1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2013, 2016 by Delphix. All rights reserved. 24 * Copyright 2013 Saso Kiselkov. All rights reserved. 25 */ 26 27 #include <sys/zfs_context.h> 28 #include <sys/spa.h> 29 #include <sys/spa_impl.h> 30 #include <sys/zio.h> 31 #include <sys/zio_checksum.h> 32 #include <sys/zil.h> 33 #include <sys/abd.h> 34 #include <zfs_fletcher.h> 35 36 /* 37 * Checksum vectors. 38 * 39 * In the SPA, everything is checksummed. We support checksum vectors 40 * for three distinct reasons: 41 * 42 * 1. Different kinds of data need different levels of protection. 43 * For SPA metadata, we always want a very strong checksum. 44 * For user data, we let users make the trade-off between speed 45 * and checksum strength. 46 * 47 * 2. Cryptographic hash and MAC algorithms are an area of active research. 48 * It is likely that in future hash functions will be at least as strong 49 * as current best-of-breed, and may be substantially faster as well. 50 * We want the ability to take advantage of these new hashes as soon as 51 * they become available. 52 * 53 * 3. If someone develops hardware that can compute a strong hash quickly, 54 * we want the ability to take advantage of that hardware. 55 * 56 * Of course, we don't want a checksum upgrade to invalidate existing 57 * data, so we store the checksum *function* in eight bits of the bp. 58 * This gives us room for up to 256 different checksum functions. 59 * 60 * When writing a block, we always checksum it with the latest-and-greatest 61 * checksum function of the appropriate strength. When reading a block, 62 * we compare the expected checksum against the actual checksum, which we 63 * compute via the checksum function specified by BP_GET_CHECKSUM(bp). 64 * 65 * SALTED CHECKSUMS 66 * 67 * To enable the use of less secure hash algorithms with dedup, we 68 * introduce the notion of salted checksums (MACs, really). A salted 69 * checksum is fed both a random 256-bit value (the salt) and the data 70 * to be checksummed. This salt is kept secret (stored on the pool, but 71 * never shown to the user). Thus even if an attacker knew of collision 72 * weaknesses in the hash algorithm, they won't be able to mount a known 73 * plaintext attack on the DDT, since the actual hash value cannot be 74 * known ahead of time. How the salt is used is algorithm-specific 75 * (some might simply prefix it to the data block, others might need to 76 * utilize a full-blown HMAC). On disk the salt is stored in a ZAP 77 * object in the MOS (DMU_POOL_CHECKSUM_SALT). 78 * 79 * CONTEXT TEMPLATES 80 * 81 * Some hashing algorithms need to perform a substantial amount of 82 * initialization work (e.g. salted checksums above may need to pre-hash 83 * the salt) before being able to process data. Performing this 84 * redundant work for each block would be wasteful, so we instead allow 85 * a checksum algorithm to do the work once (the first time it's used) 86 * and then keep this pre-initialized context as a template inside the 87 * spa_t (spa_cksum_tmpls). If the zio_checksum_info_t contains 88 * non-NULL ci_tmpl_init and ci_tmpl_free callbacks, they are used to 89 * construct and destruct the pre-initialized checksum context. The 90 * pre-initialized context is then reused during each checksum 91 * invocation and passed to the checksum function. 92 */ 93 94 static void 95 abd_checksum_off(abd_t *abd, uint64_t size, 96 const void *ctx_template, zio_cksum_t *zcp) 97 { 98 (void) abd, (void) size, (void) ctx_template; 99 ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0); 100 } 101 102 static void 103 abd_fletcher_2_native(abd_t *abd, uint64_t size, 104 const void *ctx_template, zio_cksum_t *zcp) 105 { 106 (void) ctx_template; 107 fletcher_init(zcp); 108 (void) abd_iterate_func(abd, 0, size, 109 fletcher_2_incremental_native, zcp); 110 } 111 112 static void 113 abd_fletcher_2_byteswap(abd_t *abd, uint64_t size, 114 const void *ctx_template, zio_cksum_t *zcp) 115 { 116 (void) ctx_template; 117 fletcher_init(zcp); 118 (void) abd_iterate_func(abd, 0, size, 119 fletcher_2_incremental_byteswap, zcp); 120 } 121 122 static inline void 123 abd_fletcher_4_impl(abd_t *abd, uint64_t size, zio_abd_checksum_data_t *acdp) 124 { 125 fletcher_4_abd_ops.acf_init(acdp); 126 abd_iterate_func(abd, 0, size, fletcher_4_abd_ops.acf_iter, acdp); 127 fletcher_4_abd_ops.acf_fini(acdp); 128 } 129 130 void 131 abd_fletcher_4_native(abd_t *abd, uint64_t size, 132 const void *ctx_template, zio_cksum_t *zcp) 133 { 134 (void) ctx_template; 135 fletcher_4_ctx_t ctx; 136 137 zio_abd_checksum_data_t acd = { 138 .acd_byteorder = ZIO_CHECKSUM_NATIVE, 139 .acd_zcp = zcp, 140 .acd_ctx = &ctx 141 }; 142 143 abd_fletcher_4_impl(abd, size, &acd); 144 145 } 146 147 void 148 abd_fletcher_4_byteswap(abd_t *abd, uint64_t size, 149 const void *ctx_template, zio_cksum_t *zcp) 150 { 151 (void) ctx_template; 152 fletcher_4_ctx_t ctx; 153 154 zio_abd_checksum_data_t acd = { 155 .acd_byteorder = ZIO_CHECKSUM_BYTESWAP, 156 .acd_zcp = zcp, 157 .acd_ctx = &ctx 158 }; 159 160 abd_fletcher_4_impl(abd, size, &acd); 161 } 162 163 /* 164 * Checksum vectors. 165 * 166 * Note: you cannot change the name string for these functions, as they are 167 * embedded in on-disk data in some places (eg dedup table names). 168 */ 169 zio_checksum_info_t zio_checksum_table[ZIO_CHECKSUM_FUNCTIONS] = { 170 {{NULL, NULL}, NULL, NULL, 0, "inherit"}, 171 {{NULL, NULL}, NULL, NULL, 0, "on"}, 172 {{abd_checksum_off, abd_checksum_off}, 173 NULL, NULL, 0, "off"}, 174 {{abd_checksum_sha256, abd_checksum_sha256}, 175 NULL, NULL, ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_EMBEDDED, 176 "label"}, 177 {{abd_checksum_sha256, abd_checksum_sha256}, 178 NULL, NULL, ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_EMBEDDED, 179 "gang_header"}, 180 {{abd_fletcher_2_native, abd_fletcher_2_byteswap}, 181 NULL, NULL, ZCHECKSUM_FLAG_EMBEDDED, "zilog"}, 182 {{abd_fletcher_2_native, abd_fletcher_2_byteswap}, 183 NULL, NULL, 0, "fletcher2"}, 184 {{abd_fletcher_4_native, abd_fletcher_4_byteswap}, 185 NULL, NULL, ZCHECKSUM_FLAG_METADATA, "fletcher4"}, 186 {{abd_checksum_sha256, abd_checksum_sha256}, 187 NULL, NULL, ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_DEDUP | 188 ZCHECKSUM_FLAG_NOPWRITE, "sha256"}, 189 {{abd_fletcher_4_native, abd_fletcher_4_byteswap}, 190 NULL, NULL, ZCHECKSUM_FLAG_EMBEDDED, "zilog2"}, 191 {{abd_checksum_off, abd_checksum_off}, 192 NULL, NULL, 0, "noparity"}, 193 {{abd_checksum_sha512_native, abd_checksum_sha512_byteswap}, 194 NULL, NULL, ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_DEDUP | 195 ZCHECKSUM_FLAG_NOPWRITE, "sha512"}, 196 {{abd_checksum_skein_native, abd_checksum_skein_byteswap}, 197 abd_checksum_skein_tmpl_init, abd_checksum_skein_tmpl_free, 198 ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_DEDUP | 199 ZCHECKSUM_FLAG_SALTED | ZCHECKSUM_FLAG_NOPWRITE, "skein"}, 200 {{abd_checksum_edonr_native, abd_checksum_edonr_byteswap}, 201 abd_checksum_edonr_tmpl_init, abd_checksum_edonr_tmpl_free, 202 ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_SALTED | 203 ZCHECKSUM_FLAG_NOPWRITE, "edonr"}, 204 {{abd_checksum_blake3_native, abd_checksum_blake3_byteswap}, 205 abd_checksum_blake3_tmpl_init, abd_checksum_blake3_tmpl_free, 206 ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_DEDUP | 207 ZCHECKSUM_FLAG_SALTED | ZCHECKSUM_FLAG_NOPWRITE, "blake3"}, 208 }; 209 210 /* 211 * The flag corresponding to the "verify" in dedup=[checksum,]verify 212 * must be cleared first, so callers should use ZIO_CHECKSUM_MASK. 213 */ 214 spa_feature_t 215 zio_checksum_to_feature(enum zio_checksum cksum) 216 { 217 VERIFY((cksum & ~ZIO_CHECKSUM_MASK) == 0); 218 219 switch (cksum) { 220 case ZIO_CHECKSUM_BLAKE3: 221 return (SPA_FEATURE_BLAKE3); 222 case ZIO_CHECKSUM_SHA512: 223 return (SPA_FEATURE_SHA512); 224 case ZIO_CHECKSUM_SKEIN: 225 return (SPA_FEATURE_SKEIN); 226 case ZIO_CHECKSUM_EDONR: 227 return (SPA_FEATURE_EDONR); 228 default: 229 return (SPA_FEATURE_NONE); 230 } 231 } 232 233 enum zio_checksum 234 zio_checksum_select(enum zio_checksum child, enum zio_checksum parent) 235 { 236 ASSERT(child < ZIO_CHECKSUM_FUNCTIONS); 237 ASSERT(parent < ZIO_CHECKSUM_FUNCTIONS); 238 ASSERT(parent != ZIO_CHECKSUM_INHERIT && parent != ZIO_CHECKSUM_ON); 239 240 if (child == ZIO_CHECKSUM_INHERIT) 241 return (parent); 242 243 if (child == ZIO_CHECKSUM_ON) 244 return (ZIO_CHECKSUM_ON_VALUE); 245 246 return (child); 247 } 248 249 enum zio_checksum 250 zio_checksum_dedup_select(spa_t *spa, enum zio_checksum child, 251 enum zio_checksum parent) 252 { 253 ASSERT((child & ZIO_CHECKSUM_MASK) < ZIO_CHECKSUM_FUNCTIONS); 254 ASSERT((parent & ZIO_CHECKSUM_MASK) < ZIO_CHECKSUM_FUNCTIONS); 255 ASSERT(parent != ZIO_CHECKSUM_INHERIT && parent != ZIO_CHECKSUM_ON); 256 257 if (child == ZIO_CHECKSUM_INHERIT) 258 return (parent); 259 260 if (child == ZIO_CHECKSUM_ON) 261 return (spa_dedup_checksum(spa)); 262 263 if (child == (ZIO_CHECKSUM_ON | ZIO_CHECKSUM_VERIFY)) 264 return (spa_dedup_checksum(spa) | ZIO_CHECKSUM_VERIFY); 265 266 ASSERT((zio_checksum_table[child & ZIO_CHECKSUM_MASK].ci_flags & 267 ZCHECKSUM_FLAG_DEDUP) || 268 (child & ZIO_CHECKSUM_VERIFY) || child == ZIO_CHECKSUM_OFF); 269 270 return (child); 271 } 272 273 /* 274 * Set the external verifier for a gang block based on <vdev, offset, txg>, 275 * a tuple which is guaranteed to be unique for the life of the pool. 276 */ 277 static void 278 zio_checksum_gang_verifier(zio_cksum_t *zcp, const blkptr_t *bp) 279 { 280 const dva_t *dva = BP_IDENTITY(bp); 281 uint64_t txg = BP_GET_BIRTH(bp); 282 283 ASSERT(BP_IS_GANG(bp)); 284 285 ZIO_SET_CHECKSUM(zcp, DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva), txg, 0); 286 } 287 288 /* 289 * Set the external verifier for a label block based on its offset. 290 * The vdev is implicit, and the txg is unknowable at pool open time -- 291 * hence the logic in vdev_uberblock_load() to find the most recent copy. 292 */ 293 static void 294 zio_checksum_label_verifier(zio_cksum_t *zcp, uint64_t offset) 295 { 296 ZIO_SET_CHECKSUM(zcp, offset, 0, 0, 0); 297 } 298 299 /* 300 * Calls the template init function of a checksum which supports context 301 * templates and installs the template into the spa_t. 302 */ 303 static void 304 zio_checksum_template_init(enum zio_checksum checksum, spa_t *spa) 305 { 306 zio_checksum_info_t *ci = &zio_checksum_table[checksum]; 307 308 if (ci->ci_tmpl_init == NULL) 309 return; 310 if (spa->spa_cksum_tmpls[checksum] != NULL) 311 return; 312 313 VERIFY(ci->ci_tmpl_free != NULL); 314 mutex_enter(&spa->spa_cksum_tmpls_lock); 315 if (spa->spa_cksum_tmpls[checksum] == NULL) { 316 spa->spa_cksum_tmpls[checksum] = 317 ci->ci_tmpl_init(&spa->spa_cksum_salt); 318 VERIFY(spa->spa_cksum_tmpls[checksum] != NULL); 319 } 320 mutex_exit(&spa->spa_cksum_tmpls_lock); 321 } 322 323 /* convenience function to update a checksum to accommodate an encryption MAC */ 324 static void 325 zio_checksum_handle_crypt(zio_cksum_t *cksum, zio_cksum_t *saved, boolean_t xor) 326 { 327 /* 328 * Weak checksums do not have their entropy spread evenly 329 * across the bits of the checksum. Therefore, when truncating 330 * a weak checksum we XOR the first 2 words with the last 2 so 331 * that we don't "lose" any entropy unnecessarily. 332 */ 333 if (xor) { 334 cksum->zc_word[0] ^= cksum->zc_word[2]; 335 cksum->zc_word[1] ^= cksum->zc_word[3]; 336 } 337 338 cksum->zc_word[2] = saved->zc_word[2]; 339 cksum->zc_word[3] = saved->zc_word[3]; 340 } 341 342 /* 343 * Generate the checksum. 344 */ 345 void 346 zio_checksum_compute(zio_t *zio, enum zio_checksum checksum, 347 abd_t *abd, uint64_t size) 348 { 349 static const uint64_t zec_magic = ZEC_MAGIC; 350 blkptr_t *bp = zio->io_bp; 351 uint64_t offset = zio->io_offset; 352 zio_checksum_info_t *ci = &zio_checksum_table[checksum]; 353 zio_cksum_t cksum, saved; 354 spa_t *spa = zio->io_spa; 355 boolean_t insecure = (ci->ci_flags & ZCHECKSUM_FLAG_DEDUP) == 0; 356 357 ASSERT((uint_t)checksum < ZIO_CHECKSUM_FUNCTIONS); 358 ASSERT(ci->ci_func[0] != NULL); 359 360 zio_checksum_template_init(checksum, spa); 361 362 if (ci->ci_flags & ZCHECKSUM_FLAG_EMBEDDED) { 363 zio_eck_t eck; 364 size_t eck_offset; 365 366 memset(&saved, 0, sizeof (zio_cksum_t)); 367 368 if (checksum == ZIO_CHECKSUM_ZILOG2) { 369 zil_chain_t zilc; 370 abd_copy_to_buf(&zilc, abd, sizeof (zil_chain_t)); 371 372 uint64_t nused = P2ROUNDUP_TYPED(zilc.zc_nused, 373 ZIL_MIN_BLKSZ, uint64_t); 374 ASSERT3U(size, >=, nused); 375 size = nused; 376 eck = zilc.zc_eck; 377 eck_offset = offsetof(zil_chain_t, zc_eck); 378 } else { 379 ASSERT3U(size, >=, sizeof (zio_eck_t)); 380 eck_offset = size - sizeof (zio_eck_t); 381 abd_copy_to_buf_off(&eck, abd, eck_offset, 382 sizeof (zio_eck_t)); 383 } 384 385 if (checksum == ZIO_CHECKSUM_GANG_HEADER) { 386 zio_checksum_gang_verifier(&eck.zec_cksum, bp); 387 } else if (checksum == ZIO_CHECKSUM_LABEL) { 388 zio_checksum_label_verifier(&eck.zec_cksum, offset); 389 } else { 390 saved = eck.zec_cksum; 391 eck.zec_cksum = bp->blk_cksum; 392 } 393 394 abd_copy_from_buf_off(abd, &zec_magic, 395 eck_offset + offsetof(zio_eck_t, zec_magic), 396 sizeof (zec_magic)); 397 abd_copy_from_buf_off(abd, &eck.zec_cksum, 398 eck_offset + offsetof(zio_eck_t, zec_cksum), 399 sizeof (zio_cksum_t)); 400 401 ci->ci_func[0](abd, size, spa->spa_cksum_tmpls[checksum], 402 &cksum); 403 if (bp != NULL && BP_USES_CRYPT(bp) && 404 BP_GET_TYPE(bp) != DMU_OT_OBJSET) 405 zio_checksum_handle_crypt(&cksum, &saved, insecure); 406 407 abd_copy_from_buf_off(abd, &cksum, 408 eck_offset + offsetof(zio_eck_t, zec_cksum), 409 sizeof (zio_cksum_t)); 410 } else { 411 saved = bp->blk_cksum; 412 ci->ci_func[0](abd, size, spa->spa_cksum_tmpls[checksum], 413 &cksum); 414 if (BP_USES_CRYPT(bp) && BP_GET_TYPE(bp) != DMU_OT_OBJSET) 415 zio_checksum_handle_crypt(&cksum, &saved, insecure); 416 bp->blk_cksum = cksum; 417 } 418 } 419 420 int 421 zio_checksum_error_impl(spa_t *spa, const blkptr_t *bp, 422 enum zio_checksum checksum, abd_t *abd, uint64_t size, uint64_t offset, 423 zio_bad_cksum_t *info) 424 { 425 zio_checksum_info_t *ci = &zio_checksum_table[checksum]; 426 zio_cksum_t actual_cksum, expected_cksum; 427 zio_eck_t eck; 428 int byteswap; 429 430 if (checksum >= ZIO_CHECKSUM_FUNCTIONS || ci->ci_func[0] == NULL) 431 return (SET_ERROR(EINVAL)); 432 433 zio_checksum_template_init(checksum, spa); 434 435 IMPLY(bp == NULL, ci->ci_flags & ZCHECKSUM_FLAG_EMBEDDED); 436 IMPLY(bp == NULL, checksum == ZIO_CHECKSUM_LABEL); 437 438 if (ci->ci_flags & ZCHECKSUM_FLAG_EMBEDDED) { 439 zio_cksum_t verifier; 440 size_t eck_offset; 441 442 if (checksum == ZIO_CHECKSUM_ZILOG2) { 443 zil_chain_t zilc; 444 uint64_t nused; 445 446 abd_copy_to_buf(&zilc, abd, sizeof (zil_chain_t)); 447 448 eck = zilc.zc_eck; 449 eck_offset = offsetof(zil_chain_t, zc_eck) + 450 offsetof(zio_eck_t, zec_cksum); 451 452 if (eck.zec_magic == ZEC_MAGIC) { 453 nused = zilc.zc_nused; 454 } else if (eck.zec_magic == BSWAP_64(ZEC_MAGIC)) { 455 nused = BSWAP_64(zilc.zc_nused); 456 } else { 457 return (SET_ERROR(ECKSUM)); 458 } 459 460 nused = P2ROUNDUP_TYPED(nused, ZIL_MIN_BLKSZ, uint64_t); 461 if (size < nused) 462 return (SET_ERROR(ECKSUM)); 463 size = nused; 464 } else { 465 if (size < sizeof (zio_eck_t)) 466 return (SET_ERROR(ECKSUM)); 467 eck_offset = size - sizeof (zio_eck_t); 468 abd_copy_to_buf_off(&eck, abd, eck_offset, 469 sizeof (zio_eck_t)); 470 eck_offset += offsetof(zio_eck_t, zec_cksum); 471 } 472 473 if (checksum == ZIO_CHECKSUM_GANG_HEADER) 474 zio_checksum_gang_verifier(&verifier, bp); 475 else if (checksum == ZIO_CHECKSUM_LABEL) 476 zio_checksum_label_verifier(&verifier, offset); 477 else 478 verifier = bp->blk_cksum; 479 480 byteswap = (eck.zec_magic == BSWAP_64(ZEC_MAGIC)); 481 482 if (byteswap) 483 byteswap_uint64_array(&verifier, sizeof (zio_cksum_t)); 484 485 expected_cksum = eck.zec_cksum; 486 487 abd_copy_from_buf_off(abd, &verifier, eck_offset, 488 sizeof (zio_cksum_t)); 489 490 ci->ci_func[byteswap](abd, size, 491 spa->spa_cksum_tmpls[checksum], &actual_cksum); 492 493 abd_copy_from_buf_off(abd, &expected_cksum, eck_offset, 494 sizeof (zio_cksum_t)); 495 496 if (byteswap) { 497 byteswap_uint64_array(&expected_cksum, 498 sizeof (zio_cksum_t)); 499 } 500 } else { 501 byteswap = BP_SHOULD_BYTESWAP(bp); 502 expected_cksum = bp->blk_cksum; 503 ci->ci_func[byteswap](abd, size, 504 spa->spa_cksum_tmpls[checksum], &actual_cksum); 505 } 506 507 /* 508 * MAC checksums are a special case since half of this checksum will 509 * actually be the encryption MAC. This will be verified by the 510 * decryption process, so we just check the truncated checksum now. 511 * Objset blocks use embedded MACs so we don't truncate the checksum 512 * for them. 513 */ 514 if (bp != NULL && BP_USES_CRYPT(bp) && 515 BP_GET_TYPE(bp) != DMU_OT_OBJSET) { 516 if (!(ci->ci_flags & ZCHECKSUM_FLAG_DEDUP)) { 517 actual_cksum.zc_word[0] ^= actual_cksum.zc_word[2]; 518 actual_cksum.zc_word[1] ^= actual_cksum.zc_word[3]; 519 } 520 521 actual_cksum.zc_word[2] = 0; 522 actual_cksum.zc_word[3] = 0; 523 expected_cksum.zc_word[2] = 0; 524 expected_cksum.zc_word[3] = 0; 525 } 526 527 if (info != NULL) { 528 info->zbc_checksum_name = ci->ci_name; 529 info->zbc_byteswapped = byteswap; 530 info->zbc_injected = 0; 531 info->zbc_has_cksum = 1; 532 } 533 534 if (!ZIO_CHECKSUM_EQUAL(actual_cksum, expected_cksum)) 535 return (SET_ERROR(ECKSUM)); 536 537 return (0); 538 } 539 540 int 541 zio_checksum_error(zio_t *zio, zio_bad_cksum_t *info) 542 { 543 blkptr_t *bp = zio->io_bp; 544 uint_t checksum = (bp == NULL ? zio->io_prop.zp_checksum : 545 (BP_IS_GANG(bp) ? ZIO_CHECKSUM_GANG_HEADER : BP_GET_CHECKSUM(bp))); 546 int error; 547 uint64_t size = (bp == NULL ? zio->io_size : 548 (BP_IS_GANG(bp) ? SPA_GANGBLOCKSIZE : BP_GET_PSIZE(bp))); 549 uint64_t offset = zio->io_offset; 550 abd_t *data = zio->io_abd; 551 spa_t *spa = zio->io_spa; 552 553 error = zio_checksum_error_impl(spa, bp, checksum, data, size, 554 offset, info); 555 556 if (zio_injection_enabled && error == 0 && zio->io_error == 0) { 557 error = zio_handle_fault_injection(zio, ECKSUM); 558 if (error != 0) 559 info->zbc_injected = 1; 560 } 561 562 return (error); 563 } 564 565 /* 566 * Called by a spa_t that's about to be deallocated. This steps through 567 * all of the checksum context templates and deallocates any that were 568 * initialized using the algorithm-specific template init function. 569 */ 570 void 571 zio_checksum_templates_free(spa_t *spa) 572 { 573 for (enum zio_checksum checksum = 0; 574 checksum < ZIO_CHECKSUM_FUNCTIONS; checksum++) { 575 if (spa->spa_cksum_tmpls[checksum] != NULL) { 576 zio_checksum_info_t *ci = &zio_checksum_table[checksum]; 577 578 VERIFY(ci->ci_tmpl_free != NULL); 579 ci->ci_tmpl_free(spa->spa_cksum_tmpls[checksum]); 580 spa->spa_cksum_tmpls[checksum] = NULL; 581 } 582 } 583 } 584