xref: /freebsd/sys/contrib/openzfs/module/zfs/zvol.c (revision 22cf89c938886d14f5796fc49f9f020c23ea8eaf)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
23  * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
24  * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
25  * LLNL-CODE-403049.
26  *
27  * ZFS volume emulation driver.
28  *
29  * Makes a DMU object look like a volume of arbitrary size, up to 2^64 bytes.
30  * Volumes are accessed through the symbolic links named:
31  *
32  * /dev/<pool_name>/<dataset_name>
33  *
34  * Volumes are persistent through reboot and module load.  No user command
35  * needs to be run before opening and using a device.
36  *
37  * Copyright 2014 Nexenta Systems, Inc.  All rights reserved.
38  * Copyright (c) 2016 Actifio, Inc. All rights reserved.
39  * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
40  */
41 
42 /*
43  * Note on locking of zvol state structures.
44  *
45  * These structures are used to maintain internal state used to emulate block
46  * devices on top of zvols. In particular, management of device minor number
47  * operations - create, remove, rename, and set_snapdev - involves access to
48  * these structures. The zvol_state_lock is primarily used to protect the
49  * zvol_state_list. The zv->zv_state_lock is used to protect the contents
50  * of the zvol_state_t structures, as well as to make sure that when the
51  * time comes to remove the structure from the list, it is not in use, and
52  * therefore, it can be taken off zvol_state_list and freed.
53  *
54  * The zv_suspend_lock was introduced to allow for suspending I/O to a zvol,
55  * e.g. for the duration of receive and rollback operations. This lock can be
56  * held for significant periods of time. Given that it is undesirable to hold
57  * mutexes for long periods of time, the following lock ordering applies:
58  * - take zvol_state_lock if necessary, to protect zvol_state_list
59  * - take zv_suspend_lock if necessary, by the code path in question
60  * - take zv_state_lock to protect zvol_state_t
61  *
62  * The minor operations are issued to spa->spa_zvol_taskq queues, that are
63  * single-threaded (to preserve order of minor operations), and are executed
64  * through the zvol_task_cb that dispatches the specific operations. Therefore,
65  * these operations are serialized per pool. Consequently, we can be certain
66  * that for a given zvol, there is only one operation at a time in progress.
67  * That is why one can be sure that first, zvol_state_t for a given zvol is
68  * allocated and placed on zvol_state_list, and then other minor operations
69  * for this zvol are going to proceed in the order of issue.
70  *
71  */
72 
73 #include <sys/dataset_kstats.h>
74 #include <sys/dbuf.h>
75 #include <sys/dmu_traverse.h>
76 #include <sys/dsl_dataset.h>
77 #include <sys/dsl_prop.h>
78 #include <sys/dsl_dir.h>
79 #include <sys/zap.h>
80 #include <sys/zfeature.h>
81 #include <sys/zil_impl.h>
82 #include <sys/dmu_tx.h>
83 #include <sys/zio.h>
84 #include <sys/zfs_rlock.h>
85 #include <sys/spa_impl.h>
86 #include <sys/zvol.h>
87 #include <sys/zvol_impl.h>
88 
89 unsigned int zvol_inhibit_dev = 0;
90 unsigned int zvol_volmode = ZFS_VOLMODE_GEOM;
91 
92 struct hlist_head *zvol_htable;
93 static list_t zvol_state_list;
94 krwlock_t zvol_state_lock;
95 
96 typedef enum {
97 	ZVOL_ASYNC_REMOVE_MINORS,
98 	ZVOL_ASYNC_RENAME_MINORS,
99 	ZVOL_ASYNC_SET_SNAPDEV,
100 	ZVOL_ASYNC_SET_VOLMODE,
101 	ZVOL_ASYNC_MAX
102 } zvol_async_op_t;
103 
104 typedef struct {
105 	zvol_async_op_t op;
106 	char name1[MAXNAMELEN];
107 	char name2[MAXNAMELEN];
108 	uint64_t value;
109 } zvol_task_t;
110 
111 uint64_t
112 zvol_name_hash(const char *name)
113 {
114 	int i;
115 	uint64_t crc = -1ULL;
116 	const uint8_t *p = (const uint8_t *)name;
117 	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
118 	for (i = 0; i < MAXNAMELEN - 1 && *p; i++, p++) {
119 		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (*p)) & 0xFF];
120 	}
121 	return (crc);
122 }
123 
124 /*
125  * Find a zvol_state_t given the name and hash generated by zvol_name_hash.
126  * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise,
127  * return (NULL) without the taking locks. The zv_suspend_lock is always taken
128  * before zv_state_lock. The mode argument indicates the mode (including none)
129  * for zv_suspend_lock to be taken.
130  */
131 zvol_state_t *
132 zvol_find_by_name_hash(const char *name, uint64_t hash, int mode)
133 {
134 	zvol_state_t *zv;
135 	struct hlist_node *p = NULL;
136 
137 	rw_enter(&zvol_state_lock, RW_READER);
138 	hlist_for_each(p, ZVOL_HT_HEAD(hash)) {
139 		zv = hlist_entry(p, zvol_state_t, zv_hlink);
140 		mutex_enter(&zv->zv_state_lock);
141 		if (zv->zv_hash == hash &&
142 		    strncmp(zv->zv_name, name, MAXNAMELEN) == 0) {
143 			/*
144 			 * this is the right zvol, take the locks in the
145 			 * right order
146 			 */
147 			if (mode != RW_NONE &&
148 			    !rw_tryenter(&zv->zv_suspend_lock, mode)) {
149 				mutex_exit(&zv->zv_state_lock);
150 				rw_enter(&zv->zv_suspend_lock, mode);
151 				mutex_enter(&zv->zv_state_lock);
152 				/*
153 				 * zvol cannot be renamed as we continue
154 				 * to hold zvol_state_lock
155 				 */
156 				ASSERT(zv->zv_hash == hash &&
157 				    strncmp(zv->zv_name, name, MAXNAMELEN)
158 				    == 0);
159 			}
160 			rw_exit(&zvol_state_lock);
161 			return (zv);
162 		}
163 		mutex_exit(&zv->zv_state_lock);
164 	}
165 	rw_exit(&zvol_state_lock);
166 
167 	return (NULL);
168 }
169 
170 /*
171  * Find a zvol_state_t given the name.
172  * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise,
173  * return (NULL) without the taking locks. The zv_suspend_lock is always taken
174  * before zv_state_lock. The mode argument indicates the mode (including none)
175  * for zv_suspend_lock to be taken.
176  */
177 static zvol_state_t *
178 zvol_find_by_name(const char *name, int mode)
179 {
180 	return (zvol_find_by_name_hash(name, zvol_name_hash(name), mode));
181 }
182 
183 /*
184  * ZFS_IOC_CREATE callback handles dmu zvol and zap object creation.
185  */
186 void
187 zvol_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
188 {
189 	zfs_creat_t *zct = arg;
190 	nvlist_t *nvprops = zct->zct_props;
191 	int error;
192 	uint64_t volblocksize, volsize;
193 
194 	VERIFY(nvlist_lookup_uint64(nvprops,
195 	    zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) == 0);
196 	if (nvlist_lookup_uint64(nvprops,
197 	    zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize) != 0)
198 		volblocksize = zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE);
199 
200 	/*
201 	 * These properties must be removed from the list so the generic
202 	 * property setting step won't apply to them.
203 	 */
204 	VERIFY(nvlist_remove_all(nvprops,
205 	    zfs_prop_to_name(ZFS_PROP_VOLSIZE)) == 0);
206 	(void) nvlist_remove_all(nvprops,
207 	    zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE));
208 
209 	error = dmu_object_claim(os, ZVOL_OBJ, DMU_OT_ZVOL, volblocksize,
210 	    DMU_OT_NONE, 0, tx);
211 	ASSERT(error == 0);
212 
213 	error = zap_create_claim(os, ZVOL_ZAP_OBJ, DMU_OT_ZVOL_PROP,
214 	    DMU_OT_NONE, 0, tx);
215 	ASSERT(error == 0);
216 
217 	error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize, tx);
218 	ASSERT(error == 0);
219 }
220 
221 /*
222  * ZFS_IOC_OBJSET_STATS entry point.
223  */
224 int
225 zvol_get_stats(objset_t *os, nvlist_t *nv)
226 {
227 	int error;
228 	dmu_object_info_t *doi;
229 	uint64_t val;
230 
231 	error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &val);
232 	if (error)
233 		return (SET_ERROR(error));
234 
235 	dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLSIZE, val);
236 	doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP);
237 	error = dmu_object_info(os, ZVOL_OBJ, doi);
238 
239 	if (error == 0) {
240 		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLBLOCKSIZE,
241 		    doi->doi_data_block_size);
242 	}
243 
244 	kmem_free(doi, sizeof (dmu_object_info_t));
245 
246 	return (SET_ERROR(error));
247 }
248 
249 /*
250  * Sanity check volume size.
251  */
252 int
253 zvol_check_volsize(uint64_t volsize, uint64_t blocksize)
254 {
255 	if (volsize == 0)
256 		return (SET_ERROR(EINVAL));
257 
258 	if (volsize % blocksize != 0)
259 		return (SET_ERROR(EINVAL));
260 
261 #ifdef _ILP32
262 	if (volsize - 1 > SPEC_MAXOFFSET_T)
263 		return (SET_ERROR(EOVERFLOW));
264 #endif
265 	return (0);
266 }
267 
268 /*
269  * Ensure the zap is flushed then inform the VFS of the capacity change.
270  */
271 static int
272 zvol_update_volsize(uint64_t volsize, objset_t *os)
273 {
274 	dmu_tx_t *tx;
275 	int error;
276 	uint64_t txg;
277 
278 	tx = dmu_tx_create(os);
279 	dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL);
280 	dmu_tx_mark_netfree(tx);
281 	error = dmu_tx_assign(tx, TXG_WAIT);
282 	if (error) {
283 		dmu_tx_abort(tx);
284 		return (SET_ERROR(error));
285 	}
286 	txg = dmu_tx_get_txg(tx);
287 
288 	error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1,
289 	    &volsize, tx);
290 	dmu_tx_commit(tx);
291 
292 	txg_wait_synced(dmu_objset_pool(os), txg);
293 
294 	if (error == 0)
295 		error = dmu_free_long_range(os,
296 		    ZVOL_OBJ, volsize, DMU_OBJECT_END);
297 
298 	return (error);
299 }
300 
301 /*
302  * Set ZFS_PROP_VOLSIZE set entry point.  Note that modifying the volume
303  * size will result in a udev "change" event being generated.
304  */
305 int
306 zvol_set_volsize(const char *name, uint64_t volsize)
307 {
308 	objset_t *os = NULL;
309 	uint64_t readonly;
310 	int error;
311 	boolean_t owned = B_FALSE;
312 
313 	error = dsl_prop_get_integer(name,
314 	    zfs_prop_to_name(ZFS_PROP_READONLY), &readonly, NULL);
315 	if (error != 0)
316 		return (SET_ERROR(error));
317 	if (readonly)
318 		return (SET_ERROR(EROFS));
319 
320 	zvol_state_t *zv = zvol_find_by_name(name, RW_READER);
321 
322 	ASSERT(zv == NULL || (MUTEX_HELD(&zv->zv_state_lock) &&
323 	    RW_READ_HELD(&zv->zv_suspend_lock)));
324 
325 	if (zv == NULL || zv->zv_objset == NULL) {
326 		if (zv != NULL)
327 			rw_exit(&zv->zv_suspend_lock);
328 		if ((error = dmu_objset_own(name, DMU_OST_ZVOL, B_FALSE, B_TRUE,
329 		    FTAG, &os)) != 0) {
330 			if (zv != NULL)
331 				mutex_exit(&zv->zv_state_lock);
332 			return (SET_ERROR(error));
333 		}
334 		owned = B_TRUE;
335 		if (zv != NULL)
336 			zv->zv_objset = os;
337 	} else {
338 		os = zv->zv_objset;
339 	}
340 
341 	dmu_object_info_t *doi = kmem_alloc(sizeof (*doi), KM_SLEEP);
342 
343 	if ((error = dmu_object_info(os, ZVOL_OBJ, doi)) ||
344 	    (error = zvol_check_volsize(volsize, doi->doi_data_block_size)))
345 		goto out;
346 
347 	error = zvol_update_volsize(volsize, os);
348 	if (error == 0 && zv != NULL) {
349 		zv->zv_volsize = volsize;
350 		zv->zv_changed = 1;
351 	}
352 out:
353 	kmem_free(doi, sizeof (dmu_object_info_t));
354 
355 	if (owned) {
356 		dmu_objset_disown(os, B_TRUE, FTAG);
357 		if (zv != NULL)
358 			zv->zv_objset = NULL;
359 	} else {
360 		rw_exit(&zv->zv_suspend_lock);
361 	}
362 
363 	if (zv != NULL)
364 		mutex_exit(&zv->zv_state_lock);
365 
366 	if (error == 0 && zv != NULL)
367 		zvol_os_update_volsize(zv, volsize);
368 
369 	return (SET_ERROR(error));
370 }
371 
372 /*
373  * Sanity check volume block size.
374  */
375 int
376 zvol_check_volblocksize(const char *name, uint64_t volblocksize)
377 {
378 	/* Record sizes above 128k need the feature to be enabled */
379 	if (volblocksize > SPA_OLD_MAXBLOCKSIZE) {
380 		spa_t *spa;
381 		int error;
382 
383 		if ((error = spa_open(name, &spa, FTAG)) != 0)
384 			return (error);
385 
386 		if (!spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
387 			spa_close(spa, FTAG);
388 			return (SET_ERROR(ENOTSUP));
389 		}
390 
391 		/*
392 		 * We don't allow setting the property above 1MB,
393 		 * unless the tunable has been changed.
394 		 */
395 		if (volblocksize > zfs_max_recordsize)
396 			return (SET_ERROR(EDOM));
397 
398 		spa_close(spa, FTAG);
399 	}
400 
401 	if (volblocksize < SPA_MINBLOCKSIZE ||
402 	    volblocksize > SPA_MAXBLOCKSIZE ||
403 	    !ISP2(volblocksize))
404 		return (SET_ERROR(EDOM));
405 
406 	return (0);
407 }
408 
409 /*
410  * Replay a TX_TRUNCATE ZIL transaction if asked.  TX_TRUNCATE is how we
411  * implement DKIOCFREE/free-long-range.
412  */
413 static int
414 zvol_replay_truncate(void *arg1, void *arg2, boolean_t byteswap)
415 {
416 	zvol_state_t *zv = arg1;
417 	lr_truncate_t *lr = arg2;
418 	uint64_t offset, length;
419 
420 	if (byteswap)
421 		byteswap_uint64_array(lr, sizeof (*lr));
422 
423 	offset = lr->lr_offset;
424 	length = lr->lr_length;
425 
426 	dmu_tx_t *tx = dmu_tx_create(zv->zv_objset);
427 	dmu_tx_mark_netfree(tx);
428 	int error = dmu_tx_assign(tx, TXG_WAIT);
429 	if (error != 0) {
430 		dmu_tx_abort(tx);
431 	} else {
432 		(void) zil_replaying(zv->zv_zilog, tx);
433 		dmu_tx_commit(tx);
434 		error = dmu_free_long_range(zv->zv_objset, ZVOL_OBJ, offset,
435 		    length);
436 	}
437 
438 	return (error);
439 }
440 
441 /*
442  * Replay a TX_WRITE ZIL transaction that didn't get committed
443  * after a system failure
444  */
445 static int
446 zvol_replay_write(void *arg1, void *arg2, boolean_t byteswap)
447 {
448 	zvol_state_t *zv = arg1;
449 	lr_write_t *lr = arg2;
450 	objset_t *os = zv->zv_objset;
451 	char *data = (char *)(lr + 1);  /* data follows lr_write_t */
452 	uint64_t offset, length;
453 	dmu_tx_t *tx;
454 	int error;
455 
456 	if (byteswap)
457 		byteswap_uint64_array(lr, sizeof (*lr));
458 
459 	offset = lr->lr_offset;
460 	length = lr->lr_length;
461 
462 	/* If it's a dmu_sync() block, write the whole block */
463 	if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
464 		uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
465 		if (length < blocksize) {
466 			offset -= offset % blocksize;
467 			length = blocksize;
468 		}
469 	}
470 
471 	tx = dmu_tx_create(os);
472 	dmu_tx_hold_write(tx, ZVOL_OBJ, offset, length);
473 	error = dmu_tx_assign(tx, TXG_WAIT);
474 	if (error) {
475 		dmu_tx_abort(tx);
476 	} else {
477 		dmu_write(os, ZVOL_OBJ, offset, length, data, tx);
478 		(void) zil_replaying(zv->zv_zilog, tx);
479 		dmu_tx_commit(tx);
480 	}
481 
482 	return (error);
483 }
484 
485 /*
486  * Replay a TX_CLONE_RANGE ZIL transaction that didn't get committed
487  * after a system failure.
488  *
489  * TODO: For now we drop block cloning transations for ZVOLs as they are
490  *       unsupported, but we still need to inform BRT about that as we
491  *       claimed them during pool import.
492  *       This situation can occur when we try to import a pool from a ZFS
493  *       version supporting block cloning for ZVOLs into a system that
494  *       has this ZFS version, that doesn't support block cloning for ZVOLs.
495  */
496 static int
497 zvol_replay_clone_range(void *arg1, void *arg2, boolean_t byteswap)
498 {
499 	char name[ZFS_MAX_DATASET_NAME_LEN];
500 	zvol_state_t *zv = arg1;
501 	objset_t *os = zv->zv_objset;
502 	lr_clone_range_t *lr = arg2;
503 	blkptr_t *bp;
504 	dmu_tx_t *tx;
505 	spa_t *spa;
506 	uint_t ii;
507 	int error;
508 
509 	dmu_objset_name(os, name);
510 	cmn_err(CE_WARN, "ZFS dropping block cloning transaction for %s.",
511 	    name);
512 
513 	if (byteswap)
514 		byteswap_uint64_array(lr, sizeof (*lr));
515 
516 	tx = dmu_tx_create(os);
517 	error = dmu_tx_assign(tx, TXG_WAIT);
518 	if (error) {
519 		dmu_tx_abort(tx);
520 		return (error);
521 	}
522 
523 	spa = os->os_spa;
524 
525 	for (ii = 0; ii < lr->lr_nbps; ii++) {
526 		bp = &lr->lr_bps[ii];
527 
528 		if (!BP_IS_HOLE(bp)) {
529 			zio_free(spa, dmu_tx_get_txg(tx), bp);
530 		}
531 	}
532 
533 	(void) zil_replaying(zv->zv_zilog, tx);
534 	dmu_tx_commit(tx);
535 
536 	return (0);
537 }
538 
539 static int
540 zvol_replay_err(void *arg1, void *arg2, boolean_t byteswap)
541 {
542 	(void) arg1, (void) arg2, (void) byteswap;
543 	return (SET_ERROR(ENOTSUP));
544 }
545 
546 /*
547  * Callback vectors for replaying records.
548  * Only TX_WRITE and TX_TRUNCATE are needed for zvol.
549  */
550 zil_replay_func_t *const zvol_replay_vector[TX_MAX_TYPE] = {
551 	zvol_replay_err,	/* no such transaction type */
552 	zvol_replay_err,	/* TX_CREATE */
553 	zvol_replay_err,	/* TX_MKDIR */
554 	zvol_replay_err,	/* TX_MKXATTR */
555 	zvol_replay_err,	/* TX_SYMLINK */
556 	zvol_replay_err,	/* TX_REMOVE */
557 	zvol_replay_err,	/* TX_RMDIR */
558 	zvol_replay_err,	/* TX_LINK */
559 	zvol_replay_err,	/* TX_RENAME */
560 	zvol_replay_write,	/* TX_WRITE */
561 	zvol_replay_truncate,	/* TX_TRUNCATE */
562 	zvol_replay_err,	/* TX_SETATTR */
563 	zvol_replay_err,	/* TX_ACL */
564 	zvol_replay_err,	/* TX_CREATE_ATTR */
565 	zvol_replay_err,	/* TX_CREATE_ACL_ATTR */
566 	zvol_replay_err,	/* TX_MKDIR_ACL */
567 	zvol_replay_err,	/* TX_MKDIR_ATTR */
568 	zvol_replay_err,	/* TX_MKDIR_ACL_ATTR */
569 	zvol_replay_err,	/* TX_WRITE2 */
570 	zvol_replay_err,	/* TX_SETSAXATTR */
571 	zvol_replay_err,	/* TX_RENAME_EXCHANGE */
572 	zvol_replay_err,	/* TX_RENAME_WHITEOUT */
573 	zvol_replay_clone_range	/* TX_CLONE_RANGE */
574 };
575 
576 /*
577  * zvol_log_write() handles synchronous writes using TX_WRITE ZIL transactions.
578  *
579  * We store data in the log buffers if it's small enough.
580  * Otherwise we will later flush the data out via dmu_sync().
581  */
582 static const ssize_t zvol_immediate_write_sz = 32768;
583 
584 void
585 zvol_log_write(zvol_state_t *zv, dmu_tx_t *tx, uint64_t offset,
586     uint64_t size, int sync)
587 {
588 	uint32_t blocksize = zv->zv_volblocksize;
589 	zilog_t *zilog = zv->zv_zilog;
590 	itx_wr_state_t write_state;
591 	uint64_t sz = size;
592 
593 	if (zil_replaying(zilog, tx))
594 		return;
595 
596 	if (zilog->zl_logbias == ZFS_LOGBIAS_THROUGHPUT)
597 		write_state = WR_INDIRECT;
598 	else if (!spa_has_slogs(zilog->zl_spa) &&
599 	    size >= blocksize && blocksize > zvol_immediate_write_sz)
600 		write_state = WR_INDIRECT;
601 	else if (sync)
602 		write_state = WR_COPIED;
603 	else
604 		write_state = WR_NEED_COPY;
605 
606 	while (size) {
607 		itx_t *itx;
608 		lr_write_t *lr;
609 		itx_wr_state_t wr_state = write_state;
610 		ssize_t len = size;
611 
612 		if (wr_state == WR_COPIED && size > zil_max_copied_data(zilog))
613 			wr_state = WR_NEED_COPY;
614 		else if (wr_state == WR_INDIRECT)
615 			len = MIN(blocksize - P2PHASE(offset, blocksize), size);
616 
617 		itx = zil_itx_create(TX_WRITE, sizeof (*lr) +
618 		    (wr_state == WR_COPIED ? len : 0));
619 		lr = (lr_write_t *)&itx->itx_lr;
620 		if (wr_state == WR_COPIED && dmu_read_by_dnode(zv->zv_dn,
621 		    offset, len, lr+1, DMU_READ_NO_PREFETCH) != 0) {
622 			zil_itx_destroy(itx);
623 			itx = zil_itx_create(TX_WRITE, sizeof (*lr));
624 			lr = (lr_write_t *)&itx->itx_lr;
625 			wr_state = WR_NEED_COPY;
626 		}
627 
628 		itx->itx_wr_state = wr_state;
629 		lr->lr_foid = ZVOL_OBJ;
630 		lr->lr_offset = offset;
631 		lr->lr_length = len;
632 		lr->lr_blkoff = 0;
633 		BP_ZERO(&lr->lr_blkptr);
634 
635 		itx->itx_private = zv;
636 		itx->itx_sync = sync;
637 
638 		(void) zil_itx_assign(zilog, itx, tx);
639 
640 		offset += len;
641 		size -= len;
642 	}
643 
644 	if (write_state == WR_COPIED || write_state == WR_NEED_COPY) {
645 		dsl_pool_wrlog_count(zilog->zl_dmu_pool, sz, tx->tx_txg);
646 	}
647 }
648 
649 /*
650  * Log a DKIOCFREE/free-long-range to the ZIL with TX_TRUNCATE.
651  */
652 void
653 zvol_log_truncate(zvol_state_t *zv, dmu_tx_t *tx, uint64_t off, uint64_t len,
654     boolean_t sync)
655 {
656 	itx_t *itx;
657 	lr_truncate_t *lr;
658 	zilog_t *zilog = zv->zv_zilog;
659 
660 	if (zil_replaying(zilog, tx))
661 		return;
662 
663 	itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
664 	lr = (lr_truncate_t *)&itx->itx_lr;
665 	lr->lr_foid = ZVOL_OBJ;
666 	lr->lr_offset = off;
667 	lr->lr_length = len;
668 
669 	itx->itx_sync = sync;
670 	zil_itx_assign(zilog, itx, tx);
671 }
672 
673 
674 static void
675 zvol_get_done(zgd_t *zgd, int error)
676 {
677 	(void) error;
678 	if (zgd->zgd_db)
679 		dmu_buf_rele(zgd->zgd_db, zgd);
680 
681 	zfs_rangelock_exit(zgd->zgd_lr);
682 
683 	kmem_free(zgd, sizeof (zgd_t));
684 }
685 
686 /*
687  * Get data to generate a TX_WRITE intent log record.
688  */
689 int
690 zvol_get_data(void *arg, uint64_t arg2, lr_write_t *lr, char *buf,
691     struct lwb *lwb, zio_t *zio)
692 {
693 	zvol_state_t *zv = arg;
694 	uint64_t offset = lr->lr_offset;
695 	uint64_t size = lr->lr_length;
696 	dmu_buf_t *db;
697 	zgd_t *zgd;
698 	int error;
699 
700 	ASSERT3P(lwb, !=, NULL);
701 	ASSERT3U(size, !=, 0);
702 
703 	zgd = kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
704 	zgd->zgd_lwb = lwb;
705 
706 	/*
707 	 * Write records come in two flavors: immediate and indirect.
708 	 * For small writes it's cheaper to store the data with the
709 	 * log record (immediate); for large writes it's cheaper to
710 	 * sync the data and get a pointer to it (indirect) so that
711 	 * we don't have to write the data twice.
712 	 */
713 	if (buf != NULL) { /* immediate write */
714 		zgd->zgd_lr = zfs_rangelock_enter(&zv->zv_rangelock, offset,
715 		    size, RL_READER);
716 		error = dmu_read_by_dnode(zv->zv_dn, offset, size, buf,
717 		    DMU_READ_NO_PREFETCH);
718 	} else { /* indirect write */
719 		ASSERT3P(zio, !=, NULL);
720 		/*
721 		 * Have to lock the whole block to ensure when it's written out
722 		 * and its checksum is being calculated that no one can change
723 		 * the data. Contrarily to zfs_get_data we need not re-check
724 		 * blocksize after we get the lock because it cannot be changed.
725 		 */
726 		size = zv->zv_volblocksize;
727 		offset = P2ALIGN_TYPED(offset, size, uint64_t);
728 		zgd->zgd_lr = zfs_rangelock_enter(&zv->zv_rangelock, offset,
729 		    size, RL_READER);
730 		error = dmu_buf_hold_noread_by_dnode(zv->zv_dn, offset, zgd,
731 		    &db);
732 		if (error == 0) {
733 			blkptr_t *bp = &lr->lr_blkptr;
734 
735 			zgd->zgd_db = db;
736 			zgd->zgd_bp = bp;
737 
738 			ASSERT(db != NULL);
739 			ASSERT(db->db_offset == offset);
740 			ASSERT(db->db_size == size);
741 
742 			error = dmu_sync(zio, lr->lr_common.lrc_txg,
743 			    zvol_get_done, zgd);
744 
745 			if (error == 0)
746 				return (0);
747 		}
748 	}
749 
750 	zvol_get_done(zgd, error);
751 
752 	return (SET_ERROR(error));
753 }
754 
755 /*
756  * The zvol_state_t's are inserted into zvol_state_list and zvol_htable.
757  */
758 
759 void
760 zvol_insert(zvol_state_t *zv)
761 {
762 	ASSERT(RW_WRITE_HELD(&zvol_state_lock));
763 	list_insert_head(&zvol_state_list, zv);
764 	hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash));
765 }
766 
767 /*
768  * Simply remove the zvol from to list of zvols.
769  */
770 static void
771 zvol_remove(zvol_state_t *zv)
772 {
773 	ASSERT(RW_WRITE_HELD(&zvol_state_lock));
774 	list_remove(&zvol_state_list, zv);
775 	hlist_del(&zv->zv_hlink);
776 }
777 
778 /*
779  * Setup zv after we just own the zv->objset
780  */
781 static int
782 zvol_setup_zv(zvol_state_t *zv)
783 {
784 	uint64_t volsize;
785 	int error;
786 	uint64_t ro;
787 	objset_t *os = zv->zv_objset;
788 
789 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
790 	ASSERT(RW_LOCK_HELD(&zv->zv_suspend_lock));
791 
792 	zv->zv_zilog = NULL;
793 	zv->zv_flags &= ~ZVOL_WRITTEN_TO;
794 
795 	error = dsl_prop_get_integer(zv->zv_name, "readonly", &ro, NULL);
796 	if (error)
797 		return (SET_ERROR(error));
798 
799 	error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
800 	if (error)
801 		return (SET_ERROR(error));
802 
803 	error = dnode_hold(os, ZVOL_OBJ, zv, &zv->zv_dn);
804 	if (error)
805 		return (SET_ERROR(error));
806 
807 	zvol_os_set_capacity(zv, volsize >> 9);
808 	zv->zv_volsize = volsize;
809 
810 	if (ro || dmu_objset_is_snapshot(os) ||
811 	    !spa_writeable(dmu_objset_spa(os))) {
812 		zvol_os_set_disk_ro(zv, 1);
813 		zv->zv_flags |= ZVOL_RDONLY;
814 	} else {
815 		zvol_os_set_disk_ro(zv, 0);
816 		zv->zv_flags &= ~ZVOL_RDONLY;
817 	}
818 	return (0);
819 }
820 
821 /*
822  * Shutdown every zv_objset related stuff except zv_objset itself.
823  * The is the reverse of zvol_setup_zv.
824  */
825 static void
826 zvol_shutdown_zv(zvol_state_t *zv)
827 {
828 	ASSERT(MUTEX_HELD(&zv->zv_state_lock) &&
829 	    RW_LOCK_HELD(&zv->zv_suspend_lock));
830 
831 	if (zv->zv_flags & ZVOL_WRITTEN_TO) {
832 		ASSERT(zv->zv_zilog != NULL);
833 		zil_close(zv->zv_zilog);
834 	}
835 
836 	zv->zv_zilog = NULL;
837 
838 	dnode_rele(zv->zv_dn, zv);
839 	zv->zv_dn = NULL;
840 
841 	/*
842 	 * Evict cached data. We must write out any dirty data before
843 	 * disowning the dataset.
844 	 */
845 	if (zv->zv_flags & ZVOL_WRITTEN_TO)
846 		txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0);
847 	(void) dmu_objset_evict_dbufs(zv->zv_objset);
848 }
849 
850 /*
851  * return the proper tag for rollback and recv
852  */
853 void *
854 zvol_tag(zvol_state_t *zv)
855 {
856 	ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
857 	return (zv->zv_open_count > 0 ? zv : NULL);
858 }
859 
860 /*
861  * Suspend the zvol for recv and rollback.
862  */
863 zvol_state_t *
864 zvol_suspend(const char *name)
865 {
866 	zvol_state_t *zv;
867 
868 	zv = zvol_find_by_name(name, RW_WRITER);
869 
870 	if (zv == NULL)
871 		return (NULL);
872 
873 	/* block all I/O, release in zvol_resume. */
874 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
875 	ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
876 
877 	atomic_inc(&zv->zv_suspend_ref);
878 
879 	if (zv->zv_open_count > 0)
880 		zvol_shutdown_zv(zv);
881 
882 	/*
883 	 * do not hold zv_state_lock across suspend/resume to
884 	 * avoid locking up zvol lookups
885 	 */
886 	mutex_exit(&zv->zv_state_lock);
887 
888 	/* zv_suspend_lock is released in zvol_resume() */
889 	return (zv);
890 }
891 
892 int
893 zvol_resume(zvol_state_t *zv)
894 {
895 	int error = 0;
896 
897 	ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
898 
899 	mutex_enter(&zv->zv_state_lock);
900 
901 	if (zv->zv_open_count > 0) {
902 		VERIFY0(dmu_objset_hold(zv->zv_name, zv, &zv->zv_objset));
903 		VERIFY3P(zv->zv_objset->os_dsl_dataset->ds_owner, ==, zv);
904 		VERIFY(dsl_dataset_long_held(zv->zv_objset->os_dsl_dataset));
905 		dmu_objset_rele(zv->zv_objset, zv);
906 
907 		error = zvol_setup_zv(zv);
908 	}
909 
910 	mutex_exit(&zv->zv_state_lock);
911 
912 	rw_exit(&zv->zv_suspend_lock);
913 	/*
914 	 * We need this because we don't hold zvol_state_lock while releasing
915 	 * zv_suspend_lock. zvol_remove_minors_impl thus cannot check
916 	 * zv_suspend_lock to determine it is safe to free because rwlock is
917 	 * not inherent atomic.
918 	 */
919 	atomic_dec(&zv->zv_suspend_ref);
920 
921 	return (SET_ERROR(error));
922 }
923 
924 int
925 zvol_first_open(zvol_state_t *zv, boolean_t readonly)
926 {
927 	objset_t *os;
928 	int error;
929 
930 	ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
931 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
932 	ASSERT(mutex_owned(&spa_namespace_lock));
933 
934 	boolean_t ro = (readonly || (strchr(zv->zv_name, '@') != NULL));
935 	error = dmu_objset_own(zv->zv_name, DMU_OST_ZVOL, ro, B_TRUE, zv, &os);
936 	if (error)
937 		return (SET_ERROR(error));
938 
939 	zv->zv_objset = os;
940 
941 	error = zvol_setup_zv(zv);
942 	if (error) {
943 		dmu_objset_disown(os, 1, zv);
944 		zv->zv_objset = NULL;
945 	}
946 
947 	return (error);
948 }
949 
950 void
951 zvol_last_close(zvol_state_t *zv)
952 {
953 	ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
954 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
955 
956 	zvol_shutdown_zv(zv);
957 
958 	dmu_objset_disown(zv->zv_objset, 1, zv);
959 	zv->zv_objset = NULL;
960 }
961 
962 typedef struct minors_job {
963 	list_t *list;
964 	list_node_t link;
965 	/* input */
966 	char *name;
967 	/* output */
968 	int error;
969 } minors_job_t;
970 
971 /*
972  * Prefetch zvol dnodes for the minors_job
973  */
974 static void
975 zvol_prefetch_minors_impl(void *arg)
976 {
977 	minors_job_t *job = arg;
978 	char *dsname = job->name;
979 	objset_t *os = NULL;
980 
981 	job->error = dmu_objset_own(dsname, DMU_OST_ZVOL, B_TRUE, B_TRUE,
982 	    FTAG, &os);
983 	if (job->error == 0) {
984 		dmu_prefetch_dnode(os, ZVOL_OBJ, ZIO_PRIORITY_SYNC_READ);
985 		dmu_objset_disown(os, B_TRUE, FTAG);
986 	}
987 }
988 
989 /*
990  * Mask errors to continue dmu_objset_find() traversal
991  */
992 static int
993 zvol_create_snap_minor_cb(const char *dsname, void *arg)
994 {
995 	minors_job_t *j = arg;
996 	list_t *minors_list = j->list;
997 	const char *name = j->name;
998 
999 	ASSERT0(MUTEX_HELD(&spa_namespace_lock));
1000 
1001 	/* skip the designated dataset */
1002 	if (name && strcmp(dsname, name) == 0)
1003 		return (0);
1004 
1005 	/* at this point, the dsname should name a snapshot */
1006 	if (strchr(dsname, '@') == 0) {
1007 		dprintf("zvol_create_snap_minor_cb(): "
1008 		    "%s is not a snapshot name\n", dsname);
1009 	} else {
1010 		minors_job_t *job;
1011 		char *n = kmem_strdup(dsname);
1012 		if (n == NULL)
1013 			return (0);
1014 
1015 		job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
1016 		job->name = n;
1017 		job->list = minors_list;
1018 		job->error = 0;
1019 		list_insert_tail(minors_list, job);
1020 		/* don't care if dispatch fails, because job->error is 0 */
1021 		taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job,
1022 		    TQ_SLEEP);
1023 	}
1024 
1025 	return (0);
1026 }
1027 
1028 /*
1029  * If spa_keystore_load_wkey() is called for an encrypted zvol,
1030  * we need to look for any clones also using the key. This function
1031  * is "best effort" - so we just skip over it if there are failures.
1032  */
1033 static void
1034 zvol_add_clones(const char *dsname, list_t *minors_list)
1035 {
1036 	/* Also check if it has clones */
1037 	dsl_dir_t *dd = NULL;
1038 	dsl_pool_t *dp = NULL;
1039 
1040 	if (dsl_pool_hold(dsname, FTAG, &dp) != 0)
1041 		return;
1042 
1043 	if (!spa_feature_is_enabled(dp->dp_spa,
1044 	    SPA_FEATURE_ENCRYPTION))
1045 		goto out;
1046 
1047 	if (dsl_dir_hold(dp, dsname, FTAG, &dd, NULL) != 0)
1048 		goto out;
1049 
1050 	if (dsl_dir_phys(dd)->dd_clones == 0)
1051 		goto out;
1052 
1053 	zap_cursor_t *zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP);
1054 	zap_attribute_t *za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP);
1055 	objset_t *mos = dd->dd_pool->dp_meta_objset;
1056 
1057 	for (zap_cursor_init(zc, mos, dsl_dir_phys(dd)->dd_clones);
1058 	    zap_cursor_retrieve(zc, za) == 0;
1059 	    zap_cursor_advance(zc)) {
1060 		dsl_dataset_t *clone;
1061 		minors_job_t *job;
1062 
1063 		if (dsl_dataset_hold_obj(dd->dd_pool,
1064 		    za->za_first_integer, FTAG, &clone) == 0) {
1065 
1066 			char name[ZFS_MAX_DATASET_NAME_LEN];
1067 			dsl_dataset_name(clone, name);
1068 
1069 			char *n = kmem_strdup(name);
1070 			job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
1071 			job->name = n;
1072 			job->list = minors_list;
1073 			job->error = 0;
1074 			list_insert_tail(minors_list, job);
1075 
1076 			dsl_dataset_rele(clone, FTAG);
1077 		}
1078 	}
1079 	zap_cursor_fini(zc);
1080 	kmem_free(za, sizeof (zap_attribute_t));
1081 	kmem_free(zc, sizeof (zap_cursor_t));
1082 
1083 out:
1084 	if (dd != NULL)
1085 		dsl_dir_rele(dd, FTAG);
1086 	dsl_pool_rele(dp, FTAG);
1087 }
1088 
1089 /*
1090  * Mask errors to continue dmu_objset_find() traversal
1091  */
1092 static int
1093 zvol_create_minors_cb(const char *dsname, void *arg)
1094 {
1095 	uint64_t snapdev;
1096 	int error;
1097 	list_t *minors_list = arg;
1098 
1099 	ASSERT0(MUTEX_HELD(&spa_namespace_lock));
1100 
1101 	error = dsl_prop_get_integer(dsname, "snapdev", &snapdev, NULL);
1102 	if (error)
1103 		return (0);
1104 
1105 	/*
1106 	 * Given the name and the 'snapdev' property, create device minor nodes
1107 	 * with the linkages to zvols/snapshots as needed.
1108 	 * If the name represents a zvol, create a minor node for the zvol, then
1109 	 * check if its snapshots are 'visible', and if so, iterate over the
1110 	 * snapshots and create device minor nodes for those.
1111 	 */
1112 	if (strchr(dsname, '@') == 0) {
1113 		minors_job_t *job;
1114 		char *n = kmem_strdup(dsname);
1115 		if (n == NULL)
1116 			return (0);
1117 
1118 		job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
1119 		job->name = n;
1120 		job->list = minors_list;
1121 		job->error = 0;
1122 		list_insert_tail(minors_list, job);
1123 		/* don't care if dispatch fails, because job->error is 0 */
1124 		taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job,
1125 		    TQ_SLEEP);
1126 
1127 		zvol_add_clones(dsname, minors_list);
1128 
1129 		if (snapdev == ZFS_SNAPDEV_VISIBLE) {
1130 			/*
1131 			 * traverse snapshots only, do not traverse children,
1132 			 * and skip the 'dsname'
1133 			 */
1134 			(void) dmu_objset_find(dsname,
1135 			    zvol_create_snap_minor_cb, (void *)job,
1136 			    DS_FIND_SNAPSHOTS);
1137 		}
1138 	} else {
1139 		dprintf("zvol_create_minors_cb(): %s is not a zvol name\n",
1140 		    dsname);
1141 	}
1142 
1143 	return (0);
1144 }
1145 
1146 /*
1147  * Create minors for the specified dataset, including children and snapshots.
1148  * Pay attention to the 'snapdev' property and iterate over the snapshots
1149  * only if they are 'visible'. This approach allows one to assure that the
1150  * snapshot metadata is read from disk only if it is needed.
1151  *
1152  * The name can represent a dataset to be recursively scanned for zvols and
1153  * their snapshots, or a single zvol snapshot. If the name represents a
1154  * dataset, the scan is performed in two nested stages:
1155  * - scan the dataset for zvols, and
1156  * - for each zvol, create a minor node, then check if the zvol's snapshots
1157  *   are 'visible', and only then iterate over the snapshots if needed
1158  *
1159  * If the name represents a snapshot, a check is performed if the snapshot is
1160  * 'visible' (which also verifies that the parent is a zvol), and if so,
1161  * a minor node for that snapshot is created.
1162  */
1163 void
1164 zvol_create_minors_recursive(const char *name)
1165 {
1166 	list_t minors_list;
1167 	minors_job_t *job;
1168 
1169 	if (zvol_inhibit_dev)
1170 		return;
1171 
1172 	/*
1173 	 * This is the list for prefetch jobs. Whenever we found a match
1174 	 * during dmu_objset_find, we insert a minors_job to the list and do
1175 	 * taskq_dispatch to parallel prefetch zvol dnodes. Note we don't need
1176 	 * any lock because all list operation is done on the current thread.
1177 	 *
1178 	 * We will use this list to do zvol_os_create_minor after prefetch
1179 	 * so we don't have to traverse using dmu_objset_find again.
1180 	 */
1181 	list_create(&minors_list, sizeof (minors_job_t),
1182 	    offsetof(minors_job_t, link));
1183 
1184 
1185 	if (strchr(name, '@') != NULL) {
1186 		uint64_t snapdev;
1187 
1188 		int error = dsl_prop_get_integer(name, "snapdev",
1189 		    &snapdev, NULL);
1190 
1191 		if (error == 0 && snapdev == ZFS_SNAPDEV_VISIBLE)
1192 			(void) zvol_os_create_minor(name);
1193 	} else {
1194 		fstrans_cookie_t cookie = spl_fstrans_mark();
1195 		(void) dmu_objset_find(name, zvol_create_minors_cb,
1196 		    &minors_list, DS_FIND_CHILDREN);
1197 		spl_fstrans_unmark(cookie);
1198 	}
1199 
1200 	taskq_wait_outstanding(system_taskq, 0);
1201 
1202 	/*
1203 	 * Prefetch is completed, we can do zvol_os_create_minor
1204 	 * sequentially.
1205 	 */
1206 	while ((job = list_remove_head(&minors_list)) != NULL) {
1207 		if (!job->error)
1208 			(void) zvol_os_create_minor(job->name);
1209 		kmem_strfree(job->name);
1210 		kmem_free(job, sizeof (minors_job_t));
1211 	}
1212 
1213 	list_destroy(&minors_list);
1214 }
1215 
1216 void
1217 zvol_create_minor(const char *name)
1218 {
1219 	/*
1220 	 * Note: the dsl_pool_config_lock must not be held.
1221 	 * Minor node creation needs to obtain the zvol_state_lock.
1222 	 * zvol_open() obtains the zvol_state_lock and then the dsl pool
1223 	 * config lock.  Therefore, we can't have the config lock now if
1224 	 * we are going to wait for the zvol_state_lock, because it
1225 	 * would be a lock order inversion which could lead to deadlock.
1226 	 */
1227 
1228 	if (zvol_inhibit_dev)
1229 		return;
1230 
1231 	if (strchr(name, '@') != NULL) {
1232 		uint64_t snapdev;
1233 
1234 		int error = dsl_prop_get_integer(name,
1235 		    "snapdev", &snapdev, NULL);
1236 
1237 		if (error == 0 && snapdev == ZFS_SNAPDEV_VISIBLE)
1238 			(void) zvol_os_create_minor(name);
1239 	} else {
1240 		(void) zvol_os_create_minor(name);
1241 	}
1242 }
1243 
1244 /*
1245  * Remove minors for specified dataset including children and snapshots.
1246  */
1247 
1248 static void
1249 zvol_free_task(void *arg)
1250 {
1251 	zvol_os_free(arg);
1252 }
1253 
1254 void
1255 zvol_remove_minors_impl(const char *name)
1256 {
1257 	zvol_state_t *zv, *zv_next;
1258 	int namelen = ((name) ? strlen(name) : 0);
1259 	taskqid_t t;
1260 	list_t free_list;
1261 
1262 	if (zvol_inhibit_dev)
1263 		return;
1264 
1265 	list_create(&free_list, sizeof (zvol_state_t),
1266 	    offsetof(zvol_state_t, zv_next));
1267 
1268 	rw_enter(&zvol_state_lock, RW_WRITER);
1269 
1270 	for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
1271 		zv_next = list_next(&zvol_state_list, zv);
1272 
1273 		mutex_enter(&zv->zv_state_lock);
1274 		if (name == NULL || strcmp(zv->zv_name, name) == 0 ||
1275 		    (strncmp(zv->zv_name, name, namelen) == 0 &&
1276 		    (zv->zv_name[namelen] == '/' ||
1277 		    zv->zv_name[namelen] == '@'))) {
1278 			/*
1279 			 * By holding zv_state_lock here, we guarantee that no
1280 			 * one is currently using this zv
1281 			 */
1282 
1283 			/* If in use, leave alone */
1284 			if (zv->zv_open_count > 0 ||
1285 			    atomic_read(&zv->zv_suspend_ref)) {
1286 				mutex_exit(&zv->zv_state_lock);
1287 				continue;
1288 			}
1289 
1290 			zvol_remove(zv);
1291 
1292 			/*
1293 			 * Cleared while holding zvol_state_lock as a writer
1294 			 * which will prevent zvol_open() from opening it.
1295 			 */
1296 			zvol_os_clear_private(zv);
1297 
1298 			/* Drop zv_state_lock before zvol_free() */
1299 			mutex_exit(&zv->zv_state_lock);
1300 
1301 			/* Try parallel zv_free, if failed do it in place */
1302 			t = taskq_dispatch(system_taskq, zvol_free_task, zv,
1303 			    TQ_SLEEP);
1304 			if (t == TASKQID_INVALID)
1305 				list_insert_head(&free_list, zv);
1306 		} else {
1307 			mutex_exit(&zv->zv_state_lock);
1308 		}
1309 	}
1310 	rw_exit(&zvol_state_lock);
1311 
1312 	/* Drop zvol_state_lock before calling zvol_free() */
1313 	while ((zv = list_remove_head(&free_list)) != NULL)
1314 		zvol_os_free(zv);
1315 }
1316 
1317 /* Remove minor for this specific volume only */
1318 static void
1319 zvol_remove_minor_impl(const char *name)
1320 {
1321 	zvol_state_t *zv = NULL, *zv_next;
1322 
1323 	if (zvol_inhibit_dev)
1324 		return;
1325 
1326 	rw_enter(&zvol_state_lock, RW_WRITER);
1327 
1328 	for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
1329 		zv_next = list_next(&zvol_state_list, zv);
1330 
1331 		mutex_enter(&zv->zv_state_lock);
1332 		if (strcmp(zv->zv_name, name) == 0) {
1333 			/*
1334 			 * By holding zv_state_lock here, we guarantee that no
1335 			 * one is currently using this zv
1336 			 */
1337 
1338 			/* If in use, leave alone */
1339 			if (zv->zv_open_count > 0 ||
1340 			    atomic_read(&zv->zv_suspend_ref)) {
1341 				mutex_exit(&zv->zv_state_lock);
1342 				continue;
1343 			}
1344 			zvol_remove(zv);
1345 
1346 			zvol_os_clear_private(zv);
1347 			mutex_exit(&zv->zv_state_lock);
1348 			break;
1349 		} else {
1350 			mutex_exit(&zv->zv_state_lock);
1351 		}
1352 	}
1353 
1354 	/* Drop zvol_state_lock before calling zvol_free() */
1355 	rw_exit(&zvol_state_lock);
1356 
1357 	if (zv != NULL)
1358 		zvol_os_free(zv);
1359 }
1360 
1361 /*
1362  * Rename minors for specified dataset including children and snapshots.
1363  */
1364 static void
1365 zvol_rename_minors_impl(const char *oldname, const char *newname)
1366 {
1367 	zvol_state_t *zv, *zv_next;
1368 	int oldnamelen;
1369 
1370 	if (zvol_inhibit_dev)
1371 		return;
1372 
1373 	oldnamelen = strlen(oldname);
1374 
1375 	rw_enter(&zvol_state_lock, RW_READER);
1376 
1377 	for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
1378 		zv_next = list_next(&zvol_state_list, zv);
1379 
1380 		mutex_enter(&zv->zv_state_lock);
1381 
1382 		if (strcmp(zv->zv_name, oldname) == 0) {
1383 			zvol_os_rename_minor(zv, newname);
1384 		} else if (strncmp(zv->zv_name, oldname, oldnamelen) == 0 &&
1385 		    (zv->zv_name[oldnamelen] == '/' ||
1386 		    zv->zv_name[oldnamelen] == '@')) {
1387 			char *name = kmem_asprintf("%s%c%s", newname,
1388 			    zv->zv_name[oldnamelen],
1389 			    zv->zv_name + oldnamelen + 1);
1390 			zvol_os_rename_minor(zv, name);
1391 			kmem_strfree(name);
1392 		}
1393 
1394 		mutex_exit(&zv->zv_state_lock);
1395 	}
1396 
1397 	rw_exit(&zvol_state_lock);
1398 }
1399 
1400 typedef struct zvol_snapdev_cb_arg {
1401 	uint64_t snapdev;
1402 } zvol_snapdev_cb_arg_t;
1403 
1404 static int
1405 zvol_set_snapdev_cb(const char *dsname, void *param)
1406 {
1407 	zvol_snapdev_cb_arg_t *arg = param;
1408 
1409 	if (strchr(dsname, '@') == NULL)
1410 		return (0);
1411 
1412 	switch (arg->snapdev) {
1413 		case ZFS_SNAPDEV_VISIBLE:
1414 			(void) zvol_os_create_minor(dsname);
1415 			break;
1416 		case ZFS_SNAPDEV_HIDDEN:
1417 			(void) zvol_remove_minor_impl(dsname);
1418 			break;
1419 	}
1420 
1421 	return (0);
1422 }
1423 
1424 static void
1425 zvol_set_snapdev_impl(char *name, uint64_t snapdev)
1426 {
1427 	zvol_snapdev_cb_arg_t arg = {snapdev};
1428 	fstrans_cookie_t cookie = spl_fstrans_mark();
1429 	/*
1430 	 * The zvol_set_snapdev_sync() sets snapdev appropriately
1431 	 * in the dataset hierarchy. Here, we only scan snapshots.
1432 	 */
1433 	dmu_objset_find(name, zvol_set_snapdev_cb, &arg, DS_FIND_SNAPSHOTS);
1434 	spl_fstrans_unmark(cookie);
1435 }
1436 
1437 static void
1438 zvol_set_volmode_impl(char *name, uint64_t volmode)
1439 {
1440 	fstrans_cookie_t cookie;
1441 	uint64_t old_volmode;
1442 	zvol_state_t *zv;
1443 
1444 	if (strchr(name, '@') != NULL)
1445 		return;
1446 
1447 	/*
1448 	 * It's unfortunate we need to remove minors before we create new ones:
1449 	 * this is necessary because our backing gendisk (zvol_state->zv_disk)
1450 	 * could be different when we set, for instance, volmode from "geom"
1451 	 * to "dev" (or vice versa).
1452 	 */
1453 	zv = zvol_find_by_name(name, RW_NONE);
1454 	if (zv == NULL && volmode == ZFS_VOLMODE_NONE)
1455 			return;
1456 	if (zv != NULL) {
1457 		old_volmode = zv->zv_volmode;
1458 		mutex_exit(&zv->zv_state_lock);
1459 		if (old_volmode == volmode)
1460 			return;
1461 		zvol_wait_close(zv);
1462 	}
1463 	cookie = spl_fstrans_mark();
1464 	switch (volmode) {
1465 		case ZFS_VOLMODE_NONE:
1466 			(void) zvol_remove_minor_impl(name);
1467 			break;
1468 		case ZFS_VOLMODE_GEOM:
1469 		case ZFS_VOLMODE_DEV:
1470 			(void) zvol_remove_minor_impl(name);
1471 			(void) zvol_os_create_minor(name);
1472 			break;
1473 		case ZFS_VOLMODE_DEFAULT:
1474 			(void) zvol_remove_minor_impl(name);
1475 			if (zvol_volmode == ZFS_VOLMODE_NONE)
1476 				break;
1477 			else /* if zvol_volmode is invalid defaults to "geom" */
1478 				(void) zvol_os_create_minor(name);
1479 			break;
1480 	}
1481 	spl_fstrans_unmark(cookie);
1482 }
1483 
1484 static zvol_task_t *
1485 zvol_task_alloc(zvol_async_op_t op, const char *name1, const char *name2,
1486     uint64_t value)
1487 {
1488 	zvol_task_t *task;
1489 
1490 	/* Never allow tasks on hidden names. */
1491 	if (name1[0] == '$')
1492 		return (NULL);
1493 
1494 	task = kmem_zalloc(sizeof (zvol_task_t), KM_SLEEP);
1495 	task->op = op;
1496 	task->value = value;
1497 
1498 	strlcpy(task->name1, name1, MAXNAMELEN);
1499 	if (name2 != NULL)
1500 		strlcpy(task->name2, name2, MAXNAMELEN);
1501 
1502 	return (task);
1503 }
1504 
1505 static void
1506 zvol_task_free(zvol_task_t *task)
1507 {
1508 	kmem_free(task, sizeof (zvol_task_t));
1509 }
1510 
1511 /*
1512  * The worker thread function performed asynchronously.
1513  */
1514 static void
1515 zvol_task_cb(void *arg)
1516 {
1517 	zvol_task_t *task = arg;
1518 
1519 	switch (task->op) {
1520 	case ZVOL_ASYNC_REMOVE_MINORS:
1521 		zvol_remove_minors_impl(task->name1);
1522 		break;
1523 	case ZVOL_ASYNC_RENAME_MINORS:
1524 		zvol_rename_minors_impl(task->name1, task->name2);
1525 		break;
1526 	case ZVOL_ASYNC_SET_SNAPDEV:
1527 		zvol_set_snapdev_impl(task->name1, task->value);
1528 		break;
1529 	case ZVOL_ASYNC_SET_VOLMODE:
1530 		zvol_set_volmode_impl(task->name1, task->value);
1531 		break;
1532 	default:
1533 		VERIFY(0);
1534 		break;
1535 	}
1536 
1537 	zvol_task_free(task);
1538 }
1539 
1540 typedef struct zvol_set_prop_int_arg {
1541 	const char *zsda_name;
1542 	uint64_t zsda_value;
1543 	zprop_source_t zsda_source;
1544 	dmu_tx_t *zsda_tx;
1545 } zvol_set_prop_int_arg_t;
1546 
1547 /*
1548  * Sanity check the dataset for safe use by the sync task.  No additional
1549  * conditions are imposed.
1550  */
1551 static int
1552 zvol_set_snapdev_check(void *arg, dmu_tx_t *tx)
1553 {
1554 	zvol_set_prop_int_arg_t *zsda = arg;
1555 	dsl_pool_t *dp = dmu_tx_pool(tx);
1556 	dsl_dir_t *dd;
1557 	int error;
1558 
1559 	error = dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL);
1560 	if (error != 0)
1561 		return (error);
1562 
1563 	dsl_dir_rele(dd, FTAG);
1564 
1565 	return (error);
1566 }
1567 
1568 static int
1569 zvol_set_snapdev_sync_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1570 {
1571 	(void) arg;
1572 	char dsname[MAXNAMELEN];
1573 	zvol_task_t *task;
1574 	uint64_t snapdev;
1575 
1576 	dsl_dataset_name(ds, dsname);
1577 	if (dsl_prop_get_int_ds(ds, "snapdev", &snapdev) != 0)
1578 		return (0);
1579 	task = zvol_task_alloc(ZVOL_ASYNC_SET_SNAPDEV, dsname, NULL, snapdev);
1580 	if (task == NULL)
1581 		return (0);
1582 
1583 	(void) taskq_dispatch(dp->dp_spa->spa_zvol_taskq, zvol_task_cb,
1584 	    task, TQ_SLEEP);
1585 	return (0);
1586 }
1587 
1588 /*
1589  * Traverse all child datasets and apply snapdev appropriately.
1590  * We call dsl_prop_set_sync_impl() here to set the value only on the toplevel
1591  * dataset and read the effective "snapdev" on every child in the callback
1592  * function: this is because the value is not guaranteed to be the same in the
1593  * whole dataset hierarchy.
1594  */
1595 static void
1596 zvol_set_snapdev_sync(void *arg, dmu_tx_t *tx)
1597 {
1598 	zvol_set_prop_int_arg_t *zsda = arg;
1599 	dsl_pool_t *dp = dmu_tx_pool(tx);
1600 	dsl_dir_t *dd;
1601 	dsl_dataset_t *ds;
1602 	int error;
1603 
1604 	VERIFY0(dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL));
1605 	zsda->zsda_tx = tx;
1606 
1607 	error = dsl_dataset_hold(dp, zsda->zsda_name, FTAG, &ds);
1608 	if (error == 0) {
1609 		dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_SNAPDEV),
1610 		    zsda->zsda_source, sizeof (zsda->zsda_value), 1,
1611 		    &zsda->zsda_value, zsda->zsda_tx);
1612 		dsl_dataset_rele(ds, FTAG);
1613 	}
1614 	dmu_objset_find_dp(dp, dd->dd_object, zvol_set_snapdev_sync_cb,
1615 	    zsda, DS_FIND_CHILDREN);
1616 
1617 	dsl_dir_rele(dd, FTAG);
1618 }
1619 
1620 int
1621 zvol_set_snapdev(const char *ddname, zprop_source_t source, uint64_t snapdev)
1622 {
1623 	zvol_set_prop_int_arg_t zsda;
1624 
1625 	zsda.zsda_name = ddname;
1626 	zsda.zsda_source = source;
1627 	zsda.zsda_value = snapdev;
1628 
1629 	return (dsl_sync_task(ddname, zvol_set_snapdev_check,
1630 	    zvol_set_snapdev_sync, &zsda, 0, ZFS_SPACE_CHECK_NONE));
1631 }
1632 
1633 /*
1634  * Sanity check the dataset for safe use by the sync task.  No additional
1635  * conditions are imposed.
1636  */
1637 static int
1638 zvol_set_volmode_check(void *arg, dmu_tx_t *tx)
1639 {
1640 	zvol_set_prop_int_arg_t *zsda = arg;
1641 	dsl_pool_t *dp = dmu_tx_pool(tx);
1642 	dsl_dir_t *dd;
1643 	int error;
1644 
1645 	error = dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL);
1646 	if (error != 0)
1647 		return (error);
1648 
1649 	dsl_dir_rele(dd, FTAG);
1650 
1651 	return (error);
1652 }
1653 
1654 static int
1655 zvol_set_volmode_sync_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1656 {
1657 	(void) arg;
1658 	char dsname[MAXNAMELEN];
1659 	zvol_task_t *task;
1660 	uint64_t volmode;
1661 
1662 	dsl_dataset_name(ds, dsname);
1663 	if (dsl_prop_get_int_ds(ds, "volmode", &volmode) != 0)
1664 		return (0);
1665 	task = zvol_task_alloc(ZVOL_ASYNC_SET_VOLMODE, dsname, NULL, volmode);
1666 	if (task == NULL)
1667 		return (0);
1668 
1669 	(void) taskq_dispatch(dp->dp_spa->spa_zvol_taskq, zvol_task_cb,
1670 	    task, TQ_SLEEP);
1671 	return (0);
1672 }
1673 
1674 /*
1675  * Traverse all child datasets and apply volmode appropriately.
1676  * We call dsl_prop_set_sync_impl() here to set the value only on the toplevel
1677  * dataset and read the effective "volmode" on every child in the callback
1678  * function: this is because the value is not guaranteed to be the same in the
1679  * whole dataset hierarchy.
1680  */
1681 static void
1682 zvol_set_volmode_sync(void *arg, dmu_tx_t *tx)
1683 {
1684 	zvol_set_prop_int_arg_t *zsda = arg;
1685 	dsl_pool_t *dp = dmu_tx_pool(tx);
1686 	dsl_dir_t *dd;
1687 	dsl_dataset_t *ds;
1688 	int error;
1689 
1690 	VERIFY0(dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL));
1691 	zsda->zsda_tx = tx;
1692 
1693 	error = dsl_dataset_hold(dp, zsda->zsda_name, FTAG, &ds);
1694 	if (error == 0) {
1695 		dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_VOLMODE),
1696 		    zsda->zsda_source, sizeof (zsda->zsda_value), 1,
1697 		    &zsda->zsda_value, zsda->zsda_tx);
1698 		dsl_dataset_rele(ds, FTAG);
1699 	}
1700 
1701 	dmu_objset_find_dp(dp, dd->dd_object, zvol_set_volmode_sync_cb,
1702 	    zsda, DS_FIND_CHILDREN);
1703 
1704 	dsl_dir_rele(dd, FTAG);
1705 }
1706 
1707 int
1708 zvol_set_volmode(const char *ddname, zprop_source_t source, uint64_t volmode)
1709 {
1710 	zvol_set_prop_int_arg_t zsda;
1711 
1712 	zsda.zsda_name = ddname;
1713 	zsda.zsda_source = source;
1714 	zsda.zsda_value = volmode;
1715 
1716 	return (dsl_sync_task(ddname, zvol_set_volmode_check,
1717 	    zvol_set_volmode_sync, &zsda, 0, ZFS_SPACE_CHECK_NONE));
1718 }
1719 
1720 void
1721 zvol_remove_minors(spa_t *spa, const char *name, boolean_t async)
1722 {
1723 	zvol_task_t *task;
1724 	taskqid_t id;
1725 
1726 	task = zvol_task_alloc(ZVOL_ASYNC_REMOVE_MINORS, name, NULL, ~0ULL);
1727 	if (task == NULL)
1728 		return;
1729 
1730 	id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
1731 	if ((async == B_FALSE) && (id != TASKQID_INVALID))
1732 		taskq_wait_id(spa->spa_zvol_taskq, id);
1733 }
1734 
1735 void
1736 zvol_rename_minors(spa_t *spa, const char *name1, const char *name2,
1737     boolean_t async)
1738 {
1739 	zvol_task_t *task;
1740 	taskqid_t id;
1741 
1742 	task = zvol_task_alloc(ZVOL_ASYNC_RENAME_MINORS, name1, name2, ~0ULL);
1743 	if (task == NULL)
1744 		return;
1745 
1746 	id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
1747 	if ((async == B_FALSE) && (id != TASKQID_INVALID))
1748 		taskq_wait_id(spa->spa_zvol_taskq, id);
1749 }
1750 
1751 boolean_t
1752 zvol_is_zvol(const char *name)
1753 {
1754 
1755 	return (zvol_os_is_zvol(name));
1756 }
1757 
1758 int
1759 zvol_init_impl(void)
1760 {
1761 	int i;
1762 
1763 	list_create(&zvol_state_list, sizeof (zvol_state_t),
1764 	    offsetof(zvol_state_t, zv_next));
1765 	rw_init(&zvol_state_lock, NULL, RW_DEFAULT, NULL);
1766 
1767 	zvol_htable = kmem_alloc(ZVOL_HT_SIZE * sizeof (struct hlist_head),
1768 	    KM_SLEEP);
1769 	for (i = 0; i < ZVOL_HT_SIZE; i++)
1770 		INIT_HLIST_HEAD(&zvol_htable[i]);
1771 
1772 	return (0);
1773 }
1774 
1775 void
1776 zvol_fini_impl(void)
1777 {
1778 	zvol_remove_minors_impl(NULL);
1779 
1780 	/*
1781 	 * The call to "zvol_remove_minors_impl" may dispatch entries to
1782 	 * the system_taskq, but it doesn't wait for those entries to
1783 	 * complete before it returns. Thus, we must wait for all of the
1784 	 * removals to finish, before we can continue.
1785 	 */
1786 	taskq_wait_outstanding(system_taskq, 0);
1787 
1788 	kmem_free(zvol_htable, ZVOL_HT_SIZE * sizeof (struct hlist_head));
1789 	list_destroy(&zvol_state_list);
1790 	rw_destroy(&zvol_state_lock);
1791 }
1792