1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2020 by Delphix. All rights reserved. 24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2017, Intel Corporation. 26 * Copyright (c) 2019, Klara Inc. 27 * Copyright (c) 2019, Allan Jude 28 * Copyright (c) 2021, Datto, Inc. 29 */ 30 31 #include <sys/sysmacros.h> 32 #include <sys/zfs_context.h> 33 #include <sys/fm/fs/zfs.h> 34 #include <sys/spa.h> 35 #include <sys/txg.h> 36 #include <sys/spa_impl.h> 37 #include <sys/vdev_impl.h> 38 #include <sys/vdev_trim.h> 39 #include <sys/zio_impl.h> 40 #include <sys/zio_compress.h> 41 #include <sys/zio_checksum.h> 42 #include <sys/dmu_objset.h> 43 #include <sys/arc.h> 44 #include <sys/ddt.h> 45 #include <sys/blkptr.h> 46 #include <sys/zfeature.h> 47 #include <sys/dsl_scan.h> 48 #include <sys/metaslab_impl.h> 49 #include <sys/time.h> 50 #include <sys/trace_zfs.h> 51 #include <sys/abd.h> 52 #include <sys/dsl_crypt.h> 53 #include <cityhash.h> 54 55 /* 56 * ========================================================================== 57 * I/O type descriptions 58 * ========================================================================== 59 */ 60 const char *zio_type_name[ZIO_TYPES] = { 61 /* 62 * Note: Linux kernel thread name length is limited 63 * so these names will differ from upstream open zfs. 64 */ 65 "z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_ioctl", "z_trim" 66 }; 67 68 int zio_dva_throttle_enabled = B_TRUE; 69 int zio_deadman_log_all = B_FALSE; 70 71 /* 72 * ========================================================================== 73 * I/O kmem caches 74 * ========================================================================== 75 */ 76 kmem_cache_t *zio_cache; 77 kmem_cache_t *zio_link_cache; 78 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 79 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 80 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 81 uint64_t zio_buf_cache_allocs[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 82 uint64_t zio_buf_cache_frees[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 83 #endif 84 85 /* Mark IOs as "slow" if they take longer than 30 seconds */ 86 int zio_slow_io_ms = (30 * MILLISEC); 87 88 #define BP_SPANB(indblkshift, level) \ 89 (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT))) 90 #define COMPARE_META_LEVEL 0x80000000ul 91 /* 92 * The following actions directly effect the spa's sync-to-convergence logic. 93 * The values below define the sync pass when we start performing the action. 94 * Care should be taken when changing these values as they directly impact 95 * spa_sync() performance. Tuning these values may introduce subtle performance 96 * pathologies and should only be done in the context of performance analysis. 97 * These tunables will eventually be removed and replaced with #defines once 98 * enough analysis has been done to determine optimal values. 99 * 100 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that 101 * regular blocks are not deferred. 102 * 103 * Starting in sync pass 8 (zfs_sync_pass_dont_compress), we disable 104 * compression (including of metadata). In practice, we don't have this 105 * many sync passes, so this has no effect. 106 * 107 * The original intent was that disabling compression would help the sync 108 * passes to converge. However, in practice disabling compression increases 109 * the average number of sync passes, because when we turn compression off, a 110 * lot of block's size will change and thus we have to re-allocate (not 111 * overwrite) them. It also increases the number of 128KB allocations (e.g. 112 * for indirect blocks and spacemaps) because these will not be compressed. 113 * The 128K allocations are especially detrimental to performance on highly 114 * fragmented systems, which may have very few free segments of this size, 115 * and may need to load new metaslabs to satisfy 128K allocations. 116 */ 117 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */ 118 int zfs_sync_pass_dont_compress = 8; /* don't compress starting in this pass */ 119 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */ 120 121 /* 122 * An allocating zio is one that either currently has the DVA allocate 123 * stage set or will have it later in its lifetime. 124 */ 125 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE) 126 127 /* 128 * Enable smaller cores by excluding metadata 129 * allocations as well. 130 */ 131 int zio_exclude_metadata = 0; 132 int zio_requeue_io_start_cut_in_line = 1; 133 134 #ifdef ZFS_DEBUG 135 int zio_buf_debug_limit = 16384; 136 #else 137 int zio_buf_debug_limit = 0; 138 #endif 139 140 static inline void __zio_execute(zio_t *zio); 141 142 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t); 143 144 void 145 zio_init(void) 146 { 147 size_t c; 148 149 zio_cache = kmem_cache_create("zio_cache", 150 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 151 zio_link_cache = kmem_cache_create("zio_link_cache", 152 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 153 154 /* 155 * For small buffers, we want a cache for each multiple of 156 * SPA_MINBLOCKSIZE. For larger buffers, we want a cache 157 * for each quarter-power of 2. 158 */ 159 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 160 size_t size = (c + 1) << SPA_MINBLOCKSHIFT; 161 size_t p2 = size; 162 size_t align = 0; 163 size_t data_cflags, cflags; 164 165 data_cflags = KMC_NODEBUG; 166 cflags = (zio_exclude_metadata || size > zio_buf_debug_limit) ? 167 KMC_NODEBUG : 0; 168 169 #if defined(_ILP32) && defined(_KERNEL) 170 /* 171 * Cache size limited to 1M on 32-bit platforms until ARC 172 * buffers no longer require virtual address space. 173 */ 174 if (size > zfs_max_recordsize) 175 break; 176 #endif 177 178 while (!ISP2(p2)) 179 p2 &= p2 - 1; 180 181 #ifndef _KERNEL 182 /* 183 * If we are using watchpoints, put each buffer on its own page, 184 * to eliminate the performance overhead of trapping to the 185 * kernel when modifying a non-watched buffer that shares the 186 * page with a watched buffer. 187 */ 188 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE)) 189 continue; 190 /* 191 * Here's the problem - on 4K native devices in userland on 192 * Linux using O_DIRECT, buffers must be 4K aligned or I/O 193 * will fail with EINVAL, causing zdb (and others) to coredump. 194 * Since userland probably doesn't need optimized buffer caches, 195 * we just force 4K alignment on everything. 196 */ 197 align = 8 * SPA_MINBLOCKSIZE; 198 #else 199 if (size < PAGESIZE) { 200 align = SPA_MINBLOCKSIZE; 201 } else if (IS_P2ALIGNED(size, p2 >> 2)) { 202 align = PAGESIZE; 203 } 204 #endif 205 206 if (align != 0) { 207 char name[36]; 208 if (cflags == data_cflags) { 209 /* 210 * Resulting kmem caches would be identical. 211 * Save memory by creating only one. 212 */ 213 (void) snprintf(name, sizeof (name), 214 "zio_buf_comb_%lu", (ulong_t)size); 215 zio_buf_cache[c] = kmem_cache_create(name, 216 size, align, NULL, NULL, NULL, NULL, NULL, 217 cflags); 218 zio_data_buf_cache[c] = zio_buf_cache[c]; 219 continue; 220 } 221 (void) snprintf(name, sizeof (name), "zio_buf_%lu", 222 (ulong_t)size); 223 zio_buf_cache[c] = kmem_cache_create(name, size, 224 align, NULL, NULL, NULL, NULL, NULL, cflags); 225 226 (void) snprintf(name, sizeof (name), "zio_data_buf_%lu", 227 (ulong_t)size); 228 zio_data_buf_cache[c] = kmem_cache_create(name, size, 229 align, NULL, NULL, NULL, NULL, NULL, data_cflags); 230 } 231 } 232 233 while (--c != 0) { 234 ASSERT(zio_buf_cache[c] != NULL); 235 if (zio_buf_cache[c - 1] == NULL) 236 zio_buf_cache[c - 1] = zio_buf_cache[c]; 237 238 ASSERT(zio_data_buf_cache[c] != NULL); 239 if (zio_data_buf_cache[c - 1] == NULL) 240 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c]; 241 } 242 243 zio_inject_init(); 244 245 lz4_init(); 246 } 247 248 void 249 zio_fini(void) 250 { 251 size_t n = SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; 252 253 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 254 for (size_t i = 0; i < n; i++) { 255 if (zio_buf_cache_allocs[i] != zio_buf_cache_frees[i]) 256 (void) printf("zio_fini: [%d] %llu != %llu\n", 257 (int)((i + 1) << SPA_MINBLOCKSHIFT), 258 (long long unsigned)zio_buf_cache_allocs[i], 259 (long long unsigned)zio_buf_cache_frees[i]); 260 } 261 #endif 262 263 /* 264 * The same kmem cache can show up multiple times in both zio_buf_cache 265 * and zio_data_buf_cache. Do a wasteful but trivially correct scan to 266 * sort it out. 267 */ 268 for (size_t i = 0; i < n; i++) { 269 kmem_cache_t *cache = zio_buf_cache[i]; 270 if (cache == NULL) 271 continue; 272 for (size_t j = i; j < n; j++) { 273 if (cache == zio_buf_cache[j]) 274 zio_buf_cache[j] = NULL; 275 if (cache == zio_data_buf_cache[j]) 276 zio_data_buf_cache[j] = NULL; 277 } 278 kmem_cache_destroy(cache); 279 } 280 281 for (size_t i = 0; i < n; i++) { 282 kmem_cache_t *cache = zio_data_buf_cache[i]; 283 if (cache == NULL) 284 continue; 285 for (size_t j = i; j < n; j++) { 286 if (cache == zio_data_buf_cache[j]) 287 zio_data_buf_cache[j] = NULL; 288 } 289 kmem_cache_destroy(cache); 290 } 291 292 for (size_t i = 0; i < n; i++) { 293 VERIFY3P(zio_buf_cache[i], ==, NULL); 294 VERIFY3P(zio_data_buf_cache[i], ==, NULL); 295 } 296 297 kmem_cache_destroy(zio_link_cache); 298 kmem_cache_destroy(zio_cache); 299 300 zio_inject_fini(); 301 302 lz4_fini(); 303 } 304 305 /* 306 * ========================================================================== 307 * Allocate and free I/O buffers 308 * ========================================================================== 309 */ 310 311 /* 312 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a 313 * crashdump if the kernel panics, so use it judiciously. Obviously, it's 314 * useful to inspect ZFS metadata, but if possible, we should avoid keeping 315 * excess / transient data in-core during a crashdump. 316 */ 317 void * 318 zio_buf_alloc(size_t size) 319 { 320 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 321 322 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 323 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 324 atomic_add_64(&zio_buf_cache_allocs[c], 1); 325 #endif 326 327 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE)); 328 } 329 330 /* 331 * Use zio_data_buf_alloc to allocate data. The data will not appear in a 332 * crashdump if the kernel panics. This exists so that we will limit the amount 333 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount 334 * of kernel heap dumped to disk when the kernel panics) 335 */ 336 void * 337 zio_data_buf_alloc(size_t size) 338 { 339 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 340 341 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 342 343 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE)); 344 } 345 346 void 347 zio_buf_free(void *buf, size_t size) 348 { 349 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 350 351 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 352 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 353 atomic_add_64(&zio_buf_cache_frees[c], 1); 354 #endif 355 356 kmem_cache_free(zio_buf_cache[c], buf); 357 } 358 359 void 360 zio_data_buf_free(void *buf, size_t size) 361 { 362 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 363 364 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 365 366 kmem_cache_free(zio_data_buf_cache[c], buf); 367 } 368 369 static void 370 zio_abd_free(void *abd, size_t size) 371 { 372 abd_free((abd_t *)abd); 373 } 374 375 /* 376 * ========================================================================== 377 * Push and pop I/O transform buffers 378 * ========================================================================== 379 */ 380 void 381 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize, 382 zio_transform_func_t *transform) 383 { 384 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP); 385 386 zt->zt_orig_abd = zio->io_abd; 387 zt->zt_orig_size = zio->io_size; 388 zt->zt_bufsize = bufsize; 389 zt->zt_transform = transform; 390 391 zt->zt_next = zio->io_transform_stack; 392 zio->io_transform_stack = zt; 393 394 zio->io_abd = data; 395 zio->io_size = size; 396 } 397 398 void 399 zio_pop_transforms(zio_t *zio) 400 { 401 zio_transform_t *zt; 402 403 while ((zt = zio->io_transform_stack) != NULL) { 404 if (zt->zt_transform != NULL) 405 zt->zt_transform(zio, 406 zt->zt_orig_abd, zt->zt_orig_size); 407 408 if (zt->zt_bufsize != 0) 409 abd_free(zio->io_abd); 410 411 zio->io_abd = zt->zt_orig_abd; 412 zio->io_size = zt->zt_orig_size; 413 zio->io_transform_stack = zt->zt_next; 414 415 kmem_free(zt, sizeof (zio_transform_t)); 416 } 417 } 418 419 /* 420 * ========================================================================== 421 * I/O transform callbacks for subblocks, decompression, and decryption 422 * ========================================================================== 423 */ 424 static void 425 zio_subblock(zio_t *zio, abd_t *data, uint64_t size) 426 { 427 ASSERT(zio->io_size > size); 428 429 if (zio->io_type == ZIO_TYPE_READ) 430 abd_copy(data, zio->io_abd, size); 431 } 432 433 static void 434 zio_decompress(zio_t *zio, abd_t *data, uint64_t size) 435 { 436 if (zio->io_error == 0) { 437 void *tmp = abd_borrow_buf(data, size); 438 int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp), 439 zio->io_abd, tmp, zio->io_size, size, 440 &zio->io_prop.zp_complevel); 441 abd_return_buf_copy(data, tmp, size); 442 443 if (zio_injection_enabled && ret == 0) 444 ret = zio_handle_fault_injection(zio, EINVAL); 445 446 if (ret != 0) 447 zio->io_error = SET_ERROR(EIO); 448 } 449 } 450 451 static void 452 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size) 453 { 454 int ret; 455 void *tmp; 456 blkptr_t *bp = zio->io_bp; 457 spa_t *spa = zio->io_spa; 458 uint64_t dsobj = zio->io_bookmark.zb_objset; 459 uint64_t lsize = BP_GET_LSIZE(bp); 460 dmu_object_type_t ot = BP_GET_TYPE(bp); 461 uint8_t salt[ZIO_DATA_SALT_LEN]; 462 uint8_t iv[ZIO_DATA_IV_LEN]; 463 uint8_t mac[ZIO_DATA_MAC_LEN]; 464 boolean_t no_crypt = B_FALSE; 465 466 ASSERT(BP_USES_CRYPT(bp)); 467 ASSERT3U(size, !=, 0); 468 469 if (zio->io_error != 0) 470 return; 471 472 /* 473 * Verify the cksum of MACs stored in an indirect bp. It will always 474 * be possible to verify this since it does not require an encryption 475 * key. 476 */ 477 if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) { 478 zio_crypt_decode_mac_bp(bp, mac); 479 480 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) { 481 /* 482 * We haven't decompressed the data yet, but 483 * zio_crypt_do_indirect_mac_checksum() requires 484 * decompressed data to be able to parse out the MACs 485 * from the indirect block. We decompress it now and 486 * throw away the result after we are finished. 487 */ 488 tmp = zio_buf_alloc(lsize); 489 ret = zio_decompress_data(BP_GET_COMPRESS(bp), 490 zio->io_abd, tmp, zio->io_size, lsize, 491 &zio->io_prop.zp_complevel); 492 if (ret != 0) { 493 ret = SET_ERROR(EIO); 494 goto error; 495 } 496 ret = zio_crypt_do_indirect_mac_checksum(B_FALSE, 497 tmp, lsize, BP_SHOULD_BYTESWAP(bp), mac); 498 zio_buf_free(tmp, lsize); 499 } else { 500 ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE, 501 zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac); 502 } 503 abd_copy(data, zio->io_abd, size); 504 505 if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) { 506 ret = zio_handle_decrypt_injection(spa, 507 &zio->io_bookmark, ot, ECKSUM); 508 } 509 if (ret != 0) 510 goto error; 511 512 return; 513 } 514 515 /* 516 * If this is an authenticated block, just check the MAC. It would be 517 * nice to separate this out into its own flag, but for the moment 518 * enum zio_flag is out of bits. 519 */ 520 if (BP_IS_AUTHENTICATED(bp)) { 521 if (ot == DMU_OT_OBJSET) { 522 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, 523 dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp)); 524 } else { 525 zio_crypt_decode_mac_bp(bp, mac); 526 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, 527 zio->io_abd, size, mac); 528 if (zio_injection_enabled && ret == 0) { 529 ret = zio_handle_decrypt_injection(spa, 530 &zio->io_bookmark, ot, ECKSUM); 531 } 532 } 533 abd_copy(data, zio->io_abd, size); 534 535 if (ret != 0) 536 goto error; 537 538 return; 539 } 540 541 zio_crypt_decode_params_bp(bp, salt, iv); 542 543 if (ot == DMU_OT_INTENT_LOG) { 544 tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t)); 545 zio_crypt_decode_mac_zil(tmp, mac); 546 abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t)); 547 } else { 548 zio_crypt_decode_mac_bp(bp, mac); 549 } 550 551 ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp), 552 BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data, 553 zio->io_abd, &no_crypt); 554 if (no_crypt) 555 abd_copy(data, zio->io_abd, size); 556 557 if (ret != 0) 558 goto error; 559 560 return; 561 562 error: 563 /* assert that the key was found unless this was speculative */ 564 ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE)); 565 566 /* 567 * If there was a decryption / authentication error return EIO as 568 * the io_error. If this was not a speculative zio, create an ereport. 569 */ 570 if (ret == ECKSUM) { 571 zio->io_error = SET_ERROR(EIO); 572 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) { 573 spa_log_error(spa, &zio->io_bookmark); 574 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION, 575 spa, NULL, &zio->io_bookmark, zio, 0); 576 } 577 } else { 578 zio->io_error = ret; 579 } 580 } 581 582 /* 583 * ========================================================================== 584 * I/O parent/child relationships and pipeline interlocks 585 * ========================================================================== 586 */ 587 zio_t * 588 zio_walk_parents(zio_t *cio, zio_link_t **zl) 589 { 590 list_t *pl = &cio->io_parent_list; 591 592 *zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl); 593 if (*zl == NULL) 594 return (NULL); 595 596 ASSERT((*zl)->zl_child == cio); 597 return ((*zl)->zl_parent); 598 } 599 600 zio_t * 601 zio_walk_children(zio_t *pio, zio_link_t **zl) 602 { 603 list_t *cl = &pio->io_child_list; 604 605 ASSERT(MUTEX_HELD(&pio->io_lock)); 606 607 *zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl); 608 if (*zl == NULL) 609 return (NULL); 610 611 ASSERT((*zl)->zl_parent == pio); 612 return ((*zl)->zl_child); 613 } 614 615 zio_t * 616 zio_unique_parent(zio_t *cio) 617 { 618 zio_link_t *zl = NULL; 619 zio_t *pio = zio_walk_parents(cio, &zl); 620 621 VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL); 622 return (pio); 623 } 624 625 void 626 zio_add_child(zio_t *pio, zio_t *cio) 627 { 628 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP); 629 630 /* 631 * Logical I/Os can have logical, gang, or vdev children. 632 * Gang I/Os can have gang or vdev children. 633 * Vdev I/Os can only have vdev children. 634 * The following ASSERT captures all of these constraints. 635 */ 636 ASSERT3S(cio->io_child_type, <=, pio->io_child_type); 637 638 zl->zl_parent = pio; 639 zl->zl_child = cio; 640 641 mutex_enter(&pio->io_lock); 642 mutex_enter(&cio->io_lock); 643 644 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0); 645 646 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 647 pio->io_children[cio->io_child_type][w] += !cio->io_state[w]; 648 649 list_insert_head(&pio->io_child_list, zl); 650 list_insert_head(&cio->io_parent_list, zl); 651 652 pio->io_child_count++; 653 cio->io_parent_count++; 654 655 mutex_exit(&cio->io_lock); 656 mutex_exit(&pio->io_lock); 657 } 658 659 static void 660 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl) 661 { 662 ASSERT(zl->zl_parent == pio); 663 ASSERT(zl->zl_child == cio); 664 665 mutex_enter(&pio->io_lock); 666 mutex_enter(&cio->io_lock); 667 668 list_remove(&pio->io_child_list, zl); 669 list_remove(&cio->io_parent_list, zl); 670 671 pio->io_child_count--; 672 cio->io_parent_count--; 673 674 mutex_exit(&cio->io_lock); 675 mutex_exit(&pio->io_lock); 676 kmem_cache_free(zio_link_cache, zl); 677 } 678 679 static boolean_t 680 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait) 681 { 682 boolean_t waiting = B_FALSE; 683 684 mutex_enter(&zio->io_lock); 685 ASSERT(zio->io_stall == NULL); 686 for (int c = 0; c < ZIO_CHILD_TYPES; c++) { 687 if (!(ZIO_CHILD_BIT_IS_SET(childbits, c))) 688 continue; 689 690 uint64_t *countp = &zio->io_children[c][wait]; 691 if (*countp != 0) { 692 zio->io_stage >>= 1; 693 ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN); 694 zio->io_stall = countp; 695 waiting = B_TRUE; 696 break; 697 } 698 } 699 mutex_exit(&zio->io_lock); 700 return (waiting); 701 } 702 703 __attribute__((always_inline)) 704 static inline void 705 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait, 706 zio_t **next_to_executep) 707 { 708 uint64_t *countp = &pio->io_children[zio->io_child_type][wait]; 709 int *errorp = &pio->io_child_error[zio->io_child_type]; 710 711 mutex_enter(&pio->io_lock); 712 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 713 *errorp = zio_worst_error(*errorp, zio->io_error); 714 pio->io_reexecute |= zio->io_reexecute; 715 ASSERT3U(*countp, >, 0); 716 717 (*countp)--; 718 719 if (*countp == 0 && pio->io_stall == countp) { 720 zio_taskq_type_t type = 721 pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE : 722 ZIO_TASKQ_INTERRUPT; 723 pio->io_stall = NULL; 724 mutex_exit(&pio->io_lock); 725 726 /* 727 * If we can tell the caller to execute this parent next, do 728 * so. Otherwise dispatch the parent zio as its own task. 729 * 730 * Having the caller execute the parent when possible reduces 731 * locking on the zio taskq's, reduces context switch 732 * overhead, and has no recursion penalty. Note that one 733 * read from disk typically causes at least 3 zio's: a 734 * zio_null(), the logical zio_read(), and then a physical 735 * zio. When the physical ZIO completes, we are able to call 736 * zio_done() on all 3 of these zio's from one invocation of 737 * zio_execute() by returning the parent back to 738 * zio_execute(). Since the parent isn't executed until this 739 * thread returns back to zio_execute(), the caller should do 740 * so promptly. 741 * 742 * In other cases, dispatching the parent prevents 743 * overflowing the stack when we have deeply nested 744 * parent-child relationships, as we do with the "mega zio" 745 * of writes for spa_sync(), and the chain of ZIL blocks. 746 */ 747 if (next_to_executep != NULL && *next_to_executep == NULL) { 748 *next_to_executep = pio; 749 } else { 750 zio_taskq_dispatch(pio, type, B_FALSE); 751 } 752 } else { 753 mutex_exit(&pio->io_lock); 754 } 755 } 756 757 static void 758 zio_inherit_child_errors(zio_t *zio, enum zio_child c) 759 { 760 if (zio->io_child_error[c] != 0 && zio->io_error == 0) 761 zio->io_error = zio->io_child_error[c]; 762 } 763 764 int 765 zio_bookmark_compare(const void *x1, const void *x2) 766 { 767 const zio_t *z1 = x1; 768 const zio_t *z2 = x2; 769 770 if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset) 771 return (-1); 772 if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset) 773 return (1); 774 775 if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object) 776 return (-1); 777 if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object) 778 return (1); 779 780 if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level) 781 return (-1); 782 if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level) 783 return (1); 784 785 if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid) 786 return (-1); 787 if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid) 788 return (1); 789 790 if (z1 < z2) 791 return (-1); 792 if (z1 > z2) 793 return (1); 794 795 return (0); 796 } 797 798 /* 799 * ========================================================================== 800 * Create the various types of I/O (read, write, free, etc) 801 * ========================================================================== 802 */ 803 static zio_t * 804 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 805 abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done, 806 void *private, zio_type_t type, zio_priority_t priority, 807 enum zio_flag flags, vdev_t *vd, uint64_t offset, 808 const zbookmark_phys_t *zb, enum zio_stage stage, 809 enum zio_stage pipeline) 810 { 811 zio_t *zio; 812 813 IMPLY(type != ZIO_TYPE_TRIM, psize <= SPA_MAXBLOCKSIZE); 814 ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0); 815 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0); 816 817 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER)); 818 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER)); 819 ASSERT(vd || stage == ZIO_STAGE_OPEN); 820 821 IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0); 822 823 zio = kmem_cache_alloc(zio_cache, KM_SLEEP); 824 bzero(zio, sizeof (zio_t)); 825 826 mutex_init(&zio->io_lock, NULL, MUTEX_NOLOCKDEP, NULL); 827 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL); 828 829 list_create(&zio->io_parent_list, sizeof (zio_link_t), 830 offsetof(zio_link_t, zl_parent_node)); 831 list_create(&zio->io_child_list, sizeof (zio_link_t), 832 offsetof(zio_link_t, zl_child_node)); 833 metaslab_trace_init(&zio->io_alloc_list); 834 835 if (vd != NULL) 836 zio->io_child_type = ZIO_CHILD_VDEV; 837 else if (flags & ZIO_FLAG_GANG_CHILD) 838 zio->io_child_type = ZIO_CHILD_GANG; 839 else if (flags & ZIO_FLAG_DDT_CHILD) 840 zio->io_child_type = ZIO_CHILD_DDT; 841 else 842 zio->io_child_type = ZIO_CHILD_LOGICAL; 843 844 if (bp != NULL) { 845 zio->io_bp = (blkptr_t *)bp; 846 zio->io_bp_copy = *bp; 847 zio->io_bp_orig = *bp; 848 if (type != ZIO_TYPE_WRITE || 849 zio->io_child_type == ZIO_CHILD_DDT) 850 zio->io_bp = &zio->io_bp_copy; /* so caller can free */ 851 if (zio->io_child_type == ZIO_CHILD_LOGICAL) 852 zio->io_logical = zio; 853 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp)) 854 pipeline |= ZIO_GANG_STAGES; 855 } 856 857 zio->io_spa = spa; 858 zio->io_txg = txg; 859 zio->io_done = done; 860 zio->io_private = private; 861 zio->io_type = type; 862 zio->io_priority = priority; 863 zio->io_vd = vd; 864 zio->io_offset = offset; 865 zio->io_orig_abd = zio->io_abd = data; 866 zio->io_orig_size = zio->io_size = psize; 867 zio->io_lsize = lsize; 868 zio->io_orig_flags = zio->io_flags = flags; 869 zio->io_orig_stage = zio->io_stage = stage; 870 zio->io_orig_pipeline = zio->io_pipeline = pipeline; 871 zio->io_pipeline_trace = ZIO_STAGE_OPEN; 872 873 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY); 874 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE); 875 876 if (zb != NULL) 877 zio->io_bookmark = *zb; 878 879 if (pio != NULL) { 880 zio->io_metaslab_class = pio->io_metaslab_class; 881 if (zio->io_logical == NULL) 882 zio->io_logical = pio->io_logical; 883 if (zio->io_child_type == ZIO_CHILD_GANG) 884 zio->io_gang_leader = pio->io_gang_leader; 885 zio_add_child(pio, zio); 886 } 887 888 taskq_init_ent(&zio->io_tqent); 889 890 return (zio); 891 } 892 893 static void 894 zio_destroy(zio_t *zio) 895 { 896 metaslab_trace_fini(&zio->io_alloc_list); 897 list_destroy(&zio->io_parent_list); 898 list_destroy(&zio->io_child_list); 899 mutex_destroy(&zio->io_lock); 900 cv_destroy(&zio->io_cv); 901 kmem_cache_free(zio_cache, zio); 902 } 903 904 zio_t * 905 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done, 906 void *private, enum zio_flag flags) 907 { 908 zio_t *zio; 909 910 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private, 911 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 912 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE); 913 914 return (zio); 915 } 916 917 zio_t * 918 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags) 919 { 920 return (zio_null(NULL, spa, NULL, done, private, flags)); 921 } 922 923 static int 924 zfs_blkptr_verify_log(spa_t *spa, const blkptr_t *bp, 925 enum blk_verify_flag blk_verify, const char *fmt, ...) 926 { 927 va_list adx; 928 char buf[256]; 929 930 va_start(adx, fmt); 931 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 932 va_end(adx); 933 934 switch (blk_verify) { 935 case BLK_VERIFY_HALT: 936 dprintf_bp(bp, "blkptr at %p dprintf_bp():", bp); 937 zfs_panic_recover("%s: %s", spa_name(spa), buf); 938 break; 939 case BLK_VERIFY_LOG: 940 zfs_dbgmsg("%s: %s", spa_name(spa), buf); 941 break; 942 case BLK_VERIFY_ONLY: 943 break; 944 } 945 946 return (1); 947 } 948 949 /* 950 * Verify the block pointer fields contain reasonable values. This means 951 * it only contains known object types, checksum/compression identifiers, 952 * block sizes within the maximum allowed limits, valid DVAs, etc. 953 * 954 * If everything checks out B_TRUE is returned. The zfs_blkptr_verify 955 * argument controls the behavior when an invalid field is detected. 956 * 957 * Modes for zfs_blkptr_verify: 958 * 1) BLK_VERIFY_ONLY (evaluate the block) 959 * 2) BLK_VERIFY_LOG (evaluate the block and log problems) 960 * 3) BLK_VERIFY_HALT (call zfs_panic_recover on error) 961 */ 962 boolean_t 963 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp, boolean_t config_held, 964 enum blk_verify_flag blk_verify) 965 { 966 int errors = 0; 967 968 if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) { 969 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 970 "blkptr at %p has invalid TYPE %llu", 971 bp, (longlong_t)BP_GET_TYPE(bp)); 972 } 973 if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS || 974 BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) { 975 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 976 "blkptr at %p has invalid CHECKSUM %llu", 977 bp, (longlong_t)BP_GET_CHECKSUM(bp)); 978 } 979 if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS || 980 BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) { 981 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 982 "blkptr at %p has invalid COMPRESS %llu", 983 bp, (longlong_t)BP_GET_COMPRESS(bp)); 984 } 985 if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) { 986 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 987 "blkptr at %p has invalid LSIZE %llu", 988 bp, (longlong_t)BP_GET_LSIZE(bp)); 989 } 990 if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) { 991 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 992 "blkptr at %p has invalid PSIZE %llu", 993 bp, (longlong_t)BP_GET_PSIZE(bp)); 994 } 995 996 if (BP_IS_EMBEDDED(bp)) { 997 if (BPE_GET_ETYPE(bp) >= NUM_BP_EMBEDDED_TYPES) { 998 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 999 "blkptr at %p has invalid ETYPE %llu", 1000 bp, (longlong_t)BPE_GET_ETYPE(bp)); 1001 } 1002 } 1003 1004 /* 1005 * Do not verify individual DVAs if the config is not trusted. This 1006 * will be done once the zio is executed in vdev_mirror_map_alloc. 1007 */ 1008 if (!spa->spa_trust_config) 1009 return (errors == 0); 1010 1011 if (!config_held) 1012 spa_config_enter(spa, SCL_VDEV, bp, RW_READER); 1013 else 1014 ASSERT(spa_config_held(spa, SCL_VDEV, RW_WRITER)); 1015 /* 1016 * Pool-specific checks. 1017 * 1018 * Note: it would be nice to verify that the blk_birth and 1019 * BP_PHYSICAL_BIRTH() are not too large. However, spa_freeze() 1020 * allows the birth time of log blocks (and dmu_sync()-ed blocks 1021 * that are in the log) to be arbitrarily large. 1022 */ 1023 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 1024 const dva_t *dva = &bp->blk_dva[i]; 1025 uint64_t vdevid = DVA_GET_VDEV(dva); 1026 1027 if (vdevid >= spa->spa_root_vdev->vdev_children) { 1028 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1029 "blkptr at %p DVA %u has invalid VDEV %llu", 1030 bp, i, (longlong_t)vdevid); 1031 continue; 1032 } 1033 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid]; 1034 if (vd == NULL) { 1035 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1036 "blkptr at %p DVA %u has invalid VDEV %llu", 1037 bp, i, (longlong_t)vdevid); 1038 continue; 1039 } 1040 if (vd->vdev_ops == &vdev_hole_ops) { 1041 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1042 "blkptr at %p DVA %u has hole VDEV %llu", 1043 bp, i, (longlong_t)vdevid); 1044 continue; 1045 } 1046 if (vd->vdev_ops == &vdev_missing_ops) { 1047 /* 1048 * "missing" vdevs are valid during import, but we 1049 * don't have their detailed info (e.g. asize), so 1050 * we can't perform any more checks on them. 1051 */ 1052 continue; 1053 } 1054 uint64_t offset = DVA_GET_OFFSET(dva); 1055 uint64_t asize = DVA_GET_ASIZE(dva); 1056 if (DVA_GET_GANG(dva)) 1057 asize = vdev_gang_header_asize(vd); 1058 if (offset + asize > vd->vdev_asize) { 1059 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1060 "blkptr at %p DVA %u has invalid OFFSET %llu", 1061 bp, i, (longlong_t)offset); 1062 } 1063 } 1064 if (errors > 0) 1065 dprintf_bp(bp, "blkptr at %p dprintf_bp():", bp); 1066 if (!config_held) 1067 spa_config_exit(spa, SCL_VDEV, bp); 1068 1069 return (errors == 0); 1070 } 1071 1072 boolean_t 1073 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp) 1074 { 1075 uint64_t vdevid = DVA_GET_VDEV(dva); 1076 1077 if (vdevid >= spa->spa_root_vdev->vdev_children) 1078 return (B_FALSE); 1079 1080 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid]; 1081 if (vd == NULL) 1082 return (B_FALSE); 1083 1084 if (vd->vdev_ops == &vdev_hole_ops) 1085 return (B_FALSE); 1086 1087 if (vd->vdev_ops == &vdev_missing_ops) { 1088 return (B_FALSE); 1089 } 1090 1091 uint64_t offset = DVA_GET_OFFSET(dva); 1092 uint64_t asize = DVA_GET_ASIZE(dva); 1093 1094 if (DVA_GET_GANG(dva)) 1095 asize = vdev_gang_header_asize(vd); 1096 if (offset + asize > vd->vdev_asize) 1097 return (B_FALSE); 1098 1099 return (B_TRUE); 1100 } 1101 1102 zio_t * 1103 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, 1104 abd_t *data, uint64_t size, zio_done_func_t *done, void *private, 1105 zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb) 1106 { 1107 zio_t *zio; 1108 1109 zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp, 1110 data, size, size, done, private, 1111 ZIO_TYPE_READ, priority, flags, NULL, 0, zb, 1112 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 1113 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE); 1114 1115 return (zio); 1116 } 1117 1118 zio_t * 1119 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 1120 abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp, 1121 zio_done_func_t *ready, zio_done_func_t *children_ready, 1122 zio_done_func_t *physdone, zio_done_func_t *done, 1123 void *private, zio_priority_t priority, enum zio_flag flags, 1124 const zbookmark_phys_t *zb) 1125 { 1126 zio_t *zio; 1127 1128 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF && 1129 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS && 1130 zp->zp_compress >= ZIO_COMPRESS_OFF && 1131 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS && 1132 DMU_OT_IS_VALID(zp->zp_type) && 1133 zp->zp_level < 32 && 1134 zp->zp_copies > 0 && 1135 zp->zp_copies <= spa_max_replication(spa)); 1136 1137 zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private, 1138 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb, 1139 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 1140 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE); 1141 1142 zio->io_ready = ready; 1143 zio->io_children_ready = children_ready; 1144 zio->io_physdone = physdone; 1145 zio->io_prop = *zp; 1146 1147 /* 1148 * Data can be NULL if we are going to call zio_write_override() to 1149 * provide the already-allocated BP. But we may need the data to 1150 * verify a dedup hit (if requested). In this case, don't try to 1151 * dedup (just take the already-allocated BP verbatim). Encrypted 1152 * dedup blocks need data as well so we also disable dedup in this 1153 * case. 1154 */ 1155 if (data == NULL && 1156 (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) { 1157 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE; 1158 } 1159 1160 return (zio); 1161 } 1162 1163 zio_t * 1164 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data, 1165 uint64_t size, zio_done_func_t *done, void *private, 1166 zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb) 1167 { 1168 zio_t *zio; 1169 1170 zio = zio_create(pio, spa, txg, bp, data, size, size, done, private, 1171 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb, 1172 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE); 1173 1174 return (zio); 1175 } 1176 1177 void 1178 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite) 1179 { 1180 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 1181 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1182 ASSERT(zio->io_stage == ZIO_STAGE_OPEN); 1183 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa)); 1184 1185 /* 1186 * We must reset the io_prop to match the values that existed 1187 * when the bp was first written by dmu_sync() keeping in mind 1188 * that nopwrite and dedup are mutually exclusive. 1189 */ 1190 zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup; 1191 zio->io_prop.zp_nopwrite = nopwrite; 1192 zio->io_prop.zp_copies = copies; 1193 zio->io_bp_override = bp; 1194 } 1195 1196 void 1197 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp) 1198 { 1199 1200 (void) zfs_blkptr_verify(spa, bp, B_FALSE, BLK_VERIFY_HALT); 1201 1202 /* 1203 * The check for EMBEDDED is a performance optimization. We 1204 * process the free here (by ignoring it) rather than 1205 * putting it on the list and then processing it in zio_free_sync(). 1206 */ 1207 if (BP_IS_EMBEDDED(bp)) 1208 return; 1209 metaslab_check_free(spa, bp); 1210 1211 /* 1212 * Frees that are for the currently-syncing txg, are not going to be 1213 * deferred, and which will not need to do a read (i.e. not GANG or 1214 * DEDUP), can be processed immediately. Otherwise, put them on the 1215 * in-memory list for later processing. 1216 * 1217 * Note that we only defer frees after zfs_sync_pass_deferred_free 1218 * when the log space map feature is disabled. [see relevant comment 1219 * in spa_sync_iterate_to_convergence()] 1220 */ 1221 if (BP_IS_GANG(bp) || 1222 BP_GET_DEDUP(bp) || 1223 txg != spa->spa_syncing_txg || 1224 (spa_sync_pass(spa) >= zfs_sync_pass_deferred_free && 1225 !spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))) { 1226 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp); 1227 } else { 1228 VERIFY3P(zio_free_sync(NULL, spa, txg, bp, 0), ==, NULL); 1229 } 1230 } 1231 1232 /* 1233 * To improve performance, this function may return NULL if we were able 1234 * to do the free immediately. This avoids the cost of creating a zio 1235 * (and linking it to the parent, etc). 1236 */ 1237 zio_t * 1238 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 1239 enum zio_flag flags) 1240 { 1241 ASSERT(!BP_IS_HOLE(bp)); 1242 ASSERT(spa_syncing_txg(spa) == txg); 1243 1244 if (BP_IS_EMBEDDED(bp)) 1245 return (NULL); 1246 1247 metaslab_check_free(spa, bp); 1248 arc_freed(spa, bp); 1249 dsl_scan_freed(spa, bp); 1250 1251 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp)) { 1252 /* 1253 * GANG and DEDUP blocks can induce a read (for the gang block 1254 * header, or the DDT), so issue them asynchronously so that 1255 * this thread is not tied up. 1256 */ 1257 enum zio_stage stage = 1258 ZIO_FREE_PIPELINE | ZIO_STAGE_ISSUE_ASYNC; 1259 1260 return (zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 1261 BP_GET_PSIZE(bp), NULL, NULL, 1262 ZIO_TYPE_FREE, ZIO_PRIORITY_NOW, 1263 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage)); 1264 } else { 1265 metaslab_free(spa, bp, txg, B_FALSE); 1266 return (NULL); 1267 } 1268 } 1269 1270 zio_t * 1271 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 1272 zio_done_func_t *done, void *private, enum zio_flag flags) 1273 { 1274 zio_t *zio; 1275 1276 (void) zfs_blkptr_verify(spa, bp, flags & ZIO_FLAG_CONFIG_WRITER, 1277 BLK_VERIFY_HALT); 1278 1279 if (BP_IS_EMBEDDED(bp)) 1280 return (zio_null(pio, spa, NULL, NULL, NULL, 0)); 1281 1282 /* 1283 * A claim is an allocation of a specific block. Claims are needed 1284 * to support immediate writes in the intent log. The issue is that 1285 * immediate writes contain committed data, but in a txg that was 1286 * *not* committed. Upon opening the pool after an unclean shutdown, 1287 * the intent log claims all blocks that contain immediate write data 1288 * so that the SPA knows they're in use. 1289 * 1290 * All claims *must* be resolved in the first txg -- before the SPA 1291 * starts allocating blocks -- so that nothing is allocated twice. 1292 * If txg == 0 we just verify that the block is claimable. 1293 */ 1294 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, 1295 spa_min_claim_txg(spa)); 1296 ASSERT(txg == spa_min_claim_txg(spa) || txg == 0); 1297 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(8) */ 1298 1299 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 1300 BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, 1301 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE); 1302 ASSERT0(zio->io_queued_timestamp); 1303 1304 return (zio); 1305 } 1306 1307 zio_t * 1308 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, 1309 zio_done_func_t *done, void *private, enum zio_flag flags) 1310 { 1311 zio_t *zio; 1312 int c; 1313 1314 if (vd->vdev_children == 0) { 1315 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private, 1316 ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 1317 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE); 1318 1319 zio->io_cmd = cmd; 1320 } else { 1321 zio = zio_null(pio, spa, NULL, NULL, NULL, flags); 1322 1323 for (c = 0; c < vd->vdev_children; c++) 1324 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd, 1325 done, private, flags)); 1326 } 1327 1328 return (zio); 1329 } 1330 1331 zio_t * 1332 zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1333 zio_done_func_t *done, void *private, zio_priority_t priority, 1334 enum zio_flag flags, enum trim_flag trim_flags) 1335 { 1336 zio_t *zio; 1337 1338 ASSERT0(vd->vdev_children); 1339 ASSERT0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 1340 ASSERT0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 1341 ASSERT3U(size, !=, 0); 1342 1343 zio = zio_create(pio, vd->vdev_spa, 0, NULL, NULL, size, size, done, 1344 private, ZIO_TYPE_TRIM, priority, flags | ZIO_FLAG_PHYSICAL, 1345 vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_TRIM_PIPELINE); 1346 zio->io_trim_flags = trim_flags; 1347 1348 return (zio); 1349 } 1350 1351 zio_t * 1352 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1353 abd_t *data, int checksum, zio_done_func_t *done, void *private, 1354 zio_priority_t priority, enum zio_flag flags, boolean_t labels) 1355 { 1356 zio_t *zio; 1357 1358 ASSERT(vd->vdev_children == 0); 1359 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 1360 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 1361 ASSERT3U(offset + size, <=, vd->vdev_psize); 1362 1363 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, 1364 private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd, 1365 offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE); 1366 1367 zio->io_prop.zp_checksum = checksum; 1368 1369 return (zio); 1370 } 1371 1372 zio_t * 1373 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1374 abd_t *data, int checksum, zio_done_func_t *done, void *private, 1375 zio_priority_t priority, enum zio_flag flags, boolean_t labels) 1376 { 1377 zio_t *zio; 1378 1379 ASSERT(vd->vdev_children == 0); 1380 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 1381 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 1382 ASSERT3U(offset + size, <=, vd->vdev_psize); 1383 1384 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, 1385 private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd, 1386 offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE); 1387 1388 zio->io_prop.zp_checksum = checksum; 1389 1390 if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) { 1391 /* 1392 * zec checksums are necessarily destructive -- they modify 1393 * the end of the write buffer to hold the verifier/checksum. 1394 * Therefore, we must make a local copy in case the data is 1395 * being written to multiple places in parallel. 1396 */ 1397 abd_t *wbuf = abd_alloc_sametype(data, size); 1398 abd_copy(wbuf, data, size); 1399 1400 zio_push_transform(zio, wbuf, size, size, NULL); 1401 } 1402 1403 return (zio); 1404 } 1405 1406 /* 1407 * Create a child I/O to do some work for us. 1408 */ 1409 zio_t * 1410 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset, 1411 abd_t *data, uint64_t size, int type, zio_priority_t priority, 1412 enum zio_flag flags, zio_done_func_t *done, void *private) 1413 { 1414 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE; 1415 zio_t *zio; 1416 1417 /* 1418 * vdev child I/Os do not propagate their error to the parent. 1419 * Therefore, for correct operation the caller *must* check for 1420 * and handle the error in the child i/o's done callback. 1421 * The only exceptions are i/os that we don't care about 1422 * (OPTIONAL or REPAIR). 1423 */ 1424 ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) || 1425 done != NULL); 1426 1427 if (type == ZIO_TYPE_READ && bp != NULL) { 1428 /* 1429 * If we have the bp, then the child should perform the 1430 * checksum and the parent need not. This pushes error 1431 * detection as close to the leaves as possible and 1432 * eliminates redundant checksums in the interior nodes. 1433 */ 1434 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY; 1435 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 1436 } 1437 1438 if (vd->vdev_ops->vdev_op_leaf) { 1439 ASSERT0(vd->vdev_children); 1440 offset += VDEV_LABEL_START_SIZE; 1441 } 1442 1443 flags |= ZIO_VDEV_CHILD_FLAGS(pio); 1444 1445 /* 1446 * If we've decided to do a repair, the write is not speculative -- 1447 * even if the original read was. 1448 */ 1449 if (flags & ZIO_FLAG_IO_REPAIR) 1450 flags &= ~ZIO_FLAG_SPECULATIVE; 1451 1452 /* 1453 * If we're creating a child I/O that is not associated with a 1454 * top-level vdev, then the child zio is not an allocating I/O. 1455 * If this is a retried I/O then we ignore it since we will 1456 * have already processed the original allocating I/O. 1457 */ 1458 if (flags & ZIO_FLAG_IO_ALLOCATING && 1459 (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) { 1460 ASSERT(pio->io_metaslab_class != NULL); 1461 ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled); 1462 ASSERT(type == ZIO_TYPE_WRITE); 1463 ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE); 1464 ASSERT(!(flags & ZIO_FLAG_IO_REPAIR)); 1465 ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) || 1466 pio->io_child_type == ZIO_CHILD_GANG); 1467 1468 flags &= ~ZIO_FLAG_IO_ALLOCATING; 1469 } 1470 1471 1472 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size, 1473 done, private, type, priority, flags, vd, offset, &pio->io_bookmark, 1474 ZIO_STAGE_VDEV_IO_START >> 1, pipeline); 1475 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); 1476 1477 zio->io_physdone = pio->io_physdone; 1478 if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL) 1479 zio->io_logical->io_phys_children++; 1480 1481 return (zio); 1482 } 1483 1484 zio_t * 1485 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size, 1486 zio_type_t type, zio_priority_t priority, enum zio_flag flags, 1487 zio_done_func_t *done, void *private) 1488 { 1489 zio_t *zio; 1490 1491 ASSERT(vd->vdev_ops->vdev_op_leaf); 1492 1493 zio = zio_create(NULL, vd->vdev_spa, 0, NULL, 1494 data, size, size, done, private, type, priority, 1495 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED, 1496 vd, offset, NULL, 1497 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE); 1498 1499 return (zio); 1500 } 1501 1502 void 1503 zio_flush(zio_t *zio, vdev_t *vd) 1504 { 1505 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE, 1506 NULL, NULL, 1507 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY)); 1508 } 1509 1510 void 1511 zio_shrink(zio_t *zio, uint64_t size) 1512 { 1513 ASSERT3P(zio->io_executor, ==, NULL); 1514 ASSERT3U(zio->io_orig_size, ==, zio->io_size); 1515 ASSERT3U(size, <=, zio->io_size); 1516 1517 /* 1518 * We don't shrink for raidz because of problems with the 1519 * reconstruction when reading back less than the block size. 1520 * Note, BP_IS_RAIDZ() assumes no compression. 1521 */ 1522 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 1523 if (!BP_IS_RAIDZ(zio->io_bp)) { 1524 /* we are not doing a raw write */ 1525 ASSERT3U(zio->io_size, ==, zio->io_lsize); 1526 zio->io_orig_size = zio->io_size = zio->io_lsize = size; 1527 } 1528 } 1529 1530 /* 1531 * ========================================================================== 1532 * Prepare to read and write logical blocks 1533 * ========================================================================== 1534 */ 1535 1536 static zio_t * 1537 zio_read_bp_init(zio_t *zio) 1538 { 1539 blkptr_t *bp = zio->io_bp; 1540 uint64_t psize = 1541 BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp); 1542 1543 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 1544 1545 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF && 1546 zio->io_child_type == ZIO_CHILD_LOGICAL && 1547 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) { 1548 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize), 1549 psize, psize, zio_decompress); 1550 } 1551 1552 if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) || 1553 BP_HAS_INDIRECT_MAC_CKSUM(bp)) && 1554 zio->io_child_type == ZIO_CHILD_LOGICAL) { 1555 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize), 1556 psize, psize, zio_decrypt); 1557 } 1558 1559 if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) { 1560 int psize = BPE_GET_PSIZE(bp); 1561 void *data = abd_borrow_buf(zio->io_abd, psize); 1562 1563 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1564 decode_embedded_bp_compressed(bp, data); 1565 abd_return_buf_copy(zio->io_abd, data, psize); 1566 } else { 1567 ASSERT(!BP_IS_EMBEDDED(bp)); 1568 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 1569 } 1570 1571 if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0) 1572 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 1573 1574 if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP) 1575 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 1576 1577 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL) 1578 zio->io_pipeline = ZIO_DDT_READ_PIPELINE; 1579 1580 return (zio); 1581 } 1582 1583 static zio_t * 1584 zio_write_bp_init(zio_t *zio) 1585 { 1586 if (!IO_IS_ALLOCATING(zio)) 1587 return (zio); 1588 1589 ASSERT(zio->io_child_type != ZIO_CHILD_DDT); 1590 1591 if (zio->io_bp_override) { 1592 blkptr_t *bp = zio->io_bp; 1593 zio_prop_t *zp = &zio->io_prop; 1594 1595 ASSERT(bp->blk_birth != zio->io_txg); 1596 ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0); 1597 1598 *bp = *zio->io_bp_override; 1599 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1600 1601 if (BP_IS_EMBEDDED(bp)) 1602 return (zio); 1603 1604 /* 1605 * If we've been overridden and nopwrite is set then 1606 * set the flag accordingly to indicate that a nopwrite 1607 * has already occurred. 1608 */ 1609 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) { 1610 ASSERT(!zp->zp_dedup); 1611 ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum); 1612 zio->io_flags |= ZIO_FLAG_NOPWRITE; 1613 return (zio); 1614 } 1615 1616 ASSERT(!zp->zp_nopwrite); 1617 1618 if (BP_IS_HOLE(bp) || !zp->zp_dedup) 1619 return (zio); 1620 1621 ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags & 1622 ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify); 1623 1624 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum && 1625 !zp->zp_encrypt) { 1626 BP_SET_DEDUP(bp, 1); 1627 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE; 1628 return (zio); 1629 } 1630 1631 /* 1632 * We were unable to handle this as an override bp, treat 1633 * it as a regular write I/O. 1634 */ 1635 zio->io_bp_override = NULL; 1636 *bp = zio->io_bp_orig; 1637 zio->io_pipeline = zio->io_orig_pipeline; 1638 } 1639 1640 return (zio); 1641 } 1642 1643 static zio_t * 1644 zio_write_compress(zio_t *zio) 1645 { 1646 spa_t *spa = zio->io_spa; 1647 zio_prop_t *zp = &zio->io_prop; 1648 enum zio_compress compress = zp->zp_compress; 1649 blkptr_t *bp = zio->io_bp; 1650 uint64_t lsize = zio->io_lsize; 1651 uint64_t psize = zio->io_size; 1652 int pass = 1; 1653 1654 /* 1655 * If our children haven't all reached the ready stage, 1656 * wait for them and then repeat this pipeline stage. 1657 */ 1658 if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT | 1659 ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) { 1660 return (NULL); 1661 } 1662 1663 if (!IO_IS_ALLOCATING(zio)) 1664 return (zio); 1665 1666 if (zio->io_children_ready != NULL) { 1667 /* 1668 * Now that all our children are ready, run the callback 1669 * associated with this zio in case it wants to modify the 1670 * data to be written. 1671 */ 1672 ASSERT3U(zp->zp_level, >, 0); 1673 zio->io_children_ready(zio); 1674 } 1675 1676 ASSERT(zio->io_child_type != ZIO_CHILD_DDT); 1677 ASSERT(zio->io_bp_override == NULL); 1678 1679 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) { 1680 /* 1681 * We're rewriting an existing block, which means we're 1682 * working on behalf of spa_sync(). For spa_sync() to 1683 * converge, it must eventually be the case that we don't 1684 * have to allocate new blocks. But compression changes 1685 * the blocksize, which forces a reallocate, and makes 1686 * convergence take longer. Therefore, after the first 1687 * few passes, stop compressing to ensure convergence. 1688 */ 1689 pass = spa_sync_pass(spa); 1690 1691 ASSERT(zio->io_txg == spa_syncing_txg(spa)); 1692 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1693 ASSERT(!BP_GET_DEDUP(bp)); 1694 1695 if (pass >= zfs_sync_pass_dont_compress) 1696 compress = ZIO_COMPRESS_OFF; 1697 1698 /* Make sure someone doesn't change their mind on overwrites */ 1699 ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp), 1700 spa_max_replication(spa)) == BP_GET_NDVAS(bp)); 1701 } 1702 1703 /* If it's a compressed write that is not raw, compress the buffer. */ 1704 if (compress != ZIO_COMPRESS_OFF && 1705 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) { 1706 void *cbuf = zio_buf_alloc(lsize); 1707 psize = zio_compress_data(compress, zio->io_abd, cbuf, lsize, 1708 zp->zp_complevel); 1709 if (psize == 0 || psize >= lsize) { 1710 compress = ZIO_COMPRESS_OFF; 1711 zio_buf_free(cbuf, lsize); 1712 } else if (!zp->zp_dedup && !zp->zp_encrypt && 1713 psize <= BPE_PAYLOAD_SIZE && 1714 zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) && 1715 spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) { 1716 encode_embedded_bp_compressed(bp, 1717 cbuf, compress, lsize, psize); 1718 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA); 1719 BP_SET_TYPE(bp, zio->io_prop.zp_type); 1720 BP_SET_LEVEL(bp, zio->io_prop.zp_level); 1721 zio_buf_free(cbuf, lsize); 1722 bp->blk_birth = zio->io_txg; 1723 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1724 ASSERT(spa_feature_is_active(spa, 1725 SPA_FEATURE_EMBEDDED_DATA)); 1726 return (zio); 1727 } else { 1728 /* 1729 * Round compressed size up to the minimum allocation 1730 * size of the smallest-ashift device, and zero the 1731 * tail. This ensures that the compressed size of the 1732 * BP (and thus compressratio property) are correct, 1733 * in that we charge for the padding used to fill out 1734 * the last sector. 1735 */ 1736 ASSERT3U(spa->spa_min_alloc, >=, SPA_MINBLOCKSHIFT); 1737 size_t rounded = (size_t)roundup(psize, 1738 spa->spa_min_alloc); 1739 if (rounded >= lsize) { 1740 compress = ZIO_COMPRESS_OFF; 1741 zio_buf_free(cbuf, lsize); 1742 psize = lsize; 1743 } else { 1744 abd_t *cdata = abd_get_from_buf(cbuf, lsize); 1745 abd_take_ownership_of_buf(cdata, B_TRUE); 1746 abd_zero_off(cdata, psize, rounded - psize); 1747 psize = rounded; 1748 zio_push_transform(zio, cdata, 1749 psize, lsize, NULL); 1750 } 1751 } 1752 1753 /* 1754 * We were unable to handle this as an override bp, treat 1755 * it as a regular write I/O. 1756 */ 1757 zio->io_bp_override = NULL; 1758 *bp = zio->io_bp_orig; 1759 zio->io_pipeline = zio->io_orig_pipeline; 1760 1761 } else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 && 1762 zp->zp_type == DMU_OT_DNODE) { 1763 /* 1764 * The DMU actually relies on the zio layer's compression 1765 * to free metadnode blocks that have had all contained 1766 * dnodes freed. As a result, even when doing a raw 1767 * receive, we must check whether the block can be compressed 1768 * to a hole. 1769 */ 1770 psize = zio_compress_data(ZIO_COMPRESS_EMPTY, 1771 zio->io_abd, NULL, lsize, zp->zp_complevel); 1772 if (psize == 0 || psize >= lsize) 1773 compress = ZIO_COMPRESS_OFF; 1774 } else if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) { 1775 size_t rounded = MIN((size_t)roundup(psize, 1776 spa->spa_min_alloc), lsize); 1777 1778 if (rounded != psize) { 1779 abd_t *cdata = abd_alloc_linear(rounded, B_TRUE); 1780 abd_zero_off(cdata, psize, rounded - psize); 1781 abd_copy_off(cdata, zio->io_abd, 0, 0, psize); 1782 psize = rounded; 1783 zio_push_transform(zio, cdata, 1784 psize, rounded, NULL); 1785 } 1786 } else { 1787 ASSERT3U(psize, !=, 0); 1788 } 1789 1790 /* 1791 * The final pass of spa_sync() must be all rewrites, but the first 1792 * few passes offer a trade-off: allocating blocks defers convergence, 1793 * but newly allocated blocks are sequential, so they can be written 1794 * to disk faster. Therefore, we allow the first few passes of 1795 * spa_sync() to allocate new blocks, but force rewrites after that. 1796 * There should only be a handful of blocks after pass 1 in any case. 1797 */ 1798 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg && 1799 BP_GET_PSIZE(bp) == psize && 1800 pass >= zfs_sync_pass_rewrite) { 1801 VERIFY3U(psize, !=, 0); 1802 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES; 1803 1804 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages; 1805 zio->io_flags |= ZIO_FLAG_IO_REWRITE; 1806 } else { 1807 BP_ZERO(bp); 1808 zio->io_pipeline = ZIO_WRITE_PIPELINE; 1809 } 1810 1811 if (psize == 0) { 1812 if (zio->io_bp_orig.blk_birth != 0 && 1813 spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) { 1814 BP_SET_LSIZE(bp, lsize); 1815 BP_SET_TYPE(bp, zp->zp_type); 1816 BP_SET_LEVEL(bp, zp->zp_level); 1817 BP_SET_BIRTH(bp, zio->io_txg, 0); 1818 } 1819 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1820 } else { 1821 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER); 1822 BP_SET_LSIZE(bp, lsize); 1823 BP_SET_TYPE(bp, zp->zp_type); 1824 BP_SET_LEVEL(bp, zp->zp_level); 1825 BP_SET_PSIZE(bp, psize); 1826 BP_SET_COMPRESS(bp, compress); 1827 BP_SET_CHECKSUM(bp, zp->zp_checksum); 1828 BP_SET_DEDUP(bp, zp->zp_dedup); 1829 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 1830 if (zp->zp_dedup) { 1831 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1832 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1833 ASSERT(!zp->zp_encrypt || 1834 DMU_OT_IS_ENCRYPTED(zp->zp_type)); 1835 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE; 1836 } 1837 if (zp->zp_nopwrite) { 1838 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1839 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1840 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE; 1841 } 1842 } 1843 return (zio); 1844 } 1845 1846 static zio_t * 1847 zio_free_bp_init(zio_t *zio) 1848 { 1849 blkptr_t *bp = zio->io_bp; 1850 1851 if (zio->io_child_type == ZIO_CHILD_LOGICAL) { 1852 if (BP_GET_DEDUP(bp)) 1853 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE; 1854 } 1855 1856 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 1857 1858 return (zio); 1859 } 1860 1861 /* 1862 * ========================================================================== 1863 * Execute the I/O pipeline 1864 * ========================================================================== 1865 */ 1866 1867 static void 1868 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline) 1869 { 1870 spa_t *spa = zio->io_spa; 1871 zio_type_t t = zio->io_type; 1872 int flags = (cutinline ? TQ_FRONT : 0); 1873 1874 /* 1875 * If we're a config writer or a probe, the normal issue and 1876 * interrupt threads may all be blocked waiting for the config lock. 1877 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL. 1878 */ 1879 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE)) 1880 t = ZIO_TYPE_NULL; 1881 1882 /* 1883 * A similar issue exists for the L2ARC write thread until L2ARC 2.0. 1884 */ 1885 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux) 1886 t = ZIO_TYPE_NULL; 1887 1888 /* 1889 * If this is a high priority I/O, then use the high priority taskq if 1890 * available. 1891 */ 1892 if ((zio->io_priority == ZIO_PRIORITY_NOW || 1893 zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) && 1894 spa->spa_zio_taskq[t][q + 1].stqs_count != 0) 1895 q++; 1896 1897 ASSERT3U(q, <, ZIO_TASKQ_TYPES); 1898 1899 /* 1900 * NB: We are assuming that the zio can only be dispatched 1901 * to a single taskq at a time. It would be a grievous error 1902 * to dispatch the zio to another taskq at the same time. 1903 */ 1904 ASSERT(taskq_empty_ent(&zio->io_tqent)); 1905 spa_taskq_dispatch_ent(spa, t, q, zio_execute, zio, flags, 1906 &zio->io_tqent); 1907 } 1908 1909 static boolean_t 1910 zio_taskq_member(zio_t *zio, zio_taskq_type_t q) 1911 { 1912 spa_t *spa = zio->io_spa; 1913 1914 taskq_t *tq = taskq_of_curthread(); 1915 1916 for (zio_type_t t = 0; t < ZIO_TYPES; t++) { 1917 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1918 uint_t i; 1919 for (i = 0; i < tqs->stqs_count; i++) { 1920 if (tqs->stqs_taskq[i] == tq) 1921 return (B_TRUE); 1922 } 1923 } 1924 1925 return (B_FALSE); 1926 } 1927 1928 static zio_t * 1929 zio_issue_async(zio_t *zio) 1930 { 1931 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 1932 1933 return (NULL); 1934 } 1935 1936 void 1937 zio_interrupt(void *zio) 1938 { 1939 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE); 1940 } 1941 1942 void 1943 zio_delay_interrupt(zio_t *zio) 1944 { 1945 /* 1946 * The timeout_generic() function isn't defined in userspace, so 1947 * rather than trying to implement the function, the zio delay 1948 * functionality has been disabled for userspace builds. 1949 */ 1950 1951 #ifdef _KERNEL 1952 /* 1953 * If io_target_timestamp is zero, then no delay has been registered 1954 * for this IO, thus jump to the end of this function and "skip" the 1955 * delay; issuing it directly to the zio layer. 1956 */ 1957 if (zio->io_target_timestamp != 0) { 1958 hrtime_t now = gethrtime(); 1959 1960 if (now >= zio->io_target_timestamp) { 1961 /* 1962 * This IO has already taken longer than the target 1963 * delay to complete, so we don't want to delay it 1964 * any longer; we "miss" the delay and issue it 1965 * directly to the zio layer. This is likely due to 1966 * the target latency being set to a value less than 1967 * the underlying hardware can satisfy (e.g. delay 1968 * set to 1ms, but the disks take 10ms to complete an 1969 * IO request). 1970 */ 1971 1972 DTRACE_PROBE2(zio__delay__miss, zio_t *, zio, 1973 hrtime_t, now); 1974 1975 zio_interrupt(zio); 1976 } else { 1977 taskqid_t tid; 1978 hrtime_t diff = zio->io_target_timestamp - now; 1979 clock_t expire_at_tick = ddi_get_lbolt() + 1980 NSEC_TO_TICK(diff); 1981 1982 DTRACE_PROBE3(zio__delay__hit, zio_t *, zio, 1983 hrtime_t, now, hrtime_t, diff); 1984 1985 if (NSEC_TO_TICK(diff) == 0) { 1986 /* Our delay is less than a jiffy - just spin */ 1987 zfs_sleep_until(zio->io_target_timestamp); 1988 zio_interrupt(zio); 1989 } else { 1990 /* 1991 * Use taskq_dispatch_delay() in the place of 1992 * OpenZFS's timeout_generic(). 1993 */ 1994 tid = taskq_dispatch_delay(system_taskq, 1995 zio_interrupt, zio, TQ_NOSLEEP, 1996 expire_at_tick); 1997 if (tid == TASKQID_INVALID) { 1998 /* 1999 * Couldn't allocate a task. Just 2000 * finish the zio without a delay. 2001 */ 2002 zio_interrupt(zio); 2003 } 2004 } 2005 } 2006 return; 2007 } 2008 #endif 2009 DTRACE_PROBE1(zio__delay__skip, zio_t *, zio); 2010 zio_interrupt(zio); 2011 } 2012 2013 static void 2014 zio_deadman_impl(zio_t *pio, int ziodepth) 2015 { 2016 zio_t *cio, *cio_next; 2017 zio_link_t *zl = NULL; 2018 vdev_t *vd = pio->io_vd; 2019 2020 if (zio_deadman_log_all || (vd != NULL && vd->vdev_ops->vdev_op_leaf)) { 2021 vdev_queue_t *vq = vd ? &vd->vdev_queue : NULL; 2022 zbookmark_phys_t *zb = &pio->io_bookmark; 2023 uint64_t delta = gethrtime() - pio->io_timestamp; 2024 uint64_t failmode = spa_get_deadman_failmode(pio->io_spa); 2025 2026 zfs_dbgmsg("slow zio[%d]: zio=%px timestamp=%llu " 2027 "delta=%llu queued=%llu io=%llu " 2028 "path=%s " 2029 "last=%llu type=%d " 2030 "priority=%d flags=0x%x stage=0x%x " 2031 "pipeline=0x%x pipeline-trace=0x%x " 2032 "objset=%llu object=%llu " 2033 "level=%llu blkid=%llu " 2034 "offset=%llu size=%llu " 2035 "error=%d", 2036 ziodepth, pio, pio->io_timestamp, 2037 (u_longlong_t)delta, pio->io_delta, pio->io_delay, 2038 vd ? vd->vdev_path : "NULL", 2039 vq ? vq->vq_io_complete_ts : 0, pio->io_type, 2040 pio->io_priority, pio->io_flags, pio->io_stage, 2041 pio->io_pipeline, pio->io_pipeline_trace, 2042 (u_longlong_t)zb->zb_objset, (u_longlong_t)zb->zb_object, 2043 (u_longlong_t)zb->zb_level, (u_longlong_t)zb->zb_blkid, 2044 (u_longlong_t)pio->io_offset, (u_longlong_t)pio->io_size, 2045 pio->io_error); 2046 (void) zfs_ereport_post(FM_EREPORT_ZFS_DEADMAN, 2047 pio->io_spa, vd, zb, pio, 0); 2048 2049 if (failmode == ZIO_FAILURE_MODE_CONTINUE && 2050 taskq_empty_ent(&pio->io_tqent)) { 2051 zio_interrupt(pio); 2052 } 2053 } 2054 2055 mutex_enter(&pio->io_lock); 2056 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 2057 cio_next = zio_walk_children(pio, &zl); 2058 zio_deadman_impl(cio, ziodepth + 1); 2059 } 2060 mutex_exit(&pio->io_lock); 2061 } 2062 2063 /* 2064 * Log the critical information describing this zio and all of its children 2065 * using the zfs_dbgmsg() interface then post deadman event for the ZED. 2066 */ 2067 void 2068 zio_deadman(zio_t *pio, char *tag) 2069 { 2070 spa_t *spa = pio->io_spa; 2071 char *name = spa_name(spa); 2072 2073 if (!zfs_deadman_enabled || spa_suspended(spa)) 2074 return; 2075 2076 zio_deadman_impl(pio, 0); 2077 2078 switch (spa_get_deadman_failmode(spa)) { 2079 case ZIO_FAILURE_MODE_WAIT: 2080 zfs_dbgmsg("%s waiting for hung I/O to pool '%s'", tag, name); 2081 break; 2082 2083 case ZIO_FAILURE_MODE_CONTINUE: 2084 zfs_dbgmsg("%s restarting hung I/O for pool '%s'", tag, name); 2085 break; 2086 2087 case ZIO_FAILURE_MODE_PANIC: 2088 fm_panic("%s determined I/O to pool '%s' is hung.", tag, name); 2089 break; 2090 } 2091 } 2092 2093 /* 2094 * Execute the I/O pipeline until one of the following occurs: 2095 * (1) the I/O completes; (2) the pipeline stalls waiting for 2096 * dependent child I/Os; (3) the I/O issues, so we're waiting 2097 * for an I/O completion interrupt; (4) the I/O is delegated by 2098 * vdev-level caching or aggregation; (5) the I/O is deferred 2099 * due to vdev-level queueing; (6) the I/O is handed off to 2100 * another thread. In all cases, the pipeline stops whenever 2101 * there's no CPU work; it never burns a thread in cv_wait_io(). 2102 * 2103 * There's no locking on io_stage because there's no legitimate way 2104 * for multiple threads to be attempting to process the same I/O. 2105 */ 2106 static zio_pipe_stage_t *zio_pipeline[]; 2107 2108 /* 2109 * zio_execute() is a wrapper around the static function 2110 * __zio_execute() so that we can force __zio_execute() to be 2111 * inlined. This reduces stack overhead which is important 2112 * because __zio_execute() is called recursively in several zio 2113 * code paths. zio_execute() itself cannot be inlined because 2114 * it is externally visible. 2115 */ 2116 void 2117 zio_execute(void *zio) 2118 { 2119 fstrans_cookie_t cookie; 2120 2121 cookie = spl_fstrans_mark(); 2122 __zio_execute(zio); 2123 spl_fstrans_unmark(cookie); 2124 } 2125 2126 /* 2127 * Used to determine if in the current context the stack is sized large 2128 * enough to allow zio_execute() to be called recursively. A minimum 2129 * stack size of 16K is required to avoid needing to re-dispatch the zio. 2130 */ 2131 static boolean_t 2132 zio_execute_stack_check(zio_t *zio) 2133 { 2134 #if !defined(HAVE_LARGE_STACKS) 2135 dsl_pool_t *dp = spa_get_dsl(zio->io_spa); 2136 2137 /* Executing in txg_sync_thread() context. */ 2138 if (dp && curthread == dp->dp_tx.tx_sync_thread) 2139 return (B_TRUE); 2140 2141 /* Pool initialization outside of zio_taskq context. */ 2142 if (dp && spa_is_initializing(dp->dp_spa) && 2143 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE) && 2144 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE_HIGH)) 2145 return (B_TRUE); 2146 #endif /* HAVE_LARGE_STACKS */ 2147 2148 return (B_FALSE); 2149 } 2150 2151 __attribute__((always_inline)) 2152 static inline void 2153 __zio_execute(zio_t *zio) 2154 { 2155 ASSERT3U(zio->io_queued_timestamp, >, 0); 2156 2157 while (zio->io_stage < ZIO_STAGE_DONE) { 2158 enum zio_stage pipeline = zio->io_pipeline; 2159 enum zio_stage stage = zio->io_stage; 2160 2161 zio->io_executor = curthread; 2162 2163 ASSERT(!MUTEX_HELD(&zio->io_lock)); 2164 ASSERT(ISP2(stage)); 2165 ASSERT(zio->io_stall == NULL); 2166 2167 do { 2168 stage <<= 1; 2169 } while ((stage & pipeline) == 0); 2170 2171 ASSERT(stage <= ZIO_STAGE_DONE); 2172 2173 /* 2174 * If we are in interrupt context and this pipeline stage 2175 * will grab a config lock that is held across I/O, 2176 * or may wait for an I/O that needs an interrupt thread 2177 * to complete, issue async to avoid deadlock. 2178 * 2179 * For VDEV_IO_START, we cut in line so that the io will 2180 * be sent to disk promptly. 2181 */ 2182 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL && 2183 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) { 2184 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ? 2185 zio_requeue_io_start_cut_in_line : B_FALSE; 2186 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut); 2187 return; 2188 } 2189 2190 /* 2191 * If the current context doesn't have large enough stacks 2192 * the zio must be issued asynchronously to prevent overflow. 2193 */ 2194 if (zio_execute_stack_check(zio)) { 2195 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ? 2196 zio_requeue_io_start_cut_in_line : B_FALSE; 2197 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut); 2198 return; 2199 } 2200 2201 zio->io_stage = stage; 2202 zio->io_pipeline_trace |= zio->io_stage; 2203 2204 /* 2205 * The zio pipeline stage returns the next zio to execute 2206 * (typically the same as this one), or NULL if we should 2207 * stop. 2208 */ 2209 zio = zio_pipeline[highbit64(stage) - 1](zio); 2210 2211 if (zio == NULL) 2212 return; 2213 } 2214 } 2215 2216 2217 /* 2218 * ========================================================================== 2219 * Initiate I/O, either sync or async 2220 * ========================================================================== 2221 */ 2222 int 2223 zio_wait(zio_t *zio) 2224 { 2225 /* 2226 * Some routines, like zio_free_sync(), may return a NULL zio 2227 * to avoid the performance overhead of creating and then destroying 2228 * an unneeded zio. For the callers' simplicity, we accept a NULL 2229 * zio and ignore it. 2230 */ 2231 if (zio == NULL) 2232 return (0); 2233 2234 long timeout = MSEC_TO_TICK(zfs_deadman_ziotime_ms); 2235 int error; 2236 2237 ASSERT3S(zio->io_stage, ==, ZIO_STAGE_OPEN); 2238 ASSERT3P(zio->io_executor, ==, NULL); 2239 2240 zio->io_waiter = curthread; 2241 ASSERT0(zio->io_queued_timestamp); 2242 zio->io_queued_timestamp = gethrtime(); 2243 2244 __zio_execute(zio); 2245 2246 mutex_enter(&zio->io_lock); 2247 while (zio->io_executor != NULL) { 2248 error = cv_timedwait_io(&zio->io_cv, &zio->io_lock, 2249 ddi_get_lbolt() + timeout); 2250 2251 if (zfs_deadman_enabled && error == -1 && 2252 gethrtime() - zio->io_queued_timestamp > 2253 spa_deadman_ziotime(zio->io_spa)) { 2254 mutex_exit(&zio->io_lock); 2255 timeout = MSEC_TO_TICK(zfs_deadman_checktime_ms); 2256 zio_deadman(zio, FTAG); 2257 mutex_enter(&zio->io_lock); 2258 } 2259 } 2260 mutex_exit(&zio->io_lock); 2261 2262 error = zio->io_error; 2263 zio_destroy(zio); 2264 2265 return (error); 2266 } 2267 2268 void 2269 zio_nowait(zio_t *zio) 2270 { 2271 /* 2272 * See comment in zio_wait(). 2273 */ 2274 if (zio == NULL) 2275 return; 2276 2277 ASSERT3P(zio->io_executor, ==, NULL); 2278 2279 if (zio->io_child_type == ZIO_CHILD_LOGICAL && 2280 zio_unique_parent(zio) == NULL) { 2281 zio_t *pio; 2282 2283 /* 2284 * This is a logical async I/O with no parent to wait for it. 2285 * We add it to the spa_async_root_zio "Godfather" I/O which 2286 * will ensure they complete prior to unloading the pool. 2287 */ 2288 spa_t *spa = zio->io_spa; 2289 pio = spa->spa_async_zio_root[CPU_SEQID_UNSTABLE]; 2290 2291 zio_add_child(pio, zio); 2292 } 2293 2294 ASSERT0(zio->io_queued_timestamp); 2295 zio->io_queued_timestamp = gethrtime(); 2296 __zio_execute(zio); 2297 } 2298 2299 /* 2300 * ========================================================================== 2301 * Reexecute, cancel, or suspend/resume failed I/O 2302 * ========================================================================== 2303 */ 2304 2305 static void 2306 zio_reexecute(void *arg) 2307 { 2308 zio_t *pio = arg; 2309 zio_t *cio, *cio_next; 2310 2311 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL); 2312 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN); 2313 ASSERT(pio->io_gang_leader == NULL); 2314 ASSERT(pio->io_gang_tree == NULL); 2315 2316 pio->io_flags = pio->io_orig_flags; 2317 pio->io_stage = pio->io_orig_stage; 2318 pio->io_pipeline = pio->io_orig_pipeline; 2319 pio->io_reexecute = 0; 2320 pio->io_flags |= ZIO_FLAG_REEXECUTED; 2321 pio->io_pipeline_trace = 0; 2322 pio->io_error = 0; 2323 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 2324 pio->io_state[w] = 0; 2325 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 2326 pio->io_child_error[c] = 0; 2327 2328 if (IO_IS_ALLOCATING(pio)) 2329 BP_ZERO(pio->io_bp); 2330 2331 /* 2332 * As we reexecute pio's children, new children could be created. 2333 * New children go to the head of pio's io_child_list, however, 2334 * so we will (correctly) not reexecute them. The key is that 2335 * the remainder of pio's io_child_list, from 'cio_next' onward, 2336 * cannot be affected by any side effects of reexecuting 'cio'. 2337 */ 2338 zio_link_t *zl = NULL; 2339 mutex_enter(&pio->io_lock); 2340 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 2341 cio_next = zio_walk_children(pio, &zl); 2342 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 2343 pio->io_children[cio->io_child_type][w]++; 2344 mutex_exit(&pio->io_lock); 2345 zio_reexecute(cio); 2346 mutex_enter(&pio->io_lock); 2347 } 2348 mutex_exit(&pio->io_lock); 2349 2350 /* 2351 * Now that all children have been reexecuted, execute the parent. 2352 * We don't reexecute "The Godfather" I/O here as it's the 2353 * responsibility of the caller to wait on it. 2354 */ 2355 if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) { 2356 pio->io_queued_timestamp = gethrtime(); 2357 __zio_execute(pio); 2358 } 2359 } 2360 2361 void 2362 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason) 2363 { 2364 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC) 2365 fm_panic("Pool '%s' has encountered an uncorrectable I/O " 2366 "failure and the failure mode property for this pool " 2367 "is set to panic.", spa_name(spa)); 2368 2369 cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable I/O " 2370 "failure and has been suspended.\n", spa_name(spa)); 2371 2372 (void) zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, 2373 NULL, NULL, 0); 2374 2375 mutex_enter(&spa->spa_suspend_lock); 2376 2377 if (spa->spa_suspend_zio_root == NULL) 2378 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL, 2379 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 2380 ZIO_FLAG_GODFATHER); 2381 2382 spa->spa_suspended = reason; 2383 2384 if (zio != NULL) { 2385 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 2386 ASSERT(zio != spa->spa_suspend_zio_root); 2387 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2388 ASSERT(zio_unique_parent(zio) == NULL); 2389 ASSERT(zio->io_stage == ZIO_STAGE_DONE); 2390 zio_add_child(spa->spa_suspend_zio_root, zio); 2391 } 2392 2393 mutex_exit(&spa->spa_suspend_lock); 2394 } 2395 2396 int 2397 zio_resume(spa_t *spa) 2398 { 2399 zio_t *pio; 2400 2401 /* 2402 * Reexecute all previously suspended i/o. 2403 */ 2404 mutex_enter(&spa->spa_suspend_lock); 2405 spa->spa_suspended = ZIO_SUSPEND_NONE; 2406 cv_broadcast(&spa->spa_suspend_cv); 2407 pio = spa->spa_suspend_zio_root; 2408 spa->spa_suspend_zio_root = NULL; 2409 mutex_exit(&spa->spa_suspend_lock); 2410 2411 if (pio == NULL) 2412 return (0); 2413 2414 zio_reexecute(pio); 2415 return (zio_wait(pio)); 2416 } 2417 2418 void 2419 zio_resume_wait(spa_t *spa) 2420 { 2421 mutex_enter(&spa->spa_suspend_lock); 2422 while (spa_suspended(spa)) 2423 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock); 2424 mutex_exit(&spa->spa_suspend_lock); 2425 } 2426 2427 /* 2428 * ========================================================================== 2429 * Gang blocks. 2430 * 2431 * A gang block is a collection of small blocks that looks to the DMU 2432 * like one large block. When zio_dva_allocate() cannot find a block 2433 * of the requested size, due to either severe fragmentation or the pool 2434 * being nearly full, it calls zio_write_gang_block() to construct the 2435 * block from smaller fragments. 2436 * 2437 * A gang block consists of a gang header (zio_gbh_phys_t) and up to 2438 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like 2439 * an indirect block: it's an array of block pointers. It consumes 2440 * only one sector and hence is allocatable regardless of fragmentation. 2441 * The gang header's bps point to its gang members, which hold the data. 2442 * 2443 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg> 2444 * as the verifier to ensure uniqueness of the SHA256 checksum. 2445 * Critically, the gang block bp's blk_cksum is the checksum of the data, 2446 * not the gang header. This ensures that data block signatures (needed for 2447 * deduplication) are independent of how the block is physically stored. 2448 * 2449 * Gang blocks can be nested: a gang member may itself be a gang block. 2450 * Thus every gang block is a tree in which root and all interior nodes are 2451 * gang headers, and the leaves are normal blocks that contain user data. 2452 * The root of the gang tree is called the gang leader. 2453 * 2454 * To perform any operation (read, rewrite, free, claim) on a gang block, 2455 * zio_gang_assemble() first assembles the gang tree (minus data leaves) 2456 * in the io_gang_tree field of the original logical i/o by recursively 2457 * reading the gang leader and all gang headers below it. This yields 2458 * an in-core tree containing the contents of every gang header and the 2459 * bps for every constituent of the gang block. 2460 * 2461 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree 2462 * and invokes a callback on each bp. To free a gang block, zio_gang_issue() 2463 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp. 2464 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim(). 2465 * zio_read_gang() is a wrapper around zio_read() that omits reading gang 2466 * headers, since we already have those in io_gang_tree. zio_rewrite_gang() 2467 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite() 2468 * of the gang header plus zio_checksum_compute() of the data to update the 2469 * gang header's blk_cksum as described above. 2470 * 2471 * The two-phase assemble/issue model solves the problem of partial failure -- 2472 * what if you'd freed part of a gang block but then couldn't read the 2473 * gang header for another part? Assembling the entire gang tree first 2474 * ensures that all the necessary gang header I/O has succeeded before 2475 * starting the actual work of free, claim, or write. Once the gang tree 2476 * is assembled, free and claim are in-memory operations that cannot fail. 2477 * 2478 * In the event that a gang write fails, zio_dva_unallocate() walks the 2479 * gang tree to immediately free (i.e. insert back into the space map) 2480 * everything we've allocated. This ensures that we don't get ENOSPC 2481 * errors during repeated suspend/resume cycles due to a flaky device. 2482 * 2483 * Gang rewrites only happen during sync-to-convergence. If we can't assemble 2484 * the gang tree, we won't modify the block, so we can safely defer the free 2485 * (knowing that the block is still intact). If we *can* assemble the gang 2486 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free 2487 * each constituent bp and we can allocate a new block on the next sync pass. 2488 * 2489 * In all cases, the gang tree allows complete recovery from partial failure. 2490 * ========================================================================== 2491 */ 2492 2493 static void 2494 zio_gang_issue_func_done(zio_t *zio) 2495 { 2496 abd_free(zio->io_abd); 2497 } 2498 2499 static zio_t * 2500 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2501 uint64_t offset) 2502 { 2503 if (gn != NULL) 2504 return (pio); 2505 2506 return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset), 2507 BP_GET_PSIZE(bp), zio_gang_issue_func_done, 2508 NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 2509 &pio->io_bookmark)); 2510 } 2511 2512 static zio_t * 2513 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2514 uint64_t offset) 2515 { 2516 zio_t *zio; 2517 2518 if (gn != NULL) { 2519 abd_t *gbh_abd = 2520 abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2521 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 2522 gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL, 2523 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 2524 &pio->io_bookmark); 2525 /* 2526 * As we rewrite each gang header, the pipeline will compute 2527 * a new gang block header checksum for it; but no one will 2528 * compute a new data checksum, so we do that here. The one 2529 * exception is the gang leader: the pipeline already computed 2530 * its data checksum because that stage precedes gang assembly. 2531 * (Presently, nothing actually uses interior data checksums; 2532 * this is just good hygiene.) 2533 */ 2534 if (gn != pio->io_gang_leader->io_gang_tree) { 2535 abd_t *buf = abd_get_offset(data, offset); 2536 2537 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp), 2538 buf, BP_GET_PSIZE(bp)); 2539 2540 abd_free(buf); 2541 } 2542 /* 2543 * If we are here to damage data for testing purposes, 2544 * leave the GBH alone so that we can detect the damage. 2545 */ 2546 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE) 2547 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 2548 } else { 2549 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 2550 abd_get_offset(data, offset), BP_GET_PSIZE(bp), 2551 zio_gang_issue_func_done, NULL, pio->io_priority, 2552 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2553 } 2554 2555 return (zio); 2556 } 2557 2558 /* ARGSUSED */ 2559 static zio_t * 2560 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2561 uint64_t offset) 2562 { 2563 zio_t *zio = zio_free_sync(pio, pio->io_spa, pio->io_txg, bp, 2564 ZIO_GANG_CHILD_FLAGS(pio)); 2565 if (zio == NULL) { 2566 zio = zio_null(pio, pio->io_spa, 2567 NULL, NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)); 2568 } 2569 return (zio); 2570 } 2571 2572 /* ARGSUSED */ 2573 static zio_t * 2574 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2575 uint64_t offset) 2576 { 2577 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp, 2578 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio))); 2579 } 2580 2581 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = { 2582 NULL, 2583 zio_read_gang, 2584 zio_rewrite_gang, 2585 zio_free_gang, 2586 zio_claim_gang, 2587 NULL 2588 }; 2589 2590 static void zio_gang_tree_assemble_done(zio_t *zio); 2591 2592 static zio_gang_node_t * 2593 zio_gang_node_alloc(zio_gang_node_t **gnpp) 2594 { 2595 zio_gang_node_t *gn; 2596 2597 ASSERT(*gnpp == NULL); 2598 2599 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP); 2600 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE); 2601 *gnpp = gn; 2602 2603 return (gn); 2604 } 2605 2606 static void 2607 zio_gang_node_free(zio_gang_node_t **gnpp) 2608 { 2609 zio_gang_node_t *gn = *gnpp; 2610 2611 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 2612 ASSERT(gn->gn_child[g] == NULL); 2613 2614 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2615 kmem_free(gn, sizeof (*gn)); 2616 *gnpp = NULL; 2617 } 2618 2619 static void 2620 zio_gang_tree_free(zio_gang_node_t **gnpp) 2621 { 2622 zio_gang_node_t *gn = *gnpp; 2623 2624 if (gn == NULL) 2625 return; 2626 2627 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 2628 zio_gang_tree_free(&gn->gn_child[g]); 2629 2630 zio_gang_node_free(gnpp); 2631 } 2632 2633 static void 2634 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp) 2635 { 2636 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp); 2637 abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2638 2639 ASSERT(gio->io_gang_leader == gio); 2640 ASSERT(BP_IS_GANG(bp)); 2641 2642 zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE, 2643 zio_gang_tree_assemble_done, gn, gio->io_priority, 2644 ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark)); 2645 } 2646 2647 static void 2648 zio_gang_tree_assemble_done(zio_t *zio) 2649 { 2650 zio_t *gio = zio->io_gang_leader; 2651 zio_gang_node_t *gn = zio->io_private; 2652 blkptr_t *bp = zio->io_bp; 2653 2654 ASSERT(gio == zio_unique_parent(zio)); 2655 ASSERT(zio->io_child_count == 0); 2656 2657 if (zio->io_error) 2658 return; 2659 2660 /* this ABD was created from a linear buf in zio_gang_tree_assemble */ 2661 if (BP_SHOULD_BYTESWAP(bp)) 2662 byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size); 2663 2664 ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh); 2665 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE); 2666 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 2667 2668 abd_free(zio->io_abd); 2669 2670 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2671 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 2672 if (!BP_IS_GANG(gbp)) 2673 continue; 2674 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]); 2675 } 2676 } 2677 2678 static void 2679 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data, 2680 uint64_t offset) 2681 { 2682 zio_t *gio = pio->io_gang_leader; 2683 zio_t *zio; 2684 2685 ASSERT(BP_IS_GANG(bp) == !!gn); 2686 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp)); 2687 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree); 2688 2689 /* 2690 * If you're a gang header, your data is in gn->gn_gbh. 2691 * If you're a gang member, your data is in 'data' and gn == NULL. 2692 */ 2693 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset); 2694 2695 if (gn != NULL) { 2696 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 2697 2698 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2699 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 2700 if (BP_IS_HOLE(gbp)) 2701 continue; 2702 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data, 2703 offset); 2704 offset += BP_GET_PSIZE(gbp); 2705 } 2706 } 2707 2708 if (gn == gio->io_gang_tree) 2709 ASSERT3U(gio->io_size, ==, offset); 2710 2711 if (zio != pio) 2712 zio_nowait(zio); 2713 } 2714 2715 static zio_t * 2716 zio_gang_assemble(zio_t *zio) 2717 { 2718 blkptr_t *bp = zio->io_bp; 2719 2720 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL); 2721 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2722 2723 zio->io_gang_leader = zio; 2724 2725 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree); 2726 2727 return (zio); 2728 } 2729 2730 static zio_t * 2731 zio_gang_issue(zio_t *zio) 2732 { 2733 blkptr_t *bp = zio->io_bp; 2734 2735 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) { 2736 return (NULL); 2737 } 2738 2739 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio); 2740 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2741 2742 if (zio->io_child_error[ZIO_CHILD_GANG] == 0) 2743 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd, 2744 0); 2745 else 2746 zio_gang_tree_free(&zio->io_gang_tree); 2747 2748 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2749 2750 return (zio); 2751 } 2752 2753 static void 2754 zio_write_gang_member_ready(zio_t *zio) 2755 { 2756 zio_t *pio = zio_unique_parent(zio); 2757 dva_t *cdva = zio->io_bp->blk_dva; 2758 dva_t *pdva = pio->io_bp->blk_dva; 2759 uint64_t asize; 2760 zio_t *gio __maybe_unused = zio->io_gang_leader; 2761 2762 if (BP_IS_HOLE(zio->io_bp)) 2763 return; 2764 2765 ASSERT(BP_IS_HOLE(&zio->io_bp_orig)); 2766 2767 ASSERT(zio->io_child_type == ZIO_CHILD_GANG); 2768 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies); 2769 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp)); 2770 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp)); 2771 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp)); 2772 2773 mutex_enter(&pio->io_lock); 2774 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) { 2775 ASSERT(DVA_GET_GANG(&pdva[d])); 2776 asize = DVA_GET_ASIZE(&pdva[d]); 2777 asize += DVA_GET_ASIZE(&cdva[d]); 2778 DVA_SET_ASIZE(&pdva[d], asize); 2779 } 2780 mutex_exit(&pio->io_lock); 2781 } 2782 2783 static void 2784 zio_write_gang_done(zio_t *zio) 2785 { 2786 /* 2787 * The io_abd field will be NULL for a zio with no data. The io_flags 2788 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't 2789 * check for it here as it is cleared in zio_ready. 2790 */ 2791 if (zio->io_abd != NULL) 2792 abd_free(zio->io_abd); 2793 } 2794 2795 static zio_t * 2796 zio_write_gang_block(zio_t *pio, metaslab_class_t *mc) 2797 { 2798 spa_t *spa = pio->io_spa; 2799 blkptr_t *bp = pio->io_bp; 2800 zio_t *gio = pio->io_gang_leader; 2801 zio_t *zio; 2802 zio_gang_node_t *gn, **gnpp; 2803 zio_gbh_phys_t *gbh; 2804 abd_t *gbh_abd; 2805 uint64_t txg = pio->io_txg; 2806 uint64_t resid = pio->io_size; 2807 uint64_t lsize; 2808 int copies = gio->io_prop.zp_copies; 2809 int gbh_copies; 2810 zio_prop_t zp; 2811 int error; 2812 boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA); 2813 2814 /* 2815 * encrypted blocks need DVA[2] free so encrypted gang headers can't 2816 * have a third copy. 2817 */ 2818 gbh_copies = MIN(copies + 1, spa_max_replication(spa)); 2819 if (gio->io_prop.zp_encrypt && gbh_copies >= SPA_DVAS_PER_BP) 2820 gbh_copies = SPA_DVAS_PER_BP - 1; 2821 2822 int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER; 2823 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2824 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2825 ASSERT(has_data); 2826 2827 flags |= METASLAB_ASYNC_ALLOC; 2828 VERIFY(zfs_refcount_held(&mc->mc_allocator[pio->io_allocator]. 2829 mca_alloc_slots, pio)); 2830 2831 /* 2832 * The logical zio has already placed a reservation for 2833 * 'copies' allocation slots but gang blocks may require 2834 * additional copies. These additional copies 2835 * (i.e. gbh_copies - copies) are guaranteed to succeed 2836 * since metaslab_class_throttle_reserve() always allows 2837 * additional reservations for gang blocks. 2838 */ 2839 VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies, 2840 pio->io_allocator, pio, flags)); 2841 } 2842 2843 error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE, 2844 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags, 2845 &pio->io_alloc_list, pio, pio->io_allocator); 2846 if (error) { 2847 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2848 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2849 ASSERT(has_data); 2850 2851 /* 2852 * If we failed to allocate the gang block header then 2853 * we remove any additional allocation reservations that 2854 * we placed here. The original reservation will 2855 * be removed when the logical I/O goes to the ready 2856 * stage. 2857 */ 2858 metaslab_class_throttle_unreserve(mc, 2859 gbh_copies - copies, pio->io_allocator, pio); 2860 } 2861 2862 pio->io_error = error; 2863 return (pio); 2864 } 2865 2866 if (pio == gio) { 2867 gnpp = &gio->io_gang_tree; 2868 } else { 2869 gnpp = pio->io_private; 2870 ASSERT(pio->io_ready == zio_write_gang_member_ready); 2871 } 2872 2873 gn = zio_gang_node_alloc(gnpp); 2874 gbh = gn->gn_gbh; 2875 bzero(gbh, SPA_GANGBLOCKSIZE); 2876 gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE); 2877 2878 /* 2879 * Create the gang header. 2880 */ 2881 zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE, 2882 zio_write_gang_done, NULL, pio->io_priority, 2883 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2884 2885 /* 2886 * Create and nowait the gang children. 2887 */ 2888 for (int g = 0; resid != 0; resid -= lsize, g++) { 2889 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g), 2890 SPA_MINBLOCKSIZE); 2891 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid); 2892 2893 zp.zp_checksum = gio->io_prop.zp_checksum; 2894 zp.zp_compress = ZIO_COMPRESS_OFF; 2895 zp.zp_complevel = gio->io_prop.zp_complevel; 2896 zp.zp_type = DMU_OT_NONE; 2897 zp.zp_level = 0; 2898 zp.zp_copies = gio->io_prop.zp_copies; 2899 zp.zp_dedup = B_FALSE; 2900 zp.zp_dedup_verify = B_FALSE; 2901 zp.zp_nopwrite = B_FALSE; 2902 zp.zp_encrypt = gio->io_prop.zp_encrypt; 2903 zp.zp_byteorder = gio->io_prop.zp_byteorder; 2904 bzero(zp.zp_salt, ZIO_DATA_SALT_LEN); 2905 bzero(zp.zp_iv, ZIO_DATA_IV_LEN); 2906 bzero(zp.zp_mac, ZIO_DATA_MAC_LEN); 2907 2908 zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g], 2909 has_data ? abd_get_offset(pio->io_abd, pio->io_size - 2910 resid) : NULL, lsize, lsize, &zp, 2911 zio_write_gang_member_ready, NULL, NULL, 2912 zio_write_gang_done, &gn->gn_child[g], pio->io_priority, 2913 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2914 2915 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2916 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2917 ASSERT(has_data); 2918 2919 /* 2920 * Gang children won't throttle but we should 2921 * account for their work, so reserve an allocation 2922 * slot for them here. 2923 */ 2924 VERIFY(metaslab_class_throttle_reserve(mc, 2925 zp.zp_copies, cio->io_allocator, cio, flags)); 2926 } 2927 zio_nowait(cio); 2928 } 2929 2930 /* 2931 * Set pio's pipeline to just wait for zio to finish. 2932 */ 2933 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2934 2935 /* 2936 * We didn't allocate this bp, so make sure it doesn't get unmarked. 2937 */ 2938 pio->io_flags &= ~ZIO_FLAG_FASTWRITE; 2939 2940 zio_nowait(zio); 2941 2942 return (pio); 2943 } 2944 2945 /* 2946 * The zio_nop_write stage in the pipeline determines if allocating a 2947 * new bp is necessary. The nopwrite feature can handle writes in 2948 * either syncing or open context (i.e. zil writes) and as a result is 2949 * mutually exclusive with dedup. 2950 * 2951 * By leveraging a cryptographically secure checksum, such as SHA256, we 2952 * can compare the checksums of the new data and the old to determine if 2953 * allocating a new block is required. Note that our requirements for 2954 * cryptographic strength are fairly weak: there can't be any accidental 2955 * hash collisions, but we don't need to be secure against intentional 2956 * (malicious) collisions. To trigger a nopwrite, you have to be able 2957 * to write the file to begin with, and triggering an incorrect (hash 2958 * collision) nopwrite is no worse than simply writing to the file. 2959 * That said, there are no known attacks against the checksum algorithms 2960 * used for nopwrite, assuming that the salt and the checksums 2961 * themselves remain secret. 2962 */ 2963 static zio_t * 2964 zio_nop_write(zio_t *zio) 2965 { 2966 blkptr_t *bp = zio->io_bp; 2967 blkptr_t *bp_orig = &zio->io_bp_orig; 2968 zio_prop_t *zp = &zio->io_prop; 2969 2970 ASSERT(BP_GET_LEVEL(bp) == 0); 2971 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 2972 ASSERT(zp->zp_nopwrite); 2973 ASSERT(!zp->zp_dedup); 2974 ASSERT(zio->io_bp_override == NULL); 2975 ASSERT(IO_IS_ALLOCATING(zio)); 2976 2977 /* 2978 * Check to see if the original bp and the new bp have matching 2979 * characteristics (i.e. same checksum, compression algorithms, etc). 2980 * If they don't then just continue with the pipeline which will 2981 * allocate a new bp. 2982 */ 2983 if (BP_IS_HOLE(bp_orig) || 2984 !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags & 2985 ZCHECKSUM_FLAG_NOPWRITE) || 2986 BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) || 2987 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) || 2988 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) || 2989 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) || 2990 zp->zp_copies != BP_GET_NDVAS(bp_orig)) 2991 return (zio); 2992 2993 /* 2994 * If the checksums match then reset the pipeline so that we 2995 * avoid allocating a new bp and issuing any I/O. 2996 */ 2997 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) { 2998 ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags & 2999 ZCHECKSUM_FLAG_NOPWRITE); 3000 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig)); 3001 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig)); 3002 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF); 3003 ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop, 3004 sizeof (uint64_t)) == 0); 3005 3006 /* 3007 * If we're overwriting a block that is currently on an 3008 * indirect vdev, then ignore the nopwrite request and 3009 * allow a new block to be allocated on a concrete vdev. 3010 */ 3011 spa_config_enter(zio->io_spa, SCL_VDEV, FTAG, RW_READER); 3012 vdev_t *tvd = vdev_lookup_top(zio->io_spa, 3013 DVA_GET_VDEV(&bp->blk_dva[0])); 3014 if (tvd->vdev_ops == &vdev_indirect_ops) { 3015 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG); 3016 return (zio); 3017 } 3018 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG); 3019 3020 *bp = *bp_orig; 3021 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 3022 zio->io_flags |= ZIO_FLAG_NOPWRITE; 3023 } 3024 3025 return (zio); 3026 } 3027 3028 /* 3029 * ========================================================================== 3030 * Dedup 3031 * ========================================================================== 3032 */ 3033 static void 3034 zio_ddt_child_read_done(zio_t *zio) 3035 { 3036 blkptr_t *bp = zio->io_bp; 3037 ddt_entry_t *dde = zio->io_private; 3038 ddt_phys_t *ddp; 3039 zio_t *pio = zio_unique_parent(zio); 3040 3041 mutex_enter(&pio->io_lock); 3042 ddp = ddt_phys_select(dde, bp); 3043 if (zio->io_error == 0) 3044 ddt_phys_clear(ddp); /* this ddp doesn't need repair */ 3045 3046 if (zio->io_error == 0 && dde->dde_repair_abd == NULL) 3047 dde->dde_repair_abd = zio->io_abd; 3048 else 3049 abd_free(zio->io_abd); 3050 mutex_exit(&pio->io_lock); 3051 } 3052 3053 static zio_t * 3054 zio_ddt_read_start(zio_t *zio) 3055 { 3056 blkptr_t *bp = zio->io_bp; 3057 3058 ASSERT(BP_GET_DEDUP(bp)); 3059 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 3060 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3061 3062 if (zio->io_child_error[ZIO_CHILD_DDT]) { 3063 ddt_t *ddt = ddt_select(zio->io_spa, bp); 3064 ddt_entry_t *dde = ddt_repair_start(ddt, bp); 3065 ddt_phys_t *ddp = dde->dde_phys; 3066 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp); 3067 blkptr_t blk; 3068 3069 ASSERT(zio->io_vsd == NULL); 3070 zio->io_vsd = dde; 3071 3072 if (ddp_self == NULL) 3073 return (zio); 3074 3075 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 3076 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self) 3077 continue; 3078 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp, 3079 &blk); 3080 zio_nowait(zio_read(zio, zio->io_spa, &blk, 3081 abd_alloc_for_io(zio->io_size, B_TRUE), 3082 zio->io_size, zio_ddt_child_read_done, dde, 3083 zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) | 3084 ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark)); 3085 } 3086 return (zio); 3087 } 3088 3089 zio_nowait(zio_read(zio, zio->io_spa, bp, 3090 zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority, 3091 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark)); 3092 3093 return (zio); 3094 } 3095 3096 static zio_t * 3097 zio_ddt_read_done(zio_t *zio) 3098 { 3099 blkptr_t *bp = zio->io_bp; 3100 3101 if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) { 3102 return (NULL); 3103 } 3104 3105 ASSERT(BP_GET_DEDUP(bp)); 3106 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 3107 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3108 3109 if (zio->io_child_error[ZIO_CHILD_DDT]) { 3110 ddt_t *ddt = ddt_select(zio->io_spa, bp); 3111 ddt_entry_t *dde = zio->io_vsd; 3112 if (ddt == NULL) { 3113 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE); 3114 return (zio); 3115 } 3116 if (dde == NULL) { 3117 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1; 3118 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 3119 return (NULL); 3120 } 3121 if (dde->dde_repair_abd != NULL) { 3122 abd_copy(zio->io_abd, dde->dde_repair_abd, 3123 zio->io_size); 3124 zio->io_child_error[ZIO_CHILD_DDT] = 0; 3125 } 3126 ddt_repair_done(ddt, dde); 3127 zio->io_vsd = NULL; 3128 } 3129 3130 ASSERT(zio->io_vsd == NULL); 3131 3132 return (zio); 3133 } 3134 3135 static boolean_t 3136 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde) 3137 { 3138 spa_t *spa = zio->io_spa; 3139 boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW); 3140 3141 ASSERT(!(zio->io_bp_override && do_raw)); 3142 3143 /* 3144 * Note: we compare the original data, not the transformed data, 3145 * because when zio->io_bp is an override bp, we will not have 3146 * pushed the I/O transforms. That's an important optimization 3147 * because otherwise we'd compress/encrypt all dmu_sync() data twice. 3148 * However, we should never get a raw, override zio so in these 3149 * cases we can compare the io_abd directly. This is useful because 3150 * it allows us to do dedup verification even if we don't have access 3151 * to the original data (for instance, if the encryption keys aren't 3152 * loaded). 3153 */ 3154 3155 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 3156 zio_t *lio = dde->dde_lead_zio[p]; 3157 3158 if (lio != NULL && do_raw) { 3159 return (lio->io_size != zio->io_size || 3160 abd_cmp(zio->io_abd, lio->io_abd) != 0); 3161 } else if (lio != NULL) { 3162 return (lio->io_orig_size != zio->io_orig_size || 3163 abd_cmp(zio->io_orig_abd, lio->io_orig_abd) != 0); 3164 } 3165 } 3166 3167 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 3168 ddt_phys_t *ddp = &dde->dde_phys[p]; 3169 3170 if (ddp->ddp_phys_birth != 0 && do_raw) { 3171 blkptr_t blk = *zio->io_bp; 3172 uint64_t psize; 3173 abd_t *tmpabd; 3174 int error; 3175 3176 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth); 3177 psize = BP_GET_PSIZE(&blk); 3178 3179 if (psize != zio->io_size) 3180 return (B_TRUE); 3181 3182 ddt_exit(ddt); 3183 3184 tmpabd = abd_alloc_for_io(psize, B_TRUE); 3185 3186 error = zio_wait(zio_read(NULL, spa, &blk, tmpabd, 3187 psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ, 3188 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 3189 ZIO_FLAG_RAW, &zio->io_bookmark)); 3190 3191 if (error == 0) { 3192 if (abd_cmp(tmpabd, zio->io_abd) != 0) 3193 error = SET_ERROR(ENOENT); 3194 } 3195 3196 abd_free(tmpabd); 3197 ddt_enter(ddt); 3198 return (error != 0); 3199 } else if (ddp->ddp_phys_birth != 0) { 3200 arc_buf_t *abuf = NULL; 3201 arc_flags_t aflags = ARC_FLAG_WAIT; 3202 blkptr_t blk = *zio->io_bp; 3203 int error; 3204 3205 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth); 3206 3207 if (BP_GET_LSIZE(&blk) != zio->io_orig_size) 3208 return (B_TRUE); 3209 3210 ddt_exit(ddt); 3211 3212 error = arc_read(NULL, spa, &blk, 3213 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ, 3214 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 3215 &aflags, &zio->io_bookmark); 3216 3217 if (error == 0) { 3218 if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data, 3219 zio->io_orig_size) != 0) 3220 error = SET_ERROR(ENOENT); 3221 arc_buf_destroy(abuf, &abuf); 3222 } 3223 3224 ddt_enter(ddt); 3225 return (error != 0); 3226 } 3227 } 3228 3229 return (B_FALSE); 3230 } 3231 3232 static void 3233 zio_ddt_child_write_ready(zio_t *zio) 3234 { 3235 int p = zio->io_prop.zp_copies; 3236 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 3237 ddt_entry_t *dde = zio->io_private; 3238 ddt_phys_t *ddp = &dde->dde_phys[p]; 3239 zio_t *pio; 3240 3241 if (zio->io_error) 3242 return; 3243 3244 ddt_enter(ddt); 3245 3246 ASSERT(dde->dde_lead_zio[p] == zio); 3247 3248 ddt_phys_fill(ddp, zio->io_bp); 3249 3250 zio_link_t *zl = NULL; 3251 while ((pio = zio_walk_parents(zio, &zl)) != NULL) 3252 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg); 3253 3254 ddt_exit(ddt); 3255 } 3256 3257 static void 3258 zio_ddt_child_write_done(zio_t *zio) 3259 { 3260 int p = zio->io_prop.zp_copies; 3261 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 3262 ddt_entry_t *dde = zio->io_private; 3263 ddt_phys_t *ddp = &dde->dde_phys[p]; 3264 3265 ddt_enter(ddt); 3266 3267 ASSERT(ddp->ddp_refcnt == 0); 3268 ASSERT(dde->dde_lead_zio[p] == zio); 3269 dde->dde_lead_zio[p] = NULL; 3270 3271 if (zio->io_error == 0) { 3272 zio_link_t *zl = NULL; 3273 while (zio_walk_parents(zio, &zl) != NULL) 3274 ddt_phys_addref(ddp); 3275 } else { 3276 ddt_phys_clear(ddp); 3277 } 3278 3279 ddt_exit(ddt); 3280 } 3281 3282 static zio_t * 3283 zio_ddt_write(zio_t *zio) 3284 { 3285 spa_t *spa = zio->io_spa; 3286 blkptr_t *bp = zio->io_bp; 3287 uint64_t txg = zio->io_txg; 3288 zio_prop_t *zp = &zio->io_prop; 3289 int p = zp->zp_copies; 3290 zio_t *cio = NULL; 3291 ddt_t *ddt = ddt_select(spa, bp); 3292 ddt_entry_t *dde; 3293 ddt_phys_t *ddp; 3294 3295 ASSERT(BP_GET_DEDUP(bp)); 3296 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum); 3297 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override); 3298 ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW))); 3299 3300 ddt_enter(ddt); 3301 dde = ddt_lookup(ddt, bp, B_TRUE); 3302 ddp = &dde->dde_phys[p]; 3303 3304 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) { 3305 /* 3306 * If we're using a weak checksum, upgrade to a strong checksum 3307 * and try again. If we're already using a strong checksum, 3308 * we can't resolve it, so just convert to an ordinary write. 3309 * (And automatically e-mail a paper to Nature?) 3310 */ 3311 if (!(zio_checksum_table[zp->zp_checksum].ci_flags & 3312 ZCHECKSUM_FLAG_DEDUP)) { 3313 zp->zp_checksum = spa_dedup_checksum(spa); 3314 zio_pop_transforms(zio); 3315 zio->io_stage = ZIO_STAGE_OPEN; 3316 BP_ZERO(bp); 3317 } else { 3318 zp->zp_dedup = B_FALSE; 3319 BP_SET_DEDUP(bp, B_FALSE); 3320 } 3321 ASSERT(!BP_GET_DEDUP(bp)); 3322 zio->io_pipeline = ZIO_WRITE_PIPELINE; 3323 ddt_exit(ddt); 3324 return (zio); 3325 } 3326 3327 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) { 3328 if (ddp->ddp_phys_birth != 0) 3329 ddt_bp_fill(ddp, bp, txg); 3330 if (dde->dde_lead_zio[p] != NULL) 3331 zio_add_child(zio, dde->dde_lead_zio[p]); 3332 else 3333 ddt_phys_addref(ddp); 3334 } else if (zio->io_bp_override) { 3335 ASSERT(bp->blk_birth == txg); 3336 ASSERT(BP_EQUAL(bp, zio->io_bp_override)); 3337 ddt_phys_fill(ddp, bp); 3338 ddt_phys_addref(ddp); 3339 } else { 3340 cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd, 3341 zio->io_orig_size, zio->io_orig_size, zp, 3342 zio_ddt_child_write_ready, NULL, NULL, 3343 zio_ddt_child_write_done, dde, zio->io_priority, 3344 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark); 3345 3346 zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL); 3347 dde->dde_lead_zio[p] = cio; 3348 } 3349 3350 ddt_exit(ddt); 3351 3352 zio_nowait(cio); 3353 3354 return (zio); 3355 } 3356 3357 ddt_entry_t *freedde; /* for debugging */ 3358 3359 static zio_t * 3360 zio_ddt_free(zio_t *zio) 3361 { 3362 spa_t *spa = zio->io_spa; 3363 blkptr_t *bp = zio->io_bp; 3364 ddt_t *ddt = ddt_select(spa, bp); 3365 ddt_entry_t *dde; 3366 ddt_phys_t *ddp; 3367 3368 ASSERT(BP_GET_DEDUP(bp)); 3369 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3370 3371 ddt_enter(ddt); 3372 freedde = dde = ddt_lookup(ddt, bp, B_TRUE); 3373 if (dde) { 3374 ddp = ddt_phys_select(dde, bp); 3375 if (ddp) 3376 ddt_phys_decref(ddp); 3377 } 3378 ddt_exit(ddt); 3379 3380 return (zio); 3381 } 3382 3383 /* 3384 * ========================================================================== 3385 * Allocate and free blocks 3386 * ========================================================================== 3387 */ 3388 3389 static zio_t * 3390 zio_io_to_allocate(spa_t *spa, int allocator) 3391 { 3392 zio_t *zio; 3393 3394 ASSERT(MUTEX_HELD(&spa->spa_allocs[allocator].spaa_lock)); 3395 3396 zio = avl_first(&spa->spa_allocs[allocator].spaa_tree); 3397 if (zio == NULL) 3398 return (NULL); 3399 3400 ASSERT(IO_IS_ALLOCATING(zio)); 3401 3402 /* 3403 * Try to place a reservation for this zio. If we're unable to 3404 * reserve then we throttle. 3405 */ 3406 ASSERT3U(zio->io_allocator, ==, allocator); 3407 if (!metaslab_class_throttle_reserve(zio->io_metaslab_class, 3408 zio->io_prop.zp_copies, allocator, zio, 0)) { 3409 return (NULL); 3410 } 3411 3412 avl_remove(&spa->spa_allocs[allocator].spaa_tree, zio); 3413 ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE); 3414 3415 return (zio); 3416 } 3417 3418 static zio_t * 3419 zio_dva_throttle(zio_t *zio) 3420 { 3421 spa_t *spa = zio->io_spa; 3422 zio_t *nio; 3423 metaslab_class_t *mc; 3424 3425 /* locate an appropriate allocation class */ 3426 mc = spa_preferred_class(spa, zio->io_size, zio->io_prop.zp_type, 3427 zio->io_prop.zp_level, zio->io_prop.zp_zpl_smallblk); 3428 3429 if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE || 3430 !mc->mc_alloc_throttle_enabled || 3431 zio->io_child_type == ZIO_CHILD_GANG || 3432 zio->io_flags & ZIO_FLAG_NODATA) { 3433 return (zio); 3434 } 3435 3436 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 3437 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 3438 ASSERT3U(zio->io_queued_timestamp, >, 0); 3439 ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE); 3440 3441 zbookmark_phys_t *bm = &zio->io_bookmark; 3442 /* 3443 * We want to try to use as many allocators as possible to help improve 3444 * performance, but we also want logically adjacent IOs to be physically 3445 * adjacent to improve sequential read performance. We chunk each object 3446 * into 2^20 block regions, and then hash based on the objset, object, 3447 * level, and region to accomplish both of these goals. 3448 */ 3449 int allocator = (uint_t)cityhash4(bm->zb_objset, bm->zb_object, 3450 bm->zb_level, bm->zb_blkid >> 20) % spa->spa_alloc_count; 3451 zio->io_allocator = allocator; 3452 zio->io_metaslab_class = mc; 3453 mutex_enter(&spa->spa_allocs[allocator].spaa_lock); 3454 avl_add(&spa->spa_allocs[allocator].spaa_tree, zio); 3455 nio = zio_io_to_allocate(spa, allocator); 3456 mutex_exit(&spa->spa_allocs[allocator].spaa_lock); 3457 return (nio); 3458 } 3459 3460 static void 3461 zio_allocate_dispatch(spa_t *spa, int allocator) 3462 { 3463 zio_t *zio; 3464 3465 mutex_enter(&spa->spa_allocs[allocator].spaa_lock); 3466 zio = zio_io_to_allocate(spa, allocator); 3467 mutex_exit(&spa->spa_allocs[allocator].spaa_lock); 3468 if (zio == NULL) 3469 return; 3470 3471 ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE); 3472 ASSERT0(zio->io_error); 3473 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE); 3474 } 3475 3476 static zio_t * 3477 zio_dva_allocate(zio_t *zio) 3478 { 3479 spa_t *spa = zio->io_spa; 3480 metaslab_class_t *mc; 3481 blkptr_t *bp = zio->io_bp; 3482 int error; 3483 int flags = 0; 3484 3485 if (zio->io_gang_leader == NULL) { 3486 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 3487 zio->io_gang_leader = zio; 3488 } 3489 3490 ASSERT(BP_IS_HOLE(bp)); 3491 ASSERT0(BP_GET_NDVAS(bp)); 3492 ASSERT3U(zio->io_prop.zp_copies, >, 0); 3493 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa)); 3494 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp)); 3495 3496 flags |= (zio->io_flags & ZIO_FLAG_FASTWRITE) ? METASLAB_FASTWRITE : 0; 3497 if (zio->io_flags & ZIO_FLAG_NODATA) 3498 flags |= METASLAB_DONT_THROTTLE; 3499 if (zio->io_flags & ZIO_FLAG_GANG_CHILD) 3500 flags |= METASLAB_GANG_CHILD; 3501 if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE) 3502 flags |= METASLAB_ASYNC_ALLOC; 3503 3504 /* 3505 * if not already chosen, locate an appropriate allocation class 3506 */ 3507 mc = zio->io_metaslab_class; 3508 if (mc == NULL) { 3509 mc = spa_preferred_class(spa, zio->io_size, 3510 zio->io_prop.zp_type, zio->io_prop.zp_level, 3511 zio->io_prop.zp_zpl_smallblk); 3512 zio->io_metaslab_class = mc; 3513 } 3514 3515 /* 3516 * Try allocating the block in the usual metaslab class. 3517 * If that's full, allocate it in the normal class. 3518 * If that's full, allocate as a gang block, 3519 * and if all are full, the allocation fails (which shouldn't happen). 3520 * 3521 * Note that we do not fall back on embedded slog (ZIL) space, to 3522 * preserve unfragmented slog space, which is critical for decent 3523 * sync write performance. If a log allocation fails, we will fall 3524 * back to spa_sync() which is abysmal for performance. 3525 */ 3526 error = metaslab_alloc(spa, mc, zio->io_size, bp, 3527 zio->io_prop.zp_copies, zio->io_txg, NULL, flags, 3528 &zio->io_alloc_list, zio, zio->io_allocator); 3529 3530 /* 3531 * Fallback to normal class when an alloc class is full 3532 */ 3533 if (error == ENOSPC && mc != spa_normal_class(spa)) { 3534 /* 3535 * If throttling, transfer reservation over to normal class. 3536 * The io_allocator slot can remain the same even though we 3537 * are switching classes. 3538 */ 3539 if (mc->mc_alloc_throttle_enabled && 3540 (zio->io_flags & ZIO_FLAG_IO_ALLOCATING)) { 3541 metaslab_class_throttle_unreserve(mc, 3542 zio->io_prop.zp_copies, zio->io_allocator, zio); 3543 zio->io_flags &= ~ZIO_FLAG_IO_ALLOCATING; 3544 3545 VERIFY(metaslab_class_throttle_reserve( 3546 spa_normal_class(spa), 3547 zio->io_prop.zp_copies, zio->io_allocator, zio, 3548 flags | METASLAB_MUST_RESERVE)); 3549 } 3550 zio->io_metaslab_class = mc = spa_normal_class(spa); 3551 if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) { 3552 zfs_dbgmsg("%s: metaslab allocation failure, " 3553 "trying normal class: zio %px, size %llu, error %d", 3554 spa_name(spa), zio, (u_longlong_t)zio->io_size, 3555 error); 3556 } 3557 3558 error = metaslab_alloc(spa, mc, zio->io_size, bp, 3559 zio->io_prop.zp_copies, zio->io_txg, NULL, flags, 3560 &zio->io_alloc_list, zio, zio->io_allocator); 3561 } 3562 3563 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) { 3564 if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) { 3565 zfs_dbgmsg("%s: metaslab allocation failure, " 3566 "trying ganging: zio %px, size %llu, error %d", 3567 spa_name(spa), zio, (u_longlong_t)zio->io_size, 3568 error); 3569 } 3570 return (zio_write_gang_block(zio, mc)); 3571 } 3572 if (error != 0) { 3573 if (error != ENOSPC || 3574 (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC)) { 3575 zfs_dbgmsg("%s: metaslab allocation failure: zio %px, " 3576 "size %llu, error %d", 3577 spa_name(spa), zio, (u_longlong_t)zio->io_size, 3578 error); 3579 } 3580 zio->io_error = error; 3581 } 3582 3583 return (zio); 3584 } 3585 3586 static zio_t * 3587 zio_dva_free(zio_t *zio) 3588 { 3589 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE); 3590 3591 return (zio); 3592 } 3593 3594 static zio_t * 3595 zio_dva_claim(zio_t *zio) 3596 { 3597 int error; 3598 3599 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg); 3600 if (error) 3601 zio->io_error = error; 3602 3603 return (zio); 3604 } 3605 3606 /* 3607 * Undo an allocation. This is used by zio_done() when an I/O fails 3608 * and we want to give back the block we just allocated. 3609 * This handles both normal blocks and gang blocks. 3610 */ 3611 static void 3612 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp) 3613 { 3614 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp)); 3615 ASSERT(zio->io_bp_override == NULL); 3616 3617 if (!BP_IS_HOLE(bp)) 3618 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE); 3619 3620 if (gn != NULL) { 3621 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 3622 zio_dva_unallocate(zio, gn->gn_child[g], 3623 &gn->gn_gbh->zg_blkptr[g]); 3624 } 3625 } 3626 } 3627 3628 /* 3629 * Try to allocate an intent log block. Return 0 on success, errno on failure. 3630 */ 3631 int 3632 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp, 3633 uint64_t size, boolean_t *slog) 3634 { 3635 int error = 1; 3636 zio_alloc_list_t io_alloc_list; 3637 3638 ASSERT(txg > spa_syncing_txg(spa)); 3639 3640 metaslab_trace_init(&io_alloc_list); 3641 3642 /* 3643 * Block pointer fields are useful to metaslabs for stats and debugging. 3644 * Fill in the obvious ones before calling into metaslab_alloc(). 3645 */ 3646 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 3647 BP_SET_PSIZE(new_bp, size); 3648 BP_SET_LEVEL(new_bp, 0); 3649 3650 /* 3651 * When allocating a zil block, we don't have information about 3652 * the final destination of the block except the objset it's part 3653 * of, so we just hash the objset ID to pick the allocator to get 3654 * some parallelism. 3655 */ 3656 int flags = METASLAB_FASTWRITE | METASLAB_ZIL; 3657 int allocator = (uint_t)cityhash4(0, 0, 0, 3658 os->os_dsl_dataset->ds_object) % spa->spa_alloc_count; 3659 error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1, 3660 txg, NULL, flags, &io_alloc_list, NULL, allocator); 3661 *slog = (error == 0); 3662 if (error != 0) { 3663 error = metaslab_alloc(spa, spa_embedded_log_class(spa), size, 3664 new_bp, 1, txg, NULL, flags, 3665 &io_alloc_list, NULL, allocator); 3666 } 3667 if (error != 0) { 3668 error = metaslab_alloc(spa, spa_normal_class(spa), size, 3669 new_bp, 1, txg, NULL, flags, 3670 &io_alloc_list, NULL, allocator); 3671 } 3672 metaslab_trace_fini(&io_alloc_list); 3673 3674 if (error == 0) { 3675 BP_SET_LSIZE(new_bp, size); 3676 BP_SET_PSIZE(new_bp, size); 3677 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF); 3678 BP_SET_CHECKSUM(new_bp, 3679 spa_version(spa) >= SPA_VERSION_SLIM_ZIL 3680 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG); 3681 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 3682 BP_SET_LEVEL(new_bp, 0); 3683 BP_SET_DEDUP(new_bp, 0); 3684 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER); 3685 3686 /* 3687 * encrypted blocks will require an IV and salt. We generate 3688 * these now since we will not be rewriting the bp at 3689 * rewrite time. 3690 */ 3691 if (os->os_encrypted) { 3692 uint8_t iv[ZIO_DATA_IV_LEN]; 3693 uint8_t salt[ZIO_DATA_SALT_LEN]; 3694 3695 BP_SET_CRYPT(new_bp, B_TRUE); 3696 VERIFY0(spa_crypt_get_salt(spa, 3697 dmu_objset_id(os), salt)); 3698 VERIFY0(zio_crypt_generate_iv(iv)); 3699 3700 zio_crypt_encode_params_bp(new_bp, salt, iv); 3701 } 3702 } else { 3703 zfs_dbgmsg("%s: zil block allocation failure: " 3704 "size %llu, error %d", spa_name(spa), (u_longlong_t)size, 3705 error); 3706 } 3707 3708 return (error); 3709 } 3710 3711 /* 3712 * ========================================================================== 3713 * Read and write to physical devices 3714 * ========================================================================== 3715 */ 3716 3717 /* 3718 * Issue an I/O to the underlying vdev. Typically the issue pipeline 3719 * stops after this stage and will resume upon I/O completion. 3720 * However, there are instances where the vdev layer may need to 3721 * continue the pipeline when an I/O was not issued. Since the I/O 3722 * that was sent to the vdev layer might be different than the one 3723 * currently active in the pipeline (see vdev_queue_io()), we explicitly 3724 * force the underlying vdev layers to call either zio_execute() or 3725 * zio_interrupt() to ensure that the pipeline continues with the correct I/O. 3726 */ 3727 static zio_t * 3728 zio_vdev_io_start(zio_t *zio) 3729 { 3730 vdev_t *vd = zio->io_vd; 3731 uint64_t align; 3732 spa_t *spa = zio->io_spa; 3733 3734 zio->io_delay = 0; 3735 3736 ASSERT(zio->io_error == 0); 3737 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0); 3738 3739 if (vd == NULL) { 3740 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 3741 spa_config_enter(spa, SCL_ZIO, zio, RW_READER); 3742 3743 /* 3744 * The mirror_ops handle multiple DVAs in a single BP. 3745 */ 3746 vdev_mirror_ops.vdev_op_io_start(zio); 3747 return (NULL); 3748 } 3749 3750 ASSERT3P(zio->io_logical, !=, zio); 3751 if (zio->io_type == ZIO_TYPE_WRITE) { 3752 ASSERT(spa->spa_trust_config); 3753 3754 /* 3755 * Note: the code can handle other kinds of writes, 3756 * but we don't expect them. 3757 */ 3758 if (zio->io_vd->vdev_noalloc) { 3759 ASSERT(zio->io_flags & 3760 (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL | 3761 ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE)); 3762 } 3763 } 3764 3765 align = 1ULL << vd->vdev_top->vdev_ashift; 3766 3767 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) && 3768 P2PHASE(zio->io_size, align) != 0) { 3769 /* Transform logical writes to be a full physical block size. */ 3770 uint64_t asize = P2ROUNDUP(zio->io_size, align); 3771 abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize); 3772 ASSERT(vd == vd->vdev_top); 3773 if (zio->io_type == ZIO_TYPE_WRITE) { 3774 abd_copy(abuf, zio->io_abd, zio->io_size); 3775 abd_zero_off(abuf, zio->io_size, asize - zio->io_size); 3776 } 3777 zio_push_transform(zio, abuf, asize, asize, zio_subblock); 3778 } 3779 3780 /* 3781 * If this is not a physical io, make sure that it is properly aligned 3782 * before proceeding. 3783 */ 3784 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) { 3785 ASSERT0(P2PHASE(zio->io_offset, align)); 3786 ASSERT0(P2PHASE(zio->io_size, align)); 3787 } else { 3788 /* 3789 * For physical writes, we allow 512b aligned writes and assume 3790 * the device will perform a read-modify-write as necessary. 3791 */ 3792 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE)); 3793 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE)); 3794 } 3795 3796 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa)); 3797 3798 /* 3799 * If this is a repair I/O, and there's no self-healing involved -- 3800 * that is, we're just resilvering what we expect to resilver -- 3801 * then don't do the I/O unless zio's txg is actually in vd's DTL. 3802 * This prevents spurious resilvering. 3803 * 3804 * There are a few ways that we can end up creating these spurious 3805 * resilver i/os: 3806 * 3807 * 1. A resilver i/o will be issued if any DVA in the BP has a 3808 * dirty DTL. The mirror code will issue resilver writes to 3809 * each DVA, including the one(s) that are not on vdevs with dirty 3810 * DTLs. 3811 * 3812 * 2. With nested replication, which happens when we have a 3813 * "replacing" or "spare" vdev that's a child of a mirror or raidz. 3814 * For example, given mirror(replacing(A+B), C), it's likely that 3815 * only A is out of date (it's the new device). In this case, we'll 3816 * read from C, then use the data to resilver A+B -- but we don't 3817 * actually want to resilver B, just A. The top-level mirror has no 3818 * way to know this, so instead we just discard unnecessary repairs 3819 * as we work our way down the vdev tree. 3820 * 3821 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc. 3822 * The same logic applies to any form of nested replication: ditto 3823 * + mirror, RAID-Z + replacing, etc. 3824 * 3825 * However, indirect vdevs point off to other vdevs which may have 3826 * DTL's, so we never bypass them. The child i/os on concrete vdevs 3827 * will be properly bypassed instead. 3828 * 3829 * Leaf DTL_PARTIAL can be empty when a legitimate write comes from 3830 * a dRAID spare vdev. For example, when a dRAID spare is first 3831 * used, its spare blocks need to be written to but the leaf vdev's 3832 * of such blocks can have empty DTL_PARTIAL. 3833 * 3834 * There seemed no clean way to allow such writes while bypassing 3835 * spurious ones. At this point, just avoid all bypassing for dRAID 3836 * for correctness. 3837 */ 3838 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) && 3839 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) && 3840 zio->io_txg != 0 && /* not a delegated i/o */ 3841 vd->vdev_ops != &vdev_indirect_ops && 3842 vd->vdev_top->vdev_ops != &vdev_draid_ops && 3843 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) { 3844 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 3845 zio_vdev_io_bypass(zio); 3846 return (zio); 3847 } 3848 3849 /* 3850 * Select the next best leaf I/O to process. Distributed spares are 3851 * excluded since they dispatch the I/O directly to a leaf vdev after 3852 * applying the dRAID mapping. 3853 */ 3854 if (vd->vdev_ops->vdev_op_leaf && 3855 vd->vdev_ops != &vdev_draid_spare_ops && 3856 (zio->io_type == ZIO_TYPE_READ || 3857 zio->io_type == ZIO_TYPE_WRITE || 3858 zio->io_type == ZIO_TYPE_TRIM)) { 3859 3860 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio)) 3861 return (zio); 3862 3863 if ((zio = vdev_queue_io(zio)) == NULL) 3864 return (NULL); 3865 3866 if (!vdev_accessible(vd, zio)) { 3867 zio->io_error = SET_ERROR(ENXIO); 3868 zio_interrupt(zio); 3869 return (NULL); 3870 } 3871 zio->io_delay = gethrtime(); 3872 } 3873 3874 vd->vdev_ops->vdev_op_io_start(zio); 3875 return (NULL); 3876 } 3877 3878 static zio_t * 3879 zio_vdev_io_done(zio_t *zio) 3880 { 3881 vdev_t *vd = zio->io_vd; 3882 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops; 3883 boolean_t unexpected_error = B_FALSE; 3884 3885 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) { 3886 return (NULL); 3887 } 3888 3889 ASSERT(zio->io_type == ZIO_TYPE_READ || 3890 zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM); 3891 3892 if (zio->io_delay) 3893 zio->io_delay = gethrtime() - zio->io_delay; 3894 3895 if (vd != NULL && vd->vdev_ops->vdev_op_leaf && 3896 vd->vdev_ops != &vdev_draid_spare_ops) { 3897 vdev_queue_io_done(zio); 3898 3899 if (zio->io_type == ZIO_TYPE_WRITE) 3900 vdev_cache_write(zio); 3901 3902 if (zio_injection_enabled && zio->io_error == 0) 3903 zio->io_error = zio_handle_device_injections(vd, zio, 3904 EIO, EILSEQ); 3905 3906 if (zio_injection_enabled && zio->io_error == 0) 3907 zio->io_error = zio_handle_label_injection(zio, EIO); 3908 3909 if (zio->io_error && zio->io_type != ZIO_TYPE_TRIM) { 3910 if (!vdev_accessible(vd, zio)) { 3911 zio->io_error = SET_ERROR(ENXIO); 3912 } else { 3913 unexpected_error = B_TRUE; 3914 } 3915 } 3916 } 3917 3918 ops->vdev_op_io_done(zio); 3919 3920 if (unexpected_error) 3921 VERIFY(vdev_probe(vd, zio) == NULL); 3922 3923 return (zio); 3924 } 3925 3926 /* 3927 * This function is used to change the priority of an existing zio that is 3928 * currently in-flight. This is used by the arc to upgrade priority in the 3929 * event that a demand read is made for a block that is currently queued 3930 * as a scrub or async read IO. Otherwise, the high priority read request 3931 * would end up having to wait for the lower priority IO. 3932 */ 3933 void 3934 zio_change_priority(zio_t *pio, zio_priority_t priority) 3935 { 3936 zio_t *cio, *cio_next; 3937 zio_link_t *zl = NULL; 3938 3939 ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 3940 3941 if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) { 3942 vdev_queue_change_io_priority(pio, priority); 3943 } else { 3944 pio->io_priority = priority; 3945 } 3946 3947 mutex_enter(&pio->io_lock); 3948 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 3949 cio_next = zio_walk_children(pio, &zl); 3950 zio_change_priority(cio, priority); 3951 } 3952 mutex_exit(&pio->io_lock); 3953 } 3954 3955 /* 3956 * For non-raidz ZIOs, we can just copy aside the bad data read from the 3957 * disk, and use that to finish the checksum ereport later. 3958 */ 3959 static void 3960 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr, 3961 const abd_t *good_buf) 3962 { 3963 /* no processing needed */ 3964 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE); 3965 } 3966 3967 /*ARGSUSED*/ 3968 void 3969 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr) 3970 { 3971 void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size); 3972 3973 abd_copy(abd, zio->io_abd, zio->io_size); 3974 3975 zcr->zcr_cbinfo = zio->io_size; 3976 zcr->zcr_cbdata = abd; 3977 zcr->zcr_finish = zio_vsd_default_cksum_finish; 3978 zcr->zcr_free = zio_abd_free; 3979 } 3980 3981 static zio_t * 3982 zio_vdev_io_assess(zio_t *zio) 3983 { 3984 vdev_t *vd = zio->io_vd; 3985 3986 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) { 3987 return (NULL); 3988 } 3989 3990 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 3991 spa_config_exit(zio->io_spa, SCL_ZIO, zio); 3992 3993 if (zio->io_vsd != NULL) { 3994 zio->io_vsd_ops->vsd_free(zio); 3995 zio->io_vsd = NULL; 3996 } 3997 3998 if (zio_injection_enabled && zio->io_error == 0) 3999 zio->io_error = zio_handle_fault_injection(zio, EIO); 4000 4001 /* 4002 * If the I/O failed, determine whether we should attempt to retry it. 4003 * 4004 * On retry, we cut in line in the issue queue, since we don't want 4005 * compression/checksumming/etc. work to prevent our (cheap) IO reissue. 4006 */ 4007 if (zio->io_error && vd == NULL && 4008 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) { 4009 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */ 4010 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */ 4011 zio->io_error = 0; 4012 zio->io_flags |= ZIO_FLAG_IO_RETRY | 4013 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE; 4014 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1; 4015 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, 4016 zio_requeue_io_start_cut_in_line); 4017 return (NULL); 4018 } 4019 4020 /* 4021 * If we got an error on a leaf device, convert it to ENXIO 4022 * if the device is not accessible at all. 4023 */ 4024 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf && 4025 !vdev_accessible(vd, zio)) 4026 zio->io_error = SET_ERROR(ENXIO); 4027 4028 /* 4029 * If we can't write to an interior vdev (mirror or RAID-Z), 4030 * set vdev_cant_write so that we stop trying to allocate from it. 4031 */ 4032 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE && 4033 vd != NULL && !vd->vdev_ops->vdev_op_leaf) { 4034 vdev_dbgmsg(vd, "zio_vdev_io_assess(zio=%px) setting " 4035 "cant_write=TRUE due to write failure with ENXIO", 4036 zio); 4037 vd->vdev_cant_write = B_TRUE; 4038 } 4039 4040 /* 4041 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future 4042 * attempts will ever succeed. In this case we set a persistent 4043 * boolean flag so that we don't bother with it in the future. 4044 */ 4045 if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) && 4046 zio->io_type == ZIO_TYPE_IOCTL && 4047 zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL) 4048 vd->vdev_nowritecache = B_TRUE; 4049 4050 if (zio->io_error) 4051 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 4052 4053 if (vd != NULL && vd->vdev_ops->vdev_op_leaf && 4054 zio->io_physdone != NULL) { 4055 ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED)); 4056 ASSERT(zio->io_child_type == ZIO_CHILD_VDEV); 4057 zio->io_physdone(zio->io_logical); 4058 } 4059 4060 return (zio); 4061 } 4062 4063 void 4064 zio_vdev_io_reissue(zio_t *zio) 4065 { 4066 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 4067 ASSERT(zio->io_error == 0); 4068 4069 zio->io_stage >>= 1; 4070 } 4071 4072 void 4073 zio_vdev_io_redone(zio_t *zio) 4074 { 4075 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE); 4076 4077 zio->io_stage >>= 1; 4078 } 4079 4080 void 4081 zio_vdev_io_bypass(zio_t *zio) 4082 { 4083 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 4084 ASSERT(zio->io_error == 0); 4085 4086 zio->io_flags |= ZIO_FLAG_IO_BYPASS; 4087 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1; 4088 } 4089 4090 /* 4091 * ========================================================================== 4092 * Encrypt and store encryption parameters 4093 * ========================================================================== 4094 */ 4095 4096 4097 /* 4098 * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for 4099 * managing the storage of encryption parameters and passing them to the 4100 * lower-level encryption functions. 4101 */ 4102 static zio_t * 4103 zio_encrypt(zio_t *zio) 4104 { 4105 zio_prop_t *zp = &zio->io_prop; 4106 spa_t *spa = zio->io_spa; 4107 blkptr_t *bp = zio->io_bp; 4108 uint64_t psize = BP_GET_PSIZE(bp); 4109 uint64_t dsobj = zio->io_bookmark.zb_objset; 4110 dmu_object_type_t ot = BP_GET_TYPE(bp); 4111 void *enc_buf = NULL; 4112 abd_t *eabd = NULL; 4113 uint8_t salt[ZIO_DATA_SALT_LEN]; 4114 uint8_t iv[ZIO_DATA_IV_LEN]; 4115 uint8_t mac[ZIO_DATA_MAC_LEN]; 4116 boolean_t no_crypt = B_FALSE; 4117 4118 /* the root zio already encrypted the data */ 4119 if (zio->io_child_type == ZIO_CHILD_GANG) 4120 return (zio); 4121 4122 /* only ZIL blocks are re-encrypted on rewrite */ 4123 if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG) 4124 return (zio); 4125 4126 if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) { 4127 BP_SET_CRYPT(bp, B_FALSE); 4128 return (zio); 4129 } 4130 4131 /* if we are doing raw encryption set the provided encryption params */ 4132 if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) { 4133 ASSERT0(BP_GET_LEVEL(bp)); 4134 BP_SET_CRYPT(bp, B_TRUE); 4135 BP_SET_BYTEORDER(bp, zp->zp_byteorder); 4136 if (ot != DMU_OT_OBJSET) 4137 zio_crypt_encode_mac_bp(bp, zp->zp_mac); 4138 4139 /* dnode blocks must be written out in the provided byteorder */ 4140 if (zp->zp_byteorder != ZFS_HOST_BYTEORDER && 4141 ot == DMU_OT_DNODE) { 4142 void *bswap_buf = zio_buf_alloc(psize); 4143 abd_t *babd = abd_get_from_buf(bswap_buf, psize); 4144 4145 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 4146 abd_copy_to_buf(bswap_buf, zio->io_abd, psize); 4147 dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf, 4148 psize); 4149 4150 abd_take_ownership_of_buf(babd, B_TRUE); 4151 zio_push_transform(zio, babd, psize, psize, NULL); 4152 } 4153 4154 if (DMU_OT_IS_ENCRYPTED(ot)) 4155 zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv); 4156 return (zio); 4157 } 4158 4159 /* indirect blocks only maintain a cksum of the lower level MACs */ 4160 if (BP_GET_LEVEL(bp) > 0) { 4161 BP_SET_CRYPT(bp, B_TRUE); 4162 VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE, 4163 zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp), 4164 mac)); 4165 zio_crypt_encode_mac_bp(bp, mac); 4166 return (zio); 4167 } 4168 4169 /* 4170 * Objset blocks are a special case since they have 2 256-bit MACs 4171 * embedded within them. 4172 */ 4173 if (ot == DMU_OT_OBJSET) { 4174 ASSERT0(DMU_OT_IS_ENCRYPTED(ot)); 4175 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 4176 BP_SET_CRYPT(bp, B_TRUE); 4177 VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj, 4178 zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp))); 4179 return (zio); 4180 } 4181 4182 /* unencrypted object types are only authenticated with a MAC */ 4183 if (!DMU_OT_IS_ENCRYPTED(ot)) { 4184 BP_SET_CRYPT(bp, B_TRUE); 4185 VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj, 4186 zio->io_abd, psize, mac)); 4187 zio_crypt_encode_mac_bp(bp, mac); 4188 return (zio); 4189 } 4190 4191 /* 4192 * Later passes of sync-to-convergence may decide to rewrite data 4193 * in place to avoid more disk reallocations. This presents a problem 4194 * for encryption because this constitutes rewriting the new data with 4195 * the same encryption key and IV. However, this only applies to blocks 4196 * in the MOS (particularly the spacemaps) and we do not encrypt the 4197 * MOS. We assert that the zio is allocating or an intent log write 4198 * to enforce this. 4199 */ 4200 ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG); 4201 ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG); 4202 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION)); 4203 ASSERT3U(psize, !=, 0); 4204 4205 enc_buf = zio_buf_alloc(psize); 4206 eabd = abd_get_from_buf(enc_buf, psize); 4207 abd_take_ownership_of_buf(eabd, B_TRUE); 4208 4209 /* 4210 * For an explanation of what encryption parameters are stored 4211 * where, see the block comment in zio_crypt.c. 4212 */ 4213 if (ot == DMU_OT_INTENT_LOG) { 4214 zio_crypt_decode_params_bp(bp, salt, iv); 4215 } else { 4216 BP_SET_CRYPT(bp, B_TRUE); 4217 } 4218 4219 /* Perform the encryption. This should not fail */ 4220 VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark, 4221 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), 4222 salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt)); 4223 4224 /* encode encryption metadata into the bp */ 4225 if (ot == DMU_OT_INTENT_LOG) { 4226 /* 4227 * ZIL blocks store the MAC in the embedded checksum, so the 4228 * transform must always be applied. 4229 */ 4230 zio_crypt_encode_mac_zil(enc_buf, mac); 4231 zio_push_transform(zio, eabd, psize, psize, NULL); 4232 } else { 4233 BP_SET_CRYPT(bp, B_TRUE); 4234 zio_crypt_encode_params_bp(bp, salt, iv); 4235 zio_crypt_encode_mac_bp(bp, mac); 4236 4237 if (no_crypt) { 4238 ASSERT3U(ot, ==, DMU_OT_DNODE); 4239 abd_free(eabd); 4240 } else { 4241 zio_push_transform(zio, eabd, psize, psize, NULL); 4242 } 4243 } 4244 4245 return (zio); 4246 } 4247 4248 /* 4249 * ========================================================================== 4250 * Generate and verify checksums 4251 * ========================================================================== 4252 */ 4253 static zio_t * 4254 zio_checksum_generate(zio_t *zio) 4255 { 4256 blkptr_t *bp = zio->io_bp; 4257 enum zio_checksum checksum; 4258 4259 if (bp == NULL) { 4260 /* 4261 * This is zio_write_phys(). 4262 * We're either generating a label checksum, or none at all. 4263 */ 4264 checksum = zio->io_prop.zp_checksum; 4265 4266 if (checksum == ZIO_CHECKSUM_OFF) 4267 return (zio); 4268 4269 ASSERT(checksum == ZIO_CHECKSUM_LABEL); 4270 } else { 4271 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) { 4272 ASSERT(!IO_IS_ALLOCATING(zio)); 4273 checksum = ZIO_CHECKSUM_GANG_HEADER; 4274 } else { 4275 checksum = BP_GET_CHECKSUM(bp); 4276 } 4277 } 4278 4279 zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size); 4280 4281 return (zio); 4282 } 4283 4284 static zio_t * 4285 zio_checksum_verify(zio_t *zio) 4286 { 4287 zio_bad_cksum_t info; 4288 blkptr_t *bp = zio->io_bp; 4289 int error; 4290 4291 ASSERT(zio->io_vd != NULL); 4292 4293 if (bp == NULL) { 4294 /* 4295 * This is zio_read_phys(). 4296 * We're either verifying a label checksum, or nothing at all. 4297 */ 4298 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF) 4299 return (zio); 4300 4301 ASSERT3U(zio->io_prop.zp_checksum, ==, ZIO_CHECKSUM_LABEL); 4302 } 4303 4304 if ((error = zio_checksum_error(zio, &info)) != 0) { 4305 zio->io_error = error; 4306 if (error == ECKSUM && 4307 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 4308 (void) zfs_ereport_start_checksum(zio->io_spa, 4309 zio->io_vd, &zio->io_bookmark, zio, 4310 zio->io_offset, zio->io_size, &info); 4311 mutex_enter(&zio->io_vd->vdev_stat_lock); 4312 zio->io_vd->vdev_stat.vs_checksum_errors++; 4313 mutex_exit(&zio->io_vd->vdev_stat_lock); 4314 } 4315 } 4316 4317 return (zio); 4318 } 4319 4320 /* 4321 * Called by RAID-Z to ensure we don't compute the checksum twice. 4322 */ 4323 void 4324 zio_checksum_verified(zio_t *zio) 4325 { 4326 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 4327 } 4328 4329 /* 4330 * ========================================================================== 4331 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other. 4332 * An error of 0 indicates success. ENXIO indicates whole-device failure, 4333 * which may be transient (e.g. unplugged) or permanent. ECKSUM and EIO 4334 * indicate errors that are specific to one I/O, and most likely permanent. 4335 * Any other error is presumed to be worse because we weren't expecting it. 4336 * ========================================================================== 4337 */ 4338 int 4339 zio_worst_error(int e1, int e2) 4340 { 4341 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO }; 4342 int r1, r2; 4343 4344 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++) 4345 if (e1 == zio_error_rank[r1]) 4346 break; 4347 4348 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++) 4349 if (e2 == zio_error_rank[r2]) 4350 break; 4351 4352 return (r1 > r2 ? e1 : e2); 4353 } 4354 4355 /* 4356 * ========================================================================== 4357 * I/O completion 4358 * ========================================================================== 4359 */ 4360 static zio_t * 4361 zio_ready(zio_t *zio) 4362 { 4363 blkptr_t *bp = zio->io_bp; 4364 zio_t *pio, *pio_next; 4365 zio_link_t *zl = NULL; 4366 4367 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT, 4368 ZIO_WAIT_READY)) { 4369 return (NULL); 4370 } 4371 4372 if (zio->io_ready) { 4373 ASSERT(IO_IS_ALLOCATING(zio)); 4374 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) || 4375 (zio->io_flags & ZIO_FLAG_NOPWRITE)); 4376 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0); 4377 4378 zio->io_ready(zio); 4379 } 4380 4381 if (bp != NULL && bp != &zio->io_bp_copy) 4382 zio->io_bp_copy = *bp; 4383 4384 if (zio->io_error != 0) { 4385 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 4386 4387 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 4388 ASSERT(IO_IS_ALLOCATING(zio)); 4389 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 4390 ASSERT(zio->io_metaslab_class != NULL); 4391 4392 /* 4393 * We were unable to allocate anything, unreserve and 4394 * issue the next I/O to allocate. 4395 */ 4396 metaslab_class_throttle_unreserve( 4397 zio->io_metaslab_class, zio->io_prop.zp_copies, 4398 zio->io_allocator, zio); 4399 zio_allocate_dispatch(zio->io_spa, zio->io_allocator); 4400 } 4401 } 4402 4403 mutex_enter(&zio->io_lock); 4404 zio->io_state[ZIO_WAIT_READY] = 1; 4405 pio = zio_walk_parents(zio, &zl); 4406 mutex_exit(&zio->io_lock); 4407 4408 /* 4409 * As we notify zio's parents, new parents could be added. 4410 * New parents go to the head of zio's io_parent_list, however, 4411 * so we will (correctly) not notify them. The remainder of zio's 4412 * io_parent_list, from 'pio_next' onward, cannot change because 4413 * all parents must wait for us to be done before they can be done. 4414 */ 4415 for (; pio != NULL; pio = pio_next) { 4416 pio_next = zio_walk_parents(zio, &zl); 4417 zio_notify_parent(pio, zio, ZIO_WAIT_READY, NULL); 4418 } 4419 4420 if (zio->io_flags & ZIO_FLAG_NODATA) { 4421 if (BP_IS_GANG(bp)) { 4422 zio->io_flags &= ~ZIO_FLAG_NODATA; 4423 } else { 4424 ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE); 4425 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 4426 } 4427 } 4428 4429 if (zio_injection_enabled && 4430 zio->io_spa->spa_syncing_txg == zio->io_txg) 4431 zio_handle_ignored_writes(zio); 4432 4433 return (zio); 4434 } 4435 4436 /* 4437 * Update the allocation throttle accounting. 4438 */ 4439 static void 4440 zio_dva_throttle_done(zio_t *zio) 4441 { 4442 zio_t *lio __maybe_unused = zio->io_logical; 4443 zio_t *pio = zio_unique_parent(zio); 4444 vdev_t *vd = zio->io_vd; 4445 int flags = METASLAB_ASYNC_ALLOC; 4446 4447 ASSERT3P(zio->io_bp, !=, NULL); 4448 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE); 4449 ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE); 4450 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); 4451 ASSERT(vd != NULL); 4452 ASSERT3P(vd, ==, vd->vdev_top); 4453 ASSERT(zio_injection_enabled || !(zio->io_flags & ZIO_FLAG_IO_RETRY)); 4454 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR)); 4455 ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING); 4456 ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE)); 4457 ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA)); 4458 4459 /* 4460 * Parents of gang children can have two flavors -- ones that 4461 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set) 4462 * and ones that allocated the constituent blocks. The allocation 4463 * throttle needs to know the allocating parent zio so we must find 4464 * it here. 4465 */ 4466 if (pio->io_child_type == ZIO_CHILD_GANG) { 4467 /* 4468 * If our parent is a rewrite gang child then our grandparent 4469 * would have been the one that performed the allocation. 4470 */ 4471 if (pio->io_flags & ZIO_FLAG_IO_REWRITE) 4472 pio = zio_unique_parent(pio); 4473 flags |= METASLAB_GANG_CHILD; 4474 } 4475 4476 ASSERT(IO_IS_ALLOCATING(pio)); 4477 ASSERT3P(zio, !=, zio->io_logical); 4478 ASSERT(zio->io_logical != NULL); 4479 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR)); 4480 ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE); 4481 ASSERT(zio->io_metaslab_class != NULL); 4482 4483 mutex_enter(&pio->io_lock); 4484 metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags, 4485 pio->io_allocator, B_TRUE); 4486 mutex_exit(&pio->io_lock); 4487 4488 metaslab_class_throttle_unreserve(zio->io_metaslab_class, 1, 4489 pio->io_allocator, pio); 4490 4491 /* 4492 * Call into the pipeline to see if there is more work that 4493 * needs to be done. If there is work to be done it will be 4494 * dispatched to another taskq thread. 4495 */ 4496 zio_allocate_dispatch(zio->io_spa, pio->io_allocator); 4497 } 4498 4499 static zio_t * 4500 zio_done(zio_t *zio) 4501 { 4502 /* 4503 * Always attempt to keep stack usage minimal here since 4504 * we can be called recursively up to 19 levels deep. 4505 */ 4506 const uint64_t psize = zio->io_size; 4507 zio_t *pio, *pio_next; 4508 zio_link_t *zl = NULL; 4509 4510 /* 4511 * If our children haven't all completed, 4512 * wait for them and then repeat this pipeline stage. 4513 */ 4514 if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) { 4515 return (NULL); 4516 } 4517 4518 /* 4519 * If the allocation throttle is enabled, then update the accounting. 4520 * We only track child I/Os that are part of an allocating async 4521 * write. We must do this since the allocation is performed 4522 * by the logical I/O but the actual write is done by child I/Os. 4523 */ 4524 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING && 4525 zio->io_child_type == ZIO_CHILD_VDEV) { 4526 ASSERT(zio->io_metaslab_class != NULL); 4527 ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled); 4528 zio_dva_throttle_done(zio); 4529 } 4530 4531 /* 4532 * If the allocation throttle is enabled, verify that 4533 * we have decremented the refcounts for every I/O that was throttled. 4534 */ 4535 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 4536 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 4537 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 4538 ASSERT(zio->io_bp != NULL); 4539 4540 metaslab_group_alloc_verify(zio->io_spa, zio->io_bp, zio, 4541 zio->io_allocator); 4542 VERIFY(zfs_refcount_not_held(&zio->io_metaslab_class-> 4543 mc_allocator[zio->io_allocator].mca_alloc_slots, zio)); 4544 } 4545 4546 4547 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 4548 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 4549 ASSERT(zio->io_children[c][w] == 0); 4550 4551 if (zio->io_bp != NULL && !BP_IS_EMBEDDED(zio->io_bp)) { 4552 ASSERT(zio->io_bp->blk_pad[0] == 0); 4553 ASSERT(zio->io_bp->blk_pad[1] == 0); 4554 ASSERT(bcmp(zio->io_bp, &zio->io_bp_copy, 4555 sizeof (blkptr_t)) == 0 || 4556 (zio->io_bp == zio_unique_parent(zio)->io_bp)); 4557 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) && 4558 zio->io_bp_override == NULL && 4559 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) { 4560 ASSERT3U(zio->io_prop.zp_copies, <=, 4561 BP_GET_NDVAS(zio->io_bp)); 4562 ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 || 4563 (BP_COUNT_GANG(zio->io_bp) == 4564 BP_GET_NDVAS(zio->io_bp))); 4565 } 4566 if (zio->io_flags & ZIO_FLAG_NOPWRITE) 4567 VERIFY(BP_EQUAL(zio->io_bp, &zio->io_bp_orig)); 4568 } 4569 4570 /* 4571 * If there were child vdev/gang/ddt errors, they apply to us now. 4572 */ 4573 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV); 4574 zio_inherit_child_errors(zio, ZIO_CHILD_GANG); 4575 zio_inherit_child_errors(zio, ZIO_CHILD_DDT); 4576 4577 /* 4578 * If the I/O on the transformed data was successful, generate any 4579 * checksum reports now while we still have the transformed data. 4580 */ 4581 if (zio->io_error == 0) { 4582 while (zio->io_cksum_report != NULL) { 4583 zio_cksum_report_t *zcr = zio->io_cksum_report; 4584 uint64_t align = zcr->zcr_align; 4585 uint64_t asize = P2ROUNDUP(psize, align); 4586 abd_t *adata = zio->io_abd; 4587 4588 if (adata != NULL && asize != psize) { 4589 adata = abd_alloc(asize, B_TRUE); 4590 abd_copy(adata, zio->io_abd, psize); 4591 abd_zero_off(adata, psize, asize - psize); 4592 } 4593 4594 zio->io_cksum_report = zcr->zcr_next; 4595 zcr->zcr_next = NULL; 4596 zcr->zcr_finish(zcr, adata); 4597 zfs_ereport_free_checksum(zcr); 4598 4599 if (adata != NULL && asize != psize) 4600 abd_free(adata); 4601 } 4602 } 4603 4604 zio_pop_transforms(zio); /* note: may set zio->io_error */ 4605 4606 vdev_stat_update(zio, psize); 4607 4608 /* 4609 * If this I/O is attached to a particular vdev is slow, exceeding 4610 * 30 seconds to complete, post an error described the I/O delay. 4611 * We ignore these errors if the device is currently unavailable. 4612 */ 4613 if (zio->io_delay >= MSEC2NSEC(zio_slow_io_ms)) { 4614 if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) { 4615 /* 4616 * We want to only increment our slow IO counters if 4617 * the IO is valid (i.e. not if the drive is removed). 4618 * 4619 * zfs_ereport_post() will also do these checks, but 4620 * it can also ratelimit and have other failures, so we 4621 * need to increment the slow_io counters independent 4622 * of it. 4623 */ 4624 if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY, 4625 zio->io_spa, zio->io_vd, zio)) { 4626 mutex_enter(&zio->io_vd->vdev_stat_lock); 4627 zio->io_vd->vdev_stat.vs_slow_ios++; 4628 mutex_exit(&zio->io_vd->vdev_stat_lock); 4629 4630 (void) zfs_ereport_post(FM_EREPORT_ZFS_DELAY, 4631 zio->io_spa, zio->io_vd, &zio->io_bookmark, 4632 zio, 0); 4633 } 4634 } 4635 } 4636 4637 if (zio->io_error) { 4638 /* 4639 * If this I/O is attached to a particular vdev, 4640 * generate an error message describing the I/O failure 4641 * at the block level. We ignore these errors if the 4642 * device is currently unavailable. 4643 */ 4644 if (zio->io_error != ECKSUM && zio->io_vd != NULL && 4645 !vdev_is_dead(zio->io_vd)) { 4646 int ret = zfs_ereport_post(FM_EREPORT_ZFS_IO, 4647 zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0); 4648 if (ret != EALREADY) { 4649 mutex_enter(&zio->io_vd->vdev_stat_lock); 4650 if (zio->io_type == ZIO_TYPE_READ) 4651 zio->io_vd->vdev_stat.vs_read_errors++; 4652 else if (zio->io_type == ZIO_TYPE_WRITE) 4653 zio->io_vd->vdev_stat.vs_write_errors++; 4654 mutex_exit(&zio->io_vd->vdev_stat_lock); 4655 } 4656 } 4657 4658 if ((zio->io_error == EIO || !(zio->io_flags & 4659 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) && 4660 zio == zio->io_logical) { 4661 /* 4662 * For logical I/O requests, tell the SPA to log the 4663 * error and generate a logical data ereport. 4664 */ 4665 spa_log_error(zio->io_spa, &zio->io_bookmark); 4666 (void) zfs_ereport_post(FM_EREPORT_ZFS_DATA, 4667 zio->io_spa, NULL, &zio->io_bookmark, zio, 0); 4668 } 4669 } 4670 4671 if (zio->io_error && zio == zio->io_logical) { 4672 /* 4673 * Determine whether zio should be reexecuted. This will 4674 * propagate all the way to the root via zio_notify_parent(). 4675 */ 4676 ASSERT(zio->io_vd == NULL && zio->io_bp != NULL); 4677 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 4678 4679 if (IO_IS_ALLOCATING(zio) && 4680 !(zio->io_flags & ZIO_FLAG_CANFAIL)) { 4681 if (zio->io_error != ENOSPC) 4682 zio->io_reexecute |= ZIO_REEXECUTE_NOW; 4683 else 4684 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 4685 } 4686 4687 if ((zio->io_type == ZIO_TYPE_READ || 4688 zio->io_type == ZIO_TYPE_FREE) && 4689 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && 4690 zio->io_error == ENXIO && 4691 spa_load_state(zio->io_spa) == SPA_LOAD_NONE && 4692 spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE) 4693 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 4694 4695 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute) 4696 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 4697 4698 /* 4699 * Here is a possibly good place to attempt to do 4700 * either combinatorial reconstruction or error correction 4701 * based on checksums. It also might be a good place 4702 * to send out preliminary ereports before we suspend 4703 * processing. 4704 */ 4705 } 4706 4707 /* 4708 * If there were logical child errors, they apply to us now. 4709 * We defer this until now to avoid conflating logical child 4710 * errors with errors that happened to the zio itself when 4711 * updating vdev stats and reporting FMA events above. 4712 */ 4713 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL); 4714 4715 if ((zio->io_error || zio->io_reexecute) && 4716 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio && 4717 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE))) 4718 zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp); 4719 4720 zio_gang_tree_free(&zio->io_gang_tree); 4721 4722 /* 4723 * Godfather I/Os should never suspend. 4724 */ 4725 if ((zio->io_flags & ZIO_FLAG_GODFATHER) && 4726 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) 4727 zio->io_reexecute &= ~ZIO_REEXECUTE_SUSPEND; 4728 4729 if (zio->io_reexecute) { 4730 /* 4731 * This is a logical I/O that wants to reexecute. 4732 * 4733 * Reexecute is top-down. When an i/o fails, if it's not 4734 * the root, it simply notifies its parent and sticks around. 4735 * The parent, seeing that it still has children in zio_done(), 4736 * does the same. This percolates all the way up to the root. 4737 * The root i/o will reexecute or suspend the entire tree. 4738 * 4739 * This approach ensures that zio_reexecute() honors 4740 * all the original i/o dependency relationships, e.g. 4741 * parents not executing until children are ready. 4742 */ 4743 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 4744 4745 zio->io_gang_leader = NULL; 4746 4747 mutex_enter(&zio->io_lock); 4748 zio->io_state[ZIO_WAIT_DONE] = 1; 4749 mutex_exit(&zio->io_lock); 4750 4751 /* 4752 * "The Godfather" I/O monitors its children but is 4753 * not a true parent to them. It will track them through 4754 * the pipeline but severs its ties whenever they get into 4755 * trouble (e.g. suspended). This allows "The Godfather" 4756 * I/O to return status without blocking. 4757 */ 4758 zl = NULL; 4759 for (pio = zio_walk_parents(zio, &zl); pio != NULL; 4760 pio = pio_next) { 4761 zio_link_t *remove_zl = zl; 4762 pio_next = zio_walk_parents(zio, &zl); 4763 4764 if ((pio->io_flags & ZIO_FLAG_GODFATHER) && 4765 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) { 4766 zio_remove_child(pio, zio, remove_zl); 4767 /* 4768 * This is a rare code path, so we don't 4769 * bother with "next_to_execute". 4770 */ 4771 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, 4772 NULL); 4773 } 4774 } 4775 4776 if ((pio = zio_unique_parent(zio)) != NULL) { 4777 /* 4778 * We're not a root i/o, so there's nothing to do 4779 * but notify our parent. Don't propagate errors 4780 * upward since we haven't permanently failed yet. 4781 */ 4782 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 4783 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE; 4784 /* 4785 * This is a rare code path, so we don't bother with 4786 * "next_to_execute". 4787 */ 4788 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, NULL); 4789 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) { 4790 /* 4791 * We'd fail again if we reexecuted now, so suspend 4792 * until conditions improve (e.g. device comes online). 4793 */ 4794 zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR); 4795 } else { 4796 /* 4797 * Reexecution is potentially a huge amount of work. 4798 * Hand it off to the otherwise-unused claim taskq. 4799 */ 4800 ASSERT(taskq_empty_ent(&zio->io_tqent)); 4801 spa_taskq_dispatch_ent(zio->io_spa, 4802 ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE, 4803 zio_reexecute, zio, 0, &zio->io_tqent); 4804 } 4805 return (NULL); 4806 } 4807 4808 ASSERT(zio->io_child_count == 0); 4809 ASSERT(zio->io_reexecute == 0); 4810 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL)); 4811 4812 /* 4813 * Report any checksum errors, since the I/O is complete. 4814 */ 4815 while (zio->io_cksum_report != NULL) { 4816 zio_cksum_report_t *zcr = zio->io_cksum_report; 4817 zio->io_cksum_report = zcr->zcr_next; 4818 zcr->zcr_next = NULL; 4819 zcr->zcr_finish(zcr, NULL); 4820 zfs_ereport_free_checksum(zcr); 4821 } 4822 4823 if (zio->io_flags & ZIO_FLAG_FASTWRITE && zio->io_bp && 4824 !BP_IS_HOLE(zio->io_bp) && !BP_IS_EMBEDDED(zio->io_bp) && 4825 !(zio->io_flags & ZIO_FLAG_NOPWRITE)) { 4826 metaslab_fastwrite_unmark(zio->io_spa, zio->io_bp); 4827 } 4828 4829 /* 4830 * It is the responsibility of the done callback to ensure that this 4831 * particular zio is no longer discoverable for adoption, and as 4832 * such, cannot acquire any new parents. 4833 */ 4834 if (zio->io_done) 4835 zio->io_done(zio); 4836 4837 mutex_enter(&zio->io_lock); 4838 zio->io_state[ZIO_WAIT_DONE] = 1; 4839 mutex_exit(&zio->io_lock); 4840 4841 /* 4842 * We are done executing this zio. We may want to execute a parent 4843 * next. See the comment in zio_notify_parent(). 4844 */ 4845 zio_t *next_to_execute = NULL; 4846 zl = NULL; 4847 for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) { 4848 zio_link_t *remove_zl = zl; 4849 pio_next = zio_walk_parents(zio, &zl); 4850 zio_remove_child(pio, zio, remove_zl); 4851 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, &next_to_execute); 4852 } 4853 4854 if (zio->io_waiter != NULL) { 4855 mutex_enter(&zio->io_lock); 4856 zio->io_executor = NULL; 4857 cv_broadcast(&zio->io_cv); 4858 mutex_exit(&zio->io_lock); 4859 } else { 4860 zio_destroy(zio); 4861 } 4862 4863 return (next_to_execute); 4864 } 4865 4866 /* 4867 * ========================================================================== 4868 * I/O pipeline definition 4869 * ========================================================================== 4870 */ 4871 static zio_pipe_stage_t *zio_pipeline[] = { 4872 NULL, 4873 zio_read_bp_init, 4874 zio_write_bp_init, 4875 zio_free_bp_init, 4876 zio_issue_async, 4877 zio_write_compress, 4878 zio_encrypt, 4879 zio_checksum_generate, 4880 zio_nop_write, 4881 zio_ddt_read_start, 4882 zio_ddt_read_done, 4883 zio_ddt_write, 4884 zio_ddt_free, 4885 zio_gang_assemble, 4886 zio_gang_issue, 4887 zio_dva_throttle, 4888 zio_dva_allocate, 4889 zio_dva_free, 4890 zio_dva_claim, 4891 zio_ready, 4892 zio_vdev_io_start, 4893 zio_vdev_io_done, 4894 zio_vdev_io_assess, 4895 zio_checksum_verify, 4896 zio_done 4897 }; 4898 4899 4900 4901 4902 /* 4903 * Compare two zbookmark_phys_t's to see which we would reach first in a 4904 * pre-order traversal of the object tree. 4905 * 4906 * This is simple in every case aside from the meta-dnode object. For all other 4907 * objects, we traverse them in order (object 1 before object 2, and so on). 4908 * However, all of these objects are traversed while traversing object 0, since 4909 * the data it points to is the list of objects. Thus, we need to convert to a 4910 * canonical representation so we can compare meta-dnode bookmarks to 4911 * non-meta-dnode bookmarks. 4912 * 4913 * We do this by calculating "equivalents" for each field of the zbookmark. 4914 * zbookmarks outside of the meta-dnode use their own object and level, and 4915 * calculate the level 0 equivalent (the first L0 blkid that is contained in the 4916 * blocks this bookmark refers to) by multiplying their blkid by their span 4917 * (the number of L0 blocks contained within one block at their level). 4918 * zbookmarks inside the meta-dnode calculate their object equivalent 4919 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use 4920 * level + 1<<31 (any value larger than a level could ever be) for their level. 4921 * This causes them to always compare before a bookmark in their object 4922 * equivalent, compare appropriately to bookmarks in other objects, and to 4923 * compare appropriately to other bookmarks in the meta-dnode. 4924 */ 4925 int 4926 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2, 4927 const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2) 4928 { 4929 /* 4930 * These variables represent the "equivalent" values for the zbookmark, 4931 * after converting zbookmarks inside the meta dnode to their 4932 * normal-object equivalents. 4933 */ 4934 uint64_t zb1obj, zb2obj; 4935 uint64_t zb1L0, zb2L0; 4936 uint64_t zb1level, zb2level; 4937 4938 if (zb1->zb_object == zb2->zb_object && 4939 zb1->zb_level == zb2->zb_level && 4940 zb1->zb_blkid == zb2->zb_blkid) 4941 return (0); 4942 4943 IMPLY(zb1->zb_level > 0, ibs1 >= SPA_MINBLOCKSHIFT); 4944 IMPLY(zb2->zb_level > 0, ibs2 >= SPA_MINBLOCKSHIFT); 4945 4946 /* 4947 * BP_SPANB calculates the span in blocks. 4948 */ 4949 zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level); 4950 zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level); 4951 4952 if (zb1->zb_object == DMU_META_DNODE_OBJECT) { 4953 zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 4954 zb1L0 = 0; 4955 zb1level = zb1->zb_level + COMPARE_META_LEVEL; 4956 } else { 4957 zb1obj = zb1->zb_object; 4958 zb1level = zb1->zb_level; 4959 } 4960 4961 if (zb2->zb_object == DMU_META_DNODE_OBJECT) { 4962 zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 4963 zb2L0 = 0; 4964 zb2level = zb2->zb_level + COMPARE_META_LEVEL; 4965 } else { 4966 zb2obj = zb2->zb_object; 4967 zb2level = zb2->zb_level; 4968 } 4969 4970 /* Now that we have a canonical representation, do the comparison. */ 4971 if (zb1obj != zb2obj) 4972 return (zb1obj < zb2obj ? -1 : 1); 4973 else if (zb1L0 != zb2L0) 4974 return (zb1L0 < zb2L0 ? -1 : 1); 4975 else if (zb1level != zb2level) 4976 return (zb1level > zb2level ? -1 : 1); 4977 /* 4978 * This can (theoretically) happen if the bookmarks have the same object 4979 * and level, but different blkids, if the block sizes are not the same. 4980 * There is presently no way to change the indirect block sizes 4981 */ 4982 return (0); 4983 } 4984 4985 /* 4986 * This function checks the following: given that last_block is the place that 4987 * our traversal stopped last time, does that guarantee that we've visited 4988 * every node under subtree_root? Therefore, we can't just use the raw output 4989 * of zbookmark_compare. We have to pass in a modified version of 4990 * subtree_root; by incrementing the block id, and then checking whether 4991 * last_block is before or equal to that, we can tell whether or not having 4992 * visited last_block implies that all of subtree_root's children have been 4993 * visited. 4994 */ 4995 boolean_t 4996 zbookmark_subtree_completed(const dnode_phys_t *dnp, 4997 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block) 4998 { 4999 zbookmark_phys_t mod_zb = *subtree_root; 5000 mod_zb.zb_blkid++; 5001 ASSERT(last_block->zb_level == 0); 5002 5003 /* The objset_phys_t isn't before anything. */ 5004 if (dnp == NULL) 5005 return (B_FALSE); 5006 5007 /* 5008 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the 5009 * data block size in sectors, because that variable is only used if 5010 * the bookmark refers to a block in the meta-dnode. Since we don't 5011 * know without examining it what object it refers to, and there's no 5012 * harm in passing in this value in other cases, we always pass it in. 5013 * 5014 * We pass in 0 for the indirect block size shift because zb2 must be 5015 * level 0. The indirect block size is only used to calculate the span 5016 * of the bookmark, but since the bookmark must be level 0, the span is 5017 * always 1, so the math works out. 5018 * 5019 * If you make changes to how the zbookmark_compare code works, be sure 5020 * to make sure that this code still works afterwards. 5021 */ 5022 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift, 5023 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb, 5024 last_block) <= 0); 5025 } 5026 5027 EXPORT_SYMBOL(zio_type_name); 5028 EXPORT_SYMBOL(zio_buf_alloc); 5029 EXPORT_SYMBOL(zio_data_buf_alloc); 5030 EXPORT_SYMBOL(zio_buf_free); 5031 EXPORT_SYMBOL(zio_data_buf_free); 5032 5033 /* BEGIN CSTYLED */ 5034 ZFS_MODULE_PARAM(zfs_zio, zio_, slow_io_ms, INT, ZMOD_RW, 5035 "Max I/O completion time (milliseconds) before marking it as slow"); 5036 5037 ZFS_MODULE_PARAM(zfs_zio, zio_, requeue_io_start_cut_in_line, INT, ZMOD_RW, 5038 "Prioritize requeued I/O"); 5039 5040 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_deferred_free, INT, ZMOD_RW, 5041 "Defer frees starting in this pass"); 5042 5043 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_dont_compress, INT, ZMOD_RW, 5044 "Don't compress starting in this pass"); 5045 5046 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_rewrite, INT, ZMOD_RW, 5047 "Rewrite new bps starting in this pass"); 5048 5049 ZFS_MODULE_PARAM(zfs_zio, zio_, dva_throttle_enabled, INT, ZMOD_RW, 5050 "Throttle block allocations in the ZIO pipeline"); 5051 5052 ZFS_MODULE_PARAM(zfs_zio, zio_, deadman_log_all, INT, ZMOD_RW, 5053 "Log all slow ZIOs, not just those with vdevs"); 5054 /* END CSTYLED */ 5055