1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2020 by Delphix. All rights reserved. 24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2017, Intel Corporation. 26 * Copyright (c) 2019, Klara Inc. 27 * Copyright (c) 2019, Allan Jude 28 */ 29 30 #include <sys/sysmacros.h> 31 #include <sys/zfs_context.h> 32 #include <sys/fm/fs/zfs.h> 33 #include <sys/spa.h> 34 #include <sys/txg.h> 35 #include <sys/spa_impl.h> 36 #include <sys/vdev_impl.h> 37 #include <sys/vdev_trim.h> 38 #include <sys/zio_impl.h> 39 #include <sys/zio_compress.h> 40 #include <sys/zio_checksum.h> 41 #include <sys/dmu_objset.h> 42 #include <sys/arc.h> 43 #include <sys/ddt.h> 44 #include <sys/blkptr.h> 45 #include <sys/zfeature.h> 46 #include <sys/dsl_scan.h> 47 #include <sys/metaslab_impl.h> 48 #include <sys/time.h> 49 #include <sys/trace_zfs.h> 50 #include <sys/abd.h> 51 #include <sys/dsl_crypt.h> 52 #include <cityhash.h> 53 54 /* 55 * ========================================================================== 56 * I/O type descriptions 57 * ========================================================================== 58 */ 59 const char *zio_type_name[ZIO_TYPES] = { 60 /* 61 * Note: Linux kernel thread name length is limited 62 * so these names will differ from upstream open zfs. 63 */ 64 "z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_ioctl", "z_trim" 65 }; 66 67 int zio_dva_throttle_enabled = B_TRUE; 68 int zio_deadman_log_all = B_FALSE; 69 70 /* 71 * ========================================================================== 72 * I/O kmem caches 73 * ========================================================================== 74 */ 75 kmem_cache_t *zio_cache; 76 kmem_cache_t *zio_link_cache; 77 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 78 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 79 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 80 uint64_t zio_buf_cache_allocs[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 81 uint64_t zio_buf_cache_frees[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 82 #endif 83 84 /* Mark IOs as "slow" if they take longer than 30 seconds */ 85 int zio_slow_io_ms = (30 * MILLISEC); 86 87 #define BP_SPANB(indblkshift, level) \ 88 (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT))) 89 #define COMPARE_META_LEVEL 0x80000000ul 90 /* 91 * The following actions directly effect the spa's sync-to-convergence logic. 92 * The values below define the sync pass when we start performing the action. 93 * Care should be taken when changing these values as they directly impact 94 * spa_sync() performance. Tuning these values may introduce subtle performance 95 * pathologies and should only be done in the context of performance analysis. 96 * These tunables will eventually be removed and replaced with #defines once 97 * enough analysis has been done to determine optimal values. 98 * 99 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that 100 * regular blocks are not deferred. 101 * 102 * Starting in sync pass 8 (zfs_sync_pass_dont_compress), we disable 103 * compression (including of metadata). In practice, we don't have this 104 * many sync passes, so this has no effect. 105 * 106 * The original intent was that disabling compression would help the sync 107 * passes to converge. However, in practice disabling compression increases 108 * the average number of sync passes, because when we turn compression off, a 109 * lot of block's size will change and thus we have to re-allocate (not 110 * overwrite) them. It also increases the number of 128KB allocations (e.g. 111 * for indirect blocks and spacemaps) because these will not be compressed. 112 * The 128K allocations are especially detrimental to performance on highly 113 * fragmented systems, which may have very few free segments of this size, 114 * and may need to load new metaslabs to satisfy 128K allocations. 115 */ 116 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */ 117 int zfs_sync_pass_dont_compress = 8; /* don't compress starting in this pass */ 118 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */ 119 120 /* 121 * An allocating zio is one that either currently has the DVA allocate 122 * stage set or will have it later in its lifetime. 123 */ 124 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE) 125 126 /* 127 * Enable smaller cores by excluding metadata 128 * allocations as well. 129 */ 130 int zio_exclude_metadata = 0; 131 int zio_requeue_io_start_cut_in_line = 1; 132 133 #ifdef ZFS_DEBUG 134 int zio_buf_debug_limit = 16384; 135 #else 136 int zio_buf_debug_limit = 0; 137 #endif 138 139 static inline void __zio_execute(zio_t *zio); 140 141 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t); 142 143 void 144 zio_init(void) 145 { 146 size_t c; 147 148 zio_cache = kmem_cache_create("zio_cache", 149 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 150 zio_link_cache = kmem_cache_create("zio_link_cache", 151 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 152 153 /* 154 * For small buffers, we want a cache for each multiple of 155 * SPA_MINBLOCKSIZE. For larger buffers, we want a cache 156 * for each quarter-power of 2. 157 */ 158 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 159 size_t size = (c + 1) << SPA_MINBLOCKSHIFT; 160 size_t p2 = size; 161 size_t align = 0; 162 size_t data_cflags, cflags; 163 164 data_cflags = KMC_NODEBUG; 165 cflags = (zio_exclude_metadata || size > zio_buf_debug_limit) ? 166 KMC_NODEBUG : 0; 167 168 #if defined(_ILP32) && defined(_KERNEL) 169 /* 170 * Cache size limited to 1M on 32-bit platforms until ARC 171 * buffers no longer require virtual address space. 172 */ 173 if (size > zfs_max_recordsize) 174 break; 175 #endif 176 177 while (!ISP2(p2)) 178 p2 &= p2 - 1; 179 180 #ifndef _KERNEL 181 /* 182 * If we are using watchpoints, put each buffer on its own page, 183 * to eliminate the performance overhead of trapping to the 184 * kernel when modifying a non-watched buffer that shares the 185 * page with a watched buffer. 186 */ 187 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE)) 188 continue; 189 /* 190 * Here's the problem - on 4K native devices in userland on 191 * Linux using O_DIRECT, buffers must be 4K aligned or I/O 192 * will fail with EINVAL, causing zdb (and others) to coredump. 193 * Since userland probably doesn't need optimized buffer caches, 194 * we just force 4K alignment on everything. 195 */ 196 align = 8 * SPA_MINBLOCKSIZE; 197 #else 198 if (size < PAGESIZE) { 199 align = SPA_MINBLOCKSIZE; 200 } else if (IS_P2ALIGNED(size, p2 >> 2)) { 201 align = PAGESIZE; 202 } 203 #endif 204 205 if (align != 0) { 206 char name[36]; 207 if (cflags == data_cflags) { 208 /* 209 * Resulting kmem caches would be identical. 210 * Save memory by creating only one. 211 */ 212 (void) snprintf(name, sizeof (name), 213 "zio_buf_comb_%lu", (ulong_t)size); 214 zio_buf_cache[c] = kmem_cache_create(name, 215 size, align, NULL, NULL, NULL, NULL, NULL, 216 cflags); 217 zio_data_buf_cache[c] = zio_buf_cache[c]; 218 continue; 219 } 220 (void) snprintf(name, sizeof (name), "zio_buf_%lu", 221 (ulong_t)size); 222 zio_buf_cache[c] = kmem_cache_create(name, size, 223 align, NULL, NULL, NULL, NULL, NULL, cflags); 224 225 (void) snprintf(name, sizeof (name), "zio_data_buf_%lu", 226 (ulong_t)size); 227 zio_data_buf_cache[c] = kmem_cache_create(name, size, 228 align, NULL, NULL, NULL, NULL, NULL, data_cflags); 229 } 230 } 231 232 while (--c != 0) { 233 ASSERT(zio_buf_cache[c] != NULL); 234 if (zio_buf_cache[c - 1] == NULL) 235 zio_buf_cache[c - 1] = zio_buf_cache[c]; 236 237 ASSERT(zio_data_buf_cache[c] != NULL); 238 if (zio_data_buf_cache[c - 1] == NULL) 239 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c]; 240 } 241 242 zio_inject_init(); 243 244 lz4_init(); 245 } 246 247 void 248 zio_fini(void) 249 { 250 size_t i, j, n; 251 kmem_cache_t *cache; 252 253 n = SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; 254 255 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 256 for (i = 0; i < n; i++) { 257 if (zio_buf_cache_allocs[i] != zio_buf_cache_frees[i]) 258 (void) printf("zio_fini: [%d] %llu != %llu\n", 259 (int)((i + 1) << SPA_MINBLOCKSHIFT), 260 (long long unsigned)zio_buf_cache_allocs[i], 261 (long long unsigned)zio_buf_cache_frees[i]); 262 } 263 #endif 264 265 /* 266 * The same kmem cache can show up multiple times in both zio_buf_cache 267 * and zio_data_buf_cache. Do a wasteful but trivially correct scan to 268 * sort it out. 269 */ 270 for (i = 0; i < n; i++) { 271 cache = zio_buf_cache[i]; 272 if (cache == NULL) 273 continue; 274 for (j = i; j < n; j++) { 275 if (cache == zio_buf_cache[j]) 276 zio_buf_cache[j] = NULL; 277 if (cache == zio_data_buf_cache[j]) 278 zio_data_buf_cache[j] = NULL; 279 } 280 kmem_cache_destroy(cache); 281 } 282 283 for (i = 0; i < n; i++) { 284 cache = zio_data_buf_cache[i]; 285 if (cache == NULL) 286 continue; 287 for (j = i; j < n; j++) { 288 if (cache == zio_data_buf_cache[j]) 289 zio_data_buf_cache[j] = NULL; 290 } 291 kmem_cache_destroy(cache); 292 } 293 294 for (i = 0; i < n; i++) { 295 if (zio_buf_cache[i] != NULL) 296 panic("zio_fini: zio_buf_cache[%d] != NULL", (int)i); 297 if (zio_data_buf_cache[i] != NULL) 298 panic("zio_fini: zio_data_buf_cache[%d] != NULL", (int)i); 299 } 300 301 kmem_cache_destroy(zio_link_cache); 302 kmem_cache_destroy(zio_cache); 303 304 zio_inject_fini(); 305 306 lz4_fini(); 307 } 308 309 /* 310 * ========================================================================== 311 * Allocate and free I/O buffers 312 * ========================================================================== 313 */ 314 315 /* 316 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a 317 * crashdump if the kernel panics, so use it judiciously. Obviously, it's 318 * useful to inspect ZFS metadata, but if possible, we should avoid keeping 319 * excess / transient data in-core during a crashdump. 320 */ 321 void * 322 zio_buf_alloc(size_t size) 323 { 324 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 325 326 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 327 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 328 atomic_add_64(&zio_buf_cache_allocs[c], 1); 329 #endif 330 331 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE)); 332 } 333 334 /* 335 * Use zio_data_buf_alloc to allocate data. The data will not appear in a 336 * crashdump if the kernel panics. This exists so that we will limit the amount 337 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount 338 * of kernel heap dumped to disk when the kernel panics) 339 */ 340 void * 341 zio_data_buf_alloc(size_t size) 342 { 343 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 344 345 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 346 347 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE)); 348 } 349 350 void 351 zio_buf_free(void *buf, size_t size) 352 { 353 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 354 355 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 356 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 357 atomic_add_64(&zio_buf_cache_frees[c], 1); 358 #endif 359 360 kmem_cache_free(zio_buf_cache[c], buf); 361 } 362 363 void 364 zio_data_buf_free(void *buf, size_t size) 365 { 366 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 367 368 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 369 370 kmem_cache_free(zio_data_buf_cache[c], buf); 371 } 372 373 static void 374 zio_abd_free(void *abd, size_t size) 375 { 376 abd_free((abd_t *)abd); 377 } 378 379 /* 380 * ========================================================================== 381 * Push and pop I/O transform buffers 382 * ========================================================================== 383 */ 384 void 385 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize, 386 zio_transform_func_t *transform) 387 { 388 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP); 389 390 zt->zt_orig_abd = zio->io_abd; 391 zt->zt_orig_size = zio->io_size; 392 zt->zt_bufsize = bufsize; 393 zt->zt_transform = transform; 394 395 zt->zt_next = zio->io_transform_stack; 396 zio->io_transform_stack = zt; 397 398 zio->io_abd = data; 399 zio->io_size = size; 400 } 401 402 void 403 zio_pop_transforms(zio_t *zio) 404 { 405 zio_transform_t *zt; 406 407 while ((zt = zio->io_transform_stack) != NULL) { 408 if (zt->zt_transform != NULL) 409 zt->zt_transform(zio, 410 zt->zt_orig_abd, zt->zt_orig_size); 411 412 if (zt->zt_bufsize != 0) 413 abd_free(zio->io_abd); 414 415 zio->io_abd = zt->zt_orig_abd; 416 zio->io_size = zt->zt_orig_size; 417 zio->io_transform_stack = zt->zt_next; 418 419 kmem_free(zt, sizeof (zio_transform_t)); 420 } 421 } 422 423 /* 424 * ========================================================================== 425 * I/O transform callbacks for subblocks, decompression, and decryption 426 * ========================================================================== 427 */ 428 static void 429 zio_subblock(zio_t *zio, abd_t *data, uint64_t size) 430 { 431 ASSERT(zio->io_size > size); 432 433 if (zio->io_type == ZIO_TYPE_READ) 434 abd_copy(data, zio->io_abd, size); 435 } 436 437 static void 438 zio_decompress(zio_t *zio, abd_t *data, uint64_t size) 439 { 440 if (zio->io_error == 0) { 441 void *tmp = abd_borrow_buf(data, size); 442 int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp), 443 zio->io_abd, tmp, zio->io_size, size, 444 &zio->io_prop.zp_complevel); 445 abd_return_buf_copy(data, tmp, size); 446 447 if (zio_injection_enabled && ret == 0) 448 ret = zio_handle_fault_injection(zio, EINVAL); 449 450 if (ret != 0) 451 zio->io_error = SET_ERROR(EIO); 452 } 453 } 454 455 static void 456 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size) 457 { 458 int ret; 459 void *tmp; 460 blkptr_t *bp = zio->io_bp; 461 spa_t *spa = zio->io_spa; 462 uint64_t dsobj = zio->io_bookmark.zb_objset; 463 uint64_t lsize = BP_GET_LSIZE(bp); 464 dmu_object_type_t ot = BP_GET_TYPE(bp); 465 uint8_t salt[ZIO_DATA_SALT_LEN]; 466 uint8_t iv[ZIO_DATA_IV_LEN]; 467 uint8_t mac[ZIO_DATA_MAC_LEN]; 468 boolean_t no_crypt = B_FALSE; 469 470 ASSERT(BP_USES_CRYPT(bp)); 471 ASSERT3U(size, !=, 0); 472 473 if (zio->io_error != 0) 474 return; 475 476 /* 477 * Verify the cksum of MACs stored in an indirect bp. It will always 478 * be possible to verify this since it does not require an encryption 479 * key. 480 */ 481 if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) { 482 zio_crypt_decode_mac_bp(bp, mac); 483 484 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) { 485 /* 486 * We haven't decompressed the data yet, but 487 * zio_crypt_do_indirect_mac_checksum() requires 488 * decompressed data to be able to parse out the MACs 489 * from the indirect block. We decompress it now and 490 * throw away the result after we are finished. 491 */ 492 tmp = zio_buf_alloc(lsize); 493 ret = zio_decompress_data(BP_GET_COMPRESS(bp), 494 zio->io_abd, tmp, zio->io_size, lsize, 495 &zio->io_prop.zp_complevel); 496 if (ret != 0) { 497 ret = SET_ERROR(EIO); 498 goto error; 499 } 500 ret = zio_crypt_do_indirect_mac_checksum(B_FALSE, 501 tmp, lsize, BP_SHOULD_BYTESWAP(bp), mac); 502 zio_buf_free(tmp, lsize); 503 } else { 504 ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE, 505 zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac); 506 } 507 abd_copy(data, zio->io_abd, size); 508 509 if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) { 510 ret = zio_handle_decrypt_injection(spa, 511 &zio->io_bookmark, ot, ECKSUM); 512 } 513 if (ret != 0) 514 goto error; 515 516 return; 517 } 518 519 /* 520 * If this is an authenticated block, just check the MAC. It would be 521 * nice to separate this out into its own flag, but for the moment 522 * enum zio_flag is out of bits. 523 */ 524 if (BP_IS_AUTHENTICATED(bp)) { 525 if (ot == DMU_OT_OBJSET) { 526 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, 527 dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp)); 528 } else { 529 zio_crypt_decode_mac_bp(bp, mac); 530 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, 531 zio->io_abd, size, mac); 532 if (zio_injection_enabled && ret == 0) { 533 ret = zio_handle_decrypt_injection(spa, 534 &zio->io_bookmark, ot, ECKSUM); 535 } 536 } 537 abd_copy(data, zio->io_abd, size); 538 539 if (ret != 0) 540 goto error; 541 542 return; 543 } 544 545 zio_crypt_decode_params_bp(bp, salt, iv); 546 547 if (ot == DMU_OT_INTENT_LOG) { 548 tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t)); 549 zio_crypt_decode_mac_zil(tmp, mac); 550 abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t)); 551 } else { 552 zio_crypt_decode_mac_bp(bp, mac); 553 } 554 555 ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp), 556 BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data, 557 zio->io_abd, &no_crypt); 558 if (no_crypt) 559 abd_copy(data, zio->io_abd, size); 560 561 if (ret != 0) 562 goto error; 563 564 return; 565 566 error: 567 /* assert that the key was found unless this was speculative */ 568 ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE)); 569 570 /* 571 * If there was a decryption / authentication error return EIO as 572 * the io_error. If this was not a speculative zio, create an ereport. 573 */ 574 if (ret == ECKSUM) { 575 zio->io_error = SET_ERROR(EIO); 576 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) { 577 spa_log_error(spa, &zio->io_bookmark); 578 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION, 579 spa, NULL, &zio->io_bookmark, zio, 0); 580 } 581 } else { 582 zio->io_error = ret; 583 } 584 } 585 586 /* 587 * ========================================================================== 588 * I/O parent/child relationships and pipeline interlocks 589 * ========================================================================== 590 */ 591 zio_t * 592 zio_walk_parents(zio_t *cio, zio_link_t **zl) 593 { 594 list_t *pl = &cio->io_parent_list; 595 596 *zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl); 597 if (*zl == NULL) 598 return (NULL); 599 600 ASSERT((*zl)->zl_child == cio); 601 return ((*zl)->zl_parent); 602 } 603 604 zio_t * 605 zio_walk_children(zio_t *pio, zio_link_t **zl) 606 { 607 list_t *cl = &pio->io_child_list; 608 609 ASSERT(MUTEX_HELD(&pio->io_lock)); 610 611 *zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl); 612 if (*zl == NULL) 613 return (NULL); 614 615 ASSERT((*zl)->zl_parent == pio); 616 return ((*zl)->zl_child); 617 } 618 619 zio_t * 620 zio_unique_parent(zio_t *cio) 621 { 622 zio_link_t *zl = NULL; 623 zio_t *pio = zio_walk_parents(cio, &zl); 624 625 VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL); 626 return (pio); 627 } 628 629 void 630 zio_add_child(zio_t *pio, zio_t *cio) 631 { 632 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP); 633 634 /* 635 * Logical I/Os can have logical, gang, or vdev children. 636 * Gang I/Os can have gang or vdev children. 637 * Vdev I/Os can only have vdev children. 638 * The following ASSERT captures all of these constraints. 639 */ 640 ASSERT3S(cio->io_child_type, <=, pio->io_child_type); 641 642 zl->zl_parent = pio; 643 zl->zl_child = cio; 644 645 mutex_enter(&pio->io_lock); 646 mutex_enter(&cio->io_lock); 647 648 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0); 649 650 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 651 pio->io_children[cio->io_child_type][w] += !cio->io_state[w]; 652 653 list_insert_head(&pio->io_child_list, zl); 654 list_insert_head(&cio->io_parent_list, zl); 655 656 pio->io_child_count++; 657 cio->io_parent_count++; 658 659 mutex_exit(&cio->io_lock); 660 mutex_exit(&pio->io_lock); 661 } 662 663 static void 664 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl) 665 { 666 ASSERT(zl->zl_parent == pio); 667 ASSERT(zl->zl_child == cio); 668 669 mutex_enter(&pio->io_lock); 670 mutex_enter(&cio->io_lock); 671 672 list_remove(&pio->io_child_list, zl); 673 list_remove(&cio->io_parent_list, zl); 674 675 pio->io_child_count--; 676 cio->io_parent_count--; 677 678 mutex_exit(&cio->io_lock); 679 mutex_exit(&pio->io_lock); 680 kmem_cache_free(zio_link_cache, zl); 681 } 682 683 static boolean_t 684 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait) 685 { 686 boolean_t waiting = B_FALSE; 687 688 mutex_enter(&zio->io_lock); 689 ASSERT(zio->io_stall == NULL); 690 for (int c = 0; c < ZIO_CHILD_TYPES; c++) { 691 if (!(ZIO_CHILD_BIT_IS_SET(childbits, c))) 692 continue; 693 694 uint64_t *countp = &zio->io_children[c][wait]; 695 if (*countp != 0) { 696 zio->io_stage >>= 1; 697 ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN); 698 zio->io_stall = countp; 699 waiting = B_TRUE; 700 break; 701 } 702 } 703 mutex_exit(&zio->io_lock); 704 return (waiting); 705 } 706 707 __attribute__((always_inline)) 708 static inline void 709 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait, 710 zio_t **next_to_executep) 711 { 712 uint64_t *countp = &pio->io_children[zio->io_child_type][wait]; 713 int *errorp = &pio->io_child_error[zio->io_child_type]; 714 715 mutex_enter(&pio->io_lock); 716 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 717 *errorp = zio_worst_error(*errorp, zio->io_error); 718 pio->io_reexecute |= zio->io_reexecute; 719 ASSERT3U(*countp, >, 0); 720 721 (*countp)--; 722 723 if (*countp == 0 && pio->io_stall == countp) { 724 zio_taskq_type_t type = 725 pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE : 726 ZIO_TASKQ_INTERRUPT; 727 pio->io_stall = NULL; 728 mutex_exit(&pio->io_lock); 729 730 /* 731 * If we can tell the caller to execute this parent next, do 732 * so. Otherwise dispatch the parent zio as its own task. 733 * 734 * Having the caller execute the parent when possible reduces 735 * locking on the zio taskq's, reduces context switch 736 * overhead, and has no recursion penalty. Note that one 737 * read from disk typically causes at least 3 zio's: a 738 * zio_null(), the logical zio_read(), and then a physical 739 * zio. When the physical ZIO completes, we are able to call 740 * zio_done() on all 3 of these zio's from one invocation of 741 * zio_execute() by returning the parent back to 742 * zio_execute(). Since the parent isn't executed until this 743 * thread returns back to zio_execute(), the caller should do 744 * so promptly. 745 * 746 * In other cases, dispatching the parent prevents 747 * overflowing the stack when we have deeply nested 748 * parent-child relationships, as we do with the "mega zio" 749 * of writes for spa_sync(), and the chain of ZIL blocks. 750 */ 751 if (next_to_executep != NULL && *next_to_executep == NULL) { 752 *next_to_executep = pio; 753 } else { 754 zio_taskq_dispatch(pio, type, B_FALSE); 755 } 756 } else { 757 mutex_exit(&pio->io_lock); 758 } 759 } 760 761 static void 762 zio_inherit_child_errors(zio_t *zio, enum zio_child c) 763 { 764 if (zio->io_child_error[c] != 0 && zio->io_error == 0) 765 zio->io_error = zio->io_child_error[c]; 766 } 767 768 int 769 zio_bookmark_compare(const void *x1, const void *x2) 770 { 771 const zio_t *z1 = x1; 772 const zio_t *z2 = x2; 773 774 if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset) 775 return (-1); 776 if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset) 777 return (1); 778 779 if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object) 780 return (-1); 781 if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object) 782 return (1); 783 784 if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level) 785 return (-1); 786 if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level) 787 return (1); 788 789 if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid) 790 return (-1); 791 if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid) 792 return (1); 793 794 if (z1 < z2) 795 return (-1); 796 if (z1 > z2) 797 return (1); 798 799 return (0); 800 } 801 802 /* 803 * ========================================================================== 804 * Create the various types of I/O (read, write, free, etc) 805 * ========================================================================== 806 */ 807 static zio_t * 808 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 809 abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done, 810 void *private, zio_type_t type, zio_priority_t priority, 811 enum zio_flag flags, vdev_t *vd, uint64_t offset, 812 const zbookmark_phys_t *zb, enum zio_stage stage, 813 enum zio_stage pipeline) 814 { 815 zio_t *zio; 816 817 IMPLY(type != ZIO_TYPE_TRIM, psize <= SPA_MAXBLOCKSIZE); 818 ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0); 819 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0); 820 821 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER)); 822 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER)); 823 ASSERT(vd || stage == ZIO_STAGE_OPEN); 824 825 IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0); 826 827 zio = kmem_cache_alloc(zio_cache, KM_SLEEP); 828 bzero(zio, sizeof (zio_t)); 829 830 mutex_init(&zio->io_lock, NULL, MUTEX_NOLOCKDEP, NULL); 831 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL); 832 833 list_create(&zio->io_parent_list, sizeof (zio_link_t), 834 offsetof(zio_link_t, zl_parent_node)); 835 list_create(&zio->io_child_list, sizeof (zio_link_t), 836 offsetof(zio_link_t, zl_child_node)); 837 metaslab_trace_init(&zio->io_alloc_list); 838 839 if (vd != NULL) 840 zio->io_child_type = ZIO_CHILD_VDEV; 841 else if (flags & ZIO_FLAG_GANG_CHILD) 842 zio->io_child_type = ZIO_CHILD_GANG; 843 else if (flags & ZIO_FLAG_DDT_CHILD) 844 zio->io_child_type = ZIO_CHILD_DDT; 845 else 846 zio->io_child_type = ZIO_CHILD_LOGICAL; 847 848 if (bp != NULL) { 849 zio->io_bp = (blkptr_t *)bp; 850 zio->io_bp_copy = *bp; 851 zio->io_bp_orig = *bp; 852 if (type != ZIO_TYPE_WRITE || 853 zio->io_child_type == ZIO_CHILD_DDT) 854 zio->io_bp = &zio->io_bp_copy; /* so caller can free */ 855 if (zio->io_child_type == ZIO_CHILD_LOGICAL) 856 zio->io_logical = zio; 857 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp)) 858 pipeline |= ZIO_GANG_STAGES; 859 } 860 861 zio->io_spa = spa; 862 zio->io_txg = txg; 863 zio->io_done = done; 864 zio->io_private = private; 865 zio->io_type = type; 866 zio->io_priority = priority; 867 zio->io_vd = vd; 868 zio->io_offset = offset; 869 zio->io_orig_abd = zio->io_abd = data; 870 zio->io_orig_size = zio->io_size = psize; 871 zio->io_lsize = lsize; 872 zio->io_orig_flags = zio->io_flags = flags; 873 zio->io_orig_stage = zio->io_stage = stage; 874 zio->io_orig_pipeline = zio->io_pipeline = pipeline; 875 zio->io_pipeline_trace = ZIO_STAGE_OPEN; 876 877 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY); 878 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE); 879 880 if (zb != NULL) 881 zio->io_bookmark = *zb; 882 883 if (pio != NULL) { 884 if (zio->io_metaslab_class == NULL) 885 zio->io_metaslab_class = pio->io_metaslab_class; 886 if (zio->io_logical == NULL) 887 zio->io_logical = pio->io_logical; 888 if (zio->io_child_type == ZIO_CHILD_GANG) 889 zio->io_gang_leader = pio->io_gang_leader; 890 zio_add_child(pio, zio); 891 } 892 893 taskq_init_ent(&zio->io_tqent); 894 895 return (zio); 896 } 897 898 static void 899 zio_destroy(zio_t *zio) 900 { 901 metaslab_trace_fini(&zio->io_alloc_list); 902 list_destroy(&zio->io_parent_list); 903 list_destroy(&zio->io_child_list); 904 mutex_destroy(&zio->io_lock); 905 cv_destroy(&zio->io_cv); 906 kmem_cache_free(zio_cache, zio); 907 } 908 909 zio_t * 910 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done, 911 void *private, enum zio_flag flags) 912 { 913 zio_t *zio; 914 915 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private, 916 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 917 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE); 918 919 return (zio); 920 } 921 922 zio_t * 923 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags) 924 { 925 return (zio_null(NULL, spa, NULL, done, private, flags)); 926 } 927 928 static int 929 zfs_blkptr_verify_log(spa_t *spa, const blkptr_t *bp, 930 enum blk_verify_flag blk_verify, const char *fmt, ...) 931 { 932 va_list adx; 933 char buf[256]; 934 935 va_start(adx, fmt); 936 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 937 va_end(adx); 938 939 switch (blk_verify) { 940 case BLK_VERIFY_HALT: 941 dprintf_bp(bp, "blkptr at %p dprintf_bp():", bp); 942 zfs_panic_recover("%s: %s", spa_name(spa), buf); 943 break; 944 case BLK_VERIFY_LOG: 945 zfs_dbgmsg("%s: %s", spa_name(spa), buf); 946 break; 947 case BLK_VERIFY_ONLY: 948 break; 949 } 950 951 return (1); 952 } 953 954 /* 955 * Verify the block pointer fields contain reasonable values. This means 956 * it only contains known object types, checksum/compression identifiers, 957 * block sizes within the maximum allowed limits, valid DVAs, etc. 958 * 959 * If everything checks out B_TRUE is returned. The zfs_blkptr_verify 960 * argument controls the behavior when an invalid field is detected. 961 * 962 * Modes for zfs_blkptr_verify: 963 * 1) BLK_VERIFY_ONLY (evaluate the block) 964 * 2) BLK_VERIFY_LOG (evaluate the block and log problems) 965 * 3) BLK_VERIFY_HALT (call zfs_panic_recover on error) 966 */ 967 boolean_t 968 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp, boolean_t config_held, 969 enum blk_verify_flag blk_verify) 970 { 971 int errors = 0; 972 973 if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) { 974 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 975 "blkptr at %p has invalid TYPE %llu", 976 bp, (longlong_t)BP_GET_TYPE(bp)); 977 } 978 if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS || 979 BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) { 980 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 981 "blkptr at %p has invalid CHECKSUM %llu", 982 bp, (longlong_t)BP_GET_CHECKSUM(bp)); 983 } 984 if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS || 985 BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) { 986 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 987 "blkptr at %p has invalid COMPRESS %llu", 988 bp, (longlong_t)BP_GET_COMPRESS(bp)); 989 } 990 if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) { 991 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 992 "blkptr at %p has invalid LSIZE %llu", 993 bp, (longlong_t)BP_GET_LSIZE(bp)); 994 } 995 if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) { 996 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 997 "blkptr at %p has invalid PSIZE %llu", 998 bp, (longlong_t)BP_GET_PSIZE(bp)); 999 } 1000 1001 if (BP_IS_EMBEDDED(bp)) { 1002 if (BPE_GET_ETYPE(bp) >= NUM_BP_EMBEDDED_TYPES) { 1003 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1004 "blkptr at %p has invalid ETYPE %llu", 1005 bp, (longlong_t)BPE_GET_ETYPE(bp)); 1006 } 1007 } 1008 1009 /* 1010 * Do not verify individual DVAs if the config is not trusted. This 1011 * will be done once the zio is executed in vdev_mirror_map_alloc. 1012 */ 1013 if (!spa->spa_trust_config) 1014 return (B_TRUE); 1015 1016 if (!config_held) 1017 spa_config_enter(spa, SCL_VDEV, bp, RW_READER); 1018 else 1019 ASSERT(spa_config_held(spa, SCL_VDEV, RW_WRITER)); 1020 /* 1021 * Pool-specific checks. 1022 * 1023 * Note: it would be nice to verify that the blk_birth and 1024 * BP_PHYSICAL_BIRTH() are not too large. However, spa_freeze() 1025 * allows the birth time of log blocks (and dmu_sync()-ed blocks 1026 * that are in the log) to be arbitrarily large. 1027 */ 1028 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 1029 uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]); 1030 1031 if (vdevid >= spa->spa_root_vdev->vdev_children) { 1032 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1033 "blkptr at %p DVA %u has invalid VDEV %llu", 1034 bp, i, (longlong_t)vdevid); 1035 continue; 1036 } 1037 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid]; 1038 if (vd == NULL) { 1039 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1040 "blkptr at %p DVA %u has invalid VDEV %llu", 1041 bp, i, (longlong_t)vdevid); 1042 continue; 1043 } 1044 if (vd->vdev_ops == &vdev_hole_ops) { 1045 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1046 "blkptr at %p DVA %u has hole VDEV %llu", 1047 bp, i, (longlong_t)vdevid); 1048 continue; 1049 } 1050 if (vd->vdev_ops == &vdev_missing_ops) { 1051 /* 1052 * "missing" vdevs are valid during import, but we 1053 * don't have their detailed info (e.g. asize), so 1054 * we can't perform any more checks on them. 1055 */ 1056 continue; 1057 } 1058 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]); 1059 uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]); 1060 if (BP_IS_GANG(bp)) 1061 asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); 1062 if (offset + asize > vd->vdev_asize) { 1063 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1064 "blkptr at %p DVA %u has invalid OFFSET %llu", 1065 bp, i, (longlong_t)offset); 1066 } 1067 } 1068 if (errors > 0) 1069 dprintf_bp(bp, "blkptr at %p dprintf_bp():", bp); 1070 if (!config_held) 1071 spa_config_exit(spa, SCL_VDEV, bp); 1072 1073 return (errors == 0); 1074 } 1075 1076 boolean_t 1077 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp) 1078 { 1079 uint64_t vdevid = DVA_GET_VDEV(dva); 1080 1081 if (vdevid >= spa->spa_root_vdev->vdev_children) 1082 return (B_FALSE); 1083 1084 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid]; 1085 if (vd == NULL) 1086 return (B_FALSE); 1087 1088 if (vd->vdev_ops == &vdev_hole_ops) 1089 return (B_FALSE); 1090 1091 if (vd->vdev_ops == &vdev_missing_ops) { 1092 return (B_FALSE); 1093 } 1094 1095 uint64_t offset = DVA_GET_OFFSET(dva); 1096 uint64_t asize = DVA_GET_ASIZE(dva); 1097 1098 if (BP_IS_GANG(bp)) 1099 asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); 1100 if (offset + asize > vd->vdev_asize) 1101 return (B_FALSE); 1102 1103 return (B_TRUE); 1104 } 1105 1106 zio_t * 1107 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, 1108 abd_t *data, uint64_t size, zio_done_func_t *done, void *private, 1109 zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb) 1110 { 1111 zio_t *zio; 1112 1113 (void) zfs_blkptr_verify(spa, bp, flags & ZIO_FLAG_CONFIG_WRITER, 1114 BLK_VERIFY_HALT); 1115 1116 zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp, 1117 data, size, size, done, private, 1118 ZIO_TYPE_READ, priority, flags, NULL, 0, zb, 1119 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 1120 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE); 1121 1122 return (zio); 1123 } 1124 1125 zio_t * 1126 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 1127 abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp, 1128 zio_done_func_t *ready, zio_done_func_t *children_ready, 1129 zio_done_func_t *physdone, zio_done_func_t *done, 1130 void *private, zio_priority_t priority, enum zio_flag flags, 1131 const zbookmark_phys_t *zb) 1132 { 1133 zio_t *zio; 1134 1135 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF && 1136 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS && 1137 zp->zp_compress >= ZIO_COMPRESS_OFF && 1138 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS && 1139 DMU_OT_IS_VALID(zp->zp_type) && 1140 zp->zp_level < 32 && 1141 zp->zp_copies > 0 && 1142 zp->zp_copies <= spa_max_replication(spa)); 1143 1144 zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private, 1145 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb, 1146 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 1147 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE); 1148 1149 zio->io_ready = ready; 1150 zio->io_children_ready = children_ready; 1151 zio->io_physdone = physdone; 1152 zio->io_prop = *zp; 1153 1154 /* 1155 * Data can be NULL if we are going to call zio_write_override() to 1156 * provide the already-allocated BP. But we may need the data to 1157 * verify a dedup hit (if requested). In this case, don't try to 1158 * dedup (just take the already-allocated BP verbatim). Encrypted 1159 * dedup blocks need data as well so we also disable dedup in this 1160 * case. 1161 */ 1162 if (data == NULL && 1163 (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) { 1164 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE; 1165 } 1166 1167 return (zio); 1168 } 1169 1170 zio_t * 1171 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data, 1172 uint64_t size, zio_done_func_t *done, void *private, 1173 zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb) 1174 { 1175 zio_t *zio; 1176 1177 zio = zio_create(pio, spa, txg, bp, data, size, size, done, private, 1178 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb, 1179 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE); 1180 1181 return (zio); 1182 } 1183 1184 void 1185 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite) 1186 { 1187 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 1188 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1189 ASSERT(zio->io_stage == ZIO_STAGE_OPEN); 1190 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa)); 1191 1192 /* 1193 * We must reset the io_prop to match the values that existed 1194 * when the bp was first written by dmu_sync() keeping in mind 1195 * that nopwrite and dedup are mutually exclusive. 1196 */ 1197 zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup; 1198 zio->io_prop.zp_nopwrite = nopwrite; 1199 zio->io_prop.zp_copies = copies; 1200 zio->io_bp_override = bp; 1201 } 1202 1203 void 1204 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp) 1205 { 1206 1207 (void) zfs_blkptr_verify(spa, bp, B_FALSE, BLK_VERIFY_HALT); 1208 1209 /* 1210 * The check for EMBEDDED is a performance optimization. We 1211 * process the free here (by ignoring it) rather than 1212 * putting it on the list and then processing it in zio_free_sync(). 1213 */ 1214 if (BP_IS_EMBEDDED(bp)) 1215 return; 1216 metaslab_check_free(spa, bp); 1217 1218 /* 1219 * Frees that are for the currently-syncing txg, are not going to be 1220 * deferred, and which will not need to do a read (i.e. not GANG or 1221 * DEDUP), can be processed immediately. Otherwise, put them on the 1222 * in-memory list for later processing. 1223 * 1224 * Note that we only defer frees after zfs_sync_pass_deferred_free 1225 * when the log space map feature is disabled. [see relevant comment 1226 * in spa_sync_iterate_to_convergence()] 1227 */ 1228 if (BP_IS_GANG(bp) || 1229 BP_GET_DEDUP(bp) || 1230 txg != spa->spa_syncing_txg || 1231 (spa_sync_pass(spa) >= zfs_sync_pass_deferred_free && 1232 !spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))) { 1233 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp); 1234 } else { 1235 VERIFY3P(zio_free_sync(NULL, spa, txg, bp, 0), ==, NULL); 1236 } 1237 } 1238 1239 /* 1240 * To improve performance, this function may return NULL if we were able 1241 * to do the free immediately. This avoids the cost of creating a zio 1242 * (and linking it to the parent, etc). 1243 */ 1244 zio_t * 1245 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 1246 enum zio_flag flags) 1247 { 1248 ASSERT(!BP_IS_HOLE(bp)); 1249 ASSERT(spa_syncing_txg(spa) == txg); 1250 1251 if (BP_IS_EMBEDDED(bp)) 1252 return (NULL); 1253 1254 metaslab_check_free(spa, bp); 1255 arc_freed(spa, bp); 1256 dsl_scan_freed(spa, bp); 1257 1258 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp)) { 1259 /* 1260 * GANG and DEDUP blocks can induce a read (for the gang block 1261 * header, or the DDT), so issue them asynchronously so that 1262 * this thread is not tied up. 1263 */ 1264 enum zio_stage stage = 1265 ZIO_FREE_PIPELINE | ZIO_STAGE_ISSUE_ASYNC; 1266 1267 return (zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 1268 BP_GET_PSIZE(bp), NULL, NULL, 1269 ZIO_TYPE_FREE, ZIO_PRIORITY_NOW, 1270 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage)); 1271 } else { 1272 metaslab_free(spa, bp, txg, B_FALSE); 1273 return (NULL); 1274 } 1275 } 1276 1277 zio_t * 1278 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 1279 zio_done_func_t *done, void *private, enum zio_flag flags) 1280 { 1281 zio_t *zio; 1282 1283 (void) zfs_blkptr_verify(spa, bp, flags & ZIO_FLAG_CONFIG_WRITER, 1284 BLK_VERIFY_HALT); 1285 1286 if (BP_IS_EMBEDDED(bp)) 1287 return (zio_null(pio, spa, NULL, NULL, NULL, 0)); 1288 1289 /* 1290 * A claim is an allocation of a specific block. Claims are needed 1291 * to support immediate writes in the intent log. The issue is that 1292 * immediate writes contain committed data, but in a txg that was 1293 * *not* committed. Upon opening the pool after an unclean shutdown, 1294 * the intent log claims all blocks that contain immediate write data 1295 * so that the SPA knows they're in use. 1296 * 1297 * All claims *must* be resolved in the first txg -- before the SPA 1298 * starts allocating blocks -- so that nothing is allocated twice. 1299 * If txg == 0 we just verify that the block is claimable. 1300 */ 1301 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, 1302 spa_min_claim_txg(spa)); 1303 ASSERT(txg == spa_min_claim_txg(spa) || txg == 0); 1304 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(1M) */ 1305 1306 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 1307 BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, 1308 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE); 1309 ASSERT0(zio->io_queued_timestamp); 1310 1311 return (zio); 1312 } 1313 1314 zio_t * 1315 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, 1316 zio_done_func_t *done, void *private, enum zio_flag flags) 1317 { 1318 zio_t *zio; 1319 int c; 1320 1321 if (vd->vdev_children == 0) { 1322 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private, 1323 ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 1324 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE); 1325 1326 zio->io_cmd = cmd; 1327 } else { 1328 zio = zio_null(pio, spa, NULL, NULL, NULL, flags); 1329 1330 for (c = 0; c < vd->vdev_children; c++) 1331 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd, 1332 done, private, flags)); 1333 } 1334 1335 return (zio); 1336 } 1337 1338 zio_t * 1339 zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1340 zio_done_func_t *done, void *private, zio_priority_t priority, 1341 enum zio_flag flags, enum trim_flag trim_flags) 1342 { 1343 zio_t *zio; 1344 1345 ASSERT0(vd->vdev_children); 1346 ASSERT0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 1347 ASSERT0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 1348 ASSERT3U(size, !=, 0); 1349 1350 zio = zio_create(pio, vd->vdev_spa, 0, NULL, NULL, size, size, done, 1351 private, ZIO_TYPE_TRIM, priority, flags | ZIO_FLAG_PHYSICAL, 1352 vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_TRIM_PIPELINE); 1353 zio->io_trim_flags = trim_flags; 1354 1355 return (zio); 1356 } 1357 1358 zio_t * 1359 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1360 abd_t *data, int checksum, zio_done_func_t *done, void *private, 1361 zio_priority_t priority, enum zio_flag flags, boolean_t labels) 1362 { 1363 zio_t *zio; 1364 1365 ASSERT(vd->vdev_children == 0); 1366 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 1367 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 1368 ASSERT3U(offset + size, <=, vd->vdev_psize); 1369 1370 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, 1371 private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd, 1372 offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE); 1373 1374 zio->io_prop.zp_checksum = checksum; 1375 1376 return (zio); 1377 } 1378 1379 zio_t * 1380 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1381 abd_t *data, int checksum, zio_done_func_t *done, void *private, 1382 zio_priority_t priority, enum zio_flag flags, boolean_t labels) 1383 { 1384 zio_t *zio; 1385 1386 ASSERT(vd->vdev_children == 0); 1387 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 1388 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 1389 ASSERT3U(offset + size, <=, vd->vdev_psize); 1390 1391 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, 1392 private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd, 1393 offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE); 1394 1395 zio->io_prop.zp_checksum = checksum; 1396 1397 if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) { 1398 /* 1399 * zec checksums are necessarily destructive -- they modify 1400 * the end of the write buffer to hold the verifier/checksum. 1401 * Therefore, we must make a local copy in case the data is 1402 * being written to multiple places in parallel. 1403 */ 1404 abd_t *wbuf = abd_alloc_sametype(data, size); 1405 abd_copy(wbuf, data, size); 1406 1407 zio_push_transform(zio, wbuf, size, size, NULL); 1408 } 1409 1410 return (zio); 1411 } 1412 1413 /* 1414 * Create a child I/O to do some work for us. 1415 */ 1416 zio_t * 1417 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset, 1418 abd_t *data, uint64_t size, int type, zio_priority_t priority, 1419 enum zio_flag flags, zio_done_func_t *done, void *private) 1420 { 1421 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE; 1422 zio_t *zio; 1423 1424 /* 1425 * vdev child I/Os do not propagate their error to the parent. 1426 * Therefore, for correct operation the caller *must* check for 1427 * and handle the error in the child i/o's done callback. 1428 * The only exceptions are i/os that we don't care about 1429 * (OPTIONAL or REPAIR). 1430 */ 1431 ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) || 1432 done != NULL); 1433 1434 if (type == ZIO_TYPE_READ && bp != NULL) { 1435 /* 1436 * If we have the bp, then the child should perform the 1437 * checksum and the parent need not. This pushes error 1438 * detection as close to the leaves as possible and 1439 * eliminates redundant checksums in the interior nodes. 1440 */ 1441 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY; 1442 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 1443 } 1444 1445 if (vd->vdev_ops->vdev_op_leaf) { 1446 ASSERT0(vd->vdev_children); 1447 offset += VDEV_LABEL_START_SIZE; 1448 } 1449 1450 flags |= ZIO_VDEV_CHILD_FLAGS(pio); 1451 1452 /* 1453 * If we've decided to do a repair, the write is not speculative -- 1454 * even if the original read was. 1455 */ 1456 if (flags & ZIO_FLAG_IO_REPAIR) 1457 flags &= ~ZIO_FLAG_SPECULATIVE; 1458 1459 /* 1460 * If we're creating a child I/O that is not associated with a 1461 * top-level vdev, then the child zio is not an allocating I/O. 1462 * If this is a retried I/O then we ignore it since we will 1463 * have already processed the original allocating I/O. 1464 */ 1465 if (flags & ZIO_FLAG_IO_ALLOCATING && 1466 (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) { 1467 ASSERT(pio->io_metaslab_class != NULL); 1468 ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled); 1469 ASSERT(type == ZIO_TYPE_WRITE); 1470 ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE); 1471 ASSERT(!(flags & ZIO_FLAG_IO_REPAIR)); 1472 ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) || 1473 pio->io_child_type == ZIO_CHILD_GANG); 1474 1475 flags &= ~ZIO_FLAG_IO_ALLOCATING; 1476 } 1477 1478 1479 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size, 1480 done, private, type, priority, flags, vd, offset, &pio->io_bookmark, 1481 ZIO_STAGE_VDEV_IO_START >> 1, pipeline); 1482 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); 1483 1484 zio->io_physdone = pio->io_physdone; 1485 if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL) 1486 zio->io_logical->io_phys_children++; 1487 1488 return (zio); 1489 } 1490 1491 zio_t * 1492 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size, 1493 zio_type_t type, zio_priority_t priority, enum zio_flag flags, 1494 zio_done_func_t *done, void *private) 1495 { 1496 zio_t *zio; 1497 1498 ASSERT(vd->vdev_ops->vdev_op_leaf); 1499 1500 zio = zio_create(NULL, vd->vdev_spa, 0, NULL, 1501 data, size, size, done, private, type, priority, 1502 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED, 1503 vd, offset, NULL, 1504 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE); 1505 1506 return (zio); 1507 } 1508 1509 void 1510 zio_flush(zio_t *zio, vdev_t *vd) 1511 { 1512 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE, 1513 NULL, NULL, 1514 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY)); 1515 } 1516 1517 void 1518 zio_shrink(zio_t *zio, uint64_t size) 1519 { 1520 ASSERT3P(zio->io_executor, ==, NULL); 1521 ASSERT3U(zio->io_orig_size, ==, zio->io_size); 1522 ASSERT3U(size, <=, zio->io_size); 1523 1524 /* 1525 * We don't shrink for raidz because of problems with the 1526 * reconstruction when reading back less than the block size. 1527 * Note, BP_IS_RAIDZ() assumes no compression. 1528 */ 1529 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 1530 if (!BP_IS_RAIDZ(zio->io_bp)) { 1531 /* we are not doing a raw write */ 1532 ASSERT3U(zio->io_size, ==, zio->io_lsize); 1533 zio->io_orig_size = zio->io_size = zio->io_lsize = size; 1534 } 1535 } 1536 1537 /* 1538 * ========================================================================== 1539 * Prepare to read and write logical blocks 1540 * ========================================================================== 1541 */ 1542 1543 static zio_t * 1544 zio_read_bp_init(zio_t *zio) 1545 { 1546 blkptr_t *bp = zio->io_bp; 1547 uint64_t psize = 1548 BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp); 1549 1550 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 1551 1552 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF && 1553 zio->io_child_type == ZIO_CHILD_LOGICAL && 1554 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) { 1555 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize), 1556 psize, psize, zio_decompress); 1557 } 1558 1559 if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) || 1560 BP_HAS_INDIRECT_MAC_CKSUM(bp)) && 1561 zio->io_child_type == ZIO_CHILD_LOGICAL) { 1562 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize), 1563 psize, psize, zio_decrypt); 1564 } 1565 1566 if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) { 1567 int psize = BPE_GET_PSIZE(bp); 1568 void *data = abd_borrow_buf(zio->io_abd, psize); 1569 1570 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1571 decode_embedded_bp_compressed(bp, data); 1572 abd_return_buf_copy(zio->io_abd, data, psize); 1573 } else { 1574 ASSERT(!BP_IS_EMBEDDED(bp)); 1575 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 1576 } 1577 1578 if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0) 1579 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 1580 1581 if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP) 1582 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 1583 1584 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL) 1585 zio->io_pipeline = ZIO_DDT_READ_PIPELINE; 1586 1587 return (zio); 1588 } 1589 1590 static zio_t * 1591 zio_write_bp_init(zio_t *zio) 1592 { 1593 if (!IO_IS_ALLOCATING(zio)) 1594 return (zio); 1595 1596 ASSERT(zio->io_child_type != ZIO_CHILD_DDT); 1597 1598 if (zio->io_bp_override) { 1599 blkptr_t *bp = zio->io_bp; 1600 zio_prop_t *zp = &zio->io_prop; 1601 1602 ASSERT(bp->blk_birth != zio->io_txg); 1603 ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0); 1604 1605 *bp = *zio->io_bp_override; 1606 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1607 1608 if (BP_IS_EMBEDDED(bp)) 1609 return (zio); 1610 1611 /* 1612 * If we've been overridden and nopwrite is set then 1613 * set the flag accordingly to indicate that a nopwrite 1614 * has already occurred. 1615 */ 1616 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) { 1617 ASSERT(!zp->zp_dedup); 1618 ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum); 1619 zio->io_flags |= ZIO_FLAG_NOPWRITE; 1620 return (zio); 1621 } 1622 1623 ASSERT(!zp->zp_nopwrite); 1624 1625 if (BP_IS_HOLE(bp) || !zp->zp_dedup) 1626 return (zio); 1627 1628 ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags & 1629 ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify); 1630 1631 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum && 1632 !zp->zp_encrypt) { 1633 BP_SET_DEDUP(bp, 1); 1634 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE; 1635 return (zio); 1636 } 1637 1638 /* 1639 * We were unable to handle this as an override bp, treat 1640 * it as a regular write I/O. 1641 */ 1642 zio->io_bp_override = NULL; 1643 *bp = zio->io_bp_orig; 1644 zio->io_pipeline = zio->io_orig_pipeline; 1645 } 1646 1647 return (zio); 1648 } 1649 1650 static zio_t * 1651 zio_write_compress(zio_t *zio) 1652 { 1653 spa_t *spa = zio->io_spa; 1654 zio_prop_t *zp = &zio->io_prop; 1655 enum zio_compress compress = zp->zp_compress; 1656 blkptr_t *bp = zio->io_bp; 1657 uint64_t lsize = zio->io_lsize; 1658 uint64_t psize = zio->io_size; 1659 int pass = 1; 1660 1661 /* 1662 * If our children haven't all reached the ready stage, 1663 * wait for them and then repeat this pipeline stage. 1664 */ 1665 if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT | 1666 ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) { 1667 return (NULL); 1668 } 1669 1670 if (!IO_IS_ALLOCATING(zio)) 1671 return (zio); 1672 1673 if (zio->io_children_ready != NULL) { 1674 /* 1675 * Now that all our children are ready, run the callback 1676 * associated with this zio in case it wants to modify the 1677 * data to be written. 1678 */ 1679 ASSERT3U(zp->zp_level, >, 0); 1680 zio->io_children_ready(zio); 1681 } 1682 1683 ASSERT(zio->io_child_type != ZIO_CHILD_DDT); 1684 ASSERT(zio->io_bp_override == NULL); 1685 1686 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) { 1687 /* 1688 * We're rewriting an existing block, which means we're 1689 * working on behalf of spa_sync(). For spa_sync() to 1690 * converge, it must eventually be the case that we don't 1691 * have to allocate new blocks. But compression changes 1692 * the blocksize, which forces a reallocate, and makes 1693 * convergence take longer. Therefore, after the first 1694 * few passes, stop compressing to ensure convergence. 1695 */ 1696 pass = spa_sync_pass(spa); 1697 1698 ASSERT(zio->io_txg == spa_syncing_txg(spa)); 1699 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1700 ASSERT(!BP_GET_DEDUP(bp)); 1701 1702 if (pass >= zfs_sync_pass_dont_compress) 1703 compress = ZIO_COMPRESS_OFF; 1704 1705 /* Make sure someone doesn't change their mind on overwrites */ 1706 ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp), 1707 spa_max_replication(spa)) == BP_GET_NDVAS(bp)); 1708 } 1709 1710 /* If it's a compressed write that is not raw, compress the buffer. */ 1711 if (compress != ZIO_COMPRESS_OFF && 1712 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) { 1713 void *cbuf = zio_buf_alloc(lsize); 1714 psize = zio_compress_data(compress, zio->io_abd, cbuf, lsize, 1715 zp->zp_complevel); 1716 if (psize == 0 || psize >= lsize) { 1717 compress = ZIO_COMPRESS_OFF; 1718 zio_buf_free(cbuf, lsize); 1719 } else if (!zp->zp_dedup && !zp->zp_encrypt && 1720 psize <= BPE_PAYLOAD_SIZE && 1721 zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) && 1722 spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) { 1723 encode_embedded_bp_compressed(bp, 1724 cbuf, compress, lsize, psize); 1725 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA); 1726 BP_SET_TYPE(bp, zio->io_prop.zp_type); 1727 BP_SET_LEVEL(bp, zio->io_prop.zp_level); 1728 zio_buf_free(cbuf, lsize); 1729 bp->blk_birth = zio->io_txg; 1730 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1731 ASSERT(spa_feature_is_active(spa, 1732 SPA_FEATURE_EMBEDDED_DATA)); 1733 return (zio); 1734 } else { 1735 /* 1736 * Round up compressed size up to the ashift 1737 * of the smallest-ashift device, and zero the tail. 1738 * This ensures that the compressed size of the BP 1739 * (and thus compressratio property) are correct, 1740 * in that we charge for the padding used to fill out 1741 * the last sector. 1742 */ 1743 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT); 1744 size_t rounded = (size_t)P2ROUNDUP(psize, 1745 1ULL << spa->spa_min_ashift); 1746 if (rounded >= lsize) { 1747 compress = ZIO_COMPRESS_OFF; 1748 zio_buf_free(cbuf, lsize); 1749 psize = lsize; 1750 } else { 1751 abd_t *cdata = abd_get_from_buf(cbuf, lsize); 1752 abd_take_ownership_of_buf(cdata, B_TRUE); 1753 abd_zero_off(cdata, psize, rounded - psize); 1754 psize = rounded; 1755 zio_push_transform(zio, cdata, 1756 psize, lsize, NULL); 1757 } 1758 } 1759 1760 /* 1761 * We were unable to handle this as an override bp, treat 1762 * it as a regular write I/O. 1763 */ 1764 zio->io_bp_override = NULL; 1765 *bp = zio->io_bp_orig; 1766 zio->io_pipeline = zio->io_orig_pipeline; 1767 1768 } else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 && 1769 zp->zp_type == DMU_OT_DNODE) { 1770 /* 1771 * The DMU actually relies on the zio layer's compression 1772 * to free metadnode blocks that have had all contained 1773 * dnodes freed. As a result, even when doing a raw 1774 * receive, we must check whether the block can be compressed 1775 * to a hole. 1776 */ 1777 psize = zio_compress_data(ZIO_COMPRESS_EMPTY, 1778 zio->io_abd, NULL, lsize, zp->zp_complevel); 1779 if (psize == 0 || psize >= lsize) 1780 compress = ZIO_COMPRESS_OFF; 1781 } else { 1782 ASSERT3U(psize, !=, 0); 1783 } 1784 1785 /* 1786 * The final pass of spa_sync() must be all rewrites, but the first 1787 * few passes offer a trade-off: allocating blocks defers convergence, 1788 * but newly allocated blocks are sequential, so they can be written 1789 * to disk faster. Therefore, we allow the first few passes of 1790 * spa_sync() to allocate new blocks, but force rewrites after that. 1791 * There should only be a handful of blocks after pass 1 in any case. 1792 */ 1793 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg && 1794 BP_GET_PSIZE(bp) == psize && 1795 pass >= zfs_sync_pass_rewrite) { 1796 VERIFY3U(psize, !=, 0); 1797 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES; 1798 1799 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages; 1800 zio->io_flags |= ZIO_FLAG_IO_REWRITE; 1801 } else { 1802 BP_ZERO(bp); 1803 zio->io_pipeline = ZIO_WRITE_PIPELINE; 1804 } 1805 1806 if (psize == 0) { 1807 if (zio->io_bp_orig.blk_birth != 0 && 1808 spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) { 1809 BP_SET_LSIZE(bp, lsize); 1810 BP_SET_TYPE(bp, zp->zp_type); 1811 BP_SET_LEVEL(bp, zp->zp_level); 1812 BP_SET_BIRTH(bp, zio->io_txg, 0); 1813 } 1814 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1815 } else { 1816 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER); 1817 BP_SET_LSIZE(bp, lsize); 1818 BP_SET_TYPE(bp, zp->zp_type); 1819 BP_SET_LEVEL(bp, zp->zp_level); 1820 BP_SET_PSIZE(bp, psize); 1821 BP_SET_COMPRESS(bp, compress); 1822 BP_SET_CHECKSUM(bp, zp->zp_checksum); 1823 BP_SET_DEDUP(bp, zp->zp_dedup); 1824 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 1825 if (zp->zp_dedup) { 1826 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1827 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1828 ASSERT(!zp->zp_encrypt || 1829 DMU_OT_IS_ENCRYPTED(zp->zp_type)); 1830 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE; 1831 } 1832 if (zp->zp_nopwrite) { 1833 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1834 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1835 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE; 1836 } 1837 } 1838 return (zio); 1839 } 1840 1841 static zio_t * 1842 zio_free_bp_init(zio_t *zio) 1843 { 1844 blkptr_t *bp = zio->io_bp; 1845 1846 if (zio->io_child_type == ZIO_CHILD_LOGICAL) { 1847 if (BP_GET_DEDUP(bp)) 1848 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE; 1849 } 1850 1851 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 1852 1853 return (zio); 1854 } 1855 1856 /* 1857 * ========================================================================== 1858 * Execute the I/O pipeline 1859 * ========================================================================== 1860 */ 1861 1862 static void 1863 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline) 1864 { 1865 spa_t *spa = zio->io_spa; 1866 zio_type_t t = zio->io_type; 1867 int flags = (cutinline ? TQ_FRONT : 0); 1868 1869 /* 1870 * If we're a config writer or a probe, the normal issue and 1871 * interrupt threads may all be blocked waiting for the config lock. 1872 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL. 1873 */ 1874 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE)) 1875 t = ZIO_TYPE_NULL; 1876 1877 /* 1878 * A similar issue exists for the L2ARC write thread until L2ARC 2.0. 1879 */ 1880 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux) 1881 t = ZIO_TYPE_NULL; 1882 1883 /* 1884 * If this is a high priority I/O, then use the high priority taskq if 1885 * available. 1886 */ 1887 if ((zio->io_priority == ZIO_PRIORITY_NOW || 1888 zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) && 1889 spa->spa_zio_taskq[t][q + 1].stqs_count != 0) 1890 q++; 1891 1892 ASSERT3U(q, <, ZIO_TASKQ_TYPES); 1893 1894 /* 1895 * NB: We are assuming that the zio can only be dispatched 1896 * to a single taskq at a time. It would be a grievous error 1897 * to dispatch the zio to another taskq at the same time. 1898 */ 1899 ASSERT(taskq_empty_ent(&zio->io_tqent)); 1900 spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio, 1901 flags, &zio->io_tqent); 1902 } 1903 1904 static boolean_t 1905 zio_taskq_member(zio_t *zio, zio_taskq_type_t q) 1906 { 1907 spa_t *spa = zio->io_spa; 1908 1909 taskq_t *tq = taskq_of_curthread(); 1910 1911 for (zio_type_t t = 0; t < ZIO_TYPES; t++) { 1912 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1913 uint_t i; 1914 for (i = 0; i < tqs->stqs_count; i++) { 1915 if (tqs->stqs_taskq[i] == tq) 1916 return (B_TRUE); 1917 } 1918 } 1919 1920 return (B_FALSE); 1921 } 1922 1923 static zio_t * 1924 zio_issue_async(zio_t *zio) 1925 { 1926 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 1927 1928 return (NULL); 1929 } 1930 1931 void 1932 zio_interrupt(zio_t *zio) 1933 { 1934 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE); 1935 } 1936 1937 void 1938 zio_delay_interrupt(zio_t *zio) 1939 { 1940 /* 1941 * The timeout_generic() function isn't defined in userspace, so 1942 * rather than trying to implement the function, the zio delay 1943 * functionality has been disabled for userspace builds. 1944 */ 1945 1946 #ifdef _KERNEL 1947 /* 1948 * If io_target_timestamp is zero, then no delay has been registered 1949 * for this IO, thus jump to the end of this function and "skip" the 1950 * delay; issuing it directly to the zio layer. 1951 */ 1952 if (zio->io_target_timestamp != 0) { 1953 hrtime_t now = gethrtime(); 1954 1955 if (now >= zio->io_target_timestamp) { 1956 /* 1957 * This IO has already taken longer than the target 1958 * delay to complete, so we don't want to delay it 1959 * any longer; we "miss" the delay and issue it 1960 * directly to the zio layer. This is likely due to 1961 * the target latency being set to a value less than 1962 * the underlying hardware can satisfy (e.g. delay 1963 * set to 1ms, but the disks take 10ms to complete an 1964 * IO request). 1965 */ 1966 1967 DTRACE_PROBE2(zio__delay__miss, zio_t *, zio, 1968 hrtime_t, now); 1969 1970 zio_interrupt(zio); 1971 } else { 1972 taskqid_t tid; 1973 hrtime_t diff = zio->io_target_timestamp - now; 1974 clock_t expire_at_tick = ddi_get_lbolt() + 1975 NSEC_TO_TICK(diff); 1976 1977 DTRACE_PROBE3(zio__delay__hit, zio_t *, zio, 1978 hrtime_t, now, hrtime_t, diff); 1979 1980 if (NSEC_TO_TICK(diff) == 0) { 1981 /* Our delay is less than a jiffy - just spin */ 1982 zfs_sleep_until(zio->io_target_timestamp); 1983 zio_interrupt(zio); 1984 } else { 1985 /* 1986 * Use taskq_dispatch_delay() in the place of 1987 * OpenZFS's timeout_generic(). 1988 */ 1989 tid = taskq_dispatch_delay(system_taskq, 1990 (task_func_t *)zio_interrupt, 1991 zio, TQ_NOSLEEP, expire_at_tick); 1992 if (tid == TASKQID_INVALID) { 1993 /* 1994 * Couldn't allocate a task. Just 1995 * finish the zio without a delay. 1996 */ 1997 zio_interrupt(zio); 1998 } 1999 } 2000 } 2001 return; 2002 } 2003 #endif 2004 DTRACE_PROBE1(zio__delay__skip, zio_t *, zio); 2005 zio_interrupt(zio); 2006 } 2007 2008 static void 2009 zio_deadman_impl(zio_t *pio, int ziodepth) 2010 { 2011 zio_t *cio, *cio_next; 2012 zio_link_t *zl = NULL; 2013 vdev_t *vd = pio->io_vd; 2014 2015 if (zio_deadman_log_all || (vd != NULL && vd->vdev_ops->vdev_op_leaf)) { 2016 vdev_queue_t *vq = vd ? &vd->vdev_queue : NULL; 2017 zbookmark_phys_t *zb = &pio->io_bookmark; 2018 uint64_t delta = gethrtime() - pio->io_timestamp; 2019 uint64_t failmode = spa_get_deadman_failmode(pio->io_spa); 2020 2021 zfs_dbgmsg("slow zio[%d]: zio=%px timestamp=%llu " 2022 "delta=%llu queued=%llu io=%llu " 2023 "path=%s last=%llu " 2024 "type=%d priority=%d flags=0x%x " 2025 "stage=0x%x pipeline=0x%x pipeline-trace=0x%x " 2026 "objset=%llu object=%llu level=%llu blkid=%llu " 2027 "offset=%llu size=%llu error=%d", 2028 ziodepth, pio, pio->io_timestamp, 2029 delta, pio->io_delta, pio->io_delay, 2030 vd ? vd->vdev_path : "NULL", vq ? vq->vq_io_complete_ts : 0, 2031 pio->io_type, pio->io_priority, pio->io_flags, 2032 pio->io_stage, pio->io_pipeline, pio->io_pipeline_trace, 2033 zb->zb_objset, zb->zb_object, zb->zb_level, zb->zb_blkid, 2034 pio->io_offset, pio->io_size, pio->io_error); 2035 (void) zfs_ereport_post(FM_EREPORT_ZFS_DEADMAN, 2036 pio->io_spa, vd, zb, pio, 0); 2037 2038 if (failmode == ZIO_FAILURE_MODE_CONTINUE && 2039 taskq_empty_ent(&pio->io_tqent)) { 2040 zio_interrupt(pio); 2041 } 2042 } 2043 2044 mutex_enter(&pio->io_lock); 2045 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 2046 cio_next = zio_walk_children(pio, &zl); 2047 zio_deadman_impl(cio, ziodepth + 1); 2048 } 2049 mutex_exit(&pio->io_lock); 2050 } 2051 2052 /* 2053 * Log the critical information describing this zio and all of its children 2054 * using the zfs_dbgmsg() interface then post deadman event for the ZED. 2055 */ 2056 void 2057 zio_deadman(zio_t *pio, char *tag) 2058 { 2059 spa_t *spa = pio->io_spa; 2060 char *name = spa_name(spa); 2061 2062 if (!zfs_deadman_enabled || spa_suspended(spa)) 2063 return; 2064 2065 zio_deadman_impl(pio, 0); 2066 2067 switch (spa_get_deadman_failmode(spa)) { 2068 case ZIO_FAILURE_MODE_WAIT: 2069 zfs_dbgmsg("%s waiting for hung I/O to pool '%s'", tag, name); 2070 break; 2071 2072 case ZIO_FAILURE_MODE_CONTINUE: 2073 zfs_dbgmsg("%s restarting hung I/O for pool '%s'", tag, name); 2074 break; 2075 2076 case ZIO_FAILURE_MODE_PANIC: 2077 fm_panic("%s determined I/O to pool '%s' is hung.", tag, name); 2078 break; 2079 } 2080 } 2081 2082 /* 2083 * Execute the I/O pipeline until one of the following occurs: 2084 * (1) the I/O completes; (2) the pipeline stalls waiting for 2085 * dependent child I/Os; (3) the I/O issues, so we're waiting 2086 * for an I/O completion interrupt; (4) the I/O is delegated by 2087 * vdev-level caching or aggregation; (5) the I/O is deferred 2088 * due to vdev-level queueing; (6) the I/O is handed off to 2089 * another thread. In all cases, the pipeline stops whenever 2090 * there's no CPU work; it never burns a thread in cv_wait_io(). 2091 * 2092 * There's no locking on io_stage because there's no legitimate way 2093 * for multiple threads to be attempting to process the same I/O. 2094 */ 2095 static zio_pipe_stage_t *zio_pipeline[]; 2096 2097 /* 2098 * zio_execute() is a wrapper around the static function 2099 * __zio_execute() so that we can force __zio_execute() to be 2100 * inlined. This reduces stack overhead which is important 2101 * because __zio_execute() is called recursively in several zio 2102 * code paths. zio_execute() itself cannot be inlined because 2103 * it is externally visible. 2104 */ 2105 void 2106 zio_execute(zio_t *zio) 2107 { 2108 fstrans_cookie_t cookie; 2109 2110 cookie = spl_fstrans_mark(); 2111 __zio_execute(zio); 2112 spl_fstrans_unmark(cookie); 2113 } 2114 2115 /* 2116 * Used to determine if in the current context the stack is sized large 2117 * enough to allow zio_execute() to be called recursively. A minimum 2118 * stack size of 16K is required to avoid needing to re-dispatch the zio. 2119 */ 2120 static boolean_t 2121 zio_execute_stack_check(zio_t *zio) 2122 { 2123 #if !defined(HAVE_LARGE_STACKS) 2124 dsl_pool_t *dp = spa_get_dsl(zio->io_spa); 2125 2126 /* Executing in txg_sync_thread() context. */ 2127 if (dp && curthread == dp->dp_tx.tx_sync_thread) 2128 return (B_TRUE); 2129 2130 /* Pool initialization outside of zio_taskq context. */ 2131 if (dp && spa_is_initializing(dp->dp_spa) && 2132 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE) && 2133 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE_HIGH)) 2134 return (B_TRUE); 2135 #endif /* HAVE_LARGE_STACKS */ 2136 2137 return (B_FALSE); 2138 } 2139 2140 __attribute__((always_inline)) 2141 static inline void 2142 __zio_execute(zio_t *zio) 2143 { 2144 ASSERT3U(zio->io_queued_timestamp, >, 0); 2145 2146 while (zio->io_stage < ZIO_STAGE_DONE) { 2147 enum zio_stage pipeline = zio->io_pipeline; 2148 enum zio_stage stage = zio->io_stage; 2149 2150 zio->io_executor = curthread; 2151 2152 ASSERT(!MUTEX_HELD(&zio->io_lock)); 2153 ASSERT(ISP2(stage)); 2154 ASSERT(zio->io_stall == NULL); 2155 2156 do { 2157 stage <<= 1; 2158 } while ((stage & pipeline) == 0); 2159 2160 ASSERT(stage <= ZIO_STAGE_DONE); 2161 2162 /* 2163 * If we are in interrupt context and this pipeline stage 2164 * will grab a config lock that is held across I/O, 2165 * or may wait for an I/O that needs an interrupt thread 2166 * to complete, issue async to avoid deadlock. 2167 * 2168 * For VDEV_IO_START, we cut in line so that the io will 2169 * be sent to disk promptly. 2170 */ 2171 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL && 2172 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) { 2173 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ? 2174 zio_requeue_io_start_cut_in_line : B_FALSE; 2175 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut); 2176 return; 2177 } 2178 2179 /* 2180 * If the current context doesn't have large enough stacks 2181 * the zio must be issued asynchronously to prevent overflow. 2182 */ 2183 if (zio_execute_stack_check(zio)) { 2184 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ? 2185 zio_requeue_io_start_cut_in_line : B_FALSE; 2186 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut); 2187 return; 2188 } 2189 2190 zio->io_stage = stage; 2191 zio->io_pipeline_trace |= zio->io_stage; 2192 2193 /* 2194 * The zio pipeline stage returns the next zio to execute 2195 * (typically the same as this one), or NULL if we should 2196 * stop. 2197 */ 2198 zio = zio_pipeline[highbit64(stage) - 1](zio); 2199 2200 if (zio == NULL) 2201 return; 2202 } 2203 } 2204 2205 2206 /* 2207 * ========================================================================== 2208 * Initiate I/O, either sync or async 2209 * ========================================================================== 2210 */ 2211 int 2212 zio_wait(zio_t *zio) 2213 { 2214 /* 2215 * Some routines, like zio_free_sync(), may return a NULL zio 2216 * to avoid the performance overhead of creating and then destroying 2217 * an unneeded zio. For the callers' simplicity, we accept a NULL 2218 * zio and ignore it. 2219 */ 2220 if (zio == NULL) 2221 return (0); 2222 2223 long timeout = MSEC_TO_TICK(zfs_deadman_ziotime_ms); 2224 int error; 2225 2226 ASSERT3S(zio->io_stage, ==, ZIO_STAGE_OPEN); 2227 ASSERT3P(zio->io_executor, ==, NULL); 2228 2229 zio->io_waiter = curthread; 2230 ASSERT0(zio->io_queued_timestamp); 2231 zio->io_queued_timestamp = gethrtime(); 2232 2233 __zio_execute(zio); 2234 2235 mutex_enter(&zio->io_lock); 2236 while (zio->io_executor != NULL) { 2237 error = cv_timedwait_io(&zio->io_cv, &zio->io_lock, 2238 ddi_get_lbolt() + timeout); 2239 2240 if (zfs_deadman_enabled && error == -1 && 2241 gethrtime() - zio->io_queued_timestamp > 2242 spa_deadman_ziotime(zio->io_spa)) { 2243 mutex_exit(&zio->io_lock); 2244 timeout = MSEC_TO_TICK(zfs_deadman_checktime_ms); 2245 zio_deadman(zio, FTAG); 2246 mutex_enter(&zio->io_lock); 2247 } 2248 } 2249 mutex_exit(&zio->io_lock); 2250 2251 error = zio->io_error; 2252 zio_destroy(zio); 2253 2254 return (error); 2255 } 2256 2257 void 2258 zio_nowait(zio_t *zio) 2259 { 2260 /* 2261 * See comment in zio_wait(). 2262 */ 2263 if (zio == NULL) 2264 return; 2265 2266 ASSERT3P(zio->io_executor, ==, NULL); 2267 2268 if (zio->io_child_type == ZIO_CHILD_LOGICAL && 2269 zio_unique_parent(zio) == NULL) { 2270 zio_t *pio; 2271 2272 /* 2273 * This is a logical async I/O with no parent to wait for it. 2274 * We add it to the spa_async_root_zio "Godfather" I/O which 2275 * will ensure they complete prior to unloading the pool. 2276 */ 2277 spa_t *spa = zio->io_spa; 2278 kpreempt_disable(); 2279 pio = spa->spa_async_zio_root[CPU_SEQID]; 2280 kpreempt_enable(); 2281 2282 zio_add_child(pio, zio); 2283 } 2284 2285 ASSERT0(zio->io_queued_timestamp); 2286 zio->io_queued_timestamp = gethrtime(); 2287 __zio_execute(zio); 2288 } 2289 2290 /* 2291 * ========================================================================== 2292 * Reexecute, cancel, or suspend/resume failed I/O 2293 * ========================================================================== 2294 */ 2295 2296 static void 2297 zio_reexecute(zio_t *pio) 2298 { 2299 zio_t *cio, *cio_next; 2300 2301 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL); 2302 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN); 2303 ASSERT(pio->io_gang_leader == NULL); 2304 ASSERT(pio->io_gang_tree == NULL); 2305 2306 pio->io_flags = pio->io_orig_flags; 2307 pio->io_stage = pio->io_orig_stage; 2308 pio->io_pipeline = pio->io_orig_pipeline; 2309 pio->io_reexecute = 0; 2310 pio->io_flags |= ZIO_FLAG_REEXECUTED; 2311 pio->io_pipeline_trace = 0; 2312 pio->io_error = 0; 2313 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 2314 pio->io_state[w] = 0; 2315 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 2316 pio->io_child_error[c] = 0; 2317 2318 if (IO_IS_ALLOCATING(pio)) 2319 BP_ZERO(pio->io_bp); 2320 2321 /* 2322 * As we reexecute pio's children, new children could be created. 2323 * New children go to the head of pio's io_child_list, however, 2324 * so we will (correctly) not reexecute them. The key is that 2325 * the remainder of pio's io_child_list, from 'cio_next' onward, 2326 * cannot be affected by any side effects of reexecuting 'cio'. 2327 */ 2328 zio_link_t *zl = NULL; 2329 mutex_enter(&pio->io_lock); 2330 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 2331 cio_next = zio_walk_children(pio, &zl); 2332 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 2333 pio->io_children[cio->io_child_type][w]++; 2334 mutex_exit(&pio->io_lock); 2335 zio_reexecute(cio); 2336 mutex_enter(&pio->io_lock); 2337 } 2338 mutex_exit(&pio->io_lock); 2339 2340 /* 2341 * Now that all children have been reexecuted, execute the parent. 2342 * We don't reexecute "The Godfather" I/O here as it's the 2343 * responsibility of the caller to wait on it. 2344 */ 2345 if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) { 2346 pio->io_queued_timestamp = gethrtime(); 2347 __zio_execute(pio); 2348 } 2349 } 2350 2351 void 2352 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason) 2353 { 2354 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC) 2355 fm_panic("Pool '%s' has encountered an uncorrectable I/O " 2356 "failure and the failure mode property for this pool " 2357 "is set to panic.", spa_name(spa)); 2358 2359 cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable I/O " 2360 "failure and has been suspended.\n", spa_name(spa)); 2361 2362 (void) zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, 2363 NULL, NULL, 0); 2364 2365 mutex_enter(&spa->spa_suspend_lock); 2366 2367 if (spa->spa_suspend_zio_root == NULL) 2368 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL, 2369 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 2370 ZIO_FLAG_GODFATHER); 2371 2372 spa->spa_suspended = reason; 2373 2374 if (zio != NULL) { 2375 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 2376 ASSERT(zio != spa->spa_suspend_zio_root); 2377 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2378 ASSERT(zio_unique_parent(zio) == NULL); 2379 ASSERT(zio->io_stage == ZIO_STAGE_DONE); 2380 zio_add_child(spa->spa_suspend_zio_root, zio); 2381 } 2382 2383 mutex_exit(&spa->spa_suspend_lock); 2384 } 2385 2386 int 2387 zio_resume(spa_t *spa) 2388 { 2389 zio_t *pio; 2390 2391 /* 2392 * Reexecute all previously suspended i/o. 2393 */ 2394 mutex_enter(&spa->spa_suspend_lock); 2395 spa->spa_suspended = ZIO_SUSPEND_NONE; 2396 cv_broadcast(&spa->spa_suspend_cv); 2397 pio = spa->spa_suspend_zio_root; 2398 spa->spa_suspend_zio_root = NULL; 2399 mutex_exit(&spa->spa_suspend_lock); 2400 2401 if (pio == NULL) 2402 return (0); 2403 2404 zio_reexecute(pio); 2405 return (zio_wait(pio)); 2406 } 2407 2408 void 2409 zio_resume_wait(spa_t *spa) 2410 { 2411 mutex_enter(&spa->spa_suspend_lock); 2412 while (spa_suspended(spa)) 2413 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock); 2414 mutex_exit(&spa->spa_suspend_lock); 2415 } 2416 2417 /* 2418 * ========================================================================== 2419 * Gang blocks. 2420 * 2421 * A gang block is a collection of small blocks that looks to the DMU 2422 * like one large block. When zio_dva_allocate() cannot find a block 2423 * of the requested size, due to either severe fragmentation or the pool 2424 * being nearly full, it calls zio_write_gang_block() to construct the 2425 * block from smaller fragments. 2426 * 2427 * A gang block consists of a gang header (zio_gbh_phys_t) and up to 2428 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like 2429 * an indirect block: it's an array of block pointers. It consumes 2430 * only one sector and hence is allocatable regardless of fragmentation. 2431 * The gang header's bps point to its gang members, which hold the data. 2432 * 2433 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg> 2434 * as the verifier to ensure uniqueness of the SHA256 checksum. 2435 * Critically, the gang block bp's blk_cksum is the checksum of the data, 2436 * not the gang header. This ensures that data block signatures (needed for 2437 * deduplication) are independent of how the block is physically stored. 2438 * 2439 * Gang blocks can be nested: a gang member may itself be a gang block. 2440 * Thus every gang block is a tree in which root and all interior nodes are 2441 * gang headers, and the leaves are normal blocks that contain user data. 2442 * The root of the gang tree is called the gang leader. 2443 * 2444 * To perform any operation (read, rewrite, free, claim) on a gang block, 2445 * zio_gang_assemble() first assembles the gang tree (minus data leaves) 2446 * in the io_gang_tree field of the original logical i/o by recursively 2447 * reading the gang leader and all gang headers below it. This yields 2448 * an in-core tree containing the contents of every gang header and the 2449 * bps for every constituent of the gang block. 2450 * 2451 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree 2452 * and invokes a callback on each bp. To free a gang block, zio_gang_issue() 2453 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp. 2454 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim(). 2455 * zio_read_gang() is a wrapper around zio_read() that omits reading gang 2456 * headers, since we already have those in io_gang_tree. zio_rewrite_gang() 2457 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite() 2458 * of the gang header plus zio_checksum_compute() of the data to update the 2459 * gang header's blk_cksum as described above. 2460 * 2461 * The two-phase assemble/issue model solves the problem of partial failure -- 2462 * what if you'd freed part of a gang block but then couldn't read the 2463 * gang header for another part? Assembling the entire gang tree first 2464 * ensures that all the necessary gang header I/O has succeeded before 2465 * starting the actual work of free, claim, or write. Once the gang tree 2466 * is assembled, free and claim are in-memory operations that cannot fail. 2467 * 2468 * In the event that a gang write fails, zio_dva_unallocate() walks the 2469 * gang tree to immediately free (i.e. insert back into the space map) 2470 * everything we've allocated. This ensures that we don't get ENOSPC 2471 * errors during repeated suspend/resume cycles due to a flaky device. 2472 * 2473 * Gang rewrites only happen during sync-to-convergence. If we can't assemble 2474 * the gang tree, we won't modify the block, so we can safely defer the free 2475 * (knowing that the block is still intact). If we *can* assemble the gang 2476 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free 2477 * each constituent bp and we can allocate a new block on the next sync pass. 2478 * 2479 * In all cases, the gang tree allows complete recovery from partial failure. 2480 * ========================================================================== 2481 */ 2482 2483 static void 2484 zio_gang_issue_func_done(zio_t *zio) 2485 { 2486 abd_put(zio->io_abd); 2487 } 2488 2489 static zio_t * 2490 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2491 uint64_t offset) 2492 { 2493 if (gn != NULL) 2494 return (pio); 2495 2496 return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset), 2497 BP_GET_PSIZE(bp), zio_gang_issue_func_done, 2498 NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 2499 &pio->io_bookmark)); 2500 } 2501 2502 static zio_t * 2503 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2504 uint64_t offset) 2505 { 2506 zio_t *zio; 2507 2508 if (gn != NULL) { 2509 abd_t *gbh_abd = 2510 abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2511 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 2512 gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL, 2513 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 2514 &pio->io_bookmark); 2515 /* 2516 * As we rewrite each gang header, the pipeline will compute 2517 * a new gang block header checksum for it; but no one will 2518 * compute a new data checksum, so we do that here. The one 2519 * exception is the gang leader: the pipeline already computed 2520 * its data checksum because that stage precedes gang assembly. 2521 * (Presently, nothing actually uses interior data checksums; 2522 * this is just good hygiene.) 2523 */ 2524 if (gn != pio->io_gang_leader->io_gang_tree) { 2525 abd_t *buf = abd_get_offset(data, offset); 2526 2527 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp), 2528 buf, BP_GET_PSIZE(bp)); 2529 2530 abd_put(buf); 2531 } 2532 /* 2533 * If we are here to damage data for testing purposes, 2534 * leave the GBH alone so that we can detect the damage. 2535 */ 2536 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE) 2537 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 2538 } else { 2539 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 2540 abd_get_offset(data, offset), BP_GET_PSIZE(bp), 2541 zio_gang_issue_func_done, NULL, pio->io_priority, 2542 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2543 } 2544 2545 return (zio); 2546 } 2547 2548 /* ARGSUSED */ 2549 static zio_t * 2550 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2551 uint64_t offset) 2552 { 2553 zio_t *zio = zio_free_sync(pio, pio->io_spa, pio->io_txg, bp, 2554 ZIO_GANG_CHILD_FLAGS(pio)); 2555 if (zio == NULL) { 2556 zio = zio_null(pio, pio->io_spa, 2557 NULL, NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)); 2558 } 2559 return (zio); 2560 } 2561 2562 /* ARGSUSED */ 2563 static zio_t * 2564 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2565 uint64_t offset) 2566 { 2567 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp, 2568 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio))); 2569 } 2570 2571 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = { 2572 NULL, 2573 zio_read_gang, 2574 zio_rewrite_gang, 2575 zio_free_gang, 2576 zio_claim_gang, 2577 NULL 2578 }; 2579 2580 static void zio_gang_tree_assemble_done(zio_t *zio); 2581 2582 static zio_gang_node_t * 2583 zio_gang_node_alloc(zio_gang_node_t **gnpp) 2584 { 2585 zio_gang_node_t *gn; 2586 2587 ASSERT(*gnpp == NULL); 2588 2589 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP); 2590 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE); 2591 *gnpp = gn; 2592 2593 return (gn); 2594 } 2595 2596 static void 2597 zio_gang_node_free(zio_gang_node_t **gnpp) 2598 { 2599 zio_gang_node_t *gn = *gnpp; 2600 2601 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 2602 ASSERT(gn->gn_child[g] == NULL); 2603 2604 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2605 kmem_free(gn, sizeof (*gn)); 2606 *gnpp = NULL; 2607 } 2608 2609 static void 2610 zio_gang_tree_free(zio_gang_node_t **gnpp) 2611 { 2612 zio_gang_node_t *gn = *gnpp; 2613 2614 if (gn == NULL) 2615 return; 2616 2617 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 2618 zio_gang_tree_free(&gn->gn_child[g]); 2619 2620 zio_gang_node_free(gnpp); 2621 } 2622 2623 static void 2624 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp) 2625 { 2626 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp); 2627 abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2628 2629 ASSERT(gio->io_gang_leader == gio); 2630 ASSERT(BP_IS_GANG(bp)); 2631 2632 zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE, 2633 zio_gang_tree_assemble_done, gn, gio->io_priority, 2634 ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark)); 2635 } 2636 2637 static void 2638 zio_gang_tree_assemble_done(zio_t *zio) 2639 { 2640 zio_t *gio = zio->io_gang_leader; 2641 zio_gang_node_t *gn = zio->io_private; 2642 blkptr_t *bp = zio->io_bp; 2643 2644 ASSERT(gio == zio_unique_parent(zio)); 2645 ASSERT(zio->io_child_count == 0); 2646 2647 if (zio->io_error) 2648 return; 2649 2650 /* this ABD was created from a linear buf in zio_gang_tree_assemble */ 2651 if (BP_SHOULD_BYTESWAP(bp)) 2652 byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size); 2653 2654 ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh); 2655 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE); 2656 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 2657 2658 abd_put(zio->io_abd); 2659 2660 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2661 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 2662 if (!BP_IS_GANG(gbp)) 2663 continue; 2664 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]); 2665 } 2666 } 2667 2668 static void 2669 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data, 2670 uint64_t offset) 2671 { 2672 zio_t *gio = pio->io_gang_leader; 2673 zio_t *zio; 2674 2675 ASSERT(BP_IS_GANG(bp) == !!gn); 2676 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp)); 2677 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree); 2678 2679 /* 2680 * If you're a gang header, your data is in gn->gn_gbh. 2681 * If you're a gang member, your data is in 'data' and gn == NULL. 2682 */ 2683 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset); 2684 2685 if (gn != NULL) { 2686 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 2687 2688 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2689 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 2690 if (BP_IS_HOLE(gbp)) 2691 continue; 2692 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data, 2693 offset); 2694 offset += BP_GET_PSIZE(gbp); 2695 } 2696 } 2697 2698 if (gn == gio->io_gang_tree) 2699 ASSERT3U(gio->io_size, ==, offset); 2700 2701 if (zio != pio) 2702 zio_nowait(zio); 2703 } 2704 2705 static zio_t * 2706 zio_gang_assemble(zio_t *zio) 2707 { 2708 blkptr_t *bp = zio->io_bp; 2709 2710 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL); 2711 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2712 2713 zio->io_gang_leader = zio; 2714 2715 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree); 2716 2717 return (zio); 2718 } 2719 2720 static zio_t * 2721 zio_gang_issue(zio_t *zio) 2722 { 2723 blkptr_t *bp = zio->io_bp; 2724 2725 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) { 2726 return (NULL); 2727 } 2728 2729 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio); 2730 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2731 2732 if (zio->io_child_error[ZIO_CHILD_GANG] == 0) 2733 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd, 2734 0); 2735 else 2736 zio_gang_tree_free(&zio->io_gang_tree); 2737 2738 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2739 2740 return (zio); 2741 } 2742 2743 static void 2744 zio_write_gang_member_ready(zio_t *zio) 2745 { 2746 zio_t *pio = zio_unique_parent(zio); 2747 dva_t *cdva = zio->io_bp->blk_dva; 2748 dva_t *pdva = pio->io_bp->blk_dva; 2749 uint64_t asize; 2750 zio_t *gio __maybe_unused = zio->io_gang_leader; 2751 2752 if (BP_IS_HOLE(zio->io_bp)) 2753 return; 2754 2755 ASSERT(BP_IS_HOLE(&zio->io_bp_orig)); 2756 2757 ASSERT(zio->io_child_type == ZIO_CHILD_GANG); 2758 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies); 2759 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp)); 2760 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp)); 2761 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp)); 2762 2763 mutex_enter(&pio->io_lock); 2764 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) { 2765 ASSERT(DVA_GET_GANG(&pdva[d])); 2766 asize = DVA_GET_ASIZE(&pdva[d]); 2767 asize += DVA_GET_ASIZE(&cdva[d]); 2768 DVA_SET_ASIZE(&pdva[d], asize); 2769 } 2770 mutex_exit(&pio->io_lock); 2771 } 2772 2773 static void 2774 zio_write_gang_done(zio_t *zio) 2775 { 2776 /* 2777 * The io_abd field will be NULL for a zio with no data. The io_flags 2778 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't 2779 * check for it here as it is cleared in zio_ready. 2780 */ 2781 if (zio->io_abd != NULL) 2782 abd_put(zio->io_abd); 2783 } 2784 2785 static zio_t * 2786 zio_write_gang_block(zio_t *pio) 2787 { 2788 spa_t *spa = pio->io_spa; 2789 metaslab_class_t *mc = spa_normal_class(spa); 2790 blkptr_t *bp = pio->io_bp; 2791 zio_t *gio = pio->io_gang_leader; 2792 zio_t *zio; 2793 zio_gang_node_t *gn, **gnpp; 2794 zio_gbh_phys_t *gbh; 2795 abd_t *gbh_abd; 2796 uint64_t txg = pio->io_txg; 2797 uint64_t resid = pio->io_size; 2798 uint64_t lsize; 2799 int copies = gio->io_prop.zp_copies; 2800 int gbh_copies; 2801 zio_prop_t zp; 2802 int error; 2803 boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA); 2804 2805 /* 2806 * encrypted blocks need DVA[2] free so encrypted gang headers can't 2807 * have a third copy. 2808 */ 2809 gbh_copies = MIN(copies + 1, spa_max_replication(spa)); 2810 if (gio->io_prop.zp_encrypt && gbh_copies >= SPA_DVAS_PER_BP) 2811 gbh_copies = SPA_DVAS_PER_BP - 1; 2812 2813 int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER; 2814 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2815 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2816 ASSERT(has_data); 2817 2818 flags |= METASLAB_ASYNC_ALLOC; 2819 VERIFY(zfs_refcount_held(&mc->mc_alloc_slots[pio->io_allocator], 2820 pio)); 2821 2822 /* 2823 * The logical zio has already placed a reservation for 2824 * 'copies' allocation slots but gang blocks may require 2825 * additional copies. These additional copies 2826 * (i.e. gbh_copies - copies) are guaranteed to succeed 2827 * since metaslab_class_throttle_reserve() always allows 2828 * additional reservations for gang blocks. 2829 */ 2830 VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies, 2831 pio->io_allocator, pio, flags)); 2832 } 2833 2834 error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE, 2835 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags, 2836 &pio->io_alloc_list, pio, pio->io_allocator); 2837 if (error) { 2838 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2839 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2840 ASSERT(has_data); 2841 2842 /* 2843 * If we failed to allocate the gang block header then 2844 * we remove any additional allocation reservations that 2845 * we placed here. The original reservation will 2846 * be removed when the logical I/O goes to the ready 2847 * stage. 2848 */ 2849 metaslab_class_throttle_unreserve(mc, 2850 gbh_copies - copies, pio->io_allocator, pio); 2851 } 2852 2853 pio->io_error = error; 2854 return (pio); 2855 } 2856 2857 if (pio == gio) { 2858 gnpp = &gio->io_gang_tree; 2859 } else { 2860 gnpp = pio->io_private; 2861 ASSERT(pio->io_ready == zio_write_gang_member_ready); 2862 } 2863 2864 gn = zio_gang_node_alloc(gnpp); 2865 gbh = gn->gn_gbh; 2866 bzero(gbh, SPA_GANGBLOCKSIZE); 2867 gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE); 2868 2869 /* 2870 * Create the gang header. 2871 */ 2872 zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE, 2873 zio_write_gang_done, NULL, pio->io_priority, 2874 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2875 2876 /* 2877 * Create and nowait the gang children. 2878 */ 2879 for (int g = 0; resid != 0; resid -= lsize, g++) { 2880 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g), 2881 SPA_MINBLOCKSIZE); 2882 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid); 2883 2884 zp.zp_checksum = gio->io_prop.zp_checksum; 2885 zp.zp_compress = ZIO_COMPRESS_OFF; 2886 zp.zp_complevel = gio->io_prop.zp_complevel; 2887 zp.zp_type = DMU_OT_NONE; 2888 zp.zp_level = 0; 2889 zp.zp_copies = gio->io_prop.zp_copies; 2890 zp.zp_dedup = B_FALSE; 2891 zp.zp_dedup_verify = B_FALSE; 2892 zp.zp_nopwrite = B_FALSE; 2893 zp.zp_encrypt = gio->io_prop.zp_encrypt; 2894 zp.zp_byteorder = gio->io_prop.zp_byteorder; 2895 bzero(zp.zp_salt, ZIO_DATA_SALT_LEN); 2896 bzero(zp.zp_iv, ZIO_DATA_IV_LEN); 2897 bzero(zp.zp_mac, ZIO_DATA_MAC_LEN); 2898 2899 zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g], 2900 has_data ? abd_get_offset(pio->io_abd, pio->io_size - 2901 resid) : NULL, lsize, lsize, &zp, 2902 zio_write_gang_member_ready, NULL, NULL, 2903 zio_write_gang_done, &gn->gn_child[g], pio->io_priority, 2904 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2905 2906 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2907 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2908 ASSERT(has_data); 2909 2910 /* 2911 * Gang children won't throttle but we should 2912 * account for their work, so reserve an allocation 2913 * slot for them here. 2914 */ 2915 VERIFY(metaslab_class_throttle_reserve(mc, 2916 zp.zp_copies, cio->io_allocator, cio, flags)); 2917 } 2918 zio_nowait(cio); 2919 } 2920 2921 /* 2922 * Set pio's pipeline to just wait for zio to finish. 2923 */ 2924 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2925 2926 /* 2927 * We didn't allocate this bp, so make sure it doesn't get unmarked. 2928 */ 2929 pio->io_flags &= ~ZIO_FLAG_FASTWRITE; 2930 2931 zio_nowait(zio); 2932 2933 return (pio); 2934 } 2935 2936 /* 2937 * The zio_nop_write stage in the pipeline determines if allocating a 2938 * new bp is necessary. The nopwrite feature can handle writes in 2939 * either syncing or open context (i.e. zil writes) and as a result is 2940 * mutually exclusive with dedup. 2941 * 2942 * By leveraging a cryptographically secure checksum, such as SHA256, we 2943 * can compare the checksums of the new data and the old to determine if 2944 * allocating a new block is required. Note that our requirements for 2945 * cryptographic strength are fairly weak: there can't be any accidental 2946 * hash collisions, but we don't need to be secure against intentional 2947 * (malicious) collisions. To trigger a nopwrite, you have to be able 2948 * to write the file to begin with, and triggering an incorrect (hash 2949 * collision) nopwrite is no worse than simply writing to the file. 2950 * That said, there are no known attacks against the checksum algorithms 2951 * used for nopwrite, assuming that the salt and the checksums 2952 * themselves remain secret. 2953 */ 2954 static zio_t * 2955 zio_nop_write(zio_t *zio) 2956 { 2957 blkptr_t *bp = zio->io_bp; 2958 blkptr_t *bp_orig = &zio->io_bp_orig; 2959 zio_prop_t *zp = &zio->io_prop; 2960 2961 ASSERT(BP_GET_LEVEL(bp) == 0); 2962 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 2963 ASSERT(zp->zp_nopwrite); 2964 ASSERT(!zp->zp_dedup); 2965 ASSERT(zio->io_bp_override == NULL); 2966 ASSERT(IO_IS_ALLOCATING(zio)); 2967 2968 /* 2969 * Check to see if the original bp and the new bp have matching 2970 * characteristics (i.e. same checksum, compression algorithms, etc). 2971 * If they don't then just continue with the pipeline which will 2972 * allocate a new bp. 2973 */ 2974 if (BP_IS_HOLE(bp_orig) || 2975 !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags & 2976 ZCHECKSUM_FLAG_NOPWRITE) || 2977 BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) || 2978 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) || 2979 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) || 2980 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) || 2981 zp->zp_copies != BP_GET_NDVAS(bp_orig)) 2982 return (zio); 2983 2984 /* 2985 * If the checksums match then reset the pipeline so that we 2986 * avoid allocating a new bp and issuing any I/O. 2987 */ 2988 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) { 2989 ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags & 2990 ZCHECKSUM_FLAG_NOPWRITE); 2991 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig)); 2992 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig)); 2993 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF); 2994 ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop, 2995 sizeof (uint64_t)) == 0); 2996 2997 /* 2998 * If we're overwriting a block that is currently on an 2999 * indirect vdev, then ignore the nopwrite request and 3000 * allow a new block to be allocated on a concrete vdev. 3001 */ 3002 spa_config_enter(zio->io_spa, SCL_VDEV, FTAG, RW_READER); 3003 vdev_t *tvd = vdev_lookup_top(zio->io_spa, 3004 DVA_GET_VDEV(&bp->blk_dva[0])); 3005 if (tvd->vdev_ops == &vdev_indirect_ops) { 3006 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG); 3007 return (zio); 3008 } 3009 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG); 3010 3011 *bp = *bp_orig; 3012 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 3013 zio->io_flags |= ZIO_FLAG_NOPWRITE; 3014 } 3015 3016 return (zio); 3017 } 3018 3019 /* 3020 * ========================================================================== 3021 * Dedup 3022 * ========================================================================== 3023 */ 3024 static void 3025 zio_ddt_child_read_done(zio_t *zio) 3026 { 3027 blkptr_t *bp = zio->io_bp; 3028 ddt_entry_t *dde = zio->io_private; 3029 ddt_phys_t *ddp; 3030 zio_t *pio = zio_unique_parent(zio); 3031 3032 mutex_enter(&pio->io_lock); 3033 ddp = ddt_phys_select(dde, bp); 3034 if (zio->io_error == 0) 3035 ddt_phys_clear(ddp); /* this ddp doesn't need repair */ 3036 3037 if (zio->io_error == 0 && dde->dde_repair_abd == NULL) 3038 dde->dde_repair_abd = zio->io_abd; 3039 else 3040 abd_free(zio->io_abd); 3041 mutex_exit(&pio->io_lock); 3042 } 3043 3044 static zio_t * 3045 zio_ddt_read_start(zio_t *zio) 3046 { 3047 blkptr_t *bp = zio->io_bp; 3048 3049 ASSERT(BP_GET_DEDUP(bp)); 3050 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 3051 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3052 3053 if (zio->io_child_error[ZIO_CHILD_DDT]) { 3054 ddt_t *ddt = ddt_select(zio->io_spa, bp); 3055 ddt_entry_t *dde = ddt_repair_start(ddt, bp); 3056 ddt_phys_t *ddp = dde->dde_phys; 3057 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp); 3058 blkptr_t blk; 3059 3060 ASSERT(zio->io_vsd == NULL); 3061 zio->io_vsd = dde; 3062 3063 if (ddp_self == NULL) 3064 return (zio); 3065 3066 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 3067 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self) 3068 continue; 3069 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp, 3070 &blk); 3071 zio_nowait(zio_read(zio, zio->io_spa, &blk, 3072 abd_alloc_for_io(zio->io_size, B_TRUE), 3073 zio->io_size, zio_ddt_child_read_done, dde, 3074 zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) | 3075 ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark)); 3076 } 3077 return (zio); 3078 } 3079 3080 zio_nowait(zio_read(zio, zio->io_spa, bp, 3081 zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority, 3082 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark)); 3083 3084 return (zio); 3085 } 3086 3087 static zio_t * 3088 zio_ddt_read_done(zio_t *zio) 3089 { 3090 blkptr_t *bp = zio->io_bp; 3091 3092 if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) { 3093 return (NULL); 3094 } 3095 3096 ASSERT(BP_GET_DEDUP(bp)); 3097 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 3098 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3099 3100 if (zio->io_child_error[ZIO_CHILD_DDT]) { 3101 ddt_t *ddt = ddt_select(zio->io_spa, bp); 3102 ddt_entry_t *dde = zio->io_vsd; 3103 if (ddt == NULL) { 3104 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE); 3105 return (zio); 3106 } 3107 if (dde == NULL) { 3108 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1; 3109 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 3110 return (NULL); 3111 } 3112 if (dde->dde_repair_abd != NULL) { 3113 abd_copy(zio->io_abd, dde->dde_repair_abd, 3114 zio->io_size); 3115 zio->io_child_error[ZIO_CHILD_DDT] = 0; 3116 } 3117 ddt_repair_done(ddt, dde); 3118 zio->io_vsd = NULL; 3119 } 3120 3121 ASSERT(zio->io_vsd == NULL); 3122 3123 return (zio); 3124 } 3125 3126 static boolean_t 3127 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde) 3128 { 3129 spa_t *spa = zio->io_spa; 3130 boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW); 3131 3132 ASSERT(!(zio->io_bp_override && do_raw)); 3133 3134 /* 3135 * Note: we compare the original data, not the transformed data, 3136 * because when zio->io_bp is an override bp, we will not have 3137 * pushed the I/O transforms. That's an important optimization 3138 * because otherwise we'd compress/encrypt all dmu_sync() data twice. 3139 * However, we should never get a raw, override zio so in these 3140 * cases we can compare the io_abd directly. This is useful because 3141 * it allows us to do dedup verification even if we don't have access 3142 * to the original data (for instance, if the encryption keys aren't 3143 * loaded). 3144 */ 3145 3146 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 3147 zio_t *lio = dde->dde_lead_zio[p]; 3148 3149 if (lio != NULL && do_raw) { 3150 return (lio->io_size != zio->io_size || 3151 abd_cmp(zio->io_abd, lio->io_abd) != 0); 3152 } else if (lio != NULL) { 3153 return (lio->io_orig_size != zio->io_orig_size || 3154 abd_cmp(zio->io_orig_abd, lio->io_orig_abd) != 0); 3155 } 3156 } 3157 3158 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 3159 ddt_phys_t *ddp = &dde->dde_phys[p]; 3160 3161 if (ddp->ddp_phys_birth != 0 && do_raw) { 3162 blkptr_t blk = *zio->io_bp; 3163 uint64_t psize; 3164 abd_t *tmpabd; 3165 int error; 3166 3167 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth); 3168 psize = BP_GET_PSIZE(&blk); 3169 3170 if (psize != zio->io_size) 3171 return (B_TRUE); 3172 3173 ddt_exit(ddt); 3174 3175 tmpabd = abd_alloc_for_io(psize, B_TRUE); 3176 3177 error = zio_wait(zio_read(NULL, spa, &blk, tmpabd, 3178 psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ, 3179 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 3180 ZIO_FLAG_RAW, &zio->io_bookmark)); 3181 3182 if (error == 0) { 3183 if (abd_cmp(tmpabd, zio->io_abd) != 0) 3184 error = SET_ERROR(ENOENT); 3185 } 3186 3187 abd_free(tmpabd); 3188 ddt_enter(ddt); 3189 return (error != 0); 3190 } else if (ddp->ddp_phys_birth != 0) { 3191 arc_buf_t *abuf = NULL; 3192 arc_flags_t aflags = ARC_FLAG_WAIT; 3193 blkptr_t blk = *zio->io_bp; 3194 int error; 3195 3196 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth); 3197 3198 if (BP_GET_LSIZE(&blk) != zio->io_orig_size) 3199 return (B_TRUE); 3200 3201 ddt_exit(ddt); 3202 3203 error = arc_read(NULL, spa, &blk, 3204 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ, 3205 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 3206 &aflags, &zio->io_bookmark); 3207 3208 if (error == 0) { 3209 if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data, 3210 zio->io_orig_size) != 0) 3211 error = SET_ERROR(ENOENT); 3212 arc_buf_destroy(abuf, &abuf); 3213 } 3214 3215 ddt_enter(ddt); 3216 return (error != 0); 3217 } 3218 } 3219 3220 return (B_FALSE); 3221 } 3222 3223 static void 3224 zio_ddt_child_write_ready(zio_t *zio) 3225 { 3226 int p = zio->io_prop.zp_copies; 3227 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 3228 ddt_entry_t *dde = zio->io_private; 3229 ddt_phys_t *ddp = &dde->dde_phys[p]; 3230 zio_t *pio; 3231 3232 if (zio->io_error) 3233 return; 3234 3235 ddt_enter(ddt); 3236 3237 ASSERT(dde->dde_lead_zio[p] == zio); 3238 3239 ddt_phys_fill(ddp, zio->io_bp); 3240 3241 zio_link_t *zl = NULL; 3242 while ((pio = zio_walk_parents(zio, &zl)) != NULL) 3243 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg); 3244 3245 ddt_exit(ddt); 3246 } 3247 3248 static void 3249 zio_ddt_child_write_done(zio_t *zio) 3250 { 3251 int p = zio->io_prop.zp_copies; 3252 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 3253 ddt_entry_t *dde = zio->io_private; 3254 ddt_phys_t *ddp = &dde->dde_phys[p]; 3255 3256 ddt_enter(ddt); 3257 3258 ASSERT(ddp->ddp_refcnt == 0); 3259 ASSERT(dde->dde_lead_zio[p] == zio); 3260 dde->dde_lead_zio[p] = NULL; 3261 3262 if (zio->io_error == 0) { 3263 zio_link_t *zl = NULL; 3264 while (zio_walk_parents(zio, &zl) != NULL) 3265 ddt_phys_addref(ddp); 3266 } else { 3267 ddt_phys_clear(ddp); 3268 } 3269 3270 ddt_exit(ddt); 3271 } 3272 3273 static zio_t * 3274 zio_ddt_write(zio_t *zio) 3275 { 3276 spa_t *spa = zio->io_spa; 3277 blkptr_t *bp = zio->io_bp; 3278 uint64_t txg = zio->io_txg; 3279 zio_prop_t *zp = &zio->io_prop; 3280 int p = zp->zp_copies; 3281 zio_t *cio = NULL; 3282 ddt_t *ddt = ddt_select(spa, bp); 3283 ddt_entry_t *dde; 3284 ddt_phys_t *ddp; 3285 3286 ASSERT(BP_GET_DEDUP(bp)); 3287 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum); 3288 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override); 3289 ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW))); 3290 3291 ddt_enter(ddt); 3292 dde = ddt_lookup(ddt, bp, B_TRUE); 3293 ddp = &dde->dde_phys[p]; 3294 3295 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) { 3296 /* 3297 * If we're using a weak checksum, upgrade to a strong checksum 3298 * and try again. If we're already using a strong checksum, 3299 * we can't resolve it, so just convert to an ordinary write. 3300 * (And automatically e-mail a paper to Nature?) 3301 */ 3302 if (!(zio_checksum_table[zp->zp_checksum].ci_flags & 3303 ZCHECKSUM_FLAG_DEDUP)) { 3304 zp->zp_checksum = spa_dedup_checksum(spa); 3305 zio_pop_transforms(zio); 3306 zio->io_stage = ZIO_STAGE_OPEN; 3307 BP_ZERO(bp); 3308 } else { 3309 zp->zp_dedup = B_FALSE; 3310 BP_SET_DEDUP(bp, B_FALSE); 3311 } 3312 ASSERT(!BP_GET_DEDUP(bp)); 3313 zio->io_pipeline = ZIO_WRITE_PIPELINE; 3314 ddt_exit(ddt); 3315 return (zio); 3316 } 3317 3318 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) { 3319 if (ddp->ddp_phys_birth != 0) 3320 ddt_bp_fill(ddp, bp, txg); 3321 if (dde->dde_lead_zio[p] != NULL) 3322 zio_add_child(zio, dde->dde_lead_zio[p]); 3323 else 3324 ddt_phys_addref(ddp); 3325 } else if (zio->io_bp_override) { 3326 ASSERT(bp->blk_birth == txg); 3327 ASSERT(BP_EQUAL(bp, zio->io_bp_override)); 3328 ddt_phys_fill(ddp, bp); 3329 ddt_phys_addref(ddp); 3330 } else { 3331 cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd, 3332 zio->io_orig_size, zio->io_orig_size, zp, 3333 zio_ddt_child_write_ready, NULL, NULL, 3334 zio_ddt_child_write_done, dde, zio->io_priority, 3335 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark); 3336 3337 zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL); 3338 dde->dde_lead_zio[p] = cio; 3339 } 3340 3341 ddt_exit(ddt); 3342 3343 zio_nowait(cio); 3344 3345 return (zio); 3346 } 3347 3348 ddt_entry_t *freedde; /* for debugging */ 3349 3350 static zio_t * 3351 zio_ddt_free(zio_t *zio) 3352 { 3353 spa_t *spa = zio->io_spa; 3354 blkptr_t *bp = zio->io_bp; 3355 ddt_t *ddt = ddt_select(spa, bp); 3356 ddt_entry_t *dde; 3357 ddt_phys_t *ddp; 3358 3359 ASSERT(BP_GET_DEDUP(bp)); 3360 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3361 3362 ddt_enter(ddt); 3363 freedde = dde = ddt_lookup(ddt, bp, B_TRUE); 3364 if (dde) { 3365 ddp = ddt_phys_select(dde, bp); 3366 if (ddp) 3367 ddt_phys_decref(ddp); 3368 } 3369 ddt_exit(ddt); 3370 3371 return (zio); 3372 } 3373 3374 /* 3375 * ========================================================================== 3376 * Allocate and free blocks 3377 * ========================================================================== 3378 */ 3379 3380 static zio_t * 3381 zio_io_to_allocate(spa_t *spa, int allocator) 3382 { 3383 zio_t *zio; 3384 3385 ASSERT(MUTEX_HELD(&spa->spa_alloc_locks[allocator])); 3386 3387 zio = avl_first(&spa->spa_alloc_trees[allocator]); 3388 if (zio == NULL) 3389 return (NULL); 3390 3391 ASSERT(IO_IS_ALLOCATING(zio)); 3392 3393 /* 3394 * Try to place a reservation for this zio. If we're unable to 3395 * reserve then we throttle. 3396 */ 3397 ASSERT3U(zio->io_allocator, ==, allocator); 3398 if (!metaslab_class_throttle_reserve(zio->io_metaslab_class, 3399 zio->io_prop.zp_copies, zio->io_allocator, zio, 0)) { 3400 return (NULL); 3401 } 3402 3403 avl_remove(&spa->spa_alloc_trees[allocator], zio); 3404 ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE); 3405 3406 return (zio); 3407 } 3408 3409 static zio_t * 3410 zio_dva_throttle(zio_t *zio) 3411 { 3412 spa_t *spa = zio->io_spa; 3413 zio_t *nio; 3414 metaslab_class_t *mc; 3415 3416 /* locate an appropriate allocation class */ 3417 mc = spa_preferred_class(spa, zio->io_size, zio->io_prop.zp_type, 3418 zio->io_prop.zp_level, zio->io_prop.zp_zpl_smallblk); 3419 3420 if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE || 3421 !mc->mc_alloc_throttle_enabled || 3422 zio->io_child_type == ZIO_CHILD_GANG || 3423 zio->io_flags & ZIO_FLAG_NODATA) { 3424 return (zio); 3425 } 3426 3427 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 3428 3429 ASSERT3U(zio->io_queued_timestamp, >, 0); 3430 ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE); 3431 3432 zbookmark_phys_t *bm = &zio->io_bookmark; 3433 /* 3434 * We want to try to use as many allocators as possible to help improve 3435 * performance, but we also want logically adjacent IOs to be physically 3436 * adjacent to improve sequential read performance. We chunk each object 3437 * into 2^20 block regions, and then hash based on the objset, object, 3438 * level, and region to accomplish both of these goals. 3439 */ 3440 zio->io_allocator = cityhash4(bm->zb_objset, bm->zb_object, 3441 bm->zb_level, bm->zb_blkid >> 20) % spa->spa_alloc_count; 3442 mutex_enter(&spa->spa_alloc_locks[zio->io_allocator]); 3443 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 3444 zio->io_metaslab_class = mc; 3445 avl_add(&spa->spa_alloc_trees[zio->io_allocator], zio); 3446 nio = zio_io_to_allocate(spa, zio->io_allocator); 3447 mutex_exit(&spa->spa_alloc_locks[zio->io_allocator]); 3448 return (nio); 3449 } 3450 3451 static void 3452 zio_allocate_dispatch(spa_t *spa, int allocator) 3453 { 3454 zio_t *zio; 3455 3456 mutex_enter(&spa->spa_alloc_locks[allocator]); 3457 zio = zio_io_to_allocate(spa, allocator); 3458 mutex_exit(&spa->spa_alloc_locks[allocator]); 3459 if (zio == NULL) 3460 return; 3461 3462 ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE); 3463 ASSERT0(zio->io_error); 3464 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE); 3465 } 3466 3467 static zio_t * 3468 zio_dva_allocate(zio_t *zio) 3469 { 3470 spa_t *spa = zio->io_spa; 3471 metaslab_class_t *mc; 3472 blkptr_t *bp = zio->io_bp; 3473 int error; 3474 int flags = 0; 3475 3476 if (zio->io_gang_leader == NULL) { 3477 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 3478 zio->io_gang_leader = zio; 3479 } 3480 3481 ASSERT(BP_IS_HOLE(bp)); 3482 ASSERT0(BP_GET_NDVAS(bp)); 3483 ASSERT3U(zio->io_prop.zp_copies, >, 0); 3484 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa)); 3485 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp)); 3486 3487 flags |= (zio->io_flags & ZIO_FLAG_FASTWRITE) ? METASLAB_FASTWRITE : 0; 3488 if (zio->io_flags & ZIO_FLAG_NODATA) 3489 flags |= METASLAB_DONT_THROTTLE; 3490 if (zio->io_flags & ZIO_FLAG_GANG_CHILD) 3491 flags |= METASLAB_GANG_CHILD; 3492 if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE) 3493 flags |= METASLAB_ASYNC_ALLOC; 3494 3495 /* 3496 * if not already chosen, locate an appropriate allocation class 3497 */ 3498 mc = zio->io_metaslab_class; 3499 if (mc == NULL) { 3500 mc = spa_preferred_class(spa, zio->io_size, 3501 zio->io_prop.zp_type, zio->io_prop.zp_level, 3502 zio->io_prop.zp_zpl_smallblk); 3503 zio->io_metaslab_class = mc; 3504 } 3505 3506 error = metaslab_alloc(spa, mc, zio->io_size, bp, 3507 zio->io_prop.zp_copies, zio->io_txg, NULL, flags, 3508 &zio->io_alloc_list, zio, zio->io_allocator); 3509 3510 /* 3511 * Fallback to normal class when an alloc class is full 3512 */ 3513 if (error == ENOSPC && mc != spa_normal_class(spa)) { 3514 /* 3515 * If throttling, transfer reservation over to normal class. 3516 * The io_allocator slot can remain the same even though we 3517 * are switching classes. 3518 */ 3519 if (mc->mc_alloc_throttle_enabled && 3520 (zio->io_flags & ZIO_FLAG_IO_ALLOCATING)) { 3521 metaslab_class_throttle_unreserve(mc, 3522 zio->io_prop.zp_copies, zio->io_allocator, zio); 3523 zio->io_flags &= ~ZIO_FLAG_IO_ALLOCATING; 3524 3525 mc = spa_normal_class(spa); 3526 VERIFY(metaslab_class_throttle_reserve(mc, 3527 zio->io_prop.zp_copies, zio->io_allocator, zio, 3528 flags | METASLAB_MUST_RESERVE)); 3529 } else { 3530 mc = spa_normal_class(spa); 3531 } 3532 zio->io_metaslab_class = mc; 3533 3534 error = metaslab_alloc(spa, mc, zio->io_size, bp, 3535 zio->io_prop.zp_copies, zio->io_txg, NULL, flags, 3536 &zio->io_alloc_list, zio, zio->io_allocator); 3537 } 3538 3539 if (error != 0) { 3540 zfs_dbgmsg("%s: metaslab allocation failure: zio %px, " 3541 "size %llu, error %d", spa_name(spa), zio, zio->io_size, 3542 error); 3543 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) 3544 return (zio_write_gang_block(zio)); 3545 zio->io_error = error; 3546 } 3547 3548 return (zio); 3549 } 3550 3551 static zio_t * 3552 zio_dva_free(zio_t *zio) 3553 { 3554 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE); 3555 3556 return (zio); 3557 } 3558 3559 static zio_t * 3560 zio_dva_claim(zio_t *zio) 3561 { 3562 int error; 3563 3564 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg); 3565 if (error) 3566 zio->io_error = error; 3567 3568 return (zio); 3569 } 3570 3571 /* 3572 * Undo an allocation. This is used by zio_done() when an I/O fails 3573 * and we want to give back the block we just allocated. 3574 * This handles both normal blocks and gang blocks. 3575 */ 3576 static void 3577 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp) 3578 { 3579 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp)); 3580 ASSERT(zio->io_bp_override == NULL); 3581 3582 if (!BP_IS_HOLE(bp)) 3583 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE); 3584 3585 if (gn != NULL) { 3586 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 3587 zio_dva_unallocate(zio, gn->gn_child[g], 3588 &gn->gn_gbh->zg_blkptr[g]); 3589 } 3590 } 3591 } 3592 3593 /* 3594 * Try to allocate an intent log block. Return 0 on success, errno on failure. 3595 */ 3596 int 3597 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp, 3598 uint64_t size, boolean_t *slog) 3599 { 3600 int error = 1; 3601 zio_alloc_list_t io_alloc_list; 3602 3603 ASSERT(txg > spa_syncing_txg(spa)); 3604 3605 metaslab_trace_init(&io_alloc_list); 3606 3607 /* 3608 * Block pointer fields are useful to metaslabs for stats and debugging. 3609 * Fill in the obvious ones before calling into metaslab_alloc(). 3610 */ 3611 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 3612 BP_SET_PSIZE(new_bp, size); 3613 BP_SET_LEVEL(new_bp, 0); 3614 3615 /* 3616 * When allocating a zil block, we don't have information about 3617 * the final destination of the block except the objset it's part 3618 * of, so we just hash the objset ID to pick the allocator to get 3619 * some parallelism. 3620 */ 3621 error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1, 3622 txg, NULL, METASLAB_FASTWRITE, &io_alloc_list, NULL, 3623 cityhash4(0, 0, 0, os->os_dsl_dataset->ds_object) % 3624 spa->spa_alloc_count); 3625 if (error == 0) { 3626 *slog = TRUE; 3627 } else { 3628 error = metaslab_alloc(spa, spa_normal_class(spa), size, 3629 new_bp, 1, txg, NULL, METASLAB_FASTWRITE, 3630 &io_alloc_list, NULL, cityhash4(0, 0, 0, 3631 os->os_dsl_dataset->ds_object) % spa->spa_alloc_count); 3632 if (error == 0) 3633 *slog = FALSE; 3634 } 3635 metaslab_trace_fini(&io_alloc_list); 3636 3637 if (error == 0) { 3638 BP_SET_LSIZE(new_bp, size); 3639 BP_SET_PSIZE(new_bp, size); 3640 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF); 3641 BP_SET_CHECKSUM(new_bp, 3642 spa_version(spa) >= SPA_VERSION_SLIM_ZIL 3643 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG); 3644 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 3645 BP_SET_LEVEL(new_bp, 0); 3646 BP_SET_DEDUP(new_bp, 0); 3647 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER); 3648 3649 /* 3650 * encrypted blocks will require an IV and salt. We generate 3651 * these now since we will not be rewriting the bp at 3652 * rewrite time. 3653 */ 3654 if (os->os_encrypted) { 3655 uint8_t iv[ZIO_DATA_IV_LEN]; 3656 uint8_t salt[ZIO_DATA_SALT_LEN]; 3657 3658 BP_SET_CRYPT(new_bp, B_TRUE); 3659 VERIFY0(spa_crypt_get_salt(spa, 3660 dmu_objset_id(os), salt)); 3661 VERIFY0(zio_crypt_generate_iv(iv)); 3662 3663 zio_crypt_encode_params_bp(new_bp, salt, iv); 3664 } 3665 } else { 3666 zfs_dbgmsg("%s: zil block allocation failure: " 3667 "size %llu, error %d", spa_name(spa), size, error); 3668 } 3669 3670 return (error); 3671 } 3672 3673 /* 3674 * ========================================================================== 3675 * Read and write to physical devices 3676 * ========================================================================== 3677 */ 3678 3679 /* 3680 * Issue an I/O to the underlying vdev. Typically the issue pipeline 3681 * stops after this stage and will resume upon I/O completion. 3682 * However, there are instances where the vdev layer may need to 3683 * continue the pipeline when an I/O was not issued. Since the I/O 3684 * that was sent to the vdev layer might be different than the one 3685 * currently active in the pipeline (see vdev_queue_io()), we explicitly 3686 * force the underlying vdev layers to call either zio_execute() or 3687 * zio_interrupt() to ensure that the pipeline continues with the correct I/O. 3688 */ 3689 static zio_t * 3690 zio_vdev_io_start(zio_t *zio) 3691 { 3692 vdev_t *vd = zio->io_vd; 3693 uint64_t align; 3694 spa_t *spa = zio->io_spa; 3695 3696 zio->io_delay = 0; 3697 3698 ASSERT(zio->io_error == 0); 3699 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0); 3700 3701 if (vd == NULL) { 3702 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 3703 spa_config_enter(spa, SCL_ZIO, zio, RW_READER); 3704 3705 /* 3706 * The mirror_ops handle multiple DVAs in a single BP. 3707 */ 3708 vdev_mirror_ops.vdev_op_io_start(zio); 3709 return (NULL); 3710 } 3711 3712 ASSERT3P(zio->io_logical, !=, zio); 3713 if (zio->io_type == ZIO_TYPE_WRITE) { 3714 ASSERT(spa->spa_trust_config); 3715 3716 /* 3717 * Note: the code can handle other kinds of writes, 3718 * but we don't expect them. 3719 */ 3720 if (zio->io_vd->vdev_removing) { 3721 ASSERT(zio->io_flags & 3722 (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL | 3723 ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE)); 3724 } 3725 } 3726 3727 align = 1ULL << vd->vdev_top->vdev_ashift; 3728 3729 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) && 3730 P2PHASE(zio->io_size, align) != 0) { 3731 /* Transform logical writes to be a full physical block size. */ 3732 uint64_t asize = P2ROUNDUP(zio->io_size, align); 3733 abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize); 3734 ASSERT(vd == vd->vdev_top); 3735 if (zio->io_type == ZIO_TYPE_WRITE) { 3736 abd_copy(abuf, zio->io_abd, zio->io_size); 3737 abd_zero_off(abuf, zio->io_size, asize - zio->io_size); 3738 } 3739 zio_push_transform(zio, abuf, asize, asize, zio_subblock); 3740 } 3741 3742 /* 3743 * If this is not a physical io, make sure that it is properly aligned 3744 * before proceeding. 3745 */ 3746 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) { 3747 ASSERT0(P2PHASE(zio->io_offset, align)); 3748 ASSERT0(P2PHASE(zio->io_size, align)); 3749 } else { 3750 /* 3751 * For physical writes, we allow 512b aligned writes and assume 3752 * the device will perform a read-modify-write as necessary. 3753 */ 3754 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE)); 3755 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE)); 3756 } 3757 3758 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa)); 3759 3760 /* 3761 * If this is a repair I/O, and there's no self-healing involved -- 3762 * that is, we're just resilvering what we expect to resilver -- 3763 * then don't do the I/O unless zio's txg is actually in vd's DTL. 3764 * This prevents spurious resilvering. 3765 * 3766 * There are a few ways that we can end up creating these spurious 3767 * resilver i/os: 3768 * 3769 * 1. A resilver i/o will be issued if any DVA in the BP has a 3770 * dirty DTL. The mirror code will issue resilver writes to 3771 * each DVA, including the one(s) that are not on vdevs with dirty 3772 * DTLs. 3773 * 3774 * 2. With nested replication, which happens when we have a 3775 * "replacing" or "spare" vdev that's a child of a mirror or raidz. 3776 * For example, given mirror(replacing(A+B), C), it's likely that 3777 * only A is out of date (it's the new device). In this case, we'll 3778 * read from C, then use the data to resilver A+B -- but we don't 3779 * actually want to resilver B, just A. The top-level mirror has no 3780 * way to know this, so instead we just discard unnecessary repairs 3781 * as we work our way down the vdev tree. 3782 * 3783 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc. 3784 * The same logic applies to any form of nested replication: ditto 3785 * + mirror, RAID-Z + replacing, etc. 3786 * 3787 * However, indirect vdevs point off to other vdevs which may have 3788 * DTL's, so we never bypass them. The child i/os on concrete vdevs 3789 * will be properly bypassed instead. 3790 */ 3791 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) && 3792 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) && 3793 zio->io_txg != 0 && /* not a delegated i/o */ 3794 vd->vdev_ops != &vdev_indirect_ops && 3795 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) { 3796 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 3797 zio_vdev_io_bypass(zio); 3798 return (zio); 3799 } 3800 3801 if (vd->vdev_ops->vdev_op_leaf && (zio->io_type == ZIO_TYPE_READ || 3802 zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM)) { 3803 3804 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio)) 3805 return (zio); 3806 3807 if ((zio = vdev_queue_io(zio)) == NULL) 3808 return (NULL); 3809 3810 if (!vdev_accessible(vd, zio)) { 3811 zio->io_error = SET_ERROR(ENXIO); 3812 zio_interrupt(zio); 3813 return (NULL); 3814 } 3815 zio->io_delay = gethrtime(); 3816 } 3817 3818 vd->vdev_ops->vdev_op_io_start(zio); 3819 return (NULL); 3820 } 3821 3822 static zio_t * 3823 zio_vdev_io_done(zio_t *zio) 3824 { 3825 vdev_t *vd = zio->io_vd; 3826 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops; 3827 boolean_t unexpected_error = B_FALSE; 3828 3829 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) { 3830 return (NULL); 3831 } 3832 3833 ASSERT(zio->io_type == ZIO_TYPE_READ || 3834 zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM); 3835 3836 if (zio->io_delay) 3837 zio->io_delay = gethrtime() - zio->io_delay; 3838 3839 if (vd != NULL && vd->vdev_ops->vdev_op_leaf) { 3840 3841 vdev_queue_io_done(zio); 3842 3843 if (zio->io_type == ZIO_TYPE_WRITE) 3844 vdev_cache_write(zio); 3845 3846 if (zio_injection_enabled && zio->io_error == 0) 3847 zio->io_error = zio_handle_device_injections(vd, zio, 3848 EIO, EILSEQ); 3849 3850 if (zio_injection_enabled && zio->io_error == 0) 3851 zio->io_error = zio_handle_label_injection(zio, EIO); 3852 3853 if (zio->io_error && zio->io_type != ZIO_TYPE_TRIM) { 3854 if (!vdev_accessible(vd, zio)) { 3855 zio->io_error = SET_ERROR(ENXIO); 3856 } else { 3857 unexpected_error = B_TRUE; 3858 } 3859 } 3860 } 3861 3862 ops->vdev_op_io_done(zio); 3863 3864 if (unexpected_error) 3865 VERIFY(vdev_probe(vd, zio) == NULL); 3866 3867 return (zio); 3868 } 3869 3870 /* 3871 * This function is used to change the priority of an existing zio that is 3872 * currently in-flight. This is used by the arc to upgrade priority in the 3873 * event that a demand read is made for a block that is currently queued 3874 * as a scrub or async read IO. Otherwise, the high priority read request 3875 * would end up having to wait for the lower priority IO. 3876 */ 3877 void 3878 zio_change_priority(zio_t *pio, zio_priority_t priority) 3879 { 3880 zio_t *cio, *cio_next; 3881 zio_link_t *zl = NULL; 3882 3883 ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 3884 3885 if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) { 3886 vdev_queue_change_io_priority(pio, priority); 3887 } else { 3888 pio->io_priority = priority; 3889 } 3890 3891 mutex_enter(&pio->io_lock); 3892 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 3893 cio_next = zio_walk_children(pio, &zl); 3894 zio_change_priority(cio, priority); 3895 } 3896 mutex_exit(&pio->io_lock); 3897 } 3898 3899 /* 3900 * For non-raidz ZIOs, we can just copy aside the bad data read from the 3901 * disk, and use that to finish the checksum ereport later. 3902 */ 3903 static void 3904 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr, 3905 const abd_t *good_buf) 3906 { 3907 /* no processing needed */ 3908 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE); 3909 } 3910 3911 /*ARGSUSED*/ 3912 void 3913 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored) 3914 { 3915 void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size); 3916 3917 abd_copy(abd, zio->io_abd, zio->io_size); 3918 3919 zcr->zcr_cbinfo = zio->io_size; 3920 zcr->zcr_cbdata = abd; 3921 zcr->zcr_finish = zio_vsd_default_cksum_finish; 3922 zcr->zcr_free = zio_abd_free; 3923 } 3924 3925 static zio_t * 3926 zio_vdev_io_assess(zio_t *zio) 3927 { 3928 vdev_t *vd = zio->io_vd; 3929 3930 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) { 3931 return (NULL); 3932 } 3933 3934 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 3935 spa_config_exit(zio->io_spa, SCL_ZIO, zio); 3936 3937 if (zio->io_vsd != NULL) { 3938 zio->io_vsd_ops->vsd_free(zio); 3939 zio->io_vsd = NULL; 3940 } 3941 3942 if (zio_injection_enabled && zio->io_error == 0) 3943 zio->io_error = zio_handle_fault_injection(zio, EIO); 3944 3945 /* 3946 * If the I/O failed, determine whether we should attempt to retry it. 3947 * 3948 * On retry, we cut in line in the issue queue, since we don't want 3949 * compression/checksumming/etc. work to prevent our (cheap) IO reissue. 3950 */ 3951 if (zio->io_error && vd == NULL && 3952 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) { 3953 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */ 3954 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */ 3955 zio->io_error = 0; 3956 zio->io_flags |= ZIO_FLAG_IO_RETRY | 3957 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE; 3958 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1; 3959 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, 3960 zio_requeue_io_start_cut_in_line); 3961 return (NULL); 3962 } 3963 3964 /* 3965 * If we got an error on a leaf device, convert it to ENXIO 3966 * if the device is not accessible at all. 3967 */ 3968 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf && 3969 !vdev_accessible(vd, zio)) 3970 zio->io_error = SET_ERROR(ENXIO); 3971 3972 /* 3973 * If we can't write to an interior vdev (mirror or RAID-Z), 3974 * set vdev_cant_write so that we stop trying to allocate from it. 3975 */ 3976 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE && 3977 vd != NULL && !vd->vdev_ops->vdev_op_leaf) { 3978 vd->vdev_cant_write = B_TRUE; 3979 } 3980 3981 /* 3982 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future 3983 * attempts will ever succeed. In this case we set a persistent 3984 * boolean flag so that we don't bother with it in the future. 3985 */ 3986 if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) && 3987 zio->io_type == ZIO_TYPE_IOCTL && 3988 zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL) 3989 vd->vdev_nowritecache = B_TRUE; 3990 3991 if (zio->io_error) 3992 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 3993 3994 if (vd != NULL && vd->vdev_ops->vdev_op_leaf && 3995 zio->io_physdone != NULL) { 3996 ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED)); 3997 ASSERT(zio->io_child_type == ZIO_CHILD_VDEV); 3998 zio->io_physdone(zio->io_logical); 3999 } 4000 4001 return (zio); 4002 } 4003 4004 void 4005 zio_vdev_io_reissue(zio_t *zio) 4006 { 4007 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 4008 ASSERT(zio->io_error == 0); 4009 4010 zio->io_stage >>= 1; 4011 } 4012 4013 void 4014 zio_vdev_io_redone(zio_t *zio) 4015 { 4016 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE); 4017 4018 zio->io_stage >>= 1; 4019 } 4020 4021 void 4022 zio_vdev_io_bypass(zio_t *zio) 4023 { 4024 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 4025 ASSERT(zio->io_error == 0); 4026 4027 zio->io_flags |= ZIO_FLAG_IO_BYPASS; 4028 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1; 4029 } 4030 4031 /* 4032 * ========================================================================== 4033 * Encrypt and store encryption parameters 4034 * ========================================================================== 4035 */ 4036 4037 4038 /* 4039 * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for 4040 * managing the storage of encryption parameters and passing them to the 4041 * lower-level encryption functions. 4042 */ 4043 static zio_t * 4044 zio_encrypt(zio_t *zio) 4045 { 4046 zio_prop_t *zp = &zio->io_prop; 4047 spa_t *spa = zio->io_spa; 4048 blkptr_t *bp = zio->io_bp; 4049 uint64_t psize = BP_GET_PSIZE(bp); 4050 uint64_t dsobj = zio->io_bookmark.zb_objset; 4051 dmu_object_type_t ot = BP_GET_TYPE(bp); 4052 void *enc_buf = NULL; 4053 abd_t *eabd = NULL; 4054 uint8_t salt[ZIO_DATA_SALT_LEN]; 4055 uint8_t iv[ZIO_DATA_IV_LEN]; 4056 uint8_t mac[ZIO_DATA_MAC_LEN]; 4057 boolean_t no_crypt = B_FALSE; 4058 4059 /* the root zio already encrypted the data */ 4060 if (zio->io_child_type == ZIO_CHILD_GANG) 4061 return (zio); 4062 4063 /* only ZIL blocks are re-encrypted on rewrite */ 4064 if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG) 4065 return (zio); 4066 4067 if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) { 4068 BP_SET_CRYPT(bp, B_FALSE); 4069 return (zio); 4070 } 4071 4072 /* if we are doing raw encryption set the provided encryption params */ 4073 if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) { 4074 ASSERT0(BP_GET_LEVEL(bp)); 4075 BP_SET_CRYPT(bp, B_TRUE); 4076 BP_SET_BYTEORDER(bp, zp->zp_byteorder); 4077 if (ot != DMU_OT_OBJSET) 4078 zio_crypt_encode_mac_bp(bp, zp->zp_mac); 4079 4080 /* dnode blocks must be written out in the provided byteorder */ 4081 if (zp->zp_byteorder != ZFS_HOST_BYTEORDER && 4082 ot == DMU_OT_DNODE) { 4083 void *bswap_buf = zio_buf_alloc(psize); 4084 abd_t *babd = abd_get_from_buf(bswap_buf, psize); 4085 4086 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 4087 abd_copy_to_buf(bswap_buf, zio->io_abd, psize); 4088 dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf, 4089 psize); 4090 4091 abd_take_ownership_of_buf(babd, B_TRUE); 4092 zio_push_transform(zio, babd, psize, psize, NULL); 4093 } 4094 4095 if (DMU_OT_IS_ENCRYPTED(ot)) 4096 zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv); 4097 return (zio); 4098 } 4099 4100 /* indirect blocks only maintain a cksum of the lower level MACs */ 4101 if (BP_GET_LEVEL(bp) > 0) { 4102 BP_SET_CRYPT(bp, B_TRUE); 4103 VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE, 4104 zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp), 4105 mac)); 4106 zio_crypt_encode_mac_bp(bp, mac); 4107 return (zio); 4108 } 4109 4110 /* 4111 * Objset blocks are a special case since they have 2 256-bit MACs 4112 * embedded within them. 4113 */ 4114 if (ot == DMU_OT_OBJSET) { 4115 ASSERT0(DMU_OT_IS_ENCRYPTED(ot)); 4116 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 4117 BP_SET_CRYPT(bp, B_TRUE); 4118 VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj, 4119 zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp))); 4120 return (zio); 4121 } 4122 4123 /* unencrypted object types are only authenticated with a MAC */ 4124 if (!DMU_OT_IS_ENCRYPTED(ot)) { 4125 BP_SET_CRYPT(bp, B_TRUE); 4126 VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj, 4127 zio->io_abd, psize, mac)); 4128 zio_crypt_encode_mac_bp(bp, mac); 4129 return (zio); 4130 } 4131 4132 /* 4133 * Later passes of sync-to-convergence may decide to rewrite data 4134 * in place to avoid more disk reallocations. This presents a problem 4135 * for encryption because this constitutes rewriting the new data with 4136 * the same encryption key and IV. However, this only applies to blocks 4137 * in the MOS (particularly the spacemaps) and we do not encrypt the 4138 * MOS. We assert that the zio is allocating or an intent log write 4139 * to enforce this. 4140 */ 4141 ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG); 4142 ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG); 4143 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION)); 4144 ASSERT3U(psize, !=, 0); 4145 4146 enc_buf = zio_buf_alloc(psize); 4147 eabd = abd_get_from_buf(enc_buf, psize); 4148 abd_take_ownership_of_buf(eabd, B_TRUE); 4149 4150 /* 4151 * For an explanation of what encryption parameters are stored 4152 * where, see the block comment in zio_crypt.c. 4153 */ 4154 if (ot == DMU_OT_INTENT_LOG) { 4155 zio_crypt_decode_params_bp(bp, salt, iv); 4156 } else { 4157 BP_SET_CRYPT(bp, B_TRUE); 4158 } 4159 4160 /* Perform the encryption. This should not fail */ 4161 VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark, 4162 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), 4163 salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt)); 4164 4165 /* encode encryption metadata into the bp */ 4166 if (ot == DMU_OT_INTENT_LOG) { 4167 /* 4168 * ZIL blocks store the MAC in the embedded checksum, so the 4169 * transform must always be applied. 4170 */ 4171 zio_crypt_encode_mac_zil(enc_buf, mac); 4172 zio_push_transform(zio, eabd, psize, psize, NULL); 4173 } else { 4174 BP_SET_CRYPT(bp, B_TRUE); 4175 zio_crypt_encode_params_bp(bp, salt, iv); 4176 zio_crypt_encode_mac_bp(bp, mac); 4177 4178 if (no_crypt) { 4179 ASSERT3U(ot, ==, DMU_OT_DNODE); 4180 abd_free(eabd); 4181 } else { 4182 zio_push_transform(zio, eabd, psize, psize, NULL); 4183 } 4184 } 4185 4186 return (zio); 4187 } 4188 4189 /* 4190 * ========================================================================== 4191 * Generate and verify checksums 4192 * ========================================================================== 4193 */ 4194 static zio_t * 4195 zio_checksum_generate(zio_t *zio) 4196 { 4197 blkptr_t *bp = zio->io_bp; 4198 enum zio_checksum checksum; 4199 4200 if (bp == NULL) { 4201 /* 4202 * This is zio_write_phys(). 4203 * We're either generating a label checksum, or none at all. 4204 */ 4205 checksum = zio->io_prop.zp_checksum; 4206 4207 if (checksum == ZIO_CHECKSUM_OFF) 4208 return (zio); 4209 4210 ASSERT(checksum == ZIO_CHECKSUM_LABEL); 4211 } else { 4212 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) { 4213 ASSERT(!IO_IS_ALLOCATING(zio)); 4214 checksum = ZIO_CHECKSUM_GANG_HEADER; 4215 } else { 4216 checksum = BP_GET_CHECKSUM(bp); 4217 } 4218 } 4219 4220 zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size); 4221 4222 return (zio); 4223 } 4224 4225 static zio_t * 4226 zio_checksum_verify(zio_t *zio) 4227 { 4228 zio_bad_cksum_t info; 4229 blkptr_t *bp = zio->io_bp; 4230 int error; 4231 4232 ASSERT(zio->io_vd != NULL); 4233 4234 if (bp == NULL) { 4235 /* 4236 * This is zio_read_phys(). 4237 * We're either verifying a label checksum, or nothing at all. 4238 */ 4239 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF) 4240 return (zio); 4241 4242 ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL); 4243 } 4244 4245 if ((error = zio_checksum_error(zio, &info)) != 0) { 4246 zio->io_error = error; 4247 if (error == ECKSUM && 4248 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 4249 int ret = zfs_ereport_start_checksum(zio->io_spa, 4250 zio->io_vd, &zio->io_bookmark, zio, 4251 zio->io_offset, zio->io_size, NULL, &info); 4252 4253 if (ret != EALREADY) { 4254 mutex_enter(&zio->io_vd->vdev_stat_lock); 4255 zio->io_vd->vdev_stat.vs_checksum_errors++; 4256 mutex_exit(&zio->io_vd->vdev_stat_lock); 4257 } 4258 } 4259 } 4260 4261 return (zio); 4262 } 4263 4264 /* 4265 * Called by RAID-Z to ensure we don't compute the checksum twice. 4266 */ 4267 void 4268 zio_checksum_verified(zio_t *zio) 4269 { 4270 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 4271 } 4272 4273 /* 4274 * ========================================================================== 4275 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other. 4276 * An error of 0 indicates success. ENXIO indicates whole-device failure, 4277 * which may be transient (e.g. unplugged) or permanent. ECKSUM and EIO 4278 * indicate errors that are specific to one I/O, and most likely permanent. 4279 * Any other error is presumed to be worse because we weren't expecting it. 4280 * ========================================================================== 4281 */ 4282 int 4283 zio_worst_error(int e1, int e2) 4284 { 4285 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO }; 4286 int r1, r2; 4287 4288 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++) 4289 if (e1 == zio_error_rank[r1]) 4290 break; 4291 4292 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++) 4293 if (e2 == zio_error_rank[r2]) 4294 break; 4295 4296 return (r1 > r2 ? e1 : e2); 4297 } 4298 4299 /* 4300 * ========================================================================== 4301 * I/O completion 4302 * ========================================================================== 4303 */ 4304 static zio_t * 4305 zio_ready(zio_t *zio) 4306 { 4307 blkptr_t *bp = zio->io_bp; 4308 zio_t *pio, *pio_next; 4309 zio_link_t *zl = NULL; 4310 4311 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT, 4312 ZIO_WAIT_READY)) { 4313 return (NULL); 4314 } 4315 4316 if (zio->io_ready) { 4317 ASSERT(IO_IS_ALLOCATING(zio)); 4318 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) || 4319 (zio->io_flags & ZIO_FLAG_NOPWRITE)); 4320 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0); 4321 4322 zio->io_ready(zio); 4323 } 4324 4325 if (bp != NULL && bp != &zio->io_bp_copy) 4326 zio->io_bp_copy = *bp; 4327 4328 if (zio->io_error != 0) { 4329 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 4330 4331 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 4332 ASSERT(IO_IS_ALLOCATING(zio)); 4333 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 4334 ASSERT(zio->io_metaslab_class != NULL); 4335 4336 /* 4337 * We were unable to allocate anything, unreserve and 4338 * issue the next I/O to allocate. 4339 */ 4340 metaslab_class_throttle_unreserve( 4341 zio->io_metaslab_class, zio->io_prop.zp_copies, 4342 zio->io_allocator, zio); 4343 zio_allocate_dispatch(zio->io_spa, zio->io_allocator); 4344 } 4345 } 4346 4347 mutex_enter(&zio->io_lock); 4348 zio->io_state[ZIO_WAIT_READY] = 1; 4349 pio = zio_walk_parents(zio, &zl); 4350 mutex_exit(&zio->io_lock); 4351 4352 /* 4353 * As we notify zio's parents, new parents could be added. 4354 * New parents go to the head of zio's io_parent_list, however, 4355 * so we will (correctly) not notify them. The remainder of zio's 4356 * io_parent_list, from 'pio_next' onward, cannot change because 4357 * all parents must wait for us to be done before they can be done. 4358 */ 4359 for (; pio != NULL; pio = pio_next) { 4360 pio_next = zio_walk_parents(zio, &zl); 4361 zio_notify_parent(pio, zio, ZIO_WAIT_READY, NULL); 4362 } 4363 4364 if (zio->io_flags & ZIO_FLAG_NODATA) { 4365 if (BP_IS_GANG(bp)) { 4366 zio->io_flags &= ~ZIO_FLAG_NODATA; 4367 } else { 4368 ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE); 4369 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 4370 } 4371 } 4372 4373 if (zio_injection_enabled && 4374 zio->io_spa->spa_syncing_txg == zio->io_txg) 4375 zio_handle_ignored_writes(zio); 4376 4377 return (zio); 4378 } 4379 4380 /* 4381 * Update the allocation throttle accounting. 4382 */ 4383 static void 4384 zio_dva_throttle_done(zio_t *zio) 4385 { 4386 zio_t *lio __maybe_unused = zio->io_logical; 4387 zio_t *pio = zio_unique_parent(zio); 4388 vdev_t *vd = zio->io_vd; 4389 int flags = METASLAB_ASYNC_ALLOC; 4390 4391 ASSERT3P(zio->io_bp, !=, NULL); 4392 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE); 4393 ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE); 4394 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); 4395 ASSERT(vd != NULL); 4396 ASSERT3P(vd, ==, vd->vdev_top); 4397 ASSERT(zio_injection_enabled || !(zio->io_flags & ZIO_FLAG_IO_RETRY)); 4398 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR)); 4399 ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING); 4400 ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE)); 4401 ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA)); 4402 4403 /* 4404 * Parents of gang children can have two flavors -- ones that 4405 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set) 4406 * and ones that allocated the constituent blocks. The allocation 4407 * throttle needs to know the allocating parent zio so we must find 4408 * it here. 4409 */ 4410 if (pio->io_child_type == ZIO_CHILD_GANG) { 4411 /* 4412 * If our parent is a rewrite gang child then our grandparent 4413 * would have been the one that performed the allocation. 4414 */ 4415 if (pio->io_flags & ZIO_FLAG_IO_REWRITE) 4416 pio = zio_unique_parent(pio); 4417 flags |= METASLAB_GANG_CHILD; 4418 } 4419 4420 ASSERT(IO_IS_ALLOCATING(pio)); 4421 ASSERT3P(zio, !=, zio->io_logical); 4422 ASSERT(zio->io_logical != NULL); 4423 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR)); 4424 ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE); 4425 ASSERT(zio->io_metaslab_class != NULL); 4426 4427 mutex_enter(&pio->io_lock); 4428 metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags, 4429 pio->io_allocator, B_TRUE); 4430 mutex_exit(&pio->io_lock); 4431 4432 metaslab_class_throttle_unreserve(zio->io_metaslab_class, 1, 4433 pio->io_allocator, pio); 4434 4435 /* 4436 * Call into the pipeline to see if there is more work that 4437 * needs to be done. If there is work to be done it will be 4438 * dispatched to another taskq thread. 4439 */ 4440 zio_allocate_dispatch(zio->io_spa, pio->io_allocator); 4441 } 4442 4443 static zio_t * 4444 zio_done(zio_t *zio) 4445 { 4446 /* 4447 * Always attempt to keep stack usage minimal here since 4448 * we can be called recursively up to 19 levels deep. 4449 */ 4450 const uint64_t psize = zio->io_size; 4451 zio_t *pio, *pio_next; 4452 zio_link_t *zl = NULL; 4453 4454 /* 4455 * If our children haven't all completed, 4456 * wait for them and then repeat this pipeline stage. 4457 */ 4458 if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) { 4459 return (NULL); 4460 } 4461 4462 /* 4463 * If the allocation throttle is enabled, then update the accounting. 4464 * We only track child I/Os that are part of an allocating async 4465 * write. We must do this since the allocation is performed 4466 * by the logical I/O but the actual write is done by child I/Os. 4467 */ 4468 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING && 4469 zio->io_child_type == ZIO_CHILD_VDEV) { 4470 ASSERT(zio->io_metaslab_class != NULL); 4471 ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled); 4472 zio_dva_throttle_done(zio); 4473 } 4474 4475 /* 4476 * If the allocation throttle is enabled, verify that 4477 * we have decremented the refcounts for every I/O that was throttled. 4478 */ 4479 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 4480 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 4481 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 4482 ASSERT(zio->io_bp != NULL); 4483 4484 metaslab_group_alloc_verify(zio->io_spa, zio->io_bp, zio, 4485 zio->io_allocator); 4486 VERIFY(zfs_refcount_not_held( 4487 &zio->io_metaslab_class->mc_alloc_slots[zio->io_allocator], 4488 zio)); 4489 } 4490 4491 4492 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 4493 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 4494 ASSERT(zio->io_children[c][w] == 0); 4495 4496 if (zio->io_bp != NULL && !BP_IS_EMBEDDED(zio->io_bp)) { 4497 ASSERT(zio->io_bp->blk_pad[0] == 0); 4498 ASSERT(zio->io_bp->blk_pad[1] == 0); 4499 ASSERT(bcmp(zio->io_bp, &zio->io_bp_copy, 4500 sizeof (blkptr_t)) == 0 || 4501 (zio->io_bp == zio_unique_parent(zio)->io_bp)); 4502 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) && 4503 zio->io_bp_override == NULL && 4504 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) { 4505 ASSERT3U(zio->io_prop.zp_copies, <=, 4506 BP_GET_NDVAS(zio->io_bp)); 4507 ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 || 4508 (BP_COUNT_GANG(zio->io_bp) == 4509 BP_GET_NDVAS(zio->io_bp))); 4510 } 4511 if (zio->io_flags & ZIO_FLAG_NOPWRITE) 4512 VERIFY(BP_EQUAL(zio->io_bp, &zio->io_bp_orig)); 4513 } 4514 4515 /* 4516 * If there were child vdev/gang/ddt errors, they apply to us now. 4517 */ 4518 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV); 4519 zio_inherit_child_errors(zio, ZIO_CHILD_GANG); 4520 zio_inherit_child_errors(zio, ZIO_CHILD_DDT); 4521 4522 /* 4523 * If the I/O on the transformed data was successful, generate any 4524 * checksum reports now while we still have the transformed data. 4525 */ 4526 if (zio->io_error == 0) { 4527 while (zio->io_cksum_report != NULL) { 4528 zio_cksum_report_t *zcr = zio->io_cksum_report; 4529 uint64_t align = zcr->zcr_align; 4530 uint64_t asize = P2ROUNDUP(psize, align); 4531 abd_t *adata = zio->io_abd; 4532 4533 if (asize != psize) { 4534 adata = abd_alloc(asize, B_TRUE); 4535 abd_copy(adata, zio->io_abd, psize); 4536 abd_zero_off(adata, psize, asize - psize); 4537 } 4538 4539 zio->io_cksum_report = zcr->zcr_next; 4540 zcr->zcr_next = NULL; 4541 zcr->zcr_finish(zcr, adata); 4542 zfs_ereport_free_checksum(zcr); 4543 4544 if (asize != psize) 4545 abd_free(adata); 4546 } 4547 } 4548 4549 zio_pop_transforms(zio); /* note: may set zio->io_error */ 4550 4551 vdev_stat_update(zio, psize); 4552 4553 /* 4554 * If this I/O is attached to a particular vdev is slow, exceeding 4555 * 30 seconds to complete, post an error described the I/O delay. 4556 * We ignore these errors if the device is currently unavailable. 4557 */ 4558 if (zio->io_delay >= MSEC2NSEC(zio_slow_io_ms)) { 4559 if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) { 4560 /* 4561 * We want to only increment our slow IO counters if 4562 * the IO is valid (i.e. not if the drive is removed). 4563 * 4564 * zfs_ereport_post() will also do these checks, but 4565 * it can also ratelimit and have other failures, so we 4566 * need to increment the slow_io counters independent 4567 * of it. 4568 */ 4569 if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY, 4570 zio->io_spa, zio->io_vd, zio)) { 4571 mutex_enter(&zio->io_vd->vdev_stat_lock); 4572 zio->io_vd->vdev_stat.vs_slow_ios++; 4573 mutex_exit(&zio->io_vd->vdev_stat_lock); 4574 4575 (void) zfs_ereport_post(FM_EREPORT_ZFS_DELAY, 4576 zio->io_spa, zio->io_vd, &zio->io_bookmark, 4577 zio, 0); 4578 } 4579 } 4580 } 4581 4582 if (zio->io_error) { 4583 /* 4584 * If this I/O is attached to a particular vdev, 4585 * generate an error message describing the I/O failure 4586 * at the block level. We ignore these errors if the 4587 * device is currently unavailable. 4588 */ 4589 if (zio->io_error != ECKSUM && zio->io_vd != NULL && 4590 !vdev_is_dead(zio->io_vd)) { 4591 int ret = zfs_ereport_post(FM_EREPORT_ZFS_IO, 4592 zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0); 4593 if (ret != EALREADY) { 4594 mutex_enter(&zio->io_vd->vdev_stat_lock); 4595 if (zio->io_type == ZIO_TYPE_READ) 4596 zio->io_vd->vdev_stat.vs_read_errors++; 4597 else if (zio->io_type == ZIO_TYPE_WRITE) 4598 zio->io_vd->vdev_stat.vs_write_errors++; 4599 mutex_exit(&zio->io_vd->vdev_stat_lock); 4600 } 4601 } 4602 4603 if ((zio->io_error == EIO || !(zio->io_flags & 4604 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) && 4605 zio == zio->io_logical) { 4606 /* 4607 * For logical I/O requests, tell the SPA to log the 4608 * error and generate a logical data ereport. 4609 */ 4610 spa_log_error(zio->io_spa, &zio->io_bookmark); 4611 (void) zfs_ereport_post(FM_EREPORT_ZFS_DATA, 4612 zio->io_spa, NULL, &zio->io_bookmark, zio, 0); 4613 } 4614 } 4615 4616 if (zio->io_error && zio == zio->io_logical) { 4617 /* 4618 * Determine whether zio should be reexecuted. This will 4619 * propagate all the way to the root via zio_notify_parent(). 4620 */ 4621 ASSERT(zio->io_vd == NULL && zio->io_bp != NULL); 4622 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 4623 4624 if (IO_IS_ALLOCATING(zio) && 4625 !(zio->io_flags & ZIO_FLAG_CANFAIL)) { 4626 if (zio->io_error != ENOSPC) 4627 zio->io_reexecute |= ZIO_REEXECUTE_NOW; 4628 else 4629 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 4630 } 4631 4632 if ((zio->io_type == ZIO_TYPE_READ || 4633 zio->io_type == ZIO_TYPE_FREE) && 4634 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && 4635 zio->io_error == ENXIO && 4636 spa_load_state(zio->io_spa) == SPA_LOAD_NONE && 4637 spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE) 4638 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 4639 4640 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute) 4641 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 4642 4643 /* 4644 * Here is a possibly good place to attempt to do 4645 * either combinatorial reconstruction or error correction 4646 * based on checksums. It also might be a good place 4647 * to send out preliminary ereports before we suspend 4648 * processing. 4649 */ 4650 } 4651 4652 /* 4653 * If there were logical child errors, they apply to us now. 4654 * We defer this until now to avoid conflating logical child 4655 * errors with errors that happened to the zio itself when 4656 * updating vdev stats and reporting FMA events above. 4657 */ 4658 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL); 4659 4660 if ((zio->io_error || zio->io_reexecute) && 4661 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio && 4662 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE))) 4663 zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp); 4664 4665 zio_gang_tree_free(&zio->io_gang_tree); 4666 4667 /* 4668 * Godfather I/Os should never suspend. 4669 */ 4670 if ((zio->io_flags & ZIO_FLAG_GODFATHER) && 4671 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) 4672 zio->io_reexecute &= ~ZIO_REEXECUTE_SUSPEND; 4673 4674 if (zio->io_reexecute) { 4675 /* 4676 * This is a logical I/O that wants to reexecute. 4677 * 4678 * Reexecute is top-down. When an i/o fails, if it's not 4679 * the root, it simply notifies its parent and sticks around. 4680 * The parent, seeing that it still has children in zio_done(), 4681 * does the same. This percolates all the way up to the root. 4682 * The root i/o will reexecute or suspend the entire tree. 4683 * 4684 * This approach ensures that zio_reexecute() honors 4685 * all the original i/o dependency relationships, e.g. 4686 * parents not executing until children are ready. 4687 */ 4688 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 4689 4690 zio->io_gang_leader = NULL; 4691 4692 mutex_enter(&zio->io_lock); 4693 zio->io_state[ZIO_WAIT_DONE] = 1; 4694 mutex_exit(&zio->io_lock); 4695 4696 /* 4697 * "The Godfather" I/O monitors its children but is 4698 * not a true parent to them. It will track them through 4699 * the pipeline but severs its ties whenever they get into 4700 * trouble (e.g. suspended). This allows "The Godfather" 4701 * I/O to return status without blocking. 4702 */ 4703 zl = NULL; 4704 for (pio = zio_walk_parents(zio, &zl); pio != NULL; 4705 pio = pio_next) { 4706 zio_link_t *remove_zl = zl; 4707 pio_next = zio_walk_parents(zio, &zl); 4708 4709 if ((pio->io_flags & ZIO_FLAG_GODFATHER) && 4710 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) { 4711 zio_remove_child(pio, zio, remove_zl); 4712 /* 4713 * This is a rare code path, so we don't 4714 * bother with "next_to_execute". 4715 */ 4716 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, 4717 NULL); 4718 } 4719 } 4720 4721 if ((pio = zio_unique_parent(zio)) != NULL) { 4722 /* 4723 * We're not a root i/o, so there's nothing to do 4724 * but notify our parent. Don't propagate errors 4725 * upward since we haven't permanently failed yet. 4726 */ 4727 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 4728 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE; 4729 /* 4730 * This is a rare code path, so we don't bother with 4731 * "next_to_execute". 4732 */ 4733 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, NULL); 4734 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) { 4735 /* 4736 * We'd fail again if we reexecuted now, so suspend 4737 * until conditions improve (e.g. device comes online). 4738 */ 4739 zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR); 4740 } else { 4741 /* 4742 * Reexecution is potentially a huge amount of work. 4743 * Hand it off to the otherwise-unused claim taskq. 4744 */ 4745 ASSERT(taskq_empty_ent(&zio->io_tqent)); 4746 spa_taskq_dispatch_ent(zio->io_spa, 4747 ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE, 4748 (task_func_t *)zio_reexecute, zio, 0, 4749 &zio->io_tqent); 4750 } 4751 return (NULL); 4752 } 4753 4754 ASSERT(zio->io_child_count == 0); 4755 ASSERT(zio->io_reexecute == 0); 4756 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL)); 4757 4758 /* 4759 * Report any checksum errors, since the I/O is complete. 4760 */ 4761 while (zio->io_cksum_report != NULL) { 4762 zio_cksum_report_t *zcr = zio->io_cksum_report; 4763 zio->io_cksum_report = zcr->zcr_next; 4764 zcr->zcr_next = NULL; 4765 zcr->zcr_finish(zcr, NULL); 4766 zfs_ereport_free_checksum(zcr); 4767 } 4768 4769 if (zio->io_flags & ZIO_FLAG_FASTWRITE && zio->io_bp && 4770 !BP_IS_HOLE(zio->io_bp) && !BP_IS_EMBEDDED(zio->io_bp) && 4771 !(zio->io_flags & ZIO_FLAG_NOPWRITE)) { 4772 metaslab_fastwrite_unmark(zio->io_spa, zio->io_bp); 4773 } 4774 4775 /* 4776 * It is the responsibility of the done callback to ensure that this 4777 * particular zio is no longer discoverable for adoption, and as 4778 * such, cannot acquire any new parents. 4779 */ 4780 if (zio->io_done) 4781 zio->io_done(zio); 4782 4783 mutex_enter(&zio->io_lock); 4784 zio->io_state[ZIO_WAIT_DONE] = 1; 4785 mutex_exit(&zio->io_lock); 4786 4787 /* 4788 * We are done executing this zio. We may want to execute a parent 4789 * next. See the comment in zio_notify_parent(). 4790 */ 4791 zio_t *next_to_execute = NULL; 4792 zl = NULL; 4793 for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) { 4794 zio_link_t *remove_zl = zl; 4795 pio_next = zio_walk_parents(zio, &zl); 4796 zio_remove_child(pio, zio, remove_zl); 4797 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, &next_to_execute); 4798 } 4799 4800 if (zio->io_waiter != NULL) { 4801 mutex_enter(&zio->io_lock); 4802 zio->io_executor = NULL; 4803 cv_broadcast(&zio->io_cv); 4804 mutex_exit(&zio->io_lock); 4805 } else { 4806 zio_destroy(zio); 4807 } 4808 4809 return (next_to_execute); 4810 } 4811 4812 /* 4813 * ========================================================================== 4814 * I/O pipeline definition 4815 * ========================================================================== 4816 */ 4817 static zio_pipe_stage_t *zio_pipeline[] = { 4818 NULL, 4819 zio_read_bp_init, 4820 zio_write_bp_init, 4821 zio_free_bp_init, 4822 zio_issue_async, 4823 zio_write_compress, 4824 zio_encrypt, 4825 zio_checksum_generate, 4826 zio_nop_write, 4827 zio_ddt_read_start, 4828 zio_ddt_read_done, 4829 zio_ddt_write, 4830 zio_ddt_free, 4831 zio_gang_assemble, 4832 zio_gang_issue, 4833 zio_dva_throttle, 4834 zio_dva_allocate, 4835 zio_dva_free, 4836 zio_dva_claim, 4837 zio_ready, 4838 zio_vdev_io_start, 4839 zio_vdev_io_done, 4840 zio_vdev_io_assess, 4841 zio_checksum_verify, 4842 zio_done 4843 }; 4844 4845 4846 4847 4848 /* 4849 * Compare two zbookmark_phys_t's to see which we would reach first in a 4850 * pre-order traversal of the object tree. 4851 * 4852 * This is simple in every case aside from the meta-dnode object. For all other 4853 * objects, we traverse them in order (object 1 before object 2, and so on). 4854 * However, all of these objects are traversed while traversing object 0, since 4855 * the data it points to is the list of objects. Thus, we need to convert to a 4856 * canonical representation so we can compare meta-dnode bookmarks to 4857 * non-meta-dnode bookmarks. 4858 * 4859 * We do this by calculating "equivalents" for each field of the zbookmark. 4860 * zbookmarks outside of the meta-dnode use their own object and level, and 4861 * calculate the level 0 equivalent (the first L0 blkid that is contained in the 4862 * blocks this bookmark refers to) by multiplying their blkid by their span 4863 * (the number of L0 blocks contained within one block at their level). 4864 * zbookmarks inside the meta-dnode calculate their object equivalent 4865 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use 4866 * level + 1<<31 (any value larger than a level could ever be) for their level. 4867 * This causes them to always compare before a bookmark in their object 4868 * equivalent, compare appropriately to bookmarks in other objects, and to 4869 * compare appropriately to other bookmarks in the meta-dnode. 4870 */ 4871 int 4872 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2, 4873 const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2) 4874 { 4875 /* 4876 * These variables represent the "equivalent" values for the zbookmark, 4877 * after converting zbookmarks inside the meta dnode to their 4878 * normal-object equivalents. 4879 */ 4880 uint64_t zb1obj, zb2obj; 4881 uint64_t zb1L0, zb2L0; 4882 uint64_t zb1level, zb2level; 4883 4884 if (zb1->zb_object == zb2->zb_object && 4885 zb1->zb_level == zb2->zb_level && 4886 zb1->zb_blkid == zb2->zb_blkid) 4887 return (0); 4888 4889 IMPLY(zb1->zb_level > 0, ibs1 >= SPA_MINBLOCKSHIFT); 4890 IMPLY(zb2->zb_level > 0, ibs2 >= SPA_MINBLOCKSHIFT); 4891 4892 /* 4893 * BP_SPANB calculates the span in blocks. 4894 */ 4895 zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level); 4896 zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level); 4897 4898 if (zb1->zb_object == DMU_META_DNODE_OBJECT) { 4899 zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 4900 zb1L0 = 0; 4901 zb1level = zb1->zb_level + COMPARE_META_LEVEL; 4902 } else { 4903 zb1obj = zb1->zb_object; 4904 zb1level = zb1->zb_level; 4905 } 4906 4907 if (zb2->zb_object == DMU_META_DNODE_OBJECT) { 4908 zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 4909 zb2L0 = 0; 4910 zb2level = zb2->zb_level + COMPARE_META_LEVEL; 4911 } else { 4912 zb2obj = zb2->zb_object; 4913 zb2level = zb2->zb_level; 4914 } 4915 4916 /* Now that we have a canonical representation, do the comparison. */ 4917 if (zb1obj != zb2obj) 4918 return (zb1obj < zb2obj ? -1 : 1); 4919 else if (zb1L0 != zb2L0) 4920 return (zb1L0 < zb2L0 ? -1 : 1); 4921 else if (zb1level != zb2level) 4922 return (zb1level > zb2level ? -1 : 1); 4923 /* 4924 * This can (theoretically) happen if the bookmarks have the same object 4925 * and level, but different blkids, if the block sizes are not the same. 4926 * There is presently no way to change the indirect block sizes 4927 */ 4928 return (0); 4929 } 4930 4931 /* 4932 * This function checks the following: given that last_block is the place that 4933 * our traversal stopped last time, does that guarantee that we've visited 4934 * every node under subtree_root? Therefore, we can't just use the raw output 4935 * of zbookmark_compare. We have to pass in a modified version of 4936 * subtree_root; by incrementing the block id, and then checking whether 4937 * last_block is before or equal to that, we can tell whether or not having 4938 * visited last_block implies that all of subtree_root's children have been 4939 * visited. 4940 */ 4941 boolean_t 4942 zbookmark_subtree_completed(const dnode_phys_t *dnp, 4943 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block) 4944 { 4945 zbookmark_phys_t mod_zb = *subtree_root; 4946 mod_zb.zb_blkid++; 4947 ASSERT(last_block->zb_level == 0); 4948 4949 /* The objset_phys_t isn't before anything. */ 4950 if (dnp == NULL) 4951 return (B_FALSE); 4952 4953 /* 4954 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the 4955 * data block size in sectors, because that variable is only used if 4956 * the bookmark refers to a block in the meta-dnode. Since we don't 4957 * know without examining it what object it refers to, and there's no 4958 * harm in passing in this value in other cases, we always pass it in. 4959 * 4960 * We pass in 0 for the indirect block size shift because zb2 must be 4961 * level 0. The indirect block size is only used to calculate the span 4962 * of the bookmark, but since the bookmark must be level 0, the span is 4963 * always 1, so the math works out. 4964 * 4965 * If you make changes to how the zbookmark_compare code works, be sure 4966 * to make sure that this code still works afterwards. 4967 */ 4968 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift, 4969 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb, 4970 last_block) <= 0); 4971 } 4972 4973 EXPORT_SYMBOL(zio_type_name); 4974 EXPORT_SYMBOL(zio_buf_alloc); 4975 EXPORT_SYMBOL(zio_data_buf_alloc); 4976 EXPORT_SYMBOL(zio_buf_free); 4977 EXPORT_SYMBOL(zio_data_buf_free); 4978 4979 /* BEGIN CSTYLED */ 4980 ZFS_MODULE_PARAM(zfs_zio, zio_, slow_io_ms, INT, ZMOD_RW, 4981 "Max I/O completion time (milliseconds) before marking it as slow"); 4982 4983 ZFS_MODULE_PARAM(zfs_zio, zio_, requeue_io_start_cut_in_line, INT, ZMOD_RW, 4984 "Prioritize requeued I/O"); 4985 4986 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_deferred_free, INT, ZMOD_RW, 4987 "Defer frees starting in this pass"); 4988 4989 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_dont_compress, INT, ZMOD_RW, 4990 "Don't compress starting in this pass"); 4991 4992 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_rewrite, INT, ZMOD_RW, 4993 "Rewrite new bps starting in this pass"); 4994 4995 ZFS_MODULE_PARAM(zfs_zio, zio_, dva_throttle_enabled, INT, ZMOD_RW, 4996 "Throttle block allocations in the ZIO pipeline"); 4997 4998 ZFS_MODULE_PARAM(zfs_zio, zio_, deadman_log_all, INT, ZMOD_RW, 4999 "Log all slow ZIOs, not just those with vdevs"); 5000 /* END CSTYLED */ 5001