xref: /freebsd/sys/contrib/openzfs/module/zfs/zio.c (revision f9fd7337f63698f33239c58c07bf430198235a22)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
24  * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25  * Copyright (c) 2017, Intel Corporation.
26  * Copyright (c) 2019, Klara Inc.
27  * Copyright (c) 2019, Allan Jude
28  */
29 
30 #include <sys/sysmacros.h>
31 #include <sys/zfs_context.h>
32 #include <sys/fm/fs/zfs.h>
33 #include <sys/spa.h>
34 #include <sys/txg.h>
35 #include <sys/spa_impl.h>
36 #include <sys/vdev_impl.h>
37 #include <sys/vdev_trim.h>
38 #include <sys/zio_impl.h>
39 #include <sys/zio_compress.h>
40 #include <sys/zio_checksum.h>
41 #include <sys/dmu_objset.h>
42 #include <sys/arc.h>
43 #include <sys/ddt.h>
44 #include <sys/blkptr.h>
45 #include <sys/zfeature.h>
46 #include <sys/dsl_scan.h>
47 #include <sys/metaslab_impl.h>
48 #include <sys/time.h>
49 #include <sys/trace_zfs.h>
50 #include <sys/abd.h>
51 #include <sys/dsl_crypt.h>
52 #include <cityhash.h>
53 
54 /*
55  * ==========================================================================
56  * I/O type descriptions
57  * ==========================================================================
58  */
59 const char *zio_type_name[ZIO_TYPES] = {
60 	/*
61 	 * Note: Linux kernel thread name length is limited
62 	 * so these names will differ from upstream open zfs.
63 	 */
64 	"z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_ioctl", "z_trim"
65 };
66 
67 int zio_dva_throttle_enabled = B_TRUE;
68 int zio_deadman_log_all = B_FALSE;
69 
70 /*
71  * ==========================================================================
72  * I/O kmem caches
73  * ==========================================================================
74  */
75 kmem_cache_t *zio_cache;
76 kmem_cache_t *zio_link_cache;
77 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
78 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
79 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
80 uint64_t zio_buf_cache_allocs[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
81 uint64_t zio_buf_cache_frees[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
82 #endif
83 
84 /* Mark IOs as "slow" if they take longer than 30 seconds */
85 int zio_slow_io_ms = (30 * MILLISEC);
86 
87 #define	BP_SPANB(indblkshift, level) \
88 	(((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
89 #define	COMPARE_META_LEVEL	0x80000000ul
90 /*
91  * The following actions directly effect the spa's sync-to-convergence logic.
92  * The values below define the sync pass when we start performing the action.
93  * Care should be taken when changing these values as they directly impact
94  * spa_sync() performance. Tuning these values may introduce subtle performance
95  * pathologies and should only be done in the context of performance analysis.
96  * These tunables will eventually be removed and replaced with #defines once
97  * enough analysis has been done to determine optimal values.
98  *
99  * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
100  * regular blocks are not deferred.
101  *
102  * Starting in sync pass 8 (zfs_sync_pass_dont_compress), we disable
103  * compression (including of metadata).  In practice, we don't have this
104  * many sync passes, so this has no effect.
105  *
106  * The original intent was that disabling compression would help the sync
107  * passes to converge. However, in practice disabling compression increases
108  * the average number of sync passes, because when we turn compression off, a
109  * lot of block's size will change and thus we have to re-allocate (not
110  * overwrite) them. It also increases the number of 128KB allocations (e.g.
111  * for indirect blocks and spacemaps) because these will not be compressed.
112  * The 128K allocations are especially detrimental to performance on highly
113  * fragmented systems, which may have very few free segments of this size,
114  * and may need to load new metaslabs to satisfy 128K allocations.
115  */
116 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
117 int zfs_sync_pass_dont_compress = 8; /* don't compress starting in this pass */
118 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
119 
120 /*
121  * An allocating zio is one that either currently has the DVA allocate
122  * stage set or will have it later in its lifetime.
123  */
124 #define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
125 
126 /*
127  * Enable smaller cores by excluding metadata
128  * allocations as well.
129  */
130 int zio_exclude_metadata = 0;
131 int zio_requeue_io_start_cut_in_line = 1;
132 
133 #ifdef ZFS_DEBUG
134 int zio_buf_debug_limit = 16384;
135 #else
136 int zio_buf_debug_limit = 0;
137 #endif
138 
139 static inline void __zio_execute(zio_t *zio);
140 
141 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t);
142 
143 void
144 zio_init(void)
145 {
146 	size_t c;
147 
148 	zio_cache = kmem_cache_create("zio_cache",
149 	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
150 	zio_link_cache = kmem_cache_create("zio_link_cache",
151 	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
152 
153 	/*
154 	 * For small buffers, we want a cache for each multiple of
155 	 * SPA_MINBLOCKSIZE.  For larger buffers, we want a cache
156 	 * for each quarter-power of 2.
157 	 */
158 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
159 		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
160 		size_t p2 = size;
161 		size_t align = 0;
162 		size_t data_cflags, cflags;
163 
164 		data_cflags = KMC_NODEBUG;
165 		cflags = (zio_exclude_metadata || size > zio_buf_debug_limit) ?
166 		    KMC_NODEBUG : 0;
167 
168 #if defined(_ILP32) && defined(_KERNEL)
169 		/*
170 		 * Cache size limited to 1M on 32-bit platforms until ARC
171 		 * buffers no longer require virtual address space.
172 		 */
173 		if (size > zfs_max_recordsize)
174 			break;
175 #endif
176 
177 		while (!ISP2(p2))
178 			p2 &= p2 - 1;
179 
180 #ifndef _KERNEL
181 		/*
182 		 * If we are using watchpoints, put each buffer on its own page,
183 		 * to eliminate the performance overhead of trapping to the
184 		 * kernel when modifying a non-watched buffer that shares the
185 		 * page with a watched buffer.
186 		 */
187 		if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
188 			continue;
189 		/*
190 		 * Here's the problem - on 4K native devices in userland on
191 		 * Linux using O_DIRECT, buffers must be 4K aligned or I/O
192 		 * will fail with EINVAL, causing zdb (and others) to coredump.
193 		 * Since userland probably doesn't need optimized buffer caches,
194 		 * we just force 4K alignment on everything.
195 		 */
196 		align = 8 * SPA_MINBLOCKSIZE;
197 #else
198 		if (size < PAGESIZE) {
199 			align = SPA_MINBLOCKSIZE;
200 		} else if (IS_P2ALIGNED(size, p2 >> 2)) {
201 			align = PAGESIZE;
202 		}
203 #endif
204 
205 		if (align != 0) {
206 			char name[36];
207 			if (cflags == data_cflags) {
208 				/*
209 				 * Resulting kmem caches would be identical.
210 				 * Save memory by creating only one.
211 				 */
212 				(void) snprintf(name, sizeof (name),
213 				    "zio_buf_comb_%lu", (ulong_t)size);
214 				zio_buf_cache[c] = kmem_cache_create(name,
215 				    size, align, NULL, NULL, NULL, NULL, NULL,
216 				    cflags);
217 				zio_data_buf_cache[c] = zio_buf_cache[c];
218 				continue;
219 			}
220 			(void) snprintf(name, sizeof (name), "zio_buf_%lu",
221 			    (ulong_t)size);
222 			zio_buf_cache[c] = kmem_cache_create(name, size,
223 			    align, NULL, NULL, NULL, NULL, NULL, cflags);
224 
225 			(void) snprintf(name, sizeof (name), "zio_data_buf_%lu",
226 			    (ulong_t)size);
227 			zio_data_buf_cache[c] = kmem_cache_create(name, size,
228 			    align, NULL, NULL, NULL, NULL, NULL, data_cflags);
229 		}
230 	}
231 
232 	while (--c != 0) {
233 		ASSERT(zio_buf_cache[c] != NULL);
234 		if (zio_buf_cache[c - 1] == NULL)
235 			zio_buf_cache[c - 1] = zio_buf_cache[c];
236 
237 		ASSERT(zio_data_buf_cache[c] != NULL);
238 		if (zio_data_buf_cache[c - 1] == NULL)
239 			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
240 	}
241 
242 	zio_inject_init();
243 
244 	lz4_init();
245 }
246 
247 void
248 zio_fini(void)
249 {
250 	size_t i, j, n;
251 	kmem_cache_t *cache;
252 
253 	n = SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT;
254 
255 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
256 	for (i = 0; i < n; i++) {
257 		if (zio_buf_cache_allocs[i] != zio_buf_cache_frees[i])
258 			(void) printf("zio_fini: [%d] %llu != %llu\n",
259 			    (int)((i + 1) << SPA_MINBLOCKSHIFT),
260 			    (long long unsigned)zio_buf_cache_allocs[i],
261 			    (long long unsigned)zio_buf_cache_frees[i]);
262 	}
263 #endif
264 
265 	/*
266 	 * The same kmem cache can show up multiple times in both zio_buf_cache
267 	 * and zio_data_buf_cache. Do a wasteful but trivially correct scan to
268 	 * sort it out.
269 	 */
270 	for (i = 0; i < n; i++) {
271 		cache = zio_buf_cache[i];
272 		if (cache == NULL)
273 			continue;
274 		for (j = i; j < n; j++) {
275 			if (cache == zio_buf_cache[j])
276 				zio_buf_cache[j] = NULL;
277 			if (cache == zio_data_buf_cache[j])
278 				zio_data_buf_cache[j] = NULL;
279 		}
280 		kmem_cache_destroy(cache);
281 	}
282 
283 	for (i = 0; i < n; i++) {
284 		cache = zio_data_buf_cache[i];
285 		if (cache == NULL)
286 			continue;
287 		for (j = i; j < n; j++) {
288 			if (cache == zio_data_buf_cache[j])
289 				zio_data_buf_cache[j] = NULL;
290 		}
291 		kmem_cache_destroy(cache);
292 	}
293 
294 	for (i = 0; i < n; i++) {
295 		if (zio_buf_cache[i] != NULL)
296 			panic("zio_fini: zio_buf_cache[%d] != NULL", (int)i);
297 		if (zio_data_buf_cache[i] != NULL)
298 			panic("zio_fini: zio_data_buf_cache[%d] != NULL", (int)i);
299 	}
300 
301 	kmem_cache_destroy(zio_link_cache);
302 	kmem_cache_destroy(zio_cache);
303 
304 	zio_inject_fini();
305 
306 	lz4_fini();
307 }
308 
309 /*
310  * ==========================================================================
311  * Allocate and free I/O buffers
312  * ==========================================================================
313  */
314 
315 /*
316  * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
317  * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
318  * useful to inspect ZFS metadata, but if possible, we should avoid keeping
319  * excess / transient data in-core during a crashdump.
320  */
321 void *
322 zio_buf_alloc(size_t size)
323 {
324 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
325 
326 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
327 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
328 	atomic_add_64(&zio_buf_cache_allocs[c], 1);
329 #endif
330 
331 	return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
332 }
333 
334 /*
335  * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
336  * crashdump if the kernel panics.  This exists so that we will limit the amount
337  * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
338  * of kernel heap dumped to disk when the kernel panics)
339  */
340 void *
341 zio_data_buf_alloc(size_t size)
342 {
343 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
344 
345 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
346 
347 	return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
348 }
349 
350 void
351 zio_buf_free(void *buf, size_t size)
352 {
353 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
354 
355 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
356 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
357 	atomic_add_64(&zio_buf_cache_frees[c], 1);
358 #endif
359 
360 	kmem_cache_free(zio_buf_cache[c], buf);
361 }
362 
363 void
364 zio_data_buf_free(void *buf, size_t size)
365 {
366 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
367 
368 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
369 
370 	kmem_cache_free(zio_data_buf_cache[c], buf);
371 }
372 
373 static void
374 zio_abd_free(void *abd, size_t size)
375 {
376 	abd_free((abd_t *)abd);
377 }
378 
379 /*
380  * ==========================================================================
381  * Push and pop I/O transform buffers
382  * ==========================================================================
383  */
384 void
385 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize,
386     zio_transform_func_t *transform)
387 {
388 	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
389 
390 	zt->zt_orig_abd = zio->io_abd;
391 	zt->zt_orig_size = zio->io_size;
392 	zt->zt_bufsize = bufsize;
393 	zt->zt_transform = transform;
394 
395 	zt->zt_next = zio->io_transform_stack;
396 	zio->io_transform_stack = zt;
397 
398 	zio->io_abd = data;
399 	zio->io_size = size;
400 }
401 
402 void
403 zio_pop_transforms(zio_t *zio)
404 {
405 	zio_transform_t *zt;
406 
407 	while ((zt = zio->io_transform_stack) != NULL) {
408 		if (zt->zt_transform != NULL)
409 			zt->zt_transform(zio,
410 			    zt->zt_orig_abd, zt->zt_orig_size);
411 
412 		if (zt->zt_bufsize != 0)
413 			abd_free(zio->io_abd);
414 
415 		zio->io_abd = zt->zt_orig_abd;
416 		zio->io_size = zt->zt_orig_size;
417 		zio->io_transform_stack = zt->zt_next;
418 
419 		kmem_free(zt, sizeof (zio_transform_t));
420 	}
421 }
422 
423 /*
424  * ==========================================================================
425  * I/O transform callbacks for subblocks, decompression, and decryption
426  * ==========================================================================
427  */
428 static void
429 zio_subblock(zio_t *zio, abd_t *data, uint64_t size)
430 {
431 	ASSERT(zio->io_size > size);
432 
433 	if (zio->io_type == ZIO_TYPE_READ)
434 		abd_copy(data, zio->io_abd, size);
435 }
436 
437 static void
438 zio_decompress(zio_t *zio, abd_t *data, uint64_t size)
439 {
440 	if (zio->io_error == 0) {
441 		void *tmp = abd_borrow_buf(data, size);
442 		int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
443 		    zio->io_abd, tmp, zio->io_size, size,
444 		    &zio->io_prop.zp_complevel);
445 		abd_return_buf_copy(data, tmp, size);
446 
447 		if (zio_injection_enabled && ret == 0)
448 			ret = zio_handle_fault_injection(zio, EINVAL);
449 
450 		if (ret != 0)
451 			zio->io_error = SET_ERROR(EIO);
452 	}
453 }
454 
455 static void
456 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size)
457 {
458 	int ret;
459 	void *tmp;
460 	blkptr_t *bp = zio->io_bp;
461 	spa_t *spa = zio->io_spa;
462 	uint64_t dsobj = zio->io_bookmark.zb_objset;
463 	uint64_t lsize = BP_GET_LSIZE(bp);
464 	dmu_object_type_t ot = BP_GET_TYPE(bp);
465 	uint8_t salt[ZIO_DATA_SALT_LEN];
466 	uint8_t iv[ZIO_DATA_IV_LEN];
467 	uint8_t mac[ZIO_DATA_MAC_LEN];
468 	boolean_t no_crypt = B_FALSE;
469 
470 	ASSERT(BP_USES_CRYPT(bp));
471 	ASSERT3U(size, !=, 0);
472 
473 	if (zio->io_error != 0)
474 		return;
475 
476 	/*
477 	 * Verify the cksum of MACs stored in an indirect bp. It will always
478 	 * be possible to verify this since it does not require an encryption
479 	 * key.
480 	 */
481 	if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) {
482 		zio_crypt_decode_mac_bp(bp, mac);
483 
484 		if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) {
485 			/*
486 			 * We haven't decompressed the data yet, but
487 			 * zio_crypt_do_indirect_mac_checksum() requires
488 			 * decompressed data to be able to parse out the MACs
489 			 * from the indirect block. We decompress it now and
490 			 * throw away the result after we are finished.
491 			 */
492 			tmp = zio_buf_alloc(lsize);
493 			ret = zio_decompress_data(BP_GET_COMPRESS(bp),
494 			    zio->io_abd, tmp, zio->io_size, lsize,
495 			    &zio->io_prop.zp_complevel);
496 			if (ret != 0) {
497 				ret = SET_ERROR(EIO);
498 				goto error;
499 			}
500 			ret = zio_crypt_do_indirect_mac_checksum(B_FALSE,
501 			    tmp, lsize, BP_SHOULD_BYTESWAP(bp), mac);
502 			zio_buf_free(tmp, lsize);
503 		} else {
504 			ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE,
505 			    zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac);
506 		}
507 		abd_copy(data, zio->io_abd, size);
508 
509 		if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) {
510 			ret = zio_handle_decrypt_injection(spa,
511 			    &zio->io_bookmark, ot, ECKSUM);
512 		}
513 		if (ret != 0)
514 			goto error;
515 
516 		return;
517 	}
518 
519 	/*
520 	 * If this is an authenticated block, just check the MAC. It would be
521 	 * nice to separate this out into its own flag, but for the moment
522 	 * enum zio_flag is out of bits.
523 	 */
524 	if (BP_IS_AUTHENTICATED(bp)) {
525 		if (ot == DMU_OT_OBJSET) {
526 			ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa,
527 			    dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp));
528 		} else {
529 			zio_crypt_decode_mac_bp(bp, mac);
530 			ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj,
531 			    zio->io_abd, size, mac);
532 			if (zio_injection_enabled && ret == 0) {
533 				ret = zio_handle_decrypt_injection(spa,
534 				    &zio->io_bookmark, ot, ECKSUM);
535 			}
536 		}
537 		abd_copy(data, zio->io_abd, size);
538 
539 		if (ret != 0)
540 			goto error;
541 
542 		return;
543 	}
544 
545 	zio_crypt_decode_params_bp(bp, salt, iv);
546 
547 	if (ot == DMU_OT_INTENT_LOG) {
548 		tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t));
549 		zio_crypt_decode_mac_zil(tmp, mac);
550 		abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t));
551 	} else {
552 		zio_crypt_decode_mac_bp(bp, mac);
553 	}
554 
555 	ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp),
556 	    BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data,
557 	    zio->io_abd, &no_crypt);
558 	if (no_crypt)
559 		abd_copy(data, zio->io_abd, size);
560 
561 	if (ret != 0)
562 		goto error;
563 
564 	return;
565 
566 error:
567 	/* assert that the key was found unless this was speculative */
568 	ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE));
569 
570 	/*
571 	 * If there was a decryption / authentication error return EIO as
572 	 * the io_error. If this was not a speculative zio, create an ereport.
573 	 */
574 	if (ret == ECKSUM) {
575 		zio->io_error = SET_ERROR(EIO);
576 		if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
577 			spa_log_error(spa, &zio->io_bookmark);
578 			(void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
579 			    spa, NULL, &zio->io_bookmark, zio, 0);
580 		}
581 	} else {
582 		zio->io_error = ret;
583 	}
584 }
585 
586 /*
587  * ==========================================================================
588  * I/O parent/child relationships and pipeline interlocks
589  * ==========================================================================
590  */
591 zio_t *
592 zio_walk_parents(zio_t *cio, zio_link_t **zl)
593 {
594 	list_t *pl = &cio->io_parent_list;
595 
596 	*zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl);
597 	if (*zl == NULL)
598 		return (NULL);
599 
600 	ASSERT((*zl)->zl_child == cio);
601 	return ((*zl)->zl_parent);
602 }
603 
604 zio_t *
605 zio_walk_children(zio_t *pio, zio_link_t **zl)
606 {
607 	list_t *cl = &pio->io_child_list;
608 
609 	ASSERT(MUTEX_HELD(&pio->io_lock));
610 
611 	*zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl);
612 	if (*zl == NULL)
613 		return (NULL);
614 
615 	ASSERT((*zl)->zl_parent == pio);
616 	return ((*zl)->zl_child);
617 }
618 
619 zio_t *
620 zio_unique_parent(zio_t *cio)
621 {
622 	zio_link_t *zl = NULL;
623 	zio_t *pio = zio_walk_parents(cio, &zl);
624 
625 	VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL);
626 	return (pio);
627 }
628 
629 void
630 zio_add_child(zio_t *pio, zio_t *cio)
631 {
632 	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
633 
634 	/*
635 	 * Logical I/Os can have logical, gang, or vdev children.
636 	 * Gang I/Os can have gang or vdev children.
637 	 * Vdev I/Os can only have vdev children.
638 	 * The following ASSERT captures all of these constraints.
639 	 */
640 	ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
641 
642 	zl->zl_parent = pio;
643 	zl->zl_child = cio;
644 
645 	mutex_enter(&pio->io_lock);
646 	mutex_enter(&cio->io_lock);
647 
648 	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
649 
650 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
651 		pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
652 
653 	list_insert_head(&pio->io_child_list, zl);
654 	list_insert_head(&cio->io_parent_list, zl);
655 
656 	pio->io_child_count++;
657 	cio->io_parent_count++;
658 
659 	mutex_exit(&cio->io_lock);
660 	mutex_exit(&pio->io_lock);
661 }
662 
663 static void
664 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
665 {
666 	ASSERT(zl->zl_parent == pio);
667 	ASSERT(zl->zl_child == cio);
668 
669 	mutex_enter(&pio->io_lock);
670 	mutex_enter(&cio->io_lock);
671 
672 	list_remove(&pio->io_child_list, zl);
673 	list_remove(&cio->io_parent_list, zl);
674 
675 	pio->io_child_count--;
676 	cio->io_parent_count--;
677 
678 	mutex_exit(&cio->io_lock);
679 	mutex_exit(&pio->io_lock);
680 	kmem_cache_free(zio_link_cache, zl);
681 }
682 
683 static boolean_t
684 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait)
685 {
686 	boolean_t waiting = B_FALSE;
687 
688 	mutex_enter(&zio->io_lock);
689 	ASSERT(zio->io_stall == NULL);
690 	for (int c = 0; c < ZIO_CHILD_TYPES; c++) {
691 		if (!(ZIO_CHILD_BIT_IS_SET(childbits, c)))
692 			continue;
693 
694 		uint64_t *countp = &zio->io_children[c][wait];
695 		if (*countp != 0) {
696 			zio->io_stage >>= 1;
697 			ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN);
698 			zio->io_stall = countp;
699 			waiting = B_TRUE;
700 			break;
701 		}
702 	}
703 	mutex_exit(&zio->io_lock);
704 	return (waiting);
705 }
706 
707 __attribute__((always_inline))
708 static inline void
709 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait,
710     zio_t **next_to_executep)
711 {
712 	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
713 	int *errorp = &pio->io_child_error[zio->io_child_type];
714 
715 	mutex_enter(&pio->io_lock);
716 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
717 		*errorp = zio_worst_error(*errorp, zio->io_error);
718 	pio->io_reexecute |= zio->io_reexecute;
719 	ASSERT3U(*countp, >, 0);
720 
721 	(*countp)--;
722 
723 	if (*countp == 0 && pio->io_stall == countp) {
724 		zio_taskq_type_t type =
725 		    pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE :
726 		    ZIO_TASKQ_INTERRUPT;
727 		pio->io_stall = NULL;
728 		mutex_exit(&pio->io_lock);
729 
730 		/*
731 		 * If we can tell the caller to execute this parent next, do
732 		 * so.  Otherwise dispatch the parent zio as its own task.
733 		 *
734 		 * Having the caller execute the parent when possible reduces
735 		 * locking on the zio taskq's, reduces context switch
736 		 * overhead, and has no recursion penalty.  Note that one
737 		 * read from disk typically causes at least 3 zio's: a
738 		 * zio_null(), the logical zio_read(), and then a physical
739 		 * zio.  When the physical ZIO completes, we are able to call
740 		 * zio_done() on all 3 of these zio's from one invocation of
741 		 * zio_execute() by returning the parent back to
742 		 * zio_execute().  Since the parent isn't executed until this
743 		 * thread returns back to zio_execute(), the caller should do
744 		 * so promptly.
745 		 *
746 		 * In other cases, dispatching the parent prevents
747 		 * overflowing the stack when we have deeply nested
748 		 * parent-child relationships, as we do with the "mega zio"
749 		 * of writes for spa_sync(), and the chain of ZIL blocks.
750 		 */
751 		if (next_to_executep != NULL && *next_to_executep == NULL) {
752 			*next_to_executep = pio;
753 		} else {
754 			zio_taskq_dispatch(pio, type, B_FALSE);
755 		}
756 	} else {
757 		mutex_exit(&pio->io_lock);
758 	}
759 }
760 
761 static void
762 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
763 {
764 	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
765 		zio->io_error = zio->io_child_error[c];
766 }
767 
768 int
769 zio_bookmark_compare(const void *x1, const void *x2)
770 {
771 	const zio_t *z1 = x1;
772 	const zio_t *z2 = x2;
773 
774 	if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset)
775 		return (-1);
776 	if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset)
777 		return (1);
778 
779 	if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object)
780 		return (-1);
781 	if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object)
782 		return (1);
783 
784 	if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level)
785 		return (-1);
786 	if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level)
787 		return (1);
788 
789 	if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid)
790 		return (-1);
791 	if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid)
792 		return (1);
793 
794 	if (z1 < z2)
795 		return (-1);
796 	if (z1 > z2)
797 		return (1);
798 
799 	return (0);
800 }
801 
802 /*
803  * ==========================================================================
804  * Create the various types of I/O (read, write, free, etc)
805  * ==========================================================================
806  */
807 static zio_t *
808 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
809     abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done,
810     void *private, zio_type_t type, zio_priority_t priority,
811     enum zio_flag flags, vdev_t *vd, uint64_t offset,
812     const zbookmark_phys_t *zb, enum zio_stage stage,
813     enum zio_stage pipeline)
814 {
815 	zio_t *zio;
816 
817 	IMPLY(type != ZIO_TYPE_TRIM, psize <= SPA_MAXBLOCKSIZE);
818 	ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0);
819 	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
820 
821 	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
822 	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
823 	ASSERT(vd || stage == ZIO_STAGE_OPEN);
824 
825 	IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0);
826 
827 	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
828 	bzero(zio, sizeof (zio_t));
829 
830 	mutex_init(&zio->io_lock, NULL, MUTEX_NOLOCKDEP, NULL);
831 	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
832 
833 	list_create(&zio->io_parent_list, sizeof (zio_link_t),
834 	    offsetof(zio_link_t, zl_parent_node));
835 	list_create(&zio->io_child_list, sizeof (zio_link_t),
836 	    offsetof(zio_link_t, zl_child_node));
837 	metaslab_trace_init(&zio->io_alloc_list);
838 
839 	if (vd != NULL)
840 		zio->io_child_type = ZIO_CHILD_VDEV;
841 	else if (flags & ZIO_FLAG_GANG_CHILD)
842 		zio->io_child_type = ZIO_CHILD_GANG;
843 	else if (flags & ZIO_FLAG_DDT_CHILD)
844 		zio->io_child_type = ZIO_CHILD_DDT;
845 	else
846 		zio->io_child_type = ZIO_CHILD_LOGICAL;
847 
848 	if (bp != NULL) {
849 		zio->io_bp = (blkptr_t *)bp;
850 		zio->io_bp_copy = *bp;
851 		zio->io_bp_orig = *bp;
852 		if (type != ZIO_TYPE_WRITE ||
853 		    zio->io_child_type == ZIO_CHILD_DDT)
854 			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
855 		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
856 			zio->io_logical = zio;
857 		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
858 			pipeline |= ZIO_GANG_STAGES;
859 	}
860 
861 	zio->io_spa = spa;
862 	zio->io_txg = txg;
863 	zio->io_done = done;
864 	zio->io_private = private;
865 	zio->io_type = type;
866 	zio->io_priority = priority;
867 	zio->io_vd = vd;
868 	zio->io_offset = offset;
869 	zio->io_orig_abd = zio->io_abd = data;
870 	zio->io_orig_size = zio->io_size = psize;
871 	zio->io_lsize = lsize;
872 	zio->io_orig_flags = zio->io_flags = flags;
873 	zio->io_orig_stage = zio->io_stage = stage;
874 	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
875 	zio->io_pipeline_trace = ZIO_STAGE_OPEN;
876 
877 	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
878 	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
879 
880 	if (zb != NULL)
881 		zio->io_bookmark = *zb;
882 
883 	if (pio != NULL) {
884 		if (zio->io_metaslab_class == NULL)
885 			zio->io_metaslab_class = pio->io_metaslab_class;
886 		if (zio->io_logical == NULL)
887 			zio->io_logical = pio->io_logical;
888 		if (zio->io_child_type == ZIO_CHILD_GANG)
889 			zio->io_gang_leader = pio->io_gang_leader;
890 		zio_add_child(pio, zio);
891 	}
892 
893 	taskq_init_ent(&zio->io_tqent);
894 
895 	return (zio);
896 }
897 
898 static void
899 zio_destroy(zio_t *zio)
900 {
901 	metaslab_trace_fini(&zio->io_alloc_list);
902 	list_destroy(&zio->io_parent_list);
903 	list_destroy(&zio->io_child_list);
904 	mutex_destroy(&zio->io_lock);
905 	cv_destroy(&zio->io_cv);
906 	kmem_cache_free(zio_cache, zio);
907 }
908 
909 zio_t *
910 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
911     void *private, enum zio_flag flags)
912 {
913 	zio_t *zio;
914 
915 	zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
916 	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
917 	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
918 
919 	return (zio);
920 }
921 
922 zio_t *
923 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
924 {
925 	return (zio_null(NULL, spa, NULL, done, private, flags));
926 }
927 
928 static int
929 zfs_blkptr_verify_log(spa_t *spa, const blkptr_t *bp,
930     enum blk_verify_flag blk_verify, const char *fmt, ...)
931 {
932 	va_list adx;
933 	char buf[256];
934 
935 	va_start(adx, fmt);
936 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
937 	va_end(adx);
938 
939 	switch (blk_verify) {
940 	case BLK_VERIFY_HALT:
941 		dprintf_bp(bp, "blkptr at %p dprintf_bp():", bp);
942 		zfs_panic_recover("%s: %s", spa_name(spa), buf);
943 		break;
944 	case BLK_VERIFY_LOG:
945 		zfs_dbgmsg("%s: %s", spa_name(spa), buf);
946 		break;
947 	case BLK_VERIFY_ONLY:
948 		break;
949 	}
950 
951 	return (1);
952 }
953 
954 /*
955  * Verify the block pointer fields contain reasonable values.  This means
956  * it only contains known object types, checksum/compression identifiers,
957  * block sizes within the maximum allowed limits, valid DVAs, etc.
958  *
959  * If everything checks out B_TRUE is returned.  The zfs_blkptr_verify
960  * argument controls the behavior when an invalid field is detected.
961  *
962  * Modes for zfs_blkptr_verify:
963  *   1) BLK_VERIFY_ONLY (evaluate the block)
964  *   2) BLK_VERIFY_LOG (evaluate the block and log problems)
965  *   3) BLK_VERIFY_HALT (call zfs_panic_recover on error)
966  */
967 boolean_t
968 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp, boolean_t config_held,
969     enum blk_verify_flag blk_verify)
970 {
971 	int errors = 0;
972 
973 	if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
974 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
975 		    "blkptr at %p has invalid TYPE %llu",
976 		    bp, (longlong_t)BP_GET_TYPE(bp));
977 	}
978 	if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS ||
979 	    BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) {
980 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
981 		    "blkptr at %p has invalid CHECKSUM %llu",
982 		    bp, (longlong_t)BP_GET_CHECKSUM(bp));
983 	}
984 	if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS ||
985 	    BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) {
986 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
987 		    "blkptr at %p has invalid COMPRESS %llu",
988 		    bp, (longlong_t)BP_GET_COMPRESS(bp));
989 	}
990 	if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
991 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
992 		    "blkptr at %p has invalid LSIZE %llu",
993 		    bp, (longlong_t)BP_GET_LSIZE(bp));
994 	}
995 	if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
996 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
997 		    "blkptr at %p has invalid PSIZE %llu",
998 		    bp, (longlong_t)BP_GET_PSIZE(bp));
999 	}
1000 
1001 	if (BP_IS_EMBEDDED(bp)) {
1002 		if (BPE_GET_ETYPE(bp) >= NUM_BP_EMBEDDED_TYPES) {
1003 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1004 			    "blkptr at %p has invalid ETYPE %llu",
1005 			    bp, (longlong_t)BPE_GET_ETYPE(bp));
1006 		}
1007 	}
1008 
1009 	/*
1010 	 * Do not verify individual DVAs if the config is not trusted. This
1011 	 * will be done once the zio is executed in vdev_mirror_map_alloc.
1012 	 */
1013 	if (!spa->spa_trust_config)
1014 		return (B_TRUE);
1015 
1016 	if (!config_held)
1017 		spa_config_enter(spa, SCL_VDEV, bp, RW_READER);
1018 	else
1019 		ASSERT(spa_config_held(spa, SCL_VDEV, RW_WRITER));
1020 	/*
1021 	 * Pool-specific checks.
1022 	 *
1023 	 * Note: it would be nice to verify that the blk_birth and
1024 	 * BP_PHYSICAL_BIRTH() are not too large.  However, spa_freeze()
1025 	 * allows the birth time of log blocks (and dmu_sync()-ed blocks
1026 	 * that are in the log) to be arbitrarily large.
1027 	 */
1028 	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
1029 		uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]);
1030 
1031 		if (vdevid >= spa->spa_root_vdev->vdev_children) {
1032 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1033 			    "blkptr at %p DVA %u has invalid VDEV %llu",
1034 			    bp, i, (longlong_t)vdevid);
1035 			continue;
1036 		}
1037 		vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1038 		if (vd == NULL) {
1039 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1040 			    "blkptr at %p DVA %u has invalid VDEV %llu",
1041 			    bp, i, (longlong_t)vdevid);
1042 			continue;
1043 		}
1044 		if (vd->vdev_ops == &vdev_hole_ops) {
1045 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1046 			    "blkptr at %p DVA %u has hole VDEV %llu",
1047 			    bp, i, (longlong_t)vdevid);
1048 			continue;
1049 		}
1050 		if (vd->vdev_ops == &vdev_missing_ops) {
1051 			/*
1052 			 * "missing" vdevs are valid during import, but we
1053 			 * don't have their detailed info (e.g. asize), so
1054 			 * we can't perform any more checks on them.
1055 			 */
1056 			continue;
1057 		}
1058 		uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
1059 		uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]);
1060 		if (BP_IS_GANG(bp))
1061 			asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
1062 		if (offset + asize > vd->vdev_asize) {
1063 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1064 			    "blkptr at %p DVA %u has invalid OFFSET %llu",
1065 			    bp, i, (longlong_t)offset);
1066 		}
1067 	}
1068 	if (errors > 0)
1069 		dprintf_bp(bp, "blkptr at %p dprintf_bp():", bp);
1070 	if (!config_held)
1071 		spa_config_exit(spa, SCL_VDEV, bp);
1072 
1073 	return (errors == 0);
1074 }
1075 
1076 boolean_t
1077 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp)
1078 {
1079 	uint64_t vdevid = DVA_GET_VDEV(dva);
1080 
1081 	if (vdevid >= spa->spa_root_vdev->vdev_children)
1082 		return (B_FALSE);
1083 
1084 	vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1085 	if (vd == NULL)
1086 		return (B_FALSE);
1087 
1088 	if (vd->vdev_ops == &vdev_hole_ops)
1089 		return (B_FALSE);
1090 
1091 	if (vd->vdev_ops == &vdev_missing_ops) {
1092 		return (B_FALSE);
1093 	}
1094 
1095 	uint64_t offset = DVA_GET_OFFSET(dva);
1096 	uint64_t asize = DVA_GET_ASIZE(dva);
1097 
1098 	if (BP_IS_GANG(bp))
1099 		asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
1100 	if (offset + asize > vd->vdev_asize)
1101 		return (B_FALSE);
1102 
1103 	return (B_TRUE);
1104 }
1105 
1106 zio_t *
1107 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
1108     abd_t *data, uint64_t size, zio_done_func_t *done, void *private,
1109     zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
1110 {
1111 	zio_t *zio;
1112 
1113 	(void) zfs_blkptr_verify(spa, bp, flags & ZIO_FLAG_CONFIG_WRITER,
1114 	    BLK_VERIFY_HALT);
1115 
1116 	zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
1117 	    data, size, size, done, private,
1118 	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
1119 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1120 	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
1121 
1122 	return (zio);
1123 }
1124 
1125 zio_t *
1126 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
1127     abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp,
1128     zio_done_func_t *ready, zio_done_func_t *children_ready,
1129     zio_done_func_t *physdone, zio_done_func_t *done,
1130     void *private, zio_priority_t priority, enum zio_flag flags,
1131     const zbookmark_phys_t *zb)
1132 {
1133 	zio_t *zio;
1134 
1135 	ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
1136 	    zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
1137 	    zp->zp_compress >= ZIO_COMPRESS_OFF &&
1138 	    zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
1139 	    DMU_OT_IS_VALID(zp->zp_type) &&
1140 	    zp->zp_level < 32 &&
1141 	    zp->zp_copies > 0 &&
1142 	    zp->zp_copies <= spa_max_replication(spa));
1143 
1144 	zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private,
1145 	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
1146 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1147 	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
1148 
1149 	zio->io_ready = ready;
1150 	zio->io_children_ready = children_ready;
1151 	zio->io_physdone = physdone;
1152 	zio->io_prop = *zp;
1153 
1154 	/*
1155 	 * Data can be NULL if we are going to call zio_write_override() to
1156 	 * provide the already-allocated BP.  But we may need the data to
1157 	 * verify a dedup hit (if requested).  In this case, don't try to
1158 	 * dedup (just take the already-allocated BP verbatim). Encrypted
1159 	 * dedup blocks need data as well so we also disable dedup in this
1160 	 * case.
1161 	 */
1162 	if (data == NULL &&
1163 	    (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) {
1164 		zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
1165 	}
1166 
1167 	return (zio);
1168 }
1169 
1170 zio_t *
1171 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data,
1172     uint64_t size, zio_done_func_t *done, void *private,
1173     zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb)
1174 {
1175 	zio_t *zio;
1176 
1177 	zio = zio_create(pio, spa, txg, bp, data, size, size, done, private,
1178 	    ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb,
1179 	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
1180 
1181 	return (zio);
1182 }
1183 
1184 void
1185 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
1186 {
1187 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
1188 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1189 	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1190 	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
1191 
1192 	/*
1193 	 * We must reset the io_prop to match the values that existed
1194 	 * when the bp was first written by dmu_sync() keeping in mind
1195 	 * that nopwrite and dedup are mutually exclusive.
1196 	 */
1197 	zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
1198 	zio->io_prop.zp_nopwrite = nopwrite;
1199 	zio->io_prop.zp_copies = copies;
1200 	zio->io_bp_override = bp;
1201 }
1202 
1203 void
1204 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
1205 {
1206 
1207 	(void) zfs_blkptr_verify(spa, bp, B_FALSE, BLK_VERIFY_HALT);
1208 
1209 	/*
1210 	 * The check for EMBEDDED is a performance optimization.  We
1211 	 * process the free here (by ignoring it) rather than
1212 	 * putting it on the list and then processing it in zio_free_sync().
1213 	 */
1214 	if (BP_IS_EMBEDDED(bp))
1215 		return;
1216 	metaslab_check_free(spa, bp);
1217 
1218 	/*
1219 	 * Frees that are for the currently-syncing txg, are not going to be
1220 	 * deferred, and which will not need to do a read (i.e. not GANG or
1221 	 * DEDUP), can be processed immediately.  Otherwise, put them on the
1222 	 * in-memory list for later processing.
1223 	 *
1224 	 * Note that we only defer frees after zfs_sync_pass_deferred_free
1225 	 * when the log space map feature is disabled. [see relevant comment
1226 	 * in spa_sync_iterate_to_convergence()]
1227 	 */
1228 	if (BP_IS_GANG(bp) ||
1229 	    BP_GET_DEDUP(bp) ||
1230 	    txg != spa->spa_syncing_txg ||
1231 	    (spa_sync_pass(spa) >= zfs_sync_pass_deferred_free &&
1232 	    !spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))) {
1233 		bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
1234 	} else {
1235 		VERIFY3P(zio_free_sync(NULL, spa, txg, bp, 0), ==, NULL);
1236 	}
1237 }
1238 
1239 /*
1240  * To improve performance, this function may return NULL if we were able
1241  * to do the free immediately.  This avoids the cost of creating a zio
1242  * (and linking it to the parent, etc).
1243  */
1244 zio_t *
1245 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1246     enum zio_flag flags)
1247 {
1248 	ASSERT(!BP_IS_HOLE(bp));
1249 	ASSERT(spa_syncing_txg(spa) == txg);
1250 
1251 	if (BP_IS_EMBEDDED(bp))
1252 		return (NULL);
1253 
1254 	metaslab_check_free(spa, bp);
1255 	arc_freed(spa, bp);
1256 	dsl_scan_freed(spa, bp);
1257 
1258 	if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp)) {
1259 		/*
1260 		 * GANG and DEDUP blocks can induce a read (for the gang block
1261 		 * header, or the DDT), so issue them asynchronously so that
1262 		 * this thread is not tied up.
1263 		 */
1264 		enum zio_stage stage =
1265 		    ZIO_FREE_PIPELINE | ZIO_STAGE_ISSUE_ASYNC;
1266 
1267 		return (zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1268 		    BP_GET_PSIZE(bp), NULL, NULL,
1269 		    ZIO_TYPE_FREE, ZIO_PRIORITY_NOW,
1270 		    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage));
1271 	} else {
1272 		metaslab_free(spa, bp, txg, B_FALSE);
1273 		return (NULL);
1274 	}
1275 }
1276 
1277 zio_t *
1278 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1279     zio_done_func_t *done, void *private, enum zio_flag flags)
1280 {
1281 	zio_t *zio;
1282 
1283 	(void) zfs_blkptr_verify(spa, bp, flags & ZIO_FLAG_CONFIG_WRITER,
1284 	    BLK_VERIFY_HALT);
1285 
1286 	if (BP_IS_EMBEDDED(bp))
1287 		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
1288 
1289 	/*
1290 	 * A claim is an allocation of a specific block.  Claims are needed
1291 	 * to support immediate writes in the intent log.  The issue is that
1292 	 * immediate writes contain committed data, but in a txg that was
1293 	 * *not* committed.  Upon opening the pool after an unclean shutdown,
1294 	 * the intent log claims all blocks that contain immediate write data
1295 	 * so that the SPA knows they're in use.
1296 	 *
1297 	 * All claims *must* be resolved in the first txg -- before the SPA
1298 	 * starts allocating blocks -- so that nothing is allocated twice.
1299 	 * If txg == 0 we just verify that the block is claimable.
1300 	 */
1301 	ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <,
1302 	    spa_min_claim_txg(spa));
1303 	ASSERT(txg == spa_min_claim_txg(spa) || txg == 0);
1304 	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(1M) */
1305 
1306 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1307 	    BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW,
1308 	    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
1309 	ASSERT0(zio->io_queued_timestamp);
1310 
1311 	return (zio);
1312 }
1313 
1314 zio_t *
1315 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
1316     zio_done_func_t *done, void *private, enum zio_flag flags)
1317 {
1318 	zio_t *zio;
1319 	int c;
1320 
1321 	if (vd->vdev_children == 0) {
1322 		zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
1323 		    ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
1324 		    ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
1325 
1326 		zio->io_cmd = cmd;
1327 	} else {
1328 		zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
1329 
1330 		for (c = 0; c < vd->vdev_children; c++)
1331 			zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
1332 			    done, private, flags));
1333 	}
1334 
1335 	return (zio);
1336 }
1337 
1338 zio_t *
1339 zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1340     zio_done_func_t *done, void *private, zio_priority_t priority,
1341     enum zio_flag flags, enum trim_flag trim_flags)
1342 {
1343 	zio_t *zio;
1344 
1345 	ASSERT0(vd->vdev_children);
1346 	ASSERT0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
1347 	ASSERT0(P2PHASE(size, 1ULL << vd->vdev_ashift));
1348 	ASSERT3U(size, !=, 0);
1349 
1350 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, NULL, size, size, done,
1351 	    private, ZIO_TYPE_TRIM, priority, flags | ZIO_FLAG_PHYSICAL,
1352 	    vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_TRIM_PIPELINE);
1353 	zio->io_trim_flags = trim_flags;
1354 
1355 	return (zio);
1356 }
1357 
1358 zio_t *
1359 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1360     abd_t *data, int checksum, zio_done_func_t *done, void *private,
1361     zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1362 {
1363 	zio_t *zio;
1364 
1365 	ASSERT(vd->vdev_children == 0);
1366 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1367 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1368 	ASSERT3U(offset + size, <=, vd->vdev_psize);
1369 
1370 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1371 	    private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1372 	    offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
1373 
1374 	zio->io_prop.zp_checksum = checksum;
1375 
1376 	return (zio);
1377 }
1378 
1379 zio_t *
1380 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1381     abd_t *data, int checksum, zio_done_func_t *done, void *private,
1382     zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1383 {
1384 	zio_t *zio;
1385 
1386 	ASSERT(vd->vdev_children == 0);
1387 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1388 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1389 	ASSERT3U(offset + size, <=, vd->vdev_psize);
1390 
1391 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1392 	    private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1393 	    offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
1394 
1395 	zio->io_prop.zp_checksum = checksum;
1396 
1397 	if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
1398 		/*
1399 		 * zec checksums are necessarily destructive -- they modify
1400 		 * the end of the write buffer to hold the verifier/checksum.
1401 		 * Therefore, we must make a local copy in case the data is
1402 		 * being written to multiple places in parallel.
1403 		 */
1404 		abd_t *wbuf = abd_alloc_sametype(data, size);
1405 		abd_copy(wbuf, data, size);
1406 
1407 		zio_push_transform(zio, wbuf, size, size, NULL);
1408 	}
1409 
1410 	return (zio);
1411 }
1412 
1413 /*
1414  * Create a child I/O to do some work for us.
1415  */
1416 zio_t *
1417 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1418     abd_t *data, uint64_t size, int type, zio_priority_t priority,
1419     enum zio_flag flags, zio_done_func_t *done, void *private)
1420 {
1421 	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1422 	zio_t *zio;
1423 
1424 	/*
1425 	 * vdev child I/Os do not propagate their error to the parent.
1426 	 * Therefore, for correct operation the caller *must* check for
1427 	 * and handle the error in the child i/o's done callback.
1428 	 * The only exceptions are i/os that we don't care about
1429 	 * (OPTIONAL or REPAIR).
1430 	 */
1431 	ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) ||
1432 	    done != NULL);
1433 
1434 	if (type == ZIO_TYPE_READ && bp != NULL) {
1435 		/*
1436 		 * If we have the bp, then the child should perform the
1437 		 * checksum and the parent need not.  This pushes error
1438 		 * detection as close to the leaves as possible and
1439 		 * eliminates redundant checksums in the interior nodes.
1440 		 */
1441 		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1442 		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1443 	}
1444 
1445 	if (vd->vdev_ops->vdev_op_leaf) {
1446 		ASSERT0(vd->vdev_children);
1447 		offset += VDEV_LABEL_START_SIZE;
1448 	}
1449 
1450 	flags |= ZIO_VDEV_CHILD_FLAGS(pio);
1451 
1452 	/*
1453 	 * If we've decided to do a repair, the write is not speculative --
1454 	 * even if the original read was.
1455 	 */
1456 	if (flags & ZIO_FLAG_IO_REPAIR)
1457 		flags &= ~ZIO_FLAG_SPECULATIVE;
1458 
1459 	/*
1460 	 * If we're creating a child I/O that is not associated with a
1461 	 * top-level vdev, then the child zio is not an allocating I/O.
1462 	 * If this is a retried I/O then we ignore it since we will
1463 	 * have already processed the original allocating I/O.
1464 	 */
1465 	if (flags & ZIO_FLAG_IO_ALLOCATING &&
1466 	    (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) {
1467 		ASSERT(pio->io_metaslab_class != NULL);
1468 		ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled);
1469 		ASSERT(type == ZIO_TYPE_WRITE);
1470 		ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE);
1471 		ASSERT(!(flags & ZIO_FLAG_IO_REPAIR));
1472 		ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) ||
1473 		    pio->io_child_type == ZIO_CHILD_GANG);
1474 
1475 		flags &= ~ZIO_FLAG_IO_ALLOCATING;
1476 	}
1477 
1478 
1479 	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size,
1480 	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1481 	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1482 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
1483 
1484 	zio->io_physdone = pio->io_physdone;
1485 	if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
1486 		zio->io_logical->io_phys_children++;
1487 
1488 	return (zio);
1489 }
1490 
1491 zio_t *
1492 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size,
1493     zio_type_t type, zio_priority_t priority, enum zio_flag flags,
1494     zio_done_func_t *done, void *private)
1495 {
1496 	zio_t *zio;
1497 
1498 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1499 
1500 	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1501 	    data, size, size, done, private, type, priority,
1502 	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1503 	    vd, offset, NULL,
1504 	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1505 
1506 	return (zio);
1507 }
1508 
1509 void
1510 zio_flush(zio_t *zio, vdev_t *vd)
1511 {
1512 	zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
1513 	    NULL, NULL,
1514 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1515 }
1516 
1517 void
1518 zio_shrink(zio_t *zio, uint64_t size)
1519 {
1520 	ASSERT3P(zio->io_executor, ==, NULL);
1521 	ASSERT3U(zio->io_orig_size, ==, zio->io_size);
1522 	ASSERT3U(size, <=, zio->io_size);
1523 
1524 	/*
1525 	 * We don't shrink for raidz because of problems with the
1526 	 * reconstruction when reading back less than the block size.
1527 	 * Note, BP_IS_RAIDZ() assumes no compression.
1528 	 */
1529 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1530 	if (!BP_IS_RAIDZ(zio->io_bp)) {
1531 		/* we are not doing a raw write */
1532 		ASSERT3U(zio->io_size, ==, zio->io_lsize);
1533 		zio->io_orig_size = zio->io_size = zio->io_lsize = size;
1534 	}
1535 }
1536 
1537 /*
1538  * ==========================================================================
1539  * Prepare to read and write logical blocks
1540  * ==========================================================================
1541  */
1542 
1543 static zio_t *
1544 zio_read_bp_init(zio_t *zio)
1545 {
1546 	blkptr_t *bp = zio->io_bp;
1547 	uint64_t psize =
1548 	    BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1549 
1550 	ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1551 
1552 	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1553 	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
1554 	    !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1555 		zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1556 		    psize, psize, zio_decompress);
1557 	}
1558 
1559 	if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) ||
1560 	    BP_HAS_INDIRECT_MAC_CKSUM(bp)) &&
1561 	    zio->io_child_type == ZIO_CHILD_LOGICAL) {
1562 		zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1563 		    psize, psize, zio_decrypt);
1564 	}
1565 
1566 	if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1567 		int psize = BPE_GET_PSIZE(bp);
1568 		void *data = abd_borrow_buf(zio->io_abd, psize);
1569 
1570 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1571 		decode_embedded_bp_compressed(bp, data);
1572 		abd_return_buf_copy(zio->io_abd, data, psize);
1573 	} else {
1574 		ASSERT(!BP_IS_EMBEDDED(bp));
1575 		ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1576 	}
1577 
1578 	if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1579 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1580 
1581 	if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1582 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1583 
1584 	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1585 		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1586 
1587 	return (zio);
1588 }
1589 
1590 static zio_t *
1591 zio_write_bp_init(zio_t *zio)
1592 {
1593 	if (!IO_IS_ALLOCATING(zio))
1594 		return (zio);
1595 
1596 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1597 
1598 	if (zio->io_bp_override) {
1599 		blkptr_t *bp = zio->io_bp;
1600 		zio_prop_t *zp = &zio->io_prop;
1601 
1602 		ASSERT(bp->blk_birth != zio->io_txg);
1603 		ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1604 
1605 		*bp = *zio->io_bp_override;
1606 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1607 
1608 		if (BP_IS_EMBEDDED(bp))
1609 			return (zio);
1610 
1611 		/*
1612 		 * If we've been overridden and nopwrite is set then
1613 		 * set the flag accordingly to indicate that a nopwrite
1614 		 * has already occurred.
1615 		 */
1616 		if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1617 			ASSERT(!zp->zp_dedup);
1618 			ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum);
1619 			zio->io_flags |= ZIO_FLAG_NOPWRITE;
1620 			return (zio);
1621 		}
1622 
1623 		ASSERT(!zp->zp_nopwrite);
1624 
1625 		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1626 			return (zio);
1627 
1628 		ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1629 		    ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1630 
1631 		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum &&
1632 		    !zp->zp_encrypt) {
1633 			BP_SET_DEDUP(bp, 1);
1634 			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1635 			return (zio);
1636 		}
1637 
1638 		/*
1639 		 * We were unable to handle this as an override bp, treat
1640 		 * it as a regular write I/O.
1641 		 */
1642 		zio->io_bp_override = NULL;
1643 		*bp = zio->io_bp_orig;
1644 		zio->io_pipeline = zio->io_orig_pipeline;
1645 	}
1646 
1647 	return (zio);
1648 }
1649 
1650 static zio_t *
1651 zio_write_compress(zio_t *zio)
1652 {
1653 	spa_t *spa = zio->io_spa;
1654 	zio_prop_t *zp = &zio->io_prop;
1655 	enum zio_compress compress = zp->zp_compress;
1656 	blkptr_t *bp = zio->io_bp;
1657 	uint64_t lsize = zio->io_lsize;
1658 	uint64_t psize = zio->io_size;
1659 	int pass = 1;
1660 
1661 	/*
1662 	 * If our children haven't all reached the ready stage,
1663 	 * wait for them and then repeat this pipeline stage.
1664 	 */
1665 	if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
1666 	    ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) {
1667 		return (NULL);
1668 	}
1669 
1670 	if (!IO_IS_ALLOCATING(zio))
1671 		return (zio);
1672 
1673 	if (zio->io_children_ready != NULL) {
1674 		/*
1675 		 * Now that all our children are ready, run the callback
1676 		 * associated with this zio in case it wants to modify the
1677 		 * data to be written.
1678 		 */
1679 		ASSERT3U(zp->zp_level, >, 0);
1680 		zio->io_children_ready(zio);
1681 	}
1682 
1683 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1684 	ASSERT(zio->io_bp_override == NULL);
1685 
1686 	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1687 		/*
1688 		 * We're rewriting an existing block, which means we're
1689 		 * working on behalf of spa_sync().  For spa_sync() to
1690 		 * converge, it must eventually be the case that we don't
1691 		 * have to allocate new blocks.  But compression changes
1692 		 * the blocksize, which forces a reallocate, and makes
1693 		 * convergence take longer.  Therefore, after the first
1694 		 * few passes, stop compressing to ensure convergence.
1695 		 */
1696 		pass = spa_sync_pass(spa);
1697 
1698 		ASSERT(zio->io_txg == spa_syncing_txg(spa));
1699 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1700 		ASSERT(!BP_GET_DEDUP(bp));
1701 
1702 		if (pass >= zfs_sync_pass_dont_compress)
1703 			compress = ZIO_COMPRESS_OFF;
1704 
1705 		/* Make sure someone doesn't change their mind on overwrites */
1706 		ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1707 		    spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1708 	}
1709 
1710 	/* If it's a compressed write that is not raw, compress the buffer. */
1711 	if (compress != ZIO_COMPRESS_OFF &&
1712 	    !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1713 		void *cbuf = zio_buf_alloc(lsize);
1714 		psize = zio_compress_data(compress, zio->io_abd, cbuf, lsize,
1715 		    zp->zp_complevel);
1716 		if (psize == 0 || psize >= lsize) {
1717 			compress = ZIO_COMPRESS_OFF;
1718 			zio_buf_free(cbuf, lsize);
1719 		} else if (!zp->zp_dedup && !zp->zp_encrypt &&
1720 		    psize <= BPE_PAYLOAD_SIZE &&
1721 		    zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1722 		    spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1723 			encode_embedded_bp_compressed(bp,
1724 			    cbuf, compress, lsize, psize);
1725 			BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1726 			BP_SET_TYPE(bp, zio->io_prop.zp_type);
1727 			BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1728 			zio_buf_free(cbuf, lsize);
1729 			bp->blk_birth = zio->io_txg;
1730 			zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1731 			ASSERT(spa_feature_is_active(spa,
1732 			    SPA_FEATURE_EMBEDDED_DATA));
1733 			return (zio);
1734 		} else {
1735 			/*
1736 			 * Round up compressed size up to the ashift
1737 			 * of the smallest-ashift device, and zero the tail.
1738 			 * This ensures that the compressed size of the BP
1739 			 * (and thus compressratio property) are correct,
1740 			 * in that we charge for the padding used to fill out
1741 			 * the last sector.
1742 			 */
1743 			ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
1744 			size_t rounded = (size_t)P2ROUNDUP(psize,
1745 			    1ULL << spa->spa_min_ashift);
1746 			if (rounded >= lsize) {
1747 				compress = ZIO_COMPRESS_OFF;
1748 				zio_buf_free(cbuf, lsize);
1749 				psize = lsize;
1750 			} else {
1751 				abd_t *cdata = abd_get_from_buf(cbuf, lsize);
1752 				abd_take_ownership_of_buf(cdata, B_TRUE);
1753 				abd_zero_off(cdata, psize, rounded - psize);
1754 				psize = rounded;
1755 				zio_push_transform(zio, cdata,
1756 				    psize, lsize, NULL);
1757 			}
1758 		}
1759 
1760 		/*
1761 		 * We were unable to handle this as an override bp, treat
1762 		 * it as a regular write I/O.
1763 		 */
1764 		zio->io_bp_override = NULL;
1765 		*bp = zio->io_bp_orig;
1766 		zio->io_pipeline = zio->io_orig_pipeline;
1767 
1768 	} else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 &&
1769 	    zp->zp_type == DMU_OT_DNODE) {
1770 		/*
1771 		 * The DMU actually relies on the zio layer's compression
1772 		 * to free metadnode blocks that have had all contained
1773 		 * dnodes freed. As a result, even when doing a raw
1774 		 * receive, we must check whether the block can be compressed
1775 		 * to a hole.
1776 		 */
1777 		psize = zio_compress_data(ZIO_COMPRESS_EMPTY,
1778 		    zio->io_abd, NULL, lsize, zp->zp_complevel);
1779 		if (psize == 0 || psize >= lsize)
1780 			compress = ZIO_COMPRESS_OFF;
1781 	} else {
1782 		ASSERT3U(psize, !=, 0);
1783 	}
1784 
1785 	/*
1786 	 * The final pass of spa_sync() must be all rewrites, but the first
1787 	 * few passes offer a trade-off: allocating blocks defers convergence,
1788 	 * but newly allocated blocks are sequential, so they can be written
1789 	 * to disk faster.  Therefore, we allow the first few passes of
1790 	 * spa_sync() to allocate new blocks, but force rewrites after that.
1791 	 * There should only be a handful of blocks after pass 1 in any case.
1792 	 */
1793 	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1794 	    BP_GET_PSIZE(bp) == psize &&
1795 	    pass >= zfs_sync_pass_rewrite) {
1796 		VERIFY3U(psize, !=, 0);
1797 		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1798 
1799 		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1800 		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1801 	} else {
1802 		BP_ZERO(bp);
1803 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
1804 	}
1805 
1806 	if (psize == 0) {
1807 		if (zio->io_bp_orig.blk_birth != 0 &&
1808 		    spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1809 			BP_SET_LSIZE(bp, lsize);
1810 			BP_SET_TYPE(bp, zp->zp_type);
1811 			BP_SET_LEVEL(bp, zp->zp_level);
1812 			BP_SET_BIRTH(bp, zio->io_txg, 0);
1813 		}
1814 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1815 	} else {
1816 		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1817 		BP_SET_LSIZE(bp, lsize);
1818 		BP_SET_TYPE(bp, zp->zp_type);
1819 		BP_SET_LEVEL(bp, zp->zp_level);
1820 		BP_SET_PSIZE(bp, psize);
1821 		BP_SET_COMPRESS(bp, compress);
1822 		BP_SET_CHECKSUM(bp, zp->zp_checksum);
1823 		BP_SET_DEDUP(bp, zp->zp_dedup);
1824 		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1825 		if (zp->zp_dedup) {
1826 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1827 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1828 			ASSERT(!zp->zp_encrypt ||
1829 			    DMU_OT_IS_ENCRYPTED(zp->zp_type));
1830 			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1831 		}
1832 		if (zp->zp_nopwrite) {
1833 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1834 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1835 			zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1836 		}
1837 	}
1838 	return (zio);
1839 }
1840 
1841 static zio_t *
1842 zio_free_bp_init(zio_t *zio)
1843 {
1844 	blkptr_t *bp = zio->io_bp;
1845 
1846 	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1847 		if (BP_GET_DEDUP(bp))
1848 			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1849 	}
1850 
1851 	ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1852 
1853 	return (zio);
1854 }
1855 
1856 /*
1857  * ==========================================================================
1858  * Execute the I/O pipeline
1859  * ==========================================================================
1860  */
1861 
1862 static void
1863 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1864 {
1865 	spa_t *spa = zio->io_spa;
1866 	zio_type_t t = zio->io_type;
1867 	int flags = (cutinline ? TQ_FRONT : 0);
1868 
1869 	/*
1870 	 * If we're a config writer or a probe, the normal issue and
1871 	 * interrupt threads may all be blocked waiting for the config lock.
1872 	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1873 	 */
1874 	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1875 		t = ZIO_TYPE_NULL;
1876 
1877 	/*
1878 	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1879 	 */
1880 	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1881 		t = ZIO_TYPE_NULL;
1882 
1883 	/*
1884 	 * If this is a high priority I/O, then use the high priority taskq if
1885 	 * available.
1886 	 */
1887 	if ((zio->io_priority == ZIO_PRIORITY_NOW ||
1888 	    zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) &&
1889 	    spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1890 		q++;
1891 
1892 	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1893 
1894 	/*
1895 	 * NB: We are assuming that the zio can only be dispatched
1896 	 * to a single taskq at a time.  It would be a grievous error
1897 	 * to dispatch the zio to another taskq at the same time.
1898 	 */
1899 	ASSERT(taskq_empty_ent(&zio->io_tqent));
1900 	spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1901 	    flags, &zio->io_tqent);
1902 }
1903 
1904 static boolean_t
1905 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1906 {
1907 	spa_t *spa = zio->io_spa;
1908 
1909 	taskq_t *tq = taskq_of_curthread();
1910 
1911 	for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1912 		spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1913 		uint_t i;
1914 		for (i = 0; i < tqs->stqs_count; i++) {
1915 			if (tqs->stqs_taskq[i] == tq)
1916 				return (B_TRUE);
1917 		}
1918 	}
1919 
1920 	return (B_FALSE);
1921 }
1922 
1923 static zio_t *
1924 zio_issue_async(zio_t *zio)
1925 {
1926 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1927 
1928 	return (NULL);
1929 }
1930 
1931 void
1932 zio_interrupt(zio_t *zio)
1933 {
1934 	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1935 }
1936 
1937 void
1938 zio_delay_interrupt(zio_t *zio)
1939 {
1940 	/*
1941 	 * The timeout_generic() function isn't defined in userspace, so
1942 	 * rather than trying to implement the function, the zio delay
1943 	 * functionality has been disabled for userspace builds.
1944 	 */
1945 
1946 #ifdef _KERNEL
1947 	/*
1948 	 * If io_target_timestamp is zero, then no delay has been registered
1949 	 * for this IO, thus jump to the end of this function and "skip" the
1950 	 * delay; issuing it directly to the zio layer.
1951 	 */
1952 	if (zio->io_target_timestamp != 0) {
1953 		hrtime_t now = gethrtime();
1954 
1955 		if (now >= zio->io_target_timestamp) {
1956 			/*
1957 			 * This IO has already taken longer than the target
1958 			 * delay to complete, so we don't want to delay it
1959 			 * any longer; we "miss" the delay and issue it
1960 			 * directly to the zio layer. This is likely due to
1961 			 * the target latency being set to a value less than
1962 			 * the underlying hardware can satisfy (e.g. delay
1963 			 * set to 1ms, but the disks take 10ms to complete an
1964 			 * IO request).
1965 			 */
1966 
1967 			DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
1968 			    hrtime_t, now);
1969 
1970 			zio_interrupt(zio);
1971 		} else {
1972 			taskqid_t tid;
1973 			hrtime_t diff = zio->io_target_timestamp - now;
1974 			clock_t expire_at_tick = ddi_get_lbolt() +
1975 			    NSEC_TO_TICK(diff);
1976 
1977 			DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
1978 			    hrtime_t, now, hrtime_t, diff);
1979 
1980 			if (NSEC_TO_TICK(diff) == 0) {
1981 				/* Our delay is less than a jiffy - just spin */
1982 				zfs_sleep_until(zio->io_target_timestamp);
1983 				zio_interrupt(zio);
1984 			} else {
1985 				/*
1986 				 * Use taskq_dispatch_delay() in the place of
1987 				 * OpenZFS's timeout_generic().
1988 				 */
1989 				tid = taskq_dispatch_delay(system_taskq,
1990 				    (task_func_t *)zio_interrupt,
1991 				    zio, TQ_NOSLEEP, expire_at_tick);
1992 				if (tid == TASKQID_INVALID) {
1993 					/*
1994 					 * Couldn't allocate a task.  Just
1995 					 * finish the zio without a delay.
1996 					 */
1997 					zio_interrupt(zio);
1998 				}
1999 			}
2000 		}
2001 		return;
2002 	}
2003 #endif
2004 	DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
2005 	zio_interrupt(zio);
2006 }
2007 
2008 static void
2009 zio_deadman_impl(zio_t *pio, int ziodepth)
2010 {
2011 	zio_t *cio, *cio_next;
2012 	zio_link_t *zl = NULL;
2013 	vdev_t *vd = pio->io_vd;
2014 
2015 	if (zio_deadman_log_all || (vd != NULL && vd->vdev_ops->vdev_op_leaf)) {
2016 		vdev_queue_t *vq = vd ? &vd->vdev_queue : NULL;
2017 		zbookmark_phys_t *zb = &pio->io_bookmark;
2018 		uint64_t delta = gethrtime() - pio->io_timestamp;
2019 		uint64_t failmode = spa_get_deadman_failmode(pio->io_spa);
2020 
2021 		zfs_dbgmsg("slow zio[%d]: zio=%px timestamp=%llu "
2022 		    "delta=%llu queued=%llu io=%llu "
2023 		    "path=%s last=%llu "
2024 		    "type=%d priority=%d flags=0x%x "
2025 		    "stage=0x%x pipeline=0x%x pipeline-trace=0x%x "
2026 		    "objset=%llu object=%llu level=%llu blkid=%llu "
2027 		    "offset=%llu size=%llu error=%d",
2028 		    ziodepth, pio, pio->io_timestamp,
2029 		    delta, pio->io_delta, pio->io_delay,
2030 		    vd ? vd->vdev_path : "NULL", vq ? vq->vq_io_complete_ts : 0,
2031 		    pio->io_type, pio->io_priority, pio->io_flags,
2032 		    pio->io_stage, pio->io_pipeline, pio->io_pipeline_trace,
2033 		    zb->zb_objset, zb->zb_object, zb->zb_level, zb->zb_blkid,
2034 		    pio->io_offset, pio->io_size, pio->io_error);
2035 		(void) zfs_ereport_post(FM_EREPORT_ZFS_DEADMAN,
2036 		    pio->io_spa, vd, zb, pio, 0);
2037 
2038 		if (failmode == ZIO_FAILURE_MODE_CONTINUE &&
2039 		    taskq_empty_ent(&pio->io_tqent)) {
2040 			zio_interrupt(pio);
2041 		}
2042 	}
2043 
2044 	mutex_enter(&pio->io_lock);
2045 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2046 		cio_next = zio_walk_children(pio, &zl);
2047 		zio_deadman_impl(cio, ziodepth + 1);
2048 	}
2049 	mutex_exit(&pio->io_lock);
2050 }
2051 
2052 /*
2053  * Log the critical information describing this zio and all of its children
2054  * using the zfs_dbgmsg() interface then post deadman event for the ZED.
2055  */
2056 void
2057 zio_deadman(zio_t *pio, char *tag)
2058 {
2059 	spa_t *spa = pio->io_spa;
2060 	char *name = spa_name(spa);
2061 
2062 	if (!zfs_deadman_enabled || spa_suspended(spa))
2063 		return;
2064 
2065 	zio_deadman_impl(pio, 0);
2066 
2067 	switch (spa_get_deadman_failmode(spa)) {
2068 	case ZIO_FAILURE_MODE_WAIT:
2069 		zfs_dbgmsg("%s waiting for hung I/O to pool '%s'", tag, name);
2070 		break;
2071 
2072 	case ZIO_FAILURE_MODE_CONTINUE:
2073 		zfs_dbgmsg("%s restarting hung I/O for pool '%s'", tag, name);
2074 		break;
2075 
2076 	case ZIO_FAILURE_MODE_PANIC:
2077 		fm_panic("%s determined I/O to pool '%s' is hung.", tag, name);
2078 		break;
2079 	}
2080 }
2081 
2082 /*
2083  * Execute the I/O pipeline until one of the following occurs:
2084  * (1) the I/O completes; (2) the pipeline stalls waiting for
2085  * dependent child I/Os; (3) the I/O issues, so we're waiting
2086  * for an I/O completion interrupt; (4) the I/O is delegated by
2087  * vdev-level caching or aggregation; (5) the I/O is deferred
2088  * due to vdev-level queueing; (6) the I/O is handed off to
2089  * another thread.  In all cases, the pipeline stops whenever
2090  * there's no CPU work; it never burns a thread in cv_wait_io().
2091  *
2092  * There's no locking on io_stage because there's no legitimate way
2093  * for multiple threads to be attempting to process the same I/O.
2094  */
2095 static zio_pipe_stage_t *zio_pipeline[];
2096 
2097 /*
2098  * zio_execute() is a wrapper around the static function
2099  * __zio_execute() so that we can force  __zio_execute() to be
2100  * inlined.  This reduces stack overhead which is important
2101  * because __zio_execute() is called recursively in several zio
2102  * code paths.  zio_execute() itself cannot be inlined because
2103  * it is externally visible.
2104  */
2105 void
2106 zio_execute(zio_t *zio)
2107 {
2108 	fstrans_cookie_t cookie;
2109 
2110 	cookie = spl_fstrans_mark();
2111 	__zio_execute(zio);
2112 	spl_fstrans_unmark(cookie);
2113 }
2114 
2115 /*
2116  * Used to determine if in the current context the stack is sized large
2117  * enough to allow zio_execute() to be called recursively.  A minimum
2118  * stack size of 16K is required to avoid needing to re-dispatch the zio.
2119  */
2120 static boolean_t
2121 zio_execute_stack_check(zio_t *zio)
2122 {
2123 #if !defined(HAVE_LARGE_STACKS)
2124 	dsl_pool_t *dp = spa_get_dsl(zio->io_spa);
2125 
2126 	/* Executing in txg_sync_thread() context. */
2127 	if (dp && curthread == dp->dp_tx.tx_sync_thread)
2128 		return (B_TRUE);
2129 
2130 	/* Pool initialization outside of zio_taskq context. */
2131 	if (dp && spa_is_initializing(dp->dp_spa) &&
2132 	    !zio_taskq_member(zio, ZIO_TASKQ_ISSUE) &&
2133 	    !zio_taskq_member(zio, ZIO_TASKQ_ISSUE_HIGH))
2134 		return (B_TRUE);
2135 #endif /* HAVE_LARGE_STACKS */
2136 
2137 	return (B_FALSE);
2138 }
2139 
2140 __attribute__((always_inline))
2141 static inline void
2142 __zio_execute(zio_t *zio)
2143 {
2144 	ASSERT3U(zio->io_queued_timestamp, >, 0);
2145 
2146 	while (zio->io_stage < ZIO_STAGE_DONE) {
2147 		enum zio_stage pipeline = zio->io_pipeline;
2148 		enum zio_stage stage = zio->io_stage;
2149 
2150 		zio->io_executor = curthread;
2151 
2152 		ASSERT(!MUTEX_HELD(&zio->io_lock));
2153 		ASSERT(ISP2(stage));
2154 		ASSERT(zio->io_stall == NULL);
2155 
2156 		do {
2157 			stage <<= 1;
2158 		} while ((stage & pipeline) == 0);
2159 
2160 		ASSERT(stage <= ZIO_STAGE_DONE);
2161 
2162 		/*
2163 		 * If we are in interrupt context and this pipeline stage
2164 		 * will grab a config lock that is held across I/O,
2165 		 * or may wait for an I/O that needs an interrupt thread
2166 		 * to complete, issue async to avoid deadlock.
2167 		 *
2168 		 * For VDEV_IO_START, we cut in line so that the io will
2169 		 * be sent to disk promptly.
2170 		 */
2171 		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
2172 		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
2173 			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2174 			    zio_requeue_io_start_cut_in_line : B_FALSE;
2175 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2176 			return;
2177 		}
2178 
2179 		/*
2180 		 * If the current context doesn't have large enough stacks
2181 		 * the zio must be issued asynchronously to prevent overflow.
2182 		 */
2183 		if (zio_execute_stack_check(zio)) {
2184 			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2185 			    zio_requeue_io_start_cut_in_line : B_FALSE;
2186 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2187 			return;
2188 		}
2189 
2190 		zio->io_stage = stage;
2191 		zio->io_pipeline_trace |= zio->io_stage;
2192 
2193 		/*
2194 		 * The zio pipeline stage returns the next zio to execute
2195 		 * (typically the same as this one), or NULL if we should
2196 		 * stop.
2197 		 */
2198 		zio = zio_pipeline[highbit64(stage) - 1](zio);
2199 
2200 		if (zio == NULL)
2201 			return;
2202 	}
2203 }
2204 
2205 
2206 /*
2207  * ==========================================================================
2208  * Initiate I/O, either sync or async
2209  * ==========================================================================
2210  */
2211 int
2212 zio_wait(zio_t *zio)
2213 {
2214 	/*
2215 	 * Some routines, like zio_free_sync(), may return a NULL zio
2216 	 * to avoid the performance overhead of creating and then destroying
2217 	 * an unneeded zio.  For the callers' simplicity, we accept a NULL
2218 	 * zio and ignore it.
2219 	 */
2220 	if (zio == NULL)
2221 		return (0);
2222 
2223 	long timeout = MSEC_TO_TICK(zfs_deadman_ziotime_ms);
2224 	int error;
2225 
2226 	ASSERT3S(zio->io_stage, ==, ZIO_STAGE_OPEN);
2227 	ASSERT3P(zio->io_executor, ==, NULL);
2228 
2229 	zio->io_waiter = curthread;
2230 	ASSERT0(zio->io_queued_timestamp);
2231 	zio->io_queued_timestamp = gethrtime();
2232 
2233 	__zio_execute(zio);
2234 
2235 	mutex_enter(&zio->io_lock);
2236 	while (zio->io_executor != NULL) {
2237 		error = cv_timedwait_io(&zio->io_cv, &zio->io_lock,
2238 		    ddi_get_lbolt() + timeout);
2239 
2240 		if (zfs_deadman_enabled && error == -1 &&
2241 		    gethrtime() - zio->io_queued_timestamp >
2242 		    spa_deadman_ziotime(zio->io_spa)) {
2243 			mutex_exit(&zio->io_lock);
2244 			timeout = MSEC_TO_TICK(zfs_deadman_checktime_ms);
2245 			zio_deadman(zio, FTAG);
2246 			mutex_enter(&zio->io_lock);
2247 		}
2248 	}
2249 	mutex_exit(&zio->io_lock);
2250 
2251 	error = zio->io_error;
2252 	zio_destroy(zio);
2253 
2254 	return (error);
2255 }
2256 
2257 void
2258 zio_nowait(zio_t *zio)
2259 {
2260 	/*
2261 	 * See comment in zio_wait().
2262 	 */
2263 	if (zio == NULL)
2264 		return;
2265 
2266 	ASSERT3P(zio->io_executor, ==, NULL);
2267 
2268 	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
2269 	    zio_unique_parent(zio) == NULL) {
2270 		zio_t *pio;
2271 
2272 		/*
2273 		 * This is a logical async I/O with no parent to wait for it.
2274 		 * We add it to the spa_async_root_zio "Godfather" I/O which
2275 		 * will ensure they complete prior to unloading the pool.
2276 		 */
2277 		spa_t *spa = zio->io_spa;
2278 		kpreempt_disable();
2279 		pio = spa->spa_async_zio_root[CPU_SEQID];
2280 		kpreempt_enable();
2281 
2282 		zio_add_child(pio, zio);
2283 	}
2284 
2285 	ASSERT0(zio->io_queued_timestamp);
2286 	zio->io_queued_timestamp = gethrtime();
2287 	__zio_execute(zio);
2288 }
2289 
2290 /*
2291  * ==========================================================================
2292  * Reexecute, cancel, or suspend/resume failed I/O
2293  * ==========================================================================
2294  */
2295 
2296 static void
2297 zio_reexecute(zio_t *pio)
2298 {
2299 	zio_t *cio, *cio_next;
2300 
2301 	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
2302 	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
2303 	ASSERT(pio->io_gang_leader == NULL);
2304 	ASSERT(pio->io_gang_tree == NULL);
2305 
2306 	pio->io_flags = pio->io_orig_flags;
2307 	pio->io_stage = pio->io_orig_stage;
2308 	pio->io_pipeline = pio->io_orig_pipeline;
2309 	pio->io_reexecute = 0;
2310 	pio->io_flags |= ZIO_FLAG_REEXECUTED;
2311 	pio->io_pipeline_trace = 0;
2312 	pio->io_error = 0;
2313 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2314 		pio->io_state[w] = 0;
2315 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2316 		pio->io_child_error[c] = 0;
2317 
2318 	if (IO_IS_ALLOCATING(pio))
2319 		BP_ZERO(pio->io_bp);
2320 
2321 	/*
2322 	 * As we reexecute pio's children, new children could be created.
2323 	 * New children go to the head of pio's io_child_list, however,
2324 	 * so we will (correctly) not reexecute them.  The key is that
2325 	 * the remainder of pio's io_child_list, from 'cio_next' onward,
2326 	 * cannot be affected by any side effects of reexecuting 'cio'.
2327 	 */
2328 	zio_link_t *zl = NULL;
2329 	mutex_enter(&pio->io_lock);
2330 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2331 		cio_next = zio_walk_children(pio, &zl);
2332 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2333 			pio->io_children[cio->io_child_type][w]++;
2334 		mutex_exit(&pio->io_lock);
2335 		zio_reexecute(cio);
2336 		mutex_enter(&pio->io_lock);
2337 	}
2338 	mutex_exit(&pio->io_lock);
2339 
2340 	/*
2341 	 * Now that all children have been reexecuted, execute the parent.
2342 	 * We don't reexecute "The Godfather" I/O here as it's the
2343 	 * responsibility of the caller to wait on it.
2344 	 */
2345 	if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) {
2346 		pio->io_queued_timestamp = gethrtime();
2347 		__zio_execute(pio);
2348 	}
2349 }
2350 
2351 void
2352 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason)
2353 {
2354 	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
2355 		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
2356 		    "failure and the failure mode property for this pool "
2357 		    "is set to panic.", spa_name(spa));
2358 
2359 	cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable I/O "
2360 	    "failure and has been suspended.\n", spa_name(spa));
2361 
2362 	(void) zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL,
2363 	    NULL, NULL, 0);
2364 
2365 	mutex_enter(&spa->spa_suspend_lock);
2366 
2367 	if (spa->spa_suspend_zio_root == NULL)
2368 		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
2369 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2370 		    ZIO_FLAG_GODFATHER);
2371 
2372 	spa->spa_suspended = reason;
2373 
2374 	if (zio != NULL) {
2375 		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
2376 		ASSERT(zio != spa->spa_suspend_zio_root);
2377 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2378 		ASSERT(zio_unique_parent(zio) == NULL);
2379 		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
2380 		zio_add_child(spa->spa_suspend_zio_root, zio);
2381 	}
2382 
2383 	mutex_exit(&spa->spa_suspend_lock);
2384 }
2385 
2386 int
2387 zio_resume(spa_t *spa)
2388 {
2389 	zio_t *pio;
2390 
2391 	/*
2392 	 * Reexecute all previously suspended i/o.
2393 	 */
2394 	mutex_enter(&spa->spa_suspend_lock);
2395 	spa->spa_suspended = ZIO_SUSPEND_NONE;
2396 	cv_broadcast(&spa->spa_suspend_cv);
2397 	pio = spa->spa_suspend_zio_root;
2398 	spa->spa_suspend_zio_root = NULL;
2399 	mutex_exit(&spa->spa_suspend_lock);
2400 
2401 	if (pio == NULL)
2402 		return (0);
2403 
2404 	zio_reexecute(pio);
2405 	return (zio_wait(pio));
2406 }
2407 
2408 void
2409 zio_resume_wait(spa_t *spa)
2410 {
2411 	mutex_enter(&spa->spa_suspend_lock);
2412 	while (spa_suspended(spa))
2413 		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
2414 	mutex_exit(&spa->spa_suspend_lock);
2415 }
2416 
2417 /*
2418  * ==========================================================================
2419  * Gang blocks.
2420  *
2421  * A gang block is a collection of small blocks that looks to the DMU
2422  * like one large block.  When zio_dva_allocate() cannot find a block
2423  * of the requested size, due to either severe fragmentation or the pool
2424  * being nearly full, it calls zio_write_gang_block() to construct the
2425  * block from smaller fragments.
2426  *
2427  * A gang block consists of a gang header (zio_gbh_phys_t) and up to
2428  * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
2429  * an indirect block: it's an array of block pointers.  It consumes
2430  * only one sector and hence is allocatable regardless of fragmentation.
2431  * The gang header's bps point to its gang members, which hold the data.
2432  *
2433  * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
2434  * as the verifier to ensure uniqueness of the SHA256 checksum.
2435  * Critically, the gang block bp's blk_cksum is the checksum of the data,
2436  * not the gang header.  This ensures that data block signatures (needed for
2437  * deduplication) are independent of how the block is physically stored.
2438  *
2439  * Gang blocks can be nested: a gang member may itself be a gang block.
2440  * Thus every gang block is a tree in which root and all interior nodes are
2441  * gang headers, and the leaves are normal blocks that contain user data.
2442  * The root of the gang tree is called the gang leader.
2443  *
2444  * To perform any operation (read, rewrite, free, claim) on a gang block,
2445  * zio_gang_assemble() first assembles the gang tree (minus data leaves)
2446  * in the io_gang_tree field of the original logical i/o by recursively
2447  * reading the gang leader and all gang headers below it.  This yields
2448  * an in-core tree containing the contents of every gang header and the
2449  * bps for every constituent of the gang block.
2450  *
2451  * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
2452  * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
2453  * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
2454  * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
2455  * zio_read_gang() is a wrapper around zio_read() that omits reading gang
2456  * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
2457  * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
2458  * of the gang header plus zio_checksum_compute() of the data to update the
2459  * gang header's blk_cksum as described above.
2460  *
2461  * The two-phase assemble/issue model solves the problem of partial failure --
2462  * what if you'd freed part of a gang block but then couldn't read the
2463  * gang header for another part?  Assembling the entire gang tree first
2464  * ensures that all the necessary gang header I/O has succeeded before
2465  * starting the actual work of free, claim, or write.  Once the gang tree
2466  * is assembled, free and claim are in-memory operations that cannot fail.
2467  *
2468  * In the event that a gang write fails, zio_dva_unallocate() walks the
2469  * gang tree to immediately free (i.e. insert back into the space map)
2470  * everything we've allocated.  This ensures that we don't get ENOSPC
2471  * errors during repeated suspend/resume cycles due to a flaky device.
2472  *
2473  * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
2474  * the gang tree, we won't modify the block, so we can safely defer the free
2475  * (knowing that the block is still intact).  If we *can* assemble the gang
2476  * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
2477  * each constituent bp and we can allocate a new block on the next sync pass.
2478  *
2479  * In all cases, the gang tree allows complete recovery from partial failure.
2480  * ==========================================================================
2481  */
2482 
2483 static void
2484 zio_gang_issue_func_done(zio_t *zio)
2485 {
2486 	abd_put(zio->io_abd);
2487 }
2488 
2489 static zio_t *
2490 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2491     uint64_t offset)
2492 {
2493 	if (gn != NULL)
2494 		return (pio);
2495 
2496 	return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset),
2497 	    BP_GET_PSIZE(bp), zio_gang_issue_func_done,
2498 	    NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2499 	    &pio->io_bookmark));
2500 }
2501 
2502 static zio_t *
2503 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2504     uint64_t offset)
2505 {
2506 	zio_t *zio;
2507 
2508 	if (gn != NULL) {
2509 		abd_t *gbh_abd =
2510 		    abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2511 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2512 		    gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL,
2513 		    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2514 		    &pio->io_bookmark);
2515 		/*
2516 		 * As we rewrite each gang header, the pipeline will compute
2517 		 * a new gang block header checksum for it; but no one will
2518 		 * compute a new data checksum, so we do that here.  The one
2519 		 * exception is the gang leader: the pipeline already computed
2520 		 * its data checksum because that stage precedes gang assembly.
2521 		 * (Presently, nothing actually uses interior data checksums;
2522 		 * this is just good hygiene.)
2523 		 */
2524 		if (gn != pio->io_gang_leader->io_gang_tree) {
2525 			abd_t *buf = abd_get_offset(data, offset);
2526 
2527 			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
2528 			    buf, BP_GET_PSIZE(bp));
2529 
2530 			abd_put(buf);
2531 		}
2532 		/*
2533 		 * If we are here to damage data for testing purposes,
2534 		 * leave the GBH alone so that we can detect the damage.
2535 		 */
2536 		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
2537 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2538 	} else {
2539 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2540 		    abd_get_offset(data, offset), BP_GET_PSIZE(bp),
2541 		    zio_gang_issue_func_done, NULL, pio->io_priority,
2542 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2543 	}
2544 
2545 	return (zio);
2546 }
2547 
2548 /* ARGSUSED */
2549 static zio_t *
2550 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2551     uint64_t offset)
2552 {
2553 	zio_t *zio = zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
2554 	    ZIO_GANG_CHILD_FLAGS(pio));
2555 	if (zio == NULL) {
2556 		zio = zio_null(pio, pio->io_spa,
2557 		    NULL, NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio));
2558 	}
2559 	return (zio);
2560 }
2561 
2562 /* ARGSUSED */
2563 static zio_t *
2564 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2565     uint64_t offset)
2566 {
2567 	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
2568 	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
2569 }
2570 
2571 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
2572 	NULL,
2573 	zio_read_gang,
2574 	zio_rewrite_gang,
2575 	zio_free_gang,
2576 	zio_claim_gang,
2577 	NULL
2578 };
2579 
2580 static void zio_gang_tree_assemble_done(zio_t *zio);
2581 
2582 static zio_gang_node_t *
2583 zio_gang_node_alloc(zio_gang_node_t **gnpp)
2584 {
2585 	zio_gang_node_t *gn;
2586 
2587 	ASSERT(*gnpp == NULL);
2588 
2589 	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
2590 	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
2591 	*gnpp = gn;
2592 
2593 	return (gn);
2594 }
2595 
2596 static void
2597 zio_gang_node_free(zio_gang_node_t **gnpp)
2598 {
2599 	zio_gang_node_t *gn = *gnpp;
2600 
2601 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2602 		ASSERT(gn->gn_child[g] == NULL);
2603 
2604 	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2605 	kmem_free(gn, sizeof (*gn));
2606 	*gnpp = NULL;
2607 }
2608 
2609 static void
2610 zio_gang_tree_free(zio_gang_node_t **gnpp)
2611 {
2612 	zio_gang_node_t *gn = *gnpp;
2613 
2614 	if (gn == NULL)
2615 		return;
2616 
2617 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2618 		zio_gang_tree_free(&gn->gn_child[g]);
2619 
2620 	zio_gang_node_free(gnpp);
2621 }
2622 
2623 static void
2624 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
2625 {
2626 	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
2627 	abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2628 
2629 	ASSERT(gio->io_gang_leader == gio);
2630 	ASSERT(BP_IS_GANG(bp));
2631 
2632 	zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2633 	    zio_gang_tree_assemble_done, gn, gio->io_priority,
2634 	    ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
2635 }
2636 
2637 static void
2638 zio_gang_tree_assemble_done(zio_t *zio)
2639 {
2640 	zio_t *gio = zio->io_gang_leader;
2641 	zio_gang_node_t *gn = zio->io_private;
2642 	blkptr_t *bp = zio->io_bp;
2643 
2644 	ASSERT(gio == zio_unique_parent(zio));
2645 	ASSERT(zio->io_child_count == 0);
2646 
2647 	if (zio->io_error)
2648 		return;
2649 
2650 	/* this ABD was created from a linear buf in zio_gang_tree_assemble */
2651 	if (BP_SHOULD_BYTESWAP(bp))
2652 		byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size);
2653 
2654 	ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh);
2655 	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
2656 	ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2657 
2658 	abd_put(zio->io_abd);
2659 
2660 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2661 		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2662 		if (!BP_IS_GANG(gbp))
2663 			continue;
2664 		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
2665 	}
2666 }
2667 
2668 static void
2669 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data,
2670     uint64_t offset)
2671 {
2672 	zio_t *gio = pio->io_gang_leader;
2673 	zio_t *zio;
2674 
2675 	ASSERT(BP_IS_GANG(bp) == !!gn);
2676 	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
2677 	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
2678 
2679 	/*
2680 	 * If you're a gang header, your data is in gn->gn_gbh.
2681 	 * If you're a gang member, your data is in 'data' and gn == NULL.
2682 	 */
2683 	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset);
2684 
2685 	if (gn != NULL) {
2686 		ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2687 
2688 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2689 			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2690 			if (BP_IS_HOLE(gbp))
2691 				continue;
2692 			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data,
2693 			    offset);
2694 			offset += BP_GET_PSIZE(gbp);
2695 		}
2696 	}
2697 
2698 	if (gn == gio->io_gang_tree)
2699 		ASSERT3U(gio->io_size, ==, offset);
2700 
2701 	if (zio != pio)
2702 		zio_nowait(zio);
2703 }
2704 
2705 static zio_t *
2706 zio_gang_assemble(zio_t *zio)
2707 {
2708 	blkptr_t *bp = zio->io_bp;
2709 
2710 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
2711 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2712 
2713 	zio->io_gang_leader = zio;
2714 
2715 	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
2716 
2717 	return (zio);
2718 }
2719 
2720 static zio_t *
2721 zio_gang_issue(zio_t *zio)
2722 {
2723 	blkptr_t *bp = zio->io_bp;
2724 
2725 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) {
2726 		return (NULL);
2727 	}
2728 
2729 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
2730 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2731 
2732 	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
2733 		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd,
2734 		    0);
2735 	else
2736 		zio_gang_tree_free(&zio->io_gang_tree);
2737 
2738 	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2739 
2740 	return (zio);
2741 }
2742 
2743 static void
2744 zio_write_gang_member_ready(zio_t *zio)
2745 {
2746 	zio_t *pio = zio_unique_parent(zio);
2747 	dva_t *cdva = zio->io_bp->blk_dva;
2748 	dva_t *pdva = pio->io_bp->blk_dva;
2749 	uint64_t asize;
2750 	zio_t *gio __maybe_unused = zio->io_gang_leader;
2751 
2752 	if (BP_IS_HOLE(zio->io_bp))
2753 		return;
2754 
2755 	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
2756 
2757 	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
2758 	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
2759 	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
2760 	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
2761 	ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
2762 
2763 	mutex_enter(&pio->io_lock);
2764 	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
2765 		ASSERT(DVA_GET_GANG(&pdva[d]));
2766 		asize = DVA_GET_ASIZE(&pdva[d]);
2767 		asize += DVA_GET_ASIZE(&cdva[d]);
2768 		DVA_SET_ASIZE(&pdva[d], asize);
2769 	}
2770 	mutex_exit(&pio->io_lock);
2771 }
2772 
2773 static void
2774 zio_write_gang_done(zio_t *zio)
2775 {
2776 	/*
2777 	 * The io_abd field will be NULL for a zio with no data.  The io_flags
2778 	 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't
2779 	 * check for it here as it is cleared in zio_ready.
2780 	 */
2781 	if (zio->io_abd != NULL)
2782 		abd_put(zio->io_abd);
2783 }
2784 
2785 static zio_t *
2786 zio_write_gang_block(zio_t *pio)
2787 {
2788 	spa_t *spa = pio->io_spa;
2789 	metaslab_class_t *mc = spa_normal_class(spa);
2790 	blkptr_t *bp = pio->io_bp;
2791 	zio_t *gio = pio->io_gang_leader;
2792 	zio_t *zio;
2793 	zio_gang_node_t *gn, **gnpp;
2794 	zio_gbh_phys_t *gbh;
2795 	abd_t *gbh_abd;
2796 	uint64_t txg = pio->io_txg;
2797 	uint64_t resid = pio->io_size;
2798 	uint64_t lsize;
2799 	int copies = gio->io_prop.zp_copies;
2800 	int gbh_copies;
2801 	zio_prop_t zp;
2802 	int error;
2803 	boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA);
2804 
2805 	/*
2806 	 * encrypted blocks need DVA[2] free so encrypted gang headers can't
2807 	 * have a third copy.
2808 	 */
2809 	gbh_copies = MIN(copies + 1, spa_max_replication(spa));
2810 	if (gio->io_prop.zp_encrypt && gbh_copies >= SPA_DVAS_PER_BP)
2811 		gbh_copies = SPA_DVAS_PER_BP - 1;
2812 
2813 	int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER;
2814 	if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2815 		ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2816 		ASSERT(has_data);
2817 
2818 		flags |= METASLAB_ASYNC_ALLOC;
2819 		VERIFY(zfs_refcount_held(&mc->mc_alloc_slots[pio->io_allocator],
2820 		    pio));
2821 
2822 		/*
2823 		 * The logical zio has already placed a reservation for
2824 		 * 'copies' allocation slots but gang blocks may require
2825 		 * additional copies. These additional copies
2826 		 * (i.e. gbh_copies - copies) are guaranteed to succeed
2827 		 * since metaslab_class_throttle_reserve() always allows
2828 		 * additional reservations for gang blocks.
2829 		 */
2830 		VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies,
2831 		    pio->io_allocator, pio, flags));
2832 	}
2833 
2834 	error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE,
2835 	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags,
2836 	    &pio->io_alloc_list, pio, pio->io_allocator);
2837 	if (error) {
2838 		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2839 			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2840 			ASSERT(has_data);
2841 
2842 			/*
2843 			 * If we failed to allocate the gang block header then
2844 			 * we remove any additional allocation reservations that
2845 			 * we placed here. The original reservation will
2846 			 * be removed when the logical I/O goes to the ready
2847 			 * stage.
2848 			 */
2849 			metaslab_class_throttle_unreserve(mc,
2850 			    gbh_copies - copies, pio->io_allocator, pio);
2851 		}
2852 
2853 		pio->io_error = error;
2854 		return (pio);
2855 	}
2856 
2857 	if (pio == gio) {
2858 		gnpp = &gio->io_gang_tree;
2859 	} else {
2860 		gnpp = pio->io_private;
2861 		ASSERT(pio->io_ready == zio_write_gang_member_ready);
2862 	}
2863 
2864 	gn = zio_gang_node_alloc(gnpp);
2865 	gbh = gn->gn_gbh;
2866 	bzero(gbh, SPA_GANGBLOCKSIZE);
2867 	gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE);
2868 
2869 	/*
2870 	 * Create the gang header.
2871 	 */
2872 	zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2873 	    zio_write_gang_done, NULL, pio->io_priority,
2874 	    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2875 
2876 	/*
2877 	 * Create and nowait the gang children.
2878 	 */
2879 	for (int g = 0; resid != 0; resid -= lsize, g++) {
2880 		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
2881 		    SPA_MINBLOCKSIZE);
2882 		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
2883 
2884 		zp.zp_checksum = gio->io_prop.zp_checksum;
2885 		zp.zp_compress = ZIO_COMPRESS_OFF;
2886 		zp.zp_complevel = gio->io_prop.zp_complevel;
2887 		zp.zp_type = DMU_OT_NONE;
2888 		zp.zp_level = 0;
2889 		zp.zp_copies = gio->io_prop.zp_copies;
2890 		zp.zp_dedup = B_FALSE;
2891 		zp.zp_dedup_verify = B_FALSE;
2892 		zp.zp_nopwrite = B_FALSE;
2893 		zp.zp_encrypt = gio->io_prop.zp_encrypt;
2894 		zp.zp_byteorder = gio->io_prop.zp_byteorder;
2895 		bzero(zp.zp_salt, ZIO_DATA_SALT_LEN);
2896 		bzero(zp.zp_iv, ZIO_DATA_IV_LEN);
2897 		bzero(zp.zp_mac, ZIO_DATA_MAC_LEN);
2898 
2899 		zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
2900 		    has_data ? abd_get_offset(pio->io_abd, pio->io_size -
2901 		    resid) : NULL, lsize, lsize, &zp,
2902 		    zio_write_gang_member_ready, NULL, NULL,
2903 		    zio_write_gang_done, &gn->gn_child[g], pio->io_priority,
2904 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2905 
2906 		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2907 			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2908 			ASSERT(has_data);
2909 
2910 			/*
2911 			 * Gang children won't throttle but we should
2912 			 * account for their work, so reserve an allocation
2913 			 * slot for them here.
2914 			 */
2915 			VERIFY(metaslab_class_throttle_reserve(mc,
2916 			    zp.zp_copies, cio->io_allocator, cio, flags));
2917 		}
2918 		zio_nowait(cio);
2919 	}
2920 
2921 	/*
2922 	 * Set pio's pipeline to just wait for zio to finish.
2923 	 */
2924 	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2925 
2926 	/*
2927 	 * We didn't allocate this bp, so make sure it doesn't get unmarked.
2928 	 */
2929 	pio->io_flags &= ~ZIO_FLAG_FASTWRITE;
2930 
2931 	zio_nowait(zio);
2932 
2933 	return (pio);
2934 }
2935 
2936 /*
2937  * The zio_nop_write stage in the pipeline determines if allocating a
2938  * new bp is necessary.  The nopwrite feature can handle writes in
2939  * either syncing or open context (i.e. zil writes) and as a result is
2940  * mutually exclusive with dedup.
2941  *
2942  * By leveraging a cryptographically secure checksum, such as SHA256, we
2943  * can compare the checksums of the new data and the old to determine if
2944  * allocating a new block is required.  Note that our requirements for
2945  * cryptographic strength are fairly weak: there can't be any accidental
2946  * hash collisions, but we don't need to be secure against intentional
2947  * (malicious) collisions.  To trigger a nopwrite, you have to be able
2948  * to write the file to begin with, and triggering an incorrect (hash
2949  * collision) nopwrite is no worse than simply writing to the file.
2950  * That said, there are no known attacks against the checksum algorithms
2951  * used for nopwrite, assuming that the salt and the checksums
2952  * themselves remain secret.
2953  */
2954 static zio_t *
2955 zio_nop_write(zio_t *zio)
2956 {
2957 	blkptr_t *bp = zio->io_bp;
2958 	blkptr_t *bp_orig = &zio->io_bp_orig;
2959 	zio_prop_t *zp = &zio->io_prop;
2960 
2961 	ASSERT(BP_GET_LEVEL(bp) == 0);
2962 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2963 	ASSERT(zp->zp_nopwrite);
2964 	ASSERT(!zp->zp_dedup);
2965 	ASSERT(zio->io_bp_override == NULL);
2966 	ASSERT(IO_IS_ALLOCATING(zio));
2967 
2968 	/*
2969 	 * Check to see if the original bp and the new bp have matching
2970 	 * characteristics (i.e. same checksum, compression algorithms, etc).
2971 	 * If they don't then just continue with the pipeline which will
2972 	 * allocate a new bp.
2973 	 */
2974 	if (BP_IS_HOLE(bp_orig) ||
2975 	    !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
2976 	    ZCHECKSUM_FLAG_NOPWRITE) ||
2977 	    BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) ||
2978 	    BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
2979 	    BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
2980 	    BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
2981 	    zp->zp_copies != BP_GET_NDVAS(bp_orig))
2982 		return (zio);
2983 
2984 	/*
2985 	 * If the checksums match then reset the pipeline so that we
2986 	 * avoid allocating a new bp and issuing any I/O.
2987 	 */
2988 	if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
2989 		ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
2990 		    ZCHECKSUM_FLAG_NOPWRITE);
2991 		ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
2992 		ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
2993 		ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
2994 		ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
2995 		    sizeof (uint64_t)) == 0);
2996 
2997 		/*
2998 		 * If we're overwriting a block that is currently on an
2999 		 * indirect vdev, then ignore the nopwrite request and
3000 		 * allow a new block to be allocated on a concrete vdev.
3001 		 */
3002 		spa_config_enter(zio->io_spa, SCL_VDEV, FTAG, RW_READER);
3003 		vdev_t *tvd = vdev_lookup_top(zio->io_spa,
3004 		    DVA_GET_VDEV(&bp->blk_dva[0]));
3005 		if (tvd->vdev_ops == &vdev_indirect_ops) {
3006 			spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
3007 			return (zio);
3008 		}
3009 		spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
3010 
3011 		*bp = *bp_orig;
3012 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3013 		zio->io_flags |= ZIO_FLAG_NOPWRITE;
3014 	}
3015 
3016 	return (zio);
3017 }
3018 
3019 /*
3020  * ==========================================================================
3021  * Dedup
3022  * ==========================================================================
3023  */
3024 static void
3025 zio_ddt_child_read_done(zio_t *zio)
3026 {
3027 	blkptr_t *bp = zio->io_bp;
3028 	ddt_entry_t *dde = zio->io_private;
3029 	ddt_phys_t *ddp;
3030 	zio_t *pio = zio_unique_parent(zio);
3031 
3032 	mutex_enter(&pio->io_lock);
3033 	ddp = ddt_phys_select(dde, bp);
3034 	if (zio->io_error == 0)
3035 		ddt_phys_clear(ddp);	/* this ddp doesn't need repair */
3036 
3037 	if (zio->io_error == 0 && dde->dde_repair_abd == NULL)
3038 		dde->dde_repair_abd = zio->io_abd;
3039 	else
3040 		abd_free(zio->io_abd);
3041 	mutex_exit(&pio->io_lock);
3042 }
3043 
3044 static zio_t *
3045 zio_ddt_read_start(zio_t *zio)
3046 {
3047 	blkptr_t *bp = zio->io_bp;
3048 
3049 	ASSERT(BP_GET_DEDUP(bp));
3050 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3051 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3052 
3053 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
3054 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
3055 		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
3056 		ddt_phys_t *ddp = dde->dde_phys;
3057 		ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
3058 		blkptr_t blk;
3059 
3060 		ASSERT(zio->io_vsd == NULL);
3061 		zio->io_vsd = dde;
3062 
3063 		if (ddp_self == NULL)
3064 			return (zio);
3065 
3066 		for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
3067 			if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
3068 				continue;
3069 			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
3070 			    &blk);
3071 			zio_nowait(zio_read(zio, zio->io_spa, &blk,
3072 			    abd_alloc_for_io(zio->io_size, B_TRUE),
3073 			    zio->io_size, zio_ddt_child_read_done, dde,
3074 			    zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) |
3075 			    ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark));
3076 		}
3077 		return (zio);
3078 	}
3079 
3080 	zio_nowait(zio_read(zio, zio->io_spa, bp,
3081 	    zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority,
3082 	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
3083 
3084 	return (zio);
3085 }
3086 
3087 static zio_t *
3088 zio_ddt_read_done(zio_t *zio)
3089 {
3090 	blkptr_t *bp = zio->io_bp;
3091 
3092 	if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) {
3093 		return (NULL);
3094 	}
3095 
3096 	ASSERT(BP_GET_DEDUP(bp));
3097 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3098 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3099 
3100 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
3101 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
3102 		ddt_entry_t *dde = zio->io_vsd;
3103 		if (ddt == NULL) {
3104 			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
3105 			return (zio);
3106 		}
3107 		if (dde == NULL) {
3108 			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
3109 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
3110 			return (NULL);
3111 		}
3112 		if (dde->dde_repair_abd != NULL) {
3113 			abd_copy(zio->io_abd, dde->dde_repair_abd,
3114 			    zio->io_size);
3115 			zio->io_child_error[ZIO_CHILD_DDT] = 0;
3116 		}
3117 		ddt_repair_done(ddt, dde);
3118 		zio->io_vsd = NULL;
3119 	}
3120 
3121 	ASSERT(zio->io_vsd == NULL);
3122 
3123 	return (zio);
3124 }
3125 
3126 static boolean_t
3127 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
3128 {
3129 	spa_t *spa = zio->io_spa;
3130 	boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW);
3131 
3132 	ASSERT(!(zio->io_bp_override && do_raw));
3133 
3134 	/*
3135 	 * Note: we compare the original data, not the transformed data,
3136 	 * because when zio->io_bp is an override bp, we will not have
3137 	 * pushed the I/O transforms.  That's an important optimization
3138 	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
3139 	 * However, we should never get a raw, override zio so in these
3140 	 * cases we can compare the io_abd directly. This is useful because
3141 	 * it allows us to do dedup verification even if we don't have access
3142 	 * to the original data (for instance, if the encryption keys aren't
3143 	 * loaded).
3144 	 */
3145 
3146 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
3147 		zio_t *lio = dde->dde_lead_zio[p];
3148 
3149 		if (lio != NULL && do_raw) {
3150 			return (lio->io_size != zio->io_size ||
3151 			    abd_cmp(zio->io_abd, lio->io_abd) != 0);
3152 		} else if (lio != NULL) {
3153 			return (lio->io_orig_size != zio->io_orig_size ||
3154 			    abd_cmp(zio->io_orig_abd, lio->io_orig_abd) != 0);
3155 		}
3156 	}
3157 
3158 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
3159 		ddt_phys_t *ddp = &dde->dde_phys[p];
3160 
3161 		if (ddp->ddp_phys_birth != 0 && do_raw) {
3162 			blkptr_t blk = *zio->io_bp;
3163 			uint64_t psize;
3164 			abd_t *tmpabd;
3165 			int error;
3166 
3167 			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
3168 			psize = BP_GET_PSIZE(&blk);
3169 
3170 			if (psize != zio->io_size)
3171 				return (B_TRUE);
3172 
3173 			ddt_exit(ddt);
3174 
3175 			tmpabd = abd_alloc_for_io(psize, B_TRUE);
3176 
3177 			error = zio_wait(zio_read(NULL, spa, &blk, tmpabd,
3178 			    psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
3179 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3180 			    ZIO_FLAG_RAW, &zio->io_bookmark));
3181 
3182 			if (error == 0) {
3183 				if (abd_cmp(tmpabd, zio->io_abd) != 0)
3184 					error = SET_ERROR(ENOENT);
3185 			}
3186 
3187 			abd_free(tmpabd);
3188 			ddt_enter(ddt);
3189 			return (error != 0);
3190 		} else if (ddp->ddp_phys_birth != 0) {
3191 			arc_buf_t *abuf = NULL;
3192 			arc_flags_t aflags = ARC_FLAG_WAIT;
3193 			blkptr_t blk = *zio->io_bp;
3194 			int error;
3195 
3196 			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
3197 
3198 			if (BP_GET_LSIZE(&blk) != zio->io_orig_size)
3199 				return (B_TRUE);
3200 
3201 			ddt_exit(ddt);
3202 
3203 			error = arc_read(NULL, spa, &blk,
3204 			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
3205 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3206 			    &aflags, &zio->io_bookmark);
3207 
3208 			if (error == 0) {
3209 				if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data,
3210 				    zio->io_orig_size) != 0)
3211 					error = SET_ERROR(ENOENT);
3212 				arc_buf_destroy(abuf, &abuf);
3213 			}
3214 
3215 			ddt_enter(ddt);
3216 			return (error != 0);
3217 		}
3218 	}
3219 
3220 	return (B_FALSE);
3221 }
3222 
3223 static void
3224 zio_ddt_child_write_ready(zio_t *zio)
3225 {
3226 	int p = zio->io_prop.zp_copies;
3227 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3228 	ddt_entry_t *dde = zio->io_private;
3229 	ddt_phys_t *ddp = &dde->dde_phys[p];
3230 	zio_t *pio;
3231 
3232 	if (zio->io_error)
3233 		return;
3234 
3235 	ddt_enter(ddt);
3236 
3237 	ASSERT(dde->dde_lead_zio[p] == zio);
3238 
3239 	ddt_phys_fill(ddp, zio->io_bp);
3240 
3241 	zio_link_t *zl = NULL;
3242 	while ((pio = zio_walk_parents(zio, &zl)) != NULL)
3243 		ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
3244 
3245 	ddt_exit(ddt);
3246 }
3247 
3248 static void
3249 zio_ddt_child_write_done(zio_t *zio)
3250 {
3251 	int p = zio->io_prop.zp_copies;
3252 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3253 	ddt_entry_t *dde = zio->io_private;
3254 	ddt_phys_t *ddp = &dde->dde_phys[p];
3255 
3256 	ddt_enter(ddt);
3257 
3258 	ASSERT(ddp->ddp_refcnt == 0);
3259 	ASSERT(dde->dde_lead_zio[p] == zio);
3260 	dde->dde_lead_zio[p] = NULL;
3261 
3262 	if (zio->io_error == 0) {
3263 		zio_link_t *zl = NULL;
3264 		while (zio_walk_parents(zio, &zl) != NULL)
3265 			ddt_phys_addref(ddp);
3266 	} else {
3267 		ddt_phys_clear(ddp);
3268 	}
3269 
3270 	ddt_exit(ddt);
3271 }
3272 
3273 static zio_t *
3274 zio_ddt_write(zio_t *zio)
3275 {
3276 	spa_t *spa = zio->io_spa;
3277 	blkptr_t *bp = zio->io_bp;
3278 	uint64_t txg = zio->io_txg;
3279 	zio_prop_t *zp = &zio->io_prop;
3280 	int p = zp->zp_copies;
3281 	zio_t *cio = NULL;
3282 	ddt_t *ddt = ddt_select(spa, bp);
3283 	ddt_entry_t *dde;
3284 	ddt_phys_t *ddp;
3285 
3286 	ASSERT(BP_GET_DEDUP(bp));
3287 	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
3288 	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
3289 	ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW)));
3290 
3291 	ddt_enter(ddt);
3292 	dde = ddt_lookup(ddt, bp, B_TRUE);
3293 	ddp = &dde->dde_phys[p];
3294 
3295 	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
3296 		/*
3297 		 * If we're using a weak checksum, upgrade to a strong checksum
3298 		 * and try again.  If we're already using a strong checksum,
3299 		 * we can't resolve it, so just convert to an ordinary write.
3300 		 * (And automatically e-mail a paper to Nature?)
3301 		 */
3302 		if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
3303 		    ZCHECKSUM_FLAG_DEDUP)) {
3304 			zp->zp_checksum = spa_dedup_checksum(spa);
3305 			zio_pop_transforms(zio);
3306 			zio->io_stage = ZIO_STAGE_OPEN;
3307 			BP_ZERO(bp);
3308 		} else {
3309 			zp->zp_dedup = B_FALSE;
3310 			BP_SET_DEDUP(bp, B_FALSE);
3311 		}
3312 		ASSERT(!BP_GET_DEDUP(bp));
3313 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
3314 		ddt_exit(ddt);
3315 		return (zio);
3316 	}
3317 
3318 	if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
3319 		if (ddp->ddp_phys_birth != 0)
3320 			ddt_bp_fill(ddp, bp, txg);
3321 		if (dde->dde_lead_zio[p] != NULL)
3322 			zio_add_child(zio, dde->dde_lead_zio[p]);
3323 		else
3324 			ddt_phys_addref(ddp);
3325 	} else if (zio->io_bp_override) {
3326 		ASSERT(bp->blk_birth == txg);
3327 		ASSERT(BP_EQUAL(bp, zio->io_bp_override));
3328 		ddt_phys_fill(ddp, bp);
3329 		ddt_phys_addref(ddp);
3330 	} else {
3331 		cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
3332 		    zio->io_orig_size, zio->io_orig_size, zp,
3333 		    zio_ddt_child_write_ready, NULL, NULL,
3334 		    zio_ddt_child_write_done, dde, zio->io_priority,
3335 		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
3336 
3337 		zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL);
3338 		dde->dde_lead_zio[p] = cio;
3339 	}
3340 
3341 	ddt_exit(ddt);
3342 
3343 	zio_nowait(cio);
3344 
3345 	return (zio);
3346 }
3347 
3348 ddt_entry_t *freedde; /* for debugging */
3349 
3350 static zio_t *
3351 zio_ddt_free(zio_t *zio)
3352 {
3353 	spa_t *spa = zio->io_spa;
3354 	blkptr_t *bp = zio->io_bp;
3355 	ddt_t *ddt = ddt_select(spa, bp);
3356 	ddt_entry_t *dde;
3357 	ddt_phys_t *ddp;
3358 
3359 	ASSERT(BP_GET_DEDUP(bp));
3360 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3361 
3362 	ddt_enter(ddt);
3363 	freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
3364 	if (dde) {
3365 		ddp = ddt_phys_select(dde, bp);
3366 		if (ddp)
3367 			ddt_phys_decref(ddp);
3368 	}
3369 	ddt_exit(ddt);
3370 
3371 	return (zio);
3372 }
3373 
3374 /*
3375  * ==========================================================================
3376  * Allocate and free blocks
3377  * ==========================================================================
3378  */
3379 
3380 static zio_t *
3381 zio_io_to_allocate(spa_t *spa, int allocator)
3382 {
3383 	zio_t *zio;
3384 
3385 	ASSERT(MUTEX_HELD(&spa->spa_alloc_locks[allocator]));
3386 
3387 	zio = avl_first(&spa->spa_alloc_trees[allocator]);
3388 	if (zio == NULL)
3389 		return (NULL);
3390 
3391 	ASSERT(IO_IS_ALLOCATING(zio));
3392 
3393 	/*
3394 	 * Try to place a reservation for this zio. If we're unable to
3395 	 * reserve then we throttle.
3396 	 */
3397 	ASSERT3U(zio->io_allocator, ==, allocator);
3398 	if (!metaslab_class_throttle_reserve(zio->io_metaslab_class,
3399 	    zio->io_prop.zp_copies, zio->io_allocator, zio, 0)) {
3400 		return (NULL);
3401 	}
3402 
3403 	avl_remove(&spa->spa_alloc_trees[allocator], zio);
3404 	ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE);
3405 
3406 	return (zio);
3407 }
3408 
3409 static zio_t *
3410 zio_dva_throttle(zio_t *zio)
3411 {
3412 	spa_t *spa = zio->io_spa;
3413 	zio_t *nio;
3414 	metaslab_class_t *mc;
3415 
3416 	/* locate an appropriate allocation class */
3417 	mc = spa_preferred_class(spa, zio->io_size, zio->io_prop.zp_type,
3418 	    zio->io_prop.zp_level, zio->io_prop.zp_zpl_smallblk);
3419 
3420 	if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE ||
3421 	    !mc->mc_alloc_throttle_enabled ||
3422 	    zio->io_child_type == ZIO_CHILD_GANG ||
3423 	    zio->io_flags & ZIO_FLAG_NODATA) {
3424 		return (zio);
3425 	}
3426 
3427 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3428 
3429 	ASSERT3U(zio->io_queued_timestamp, >, 0);
3430 	ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE);
3431 
3432 	zbookmark_phys_t *bm = &zio->io_bookmark;
3433 	/*
3434 	 * We want to try to use as many allocators as possible to help improve
3435 	 * performance, but we also want logically adjacent IOs to be physically
3436 	 * adjacent to improve sequential read performance. We chunk each object
3437 	 * into 2^20 block regions, and then hash based on the objset, object,
3438 	 * level, and region to accomplish both of these goals.
3439 	 */
3440 	zio->io_allocator = cityhash4(bm->zb_objset, bm->zb_object,
3441 	    bm->zb_level, bm->zb_blkid >> 20) % spa->spa_alloc_count;
3442 	mutex_enter(&spa->spa_alloc_locks[zio->io_allocator]);
3443 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3444 	zio->io_metaslab_class = mc;
3445 	avl_add(&spa->spa_alloc_trees[zio->io_allocator], zio);
3446 	nio = zio_io_to_allocate(spa, zio->io_allocator);
3447 	mutex_exit(&spa->spa_alloc_locks[zio->io_allocator]);
3448 	return (nio);
3449 }
3450 
3451 static void
3452 zio_allocate_dispatch(spa_t *spa, int allocator)
3453 {
3454 	zio_t *zio;
3455 
3456 	mutex_enter(&spa->spa_alloc_locks[allocator]);
3457 	zio = zio_io_to_allocate(spa, allocator);
3458 	mutex_exit(&spa->spa_alloc_locks[allocator]);
3459 	if (zio == NULL)
3460 		return;
3461 
3462 	ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE);
3463 	ASSERT0(zio->io_error);
3464 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE);
3465 }
3466 
3467 static zio_t *
3468 zio_dva_allocate(zio_t *zio)
3469 {
3470 	spa_t *spa = zio->io_spa;
3471 	metaslab_class_t *mc;
3472 	blkptr_t *bp = zio->io_bp;
3473 	int error;
3474 	int flags = 0;
3475 
3476 	if (zio->io_gang_leader == NULL) {
3477 		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3478 		zio->io_gang_leader = zio;
3479 	}
3480 
3481 	ASSERT(BP_IS_HOLE(bp));
3482 	ASSERT0(BP_GET_NDVAS(bp));
3483 	ASSERT3U(zio->io_prop.zp_copies, >, 0);
3484 	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
3485 	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
3486 
3487 	flags |= (zio->io_flags & ZIO_FLAG_FASTWRITE) ? METASLAB_FASTWRITE : 0;
3488 	if (zio->io_flags & ZIO_FLAG_NODATA)
3489 		flags |= METASLAB_DONT_THROTTLE;
3490 	if (zio->io_flags & ZIO_FLAG_GANG_CHILD)
3491 		flags |= METASLAB_GANG_CHILD;
3492 	if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE)
3493 		flags |= METASLAB_ASYNC_ALLOC;
3494 
3495 	/*
3496 	 * if not already chosen, locate an appropriate allocation class
3497 	 */
3498 	mc = zio->io_metaslab_class;
3499 	if (mc == NULL) {
3500 		mc = spa_preferred_class(spa, zio->io_size,
3501 		    zio->io_prop.zp_type, zio->io_prop.zp_level,
3502 		    zio->io_prop.zp_zpl_smallblk);
3503 		zio->io_metaslab_class = mc;
3504 	}
3505 
3506 	error = metaslab_alloc(spa, mc, zio->io_size, bp,
3507 	    zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3508 	    &zio->io_alloc_list, zio, zio->io_allocator);
3509 
3510 	/*
3511 	 * Fallback to normal class when an alloc class is full
3512 	 */
3513 	if (error == ENOSPC && mc != spa_normal_class(spa)) {
3514 		/*
3515 		 * If throttling, transfer reservation over to normal class.
3516 		 * The io_allocator slot can remain the same even though we
3517 		 * are switching classes.
3518 		 */
3519 		if (mc->mc_alloc_throttle_enabled &&
3520 		    (zio->io_flags & ZIO_FLAG_IO_ALLOCATING)) {
3521 			metaslab_class_throttle_unreserve(mc,
3522 			    zio->io_prop.zp_copies, zio->io_allocator, zio);
3523 			zio->io_flags &= ~ZIO_FLAG_IO_ALLOCATING;
3524 
3525 			mc = spa_normal_class(spa);
3526 			VERIFY(metaslab_class_throttle_reserve(mc,
3527 			    zio->io_prop.zp_copies, zio->io_allocator, zio,
3528 			    flags | METASLAB_MUST_RESERVE));
3529 		} else {
3530 			mc = spa_normal_class(spa);
3531 		}
3532 		zio->io_metaslab_class = mc;
3533 
3534 		error = metaslab_alloc(spa, mc, zio->io_size, bp,
3535 		    zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3536 		    &zio->io_alloc_list, zio, zio->io_allocator);
3537 	}
3538 
3539 	if (error != 0) {
3540 		zfs_dbgmsg("%s: metaslab allocation failure: zio %px, "
3541 		    "size %llu, error %d", spa_name(spa), zio, zio->io_size,
3542 		    error);
3543 		if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
3544 			return (zio_write_gang_block(zio));
3545 		zio->io_error = error;
3546 	}
3547 
3548 	return (zio);
3549 }
3550 
3551 static zio_t *
3552 zio_dva_free(zio_t *zio)
3553 {
3554 	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
3555 
3556 	return (zio);
3557 }
3558 
3559 static zio_t *
3560 zio_dva_claim(zio_t *zio)
3561 {
3562 	int error;
3563 
3564 	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
3565 	if (error)
3566 		zio->io_error = error;
3567 
3568 	return (zio);
3569 }
3570 
3571 /*
3572  * Undo an allocation.  This is used by zio_done() when an I/O fails
3573  * and we want to give back the block we just allocated.
3574  * This handles both normal blocks and gang blocks.
3575  */
3576 static void
3577 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
3578 {
3579 	ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
3580 	ASSERT(zio->io_bp_override == NULL);
3581 
3582 	if (!BP_IS_HOLE(bp))
3583 		metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
3584 
3585 	if (gn != NULL) {
3586 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
3587 			zio_dva_unallocate(zio, gn->gn_child[g],
3588 			    &gn->gn_gbh->zg_blkptr[g]);
3589 		}
3590 	}
3591 }
3592 
3593 /*
3594  * Try to allocate an intent log block.  Return 0 on success, errno on failure.
3595  */
3596 int
3597 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp,
3598     uint64_t size, boolean_t *slog)
3599 {
3600 	int error = 1;
3601 	zio_alloc_list_t io_alloc_list;
3602 
3603 	ASSERT(txg > spa_syncing_txg(spa));
3604 
3605 	metaslab_trace_init(&io_alloc_list);
3606 
3607 	/*
3608 	 * Block pointer fields are useful to metaslabs for stats and debugging.
3609 	 * Fill in the obvious ones before calling into metaslab_alloc().
3610 	 */
3611 	BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3612 	BP_SET_PSIZE(new_bp, size);
3613 	BP_SET_LEVEL(new_bp, 0);
3614 
3615 	/*
3616 	 * When allocating a zil block, we don't have information about
3617 	 * the final destination of the block except the objset it's part
3618 	 * of, so we just hash the objset ID to pick the allocator to get
3619 	 * some parallelism.
3620 	 */
3621 	error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1,
3622 	    txg, NULL, METASLAB_FASTWRITE, &io_alloc_list, NULL,
3623 	    cityhash4(0, 0, 0, os->os_dsl_dataset->ds_object) %
3624 	    spa->spa_alloc_count);
3625 	if (error == 0) {
3626 		*slog = TRUE;
3627 	} else {
3628 		error = metaslab_alloc(spa, spa_normal_class(spa), size,
3629 		    new_bp, 1, txg, NULL, METASLAB_FASTWRITE,
3630 		    &io_alloc_list, NULL, cityhash4(0, 0, 0,
3631 		    os->os_dsl_dataset->ds_object) % spa->spa_alloc_count);
3632 		if (error == 0)
3633 			*slog = FALSE;
3634 	}
3635 	metaslab_trace_fini(&io_alloc_list);
3636 
3637 	if (error == 0) {
3638 		BP_SET_LSIZE(new_bp, size);
3639 		BP_SET_PSIZE(new_bp, size);
3640 		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
3641 		BP_SET_CHECKSUM(new_bp,
3642 		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL
3643 		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
3644 		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3645 		BP_SET_LEVEL(new_bp, 0);
3646 		BP_SET_DEDUP(new_bp, 0);
3647 		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
3648 
3649 		/*
3650 		 * encrypted blocks will require an IV and salt. We generate
3651 		 * these now since we will not be rewriting the bp at
3652 		 * rewrite time.
3653 		 */
3654 		if (os->os_encrypted) {
3655 			uint8_t iv[ZIO_DATA_IV_LEN];
3656 			uint8_t salt[ZIO_DATA_SALT_LEN];
3657 
3658 			BP_SET_CRYPT(new_bp, B_TRUE);
3659 			VERIFY0(spa_crypt_get_salt(spa,
3660 			    dmu_objset_id(os), salt));
3661 			VERIFY0(zio_crypt_generate_iv(iv));
3662 
3663 			zio_crypt_encode_params_bp(new_bp, salt, iv);
3664 		}
3665 	} else {
3666 		zfs_dbgmsg("%s: zil block allocation failure: "
3667 		    "size %llu, error %d", spa_name(spa), size, error);
3668 	}
3669 
3670 	return (error);
3671 }
3672 
3673 /*
3674  * ==========================================================================
3675  * Read and write to physical devices
3676  * ==========================================================================
3677  */
3678 
3679 /*
3680  * Issue an I/O to the underlying vdev. Typically the issue pipeline
3681  * stops after this stage and will resume upon I/O completion.
3682  * However, there are instances where the vdev layer may need to
3683  * continue the pipeline when an I/O was not issued. Since the I/O
3684  * that was sent to the vdev layer might be different than the one
3685  * currently active in the pipeline (see vdev_queue_io()), we explicitly
3686  * force the underlying vdev layers to call either zio_execute() or
3687  * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
3688  */
3689 static zio_t *
3690 zio_vdev_io_start(zio_t *zio)
3691 {
3692 	vdev_t *vd = zio->io_vd;
3693 	uint64_t align;
3694 	spa_t *spa = zio->io_spa;
3695 
3696 	zio->io_delay = 0;
3697 
3698 	ASSERT(zio->io_error == 0);
3699 	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
3700 
3701 	if (vd == NULL) {
3702 		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3703 			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
3704 
3705 		/*
3706 		 * The mirror_ops handle multiple DVAs in a single BP.
3707 		 */
3708 		vdev_mirror_ops.vdev_op_io_start(zio);
3709 		return (NULL);
3710 	}
3711 
3712 	ASSERT3P(zio->io_logical, !=, zio);
3713 	if (zio->io_type == ZIO_TYPE_WRITE) {
3714 		ASSERT(spa->spa_trust_config);
3715 
3716 		/*
3717 		 * Note: the code can handle other kinds of writes,
3718 		 * but we don't expect them.
3719 		 */
3720 		if (zio->io_vd->vdev_removing) {
3721 			ASSERT(zio->io_flags &
3722 			    (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL |
3723 			    ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE));
3724 		}
3725 	}
3726 
3727 	align = 1ULL << vd->vdev_top->vdev_ashift;
3728 
3729 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
3730 	    P2PHASE(zio->io_size, align) != 0) {
3731 		/* Transform logical writes to be a full physical block size. */
3732 		uint64_t asize = P2ROUNDUP(zio->io_size, align);
3733 		abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize);
3734 		ASSERT(vd == vd->vdev_top);
3735 		if (zio->io_type == ZIO_TYPE_WRITE) {
3736 			abd_copy(abuf, zio->io_abd, zio->io_size);
3737 			abd_zero_off(abuf, zio->io_size, asize - zio->io_size);
3738 		}
3739 		zio_push_transform(zio, abuf, asize, asize, zio_subblock);
3740 	}
3741 
3742 	/*
3743 	 * If this is not a physical io, make sure that it is properly aligned
3744 	 * before proceeding.
3745 	 */
3746 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
3747 		ASSERT0(P2PHASE(zio->io_offset, align));
3748 		ASSERT0(P2PHASE(zio->io_size, align));
3749 	} else {
3750 		/*
3751 		 * For physical writes, we allow 512b aligned writes and assume
3752 		 * the device will perform a read-modify-write as necessary.
3753 		 */
3754 		ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
3755 		ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
3756 	}
3757 
3758 	VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
3759 
3760 	/*
3761 	 * If this is a repair I/O, and there's no self-healing involved --
3762 	 * that is, we're just resilvering what we expect to resilver --
3763 	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
3764 	 * This prevents spurious resilvering.
3765 	 *
3766 	 * There are a few ways that we can end up creating these spurious
3767 	 * resilver i/os:
3768 	 *
3769 	 * 1. A resilver i/o will be issued if any DVA in the BP has a
3770 	 * dirty DTL.  The mirror code will issue resilver writes to
3771 	 * each DVA, including the one(s) that are not on vdevs with dirty
3772 	 * DTLs.
3773 	 *
3774 	 * 2. With nested replication, which happens when we have a
3775 	 * "replacing" or "spare" vdev that's a child of a mirror or raidz.
3776 	 * For example, given mirror(replacing(A+B), C), it's likely that
3777 	 * only A is out of date (it's the new device). In this case, we'll
3778 	 * read from C, then use the data to resilver A+B -- but we don't
3779 	 * actually want to resilver B, just A. The top-level mirror has no
3780 	 * way to know this, so instead we just discard unnecessary repairs
3781 	 * as we work our way down the vdev tree.
3782 	 *
3783 	 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc.
3784 	 * The same logic applies to any form of nested replication: ditto
3785 	 * + mirror, RAID-Z + replacing, etc.
3786 	 *
3787 	 * However, indirect vdevs point off to other vdevs which may have
3788 	 * DTL's, so we never bypass them.  The child i/os on concrete vdevs
3789 	 * will be properly bypassed instead.
3790 	 */
3791 	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
3792 	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
3793 	    zio->io_txg != 0 &&	/* not a delegated i/o */
3794 	    vd->vdev_ops != &vdev_indirect_ops &&
3795 	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
3796 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3797 		zio_vdev_io_bypass(zio);
3798 		return (zio);
3799 	}
3800 
3801 	if (vd->vdev_ops->vdev_op_leaf && (zio->io_type == ZIO_TYPE_READ ||
3802 	    zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM)) {
3803 
3804 		if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio))
3805 			return (zio);
3806 
3807 		if ((zio = vdev_queue_io(zio)) == NULL)
3808 			return (NULL);
3809 
3810 		if (!vdev_accessible(vd, zio)) {
3811 			zio->io_error = SET_ERROR(ENXIO);
3812 			zio_interrupt(zio);
3813 			return (NULL);
3814 		}
3815 		zio->io_delay = gethrtime();
3816 	}
3817 
3818 	vd->vdev_ops->vdev_op_io_start(zio);
3819 	return (NULL);
3820 }
3821 
3822 static zio_t *
3823 zio_vdev_io_done(zio_t *zio)
3824 {
3825 	vdev_t *vd = zio->io_vd;
3826 	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
3827 	boolean_t unexpected_error = B_FALSE;
3828 
3829 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3830 		return (NULL);
3831 	}
3832 
3833 	ASSERT(zio->io_type == ZIO_TYPE_READ ||
3834 	    zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM);
3835 
3836 	if (zio->io_delay)
3837 		zio->io_delay = gethrtime() - zio->io_delay;
3838 
3839 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
3840 
3841 		vdev_queue_io_done(zio);
3842 
3843 		if (zio->io_type == ZIO_TYPE_WRITE)
3844 			vdev_cache_write(zio);
3845 
3846 		if (zio_injection_enabled && zio->io_error == 0)
3847 			zio->io_error = zio_handle_device_injections(vd, zio,
3848 			    EIO, EILSEQ);
3849 
3850 		if (zio_injection_enabled && zio->io_error == 0)
3851 			zio->io_error = zio_handle_label_injection(zio, EIO);
3852 
3853 		if (zio->io_error && zio->io_type != ZIO_TYPE_TRIM) {
3854 			if (!vdev_accessible(vd, zio)) {
3855 				zio->io_error = SET_ERROR(ENXIO);
3856 			} else {
3857 				unexpected_error = B_TRUE;
3858 			}
3859 		}
3860 	}
3861 
3862 	ops->vdev_op_io_done(zio);
3863 
3864 	if (unexpected_error)
3865 		VERIFY(vdev_probe(vd, zio) == NULL);
3866 
3867 	return (zio);
3868 }
3869 
3870 /*
3871  * This function is used to change the priority of an existing zio that is
3872  * currently in-flight. This is used by the arc to upgrade priority in the
3873  * event that a demand read is made for a block that is currently queued
3874  * as a scrub or async read IO. Otherwise, the high priority read request
3875  * would end up having to wait for the lower priority IO.
3876  */
3877 void
3878 zio_change_priority(zio_t *pio, zio_priority_t priority)
3879 {
3880 	zio_t *cio, *cio_next;
3881 	zio_link_t *zl = NULL;
3882 
3883 	ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
3884 
3885 	if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) {
3886 		vdev_queue_change_io_priority(pio, priority);
3887 	} else {
3888 		pio->io_priority = priority;
3889 	}
3890 
3891 	mutex_enter(&pio->io_lock);
3892 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
3893 		cio_next = zio_walk_children(pio, &zl);
3894 		zio_change_priority(cio, priority);
3895 	}
3896 	mutex_exit(&pio->io_lock);
3897 }
3898 
3899 /*
3900  * For non-raidz ZIOs, we can just copy aside the bad data read from the
3901  * disk, and use that to finish the checksum ereport later.
3902  */
3903 static void
3904 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
3905     const abd_t *good_buf)
3906 {
3907 	/* no processing needed */
3908 	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
3909 }
3910 
3911 /*ARGSUSED*/
3912 void
3913 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
3914 {
3915 	void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size);
3916 
3917 	abd_copy(abd, zio->io_abd, zio->io_size);
3918 
3919 	zcr->zcr_cbinfo = zio->io_size;
3920 	zcr->zcr_cbdata = abd;
3921 	zcr->zcr_finish = zio_vsd_default_cksum_finish;
3922 	zcr->zcr_free = zio_abd_free;
3923 }
3924 
3925 static zio_t *
3926 zio_vdev_io_assess(zio_t *zio)
3927 {
3928 	vdev_t *vd = zio->io_vd;
3929 
3930 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3931 		return (NULL);
3932 	}
3933 
3934 	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3935 		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
3936 
3937 	if (zio->io_vsd != NULL) {
3938 		zio->io_vsd_ops->vsd_free(zio);
3939 		zio->io_vsd = NULL;
3940 	}
3941 
3942 	if (zio_injection_enabled && zio->io_error == 0)
3943 		zio->io_error = zio_handle_fault_injection(zio, EIO);
3944 
3945 	/*
3946 	 * If the I/O failed, determine whether we should attempt to retry it.
3947 	 *
3948 	 * On retry, we cut in line in the issue queue, since we don't want
3949 	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
3950 	 */
3951 	if (zio->io_error && vd == NULL &&
3952 	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
3953 		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
3954 		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
3955 		zio->io_error = 0;
3956 		zio->io_flags |= ZIO_FLAG_IO_RETRY |
3957 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
3958 		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
3959 		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
3960 		    zio_requeue_io_start_cut_in_line);
3961 		return (NULL);
3962 	}
3963 
3964 	/*
3965 	 * If we got an error on a leaf device, convert it to ENXIO
3966 	 * if the device is not accessible at all.
3967 	 */
3968 	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3969 	    !vdev_accessible(vd, zio))
3970 		zio->io_error = SET_ERROR(ENXIO);
3971 
3972 	/*
3973 	 * If we can't write to an interior vdev (mirror or RAID-Z),
3974 	 * set vdev_cant_write so that we stop trying to allocate from it.
3975 	 */
3976 	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
3977 	    vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
3978 		vd->vdev_cant_write = B_TRUE;
3979 	}
3980 
3981 	/*
3982 	 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future
3983 	 * attempts will ever succeed. In this case we set a persistent
3984 	 * boolean flag so that we don't bother with it in the future.
3985 	 */
3986 	if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) &&
3987 	    zio->io_type == ZIO_TYPE_IOCTL &&
3988 	    zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL)
3989 		vd->vdev_nowritecache = B_TRUE;
3990 
3991 	if (zio->io_error)
3992 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3993 
3994 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3995 	    zio->io_physdone != NULL) {
3996 		ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
3997 		ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
3998 		zio->io_physdone(zio->io_logical);
3999 	}
4000 
4001 	return (zio);
4002 }
4003 
4004 void
4005 zio_vdev_io_reissue(zio_t *zio)
4006 {
4007 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
4008 	ASSERT(zio->io_error == 0);
4009 
4010 	zio->io_stage >>= 1;
4011 }
4012 
4013 void
4014 zio_vdev_io_redone(zio_t *zio)
4015 {
4016 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
4017 
4018 	zio->io_stage >>= 1;
4019 }
4020 
4021 void
4022 zio_vdev_io_bypass(zio_t *zio)
4023 {
4024 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
4025 	ASSERT(zio->io_error == 0);
4026 
4027 	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
4028 	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
4029 }
4030 
4031 /*
4032  * ==========================================================================
4033  * Encrypt and store encryption parameters
4034  * ==========================================================================
4035  */
4036 
4037 
4038 /*
4039  * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for
4040  * managing the storage of encryption parameters and passing them to the
4041  * lower-level encryption functions.
4042  */
4043 static zio_t *
4044 zio_encrypt(zio_t *zio)
4045 {
4046 	zio_prop_t *zp = &zio->io_prop;
4047 	spa_t *spa = zio->io_spa;
4048 	blkptr_t *bp = zio->io_bp;
4049 	uint64_t psize = BP_GET_PSIZE(bp);
4050 	uint64_t dsobj = zio->io_bookmark.zb_objset;
4051 	dmu_object_type_t ot = BP_GET_TYPE(bp);
4052 	void *enc_buf = NULL;
4053 	abd_t *eabd = NULL;
4054 	uint8_t salt[ZIO_DATA_SALT_LEN];
4055 	uint8_t iv[ZIO_DATA_IV_LEN];
4056 	uint8_t mac[ZIO_DATA_MAC_LEN];
4057 	boolean_t no_crypt = B_FALSE;
4058 
4059 	/* the root zio already encrypted the data */
4060 	if (zio->io_child_type == ZIO_CHILD_GANG)
4061 		return (zio);
4062 
4063 	/* only ZIL blocks are re-encrypted on rewrite */
4064 	if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG)
4065 		return (zio);
4066 
4067 	if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) {
4068 		BP_SET_CRYPT(bp, B_FALSE);
4069 		return (zio);
4070 	}
4071 
4072 	/* if we are doing raw encryption set the provided encryption params */
4073 	if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) {
4074 		ASSERT0(BP_GET_LEVEL(bp));
4075 		BP_SET_CRYPT(bp, B_TRUE);
4076 		BP_SET_BYTEORDER(bp, zp->zp_byteorder);
4077 		if (ot != DMU_OT_OBJSET)
4078 			zio_crypt_encode_mac_bp(bp, zp->zp_mac);
4079 
4080 		/* dnode blocks must be written out in the provided byteorder */
4081 		if (zp->zp_byteorder != ZFS_HOST_BYTEORDER &&
4082 		    ot == DMU_OT_DNODE) {
4083 			void *bswap_buf = zio_buf_alloc(psize);
4084 			abd_t *babd = abd_get_from_buf(bswap_buf, psize);
4085 
4086 			ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4087 			abd_copy_to_buf(bswap_buf, zio->io_abd, psize);
4088 			dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf,
4089 			    psize);
4090 
4091 			abd_take_ownership_of_buf(babd, B_TRUE);
4092 			zio_push_transform(zio, babd, psize, psize, NULL);
4093 		}
4094 
4095 		if (DMU_OT_IS_ENCRYPTED(ot))
4096 			zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv);
4097 		return (zio);
4098 	}
4099 
4100 	/* indirect blocks only maintain a cksum of the lower level MACs */
4101 	if (BP_GET_LEVEL(bp) > 0) {
4102 		BP_SET_CRYPT(bp, B_TRUE);
4103 		VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE,
4104 		    zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp),
4105 		    mac));
4106 		zio_crypt_encode_mac_bp(bp, mac);
4107 		return (zio);
4108 	}
4109 
4110 	/*
4111 	 * Objset blocks are a special case since they have 2 256-bit MACs
4112 	 * embedded within them.
4113 	 */
4114 	if (ot == DMU_OT_OBJSET) {
4115 		ASSERT0(DMU_OT_IS_ENCRYPTED(ot));
4116 		ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4117 		BP_SET_CRYPT(bp, B_TRUE);
4118 		VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj,
4119 		    zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp)));
4120 		return (zio);
4121 	}
4122 
4123 	/* unencrypted object types are only authenticated with a MAC */
4124 	if (!DMU_OT_IS_ENCRYPTED(ot)) {
4125 		BP_SET_CRYPT(bp, B_TRUE);
4126 		VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj,
4127 		    zio->io_abd, psize, mac));
4128 		zio_crypt_encode_mac_bp(bp, mac);
4129 		return (zio);
4130 	}
4131 
4132 	/*
4133 	 * Later passes of sync-to-convergence may decide to rewrite data
4134 	 * in place to avoid more disk reallocations. This presents a problem
4135 	 * for encryption because this constitutes rewriting the new data with
4136 	 * the same encryption key and IV. However, this only applies to blocks
4137 	 * in the MOS (particularly the spacemaps) and we do not encrypt the
4138 	 * MOS. We assert that the zio is allocating or an intent log write
4139 	 * to enforce this.
4140 	 */
4141 	ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG);
4142 	ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG);
4143 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION));
4144 	ASSERT3U(psize, !=, 0);
4145 
4146 	enc_buf = zio_buf_alloc(psize);
4147 	eabd = abd_get_from_buf(enc_buf, psize);
4148 	abd_take_ownership_of_buf(eabd, B_TRUE);
4149 
4150 	/*
4151 	 * For an explanation of what encryption parameters are stored
4152 	 * where, see the block comment in zio_crypt.c.
4153 	 */
4154 	if (ot == DMU_OT_INTENT_LOG) {
4155 		zio_crypt_decode_params_bp(bp, salt, iv);
4156 	} else {
4157 		BP_SET_CRYPT(bp, B_TRUE);
4158 	}
4159 
4160 	/* Perform the encryption. This should not fail */
4161 	VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark,
4162 	    BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
4163 	    salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt));
4164 
4165 	/* encode encryption metadata into the bp */
4166 	if (ot == DMU_OT_INTENT_LOG) {
4167 		/*
4168 		 * ZIL blocks store the MAC in the embedded checksum, so the
4169 		 * transform must always be applied.
4170 		 */
4171 		zio_crypt_encode_mac_zil(enc_buf, mac);
4172 		zio_push_transform(zio, eabd, psize, psize, NULL);
4173 	} else {
4174 		BP_SET_CRYPT(bp, B_TRUE);
4175 		zio_crypt_encode_params_bp(bp, salt, iv);
4176 		zio_crypt_encode_mac_bp(bp, mac);
4177 
4178 		if (no_crypt) {
4179 			ASSERT3U(ot, ==, DMU_OT_DNODE);
4180 			abd_free(eabd);
4181 		} else {
4182 			zio_push_transform(zio, eabd, psize, psize, NULL);
4183 		}
4184 	}
4185 
4186 	return (zio);
4187 }
4188 
4189 /*
4190  * ==========================================================================
4191  * Generate and verify checksums
4192  * ==========================================================================
4193  */
4194 static zio_t *
4195 zio_checksum_generate(zio_t *zio)
4196 {
4197 	blkptr_t *bp = zio->io_bp;
4198 	enum zio_checksum checksum;
4199 
4200 	if (bp == NULL) {
4201 		/*
4202 		 * This is zio_write_phys().
4203 		 * We're either generating a label checksum, or none at all.
4204 		 */
4205 		checksum = zio->io_prop.zp_checksum;
4206 
4207 		if (checksum == ZIO_CHECKSUM_OFF)
4208 			return (zio);
4209 
4210 		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
4211 	} else {
4212 		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
4213 			ASSERT(!IO_IS_ALLOCATING(zio));
4214 			checksum = ZIO_CHECKSUM_GANG_HEADER;
4215 		} else {
4216 			checksum = BP_GET_CHECKSUM(bp);
4217 		}
4218 	}
4219 
4220 	zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size);
4221 
4222 	return (zio);
4223 }
4224 
4225 static zio_t *
4226 zio_checksum_verify(zio_t *zio)
4227 {
4228 	zio_bad_cksum_t info;
4229 	blkptr_t *bp = zio->io_bp;
4230 	int error;
4231 
4232 	ASSERT(zio->io_vd != NULL);
4233 
4234 	if (bp == NULL) {
4235 		/*
4236 		 * This is zio_read_phys().
4237 		 * We're either verifying a label checksum, or nothing at all.
4238 		 */
4239 		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
4240 			return (zio);
4241 
4242 		ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
4243 	}
4244 
4245 	if ((error = zio_checksum_error(zio, &info)) != 0) {
4246 		zio->io_error = error;
4247 		if (error == ECKSUM &&
4248 		    !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
4249 			int ret = zfs_ereport_start_checksum(zio->io_spa,
4250 			    zio->io_vd, &zio->io_bookmark, zio,
4251 			    zio->io_offset, zio->io_size, NULL, &info);
4252 
4253 			if (ret != EALREADY) {
4254 				mutex_enter(&zio->io_vd->vdev_stat_lock);
4255 				zio->io_vd->vdev_stat.vs_checksum_errors++;
4256 				mutex_exit(&zio->io_vd->vdev_stat_lock);
4257 			}
4258 		}
4259 	}
4260 
4261 	return (zio);
4262 }
4263 
4264 /*
4265  * Called by RAID-Z to ensure we don't compute the checksum twice.
4266  */
4267 void
4268 zio_checksum_verified(zio_t *zio)
4269 {
4270 	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
4271 }
4272 
4273 /*
4274  * ==========================================================================
4275  * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
4276  * An error of 0 indicates success.  ENXIO indicates whole-device failure,
4277  * which may be transient (e.g. unplugged) or permanent.  ECKSUM and EIO
4278  * indicate errors that are specific to one I/O, and most likely permanent.
4279  * Any other error is presumed to be worse because we weren't expecting it.
4280  * ==========================================================================
4281  */
4282 int
4283 zio_worst_error(int e1, int e2)
4284 {
4285 	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
4286 	int r1, r2;
4287 
4288 	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
4289 		if (e1 == zio_error_rank[r1])
4290 			break;
4291 
4292 	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
4293 		if (e2 == zio_error_rank[r2])
4294 			break;
4295 
4296 	return (r1 > r2 ? e1 : e2);
4297 }
4298 
4299 /*
4300  * ==========================================================================
4301  * I/O completion
4302  * ==========================================================================
4303  */
4304 static zio_t *
4305 zio_ready(zio_t *zio)
4306 {
4307 	blkptr_t *bp = zio->io_bp;
4308 	zio_t *pio, *pio_next;
4309 	zio_link_t *zl = NULL;
4310 
4311 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT,
4312 	    ZIO_WAIT_READY)) {
4313 		return (NULL);
4314 	}
4315 
4316 	if (zio->io_ready) {
4317 		ASSERT(IO_IS_ALLOCATING(zio));
4318 		ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
4319 		    (zio->io_flags & ZIO_FLAG_NOPWRITE));
4320 		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
4321 
4322 		zio->io_ready(zio);
4323 	}
4324 
4325 	if (bp != NULL && bp != &zio->io_bp_copy)
4326 		zio->io_bp_copy = *bp;
4327 
4328 	if (zio->io_error != 0) {
4329 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4330 
4331 		if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4332 			ASSERT(IO_IS_ALLOCATING(zio));
4333 			ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4334 			ASSERT(zio->io_metaslab_class != NULL);
4335 
4336 			/*
4337 			 * We were unable to allocate anything, unreserve and
4338 			 * issue the next I/O to allocate.
4339 			 */
4340 			metaslab_class_throttle_unreserve(
4341 			    zio->io_metaslab_class, zio->io_prop.zp_copies,
4342 			    zio->io_allocator, zio);
4343 			zio_allocate_dispatch(zio->io_spa, zio->io_allocator);
4344 		}
4345 	}
4346 
4347 	mutex_enter(&zio->io_lock);
4348 	zio->io_state[ZIO_WAIT_READY] = 1;
4349 	pio = zio_walk_parents(zio, &zl);
4350 	mutex_exit(&zio->io_lock);
4351 
4352 	/*
4353 	 * As we notify zio's parents, new parents could be added.
4354 	 * New parents go to the head of zio's io_parent_list, however,
4355 	 * so we will (correctly) not notify them.  The remainder of zio's
4356 	 * io_parent_list, from 'pio_next' onward, cannot change because
4357 	 * all parents must wait for us to be done before they can be done.
4358 	 */
4359 	for (; pio != NULL; pio = pio_next) {
4360 		pio_next = zio_walk_parents(zio, &zl);
4361 		zio_notify_parent(pio, zio, ZIO_WAIT_READY, NULL);
4362 	}
4363 
4364 	if (zio->io_flags & ZIO_FLAG_NODATA) {
4365 		if (BP_IS_GANG(bp)) {
4366 			zio->io_flags &= ~ZIO_FLAG_NODATA;
4367 		} else {
4368 			ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE);
4369 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
4370 		}
4371 	}
4372 
4373 	if (zio_injection_enabled &&
4374 	    zio->io_spa->spa_syncing_txg == zio->io_txg)
4375 		zio_handle_ignored_writes(zio);
4376 
4377 	return (zio);
4378 }
4379 
4380 /*
4381  * Update the allocation throttle accounting.
4382  */
4383 static void
4384 zio_dva_throttle_done(zio_t *zio)
4385 {
4386 	zio_t *lio __maybe_unused = zio->io_logical;
4387 	zio_t *pio = zio_unique_parent(zio);
4388 	vdev_t *vd = zio->io_vd;
4389 	int flags = METASLAB_ASYNC_ALLOC;
4390 
4391 	ASSERT3P(zio->io_bp, !=, NULL);
4392 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
4393 	ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE);
4394 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
4395 	ASSERT(vd != NULL);
4396 	ASSERT3P(vd, ==, vd->vdev_top);
4397 	ASSERT(zio_injection_enabled || !(zio->io_flags & ZIO_FLAG_IO_RETRY));
4398 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4399 	ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING);
4400 	ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE));
4401 	ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA));
4402 
4403 	/*
4404 	 * Parents of gang children can have two flavors -- ones that
4405 	 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set)
4406 	 * and ones that allocated the constituent blocks. The allocation
4407 	 * throttle needs to know the allocating parent zio so we must find
4408 	 * it here.
4409 	 */
4410 	if (pio->io_child_type == ZIO_CHILD_GANG) {
4411 		/*
4412 		 * If our parent is a rewrite gang child then our grandparent
4413 		 * would have been the one that performed the allocation.
4414 		 */
4415 		if (pio->io_flags & ZIO_FLAG_IO_REWRITE)
4416 			pio = zio_unique_parent(pio);
4417 		flags |= METASLAB_GANG_CHILD;
4418 	}
4419 
4420 	ASSERT(IO_IS_ALLOCATING(pio));
4421 	ASSERT3P(zio, !=, zio->io_logical);
4422 	ASSERT(zio->io_logical != NULL);
4423 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4424 	ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE);
4425 	ASSERT(zio->io_metaslab_class != NULL);
4426 
4427 	mutex_enter(&pio->io_lock);
4428 	metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags,
4429 	    pio->io_allocator, B_TRUE);
4430 	mutex_exit(&pio->io_lock);
4431 
4432 	metaslab_class_throttle_unreserve(zio->io_metaslab_class, 1,
4433 	    pio->io_allocator, pio);
4434 
4435 	/*
4436 	 * Call into the pipeline to see if there is more work that
4437 	 * needs to be done. If there is work to be done it will be
4438 	 * dispatched to another taskq thread.
4439 	 */
4440 	zio_allocate_dispatch(zio->io_spa, pio->io_allocator);
4441 }
4442 
4443 static zio_t *
4444 zio_done(zio_t *zio)
4445 {
4446 	/*
4447 	 * Always attempt to keep stack usage minimal here since
4448 	 * we can be called recursively up to 19 levels deep.
4449 	 */
4450 	const uint64_t psize = zio->io_size;
4451 	zio_t *pio, *pio_next;
4452 	zio_link_t *zl = NULL;
4453 
4454 	/*
4455 	 * If our children haven't all completed,
4456 	 * wait for them and then repeat this pipeline stage.
4457 	 */
4458 	if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) {
4459 		return (NULL);
4460 	}
4461 
4462 	/*
4463 	 * If the allocation throttle is enabled, then update the accounting.
4464 	 * We only track child I/Os that are part of an allocating async
4465 	 * write. We must do this since the allocation is performed
4466 	 * by the logical I/O but the actual write is done by child I/Os.
4467 	 */
4468 	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING &&
4469 	    zio->io_child_type == ZIO_CHILD_VDEV) {
4470 		ASSERT(zio->io_metaslab_class != NULL);
4471 		ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled);
4472 		zio_dva_throttle_done(zio);
4473 	}
4474 
4475 	/*
4476 	 * If the allocation throttle is enabled, verify that
4477 	 * we have decremented the refcounts for every I/O that was throttled.
4478 	 */
4479 	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4480 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
4481 		ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4482 		ASSERT(zio->io_bp != NULL);
4483 
4484 		metaslab_group_alloc_verify(zio->io_spa, zio->io_bp, zio,
4485 		    zio->io_allocator);
4486 		VERIFY(zfs_refcount_not_held(
4487 		    &zio->io_metaslab_class->mc_alloc_slots[zio->io_allocator],
4488 		    zio));
4489 	}
4490 
4491 
4492 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
4493 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
4494 			ASSERT(zio->io_children[c][w] == 0);
4495 
4496 	if (zio->io_bp != NULL && !BP_IS_EMBEDDED(zio->io_bp)) {
4497 		ASSERT(zio->io_bp->blk_pad[0] == 0);
4498 		ASSERT(zio->io_bp->blk_pad[1] == 0);
4499 		ASSERT(bcmp(zio->io_bp, &zio->io_bp_copy,
4500 		    sizeof (blkptr_t)) == 0 ||
4501 		    (zio->io_bp == zio_unique_parent(zio)->io_bp));
4502 		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) &&
4503 		    zio->io_bp_override == NULL &&
4504 		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
4505 			ASSERT3U(zio->io_prop.zp_copies, <=,
4506 			    BP_GET_NDVAS(zio->io_bp));
4507 			ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 ||
4508 			    (BP_COUNT_GANG(zio->io_bp) ==
4509 			    BP_GET_NDVAS(zio->io_bp)));
4510 		}
4511 		if (zio->io_flags & ZIO_FLAG_NOPWRITE)
4512 			VERIFY(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
4513 	}
4514 
4515 	/*
4516 	 * If there were child vdev/gang/ddt errors, they apply to us now.
4517 	 */
4518 	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
4519 	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
4520 	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
4521 
4522 	/*
4523 	 * If the I/O on the transformed data was successful, generate any
4524 	 * checksum reports now while we still have the transformed data.
4525 	 */
4526 	if (zio->io_error == 0) {
4527 		while (zio->io_cksum_report != NULL) {
4528 			zio_cksum_report_t *zcr = zio->io_cksum_report;
4529 			uint64_t align = zcr->zcr_align;
4530 			uint64_t asize = P2ROUNDUP(psize, align);
4531 			abd_t *adata = zio->io_abd;
4532 
4533 			if (asize != psize) {
4534 				adata = abd_alloc(asize, B_TRUE);
4535 				abd_copy(adata, zio->io_abd, psize);
4536 				abd_zero_off(adata, psize, asize - psize);
4537 			}
4538 
4539 			zio->io_cksum_report = zcr->zcr_next;
4540 			zcr->zcr_next = NULL;
4541 			zcr->zcr_finish(zcr, adata);
4542 			zfs_ereport_free_checksum(zcr);
4543 
4544 			if (asize != psize)
4545 				abd_free(adata);
4546 		}
4547 	}
4548 
4549 	zio_pop_transforms(zio);	/* note: may set zio->io_error */
4550 
4551 	vdev_stat_update(zio, psize);
4552 
4553 	/*
4554 	 * If this I/O is attached to a particular vdev is slow, exceeding
4555 	 * 30 seconds to complete, post an error described the I/O delay.
4556 	 * We ignore these errors if the device is currently unavailable.
4557 	 */
4558 	if (zio->io_delay >= MSEC2NSEC(zio_slow_io_ms)) {
4559 		if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) {
4560 			/*
4561 			 * We want to only increment our slow IO counters if
4562 			 * the IO is valid (i.e. not if the drive is removed).
4563 			 *
4564 			 * zfs_ereport_post() will also do these checks, but
4565 			 * it can also ratelimit and have other failures, so we
4566 			 * need to increment the slow_io counters independent
4567 			 * of it.
4568 			 */
4569 			if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY,
4570 			    zio->io_spa, zio->io_vd, zio)) {
4571 				mutex_enter(&zio->io_vd->vdev_stat_lock);
4572 				zio->io_vd->vdev_stat.vs_slow_ios++;
4573 				mutex_exit(&zio->io_vd->vdev_stat_lock);
4574 
4575 				(void) zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
4576 				    zio->io_spa, zio->io_vd, &zio->io_bookmark,
4577 				    zio, 0);
4578 			}
4579 		}
4580 	}
4581 
4582 	if (zio->io_error) {
4583 		/*
4584 		 * If this I/O is attached to a particular vdev,
4585 		 * generate an error message describing the I/O failure
4586 		 * at the block level.  We ignore these errors if the
4587 		 * device is currently unavailable.
4588 		 */
4589 		if (zio->io_error != ECKSUM && zio->io_vd != NULL &&
4590 		    !vdev_is_dead(zio->io_vd)) {
4591 			int ret = zfs_ereport_post(FM_EREPORT_ZFS_IO,
4592 			    zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0);
4593 			if (ret != EALREADY) {
4594 				mutex_enter(&zio->io_vd->vdev_stat_lock);
4595 				if (zio->io_type == ZIO_TYPE_READ)
4596 					zio->io_vd->vdev_stat.vs_read_errors++;
4597 				else if (zio->io_type == ZIO_TYPE_WRITE)
4598 					zio->io_vd->vdev_stat.vs_write_errors++;
4599 				mutex_exit(&zio->io_vd->vdev_stat_lock);
4600 			}
4601 		}
4602 
4603 		if ((zio->io_error == EIO || !(zio->io_flags &
4604 		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
4605 		    zio == zio->io_logical) {
4606 			/*
4607 			 * For logical I/O requests, tell the SPA to log the
4608 			 * error and generate a logical data ereport.
4609 			 */
4610 			spa_log_error(zio->io_spa, &zio->io_bookmark);
4611 			(void) zfs_ereport_post(FM_EREPORT_ZFS_DATA,
4612 			    zio->io_spa, NULL, &zio->io_bookmark, zio, 0);
4613 		}
4614 	}
4615 
4616 	if (zio->io_error && zio == zio->io_logical) {
4617 		/*
4618 		 * Determine whether zio should be reexecuted.  This will
4619 		 * propagate all the way to the root via zio_notify_parent().
4620 		 */
4621 		ASSERT(zio->io_vd == NULL && zio->io_bp != NULL);
4622 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4623 
4624 		if (IO_IS_ALLOCATING(zio) &&
4625 		    !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
4626 			if (zio->io_error != ENOSPC)
4627 				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
4628 			else
4629 				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4630 		}
4631 
4632 		if ((zio->io_type == ZIO_TYPE_READ ||
4633 		    zio->io_type == ZIO_TYPE_FREE) &&
4634 		    !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
4635 		    zio->io_error == ENXIO &&
4636 		    spa_load_state(zio->io_spa) == SPA_LOAD_NONE &&
4637 		    spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE)
4638 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4639 
4640 		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
4641 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4642 
4643 		/*
4644 		 * Here is a possibly good place to attempt to do
4645 		 * either combinatorial reconstruction or error correction
4646 		 * based on checksums.  It also might be a good place
4647 		 * to send out preliminary ereports before we suspend
4648 		 * processing.
4649 		 */
4650 	}
4651 
4652 	/*
4653 	 * If there were logical child errors, they apply to us now.
4654 	 * We defer this until now to avoid conflating logical child
4655 	 * errors with errors that happened to the zio itself when
4656 	 * updating vdev stats and reporting FMA events above.
4657 	 */
4658 	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
4659 
4660 	if ((zio->io_error || zio->io_reexecute) &&
4661 	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
4662 	    !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
4663 		zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp);
4664 
4665 	zio_gang_tree_free(&zio->io_gang_tree);
4666 
4667 	/*
4668 	 * Godfather I/Os should never suspend.
4669 	 */
4670 	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
4671 	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
4672 		zio->io_reexecute &= ~ZIO_REEXECUTE_SUSPEND;
4673 
4674 	if (zio->io_reexecute) {
4675 		/*
4676 		 * This is a logical I/O that wants to reexecute.
4677 		 *
4678 		 * Reexecute is top-down.  When an i/o fails, if it's not
4679 		 * the root, it simply notifies its parent and sticks around.
4680 		 * The parent, seeing that it still has children in zio_done(),
4681 		 * does the same.  This percolates all the way up to the root.
4682 		 * The root i/o will reexecute or suspend the entire tree.
4683 		 *
4684 		 * This approach ensures that zio_reexecute() honors
4685 		 * all the original i/o dependency relationships, e.g.
4686 		 * parents not executing until children are ready.
4687 		 */
4688 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4689 
4690 		zio->io_gang_leader = NULL;
4691 
4692 		mutex_enter(&zio->io_lock);
4693 		zio->io_state[ZIO_WAIT_DONE] = 1;
4694 		mutex_exit(&zio->io_lock);
4695 
4696 		/*
4697 		 * "The Godfather" I/O monitors its children but is
4698 		 * not a true parent to them. It will track them through
4699 		 * the pipeline but severs its ties whenever they get into
4700 		 * trouble (e.g. suspended). This allows "The Godfather"
4701 		 * I/O to return status without blocking.
4702 		 */
4703 		zl = NULL;
4704 		for (pio = zio_walk_parents(zio, &zl); pio != NULL;
4705 		    pio = pio_next) {
4706 			zio_link_t *remove_zl = zl;
4707 			pio_next = zio_walk_parents(zio, &zl);
4708 
4709 			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
4710 			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
4711 				zio_remove_child(pio, zio, remove_zl);
4712 				/*
4713 				 * This is a rare code path, so we don't
4714 				 * bother with "next_to_execute".
4715 				 */
4716 				zio_notify_parent(pio, zio, ZIO_WAIT_DONE,
4717 				    NULL);
4718 			}
4719 		}
4720 
4721 		if ((pio = zio_unique_parent(zio)) != NULL) {
4722 			/*
4723 			 * We're not a root i/o, so there's nothing to do
4724 			 * but notify our parent.  Don't propagate errors
4725 			 * upward since we haven't permanently failed yet.
4726 			 */
4727 			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
4728 			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
4729 			/*
4730 			 * This is a rare code path, so we don't bother with
4731 			 * "next_to_execute".
4732 			 */
4733 			zio_notify_parent(pio, zio, ZIO_WAIT_DONE, NULL);
4734 		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
4735 			/*
4736 			 * We'd fail again if we reexecuted now, so suspend
4737 			 * until conditions improve (e.g. device comes online).
4738 			 */
4739 			zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR);
4740 		} else {
4741 			/*
4742 			 * Reexecution is potentially a huge amount of work.
4743 			 * Hand it off to the otherwise-unused claim taskq.
4744 			 */
4745 			ASSERT(taskq_empty_ent(&zio->io_tqent));
4746 			spa_taskq_dispatch_ent(zio->io_spa,
4747 			    ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE,
4748 			    (task_func_t *)zio_reexecute, zio, 0,
4749 			    &zio->io_tqent);
4750 		}
4751 		return (NULL);
4752 	}
4753 
4754 	ASSERT(zio->io_child_count == 0);
4755 	ASSERT(zio->io_reexecute == 0);
4756 	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
4757 
4758 	/*
4759 	 * Report any checksum errors, since the I/O is complete.
4760 	 */
4761 	while (zio->io_cksum_report != NULL) {
4762 		zio_cksum_report_t *zcr = zio->io_cksum_report;
4763 		zio->io_cksum_report = zcr->zcr_next;
4764 		zcr->zcr_next = NULL;
4765 		zcr->zcr_finish(zcr, NULL);
4766 		zfs_ereport_free_checksum(zcr);
4767 	}
4768 
4769 	if (zio->io_flags & ZIO_FLAG_FASTWRITE && zio->io_bp &&
4770 	    !BP_IS_HOLE(zio->io_bp) && !BP_IS_EMBEDDED(zio->io_bp) &&
4771 	    !(zio->io_flags & ZIO_FLAG_NOPWRITE)) {
4772 		metaslab_fastwrite_unmark(zio->io_spa, zio->io_bp);
4773 	}
4774 
4775 	/*
4776 	 * It is the responsibility of the done callback to ensure that this
4777 	 * particular zio is no longer discoverable for adoption, and as
4778 	 * such, cannot acquire any new parents.
4779 	 */
4780 	if (zio->io_done)
4781 		zio->io_done(zio);
4782 
4783 	mutex_enter(&zio->io_lock);
4784 	zio->io_state[ZIO_WAIT_DONE] = 1;
4785 	mutex_exit(&zio->io_lock);
4786 
4787 	/*
4788 	 * We are done executing this zio.  We may want to execute a parent
4789 	 * next.  See the comment in zio_notify_parent().
4790 	 */
4791 	zio_t *next_to_execute = NULL;
4792 	zl = NULL;
4793 	for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) {
4794 		zio_link_t *remove_zl = zl;
4795 		pio_next = zio_walk_parents(zio, &zl);
4796 		zio_remove_child(pio, zio, remove_zl);
4797 		zio_notify_parent(pio, zio, ZIO_WAIT_DONE, &next_to_execute);
4798 	}
4799 
4800 	if (zio->io_waiter != NULL) {
4801 		mutex_enter(&zio->io_lock);
4802 		zio->io_executor = NULL;
4803 		cv_broadcast(&zio->io_cv);
4804 		mutex_exit(&zio->io_lock);
4805 	} else {
4806 		zio_destroy(zio);
4807 	}
4808 
4809 	return (next_to_execute);
4810 }
4811 
4812 /*
4813  * ==========================================================================
4814  * I/O pipeline definition
4815  * ==========================================================================
4816  */
4817 static zio_pipe_stage_t *zio_pipeline[] = {
4818 	NULL,
4819 	zio_read_bp_init,
4820 	zio_write_bp_init,
4821 	zio_free_bp_init,
4822 	zio_issue_async,
4823 	zio_write_compress,
4824 	zio_encrypt,
4825 	zio_checksum_generate,
4826 	zio_nop_write,
4827 	zio_ddt_read_start,
4828 	zio_ddt_read_done,
4829 	zio_ddt_write,
4830 	zio_ddt_free,
4831 	zio_gang_assemble,
4832 	zio_gang_issue,
4833 	zio_dva_throttle,
4834 	zio_dva_allocate,
4835 	zio_dva_free,
4836 	zio_dva_claim,
4837 	zio_ready,
4838 	zio_vdev_io_start,
4839 	zio_vdev_io_done,
4840 	zio_vdev_io_assess,
4841 	zio_checksum_verify,
4842 	zio_done
4843 };
4844 
4845 
4846 
4847 
4848 /*
4849  * Compare two zbookmark_phys_t's to see which we would reach first in a
4850  * pre-order traversal of the object tree.
4851  *
4852  * This is simple in every case aside from the meta-dnode object. For all other
4853  * objects, we traverse them in order (object 1 before object 2, and so on).
4854  * However, all of these objects are traversed while traversing object 0, since
4855  * the data it points to is the list of objects.  Thus, we need to convert to a
4856  * canonical representation so we can compare meta-dnode bookmarks to
4857  * non-meta-dnode bookmarks.
4858  *
4859  * We do this by calculating "equivalents" for each field of the zbookmark.
4860  * zbookmarks outside of the meta-dnode use their own object and level, and
4861  * calculate the level 0 equivalent (the first L0 blkid that is contained in the
4862  * blocks this bookmark refers to) by multiplying their blkid by their span
4863  * (the number of L0 blocks contained within one block at their level).
4864  * zbookmarks inside the meta-dnode calculate their object equivalent
4865  * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
4866  * level + 1<<31 (any value larger than a level could ever be) for their level.
4867  * This causes them to always compare before a bookmark in their object
4868  * equivalent, compare appropriately to bookmarks in other objects, and to
4869  * compare appropriately to other bookmarks in the meta-dnode.
4870  */
4871 int
4872 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
4873     const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
4874 {
4875 	/*
4876 	 * These variables represent the "equivalent" values for the zbookmark,
4877 	 * after converting zbookmarks inside the meta dnode to their
4878 	 * normal-object equivalents.
4879 	 */
4880 	uint64_t zb1obj, zb2obj;
4881 	uint64_t zb1L0, zb2L0;
4882 	uint64_t zb1level, zb2level;
4883 
4884 	if (zb1->zb_object == zb2->zb_object &&
4885 	    zb1->zb_level == zb2->zb_level &&
4886 	    zb1->zb_blkid == zb2->zb_blkid)
4887 		return (0);
4888 
4889 	IMPLY(zb1->zb_level > 0, ibs1 >= SPA_MINBLOCKSHIFT);
4890 	IMPLY(zb2->zb_level > 0, ibs2 >= SPA_MINBLOCKSHIFT);
4891 
4892 	/*
4893 	 * BP_SPANB calculates the span in blocks.
4894 	 */
4895 	zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
4896 	zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
4897 
4898 	if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
4899 		zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4900 		zb1L0 = 0;
4901 		zb1level = zb1->zb_level + COMPARE_META_LEVEL;
4902 	} else {
4903 		zb1obj = zb1->zb_object;
4904 		zb1level = zb1->zb_level;
4905 	}
4906 
4907 	if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
4908 		zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4909 		zb2L0 = 0;
4910 		zb2level = zb2->zb_level + COMPARE_META_LEVEL;
4911 	} else {
4912 		zb2obj = zb2->zb_object;
4913 		zb2level = zb2->zb_level;
4914 	}
4915 
4916 	/* Now that we have a canonical representation, do the comparison. */
4917 	if (zb1obj != zb2obj)
4918 		return (zb1obj < zb2obj ? -1 : 1);
4919 	else if (zb1L0 != zb2L0)
4920 		return (zb1L0 < zb2L0 ? -1 : 1);
4921 	else if (zb1level != zb2level)
4922 		return (zb1level > zb2level ? -1 : 1);
4923 	/*
4924 	 * This can (theoretically) happen if the bookmarks have the same object
4925 	 * and level, but different blkids, if the block sizes are not the same.
4926 	 * There is presently no way to change the indirect block sizes
4927 	 */
4928 	return (0);
4929 }
4930 
4931 /*
4932  *  This function checks the following: given that last_block is the place that
4933  *  our traversal stopped last time, does that guarantee that we've visited
4934  *  every node under subtree_root?  Therefore, we can't just use the raw output
4935  *  of zbookmark_compare.  We have to pass in a modified version of
4936  *  subtree_root; by incrementing the block id, and then checking whether
4937  *  last_block is before or equal to that, we can tell whether or not having
4938  *  visited last_block implies that all of subtree_root's children have been
4939  *  visited.
4940  */
4941 boolean_t
4942 zbookmark_subtree_completed(const dnode_phys_t *dnp,
4943     const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
4944 {
4945 	zbookmark_phys_t mod_zb = *subtree_root;
4946 	mod_zb.zb_blkid++;
4947 	ASSERT(last_block->zb_level == 0);
4948 
4949 	/* The objset_phys_t isn't before anything. */
4950 	if (dnp == NULL)
4951 		return (B_FALSE);
4952 
4953 	/*
4954 	 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
4955 	 * data block size in sectors, because that variable is only used if
4956 	 * the bookmark refers to a block in the meta-dnode.  Since we don't
4957 	 * know without examining it what object it refers to, and there's no
4958 	 * harm in passing in this value in other cases, we always pass it in.
4959 	 *
4960 	 * We pass in 0 for the indirect block size shift because zb2 must be
4961 	 * level 0.  The indirect block size is only used to calculate the span
4962 	 * of the bookmark, but since the bookmark must be level 0, the span is
4963 	 * always 1, so the math works out.
4964 	 *
4965 	 * If you make changes to how the zbookmark_compare code works, be sure
4966 	 * to make sure that this code still works afterwards.
4967 	 */
4968 	return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
4969 	    1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
4970 	    last_block) <= 0);
4971 }
4972 
4973 EXPORT_SYMBOL(zio_type_name);
4974 EXPORT_SYMBOL(zio_buf_alloc);
4975 EXPORT_SYMBOL(zio_data_buf_alloc);
4976 EXPORT_SYMBOL(zio_buf_free);
4977 EXPORT_SYMBOL(zio_data_buf_free);
4978 
4979 /* BEGIN CSTYLED */
4980 ZFS_MODULE_PARAM(zfs_zio, zio_, slow_io_ms, INT, ZMOD_RW,
4981 	"Max I/O completion time (milliseconds) before marking it as slow");
4982 
4983 ZFS_MODULE_PARAM(zfs_zio, zio_, requeue_io_start_cut_in_line, INT, ZMOD_RW,
4984 	"Prioritize requeued I/O");
4985 
4986 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_deferred_free,  INT, ZMOD_RW,
4987 	"Defer frees starting in this pass");
4988 
4989 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_dont_compress, INT, ZMOD_RW,
4990 	"Don't compress starting in this pass");
4991 
4992 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_rewrite, INT, ZMOD_RW,
4993 	"Rewrite new bps starting in this pass");
4994 
4995 ZFS_MODULE_PARAM(zfs_zio, zio_, dva_throttle_enabled, INT, ZMOD_RW,
4996 	"Throttle block allocations in the ZIO pipeline");
4997 
4998 ZFS_MODULE_PARAM(zfs_zio, zio_, deadman_log_all, INT, ZMOD_RW,
4999 	"Log all slow ZIOs, not just those with vdevs");
5000 /* END CSTYLED */
5001