1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2013, 2016 by Delphix. All rights reserved. 24 * Copyright 2013 Saso Kiselkov. All rights reserved. 25 */ 26 27 #include <sys/zfs_context.h> 28 #include <sys/spa.h> 29 #include <sys/spa_impl.h> 30 #include <sys/zio.h> 31 #include <sys/zio_checksum.h> 32 #include <sys/zil.h> 33 #include <sys/abd.h> 34 #include <zfs_fletcher.h> 35 36 /* 37 * Checksum vectors. 38 * 39 * In the SPA, everything is checksummed. We support checksum vectors 40 * for three distinct reasons: 41 * 42 * 1. Different kinds of data need different levels of protection. 43 * For SPA metadata, we always want a very strong checksum. 44 * For user data, we let users make the trade-off between speed 45 * and checksum strength. 46 * 47 * 2. Cryptographic hash and MAC algorithms are an area of active research. 48 * It is likely that in future hash functions will be at least as strong 49 * as current best-of-breed, and may be substantially faster as well. 50 * We want the ability to take advantage of these new hashes as soon as 51 * they become available. 52 * 53 * 3. If someone develops hardware that can compute a strong hash quickly, 54 * we want the ability to take advantage of that hardware. 55 * 56 * Of course, we don't want a checksum upgrade to invalidate existing 57 * data, so we store the checksum *function* in eight bits of the bp. 58 * This gives us room for up to 256 different checksum functions. 59 * 60 * When writing a block, we always checksum it with the latest-and-greatest 61 * checksum function of the appropriate strength. When reading a block, 62 * we compare the expected checksum against the actual checksum, which we 63 * compute via the checksum function specified by BP_GET_CHECKSUM(bp). 64 * 65 * SALTED CHECKSUMS 66 * 67 * To enable the use of less secure hash algorithms with dedup, we 68 * introduce the notion of salted checksums (MACs, really). A salted 69 * checksum is fed both a random 256-bit value (the salt) and the data 70 * to be checksummed. This salt is kept secret (stored on the pool, but 71 * never shown to the user). Thus even if an attacker knew of collision 72 * weaknesses in the hash algorithm, they won't be able to mount a known 73 * plaintext attack on the DDT, since the actual hash value cannot be 74 * known ahead of time. How the salt is used is algorithm-specific 75 * (some might simply prefix it to the data block, others might need to 76 * utilize a full-blown HMAC). On disk the salt is stored in a ZAP 77 * object in the MOS (DMU_POOL_CHECKSUM_SALT). 78 * 79 * CONTEXT TEMPLATES 80 * 81 * Some hashing algorithms need to perform a substantial amount of 82 * initialization work (e.g. salted checksums above may need to pre-hash 83 * the salt) before being able to process data. Performing this 84 * redundant work for each block would be wasteful, so we instead allow 85 * a checksum algorithm to do the work once (the first time it's used) 86 * and then keep this pre-initialized context as a template inside the 87 * spa_t (spa_cksum_tmpls). If the zio_checksum_info_t contains 88 * non-NULL ci_tmpl_init and ci_tmpl_free callbacks, they are used to 89 * construct and destruct the pre-initialized checksum context. The 90 * pre-initialized context is then reused during each checksum 91 * invocation and passed to the checksum function. 92 */ 93 94 static void 95 abd_checksum_off(abd_t *abd, uint64_t size, 96 const void *ctx_template, zio_cksum_t *zcp) 97 { 98 (void) abd, (void) size, (void) ctx_template; 99 ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0); 100 } 101 102 static void 103 abd_fletcher_2_native(abd_t *abd, uint64_t size, 104 const void *ctx_template, zio_cksum_t *zcp) 105 { 106 (void) ctx_template; 107 fletcher_init(zcp); 108 (void) abd_iterate_func(abd, 0, size, 109 fletcher_2_incremental_native, zcp); 110 } 111 112 static void 113 abd_fletcher_2_byteswap(abd_t *abd, uint64_t size, 114 const void *ctx_template, zio_cksum_t *zcp) 115 { 116 (void) ctx_template; 117 fletcher_init(zcp); 118 (void) abd_iterate_func(abd, 0, size, 119 fletcher_2_incremental_byteswap, zcp); 120 } 121 122 static inline void 123 abd_fletcher_4_impl(abd_t *abd, uint64_t size, zio_abd_checksum_data_t *acdp) 124 { 125 fletcher_4_abd_ops.acf_init(acdp); 126 abd_iterate_func(abd, 0, size, fletcher_4_abd_ops.acf_iter, acdp); 127 fletcher_4_abd_ops.acf_fini(acdp); 128 } 129 130 void 131 abd_fletcher_4_native(abd_t *abd, uint64_t size, 132 const void *ctx_template, zio_cksum_t *zcp) 133 { 134 (void) ctx_template; 135 fletcher_4_ctx_t ctx; 136 137 zio_abd_checksum_data_t acd = { 138 .acd_byteorder = ZIO_CHECKSUM_NATIVE, 139 .acd_zcp = zcp, 140 .acd_ctx = &ctx 141 }; 142 143 abd_fletcher_4_impl(abd, size, &acd); 144 145 } 146 147 void 148 abd_fletcher_4_byteswap(abd_t *abd, uint64_t size, 149 const void *ctx_template, zio_cksum_t *zcp) 150 { 151 (void) ctx_template; 152 fletcher_4_ctx_t ctx; 153 154 zio_abd_checksum_data_t acd = { 155 .acd_byteorder = ZIO_CHECKSUM_BYTESWAP, 156 .acd_zcp = zcp, 157 .acd_ctx = &ctx 158 }; 159 160 abd_fletcher_4_impl(abd, size, &acd); 161 } 162 163 zio_checksum_info_t zio_checksum_table[ZIO_CHECKSUM_FUNCTIONS] = { 164 {{NULL, NULL}, NULL, NULL, 0, "inherit"}, 165 {{NULL, NULL}, NULL, NULL, 0, "on"}, 166 {{abd_checksum_off, abd_checksum_off}, 167 NULL, NULL, 0, "off"}, 168 {{abd_checksum_SHA256, abd_checksum_SHA256}, 169 NULL, NULL, ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_EMBEDDED, 170 "label"}, 171 {{abd_checksum_SHA256, abd_checksum_SHA256}, 172 NULL, NULL, ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_EMBEDDED, 173 "gang_header"}, 174 {{abd_fletcher_2_native, abd_fletcher_2_byteswap}, 175 NULL, NULL, ZCHECKSUM_FLAG_EMBEDDED, "zilog"}, 176 {{abd_fletcher_2_native, abd_fletcher_2_byteswap}, 177 NULL, NULL, 0, "fletcher2"}, 178 {{abd_fletcher_4_native, abd_fletcher_4_byteswap}, 179 NULL, NULL, ZCHECKSUM_FLAG_METADATA, "fletcher4"}, 180 {{abd_checksum_SHA256, abd_checksum_SHA256}, 181 NULL, NULL, ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_DEDUP | 182 ZCHECKSUM_FLAG_NOPWRITE, "sha256"}, 183 {{abd_fletcher_4_native, abd_fletcher_4_byteswap}, 184 NULL, NULL, ZCHECKSUM_FLAG_EMBEDDED, "zilog2"}, 185 {{abd_checksum_off, abd_checksum_off}, 186 NULL, NULL, 0, "noparity"}, 187 {{abd_checksum_SHA512_native, abd_checksum_SHA512_byteswap}, 188 NULL, NULL, ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_DEDUP | 189 ZCHECKSUM_FLAG_NOPWRITE, "sha512"}, 190 {{abd_checksum_skein_native, abd_checksum_skein_byteswap}, 191 abd_checksum_skein_tmpl_init, abd_checksum_skein_tmpl_free, 192 ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_DEDUP | 193 ZCHECKSUM_FLAG_SALTED | ZCHECKSUM_FLAG_NOPWRITE, "skein"}, 194 {{abd_checksum_edonr_native, abd_checksum_edonr_byteswap}, 195 abd_checksum_edonr_tmpl_init, abd_checksum_edonr_tmpl_free, 196 ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_SALTED | 197 ZCHECKSUM_FLAG_NOPWRITE, "edonr"}, 198 }; 199 200 /* 201 * The flag corresponding to the "verify" in dedup=[checksum,]verify 202 * must be cleared first, so callers should use ZIO_CHECKSUM_MASK. 203 */ 204 spa_feature_t 205 zio_checksum_to_feature(enum zio_checksum cksum) 206 { 207 VERIFY((cksum & ~ZIO_CHECKSUM_MASK) == 0); 208 209 switch (cksum) { 210 case ZIO_CHECKSUM_SHA512: 211 return (SPA_FEATURE_SHA512); 212 case ZIO_CHECKSUM_SKEIN: 213 return (SPA_FEATURE_SKEIN); 214 case ZIO_CHECKSUM_EDONR: 215 return (SPA_FEATURE_EDONR); 216 default: 217 return (SPA_FEATURE_NONE); 218 } 219 } 220 221 enum zio_checksum 222 zio_checksum_select(enum zio_checksum child, enum zio_checksum parent) 223 { 224 ASSERT(child < ZIO_CHECKSUM_FUNCTIONS); 225 ASSERT(parent < ZIO_CHECKSUM_FUNCTIONS); 226 ASSERT(parent != ZIO_CHECKSUM_INHERIT && parent != ZIO_CHECKSUM_ON); 227 228 if (child == ZIO_CHECKSUM_INHERIT) 229 return (parent); 230 231 if (child == ZIO_CHECKSUM_ON) 232 return (ZIO_CHECKSUM_ON_VALUE); 233 234 return (child); 235 } 236 237 enum zio_checksum 238 zio_checksum_dedup_select(spa_t *spa, enum zio_checksum child, 239 enum zio_checksum parent) 240 { 241 ASSERT((child & ZIO_CHECKSUM_MASK) < ZIO_CHECKSUM_FUNCTIONS); 242 ASSERT((parent & ZIO_CHECKSUM_MASK) < ZIO_CHECKSUM_FUNCTIONS); 243 ASSERT(parent != ZIO_CHECKSUM_INHERIT && parent != ZIO_CHECKSUM_ON); 244 245 if (child == ZIO_CHECKSUM_INHERIT) 246 return (parent); 247 248 if (child == ZIO_CHECKSUM_ON) 249 return (spa_dedup_checksum(spa)); 250 251 if (child == (ZIO_CHECKSUM_ON | ZIO_CHECKSUM_VERIFY)) 252 return (spa_dedup_checksum(spa) | ZIO_CHECKSUM_VERIFY); 253 254 ASSERT((zio_checksum_table[child & ZIO_CHECKSUM_MASK].ci_flags & 255 ZCHECKSUM_FLAG_DEDUP) || 256 (child & ZIO_CHECKSUM_VERIFY) || child == ZIO_CHECKSUM_OFF); 257 258 return (child); 259 } 260 261 /* 262 * Set the external verifier for a gang block based on <vdev, offset, txg>, 263 * a tuple which is guaranteed to be unique for the life of the pool. 264 */ 265 static void 266 zio_checksum_gang_verifier(zio_cksum_t *zcp, const blkptr_t *bp) 267 { 268 const dva_t *dva = BP_IDENTITY(bp); 269 uint64_t txg = BP_PHYSICAL_BIRTH(bp); 270 271 ASSERT(BP_IS_GANG(bp)); 272 273 ZIO_SET_CHECKSUM(zcp, DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva), txg, 0); 274 } 275 276 /* 277 * Set the external verifier for a label block based on its offset. 278 * The vdev is implicit, and the txg is unknowable at pool open time -- 279 * hence the logic in vdev_uberblock_load() to find the most recent copy. 280 */ 281 static void 282 zio_checksum_label_verifier(zio_cksum_t *zcp, uint64_t offset) 283 { 284 ZIO_SET_CHECKSUM(zcp, offset, 0, 0, 0); 285 } 286 287 /* 288 * Calls the template init function of a checksum which supports context 289 * templates and installs the template into the spa_t. 290 */ 291 static void 292 zio_checksum_template_init(enum zio_checksum checksum, spa_t *spa) 293 { 294 zio_checksum_info_t *ci = &zio_checksum_table[checksum]; 295 296 if (ci->ci_tmpl_init == NULL) 297 return; 298 if (spa->spa_cksum_tmpls[checksum] != NULL) 299 return; 300 301 VERIFY(ci->ci_tmpl_free != NULL); 302 mutex_enter(&spa->spa_cksum_tmpls_lock); 303 if (spa->spa_cksum_tmpls[checksum] == NULL) { 304 spa->spa_cksum_tmpls[checksum] = 305 ci->ci_tmpl_init(&spa->spa_cksum_salt); 306 VERIFY(spa->spa_cksum_tmpls[checksum] != NULL); 307 } 308 mutex_exit(&spa->spa_cksum_tmpls_lock); 309 } 310 311 /* convenience function to update a checksum to accommodate an encryption MAC */ 312 static void 313 zio_checksum_handle_crypt(zio_cksum_t *cksum, zio_cksum_t *saved, boolean_t xor) 314 { 315 /* 316 * Weak checksums do not have their entropy spread evenly 317 * across the bits of the checksum. Therefore, when truncating 318 * a weak checksum we XOR the first 2 words with the last 2 so 319 * that we don't "lose" any entropy unnecessarily. 320 */ 321 if (xor) { 322 cksum->zc_word[0] ^= cksum->zc_word[2]; 323 cksum->zc_word[1] ^= cksum->zc_word[3]; 324 } 325 326 cksum->zc_word[2] = saved->zc_word[2]; 327 cksum->zc_word[3] = saved->zc_word[3]; 328 } 329 330 /* 331 * Generate the checksum. 332 */ 333 void 334 zio_checksum_compute(zio_t *zio, enum zio_checksum checksum, 335 abd_t *abd, uint64_t size) 336 { 337 static const uint64_t zec_magic = ZEC_MAGIC; 338 blkptr_t *bp = zio->io_bp; 339 uint64_t offset = zio->io_offset; 340 zio_checksum_info_t *ci = &zio_checksum_table[checksum]; 341 zio_cksum_t cksum, saved; 342 spa_t *spa = zio->io_spa; 343 boolean_t insecure = (ci->ci_flags & ZCHECKSUM_FLAG_DEDUP) == 0; 344 345 ASSERT((uint_t)checksum < ZIO_CHECKSUM_FUNCTIONS); 346 ASSERT(ci->ci_func[0] != NULL); 347 348 zio_checksum_template_init(checksum, spa); 349 350 if (ci->ci_flags & ZCHECKSUM_FLAG_EMBEDDED) { 351 zio_eck_t eck; 352 size_t eck_offset; 353 354 memset(&saved, 0, sizeof (zio_cksum_t)); 355 356 if (checksum == ZIO_CHECKSUM_ZILOG2) { 357 zil_chain_t zilc; 358 abd_copy_to_buf(&zilc, abd, sizeof (zil_chain_t)); 359 360 size = P2ROUNDUP_TYPED(zilc.zc_nused, ZIL_MIN_BLKSZ, 361 uint64_t); 362 eck = zilc.zc_eck; 363 eck_offset = offsetof(zil_chain_t, zc_eck); 364 } else { 365 eck_offset = size - sizeof (zio_eck_t); 366 abd_copy_to_buf_off(&eck, abd, eck_offset, 367 sizeof (zio_eck_t)); 368 } 369 370 if (checksum == ZIO_CHECKSUM_GANG_HEADER) { 371 zio_checksum_gang_verifier(&eck.zec_cksum, bp); 372 } else if (checksum == ZIO_CHECKSUM_LABEL) { 373 zio_checksum_label_verifier(&eck.zec_cksum, offset); 374 } else { 375 saved = eck.zec_cksum; 376 eck.zec_cksum = bp->blk_cksum; 377 } 378 379 abd_copy_from_buf_off(abd, &zec_magic, 380 eck_offset + offsetof(zio_eck_t, zec_magic), 381 sizeof (zec_magic)); 382 abd_copy_from_buf_off(abd, &eck.zec_cksum, 383 eck_offset + offsetof(zio_eck_t, zec_cksum), 384 sizeof (zio_cksum_t)); 385 386 ci->ci_func[0](abd, size, spa->spa_cksum_tmpls[checksum], 387 &cksum); 388 if (bp != NULL && BP_USES_CRYPT(bp) && 389 BP_GET_TYPE(bp) != DMU_OT_OBJSET) 390 zio_checksum_handle_crypt(&cksum, &saved, insecure); 391 392 abd_copy_from_buf_off(abd, &cksum, 393 eck_offset + offsetof(zio_eck_t, zec_cksum), 394 sizeof (zio_cksum_t)); 395 } else { 396 saved = bp->blk_cksum; 397 ci->ci_func[0](abd, size, spa->spa_cksum_tmpls[checksum], 398 &cksum); 399 if (BP_USES_CRYPT(bp) && BP_GET_TYPE(bp) != DMU_OT_OBJSET) 400 zio_checksum_handle_crypt(&cksum, &saved, insecure); 401 bp->blk_cksum = cksum; 402 } 403 } 404 405 int 406 zio_checksum_error_impl(spa_t *spa, const blkptr_t *bp, 407 enum zio_checksum checksum, abd_t *abd, uint64_t size, uint64_t offset, 408 zio_bad_cksum_t *info) 409 { 410 zio_checksum_info_t *ci = &zio_checksum_table[checksum]; 411 zio_cksum_t actual_cksum, expected_cksum; 412 zio_eck_t eck; 413 int byteswap; 414 415 if (checksum >= ZIO_CHECKSUM_FUNCTIONS || ci->ci_func[0] == NULL) 416 return (SET_ERROR(EINVAL)); 417 418 zio_checksum_template_init(checksum, spa); 419 420 if (ci->ci_flags & ZCHECKSUM_FLAG_EMBEDDED) { 421 zio_cksum_t verifier; 422 size_t eck_offset; 423 424 if (checksum == ZIO_CHECKSUM_ZILOG2) { 425 zil_chain_t zilc; 426 uint64_t nused; 427 428 abd_copy_to_buf(&zilc, abd, sizeof (zil_chain_t)); 429 430 eck = zilc.zc_eck; 431 eck_offset = offsetof(zil_chain_t, zc_eck) + 432 offsetof(zio_eck_t, zec_cksum); 433 434 if (eck.zec_magic == ZEC_MAGIC) { 435 nused = zilc.zc_nused; 436 } else if (eck.zec_magic == BSWAP_64(ZEC_MAGIC)) { 437 nused = BSWAP_64(zilc.zc_nused); 438 } else { 439 return (SET_ERROR(ECKSUM)); 440 } 441 442 if (nused > size) { 443 return (SET_ERROR(ECKSUM)); 444 } 445 446 size = P2ROUNDUP_TYPED(nused, ZIL_MIN_BLKSZ, uint64_t); 447 } else { 448 eck_offset = size - sizeof (zio_eck_t); 449 abd_copy_to_buf_off(&eck, abd, eck_offset, 450 sizeof (zio_eck_t)); 451 eck_offset += offsetof(zio_eck_t, zec_cksum); 452 } 453 454 if (checksum == ZIO_CHECKSUM_GANG_HEADER) 455 zio_checksum_gang_verifier(&verifier, bp); 456 else if (checksum == ZIO_CHECKSUM_LABEL) 457 zio_checksum_label_verifier(&verifier, offset); 458 else 459 verifier = bp->blk_cksum; 460 461 byteswap = (eck.zec_magic == BSWAP_64(ZEC_MAGIC)); 462 463 if (byteswap) 464 byteswap_uint64_array(&verifier, sizeof (zio_cksum_t)); 465 466 expected_cksum = eck.zec_cksum; 467 468 abd_copy_from_buf_off(abd, &verifier, eck_offset, 469 sizeof (zio_cksum_t)); 470 471 ci->ci_func[byteswap](abd, size, 472 spa->spa_cksum_tmpls[checksum], &actual_cksum); 473 474 abd_copy_from_buf_off(abd, &expected_cksum, eck_offset, 475 sizeof (zio_cksum_t)); 476 477 if (byteswap) { 478 byteswap_uint64_array(&expected_cksum, 479 sizeof (zio_cksum_t)); 480 } 481 } else { 482 byteswap = BP_SHOULD_BYTESWAP(bp); 483 expected_cksum = bp->blk_cksum; 484 ci->ci_func[byteswap](abd, size, 485 spa->spa_cksum_tmpls[checksum], &actual_cksum); 486 } 487 488 /* 489 * MAC checksums are a special case since half of this checksum will 490 * actually be the encryption MAC. This will be verified by the 491 * decryption process, so we just check the truncated checksum now. 492 * Objset blocks use embedded MACs so we don't truncate the checksum 493 * for them. 494 */ 495 if (bp != NULL && BP_USES_CRYPT(bp) && 496 BP_GET_TYPE(bp) != DMU_OT_OBJSET) { 497 if (!(ci->ci_flags & ZCHECKSUM_FLAG_DEDUP)) { 498 actual_cksum.zc_word[0] ^= actual_cksum.zc_word[2]; 499 actual_cksum.zc_word[1] ^= actual_cksum.zc_word[3]; 500 } 501 502 actual_cksum.zc_word[2] = 0; 503 actual_cksum.zc_word[3] = 0; 504 expected_cksum.zc_word[2] = 0; 505 expected_cksum.zc_word[3] = 0; 506 } 507 508 if (info != NULL) { 509 info->zbc_expected = expected_cksum; 510 info->zbc_actual = actual_cksum; 511 info->zbc_checksum_name = ci->ci_name; 512 info->zbc_byteswapped = byteswap; 513 info->zbc_injected = 0; 514 info->zbc_has_cksum = 1; 515 } 516 517 if (!ZIO_CHECKSUM_EQUAL(actual_cksum, expected_cksum)) 518 return (SET_ERROR(ECKSUM)); 519 520 return (0); 521 } 522 523 int 524 zio_checksum_error(zio_t *zio, zio_bad_cksum_t *info) 525 { 526 blkptr_t *bp = zio->io_bp; 527 uint_t checksum = (bp == NULL ? zio->io_prop.zp_checksum : 528 (BP_IS_GANG(bp) ? ZIO_CHECKSUM_GANG_HEADER : BP_GET_CHECKSUM(bp))); 529 int error; 530 uint64_t size = (bp == NULL ? zio->io_size : 531 (BP_IS_GANG(bp) ? SPA_GANGBLOCKSIZE : BP_GET_PSIZE(bp))); 532 uint64_t offset = zio->io_offset; 533 abd_t *data = zio->io_abd; 534 spa_t *spa = zio->io_spa; 535 536 error = zio_checksum_error_impl(spa, bp, checksum, data, size, 537 offset, info); 538 539 if (zio_injection_enabled && error == 0 && zio->io_error == 0) { 540 error = zio_handle_fault_injection(zio, ECKSUM); 541 if (error != 0) 542 info->zbc_injected = 1; 543 } 544 545 return (error); 546 } 547 548 /* 549 * Called by a spa_t that's about to be deallocated. This steps through 550 * all of the checksum context templates and deallocates any that were 551 * initialized using the algorithm-specific template init function. 552 */ 553 void 554 zio_checksum_templates_free(spa_t *spa) 555 { 556 for (enum zio_checksum checksum = 0; 557 checksum < ZIO_CHECKSUM_FUNCTIONS; checksum++) { 558 if (spa->spa_cksum_tmpls[checksum] != NULL) { 559 zio_checksum_info_t *ci = &zio_checksum_table[checksum]; 560 561 VERIFY(ci->ci_tmpl_free != NULL); 562 ci->ci_tmpl_free(spa->spa_cksum_tmpls[checksum]); 563 spa->spa_cksum_tmpls[checksum] = NULL; 564 } 565 } 566 } 567