1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC. 23 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER). 24 * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>. 25 * LLNL-CODE-403049. 26 * 27 * ZFS volume emulation driver. 28 * 29 * Makes a DMU object look like a volume of arbitrary size, up to 2^64 bytes. 30 * Volumes are accessed through the symbolic links named: 31 * 32 * /dev/<pool_name>/<dataset_name> 33 * 34 * Volumes are persistent through reboot and module load. No user command 35 * needs to be run before opening and using a device. 36 * 37 * Copyright 2014 Nexenta Systems, Inc. All rights reserved. 38 * Copyright (c) 2016 Actifio, Inc. All rights reserved. 39 * Copyright (c) 2012, 2019 by Delphix. All rights reserved. 40 */ 41 42 /* 43 * Note on locking of zvol state structures. 44 * 45 * These structures are used to maintain internal state used to emulate block 46 * devices on top of zvols. In particular, management of device minor number 47 * operations - create, remove, rename, and set_snapdev - involves access to 48 * these structures. The zvol_state_lock is primarily used to protect the 49 * zvol_state_list. The zv->zv_state_lock is used to protect the contents 50 * of the zvol_state_t structures, as well as to make sure that when the 51 * time comes to remove the structure from the list, it is not in use, and 52 * therefore, it can be taken off zvol_state_list and freed. 53 * 54 * The zv_suspend_lock was introduced to allow for suspending I/O to a zvol, 55 * e.g. for the duration of receive and rollback operations. This lock can be 56 * held for significant periods of time. Given that it is undesirable to hold 57 * mutexes for long periods of time, the following lock ordering applies: 58 * - take zvol_state_lock if necessary, to protect zvol_state_list 59 * - take zv_suspend_lock if necessary, by the code path in question 60 * - take zv_state_lock to protect zvol_state_t 61 * 62 * The minor operations are issued to spa->spa_zvol_taskq queues, that are 63 * single-threaded (to preserve order of minor operations), and are executed 64 * through the zvol_task_cb that dispatches the specific operations. Therefore, 65 * these operations are serialized per pool. Consequently, we can be certain 66 * that for a given zvol, there is only one operation at a time in progress. 67 * That is why one can be sure that first, zvol_state_t for a given zvol is 68 * allocated and placed on zvol_state_list, and then other minor operations 69 * for this zvol are going to proceed in the order of issue. 70 * 71 */ 72 73 #include <sys/dataset_kstats.h> 74 #include <sys/dbuf.h> 75 #include <sys/dmu_traverse.h> 76 #include <sys/dsl_dataset.h> 77 #include <sys/dsl_prop.h> 78 #include <sys/dsl_dir.h> 79 #include <sys/zap.h> 80 #include <sys/zfeature.h> 81 #include <sys/zil_impl.h> 82 #include <sys/dmu_tx.h> 83 #include <sys/zio.h> 84 #include <sys/zfs_rlock.h> 85 #include <sys/spa_impl.h> 86 #include <sys/zvol.h> 87 #include <sys/zvol_impl.h> 88 89 unsigned int zvol_inhibit_dev = 0; 90 unsigned int zvol_volmode = ZFS_VOLMODE_GEOM; 91 92 struct hlist_head *zvol_htable; 93 static list_t zvol_state_list; 94 krwlock_t zvol_state_lock; 95 96 typedef enum { 97 ZVOL_ASYNC_REMOVE_MINORS, 98 ZVOL_ASYNC_RENAME_MINORS, 99 ZVOL_ASYNC_SET_SNAPDEV, 100 ZVOL_ASYNC_SET_VOLMODE, 101 ZVOL_ASYNC_MAX 102 } zvol_async_op_t; 103 104 typedef struct { 105 zvol_async_op_t op; 106 char name1[MAXNAMELEN]; 107 char name2[MAXNAMELEN]; 108 uint64_t value; 109 } zvol_task_t; 110 111 uint64_t 112 zvol_name_hash(const char *name) 113 { 114 int i; 115 uint64_t crc = -1ULL; 116 const uint8_t *p = (const uint8_t *)name; 117 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 118 for (i = 0; i < MAXNAMELEN - 1 && *p; i++, p++) { 119 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (*p)) & 0xFF]; 120 } 121 return (crc); 122 } 123 124 /* 125 * Find a zvol_state_t given the name and hash generated by zvol_name_hash. 126 * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise, 127 * return (NULL) without the taking locks. The zv_suspend_lock is always taken 128 * before zv_state_lock. The mode argument indicates the mode (including none) 129 * for zv_suspend_lock to be taken. 130 */ 131 zvol_state_t * 132 zvol_find_by_name_hash(const char *name, uint64_t hash, int mode) 133 { 134 zvol_state_t *zv; 135 struct hlist_node *p = NULL; 136 137 rw_enter(&zvol_state_lock, RW_READER); 138 hlist_for_each(p, ZVOL_HT_HEAD(hash)) { 139 zv = hlist_entry(p, zvol_state_t, zv_hlink); 140 mutex_enter(&zv->zv_state_lock); 141 if (zv->zv_hash == hash && 142 strncmp(zv->zv_name, name, MAXNAMELEN) == 0) { 143 /* 144 * this is the right zvol, take the locks in the 145 * right order 146 */ 147 if (mode != RW_NONE && 148 !rw_tryenter(&zv->zv_suspend_lock, mode)) { 149 mutex_exit(&zv->zv_state_lock); 150 rw_enter(&zv->zv_suspend_lock, mode); 151 mutex_enter(&zv->zv_state_lock); 152 /* 153 * zvol cannot be renamed as we continue 154 * to hold zvol_state_lock 155 */ 156 ASSERT(zv->zv_hash == hash && 157 strncmp(zv->zv_name, name, MAXNAMELEN) 158 == 0); 159 } 160 rw_exit(&zvol_state_lock); 161 return (zv); 162 } 163 mutex_exit(&zv->zv_state_lock); 164 } 165 rw_exit(&zvol_state_lock); 166 167 return (NULL); 168 } 169 170 /* 171 * Find a zvol_state_t given the name. 172 * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise, 173 * return (NULL) without the taking locks. The zv_suspend_lock is always taken 174 * before zv_state_lock. The mode argument indicates the mode (including none) 175 * for zv_suspend_lock to be taken. 176 */ 177 static zvol_state_t * 178 zvol_find_by_name(const char *name, int mode) 179 { 180 return (zvol_find_by_name_hash(name, zvol_name_hash(name), mode)); 181 } 182 183 /* 184 * ZFS_IOC_CREATE callback handles dmu zvol and zap object creation. 185 */ 186 void 187 zvol_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) 188 { 189 zfs_creat_t *zct = arg; 190 nvlist_t *nvprops = zct->zct_props; 191 int error; 192 uint64_t volblocksize, volsize; 193 194 VERIFY(nvlist_lookup_uint64(nvprops, 195 zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) == 0); 196 if (nvlist_lookup_uint64(nvprops, 197 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize) != 0) 198 volblocksize = zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE); 199 200 /* 201 * These properties must be removed from the list so the generic 202 * property setting step won't apply to them. 203 */ 204 VERIFY(nvlist_remove_all(nvprops, 205 zfs_prop_to_name(ZFS_PROP_VOLSIZE)) == 0); 206 (void) nvlist_remove_all(nvprops, 207 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE)); 208 209 error = dmu_object_claim(os, ZVOL_OBJ, DMU_OT_ZVOL, volblocksize, 210 DMU_OT_NONE, 0, tx); 211 ASSERT(error == 0); 212 213 error = zap_create_claim(os, ZVOL_ZAP_OBJ, DMU_OT_ZVOL_PROP, 214 DMU_OT_NONE, 0, tx); 215 ASSERT(error == 0); 216 217 error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize, tx); 218 ASSERT(error == 0); 219 } 220 221 /* 222 * ZFS_IOC_OBJSET_STATS entry point. 223 */ 224 int 225 zvol_get_stats(objset_t *os, nvlist_t *nv) 226 { 227 int error; 228 dmu_object_info_t *doi; 229 uint64_t val; 230 231 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &val); 232 if (error) 233 return (SET_ERROR(error)); 234 235 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLSIZE, val); 236 doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP); 237 error = dmu_object_info(os, ZVOL_OBJ, doi); 238 239 if (error == 0) { 240 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLBLOCKSIZE, 241 doi->doi_data_block_size); 242 } 243 244 kmem_free(doi, sizeof (dmu_object_info_t)); 245 246 return (SET_ERROR(error)); 247 } 248 249 /* 250 * Sanity check volume size. 251 */ 252 int 253 zvol_check_volsize(uint64_t volsize, uint64_t blocksize) 254 { 255 if (volsize == 0) 256 return (SET_ERROR(EINVAL)); 257 258 if (volsize % blocksize != 0) 259 return (SET_ERROR(EINVAL)); 260 261 #ifdef _ILP32 262 if (volsize - 1 > SPEC_MAXOFFSET_T) 263 return (SET_ERROR(EOVERFLOW)); 264 #endif 265 return (0); 266 } 267 268 /* 269 * Ensure the zap is flushed then inform the VFS of the capacity change. 270 */ 271 static int 272 zvol_update_volsize(uint64_t volsize, objset_t *os) 273 { 274 dmu_tx_t *tx; 275 int error; 276 uint64_t txg; 277 278 tx = dmu_tx_create(os); 279 dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL); 280 dmu_tx_mark_netfree(tx); 281 error = dmu_tx_assign(tx, TXG_WAIT); 282 if (error) { 283 dmu_tx_abort(tx); 284 return (SET_ERROR(error)); 285 } 286 txg = dmu_tx_get_txg(tx); 287 288 error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, 289 &volsize, tx); 290 dmu_tx_commit(tx); 291 292 txg_wait_synced(dmu_objset_pool(os), txg); 293 294 if (error == 0) 295 error = dmu_free_long_range(os, 296 ZVOL_OBJ, volsize, DMU_OBJECT_END); 297 298 return (error); 299 } 300 301 /* 302 * Set ZFS_PROP_VOLSIZE set entry point. Note that modifying the volume 303 * size will result in a udev "change" event being generated. 304 */ 305 int 306 zvol_set_volsize(const char *name, uint64_t volsize) 307 { 308 objset_t *os = NULL; 309 uint64_t readonly; 310 int error; 311 boolean_t owned = B_FALSE; 312 313 error = dsl_prop_get_integer(name, 314 zfs_prop_to_name(ZFS_PROP_READONLY), &readonly, NULL); 315 if (error != 0) 316 return (SET_ERROR(error)); 317 if (readonly) 318 return (SET_ERROR(EROFS)); 319 320 zvol_state_t *zv = zvol_find_by_name(name, RW_READER); 321 322 ASSERT(zv == NULL || (MUTEX_HELD(&zv->zv_state_lock) && 323 RW_READ_HELD(&zv->zv_suspend_lock))); 324 325 if (zv == NULL || zv->zv_objset == NULL) { 326 if (zv != NULL) 327 rw_exit(&zv->zv_suspend_lock); 328 if ((error = dmu_objset_own(name, DMU_OST_ZVOL, B_FALSE, B_TRUE, 329 FTAG, &os)) != 0) { 330 if (zv != NULL) 331 mutex_exit(&zv->zv_state_lock); 332 return (SET_ERROR(error)); 333 } 334 owned = B_TRUE; 335 if (zv != NULL) 336 zv->zv_objset = os; 337 } else { 338 os = zv->zv_objset; 339 } 340 341 dmu_object_info_t *doi = kmem_alloc(sizeof (*doi), KM_SLEEP); 342 343 if ((error = dmu_object_info(os, ZVOL_OBJ, doi)) || 344 (error = zvol_check_volsize(volsize, doi->doi_data_block_size))) 345 goto out; 346 347 error = zvol_update_volsize(volsize, os); 348 if (error == 0 && zv != NULL) { 349 zv->zv_volsize = volsize; 350 zv->zv_changed = 1; 351 } 352 out: 353 kmem_free(doi, sizeof (dmu_object_info_t)); 354 355 if (owned) { 356 dmu_objset_disown(os, B_TRUE, FTAG); 357 if (zv != NULL) 358 zv->zv_objset = NULL; 359 } else { 360 rw_exit(&zv->zv_suspend_lock); 361 } 362 363 if (zv != NULL) 364 mutex_exit(&zv->zv_state_lock); 365 366 if (error == 0 && zv != NULL) 367 zvol_os_update_volsize(zv, volsize); 368 369 return (SET_ERROR(error)); 370 } 371 372 /* 373 * Sanity check volume block size. 374 */ 375 int 376 zvol_check_volblocksize(const char *name, uint64_t volblocksize) 377 { 378 /* Record sizes above 128k need the feature to be enabled */ 379 if (volblocksize > SPA_OLD_MAXBLOCKSIZE) { 380 spa_t *spa; 381 int error; 382 383 if ((error = spa_open(name, &spa, FTAG)) != 0) 384 return (error); 385 386 if (!spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) { 387 spa_close(spa, FTAG); 388 return (SET_ERROR(ENOTSUP)); 389 } 390 391 /* 392 * We don't allow setting the property above 1MB, 393 * unless the tunable has been changed. 394 */ 395 if (volblocksize > zfs_max_recordsize) 396 return (SET_ERROR(EDOM)); 397 398 spa_close(spa, FTAG); 399 } 400 401 if (volblocksize < SPA_MINBLOCKSIZE || 402 volblocksize > SPA_MAXBLOCKSIZE || 403 !ISP2(volblocksize)) 404 return (SET_ERROR(EDOM)); 405 406 return (0); 407 } 408 409 /* 410 * Replay a TX_TRUNCATE ZIL transaction if asked. TX_TRUNCATE is how we 411 * implement DKIOCFREE/free-long-range. 412 */ 413 static int 414 zvol_replay_truncate(void *arg1, void *arg2, boolean_t byteswap) 415 { 416 zvol_state_t *zv = arg1; 417 lr_truncate_t *lr = arg2; 418 uint64_t offset, length; 419 420 if (byteswap) 421 byteswap_uint64_array(lr, sizeof (*lr)); 422 423 offset = lr->lr_offset; 424 length = lr->lr_length; 425 426 dmu_tx_t *tx = dmu_tx_create(zv->zv_objset); 427 dmu_tx_mark_netfree(tx); 428 int error = dmu_tx_assign(tx, TXG_WAIT); 429 if (error != 0) { 430 dmu_tx_abort(tx); 431 } else { 432 zil_replaying(zv->zv_zilog, tx); 433 dmu_tx_commit(tx); 434 error = dmu_free_long_range(zv->zv_objset, ZVOL_OBJ, offset, 435 length); 436 } 437 438 return (error); 439 } 440 441 /* 442 * Replay a TX_WRITE ZIL transaction that didn't get committed 443 * after a system failure 444 */ 445 static int 446 zvol_replay_write(void *arg1, void *arg2, boolean_t byteswap) 447 { 448 zvol_state_t *zv = arg1; 449 lr_write_t *lr = arg2; 450 objset_t *os = zv->zv_objset; 451 char *data = (char *)(lr + 1); /* data follows lr_write_t */ 452 uint64_t offset, length; 453 dmu_tx_t *tx; 454 int error; 455 456 if (byteswap) 457 byteswap_uint64_array(lr, sizeof (*lr)); 458 459 offset = lr->lr_offset; 460 length = lr->lr_length; 461 462 /* If it's a dmu_sync() block, write the whole block */ 463 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) { 464 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr); 465 if (length < blocksize) { 466 offset -= offset % blocksize; 467 length = blocksize; 468 } 469 } 470 471 tx = dmu_tx_create(os); 472 dmu_tx_hold_write(tx, ZVOL_OBJ, offset, length); 473 error = dmu_tx_assign(tx, TXG_WAIT); 474 if (error) { 475 dmu_tx_abort(tx); 476 } else { 477 dmu_write(os, ZVOL_OBJ, offset, length, data, tx); 478 zil_replaying(zv->zv_zilog, tx); 479 dmu_tx_commit(tx); 480 } 481 482 return (error); 483 } 484 485 static int 486 zvol_replay_err(void *arg1, void *arg2, boolean_t byteswap) 487 { 488 (void) arg1, (void) arg2, (void) byteswap; 489 return (SET_ERROR(ENOTSUP)); 490 } 491 492 /* 493 * Callback vectors for replaying records. 494 * Only TX_WRITE and TX_TRUNCATE are needed for zvol. 495 */ 496 zil_replay_func_t *const zvol_replay_vector[TX_MAX_TYPE] = { 497 zvol_replay_err, /* no such transaction type */ 498 zvol_replay_err, /* TX_CREATE */ 499 zvol_replay_err, /* TX_MKDIR */ 500 zvol_replay_err, /* TX_MKXATTR */ 501 zvol_replay_err, /* TX_SYMLINK */ 502 zvol_replay_err, /* TX_REMOVE */ 503 zvol_replay_err, /* TX_RMDIR */ 504 zvol_replay_err, /* TX_LINK */ 505 zvol_replay_err, /* TX_RENAME */ 506 zvol_replay_write, /* TX_WRITE */ 507 zvol_replay_truncate, /* TX_TRUNCATE */ 508 zvol_replay_err, /* TX_SETATTR */ 509 zvol_replay_err, /* TX_ACL */ 510 zvol_replay_err, /* TX_CREATE_ATTR */ 511 zvol_replay_err, /* TX_CREATE_ACL_ATTR */ 512 zvol_replay_err, /* TX_MKDIR_ACL */ 513 zvol_replay_err, /* TX_MKDIR_ATTR */ 514 zvol_replay_err, /* TX_MKDIR_ACL_ATTR */ 515 zvol_replay_err, /* TX_WRITE2 */ 516 }; 517 518 /* 519 * zvol_log_write() handles synchronous writes using TX_WRITE ZIL transactions. 520 * 521 * We store data in the log buffers if it's small enough. 522 * Otherwise we will later flush the data out via dmu_sync(). 523 */ 524 static const ssize_t zvol_immediate_write_sz = 32768; 525 526 void 527 zvol_log_write(zvol_state_t *zv, dmu_tx_t *tx, uint64_t offset, 528 uint64_t size, int sync) 529 { 530 uint32_t blocksize = zv->zv_volblocksize; 531 zilog_t *zilog = zv->zv_zilog; 532 itx_wr_state_t write_state; 533 uint64_t sz = size; 534 535 if (zil_replaying(zilog, tx)) 536 return; 537 538 if (zilog->zl_logbias == ZFS_LOGBIAS_THROUGHPUT) 539 write_state = WR_INDIRECT; 540 else if (!spa_has_slogs(zilog->zl_spa) && 541 size >= blocksize && blocksize > zvol_immediate_write_sz) 542 write_state = WR_INDIRECT; 543 else if (sync) 544 write_state = WR_COPIED; 545 else 546 write_state = WR_NEED_COPY; 547 548 while (size) { 549 itx_t *itx; 550 lr_write_t *lr; 551 itx_wr_state_t wr_state = write_state; 552 ssize_t len = size; 553 554 if (wr_state == WR_COPIED && size > zil_max_copied_data(zilog)) 555 wr_state = WR_NEED_COPY; 556 else if (wr_state == WR_INDIRECT) 557 len = MIN(blocksize - P2PHASE(offset, blocksize), size); 558 559 itx = zil_itx_create(TX_WRITE, sizeof (*lr) + 560 (wr_state == WR_COPIED ? len : 0)); 561 lr = (lr_write_t *)&itx->itx_lr; 562 if (wr_state == WR_COPIED && dmu_read_by_dnode(zv->zv_dn, 563 offset, len, lr+1, DMU_READ_NO_PREFETCH) != 0) { 564 zil_itx_destroy(itx); 565 itx = zil_itx_create(TX_WRITE, sizeof (*lr)); 566 lr = (lr_write_t *)&itx->itx_lr; 567 wr_state = WR_NEED_COPY; 568 } 569 570 itx->itx_wr_state = wr_state; 571 lr->lr_foid = ZVOL_OBJ; 572 lr->lr_offset = offset; 573 lr->lr_length = len; 574 lr->lr_blkoff = 0; 575 BP_ZERO(&lr->lr_blkptr); 576 577 itx->itx_private = zv; 578 itx->itx_sync = sync; 579 580 (void) zil_itx_assign(zilog, itx, tx); 581 582 offset += len; 583 size -= len; 584 } 585 586 if (write_state == WR_COPIED || write_state == WR_NEED_COPY) { 587 dsl_pool_wrlog_count(zilog->zl_dmu_pool, sz, tx->tx_txg); 588 } 589 } 590 591 /* 592 * Log a DKIOCFREE/free-long-range to the ZIL with TX_TRUNCATE. 593 */ 594 void 595 zvol_log_truncate(zvol_state_t *zv, dmu_tx_t *tx, uint64_t off, uint64_t len, 596 boolean_t sync) 597 { 598 itx_t *itx; 599 lr_truncate_t *lr; 600 zilog_t *zilog = zv->zv_zilog; 601 602 if (zil_replaying(zilog, tx)) 603 return; 604 605 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr)); 606 lr = (lr_truncate_t *)&itx->itx_lr; 607 lr->lr_foid = ZVOL_OBJ; 608 lr->lr_offset = off; 609 lr->lr_length = len; 610 611 itx->itx_sync = sync; 612 zil_itx_assign(zilog, itx, tx); 613 } 614 615 616 static void 617 zvol_get_done(zgd_t *zgd, int error) 618 { 619 (void) error; 620 if (zgd->zgd_db) 621 dmu_buf_rele(zgd->zgd_db, zgd); 622 623 zfs_rangelock_exit(zgd->zgd_lr); 624 625 kmem_free(zgd, sizeof (zgd_t)); 626 } 627 628 /* 629 * Get data to generate a TX_WRITE intent log record. 630 */ 631 int 632 zvol_get_data(void *arg, uint64_t arg2, lr_write_t *lr, char *buf, 633 struct lwb *lwb, zio_t *zio) 634 { 635 zvol_state_t *zv = arg; 636 uint64_t offset = lr->lr_offset; 637 uint64_t size = lr->lr_length; 638 dmu_buf_t *db; 639 zgd_t *zgd; 640 int error; 641 642 ASSERT3P(lwb, !=, NULL); 643 ASSERT3P(zio, !=, NULL); 644 ASSERT3U(size, !=, 0); 645 646 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP); 647 zgd->zgd_lwb = lwb; 648 649 /* 650 * Write records come in two flavors: immediate and indirect. 651 * For small writes it's cheaper to store the data with the 652 * log record (immediate); for large writes it's cheaper to 653 * sync the data and get a pointer to it (indirect) so that 654 * we don't have to write the data twice. 655 */ 656 if (buf != NULL) { /* immediate write */ 657 zgd->zgd_lr = zfs_rangelock_enter(&zv->zv_rangelock, offset, 658 size, RL_READER); 659 error = dmu_read_by_dnode(zv->zv_dn, offset, size, buf, 660 DMU_READ_NO_PREFETCH); 661 } else { /* indirect write */ 662 /* 663 * Have to lock the whole block to ensure when it's written out 664 * and its checksum is being calculated that no one can change 665 * the data. Contrarily to zfs_get_data we need not re-check 666 * blocksize after we get the lock because it cannot be changed. 667 */ 668 size = zv->zv_volblocksize; 669 offset = P2ALIGN_TYPED(offset, size, uint64_t); 670 zgd->zgd_lr = zfs_rangelock_enter(&zv->zv_rangelock, offset, 671 size, RL_READER); 672 error = dmu_buf_hold_by_dnode(zv->zv_dn, offset, zgd, &db, 673 DMU_READ_NO_PREFETCH); 674 if (error == 0) { 675 blkptr_t *bp = &lr->lr_blkptr; 676 677 zgd->zgd_db = db; 678 zgd->zgd_bp = bp; 679 680 ASSERT(db != NULL); 681 ASSERT(db->db_offset == offset); 682 ASSERT(db->db_size == size); 683 684 error = dmu_sync(zio, lr->lr_common.lrc_txg, 685 zvol_get_done, zgd); 686 687 if (error == 0) 688 return (0); 689 } 690 } 691 692 zvol_get_done(zgd, error); 693 694 return (SET_ERROR(error)); 695 } 696 697 /* 698 * The zvol_state_t's are inserted into zvol_state_list and zvol_htable. 699 */ 700 701 void 702 zvol_insert(zvol_state_t *zv) 703 { 704 ASSERT(RW_WRITE_HELD(&zvol_state_lock)); 705 list_insert_head(&zvol_state_list, zv); 706 hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash)); 707 } 708 709 /* 710 * Simply remove the zvol from to list of zvols. 711 */ 712 static void 713 zvol_remove(zvol_state_t *zv) 714 { 715 ASSERT(RW_WRITE_HELD(&zvol_state_lock)); 716 list_remove(&zvol_state_list, zv); 717 hlist_del(&zv->zv_hlink); 718 } 719 720 /* 721 * Setup zv after we just own the zv->objset 722 */ 723 static int 724 zvol_setup_zv(zvol_state_t *zv) 725 { 726 uint64_t volsize; 727 int error; 728 uint64_t ro; 729 objset_t *os = zv->zv_objset; 730 731 ASSERT(MUTEX_HELD(&zv->zv_state_lock)); 732 ASSERT(RW_LOCK_HELD(&zv->zv_suspend_lock)); 733 734 zv->zv_zilog = NULL; 735 zv->zv_flags &= ~ZVOL_WRITTEN_TO; 736 737 error = dsl_prop_get_integer(zv->zv_name, "readonly", &ro, NULL); 738 if (error) 739 return (SET_ERROR(error)); 740 741 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize); 742 if (error) 743 return (SET_ERROR(error)); 744 745 error = dnode_hold(os, ZVOL_OBJ, zv, &zv->zv_dn); 746 if (error) 747 return (SET_ERROR(error)); 748 749 zvol_os_set_capacity(zv, volsize >> 9); 750 zv->zv_volsize = volsize; 751 752 if (ro || dmu_objset_is_snapshot(os) || 753 !spa_writeable(dmu_objset_spa(os))) { 754 zvol_os_set_disk_ro(zv, 1); 755 zv->zv_flags |= ZVOL_RDONLY; 756 } else { 757 zvol_os_set_disk_ro(zv, 0); 758 zv->zv_flags &= ~ZVOL_RDONLY; 759 } 760 return (0); 761 } 762 763 /* 764 * Shutdown every zv_objset related stuff except zv_objset itself. 765 * The is the reverse of zvol_setup_zv. 766 */ 767 static void 768 zvol_shutdown_zv(zvol_state_t *zv) 769 { 770 ASSERT(MUTEX_HELD(&zv->zv_state_lock) && 771 RW_LOCK_HELD(&zv->zv_suspend_lock)); 772 773 if (zv->zv_flags & ZVOL_WRITTEN_TO) { 774 ASSERT(zv->zv_zilog != NULL); 775 zil_close(zv->zv_zilog); 776 } 777 778 zv->zv_zilog = NULL; 779 780 dnode_rele(zv->zv_dn, zv); 781 zv->zv_dn = NULL; 782 783 /* 784 * Evict cached data. We must write out any dirty data before 785 * disowning the dataset. 786 */ 787 if (zv->zv_flags & ZVOL_WRITTEN_TO) 788 txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0); 789 (void) dmu_objset_evict_dbufs(zv->zv_objset); 790 } 791 792 /* 793 * return the proper tag for rollback and recv 794 */ 795 void * 796 zvol_tag(zvol_state_t *zv) 797 { 798 ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock)); 799 return (zv->zv_open_count > 0 ? zv : NULL); 800 } 801 802 /* 803 * Suspend the zvol for recv and rollback. 804 */ 805 zvol_state_t * 806 zvol_suspend(const char *name) 807 { 808 zvol_state_t *zv; 809 810 zv = zvol_find_by_name(name, RW_WRITER); 811 812 if (zv == NULL) 813 return (NULL); 814 815 /* block all I/O, release in zvol_resume. */ 816 ASSERT(MUTEX_HELD(&zv->zv_state_lock)); 817 ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock)); 818 819 atomic_inc(&zv->zv_suspend_ref); 820 821 if (zv->zv_open_count > 0) 822 zvol_shutdown_zv(zv); 823 824 /* 825 * do not hold zv_state_lock across suspend/resume to 826 * avoid locking up zvol lookups 827 */ 828 mutex_exit(&zv->zv_state_lock); 829 830 /* zv_suspend_lock is released in zvol_resume() */ 831 return (zv); 832 } 833 834 int 835 zvol_resume(zvol_state_t *zv) 836 { 837 int error = 0; 838 839 ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock)); 840 841 mutex_enter(&zv->zv_state_lock); 842 843 if (zv->zv_open_count > 0) { 844 VERIFY0(dmu_objset_hold(zv->zv_name, zv, &zv->zv_objset)); 845 VERIFY3P(zv->zv_objset->os_dsl_dataset->ds_owner, ==, zv); 846 VERIFY(dsl_dataset_long_held(zv->zv_objset->os_dsl_dataset)); 847 dmu_objset_rele(zv->zv_objset, zv); 848 849 error = zvol_setup_zv(zv); 850 } 851 852 mutex_exit(&zv->zv_state_lock); 853 854 rw_exit(&zv->zv_suspend_lock); 855 /* 856 * We need this because we don't hold zvol_state_lock while releasing 857 * zv_suspend_lock. zvol_remove_minors_impl thus cannot check 858 * zv_suspend_lock to determine it is safe to free because rwlock is 859 * not inherent atomic. 860 */ 861 atomic_dec(&zv->zv_suspend_ref); 862 863 return (SET_ERROR(error)); 864 } 865 866 int 867 zvol_first_open(zvol_state_t *zv, boolean_t readonly) 868 { 869 objset_t *os; 870 int error; 871 872 ASSERT(RW_READ_HELD(&zv->zv_suspend_lock)); 873 ASSERT(MUTEX_HELD(&zv->zv_state_lock)); 874 ASSERT(mutex_owned(&spa_namespace_lock)); 875 876 boolean_t ro = (readonly || (strchr(zv->zv_name, '@') != NULL)); 877 error = dmu_objset_own(zv->zv_name, DMU_OST_ZVOL, ro, B_TRUE, zv, &os); 878 if (error) 879 return (SET_ERROR(error)); 880 881 zv->zv_objset = os; 882 883 error = zvol_setup_zv(zv); 884 if (error) { 885 dmu_objset_disown(os, 1, zv); 886 zv->zv_objset = NULL; 887 } 888 889 return (error); 890 } 891 892 void 893 zvol_last_close(zvol_state_t *zv) 894 { 895 ASSERT(RW_READ_HELD(&zv->zv_suspend_lock)); 896 ASSERT(MUTEX_HELD(&zv->zv_state_lock)); 897 898 zvol_shutdown_zv(zv); 899 900 dmu_objset_disown(zv->zv_objset, 1, zv); 901 zv->zv_objset = NULL; 902 } 903 904 typedef struct minors_job { 905 list_t *list; 906 list_node_t link; 907 /* input */ 908 char *name; 909 /* output */ 910 int error; 911 } minors_job_t; 912 913 /* 914 * Prefetch zvol dnodes for the minors_job 915 */ 916 static void 917 zvol_prefetch_minors_impl(void *arg) 918 { 919 minors_job_t *job = arg; 920 char *dsname = job->name; 921 objset_t *os = NULL; 922 923 job->error = dmu_objset_own(dsname, DMU_OST_ZVOL, B_TRUE, B_TRUE, 924 FTAG, &os); 925 if (job->error == 0) { 926 dmu_prefetch(os, ZVOL_OBJ, 0, 0, 0, ZIO_PRIORITY_SYNC_READ); 927 dmu_objset_disown(os, B_TRUE, FTAG); 928 } 929 } 930 931 /* 932 * Mask errors to continue dmu_objset_find() traversal 933 */ 934 static int 935 zvol_create_snap_minor_cb(const char *dsname, void *arg) 936 { 937 minors_job_t *j = arg; 938 list_t *minors_list = j->list; 939 const char *name = j->name; 940 941 ASSERT0(MUTEX_HELD(&spa_namespace_lock)); 942 943 /* skip the designated dataset */ 944 if (name && strcmp(dsname, name) == 0) 945 return (0); 946 947 /* at this point, the dsname should name a snapshot */ 948 if (strchr(dsname, '@') == 0) { 949 dprintf("zvol_create_snap_minor_cb(): " 950 "%s is not a snapshot name\n", dsname); 951 } else { 952 minors_job_t *job; 953 char *n = kmem_strdup(dsname); 954 if (n == NULL) 955 return (0); 956 957 job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP); 958 job->name = n; 959 job->list = minors_list; 960 job->error = 0; 961 list_insert_tail(minors_list, job); 962 /* don't care if dispatch fails, because job->error is 0 */ 963 taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job, 964 TQ_SLEEP); 965 } 966 967 return (0); 968 } 969 970 /* 971 * If spa_keystore_load_wkey() is called for an encrypted zvol, 972 * we need to look for any clones also using the key. This function 973 * is "best effort" - so we just skip over it if there are failures. 974 */ 975 static void 976 zvol_add_clones(const char *dsname, list_t *minors_list) 977 { 978 /* Also check if it has clones */ 979 dsl_dir_t *dd = NULL; 980 dsl_pool_t *dp = NULL; 981 982 if (dsl_pool_hold(dsname, FTAG, &dp) != 0) 983 return; 984 985 if (!spa_feature_is_enabled(dp->dp_spa, 986 SPA_FEATURE_ENCRYPTION)) 987 goto out; 988 989 if (dsl_dir_hold(dp, dsname, FTAG, &dd, NULL) != 0) 990 goto out; 991 992 if (dsl_dir_phys(dd)->dd_clones == 0) 993 goto out; 994 995 zap_cursor_t *zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP); 996 zap_attribute_t *za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP); 997 objset_t *mos = dd->dd_pool->dp_meta_objset; 998 999 for (zap_cursor_init(zc, mos, dsl_dir_phys(dd)->dd_clones); 1000 zap_cursor_retrieve(zc, za) == 0; 1001 zap_cursor_advance(zc)) { 1002 dsl_dataset_t *clone; 1003 minors_job_t *job; 1004 1005 if (dsl_dataset_hold_obj(dd->dd_pool, 1006 za->za_first_integer, FTAG, &clone) == 0) { 1007 1008 char name[ZFS_MAX_DATASET_NAME_LEN]; 1009 dsl_dataset_name(clone, name); 1010 1011 char *n = kmem_strdup(name); 1012 job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP); 1013 job->name = n; 1014 job->list = minors_list; 1015 job->error = 0; 1016 list_insert_tail(minors_list, job); 1017 1018 dsl_dataset_rele(clone, FTAG); 1019 } 1020 } 1021 zap_cursor_fini(zc); 1022 kmem_free(za, sizeof (zap_attribute_t)); 1023 kmem_free(zc, sizeof (zap_cursor_t)); 1024 1025 out: 1026 if (dd != NULL) 1027 dsl_dir_rele(dd, FTAG); 1028 if (dp != NULL) 1029 dsl_pool_rele(dp, FTAG); 1030 } 1031 1032 /* 1033 * Mask errors to continue dmu_objset_find() traversal 1034 */ 1035 static int 1036 zvol_create_minors_cb(const char *dsname, void *arg) 1037 { 1038 uint64_t snapdev; 1039 int error; 1040 list_t *minors_list = arg; 1041 1042 ASSERT0(MUTEX_HELD(&spa_namespace_lock)); 1043 1044 error = dsl_prop_get_integer(dsname, "snapdev", &snapdev, NULL); 1045 if (error) 1046 return (0); 1047 1048 /* 1049 * Given the name and the 'snapdev' property, create device minor nodes 1050 * with the linkages to zvols/snapshots as needed. 1051 * If the name represents a zvol, create a minor node for the zvol, then 1052 * check if its snapshots are 'visible', and if so, iterate over the 1053 * snapshots and create device minor nodes for those. 1054 */ 1055 if (strchr(dsname, '@') == 0) { 1056 minors_job_t *job; 1057 char *n = kmem_strdup(dsname); 1058 if (n == NULL) 1059 return (0); 1060 1061 job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP); 1062 job->name = n; 1063 job->list = minors_list; 1064 job->error = 0; 1065 list_insert_tail(minors_list, job); 1066 /* don't care if dispatch fails, because job->error is 0 */ 1067 taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job, 1068 TQ_SLEEP); 1069 1070 zvol_add_clones(dsname, minors_list); 1071 1072 if (snapdev == ZFS_SNAPDEV_VISIBLE) { 1073 /* 1074 * traverse snapshots only, do not traverse children, 1075 * and skip the 'dsname' 1076 */ 1077 error = dmu_objset_find(dsname, 1078 zvol_create_snap_minor_cb, (void *)job, 1079 DS_FIND_SNAPSHOTS); 1080 } 1081 } else { 1082 dprintf("zvol_create_minors_cb(): %s is not a zvol name\n", 1083 dsname); 1084 } 1085 1086 return (0); 1087 } 1088 1089 /* 1090 * Create minors for the specified dataset, including children and snapshots. 1091 * Pay attention to the 'snapdev' property and iterate over the snapshots 1092 * only if they are 'visible'. This approach allows one to assure that the 1093 * snapshot metadata is read from disk only if it is needed. 1094 * 1095 * The name can represent a dataset to be recursively scanned for zvols and 1096 * their snapshots, or a single zvol snapshot. If the name represents a 1097 * dataset, the scan is performed in two nested stages: 1098 * - scan the dataset for zvols, and 1099 * - for each zvol, create a minor node, then check if the zvol's snapshots 1100 * are 'visible', and only then iterate over the snapshots if needed 1101 * 1102 * If the name represents a snapshot, a check is performed if the snapshot is 1103 * 'visible' (which also verifies that the parent is a zvol), and if so, 1104 * a minor node for that snapshot is created. 1105 */ 1106 void 1107 zvol_create_minors_recursive(const char *name) 1108 { 1109 list_t minors_list; 1110 minors_job_t *job; 1111 1112 if (zvol_inhibit_dev) 1113 return; 1114 1115 /* 1116 * This is the list for prefetch jobs. Whenever we found a match 1117 * during dmu_objset_find, we insert a minors_job to the list and do 1118 * taskq_dispatch to parallel prefetch zvol dnodes. Note we don't need 1119 * any lock because all list operation is done on the current thread. 1120 * 1121 * We will use this list to do zvol_os_create_minor after prefetch 1122 * so we don't have to traverse using dmu_objset_find again. 1123 */ 1124 list_create(&minors_list, sizeof (minors_job_t), 1125 offsetof(minors_job_t, link)); 1126 1127 1128 if (strchr(name, '@') != NULL) { 1129 uint64_t snapdev; 1130 1131 int error = dsl_prop_get_integer(name, "snapdev", 1132 &snapdev, NULL); 1133 1134 if (error == 0 && snapdev == ZFS_SNAPDEV_VISIBLE) 1135 (void) zvol_os_create_minor(name); 1136 } else { 1137 fstrans_cookie_t cookie = spl_fstrans_mark(); 1138 (void) dmu_objset_find(name, zvol_create_minors_cb, 1139 &minors_list, DS_FIND_CHILDREN); 1140 spl_fstrans_unmark(cookie); 1141 } 1142 1143 taskq_wait_outstanding(system_taskq, 0); 1144 1145 /* 1146 * Prefetch is completed, we can do zvol_os_create_minor 1147 * sequentially. 1148 */ 1149 while ((job = list_head(&minors_list)) != NULL) { 1150 list_remove(&minors_list, job); 1151 if (!job->error) 1152 (void) zvol_os_create_minor(job->name); 1153 kmem_strfree(job->name); 1154 kmem_free(job, sizeof (minors_job_t)); 1155 } 1156 1157 list_destroy(&minors_list); 1158 } 1159 1160 void 1161 zvol_create_minor(const char *name) 1162 { 1163 /* 1164 * Note: the dsl_pool_config_lock must not be held. 1165 * Minor node creation needs to obtain the zvol_state_lock. 1166 * zvol_open() obtains the zvol_state_lock and then the dsl pool 1167 * config lock. Therefore, we can't have the config lock now if 1168 * we are going to wait for the zvol_state_lock, because it 1169 * would be a lock order inversion which could lead to deadlock. 1170 */ 1171 1172 if (zvol_inhibit_dev) 1173 return; 1174 1175 if (strchr(name, '@') != NULL) { 1176 uint64_t snapdev; 1177 1178 int error = dsl_prop_get_integer(name, 1179 "snapdev", &snapdev, NULL); 1180 1181 if (error == 0 && snapdev == ZFS_SNAPDEV_VISIBLE) 1182 (void) zvol_os_create_minor(name); 1183 } else { 1184 (void) zvol_os_create_minor(name); 1185 } 1186 } 1187 1188 /* 1189 * Remove minors for specified dataset including children and snapshots. 1190 */ 1191 1192 static void 1193 zvol_free_task(void *arg) 1194 { 1195 zvol_os_free(arg); 1196 } 1197 1198 void 1199 zvol_remove_minors_impl(const char *name) 1200 { 1201 zvol_state_t *zv, *zv_next; 1202 int namelen = ((name) ? strlen(name) : 0); 1203 taskqid_t t; 1204 list_t free_list; 1205 1206 if (zvol_inhibit_dev) 1207 return; 1208 1209 list_create(&free_list, sizeof (zvol_state_t), 1210 offsetof(zvol_state_t, zv_next)); 1211 1212 rw_enter(&zvol_state_lock, RW_WRITER); 1213 1214 for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) { 1215 zv_next = list_next(&zvol_state_list, zv); 1216 1217 mutex_enter(&zv->zv_state_lock); 1218 if (name == NULL || strcmp(zv->zv_name, name) == 0 || 1219 (strncmp(zv->zv_name, name, namelen) == 0 && 1220 (zv->zv_name[namelen] == '/' || 1221 zv->zv_name[namelen] == '@'))) { 1222 /* 1223 * By holding zv_state_lock here, we guarantee that no 1224 * one is currently using this zv 1225 */ 1226 1227 /* If in use, leave alone */ 1228 if (zv->zv_open_count > 0 || 1229 atomic_read(&zv->zv_suspend_ref)) { 1230 mutex_exit(&zv->zv_state_lock); 1231 continue; 1232 } 1233 1234 zvol_remove(zv); 1235 1236 /* 1237 * Cleared while holding zvol_state_lock as a writer 1238 * which will prevent zvol_open() from opening it. 1239 */ 1240 zvol_os_clear_private(zv); 1241 1242 /* Drop zv_state_lock before zvol_free() */ 1243 mutex_exit(&zv->zv_state_lock); 1244 1245 /* Try parallel zv_free, if failed do it in place */ 1246 t = taskq_dispatch(system_taskq, zvol_free_task, zv, 1247 TQ_SLEEP); 1248 if (t == TASKQID_INVALID) 1249 list_insert_head(&free_list, zv); 1250 } else { 1251 mutex_exit(&zv->zv_state_lock); 1252 } 1253 } 1254 rw_exit(&zvol_state_lock); 1255 1256 /* Drop zvol_state_lock before calling zvol_free() */ 1257 while ((zv = list_head(&free_list)) != NULL) { 1258 list_remove(&free_list, zv); 1259 zvol_os_free(zv); 1260 } 1261 } 1262 1263 /* Remove minor for this specific volume only */ 1264 static void 1265 zvol_remove_minor_impl(const char *name) 1266 { 1267 zvol_state_t *zv = NULL, *zv_next; 1268 1269 if (zvol_inhibit_dev) 1270 return; 1271 1272 rw_enter(&zvol_state_lock, RW_WRITER); 1273 1274 for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) { 1275 zv_next = list_next(&zvol_state_list, zv); 1276 1277 mutex_enter(&zv->zv_state_lock); 1278 if (strcmp(zv->zv_name, name) == 0) { 1279 /* 1280 * By holding zv_state_lock here, we guarantee that no 1281 * one is currently using this zv 1282 */ 1283 1284 /* If in use, leave alone */ 1285 if (zv->zv_open_count > 0 || 1286 atomic_read(&zv->zv_suspend_ref)) { 1287 mutex_exit(&zv->zv_state_lock); 1288 continue; 1289 } 1290 zvol_remove(zv); 1291 1292 zvol_os_clear_private(zv); 1293 mutex_exit(&zv->zv_state_lock); 1294 break; 1295 } else { 1296 mutex_exit(&zv->zv_state_lock); 1297 } 1298 } 1299 1300 /* Drop zvol_state_lock before calling zvol_free() */ 1301 rw_exit(&zvol_state_lock); 1302 1303 if (zv != NULL) 1304 zvol_os_free(zv); 1305 } 1306 1307 /* 1308 * Rename minors for specified dataset including children and snapshots. 1309 */ 1310 static void 1311 zvol_rename_minors_impl(const char *oldname, const char *newname) 1312 { 1313 zvol_state_t *zv, *zv_next; 1314 int oldnamelen; 1315 1316 if (zvol_inhibit_dev) 1317 return; 1318 1319 oldnamelen = strlen(oldname); 1320 1321 rw_enter(&zvol_state_lock, RW_READER); 1322 1323 for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) { 1324 zv_next = list_next(&zvol_state_list, zv); 1325 1326 mutex_enter(&zv->zv_state_lock); 1327 1328 if (strcmp(zv->zv_name, oldname) == 0) { 1329 zvol_os_rename_minor(zv, newname); 1330 } else if (strncmp(zv->zv_name, oldname, oldnamelen) == 0 && 1331 (zv->zv_name[oldnamelen] == '/' || 1332 zv->zv_name[oldnamelen] == '@')) { 1333 char *name = kmem_asprintf("%s%c%s", newname, 1334 zv->zv_name[oldnamelen], 1335 zv->zv_name + oldnamelen + 1); 1336 zvol_os_rename_minor(zv, name); 1337 kmem_strfree(name); 1338 } 1339 1340 mutex_exit(&zv->zv_state_lock); 1341 } 1342 1343 rw_exit(&zvol_state_lock); 1344 } 1345 1346 typedef struct zvol_snapdev_cb_arg { 1347 uint64_t snapdev; 1348 } zvol_snapdev_cb_arg_t; 1349 1350 static int 1351 zvol_set_snapdev_cb(const char *dsname, void *param) 1352 { 1353 zvol_snapdev_cb_arg_t *arg = param; 1354 1355 if (strchr(dsname, '@') == NULL) 1356 return (0); 1357 1358 switch (arg->snapdev) { 1359 case ZFS_SNAPDEV_VISIBLE: 1360 (void) zvol_os_create_minor(dsname); 1361 break; 1362 case ZFS_SNAPDEV_HIDDEN: 1363 (void) zvol_remove_minor_impl(dsname); 1364 break; 1365 } 1366 1367 return (0); 1368 } 1369 1370 static void 1371 zvol_set_snapdev_impl(char *name, uint64_t snapdev) 1372 { 1373 zvol_snapdev_cb_arg_t arg = {snapdev}; 1374 fstrans_cookie_t cookie = spl_fstrans_mark(); 1375 /* 1376 * The zvol_set_snapdev_sync() sets snapdev appropriately 1377 * in the dataset hierarchy. Here, we only scan snapshots. 1378 */ 1379 dmu_objset_find(name, zvol_set_snapdev_cb, &arg, DS_FIND_SNAPSHOTS); 1380 spl_fstrans_unmark(cookie); 1381 } 1382 1383 static void 1384 zvol_set_volmode_impl(char *name, uint64_t volmode) 1385 { 1386 fstrans_cookie_t cookie; 1387 uint64_t old_volmode; 1388 zvol_state_t *zv; 1389 1390 if (strchr(name, '@') != NULL) 1391 return; 1392 1393 /* 1394 * It's unfortunate we need to remove minors before we create new ones: 1395 * this is necessary because our backing gendisk (zvol_state->zv_disk) 1396 * could be different when we set, for instance, volmode from "geom" 1397 * to "dev" (or vice versa). 1398 */ 1399 zv = zvol_find_by_name(name, RW_NONE); 1400 if (zv == NULL && volmode == ZFS_VOLMODE_NONE) 1401 return; 1402 if (zv != NULL) { 1403 old_volmode = zv->zv_volmode; 1404 mutex_exit(&zv->zv_state_lock); 1405 if (old_volmode == volmode) 1406 return; 1407 zvol_wait_close(zv); 1408 } 1409 cookie = spl_fstrans_mark(); 1410 switch (volmode) { 1411 case ZFS_VOLMODE_NONE: 1412 (void) zvol_remove_minor_impl(name); 1413 break; 1414 case ZFS_VOLMODE_GEOM: 1415 case ZFS_VOLMODE_DEV: 1416 (void) zvol_remove_minor_impl(name); 1417 (void) zvol_os_create_minor(name); 1418 break; 1419 case ZFS_VOLMODE_DEFAULT: 1420 (void) zvol_remove_minor_impl(name); 1421 if (zvol_volmode == ZFS_VOLMODE_NONE) 1422 break; 1423 else /* if zvol_volmode is invalid defaults to "geom" */ 1424 (void) zvol_os_create_minor(name); 1425 break; 1426 } 1427 spl_fstrans_unmark(cookie); 1428 } 1429 1430 static zvol_task_t * 1431 zvol_task_alloc(zvol_async_op_t op, const char *name1, const char *name2, 1432 uint64_t value) 1433 { 1434 zvol_task_t *task; 1435 1436 /* Never allow tasks on hidden names. */ 1437 if (name1[0] == '$') 1438 return (NULL); 1439 1440 task = kmem_zalloc(sizeof (zvol_task_t), KM_SLEEP); 1441 task->op = op; 1442 task->value = value; 1443 1444 strlcpy(task->name1, name1, MAXNAMELEN); 1445 if (name2 != NULL) 1446 strlcpy(task->name2, name2, MAXNAMELEN); 1447 1448 return (task); 1449 } 1450 1451 static void 1452 zvol_task_free(zvol_task_t *task) 1453 { 1454 kmem_free(task, sizeof (zvol_task_t)); 1455 } 1456 1457 /* 1458 * The worker thread function performed asynchronously. 1459 */ 1460 static void 1461 zvol_task_cb(void *arg) 1462 { 1463 zvol_task_t *task = arg; 1464 1465 switch (task->op) { 1466 case ZVOL_ASYNC_REMOVE_MINORS: 1467 zvol_remove_minors_impl(task->name1); 1468 break; 1469 case ZVOL_ASYNC_RENAME_MINORS: 1470 zvol_rename_minors_impl(task->name1, task->name2); 1471 break; 1472 case ZVOL_ASYNC_SET_SNAPDEV: 1473 zvol_set_snapdev_impl(task->name1, task->value); 1474 break; 1475 case ZVOL_ASYNC_SET_VOLMODE: 1476 zvol_set_volmode_impl(task->name1, task->value); 1477 break; 1478 default: 1479 VERIFY(0); 1480 break; 1481 } 1482 1483 zvol_task_free(task); 1484 } 1485 1486 typedef struct zvol_set_prop_int_arg { 1487 const char *zsda_name; 1488 uint64_t zsda_value; 1489 zprop_source_t zsda_source; 1490 dmu_tx_t *zsda_tx; 1491 } zvol_set_prop_int_arg_t; 1492 1493 /* 1494 * Sanity check the dataset for safe use by the sync task. No additional 1495 * conditions are imposed. 1496 */ 1497 static int 1498 zvol_set_snapdev_check(void *arg, dmu_tx_t *tx) 1499 { 1500 zvol_set_prop_int_arg_t *zsda = arg; 1501 dsl_pool_t *dp = dmu_tx_pool(tx); 1502 dsl_dir_t *dd; 1503 int error; 1504 1505 error = dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL); 1506 if (error != 0) 1507 return (error); 1508 1509 dsl_dir_rele(dd, FTAG); 1510 1511 return (error); 1512 } 1513 1514 static int 1515 zvol_set_snapdev_sync_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 1516 { 1517 (void) arg; 1518 char dsname[MAXNAMELEN]; 1519 zvol_task_t *task; 1520 uint64_t snapdev; 1521 1522 dsl_dataset_name(ds, dsname); 1523 if (dsl_prop_get_int_ds(ds, "snapdev", &snapdev) != 0) 1524 return (0); 1525 task = zvol_task_alloc(ZVOL_ASYNC_SET_SNAPDEV, dsname, NULL, snapdev); 1526 if (task == NULL) 1527 return (0); 1528 1529 (void) taskq_dispatch(dp->dp_spa->spa_zvol_taskq, zvol_task_cb, 1530 task, TQ_SLEEP); 1531 return (0); 1532 } 1533 1534 /* 1535 * Traverse all child datasets and apply snapdev appropriately. 1536 * We call dsl_prop_set_sync_impl() here to set the value only on the toplevel 1537 * dataset and read the effective "snapdev" on every child in the callback 1538 * function: this is because the value is not guaranteed to be the same in the 1539 * whole dataset hierarchy. 1540 */ 1541 static void 1542 zvol_set_snapdev_sync(void *arg, dmu_tx_t *tx) 1543 { 1544 zvol_set_prop_int_arg_t *zsda = arg; 1545 dsl_pool_t *dp = dmu_tx_pool(tx); 1546 dsl_dir_t *dd; 1547 dsl_dataset_t *ds; 1548 int error; 1549 1550 VERIFY0(dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL)); 1551 zsda->zsda_tx = tx; 1552 1553 error = dsl_dataset_hold(dp, zsda->zsda_name, FTAG, &ds); 1554 if (error == 0) { 1555 dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_SNAPDEV), 1556 zsda->zsda_source, sizeof (zsda->zsda_value), 1, 1557 &zsda->zsda_value, zsda->zsda_tx); 1558 dsl_dataset_rele(ds, FTAG); 1559 } 1560 dmu_objset_find_dp(dp, dd->dd_object, zvol_set_snapdev_sync_cb, 1561 zsda, DS_FIND_CHILDREN); 1562 1563 dsl_dir_rele(dd, FTAG); 1564 } 1565 1566 int 1567 zvol_set_snapdev(const char *ddname, zprop_source_t source, uint64_t snapdev) 1568 { 1569 zvol_set_prop_int_arg_t zsda; 1570 1571 zsda.zsda_name = ddname; 1572 zsda.zsda_source = source; 1573 zsda.zsda_value = snapdev; 1574 1575 return (dsl_sync_task(ddname, zvol_set_snapdev_check, 1576 zvol_set_snapdev_sync, &zsda, 0, ZFS_SPACE_CHECK_NONE)); 1577 } 1578 1579 /* 1580 * Sanity check the dataset for safe use by the sync task. No additional 1581 * conditions are imposed. 1582 */ 1583 static int 1584 zvol_set_volmode_check(void *arg, dmu_tx_t *tx) 1585 { 1586 zvol_set_prop_int_arg_t *zsda = arg; 1587 dsl_pool_t *dp = dmu_tx_pool(tx); 1588 dsl_dir_t *dd; 1589 int error; 1590 1591 error = dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL); 1592 if (error != 0) 1593 return (error); 1594 1595 dsl_dir_rele(dd, FTAG); 1596 1597 return (error); 1598 } 1599 1600 static int 1601 zvol_set_volmode_sync_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 1602 { 1603 (void) arg; 1604 char dsname[MAXNAMELEN]; 1605 zvol_task_t *task; 1606 uint64_t volmode; 1607 1608 dsl_dataset_name(ds, dsname); 1609 if (dsl_prop_get_int_ds(ds, "volmode", &volmode) != 0) 1610 return (0); 1611 task = zvol_task_alloc(ZVOL_ASYNC_SET_VOLMODE, dsname, NULL, volmode); 1612 if (task == NULL) 1613 return (0); 1614 1615 (void) taskq_dispatch(dp->dp_spa->spa_zvol_taskq, zvol_task_cb, 1616 task, TQ_SLEEP); 1617 return (0); 1618 } 1619 1620 /* 1621 * Traverse all child datasets and apply volmode appropriately. 1622 * We call dsl_prop_set_sync_impl() here to set the value only on the toplevel 1623 * dataset and read the effective "volmode" on every child in the callback 1624 * function: this is because the value is not guaranteed to be the same in the 1625 * whole dataset hierarchy. 1626 */ 1627 static void 1628 zvol_set_volmode_sync(void *arg, dmu_tx_t *tx) 1629 { 1630 zvol_set_prop_int_arg_t *zsda = arg; 1631 dsl_pool_t *dp = dmu_tx_pool(tx); 1632 dsl_dir_t *dd; 1633 dsl_dataset_t *ds; 1634 int error; 1635 1636 VERIFY0(dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL)); 1637 zsda->zsda_tx = tx; 1638 1639 error = dsl_dataset_hold(dp, zsda->zsda_name, FTAG, &ds); 1640 if (error == 0) { 1641 dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_VOLMODE), 1642 zsda->zsda_source, sizeof (zsda->zsda_value), 1, 1643 &zsda->zsda_value, zsda->zsda_tx); 1644 dsl_dataset_rele(ds, FTAG); 1645 } 1646 1647 dmu_objset_find_dp(dp, dd->dd_object, zvol_set_volmode_sync_cb, 1648 zsda, DS_FIND_CHILDREN); 1649 1650 dsl_dir_rele(dd, FTAG); 1651 } 1652 1653 int 1654 zvol_set_volmode(const char *ddname, zprop_source_t source, uint64_t volmode) 1655 { 1656 zvol_set_prop_int_arg_t zsda; 1657 1658 zsda.zsda_name = ddname; 1659 zsda.zsda_source = source; 1660 zsda.zsda_value = volmode; 1661 1662 return (dsl_sync_task(ddname, zvol_set_volmode_check, 1663 zvol_set_volmode_sync, &zsda, 0, ZFS_SPACE_CHECK_NONE)); 1664 } 1665 1666 void 1667 zvol_remove_minors(spa_t *spa, const char *name, boolean_t async) 1668 { 1669 zvol_task_t *task; 1670 taskqid_t id; 1671 1672 task = zvol_task_alloc(ZVOL_ASYNC_REMOVE_MINORS, name, NULL, ~0ULL); 1673 if (task == NULL) 1674 return; 1675 1676 id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP); 1677 if ((async == B_FALSE) && (id != TASKQID_INVALID)) 1678 taskq_wait_id(spa->spa_zvol_taskq, id); 1679 } 1680 1681 void 1682 zvol_rename_minors(spa_t *spa, const char *name1, const char *name2, 1683 boolean_t async) 1684 { 1685 zvol_task_t *task; 1686 taskqid_t id; 1687 1688 task = zvol_task_alloc(ZVOL_ASYNC_RENAME_MINORS, name1, name2, ~0ULL); 1689 if (task == NULL) 1690 return; 1691 1692 id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP); 1693 if ((async == B_FALSE) && (id != TASKQID_INVALID)) 1694 taskq_wait_id(spa->spa_zvol_taskq, id); 1695 } 1696 1697 boolean_t 1698 zvol_is_zvol(const char *name) 1699 { 1700 1701 return (zvol_os_is_zvol(name)); 1702 } 1703 1704 int 1705 zvol_init_impl(void) 1706 { 1707 int i; 1708 1709 list_create(&zvol_state_list, sizeof (zvol_state_t), 1710 offsetof(zvol_state_t, zv_next)); 1711 rw_init(&zvol_state_lock, NULL, RW_DEFAULT, NULL); 1712 1713 zvol_htable = kmem_alloc(ZVOL_HT_SIZE * sizeof (struct hlist_head), 1714 KM_SLEEP); 1715 for (i = 0; i < ZVOL_HT_SIZE; i++) 1716 INIT_HLIST_HEAD(&zvol_htable[i]); 1717 1718 return (0); 1719 } 1720 1721 void 1722 zvol_fini_impl(void) 1723 { 1724 zvol_remove_minors_impl(NULL); 1725 1726 /* 1727 * The call to "zvol_remove_minors_impl" may dispatch entries to 1728 * the system_taskq, but it doesn't wait for those entries to 1729 * complete before it returns. Thus, we must wait for all of the 1730 * removals to finish, before we can continue. 1731 */ 1732 taskq_wait_outstanding(system_taskq, 0); 1733 1734 kmem_free(zvol_htable, ZVOL_HT_SIZE * sizeof (struct hlist_head)); 1735 list_destroy(&zvol_state_list); 1736 rw_destroy(&zvol_state_lock); 1737 } 1738