1 // SPDX-License-Identifier: CDDL-1.0 2 /* 3 * CDDL HEADER START 4 * 5 * The contents of this file are subject to the terms of the 6 * Common Development and Distribution License (the "License"). 7 * You may not use this file except in compliance with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or https://opensource.org/licenses/CDDL-1.0. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2013, 2016 by Delphix. All rights reserved. 25 * Copyright 2013 Saso Kiselkov. All rights reserved. 26 */ 27 28 #include <sys/zfs_context.h> 29 #include <sys/spa.h> 30 #include <sys/spa_impl.h> 31 #include <sys/zio.h> 32 #include <sys/zio_checksum.h> 33 #include <sys/zil.h> 34 #include <sys/abd.h> 35 #include <zfs_fletcher.h> 36 37 /* 38 * Checksum vectors. 39 * 40 * In the SPA, everything is checksummed. We support checksum vectors 41 * for three distinct reasons: 42 * 43 * 1. Different kinds of data need different levels of protection. 44 * For SPA metadata, we always want a very strong checksum. 45 * For user data, we let users make the trade-off between speed 46 * and checksum strength. 47 * 48 * 2. Cryptographic hash and MAC algorithms are an area of active research. 49 * It is likely that in future hash functions will be at least as strong 50 * as current best-of-breed, and may be substantially faster as well. 51 * We want the ability to take advantage of these new hashes as soon as 52 * they become available. 53 * 54 * 3. If someone develops hardware that can compute a strong hash quickly, 55 * we want the ability to take advantage of that hardware. 56 * 57 * Of course, we don't want a checksum upgrade to invalidate existing 58 * data, so we store the checksum *function* in eight bits of the bp. 59 * This gives us room for up to 256 different checksum functions. 60 * 61 * When writing a block, we always checksum it with the latest-and-greatest 62 * checksum function of the appropriate strength. When reading a block, 63 * we compare the expected checksum against the actual checksum, which we 64 * compute via the checksum function specified by BP_GET_CHECKSUM(bp). 65 * 66 * SALTED CHECKSUMS 67 * 68 * To enable the use of less secure hash algorithms with dedup, we 69 * introduce the notion of salted checksums (MACs, really). A salted 70 * checksum is fed both a random 256-bit value (the salt) and the data 71 * to be checksummed. This salt is kept secret (stored on the pool, but 72 * never shown to the user). Thus even if an attacker knew of collision 73 * weaknesses in the hash algorithm, they won't be able to mount a known 74 * plaintext attack on the DDT, since the actual hash value cannot be 75 * known ahead of time. How the salt is used is algorithm-specific 76 * (some might simply prefix it to the data block, others might need to 77 * utilize a full-blown HMAC). On disk the salt is stored in a ZAP 78 * object in the MOS (DMU_POOL_CHECKSUM_SALT). 79 * 80 * CONTEXT TEMPLATES 81 * 82 * Some hashing algorithms need to perform a substantial amount of 83 * initialization work (e.g. salted checksums above may need to pre-hash 84 * the salt) before being able to process data. Performing this 85 * redundant work for each block would be wasteful, so we instead allow 86 * a checksum algorithm to do the work once (the first time it's used) 87 * and then keep this pre-initialized context as a template inside the 88 * spa_t (spa_cksum_tmpls). If the zio_checksum_info_t contains 89 * non-NULL ci_tmpl_init and ci_tmpl_free callbacks, they are used to 90 * construct and destruct the pre-initialized checksum context. The 91 * pre-initialized context is then reused during each checksum 92 * invocation and passed to the checksum function. 93 */ 94 95 static void 96 abd_checksum_off(abd_t *abd, uint64_t size, 97 const void *ctx_template, zio_cksum_t *zcp) 98 { 99 (void) abd, (void) size, (void) ctx_template; 100 ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0); 101 } 102 103 static void 104 abd_fletcher_2_native(abd_t *abd, uint64_t size, 105 const void *ctx_template, zio_cksum_t *zcp) 106 { 107 (void) ctx_template; 108 fletcher_init(zcp); 109 (void) abd_iterate_func(abd, 0, size, 110 fletcher_2_incremental_native, zcp); 111 } 112 113 static void 114 abd_fletcher_2_byteswap(abd_t *abd, uint64_t size, 115 const void *ctx_template, zio_cksum_t *zcp) 116 { 117 (void) ctx_template; 118 fletcher_init(zcp); 119 (void) abd_iterate_func(abd, 0, size, 120 fletcher_2_incremental_byteswap, zcp); 121 } 122 123 static inline void 124 abd_fletcher_4_impl(abd_t *abd, uint64_t size, zio_abd_checksum_data_t *acdp) 125 { 126 fletcher_4_abd_ops.acf_init(acdp); 127 abd_iterate_func(abd, 0, size, fletcher_4_abd_ops.acf_iter, acdp); 128 fletcher_4_abd_ops.acf_fini(acdp); 129 } 130 131 void 132 abd_fletcher_4_native(abd_t *abd, uint64_t size, 133 const void *ctx_template, zio_cksum_t *zcp) 134 { 135 (void) ctx_template; 136 fletcher_4_ctx_t ctx; 137 138 zio_abd_checksum_data_t acd = { 139 .acd_byteorder = ZIO_CHECKSUM_NATIVE, 140 .acd_zcp = zcp, 141 .acd_ctx = &ctx 142 }; 143 144 abd_fletcher_4_impl(abd, size, &acd); 145 146 } 147 148 void 149 abd_fletcher_4_byteswap(abd_t *abd, uint64_t size, 150 const void *ctx_template, zio_cksum_t *zcp) 151 { 152 (void) ctx_template; 153 fletcher_4_ctx_t ctx; 154 155 zio_abd_checksum_data_t acd = { 156 .acd_byteorder = ZIO_CHECKSUM_BYTESWAP, 157 .acd_zcp = zcp, 158 .acd_ctx = &ctx 159 }; 160 161 abd_fletcher_4_impl(abd, size, &acd); 162 } 163 164 /* 165 * Checksum vectors. 166 * 167 * Note: you cannot change the name string for these functions, as they are 168 * embedded in on-disk data in some places (eg dedup table names). 169 */ 170 zio_checksum_info_t zio_checksum_table[ZIO_CHECKSUM_FUNCTIONS] = { 171 {{NULL, NULL}, NULL, NULL, 0, "inherit"}, 172 {{NULL, NULL}, NULL, NULL, 0, "on"}, 173 {{abd_checksum_off, abd_checksum_off}, 174 NULL, NULL, 0, "off"}, 175 {{abd_checksum_sha256, abd_checksum_sha256}, 176 NULL, NULL, ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_EMBEDDED, 177 "label"}, 178 {{abd_checksum_sha256, abd_checksum_sha256}, 179 NULL, NULL, ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_EMBEDDED, 180 "gang_header"}, 181 {{abd_fletcher_2_native, abd_fletcher_2_byteswap}, 182 NULL, NULL, ZCHECKSUM_FLAG_EMBEDDED, "zilog"}, 183 {{abd_fletcher_2_native, abd_fletcher_2_byteswap}, 184 NULL, NULL, 0, "fletcher2"}, 185 {{abd_fletcher_4_native, abd_fletcher_4_byteswap}, 186 NULL, NULL, ZCHECKSUM_FLAG_METADATA, "fletcher4"}, 187 {{abd_checksum_sha256, abd_checksum_sha256}, 188 NULL, NULL, ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_DEDUP | 189 ZCHECKSUM_FLAG_NOPWRITE, "sha256"}, 190 {{abd_fletcher_4_native, abd_fletcher_4_byteswap}, 191 NULL, NULL, ZCHECKSUM_FLAG_EMBEDDED, "zilog2"}, 192 {{abd_checksum_off, abd_checksum_off}, 193 NULL, NULL, 0, "noparity"}, 194 {{abd_checksum_sha512_native, abd_checksum_sha512_byteswap}, 195 NULL, NULL, ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_DEDUP | 196 ZCHECKSUM_FLAG_NOPWRITE, "sha512"}, 197 {{abd_checksum_skein_native, abd_checksum_skein_byteswap}, 198 abd_checksum_skein_tmpl_init, abd_checksum_skein_tmpl_free, 199 ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_DEDUP | 200 ZCHECKSUM_FLAG_SALTED | ZCHECKSUM_FLAG_NOPWRITE, "skein"}, 201 {{abd_checksum_edonr_native, abd_checksum_edonr_byteswap}, 202 abd_checksum_edonr_tmpl_init, abd_checksum_edonr_tmpl_free, 203 ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_SALTED | 204 ZCHECKSUM_FLAG_NOPWRITE, "edonr"}, 205 {{abd_checksum_blake3_native, abd_checksum_blake3_byteswap}, 206 abd_checksum_blake3_tmpl_init, abd_checksum_blake3_tmpl_free, 207 ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_DEDUP | 208 ZCHECKSUM_FLAG_SALTED | ZCHECKSUM_FLAG_NOPWRITE, "blake3"}, 209 }; 210 211 /* 212 * The flag corresponding to the "verify" in dedup=[checksum,]verify 213 * must be cleared first, so callers should use ZIO_CHECKSUM_MASK. 214 */ 215 spa_feature_t 216 zio_checksum_to_feature(enum zio_checksum cksum) 217 { 218 VERIFY((cksum & ~ZIO_CHECKSUM_MASK) == 0); 219 220 switch (cksum) { 221 case ZIO_CHECKSUM_BLAKE3: 222 return (SPA_FEATURE_BLAKE3); 223 case ZIO_CHECKSUM_SHA512: 224 return (SPA_FEATURE_SHA512); 225 case ZIO_CHECKSUM_SKEIN: 226 return (SPA_FEATURE_SKEIN); 227 case ZIO_CHECKSUM_EDONR: 228 return (SPA_FEATURE_EDONR); 229 default: 230 return (SPA_FEATURE_NONE); 231 } 232 } 233 234 enum zio_checksum 235 zio_checksum_select(enum zio_checksum child, enum zio_checksum parent) 236 { 237 ASSERT(child < ZIO_CHECKSUM_FUNCTIONS); 238 ASSERT(parent < ZIO_CHECKSUM_FUNCTIONS); 239 ASSERT(parent != ZIO_CHECKSUM_INHERIT && parent != ZIO_CHECKSUM_ON); 240 241 if (child == ZIO_CHECKSUM_INHERIT) 242 return (parent); 243 244 if (child == ZIO_CHECKSUM_ON) 245 return (ZIO_CHECKSUM_ON_VALUE); 246 247 return (child); 248 } 249 250 enum zio_checksum 251 zio_checksum_dedup_select(spa_t *spa, enum zio_checksum child, 252 enum zio_checksum parent) 253 { 254 ASSERT((child & ZIO_CHECKSUM_MASK) < ZIO_CHECKSUM_FUNCTIONS); 255 ASSERT((parent & ZIO_CHECKSUM_MASK) < ZIO_CHECKSUM_FUNCTIONS); 256 ASSERT(parent != ZIO_CHECKSUM_INHERIT && parent != ZIO_CHECKSUM_ON); 257 258 if (child == ZIO_CHECKSUM_INHERIT) 259 return (parent); 260 261 if (child == ZIO_CHECKSUM_ON) 262 return (spa_dedup_checksum(spa)); 263 264 if (child == (ZIO_CHECKSUM_ON | ZIO_CHECKSUM_VERIFY)) 265 return (spa_dedup_checksum(spa) | ZIO_CHECKSUM_VERIFY); 266 267 ASSERT((zio_checksum_table[child & ZIO_CHECKSUM_MASK].ci_flags & 268 ZCHECKSUM_FLAG_DEDUP) || 269 (child & ZIO_CHECKSUM_VERIFY) || child == ZIO_CHECKSUM_OFF); 270 271 return (child); 272 } 273 274 /* 275 * Set the external verifier for a gang block based on <vdev, offset, txg>, 276 * a tuple which is guaranteed to be unique for the life of the pool. 277 */ 278 static void 279 zio_checksum_gang_verifier(zio_cksum_t *zcp, const blkptr_t *bp) 280 { 281 const dva_t *dva = BP_IDENTITY(bp); 282 uint64_t txg = BP_GET_BIRTH(bp); 283 284 ASSERT(BP_IS_GANG(bp)); 285 286 ZIO_SET_CHECKSUM(zcp, DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva), txg, 0); 287 } 288 289 /* 290 * Set the external verifier for a label block based on its offset. 291 * The vdev is implicit, and the txg is unknowable at pool open time -- 292 * hence the logic in vdev_uberblock_load() to find the most recent copy. 293 */ 294 static void 295 zio_checksum_label_verifier(zio_cksum_t *zcp, uint64_t offset) 296 { 297 ZIO_SET_CHECKSUM(zcp, offset, 0, 0, 0); 298 } 299 300 /* 301 * Calls the template init function of a checksum which supports context 302 * templates and installs the template into the spa_t. 303 */ 304 static void 305 zio_checksum_template_init(enum zio_checksum checksum, spa_t *spa) 306 { 307 zio_checksum_info_t *ci = &zio_checksum_table[checksum]; 308 309 if (ci->ci_tmpl_init == NULL) 310 return; 311 if (spa->spa_cksum_tmpls[checksum] != NULL) 312 return; 313 314 VERIFY(ci->ci_tmpl_free != NULL); 315 mutex_enter(&spa->spa_cksum_tmpls_lock); 316 if (spa->spa_cksum_tmpls[checksum] == NULL) { 317 spa->spa_cksum_tmpls[checksum] = 318 ci->ci_tmpl_init(&spa->spa_cksum_salt); 319 VERIFY(spa->spa_cksum_tmpls[checksum] != NULL); 320 } 321 mutex_exit(&spa->spa_cksum_tmpls_lock); 322 } 323 324 /* convenience function to update a checksum to accommodate an encryption MAC */ 325 static void 326 zio_checksum_handle_crypt(zio_cksum_t *cksum, zio_cksum_t *saved, boolean_t xor) 327 { 328 /* 329 * Weak checksums do not have their entropy spread evenly 330 * across the bits of the checksum. Therefore, when truncating 331 * a weak checksum we XOR the first 2 words with the last 2 so 332 * that we don't "lose" any entropy unnecessarily. 333 */ 334 if (xor) { 335 cksum->zc_word[0] ^= cksum->zc_word[2]; 336 cksum->zc_word[1] ^= cksum->zc_word[3]; 337 } 338 339 cksum->zc_word[2] = saved->zc_word[2]; 340 cksum->zc_word[3] = saved->zc_word[3]; 341 } 342 343 /* 344 * Generate the checksum. 345 */ 346 void 347 zio_checksum_compute(zio_t *zio, enum zio_checksum checksum, 348 abd_t *abd, uint64_t size) 349 { 350 static const uint64_t zec_magic = ZEC_MAGIC; 351 blkptr_t *bp = zio->io_bp; 352 uint64_t offset = zio->io_offset; 353 zio_checksum_info_t *ci = &zio_checksum_table[checksum]; 354 zio_cksum_t cksum, saved; 355 spa_t *spa = zio->io_spa; 356 boolean_t insecure = (ci->ci_flags & ZCHECKSUM_FLAG_DEDUP) == 0; 357 358 ASSERT((uint_t)checksum < ZIO_CHECKSUM_FUNCTIONS); 359 ASSERT(ci->ci_func[0] != NULL); 360 361 zio_checksum_template_init(checksum, spa); 362 363 if (ci->ci_flags & ZCHECKSUM_FLAG_EMBEDDED) { 364 zio_eck_t eck; 365 size_t eck_offset; 366 367 memset(&saved, 0, sizeof (zio_cksum_t)); 368 369 if (checksum == ZIO_CHECKSUM_ZILOG2) { 370 zil_chain_t zilc; 371 abd_copy_to_buf(&zilc, abd, sizeof (zil_chain_t)); 372 373 uint64_t nused = P2ROUNDUP_TYPED(zilc.zc_nused, 374 ZIL_MIN_BLKSZ, uint64_t); 375 ASSERT3U(size, >=, nused); 376 size = nused; 377 eck = zilc.zc_eck; 378 eck_offset = offsetof(zil_chain_t, zc_eck); 379 } else { 380 ASSERT3U(size, >=, sizeof (zio_eck_t)); 381 eck_offset = size - sizeof (zio_eck_t); 382 abd_copy_to_buf_off(&eck, abd, eck_offset, 383 sizeof (zio_eck_t)); 384 } 385 386 if (checksum == ZIO_CHECKSUM_GANG_HEADER) { 387 zio_checksum_gang_verifier(&eck.zec_cksum, bp); 388 } else if (checksum == ZIO_CHECKSUM_LABEL) { 389 zio_checksum_label_verifier(&eck.zec_cksum, offset); 390 } else { 391 saved = eck.zec_cksum; 392 eck.zec_cksum = bp->blk_cksum; 393 } 394 395 abd_copy_from_buf_off(abd, &zec_magic, 396 eck_offset + offsetof(zio_eck_t, zec_magic), 397 sizeof (zec_magic)); 398 abd_copy_from_buf_off(abd, &eck.zec_cksum, 399 eck_offset + offsetof(zio_eck_t, zec_cksum), 400 sizeof (zio_cksum_t)); 401 402 ci->ci_func[0](abd, size, spa->spa_cksum_tmpls[checksum], 403 &cksum); 404 if (bp != NULL && BP_USES_CRYPT(bp) && 405 BP_GET_TYPE(bp) != DMU_OT_OBJSET) 406 zio_checksum_handle_crypt(&cksum, &saved, insecure); 407 408 abd_copy_from_buf_off(abd, &cksum, 409 eck_offset + offsetof(zio_eck_t, zec_cksum), 410 sizeof (zio_cksum_t)); 411 } else { 412 saved = bp->blk_cksum; 413 ci->ci_func[0](abd, size, spa->spa_cksum_tmpls[checksum], 414 &cksum); 415 if (BP_USES_CRYPT(bp) && BP_GET_TYPE(bp) != DMU_OT_OBJSET) 416 zio_checksum_handle_crypt(&cksum, &saved, insecure); 417 bp->blk_cksum = cksum; 418 } 419 } 420 421 int 422 zio_checksum_error_impl(spa_t *spa, const blkptr_t *bp, 423 enum zio_checksum checksum, abd_t *abd, uint64_t size, uint64_t offset, 424 zio_bad_cksum_t *info) 425 { 426 zio_checksum_info_t *ci = &zio_checksum_table[checksum]; 427 zio_cksum_t actual_cksum, expected_cksum; 428 zio_eck_t eck; 429 int byteswap; 430 431 if (checksum >= ZIO_CHECKSUM_FUNCTIONS || ci->ci_func[0] == NULL) 432 return (SET_ERROR(EINVAL)); 433 434 zio_checksum_template_init(checksum, spa); 435 436 IMPLY(bp == NULL, ci->ci_flags & ZCHECKSUM_FLAG_EMBEDDED); 437 IMPLY(bp == NULL, checksum == ZIO_CHECKSUM_LABEL); 438 439 if (ci->ci_flags & ZCHECKSUM_FLAG_EMBEDDED) { 440 zio_cksum_t verifier; 441 size_t eck_offset; 442 443 if (checksum == ZIO_CHECKSUM_ZILOG2) { 444 zil_chain_t zilc; 445 uint64_t nused; 446 447 abd_copy_to_buf(&zilc, abd, sizeof (zil_chain_t)); 448 449 eck = zilc.zc_eck; 450 eck_offset = offsetof(zil_chain_t, zc_eck) + 451 offsetof(zio_eck_t, zec_cksum); 452 453 if (eck.zec_magic == ZEC_MAGIC) { 454 nused = zilc.zc_nused; 455 } else if (eck.zec_magic == BSWAP_64(ZEC_MAGIC)) { 456 nused = BSWAP_64(zilc.zc_nused); 457 } else { 458 return (SET_ERROR(ECKSUM)); 459 } 460 461 nused = P2ROUNDUP_TYPED(nused, ZIL_MIN_BLKSZ, uint64_t); 462 if (size < nused) 463 return (SET_ERROR(ECKSUM)); 464 size = nused; 465 } else { 466 if (size < sizeof (zio_eck_t)) 467 return (SET_ERROR(ECKSUM)); 468 eck_offset = size - sizeof (zio_eck_t); 469 abd_copy_to_buf_off(&eck, abd, eck_offset, 470 sizeof (zio_eck_t)); 471 eck_offset += offsetof(zio_eck_t, zec_cksum); 472 } 473 474 if (checksum == ZIO_CHECKSUM_GANG_HEADER) 475 zio_checksum_gang_verifier(&verifier, bp); 476 else if (checksum == ZIO_CHECKSUM_LABEL) 477 zio_checksum_label_verifier(&verifier, offset); 478 else 479 verifier = bp->blk_cksum; 480 481 byteswap = (eck.zec_magic == BSWAP_64(ZEC_MAGIC)); 482 483 if (byteswap) 484 byteswap_uint64_array(&verifier, sizeof (zio_cksum_t)); 485 486 expected_cksum = eck.zec_cksum; 487 488 abd_copy_from_buf_off(abd, &verifier, eck_offset, 489 sizeof (zio_cksum_t)); 490 491 ci->ci_func[byteswap](abd, size, 492 spa->spa_cksum_tmpls[checksum], &actual_cksum); 493 494 abd_copy_from_buf_off(abd, &expected_cksum, eck_offset, 495 sizeof (zio_cksum_t)); 496 497 if (byteswap) { 498 byteswap_uint64_array(&expected_cksum, 499 sizeof (zio_cksum_t)); 500 } 501 } else { 502 byteswap = BP_SHOULD_BYTESWAP(bp); 503 expected_cksum = bp->blk_cksum; 504 ci->ci_func[byteswap](abd, size, 505 spa->spa_cksum_tmpls[checksum], &actual_cksum); 506 } 507 508 /* 509 * MAC checksums are a special case since half of this checksum will 510 * actually be the encryption MAC. This will be verified by the 511 * decryption process, so we just check the truncated checksum now. 512 * Objset blocks use embedded MACs so we don't truncate the checksum 513 * for them. 514 */ 515 if (bp != NULL && BP_USES_CRYPT(bp) && 516 BP_GET_TYPE(bp) != DMU_OT_OBJSET) { 517 if (!(ci->ci_flags & ZCHECKSUM_FLAG_DEDUP)) { 518 actual_cksum.zc_word[0] ^= actual_cksum.zc_word[2]; 519 actual_cksum.zc_word[1] ^= actual_cksum.zc_word[3]; 520 } 521 522 actual_cksum.zc_word[2] = 0; 523 actual_cksum.zc_word[3] = 0; 524 expected_cksum.zc_word[2] = 0; 525 expected_cksum.zc_word[3] = 0; 526 } 527 528 if (info != NULL) { 529 info->zbc_checksum_name = ci->ci_name; 530 info->zbc_byteswapped = byteswap; 531 info->zbc_injected = 0; 532 info->zbc_has_cksum = 1; 533 } 534 535 if (!ZIO_CHECKSUM_EQUAL(actual_cksum, expected_cksum)) 536 return (SET_ERROR(ECKSUM)); 537 538 return (0); 539 } 540 541 int 542 zio_checksum_error(zio_t *zio, zio_bad_cksum_t *info) 543 { 544 blkptr_t *bp = zio->io_bp; 545 uint_t checksum = (bp == NULL ? zio->io_prop.zp_checksum : 546 (BP_IS_GANG(bp) ? ZIO_CHECKSUM_GANG_HEADER : BP_GET_CHECKSUM(bp))); 547 int error; 548 uint64_t size = (bp == NULL ? zio->io_size : 549 (BP_IS_GANG(bp) ? SPA_GANGBLOCKSIZE : BP_GET_PSIZE(bp))); 550 uint64_t offset = zio->io_offset; 551 abd_t *data = zio->io_abd; 552 spa_t *spa = zio->io_spa; 553 554 error = zio_checksum_error_impl(spa, bp, checksum, data, size, 555 offset, info); 556 557 if (zio_injection_enabled && error == 0 && zio->io_error == 0) { 558 error = zio_handle_fault_injection(zio, ECKSUM); 559 if (error != 0) 560 info->zbc_injected = 1; 561 } 562 563 return (error); 564 } 565 566 /* 567 * Called by a spa_t that's about to be deallocated. This steps through 568 * all of the checksum context templates and deallocates any that were 569 * initialized using the algorithm-specific template init function. 570 */ 571 void 572 zio_checksum_templates_free(spa_t *spa) 573 { 574 for (enum zio_checksum checksum = 0; 575 checksum < ZIO_CHECKSUM_FUNCTIONS; checksum++) { 576 if (spa->spa_cksum_tmpls[checksum] != NULL) { 577 zio_checksum_info_t *ci = &zio_checksum_table[checksum]; 578 579 VERIFY(ci->ci_tmpl_free != NULL); 580 ci->ci_tmpl_free(spa->spa_cksum_tmpls[checksum]); 581 spa->spa_cksum_tmpls[checksum] = NULL; 582 } 583 } 584 } 585