xref: /freebsd/sys/contrib/openzfs/module/zfs/zvol.c (revision 2276e53940c2a2bf7c7e9cb705e51de4202258c2)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
23  * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
24  * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
25  * LLNL-CODE-403049.
26  *
27  * ZFS volume emulation driver.
28  *
29  * Makes a DMU object look like a volume of arbitrary size, up to 2^64 bytes.
30  * Volumes are accessed through the symbolic links named:
31  *
32  * /dev/<pool_name>/<dataset_name>
33  *
34  * Volumes are persistent through reboot and module load.  No user command
35  * needs to be run before opening and using a device.
36  *
37  * Copyright 2014 Nexenta Systems, Inc.  All rights reserved.
38  * Copyright (c) 2016 Actifio, Inc. All rights reserved.
39  * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
40  */
41 
42 /*
43  * Note on locking of zvol state structures.
44  *
45  * These structures are used to maintain internal state used to emulate block
46  * devices on top of zvols. In particular, management of device minor number
47  * operations - create, remove, rename, and set_snapdev - involves access to
48  * these structures. The zvol_state_lock is primarily used to protect the
49  * zvol_state_list. The zv->zv_state_lock is used to protect the contents
50  * of the zvol_state_t structures, as well as to make sure that when the
51  * time comes to remove the structure from the list, it is not in use, and
52  * therefore, it can be taken off zvol_state_list and freed.
53  *
54  * The zv_suspend_lock was introduced to allow for suspending I/O to a zvol,
55  * e.g. for the duration of receive and rollback operations. This lock can be
56  * held for significant periods of time. Given that it is undesirable to hold
57  * mutexes for long periods of time, the following lock ordering applies:
58  * - take zvol_state_lock if necessary, to protect zvol_state_list
59  * - take zv_suspend_lock if necessary, by the code path in question
60  * - take zv_state_lock to protect zvol_state_t
61  *
62  * The minor operations are issued to spa->spa_zvol_taskq queues, that are
63  * single-threaded (to preserve order of minor operations), and are executed
64  * through the zvol_task_cb that dispatches the specific operations. Therefore,
65  * these operations are serialized per pool. Consequently, we can be certain
66  * that for a given zvol, there is only one operation at a time in progress.
67  * That is why one can be sure that first, zvol_state_t for a given zvol is
68  * allocated and placed on zvol_state_list, and then other minor operations
69  * for this zvol are going to proceed in the order of issue.
70  *
71  */
72 
73 #include <sys/dataset_kstats.h>
74 #include <sys/dbuf.h>
75 #include <sys/dmu_traverse.h>
76 #include <sys/dsl_dataset.h>
77 #include <sys/dsl_prop.h>
78 #include <sys/dsl_dir.h>
79 #include <sys/zap.h>
80 #include <sys/zfeature.h>
81 #include <sys/zil_impl.h>
82 #include <sys/dmu_tx.h>
83 #include <sys/zio.h>
84 #include <sys/zfs_rlock.h>
85 #include <sys/spa_impl.h>
86 #include <sys/zvol.h>
87 #include <sys/zvol_impl.h>
88 
89 unsigned int zvol_inhibit_dev = 0;
90 unsigned int zvol_volmode = ZFS_VOLMODE_GEOM;
91 
92 struct hlist_head *zvol_htable;
93 static list_t zvol_state_list;
94 krwlock_t zvol_state_lock;
95 
96 typedef enum {
97 	ZVOL_ASYNC_REMOVE_MINORS,
98 	ZVOL_ASYNC_RENAME_MINORS,
99 	ZVOL_ASYNC_SET_SNAPDEV,
100 	ZVOL_ASYNC_SET_VOLMODE,
101 	ZVOL_ASYNC_MAX
102 } zvol_async_op_t;
103 
104 typedef struct {
105 	zvol_async_op_t op;
106 	char name1[MAXNAMELEN];
107 	char name2[MAXNAMELEN];
108 	uint64_t value;
109 } zvol_task_t;
110 
111 uint64_t
112 zvol_name_hash(const char *name)
113 {
114 	uint64_t crc = -1ULL;
115 	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
116 	for (const uint8_t *p = (const uint8_t *)name; *p != 0; p++)
117 		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (*p)) & 0xFF];
118 	return (crc);
119 }
120 
121 /*
122  * Find a zvol_state_t given the name and hash generated by zvol_name_hash.
123  * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise,
124  * return (NULL) without the taking locks. The zv_suspend_lock is always taken
125  * before zv_state_lock. The mode argument indicates the mode (including none)
126  * for zv_suspend_lock to be taken.
127  */
128 zvol_state_t *
129 zvol_find_by_name_hash(const char *name, uint64_t hash, int mode)
130 {
131 	zvol_state_t *zv;
132 	struct hlist_node *p = NULL;
133 
134 	rw_enter(&zvol_state_lock, RW_READER);
135 	hlist_for_each(p, ZVOL_HT_HEAD(hash)) {
136 		zv = hlist_entry(p, zvol_state_t, zv_hlink);
137 		mutex_enter(&zv->zv_state_lock);
138 		if (zv->zv_hash == hash && strcmp(zv->zv_name, name) == 0) {
139 			/*
140 			 * this is the right zvol, take the locks in the
141 			 * right order
142 			 */
143 			if (mode != RW_NONE &&
144 			    !rw_tryenter(&zv->zv_suspend_lock, mode)) {
145 				mutex_exit(&zv->zv_state_lock);
146 				rw_enter(&zv->zv_suspend_lock, mode);
147 				mutex_enter(&zv->zv_state_lock);
148 				/*
149 				 * zvol cannot be renamed as we continue
150 				 * to hold zvol_state_lock
151 				 */
152 				ASSERT(zv->zv_hash == hash &&
153 				    strcmp(zv->zv_name, name) == 0);
154 			}
155 			rw_exit(&zvol_state_lock);
156 			return (zv);
157 		}
158 		mutex_exit(&zv->zv_state_lock);
159 	}
160 	rw_exit(&zvol_state_lock);
161 
162 	return (NULL);
163 }
164 
165 /*
166  * Find a zvol_state_t given the name.
167  * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise,
168  * return (NULL) without the taking locks. The zv_suspend_lock is always taken
169  * before zv_state_lock. The mode argument indicates the mode (including none)
170  * for zv_suspend_lock to be taken.
171  */
172 static zvol_state_t *
173 zvol_find_by_name(const char *name, int mode)
174 {
175 	return (zvol_find_by_name_hash(name, zvol_name_hash(name), mode));
176 }
177 
178 /*
179  * ZFS_IOC_CREATE callback handles dmu zvol and zap object creation.
180  */
181 void
182 zvol_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
183 {
184 	zfs_creat_t *zct = arg;
185 	nvlist_t *nvprops = zct->zct_props;
186 	int error;
187 	uint64_t volblocksize, volsize;
188 
189 	VERIFY(nvlist_lookup_uint64(nvprops,
190 	    zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) == 0);
191 	if (nvlist_lookup_uint64(nvprops,
192 	    zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize) != 0)
193 		volblocksize = zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE);
194 
195 	/*
196 	 * These properties must be removed from the list so the generic
197 	 * property setting step won't apply to them.
198 	 */
199 	VERIFY(nvlist_remove_all(nvprops,
200 	    zfs_prop_to_name(ZFS_PROP_VOLSIZE)) == 0);
201 	(void) nvlist_remove_all(nvprops,
202 	    zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE));
203 
204 	error = dmu_object_claim(os, ZVOL_OBJ, DMU_OT_ZVOL, volblocksize,
205 	    DMU_OT_NONE, 0, tx);
206 	ASSERT(error == 0);
207 
208 	error = zap_create_claim(os, ZVOL_ZAP_OBJ, DMU_OT_ZVOL_PROP,
209 	    DMU_OT_NONE, 0, tx);
210 	ASSERT(error == 0);
211 
212 	error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize, tx);
213 	ASSERT(error == 0);
214 }
215 
216 /*
217  * ZFS_IOC_OBJSET_STATS entry point.
218  */
219 int
220 zvol_get_stats(objset_t *os, nvlist_t *nv)
221 {
222 	int error;
223 	dmu_object_info_t *doi;
224 	uint64_t val;
225 
226 	error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &val);
227 	if (error)
228 		return (SET_ERROR(error));
229 
230 	dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLSIZE, val);
231 	doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP);
232 	error = dmu_object_info(os, ZVOL_OBJ, doi);
233 
234 	if (error == 0) {
235 		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLBLOCKSIZE,
236 		    doi->doi_data_block_size);
237 	}
238 
239 	kmem_free(doi, sizeof (dmu_object_info_t));
240 
241 	return (SET_ERROR(error));
242 }
243 
244 /*
245  * Sanity check volume size.
246  */
247 int
248 zvol_check_volsize(uint64_t volsize, uint64_t blocksize)
249 {
250 	if (volsize == 0)
251 		return (SET_ERROR(EINVAL));
252 
253 	if (volsize % blocksize != 0)
254 		return (SET_ERROR(EINVAL));
255 
256 #ifdef _ILP32
257 	if (volsize - 1 > SPEC_MAXOFFSET_T)
258 		return (SET_ERROR(EOVERFLOW));
259 #endif
260 	return (0);
261 }
262 
263 /*
264  * Ensure the zap is flushed then inform the VFS of the capacity change.
265  */
266 static int
267 zvol_update_volsize(uint64_t volsize, objset_t *os)
268 {
269 	dmu_tx_t *tx;
270 	int error;
271 	uint64_t txg;
272 
273 	tx = dmu_tx_create(os);
274 	dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL);
275 	dmu_tx_mark_netfree(tx);
276 	error = dmu_tx_assign(tx, TXG_WAIT);
277 	if (error) {
278 		dmu_tx_abort(tx);
279 		return (SET_ERROR(error));
280 	}
281 	txg = dmu_tx_get_txg(tx);
282 
283 	error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1,
284 	    &volsize, tx);
285 	dmu_tx_commit(tx);
286 
287 	txg_wait_synced(dmu_objset_pool(os), txg);
288 
289 	if (error == 0)
290 		error = dmu_free_long_range(os,
291 		    ZVOL_OBJ, volsize, DMU_OBJECT_END);
292 
293 	return (error);
294 }
295 
296 /*
297  * Set ZFS_PROP_VOLSIZE set entry point.  Note that modifying the volume
298  * size will result in a udev "change" event being generated.
299  */
300 int
301 zvol_set_volsize(const char *name, uint64_t volsize)
302 {
303 	objset_t *os = NULL;
304 	uint64_t readonly;
305 	int error;
306 	boolean_t owned = B_FALSE;
307 
308 	error = dsl_prop_get_integer(name,
309 	    zfs_prop_to_name(ZFS_PROP_READONLY), &readonly, NULL);
310 	if (error != 0)
311 		return (SET_ERROR(error));
312 	if (readonly)
313 		return (SET_ERROR(EROFS));
314 
315 	zvol_state_t *zv = zvol_find_by_name(name, RW_READER);
316 
317 	ASSERT(zv == NULL || (MUTEX_HELD(&zv->zv_state_lock) &&
318 	    RW_READ_HELD(&zv->zv_suspend_lock)));
319 
320 	if (zv == NULL || zv->zv_objset == NULL) {
321 		if (zv != NULL)
322 			rw_exit(&zv->zv_suspend_lock);
323 		if ((error = dmu_objset_own(name, DMU_OST_ZVOL, B_FALSE, B_TRUE,
324 		    FTAG, &os)) != 0) {
325 			if (zv != NULL)
326 				mutex_exit(&zv->zv_state_lock);
327 			return (SET_ERROR(error));
328 		}
329 		owned = B_TRUE;
330 		if (zv != NULL)
331 			zv->zv_objset = os;
332 	} else {
333 		os = zv->zv_objset;
334 	}
335 
336 	dmu_object_info_t *doi = kmem_alloc(sizeof (*doi), KM_SLEEP);
337 
338 	if ((error = dmu_object_info(os, ZVOL_OBJ, doi)) ||
339 	    (error = zvol_check_volsize(volsize, doi->doi_data_block_size)))
340 		goto out;
341 
342 	error = zvol_update_volsize(volsize, os);
343 	if (error == 0 && zv != NULL) {
344 		zv->zv_volsize = volsize;
345 		zv->zv_changed = 1;
346 	}
347 out:
348 	kmem_free(doi, sizeof (dmu_object_info_t));
349 
350 	if (owned) {
351 		dmu_objset_disown(os, B_TRUE, FTAG);
352 		if (zv != NULL)
353 			zv->zv_objset = NULL;
354 	} else {
355 		rw_exit(&zv->zv_suspend_lock);
356 	}
357 
358 	if (zv != NULL)
359 		mutex_exit(&zv->zv_state_lock);
360 
361 	if (error == 0 && zv != NULL)
362 		zvol_os_update_volsize(zv, volsize);
363 
364 	return (SET_ERROR(error));
365 }
366 
367 /*
368  * Update volthreading.
369  */
370 int
371 zvol_set_volthreading(const char *name, boolean_t value)
372 {
373 	zvol_state_t *zv = zvol_find_by_name(name, RW_NONE);
374 	if (zv == NULL)
375 		return (ENOENT);
376 	zv->zv_threading = value;
377 	mutex_exit(&zv->zv_state_lock);
378 	return (0);
379 }
380 
381 /*
382  * Update zvol ro property.
383  */
384 int
385 zvol_set_ro(const char *name, boolean_t value)
386 {
387 	zvol_state_t *zv = zvol_find_by_name(name, RW_NONE);
388 	if (zv == NULL)
389 		return (-1);
390 	if (value) {
391 		zvol_os_set_disk_ro(zv, 1);
392 		zv->zv_flags |= ZVOL_RDONLY;
393 	} else {
394 		zvol_os_set_disk_ro(zv, 0);
395 		zv->zv_flags &= ~ZVOL_RDONLY;
396 	}
397 	mutex_exit(&zv->zv_state_lock);
398 	return (0);
399 }
400 
401 /*
402  * Sanity check volume block size.
403  */
404 int
405 zvol_check_volblocksize(const char *name, uint64_t volblocksize)
406 {
407 	/* Record sizes above 128k need the feature to be enabled */
408 	if (volblocksize > SPA_OLD_MAXBLOCKSIZE) {
409 		spa_t *spa;
410 		int error;
411 
412 		if ((error = spa_open(name, &spa, FTAG)) != 0)
413 			return (error);
414 
415 		if (!spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
416 			spa_close(spa, FTAG);
417 			return (SET_ERROR(ENOTSUP));
418 		}
419 
420 		/*
421 		 * We don't allow setting the property above 1MB,
422 		 * unless the tunable has been changed.
423 		 */
424 		if (volblocksize > zfs_max_recordsize)
425 			return (SET_ERROR(EDOM));
426 
427 		spa_close(spa, FTAG);
428 	}
429 
430 	if (volblocksize < SPA_MINBLOCKSIZE ||
431 	    volblocksize > SPA_MAXBLOCKSIZE ||
432 	    !ISP2(volblocksize))
433 		return (SET_ERROR(EDOM));
434 
435 	return (0);
436 }
437 
438 /*
439  * Replay a TX_TRUNCATE ZIL transaction if asked.  TX_TRUNCATE is how we
440  * implement DKIOCFREE/free-long-range.
441  */
442 static int
443 zvol_replay_truncate(void *arg1, void *arg2, boolean_t byteswap)
444 {
445 	zvol_state_t *zv = arg1;
446 	lr_truncate_t *lr = arg2;
447 	uint64_t offset, length;
448 
449 	if (byteswap)
450 		byteswap_uint64_array(lr, sizeof (*lr));
451 
452 	offset = lr->lr_offset;
453 	length = lr->lr_length;
454 
455 	dmu_tx_t *tx = dmu_tx_create(zv->zv_objset);
456 	dmu_tx_mark_netfree(tx);
457 	int error = dmu_tx_assign(tx, TXG_WAIT);
458 	if (error != 0) {
459 		dmu_tx_abort(tx);
460 	} else {
461 		(void) zil_replaying(zv->zv_zilog, tx);
462 		dmu_tx_commit(tx);
463 		error = dmu_free_long_range(zv->zv_objset, ZVOL_OBJ, offset,
464 		    length);
465 	}
466 
467 	return (error);
468 }
469 
470 /*
471  * Replay a TX_WRITE ZIL transaction that didn't get committed
472  * after a system failure
473  */
474 static int
475 zvol_replay_write(void *arg1, void *arg2, boolean_t byteswap)
476 {
477 	zvol_state_t *zv = arg1;
478 	lr_write_t *lr = arg2;
479 	objset_t *os = zv->zv_objset;
480 	char *data = (char *)(lr + 1);  /* data follows lr_write_t */
481 	uint64_t offset, length;
482 	dmu_tx_t *tx;
483 	int error;
484 
485 	if (byteswap)
486 		byteswap_uint64_array(lr, sizeof (*lr));
487 
488 	offset = lr->lr_offset;
489 	length = lr->lr_length;
490 
491 	/* If it's a dmu_sync() block, write the whole block */
492 	if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
493 		uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
494 		if (length < blocksize) {
495 			offset -= offset % blocksize;
496 			length = blocksize;
497 		}
498 	}
499 
500 	tx = dmu_tx_create(os);
501 	dmu_tx_hold_write(tx, ZVOL_OBJ, offset, length);
502 	error = dmu_tx_assign(tx, TXG_WAIT);
503 	if (error) {
504 		dmu_tx_abort(tx);
505 	} else {
506 		dmu_write(os, ZVOL_OBJ, offset, length, data, tx);
507 		(void) zil_replaying(zv->zv_zilog, tx);
508 		dmu_tx_commit(tx);
509 	}
510 
511 	return (error);
512 }
513 
514 /*
515  * Replay a TX_CLONE_RANGE ZIL transaction that didn't get committed
516  * after a system failure.
517  *
518  * TODO: For now we drop block cloning transations for ZVOLs as they are
519  *       unsupported, but we still need to inform BRT about that as we
520  *       claimed them during pool import.
521  *       This situation can occur when we try to import a pool from a ZFS
522  *       version supporting block cloning for ZVOLs into a system that
523  *       has this ZFS version, that doesn't support block cloning for ZVOLs.
524  */
525 static int
526 zvol_replay_clone_range(void *arg1, void *arg2, boolean_t byteswap)
527 {
528 	char name[ZFS_MAX_DATASET_NAME_LEN];
529 	zvol_state_t *zv = arg1;
530 	objset_t *os = zv->zv_objset;
531 	lr_clone_range_t *lr = arg2;
532 	blkptr_t *bp;
533 	dmu_tx_t *tx;
534 	spa_t *spa;
535 	uint_t ii;
536 	int error;
537 
538 	dmu_objset_name(os, name);
539 	cmn_err(CE_WARN, "ZFS dropping block cloning transaction for %s.",
540 	    name);
541 
542 	if (byteswap)
543 		byteswap_uint64_array(lr, sizeof (*lr));
544 
545 	tx = dmu_tx_create(os);
546 	error = dmu_tx_assign(tx, TXG_WAIT);
547 	if (error) {
548 		dmu_tx_abort(tx);
549 		return (error);
550 	}
551 
552 	spa = os->os_spa;
553 
554 	for (ii = 0; ii < lr->lr_nbps; ii++) {
555 		bp = &lr->lr_bps[ii];
556 
557 		if (!BP_IS_HOLE(bp)) {
558 			zio_free(spa, dmu_tx_get_txg(tx), bp);
559 		}
560 	}
561 
562 	(void) zil_replaying(zv->zv_zilog, tx);
563 	dmu_tx_commit(tx);
564 
565 	return (0);
566 }
567 
568 static int
569 zvol_replay_err(void *arg1, void *arg2, boolean_t byteswap)
570 {
571 	(void) arg1, (void) arg2, (void) byteswap;
572 	return (SET_ERROR(ENOTSUP));
573 }
574 
575 /*
576  * Callback vectors for replaying records.
577  * Only TX_WRITE and TX_TRUNCATE are needed for zvol.
578  */
579 zil_replay_func_t *const zvol_replay_vector[TX_MAX_TYPE] = {
580 	zvol_replay_err,	/* no such transaction type */
581 	zvol_replay_err,	/* TX_CREATE */
582 	zvol_replay_err,	/* TX_MKDIR */
583 	zvol_replay_err,	/* TX_MKXATTR */
584 	zvol_replay_err,	/* TX_SYMLINK */
585 	zvol_replay_err,	/* TX_REMOVE */
586 	zvol_replay_err,	/* TX_RMDIR */
587 	zvol_replay_err,	/* TX_LINK */
588 	zvol_replay_err,	/* TX_RENAME */
589 	zvol_replay_write,	/* TX_WRITE */
590 	zvol_replay_truncate,	/* TX_TRUNCATE */
591 	zvol_replay_err,	/* TX_SETATTR */
592 	zvol_replay_err,	/* TX_ACL */
593 	zvol_replay_err,	/* TX_CREATE_ATTR */
594 	zvol_replay_err,	/* TX_CREATE_ACL_ATTR */
595 	zvol_replay_err,	/* TX_MKDIR_ACL */
596 	zvol_replay_err,	/* TX_MKDIR_ATTR */
597 	zvol_replay_err,	/* TX_MKDIR_ACL_ATTR */
598 	zvol_replay_err,	/* TX_WRITE2 */
599 	zvol_replay_err,	/* TX_SETSAXATTR */
600 	zvol_replay_err,	/* TX_RENAME_EXCHANGE */
601 	zvol_replay_err,	/* TX_RENAME_WHITEOUT */
602 	zvol_replay_clone_range	/* TX_CLONE_RANGE */
603 };
604 
605 /*
606  * zvol_log_write() handles synchronous writes using TX_WRITE ZIL transactions.
607  *
608  * We store data in the log buffers if it's small enough.
609  * Otherwise we will later flush the data out via dmu_sync().
610  */
611 static const ssize_t zvol_immediate_write_sz = 32768;
612 
613 void
614 zvol_log_write(zvol_state_t *zv, dmu_tx_t *tx, uint64_t offset,
615     uint64_t size, boolean_t commit)
616 {
617 	uint32_t blocksize = zv->zv_volblocksize;
618 	zilog_t *zilog = zv->zv_zilog;
619 	itx_wr_state_t write_state;
620 	uint64_t sz = size;
621 
622 	if (zil_replaying(zilog, tx))
623 		return;
624 
625 	if (zilog->zl_logbias == ZFS_LOGBIAS_THROUGHPUT)
626 		write_state = WR_INDIRECT;
627 	else if (!spa_has_slogs(zilog->zl_spa) &&
628 	    size >= blocksize && blocksize > zvol_immediate_write_sz)
629 		write_state = WR_INDIRECT;
630 	else if (commit)
631 		write_state = WR_COPIED;
632 	else
633 		write_state = WR_NEED_COPY;
634 
635 	while (size) {
636 		itx_t *itx;
637 		lr_write_t *lr;
638 		itx_wr_state_t wr_state = write_state;
639 		ssize_t len = size;
640 
641 		if (wr_state == WR_COPIED && size > zil_max_copied_data(zilog))
642 			wr_state = WR_NEED_COPY;
643 		else if (wr_state == WR_INDIRECT)
644 			len = MIN(blocksize - P2PHASE(offset, blocksize), size);
645 
646 		itx = zil_itx_create(TX_WRITE, sizeof (*lr) +
647 		    (wr_state == WR_COPIED ? len : 0));
648 		lr = (lr_write_t *)&itx->itx_lr;
649 		if (wr_state == WR_COPIED && dmu_read_by_dnode(zv->zv_dn,
650 		    offset, len, lr+1, DMU_READ_NO_PREFETCH) != 0) {
651 			zil_itx_destroy(itx);
652 			itx = zil_itx_create(TX_WRITE, sizeof (*lr));
653 			lr = (lr_write_t *)&itx->itx_lr;
654 			wr_state = WR_NEED_COPY;
655 		}
656 
657 		itx->itx_wr_state = wr_state;
658 		lr->lr_foid = ZVOL_OBJ;
659 		lr->lr_offset = offset;
660 		lr->lr_length = len;
661 		lr->lr_blkoff = 0;
662 		BP_ZERO(&lr->lr_blkptr);
663 
664 		itx->itx_private = zv;
665 
666 		(void) zil_itx_assign(zilog, itx, tx);
667 
668 		offset += len;
669 		size -= len;
670 	}
671 
672 	if (write_state == WR_COPIED || write_state == WR_NEED_COPY) {
673 		dsl_pool_wrlog_count(zilog->zl_dmu_pool, sz, tx->tx_txg);
674 	}
675 }
676 
677 /*
678  * Log a DKIOCFREE/free-long-range to the ZIL with TX_TRUNCATE.
679  */
680 void
681 zvol_log_truncate(zvol_state_t *zv, dmu_tx_t *tx, uint64_t off, uint64_t len)
682 {
683 	itx_t *itx;
684 	lr_truncate_t *lr;
685 	zilog_t *zilog = zv->zv_zilog;
686 
687 	if (zil_replaying(zilog, tx))
688 		return;
689 
690 	itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
691 	lr = (lr_truncate_t *)&itx->itx_lr;
692 	lr->lr_foid = ZVOL_OBJ;
693 	lr->lr_offset = off;
694 	lr->lr_length = len;
695 
696 	zil_itx_assign(zilog, itx, tx);
697 }
698 
699 
700 static void
701 zvol_get_done(zgd_t *zgd, int error)
702 {
703 	(void) error;
704 	if (zgd->zgd_db)
705 		dmu_buf_rele(zgd->zgd_db, zgd);
706 
707 	zfs_rangelock_exit(zgd->zgd_lr);
708 
709 	kmem_free(zgd, sizeof (zgd_t));
710 }
711 
712 /*
713  * Get data to generate a TX_WRITE intent log record.
714  */
715 int
716 zvol_get_data(void *arg, uint64_t arg2, lr_write_t *lr, char *buf,
717     struct lwb *lwb, zio_t *zio)
718 {
719 	zvol_state_t *zv = arg;
720 	uint64_t offset = lr->lr_offset;
721 	uint64_t size = lr->lr_length;
722 	dmu_buf_t *db;
723 	zgd_t *zgd;
724 	int error;
725 
726 	ASSERT3P(lwb, !=, NULL);
727 	ASSERT3U(size, !=, 0);
728 
729 	zgd = kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
730 	zgd->zgd_lwb = lwb;
731 
732 	/*
733 	 * Write records come in two flavors: immediate and indirect.
734 	 * For small writes it's cheaper to store the data with the
735 	 * log record (immediate); for large writes it's cheaper to
736 	 * sync the data and get a pointer to it (indirect) so that
737 	 * we don't have to write the data twice.
738 	 */
739 	if (buf != NULL) { /* immediate write */
740 		zgd->zgd_lr = zfs_rangelock_enter(&zv->zv_rangelock, offset,
741 		    size, RL_READER);
742 		error = dmu_read_by_dnode(zv->zv_dn, offset, size, buf,
743 		    DMU_READ_NO_PREFETCH);
744 	} else { /* indirect write */
745 		ASSERT3P(zio, !=, NULL);
746 		/*
747 		 * Have to lock the whole block to ensure when it's written out
748 		 * and its checksum is being calculated that no one can change
749 		 * the data. Contrarily to zfs_get_data we need not re-check
750 		 * blocksize after we get the lock because it cannot be changed.
751 		 */
752 		size = zv->zv_volblocksize;
753 		offset = P2ALIGN_TYPED(offset, size, uint64_t);
754 		zgd->zgd_lr = zfs_rangelock_enter(&zv->zv_rangelock, offset,
755 		    size, RL_READER);
756 		error = dmu_buf_hold_noread_by_dnode(zv->zv_dn, offset, zgd,
757 		    &db);
758 		if (error == 0) {
759 			blkptr_t *bp = &lr->lr_blkptr;
760 
761 			zgd->zgd_db = db;
762 			zgd->zgd_bp = bp;
763 
764 			ASSERT(db != NULL);
765 			ASSERT(db->db_offset == offset);
766 			ASSERT(db->db_size == size);
767 
768 			error = dmu_sync(zio, lr->lr_common.lrc_txg,
769 			    zvol_get_done, zgd);
770 
771 			if (error == 0)
772 				return (0);
773 		}
774 	}
775 
776 	zvol_get_done(zgd, error);
777 
778 	return (SET_ERROR(error));
779 }
780 
781 /*
782  * The zvol_state_t's are inserted into zvol_state_list and zvol_htable.
783  */
784 
785 void
786 zvol_insert(zvol_state_t *zv)
787 {
788 	ASSERT(RW_WRITE_HELD(&zvol_state_lock));
789 	list_insert_head(&zvol_state_list, zv);
790 	hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash));
791 }
792 
793 /*
794  * Simply remove the zvol from to list of zvols.
795  */
796 static void
797 zvol_remove(zvol_state_t *zv)
798 {
799 	ASSERT(RW_WRITE_HELD(&zvol_state_lock));
800 	list_remove(&zvol_state_list, zv);
801 	hlist_del(&zv->zv_hlink);
802 }
803 
804 /*
805  * Setup zv after we just own the zv->objset
806  */
807 static int
808 zvol_setup_zv(zvol_state_t *zv)
809 {
810 	uint64_t volsize;
811 	int error;
812 	uint64_t ro;
813 	objset_t *os = zv->zv_objset;
814 
815 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
816 	ASSERT(RW_LOCK_HELD(&zv->zv_suspend_lock));
817 
818 	zv->zv_zilog = NULL;
819 	zv->zv_flags &= ~ZVOL_WRITTEN_TO;
820 
821 	error = dsl_prop_get_integer(zv->zv_name, "readonly", &ro, NULL);
822 	if (error)
823 		return (SET_ERROR(error));
824 
825 	error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
826 	if (error)
827 		return (SET_ERROR(error));
828 
829 	error = dnode_hold(os, ZVOL_OBJ, zv, &zv->zv_dn);
830 	if (error)
831 		return (SET_ERROR(error));
832 
833 	zvol_os_set_capacity(zv, volsize >> 9);
834 	zv->zv_volsize = volsize;
835 
836 	if (ro || dmu_objset_is_snapshot(os) ||
837 	    !spa_writeable(dmu_objset_spa(os))) {
838 		zvol_os_set_disk_ro(zv, 1);
839 		zv->zv_flags |= ZVOL_RDONLY;
840 	} else {
841 		zvol_os_set_disk_ro(zv, 0);
842 		zv->zv_flags &= ~ZVOL_RDONLY;
843 	}
844 	return (0);
845 }
846 
847 /*
848  * Shutdown every zv_objset related stuff except zv_objset itself.
849  * The is the reverse of zvol_setup_zv.
850  */
851 static void
852 zvol_shutdown_zv(zvol_state_t *zv)
853 {
854 	ASSERT(MUTEX_HELD(&zv->zv_state_lock) &&
855 	    RW_LOCK_HELD(&zv->zv_suspend_lock));
856 
857 	if (zv->zv_flags & ZVOL_WRITTEN_TO) {
858 		ASSERT(zv->zv_zilog != NULL);
859 		zil_close(zv->zv_zilog);
860 	}
861 
862 	zv->zv_zilog = NULL;
863 
864 	dnode_rele(zv->zv_dn, zv);
865 	zv->zv_dn = NULL;
866 
867 	/*
868 	 * Evict cached data. We must write out any dirty data before
869 	 * disowning the dataset.
870 	 */
871 	if (zv->zv_flags & ZVOL_WRITTEN_TO)
872 		txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0);
873 	(void) dmu_objset_evict_dbufs(zv->zv_objset);
874 }
875 
876 /*
877  * return the proper tag for rollback and recv
878  */
879 void *
880 zvol_tag(zvol_state_t *zv)
881 {
882 	ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
883 	return (zv->zv_open_count > 0 ? zv : NULL);
884 }
885 
886 /*
887  * Suspend the zvol for recv and rollback.
888  */
889 zvol_state_t *
890 zvol_suspend(const char *name)
891 {
892 	zvol_state_t *zv;
893 
894 	zv = zvol_find_by_name(name, RW_WRITER);
895 
896 	if (zv == NULL)
897 		return (NULL);
898 
899 	/* block all I/O, release in zvol_resume. */
900 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
901 	ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
902 
903 	atomic_inc(&zv->zv_suspend_ref);
904 
905 	if (zv->zv_open_count > 0)
906 		zvol_shutdown_zv(zv);
907 
908 	/*
909 	 * do not hold zv_state_lock across suspend/resume to
910 	 * avoid locking up zvol lookups
911 	 */
912 	mutex_exit(&zv->zv_state_lock);
913 
914 	/* zv_suspend_lock is released in zvol_resume() */
915 	return (zv);
916 }
917 
918 int
919 zvol_resume(zvol_state_t *zv)
920 {
921 	int error = 0;
922 
923 	ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
924 
925 	mutex_enter(&zv->zv_state_lock);
926 
927 	if (zv->zv_open_count > 0) {
928 		VERIFY0(dmu_objset_hold(zv->zv_name, zv, &zv->zv_objset));
929 		VERIFY3P(zv->zv_objset->os_dsl_dataset->ds_owner, ==, zv);
930 		VERIFY(dsl_dataset_long_held(zv->zv_objset->os_dsl_dataset));
931 		dmu_objset_rele(zv->zv_objset, zv);
932 
933 		error = zvol_setup_zv(zv);
934 	}
935 
936 	mutex_exit(&zv->zv_state_lock);
937 
938 	rw_exit(&zv->zv_suspend_lock);
939 	/*
940 	 * We need this because we don't hold zvol_state_lock while releasing
941 	 * zv_suspend_lock. zvol_remove_minors_impl thus cannot check
942 	 * zv_suspend_lock to determine it is safe to free because rwlock is
943 	 * not inherent atomic.
944 	 */
945 	atomic_dec(&zv->zv_suspend_ref);
946 
947 	return (SET_ERROR(error));
948 }
949 
950 int
951 zvol_first_open(zvol_state_t *zv, boolean_t readonly)
952 {
953 	objset_t *os;
954 	int error;
955 
956 	ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
957 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
958 	ASSERT(mutex_owned(&spa_namespace_lock));
959 
960 	boolean_t ro = (readonly || (strchr(zv->zv_name, '@') != NULL));
961 	error = dmu_objset_own(zv->zv_name, DMU_OST_ZVOL, ro, B_TRUE, zv, &os);
962 	if (error)
963 		return (SET_ERROR(error));
964 
965 	zv->zv_objset = os;
966 
967 	error = zvol_setup_zv(zv);
968 	if (error) {
969 		dmu_objset_disown(os, 1, zv);
970 		zv->zv_objset = NULL;
971 	}
972 
973 	return (error);
974 }
975 
976 void
977 zvol_last_close(zvol_state_t *zv)
978 {
979 	ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
980 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
981 
982 	zvol_shutdown_zv(zv);
983 
984 	dmu_objset_disown(zv->zv_objset, 1, zv);
985 	zv->zv_objset = NULL;
986 }
987 
988 typedef struct minors_job {
989 	list_t *list;
990 	list_node_t link;
991 	/* input */
992 	char *name;
993 	/* output */
994 	int error;
995 } minors_job_t;
996 
997 /*
998  * Prefetch zvol dnodes for the minors_job
999  */
1000 static void
1001 zvol_prefetch_minors_impl(void *arg)
1002 {
1003 	minors_job_t *job = arg;
1004 	char *dsname = job->name;
1005 	objset_t *os = NULL;
1006 
1007 	job->error = dmu_objset_own(dsname, DMU_OST_ZVOL, B_TRUE, B_TRUE,
1008 	    FTAG, &os);
1009 	if (job->error == 0) {
1010 		dmu_prefetch_dnode(os, ZVOL_OBJ, ZIO_PRIORITY_SYNC_READ);
1011 		dmu_objset_disown(os, B_TRUE, FTAG);
1012 	}
1013 }
1014 
1015 /*
1016  * Mask errors to continue dmu_objset_find() traversal
1017  */
1018 static int
1019 zvol_create_snap_minor_cb(const char *dsname, void *arg)
1020 {
1021 	minors_job_t *j = arg;
1022 	list_t *minors_list = j->list;
1023 	const char *name = j->name;
1024 
1025 	ASSERT0(MUTEX_HELD(&spa_namespace_lock));
1026 
1027 	/* skip the designated dataset */
1028 	if (name && strcmp(dsname, name) == 0)
1029 		return (0);
1030 
1031 	/* at this point, the dsname should name a snapshot */
1032 	if (strchr(dsname, '@') == 0) {
1033 		dprintf("zvol_create_snap_minor_cb(): "
1034 		    "%s is not a snapshot name\n", dsname);
1035 	} else {
1036 		minors_job_t *job;
1037 		char *n = kmem_strdup(dsname);
1038 		if (n == NULL)
1039 			return (0);
1040 
1041 		job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
1042 		job->name = n;
1043 		job->list = minors_list;
1044 		job->error = 0;
1045 		list_insert_tail(minors_list, job);
1046 		/* don't care if dispatch fails, because job->error is 0 */
1047 		taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job,
1048 		    TQ_SLEEP);
1049 	}
1050 
1051 	return (0);
1052 }
1053 
1054 /*
1055  * If spa_keystore_load_wkey() is called for an encrypted zvol,
1056  * we need to look for any clones also using the key. This function
1057  * is "best effort" - so we just skip over it if there are failures.
1058  */
1059 static void
1060 zvol_add_clones(const char *dsname, list_t *minors_list)
1061 {
1062 	/* Also check if it has clones */
1063 	dsl_dir_t *dd = NULL;
1064 	dsl_pool_t *dp = NULL;
1065 
1066 	if (dsl_pool_hold(dsname, FTAG, &dp) != 0)
1067 		return;
1068 
1069 	if (!spa_feature_is_enabled(dp->dp_spa,
1070 	    SPA_FEATURE_ENCRYPTION))
1071 		goto out;
1072 
1073 	if (dsl_dir_hold(dp, dsname, FTAG, &dd, NULL) != 0)
1074 		goto out;
1075 
1076 	if (dsl_dir_phys(dd)->dd_clones == 0)
1077 		goto out;
1078 
1079 	zap_cursor_t *zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP);
1080 	zap_attribute_t *za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP);
1081 	objset_t *mos = dd->dd_pool->dp_meta_objset;
1082 
1083 	for (zap_cursor_init(zc, mos, dsl_dir_phys(dd)->dd_clones);
1084 	    zap_cursor_retrieve(zc, za) == 0;
1085 	    zap_cursor_advance(zc)) {
1086 		dsl_dataset_t *clone;
1087 		minors_job_t *job;
1088 
1089 		if (dsl_dataset_hold_obj(dd->dd_pool,
1090 		    za->za_first_integer, FTAG, &clone) == 0) {
1091 
1092 			char name[ZFS_MAX_DATASET_NAME_LEN];
1093 			dsl_dataset_name(clone, name);
1094 
1095 			char *n = kmem_strdup(name);
1096 			job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
1097 			job->name = n;
1098 			job->list = minors_list;
1099 			job->error = 0;
1100 			list_insert_tail(minors_list, job);
1101 
1102 			dsl_dataset_rele(clone, FTAG);
1103 		}
1104 	}
1105 	zap_cursor_fini(zc);
1106 	kmem_free(za, sizeof (zap_attribute_t));
1107 	kmem_free(zc, sizeof (zap_cursor_t));
1108 
1109 out:
1110 	if (dd != NULL)
1111 		dsl_dir_rele(dd, FTAG);
1112 	dsl_pool_rele(dp, FTAG);
1113 }
1114 
1115 /*
1116  * Mask errors to continue dmu_objset_find() traversal
1117  */
1118 static int
1119 zvol_create_minors_cb(const char *dsname, void *arg)
1120 {
1121 	uint64_t snapdev;
1122 	int error;
1123 	list_t *minors_list = arg;
1124 
1125 	ASSERT0(MUTEX_HELD(&spa_namespace_lock));
1126 
1127 	error = dsl_prop_get_integer(dsname, "snapdev", &snapdev, NULL);
1128 	if (error)
1129 		return (0);
1130 
1131 	/*
1132 	 * Given the name and the 'snapdev' property, create device minor nodes
1133 	 * with the linkages to zvols/snapshots as needed.
1134 	 * If the name represents a zvol, create a minor node for the zvol, then
1135 	 * check if its snapshots are 'visible', and if so, iterate over the
1136 	 * snapshots and create device minor nodes for those.
1137 	 */
1138 	if (strchr(dsname, '@') == 0) {
1139 		minors_job_t *job;
1140 		char *n = kmem_strdup(dsname);
1141 		if (n == NULL)
1142 			return (0);
1143 
1144 		job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
1145 		job->name = n;
1146 		job->list = minors_list;
1147 		job->error = 0;
1148 		list_insert_tail(minors_list, job);
1149 		/* don't care if dispatch fails, because job->error is 0 */
1150 		taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job,
1151 		    TQ_SLEEP);
1152 
1153 		zvol_add_clones(dsname, minors_list);
1154 
1155 		if (snapdev == ZFS_SNAPDEV_VISIBLE) {
1156 			/*
1157 			 * traverse snapshots only, do not traverse children,
1158 			 * and skip the 'dsname'
1159 			 */
1160 			(void) dmu_objset_find(dsname,
1161 			    zvol_create_snap_minor_cb, (void *)job,
1162 			    DS_FIND_SNAPSHOTS);
1163 		}
1164 	} else {
1165 		dprintf("zvol_create_minors_cb(): %s is not a zvol name\n",
1166 		    dsname);
1167 	}
1168 
1169 	return (0);
1170 }
1171 
1172 /*
1173  * Create minors for the specified dataset, including children and snapshots.
1174  * Pay attention to the 'snapdev' property and iterate over the snapshots
1175  * only if they are 'visible'. This approach allows one to assure that the
1176  * snapshot metadata is read from disk only if it is needed.
1177  *
1178  * The name can represent a dataset to be recursively scanned for zvols and
1179  * their snapshots, or a single zvol snapshot. If the name represents a
1180  * dataset, the scan is performed in two nested stages:
1181  * - scan the dataset for zvols, and
1182  * - for each zvol, create a minor node, then check if the zvol's snapshots
1183  *   are 'visible', and only then iterate over the snapshots if needed
1184  *
1185  * If the name represents a snapshot, a check is performed if the snapshot is
1186  * 'visible' (which also verifies that the parent is a zvol), and if so,
1187  * a minor node for that snapshot is created.
1188  */
1189 void
1190 zvol_create_minors_recursive(const char *name)
1191 {
1192 	list_t minors_list;
1193 	minors_job_t *job;
1194 
1195 	if (zvol_inhibit_dev)
1196 		return;
1197 
1198 	/*
1199 	 * This is the list for prefetch jobs. Whenever we found a match
1200 	 * during dmu_objset_find, we insert a minors_job to the list and do
1201 	 * taskq_dispatch to parallel prefetch zvol dnodes. Note we don't need
1202 	 * any lock because all list operation is done on the current thread.
1203 	 *
1204 	 * We will use this list to do zvol_os_create_minor after prefetch
1205 	 * so we don't have to traverse using dmu_objset_find again.
1206 	 */
1207 	list_create(&minors_list, sizeof (minors_job_t),
1208 	    offsetof(minors_job_t, link));
1209 
1210 
1211 	if (strchr(name, '@') != NULL) {
1212 		uint64_t snapdev;
1213 
1214 		int error = dsl_prop_get_integer(name, "snapdev",
1215 		    &snapdev, NULL);
1216 
1217 		if (error == 0 && snapdev == ZFS_SNAPDEV_VISIBLE)
1218 			(void) zvol_os_create_minor(name);
1219 	} else {
1220 		fstrans_cookie_t cookie = spl_fstrans_mark();
1221 		(void) dmu_objset_find(name, zvol_create_minors_cb,
1222 		    &minors_list, DS_FIND_CHILDREN);
1223 		spl_fstrans_unmark(cookie);
1224 	}
1225 
1226 	taskq_wait_outstanding(system_taskq, 0);
1227 
1228 	/*
1229 	 * Prefetch is completed, we can do zvol_os_create_minor
1230 	 * sequentially.
1231 	 */
1232 	while ((job = list_remove_head(&minors_list)) != NULL) {
1233 		if (!job->error)
1234 			(void) zvol_os_create_minor(job->name);
1235 		kmem_strfree(job->name);
1236 		kmem_free(job, sizeof (minors_job_t));
1237 	}
1238 
1239 	list_destroy(&minors_list);
1240 }
1241 
1242 void
1243 zvol_create_minor(const char *name)
1244 {
1245 	/*
1246 	 * Note: the dsl_pool_config_lock must not be held.
1247 	 * Minor node creation needs to obtain the zvol_state_lock.
1248 	 * zvol_open() obtains the zvol_state_lock and then the dsl pool
1249 	 * config lock.  Therefore, we can't have the config lock now if
1250 	 * we are going to wait for the zvol_state_lock, because it
1251 	 * would be a lock order inversion which could lead to deadlock.
1252 	 */
1253 
1254 	if (zvol_inhibit_dev)
1255 		return;
1256 
1257 	if (strchr(name, '@') != NULL) {
1258 		uint64_t snapdev;
1259 
1260 		int error = dsl_prop_get_integer(name,
1261 		    "snapdev", &snapdev, NULL);
1262 
1263 		if (error == 0 && snapdev == ZFS_SNAPDEV_VISIBLE)
1264 			(void) zvol_os_create_minor(name);
1265 	} else {
1266 		(void) zvol_os_create_minor(name);
1267 	}
1268 }
1269 
1270 /*
1271  * Remove minors for specified dataset including children and snapshots.
1272  */
1273 
1274 static void
1275 zvol_free_task(void *arg)
1276 {
1277 	zvol_os_free(arg);
1278 }
1279 
1280 void
1281 zvol_remove_minors_impl(const char *name)
1282 {
1283 	zvol_state_t *zv, *zv_next;
1284 	int namelen = ((name) ? strlen(name) : 0);
1285 	taskqid_t t;
1286 	list_t free_list;
1287 
1288 	if (zvol_inhibit_dev)
1289 		return;
1290 
1291 	list_create(&free_list, sizeof (zvol_state_t),
1292 	    offsetof(zvol_state_t, zv_next));
1293 
1294 	rw_enter(&zvol_state_lock, RW_WRITER);
1295 
1296 	for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
1297 		zv_next = list_next(&zvol_state_list, zv);
1298 
1299 		mutex_enter(&zv->zv_state_lock);
1300 		if (name == NULL || strcmp(zv->zv_name, name) == 0 ||
1301 		    (strncmp(zv->zv_name, name, namelen) == 0 &&
1302 		    (zv->zv_name[namelen] == '/' ||
1303 		    zv->zv_name[namelen] == '@'))) {
1304 			/*
1305 			 * By holding zv_state_lock here, we guarantee that no
1306 			 * one is currently using this zv
1307 			 */
1308 
1309 			/* If in use, leave alone */
1310 			if (zv->zv_open_count > 0 ||
1311 			    atomic_read(&zv->zv_suspend_ref)) {
1312 				mutex_exit(&zv->zv_state_lock);
1313 				continue;
1314 			}
1315 
1316 			zvol_remove(zv);
1317 
1318 			/*
1319 			 * Cleared while holding zvol_state_lock as a writer
1320 			 * which will prevent zvol_open() from opening it.
1321 			 */
1322 			zvol_os_clear_private(zv);
1323 
1324 			/* Drop zv_state_lock before zvol_free() */
1325 			mutex_exit(&zv->zv_state_lock);
1326 
1327 			/* Try parallel zv_free, if failed do it in place */
1328 			t = taskq_dispatch(system_taskq, zvol_free_task, zv,
1329 			    TQ_SLEEP);
1330 			if (t == TASKQID_INVALID)
1331 				list_insert_head(&free_list, zv);
1332 		} else {
1333 			mutex_exit(&zv->zv_state_lock);
1334 		}
1335 	}
1336 	rw_exit(&zvol_state_lock);
1337 
1338 	/* Drop zvol_state_lock before calling zvol_free() */
1339 	while ((zv = list_remove_head(&free_list)) != NULL)
1340 		zvol_os_free(zv);
1341 }
1342 
1343 /* Remove minor for this specific volume only */
1344 static void
1345 zvol_remove_minor_impl(const char *name)
1346 {
1347 	zvol_state_t *zv = NULL, *zv_next;
1348 
1349 	if (zvol_inhibit_dev)
1350 		return;
1351 
1352 	rw_enter(&zvol_state_lock, RW_WRITER);
1353 
1354 	for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
1355 		zv_next = list_next(&zvol_state_list, zv);
1356 
1357 		mutex_enter(&zv->zv_state_lock);
1358 		if (strcmp(zv->zv_name, name) == 0) {
1359 			/*
1360 			 * By holding zv_state_lock here, we guarantee that no
1361 			 * one is currently using this zv
1362 			 */
1363 
1364 			/* If in use, leave alone */
1365 			if (zv->zv_open_count > 0 ||
1366 			    atomic_read(&zv->zv_suspend_ref)) {
1367 				mutex_exit(&zv->zv_state_lock);
1368 				continue;
1369 			}
1370 			zvol_remove(zv);
1371 
1372 			zvol_os_clear_private(zv);
1373 			mutex_exit(&zv->zv_state_lock);
1374 			break;
1375 		} else {
1376 			mutex_exit(&zv->zv_state_lock);
1377 		}
1378 	}
1379 
1380 	/* Drop zvol_state_lock before calling zvol_free() */
1381 	rw_exit(&zvol_state_lock);
1382 
1383 	if (zv != NULL)
1384 		zvol_os_free(zv);
1385 }
1386 
1387 /*
1388  * Rename minors for specified dataset including children and snapshots.
1389  */
1390 static void
1391 zvol_rename_minors_impl(const char *oldname, const char *newname)
1392 {
1393 	zvol_state_t *zv, *zv_next;
1394 	int oldnamelen;
1395 
1396 	if (zvol_inhibit_dev)
1397 		return;
1398 
1399 	oldnamelen = strlen(oldname);
1400 
1401 	rw_enter(&zvol_state_lock, RW_READER);
1402 
1403 	for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
1404 		zv_next = list_next(&zvol_state_list, zv);
1405 
1406 		mutex_enter(&zv->zv_state_lock);
1407 
1408 		if (strcmp(zv->zv_name, oldname) == 0) {
1409 			zvol_os_rename_minor(zv, newname);
1410 		} else if (strncmp(zv->zv_name, oldname, oldnamelen) == 0 &&
1411 		    (zv->zv_name[oldnamelen] == '/' ||
1412 		    zv->zv_name[oldnamelen] == '@')) {
1413 			char *name = kmem_asprintf("%s%c%s", newname,
1414 			    zv->zv_name[oldnamelen],
1415 			    zv->zv_name + oldnamelen + 1);
1416 			zvol_os_rename_minor(zv, name);
1417 			kmem_strfree(name);
1418 		}
1419 
1420 		mutex_exit(&zv->zv_state_lock);
1421 	}
1422 
1423 	rw_exit(&zvol_state_lock);
1424 }
1425 
1426 typedef struct zvol_snapdev_cb_arg {
1427 	uint64_t snapdev;
1428 } zvol_snapdev_cb_arg_t;
1429 
1430 static int
1431 zvol_set_snapdev_cb(const char *dsname, void *param)
1432 {
1433 	zvol_snapdev_cb_arg_t *arg = param;
1434 
1435 	if (strchr(dsname, '@') == NULL)
1436 		return (0);
1437 
1438 	switch (arg->snapdev) {
1439 		case ZFS_SNAPDEV_VISIBLE:
1440 			(void) zvol_os_create_minor(dsname);
1441 			break;
1442 		case ZFS_SNAPDEV_HIDDEN:
1443 			(void) zvol_remove_minor_impl(dsname);
1444 			break;
1445 	}
1446 
1447 	return (0);
1448 }
1449 
1450 static void
1451 zvol_set_snapdev_impl(char *name, uint64_t snapdev)
1452 {
1453 	zvol_snapdev_cb_arg_t arg = {snapdev};
1454 	fstrans_cookie_t cookie = spl_fstrans_mark();
1455 	/*
1456 	 * The zvol_set_snapdev_sync() sets snapdev appropriately
1457 	 * in the dataset hierarchy. Here, we only scan snapshots.
1458 	 */
1459 	dmu_objset_find(name, zvol_set_snapdev_cb, &arg, DS_FIND_SNAPSHOTS);
1460 	spl_fstrans_unmark(cookie);
1461 }
1462 
1463 static void
1464 zvol_set_volmode_impl(char *name, uint64_t volmode)
1465 {
1466 	fstrans_cookie_t cookie;
1467 	uint64_t old_volmode;
1468 	zvol_state_t *zv;
1469 
1470 	if (strchr(name, '@') != NULL)
1471 		return;
1472 
1473 	/*
1474 	 * It's unfortunate we need to remove minors before we create new ones:
1475 	 * this is necessary because our backing gendisk (zvol_state->zv_disk)
1476 	 * could be different when we set, for instance, volmode from "geom"
1477 	 * to "dev" (or vice versa).
1478 	 */
1479 	zv = zvol_find_by_name(name, RW_NONE);
1480 	if (zv == NULL && volmode == ZFS_VOLMODE_NONE)
1481 			return;
1482 	if (zv != NULL) {
1483 		old_volmode = zv->zv_volmode;
1484 		mutex_exit(&zv->zv_state_lock);
1485 		if (old_volmode == volmode)
1486 			return;
1487 		zvol_wait_close(zv);
1488 	}
1489 	cookie = spl_fstrans_mark();
1490 	switch (volmode) {
1491 		case ZFS_VOLMODE_NONE:
1492 			(void) zvol_remove_minor_impl(name);
1493 			break;
1494 		case ZFS_VOLMODE_GEOM:
1495 		case ZFS_VOLMODE_DEV:
1496 			(void) zvol_remove_minor_impl(name);
1497 			(void) zvol_os_create_minor(name);
1498 			break;
1499 		case ZFS_VOLMODE_DEFAULT:
1500 			(void) zvol_remove_minor_impl(name);
1501 			if (zvol_volmode == ZFS_VOLMODE_NONE)
1502 				break;
1503 			else /* if zvol_volmode is invalid defaults to "geom" */
1504 				(void) zvol_os_create_minor(name);
1505 			break;
1506 	}
1507 	spl_fstrans_unmark(cookie);
1508 }
1509 
1510 static zvol_task_t *
1511 zvol_task_alloc(zvol_async_op_t op, const char *name1, const char *name2,
1512     uint64_t value)
1513 {
1514 	zvol_task_t *task;
1515 
1516 	/* Never allow tasks on hidden names. */
1517 	if (name1[0] == '$')
1518 		return (NULL);
1519 
1520 	task = kmem_zalloc(sizeof (zvol_task_t), KM_SLEEP);
1521 	task->op = op;
1522 	task->value = value;
1523 
1524 	strlcpy(task->name1, name1, sizeof (task->name1));
1525 	if (name2 != NULL)
1526 		strlcpy(task->name2, name2, sizeof (task->name2));
1527 
1528 	return (task);
1529 }
1530 
1531 static void
1532 zvol_task_free(zvol_task_t *task)
1533 {
1534 	kmem_free(task, sizeof (zvol_task_t));
1535 }
1536 
1537 /*
1538  * The worker thread function performed asynchronously.
1539  */
1540 static void
1541 zvol_task_cb(void *arg)
1542 {
1543 	zvol_task_t *task = arg;
1544 
1545 	switch (task->op) {
1546 	case ZVOL_ASYNC_REMOVE_MINORS:
1547 		zvol_remove_minors_impl(task->name1);
1548 		break;
1549 	case ZVOL_ASYNC_RENAME_MINORS:
1550 		zvol_rename_minors_impl(task->name1, task->name2);
1551 		break;
1552 	case ZVOL_ASYNC_SET_SNAPDEV:
1553 		zvol_set_snapdev_impl(task->name1, task->value);
1554 		break;
1555 	case ZVOL_ASYNC_SET_VOLMODE:
1556 		zvol_set_volmode_impl(task->name1, task->value);
1557 		break;
1558 	default:
1559 		VERIFY(0);
1560 		break;
1561 	}
1562 
1563 	zvol_task_free(task);
1564 }
1565 
1566 typedef struct zvol_set_prop_int_arg {
1567 	const char *zsda_name;
1568 	uint64_t zsda_value;
1569 	zprop_source_t zsda_source;
1570 	zfs_prop_t zsda_prop;
1571 } zvol_set_prop_int_arg_t;
1572 
1573 /*
1574  * Sanity check the dataset for safe use by the sync task.  No additional
1575  * conditions are imposed.
1576  */
1577 static int
1578 zvol_set_common_check(void *arg, dmu_tx_t *tx)
1579 {
1580 	zvol_set_prop_int_arg_t *zsda = arg;
1581 	dsl_pool_t *dp = dmu_tx_pool(tx);
1582 	dsl_dir_t *dd;
1583 	int error;
1584 
1585 	error = dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL);
1586 	if (error != 0)
1587 		return (error);
1588 
1589 	dsl_dir_rele(dd, FTAG);
1590 
1591 	return (error);
1592 }
1593 
1594 static int
1595 zvol_set_common_sync_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1596 {
1597 	zvol_set_prop_int_arg_t *zsda = arg;
1598 	char dsname[ZFS_MAX_DATASET_NAME_LEN];
1599 	zvol_task_t *task;
1600 	uint64_t prop;
1601 
1602 	const char *prop_name = zfs_prop_to_name(zsda->zsda_prop);
1603 	dsl_dataset_name(ds, dsname);
1604 
1605 	if (dsl_prop_get_int_ds(ds, prop_name, &prop) != 0)
1606 		return (0);
1607 
1608 	switch (zsda->zsda_prop) {
1609 		case ZFS_PROP_VOLMODE:
1610 			task = zvol_task_alloc(ZVOL_ASYNC_SET_VOLMODE, dsname,
1611 			    NULL, prop);
1612 			break;
1613 		case ZFS_PROP_SNAPDEV:
1614 			task = zvol_task_alloc(ZVOL_ASYNC_SET_SNAPDEV, dsname,
1615 			    NULL, prop);
1616 			break;
1617 		default:
1618 			task = NULL;
1619 			break;
1620 	}
1621 
1622 	if (task == NULL)
1623 		return (0);
1624 
1625 	(void) taskq_dispatch(dp->dp_spa->spa_zvol_taskq, zvol_task_cb,
1626 	    task, TQ_SLEEP);
1627 	return (0);
1628 }
1629 
1630 /*
1631  * Traverse all child datasets and apply the property appropriately.
1632  * We call dsl_prop_set_sync_impl() here to set the value only on the toplevel
1633  * dataset and read the effective "property" on every child in the callback
1634  * function: this is because the value is not guaranteed to be the same in the
1635  * whole dataset hierarchy.
1636  */
1637 static void
1638 zvol_set_common_sync(void *arg, dmu_tx_t *tx)
1639 {
1640 	zvol_set_prop_int_arg_t *zsda = arg;
1641 	dsl_pool_t *dp = dmu_tx_pool(tx);
1642 	dsl_dir_t *dd;
1643 	dsl_dataset_t *ds;
1644 	int error;
1645 
1646 	VERIFY0(dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL));
1647 
1648 	error = dsl_dataset_hold(dp, zsda->zsda_name, FTAG, &ds);
1649 	if (error == 0) {
1650 		dsl_prop_set_sync_impl(ds, zfs_prop_to_name(zsda->zsda_prop),
1651 		    zsda->zsda_source, sizeof (zsda->zsda_value), 1,
1652 		    &zsda->zsda_value, tx);
1653 		dsl_dataset_rele(ds, FTAG);
1654 	}
1655 
1656 	dmu_objset_find_dp(dp, dd->dd_object, zvol_set_common_sync_cb,
1657 	    zsda, DS_FIND_CHILDREN);
1658 
1659 	dsl_dir_rele(dd, FTAG);
1660 }
1661 
1662 int
1663 zvol_set_common(const char *ddname, zfs_prop_t prop, zprop_source_t source,
1664     uint64_t val)
1665 {
1666 	zvol_set_prop_int_arg_t zsda;
1667 
1668 	zsda.zsda_name = ddname;
1669 	zsda.zsda_source = source;
1670 	zsda.zsda_value = val;
1671 	zsda.zsda_prop = prop;
1672 
1673 	return (dsl_sync_task(ddname, zvol_set_common_check,
1674 	    zvol_set_common_sync, &zsda, 0, ZFS_SPACE_CHECK_NONE));
1675 }
1676 
1677 void
1678 zvol_remove_minors(spa_t *spa, const char *name, boolean_t async)
1679 {
1680 	zvol_task_t *task;
1681 	taskqid_t id;
1682 
1683 	task = zvol_task_alloc(ZVOL_ASYNC_REMOVE_MINORS, name, NULL, ~0ULL);
1684 	if (task == NULL)
1685 		return;
1686 
1687 	id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
1688 	if ((async == B_FALSE) && (id != TASKQID_INVALID))
1689 		taskq_wait_id(spa->spa_zvol_taskq, id);
1690 }
1691 
1692 void
1693 zvol_rename_minors(spa_t *spa, const char *name1, const char *name2,
1694     boolean_t async)
1695 {
1696 	zvol_task_t *task;
1697 	taskqid_t id;
1698 
1699 	task = zvol_task_alloc(ZVOL_ASYNC_RENAME_MINORS, name1, name2, ~0ULL);
1700 	if (task == NULL)
1701 		return;
1702 
1703 	id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
1704 	if ((async == B_FALSE) && (id != TASKQID_INVALID))
1705 		taskq_wait_id(spa->spa_zvol_taskq, id);
1706 }
1707 
1708 boolean_t
1709 zvol_is_zvol(const char *name)
1710 {
1711 
1712 	return (zvol_os_is_zvol(name));
1713 }
1714 
1715 int
1716 zvol_init_impl(void)
1717 {
1718 	int i;
1719 
1720 	list_create(&zvol_state_list, sizeof (zvol_state_t),
1721 	    offsetof(zvol_state_t, zv_next));
1722 	rw_init(&zvol_state_lock, NULL, RW_DEFAULT, NULL);
1723 
1724 	zvol_htable = kmem_alloc(ZVOL_HT_SIZE * sizeof (struct hlist_head),
1725 	    KM_SLEEP);
1726 	for (i = 0; i < ZVOL_HT_SIZE; i++)
1727 		INIT_HLIST_HEAD(&zvol_htable[i]);
1728 
1729 	return (0);
1730 }
1731 
1732 void
1733 zvol_fini_impl(void)
1734 {
1735 	zvol_remove_minors_impl(NULL);
1736 
1737 	/*
1738 	 * The call to "zvol_remove_minors_impl" may dispatch entries to
1739 	 * the system_taskq, but it doesn't wait for those entries to
1740 	 * complete before it returns. Thus, we must wait for all of the
1741 	 * removals to finish, before we can continue.
1742 	 */
1743 	taskq_wait_outstanding(system_taskq, 0);
1744 
1745 	kmem_free(zvol_htable, ZVOL_HT_SIZE * sizeof (struct hlist_head));
1746 	list_destroy(&zvol_state_list);
1747 	rw_destroy(&zvol_state_lock);
1748 }
1749