1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC. 23 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER). 24 * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>. 25 * LLNL-CODE-403049. 26 * 27 * ZFS volume emulation driver. 28 * 29 * Makes a DMU object look like a volume of arbitrary size, up to 2^64 bytes. 30 * Volumes are accessed through the symbolic links named: 31 * 32 * /dev/<pool_name>/<dataset_name> 33 * 34 * Volumes are persistent through reboot and module load. No user command 35 * needs to be run before opening and using a device. 36 * 37 * Copyright 2014 Nexenta Systems, Inc. All rights reserved. 38 * Copyright (c) 2016 Actifio, Inc. All rights reserved. 39 * Copyright (c) 2012, 2019 by Delphix. All rights reserved. 40 */ 41 42 /* 43 * Note on locking of zvol state structures. 44 * 45 * These structures are used to maintain internal state used to emulate block 46 * devices on top of zvols. In particular, management of device minor number 47 * operations - create, remove, rename, and set_snapdev - involves access to 48 * these structures. The zvol_state_lock is primarily used to protect the 49 * zvol_state_list. The zv->zv_state_lock is used to protect the contents 50 * of the zvol_state_t structures, as well as to make sure that when the 51 * time comes to remove the structure from the list, it is not in use, and 52 * therefore, it can be taken off zvol_state_list and freed. 53 * 54 * The zv_suspend_lock was introduced to allow for suspending I/O to a zvol, 55 * e.g. for the duration of receive and rollback operations. This lock can be 56 * held for significant periods of time. Given that it is undesirable to hold 57 * mutexes for long periods of time, the following lock ordering applies: 58 * - take zvol_state_lock if necessary, to protect zvol_state_list 59 * - take zv_suspend_lock if necessary, by the code path in question 60 * - take zv_state_lock to protect zvol_state_t 61 * 62 * The minor operations are issued to spa->spa_zvol_taskq queues, that are 63 * single-threaded (to preserve order of minor operations), and are executed 64 * through the zvol_task_cb that dispatches the specific operations. Therefore, 65 * these operations are serialized per pool. Consequently, we can be certain 66 * that for a given zvol, there is only one operation at a time in progress. 67 * That is why one can be sure that first, zvol_state_t for a given zvol is 68 * allocated and placed on zvol_state_list, and then other minor operations 69 * for this zvol are going to proceed in the order of issue. 70 * 71 */ 72 73 #include <sys/dataset_kstats.h> 74 #include <sys/dbuf.h> 75 #include <sys/dmu_traverse.h> 76 #include <sys/dsl_dataset.h> 77 #include <sys/dsl_prop.h> 78 #include <sys/dsl_dir.h> 79 #include <sys/zap.h> 80 #include <sys/zfeature.h> 81 #include <sys/zil_impl.h> 82 #include <sys/dmu_tx.h> 83 #include <sys/zio.h> 84 #include <sys/zfs_rlock.h> 85 #include <sys/spa_impl.h> 86 #include <sys/zvol.h> 87 #include <sys/zvol_impl.h> 88 89 unsigned int zvol_inhibit_dev = 0; 90 unsigned int zvol_volmode = ZFS_VOLMODE_GEOM; 91 92 struct hlist_head *zvol_htable; 93 static list_t zvol_state_list; 94 krwlock_t zvol_state_lock; 95 96 typedef enum { 97 ZVOL_ASYNC_REMOVE_MINORS, 98 ZVOL_ASYNC_RENAME_MINORS, 99 ZVOL_ASYNC_SET_SNAPDEV, 100 ZVOL_ASYNC_SET_VOLMODE, 101 ZVOL_ASYNC_MAX 102 } zvol_async_op_t; 103 104 typedef struct { 105 zvol_async_op_t op; 106 char name1[MAXNAMELEN]; 107 char name2[MAXNAMELEN]; 108 uint64_t value; 109 } zvol_task_t; 110 111 uint64_t 112 zvol_name_hash(const char *name) 113 { 114 uint64_t crc = -1ULL; 115 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 116 for (const uint8_t *p = (const uint8_t *)name; *p != 0; p++) 117 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (*p)) & 0xFF]; 118 return (crc); 119 } 120 121 /* 122 * Find a zvol_state_t given the name and hash generated by zvol_name_hash. 123 * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise, 124 * return (NULL) without the taking locks. The zv_suspend_lock is always taken 125 * before zv_state_lock. The mode argument indicates the mode (including none) 126 * for zv_suspend_lock to be taken. 127 */ 128 zvol_state_t * 129 zvol_find_by_name_hash(const char *name, uint64_t hash, int mode) 130 { 131 zvol_state_t *zv; 132 struct hlist_node *p = NULL; 133 134 rw_enter(&zvol_state_lock, RW_READER); 135 hlist_for_each(p, ZVOL_HT_HEAD(hash)) { 136 zv = hlist_entry(p, zvol_state_t, zv_hlink); 137 mutex_enter(&zv->zv_state_lock); 138 if (zv->zv_hash == hash && strcmp(zv->zv_name, name) == 0) { 139 /* 140 * this is the right zvol, take the locks in the 141 * right order 142 */ 143 if (mode != RW_NONE && 144 !rw_tryenter(&zv->zv_suspend_lock, mode)) { 145 mutex_exit(&zv->zv_state_lock); 146 rw_enter(&zv->zv_suspend_lock, mode); 147 mutex_enter(&zv->zv_state_lock); 148 /* 149 * zvol cannot be renamed as we continue 150 * to hold zvol_state_lock 151 */ 152 ASSERT(zv->zv_hash == hash && 153 strcmp(zv->zv_name, name) == 0); 154 } 155 rw_exit(&zvol_state_lock); 156 return (zv); 157 } 158 mutex_exit(&zv->zv_state_lock); 159 } 160 rw_exit(&zvol_state_lock); 161 162 return (NULL); 163 } 164 165 /* 166 * Find a zvol_state_t given the name. 167 * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise, 168 * return (NULL) without the taking locks. The zv_suspend_lock is always taken 169 * before zv_state_lock. The mode argument indicates the mode (including none) 170 * for zv_suspend_lock to be taken. 171 */ 172 static zvol_state_t * 173 zvol_find_by_name(const char *name, int mode) 174 { 175 return (zvol_find_by_name_hash(name, zvol_name_hash(name), mode)); 176 } 177 178 /* 179 * ZFS_IOC_CREATE callback handles dmu zvol and zap object creation. 180 */ 181 void 182 zvol_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) 183 { 184 zfs_creat_t *zct = arg; 185 nvlist_t *nvprops = zct->zct_props; 186 int error; 187 uint64_t volblocksize, volsize; 188 189 VERIFY(nvlist_lookup_uint64(nvprops, 190 zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) == 0); 191 if (nvlist_lookup_uint64(nvprops, 192 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize) != 0) 193 volblocksize = zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE); 194 195 /* 196 * These properties must be removed from the list so the generic 197 * property setting step won't apply to them. 198 */ 199 VERIFY(nvlist_remove_all(nvprops, 200 zfs_prop_to_name(ZFS_PROP_VOLSIZE)) == 0); 201 (void) nvlist_remove_all(nvprops, 202 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE)); 203 204 error = dmu_object_claim(os, ZVOL_OBJ, DMU_OT_ZVOL, volblocksize, 205 DMU_OT_NONE, 0, tx); 206 ASSERT(error == 0); 207 208 error = zap_create_claim(os, ZVOL_ZAP_OBJ, DMU_OT_ZVOL_PROP, 209 DMU_OT_NONE, 0, tx); 210 ASSERT(error == 0); 211 212 error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize, tx); 213 ASSERT(error == 0); 214 } 215 216 /* 217 * ZFS_IOC_OBJSET_STATS entry point. 218 */ 219 int 220 zvol_get_stats(objset_t *os, nvlist_t *nv) 221 { 222 int error; 223 dmu_object_info_t *doi; 224 uint64_t val; 225 226 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &val); 227 if (error) 228 return (SET_ERROR(error)); 229 230 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLSIZE, val); 231 doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP); 232 error = dmu_object_info(os, ZVOL_OBJ, doi); 233 234 if (error == 0) { 235 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLBLOCKSIZE, 236 doi->doi_data_block_size); 237 } 238 239 kmem_free(doi, sizeof (dmu_object_info_t)); 240 241 return (SET_ERROR(error)); 242 } 243 244 /* 245 * Sanity check volume size. 246 */ 247 int 248 zvol_check_volsize(uint64_t volsize, uint64_t blocksize) 249 { 250 if (volsize == 0) 251 return (SET_ERROR(EINVAL)); 252 253 if (volsize % blocksize != 0) 254 return (SET_ERROR(EINVAL)); 255 256 #ifdef _ILP32 257 if (volsize - 1 > SPEC_MAXOFFSET_T) 258 return (SET_ERROR(EOVERFLOW)); 259 #endif 260 return (0); 261 } 262 263 /* 264 * Ensure the zap is flushed then inform the VFS of the capacity change. 265 */ 266 static int 267 zvol_update_volsize(uint64_t volsize, objset_t *os) 268 { 269 dmu_tx_t *tx; 270 int error; 271 uint64_t txg; 272 273 tx = dmu_tx_create(os); 274 dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL); 275 dmu_tx_mark_netfree(tx); 276 error = dmu_tx_assign(tx, TXG_WAIT); 277 if (error) { 278 dmu_tx_abort(tx); 279 return (SET_ERROR(error)); 280 } 281 txg = dmu_tx_get_txg(tx); 282 283 error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, 284 &volsize, tx); 285 dmu_tx_commit(tx); 286 287 txg_wait_synced(dmu_objset_pool(os), txg); 288 289 if (error == 0) 290 error = dmu_free_long_range(os, 291 ZVOL_OBJ, volsize, DMU_OBJECT_END); 292 293 return (error); 294 } 295 296 /* 297 * Set ZFS_PROP_VOLSIZE set entry point. Note that modifying the volume 298 * size will result in a udev "change" event being generated. 299 */ 300 int 301 zvol_set_volsize(const char *name, uint64_t volsize) 302 { 303 objset_t *os = NULL; 304 uint64_t readonly; 305 int error; 306 boolean_t owned = B_FALSE; 307 308 error = dsl_prop_get_integer(name, 309 zfs_prop_to_name(ZFS_PROP_READONLY), &readonly, NULL); 310 if (error != 0) 311 return (SET_ERROR(error)); 312 if (readonly) 313 return (SET_ERROR(EROFS)); 314 315 zvol_state_t *zv = zvol_find_by_name(name, RW_READER); 316 317 ASSERT(zv == NULL || (MUTEX_HELD(&zv->zv_state_lock) && 318 RW_READ_HELD(&zv->zv_suspend_lock))); 319 320 if (zv == NULL || zv->zv_objset == NULL) { 321 if (zv != NULL) 322 rw_exit(&zv->zv_suspend_lock); 323 if ((error = dmu_objset_own(name, DMU_OST_ZVOL, B_FALSE, B_TRUE, 324 FTAG, &os)) != 0) { 325 if (zv != NULL) 326 mutex_exit(&zv->zv_state_lock); 327 return (SET_ERROR(error)); 328 } 329 owned = B_TRUE; 330 if (zv != NULL) 331 zv->zv_objset = os; 332 } else { 333 os = zv->zv_objset; 334 } 335 336 dmu_object_info_t *doi = kmem_alloc(sizeof (*doi), KM_SLEEP); 337 338 if ((error = dmu_object_info(os, ZVOL_OBJ, doi)) || 339 (error = zvol_check_volsize(volsize, doi->doi_data_block_size))) 340 goto out; 341 342 error = zvol_update_volsize(volsize, os); 343 if (error == 0 && zv != NULL) { 344 zv->zv_volsize = volsize; 345 zv->zv_changed = 1; 346 } 347 out: 348 kmem_free(doi, sizeof (dmu_object_info_t)); 349 350 if (owned) { 351 dmu_objset_disown(os, B_TRUE, FTAG); 352 if (zv != NULL) 353 zv->zv_objset = NULL; 354 } else { 355 rw_exit(&zv->zv_suspend_lock); 356 } 357 358 if (zv != NULL) 359 mutex_exit(&zv->zv_state_lock); 360 361 if (error == 0 && zv != NULL) 362 zvol_os_update_volsize(zv, volsize); 363 364 return (SET_ERROR(error)); 365 } 366 367 /* 368 * Update volthreading. 369 */ 370 int 371 zvol_set_volthreading(const char *name, boolean_t value) 372 { 373 zvol_state_t *zv = zvol_find_by_name(name, RW_NONE); 374 if (zv == NULL) 375 return (ENOENT); 376 zv->zv_threading = value; 377 mutex_exit(&zv->zv_state_lock); 378 return (0); 379 } 380 381 /* 382 * Update zvol ro property. 383 */ 384 int 385 zvol_set_ro(const char *name, boolean_t value) 386 { 387 zvol_state_t *zv = zvol_find_by_name(name, RW_NONE); 388 if (zv == NULL) 389 return (-1); 390 if (value) { 391 zvol_os_set_disk_ro(zv, 1); 392 zv->zv_flags |= ZVOL_RDONLY; 393 } else { 394 zvol_os_set_disk_ro(zv, 0); 395 zv->zv_flags &= ~ZVOL_RDONLY; 396 } 397 mutex_exit(&zv->zv_state_lock); 398 return (0); 399 } 400 401 /* 402 * Sanity check volume block size. 403 */ 404 int 405 zvol_check_volblocksize(const char *name, uint64_t volblocksize) 406 { 407 /* Record sizes above 128k need the feature to be enabled */ 408 if (volblocksize > SPA_OLD_MAXBLOCKSIZE) { 409 spa_t *spa; 410 int error; 411 412 if ((error = spa_open(name, &spa, FTAG)) != 0) 413 return (error); 414 415 if (!spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) { 416 spa_close(spa, FTAG); 417 return (SET_ERROR(ENOTSUP)); 418 } 419 420 /* 421 * We don't allow setting the property above 1MB, 422 * unless the tunable has been changed. 423 */ 424 if (volblocksize > zfs_max_recordsize) 425 return (SET_ERROR(EDOM)); 426 427 spa_close(spa, FTAG); 428 } 429 430 if (volblocksize < SPA_MINBLOCKSIZE || 431 volblocksize > SPA_MAXBLOCKSIZE || 432 !ISP2(volblocksize)) 433 return (SET_ERROR(EDOM)); 434 435 return (0); 436 } 437 438 /* 439 * Replay a TX_TRUNCATE ZIL transaction if asked. TX_TRUNCATE is how we 440 * implement DKIOCFREE/free-long-range. 441 */ 442 static int 443 zvol_replay_truncate(void *arg1, void *arg2, boolean_t byteswap) 444 { 445 zvol_state_t *zv = arg1; 446 lr_truncate_t *lr = arg2; 447 uint64_t offset, length; 448 449 ASSERT3U(lr->lr_common.lrc_reclen, >=, sizeof (*lr)); 450 451 if (byteswap) 452 byteswap_uint64_array(lr, sizeof (*lr)); 453 454 offset = lr->lr_offset; 455 length = lr->lr_length; 456 457 dmu_tx_t *tx = dmu_tx_create(zv->zv_objset); 458 dmu_tx_mark_netfree(tx); 459 int error = dmu_tx_assign(tx, TXG_WAIT); 460 if (error != 0) { 461 dmu_tx_abort(tx); 462 } else { 463 (void) zil_replaying(zv->zv_zilog, tx); 464 dmu_tx_commit(tx); 465 error = dmu_free_long_range(zv->zv_objset, ZVOL_OBJ, offset, 466 length); 467 } 468 469 return (error); 470 } 471 472 /* 473 * Replay a TX_WRITE ZIL transaction that didn't get committed 474 * after a system failure 475 */ 476 static int 477 zvol_replay_write(void *arg1, void *arg2, boolean_t byteswap) 478 { 479 zvol_state_t *zv = arg1; 480 lr_write_t *lr = arg2; 481 objset_t *os = zv->zv_objset; 482 char *data = (char *)(lr + 1); /* data follows lr_write_t */ 483 uint64_t offset, length; 484 dmu_tx_t *tx; 485 int error; 486 487 ASSERT3U(lr->lr_common.lrc_reclen, >=, sizeof (*lr)); 488 489 if (byteswap) 490 byteswap_uint64_array(lr, sizeof (*lr)); 491 492 offset = lr->lr_offset; 493 length = lr->lr_length; 494 495 /* If it's a dmu_sync() block, write the whole block */ 496 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) { 497 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr); 498 if (length < blocksize) { 499 offset -= offset % blocksize; 500 length = blocksize; 501 } 502 } 503 504 tx = dmu_tx_create(os); 505 dmu_tx_hold_write(tx, ZVOL_OBJ, offset, length); 506 error = dmu_tx_assign(tx, TXG_WAIT); 507 if (error) { 508 dmu_tx_abort(tx); 509 } else { 510 dmu_write(os, ZVOL_OBJ, offset, length, data, tx); 511 (void) zil_replaying(zv->zv_zilog, tx); 512 dmu_tx_commit(tx); 513 } 514 515 return (error); 516 } 517 518 static int 519 zvol_replay_err(void *arg1, void *arg2, boolean_t byteswap) 520 { 521 (void) arg1, (void) arg2, (void) byteswap; 522 return (SET_ERROR(ENOTSUP)); 523 } 524 525 /* 526 * Callback vectors for replaying records. 527 * Only TX_WRITE and TX_TRUNCATE are needed for zvol. 528 */ 529 zil_replay_func_t *const zvol_replay_vector[TX_MAX_TYPE] = { 530 zvol_replay_err, /* no such transaction type */ 531 zvol_replay_err, /* TX_CREATE */ 532 zvol_replay_err, /* TX_MKDIR */ 533 zvol_replay_err, /* TX_MKXATTR */ 534 zvol_replay_err, /* TX_SYMLINK */ 535 zvol_replay_err, /* TX_REMOVE */ 536 zvol_replay_err, /* TX_RMDIR */ 537 zvol_replay_err, /* TX_LINK */ 538 zvol_replay_err, /* TX_RENAME */ 539 zvol_replay_write, /* TX_WRITE */ 540 zvol_replay_truncate, /* TX_TRUNCATE */ 541 zvol_replay_err, /* TX_SETATTR */ 542 zvol_replay_err, /* TX_ACL */ 543 zvol_replay_err, /* TX_CREATE_ATTR */ 544 zvol_replay_err, /* TX_CREATE_ACL_ATTR */ 545 zvol_replay_err, /* TX_MKDIR_ACL */ 546 zvol_replay_err, /* TX_MKDIR_ATTR */ 547 zvol_replay_err, /* TX_MKDIR_ACL_ATTR */ 548 zvol_replay_err, /* TX_WRITE2 */ 549 zvol_replay_err, /* TX_SETSAXATTR */ 550 zvol_replay_err, /* TX_RENAME_EXCHANGE */ 551 zvol_replay_err, /* TX_RENAME_WHITEOUT */ 552 zvol_replay_err, /* TX_CLONE_RANGE */ 553 }; 554 555 /* 556 * zvol_log_write() handles synchronous writes using TX_WRITE ZIL transactions. 557 * 558 * We store data in the log buffers if it's small enough. 559 * Otherwise we will later flush the data out via dmu_sync(). 560 */ 561 static const ssize_t zvol_immediate_write_sz = 32768; 562 563 void 564 zvol_log_write(zvol_state_t *zv, dmu_tx_t *tx, uint64_t offset, 565 uint64_t size, boolean_t commit) 566 { 567 uint32_t blocksize = zv->zv_volblocksize; 568 zilog_t *zilog = zv->zv_zilog; 569 itx_wr_state_t write_state; 570 uint64_t sz = size; 571 572 if (zil_replaying(zilog, tx)) 573 return; 574 575 if (zilog->zl_logbias == ZFS_LOGBIAS_THROUGHPUT) 576 write_state = WR_INDIRECT; 577 else if (!spa_has_slogs(zilog->zl_spa) && 578 size >= blocksize && blocksize > zvol_immediate_write_sz) 579 write_state = WR_INDIRECT; 580 else if (commit) 581 write_state = WR_COPIED; 582 else 583 write_state = WR_NEED_COPY; 584 585 while (size) { 586 itx_t *itx; 587 lr_write_t *lr; 588 itx_wr_state_t wr_state = write_state; 589 ssize_t len = size; 590 591 if (wr_state == WR_COPIED && size > zil_max_copied_data(zilog)) 592 wr_state = WR_NEED_COPY; 593 else if (wr_state == WR_INDIRECT) 594 len = MIN(blocksize - P2PHASE(offset, blocksize), size); 595 596 itx = zil_itx_create(TX_WRITE, sizeof (*lr) + 597 (wr_state == WR_COPIED ? len : 0)); 598 lr = (lr_write_t *)&itx->itx_lr; 599 if (wr_state == WR_COPIED && dmu_read_by_dnode(zv->zv_dn, 600 offset, len, lr+1, DMU_READ_NO_PREFETCH) != 0) { 601 zil_itx_destroy(itx); 602 itx = zil_itx_create(TX_WRITE, sizeof (*lr)); 603 lr = (lr_write_t *)&itx->itx_lr; 604 wr_state = WR_NEED_COPY; 605 } 606 607 itx->itx_wr_state = wr_state; 608 lr->lr_foid = ZVOL_OBJ; 609 lr->lr_offset = offset; 610 lr->lr_length = len; 611 lr->lr_blkoff = 0; 612 BP_ZERO(&lr->lr_blkptr); 613 614 itx->itx_private = zv; 615 616 (void) zil_itx_assign(zilog, itx, tx); 617 618 offset += len; 619 size -= len; 620 } 621 622 if (write_state == WR_COPIED || write_state == WR_NEED_COPY) { 623 dsl_pool_wrlog_count(zilog->zl_dmu_pool, sz, tx->tx_txg); 624 } 625 } 626 627 /* 628 * Log a DKIOCFREE/free-long-range to the ZIL with TX_TRUNCATE. 629 */ 630 void 631 zvol_log_truncate(zvol_state_t *zv, dmu_tx_t *tx, uint64_t off, uint64_t len) 632 { 633 itx_t *itx; 634 lr_truncate_t *lr; 635 zilog_t *zilog = zv->zv_zilog; 636 637 if (zil_replaying(zilog, tx)) 638 return; 639 640 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr)); 641 lr = (lr_truncate_t *)&itx->itx_lr; 642 lr->lr_foid = ZVOL_OBJ; 643 lr->lr_offset = off; 644 lr->lr_length = len; 645 646 zil_itx_assign(zilog, itx, tx); 647 } 648 649 650 static void 651 zvol_get_done(zgd_t *zgd, int error) 652 { 653 (void) error; 654 if (zgd->zgd_db) 655 dmu_buf_rele(zgd->zgd_db, zgd); 656 657 zfs_rangelock_exit(zgd->zgd_lr); 658 659 kmem_free(zgd, sizeof (zgd_t)); 660 } 661 662 /* 663 * Get data to generate a TX_WRITE intent log record. 664 */ 665 int 666 zvol_get_data(void *arg, uint64_t arg2, lr_write_t *lr, char *buf, 667 struct lwb *lwb, zio_t *zio) 668 { 669 zvol_state_t *zv = arg; 670 uint64_t offset = lr->lr_offset; 671 uint64_t size = lr->lr_length; 672 dmu_buf_t *db; 673 zgd_t *zgd; 674 int error; 675 676 ASSERT3P(lwb, !=, NULL); 677 ASSERT3U(size, !=, 0); 678 679 zgd = kmem_zalloc(sizeof (zgd_t), KM_SLEEP); 680 zgd->zgd_lwb = lwb; 681 682 /* 683 * Write records come in two flavors: immediate and indirect. 684 * For small writes it's cheaper to store the data with the 685 * log record (immediate); for large writes it's cheaper to 686 * sync the data and get a pointer to it (indirect) so that 687 * we don't have to write the data twice. 688 */ 689 if (buf != NULL) { /* immediate write */ 690 zgd->zgd_lr = zfs_rangelock_enter(&zv->zv_rangelock, offset, 691 size, RL_READER); 692 error = dmu_read_by_dnode(zv->zv_dn, offset, size, buf, 693 DMU_READ_NO_PREFETCH); 694 } else { /* indirect write */ 695 ASSERT3P(zio, !=, NULL); 696 /* 697 * Have to lock the whole block to ensure when it's written out 698 * and its checksum is being calculated that no one can change 699 * the data. Contrarily to zfs_get_data we need not re-check 700 * blocksize after we get the lock because it cannot be changed. 701 */ 702 size = zv->zv_volblocksize; 703 offset = P2ALIGN_TYPED(offset, size, uint64_t); 704 zgd->zgd_lr = zfs_rangelock_enter(&zv->zv_rangelock, offset, 705 size, RL_READER); 706 error = dmu_buf_hold_noread_by_dnode(zv->zv_dn, offset, zgd, 707 &db); 708 if (error == 0) { 709 blkptr_t *bp = &lr->lr_blkptr; 710 711 zgd->zgd_db = db; 712 zgd->zgd_bp = bp; 713 714 ASSERT(db != NULL); 715 ASSERT(db->db_offset == offset); 716 ASSERT(db->db_size == size); 717 718 error = dmu_sync(zio, lr->lr_common.lrc_txg, 719 zvol_get_done, zgd); 720 721 if (error == 0) 722 return (0); 723 } 724 } 725 726 zvol_get_done(zgd, error); 727 728 return (SET_ERROR(error)); 729 } 730 731 /* 732 * The zvol_state_t's are inserted into zvol_state_list and zvol_htable. 733 */ 734 735 void 736 zvol_insert(zvol_state_t *zv) 737 { 738 ASSERT(RW_WRITE_HELD(&zvol_state_lock)); 739 list_insert_head(&zvol_state_list, zv); 740 hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash)); 741 } 742 743 /* 744 * Simply remove the zvol from to list of zvols. 745 */ 746 static void 747 zvol_remove(zvol_state_t *zv) 748 { 749 ASSERT(RW_WRITE_HELD(&zvol_state_lock)); 750 list_remove(&zvol_state_list, zv); 751 hlist_del(&zv->zv_hlink); 752 } 753 754 /* 755 * Setup zv after we just own the zv->objset 756 */ 757 static int 758 zvol_setup_zv(zvol_state_t *zv) 759 { 760 uint64_t volsize; 761 int error; 762 uint64_t ro; 763 objset_t *os = zv->zv_objset; 764 765 ASSERT(MUTEX_HELD(&zv->zv_state_lock)); 766 ASSERT(RW_LOCK_HELD(&zv->zv_suspend_lock)); 767 768 zv->zv_zilog = NULL; 769 zv->zv_flags &= ~ZVOL_WRITTEN_TO; 770 771 error = dsl_prop_get_integer(zv->zv_name, "readonly", &ro, NULL); 772 if (error) 773 return (SET_ERROR(error)); 774 775 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize); 776 if (error) 777 return (SET_ERROR(error)); 778 779 error = dnode_hold(os, ZVOL_OBJ, zv, &zv->zv_dn); 780 if (error) 781 return (SET_ERROR(error)); 782 783 zvol_os_set_capacity(zv, volsize >> 9); 784 zv->zv_volsize = volsize; 785 786 if (ro || dmu_objset_is_snapshot(os) || 787 !spa_writeable(dmu_objset_spa(os))) { 788 zvol_os_set_disk_ro(zv, 1); 789 zv->zv_flags |= ZVOL_RDONLY; 790 } else { 791 zvol_os_set_disk_ro(zv, 0); 792 zv->zv_flags &= ~ZVOL_RDONLY; 793 } 794 return (0); 795 } 796 797 /* 798 * Shutdown every zv_objset related stuff except zv_objset itself. 799 * The is the reverse of zvol_setup_zv. 800 */ 801 static void 802 zvol_shutdown_zv(zvol_state_t *zv) 803 { 804 ASSERT(MUTEX_HELD(&zv->zv_state_lock) && 805 RW_LOCK_HELD(&zv->zv_suspend_lock)); 806 807 if (zv->zv_flags & ZVOL_WRITTEN_TO) { 808 ASSERT(zv->zv_zilog != NULL); 809 zil_close(zv->zv_zilog); 810 } 811 812 zv->zv_zilog = NULL; 813 814 dnode_rele(zv->zv_dn, zv); 815 zv->zv_dn = NULL; 816 817 /* 818 * Evict cached data. We must write out any dirty data before 819 * disowning the dataset. 820 */ 821 if (zv->zv_flags & ZVOL_WRITTEN_TO) 822 txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0); 823 (void) dmu_objset_evict_dbufs(zv->zv_objset); 824 } 825 826 /* 827 * return the proper tag for rollback and recv 828 */ 829 void * 830 zvol_tag(zvol_state_t *zv) 831 { 832 ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock)); 833 return (zv->zv_open_count > 0 ? zv : NULL); 834 } 835 836 /* 837 * Suspend the zvol for recv and rollback. 838 */ 839 zvol_state_t * 840 zvol_suspend(const char *name) 841 { 842 zvol_state_t *zv; 843 844 zv = zvol_find_by_name(name, RW_WRITER); 845 846 if (zv == NULL) 847 return (NULL); 848 849 /* block all I/O, release in zvol_resume. */ 850 ASSERT(MUTEX_HELD(&zv->zv_state_lock)); 851 ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock)); 852 853 atomic_inc(&zv->zv_suspend_ref); 854 855 if (zv->zv_open_count > 0) 856 zvol_shutdown_zv(zv); 857 858 /* 859 * do not hold zv_state_lock across suspend/resume to 860 * avoid locking up zvol lookups 861 */ 862 mutex_exit(&zv->zv_state_lock); 863 864 /* zv_suspend_lock is released in zvol_resume() */ 865 return (zv); 866 } 867 868 int 869 zvol_resume(zvol_state_t *zv) 870 { 871 int error = 0; 872 873 ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock)); 874 875 mutex_enter(&zv->zv_state_lock); 876 877 if (zv->zv_open_count > 0) { 878 VERIFY0(dmu_objset_hold(zv->zv_name, zv, &zv->zv_objset)); 879 VERIFY3P(zv->zv_objset->os_dsl_dataset->ds_owner, ==, zv); 880 VERIFY(dsl_dataset_long_held(zv->zv_objset->os_dsl_dataset)); 881 dmu_objset_rele(zv->zv_objset, zv); 882 883 error = zvol_setup_zv(zv); 884 } 885 886 mutex_exit(&zv->zv_state_lock); 887 888 rw_exit(&zv->zv_suspend_lock); 889 /* 890 * We need this because we don't hold zvol_state_lock while releasing 891 * zv_suspend_lock. zvol_remove_minors_impl thus cannot check 892 * zv_suspend_lock to determine it is safe to free because rwlock is 893 * not inherent atomic. 894 */ 895 atomic_dec(&zv->zv_suspend_ref); 896 897 return (SET_ERROR(error)); 898 } 899 900 int 901 zvol_first_open(zvol_state_t *zv, boolean_t readonly) 902 { 903 objset_t *os; 904 int error; 905 906 ASSERT(RW_READ_HELD(&zv->zv_suspend_lock)); 907 ASSERT(MUTEX_HELD(&zv->zv_state_lock)); 908 ASSERT(mutex_owned(&spa_namespace_lock)); 909 910 boolean_t ro = (readonly || (strchr(zv->zv_name, '@') != NULL)); 911 error = dmu_objset_own(zv->zv_name, DMU_OST_ZVOL, ro, B_TRUE, zv, &os); 912 if (error) 913 return (SET_ERROR(error)); 914 915 zv->zv_objset = os; 916 917 error = zvol_setup_zv(zv); 918 if (error) { 919 dmu_objset_disown(os, 1, zv); 920 zv->zv_objset = NULL; 921 } 922 923 return (error); 924 } 925 926 void 927 zvol_last_close(zvol_state_t *zv) 928 { 929 ASSERT(RW_READ_HELD(&zv->zv_suspend_lock)); 930 ASSERT(MUTEX_HELD(&zv->zv_state_lock)); 931 932 zvol_shutdown_zv(zv); 933 934 dmu_objset_disown(zv->zv_objset, 1, zv); 935 zv->zv_objset = NULL; 936 } 937 938 typedef struct minors_job { 939 list_t *list; 940 list_node_t link; 941 /* input */ 942 char *name; 943 /* output */ 944 int error; 945 } minors_job_t; 946 947 /* 948 * Prefetch zvol dnodes for the minors_job 949 */ 950 static void 951 zvol_prefetch_minors_impl(void *arg) 952 { 953 minors_job_t *job = arg; 954 char *dsname = job->name; 955 objset_t *os = NULL; 956 957 job->error = dmu_objset_own(dsname, DMU_OST_ZVOL, B_TRUE, B_TRUE, 958 FTAG, &os); 959 if (job->error == 0) { 960 dmu_prefetch_dnode(os, ZVOL_OBJ, ZIO_PRIORITY_SYNC_READ); 961 dmu_objset_disown(os, B_TRUE, FTAG); 962 } 963 } 964 965 /* 966 * Mask errors to continue dmu_objset_find() traversal 967 */ 968 static int 969 zvol_create_snap_minor_cb(const char *dsname, void *arg) 970 { 971 minors_job_t *j = arg; 972 list_t *minors_list = j->list; 973 const char *name = j->name; 974 975 ASSERT0(MUTEX_HELD(&spa_namespace_lock)); 976 977 /* skip the designated dataset */ 978 if (name && strcmp(dsname, name) == 0) 979 return (0); 980 981 /* at this point, the dsname should name a snapshot */ 982 if (strchr(dsname, '@') == 0) { 983 dprintf("zvol_create_snap_minor_cb(): " 984 "%s is not a snapshot name\n", dsname); 985 } else { 986 minors_job_t *job; 987 char *n = kmem_strdup(dsname); 988 if (n == NULL) 989 return (0); 990 991 job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP); 992 job->name = n; 993 job->list = minors_list; 994 job->error = 0; 995 list_insert_tail(minors_list, job); 996 /* don't care if dispatch fails, because job->error is 0 */ 997 taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job, 998 TQ_SLEEP); 999 } 1000 1001 return (0); 1002 } 1003 1004 /* 1005 * If spa_keystore_load_wkey() is called for an encrypted zvol, 1006 * we need to look for any clones also using the key. This function 1007 * is "best effort" - so we just skip over it if there are failures. 1008 */ 1009 static void 1010 zvol_add_clones(const char *dsname, list_t *minors_list) 1011 { 1012 /* Also check if it has clones */ 1013 dsl_dir_t *dd = NULL; 1014 dsl_pool_t *dp = NULL; 1015 1016 if (dsl_pool_hold(dsname, FTAG, &dp) != 0) 1017 return; 1018 1019 if (!spa_feature_is_enabled(dp->dp_spa, 1020 SPA_FEATURE_ENCRYPTION)) 1021 goto out; 1022 1023 if (dsl_dir_hold(dp, dsname, FTAG, &dd, NULL) != 0) 1024 goto out; 1025 1026 if (dsl_dir_phys(dd)->dd_clones == 0) 1027 goto out; 1028 1029 zap_cursor_t *zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP); 1030 zap_attribute_t *za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP); 1031 objset_t *mos = dd->dd_pool->dp_meta_objset; 1032 1033 for (zap_cursor_init(zc, mos, dsl_dir_phys(dd)->dd_clones); 1034 zap_cursor_retrieve(zc, za) == 0; 1035 zap_cursor_advance(zc)) { 1036 dsl_dataset_t *clone; 1037 minors_job_t *job; 1038 1039 if (dsl_dataset_hold_obj(dd->dd_pool, 1040 za->za_first_integer, FTAG, &clone) == 0) { 1041 1042 char name[ZFS_MAX_DATASET_NAME_LEN]; 1043 dsl_dataset_name(clone, name); 1044 1045 char *n = kmem_strdup(name); 1046 job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP); 1047 job->name = n; 1048 job->list = minors_list; 1049 job->error = 0; 1050 list_insert_tail(minors_list, job); 1051 1052 dsl_dataset_rele(clone, FTAG); 1053 } 1054 } 1055 zap_cursor_fini(zc); 1056 kmem_free(za, sizeof (zap_attribute_t)); 1057 kmem_free(zc, sizeof (zap_cursor_t)); 1058 1059 out: 1060 if (dd != NULL) 1061 dsl_dir_rele(dd, FTAG); 1062 dsl_pool_rele(dp, FTAG); 1063 } 1064 1065 /* 1066 * Mask errors to continue dmu_objset_find() traversal 1067 */ 1068 static int 1069 zvol_create_minors_cb(const char *dsname, void *arg) 1070 { 1071 uint64_t snapdev; 1072 int error; 1073 list_t *minors_list = arg; 1074 1075 ASSERT0(MUTEX_HELD(&spa_namespace_lock)); 1076 1077 error = dsl_prop_get_integer(dsname, "snapdev", &snapdev, NULL); 1078 if (error) 1079 return (0); 1080 1081 /* 1082 * Given the name and the 'snapdev' property, create device minor nodes 1083 * with the linkages to zvols/snapshots as needed. 1084 * If the name represents a zvol, create a minor node for the zvol, then 1085 * check if its snapshots are 'visible', and if so, iterate over the 1086 * snapshots and create device minor nodes for those. 1087 */ 1088 if (strchr(dsname, '@') == 0) { 1089 minors_job_t *job; 1090 char *n = kmem_strdup(dsname); 1091 if (n == NULL) 1092 return (0); 1093 1094 job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP); 1095 job->name = n; 1096 job->list = minors_list; 1097 job->error = 0; 1098 list_insert_tail(minors_list, job); 1099 /* don't care if dispatch fails, because job->error is 0 */ 1100 taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job, 1101 TQ_SLEEP); 1102 1103 zvol_add_clones(dsname, minors_list); 1104 1105 if (snapdev == ZFS_SNAPDEV_VISIBLE) { 1106 /* 1107 * traverse snapshots only, do not traverse children, 1108 * and skip the 'dsname' 1109 */ 1110 (void) dmu_objset_find(dsname, 1111 zvol_create_snap_minor_cb, (void *)job, 1112 DS_FIND_SNAPSHOTS); 1113 } 1114 } else { 1115 dprintf("zvol_create_minors_cb(): %s is not a zvol name\n", 1116 dsname); 1117 } 1118 1119 return (0); 1120 } 1121 1122 /* 1123 * Create minors for the specified dataset, including children and snapshots. 1124 * Pay attention to the 'snapdev' property and iterate over the snapshots 1125 * only if they are 'visible'. This approach allows one to assure that the 1126 * snapshot metadata is read from disk only if it is needed. 1127 * 1128 * The name can represent a dataset to be recursively scanned for zvols and 1129 * their snapshots, or a single zvol snapshot. If the name represents a 1130 * dataset, the scan is performed in two nested stages: 1131 * - scan the dataset for zvols, and 1132 * - for each zvol, create a minor node, then check if the zvol's snapshots 1133 * are 'visible', and only then iterate over the snapshots if needed 1134 * 1135 * If the name represents a snapshot, a check is performed if the snapshot is 1136 * 'visible' (which also verifies that the parent is a zvol), and if so, 1137 * a minor node for that snapshot is created. 1138 */ 1139 void 1140 zvol_create_minors_recursive(const char *name) 1141 { 1142 list_t minors_list; 1143 minors_job_t *job; 1144 1145 if (zvol_inhibit_dev) 1146 return; 1147 1148 /* 1149 * This is the list for prefetch jobs. Whenever we found a match 1150 * during dmu_objset_find, we insert a minors_job to the list and do 1151 * taskq_dispatch to parallel prefetch zvol dnodes. Note we don't need 1152 * any lock because all list operation is done on the current thread. 1153 * 1154 * We will use this list to do zvol_os_create_minor after prefetch 1155 * so we don't have to traverse using dmu_objset_find again. 1156 */ 1157 list_create(&minors_list, sizeof (minors_job_t), 1158 offsetof(minors_job_t, link)); 1159 1160 1161 if (strchr(name, '@') != NULL) { 1162 uint64_t snapdev; 1163 1164 int error = dsl_prop_get_integer(name, "snapdev", 1165 &snapdev, NULL); 1166 1167 if (error == 0 && snapdev == ZFS_SNAPDEV_VISIBLE) 1168 (void) zvol_os_create_minor(name); 1169 } else { 1170 fstrans_cookie_t cookie = spl_fstrans_mark(); 1171 (void) dmu_objset_find(name, zvol_create_minors_cb, 1172 &minors_list, DS_FIND_CHILDREN); 1173 spl_fstrans_unmark(cookie); 1174 } 1175 1176 taskq_wait_outstanding(system_taskq, 0); 1177 1178 /* 1179 * Prefetch is completed, we can do zvol_os_create_minor 1180 * sequentially. 1181 */ 1182 while ((job = list_remove_head(&minors_list)) != NULL) { 1183 if (!job->error) 1184 (void) zvol_os_create_minor(job->name); 1185 kmem_strfree(job->name); 1186 kmem_free(job, sizeof (minors_job_t)); 1187 } 1188 1189 list_destroy(&minors_list); 1190 } 1191 1192 void 1193 zvol_create_minor(const char *name) 1194 { 1195 /* 1196 * Note: the dsl_pool_config_lock must not be held. 1197 * Minor node creation needs to obtain the zvol_state_lock. 1198 * zvol_open() obtains the zvol_state_lock and then the dsl pool 1199 * config lock. Therefore, we can't have the config lock now if 1200 * we are going to wait for the zvol_state_lock, because it 1201 * would be a lock order inversion which could lead to deadlock. 1202 */ 1203 1204 if (zvol_inhibit_dev) 1205 return; 1206 1207 if (strchr(name, '@') != NULL) { 1208 uint64_t snapdev; 1209 1210 int error = dsl_prop_get_integer(name, 1211 "snapdev", &snapdev, NULL); 1212 1213 if (error == 0 && snapdev == ZFS_SNAPDEV_VISIBLE) 1214 (void) zvol_os_create_minor(name); 1215 } else { 1216 (void) zvol_os_create_minor(name); 1217 } 1218 } 1219 1220 /* 1221 * Remove minors for specified dataset including children and snapshots. 1222 */ 1223 1224 static void 1225 zvol_free_task(void *arg) 1226 { 1227 zvol_os_free(arg); 1228 } 1229 1230 void 1231 zvol_remove_minors_impl(const char *name) 1232 { 1233 zvol_state_t *zv, *zv_next; 1234 int namelen = ((name) ? strlen(name) : 0); 1235 taskqid_t t; 1236 list_t free_list; 1237 1238 if (zvol_inhibit_dev) 1239 return; 1240 1241 list_create(&free_list, sizeof (zvol_state_t), 1242 offsetof(zvol_state_t, zv_next)); 1243 1244 rw_enter(&zvol_state_lock, RW_WRITER); 1245 1246 for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) { 1247 zv_next = list_next(&zvol_state_list, zv); 1248 1249 mutex_enter(&zv->zv_state_lock); 1250 if (name == NULL || strcmp(zv->zv_name, name) == 0 || 1251 (strncmp(zv->zv_name, name, namelen) == 0 && 1252 (zv->zv_name[namelen] == '/' || 1253 zv->zv_name[namelen] == '@'))) { 1254 /* 1255 * By holding zv_state_lock here, we guarantee that no 1256 * one is currently using this zv 1257 */ 1258 1259 /* If in use, leave alone */ 1260 if (zv->zv_open_count > 0 || 1261 atomic_read(&zv->zv_suspend_ref)) { 1262 mutex_exit(&zv->zv_state_lock); 1263 continue; 1264 } 1265 1266 zvol_remove(zv); 1267 1268 /* 1269 * Cleared while holding zvol_state_lock as a writer 1270 * which will prevent zvol_open() from opening it. 1271 */ 1272 zvol_os_clear_private(zv); 1273 1274 /* Drop zv_state_lock before zvol_free() */ 1275 mutex_exit(&zv->zv_state_lock); 1276 1277 /* Try parallel zv_free, if failed do it in place */ 1278 t = taskq_dispatch(system_taskq, zvol_free_task, zv, 1279 TQ_SLEEP); 1280 if (t == TASKQID_INVALID) 1281 list_insert_head(&free_list, zv); 1282 } else { 1283 mutex_exit(&zv->zv_state_lock); 1284 } 1285 } 1286 rw_exit(&zvol_state_lock); 1287 1288 /* Drop zvol_state_lock before calling zvol_free() */ 1289 while ((zv = list_remove_head(&free_list)) != NULL) 1290 zvol_os_free(zv); 1291 } 1292 1293 /* Remove minor for this specific volume only */ 1294 static void 1295 zvol_remove_minor_impl(const char *name) 1296 { 1297 zvol_state_t *zv = NULL, *zv_next; 1298 1299 if (zvol_inhibit_dev) 1300 return; 1301 1302 rw_enter(&zvol_state_lock, RW_WRITER); 1303 1304 for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) { 1305 zv_next = list_next(&zvol_state_list, zv); 1306 1307 mutex_enter(&zv->zv_state_lock); 1308 if (strcmp(zv->zv_name, name) == 0) { 1309 /* 1310 * By holding zv_state_lock here, we guarantee that no 1311 * one is currently using this zv 1312 */ 1313 1314 /* If in use, leave alone */ 1315 if (zv->zv_open_count > 0 || 1316 atomic_read(&zv->zv_suspend_ref)) { 1317 mutex_exit(&zv->zv_state_lock); 1318 continue; 1319 } 1320 zvol_remove(zv); 1321 1322 zvol_os_clear_private(zv); 1323 mutex_exit(&zv->zv_state_lock); 1324 break; 1325 } else { 1326 mutex_exit(&zv->zv_state_lock); 1327 } 1328 } 1329 1330 /* Drop zvol_state_lock before calling zvol_free() */ 1331 rw_exit(&zvol_state_lock); 1332 1333 if (zv != NULL) 1334 zvol_os_free(zv); 1335 } 1336 1337 /* 1338 * Rename minors for specified dataset including children and snapshots. 1339 */ 1340 static void 1341 zvol_rename_minors_impl(const char *oldname, const char *newname) 1342 { 1343 zvol_state_t *zv, *zv_next; 1344 int oldnamelen; 1345 1346 if (zvol_inhibit_dev) 1347 return; 1348 1349 oldnamelen = strlen(oldname); 1350 1351 rw_enter(&zvol_state_lock, RW_READER); 1352 1353 for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) { 1354 zv_next = list_next(&zvol_state_list, zv); 1355 1356 mutex_enter(&zv->zv_state_lock); 1357 1358 if (strcmp(zv->zv_name, oldname) == 0) { 1359 zvol_os_rename_minor(zv, newname); 1360 } else if (strncmp(zv->zv_name, oldname, oldnamelen) == 0 && 1361 (zv->zv_name[oldnamelen] == '/' || 1362 zv->zv_name[oldnamelen] == '@')) { 1363 char *name = kmem_asprintf("%s%c%s", newname, 1364 zv->zv_name[oldnamelen], 1365 zv->zv_name + oldnamelen + 1); 1366 zvol_os_rename_minor(zv, name); 1367 kmem_strfree(name); 1368 } 1369 1370 mutex_exit(&zv->zv_state_lock); 1371 } 1372 1373 rw_exit(&zvol_state_lock); 1374 } 1375 1376 typedef struct zvol_snapdev_cb_arg { 1377 uint64_t snapdev; 1378 } zvol_snapdev_cb_arg_t; 1379 1380 static int 1381 zvol_set_snapdev_cb(const char *dsname, void *param) 1382 { 1383 zvol_snapdev_cb_arg_t *arg = param; 1384 1385 if (strchr(dsname, '@') == NULL) 1386 return (0); 1387 1388 switch (arg->snapdev) { 1389 case ZFS_SNAPDEV_VISIBLE: 1390 (void) zvol_os_create_minor(dsname); 1391 break; 1392 case ZFS_SNAPDEV_HIDDEN: 1393 (void) zvol_remove_minor_impl(dsname); 1394 break; 1395 } 1396 1397 return (0); 1398 } 1399 1400 static void 1401 zvol_set_snapdev_impl(char *name, uint64_t snapdev) 1402 { 1403 zvol_snapdev_cb_arg_t arg = {snapdev}; 1404 fstrans_cookie_t cookie = spl_fstrans_mark(); 1405 /* 1406 * The zvol_set_snapdev_sync() sets snapdev appropriately 1407 * in the dataset hierarchy. Here, we only scan snapshots. 1408 */ 1409 dmu_objset_find(name, zvol_set_snapdev_cb, &arg, DS_FIND_SNAPSHOTS); 1410 spl_fstrans_unmark(cookie); 1411 } 1412 1413 static void 1414 zvol_set_volmode_impl(char *name, uint64_t volmode) 1415 { 1416 fstrans_cookie_t cookie; 1417 uint64_t old_volmode; 1418 zvol_state_t *zv; 1419 1420 if (strchr(name, '@') != NULL) 1421 return; 1422 1423 /* 1424 * It's unfortunate we need to remove minors before we create new ones: 1425 * this is necessary because our backing gendisk (zvol_state->zv_disk) 1426 * could be different when we set, for instance, volmode from "geom" 1427 * to "dev" (or vice versa). 1428 */ 1429 zv = zvol_find_by_name(name, RW_NONE); 1430 if (zv == NULL && volmode == ZFS_VOLMODE_NONE) 1431 return; 1432 if (zv != NULL) { 1433 old_volmode = zv->zv_volmode; 1434 mutex_exit(&zv->zv_state_lock); 1435 if (old_volmode == volmode) 1436 return; 1437 zvol_wait_close(zv); 1438 } 1439 cookie = spl_fstrans_mark(); 1440 switch (volmode) { 1441 case ZFS_VOLMODE_NONE: 1442 (void) zvol_remove_minor_impl(name); 1443 break; 1444 case ZFS_VOLMODE_GEOM: 1445 case ZFS_VOLMODE_DEV: 1446 (void) zvol_remove_minor_impl(name); 1447 (void) zvol_os_create_minor(name); 1448 break; 1449 case ZFS_VOLMODE_DEFAULT: 1450 (void) zvol_remove_minor_impl(name); 1451 if (zvol_volmode == ZFS_VOLMODE_NONE) 1452 break; 1453 else /* if zvol_volmode is invalid defaults to "geom" */ 1454 (void) zvol_os_create_minor(name); 1455 break; 1456 } 1457 spl_fstrans_unmark(cookie); 1458 } 1459 1460 static zvol_task_t * 1461 zvol_task_alloc(zvol_async_op_t op, const char *name1, const char *name2, 1462 uint64_t value) 1463 { 1464 zvol_task_t *task; 1465 1466 /* Never allow tasks on hidden names. */ 1467 if (name1[0] == '$') 1468 return (NULL); 1469 1470 task = kmem_zalloc(sizeof (zvol_task_t), KM_SLEEP); 1471 task->op = op; 1472 task->value = value; 1473 1474 strlcpy(task->name1, name1, sizeof (task->name1)); 1475 if (name2 != NULL) 1476 strlcpy(task->name2, name2, sizeof (task->name2)); 1477 1478 return (task); 1479 } 1480 1481 static void 1482 zvol_task_free(zvol_task_t *task) 1483 { 1484 kmem_free(task, sizeof (zvol_task_t)); 1485 } 1486 1487 /* 1488 * The worker thread function performed asynchronously. 1489 */ 1490 static void 1491 zvol_task_cb(void *arg) 1492 { 1493 zvol_task_t *task = arg; 1494 1495 switch (task->op) { 1496 case ZVOL_ASYNC_REMOVE_MINORS: 1497 zvol_remove_minors_impl(task->name1); 1498 break; 1499 case ZVOL_ASYNC_RENAME_MINORS: 1500 zvol_rename_minors_impl(task->name1, task->name2); 1501 break; 1502 case ZVOL_ASYNC_SET_SNAPDEV: 1503 zvol_set_snapdev_impl(task->name1, task->value); 1504 break; 1505 case ZVOL_ASYNC_SET_VOLMODE: 1506 zvol_set_volmode_impl(task->name1, task->value); 1507 break; 1508 default: 1509 VERIFY(0); 1510 break; 1511 } 1512 1513 zvol_task_free(task); 1514 } 1515 1516 typedef struct zvol_set_prop_int_arg { 1517 const char *zsda_name; 1518 uint64_t zsda_value; 1519 zprop_source_t zsda_source; 1520 zfs_prop_t zsda_prop; 1521 } zvol_set_prop_int_arg_t; 1522 1523 /* 1524 * Sanity check the dataset for safe use by the sync task. No additional 1525 * conditions are imposed. 1526 */ 1527 static int 1528 zvol_set_common_check(void *arg, dmu_tx_t *tx) 1529 { 1530 zvol_set_prop_int_arg_t *zsda = arg; 1531 dsl_pool_t *dp = dmu_tx_pool(tx); 1532 dsl_dir_t *dd; 1533 int error; 1534 1535 error = dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL); 1536 if (error != 0) 1537 return (error); 1538 1539 dsl_dir_rele(dd, FTAG); 1540 1541 return (error); 1542 } 1543 1544 static int 1545 zvol_set_common_sync_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 1546 { 1547 zvol_set_prop_int_arg_t *zsda = arg; 1548 char dsname[ZFS_MAX_DATASET_NAME_LEN]; 1549 zvol_task_t *task; 1550 uint64_t prop; 1551 1552 const char *prop_name = zfs_prop_to_name(zsda->zsda_prop); 1553 dsl_dataset_name(ds, dsname); 1554 1555 if (dsl_prop_get_int_ds(ds, prop_name, &prop) != 0) 1556 return (0); 1557 1558 switch (zsda->zsda_prop) { 1559 case ZFS_PROP_VOLMODE: 1560 task = zvol_task_alloc(ZVOL_ASYNC_SET_VOLMODE, dsname, 1561 NULL, prop); 1562 break; 1563 case ZFS_PROP_SNAPDEV: 1564 task = zvol_task_alloc(ZVOL_ASYNC_SET_SNAPDEV, dsname, 1565 NULL, prop); 1566 break; 1567 default: 1568 task = NULL; 1569 break; 1570 } 1571 1572 if (task == NULL) 1573 return (0); 1574 1575 (void) taskq_dispatch(dp->dp_spa->spa_zvol_taskq, zvol_task_cb, 1576 task, TQ_SLEEP); 1577 return (0); 1578 } 1579 1580 /* 1581 * Traverse all child datasets and apply the property appropriately. 1582 * We call dsl_prop_set_sync_impl() here to set the value only on the toplevel 1583 * dataset and read the effective "property" on every child in the callback 1584 * function: this is because the value is not guaranteed to be the same in the 1585 * whole dataset hierarchy. 1586 */ 1587 static void 1588 zvol_set_common_sync(void *arg, dmu_tx_t *tx) 1589 { 1590 zvol_set_prop_int_arg_t *zsda = arg; 1591 dsl_pool_t *dp = dmu_tx_pool(tx); 1592 dsl_dir_t *dd; 1593 dsl_dataset_t *ds; 1594 int error; 1595 1596 VERIFY0(dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL)); 1597 1598 error = dsl_dataset_hold(dp, zsda->zsda_name, FTAG, &ds); 1599 if (error == 0) { 1600 dsl_prop_set_sync_impl(ds, zfs_prop_to_name(zsda->zsda_prop), 1601 zsda->zsda_source, sizeof (zsda->zsda_value), 1, 1602 &zsda->zsda_value, tx); 1603 dsl_dataset_rele(ds, FTAG); 1604 } 1605 1606 dmu_objset_find_dp(dp, dd->dd_object, zvol_set_common_sync_cb, 1607 zsda, DS_FIND_CHILDREN); 1608 1609 dsl_dir_rele(dd, FTAG); 1610 } 1611 1612 int 1613 zvol_set_common(const char *ddname, zfs_prop_t prop, zprop_source_t source, 1614 uint64_t val) 1615 { 1616 zvol_set_prop_int_arg_t zsda; 1617 1618 zsda.zsda_name = ddname; 1619 zsda.zsda_source = source; 1620 zsda.zsda_value = val; 1621 zsda.zsda_prop = prop; 1622 1623 return (dsl_sync_task(ddname, zvol_set_common_check, 1624 zvol_set_common_sync, &zsda, 0, ZFS_SPACE_CHECK_NONE)); 1625 } 1626 1627 void 1628 zvol_remove_minors(spa_t *spa, const char *name, boolean_t async) 1629 { 1630 zvol_task_t *task; 1631 taskqid_t id; 1632 1633 task = zvol_task_alloc(ZVOL_ASYNC_REMOVE_MINORS, name, NULL, ~0ULL); 1634 if (task == NULL) 1635 return; 1636 1637 id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP); 1638 if ((async == B_FALSE) && (id != TASKQID_INVALID)) 1639 taskq_wait_id(spa->spa_zvol_taskq, id); 1640 } 1641 1642 void 1643 zvol_rename_minors(spa_t *spa, const char *name1, const char *name2, 1644 boolean_t async) 1645 { 1646 zvol_task_t *task; 1647 taskqid_t id; 1648 1649 task = zvol_task_alloc(ZVOL_ASYNC_RENAME_MINORS, name1, name2, ~0ULL); 1650 if (task == NULL) 1651 return; 1652 1653 id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP); 1654 if ((async == B_FALSE) && (id != TASKQID_INVALID)) 1655 taskq_wait_id(spa->spa_zvol_taskq, id); 1656 } 1657 1658 boolean_t 1659 zvol_is_zvol(const char *name) 1660 { 1661 1662 return (zvol_os_is_zvol(name)); 1663 } 1664 1665 int 1666 zvol_init_impl(void) 1667 { 1668 int i; 1669 1670 list_create(&zvol_state_list, sizeof (zvol_state_t), 1671 offsetof(zvol_state_t, zv_next)); 1672 rw_init(&zvol_state_lock, NULL, RW_DEFAULT, NULL); 1673 1674 zvol_htable = kmem_alloc(ZVOL_HT_SIZE * sizeof (struct hlist_head), 1675 KM_SLEEP); 1676 for (i = 0; i < ZVOL_HT_SIZE; i++) 1677 INIT_HLIST_HEAD(&zvol_htable[i]); 1678 1679 return (0); 1680 } 1681 1682 void 1683 zvol_fini_impl(void) 1684 { 1685 zvol_remove_minors_impl(NULL); 1686 1687 /* 1688 * The call to "zvol_remove_minors_impl" may dispatch entries to 1689 * the system_taskq, but it doesn't wait for those entries to 1690 * complete before it returns. Thus, we must wait for all of the 1691 * removals to finish, before we can continue. 1692 */ 1693 taskq_wait_outstanding(system_taskq, 0); 1694 1695 kmem_free(zvol_htable, ZVOL_HT_SIZE * sizeof (struct hlist_head)); 1696 list_destroy(&zvol_state_list); 1697 rw_destroy(&zvol_state_lock); 1698 } 1699