSERT(MUTEX_HELD(&zv->zv_state_lock)); 818 ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock)); 819 820 atomic_inc(&zv->zv_suspend_ref); 821 822 if (zv->zv_open_count > 0) 823 zvol_shutdown_zv(zv); 824 825 /* 826 * do not hold zv_state_lock across suspend/resume to 827 * avoid locking up zvol lookups 828 */ 829 mutex_exit(&zv->zv_state_lock); 830 831 /* zv_suspend_lock is released in zvol_resume() */ 832 return (zv); 833 } 834 835 int 836 zvol_resume(zvol_state_t *zv) 837 { 838 int error = 0; 839 840 ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock)); 841 842 mutex_enter(&zv->zv_state_lock); 843 844 if (zv->zv_open_count > 0) { 845 VERIFY0(dmu_objset_hold(zv->zv_name, zv, &zv->zv_objset)); 846 VERIFY3P(zv->zv_objset->os_dsl_dataset->ds_owner, ==, zv); 847 VERIFY(dsl_dataset_long_held(zv->zv_objset->os_dsl_dataset)); 848 dmu_objset_rele(zv->zv_objset, zv); 849 850 error = zvol_setup_zv(zv); 851 } 852 853 mutex_exit(&zv->zv_state_lock); 854 855 rw_exit(&zv->zv_suspend_lock); 856 /* 857 * We need this because we don't hold zvol_state_lock while releasing 858 * zv_suspend_lock. zvol_remove_minors_impl thus cannot check 859 * zv_suspend_lock to determine it is safe to free because rwlock is 860 * not inherent atomic. 861 */ 862 atomic_dec(&zv->zv_suspend_ref); 863 864 return (SET_ERROR(error)); 865 } 866 867 int 868 zvol_first_open(zvol_state_t *zv, boolean_t readonly) 869 { 870 objset_t *os; 871 int error; 872 873 ASSERT(RW_READ_HELD(&zv->zv_suspend_lock)); 874 ASSERT(MUTEX_HELD(&zv->zv_state_lock)); 875 ASSERT(mutex_owned(&spa_namespace_lock)); 876 877 boolean_t ro = (readonly || (strchr(zv->zv_name, '@') != NULL)); 878 error = dmu_objset_own(zv->zv_name, DMU_OST_ZVOL, ro, B_TRUE, zv, &os); 879 if (error) 880 return (SET_ERROR(error)); 881 882 zv->zv_objset = os; 883 884 error = zvol_setup_zv(zv); 885 if (error) { 886 dmu_objset_disown(os, 1, zv); 887 zv->zv_objset = NULL; 888 } 889 890 return (error); 891 } 892 893 void 894 zvol_last_close(zvol_state_t *zv) 895 { 896 ASSERT(RW_READ_HELD(&zv->zv_suspend_lock)); 897 ASSERT(MUTEX_HELD(&zv->zv_state_lock)); 898 899 zvol_shutdown_zv(zv); 900 901 dmu_objset_disown(zv->zv_objset, 1, zv); 902 zv->zv_objset = NULL; 903 } 904 905 typedef struct minors_job { 906 list_t *list; 907 list_node_t link; 908 /* input */ 909 char *name; 910 /* output */ 911 int error; 912 } minors_job_t; 913 914 /* 915 * Prefetch zvol dnodes for the minors_job 916 */ 917 static void 918 zvol_prefetch_minors_impl(void *arg) 919 { 920 minors_job_t *job = arg; 921 char *dsname = job->name; 922 objset_t *os = NULL; 923 924 job->error = dmu_objset_own(dsname, DMU_OST_ZVOL, B_TRUE, B_TRUE, 925 FTAG, &os); 926 if (job->error == 0) { 927 dmu_prefetch(os, ZVOL_OBJ, 0, 0, 0, ZIO_PRIORITY_SYNC_READ); 928 dmu_objset_disown(os, B_TRUE, FTAG); 929 } 930 } 931 932 /* 933 * Mask errors to continue dmu_objset_find() traversal 934 */ 935 static int 936 zvol_create_snap_minor_cb(const char *dsname, void *arg) 937 { 938 minors_job_t *j = arg; 939 list_t *minors_list = j->list; 940 const char *name = j->name; 941 942 ASSERT0(MUTEX_HELD(&spa_namespace_lock)); 943 944 /* skip the designated dataset */ 945 if (name && strcmp(dsname, name) == 0) 946 return (0); 947 948 /* at this point, the dsname should name a snapshot */ 949 if (strchr(dsname, '@') == 0) { 950 dprintf("zvol_create_snap_minor_cb(): " 951 "%s is not a snapshot name\n", dsname); 952 } else { 953 minors_job_t *job; 954 char *n = kmem_strdup(dsname); 955 if (n == NULL) 956 return (0); 957 958 job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP); 959 job->name = n; 960 job->list = minors_list; 961 job->error = 0; 962 list_insert_tail(minors_list, job); 963 /* don't care if dispatch fails, because job->error is 0 */ 964 taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job, 965 TQ_SLEEP); 966 } 967 968 return (0); 969 } 970 971 /* 972 * If spa_keystore_load_wkey() is called for an encrypted zvol, 973 * we need to look for any clones also using the key. This function 974 * is "best effort" - so we just skip over it if there are failures. 975 */ 976 static void 977 zvol_add_clones(const char *dsname, list_t *minors_list) 978 { 979 /* Also check if it has clones */ 980 dsl_dir_t *dd = NULL; 981 dsl_pool_t *dp = NULL; 982 983 if (dsl_pool_hold(dsname, FTAG, &dp) != 0) 984 return; 985 986 if (!spa_feature_is_enabled(dp->dp_spa, 987 SPA_FEATURE_ENCRYPTION)) 988 goto out; 989 990 if (dsl_dir_hold(dp, dsname, FTAG, &dd, NULL) != 0) 991 goto out; 992 993 if (dsl_dir_phys(dd)->dd_clones == 0) 994 goto out; 995 996 zap_cursor_t *zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP); 997 zap_attribute_t *za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP); 998 objset_t *mos = dd->dd_pool->dp_meta_objset; 999 1000 for (zap_cursor_init(zc, mos, dsl_dir_phys(dd)->dd_clones); 1001 zap_cursor_retrieve(zc, za) == 0; 1002 zap_cursor_advance(zc)) { 1003 dsl_dataset_t *clone; 1004 minors_job_t *job; 1005 1006 if (dsl_dataset_hold_obj(dd->dd_pool, 1007 za->za_first_integer, FTAG, &clone) == 0) { 1008 1009 char name[ZFS_MAX_DATASET_NAME_LEN]; 1010 dsl_dataset_name(clone, name); 1011 1012 char *n = kmem_strdup(name); 1013 job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP); 1014 job->name = n; 1015 job->list = minors_list; 1016 job->error = 0; 1017 list_insert_tail(minors_list, job); 1018 1019 dsl_dataset_rele(clone, FTAG); 1020 } 1021 } 1022 zap_cursor_fini(zc); 1023 kmem_free(za, sizeof (zap_attribute_t)); 1024 kmem_free(zc, sizeof (zap_cursor_t)); 1025 1026 out: 1027 if (dd != NULL) 1028 dsl_dir_rele(dd, FTAG); 1029 if (dp != NULL) 1030 dsl_pool_rele(dp, FTAG); 1031 } 1032 1033 /* 1034 * Mask errors to continue dmu_objset_find() traversal 1035 */ 1036 static int 1037 zvol_create_minors_cb(const char *dsname, void *arg) 1038 { 1039 uint64_t snapdev; 1040 int error; 1041 list_t *minors_list = arg; 1042 1043 ASSERT0(MUTEX_HELD(&spa_namespace_lock)); 1044 1045 error = dsl_prop_get_integer(dsname, "snapdev", &snapdev, NULL); 1046 if (error) 1047 return (0); 1048 1049 /* 1050 * Given the name and the 'snapdev' property, create device minor nodes 1051 * with the linkages to zvols/snapshots as needed. 1052 * If the name represents a zvol, create a minor node for the zvol, then 1053 * check if its snapshots are 'visible', and if so, iterate over the 1054 * snapshots and create device minor nodes for those. 1055 */ 1056 if (strchr(dsname, '@') == 0) { 1057 minors_job_t *job; 1058 char *n = kmem_strdup(dsname); 1059 if (n == NULL) 1060 return (0); 1061 1062 job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP); 1063 job->name = n; 1064 job->list = minors_list; 1065 job->error = 0; 1066 list_insert_tail(minors_list, job); 1067 /* don't care if dispatch fails, because job->error is 0 */ 1068 taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job, 1069 TQ_SLEEP); 1070 1071 zvol_add_clones(dsname, minors_list); 1072 1073 if (snapdev == ZFS_SNAPDEV_VISIBLE) { 1074 /* 1075 * traverse snapshots only, do not traverse children, 1076 * and skip the 'dsname' 1077 */ 1078 error = dmu_objset_find(dsname, 1079 zvol_create_snap_minor_cb, (void *)job, 1080 DS_FIND_SNAPSHOTS); 1081 } 1082 } else { 1083 dprintf("zvol_create_minors_cb(): %s is not a zvol name\n", 1084 dsname); 1085 } 1086 1087 return (0); 1088 } 1089 1090 /* 1091 * Create minors for the specified dataset, including children and snapshots. 1092 * Pay attention to the 'snapdev' property and iterate over the snapshots 1093 * only if they are 'visible'. This approach allows one to assure that the 1094 * snapshot metadata is read from disk only if it is needed. 1095 * 1096 * The name can represent a dataset to be recursively scanned for zvols and 1097 * their snapshots, or a single zvol snapshot. If the name represents a 1098 * dataset, the scan is performed in two nested stages: 1099 * - scan the dataset for zvols, and 1100 * - for each zvol, create a minor node, then check if the zvol's snapshots 1101 * are 'visible', and only then iterate over the snapshots if needed 1102 * 1103 * If the name represents a snapshot, a check is performed if the snapshot is 1104 * 'visible' (which also verifies that the parent is a zvol), and if so, 1105 * a minor node for that snapshot is created. 1106 */ 1107 void 1108 zvol_create_minors_recursive(const char *name) 1109 { 1110 list_t minors_list; 1111 minors_job_t *job; 1112 1113 if (zvol_inhibit_dev) 1114 return; 1115 1116 /* 1117 * This is the list for prefetch jobs. Whenever we found a match 1118 * during dmu_objset_find, we insert a minors_job to the list and do 1119 * taskq_dispatch to parallel prefetch zvol dnodes. Note we don't need 1120 * any lock because all list operation is done on the current thread. 1121 * 1122 * We will use this list to do zvol_os_create_minor after prefetch 1123 * so we don't have to traverse using dmu_objset_find again. 1124 */ 1125 list_create(&minors_list, sizeof (minors_job_t), 1126 offsetof(minors_job_t, link)); 1127 1128 1129 if (strchr(name, '@') != NULL) { 1130 uint64_t snapdev; 1131 1132 int error = dsl_prop_get_integer(name, "snapdev", 1133 &snapdev, NULL); 1134 1135 if (error == 0 && snapdev == ZFS_SNAPDEV_VISIBLE) 1136 (void) zvol_os_create_minor(name); 1137 } else { 1138 fstrans_cookie_t cookie = spl_fstrans_mark(); 1139 (void) dmu_objset_find(name, zvol_create_minors_cb, 1140 &minors_list, DS_FIND_CHILDREN); 1141 spl_fstrans_unmark(cookie); 1142 } 1143 1144 taskq_wait_outstanding(system_taskq, 0); 1145 1146 /* 1147 * Prefetch is completed, we can do zvol_os_create_minor 1148 * sequentially. 1149 */ 1150 while ((job = list_head(&minors_list)) != NULL) { 1151 list_remove(&minors_list, job); 1152 if (!job->error) 1153 (void) zvol_os_create_minor(job->name); 1154 kmem_strfree(job->name); 1155 kmem_free(job, sizeof (minors_job_t)); 1156 } 1157 1158 list_destroy(&minors_list); 1159 } 1160 1161 void 1162 zvol_create_minor(const char *name) 1163 { 1164 /* 1165 * Note: the dsl_pool_config_lock must not be held. 1166 * Minor node creation needs to obtain the zvol_state_lock. 1167 * zvol_open() obtains the zvol_state_lock and then the dsl pool 1168 * config lock. Therefore, we can't have the config lock now if 1169 * we are going to wait for the zvol_state_lock, because it 1170 * would be a lock order inversion which could lead to deadlock. 1171 */ 1172 1173 if (zvol_inhibit_dev) 1174 return; 1175 1176 if (strchr(name, '@') != NULL) { 1177 uint64_t snapdev; 1178 1179 int error = dsl_prop_get_integer(name, 1180 "snapdev", &snapdev, NULL); 1181 1182 if (error == 0 && snapdev == ZFS_SNAPDEV_VISIBLE) 1183 (void) zvol_os_create_minor(name); 1184 } else { 1185 (void) zvol_os_create_minor(name); 1186 } 1187 } 1188 1189 /* 1190 * Remove minors for specified dataset including children and snapshots. 1191 */ 1192 1193 static void 1194 zvol_free_task(void *arg) 1195 { 1196 zvol_os_free(arg); 1197 } 1198 1199 void 1200 zvol_remove_minors_impl(const char *name) 1201 { 1202 zvol_state_t *zv, *zv_next; 1203 int namelen = ((name) ? strlen(name) : 0); 1204 taskqid_t t; 1205 list_t free_list; 1206 1207 if (zvol_inhibit_dev) 1208 return; 1209 1210 list_create(&free_list, sizeof (zvol_state_t), 1211 offsetof(zvol_state_t, zv_next)); 1212 1213 rw_enter(&zvol_state_lock, RW_WRITER); 1214 1215 for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) { 1216 zv_next = list_next(&zvol_state_list, zv); 1217 1218 mutex_enter(&zv->zv_state_lock); 1219 if (name == NULL || strcmp(zv->zv_name, name) == 0 || 1220 (strncmp(zv->zv_name, name, namelen) == 0 && 1221 (zv->zv_name[namelen] == '/' || 1222 zv->zv_name[namelen] == '@'))) { 1223 /* 1224 * By holding zv_state_lock here, we guarantee that no 1225 * one is currently using this zv 1226 */ 1227 1228 /* If in use, leave alone */ 1229 if (zv->zv_open_count > 0 || 1230 atomic_read(&zv->zv_suspend_ref)) { 1231 mutex_exit(&zv->zv_state_lock); 1232 continue; 1233 } 1234 1235 zvol_remove(zv); 1236 1237 /* 1238 * Cleared while holding zvol_state_lock as a writer 1239 * which will prevent zvol_open() from opening it. 1240 */ 1241 zvol_os_clear_private(zv); 1242 1243 /* Drop zv_state_lock before zvol_free() */ 1244 mutex_exit(&zv->zv_state_lock); 1245 1246 /* Try parallel zv_free, if failed do it in place */ 1247 t = taskq_dispatch(system_taskq, zvol_free_task, zv, 1248 TQ_SLEEP); 1249 if (t == TASKQID_INVALID) 1250 list_insert_head(&free_list, zv); 1251 } else { 1252 mutex_exit(&zv->zv_state_lock); 1253 } 1254 } 1255 rw_exit(&zvol_state_lock); 1256 1257 /* Drop zvol_state_lock before calling zvol_free() */ 1258 while ((zv = list_head(&free_list)) != NULL) { 1259 list_remove(&free_list, zv); 1260 zvol_os_free(zv); 1261 } 1262 } 1263 1264 /* Remove minor for this specific volume only */ 1265 static void 1266 zvol_remove_minor_impl(const char *name) 1267 { 1268 zvol_state_t *zv = NULL, *zv_next; 1269 1270 if (zvol_inhibit_dev) 1271 return; 1272 1273 rw_enter(&zvol_state_lock, RW_WRITER); 1274 1275 for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) { 1276 zv_next = list_next(&zvol_state_list, zv); 1277 1278 mutex_enter(&zv->zv_state_lock); 1279 if (strcmp(zv->zv_name, name) == 0) { 1280 /* 1281 * By holding zv_state_lock here, we guarantee that no 1282 * one is currently using this zv 1283 */ 1284 1285 /* If in use, leave alone */ 1286 if (zv->zv_open_count > 0 || 1287 atomic_read(&zv->zv_suspend_ref)) { 1288 mutex_exit(&zv->zv_state_lock); 1289 continue; 1290 } 1291 zvol_remove(zv); 1292 1293 zvol_os_clear_private(zv); 1294 mutex_exit(&zv->zv_state_lock); 1295 break; 1296 } else { 1297 mutex_exit(&zv->zv_state_lock); 1298 } 1299 } 1300 1301 /* Drop zvol_state_lock before calling zvol_free() */ 1302 rw_exit(&zvol_state_lock); 1303 1304 if (zv != NULL) 1305 zvol_os_free(zv); 1306 } 1307 1308 /* 1309 * Rename minors for specified dataset including children and snapshots. 1310 */ 1311 static void 1312 zvol_rename_minors_impl(const char *oldname, const char *newname) 1313 { 1314 zvol_state_t *zv, *zv_next; 1315 int oldnamelen; 1316 1317 if (zvol_inhibit_dev) 1318 return; 1319 1320 oldnamelen = strlen(oldname); 1321 1322 rw_enter(&zvol_state_lock, RW_READER); 1323 1324 for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) { 1325 zv_next = list_next(&zvol_state_list, zv); 1326 1327 mutex_enter(&zv->zv_state_lock); 1328 1329 if (strcmp(zv->zv_name, oldname) == 0) { 1330 zvol_os_rename_minor(zv, newname); 1331 } else if (strncmp(zv->zv_name, oldname, oldnamelen) == 0 && 1332 (zv->zv_name[oldnamelen] == '/' || 1333 zv->zv_name[oldnamelen] == '@')) { 1334 char *name = kmem_asprintf("%s%c%s", newname, 1335 zv->zv_name[oldnamelen], 1336 zv->zv_name + oldnamelen + 1); 1337 zvol_os_rename_minor(zv, name); 1338 kmem_strfree(name); 1339 } 1340 1341 mutex_exit(&zv->zv_state_lock); 1342 } 1343 1344 rw_exit(&zvol_state_lock); 1345 } 1346 1347 typedef struct zvol_snapdev_cb_arg { 1348 uint64_t snapdev; 1349 } zvol_snapdev_cb_arg_t; 1350 1351 static int 1352 zvol_set_snapdev_cb(const char *dsname, void *param) 1353 { 1354 zvol_snapdev_cb_arg_t *arg = param; 1355 1356 if (strchr(dsname, '@') == NULL) 1357 return (0); 1358 1359 switch (arg->snapdev) { 1360 case ZFS_SNAPDEV_VISIBLE: 1361 (void) zvol_os_create_minor(dsname); 1362 break; 1363 case ZFS_SNAPDEV_HIDDEN: 1364 (void) zvol_remove_minor_impl(dsname); 1365 break; 1366 } 1367 1368 return (0); 1369 } 1370 1371 static void 1372 zvol_set_snapdev_impl(char *name, uint64_t snapdev) 1373 { 1374 zvol_snapdev_cb_arg_t arg = {snapdev}; 1375 fstrans_cookie_t cookie = spl_fstrans_mark(); 1376 /* 1377 * The zvol_set_snapdev_sync() sets snapdev appropriately 1378 * in the dataset hierarchy. Here, we only scan snapshots. 1379 */ 1380 dmu_objset_find(name, zvol_set_snapdev_cb, &arg, DS_FIND_SNAPSHOTS); 1381 spl_fstrans_unmark(cookie); 1382 } 1383 1384 static void 1385 zvol_set_volmode_impl(char *name, uint64_t volmode) 1386 { 1387 fstrans_cookie_t cookie; 1388 uint64_t old_volmode; 1389 zvol_state_t *zv; 1390 1391 if (strchr(name, '@') != NULL) 1392 return; 1393 1394 /* 1395 * It's unfortunate we need to remove minors before we create new ones: 1396 * this is necessary because our backing gendisk (zvol_state->zv_disk) 1397 * could be different when we set, for instance, volmode from "geom" 1398 * to "dev" (or vice versa). 1399 */ 1400 zv = zvol_find_by_name(name, RW_NONE); 1401 if (zv == NULL && volmode == ZFS_VOLMODE_NONE) 1402 return; 1403 if (zv != NULL) { 1404 old_volmode = zv->zv_volmode; 1405 mutex_exit(&zv->zv_state_lock); 1406 if (old_volmode == volmode) 1407 return; 1408 zvol_wait_close(zv); 1409 } 1410 cookie = spl_fstrans_mark(); 1411 switch (volmode) { 1412 case ZFS_VOLMODE_NONE: 1413 (void) zvol_remove_minor_impl(name); 1414 break; 1415 case ZFS_VOLMODE_GEOM: 1416 case ZFS_VOLMODE_DEV: 1417 (void) zvol_remove_minor_impl(name); 1418 (void) zvol_os_create_minor(name); 1419 break; 1420 case ZFS_VOLMODE_DEFAULT: 1421 (void) zvol_remove_minor_impl(name); 1422 if (zvol_volmode == ZFS_VOLMODE_NONE) 1423 break; 1424 else /* if zvol_volmode is invalid defaults to "geom" */ 1425 (void) zvol_os_create_minor(name); 1426 break; 1427 } 1428 spl_fstrans_unmark(cookie); 1429 } 1430 1431 static zvol_task_t * 1432 zvol_task_alloc(zvol_async_op_t op, const char *name1, const char *name2, 1433 uint64_t value) 1434 { 1435 zvol_task_t *task; 1436 1437 /* Never allow tasks on hidden names. */ 1438 if (name1[0] == '$') 1439 return (NULL); 1440 1441 task = kmem_zalloc(sizeof (zvol_task_t), KM_SLEEP); 1442 task->op = op; 1443 task->value = value; 1444 1445 strlcpy(task->name1, name1, MAXNAMELEN); 1446 if (name2 != NULL) 1447 strlcpy(task->name2, name2, MAXNAMELEN); 1448 1449 return (task); 1450 } 1451 1452 static void 1453 zvol_task_free(zvol_task_t *task) 1454 { 1455 kmem_free(task, sizeof (zvol_task_t)); 1456 } 1457 1458 /* 1459 * The worker thread function performed asynchronously. 1460 */ 1461 static void 1462 zvol_task_cb(void *arg) 1463 { 1464 zvol_task_t *task = arg; 1465 1466 switch (task->op) { 1467 case ZVOL_ASYNC_REMOVE_MINORS: 1468 zvol_remove_minors_impl(task->name1); 1469 break; 1470 case ZVOL_ASYNC_RENAME_MINORS: 1471 zvol_rename_minors_impl(task->name1, task->name2); 1472 break; 1473 case ZVOL_ASYNC_SET_SNAPDEV: 1474 zvol_set_snapdev_impl(task->name1, task->value); 1475 break; 1476 case ZVOL_ASYNC_SET_VOLMODE: 1477 zvol_set_volmode_impl(task->name1, task->value); 1478 break; 1479 default: 1480 VERIFY(0); 1481 break; 1482 } 1483 1484 zvol_task_free(task); 1485 } 1486 1487 typedef struct zvol_set_prop_int_arg { 1488 const char *zsda_name; 1489 uint64_t zsda_value; 1490 zprop_source_t zsda_source; 1491 dmu_tx_t *zsda_tx; 1492 } zvol_set_prop_int_arg_t; 1493 1494 /* 1495 * Sanity check the dataset for safe use by the sync task. No additional 1496 * conditions are imposed. 1497 */ 1498 static int 1499 zvol_set_snapdev_check(void *arg, dmu_tx_t *tx) 1500 { 1501 zvol_set_prop_int_arg_t *zsda = arg; 1502 dsl_pool_t *dp = dmu_tx_pool(tx); 1503 dsl_dir_t *dd; 1504 int error; 1505 1506 error = dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL); 1507 if (error != 0) 1508 return (error); 1509 1510 dsl_dir_rele(dd, FTAG); 1511 1512 return (error); 1513 } 1514 1515 static int 1516 zvol_set_snapdev_sync_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 1517 { 1518 (void) arg; 1519 char dsname[MAXNAMELEN]; 1520 zvol_task_t *task; 1521 uint64_t snapdev; 1522 1523 dsl_dataset_name(ds, dsname); 1524 if (dsl_prop_get_int_ds(ds, "snapdev", &snapdev) != 0) 1525 return (0); 1526 task = zvol_task_alloc(ZVOL_ASYNC_SET_SNAPDEV, dsname, NULL, snapdev); 1527 if (task == NULL) 1528 return (0); 1529 1530 (void) taskq_dispatch(dp->dp_spa->spa_zvol_taskq, zvol_task_cb, 1531 task, TQ_SLEEP); 1532 return (0); 1533 } 1534 1535 /* 1536 * Traverse all child datasets and apply snapdev appropriately. 1537 * We call dsl_prop_set_sync_impl() here to set the value only on the toplevel 1538 * dataset and read the effective "snapdev" on every child in the callback 1539 * function: this is because the value is not guaranteed to be the same in the 1540 * whole dataset hierarchy. 1541 */ 1542 static void 1543 zvol_set_snapdev_sync(void *arg, dmu_tx_t *tx) 1544 { 1545 zvol_set_prop_int_arg_t *zsda = arg; 1546 dsl_pool_t *dp = dmu_tx_pool(tx); 1547 dsl_dir_t *dd; 1548 dsl_dataset_t *ds; 1549 int error; 1550 1551 VERIFY0(dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL)); 1552 zsda->zsda_tx = tx; 1553 1554 error = dsl_dataset_hold(dp, zsda->zsda_name, FTAG, &ds); 1555 if (error == 0) { 1556 dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_SNAPDEV), 1557 zsda->zsda_source, sizeof (zsda->zsda_value), 1, 1558 &zsda->zsda_value, zsda->zsda_tx); 1559 dsl_dataset_rele(ds, FTAG); 1560 } 1561 dmu_objset_find_dp(dp, dd->dd_object, zvol_set_snapdev_sync_cb, 1562 zsda, DS_FIND_CHILDREN); 1563 1564 dsl_dir_rele(dd, FTAG); 1565 } 1566 1567 int 1568 zvol_set_snapdev(const char *ddname, zprop_source_t source, uint64_t snapdev) 1569 { 1570 zvol_set_prop_int_arg_t zsda; 1571 1572 zsda.zsda_name = ddname; 1573 zsda.zsda_source = source; 1574 zsda.zsda_value = snapdev; 1575 1576 return (dsl_sync_task(ddname, zvol_set_snapdev_check, 1577 zvol_set_snapdev_sync, &zsda, 0, ZFS_SPACE_CHECK_NONE)); 1578 } 1579 1580 /* 1581 * Sanity check the dataset for safe use by the sync task. No additional 1582 * conditions are imposed. 1583 */ 1584 static int 1585 zvol_set_volmode_check(void *arg, dmu_tx_t *tx) 1586 { 1587 zvol_set_prop_int_arg_t *zsda = arg; 1588 dsl_pool_t *dp = dmu_tx_pool(tx); 1589 dsl_dir_t *dd; 1590 int error; 1591 1592 error = dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL); 1593 if (error != 0) 1594 return (error); 1595 1596 dsl_dir_rele(dd, FTAG); 1597 1598 return (error); 1599 } 1600 1601 static int 1602 zvol_set_volmode_sync_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 1603 { 1604 (void) arg; 1605 char dsname[MAXNAMELEN]; 1606 zvol_task_t *task; 1607 uint64_t volmode; 1608 1609 dsl_dataset_name(ds, dsname); 1610 if (dsl_prop_get_int_ds(ds, "volmode", &volmode) != 0) 1611 return (0); 1612 task = zvol_task_alloc(ZVOL_ASYNC_SET_VOLMODE, dsname, NULL, volmode); 1613 if (task == NULL) 1614 return (0); 1615 1616 (void) taskq_dispatch(dp->dp_spa->spa_zvol_taskq, zvol_task_cb, 1617 task, TQ_SLEEP); 1618 return (0); 1619 } 1620 1621 /* 1622 * Traverse all child datasets and apply volmode appropriately. 1623 * We call dsl_prop_set_sync_impl() here to set the value only on the toplevel 1624 * dataset and read the effective "volmode" on every child in the callback 1625 * function: this is because the value is not guaranteed to be the same in the 1626 * whole dataset hierarchy. 1627 */ 1628 static void 1629 zvol_set_volmode_sync(void *arg, dmu_tx_t *tx) 1630 { 1631 zvol_set_prop_int_arg_t *zsda = arg; 1632 dsl_pool_t *dp = dmu_tx_pool(tx); 1633 dsl_dir_t *dd; 1634 dsl_dataset_t *ds; 1635 int error; 1636 1637 VERIFY0(dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL)); 1638 zsda->zsda_tx = tx; 1639 1640 error = dsl_dataset_hold(dp, zsda->zsda_name, FTAG, &ds); 1641 if (error == 0) { 1642 dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_VOLMODE), 1643 zsda->zsda_source, sizeof (zsda->zsda_value), 1, 1644 &zsda->zsda_value, zsda->zsda_tx); 1645 dsl_dataset_rele(ds, FTAG); 1646 } 1647 1648 dmu_objset_find_dp(dp, dd->dd_object, zvol_set_volmode_sync_cb, 1649 zsda, DS_FIND_CHILDREN); 1650 1651 dsl_dir_rele(dd, FTAG); 1652 } 1653 1654 int 1655 zvol_set_volmode(const char *ddname, zprop_source_t source, uint64_t volmode) 1656 { 1657 zvol_set_prop_int_arg_t zsda; 1658 1659 zsda.zsda_name = ddname; 1660 zsda.zsda_source = source; 1661 zsda.zsda_value = volmode; 1662 1663 return (dsl_sync_task(ddname, zvol_set_volmode_check, 1664 zvol_set_volmode_sync, &zsda, 0, ZFS_SPACE_CHECK_NONE)); 1665 } 1666 1667 void 1668 zvol_remove_minors(spa_t *spa, const char *name, boolean_t async) 1669 { 1670 zvol_task_t *task; 1671 taskqid_t id; 1672 1673 task = zvol_task_alloc(ZVOL_ASYNC_REMOVE_MINORS, name, NULL, ~0ULL); 1674 if (task == NULL) 1675 return; 1676 1677 id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP); 1678 if ((async == B_FALSE) && (id != TASKQID_INVALID)) 1679 taskq_wait_id(spa->spa_zvol_taskq, id); 1680 } 1681 1682 void 1683 zvol_rename_minors(spa_t *spa, const char *name1, const char *name2, 1684 boolean_t async) 1685 { 1686 zvol_task_t *task; 1687 taskqid_t id; 1688 1689 task = zvol_task_alloc(ZVOL_ASYNC_RENAME_MINORS, name1, name2, ~0ULL); 1690 if (task == NULL) 1691 return; 1692 1693 id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP); 1694 if ((async == B_FALSE) && (id != TASKQID_INVALID)) 1695 taskq_wait_id(spa->spa_zvol_taskq, id); 1696 } 1697 1698 boolean_t 1699 zvol_is_zvol(const char *name) 1700 { 1701 1702 return (zvol_os_is_zvol(name)); 1703 } 1704 1705 int 1706 zvol_init_impl(void) 1707 { 1708 int i; 1709 1710 list_create(&zvol_state_list, sizeof (zvol_state_t), 1711 offsetof(zvol_state_t, zv_next)); 1712 rw_init(&zvol_state_lock, NULL, RW_DEFAULT, NULL); 1713 1714 zvol_htable = kmem_alloc(ZVOL_HT_SIZE * sizeof (struct hlist_head), 1715 KM_SLEEP); 1716 for (i = 0; i < ZVOL_HT_SIZE; i++) 1717 INIT_HLIST_HEAD(&zvol_htable[i]); 1718 1719 return (0); 1720 } 1721 1722 void 1723 zvol_fini_impl(void) 1724 { 1725 zvol_remove_minors_impl(NULL); 1726 1727 /* 1728 * The call to "zvol_remove_minors_impl" may dispatch entries to 1729 * the system_taskq, but it doesn't wait for those entries to 1730 * complete before it returns. Thus, we must wait for all of the 1731 * removals to finish, before we can continue. 1732 */ 1733 taskq_wait_outstanding(system_taskq, 0); 1734 1735 kmem_free(zvol_htable, ZVOL_HT_SIZE * sizeof (struct hlist_head)); 1736 list_destroy(&zvol_state_list); 1737 rw_destroy(&zvol_state_lock); 1738 } 1739