xref: /freebsd/sys/contrib/openzfs/module/zfs/zio.c (revision ee97f198b42d50437f87aa4111d478eca2a5be16)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2022 by Delphix. All rights reserved.
24  * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25  * Copyright (c) 2017, Intel Corporation.
26  * Copyright (c) 2019, Klara Inc.
27  * Copyright (c) 2019, Allan Jude
28  * Copyright (c) 2021, Datto, Inc.
29  */
30 
31 #include <sys/sysmacros.h>
32 #include <sys/zfs_context.h>
33 #include <sys/fm/fs/zfs.h>
34 #include <sys/spa.h>
35 #include <sys/txg.h>
36 #include <sys/spa_impl.h>
37 #include <sys/vdev_impl.h>
38 #include <sys/vdev_trim.h>
39 #include <sys/zio_impl.h>
40 #include <sys/zio_compress.h>
41 #include <sys/zio_checksum.h>
42 #include <sys/dmu_objset.h>
43 #include <sys/arc.h>
44 #include <sys/ddt.h>
45 #include <sys/blkptr.h>
46 #include <sys/zfeature.h>
47 #include <sys/dsl_scan.h>
48 #include <sys/metaslab_impl.h>
49 #include <sys/time.h>
50 #include <sys/trace_zfs.h>
51 #include <sys/abd.h>
52 #include <sys/dsl_crypt.h>
53 #include <cityhash.h>
54 
55 /*
56  * ==========================================================================
57  * I/O type descriptions
58  * ==========================================================================
59  */
60 const char *const zio_type_name[ZIO_TYPES] = {
61 	/*
62 	 * Note: Linux kernel thread name length is limited
63 	 * so these names will differ from upstream open zfs.
64 	 */
65 	"z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_ioctl", "z_trim"
66 };
67 
68 int zio_dva_throttle_enabled = B_TRUE;
69 static int zio_deadman_log_all = B_FALSE;
70 
71 /*
72  * ==========================================================================
73  * I/O kmem caches
74  * ==========================================================================
75  */
76 static kmem_cache_t *zio_cache;
77 static kmem_cache_t *zio_link_cache;
78 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
79 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
80 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
81 static uint64_t zio_buf_cache_allocs[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
82 static uint64_t zio_buf_cache_frees[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
83 #endif
84 
85 /* Mark IOs as "slow" if they take longer than 30 seconds */
86 static uint_t zio_slow_io_ms = (30 * MILLISEC);
87 
88 #define	BP_SPANB(indblkshift, level) \
89 	(((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
90 #define	COMPARE_META_LEVEL	0x80000000ul
91 /*
92  * The following actions directly effect the spa's sync-to-convergence logic.
93  * The values below define the sync pass when we start performing the action.
94  * Care should be taken when changing these values as they directly impact
95  * spa_sync() performance. Tuning these values may introduce subtle performance
96  * pathologies and should only be done in the context of performance analysis.
97  * These tunables will eventually be removed and replaced with #defines once
98  * enough analysis has been done to determine optimal values.
99  *
100  * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
101  * regular blocks are not deferred.
102  *
103  * Starting in sync pass 8 (zfs_sync_pass_dont_compress), we disable
104  * compression (including of metadata).  In practice, we don't have this
105  * many sync passes, so this has no effect.
106  *
107  * The original intent was that disabling compression would help the sync
108  * passes to converge. However, in practice disabling compression increases
109  * the average number of sync passes, because when we turn compression off, a
110  * lot of block's size will change and thus we have to re-allocate (not
111  * overwrite) them. It also increases the number of 128KB allocations (e.g.
112  * for indirect blocks and spacemaps) because these will not be compressed.
113  * The 128K allocations are especially detrimental to performance on highly
114  * fragmented systems, which may have very few free segments of this size,
115  * and may need to load new metaslabs to satisfy 128K allocations.
116  */
117 
118 /* defer frees starting in this pass */
119 uint_t zfs_sync_pass_deferred_free = 2;
120 
121 /* don't compress starting in this pass */
122 static uint_t zfs_sync_pass_dont_compress = 8;
123 
124 /* rewrite new bps starting in this pass */
125 static uint_t zfs_sync_pass_rewrite = 2;
126 
127 /*
128  * An allocating zio is one that either currently has the DVA allocate
129  * stage set or will have it later in its lifetime.
130  */
131 #define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
132 
133 /*
134  * Enable smaller cores by excluding metadata
135  * allocations as well.
136  */
137 int zio_exclude_metadata = 0;
138 static int zio_requeue_io_start_cut_in_line = 1;
139 
140 #ifdef ZFS_DEBUG
141 static const int zio_buf_debug_limit = 16384;
142 #else
143 static const int zio_buf_debug_limit = 0;
144 #endif
145 
146 static inline void __zio_execute(zio_t *zio);
147 
148 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t);
149 
150 void
151 zio_init(void)
152 {
153 	size_t c;
154 
155 	zio_cache = kmem_cache_create("zio_cache",
156 	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
157 	zio_link_cache = kmem_cache_create("zio_link_cache",
158 	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
159 
160 	/*
161 	 * For small buffers, we want a cache for each multiple of
162 	 * SPA_MINBLOCKSIZE.  For larger buffers, we want a cache
163 	 * for each quarter-power of 2.
164 	 */
165 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
166 		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
167 		size_t p2 = size;
168 		size_t align = 0;
169 		size_t data_cflags, cflags;
170 
171 		data_cflags = KMC_NODEBUG;
172 		cflags = (zio_exclude_metadata || size > zio_buf_debug_limit) ?
173 		    KMC_NODEBUG : 0;
174 
175 		while (!ISP2(p2))
176 			p2 &= p2 - 1;
177 
178 #ifndef _KERNEL
179 		/*
180 		 * If we are using watchpoints, put each buffer on its own page,
181 		 * to eliminate the performance overhead of trapping to the
182 		 * kernel when modifying a non-watched buffer that shares the
183 		 * page with a watched buffer.
184 		 */
185 		if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
186 			continue;
187 		/*
188 		 * Here's the problem - on 4K native devices in userland on
189 		 * Linux using O_DIRECT, buffers must be 4K aligned or I/O
190 		 * will fail with EINVAL, causing zdb (and others) to coredump.
191 		 * Since userland probably doesn't need optimized buffer caches,
192 		 * we just force 4K alignment on everything.
193 		 */
194 		align = 8 * SPA_MINBLOCKSIZE;
195 #else
196 		if (size < PAGESIZE) {
197 			align = SPA_MINBLOCKSIZE;
198 		} else if (IS_P2ALIGNED(size, p2 >> 2)) {
199 			align = PAGESIZE;
200 		}
201 #endif
202 
203 		if (align != 0) {
204 			char name[36];
205 			if (cflags == data_cflags) {
206 				/*
207 				 * Resulting kmem caches would be identical.
208 				 * Save memory by creating only one.
209 				 */
210 				(void) snprintf(name, sizeof (name),
211 				    "zio_buf_comb_%lu", (ulong_t)size);
212 				zio_buf_cache[c] = kmem_cache_create(name,
213 				    size, align, NULL, NULL, NULL, NULL, NULL,
214 				    cflags);
215 				zio_data_buf_cache[c] = zio_buf_cache[c];
216 				continue;
217 			}
218 			(void) snprintf(name, sizeof (name), "zio_buf_%lu",
219 			    (ulong_t)size);
220 			zio_buf_cache[c] = kmem_cache_create(name, size,
221 			    align, NULL, NULL, NULL, NULL, NULL, cflags);
222 
223 			(void) snprintf(name, sizeof (name), "zio_data_buf_%lu",
224 			    (ulong_t)size);
225 			zio_data_buf_cache[c] = kmem_cache_create(name, size,
226 			    align, NULL, NULL, NULL, NULL, NULL, data_cflags);
227 		}
228 	}
229 
230 	while (--c != 0) {
231 		ASSERT(zio_buf_cache[c] != NULL);
232 		if (zio_buf_cache[c - 1] == NULL)
233 			zio_buf_cache[c - 1] = zio_buf_cache[c];
234 
235 		ASSERT(zio_data_buf_cache[c] != NULL);
236 		if (zio_data_buf_cache[c - 1] == NULL)
237 			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
238 	}
239 
240 	zio_inject_init();
241 
242 	lz4_init();
243 }
244 
245 void
246 zio_fini(void)
247 {
248 	size_t n = SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT;
249 
250 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
251 	for (size_t i = 0; i < n; i++) {
252 		if (zio_buf_cache_allocs[i] != zio_buf_cache_frees[i])
253 			(void) printf("zio_fini: [%d] %llu != %llu\n",
254 			    (int)((i + 1) << SPA_MINBLOCKSHIFT),
255 			    (long long unsigned)zio_buf_cache_allocs[i],
256 			    (long long unsigned)zio_buf_cache_frees[i]);
257 	}
258 #endif
259 
260 	/*
261 	 * The same kmem cache can show up multiple times in both zio_buf_cache
262 	 * and zio_data_buf_cache. Do a wasteful but trivially correct scan to
263 	 * sort it out.
264 	 */
265 	for (size_t i = 0; i < n; i++) {
266 		kmem_cache_t *cache = zio_buf_cache[i];
267 		if (cache == NULL)
268 			continue;
269 		for (size_t j = i; j < n; j++) {
270 			if (cache == zio_buf_cache[j])
271 				zio_buf_cache[j] = NULL;
272 			if (cache == zio_data_buf_cache[j])
273 				zio_data_buf_cache[j] = NULL;
274 		}
275 		kmem_cache_destroy(cache);
276 	}
277 
278 	for (size_t i = 0; i < n; i++) {
279 		kmem_cache_t *cache = zio_data_buf_cache[i];
280 		if (cache == NULL)
281 			continue;
282 		for (size_t j = i; j < n; j++) {
283 			if (cache == zio_data_buf_cache[j])
284 				zio_data_buf_cache[j] = NULL;
285 		}
286 		kmem_cache_destroy(cache);
287 	}
288 
289 	for (size_t i = 0; i < n; i++) {
290 		VERIFY3P(zio_buf_cache[i], ==, NULL);
291 		VERIFY3P(zio_data_buf_cache[i], ==, NULL);
292 	}
293 
294 	kmem_cache_destroy(zio_link_cache);
295 	kmem_cache_destroy(zio_cache);
296 
297 	zio_inject_fini();
298 
299 	lz4_fini();
300 }
301 
302 /*
303  * ==========================================================================
304  * Allocate and free I/O buffers
305  * ==========================================================================
306  */
307 
308 /*
309  * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
310  * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
311  * useful to inspect ZFS metadata, but if possible, we should avoid keeping
312  * excess / transient data in-core during a crashdump.
313  */
314 void *
315 zio_buf_alloc(size_t size)
316 {
317 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
318 
319 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
320 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
321 	atomic_add_64(&zio_buf_cache_allocs[c], 1);
322 #endif
323 
324 	return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
325 }
326 
327 /*
328  * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
329  * crashdump if the kernel panics.  This exists so that we will limit the amount
330  * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
331  * of kernel heap dumped to disk when the kernel panics)
332  */
333 void *
334 zio_data_buf_alloc(size_t size)
335 {
336 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
337 
338 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
339 
340 	return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
341 }
342 
343 void
344 zio_buf_free(void *buf, size_t size)
345 {
346 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
347 
348 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
349 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
350 	atomic_add_64(&zio_buf_cache_frees[c], 1);
351 #endif
352 
353 	kmem_cache_free(zio_buf_cache[c], buf);
354 }
355 
356 void
357 zio_data_buf_free(void *buf, size_t size)
358 {
359 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
360 
361 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
362 
363 	kmem_cache_free(zio_data_buf_cache[c], buf);
364 }
365 
366 static void
367 zio_abd_free(void *abd, size_t size)
368 {
369 	(void) size;
370 	abd_free((abd_t *)abd);
371 }
372 
373 /*
374  * ==========================================================================
375  * Push and pop I/O transform buffers
376  * ==========================================================================
377  */
378 void
379 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize,
380     zio_transform_func_t *transform)
381 {
382 	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
383 
384 	zt->zt_orig_abd = zio->io_abd;
385 	zt->zt_orig_size = zio->io_size;
386 	zt->zt_bufsize = bufsize;
387 	zt->zt_transform = transform;
388 
389 	zt->zt_next = zio->io_transform_stack;
390 	zio->io_transform_stack = zt;
391 
392 	zio->io_abd = data;
393 	zio->io_size = size;
394 }
395 
396 void
397 zio_pop_transforms(zio_t *zio)
398 {
399 	zio_transform_t *zt;
400 
401 	while ((zt = zio->io_transform_stack) != NULL) {
402 		if (zt->zt_transform != NULL)
403 			zt->zt_transform(zio,
404 			    zt->zt_orig_abd, zt->zt_orig_size);
405 
406 		if (zt->zt_bufsize != 0)
407 			abd_free(zio->io_abd);
408 
409 		zio->io_abd = zt->zt_orig_abd;
410 		zio->io_size = zt->zt_orig_size;
411 		zio->io_transform_stack = zt->zt_next;
412 
413 		kmem_free(zt, sizeof (zio_transform_t));
414 	}
415 }
416 
417 /*
418  * ==========================================================================
419  * I/O transform callbacks for subblocks, decompression, and decryption
420  * ==========================================================================
421  */
422 static void
423 zio_subblock(zio_t *zio, abd_t *data, uint64_t size)
424 {
425 	ASSERT(zio->io_size > size);
426 
427 	if (zio->io_type == ZIO_TYPE_READ)
428 		abd_copy(data, zio->io_abd, size);
429 }
430 
431 static void
432 zio_decompress(zio_t *zio, abd_t *data, uint64_t size)
433 {
434 	if (zio->io_error == 0) {
435 		void *tmp = abd_borrow_buf(data, size);
436 		int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
437 		    zio->io_abd, tmp, zio->io_size, size,
438 		    &zio->io_prop.zp_complevel);
439 		abd_return_buf_copy(data, tmp, size);
440 
441 		if (zio_injection_enabled && ret == 0)
442 			ret = zio_handle_fault_injection(zio, EINVAL);
443 
444 		if (ret != 0)
445 			zio->io_error = SET_ERROR(EIO);
446 	}
447 }
448 
449 static void
450 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size)
451 {
452 	int ret;
453 	void *tmp;
454 	blkptr_t *bp = zio->io_bp;
455 	spa_t *spa = zio->io_spa;
456 	uint64_t dsobj = zio->io_bookmark.zb_objset;
457 	uint64_t lsize = BP_GET_LSIZE(bp);
458 	dmu_object_type_t ot = BP_GET_TYPE(bp);
459 	uint8_t salt[ZIO_DATA_SALT_LEN];
460 	uint8_t iv[ZIO_DATA_IV_LEN];
461 	uint8_t mac[ZIO_DATA_MAC_LEN];
462 	boolean_t no_crypt = B_FALSE;
463 
464 	ASSERT(BP_USES_CRYPT(bp));
465 	ASSERT3U(size, !=, 0);
466 
467 	if (zio->io_error != 0)
468 		return;
469 
470 	/*
471 	 * Verify the cksum of MACs stored in an indirect bp. It will always
472 	 * be possible to verify this since it does not require an encryption
473 	 * key.
474 	 */
475 	if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) {
476 		zio_crypt_decode_mac_bp(bp, mac);
477 
478 		if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) {
479 			/*
480 			 * We haven't decompressed the data yet, but
481 			 * zio_crypt_do_indirect_mac_checksum() requires
482 			 * decompressed data to be able to parse out the MACs
483 			 * from the indirect block. We decompress it now and
484 			 * throw away the result after we are finished.
485 			 */
486 			tmp = zio_buf_alloc(lsize);
487 			ret = zio_decompress_data(BP_GET_COMPRESS(bp),
488 			    zio->io_abd, tmp, zio->io_size, lsize,
489 			    &zio->io_prop.zp_complevel);
490 			if (ret != 0) {
491 				ret = SET_ERROR(EIO);
492 				goto error;
493 			}
494 			ret = zio_crypt_do_indirect_mac_checksum(B_FALSE,
495 			    tmp, lsize, BP_SHOULD_BYTESWAP(bp), mac);
496 			zio_buf_free(tmp, lsize);
497 		} else {
498 			ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE,
499 			    zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac);
500 		}
501 		abd_copy(data, zio->io_abd, size);
502 
503 		if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) {
504 			ret = zio_handle_decrypt_injection(spa,
505 			    &zio->io_bookmark, ot, ECKSUM);
506 		}
507 		if (ret != 0)
508 			goto error;
509 
510 		return;
511 	}
512 
513 	/*
514 	 * If this is an authenticated block, just check the MAC. It would be
515 	 * nice to separate this out into its own flag, but when this was done,
516 	 * we had run out of bits in what is now zio_flag_t. Future cleanup
517 	 * could make this a flag bit.
518 	 */
519 	if (BP_IS_AUTHENTICATED(bp)) {
520 		if (ot == DMU_OT_OBJSET) {
521 			ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa,
522 			    dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp));
523 		} else {
524 			zio_crypt_decode_mac_bp(bp, mac);
525 			ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj,
526 			    zio->io_abd, size, mac);
527 			if (zio_injection_enabled && ret == 0) {
528 				ret = zio_handle_decrypt_injection(spa,
529 				    &zio->io_bookmark, ot, ECKSUM);
530 			}
531 		}
532 		abd_copy(data, zio->io_abd, size);
533 
534 		if (ret != 0)
535 			goto error;
536 
537 		return;
538 	}
539 
540 	zio_crypt_decode_params_bp(bp, salt, iv);
541 
542 	if (ot == DMU_OT_INTENT_LOG) {
543 		tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t));
544 		zio_crypt_decode_mac_zil(tmp, mac);
545 		abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t));
546 	} else {
547 		zio_crypt_decode_mac_bp(bp, mac);
548 	}
549 
550 	ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp),
551 	    BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data,
552 	    zio->io_abd, &no_crypt);
553 	if (no_crypt)
554 		abd_copy(data, zio->io_abd, size);
555 
556 	if (ret != 0)
557 		goto error;
558 
559 	return;
560 
561 error:
562 	/* assert that the key was found unless this was speculative */
563 	ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE));
564 
565 	/*
566 	 * If there was a decryption / authentication error return EIO as
567 	 * the io_error. If this was not a speculative zio, create an ereport.
568 	 */
569 	if (ret == ECKSUM) {
570 		zio->io_error = SET_ERROR(EIO);
571 		if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
572 			spa_log_error(spa, &zio->io_bookmark);
573 			(void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
574 			    spa, NULL, &zio->io_bookmark, zio, 0);
575 		}
576 	} else {
577 		zio->io_error = ret;
578 	}
579 }
580 
581 /*
582  * ==========================================================================
583  * I/O parent/child relationships and pipeline interlocks
584  * ==========================================================================
585  */
586 zio_t *
587 zio_walk_parents(zio_t *cio, zio_link_t **zl)
588 {
589 	list_t *pl = &cio->io_parent_list;
590 
591 	*zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl);
592 	if (*zl == NULL)
593 		return (NULL);
594 
595 	ASSERT((*zl)->zl_child == cio);
596 	return ((*zl)->zl_parent);
597 }
598 
599 zio_t *
600 zio_walk_children(zio_t *pio, zio_link_t **zl)
601 {
602 	list_t *cl = &pio->io_child_list;
603 
604 	ASSERT(MUTEX_HELD(&pio->io_lock));
605 
606 	*zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl);
607 	if (*zl == NULL)
608 		return (NULL);
609 
610 	ASSERT((*zl)->zl_parent == pio);
611 	return ((*zl)->zl_child);
612 }
613 
614 zio_t *
615 zio_unique_parent(zio_t *cio)
616 {
617 	zio_link_t *zl = NULL;
618 	zio_t *pio = zio_walk_parents(cio, &zl);
619 
620 	VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL);
621 	return (pio);
622 }
623 
624 void
625 zio_add_child(zio_t *pio, zio_t *cio)
626 {
627 	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
628 
629 	/*
630 	 * Logical I/Os can have logical, gang, or vdev children.
631 	 * Gang I/Os can have gang or vdev children.
632 	 * Vdev I/Os can only have vdev children.
633 	 * The following ASSERT captures all of these constraints.
634 	 */
635 	ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
636 
637 	zl->zl_parent = pio;
638 	zl->zl_child = cio;
639 
640 	mutex_enter(&pio->io_lock);
641 	mutex_enter(&cio->io_lock);
642 
643 	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
644 
645 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
646 		pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
647 
648 	list_insert_head(&pio->io_child_list, zl);
649 	list_insert_head(&cio->io_parent_list, zl);
650 
651 	pio->io_child_count++;
652 	cio->io_parent_count++;
653 
654 	mutex_exit(&cio->io_lock);
655 	mutex_exit(&pio->io_lock);
656 }
657 
658 static void
659 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
660 {
661 	ASSERT(zl->zl_parent == pio);
662 	ASSERT(zl->zl_child == cio);
663 
664 	mutex_enter(&pio->io_lock);
665 	mutex_enter(&cio->io_lock);
666 
667 	list_remove(&pio->io_child_list, zl);
668 	list_remove(&cio->io_parent_list, zl);
669 
670 	pio->io_child_count--;
671 	cio->io_parent_count--;
672 
673 	mutex_exit(&cio->io_lock);
674 	mutex_exit(&pio->io_lock);
675 	kmem_cache_free(zio_link_cache, zl);
676 }
677 
678 static boolean_t
679 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait)
680 {
681 	boolean_t waiting = B_FALSE;
682 
683 	mutex_enter(&zio->io_lock);
684 	ASSERT(zio->io_stall == NULL);
685 	for (int c = 0; c < ZIO_CHILD_TYPES; c++) {
686 		if (!(ZIO_CHILD_BIT_IS_SET(childbits, c)))
687 			continue;
688 
689 		uint64_t *countp = &zio->io_children[c][wait];
690 		if (*countp != 0) {
691 			zio->io_stage >>= 1;
692 			ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN);
693 			zio->io_stall = countp;
694 			waiting = B_TRUE;
695 			break;
696 		}
697 	}
698 	mutex_exit(&zio->io_lock);
699 	return (waiting);
700 }
701 
702 __attribute__((always_inline))
703 static inline void
704 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait,
705     zio_t **next_to_executep)
706 {
707 	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
708 	int *errorp = &pio->io_child_error[zio->io_child_type];
709 
710 	mutex_enter(&pio->io_lock);
711 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
712 		*errorp = zio_worst_error(*errorp, zio->io_error);
713 	pio->io_reexecute |= zio->io_reexecute;
714 	ASSERT3U(*countp, >, 0);
715 
716 	(*countp)--;
717 
718 	if (*countp == 0 && pio->io_stall == countp) {
719 		zio_taskq_type_t type =
720 		    pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE :
721 		    ZIO_TASKQ_INTERRUPT;
722 		pio->io_stall = NULL;
723 		mutex_exit(&pio->io_lock);
724 
725 		/*
726 		 * If we can tell the caller to execute this parent next, do
727 		 * so. We only do this if the parent's zio type matches the
728 		 * child's type. Otherwise dispatch the parent zio in its
729 		 * own taskq.
730 		 *
731 		 * Having the caller execute the parent when possible reduces
732 		 * locking on the zio taskq's, reduces context switch
733 		 * overhead, and has no recursion penalty.  Note that one
734 		 * read from disk typically causes at least 3 zio's: a
735 		 * zio_null(), the logical zio_read(), and then a physical
736 		 * zio.  When the physical ZIO completes, we are able to call
737 		 * zio_done() on all 3 of these zio's from one invocation of
738 		 * zio_execute() by returning the parent back to
739 		 * zio_execute().  Since the parent isn't executed until this
740 		 * thread returns back to zio_execute(), the caller should do
741 		 * so promptly.
742 		 *
743 		 * In other cases, dispatching the parent prevents
744 		 * overflowing the stack when we have deeply nested
745 		 * parent-child relationships, as we do with the "mega zio"
746 		 * of writes for spa_sync(), and the chain of ZIL blocks.
747 		 */
748 		if (next_to_executep != NULL && *next_to_executep == NULL &&
749 		    pio->io_type == zio->io_type) {
750 			*next_to_executep = pio;
751 		} else {
752 			zio_taskq_dispatch(pio, type, B_FALSE);
753 		}
754 	} else {
755 		mutex_exit(&pio->io_lock);
756 	}
757 }
758 
759 static void
760 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
761 {
762 	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
763 		zio->io_error = zio->io_child_error[c];
764 }
765 
766 int
767 zio_bookmark_compare(const void *x1, const void *x2)
768 {
769 	const zio_t *z1 = x1;
770 	const zio_t *z2 = x2;
771 
772 	if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset)
773 		return (-1);
774 	if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset)
775 		return (1);
776 
777 	if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object)
778 		return (-1);
779 	if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object)
780 		return (1);
781 
782 	if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level)
783 		return (-1);
784 	if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level)
785 		return (1);
786 
787 	if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid)
788 		return (-1);
789 	if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid)
790 		return (1);
791 
792 	if (z1 < z2)
793 		return (-1);
794 	if (z1 > z2)
795 		return (1);
796 
797 	return (0);
798 }
799 
800 /*
801  * ==========================================================================
802  * Create the various types of I/O (read, write, free, etc)
803  * ==========================================================================
804  */
805 static zio_t *
806 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
807     abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done,
808     void *private, zio_type_t type, zio_priority_t priority,
809     zio_flag_t flags, vdev_t *vd, uint64_t offset,
810     const zbookmark_phys_t *zb, enum zio_stage stage,
811     enum zio_stage pipeline)
812 {
813 	zio_t *zio;
814 
815 	IMPLY(type != ZIO_TYPE_TRIM, psize <= SPA_MAXBLOCKSIZE);
816 	ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0);
817 	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
818 
819 	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
820 	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
821 	ASSERT(vd || stage == ZIO_STAGE_OPEN);
822 
823 	IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0);
824 
825 	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
826 	memset(zio, 0, sizeof (zio_t));
827 
828 	mutex_init(&zio->io_lock, NULL, MUTEX_NOLOCKDEP, NULL);
829 	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
830 
831 	list_create(&zio->io_parent_list, sizeof (zio_link_t),
832 	    offsetof(zio_link_t, zl_parent_node));
833 	list_create(&zio->io_child_list, sizeof (zio_link_t),
834 	    offsetof(zio_link_t, zl_child_node));
835 	metaslab_trace_init(&zio->io_alloc_list);
836 
837 	if (vd != NULL)
838 		zio->io_child_type = ZIO_CHILD_VDEV;
839 	else if (flags & ZIO_FLAG_GANG_CHILD)
840 		zio->io_child_type = ZIO_CHILD_GANG;
841 	else if (flags & ZIO_FLAG_DDT_CHILD)
842 		zio->io_child_type = ZIO_CHILD_DDT;
843 	else
844 		zio->io_child_type = ZIO_CHILD_LOGICAL;
845 
846 	if (bp != NULL) {
847 		zio->io_bp = (blkptr_t *)bp;
848 		zio->io_bp_copy = *bp;
849 		zio->io_bp_orig = *bp;
850 		if (type != ZIO_TYPE_WRITE ||
851 		    zio->io_child_type == ZIO_CHILD_DDT)
852 			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
853 		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
854 			zio->io_logical = zio;
855 		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
856 			pipeline |= ZIO_GANG_STAGES;
857 	}
858 
859 	zio->io_spa = spa;
860 	zio->io_txg = txg;
861 	zio->io_done = done;
862 	zio->io_private = private;
863 	zio->io_type = type;
864 	zio->io_priority = priority;
865 	zio->io_vd = vd;
866 	zio->io_offset = offset;
867 	zio->io_orig_abd = zio->io_abd = data;
868 	zio->io_orig_size = zio->io_size = psize;
869 	zio->io_lsize = lsize;
870 	zio->io_orig_flags = zio->io_flags = flags;
871 	zio->io_orig_stage = zio->io_stage = stage;
872 	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
873 	zio->io_pipeline_trace = ZIO_STAGE_OPEN;
874 
875 	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
876 	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
877 
878 	if (zb != NULL)
879 		zio->io_bookmark = *zb;
880 
881 	if (pio != NULL) {
882 		zio->io_metaslab_class = pio->io_metaslab_class;
883 		if (zio->io_logical == NULL)
884 			zio->io_logical = pio->io_logical;
885 		if (zio->io_child_type == ZIO_CHILD_GANG)
886 			zio->io_gang_leader = pio->io_gang_leader;
887 		zio_add_child(pio, zio);
888 	}
889 
890 	taskq_init_ent(&zio->io_tqent);
891 
892 	return (zio);
893 }
894 
895 void
896 zio_destroy(zio_t *zio)
897 {
898 	metaslab_trace_fini(&zio->io_alloc_list);
899 	list_destroy(&zio->io_parent_list);
900 	list_destroy(&zio->io_child_list);
901 	mutex_destroy(&zio->io_lock);
902 	cv_destroy(&zio->io_cv);
903 	kmem_cache_free(zio_cache, zio);
904 }
905 
906 zio_t *
907 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
908     void *private, zio_flag_t flags)
909 {
910 	zio_t *zio;
911 
912 	zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
913 	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
914 	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
915 
916 	return (zio);
917 }
918 
919 zio_t *
920 zio_root(spa_t *spa, zio_done_func_t *done, void *private, zio_flag_t flags)
921 {
922 	return (zio_null(NULL, spa, NULL, done, private, flags));
923 }
924 
925 static int
926 zfs_blkptr_verify_log(spa_t *spa, const blkptr_t *bp,
927     enum blk_verify_flag blk_verify, const char *fmt, ...)
928 {
929 	va_list adx;
930 	char buf[256];
931 
932 	va_start(adx, fmt);
933 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
934 	va_end(adx);
935 
936 	switch (blk_verify) {
937 	case BLK_VERIFY_HALT:
938 		dprintf_bp(bp, "blkptr at %p dprintf_bp():", bp);
939 		zfs_panic_recover("%s: %s", spa_name(spa), buf);
940 		break;
941 	case BLK_VERIFY_LOG:
942 		zfs_dbgmsg("%s: %s", spa_name(spa), buf);
943 		break;
944 	case BLK_VERIFY_ONLY:
945 		break;
946 	}
947 
948 	return (1);
949 }
950 
951 /*
952  * Verify the block pointer fields contain reasonable values.  This means
953  * it only contains known object types, checksum/compression identifiers,
954  * block sizes within the maximum allowed limits, valid DVAs, etc.
955  *
956  * If everything checks out B_TRUE is returned.  The zfs_blkptr_verify
957  * argument controls the behavior when an invalid field is detected.
958  *
959  * Modes for zfs_blkptr_verify:
960  *   1) BLK_VERIFY_ONLY (evaluate the block)
961  *   2) BLK_VERIFY_LOG (evaluate the block and log problems)
962  *   3) BLK_VERIFY_HALT (call zfs_panic_recover on error)
963  */
964 boolean_t
965 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp, boolean_t config_held,
966     enum blk_verify_flag blk_verify)
967 {
968 	int errors = 0;
969 
970 	if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
971 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
972 		    "blkptr at %p has invalid TYPE %llu",
973 		    bp, (longlong_t)BP_GET_TYPE(bp));
974 	}
975 	if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS) {
976 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
977 		    "blkptr at %p has invalid CHECKSUM %llu",
978 		    bp, (longlong_t)BP_GET_CHECKSUM(bp));
979 	}
980 	if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS) {
981 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
982 		    "blkptr at %p has invalid COMPRESS %llu",
983 		    bp, (longlong_t)BP_GET_COMPRESS(bp));
984 	}
985 	if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
986 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
987 		    "blkptr at %p has invalid LSIZE %llu",
988 		    bp, (longlong_t)BP_GET_LSIZE(bp));
989 	}
990 	if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
991 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
992 		    "blkptr at %p has invalid PSIZE %llu",
993 		    bp, (longlong_t)BP_GET_PSIZE(bp));
994 	}
995 
996 	if (BP_IS_EMBEDDED(bp)) {
997 		if (BPE_GET_ETYPE(bp) >= NUM_BP_EMBEDDED_TYPES) {
998 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
999 			    "blkptr at %p has invalid ETYPE %llu",
1000 			    bp, (longlong_t)BPE_GET_ETYPE(bp));
1001 		}
1002 	}
1003 
1004 	/*
1005 	 * Do not verify individual DVAs if the config is not trusted. This
1006 	 * will be done once the zio is executed in vdev_mirror_map_alloc.
1007 	 */
1008 	if (!spa->spa_trust_config)
1009 		return (errors == 0);
1010 
1011 	if (!config_held)
1012 		spa_config_enter(spa, SCL_VDEV, bp, RW_READER);
1013 	else
1014 		ASSERT(spa_config_held(spa, SCL_VDEV, RW_WRITER));
1015 	/*
1016 	 * Pool-specific checks.
1017 	 *
1018 	 * Note: it would be nice to verify that the blk_birth and
1019 	 * BP_PHYSICAL_BIRTH() are not too large.  However, spa_freeze()
1020 	 * allows the birth time of log blocks (and dmu_sync()-ed blocks
1021 	 * that are in the log) to be arbitrarily large.
1022 	 */
1023 	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
1024 		const dva_t *dva = &bp->blk_dva[i];
1025 		uint64_t vdevid = DVA_GET_VDEV(dva);
1026 
1027 		if (vdevid >= spa->spa_root_vdev->vdev_children) {
1028 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1029 			    "blkptr at %p DVA %u has invalid VDEV %llu",
1030 			    bp, i, (longlong_t)vdevid);
1031 			continue;
1032 		}
1033 		vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1034 		if (vd == NULL) {
1035 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1036 			    "blkptr at %p DVA %u has invalid VDEV %llu",
1037 			    bp, i, (longlong_t)vdevid);
1038 			continue;
1039 		}
1040 		if (vd->vdev_ops == &vdev_hole_ops) {
1041 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1042 			    "blkptr at %p DVA %u has hole VDEV %llu",
1043 			    bp, i, (longlong_t)vdevid);
1044 			continue;
1045 		}
1046 		if (vd->vdev_ops == &vdev_missing_ops) {
1047 			/*
1048 			 * "missing" vdevs are valid during import, but we
1049 			 * don't have their detailed info (e.g. asize), so
1050 			 * we can't perform any more checks on them.
1051 			 */
1052 			continue;
1053 		}
1054 		uint64_t offset = DVA_GET_OFFSET(dva);
1055 		uint64_t asize = DVA_GET_ASIZE(dva);
1056 		if (DVA_GET_GANG(dva))
1057 			asize = vdev_gang_header_asize(vd);
1058 		if (offset + asize > vd->vdev_asize) {
1059 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1060 			    "blkptr at %p DVA %u has invalid OFFSET %llu",
1061 			    bp, i, (longlong_t)offset);
1062 		}
1063 	}
1064 	if (errors > 0)
1065 		dprintf_bp(bp, "blkptr at %p dprintf_bp():", bp);
1066 	if (!config_held)
1067 		spa_config_exit(spa, SCL_VDEV, bp);
1068 
1069 	return (errors == 0);
1070 }
1071 
1072 boolean_t
1073 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp)
1074 {
1075 	(void) bp;
1076 	uint64_t vdevid = DVA_GET_VDEV(dva);
1077 
1078 	if (vdevid >= spa->spa_root_vdev->vdev_children)
1079 		return (B_FALSE);
1080 
1081 	vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1082 	if (vd == NULL)
1083 		return (B_FALSE);
1084 
1085 	if (vd->vdev_ops == &vdev_hole_ops)
1086 		return (B_FALSE);
1087 
1088 	if (vd->vdev_ops == &vdev_missing_ops) {
1089 		return (B_FALSE);
1090 	}
1091 
1092 	uint64_t offset = DVA_GET_OFFSET(dva);
1093 	uint64_t asize = DVA_GET_ASIZE(dva);
1094 
1095 	if (DVA_GET_GANG(dva))
1096 		asize = vdev_gang_header_asize(vd);
1097 	if (offset + asize > vd->vdev_asize)
1098 		return (B_FALSE);
1099 
1100 	return (B_TRUE);
1101 }
1102 
1103 zio_t *
1104 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
1105     abd_t *data, uint64_t size, zio_done_func_t *done, void *private,
1106     zio_priority_t priority, zio_flag_t flags, const zbookmark_phys_t *zb)
1107 {
1108 	zio_t *zio;
1109 
1110 	zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
1111 	    data, size, size, done, private,
1112 	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
1113 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1114 	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
1115 
1116 	return (zio);
1117 }
1118 
1119 zio_t *
1120 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
1121     abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp,
1122     zio_done_func_t *ready, zio_done_func_t *children_ready,
1123     zio_done_func_t *physdone, zio_done_func_t *done,
1124     void *private, zio_priority_t priority, zio_flag_t flags,
1125     const zbookmark_phys_t *zb)
1126 {
1127 	zio_t *zio;
1128 
1129 	ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
1130 	    zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
1131 	    zp->zp_compress >= ZIO_COMPRESS_OFF &&
1132 	    zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
1133 	    DMU_OT_IS_VALID(zp->zp_type) &&
1134 	    zp->zp_level < 32 &&
1135 	    zp->zp_copies > 0 &&
1136 	    zp->zp_copies <= spa_max_replication(spa));
1137 
1138 	zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private,
1139 	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
1140 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1141 	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
1142 
1143 	zio->io_ready = ready;
1144 	zio->io_children_ready = children_ready;
1145 	zio->io_physdone = physdone;
1146 	zio->io_prop = *zp;
1147 
1148 	/*
1149 	 * Data can be NULL if we are going to call zio_write_override() to
1150 	 * provide the already-allocated BP.  But we may need the data to
1151 	 * verify a dedup hit (if requested).  In this case, don't try to
1152 	 * dedup (just take the already-allocated BP verbatim). Encrypted
1153 	 * dedup blocks need data as well so we also disable dedup in this
1154 	 * case.
1155 	 */
1156 	if (data == NULL &&
1157 	    (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) {
1158 		zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
1159 	}
1160 
1161 	return (zio);
1162 }
1163 
1164 zio_t *
1165 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data,
1166     uint64_t size, zio_done_func_t *done, void *private,
1167     zio_priority_t priority, zio_flag_t flags, zbookmark_phys_t *zb)
1168 {
1169 	zio_t *zio;
1170 
1171 	zio = zio_create(pio, spa, txg, bp, data, size, size, done, private,
1172 	    ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb,
1173 	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
1174 
1175 	return (zio);
1176 }
1177 
1178 void
1179 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
1180 {
1181 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
1182 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1183 	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1184 	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
1185 
1186 	/*
1187 	 * We must reset the io_prop to match the values that existed
1188 	 * when the bp was first written by dmu_sync() keeping in mind
1189 	 * that nopwrite and dedup are mutually exclusive.
1190 	 */
1191 	zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
1192 	zio->io_prop.zp_nopwrite = nopwrite;
1193 	zio->io_prop.zp_copies = copies;
1194 	zio->io_bp_override = bp;
1195 }
1196 
1197 void
1198 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
1199 {
1200 
1201 	(void) zfs_blkptr_verify(spa, bp, B_FALSE, BLK_VERIFY_HALT);
1202 
1203 	/*
1204 	 * The check for EMBEDDED is a performance optimization.  We
1205 	 * process the free here (by ignoring it) rather than
1206 	 * putting it on the list and then processing it in zio_free_sync().
1207 	 */
1208 	if (BP_IS_EMBEDDED(bp))
1209 		return;
1210 
1211 	/*
1212 	 * Frees that are for the currently-syncing txg, are not going to be
1213 	 * deferred, and which will not need to do a read (i.e. not GANG or
1214 	 * DEDUP), can be processed immediately.  Otherwise, put them on the
1215 	 * in-memory list for later processing.
1216 	 *
1217 	 * Note that we only defer frees after zfs_sync_pass_deferred_free
1218 	 * when the log space map feature is disabled. [see relevant comment
1219 	 * in spa_sync_iterate_to_convergence()]
1220 	 */
1221 	if (BP_IS_GANG(bp) ||
1222 	    BP_GET_DEDUP(bp) ||
1223 	    txg != spa->spa_syncing_txg ||
1224 	    (spa_sync_pass(spa) >= zfs_sync_pass_deferred_free &&
1225 	    !spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))) {
1226 		metaslab_check_free(spa, bp);
1227 		bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
1228 	} else {
1229 		VERIFY3P(zio_free_sync(NULL, spa, txg, bp, 0), ==, NULL);
1230 	}
1231 }
1232 
1233 /*
1234  * To improve performance, this function may return NULL if we were able
1235  * to do the free immediately.  This avoids the cost of creating a zio
1236  * (and linking it to the parent, etc).
1237  */
1238 zio_t *
1239 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1240     zio_flag_t flags)
1241 {
1242 	ASSERT(!BP_IS_HOLE(bp));
1243 	ASSERT(spa_syncing_txg(spa) == txg);
1244 
1245 	if (BP_IS_EMBEDDED(bp))
1246 		return (NULL);
1247 
1248 	metaslab_check_free(spa, bp);
1249 	arc_freed(spa, bp);
1250 	dsl_scan_freed(spa, bp);
1251 
1252 	if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp)) {
1253 		/*
1254 		 * GANG and DEDUP blocks can induce a read (for the gang block
1255 		 * header, or the DDT), so issue them asynchronously so that
1256 		 * this thread is not tied up.
1257 		 */
1258 		enum zio_stage stage =
1259 		    ZIO_FREE_PIPELINE | ZIO_STAGE_ISSUE_ASYNC;
1260 
1261 		return (zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1262 		    BP_GET_PSIZE(bp), NULL, NULL,
1263 		    ZIO_TYPE_FREE, ZIO_PRIORITY_NOW,
1264 		    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage));
1265 	} else {
1266 		metaslab_free(spa, bp, txg, B_FALSE);
1267 		return (NULL);
1268 	}
1269 }
1270 
1271 zio_t *
1272 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1273     zio_done_func_t *done, void *private, zio_flag_t flags)
1274 {
1275 	zio_t *zio;
1276 
1277 	(void) zfs_blkptr_verify(spa, bp, flags & ZIO_FLAG_CONFIG_WRITER,
1278 	    BLK_VERIFY_HALT);
1279 
1280 	if (BP_IS_EMBEDDED(bp))
1281 		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
1282 
1283 	/*
1284 	 * A claim is an allocation of a specific block.  Claims are needed
1285 	 * to support immediate writes in the intent log.  The issue is that
1286 	 * immediate writes contain committed data, but in a txg that was
1287 	 * *not* committed.  Upon opening the pool after an unclean shutdown,
1288 	 * the intent log claims all blocks that contain immediate write data
1289 	 * so that the SPA knows they're in use.
1290 	 *
1291 	 * All claims *must* be resolved in the first txg -- before the SPA
1292 	 * starts allocating blocks -- so that nothing is allocated twice.
1293 	 * If txg == 0 we just verify that the block is claimable.
1294 	 */
1295 	ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <,
1296 	    spa_min_claim_txg(spa));
1297 	ASSERT(txg == spa_min_claim_txg(spa) || txg == 0);
1298 	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(8) */
1299 
1300 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1301 	    BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW,
1302 	    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
1303 	ASSERT0(zio->io_queued_timestamp);
1304 
1305 	return (zio);
1306 }
1307 
1308 zio_t *
1309 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
1310     zio_done_func_t *done, void *private, zio_flag_t flags)
1311 {
1312 	zio_t *zio;
1313 	int c;
1314 
1315 	if (vd->vdev_children == 0) {
1316 		zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
1317 		    ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
1318 		    ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
1319 
1320 		zio->io_cmd = cmd;
1321 	} else {
1322 		zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
1323 
1324 		for (c = 0; c < vd->vdev_children; c++)
1325 			zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
1326 			    done, private, flags));
1327 	}
1328 
1329 	return (zio);
1330 }
1331 
1332 zio_t *
1333 zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1334     zio_done_func_t *done, void *private, zio_priority_t priority,
1335     zio_flag_t flags, enum trim_flag trim_flags)
1336 {
1337 	zio_t *zio;
1338 
1339 	ASSERT0(vd->vdev_children);
1340 	ASSERT0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
1341 	ASSERT0(P2PHASE(size, 1ULL << vd->vdev_ashift));
1342 	ASSERT3U(size, !=, 0);
1343 
1344 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, NULL, size, size, done,
1345 	    private, ZIO_TYPE_TRIM, priority, flags | ZIO_FLAG_PHYSICAL,
1346 	    vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_TRIM_PIPELINE);
1347 	zio->io_trim_flags = trim_flags;
1348 
1349 	return (zio);
1350 }
1351 
1352 zio_t *
1353 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1354     abd_t *data, int checksum, zio_done_func_t *done, void *private,
1355     zio_priority_t priority, zio_flag_t flags, boolean_t labels)
1356 {
1357 	zio_t *zio;
1358 
1359 	ASSERT(vd->vdev_children == 0);
1360 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1361 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1362 	ASSERT3U(offset + size, <=, vd->vdev_psize);
1363 
1364 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1365 	    private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1366 	    offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
1367 
1368 	zio->io_prop.zp_checksum = checksum;
1369 
1370 	return (zio);
1371 }
1372 
1373 zio_t *
1374 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1375     abd_t *data, int checksum, zio_done_func_t *done, void *private,
1376     zio_priority_t priority, zio_flag_t flags, boolean_t labels)
1377 {
1378 	zio_t *zio;
1379 
1380 	ASSERT(vd->vdev_children == 0);
1381 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1382 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1383 	ASSERT3U(offset + size, <=, vd->vdev_psize);
1384 
1385 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1386 	    private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1387 	    offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
1388 
1389 	zio->io_prop.zp_checksum = checksum;
1390 
1391 	if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
1392 		/*
1393 		 * zec checksums are necessarily destructive -- they modify
1394 		 * the end of the write buffer to hold the verifier/checksum.
1395 		 * Therefore, we must make a local copy in case the data is
1396 		 * being written to multiple places in parallel.
1397 		 */
1398 		abd_t *wbuf = abd_alloc_sametype(data, size);
1399 		abd_copy(wbuf, data, size);
1400 
1401 		zio_push_transform(zio, wbuf, size, size, NULL);
1402 	}
1403 
1404 	return (zio);
1405 }
1406 
1407 /*
1408  * Create a child I/O to do some work for us.
1409  */
1410 zio_t *
1411 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1412     abd_t *data, uint64_t size, int type, zio_priority_t priority,
1413     zio_flag_t flags, zio_done_func_t *done, void *private)
1414 {
1415 	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1416 	zio_t *zio;
1417 
1418 	/*
1419 	 * vdev child I/Os do not propagate their error to the parent.
1420 	 * Therefore, for correct operation the caller *must* check for
1421 	 * and handle the error in the child i/o's done callback.
1422 	 * The only exceptions are i/os that we don't care about
1423 	 * (OPTIONAL or REPAIR).
1424 	 */
1425 	ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) ||
1426 	    done != NULL);
1427 
1428 	if (type == ZIO_TYPE_READ && bp != NULL) {
1429 		/*
1430 		 * If we have the bp, then the child should perform the
1431 		 * checksum and the parent need not.  This pushes error
1432 		 * detection as close to the leaves as possible and
1433 		 * eliminates redundant checksums in the interior nodes.
1434 		 */
1435 		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1436 		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1437 	}
1438 
1439 	if (vd->vdev_ops->vdev_op_leaf) {
1440 		ASSERT0(vd->vdev_children);
1441 		offset += VDEV_LABEL_START_SIZE;
1442 	}
1443 
1444 	flags |= ZIO_VDEV_CHILD_FLAGS(pio);
1445 
1446 	/*
1447 	 * If we've decided to do a repair, the write is not speculative --
1448 	 * even if the original read was.
1449 	 */
1450 	if (flags & ZIO_FLAG_IO_REPAIR)
1451 		flags &= ~ZIO_FLAG_SPECULATIVE;
1452 
1453 	/*
1454 	 * If we're creating a child I/O that is not associated with a
1455 	 * top-level vdev, then the child zio is not an allocating I/O.
1456 	 * If this is a retried I/O then we ignore it since we will
1457 	 * have already processed the original allocating I/O.
1458 	 */
1459 	if (flags & ZIO_FLAG_IO_ALLOCATING &&
1460 	    (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) {
1461 		ASSERT(pio->io_metaslab_class != NULL);
1462 		ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled);
1463 		ASSERT(type == ZIO_TYPE_WRITE);
1464 		ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE);
1465 		ASSERT(!(flags & ZIO_FLAG_IO_REPAIR));
1466 		ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) ||
1467 		    pio->io_child_type == ZIO_CHILD_GANG);
1468 
1469 		flags &= ~ZIO_FLAG_IO_ALLOCATING;
1470 	}
1471 
1472 
1473 	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size,
1474 	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1475 	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1476 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
1477 
1478 	zio->io_physdone = pio->io_physdone;
1479 	if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
1480 		zio->io_logical->io_phys_children++;
1481 
1482 	return (zio);
1483 }
1484 
1485 zio_t *
1486 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size,
1487     zio_type_t type, zio_priority_t priority, zio_flag_t flags,
1488     zio_done_func_t *done, void *private)
1489 {
1490 	zio_t *zio;
1491 
1492 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1493 
1494 	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1495 	    data, size, size, done, private, type, priority,
1496 	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1497 	    vd, offset, NULL,
1498 	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1499 
1500 	return (zio);
1501 }
1502 
1503 void
1504 zio_flush(zio_t *zio, vdev_t *vd)
1505 {
1506 	zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
1507 	    NULL, NULL,
1508 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1509 }
1510 
1511 void
1512 zio_shrink(zio_t *zio, uint64_t size)
1513 {
1514 	ASSERT3P(zio->io_executor, ==, NULL);
1515 	ASSERT3U(zio->io_orig_size, ==, zio->io_size);
1516 	ASSERT3U(size, <=, zio->io_size);
1517 
1518 	/*
1519 	 * We don't shrink for raidz because of problems with the
1520 	 * reconstruction when reading back less than the block size.
1521 	 * Note, BP_IS_RAIDZ() assumes no compression.
1522 	 */
1523 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1524 	if (!BP_IS_RAIDZ(zio->io_bp)) {
1525 		/* we are not doing a raw write */
1526 		ASSERT3U(zio->io_size, ==, zio->io_lsize);
1527 		zio->io_orig_size = zio->io_size = zio->io_lsize = size;
1528 	}
1529 }
1530 
1531 /*
1532  * ==========================================================================
1533  * Prepare to read and write logical blocks
1534  * ==========================================================================
1535  */
1536 
1537 static zio_t *
1538 zio_read_bp_init(zio_t *zio)
1539 {
1540 	blkptr_t *bp = zio->io_bp;
1541 	uint64_t psize =
1542 	    BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1543 
1544 	ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1545 
1546 	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1547 	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
1548 	    !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1549 		zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1550 		    psize, psize, zio_decompress);
1551 	}
1552 
1553 	if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) ||
1554 	    BP_HAS_INDIRECT_MAC_CKSUM(bp)) &&
1555 	    zio->io_child_type == ZIO_CHILD_LOGICAL) {
1556 		zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1557 		    psize, psize, zio_decrypt);
1558 	}
1559 
1560 	if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1561 		int psize = BPE_GET_PSIZE(bp);
1562 		void *data = abd_borrow_buf(zio->io_abd, psize);
1563 
1564 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1565 		decode_embedded_bp_compressed(bp, data);
1566 		abd_return_buf_copy(zio->io_abd, data, psize);
1567 	} else {
1568 		ASSERT(!BP_IS_EMBEDDED(bp));
1569 		ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1570 	}
1571 
1572 	if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1573 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1574 
1575 	if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1576 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1577 
1578 	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1579 		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1580 
1581 	return (zio);
1582 }
1583 
1584 static zio_t *
1585 zio_write_bp_init(zio_t *zio)
1586 {
1587 	if (!IO_IS_ALLOCATING(zio))
1588 		return (zio);
1589 
1590 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1591 
1592 	if (zio->io_bp_override) {
1593 		blkptr_t *bp = zio->io_bp;
1594 		zio_prop_t *zp = &zio->io_prop;
1595 
1596 		ASSERT(bp->blk_birth != zio->io_txg);
1597 		ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1598 
1599 		*bp = *zio->io_bp_override;
1600 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1601 
1602 		if (BP_IS_EMBEDDED(bp))
1603 			return (zio);
1604 
1605 		/*
1606 		 * If we've been overridden and nopwrite is set then
1607 		 * set the flag accordingly to indicate that a nopwrite
1608 		 * has already occurred.
1609 		 */
1610 		if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1611 			ASSERT(!zp->zp_dedup);
1612 			ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum);
1613 			zio->io_flags |= ZIO_FLAG_NOPWRITE;
1614 			return (zio);
1615 		}
1616 
1617 		ASSERT(!zp->zp_nopwrite);
1618 
1619 		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1620 			return (zio);
1621 
1622 		ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1623 		    ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1624 
1625 		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum &&
1626 		    !zp->zp_encrypt) {
1627 			BP_SET_DEDUP(bp, 1);
1628 			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1629 			return (zio);
1630 		}
1631 
1632 		/*
1633 		 * We were unable to handle this as an override bp, treat
1634 		 * it as a regular write I/O.
1635 		 */
1636 		zio->io_bp_override = NULL;
1637 		*bp = zio->io_bp_orig;
1638 		zio->io_pipeline = zio->io_orig_pipeline;
1639 	}
1640 
1641 	return (zio);
1642 }
1643 
1644 static zio_t *
1645 zio_write_compress(zio_t *zio)
1646 {
1647 	spa_t *spa = zio->io_spa;
1648 	zio_prop_t *zp = &zio->io_prop;
1649 	enum zio_compress compress = zp->zp_compress;
1650 	blkptr_t *bp = zio->io_bp;
1651 	uint64_t lsize = zio->io_lsize;
1652 	uint64_t psize = zio->io_size;
1653 	uint32_t pass = 1;
1654 
1655 	/*
1656 	 * If our children haven't all reached the ready stage,
1657 	 * wait for them and then repeat this pipeline stage.
1658 	 */
1659 	if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
1660 	    ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) {
1661 		return (NULL);
1662 	}
1663 
1664 	if (!IO_IS_ALLOCATING(zio))
1665 		return (zio);
1666 
1667 	if (zio->io_children_ready != NULL) {
1668 		/*
1669 		 * Now that all our children are ready, run the callback
1670 		 * associated with this zio in case it wants to modify the
1671 		 * data to be written.
1672 		 */
1673 		ASSERT3U(zp->zp_level, >, 0);
1674 		zio->io_children_ready(zio);
1675 	}
1676 
1677 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1678 	ASSERT(zio->io_bp_override == NULL);
1679 
1680 	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1681 		/*
1682 		 * We're rewriting an existing block, which means we're
1683 		 * working on behalf of spa_sync().  For spa_sync() to
1684 		 * converge, it must eventually be the case that we don't
1685 		 * have to allocate new blocks.  But compression changes
1686 		 * the blocksize, which forces a reallocate, and makes
1687 		 * convergence take longer.  Therefore, after the first
1688 		 * few passes, stop compressing to ensure convergence.
1689 		 */
1690 		pass = spa_sync_pass(spa);
1691 
1692 		ASSERT(zio->io_txg == spa_syncing_txg(spa));
1693 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1694 		ASSERT(!BP_GET_DEDUP(bp));
1695 
1696 		if (pass >= zfs_sync_pass_dont_compress)
1697 			compress = ZIO_COMPRESS_OFF;
1698 
1699 		/* Make sure someone doesn't change their mind on overwrites */
1700 		ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1701 		    spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1702 	}
1703 
1704 	/* If it's a compressed write that is not raw, compress the buffer. */
1705 	if (compress != ZIO_COMPRESS_OFF &&
1706 	    !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1707 		void *cbuf = zio_buf_alloc(lsize);
1708 		psize = zio_compress_data(compress, zio->io_abd, cbuf, lsize,
1709 		    zp->zp_complevel);
1710 		if (psize == 0 || psize >= lsize) {
1711 			compress = ZIO_COMPRESS_OFF;
1712 			zio_buf_free(cbuf, lsize);
1713 		} else if (!zp->zp_dedup && !zp->zp_encrypt &&
1714 		    psize <= BPE_PAYLOAD_SIZE &&
1715 		    zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1716 		    spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1717 			encode_embedded_bp_compressed(bp,
1718 			    cbuf, compress, lsize, psize);
1719 			BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1720 			BP_SET_TYPE(bp, zio->io_prop.zp_type);
1721 			BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1722 			zio_buf_free(cbuf, lsize);
1723 			bp->blk_birth = zio->io_txg;
1724 			zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1725 			ASSERT(spa_feature_is_active(spa,
1726 			    SPA_FEATURE_EMBEDDED_DATA));
1727 			return (zio);
1728 		} else {
1729 			/*
1730 			 * Round compressed size up to the minimum allocation
1731 			 * size of the smallest-ashift device, and zero the
1732 			 * tail. This ensures that the compressed size of the
1733 			 * BP (and thus compressratio property) are correct,
1734 			 * in that we charge for the padding used to fill out
1735 			 * the last sector.
1736 			 */
1737 			ASSERT3U(spa->spa_min_alloc, >=, SPA_MINBLOCKSHIFT);
1738 			size_t rounded = (size_t)roundup(psize,
1739 			    spa->spa_min_alloc);
1740 			if (rounded >= lsize) {
1741 				compress = ZIO_COMPRESS_OFF;
1742 				zio_buf_free(cbuf, lsize);
1743 				psize = lsize;
1744 			} else {
1745 				abd_t *cdata = abd_get_from_buf(cbuf, lsize);
1746 				abd_take_ownership_of_buf(cdata, B_TRUE);
1747 				abd_zero_off(cdata, psize, rounded - psize);
1748 				psize = rounded;
1749 				zio_push_transform(zio, cdata,
1750 				    psize, lsize, NULL);
1751 			}
1752 		}
1753 
1754 		/*
1755 		 * We were unable to handle this as an override bp, treat
1756 		 * it as a regular write I/O.
1757 		 */
1758 		zio->io_bp_override = NULL;
1759 		*bp = zio->io_bp_orig;
1760 		zio->io_pipeline = zio->io_orig_pipeline;
1761 
1762 	} else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 &&
1763 	    zp->zp_type == DMU_OT_DNODE) {
1764 		/*
1765 		 * The DMU actually relies on the zio layer's compression
1766 		 * to free metadnode blocks that have had all contained
1767 		 * dnodes freed. As a result, even when doing a raw
1768 		 * receive, we must check whether the block can be compressed
1769 		 * to a hole.
1770 		 */
1771 		psize = zio_compress_data(ZIO_COMPRESS_EMPTY,
1772 		    zio->io_abd, NULL, lsize, zp->zp_complevel);
1773 		if (psize == 0 || psize >= lsize)
1774 			compress = ZIO_COMPRESS_OFF;
1775 	} else if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS &&
1776 	    !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) {
1777 		/*
1778 		 * If we are raw receiving an encrypted dataset we should not
1779 		 * take this codepath because it will change the on-disk block
1780 		 * and decryption will fail.
1781 		 */
1782 		size_t rounded = MIN((size_t)roundup(psize,
1783 		    spa->spa_min_alloc), lsize);
1784 
1785 		if (rounded != psize) {
1786 			abd_t *cdata = abd_alloc_linear(rounded, B_TRUE);
1787 			abd_zero_off(cdata, psize, rounded - psize);
1788 			abd_copy_off(cdata, zio->io_abd, 0, 0, psize);
1789 			psize = rounded;
1790 			zio_push_transform(zio, cdata,
1791 			    psize, rounded, NULL);
1792 		}
1793 	} else {
1794 		ASSERT3U(psize, !=, 0);
1795 	}
1796 
1797 	/*
1798 	 * The final pass of spa_sync() must be all rewrites, but the first
1799 	 * few passes offer a trade-off: allocating blocks defers convergence,
1800 	 * but newly allocated blocks are sequential, so they can be written
1801 	 * to disk faster.  Therefore, we allow the first few passes of
1802 	 * spa_sync() to allocate new blocks, but force rewrites after that.
1803 	 * There should only be a handful of blocks after pass 1 in any case.
1804 	 */
1805 	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1806 	    BP_GET_PSIZE(bp) == psize &&
1807 	    pass >= zfs_sync_pass_rewrite) {
1808 		VERIFY3U(psize, !=, 0);
1809 		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1810 
1811 		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1812 		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1813 	} else {
1814 		BP_ZERO(bp);
1815 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
1816 	}
1817 
1818 	if (psize == 0) {
1819 		if (zio->io_bp_orig.blk_birth != 0 &&
1820 		    spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1821 			BP_SET_LSIZE(bp, lsize);
1822 			BP_SET_TYPE(bp, zp->zp_type);
1823 			BP_SET_LEVEL(bp, zp->zp_level);
1824 			BP_SET_BIRTH(bp, zio->io_txg, 0);
1825 		}
1826 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1827 	} else {
1828 		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1829 		BP_SET_LSIZE(bp, lsize);
1830 		BP_SET_TYPE(bp, zp->zp_type);
1831 		BP_SET_LEVEL(bp, zp->zp_level);
1832 		BP_SET_PSIZE(bp, psize);
1833 		BP_SET_COMPRESS(bp, compress);
1834 		BP_SET_CHECKSUM(bp, zp->zp_checksum);
1835 		BP_SET_DEDUP(bp, zp->zp_dedup);
1836 		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1837 		if (zp->zp_dedup) {
1838 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1839 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1840 			ASSERT(!zp->zp_encrypt ||
1841 			    DMU_OT_IS_ENCRYPTED(zp->zp_type));
1842 			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1843 		}
1844 		if (zp->zp_nopwrite) {
1845 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1846 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1847 			zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1848 		}
1849 	}
1850 	return (zio);
1851 }
1852 
1853 static zio_t *
1854 zio_free_bp_init(zio_t *zio)
1855 {
1856 	blkptr_t *bp = zio->io_bp;
1857 
1858 	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1859 		if (BP_GET_DEDUP(bp))
1860 			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1861 	}
1862 
1863 	ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1864 
1865 	return (zio);
1866 }
1867 
1868 /*
1869  * ==========================================================================
1870  * Execute the I/O pipeline
1871  * ==========================================================================
1872  */
1873 
1874 static void
1875 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1876 {
1877 	spa_t *spa = zio->io_spa;
1878 	zio_type_t t = zio->io_type;
1879 	int flags = (cutinline ? TQ_FRONT : 0);
1880 
1881 	/*
1882 	 * If we're a config writer or a probe, the normal issue and
1883 	 * interrupt threads may all be blocked waiting for the config lock.
1884 	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1885 	 */
1886 	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1887 		t = ZIO_TYPE_NULL;
1888 
1889 	/*
1890 	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1891 	 */
1892 	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1893 		t = ZIO_TYPE_NULL;
1894 
1895 	/*
1896 	 * If this is a high priority I/O, then use the high priority taskq if
1897 	 * available.
1898 	 */
1899 	if ((zio->io_priority == ZIO_PRIORITY_NOW ||
1900 	    zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) &&
1901 	    spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1902 		q++;
1903 
1904 	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1905 
1906 	/*
1907 	 * NB: We are assuming that the zio can only be dispatched
1908 	 * to a single taskq at a time.  It would be a grievous error
1909 	 * to dispatch the zio to another taskq at the same time.
1910 	 */
1911 	ASSERT(taskq_empty_ent(&zio->io_tqent));
1912 	spa_taskq_dispatch_ent(spa, t, q, zio_execute, zio, flags,
1913 	    &zio->io_tqent);
1914 }
1915 
1916 static boolean_t
1917 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1918 {
1919 	spa_t *spa = zio->io_spa;
1920 
1921 	taskq_t *tq = taskq_of_curthread();
1922 
1923 	for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1924 		spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1925 		uint_t i;
1926 		for (i = 0; i < tqs->stqs_count; i++) {
1927 			if (tqs->stqs_taskq[i] == tq)
1928 				return (B_TRUE);
1929 		}
1930 	}
1931 
1932 	return (B_FALSE);
1933 }
1934 
1935 static zio_t *
1936 zio_issue_async(zio_t *zio)
1937 {
1938 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1939 
1940 	return (NULL);
1941 }
1942 
1943 void
1944 zio_interrupt(void *zio)
1945 {
1946 	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1947 }
1948 
1949 void
1950 zio_delay_interrupt(zio_t *zio)
1951 {
1952 	/*
1953 	 * The timeout_generic() function isn't defined in userspace, so
1954 	 * rather than trying to implement the function, the zio delay
1955 	 * functionality has been disabled for userspace builds.
1956 	 */
1957 
1958 #ifdef _KERNEL
1959 	/*
1960 	 * If io_target_timestamp is zero, then no delay has been registered
1961 	 * for this IO, thus jump to the end of this function and "skip" the
1962 	 * delay; issuing it directly to the zio layer.
1963 	 */
1964 	if (zio->io_target_timestamp != 0) {
1965 		hrtime_t now = gethrtime();
1966 
1967 		if (now >= zio->io_target_timestamp) {
1968 			/*
1969 			 * This IO has already taken longer than the target
1970 			 * delay to complete, so we don't want to delay it
1971 			 * any longer; we "miss" the delay and issue it
1972 			 * directly to the zio layer. This is likely due to
1973 			 * the target latency being set to a value less than
1974 			 * the underlying hardware can satisfy (e.g. delay
1975 			 * set to 1ms, but the disks take 10ms to complete an
1976 			 * IO request).
1977 			 */
1978 
1979 			DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
1980 			    hrtime_t, now);
1981 
1982 			zio_interrupt(zio);
1983 		} else {
1984 			taskqid_t tid;
1985 			hrtime_t diff = zio->io_target_timestamp - now;
1986 			clock_t expire_at_tick = ddi_get_lbolt() +
1987 			    NSEC_TO_TICK(diff);
1988 
1989 			DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
1990 			    hrtime_t, now, hrtime_t, diff);
1991 
1992 			if (NSEC_TO_TICK(diff) == 0) {
1993 				/* Our delay is less than a jiffy - just spin */
1994 				zfs_sleep_until(zio->io_target_timestamp);
1995 				zio_interrupt(zio);
1996 			} else {
1997 				/*
1998 				 * Use taskq_dispatch_delay() in the place of
1999 				 * OpenZFS's timeout_generic().
2000 				 */
2001 				tid = taskq_dispatch_delay(system_taskq,
2002 				    zio_interrupt, zio, TQ_NOSLEEP,
2003 				    expire_at_tick);
2004 				if (tid == TASKQID_INVALID) {
2005 					/*
2006 					 * Couldn't allocate a task.  Just
2007 					 * finish the zio without a delay.
2008 					 */
2009 					zio_interrupt(zio);
2010 				}
2011 			}
2012 		}
2013 		return;
2014 	}
2015 #endif
2016 	DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
2017 	zio_interrupt(zio);
2018 }
2019 
2020 static void
2021 zio_deadman_impl(zio_t *pio, int ziodepth)
2022 {
2023 	zio_t *cio, *cio_next;
2024 	zio_link_t *zl = NULL;
2025 	vdev_t *vd = pio->io_vd;
2026 
2027 	if (zio_deadman_log_all || (vd != NULL && vd->vdev_ops->vdev_op_leaf)) {
2028 		vdev_queue_t *vq = vd ? &vd->vdev_queue : NULL;
2029 		zbookmark_phys_t *zb = &pio->io_bookmark;
2030 		uint64_t delta = gethrtime() - pio->io_timestamp;
2031 		uint64_t failmode = spa_get_deadman_failmode(pio->io_spa);
2032 
2033 		zfs_dbgmsg("slow zio[%d]: zio=%px timestamp=%llu "
2034 		    "delta=%llu queued=%llu io=%llu "
2035 		    "path=%s "
2036 		    "last=%llu type=%d "
2037 		    "priority=%d flags=0x%llx stage=0x%x "
2038 		    "pipeline=0x%x pipeline-trace=0x%x "
2039 		    "objset=%llu object=%llu "
2040 		    "level=%llu blkid=%llu "
2041 		    "offset=%llu size=%llu "
2042 		    "error=%d",
2043 		    ziodepth, pio, pio->io_timestamp,
2044 		    (u_longlong_t)delta, pio->io_delta, pio->io_delay,
2045 		    vd ? vd->vdev_path : "NULL",
2046 		    vq ? vq->vq_io_complete_ts : 0, pio->io_type,
2047 		    pio->io_priority, (u_longlong_t)pio->io_flags,
2048 		    pio->io_stage, pio->io_pipeline, pio->io_pipeline_trace,
2049 		    (u_longlong_t)zb->zb_objset, (u_longlong_t)zb->zb_object,
2050 		    (u_longlong_t)zb->zb_level, (u_longlong_t)zb->zb_blkid,
2051 		    (u_longlong_t)pio->io_offset, (u_longlong_t)pio->io_size,
2052 		    pio->io_error);
2053 		(void) zfs_ereport_post(FM_EREPORT_ZFS_DEADMAN,
2054 		    pio->io_spa, vd, zb, pio, 0);
2055 
2056 		if (failmode == ZIO_FAILURE_MODE_CONTINUE &&
2057 		    taskq_empty_ent(&pio->io_tqent)) {
2058 			zio_interrupt(pio);
2059 		}
2060 	}
2061 
2062 	mutex_enter(&pio->io_lock);
2063 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2064 		cio_next = zio_walk_children(pio, &zl);
2065 		zio_deadman_impl(cio, ziodepth + 1);
2066 	}
2067 	mutex_exit(&pio->io_lock);
2068 }
2069 
2070 /*
2071  * Log the critical information describing this zio and all of its children
2072  * using the zfs_dbgmsg() interface then post deadman event for the ZED.
2073  */
2074 void
2075 zio_deadman(zio_t *pio, const char *tag)
2076 {
2077 	spa_t *spa = pio->io_spa;
2078 	char *name = spa_name(spa);
2079 
2080 	if (!zfs_deadman_enabled || spa_suspended(spa))
2081 		return;
2082 
2083 	zio_deadman_impl(pio, 0);
2084 
2085 	switch (spa_get_deadman_failmode(spa)) {
2086 	case ZIO_FAILURE_MODE_WAIT:
2087 		zfs_dbgmsg("%s waiting for hung I/O to pool '%s'", tag, name);
2088 		break;
2089 
2090 	case ZIO_FAILURE_MODE_CONTINUE:
2091 		zfs_dbgmsg("%s restarting hung I/O for pool '%s'", tag, name);
2092 		break;
2093 
2094 	case ZIO_FAILURE_MODE_PANIC:
2095 		fm_panic("%s determined I/O to pool '%s' is hung.", tag, name);
2096 		break;
2097 	}
2098 }
2099 
2100 /*
2101  * Execute the I/O pipeline until one of the following occurs:
2102  * (1) the I/O completes; (2) the pipeline stalls waiting for
2103  * dependent child I/Os; (3) the I/O issues, so we're waiting
2104  * for an I/O completion interrupt; (4) the I/O is delegated by
2105  * vdev-level caching or aggregation; (5) the I/O is deferred
2106  * due to vdev-level queueing; (6) the I/O is handed off to
2107  * another thread.  In all cases, the pipeline stops whenever
2108  * there's no CPU work; it never burns a thread in cv_wait_io().
2109  *
2110  * There's no locking on io_stage because there's no legitimate way
2111  * for multiple threads to be attempting to process the same I/O.
2112  */
2113 static zio_pipe_stage_t *zio_pipeline[];
2114 
2115 /*
2116  * zio_execute() is a wrapper around the static function
2117  * __zio_execute() so that we can force  __zio_execute() to be
2118  * inlined.  This reduces stack overhead which is important
2119  * because __zio_execute() is called recursively in several zio
2120  * code paths.  zio_execute() itself cannot be inlined because
2121  * it is externally visible.
2122  */
2123 void
2124 zio_execute(void *zio)
2125 {
2126 	fstrans_cookie_t cookie;
2127 
2128 	cookie = spl_fstrans_mark();
2129 	__zio_execute(zio);
2130 	spl_fstrans_unmark(cookie);
2131 }
2132 
2133 /*
2134  * Used to determine if in the current context the stack is sized large
2135  * enough to allow zio_execute() to be called recursively.  A minimum
2136  * stack size of 16K is required to avoid needing to re-dispatch the zio.
2137  */
2138 static boolean_t
2139 zio_execute_stack_check(zio_t *zio)
2140 {
2141 #if !defined(HAVE_LARGE_STACKS)
2142 	dsl_pool_t *dp = spa_get_dsl(zio->io_spa);
2143 
2144 	/* Executing in txg_sync_thread() context. */
2145 	if (dp && curthread == dp->dp_tx.tx_sync_thread)
2146 		return (B_TRUE);
2147 
2148 	/* Pool initialization outside of zio_taskq context. */
2149 	if (dp && spa_is_initializing(dp->dp_spa) &&
2150 	    !zio_taskq_member(zio, ZIO_TASKQ_ISSUE) &&
2151 	    !zio_taskq_member(zio, ZIO_TASKQ_ISSUE_HIGH))
2152 		return (B_TRUE);
2153 #else
2154 	(void) zio;
2155 #endif /* HAVE_LARGE_STACKS */
2156 
2157 	return (B_FALSE);
2158 }
2159 
2160 __attribute__((always_inline))
2161 static inline void
2162 __zio_execute(zio_t *zio)
2163 {
2164 	ASSERT3U(zio->io_queued_timestamp, >, 0);
2165 
2166 	while (zio->io_stage < ZIO_STAGE_DONE) {
2167 		enum zio_stage pipeline = zio->io_pipeline;
2168 		enum zio_stage stage = zio->io_stage;
2169 
2170 		zio->io_executor = curthread;
2171 
2172 		ASSERT(!MUTEX_HELD(&zio->io_lock));
2173 		ASSERT(ISP2(stage));
2174 		ASSERT(zio->io_stall == NULL);
2175 
2176 		do {
2177 			stage <<= 1;
2178 		} while ((stage & pipeline) == 0);
2179 
2180 		ASSERT(stage <= ZIO_STAGE_DONE);
2181 
2182 		/*
2183 		 * If we are in interrupt context and this pipeline stage
2184 		 * will grab a config lock that is held across I/O,
2185 		 * or may wait for an I/O that needs an interrupt thread
2186 		 * to complete, issue async to avoid deadlock.
2187 		 *
2188 		 * For VDEV_IO_START, we cut in line so that the io will
2189 		 * be sent to disk promptly.
2190 		 */
2191 		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
2192 		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
2193 			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2194 			    zio_requeue_io_start_cut_in_line : B_FALSE;
2195 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2196 			return;
2197 		}
2198 
2199 		/*
2200 		 * If the current context doesn't have large enough stacks
2201 		 * the zio must be issued asynchronously to prevent overflow.
2202 		 */
2203 		if (zio_execute_stack_check(zio)) {
2204 			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2205 			    zio_requeue_io_start_cut_in_line : B_FALSE;
2206 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2207 			return;
2208 		}
2209 
2210 		zio->io_stage = stage;
2211 		zio->io_pipeline_trace |= zio->io_stage;
2212 
2213 		/*
2214 		 * The zio pipeline stage returns the next zio to execute
2215 		 * (typically the same as this one), or NULL if we should
2216 		 * stop.
2217 		 */
2218 		zio = zio_pipeline[highbit64(stage) - 1](zio);
2219 
2220 		if (zio == NULL)
2221 			return;
2222 	}
2223 }
2224 
2225 
2226 /*
2227  * ==========================================================================
2228  * Initiate I/O, either sync or async
2229  * ==========================================================================
2230  */
2231 int
2232 zio_wait(zio_t *zio)
2233 {
2234 	/*
2235 	 * Some routines, like zio_free_sync(), may return a NULL zio
2236 	 * to avoid the performance overhead of creating and then destroying
2237 	 * an unneeded zio.  For the callers' simplicity, we accept a NULL
2238 	 * zio and ignore it.
2239 	 */
2240 	if (zio == NULL)
2241 		return (0);
2242 
2243 	long timeout = MSEC_TO_TICK(zfs_deadman_ziotime_ms);
2244 	int error;
2245 
2246 	ASSERT3S(zio->io_stage, ==, ZIO_STAGE_OPEN);
2247 	ASSERT3P(zio->io_executor, ==, NULL);
2248 
2249 	zio->io_waiter = curthread;
2250 	ASSERT0(zio->io_queued_timestamp);
2251 	zio->io_queued_timestamp = gethrtime();
2252 
2253 	__zio_execute(zio);
2254 
2255 	mutex_enter(&zio->io_lock);
2256 	while (zio->io_executor != NULL) {
2257 		error = cv_timedwait_io(&zio->io_cv, &zio->io_lock,
2258 		    ddi_get_lbolt() + timeout);
2259 
2260 		if (zfs_deadman_enabled && error == -1 &&
2261 		    gethrtime() - zio->io_queued_timestamp >
2262 		    spa_deadman_ziotime(zio->io_spa)) {
2263 			mutex_exit(&zio->io_lock);
2264 			timeout = MSEC_TO_TICK(zfs_deadman_checktime_ms);
2265 			zio_deadman(zio, FTAG);
2266 			mutex_enter(&zio->io_lock);
2267 		}
2268 	}
2269 	mutex_exit(&zio->io_lock);
2270 
2271 	error = zio->io_error;
2272 	zio_destroy(zio);
2273 
2274 	return (error);
2275 }
2276 
2277 void
2278 zio_nowait(zio_t *zio)
2279 {
2280 	/*
2281 	 * See comment in zio_wait().
2282 	 */
2283 	if (zio == NULL)
2284 		return;
2285 
2286 	ASSERT3P(zio->io_executor, ==, NULL);
2287 
2288 	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
2289 	    zio_unique_parent(zio) == NULL) {
2290 		zio_t *pio;
2291 
2292 		/*
2293 		 * This is a logical async I/O with no parent to wait for it.
2294 		 * We add it to the spa_async_root_zio "Godfather" I/O which
2295 		 * will ensure they complete prior to unloading the pool.
2296 		 */
2297 		spa_t *spa = zio->io_spa;
2298 		pio = spa->spa_async_zio_root[CPU_SEQID_UNSTABLE];
2299 
2300 		zio_add_child(pio, zio);
2301 	}
2302 
2303 	ASSERT0(zio->io_queued_timestamp);
2304 	zio->io_queued_timestamp = gethrtime();
2305 	__zio_execute(zio);
2306 }
2307 
2308 /*
2309  * ==========================================================================
2310  * Reexecute, cancel, or suspend/resume failed I/O
2311  * ==========================================================================
2312  */
2313 
2314 static void
2315 zio_reexecute(void *arg)
2316 {
2317 	zio_t *pio = arg;
2318 	zio_t *cio, *cio_next;
2319 
2320 	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
2321 	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
2322 	ASSERT(pio->io_gang_leader == NULL);
2323 	ASSERT(pio->io_gang_tree == NULL);
2324 
2325 	pio->io_flags = pio->io_orig_flags;
2326 	pio->io_stage = pio->io_orig_stage;
2327 	pio->io_pipeline = pio->io_orig_pipeline;
2328 	pio->io_reexecute = 0;
2329 	pio->io_flags |= ZIO_FLAG_REEXECUTED;
2330 	pio->io_pipeline_trace = 0;
2331 	pio->io_error = 0;
2332 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2333 		pio->io_state[w] = 0;
2334 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2335 		pio->io_child_error[c] = 0;
2336 
2337 	if (IO_IS_ALLOCATING(pio))
2338 		BP_ZERO(pio->io_bp);
2339 
2340 	/*
2341 	 * As we reexecute pio's children, new children could be created.
2342 	 * New children go to the head of pio's io_child_list, however,
2343 	 * so we will (correctly) not reexecute them.  The key is that
2344 	 * the remainder of pio's io_child_list, from 'cio_next' onward,
2345 	 * cannot be affected by any side effects of reexecuting 'cio'.
2346 	 */
2347 	zio_link_t *zl = NULL;
2348 	mutex_enter(&pio->io_lock);
2349 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2350 		cio_next = zio_walk_children(pio, &zl);
2351 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2352 			pio->io_children[cio->io_child_type][w]++;
2353 		mutex_exit(&pio->io_lock);
2354 		zio_reexecute(cio);
2355 		mutex_enter(&pio->io_lock);
2356 	}
2357 	mutex_exit(&pio->io_lock);
2358 
2359 	/*
2360 	 * Now that all children have been reexecuted, execute the parent.
2361 	 * We don't reexecute "The Godfather" I/O here as it's the
2362 	 * responsibility of the caller to wait on it.
2363 	 */
2364 	if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) {
2365 		pio->io_queued_timestamp = gethrtime();
2366 		__zio_execute(pio);
2367 	}
2368 }
2369 
2370 void
2371 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason)
2372 {
2373 	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
2374 		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
2375 		    "failure and the failure mode property for this pool "
2376 		    "is set to panic.", spa_name(spa));
2377 
2378 	cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable I/O "
2379 	    "failure and has been suspended.\n", spa_name(spa));
2380 
2381 	(void) zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL,
2382 	    NULL, NULL, 0);
2383 
2384 	mutex_enter(&spa->spa_suspend_lock);
2385 
2386 	if (spa->spa_suspend_zio_root == NULL)
2387 		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
2388 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2389 		    ZIO_FLAG_GODFATHER);
2390 
2391 	spa->spa_suspended = reason;
2392 
2393 	if (zio != NULL) {
2394 		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
2395 		ASSERT(zio != spa->spa_suspend_zio_root);
2396 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2397 		ASSERT(zio_unique_parent(zio) == NULL);
2398 		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
2399 		zio_add_child(spa->spa_suspend_zio_root, zio);
2400 	}
2401 
2402 	mutex_exit(&spa->spa_suspend_lock);
2403 }
2404 
2405 int
2406 zio_resume(spa_t *spa)
2407 {
2408 	zio_t *pio;
2409 
2410 	/*
2411 	 * Reexecute all previously suspended i/o.
2412 	 */
2413 	mutex_enter(&spa->spa_suspend_lock);
2414 	spa->spa_suspended = ZIO_SUSPEND_NONE;
2415 	cv_broadcast(&spa->spa_suspend_cv);
2416 	pio = spa->spa_suspend_zio_root;
2417 	spa->spa_suspend_zio_root = NULL;
2418 	mutex_exit(&spa->spa_suspend_lock);
2419 
2420 	if (pio == NULL)
2421 		return (0);
2422 
2423 	zio_reexecute(pio);
2424 	return (zio_wait(pio));
2425 }
2426 
2427 void
2428 zio_resume_wait(spa_t *spa)
2429 {
2430 	mutex_enter(&spa->spa_suspend_lock);
2431 	while (spa_suspended(spa))
2432 		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
2433 	mutex_exit(&spa->spa_suspend_lock);
2434 }
2435 
2436 /*
2437  * ==========================================================================
2438  * Gang blocks.
2439  *
2440  * A gang block is a collection of small blocks that looks to the DMU
2441  * like one large block.  When zio_dva_allocate() cannot find a block
2442  * of the requested size, due to either severe fragmentation or the pool
2443  * being nearly full, it calls zio_write_gang_block() to construct the
2444  * block from smaller fragments.
2445  *
2446  * A gang block consists of a gang header (zio_gbh_phys_t) and up to
2447  * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
2448  * an indirect block: it's an array of block pointers.  It consumes
2449  * only one sector and hence is allocatable regardless of fragmentation.
2450  * The gang header's bps point to its gang members, which hold the data.
2451  *
2452  * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
2453  * as the verifier to ensure uniqueness of the SHA256 checksum.
2454  * Critically, the gang block bp's blk_cksum is the checksum of the data,
2455  * not the gang header.  This ensures that data block signatures (needed for
2456  * deduplication) are independent of how the block is physically stored.
2457  *
2458  * Gang blocks can be nested: a gang member may itself be a gang block.
2459  * Thus every gang block is a tree in which root and all interior nodes are
2460  * gang headers, and the leaves are normal blocks that contain user data.
2461  * The root of the gang tree is called the gang leader.
2462  *
2463  * To perform any operation (read, rewrite, free, claim) on a gang block,
2464  * zio_gang_assemble() first assembles the gang tree (minus data leaves)
2465  * in the io_gang_tree field of the original logical i/o by recursively
2466  * reading the gang leader and all gang headers below it.  This yields
2467  * an in-core tree containing the contents of every gang header and the
2468  * bps for every constituent of the gang block.
2469  *
2470  * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
2471  * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
2472  * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
2473  * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
2474  * zio_read_gang() is a wrapper around zio_read() that omits reading gang
2475  * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
2476  * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
2477  * of the gang header plus zio_checksum_compute() of the data to update the
2478  * gang header's blk_cksum as described above.
2479  *
2480  * The two-phase assemble/issue model solves the problem of partial failure --
2481  * what if you'd freed part of a gang block but then couldn't read the
2482  * gang header for another part?  Assembling the entire gang tree first
2483  * ensures that all the necessary gang header I/O has succeeded before
2484  * starting the actual work of free, claim, or write.  Once the gang tree
2485  * is assembled, free and claim are in-memory operations that cannot fail.
2486  *
2487  * In the event that a gang write fails, zio_dva_unallocate() walks the
2488  * gang tree to immediately free (i.e. insert back into the space map)
2489  * everything we've allocated.  This ensures that we don't get ENOSPC
2490  * errors during repeated suspend/resume cycles due to a flaky device.
2491  *
2492  * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
2493  * the gang tree, we won't modify the block, so we can safely defer the free
2494  * (knowing that the block is still intact).  If we *can* assemble the gang
2495  * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
2496  * each constituent bp and we can allocate a new block on the next sync pass.
2497  *
2498  * In all cases, the gang tree allows complete recovery from partial failure.
2499  * ==========================================================================
2500  */
2501 
2502 static void
2503 zio_gang_issue_func_done(zio_t *zio)
2504 {
2505 	abd_free(zio->io_abd);
2506 }
2507 
2508 static zio_t *
2509 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2510     uint64_t offset)
2511 {
2512 	if (gn != NULL)
2513 		return (pio);
2514 
2515 	return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset),
2516 	    BP_GET_PSIZE(bp), zio_gang_issue_func_done,
2517 	    NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2518 	    &pio->io_bookmark));
2519 }
2520 
2521 static zio_t *
2522 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2523     uint64_t offset)
2524 {
2525 	zio_t *zio;
2526 
2527 	if (gn != NULL) {
2528 		abd_t *gbh_abd =
2529 		    abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2530 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2531 		    gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL,
2532 		    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2533 		    &pio->io_bookmark);
2534 		/*
2535 		 * As we rewrite each gang header, the pipeline will compute
2536 		 * a new gang block header checksum for it; but no one will
2537 		 * compute a new data checksum, so we do that here.  The one
2538 		 * exception is the gang leader: the pipeline already computed
2539 		 * its data checksum because that stage precedes gang assembly.
2540 		 * (Presently, nothing actually uses interior data checksums;
2541 		 * this is just good hygiene.)
2542 		 */
2543 		if (gn != pio->io_gang_leader->io_gang_tree) {
2544 			abd_t *buf = abd_get_offset(data, offset);
2545 
2546 			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
2547 			    buf, BP_GET_PSIZE(bp));
2548 
2549 			abd_free(buf);
2550 		}
2551 		/*
2552 		 * If we are here to damage data for testing purposes,
2553 		 * leave the GBH alone so that we can detect the damage.
2554 		 */
2555 		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
2556 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2557 	} else {
2558 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2559 		    abd_get_offset(data, offset), BP_GET_PSIZE(bp),
2560 		    zio_gang_issue_func_done, NULL, pio->io_priority,
2561 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2562 	}
2563 
2564 	return (zio);
2565 }
2566 
2567 static zio_t *
2568 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2569     uint64_t offset)
2570 {
2571 	(void) gn, (void) data, (void) offset;
2572 
2573 	zio_t *zio = zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
2574 	    ZIO_GANG_CHILD_FLAGS(pio));
2575 	if (zio == NULL) {
2576 		zio = zio_null(pio, pio->io_spa,
2577 		    NULL, NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio));
2578 	}
2579 	return (zio);
2580 }
2581 
2582 static zio_t *
2583 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2584     uint64_t offset)
2585 {
2586 	(void) gn, (void) data, (void) offset;
2587 	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
2588 	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
2589 }
2590 
2591 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
2592 	NULL,
2593 	zio_read_gang,
2594 	zio_rewrite_gang,
2595 	zio_free_gang,
2596 	zio_claim_gang,
2597 	NULL
2598 };
2599 
2600 static void zio_gang_tree_assemble_done(zio_t *zio);
2601 
2602 static zio_gang_node_t *
2603 zio_gang_node_alloc(zio_gang_node_t **gnpp)
2604 {
2605 	zio_gang_node_t *gn;
2606 
2607 	ASSERT(*gnpp == NULL);
2608 
2609 	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
2610 	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
2611 	*gnpp = gn;
2612 
2613 	return (gn);
2614 }
2615 
2616 static void
2617 zio_gang_node_free(zio_gang_node_t **gnpp)
2618 {
2619 	zio_gang_node_t *gn = *gnpp;
2620 
2621 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2622 		ASSERT(gn->gn_child[g] == NULL);
2623 
2624 	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2625 	kmem_free(gn, sizeof (*gn));
2626 	*gnpp = NULL;
2627 }
2628 
2629 static void
2630 zio_gang_tree_free(zio_gang_node_t **gnpp)
2631 {
2632 	zio_gang_node_t *gn = *gnpp;
2633 
2634 	if (gn == NULL)
2635 		return;
2636 
2637 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2638 		zio_gang_tree_free(&gn->gn_child[g]);
2639 
2640 	zio_gang_node_free(gnpp);
2641 }
2642 
2643 static void
2644 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
2645 {
2646 	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
2647 	abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2648 
2649 	ASSERT(gio->io_gang_leader == gio);
2650 	ASSERT(BP_IS_GANG(bp));
2651 
2652 	zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2653 	    zio_gang_tree_assemble_done, gn, gio->io_priority,
2654 	    ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
2655 }
2656 
2657 static void
2658 zio_gang_tree_assemble_done(zio_t *zio)
2659 {
2660 	zio_t *gio = zio->io_gang_leader;
2661 	zio_gang_node_t *gn = zio->io_private;
2662 	blkptr_t *bp = zio->io_bp;
2663 
2664 	ASSERT(gio == zio_unique_parent(zio));
2665 	ASSERT(zio->io_child_count == 0);
2666 
2667 	if (zio->io_error)
2668 		return;
2669 
2670 	/* this ABD was created from a linear buf in zio_gang_tree_assemble */
2671 	if (BP_SHOULD_BYTESWAP(bp))
2672 		byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size);
2673 
2674 	ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh);
2675 	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
2676 	ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2677 
2678 	abd_free(zio->io_abd);
2679 
2680 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2681 		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2682 		if (!BP_IS_GANG(gbp))
2683 			continue;
2684 		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
2685 	}
2686 }
2687 
2688 static void
2689 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data,
2690     uint64_t offset)
2691 {
2692 	zio_t *gio = pio->io_gang_leader;
2693 	zio_t *zio;
2694 
2695 	ASSERT(BP_IS_GANG(bp) == !!gn);
2696 	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
2697 	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
2698 
2699 	/*
2700 	 * If you're a gang header, your data is in gn->gn_gbh.
2701 	 * If you're a gang member, your data is in 'data' and gn == NULL.
2702 	 */
2703 	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset);
2704 
2705 	if (gn != NULL) {
2706 		ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2707 
2708 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2709 			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2710 			if (BP_IS_HOLE(gbp))
2711 				continue;
2712 			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data,
2713 			    offset);
2714 			offset += BP_GET_PSIZE(gbp);
2715 		}
2716 	}
2717 
2718 	if (gn == gio->io_gang_tree)
2719 		ASSERT3U(gio->io_size, ==, offset);
2720 
2721 	if (zio != pio)
2722 		zio_nowait(zio);
2723 }
2724 
2725 static zio_t *
2726 zio_gang_assemble(zio_t *zio)
2727 {
2728 	blkptr_t *bp = zio->io_bp;
2729 
2730 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
2731 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2732 
2733 	zio->io_gang_leader = zio;
2734 
2735 	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
2736 
2737 	return (zio);
2738 }
2739 
2740 static zio_t *
2741 zio_gang_issue(zio_t *zio)
2742 {
2743 	blkptr_t *bp = zio->io_bp;
2744 
2745 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) {
2746 		return (NULL);
2747 	}
2748 
2749 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
2750 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2751 
2752 	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
2753 		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd,
2754 		    0);
2755 	else
2756 		zio_gang_tree_free(&zio->io_gang_tree);
2757 
2758 	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2759 
2760 	return (zio);
2761 }
2762 
2763 static void
2764 zio_write_gang_member_ready(zio_t *zio)
2765 {
2766 	zio_t *pio = zio_unique_parent(zio);
2767 	dva_t *cdva = zio->io_bp->blk_dva;
2768 	dva_t *pdva = pio->io_bp->blk_dva;
2769 	uint64_t asize;
2770 	zio_t *gio __maybe_unused = zio->io_gang_leader;
2771 
2772 	if (BP_IS_HOLE(zio->io_bp))
2773 		return;
2774 
2775 	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
2776 
2777 	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
2778 	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
2779 	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
2780 	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
2781 	VERIFY3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
2782 
2783 	mutex_enter(&pio->io_lock);
2784 	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
2785 		ASSERT(DVA_GET_GANG(&pdva[d]));
2786 		asize = DVA_GET_ASIZE(&pdva[d]);
2787 		asize += DVA_GET_ASIZE(&cdva[d]);
2788 		DVA_SET_ASIZE(&pdva[d], asize);
2789 	}
2790 	mutex_exit(&pio->io_lock);
2791 }
2792 
2793 static void
2794 zio_write_gang_done(zio_t *zio)
2795 {
2796 	/*
2797 	 * The io_abd field will be NULL for a zio with no data.  The io_flags
2798 	 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't
2799 	 * check for it here as it is cleared in zio_ready.
2800 	 */
2801 	if (zio->io_abd != NULL)
2802 		abd_free(zio->io_abd);
2803 }
2804 
2805 static zio_t *
2806 zio_write_gang_block(zio_t *pio, metaslab_class_t *mc)
2807 {
2808 	spa_t *spa = pio->io_spa;
2809 	blkptr_t *bp = pio->io_bp;
2810 	zio_t *gio = pio->io_gang_leader;
2811 	zio_t *zio;
2812 	zio_gang_node_t *gn, **gnpp;
2813 	zio_gbh_phys_t *gbh;
2814 	abd_t *gbh_abd;
2815 	uint64_t txg = pio->io_txg;
2816 	uint64_t resid = pio->io_size;
2817 	uint64_t lsize;
2818 	int copies = gio->io_prop.zp_copies;
2819 	zio_prop_t zp;
2820 	int error;
2821 	boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA);
2822 
2823 	/*
2824 	 * If one copy was requested, store 2 copies of the GBH, so that we
2825 	 * can still traverse all the data (e.g. to free or scrub) even if a
2826 	 * block is damaged.  Note that we can't store 3 copies of the GBH in
2827 	 * all cases, e.g. with encryption, which uses DVA[2] for the IV+salt.
2828 	 */
2829 	int gbh_copies = copies;
2830 	if (gbh_copies == 1) {
2831 		gbh_copies = MIN(2, spa_max_replication(spa));
2832 	}
2833 
2834 	int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER;
2835 	if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2836 		ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2837 		ASSERT(has_data);
2838 
2839 		flags |= METASLAB_ASYNC_ALLOC;
2840 		VERIFY(zfs_refcount_held(&mc->mc_allocator[pio->io_allocator].
2841 		    mca_alloc_slots, pio));
2842 
2843 		/*
2844 		 * The logical zio has already placed a reservation for
2845 		 * 'copies' allocation slots but gang blocks may require
2846 		 * additional copies. These additional copies
2847 		 * (i.e. gbh_copies - copies) are guaranteed to succeed
2848 		 * since metaslab_class_throttle_reserve() always allows
2849 		 * additional reservations for gang blocks.
2850 		 */
2851 		VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies,
2852 		    pio->io_allocator, pio, flags));
2853 	}
2854 
2855 	error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE,
2856 	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags,
2857 	    &pio->io_alloc_list, pio, pio->io_allocator);
2858 	if (error) {
2859 		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2860 			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2861 			ASSERT(has_data);
2862 
2863 			/*
2864 			 * If we failed to allocate the gang block header then
2865 			 * we remove any additional allocation reservations that
2866 			 * we placed here. The original reservation will
2867 			 * be removed when the logical I/O goes to the ready
2868 			 * stage.
2869 			 */
2870 			metaslab_class_throttle_unreserve(mc,
2871 			    gbh_copies - copies, pio->io_allocator, pio);
2872 		}
2873 
2874 		pio->io_error = error;
2875 		return (pio);
2876 	}
2877 
2878 	if (pio == gio) {
2879 		gnpp = &gio->io_gang_tree;
2880 	} else {
2881 		gnpp = pio->io_private;
2882 		ASSERT(pio->io_ready == zio_write_gang_member_ready);
2883 	}
2884 
2885 	gn = zio_gang_node_alloc(gnpp);
2886 	gbh = gn->gn_gbh;
2887 	memset(gbh, 0, SPA_GANGBLOCKSIZE);
2888 	gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE);
2889 
2890 	/*
2891 	 * Create the gang header.
2892 	 */
2893 	zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2894 	    zio_write_gang_done, NULL, pio->io_priority,
2895 	    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2896 
2897 	/*
2898 	 * Create and nowait the gang children.
2899 	 */
2900 	for (int g = 0; resid != 0; resid -= lsize, g++) {
2901 		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
2902 		    SPA_MINBLOCKSIZE);
2903 		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
2904 
2905 		zp.zp_checksum = gio->io_prop.zp_checksum;
2906 		zp.zp_compress = ZIO_COMPRESS_OFF;
2907 		zp.zp_complevel = gio->io_prop.zp_complevel;
2908 		zp.zp_type = DMU_OT_NONE;
2909 		zp.zp_level = 0;
2910 		zp.zp_copies = gio->io_prop.zp_copies;
2911 		zp.zp_dedup = B_FALSE;
2912 		zp.zp_dedup_verify = B_FALSE;
2913 		zp.zp_nopwrite = B_FALSE;
2914 		zp.zp_encrypt = gio->io_prop.zp_encrypt;
2915 		zp.zp_byteorder = gio->io_prop.zp_byteorder;
2916 		memset(zp.zp_salt, 0, ZIO_DATA_SALT_LEN);
2917 		memset(zp.zp_iv, 0, ZIO_DATA_IV_LEN);
2918 		memset(zp.zp_mac, 0, ZIO_DATA_MAC_LEN);
2919 
2920 		zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
2921 		    has_data ? abd_get_offset(pio->io_abd, pio->io_size -
2922 		    resid) : NULL, lsize, lsize, &zp,
2923 		    zio_write_gang_member_ready, NULL, NULL,
2924 		    zio_write_gang_done, &gn->gn_child[g], pio->io_priority,
2925 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2926 
2927 		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2928 			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2929 			ASSERT(has_data);
2930 
2931 			/*
2932 			 * Gang children won't throttle but we should
2933 			 * account for their work, so reserve an allocation
2934 			 * slot for them here.
2935 			 */
2936 			VERIFY(metaslab_class_throttle_reserve(mc,
2937 			    zp.zp_copies, cio->io_allocator, cio, flags));
2938 		}
2939 		zio_nowait(cio);
2940 	}
2941 
2942 	/*
2943 	 * Set pio's pipeline to just wait for zio to finish.
2944 	 */
2945 	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2946 
2947 	/*
2948 	 * We didn't allocate this bp, so make sure it doesn't get unmarked.
2949 	 */
2950 	pio->io_flags &= ~ZIO_FLAG_FASTWRITE;
2951 
2952 	zio_nowait(zio);
2953 
2954 	return (pio);
2955 }
2956 
2957 /*
2958  * The zio_nop_write stage in the pipeline determines if allocating a
2959  * new bp is necessary.  The nopwrite feature can handle writes in
2960  * either syncing or open context (i.e. zil writes) and as a result is
2961  * mutually exclusive with dedup.
2962  *
2963  * By leveraging a cryptographically secure checksum, such as SHA256, we
2964  * can compare the checksums of the new data and the old to determine if
2965  * allocating a new block is required.  Note that our requirements for
2966  * cryptographic strength are fairly weak: there can't be any accidental
2967  * hash collisions, but we don't need to be secure against intentional
2968  * (malicious) collisions.  To trigger a nopwrite, you have to be able
2969  * to write the file to begin with, and triggering an incorrect (hash
2970  * collision) nopwrite is no worse than simply writing to the file.
2971  * That said, there are no known attacks against the checksum algorithms
2972  * used for nopwrite, assuming that the salt and the checksums
2973  * themselves remain secret.
2974  */
2975 static zio_t *
2976 zio_nop_write(zio_t *zio)
2977 {
2978 	blkptr_t *bp = zio->io_bp;
2979 	blkptr_t *bp_orig = &zio->io_bp_orig;
2980 	zio_prop_t *zp = &zio->io_prop;
2981 
2982 	ASSERT(BP_IS_HOLE(bp));
2983 	ASSERT(BP_GET_LEVEL(bp) == 0);
2984 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2985 	ASSERT(zp->zp_nopwrite);
2986 	ASSERT(!zp->zp_dedup);
2987 	ASSERT(zio->io_bp_override == NULL);
2988 	ASSERT(IO_IS_ALLOCATING(zio));
2989 
2990 	/*
2991 	 * Check to see if the original bp and the new bp have matching
2992 	 * characteristics (i.e. same checksum, compression algorithms, etc).
2993 	 * If they don't then just continue with the pipeline which will
2994 	 * allocate a new bp.
2995 	 */
2996 	if (BP_IS_HOLE(bp_orig) ||
2997 	    !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
2998 	    ZCHECKSUM_FLAG_NOPWRITE) ||
2999 	    BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) ||
3000 	    BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
3001 	    BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
3002 	    BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
3003 	    zp->zp_copies != BP_GET_NDVAS(bp_orig))
3004 		return (zio);
3005 
3006 	/*
3007 	 * If the checksums match then reset the pipeline so that we
3008 	 * avoid allocating a new bp and issuing any I/O.
3009 	 */
3010 	if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
3011 		ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
3012 		    ZCHECKSUM_FLAG_NOPWRITE);
3013 		ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
3014 		ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
3015 		ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
3016 		ASSERT3U(bp->blk_prop, ==, bp_orig->blk_prop);
3017 
3018 		/*
3019 		 * If we're overwriting a block that is currently on an
3020 		 * indirect vdev, then ignore the nopwrite request and
3021 		 * allow a new block to be allocated on a concrete vdev.
3022 		 */
3023 		spa_config_enter(zio->io_spa, SCL_VDEV, FTAG, RW_READER);
3024 		for (int d = 0; d < BP_GET_NDVAS(bp_orig); d++) {
3025 			vdev_t *tvd = vdev_lookup_top(zio->io_spa,
3026 			    DVA_GET_VDEV(&bp_orig->blk_dva[d]));
3027 			if (tvd->vdev_ops == &vdev_indirect_ops) {
3028 				spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
3029 				return (zio);
3030 			}
3031 		}
3032 		spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
3033 
3034 		*bp = *bp_orig;
3035 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3036 		zio->io_flags |= ZIO_FLAG_NOPWRITE;
3037 	}
3038 
3039 	return (zio);
3040 }
3041 
3042 /*
3043  * ==========================================================================
3044  * Dedup
3045  * ==========================================================================
3046  */
3047 static void
3048 zio_ddt_child_read_done(zio_t *zio)
3049 {
3050 	blkptr_t *bp = zio->io_bp;
3051 	ddt_entry_t *dde = zio->io_private;
3052 	ddt_phys_t *ddp;
3053 	zio_t *pio = zio_unique_parent(zio);
3054 
3055 	mutex_enter(&pio->io_lock);
3056 	ddp = ddt_phys_select(dde, bp);
3057 	if (zio->io_error == 0)
3058 		ddt_phys_clear(ddp);	/* this ddp doesn't need repair */
3059 
3060 	if (zio->io_error == 0 && dde->dde_repair_abd == NULL)
3061 		dde->dde_repair_abd = zio->io_abd;
3062 	else
3063 		abd_free(zio->io_abd);
3064 	mutex_exit(&pio->io_lock);
3065 }
3066 
3067 static zio_t *
3068 zio_ddt_read_start(zio_t *zio)
3069 {
3070 	blkptr_t *bp = zio->io_bp;
3071 
3072 	ASSERT(BP_GET_DEDUP(bp));
3073 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3074 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3075 
3076 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
3077 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
3078 		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
3079 		ddt_phys_t *ddp = dde->dde_phys;
3080 		ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
3081 		blkptr_t blk;
3082 
3083 		ASSERT(zio->io_vsd == NULL);
3084 		zio->io_vsd = dde;
3085 
3086 		if (ddp_self == NULL)
3087 			return (zio);
3088 
3089 		for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
3090 			if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
3091 				continue;
3092 			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
3093 			    &blk);
3094 			zio_nowait(zio_read(zio, zio->io_spa, &blk,
3095 			    abd_alloc_for_io(zio->io_size, B_TRUE),
3096 			    zio->io_size, zio_ddt_child_read_done, dde,
3097 			    zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) |
3098 			    ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark));
3099 		}
3100 		return (zio);
3101 	}
3102 
3103 	zio_nowait(zio_read(zio, zio->io_spa, bp,
3104 	    zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority,
3105 	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
3106 
3107 	return (zio);
3108 }
3109 
3110 static zio_t *
3111 zio_ddt_read_done(zio_t *zio)
3112 {
3113 	blkptr_t *bp = zio->io_bp;
3114 
3115 	if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) {
3116 		return (NULL);
3117 	}
3118 
3119 	ASSERT(BP_GET_DEDUP(bp));
3120 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3121 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3122 
3123 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
3124 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
3125 		ddt_entry_t *dde = zio->io_vsd;
3126 		if (ddt == NULL) {
3127 			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
3128 			return (zio);
3129 		}
3130 		if (dde == NULL) {
3131 			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
3132 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
3133 			return (NULL);
3134 		}
3135 		if (dde->dde_repair_abd != NULL) {
3136 			abd_copy(zio->io_abd, dde->dde_repair_abd,
3137 			    zio->io_size);
3138 			zio->io_child_error[ZIO_CHILD_DDT] = 0;
3139 		}
3140 		ddt_repair_done(ddt, dde);
3141 		zio->io_vsd = NULL;
3142 	}
3143 
3144 	ASSERT(zio->io_vsd == NULL);
3145 
3146 	return (zio);
3147 }
3148 
3149 static boolean_t
3150 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
3151 {
3152 	spa_t *spa = zio->io_spa;
3153 	boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW);
3154 
3155 	ASSERT(!(zio->io_bp_override && do_raw));
3156 
3157 	/*
3158 	 * Note: we compare the original data, not the transformed data,
3159 	 * because when zio->io_bp is an override bp, we will not have
3160 	 * pushed the I/O transforms.  That's an important optimization
3161 	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
3162 	 * However, we should never get a raw, override zio so in these
3163 	 * cases we can compare the io_abd directly. This is useful because
3164 	 * it allows us to do dedup verification even if we don't have access
3165 	 * to the original data (for instance, if the encryption keys aren't
3166 	 * loaded).
3167 	 */
3168 
3169 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
3170 		zio_t *lio = dde->dde_lead_zio[p];
3171 
3172 		if (lio != NULL && do_raw) {
3173 			return (lio->io_size != zio->io_size ||
3174 			    abd_cmp(zio->io_abd, lio->io_abd) != 0);
3175 		} else if (lio != NULL) {
3176 			return (lio->io_orig_size != zio->io_orig_size ||
3177 			    abd_cmp(zio->io_orig_abd, lio->io_orig_abd) != 0);
3178 		}
3179 	}
3180 
3181 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
3182 		ddt_phys_t *ddp = &dde->dde_phys[p];
3183 
3184 		if (ddp->ddp_phys_birth != 0 && do_raw) {
3185 			blkptr_t blk = *zio->io_bp;
3186 			uint64_t psize;
3187 			abd_t *tmpabd;
3188 			int error;
3189 
3190 			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
3191 			psize = BP_GET_PSIZE(&blk);
3192 
3193 			if (psize != zio->io_size)
3194 				return (B_TRUE);
3195 
3196 			ddt_exit(ddt);
3197 
3198 			tmpabd = abd_alloc_for_io(psize, B_TRUE);
3199 
3200 			error = zio_wait(zio_read(NULL, spa, &blk, tmpabd,
3201 			    psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
3202 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3203 			    ZIO_FLAG_RAW, &zio->io_bookmark));
3204 
3205 			if (error == 0) {
3206 				if (abd_cmp(tmpabd, zio->io_abd) != 0)
3207 					error = SET_ERROR(ENOENT);
3208 			}
3209 
3210 			abd_free(tmpabd);
3211 			ddt_enter(ddt);
3212 			return (error != 0);
3213 		} else if (ddp->ddp_phys_birth != 0) {
3214 			arc_buf_t *abuf = NULL;
3215 			arc_flags_t aflags = ARC_FLAG_WAIT;
3216 			blkptr_t blk = *zio->io_bp;
3217 			int error;
3218 
3219 			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
3220 
3221 			if (BP_GET_LSIZE(&blk) != zio->io_orig_size)
3222 				return (B_TRUE);
3223 
3224 			ddt_exit(ddt);
3225 
3226 			error = arc_read(NULL, spa, &blk,
3227 			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
3228 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3229 			    &aflags, &zio->io_bookmark);
3230 
3231 			if (error == 0) {
3232 				if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data,
3233 				    zio->io_orig_size) != 0)
3234 					error = SET_ERROR(ENOENT);
3235 				arc_buf_destroy(abuf, &abuf);
3236 			}
3237 
3238 			ddt_enter(ddt);
3239 			return (error != 0);
3240 		}
3241 	}
3242 
3243 	return (B_FALSE);
3244 }
3245 
3246 static void
3247 zio_ddt_child_write_ready(zio_t *zio)
3248 {
3249 	int p = zio->io_prop.zp_copies;
3250 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3251 	ddt_entry_t *dde = zio->io_private;
3252 	ddt_phys_t *ddp = &dde->dde_phys[p];
3253 	zio_t *pio;
3254 
3255 	if (zio->io_error)
3256 		return;
3257 
3258 	ddt_enter(ddt);
3259 
3260 	ASSERT(dde->dde_lead_zio[p] == zio);
3261 
3262 	ddt_phys_fill(ddp, zio->io_bp);
3263 
3264 	zio_link_t *zl = NULL;
3265 	while ((pio = zio_walk_parents(zio, &zl)) != NULL)
3266 		ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
3267 
3268 	ddt_exit(ddt);
3269 }
3270 
3271 static void
3272 zio_ddt_child_write_done(zio_t *zio)
3273 {
3274 	int p = zio->io_prop.zp_copies;
3275 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3276 	ddt_entry_t *dde = zio->io_private;
3277 	ddt_phys_t *ddp = &dde->dde_phys[p];
3278 
3279 	ddt_enter(ddt);
3280 
3281 	ASSERT(ddp->ddp_refcnt == 0);
3282 	ASSERT(dde->dde_lead_zio[p] == zio);
3283 	dde->dde_lead_zio[p] = NULL;
3284 
3285 	if (zio->io_error == 0) {
3286 		zio_link_t *zl = NULL;
3287 		while (zio_walk_parents(zio, &zl) != NULL)
3288 			ddt_phys_addref(ddp);
3289 	} else {
3290 		ddt_phys_clear(ddp);
3291 	}
3292 
3293 	ddt_exit(ddt);
3294 }
3295 
3296 static zio_t *
3297 zio_ddt_write(zio_t *zio)
3298 {
3299 	spa_t *spa = zio->io_spa;
3300 	blkptr_t *bp = zio->io_bp;
3301 	uint64_t txg = zio->io_txg;
3302 	zio_prop_t *zp = &zio->io_prop;
3303 	int p = zp->zp_copies;
3304 	zio_t *cio = NULL;
3305 	ddt_t *ddt = ddt_select(spa, bp);
3306 	ddt_entry_t *dde;
3307 	ddt_phys_t *ddp;
3308 
3309 	ASSERT(BP_GET_DEDUP(bp));
3310 	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
3311 	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
3312 	ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW)));
3313 
3314 	ddt_enter(ddt);
3315 	dde = ddt_lookup(ddt, bp, B_TRUE);
3316 	ddp = &dde->dde_phys[p];
3317 
3318 	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
3319 		/*
3320 		 * If we're using a weak checksum, upgrade to a strong checksum
3321 		 * and try again.  If we're already using a strong checksum,
3322 		 * we can't resolve it, so just convert to an ordinary write.
3323 		 * (And automatically e-mail a paper to Nature?)
3324 		 */
3325 		if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
3326 		    ZCHECKSUM_FLAG_DEDUP)) {
3327 			zp->zp_checksum = spa_dedup_checksum(spa);
3328 			zio_pop_transforms(zio);
3329 			zio->io_stage = ZIO_STAGE_OPEN;
3330 			BP_ZERO(bp);
3331 		} else {
3332 			zp->zp_dedup = B_FALSE;
3333 			BP_SET_DEDUP(bp, B_FALSE);
3334 		}
3335 		ASSERT(!BP_GET_DEDUP(bp));
3336 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
3337 		ddt_exit(ddt);
3338 		return (zio);
3339 	}
3340 
3341 	if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
3342 		if (ddp->ddp_phys_birth != 0)
3343 			ddt_bp_fill(ddp, bp, txg);
3344 		if (dde->dde_lead_zio[p] != NULL)
3345 			zio_add_child(zio, dde->dde_lead_zio[p]);
3346 		else
3347 			ddt_phys_addref(ddp);
3348 	} else if (zio->io_bp_override) {
3349 		ASSERT(bp->blk_birth == txg);
3350 		ASSERT(BP_EQUAL(bp, zio->io_bp_override));
3351 		ddt_phys_fill(ddp, bp);
3352 		ddt_phys_addref(ddp);
3353 	} else {
3354 		cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
3355 		    zio->io_orig_size, zio->io_orig_size, zp,
3356 		    zio_ddt_child_write_ready, NULL, NULL,
3357 		    zio_ddt_child_write_done, dde, zio->io_priority,
3358 		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
3359 
3360 		zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL);
3361 		dde->dde_lead_zio[p] = cio;
3362 	}
3363 
3364 	ddt_exit(ddt);
3365 
3366 	zio_nowait(cio);
3367 
3368 	return (zio);
3369 }
3370 
3371 static ddt_entry_t *freedde; /* for debugging */
3372 
3373 static zio_t *
3374 zio_ddt_free(zio_t *zio)
3375 {
3376 	spa_t *spa = zio->io_spa;
3377 	blkptr_t *bp = zio->io_bp;
3378 	ddt_t *ddt = ddt_select(spa, bp);
3379 	ddt_entry_t *dde;
3380 	ddt_phys_t *ddp;
3381 
3382 	ASSERT(BP_GET_DEDUP(bp));
3383 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3384 
3385 	ddt_enter(ddt);
3386 	freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
3387 	if (dde) {
3388 		ddp = ddt_phys_select(dde, bp);
3389 		if (ddp)
3390 			ddt_phys_decref(ddp);
3391 	}
3392 	ddt_exit(ddt);
3393 
3394 	return (zio);
3395 }
3396 
3397 /*
3398  * ==========================================================================
3399  * Allocate and free blocks
3400  * ==========================================================================
3401  */
3402 
3403 static zio_t *
3404 zio_io_to_allocate(spa_t *spa, int allocator)
3405 {
3406 	zio_t *zio;
3407 
3408 	ASSERT(MUTEX_HELD(&spa->spa_allocs[allocator].spaa_lock));
3409 
3410 	zio = avl_first(&spa->spa_allocs[allocator].spaa_tree);
3411 	if (zio == NULL)
3412 		return (NULL);
3413 
3414 	ASSERT(IO_IS_ALLOCATING(zio));
3415 
3416 	/*
3417 	 * Try to place a reservation for this zio. If we're unable to
3418 	 * reserve then we throttle.
3419 	 */
3420 	ASSERT3U(zio->io_allocator, ==, allocator);
3421 	if (!metaslab_class_throttle_reserve(zio->io_metaslab_class,
3422 	    zio->io_prop.zp_copies, allocator, zio, 0)) {
3423 		return (NULL);
3424 	}
3425 
3426 	avl_remove(&spa->spa_allocs[allocator].spaa_tree, zio);
3427 	ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE);
3428 
3429 	return (zio);
3430 }
3431 
3432 static zio_t *
3433 zio_dva_throttle(zio_t *zio)
3434 {
3435 	spa_t *spa = zio->io_spa;
3436 	zio_t *nio;
3437 	metaslab_class_t *mc;
3438 
3439 	/* locate an appropriate allocation class */
3440 	mc = spa_preferred_class(spa, zio->io_size, zio->io_prop.zp_type,
3441 	    zio->io_prop.zp_level, zio->io_prop.zp_zpl_smallblk);
3442 
3443 	if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE ||
3444 	    !mc->mc_alloc_throttle_enabled ||
3445 	    zio->io_child_type == ZIO_CHILD_GANG ||
3446 	    zio->io_flags & ZIO_FLAG_NODATA) {
3447 		return (zio);
3448 	}
3449 
3450 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3451 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3452 	ASSERT3U(zio->io_queued_timestamp, >, 0);
3453 	ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE);
3454 
3455 	zbookmark_phys_t *bm = &zio->io_bookmark;
3456 	/*
3457 	 * We want to try to use as many allocators as possible to help improve
3458 	 * performance, but we also want logically adjacent IOs to be physically
3459 	 * adjacent to improve sequential read performance. We chunk each object
3460 	 * into 2^20 block regions, and then hash based on the objset, object,
3461 	 * level, and region to accomplish both of these goals.
3462 	 */
3463 	int allocator = (uint_t)cityhash4(bm->zb_objset, bm->zb_object,
3464 	    bm->zb_level, bm->zb_blkid >> 20) % spa->spa_alloc_count;
3465 	zio->io_allocator = allocator;
3466 	zio->io_metaslab_class = mc;
3467 	mutex_enter(&spa->spa_allocs[allocator].spaa_lock);
3468 	avl_add(&spa->spa_allocs[allocator].spaa_tree, zio);
3469 	nio = zio_io_to_allocate(spa, allocator);
3470 	mutex_exit(&spa->spa_allocs[allocator].spaa_lock);
3471 	return (nio);
3472 }
3473 
3474 static void
3475 zio_allocate_dispatch(spa_t *spa, int allocator)
3476 {
3477 	zio_t *zio;
3478 
3479 	mutex_enter(&spa->spa_allocs[allocator].spaa_lock);
3480 	zio = zio_io_to_allocate(spa, allocator);
3481 	mutex_exit(&spa->spa_allocs[allocator].spaa_lock);
3482 	if (zio == NULL)
3483 		return;
3484 
3485 	ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE);
3486 	ASSERT0(zio->io_error);
3487 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE);
3488 }
3489 
3490 static zio_t *
3491 zio_dva_allocate(zio_t *zio)
3492 {
3493 	spa_t *spa = zio->io_spa;
3494 	metaslab_class_t *mc;
3495 	blkptr_t *bp = zio->io_bp;
3496 	int error;
3497 	int flags = 0;
3498 
3499 	if (zio->io_gang_leader == NULL) {
3500 		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3501 		zio->io_gang_leader = zio;
3502 	}
3503 
3504 	ASSERT(BP_IS_HOLE(bp));
3505 	ASSERT0(BP_GET_NDVAS(bp));
3506 	ASSERT3U(zio->io_prop.zp_copies, >, 0);
3507 	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
3508 	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
3509 
3510 	flags |= (zio->io_flags & ZIO_FLAG_FASTWRITE) ? METASLAB_FASTWRITE : 0;
3511 	if (zio->io_flags & ZIO_FLAG_NODATA)
3512 		flags |= METASLAB_DONT_THROTTLE;
3513 	if (zio->io_flags & ZIO_FLAG_GANG_CHILD)
3514 		flags |= METASLAB_GANG_CHILD;
3515 	if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE)
3516 		flags |= METASLAB_ASYNC_ALLOC;
3517 
3518 	/*
3519 	 * if not already chosen, locate an appropriate allocation class
3520 	 */
3521 	mc = zio->io_metaslab_class;
3522 	if (mc == NULL) {
3523 		mc = spa_preferred_class(spa, zio->io_size,
3524 		    zio->io_prop.zp_type, zio->io_prop.zp_level,
3525 		    zio->io_prop.zp_zpl_smallblk);
3526 		zio->io_metaslab_class = mc;
3527 	}
3528 
3529 	/*
3530 	 * Try allocating the block in the usual metaslab class.
3531 	 * If that's full, allocate it in the normal class.
3532 	 * If that's full, allocate as a gang block,
3533 	 * and if all are full, the allocation fails (which shouldn't happen).
3534 	 *
3535 	 * Note that we do not fall back on embedded slog (ZIL) space, to
3536 	 * preserve unfragmented slog space, which is critical for decent
3537 	 * sync write performance.  If a log allocation fails, we will fall
3538 	 * back to spa_sync() which is abysmal for performance.
3539 	 */
3540 	error = metaslab_alloc(spa, mc, zio->io_size, bp,
3541 	    zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3542 	    &zio->io_alloc_list, zio, zio->io_allocator);
3543 
3544 	/*
3545 	 * Fallback to normal class when an alloc class is full
3546 	 */
3547 	if (error == ENOSPC && mc != spa_normal_class(spa)) {
3548 		/*
3549 		 * If throttling, transfer reservation over to normal class.
3550 		 * The io_allocator slot can remain the same even though we
3551 		 * are switching classes.
3552 		 */
3553 		if (mc->mc_alloc_throttle_enabled &&
3554 		    (zio->io_flags & ZIO_FLAG_IO_ALLOCATING)) {
3555 			metaslab_class_throttle_unreserve(mc,
3556 			    zio->io_prop.zp_copies, zio->io_allocator, zio);
3557 			zio->io_flags &= ~ZIO_FLAG_IO_ALLOCATING;
3558 
3559 			VERIFY(metaslab_class_throttle_reserve(
3560 			    spa_normal_class(spa),
3561 			    zio->io_prop.zp_copies, zio->io_allocator, zio,
3562 			    flags | METASLAB_MUST_RESERVE));
3563 		}
3564 		zio->io_metaslab_class = mc = spa_normal_class(spa);
3565 		if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) {
3566 			zfs_dbgmsg("%s: metaslab allocation failure, "
3567 			    "trying normal class: zio %px, size %llu, error %d",
3568 			    spa_name(spa), zio, (u_longlong_t)zio->io_size,
3569 			    error);
3570 		}
3571 
3572 		error = metaslab_alloc(spa, mc, zio->io_size, bp,
3573 		    zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3574 		    &zio->io_alloc_list, zio, zio->io_allocator);
3575 	}
3576 
3577 	if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) {
3578 		if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) {
3579 			zfs_dbgmsg("%s: metaslab allocation failure, "
3580 			    "trying ganging: zio %px, size %llu, error %d",
3581 			    spa_name(spa), zio, (u_longlong_t)zio->io_size,
3582 			    error);
3583 		}
3584 		return (zio_write_gang_block(zio, mc));
3585 	}
3586 	if (error != 0) {
3587 		if (error != ENOSPC ||
3588 		    (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC)) {
3589 			zfs_dbgmsg("%s: metaslab allocation failure: zio %px, "
3590 			    "size %llu, error %d",
3591 			    spa_name(spa), zio, (u_longlong_t)zio->io_size,
3592 			    error);
3593 		}
3594 		zio->io_error = error;
3595 	}
3596 
3597 	return (zio);
3598 }
3599 
3600 static zio_t *
3601 zio_dva_free(zio_t *zio)
3602 {
3603 	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
3604 
3605 	return (zio);
3606 }
3607 
3608 static zio_t *
3609 zio_dva_claim(zio_t *zio)
3610 {
3611 	int error;
3612 
3613 	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
3614 	if (error)
3615 		zio->io_error = error;
3616 
3617 	return (zio);
3618 }
3619 
3620 /*
3621  * Undo an allocation.  This is used by zio_done() when an I/O fails
3622  * and we want to give back the block we just allocated.
3623  * This handles both normal blocks and gang blocks.
3624  */
3625 static void
3626 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
3627 {
3628 	ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
3629 	ASSERT(zio->io_bp_override == NULL);
3630 
3631 	if (!BP_IS_HOLE(bp))
3632 		metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
3633 
3634 	if (gn != NULL) {
3635 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
3636 			zio_dva_unallocate(zio, gn->gn_child[g],
3637 			    &gn->gn_gbh->zg_blkptr[g]);
3638 		}
3639 	}
3640 }
3641 
3642 /*
3643  * Try to allocate an intent log block.  Return 0 on success, errno on failure.
3644  */
3645 int
3646 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp,
3647     uint64_t size, boolean_t *slog)
3648 {
3649 	int error = 1;
3650 	zio_alloc_list_t io_alloc_list;
3651 
3652 	ASSERT(txg > spa_syncing_txg(spa));
3653 
3654 	metaslab_trace_init(&io_alloc_list);
3655 
3656 	/*
3657 	 * Block pointer fields are useful to metaslabs for stats and debugging.
3658 	 * Fill in the obvious ones before calling into metaslab_alloc().
3659 	 */
3660 	BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3661 	BP_SET_PSIZE(new_bp, size);
3662 	BP_SET_LEVEL(new_bp, 0);
3663 
3664 	/*
3665 	 * When allocating a zil block, we don't have information about
3666 	 * the final destination of the block except the objset it's part
3667 	 * of, so we just hash the objset ID to pick the allocator to get
3668 	 * some parallelism.
3669 	 */
3670 	int flags = METASLAB_FASTWRITE | METASLAB_ZIL;
3671 	int allocator = (uint_t)cityhash4(0, 0, 0,
3672 	    os->os_dsl_dataset->ds_object) % spa->spa_alloc_count;
3673 	error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1,
3674 	    txg, NULL, flags, &io_alloc_list, NULL, allocator);
3675 	*slog = (error == 0);
3676 	if (error != 0) {
3677 		error = metaslab_alloc(spa, spa_embedded_log_class(spa), size,
3678 		    new_bp, 1, txg, NULL, flags,
3679 		    &io_alloc_list, NULL, allocator);
3680 	}
3681 	if (error != 0) {
3682 		error = metaslab_alloc(spa, spa_normal_class(spa), size,
3683 		    new_bp, 1, txg, NULL, flags,
3684 		    &io_alloc_list, NULL, allocator);
3685 	}
3686 	metaslab_trace_fini(&io_alloc_list);
3687 
3688 	if (error == 0) {
3689 		BP_SET_LSIZE(new_bp, size);
3690 		BP_SET_PSIZE(new_bp, size);
3691 		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
3692 		BP_SET_CHECKSUM(new_bp,
3693 		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL
3694 		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
3695 		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3696 		BP_SET_LEVEL(new_bp, 0);
3697 		BP_SET_DEDUP(new_bp, 0);
3698 		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
3699 
3700 		/*
3701 		 * encrypted blocks will require an IV and salt. We generate
3702 		 * these now since we will not be rewriting the bp at
3703 		 * rewrite time.
3704 		 */
3705 		if (os->os_encrypted) {
3706 			uint8_t iv[ZIO_DATA_IV_LEN];
3707 			uint8_t salt[ZIO_DATA_SALT_LEN];
3708 
3709 			BP_SET_CRYPT(new_bp, B_TRUE);
3710 			VERIFY0(spa_crypt_get_salt(spa,
3711 			    dmu_objset_id(os), salt));
3712 			VERIFY0(zio_crypt_generate_iv(iv));
3713 
3714 			zio_crypt_encode_params_bp(new_bp, salt, iv);
3715 		}
3716 	} else {
3717 		zfs_dbgmsg("%s: zil block allocation failure: "
3718 		    "size %llu, error %d", spa_name(spa), (u_longlong_t)size,
3719 		    error);
3720 	}
3721 
3722 	return (error);
3723 }
3724 
3725 /*
3726  * ==========================================================================
3727  * Read and write to physical devices
3728  * ==========================================================================
3729  */
3730 
3731 /*
3732  * Issue an I/O to the underlying vdev. Typically the issue pipeline
3733  * stops after this stage and will resume upon I/O completion.
3734  * However, there are instances where the vdev layer may need to
3735  * continue the pipeline when an I/O was not issued. Since the I/O
3736  * that was sent to the vdev layer might be different than the one
3737  * currently active in the pipeline (see vdev_queue_io()), we explicitly
3738  * force the underlying vdev layers to call either zio_execute() or
3739  * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
3740  */
3741 static zio_t *
3742 zio_vdev_io_start(zio_t *zio)
3743 {
3744 	vdev_t *vd = zio->io_vd;
3745 	uint64_t align;
3746 	spa_t *spa = zio->io_spa;
3747 
3748 	zio->io_delay = 0;
3749 
3750 	ASSERT(zio->io_error == 0);
3751 	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
3752 
3753 	if (vd == NULL) {
3754 		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3755 			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
3756 
3757 		/*
3758 		 * The mirror_ops handle multiple DVAs in a single BP.
3759 		 */
3760 		vdev_mirror_ops.vdev_op_io_start(zio);
3761 		return (NULL);
3762 	}
3763 
3764 	ASSERT3P(zio->io_logical, !=, zio);
3765 	if (zio->io_type == ZIO_TYPE_WRITE) {
3766 		ASSERT(spa->spa_trust_config);
3767 
3768 		/*
3769 		 * Note: the code can handle other kinds of writes,
3770 		 * but we don't expect them.
3771 		 */
3772 		if (zio->io_vd->vdev_noalloc) {
3773 			ASSERT(zio->io_flags &
3774 			    (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL |
3775 			    ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE));
3776 		}
3777 	}
3778 
3779 	align = 1ULL << vd->vdev_top->vdev_ashift;
3780 
3781 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
3782 	    P2PHASE(zio->io_size, align) != 0) {
3783 		/* Transform logical writes to be a full physical block size. */
3784 		uint64_t asize = P2ROUNDUP(zio->io_size, align);
3785 		abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize);
3786 		ASSERT(vd == vd->vdev_top);
3787 		if (zio->io_type == ZIO_TYPE_WRITE) {
3788 			abd_copy(abuf, zio->io_abd, zio->io_size);
3789 			abd_zero_off(abuf, zio->io_size, asize - zio->io_size);
3790 		}
3791 		zio_push_transform(zio, abuf, asize, asize, zio_subblock);
3792 	}
3793 
3794 	/*
3795 	 * If this is not a physical io, make sure that it is properly aligned
3796 	 * before proceeding.
3797 	 */
3798 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
3799 		ASSERT0(P2PHASE(zio->io_offset, align));
3800 		ASSERT0(P2PHASE(zio->io_size, align));
3801 	} else {
3802 		/*
3803 		 * For physical writes, we allow 512b aligned writes and assume
3804 		 * the device will perform a read-modify-write as necessary.
3805 		 */
3806 		ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
3807 		ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
3808 	}
3809 
3810 	VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
3811 
3812 	/*
3813 	 * If this is a repair I/O, and there's no self-healing involved --
3814 	 * that is, we're just resilvering what we expect to resilver --
3815 	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
3816 	 * This prevents spurious resilvering.
3817 	 *
3818 	 * There are a few ways that we can end up creating these spurious
3819 	 * resilver i/os:
3820 	 *
3821 	 * 1. A resilver i/o will be issued if any DVA in the BP has a
3822 	 * dirty DTL.  The mirror code will issue resilver writes to
3823 	 * each DVA, including the one(s) that are not on vdevs with dirty
3824 	 * DTLs.
3825 	 *
3826 	 * 2. With nested replication, which happens when we have a
3827 	 * "replacing" or "spare" vdev that's a child of a mirror or raidz.
3828 	 * For example, given mirror(replacing(A+B), C), it's likely that
3829 	 * only A is out of date (it's the new device). In this case, we'll
3830 	 * read from C, then use the data to resilver A+B -- but we don't
3831 	 * actually want to resilver B, just A. The top-level mirror has no
3832 	 * way to know this, so instead we just discard unnecessary repairs
3833 	 * as we work our way down the vdev tree.
3834 	 *
3835 	 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc.
3836 	 * The same logic applies to any form of nested replication: ditto
3837 	 * + mirror, RAID-Z + replacing, etc.
3838 	 *
3839 	 * However, indirect vdevs point off to other vdevs which may have
3840 	 * DTL's, so we never bypass them.  The child i/os on concrete vdevs
3841 	 * will be properly bypassed instead.
3842 	 *
3843 	 * Leaf DTL_PARTIAL can be empty when a legitimate write comes from
3844 	 * a dRAID spare vdev. For example, when a dRAID spare is first
3845 	 * used, its spare blocks need to be written to but the leaf vdev's
3846 	 * of such blocks can have empty DTL_PARTIAL.
3847 	 *
3848 	 * There seemed no clean way to allow such writes while bypassing
3849 	 * spurious ones. At this point, just avoid all bypassing for dRAID
3850 	 * for correctness.
3851 	 */
3852 	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
3853 	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
3854 	    zio->io_txg != 0 &&	/* not a delegated i/o */
3855 	    vd->vdev_ops != &vdev_indirect_ops &&
3856 	    vd->vdev_top->vdev_ops != &vdev_draid_ops &&
3857 	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
3858 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3859 		zio_vdev_io_bypass(zio);
3860 		return (zio);
3861 	}
3862 
3863 	/*
3864 	 * Select the next best leaf I/O to process.  Distributed spares are
3865 	 * excluded since they dispatch the I/O directly to a leaf vdev after
3866 	 * applying the dRAID mapping.
3867 	 */
3868 	if (vd->vdev_ops->vdev_op_leaf &&
3869 	    vd->vdev_ops != &vdev_draid_spare_ops &&
3870 	    (zio->io_type == ZIO_TYPE_READ ||
3871 	    zio->io_type == ZIO_TYPE_WRITE ||
3872 	    zio->io_type == ZIO_TYPE_TRIM)) {
3873 
3874 		if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio))
3875 			return (zio);
3876 
3877 		if ((zio = vdev_queue_io(zio)) == NULL)
3878 			return (NULL);
3879 
3880 		if (!vdev_accessible(vd, zio)) {
3881 			zio->io_error = SET_ERROR(ENXIO);
3882 			zio_interrupt(zio);
3883 			return (NULL);
3884 		}
3885 		zio->io_delay = gethrtime();
3886 	}
3887 
3888 	vd->vdev_ops->vdev_op_io_start(zio);
3889 	return (NULL);
3890 }
3891 
3892 static zio_t *
3893 zio_vdev_io_done(zio_t *zio)
3894 {
3895 	vdev_t *vd = zio->io_vd;
3896 	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
3897 	boolean_t unexpected_error = B_FALSE;
3898 
3899 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3900 		return (NULL);
3901 	}
3902 
3903 	ASSERT(zio->io_type == ZIO_TYPE_READ ||
3904 	    zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM);
3905 
3906 	if (zio->io_delay)
3907 		zio->io_delay = gethrtime() - zio->io_delay;
3908 
3909 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3910 	    vd->vdev_ops != &vdev_draid_spare_ops) {
3911 		vdev_queue_io_done(zio);
3912 
3913 		if (zio->io_type == ZIO_TYPE_WRITE)
3914 			vdev_cache_write(zio);
3915 
3916 		if (zio_injection_enabled && zio->io_error == 0)
3917 			zio->io_error = zio_handle_device_injections(vd, zio,
3918 			    EIO, EILSEQ);
3919 
3920 		if (zio_injection_enabled && zio->io_error == 0)
3921 			zio->io_error = zio_handle_label_injection(zio, EIO);
3922 
3923 		if (zio->io_error && zio->io_type != ZIO_TYPE_TRIM) {
3924 			if (!vdev_accessible(vd, zio)) {
3925 				zio->io_error = SET_ERROR(ENXIO);
3926 			} else {
3927 				unexpected_error = B_TRUE;
3928 			}
3929 		}
3930 	}
3931 
3932 	ops->vdev_op_io_done(zio);
3933 
3934 	if (unexpected_error && vd->vdev_remove_wanted == B_FALSE)
3935 		VERIFY(vdev_probe(vd, zio) == NULL);
3936 
3937 	return (zio);
3938 }
3939 
3940 /*
3941  * This function is used to change the priority of an existing zio that is
3942  * currently in-flight. This is used by the arc to upgrade priority in the
3943  * event that a demand read is made for a block that is currently queued
3944  * as a scrub or async read IO. Otherwise, the high priority read request
3945  * would end up having to wait for the lower priority IO.
3946  */
3947 void
3948 zio_change_priority(zio_t *pio, zio_priority_t priority)
3949 {
3950 	zio_t *cio, *cio_next;
3951 	zio_link_t *zl = NULL;
3952 
3953 	ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
3954 
3955 	if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) {
3956 		vdev_queue_change_io_priority(pio, priority);
3957 	} else {
3958 		pio->io_priority = priority;
3959 	}
3960 
3961 	mutex_enter(&pio->io_lock);
3962 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
3963 		cio_next = zio_walk_children(pio, &zl);
3964 		zio_change_priority(cio, priority);
3965 	}
3966 	mutex_exit(&pio->io_lock);
3967 }
3968 
3969 /*
3970  * For non-raidz ZIOs, we can just copy aside the bad data read from the
3971  * disk, and use that to finish the checksum ereport later.
3972  */
3973 static void
3974 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
3975     const abd_t *good_buf)
3976 {
3977 	/* no processing needed */
3978 	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
3979 }
3980 
3981 void
3982 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr)
3983 {
3984 	void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size);
3985 
3986 	abd_copy(abd, zio->io_abd, zio->io_size);
3987 
3988 	zcr->zcr_cbinfo = zio->io_size;
3989 	zcr->zcr_cbdata = abd;
3990 	zcr->zcr_finish = zio_vsd_default_cksum_finish;
3991 	zcr->zcr_free = zio_abd_free;
3992 }
3993 
3994 static zio_t *
3995 zio_vdev_io_assess(zio_t *zio)
3996 {
3997 	vdev_t *vd = zio->io_vd;
3998 
3999 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
4000 		return (NULL);
4001 	}
4002 
4003 	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
4004 		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
4005 
4006 	if (zio->io_vsd != NULL) {
4007 		zio->io_vsd_ops->vsd_free(zio);
4008 		zio->io_vsd = NULL;
4009 	}
4010 
4011 	if (zio_injection_enabled && zio->io_error == 0)
4012 		zio->io_error = zio_handle_fault_injection(zio, EIO);
4013 
4014 	/*
4015 	 * If the I/O failed, determine whether we should attempt to retry it.
4016 	 *
4017 	 * On retry, we cut in line in the issue queue, since we don't want
4018 	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
4019 	 */
4020 	if (zio->io_error && vd == NULL &&
4021 	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
4022 		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
4023 		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
4024 		zio->io_error = 0;
4025 		zio->io_flags |= ZIO_FLAG_IO_RETRY |
4026 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
4027 		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
4028 		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
4029 		    zio_requeue_io_start_cut_in_line);
4030 		return (NULL);
4031 	}
4032 
4033 	/*
4034 	 * If we got an error on a leaf device, convert it to ENXIO
4035 	 * if the device is not accessible at all.
4036 	 */
4037 	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
4038 	    !vdev_accessible(vd, zio))
4039 		zio->io_error = SET_ERROR(ENXIO);
4040 
4041 	/*
4042 	 * If we can't write to an interior vdev (mirror or RAID-Z),
4043 	 * set vdev_cant_write so that we stop trying to allocate from it.
4044 	 */
4045 	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
4046 	    vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
4047 		vdev_dbgmsg(vd, "zio_vdev_io_assess(zio=%px) setting "
4048 		    "cant_write=TRUE due to write failure with ENXIO",
4049 		    zio);
4050 		vd->vdev_cant_write = B_TRUE;
4051 	}
4052 
4053 	/*
4054 	 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future
4055 	 * attempts will ever succeed. In this case we set a persistent
4056 	 * boolean flag so that we don't bother with it in the future.
4057 	 */
4058 	if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) &&
4059 	    zio->io_type == ZIO_TYPE_IOCTL &&
4060 	    zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL)
4061 		vd->vdev_nowritecache = B_TRUE;
4062 
4063 	if (zio->io_error)
4064 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4065 
4066 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
4067 	    zio->io_physdone != NULL) {
4068 		ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
4069 		ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
4070 		zio->io_physdone(zio->io_logical);
4071 	}
4072 
4073 	return (zio);
4074 }
4075 
4076 void
4077 zio_vdev_io_reissue(zio_t *zio)
4078 {
4079 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
4080 	ASSERT(zio->io_error == 0);
4081 
4082 	zio->io_stage >>= 1;
4083 }
4084 
4085 void
4086 zio_vdev_io_redone(zio_t *zio)
4087 {
4088 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
4089 
4090 	zio->io_stage >>= 1;
4091 }
4092 
4093 void
4094 zio_vdev_io_bypass(zio_t *zio)
4095 {
4096 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
4097 	ASSERT(zio->io_error == 0);
4098 
4099 	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
4100 	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
4101 }
4102 
4103 /*
4104  * ==========================================================================
4105  * Encrypt and store encryption parameters
4106  * ==========================================================================
4107  */
4108 
4109 
4110 /*
4111  * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for
4112  * managing the storage of encryption parameters and passing them to the
4113  * lower-level encryption functions.
4114  */
4115 static zio_t *
4116 zio_encrypt(zio_t *zio)
4117 {
4118 	zio_prop_t *zp = &zio->io_prop;
4119 	spa_t *spa = zio->io_spa;
4120 	blkptr_t *bp = zio->io_bp;
4121 	uint64_t psize = BP_GET_PSIZE(bp);
4122 	uint64_t dsobj = zio->io_bookmark.zb_objset;
4123 	dmu_object_type_t ot = BP_GET_TYPE(bp);
4124 	void *enc_buf = NULL;
4125 	abd_t *eabd = NULL;
4126 	uint8_t salt[ZIO_DATA_SALT_LEN];
4127 	uint8_t iv[ZIO_DATA_IV_LEN];
4128 	uint8_t mac[ZIO_DATA_MAC_LEN];
4129 	boolean_t no_crypt = B_FALSE;
4130 
4131 	/* the root zio already encrypted the data */
4132 	if (zio->io_child_type == ZIO_CHILD_GANG)
4133 		return (zio);
4134 
4135 	/* only ZIL blocks are re-encrypted on rewrite */
4136 	if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG)
4137 		return (zio);
4138 
4139 	if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) {
4140 		BP_SET_CRYPT(bp, B_FALSE);
4141 		return (zio);
4142 	}
4143 
4144 	/* if we are doing raw encryption set the provided encryption params */
4145 	if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) {
4146 		ASSERT0(BP_GET_LEVEL(bp));
4147 		BP_SET_CRYPT(bp, B_TRUE);
4148 		BP_SET_BYTEORDER(bp, zp->zp_byteorder);
4149 		if (ot != DMU_OT_OBJSET)
4150 			zio_crypt_encode_mac_bp(bp, zp->zp_mac);
4151 
4152 		/* dnode blocks must be written out in the provided byteorder */
4153 		if (zp->zp_byteorder != ZFS_HOST_BYTEORDER &&
4154 		    ot == DMU_OT_DNODE) {
4155 			void *bswap_buf = zio_buf_alloc(psize);
4156 			abd_t *babd = abd_get_from_buf(bswap_buf, psize);
4157 
4158 			ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4159 			abd_copy_to_buf(bswap_buf, zio->io_abd, psize);
4160 			dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf,
4161 			    psize);
4162 
4163 			abd_take_ownership_of_buf(babd, B_TRUE);
4164 			zio_push_transform(zio, babd, psize, psize, NULL);
4165 		}
4166 
4167 		if (DMU_OT_IS_ENCRYPTED(ot))
4168 			zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv);
4169 		return (zio);
4170 	}
4171 
4172 	/* indirect blocks only maintain a cksum of the lower level MACs */
4173 	if (BP_GET_LEVEL(bp) > 0) {
4174 		BP_SET_CRYPT(bp, B_TRUE);
4175 		VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE,
4176 		    zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp),
4177 		    mac));
4178 		zio_crypt_encode_mac_bp(bp, mac);
4179 		return (zio);
4180 	}
4181 
4182 	/*
4183 	 * Objset blocks are a special case since they have 2 256-bit MACs
4184 	 * embedded within them.
4185 	 */
4186 	if (ot == DMU_OT_OBJSET) {
4187 		ASSERT0(DMU_OT_IS_ENCRYPTED(ot));
4188 		ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4189 		BP_SET_CRYPT(bp, B_TRUE);
4190 		VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj,
4191 		    zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp)));
4192 		return (zio);
4193 	}
4194 
4195 	/* unencrypted object types are only authenticated with a MAC */
4196 	if (!DMU_OT_IS_ENCRYPTED(ot)) {
4197 		BP_SET_CRYPT(bp, B_TRUE);
4198 		VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj,
4199 		    zio->io_abd, psize, mac));
4200 		zio_crypt_encode_mac_bp(bp, mac);
4201 		return (zio);
4202 	}
4203 
4204 	/*
4205 	 * Later passes of sync-to-convergence may decide to rewrite data
4206 	 * in place to avoid more disk reallocations. This presents a problem
4207 	 * for encryption because this constitutes rewriting the new data with
4208 	 * the same encryption key and IV. However, this only applies to blocks
4209 	 * in the MOS (particularly the spacemaps) and we do not encrypt the
4210 	 * MOS. We assert that the zio is allocating or an intent log write
4211 	 * to enforce this.
4212 	 */
4213 	ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG);
4214 	ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG);
4215 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION));
4216 	ASSERT3U(psize, !=, 0);
4217 
4218 	enc_buf = zio_buf_alloc(psize);
4219 	eabd = abd_get_from_buf(enc_buf, psize);
4220 	abd_take_ownership_of_buf(eabd, B_TRUE);
4221 
4222 	/*
4223 	 * For an explanation of what encryption parameters are stored
4224 	 * where, see the block comment in zio_crypt.c.
4225 	 */
4226 	if (ot == DMU_OT_INTENT_LOG) {
4227 		zio_crypt_decode_params_bp(bp, salt, iv);
4228 	} else {
4229 		BP_SET_CRYPT(bp, B_TRUE);
4230 	}
4231 
4232 	/* Perform the encryption. This should not fail */
4233 	VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark,
4234 	    BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
4235 	    salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt));
4236 
4237 	/* encode encryption metadata into the bp */
4238 	if (ot == DMU_OT_INTENT_LOG) {
4239 		/*
4240 		 * ZIL blocks store the MAC in the embedded checksum, so the
4241 		 * transform must always be applied.
4242 		 */
4243 		zio_crypt_encode_mac_zil(enc_buf, mac);
4244 		zio_push_transform(zio, eabd, psize, psize, NULL);
4245 	} else {
4246 		BP_SET_CRYPT(bp, B_TRUE);
4247 		zio_crypt_encode_params_bp(bp, salt, iv);
4248 		zio_crypt_encode_mac_bp(bp, mac);
4249 
4250 		if (no_crypt) {
4251 			ASSERT3U(ot, ==, DMU_OT_DNODE);
4252 			abd_free(eabd);
4253 		} else {
4254 			zio_push_transform(zio, eabd, psize, psize, NULL);
4255 		}
4256 	}
4257 
4258 	return (zio);
4259 }
4260 
4261 /*
4262  * ==========================================================================
4263  * Generate and verify checksums
4264  * ==========================================================================
4265  */
4266 static zio_t *
4267 zio_checksum_generate(zio_t *zio)
4268 {
4269 	blkptr_t *bp = zio->io_bp;
4270 	enum zio_checksum checksum;
4271 
4272 	if (bp == NULL) {
4273 		/*
4274 		 * This is zio_write_phys().
4275 		 * We're either generating a label checksum, or none at all.
4276 		 */
4277 		checksum = zio->io_prop.zp_checksum;
4278 
4279 		if (checksum == ZIO_CHECKSUM_OFF)
4280 			return (zio);
4281 
4282 		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
4283 	} else {
4284 		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
4285 			ASSERT(!IO_IS_ALLOCATING(zio));
4286 			checksum = ZIO_CHECKSUM_GANG_HEADER;
4287 		} else {
4288 			checksum = BP_GET_CHECKSUM(bp);
4289 		}
4290 	}
4291 
4292 	zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size);
4293 
4294 	return (zio);
4295 }
4296 
4297 static zio_t *
4298 zio_checksum_verify(zio_t *zio)
4299 {
4300 	zio_bad_cksum_t info;
4301 	blkptr_t *bp = zio->io_bp;
4302 	int error;
4303 
4304 	ASSERT(zio->io_vd != NULL);
4305 
4306 	if (bp == NULL) {
4307 		/*
4308 		 * This is zio_read_phys().
4309 		 * We're either verifying a label checksum, or nothing at all.
4310 		 */
4311 		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
4312 			return (zio);
4313 
4314 		ASSERT3U(zio->io_prop.zp_checksum, ==, ZIO_CHECKSUM_LABEL);
4315 	}
4316 
4317 	if ((error = zio_checksum_error(zio, &info)) != 0) {
4318 		zio->io_error = error;
4319 		if (error == ECKSUM &&
4320 		    !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
4321 			mutex_enter(&zio->io_vd->vdev_stat_lock);
4322 			zio->io_vd->vdev_stat.vs_checksum_errors++;
4323 			mutex_exit(&zio->io_vd->vdev_stat_lock);
4324 			(void) zfs_ereport_start_checksum(zio->io_spa,
4325 			    zio->io_vd, &zio->io_bookmark, zio,
4326 			    zio->io_offset, zio->io_size, &info);
4327 		}
4328 	}
4329 
4330 	return (zio);
4331 }
4332 
4333 /*
4334  * Called by RAID-Z to ensure we don't compute the checksum twice.
4335  */
4336 void
4337 zio_checksum_verified(zio_t *zio)
4338 {
4339 	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
4340 }
4341 
4342 /*
4343  * ==========================================================================
4344  * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
4345  * An error of 0 indicates success.  ENXIO indicates whole-device failure,
4346  * which may be transient (e.g. unplugged) or permanent.  ECKSUM and EIO
4347  * indicate errors that are specific to one I/O, and most likely permanent.
4348  * Any other error is presumed to be worse because we weren't expecting it.
4349  * ==========================================================================
4350  */
4351 int
4352 zio_worst_error(int e1, int e2)
4353 {
4354 	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
4355 	int r1, r2;
4356 
4357 	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
4358 		if (e1 == zio_error_rank[r1])
4359 			break;
4360 
4361 	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
4362 		if (e2 == zio_error_rank[r2])
4363 			break;
4364 
4365 	return (r1 > r2 ? e1 : e2);
4366 }
4367 
4368 /*
4369  * ==========================================================================
4370  * I/O completion
4371  * ==========================================================================
4372  */
4373 static zio_t *
4374 zio_ready(zio_t *zio)
4375 {
4376 	blkptr_t *bp = zio->io_bp;
4377 	zio_t *pio, *pio_next;
4378 	zio_link_t *zl = NULL;
4379 
4380 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT,
4381 	    ZIO_WAIT_READY)) {
4382 		return (NULL);
4383 	}
4384 
4385 	if (zio->io_ready) {
4386 		ASSERT(IO_IS_ALLOCATING(zio));
4387 		ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
4388 		    (zio->io_flags & ZIO_FLAG_NOPWRITE));
4389 		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
4390 
4391 		zio->io_ready(zio);
4392 	}
4393 
4394 	if (bp != NULL && bp != &zio->io_bp_copy)
4395 		zio->io_bp_copy = *bp;
4396 
4397 	if (zio->io_error != 0) {
4398 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4399 
4400 		if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4401 			ASSERT(IO_IS_ALLOCATING(zio));
4402 			ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4403 			ASSERT(zio->io_metaslab_class != NULL);
4404 
4405 			/*
4406 			 * We were unable to allocate anything, unreserve and
4407 			 * issue the next I/O to allocate.
4408 			 */
4409 			metaslab_class_throttle_unreserve(
4410 			    zio->io_metaslab_class, zio->io_prop.zp_copies,
4411 			    zio->io_allocator, zio);
4412 			zio_allocate_dispatch(zio->io_spa, zio->io_allocator);
4413 		}
4414 	}
4415 
4416 	mutex_enter(&zio->io_lock);
4417 	zio->io_state[ZIO_WAIT_READY] = 1;
4418 	pio = zio_walk_parents(zio, &zl);
4419 	mutex_exit(&zio->io_lock);
4420 
4421 	/*
4422 	 * As we notify zio's parents, new parents could be added.
4423 	 * New parents go to the head of zio's io_parent_list, however,
4424 	 * so we will (correctly) not notify them.  The remainder of zio's
4425 	 * io_parent_list, from 'pio_next' onward, cannot change because
4426 	 * all parents must wait for us to be done before they can be done.
4427 	 */
4428 	for (; pio != NULL; pio = pio_next) {
4429 		pio_next = zio_walk_parents(zio, &zl);
4430 		zio_notify_parent(pio, zio, ZIO_WAIT_READY, NULL);
4431 	}
4432 
4433 	if (zio->io_flags & ZIO_FLAG_NODATA) {
4434 		if (BP_IS_GANG(bp)) {
4435 			zio->io_flags &= ~ZIO_FLAG_NODATA;
4436 		} else {
4437 			ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE);
4438 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
4439 		}
4440 	}
4441 
4442 	if (zio_injection_enabled &&
4443 	    zio->io_spa->spa_syncing_txg == zio->io_txg)
4444 		zio_handle_ignored_writes(zio);
4445 
4446 	return (zio);
4447 }
4448 
4449 /*
4450  * Update the allocation throttle accounting.
4451  */
4452 static void
4453 zio_dva_throttle_done(zio_t *zio)
4454 {
4455 	zio_t *lio __maybe_unused = zio->io_logical;
4456 	zio_t *pio = zio_unique_parent(zio);
4457 	vdev_t *vd = zio->io_vd;
4458 	int flags = METASLAB_ASYNC_ALLOC;
4459 
4460 	ASSERT3P(zio->io_bp, !=, NULL);
4461 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
4462 	ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE);
4463 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
4464 	ASSERT(vd != NULL);
4465 	ASSERT3P(vd, ==, vd->vdev_top);
4466 	ASSERT(zio_injection_enabled || !(zio->io_flags & ZIO_FLAG_IO_RETRY));
4467 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4468 	ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING);
4469 	ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE));
4470 	ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA));
4471 
4472 	/*
4473 	 * Parents of gang children can have two flavors -- ones that
4474 	 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set)
4475 	 * and ones that allocated the constituent blocks. The allocation
4476 	 * throttle needs to know the allocating parent zio so we must find
4477 	 * it here.
4478 	 */
4479 	if (pio->io_child_type == ZIO_CHILD_GANG) {
4480 		/*
4481 		 * If our parent is a rewrite gang child then our grandparent
4482 		 * would have been the one that performed the allocation.
4483 		 */
4484 		if (pio->io_flags & ZIO_FLAG_IO_REWRITE)
4485 			pio = zio_unique_parent(pio);
4486 		flags |= METASLAB_GANG_CHILD;
4487 	}
4488 
4489 	ASSERT(IO_IS_ALLOCATING(pio));
4490 	ASSERT3P(zio, !=, zio->io_logical);
4491 	ASSERT(zio->io_logical != NULL);
4492 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4493 	ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE);
4494 	ASSERT(zio->io_metaslab_class != NULL);
4495 
4496 	mutex_enter(&pio->io_lock);
4497 	metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags,
4498 	    pio->io_allocator, B_TRUE);
4499 	mutex_exit(&pio->io_lock);
4500 
4501 	metaslab_class_throttle_unreserve(zio->io_metaslab_class, 1,
4502 	    pio->io_allocator, pio);
4503 
4504 	/*
4505 	 * Call into the pipeline to see if there is more work that
4506 	 * needs to be done. If there is work to be done it will be
4507 	 * dispatched to another taskq thread.
4508 	 */
4509 	zio_allocate_dispatch(zio->io_spa, pio->io_allocator);
4510 }
4511 
4512 static zio_t *
4513 zio_done(zio_t *zio)
4514 {
4515 	/*
4516 	 * Always attempt to keep stack usage minimal here since
4517 	 * we can be called recursively up to 19 levels deep.
4518 	 */
4519 	const uint64_t psize = zio->io_size;
4520 	zio_t *pio, *pio_next;
4521 	zio_link_t *zl = NULL;
4522 
4523 	/*
4524 	 * If our children haven't all completed,
4525 	 * wait for them and then repeat this pipeline stage.
4526 	 */
4527 	if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) {
4528 		return (NULL);
4529 	}
4530 
4531 	/*
4532 	 * If the allocation throttle is enabled, then update the accounting.
4533 	 * We only track child I/Os that are part of an allocating async
4534 	 * write. We must do this since the allocation is performed
4535 	 * by the logical I/O but the actual write is done by child I/Os.
4536 	 */
4537 	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING &&
4538 	    zio->io_child_type == ZIO_CHILD_VDEV) {
4539 		ASSERT(zio->io_metaslab_class != NULL);
4540 		ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled);
4541 		zio_dva_throttle_done(zio);
4542 	}
4543 
4544 	/*
4545 	 * If the allocation throttle is enabled, verify that
4546 	 * we have decremented the refcounts for every I/O that was throttled.
4547 	 */
4548 	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4549 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
4550 		ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4551 		ASSERT(zio->io_bp != NULL);
4552 
4553 		metaslab_group_alloc_verify(zio->io_spa, zio->io_bp, zio,
4554 		    zio->io_allocator);
4555 		VERIFY(zfs_refcount_not_held(&zio->io_metaslab_class->
4556 		    mc_allocator[zio->io_allocator].mca_alloc_slots, zio));
4557 	}
4558 
4559 
4560 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
4561 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
4562 			ASSERT(zio->io_children[c][w] == 0);
4563 
4564 	if (zio->io_bp != NULL && !BP_IS_EMBEDDED(zio->io_bp)) {
4565 		ASSERT(zio->io_bp->blk_pad[0] == 0);
4566 		ASSERT(zio->io_bp->blk_pad[1] == 0);
4567 		ASSERT(memcmp(zio->io_bp, &zio->io_bp_copy,
4568 		    sizeof (blkptr_t)) == 0 ||
4569 		    (zio->io_bp == zio_unique_parent(zio)->io_bp));
4570 		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) &&
4571 		    zio->io_bp_override == NULL &&
4572 		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
4573 			ASSERT3U(zio->io_prop.zp_copies, <=,
4574 			    BP_GET_NDVAS(zio->io_bp));
4575 			ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 ||
4576 			    (BP_COUNT_GANG(zio->io_bp) ==
4577 			    BP_GET_NDVAS(zio->io_bp)));
4578 		}
4579 		if (zio->io_flags & ZIO_FLAG_NOPWRITE)
4580 			VERIFY(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
4581 	}
4582 
4583 	/*
4584 	 * If there were child vdev/gang/ddt errors, they apply to us now.
4585 	 */
4586 	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
4587 	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
4588 	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
4589 
4590 	/*
4591 	 * If the I/O on the transformed data was successful, generate any
4592 	 * checksum reports now while we still have the transformed data.
4593 	 */
4594 	if (zio->io_error == 0) {
4595 		while (zio->io_cksum_report != NULL) {
4596 			zio_cksum_report_t *zcr = zio->io_cksum_report;
4597 			uint64_t align = zcr->zcr_align;
4598 			uint64_t asize = P2ROUNDUP(psize, align);
4599 			abd_t *adata = zio->io_abd;
4600 
4601 			if (adata != NULL && asize != psize) {
4602 				adata = abd_alloc(asize, B_TRUE);
4603 				abd_copy(adata, zio->io_abd, psize);
4604 				abd_zero_off(adata, psize, asize - psize);
4605 			}
4606 
4607 			zio->io_cksum_report = zcr->zcr_next;
4608 			zcr->zcr_next = NULL;
4609 			zcr->zcr_finish(zcr, adata);
4610 			zfs_ereport_free_checksum(zcr);
4611 
4612 			if (adata != NULL && asize != psize)
4613 				abd_free(adata);
4614 		}
4615 	}
4616 
4617 	zio_pop_transforms(zio);	/* note: may set zio->io_error */
4618 
4619 	vdev_stat_update(zio, psize);
4620 
4621 	/*
4622 	 * If this I/O is attached to a particular vdev is slow, exceeding
4623 	 * 30 seconds to complete, post an error described the I/O delay.
4624 	 * We ignore these errors if the device is currently unavailable.
4625 	 */
4626 	if (zio->io_delay >= MSEC2NSEC(zio_slow_io_ms)) {
4627 		if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) {
4628 			/*
4629 			 * We want to only increment our slow IO counters if
4630 			 * the IO is valid (i.e. not if the drive is removed).
4631 			 *
4632 			 * zfs_ereport_post() will also do these checks, but
4633 			 * it can also ratelimit and have other failures, so we
4634 			 * need to increment the slow_io counters independent
4635 			 * of it.
4636 			 */
4637 			if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY,
4638 			    zio->io_spa, zio->io_vd, zio)) {
4639 				mutex_enter(&zio->io_vd->vdev_stat_lock);
4640 				zio->io_vd->vdev_stat.vs_slow_ios++;
4641 				mutex_exit(&zio->io_vd->vdev_stat_lock);
4642 
4643 				(void) zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
4644 				    zio->io_spa, zio->io_vd, &zio->io_bookmark,
4645 				    zio, 0);
4646 			}
4647 		}
4648 	}
4649 
4650 	if (zio->io_error) {
4651 		/*
4652 		 * If this I/O is attached to a particular vdev,
4653 		 * generate an error message describing the I/O failure
4654 		 * at the block level.  We ignore these errors if the
4655 		 * device is currently unavailable.
4656 		 */
4657 		if (zio->io_error != ECKSUM && zio->io_vd != NULL &&
4658 		    !vdev_is_dead(zio->io_vd)) {
4659 			int ret = zfs_ereport_post(FM_EREPORT_ZFS_IO,
4660 			    zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0);
4661 			if (ret != EALREADY) {
4662 				mutex_enter(&zio->io_vd->vdev_stat_lock);
4663 				if (zio->io_type == ZIO_TYPE_READ)
4664 					zio->io_vd->vdev_stat.vs_read_errors++;
4665 				else if (zio->io_type == ZIO_TYPE_WRITE)
4666 					zio->io_vd->vdev_stat.vs_write_errors++;
4667 				mutex_exit(&zio->io_vd->vdev_stat_lock);
4668 			}
4669 		}
4670 
4671 		if ((zio->io_error == EIO || !(zio->io_flags &
4672 		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
4673 		    zio == zio->io_logical) {
4674 			/*
4675 			 * For logical I/O requests, tell the SPA to log the
4676 			 * error and generate a logical data ereport.
4677 			 */
4678 			spa_log_error(zio->io_spa, &zio->io_bookmark);
4679 			(void) zfs_ereport_post(FM_EREPORT_ZFS_DATA,
4680 			    zio->io_spa, NULL, &zio->io_bookmark, zio, 0);
4681 		}
4682 	}
4683 
4684 	if (zio->io_error && zio == zio->io_logical) {
4685 		/*
4686 		 * Determine whether zio should be reexecuted.  This will
4687 		 * propagate all the way to the root via zio_notify_parent().
4688 		 */
4689 		ASSERT(zio->io_vd == NULL && zio->io_bp != NULL);
4690 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4691 
4692 		if (IO_IS_ALLOCATING(zio) &&
4693 		    !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
4694 			if (zio->io_error != ENOSPC)
4695 				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
4696 			else
4697 				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4698 		}
4699 
4700 		if ((zio->io_type == ZIO_TYPE_READ ||
4701 		    zio->io_type == ZIO_TYPE_FREE) &&
4702 		    !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
4703 		    zio->io_error == ENXIO &&
4704 		    spa_load_state(zio->io_spa) == SPA_LOAD_NONE &&
4705 		    spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE)
4706 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4707 
4708 		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
4709 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4710 
4711 		/*
4712 		 * Here is a possibly good place to attempt to do
4713 		 * either combinatorial reconstruction or error correction
4714 		 * based on checksums.  It also might be a good place
4715 		 * to send out preliminary ereports before we suspend
4716 		 * processing.
4717 		 */
4718 	}
4719 
4720 	/*
4721 	 * If there were logical child errors, they apply to us now.
4722 	 * We defer this until now to avoid conflating logical child
4723 	 * errors with errors that happened to the zio itself when
4724 	 * updating vdev stats and reporting FMA events above.
4725 	 */
4726 	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
4727 
4728 	if ((zio->io_error || zio->io_reexecute) &&
4729 	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
4730 	    !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
4731 		zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp);
4732 
4733 	zio_gang_tree_free(&zio->io_gang_tree);
4734 
4735 	/*
4736 	 * Godfather I/Os should never suspend.
4737 	 */
4738 	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
4739 	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
4740 		zio->io_reexecute &= ~ZIO_REEXECUTE_SUSPEND;
4741 
4742 	if (zio->io_reexecute) {
4743 		/*
4744 		 * This is a logical I/O that wants to reexecute.
4745 		 *
4746 		 * Reexecute is top-down.  When an i/o fails, if it's not
4747 		 * the root, it simply notifies its parent and sticks around.
4748 		 * The parent, seeing that it still has children in zio_done(),
4749 		 * does the same.  This percolates all the way up to the root.
4750 		 * The root i/o will reexecute or suspend the entire tree.
4751 		 *
4752 		 * This approach ensures that zio_reexecute() honors
4753 		 * all the original i/o dependency relationships, e.g.
4754 		 * parents not executing until children are ready.
4755 		 */
4756 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4757 
4758 		zio->io_gang_leader = NULL;
4759 
4760 		mutex_enter(&zio->io_lock);
4761 		zio->io_state[ZIO_WAIT_DONE] = 1;
4762 		mutex_exit(&zio->io_lock);
4763 
4764 		/*
4765 		 * "The Godfather" I/O monitors its children but is
4766 		 * not a true parent to them. It will track them through
4767 		 * the pipeline but severs its ties whenever they get into
4768 		 * trouble (e.g. suspended). This allows "The Godfather"
4769 		 * I/O to return status without blocking.
4770 		 */
4771 		zl = NULL;
4772 		for (pio = zio_walk_parents(zio, &zl); pio != NULL;
4773 		    pio = pio_next) {
4774 			zio_link_t *remove_zl = zl;
4775 			pio_next = zio_walk_parents(zio, &zl);
4776 
4777 			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
4778 			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
4779 				zio_remove_child(pio, zio, remove_zl);
4780 				/*
4781 				 * This is a rare code path, so we don't
4782 				 * bother with "next_to_execute".
4783 				 */
4784 				zio_notify_parent(pio, zio, ZIO_WAIT_DONE,
4785 				    NULL);
4786 			}
4787 		}
4788 
4789 		if ((pio = zio_unique_parent(zio)) != NULL) {
4790 			/*
4791 			 * We're not a root i/o, so there's nothing to do
4792 			 * but notify our parent.  Don't propagate errors
4793 			 * upward since we haven't permanently failed yet.
4794 			 */
4795 			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
4796 			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
4797 			/*
4798 			 * This is a rare code path, so we don't bother with
4799 			 * "next_to_execute".
4800 			 */
4801 			zio_notify_parent(pio, zio, ZIO_WAIT_DONE, NULL);
4802 		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
4803 			/*
4804 			 * We'd fail again if we reexecuted now, so suspend
4805 			 * until conditions improve (e.g. device comes online).
4806 			 */
4807 			zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR);
4808 		} else {
4809 			/*
4810 			 * Reexecution is potentially a huge amount of work.
4811 			 * Hand it off to the otherwise-unused claim taskq.
4812 			 */
4813 			ASSERT(taskq_empty_ent(&zio->io_tqent));
4814 			spa_taskq_dispatch_ent(zio->io_spa,
4815 			    ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE,
4816 			    zio_reexecute, zio, 0, &zio->io_tqent);
4817 		}
4818 		return (NULL);
4819 	}
4820 
4821 	ASSERT(zio->io_child_count == 0);
4822 	ASSERT(zio->io_reexecute == 0);
4823 	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
4824 
4825 	/*
4826 	 * Report any checksum errors, since the I/O is complete.
4827 	 */
4828 	while (zio->io_cksum_report != NULL) {
4829 		zio_cksum_report_t *zcr = zio->io_cksum_report;
4830 		zio->io_cksum_report = zcr->zcr_next;
4831 		zcr->zcr_next = NULL;
4832 		zcr->zcr_finish(zcr, NULL);
4833 		zfs_ereport_free_checksum(zcr);
4834 	}
4835 
4836 	if (zio->io_flags & ZIO_FLAG_FASTWRITE && zio->io_bp &&
4837 	    !BP_IS_HOLE(zio->io_bp) && !BP_IS_EMBEDDED(zio->io_bp) &&
4838 	    !(zio->io_flags & ZIO_FLAG_NOPWRITE)) {
4839 		metaslab_fastwrite_unmark(zio->io_spa, zio->io_bp);
4840 	}
4841 
4842 	/*
4843 	 * It is the responsibility of the done callback to ensure that this
4844 	 * particular zio is no longer discoverable for adoption, and as
4845 	 * such, cannot acquire any new parents.
4846 	 */
4847 	if (zio->io_done)
4848 		zio->io_done(zio);
4849 
4850 	mutex_enter(&zio->io_lock);
4851 	zio->io_state[ZIO_WAIT_DONE] = 1;
4852 	mutex_exit(&zio->io_lock);
4853 
4854 	/*
4855 	 * We are done executing this zio.  We may want to execute a parent
4856 	 * next.  See the comment in zio_notify_parent().
4857 	 */
4858 	zio_t *next_to_execute = NULL;
4859 	zl = NULL;
4860 	for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) {
4861 		zio_link_t *remove_zl = zl;
4862 		pio_next = zio_walk_parents(zio, &zl);
4863 		zio_remove_child(pio, zio, remove_zl);
4864 		zio_notify_parent(pio, zio, ZIO_WAIT_DONE, &next_to_execute);
4865 	}
4866 
4867 	if (zio->io_waiter != NULL) {
4868 		mutex_enter(&zio->io_lock);
4869 		zio->io_executor = NULL;
4870 		cv_broadcast(&zio->io_cv);
4871 		mutex_exit(&zio->io_lock);
4872 	} else {
4873 		zio_destroy(zio);
4874 	}
4875 
4876 	return (next_to_execute);
4877 }
4878 
4879 /*
4880  * ==========================================================================
4881  * I/O pipeline definition
4882  * ==========================================================================
4883  */
4884 static zio_pipe_stage_t *zio_pipeline[] = {
4885 	NULL,
4886 	zio_read_bp_init,
4887 	zio_write_bp_init,
4888 	zio_free_bp_init,
4889 	zio_issue_async,
4890 	zio_write_compress,
4891 	zio_encrypt,
4892 	zio_checksum_generate,
4893 	zio_nop_write,
4894 	zio_ddt_read_start,
4895 	zio_ddt_read_done,
4896 	zio_ddt_write,
4897 	zio_ddt_free,
4898 	zio_gang_assemble,
4899 	zio_gang_issue,
4900 	zio_dva_throttle,
4901 	zio_dva_allocate,
4902 	zio_dva_free,
4903 	zio_dva_claim,
4904 	zio_ready,
4905 	zio_vdev_io_start,
4906 	zio_vdev_io_done,
4907 	zio_vdev_io_assess,
4908 	zio_checksum_verify,
4909 	zio_done
4910 };
4911 
4912 
4913 
4914 
4915 /*
4916  * Compare two zbookmark_phys_t's to see which we would reach first in a
4917  * pre-order traversal of the object tree.
4918  *
4919  * This is simple in every case aside from the meta-dnode object. For all other
4920  * objects, we traverse them in order (object 1 before object 2, and so on).
4921  * However, all of these objects are traversed while traversing object 0, since
4922  * the data it points to is the list of objects.  Thus, we need to convert to a
4923  * canonical representation so we can compare meta-dnode bookmarks to
4924  * non-meta-dnode bookmarks.
4925  *
4926  * We do this by calculating "equivalents" for each field of the zbookmark.
4927  * zbookmarks outside of the meta-dnode use their own object and level, and
4928  * calculate the level 0 equivalent (the first L0 blkid that is contained in the
4929  * blocks this bookmark refers to) by multiplying their blkid by their span
4930  * (the number of L0 blocks contained within one block at their level).
4931  * zbookmarks inside the meta-dnode calculate their object equivalent
4932  * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
4933  * level + 1<<31 (any value larger than a level could ever be) for their level.
4934  * This causes them to always compare before a bookmark in their object
4935  * equivalent, compare appropriately to bookmarks in other objects, and to
4936  * compare appropriately to other bookmarks in the meta-dnode.
4937  */
4938 int
4939 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
4940     const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
4941 {
4942 	/*
4943 	 * These variables represent the "equivalent" values for the zbookmark,
4944 	 * after converting zbookmarks inside the meta dnode to their
4945 	 * normal-object equivalents.
4946 	 */
4947 	uint64_t zb1obj, zb2obj;
4948 	uint64_t zb1L0, zb2L0;
4949 	uint64_t zb1level, zb2level;
4950 
4951 	if (zb1->zb_object == zb2->zb_object &&
4952 	    zb1->zb_level == zb2->zb_level &&
4953 	    zb1->zb_blkid == zb2->zb_blkid)
4954 		return (0);
4955 
4956 	IMPLY(zb1->zb_level > 0, ibs1 >= SPA_MINBLOCKSHIFT);
4957 	IMPLY(zb2->zb_level > 0, ibs2 >= SPA_MINBLOCKSHIFT);
4958 
4959 	/*
4960 	 * BP_SPANB calculates the span in blocks.
4961 	 */
4962 	zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
4963 	zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
4964 
4965 	if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
4966 		zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4967 		zb1L0 = 0;
4968 		zb1level = zb1->zb_level + COMPARE_META_LEVEL;
4969 	} else {
4970 		zb1obj = zb1->zb_object;
4971 		zb1level = zb1->zb_level;
4972 	}
4973 
4974 	if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
4975 		zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4976 		zb2L0 = 0;
4977 		zb2level = zb2->zb_level + COMPARE_META_LEVEL;
4978 	} else {
4979 		zb2obj = zb2->zb_object;
4980 		zb2level = zb2->zb_level;
4981 	}
4982 
4983 	/* Now that we have a canonical representation, do the comparison. */
4984 	if (zb1obj != zb2obj)
4985 		return (zb1obj < zb2obj ? -1 : 1);
4986 	else if (zb1L0 != zb2L0)
4987 		return (zb1L0 < zb2L0 ? -1 : 1);
4988 	else if (zb1level != zb2level)
4989 		return (zb1level > zb2level ? -1 : 1);
4990 	/*
4991 	 * This can (theoretically) happen if the bookmarks have the same object
4992 	 * and level, but different blkids, if the block sizes are not the same.
4993 	 * There is presently no way to change the indirect block sizes
4994 	 */
4995 	return (0);
4996 }
4997 
4998 /*
4999  *  This function checks the following: given that last_block is the place that
5000  *  our traversal stopped last time, does that guarantee that we've visited
5001  *  every node under subtree_root?  Therefore, we can't just use the raw output
5002  *  of zbookmark_compare.  We have to pass in a modified version of
5003  *  subtree_root; by incrementing the block id, and then checking whether
5004  *  last_block is before or equal to that, we can tell whether or not having
5005  *  visited last_block implies that all of subtree_root's children have been
5006  *  visited.
5007  */
5008 boolean_t
5009 zbookmark_subtree_completed(const dnode_phys_t *dnp,
5010     const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
5011 {
5012 	zbookmark_phys_t mod_zb = *subtree_root;
5013 	mod_zb.zb_blkid++;
5014 	ASSERT0(last_block->zb_level);
5015 
5016 	/* The objset_phys_t isn't before anything. */
5017 	if (dnp == NULL)
5018 		return (B_FALSE);
5019 
5020 	/*
5021 	 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
5022 	 * data block size in sectors, because that variable is only used if
5023 	 * the bookmark refers to a block in the meta-dnode.  Since we don't
5024 	 * know without examining it what object it refers to, and there's no
5025 	 * harm in passing in this value in other cases, we always pass it in.
5026 	 *
5027 	 * We pass in 0 for the indirect block size shift because zb2 must be
5028 	 * level 0.  The indirect block size is only used to calculate the span
5029 	 * of the bookmark, but since the bookmark must be level 0, the span is
5030 	 * always 1, so the math works out.
5031 	 *
5032 	 * If you make changes to how the zbookmark_compare code works, be sure
5033 	 * to make sure that this code still works afterwards.
5034 	 */
5035 	return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
5036 	    1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
5037 	    last_block) <= 0);
5038 }
5039 
5040 /*
5041  * This function is similar to zbookmark_subtree_completed(), but returns true
5042  * if subtree_root is equal or ahead of last_block, i.e. still to be done.
5043  */
5044 boolean_t
5045 zbookmark_subtree_tbd(const dnode_phys_t *dnp,
5046     const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
5047 {
5048 	ASSERT0(last_block->zb_level);
5049 	if (dnp == NULL)
5050 		return (B_FALSE);
5051 	return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
5052 	    1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, subtree_root,
5053 	    last_block) >= 0);
5054 }
5055 
5056 EXPORT_SYMBOL(zio_type_name);
5057 EXPORT_SYMBOL(zio_buf_alloc);
5058 EXPORT_SYMBOL(zio_data_buf_alloc);
5059 EXPORT_SYMBOL(zio_buf_free);
5060 EXPORT_SYMBOL(zio_data_buf_free);
5061 
5062 ZFS_MODULE_PARAM(zfs_zio, zio_, slow_io_ms, INT, ZMOD_RW,
5063 	"Max I/O completion time (milliseconds) before marking it as slow");
5064 
5065 ZFS_MODULE_PARAM(zfs_zio, zio_, requeue_io_start_cut_in_line, INT, ZMOD_RW,
5066 	"Prioritize requeued I/O");
5067 
5068 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_deferred_free,  UINT, ZMOD_RW,
5069 	"Defer frees starting in this pass");
5070 
5071 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_dont_compress, UINT, ZMOD_RW,
5072 	"Don't compress starting in this pass");
5073 
5074 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_rewrite, UINT, ZMOD_RW,
5075 	"Rewrite new bps starting in this pass");
5076 
5077 ZFS_MODULE_PARAM(zfs_zio, zio_, dva_throttle_enabled, INT, ZMOD_RW,
5078 	"Throttle block allocations in the ZIO pipeline");
5079 
5080 ZFS_MODULE_PARAM(zfs_zio, zio_, deadman_log_all, INT, ZMOD_RW,
5081 	"Log all slow ZIOs, not just those with vdevs");
5082