xref: /freebsd/sys/contrib/openzfs/module/zfs/zio_checksum.c (revision e2eeea75eb8b6dd50c1298067a0655880d186734)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2013, 2016 by Delphix. All rights reserved.
24  * Copyright 2013 Saso Kiselkov. All rights reserved.
25  */
26 
27 #include <sys/zfs_context.h>
28 #include <sys/spa.h>
29 #include <sys/spa_impl.h>
30 #include <sys/zio.h>
31 #include <sys/zio_checksum.h>
32 #include <sys/zil.h>
33 #include <sys/abd.h>
34 #include <zfs_fletcher.h>
35 
36 /*
37  * Checksum vectors.
38  *
39  * In the SPA, everything is checksummed.  We support checksum vectors
40  * for three distinct reasons:
41  *
42  *   1. Different kinds of data need different levels of protection.
43  *	For SPA metadata, we always want a very strong checksum.
44  *	For user data, we let users make the trade-off between speed
45  *	and checksum strength.
46  *
47  *   2. Cryptographic hash and MAC algorithms are an area of active research.
48  *	It is likely that in future hash functions will be at least as strong
49  *	as current best-of-breed, and may be substantially faster as well.
50  *	We want the ability to take advantage of these new hashes as soon as
51  *	they become available.
52  *
53  *   3. If someone develops hardware that can compute a strong hash quickly,
54  *	we want the ability to take advantage of that hardware.
55  *
56  * Of course, we don't want a checksum upgrade to invalidate existing
57  * data, so we store the checksum *function* in eight bits of the bp.
58  * This gives us room for up to 256 different checksum functions.
59  *
60  * When writing a block, we always checksum it with the latest-and-greatest
61  * checksum function of the appropriate strength.  When reading a block,
62  * we compare the expected checksum against the actual checksum, which we
63  * compute via the checksum function specified by BP_GET_CHECKSUM(bp).
64  *
65  * SALTED CHECKSUMS
66  *
67  * To enable the use of less secure hash algorithms with dedup, we
68  * introduce the notion of salted checksums (MACs, really).  A salted
69  * checksum is fed both a random 256-bit value (the salt) and the data
70  * to be checksummed.  This salt is kept secret (stored on the pool, but
71  * never shown to the user).  Thus even if an attacker knew of collision
72  * weaknesses in the hash algorithm, they won't be able to mount a known
73  * plaintext attack on the DDT, since the actual hash value cannot be
74  * known ahead of time.  How the salt is used is algorithm-specific
75  * (some might simply prefix it to the data block, others might need to
76  * utilize a full-blown HMAC).  On disk the salt is stored in a ZAP
77  * object in the MOS (DMU_POOL_CHECKSUM_SALT).
78  *
79  * CONTEXT TEMPLATES
80  *
81  * Some hashing algorithms need to perform a substantial amount of
82  * initialization work (e.g. salted checksums above may need to pre-hash
83  * the salt) before being able to process data.  Performing this
84  * redundant work for each block would be wasteful, so we instead allow
85  * a checksum algorithm to do the work once (the first time it's used)
86  * and then keep this pre-initialized context as a template inside the
87  * spa_t (spa_cksum_tmpls).  If the zio_checksum_info_t contains
88  * non-NULL ci_tmpl_init and ci_tmpl_free callbacks, they are used to
89  * construct and destruct the pre-initialized checksum context.  The
90  * pre-initialized context is then reused during each checksum
91  * invocation and passed to the checksum function.
92  */
93 
94 /*ARGSUSED*/
95 static void
96 abd_checksum_off(abd_t *abd, uint64_t size,
97     const void *ctx_template, zio_cksum_t *zcp)
98 {
99 	ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
100 }
101 
102 /*ARGSUSED*/
103 static void
104 abd_fletcher_2_native(abd_t *abd, uint64_t size,
105     const void *ctx_template, zio_cksum_t *zcp)
106 {
107 	fletcher_init(zcp);
108 	(void) abd_iterate_func(abd, 0, size,
109 	    fletcher_2_incremental_native, zcp);
110 }
111 
112 /*ARGSUSED*/
113 static void
114 abd_fletcher_2_byteswap(abd_t *abd, uint64_t size,
115     const void *ctx_template, zio_cksum_t *zcp)
116 {
117 	fletcher_init(zcp);
118 	(void) abd_iterate_func(abd, 0, size,
119 	    fletcher_2_incremental_byteswap, zcp);
120 }
121 
122 static inline void
123 abd_fletcher_4_impl(abd_t *abd, uint64_t size, zio_abd_checksum_data_t *acdp)
124 {
125 	fletcher_4_abd_ops.acf_init(acdp);
126 	abd_iterate_func(abd, 0, size, fletcher_4_abd_ops.acf_iter, acdp);
127 	fletcher_4_abd_ops.acf_fini(acdp);
128 }
129 
130 /*ARGSUSED*/
131 void
132 abd_fletcher_4_native(abd_t *abd, uint64_t size,
133     const void *ctx_template, zio_cksum_t *zcp)
134 {
135 	fletcher_4_ctx_t ctx;
136 
137 	zio_abd_checksum_data_t acd = {
138 		.acd_byteorder	= ZIO_CHECKSUM_NATIVE,
139 		.acd_zcp 	= zcp,
140 		.acd_ctx	= &ctx
141 	};
142 
143 	abd_fletcher_4_impl(abd, size, &acd);
144 
145 }
146 
147 /*ARGSUSED*/
148 void
149 abd_fletcher_4_byteswap(abd_t *abd, uint64_t size,
150     const void *ctx_template, zio_cksum_t *zcp)
151 {
152 	fletcher_4_ctx_t ctx;
153 
154 	zio_abd_checksum_data_t acd = {
155 		.acd_byteorder	= ZIO_CHECKSUM_BYTESWAP,
156 		.acd_zcp 	= zcp,
157 		.acd_ctx	= &ctx
158 	};
159 
160 	abd_fletcher_4_impl(abd, size, &acd);
161 }
162 
163 zio_checksum_info_t zio_checksum_table[ZIO_CHECKSUM_FUNCTIONS] = {
164 	{{NULL, NULL}, NULL, NULL, 0, "inherit"},
165 	{{NULL, NULL}, NULL, NULL, 0, "on"},
166 	{{abd_checksum_off,		abd_checksum_off},
167 	    NULL, NULL, 0, "off"},
168 	{{abd_checksum_SHA256,		abd_checksum_SHA256},
169 	    NULL, NULL, ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_EMBEDDED,
170 	    "label"},
171 	{{abd_checksum_SHA256,		abd_checksum_SHA256},
172 	    NULL, NULL, ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_EMBEDDED,
173 	    "gang_header"},
174 	{{abd_fletcher_2_native,	abd_fletcher_2_byteswap},
175 	    NULL, NULL, ZCHECKSUM_FLAG_EMBEDDED, "zilog"},
176 	{{abd_fletcher_2_native,	abd_fletcher_2_byteswap},
177 	    NULL, NULL, 0, "fletcher2"},
178 	{{abd_fletcher_4_native,	abd_fletcher_4_byteswap},
179 	    NULL, NULL, ZCHECKSUM_FLAG_METADATA, "fletcher4"},
180 	{{abd_checksum_SHA256,		abd_checksum_SHA256},
181 	    NULL, NULL, ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_DEDUP |
182 	    ZCHECKSUM_FLAG_NOPWRITE, "sha256"},
183 	{{abd_fletcher_4_native,	abd_fletcher_4_byteswap},
184 	    NULL, NULL, ZCHECKSUM_FLAG_EMBEDDED, "zilog2"},
185 	{{abd_checksum_off,		abd_checksum_off},
186 	    NULL, NULL, 0, "noparity"},
187 	{{abd_checksum_SHA512_native,	abd_checksum_SHA512_byteswap},
188 	    NULL, NULL, ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_DEDUP |
189 	    ZCHECKSUM_FLAG_NOPWRITE, "sha512"},
190 	{{abd_checksum_skein_native,	abd_checksum_skein_byteswap},
191 	    abd_checksum_skein_tmpl_init, abd_checksum_skein_tmpl_free,
192 	    ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_DEDUP |
193 	    ZCHECKSUM_FLAG_SALTED | ZCHECKSUM_FLAG_NOPWRITE, "skein"},
194 #if !defined(__FreeBSD__)
195 	{{abd_checksum_edonr_native,	abd_checksum_edonr_byteswap},
196 	    abd_checksum_edonr_tmpl_init, abd_checksum_edonr_tmpl_free,
197 	    ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_SALTED |
198 	    ZCHECKSUM_FLAG_NOPWRITE, "edonr"},
199 #endif
200 };
201 
202 /*
203  * The flag corresponding to the "verify" in dedup=[checksum,]verify
204  * must be cleared first, so callers should use ZIO_CHECKSUM_MASK.
205  */
206 spa_feature_t
207 zio_checksum_to_feature(enum zio_checksum cksum)
208 {
209 	VERIFY((cksum & ~ZIO_CHECKSUM_MASK) == 0);
210 
211 	switch (cksum) {
212 	case ZIO_CHECKSUM_SHA512:
213 		return (SPA_FEATURE_SHA512);
214 	case ZIO_CHECKSUM_SKEIN:
215 		return (SPA_FEATURE_SKEIN);
216 #if !defined(__FreeBSD__)
217 	case ZIO_CHECKSUM_EDONR:
218 		return (SPA_FEATURE_EDONR);
219 #endif
220 	default:
221 		return (SPA_FEATURE_NONE);
222 	}
223 }
224 
225 enum zio_checksum
226 zio_checksum_select(enum zio_checksum child, enum zio_checksum parent)
227 {
228 	ASSERT(child < ZIO_CHECKSUM_FUNCTIONS);
229 	ASSERT(parent < ZIO_CHECKSUM_FUNCTIONS);
230 	ASSERT(parent != ZIO_CHECKSUM_INHERIT && parent != ZIO_CHECKSUM_ON);
231 
232 	if (child == ZIO_CHECKSUM_INHERIT)
233 		return (parent);
234 
235 	if (child == ZIO_CHECKSUM_ON)
236 		return (ZIO_CHECKSUM_ON_VALUE);
237 
238 	return (child);
239 }
240 
241 enum zio_checksum
242 zio_checksum_dedup_select(spa_t *spa, enum zio_checksum child,
243     enum zio_checksum parent)
244 {
245 	ASSERT((child & ZIO_CHECKSUM_MASK) < ZIO_CHECKSUM_FUNCTIONS);
246 	ASSERT((parent & ZIO_CHECKSUM_MASK) < ZIO_CHECKSUM_FUNCTIONS);
247 	ASSERT(parent != ZIO_CHECKSUM_INHERIT && parent != ZIO_CHECKSUM_ON);
248 
249 	if (child == ZIO_CHECKSUM_INHERIT)
250 		return (parent);
251 
252 	if (child == ZIO_CHECKSUM_ON)
253 		return (spa_dedup_checksum(spa));
254 
255 	if (child == (ZIO_CHECKSUM_ON | ZIO_CHECKSUM_VERIFY))
256 		return (spa_dedup_checksum(spa) | ZIO_CHECKSUM_VERIFY);
257 
258 	ASSERT((zio_checksum_table[child & ZIO_CHECKSUM_MASK].ci_flags &
259 	    ZCHECKSUM_FLAG_DEDUP) ||
260 	    (child & ZIO_CHECKSUM_VERIFY) || child == ZIO_CHECKSUM_OFF);
261 
262 	return (child);
263 }
264 
265 /*
266  * Set the external verifier for a gang block based on <vdev, offset, txg>,
267  * a tuple which is guaranteed to be unique for the life of the pool.
268  */
269 static void
270 zio_checksum_gang_verifier(zio_cksum_t *zcp, const blkptr_t *bp)
271 {
272 	const dva_t *dva = BP_IDENTITY(bp);
273 	uint64_t txg = BP_PHYSICAL_BIRTH(bp);
274 
275 	ASSERT(BP_IS_GANG(bp));
276 
277 	ZIO_SET_CHECKSUM(zcp, DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva), txg, 0);
278 }
279 
280 /*
281  * Set the external verifier for a label block based on its offset.
282  * The vdev is implicit, and the txg is unknowable at pool open time --
283  * hence the logic in vdev_uberblock_load() to find the most recent copy.
284  */
285 static void
286 zio_checksum_label_verifier(zio_cksum_t *zcp, uint64_t offset)
287 {
288 	ZIO_SET_CHECKSUM(zcp, offset, 0, 0, 0);
289 }
290 
291 /*
292  * Calls the template init function of a checksum which supports context
293  * templates and installs the template into the spa_t.
294  */
295 static void
296 zio_checksum_template_init(enum zio_checksum checksum, spa_t *spa)
297 {
298 	zio_checksum_info_t *ci = &zio_checksum_table[checksum];
299 
300 	if (ci->ci_tmpl_init == NULL)
301 		return;
302 	if (spa->spa_cksum_tmpls[checksum] != NULL)
303 		return;
304 
305 	VERIFY(ci->ci_tmpl_free != NULL);
306 	mutex_enter(&spa->spa_cksum_tmpls_lock);
307 	if (spa->spa_cksum_tmpls[checksum] == NULL) {
308 		spa->spa_cksum_tmpls[checksum] =
309 		    ci->ci_tmpl_init(&spa->spa_cksum_salt);
310 		VERIFY(spa->spa_cksum_tmpls[checksum] != NULL);
311 	}
312 	mutex_exit(&spa->spa_cksum_tmpls_lock);
313 }
314 
315 /* convenience function to update a checksum to accommodate an encryption MAC */
316 static void
317 zio_checksum_handle_crypt(zio_cksum_t *cksum, zio_cksum_t *saved, boolean_t xor)
318 {
319 	/*
320 	 * Weak checksums do not have their entropy spread evenly
321 	 * across the bits of the checksum. Therefore, when truncating
322 	 * a weak checksum we XOR the first 2 words with the last 2 so
323 	 * that we don't "lose" any entropy unnecessarily.
324 	 */
325 	if (xor) {
326 		cksum->zc_word[0] ^= cksum->zc_word[2];
327 		cksum->zc_word[1] ^= cksum->zc_word[3];
328 	}
329 
330 	cksum->zc_word[2] = saved->zc_word[2];
331 	cksum->zc_word[3] = saved->zc_word[3];
332 }
333 
334 /*
335  * Generate the checksum.
336  */
337 void
338 zio_checksum_compute(zio_t *zio, enum zio_checksum checksum,
339     abd_t *abd, uint64_t size)
340 {
341 	static const uint64_t zec_magic = ZEC_MAGIC;
342 	blkptr_t *bp = zio->io_bp;
343 	uint64_t offset = zio->io_offset;
344 	zio_checksum_info_t *ci = &zio_checksum_table[checksum];
345 	zio_cksum_t cksum, saved;
346 	spa_t *spa = zio->io_spa;
347 	boolean_t insecure = (ci->ci_flags & ZCHECKSUM_FLAG_DEDUP) == 0;
348 
349 	ASSERT((uint_t)checksum < ZIO_CHECKSUM_FUNCTIONS);
350 	ASSERT(ci->ci_func[0] != NULL);
351 
352 	zio_checksum_template_init(checksum, spa);
353 
354 	if (ci->ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
355 		zio_eck_t eck;
356 		size_t eck_offset;
357 
358 		bzero(&saved, sizeof (zio_cksum_t));
359 
360 		if (checksum == ZIO_CHECKSUM_ZILOG2) {
361 			zil_chain_t zilc;
362 			abd_copy_to_buf(&zilc, abd, sizeof (zil_chain_t));
363 
364 			size = P2ROUNDUP_TYPED(zilc.zc_nused, ZIL_MIN_BLKSZ,
365 			    uint64_t);
366 			eck = zilc.zc_eck;
367 			eck_offset = offsetof(zil_chain_t, zc_eck);
368 		} else {
369 			eck_offset = size - sizeof (zio_eck_t);
370 			abd_copy_to_buf_off(&eck, abd, eck_offset,
371 			    sizeof (zio_eck_t));
372 		}
373 
374 		if (checksum == ZIO_CHECKSUM_GANG_HEADER) {
375 			zio_checksum_gang_verifier(&eck.zec_cksum, bp);
376 		} else if (checksum == ZIO_CHECKSUM_LABEL) {
377 			zio_checksum_label_verifier(&eck.zec_cksum, offset);
378 		} else {
379 			saved = eck.zec_cksum;
380 			eck.zec_cksum = bp->blk_cksum;
381 		}
382 
383 		abd_copy_from_buf_off(abd, &zec_magic,
384 		    eck_offset + offsetof(zio_eck_t, zec_magic),
385 		    sizeof (zec_magic));
386 		abd_copy_from_buf_off(abd, &eck.zec_cksum,
387 		    eck_offset + offsetof(zio_eck_t, zec_cksum),
388 		    sizeof (zio_cksum_t));
389 
390 		ci->ci_func[0](abd, size, spa->spa_cksum_tmpls[checksum],
391 		    &cksum);
392 		if (bp != NULL && BP_USES_CRYPT(bp) &&
393 		    BP_GET_TYPE(bp) != DMU_OT_OBJSET)
394 			zio_checksum_handle_crypt(&cksum, &saved, insecure);
395 
396 		abd_copy_from_buf_off(abd, &cksum,
397 		    eck_offset + offsetof(zio_eck_t, zec_cksum),
398 		    sizeof (zio_cksum_t));
399 	} else {
400 		saved = bp->blk_cksum;
401 		ci->ci_func[0](abd, size, spa->spa_cksum_tmpls[checksum],
402 		    &cksum);
403 		if (BP_USES_CRYPT(bp) && BP_GET_TYPE(bp) != DMU_OT_OBJSET)
404 			zio_checksum_handle_crypt(&cksum, &saved, insecure);
405 		bp->blk_cksum = cksum;
406 	}
407 }
408 
409 int
410 zio_checksum_error_impl(spa_t *spa, const blkptr_t *bp,
411     enum zio_checksum checksum, abd_t *abd, uint64_t size, uint64_t offset,
412     zio_bad_cksum_t *info)
413 {
414 	zio_checksum_info_t *ci = &zio_checksum_table[checksum];
415 	zio_cksum_t actual_cksum, expected_cksum;
416 	zio_eck_t eck;
417 	int byteswap;
418 
419 	if (checksum >= ZIO_CHECKSUM_FUNCTIONS || ci->ci_func[0] == NULL)
420 		return (SET_ERROR(EINVAL));
421 
422 	zio_checksum_template_init(checksum, spa);
423 
424 	if (ci->ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
425 		zio_cksum_t verifier;
426 		size_t eck_offset;
427 
428 		if (checksum == ZIO_CHECKSUM_ZILOG2) {
429 			zil_chain_t zilc;
430 			uint64_t nused;
431 
432 			abd_copy_to_buf(&zilc, abd, sizeof (zil_chain_t));
433 
434 			eck = zilc.zc_eck;
435 			eck_offset = offsetof(zil_chain_t, zc_eck) +
436 			    offsetof(zio_eck_t, zec_cksum);
437 
438 			if (eck.zec_magic == ZEC_MAGIC) {
439 				nused = zilc.zc_nused;
440 			} else if (eck.zec_magic == BSWAP_64(ZEC_MAGIC)) {
441 				nused = BSWAP_64(zilc.zc_nused);
442 			} else {
443 				return (SET_ERROR(ECKSUM));
444 			}
445 
446 			if (nused > size) {
447 				return (SET_ERROR(ECKSUM));
448 			}
449 
450 			size = P2ROUNDUP_TYPED(nused, ZIL_MIN_BLKSZ, uint64_t);
451 		} else {
452 			eck_offset = size - sizeof (zio_eck_t);
453 			abd_copy_to_buf_off(&eck, abd, eck_offset,
454 			    sizeof (zio_eck_t));
455 			eck_offset += offsetof(zio_eck_t, zec_cksum);
456 		}
457 
458 		if (checksum == ZIO_CHECKSUM_GANG_HEADER)
459 			zio_checksum_gang_verifier(&verifier, bp);
460 		else if (checksum == ZIO_CHECKSUM_LABEL)
461 			zio_checksum_label_verifier(&verifier, offset);
462 		else
463 			verifier = bp->blk_cksum;
464 
465 		byteswap = (eck.zec_magic == BSWAP_64(ZEC_MAGIC));
466 
467 		if (byteswap)
468 			byteswap_uint64_array(&verifier, sizeof (zio_cksum_t));
469 
470 		expected_cksum = eck.zec_cksum;
471 
472 		abd_copy_from_buf_off(abd, &verifier, eck_offset,
473 		    sizeof (zio_cksum_t));
474 
475 		ci->ci_func[byteswap](abd, size,
476 		    spa->spa_cksum_tmpls[checksum], &actual_cksum);
477 
478 		abd_copy_from_buf_off(abd, &expected_cksum, eck_offset,
479 		    sizeof (zio_cksum_t));
480 
481 		if (byteswap) {
482 			byteswap_uint64_array(&expected_cksum,
483 			    sizeof (zio_cksum_t));
484 		}
485 	} else {
486 		byteswap = BP_SHOULD_BYTESWAP(bp);
487 		expected_cksum = bp->blk_cksum;
488 		ci->ci_func[byteswap](abd, size,
489 		    spa->spa_cksum_tmpls[checksum], &actual_cksum);
490 	}
491 
492 	/*
493 	 * MAC checksums are a special case since half of this checksum will
494 	 * actually be the encryption MAC. This will be verified by the
495 	 * decryption process, so we just check the truncated checksum now.
496 	 * Objset blocks use embedded MACs so we don't truncate the checksum
497 	 * for them.
498 	 */
499 	if (bp != NULL && BP_USES_CRYPT(bp) &&
500 	    BP_GET_TYPE(bp) != DMU_OT_OBJSET) {
501 		if (!(ci->ci_flags & ZCHECKSUM_FLAG_DEDUP)) {
502 			actual_cksum.zc_word[0] ^= actual_cksum.zc_word[2];
503 			actual_cksum.zc_word[1] ^= actual_cksum.zc_word[3];
504 		}
505 
506 		actual_cksum.zc_word[2] = 0;
507 		actual_cksum.zc_word[3] = 0;
508 		expected_cksum.zc_word[2] = 0;
509 		expected_cksum.zc_word[3] = 0;
510 	}
511 
512 	if (info != NULL) {
513 		info->zbc_expected = expected_cksum;
514 		info->zbc_actual = actual_cksum;
515 		info->zbc_checksum_name = ci->ci_name;
516 		info->zbc_byteswapped = byteswap;
517 		info->zbc_injected = 0;
518 		info->zbc_has_cksum = 1;
519 	}
520 
521 	if (!ZIO_CHECKSUM_EQUAL(actual_cksum, expected_cksum))
522 		return (SET_ERROR(ECKSUM));
523 
524 	return (0);
525 }
526 
527 int
528 zio_checksum_error(zio_t *zio, zio_bad_cksum_t *info)
529 {
530 	blkptr_t *bp = zio->io_bp;
531 	uint_t checksum = (bp == NULL ? zio->io_prop.zp_checksum :
532 	    (BP_IS_GANG(bp) ? ZIO_CHECKSUM_GANG_HEADER : BP_GET_CHECKSUM(bp)));
533 	int error;
534 	uint64_t size = (bp == NULL ? zio->io_size :
535 	    (BP_IS_GANG(bp) ? SPA_GANGBLOCKSIZE : BP_GET_PSIZE(bp)));
536 	uint64_t offset = zio->io_offset;
537 	abd_t *data = zio->io_abd;
538 	spa_t *spa = zio->io_spa;
539 
540 	error = zio_checksum_error_impl(spa, bp, checksum, data, size,
541 	    offset, info);
542 
543 	if (zio_injection_enabled && error == 0 && zio->io_error == 0) {
544 		error = zio_handle_fault_injection(zio, ECKSUM);
545 		if (error != 0)
546 			info->zbc_injected = 1;
547 	}
548 
549 	return (error);
550 }
551 
552 /*
553  * Called by a spa_t that's about to be deallocated. This steps through
554  * all of the checksum context templates and deallocates any that were
555  * initialized using the algorithm-specific template init function.
556  */
557 void
558 zio_checksum_templates_free(spa_t *spa)
559 {
560 	for (enum zio_checksum checksum = 0;
561 	    checksum < ZIO_CHECKSUM_FUNCTIONS; checksum++) {
562 		if (spa->spa_cksum_tmpls[checksum] != NULL) {
563 			zio_checksum_info_t *ci = &zio_checksum_table[checksum];
564 
565 			VERIFY(ci->ci_tmpl_free != NULL);
566 			ci->ci_tmpl_free(spa->spa_cksum_tmpls[checksum]);
567 			spa->spa_cksum_tmpls[checksum] = NULL;
568 		}
569 	}
570 }
571