1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2013, 2016 by Delphix. All rights reserved. 24 * Copyright 2013 Saso Kiselkov. All rights reserved. 25 */ 26 27 #include <sys/zfs_context.h> 28 #include <sys/spa.h> 29 #include <sys/spa_impl.h> 30 #include <sys/zio.h> 31 #include <sys/zio_checksum.h> 32 #include <sys/zil.h> 33 #include <sys/abd.h> 34 #include <zfs_fletcher.h> 35 36 /* 37 * Checksum vectors. 38 * 39 * In the SPA, everything is checksummed. We support checksum vectors 40 * for three distinct reasons: 41 * 42 * 1. Different kinds of data need different levels of protection. 43 * For SPA metadata, we always want a very strong checksum. 44 * For user data, we let users make the trade-off between speed 45 * and checksum strength. 46 * 47 * 2. Cryptographic hash and MAC algorithms are an area of active research. 48 * It is likely that in future hash functions will be at least as strong 49 * as current best-of-breed, and may be substantially faster as well. 50 * We want the ability to take advantage of these new hashes as soon as 51 * they become available. 52 * 53 * 3. If someone develops hardware that can compute a strong hash quickly, 54 * we want the ability to take advantage of that hardware. 55 * 56 * Of course, we don't want a checksum upgrade to invalidate existing 57 * data, so we store the checksum *function* in eight bits of the bp. 58 * This gives us room for up to 256 different checksum functions. 59 * 60 * When writing a block, we always checksum it with the latest-and-greatest 61 * checksum function of the appropriate strength. When reading a block, 62 * we compare the expected checksum against the actual checksum, which we 63 * compute via the checksum function specified by BP_GET_CHECKSUM(bp). 64 * 65 * SALTED CHECKSUMS 66 * 67 * To enable the use of less secure hash algorithms with dedup, we 68 * introduce the notion of salted checksums (MACs, really). A salted 69 * checksum is fed both a random 256-bit value (the salt) and the data 70 * to be checksummed. This salt is kept secret (stored on the pool, but 71 * never shown to the user). Thus even if an attacker knew of collision 72 * weaknesses in the hash algorithm, they won't be able to mount a known 73 * plaintext attack on the DDT, since the actual hash value cannot be 74 * known ahead of time. How the salt is used is algorithm-specific 75 * (some might simply prefix it to the data block, others might need to 76 * utilize a full-blown HMAC). On disk the salt is stored in a ZAP 77 * object in the MOS (DMU_POOL_CHECKSUM_SALT). 78 * 79 * CONTEXT TEMPLATES 80 * 81 * Some hashing algorithms need to perform a substantial amount of 82 * initialization work (e.g. salted checksums above may need to pre-hash 83 * the salt) before being able to process data. Performing this 84 * redundant work for each block would be wasteful, so we instead allow 85 * a checksum algorithm to do the work once (the first time it's used) 86 * and then keep this pre-initialized context as a template inside the 87 * spa_t (spa_cksum_tmpls). If the zio_checksum_info_t contains 88 * non-NULL ci_tmpl_init and ci_tmpl_free callbacks, they are used to 89 * construct and destruct the pre-initialized checksum context. The 90 * pre-initialized context is then reused during each checksum 91 * invocation and passed to the checksum function. 92 */ 93 94 /*ARGSUSED*/ 95 static void 96 abd_checksum_off(abd_t *abd, uint64_t size, 97 const void *ctx_template, zio_cksum_t *zcp) 98 { 99 ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0); 100 } 101 102 /*ARGSUSED*/ 103 static void 104 abd_fletcher_2_native(abd_t *abd, uint64_t size, 105 const void *ctx_template, zio_cksum_t *zcp) 106 { 107 fletcher_init(zcp); 108 (void) abd_iterate_func(abd, 0, size, 109 fletcher_2_incremental_native, zcp); 110 } 111 112 /*ARGSUSED*/ 113 static void 114 abd_fletcher_2_byteswap(abd_t *abd, uint64_t size, 115 const void *ctx_template, zio_cksum_t *zcp) 116 { 117 fletcher_init(zcp); 118 (void) abd_iterate_func(abd, 0, size, 119 fletcher_2_incremental_byteswap, zcp); 120 } 121 122 static inline void 123 abd_fletcher_4_impl(abd_t *abd, uint64_t size, zio_abd_checksum_data_t *acdp) 124 { 125 fletcher_4_abd_ops.acf_init(acdp); 126 abd_iterate_func(abd, 0, size, fletcher_4_abd_ops.acf_iter, acdp); 127 fletcher_4_abd_ops.acf_fini(acdp); 128 } 129 130 /*ARGSUSED*/ 131 void 132 abd_fletcher_4_native(abd_t *abd, uint64_t size, 133 const void *ctx_template, zio_cksum_t *zcp) 134 { 135 fletcher_4_ctx_t ctx; 136 137 zio_abd_checksum_data_t acd = { 138 .acd_byteorder = ZIO_CHECKSUM_NATIVE, 139 .acd_zcp = zcp, 140 .acd_ctx = &ctx 141 }; 142 143 abd_fletcher_4_impl(abd, size, &acd); 144 145 } 146 147 /*ARGSUSED*/ 148 void 149 abd_fletcher_4_byteswap(abd_t *abd, uint64_t size, 150 const void *ctx_template, zio_cksum_t *zcp) 151 { 152 fletcher_4_ctx_t ctx; 153 154 zio_abd_checksum_data_t acd = { 155 .acd_byteorder = ZIO_CHECKSUM_BYTESWAP, 156 .acd_zcp = zcp, 157 .acd_ctx = &ctx 158 }; 159 160 abd_fletcher_4_impl(abd, size, &acd); 161 } 162 163 zio_checksum_info_t zio_checksum_table[ZIO_CHECKSUM_FUNCTIONS] = { 164 {{NULL, NULL}, NULL, NULL, 0, "inherit"}, 165 {{NULL, NULL}, NULL, NULL, 0, "on"}, 166 {{abd_checksum_off, abd_checksum_off}, 167 NULL, NULL, 0, "off"}, 168 {{abd_checksum_SHA256, abd_checksum_SHA256}, 169 NULL, NULL, ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_EMBEDDED, 170 "label"}, 171 {{abd_checksum_SHA256, abd_checksum_SHA256}, 172 NULL, NULL, ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_EMBEDDED, 173 "gang_header"}, 174 {{abd_fletcher_2_native, abd_fletcher_2_byteswap}, 175 NULL, NULL, ZCHECKSUM_FLAG_EMBEDDED, "zilog"}, 176 {{abd_fletcher_2_native, abd_fletcher_2_byteswap}, 177 NULL, NULL, 0, "fletcher2"}, 178 {{abd_fletcher_4_native, abd_fletcher_4_byteswap}, 179 NULL, NULL, ZCHECKSUM_FLAG_METADATA, "fletcher4"}, 180 {{abd_checksum_SHA256, abd_checksum_SHA256}, 181 NULL, NULL, ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_DEDUP | 182 ZCHECKSUM_FLAG_NOPWRITE, "sha256"}, 183 {{abd_fletcher_4_native, abd_fletcher_4_byteswap}, 184 NULL, NULL, ZCHECKSUM_FLAG_EMBEDDED, "zilog2"}, 185 {{abd_checksum_off, abd_checksum_off}, 186 NULL, NULL, 0, "noparity"}, 187 {{abd_checksum_SHA512_native, abd_checksum_SHA512_byteswap}, 188 NULL, NULL, ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_DEDUP | 189 ZCHECKSUM_FLAG_NOPWRITE, "sha512"}, 190 {{abd_checksum_skein_native, abd_checksum_skein_byteswap}, 191 abd_checksum_skein_tmpl_init, abd_checksum_skein_tmpl_free, 192 ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_DEDUP | 193 ZCHECKSUM_FLAG_SALTED | ZCHECKSUM_FLAG_NOPWRITE, "skein"}, 194 #if !defined(__FreeBSD__) 195 {{abd_checksum_edonr_native, abd_checksum_edonr_byteswap}, 196 abd_checksum_edonr_tmpl_init, abd_checksum_edonr_tmpl_free, 197 ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_SALTED | 198 ZCHECKSUM_FLAG_NOPWRITE, "edonr"}, 199 #endif 200 }; 201 202 /* 203 * The flag corresponding to the "verify" in dedup=[checksum,]verify 204 * must be cleared first, so callers should use ZIO_CHECKSUM_MASK. 205 */ 206 spa_feature_t 207 zio_checksum_to_feature(enum zio_checksum cksum) 208 { 209 VERIFY((cksum & ~ZIO_CHECKSUM_MASK) == 0); 210 211 switch (cksum) { 212 case ZIO_CHECKSUM_SHA512: 213 return (SPA_FEATURE_SHA512); 214 case ZIO_CHECKSUM_SKEIN: 215 return (SPA_FEATURE_SKEIN); 216 #if !defined(__FreeBSD__) 217 case ZIO_CHECKSUM_EDONR: 218 return (SPA_FEATURE_EDONR); 219 #endif 220 default: 221 return (SPA_FEATURE_NONE); 222 } 223 } 224 225 enum zio_checksum 226 zio_checksum_select(enum zio_checksum child, enum zio_checksum parent) 227 { 228 ASSERT(child < ZIO_CHECKSUM_FUNCTIONS); 229 ASSERT(parent < ZIO_CHECKSUM_FUNCTIONS); 230 ASSERT(parent != ZIO_CHECKSUM_INHERIT && parent != ZIO_CHECKSUM_ON); 231 232 if (child == ZIO_CHECKSUM_INHERIT) 233 return (parent); 234 235 if (child == ZIO_CHECKSUM_ON) 236 return (ZIO_CHECKSUM_ON_VALUE); 237 238 return (child); 239 } 240 241 enum zio_checksum 242 zio_checksum_dedup_select(spa_t *spa, enum zio_checksum child, 243 enum zio_checksum parent) 244 { 245 ASSERT((child & ZIO_CHECKSUM_MASK) < ZIO_CHECKSUM_FUNCTIONS); 246 ASSERT((parent & ZIO_CHECKSUM_MASK) < ZIO_CHECKSUM_FUNCTIONS); 247 ASSERT(parent != ZIO_CHECKSUM_INHERIT && parent != ZIO_CHECKSUM_ON); 248 249 if (child == ZIO_CHECKSUM_INHERIT) 250 return (parent); 251 252 if (child == ZIO_CHECKSUM_ON) 253 return (spa_dedup_checksum(spa)); 254 255 if (child == (ZIO_CHECKSUM_ON | ZIO_CHECKSUM_VERIFY)) 256 return (spa_dedup_checksum(spa) | ZIO_CHECKSUM_VERIFY); 257 258 ASSERT((zio_checksum_table[child & ZIO_CHECKSUM_MASK].ci_flags & 259 ZCHECKSUM_FLAG_DEDUP) || 260 (child & ZIO_CHECKSUM_VERIFY) || child == ZIO_CHECKSUM_OFF); 261 262 return (child); 263 } 264 265 /* 266 * Set the external verifier for a gang block based on <vdev, offset, txg>, 267 * a tuple which is guaranteed to be unique for the life of the pool. 268 */ 269 static void 270 zio_checksum_gang_verifier(zio_cksum_t *zcp, const blkptr_t *bp) 271 { 272 const dva_t *dva = BP_IDENTITY(bp); 273 uint64_t txg = BP_PHYSICAL_BIRTH(bp); 274 275 ASSERT(BP_IS_GANG(bp)); 276 277 ZIO_SET_CHECKSUM(zcp, DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva), txg, 0); 278 } 279 280 /* 281 * Set the external verifier for a label block based on its offset. 282 * The vdev is implicit, and the txg is unknowable at pool open time -- 283 * hence the logic in vdev_uberblock_load() to find the most recent copy. 284 */ 285 static void 286 zio_checksum_label_verifier(zio_cksum_t *zcp, uint64_t offset) 287 { 288 ZIO_SET_CHECKSUM(zcp, offset, 0, 0, 0); 289 } 290 291 /* 292 * Calls the template init function of a checksum which supports context 293 * templates and installs the template into the spa_t. 294 */ 295 static void 296 zio_checksum_template_init(enum zio_checksum checksum, spa_t *spa) 297 { 298 zio_checksum_info_t *ci = &zio_checksum_table[checksum]; 299 300 if (ci->ci_tmpl_init == NULL) 301 return; 302 if (spa->spa_cksum_tmpls[checksum] != NULL) 303 return; 304 305 VERIFY(ci->ci_tmpl_free != NULL); 306 mutex_enter(&spa->spa_cksum_tmpls_lock); 307 if (spa->spa_cksum_tmpls[checksum] == NULL) { 308 spa->spa_cksum_tmpls[checksum] = 309 ci->ci_tmpl_init(&spa->spa_cksum_salt); 310 VERIFY(spa->spa_cksum_tmpls[checksum] != NULL); 311 } 312 mutex_exit(&spa->spa_cksum_tmpls_lock); 313 } 314 315 /* convenience function to update a checksum to accommodate an encryption MAC */ 316 static void 317 zio_checksum_handle_crypt(zio_cksum_t *cksum, zio_cksum_t *saved, boolean_t xor) 318 { 319 /* 320 * Weak checksums do not have their entropy spread evenly 321 * across the bits of the checksum. Therefore, when truncating 322 * a weak checksum we XOR the first 2 words with the last 2 so 323 * that we don't "lose" any entropy unnecessarily. 324 */ 325 if (xor) { 326 cksum->zc_word[0] ^= cksum->zc_word[2]; 327 cksum->zc_word[1] ^= cksum->zc_word[3]; 328 } 329 330 cksum->zc_word[2] = saved->zc_word[2]; 331 cksum->zc_word[3] = saved->zc_word[3]; 332 } 333 334 /* 335 * Generate the checksum. 336 */ 337 void 338 zio_checksum_compute(zio_t *zio, enum zio_checksum checksum, 339 abd_t *abd, uint64_t size) 340 { 341 static const uint64_t zec_magic = ZEC_MAGIC; 342 blkptr_t *bp = zio->io_bp; 343 uint64_t offset = zio->io_offset; 344 zio_checksum_info_t *ci = &zio_checksum_table[checksum]; 345 zio_cksum_t cksum, saved; 346 spa_t *spa = zio->io_spa; 347 boolean_t insecure = (ci->ci_flags & ZCHECKSUM_FLAG_DEDUP) == 0; 348 349 ASSERT((uint_t)checksum < ZIO_CHECKSUM_FUNCTIONS); 350 ASSERT(ci->ci_func[0] != NULL); 351 352 zio_checksum_template_init(checksum, spa); 353 354 if (ci->ci_flags & ZCHECKSUM_FLAG_EMBEDDED) { 355 zio_eck_t eck; 356 size_t eck_offset; 357 358 bzero(&saved, sizeof (zio_cksum_t)); 359 360 if (checksum == ZIO_CHECKSUM_ZILOG2) { 361 zil_chain_t zilc; 362 abd_copy_to_buf(&zilc, abd, sizeof (zil_chain_t)); 363 364 size = P2ROUNDUP_TYPED(zilc.zc_nused, ZIL_MIN_BLKSZ, 365 uint64_t); 366 eck = zilc.zc_eck; 367 eck_offset = offsetof(zil_chain_t, zc_eck); 368 } else { 369 eck_offset = size - sizeof (zio_eck_t); 370 abd_copy_to_buf_off(&eck, abd, eck_offset, 371 sizeof (zio_eck_t)); 372 } 373 374 if (checksum == ZIO_CHECKSUM_GANG_HEADER) { 375 zio_checksum_gang_verifier(&eck.zec_cksum, bp); 376 } else if (checksum == ZIO_CHECKSUM_LABEL) { 377 zio_checksum_label_verifier(&eck.zec_cksum, offset); 378 } else { 379 saved = eck.zec_cksum; 380 eck.zec_cksum = bp->blk_cksum; 381 } 382 383 abd_copy_from_buf_off(abd, &zec_magic, 384 eck_offset + offsetof(zio_eck_t, zec_magic), 385 sizeof (zec_magic)); 386 abd_copy_from_buf_off(abd, &eck.zec_cksum, 387 eck_offset + offsetof(zio_eck_t, zec_cksum), 388 sizeof (zio_cksum_t)); 389 390 ci->ci_func[0](abd, size, spa->spa_cksum_tmpls[checksum], 391 &cksum); 392 if (bp != NULL && BP_USES_CRYPT(bp) && 393 BP_GET_TYPE(bp) != DMU_OT_OBJSET) 394 zio_checksum_handle_crypt(&cksum, &saved, insecure); 395 396 abd_copy_from_buf_off(abd, &cksum, 397 eck_offset + offsetof(zio_eck_t, zec_cksum), 398 sizeof (zio_cksum_t)); 399 } else { 400 saved = bp->blk_cksum; 401 ci->ci_func[0](abd, size, spa->spa_cksum_tmpls[checksum], 402 &cksum); 403 if (BP_USES_CRYPT(bp) && BP_GET_TYPE(bp) != DMU_OT_OBJSET) 404 zio_checksum_handle_crypt(&cksum, &saved, insecure); 405 bp->blk_cksum = cksum; 406 } 407 } 408 409 int 410 zio_checksum_error_impl(spa_t *spa, const blkptr_t *bp, 411 enum zio_checksum checksum, abd_t *abd, uint64_t size, uint64_t offset, 412 zio_bad_cksum_t *info) 413 { 414 zio_checksum_info_t *ci = &zio_checksum_table[checksum]; 415 zio_cksum_t actual_cksum, expected_cksum; 416 zio_eck_t eck; 417 int byteswap; 418 419 if (checksum >= ZIO_CHECKSUM_FUNCTIONS || ci->ci_func[0] == NULL) 420 return (SET_ERROR(EINVAL)); 421 422 zio_checksum_template_init(checksum, spa); 423 424 if (ci->ci_flags & ZCHECKSUM_FLAG_EMBEDDED) { 425 zio_cksum_t verifier; 426 size_t eck_offset; 427 428 if (checksum == ZIO_CHECKSUM_ZILOG2) { 429 zil_chain_t zilc; 430 uint64_t nused; 431 432 abd_copy_to_buf(&zilc, abd, sizeof (zil_chain_t)); 433 434 eck = zilc.zc_eck; 435 eck_offset = offsetof(zil_chain_t, zc_eck) + 436 offsetof(zio_eck_t, zec_cksum); 437 438 if (eck.zec_magic == ZEC_MAGIC) { 439 nused = zilc.zc_nused; 440 } else if (eck.zec_magic == BSWAP_64(ZEC_MAGIC)) { 441 nused = BSWAP_64(zilc.zc_nused); 442 } else { 443 return (SET_ERROR(ECKSUM)); 444 } 445 446 if (nused > size) { 447 return (SET_ERROR(ECKSUM)); 448 } 449 450 size = P2ROUNDUP_TYPED(nused, ZIL_MIN_BLKSZ, uint64_t); 451 } else { 452 eck_offset = size - sizeof (zio_eck_t); 453 abd_copy_to_buf_off(&eck, abd, eck_offset, 454 sizeof (zio_eck_t)); 455 eck_offset += offsetof(zio_eck_t, zec_cksum); 456 } 457 458 if (checksum == ZIO_CHECKSUM_GANG_HEADER) 459 zio_checksum_gang_verifier(&verifier, bp); 460 else if (checksum == ZIO_CHECKSUM_LABEL) 461 zio_checksum_label_verifier(&verifier, offset); 462 else 463 verifier = bp->blk_cksum; 464 465 byteswap = (eck.zec_magic == BSWAP_64(ZEC_MAGIC)); 466 467 if (byteswap) 468 byteswap_uint64_array(&verifier, sizeof (zio_cksum_t)); 469 470 expected_cksum = eck.zec_cksum; 471 472 abd_copy_from_buf_off(abd, &verifier, eck_offset, 473 sizeof (zio_cksum_t)); 474 475 ci->ci_func[byteswap](abd, size, 476 spa->spa_cksum_tmpls[checksum], &actual_cksum); 477 478 abd_copy_from_buf_off(abd, &expected_cksum, eck_offset, 479 sizeof (zio_cksum_t)); 480 481 if (byteswap) { 482 byteswap_uint64_array(&expected_cksum, 483 sizeof (zio_cksum_t)); 484 } 485 } else { 486 byteswap = BP_SHOULD_BYTESWAP(bp); 487 expected_cksum = bp->blk_cksum; 488 ci->ci_func[byteswap](abd, size, 489 spa->spa_cksum_tmpls[checksum], &actual_cksum); 490 } 491 492 /* 493 * MAC checksums are a special case since half of this checksum will 494 * actually be the encryption MAC. This will be verified by the 495 * decryption process, so we just check the truncated checksum now. 496 * Objset blocks use embedded MACs so we don't truncate the checksum 497 * for them. 498 */ 499 if (bp != NULL && BP_USES_CRYPT(bp) && 500 BP_GET_TYPE(bp) != DMU_OT_OBJSET) { 501 if (!(ci->ci_flags & ZCHECKSUM_FLAG_DEDUP)) { 502 actual_cksum.zc_word[0] ^= actual_cksum.zc_word[2]; 503 actual_cksum.zc_word[1] ^= actual_cksum.zc_word[3]; 504 } 505 506 actual_cksum.zc_word[2] = 0; 507 actual_cksum.zc_word[3] = 0; 508 expected_cksum.zc_word[2] = 0; 509 expected_cksum.zc_word[3] = 0; 510 } 511 512 if (info != NULL) { 513 info->zbc_expected = expected_cksum; 514 info->zbc_actual = actual_cksum; 515 info->zbc_checksum_name = ci->ci_name; 516 info->zbc_byteswapped = byteswap; 517 info->zbc_injected = 0; 518 info->zbc_has_cksum = 1; 519 } 520 521 if (!ZIO_CHECKSUM_EQUAL(actual_cksum, expected_cksum)) 522 return (SET_ERROR(ECKSUM)); 523 524 return (0); 525 } 526 527 int 528 zio_checksum_error(zio_t *zio, zio_bad_cksum_t *info) 529 { 530 blkptr_t *bp = zio->io_bp; 531 uint_t checksum = (bp == NULL ? zio->io_prop.zp_checksum : 532 (BP_IS_GANG(bp) ? ZIO_CHECKSUM_GANG_HEADER : BP_GET_CHECKSUM(bp))); 533 int error; 534 uint64_t size = (bp == NULL ? zio->io_size : 535 (BP_IS_GANG(bp) ? SPA_GANGBLOCKSIZE : BP_GET_PSIZE(bp))); 536 uint64_t offset = zio->io_offset; 537 abd_t *data = zio->io_abd; 538 spa_t *spa = zio->io_spa; 539 540 error = zio_checksum_error_impl(spa, bp, checksum, data, size, 541 offset, info); 542 543 if (zio_injection_enabled && error == 0 && zio->io_error == 0) { 544 error = zio_handle_fault_injection(zio, ECKSUM); 545 if (error != 0) 546 info->zbc_injected = 1; 547 } 548 549 return (error); 550 } 551 552 /* 553 * Called by a spa_t that's about to be deallocated. This steps through 554 * all of the checksum context templates and deallocates any that were 555 * initialized using the algorithm-specific template init function. 556 */ 557 void 558 zio_checksum_templates_free(spa_t *spa) 559 { 560 for (enum zio_checksum checksum = 0; 561 checksum < ZIO_CHECKSUM_FUNCTIONS; checksum++) { 562 if (spa->spa_cksum_tmpls[checksum] != NULL) { 563 zio_checksum_info_t *ci = &zio_checksum_table[checksum]; 564 565 VERIFY(ci->ci_tmpl_free != NULL); 566 ci->ci_tmpl_free(spa->spa_cksum_tmpls[checksum]); 567 spa->spa_cksum_tmpls[checksum] = NULL; 568 } 569 } 570 } 571