xref: /freebsd/sys/contrib/openzfs/module/zfs/zio.c (revision ccfd87fe2ac0e2e6aeb1911a7d7cce6712a8564f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2022 by Delphix. All rights reserved.
24  * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25  * Copyright (c) 2017, Intel Corporation.
26  * Copyright (c) 2019, Klara Inc.
27  * Copyright (c) 2019, Allan Jude
28  * Copyright (c) 2021, Datto, Inc.
29  */
30 
31 #include <sys/sysmacros.h>
32 #include <sys/zfs_context.h>
33 #include <sys/fm/fs/zfs.h>
34 #include <sys/spa.h>
35 #include <sys/txg.h>
36 #include <sys/spa_impl.h>
37 #include <sys/vdev_impl.h>
38 #include <sys/vdev_trim.h>
39 #include <sys/zio_impl.h>
40 #include <sys/zio_compress.h>
41 #include <sys/zio_checksum.h>
42 #include <sys/dmu_objset.h>
43 #include <sys/arc.h>
44 #include <sys/brt.h>
45 #include <sys/ddt.h>
46 #include <sys/blkptr.h>
47 #include <sys/zfeature.h>
48 #include <sys/dsl_scan.h>
49 #include <sys/metaslab_impl.h>
50 #include <sys/time.h>
51 #include <sys/trace_zfs.h>
52 #include <sys/abd.h>
53 #include <sys/dsl_crypt.h>
54 #include <cityhash.h>
55 
56 /*
57  * ==========================================================================
58  * I/O type descriptions
59  * ==========================================================================
60  */
61 const char *const zio_type_name[ZIO_TYPES] = {
62 	/*
63 	 * Note: Linux kernel thread name length is limited
64 	 * so these names will differ from upstream open zfs.
65 	 */
66 	"z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_ioctl", "z_trim"
67 };
68 
69 int zio_dva_throttle_enabled = B_TRUE;
70 static int zio_deadman_log_all = B_FALSE;
71 
72 /*
73  * ==========================================================================
74  * I/O kmem caches
75  * ==========================================================================
76  */
77 static kmem_cache_t *zio_cache;
78 static kmem_cache_t *zio_link_cache;
79 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
80 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
81 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
82 static uint64_t zio_buf_cache_allocs[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
83 static uint64_t zio_buf_cache_frees[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
84 #endif
85 
86 /* Mark IOs as "slow" if they take longer than 30 seconds */
87 static uint_t zio_slow_io_ms = (30 * MILLISEC);
88 
89 #define	BP_SPANB(indblkshift, level) \
90 	(((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
91 #define	COMPARE_META_LEVEL	0x80000000ul
92 /*
93  * The following actions directly effect the spa's sync-to-convergence logic.
94  * The values below define the sync pass when we start performing the action.
95  * Care should be taken when changing these values as they directly impact
96  * spa_sync() performance. Tuning these values may introduce subtle performance
97  * pathologies and should only be done in the context of performance analysis.
98  * These tunables will eventually be removed and replaced with #defines once
99  * enough analysis has been done to determine optimal values.
100  *
101  * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
102  * regular blocks are not deferred.
103  *
104  * Starting in sync pass 8 (zfs_sync_pass_dont_compress), we disable
105  * compression (including of metadata).  In practice, we don't have this
106  * many sync passes, so this has no effect.
107  *
108  * The original intent was that disabling compression would help the sync
109  * passes to converge. However, in practice disabling compression increases
110  * the average number of sync passes, because when we turn compression off, a
111  * lot of block's size will change and thus we have to re-allocate (not
112  * overwrite) them. It also increases the number of 128KB allocations (e.g.
113  * for indirect blocks and spacemaps) because these will not be compressed.
114  * The 128K allocations are especially detrimental to performance on highly
115  * fragmented systems, which may have very few free segments of this size,
116  * and may need to load new metaslabs to satisfy 128K allocations.
117  */
118 
119 /* defer frees starting in this pass */
120 uint_t zfs_sync_pass_deferred_free = 2;
121 
122 /* don't compress starting in this pass */
123 static uint_t zfs_sync_pass_dont_compress = 8;
124 
125 /* rewrite new bps starting in this pass */
126 static uint_t zfs_sync_pass_rewrite = 2;
127 
128 /*
129  * An allocating zio is one that either currently has the DVA allocate
130  * stage set or will have it later in its lifetime.
131  */
132 #define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
133 
134 /*
135  * Enable smaller cores by excluding metadata
136  * allocations as well.
137  */
138 int zio_exclude_metadata = 0;
139 static int zio_requeue_io_start_cut_in_line = 1;
140 
141 #ifdef ZFS_DEBUG
142 static const int zio_buf_debug_limit = 16384;
143 #else
144 static const int zio_buf_debug_limit = 0;
145 #endif
146 
147 static inline void __zio_execute(zio_t *zio);
148 
149 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t);
150 
151 void
152 zio_init(void)
153 {
154 	size_t c;
155 
156 	zio_cache = kmem_cache_create("zio_cache",
157 	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
158 	zio_link_cache = kmem_cache_create("zio_link_cache",
159 	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
160 
161 	/*
162 	 * For small buffers, we want a cache for each multiple of
163 	 * SPA_MINBLOCKSIZE.  For larger buffers, we want a cache
164 	 * for each quarter-power of 2.
165 	 */
166 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
167 		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
168 		size_t p2 = size;
169 		size_t align = 0;
170 		size_t data_cflags, cflags;
171 
172 		data_cflags = KMC_NODEBUG;
173 		cflags = (zio_exclude_metadata || size > zio_buf_debug_limit) ?
174 		    KMC_NODEBUG : 0;
175 
176 		while (!ISP2(p2))
177 			p2 &= p2 - 1;
178 
179 #ifndef _KERNEL
180 		/*
181 		 * If we are using watchpoints, put each buffer on its own page,
182 		 * to eliminate the performance overhead of trapping to the
183 		 * kernel when modifying a non-watched buffer that shares the
184 		 * page with a watched buffer.
185 		 */
186 		if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
187 			continue;
188 		/*
189 		 * Here's the problem - on 4K native devices in userland on
190 		 * Linux using O_DIRECT, buffers must be 4K aligned or I/O
191 		 * will fail with EINVAL, causing zdb (and others) to coredump.
192 		 * Since userland probably doesn't need optimized buffer caches,
193 		 * we just force 4K alignment on everything.
194 		 */
195 		align = 8 * SPA_MINBLOCKSIZE;
196 #else
197 		if (size < PAGESIZE) {
198 			align = SPA_MINBLOCKSIZE;
199 		} else if (IS_P2ALIGNED(size, p2 >> 2)) {
200 			align = PAGESIZE;
201 		}
202 #endif
203 
204 		if (align != 0) {
205 			char name[36];
206 			if (cflags == data_cflags) {
207 				/*
208 				 * Resulting kmem caches would be identical.
209 				 * Save memory by creating only one.
210 				 */
211 				(void) snprintf(name, sizeof (name),
212 				    "zio_buf_comb_%lu", (ulong_t)size);
213 				zio_buf_cache[c] = kmem_cache_create(name,
214 				    size, align, NULL, NULL, NULL, NULL, NULL,
215 				    cflags);
216 				zio_data_buf_cache[c] = zio_buf_cache[c];
217 				continue;
218 			}
219 			(void) snprintf(name, sizeof (name), "zio_buf_%lu",
220 			    (ulong_t)size);
221 			zio_buf_cache[c] = kmem_cache_create(name, size,
222 			    align, NULL, NULL, NULL, NULL, NULL, cflags);
223 
224 			(void) snprintf(name, sizeof (name), "zio_data_buf_%lu",
225 			    (ulong_t)size);
226 			zio_data_buf_cache[c] = kmem_cache_create(name, size,
227 			    align, NULL, NULL, NULL, NULL, NULL, data_cflags);
228 		}
229 	}
230 
231 	while (--c != 0) {
232 		ASSERT(zio_buf_cache[c] != NULL);
233 		if (zio_buf_cache[c - 1] == NULL)
234 			zio_buf_cache[c - 1] = zio_buf_cache[c];
235 
236 		ASSERT(zio_data_buf_cache[c] != NULL);
237 		if (zio_data_buf_cache[c - 1] == NULL)
238 			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
239 	}
240 
241 	zio_inject_init();
242 
243 	lz4_init();
244 }
245 
246 void
247 zio_fini(void)
248 {
249 	size_t n = SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT;
250 
251 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
252 	for (size_t i = 0; i < n; i++) {
253 		if (zio_buf_cache_allocs[i] != zio_buf_cache_frees[i])
254 			(void) printf("zio_fini: [%d] %llu != %llu\n",
255 			    (int)((i + 1) << SPA_MINBLOCKSHIFT),
256 			    (long long unsigned)zio_buf_cache_allocs[i],
257 			    (long long unsigned)zio_buf_cache_frees[i]);
258 	}
259 #endif
260 
261 	/*
262 	 * The same kmem cache can show up multiple times in both zio_buf_cache
263 	 * and zio_data_buf_cache. Do a wasteful but trivially correct scan to
264 	 * sort it out.
265 	 */
266 	for (size_t i = 0; i < n; i++) {
267 		kmem_cache_t *cache = zio_buf_cache[i];
268 		if (cache == NULL)
269 			continue;
270 		for (size_t j = i; j < n; j++) {
271 			if (cache == zio_buf_cache[j])
272 				zio_buf_cache[j] = NULL;
273 			if (cache == zio_data_buf_cache[j])
274 				zio_data_buf_cache[j] = NULL;
275 		}
276 		kmem_cache_destroy(cache);
277 	}
278 
279 	for (size_t i = 0; i < n; i++) {
280 		kmem_cache_t *cache = zio_data_buf_cache[i];
281 		if (cache == NULL)
282 			continue;
283 		for (size_t j = i; j < n; j++) {
284 			if (cache == zio_data_buf_cache[j])
285 				zio_data_buf_cache[j] = NULL;
286 		}
287 		kmem_cache_destroy(cache);
288 	}
289 
290 	for (size_t i = 0; i < n; i++) {
291 		VERIFY3P(zio_buf_cache[i], ==, NULL);
292 		VERIFY3P(zio_data_buf_cache[i], ==, NULL);
293 	}
294 
295 	kmem_cache_destroy(zio_link_cache);
296 	kmem_cache_destroy(zio_cache);
297 
298 	zio_inject_fini();
299 
300 	lz4_fini();
301 }
302 
303 /*
304  * ==========================================================================
305  * Allocate and free I/O buffers
306  * ==========================================================================
307  */
308 
309 /*
310  * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
311  * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
312  * useful to inspect ZFS metadata, but if possible, we should avoid keeping
313  * excess / transient data in-core during a crashdump.
314  */
315 void *
316 zio_buf_alloc(size_t size)
317 {
318 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
319 
320 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
321 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
322 	atomic_add_64(&zio_buf_cache_allocs[c], 1);
323 #endif
324 
325 	return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
326 }
327 
328 /*
329  * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
330  * crashdump if the kernel panics.  This exists so that we will limit the amount
331  * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
332  * of kernel heap dumped to disk when the kernel panics)
333  */
334 void *
335 zio_data_buf_alloc(size_t size)
336 {
337 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
338 
339 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
340 
341 	return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
342 }
343 
344 void
345 zio_buf_free(void *buf, size_t size)
346 {
347 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
348 
349 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
350 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
351 	atomic_add_64(&zio_buf_cache_frees[c], 1);
352 #endif
353 
354 	kmem_cache_free(zio_buf_cache[c], buf);
355 }
356 
357 void
358 zio_data_buf_free(void *buf, size_t size)
359 {
360 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
361 
362 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
363 
364 	kmem_cache_free(zio_data_buf_cache[c], buf);
365 }
366 
367 static void
368 zio_abd_free(void *abd, size_t size)
369 {
370 	(void) size;
371 	abd_free((abd_t *)abd);
372 }
373 
374 /*
375  * ==========================================================================
376  * Push and pop I/O transform buffers
377  * ==========================================================================
378  */
379 void
380 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize,
381     zio_transform_func_t *transform)
382 {
383 	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
384 
385 	zt->zt_orig_abd = zio->io_abd;
386 	zt->zt_orig_size = zio->io_size;
387 	zt->zt_bufsize = bufsize;
388 	zt->zt_transform = transform;
389 
390 	zt->zt_next = zio->io_transform_stack;
391 	zio->io_transform_stack = zt;
392 
393 	zio->io_abd = data;
394 	zio->io_size = size;
395 }
396 
397 void
398 zio_pop_transforms(zio_t *zio)
399 {
400 	zio_transform_t *zt;
401 
402 	while ((zt = zio->io_transform_stack) != NULL) {
403 		if (zt->zt_transform != NULL)
404 			zt->zt_transform(zio,
405 			    zt->zt_orig_abd, zt->zt_orig_size);
406 
407 		if (zt->zt_bufsize != 0)
408 			abd_free(zio->io_abd);
409 
410 		zio->io_abd = zt->zt_orig_abd;
411 		zio->io_size = zt->zt_orig_size;
412 		zio->io_transform_stack = zt->zt_next;
413 
414 		kmem_free(zt, sizeof (zio_transform_t));
415 	}
416 }
417 
418 /*
419  * ==========================================================================
420  * I/O transform callbacks for subblocks, decompression, and decryption
421  * ==========================================================================
422  */
423 static void
424 zio_subblock(zio_t *zio, abd_t *data, uint64_t size)
425 {
426 	ASSERT(zio->io_size > size);
427 
428 	if (zio->io_type == ZIO_TYPE_READ)
429 		abd_copy(data, zio->io_abd, size);
430 }
431 
432 static void
433 zio_decompress(zio_t *zio, abd_t *data, uint64_t size)
434 {
435 	if (zio->io_error == 0) {
436 		void *tmp = abd_borrow_buf(data, size);
437 		int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
438 		    zio->io_abd, tmp, zio->io_size, size,
439 		    &zio->io_prop.zp_complevel);
440 		abd_return_buf_copy(data, tmp, size);
441 
442 		if (zio_injection_enabled && ret == 0)
443 			ret = zio_handle_fault_injection(zio, EINVAL);
444 
445 		if (ret != 0)
446 			zio->io_error = SET_ERROR(EIO);
447 	}
448 }
449 
450 static void
451 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size)
452 {
453 	int ret;
454 	void *tmp;
455 	blkptr_t *bp = zio->io_bp;
456 	spa_t *spa = zio->io_spa;
457 	uint64_t dsobj = zio->io_bookmark.zb_objset;
458 	uint64_t lsize = BP_GET_LSIZE(bp);
459 	dmu_object_type_t ot = BP_GET_TYPE(bp);
460 	uint8_t salt[ZIO_DATA_SALT_LEN];
461 	uint8_t iv[ZIO_DATA_IV_LEN];
462 	uint8_t mac[ZIO_DATA_MAC_LEN];
463 	boolean_t no_crypt = B_FALSE;
464 
465 	ASSERT(BP_USES_CRYPT(bp));
466 	ASSERT3U(size, !=, 0);
467 
468 	if (zio->io_error != 0)
469 		return;
470 
471 	/*
472 	 * Verify the cksum of MACs stored in an indirect bp. It will always
473 	 * be possible to verify this since it does not require an encryption
474 	 * key.
475 	 */
476 	if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) {
477 		zio_crypt_decode_mac_bp(bp, mac);
478 
479 		if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) {
480 			/*
481 			 * We haven't decompressed the data yet, but
482 			 * zio_crypt_do_indirect_mac_checksum() requires
483 			 * decompressed data to be able to parse out the MACs
484 			 * from the indirect block. We decompress it now and
485 			 * throw away the result after we are finished.
486 			 */
487 			tmp = zio_buf_alloc(lsize);
488 			ret = zio_decompress_data(BP_GET_COMPRESS(bp),
489 			    zio->io_abd, tmp, zio->io_size, lsize,
490 			    &zio->io_prop.zp_complevel);
491 			if (ret != 0) {
492 				ret = SET_ERROR(EIO);
493 				goto error;
494 			}
495 			ret = zio_crypt_do_indirect_mac_checksum(B_FALSE,
496 			    tmp, lsize, BP_SHOULD_BYTESWAP(bp), mac);
497 			zio_buf_free(tmp, lsize);
498 		} else {
499 			ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE,
500 			    zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac);
501 		}
502 		abd_copy(data, zio->io_abd, size);
503 
504 		if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) {
505 			ret = zio_handle_decrypt_injection(spa,
506 			    &zio->io_bookmark, ot, ECKSUM);
507 		}
508 		if (ret != 0)
509 			goto error;
510 
511 		return;
512 	}
513 
514 	/*
515 	 * If this is an authenticated block, just check the MAC. It would be
516 	 * nice to separate this out into its own flag, but when this was done,
517 	 * we had run out of bits in what is now zio_flag_t. Future cleanup
518 	 * could make this a flag bit.
519 	 */
520 	if (BP_IS_AUTHENTICATED(bp)) {
521 		if (ot == DMU_OT_OBJSET) {
522 			ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa,
523 			    dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp));
524 		} else {
525 			zio_crypt_decode_mac_bp(bp, mac);
526 			ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj,
527 			    zio->io_abd, size, mac);
528 			if (zio_injection_enabled && ret == 0) {
529 				ret = zio_handle_decrypt_injection(spa,
530 				    &zio->io_bookmark, ot, ECKSUM);
531 			}
532 		}
533 		abd_copy(data, zio->io_abd, size);
534 
535 		if (ret != 0)
536 			goto error;
537 
538 		return;
539 	}
540 
541 	zio_crypt_decode_params_bp(bp, salt, iv);
542 
543 	if (ot == DMU_OT_INTENT_LOG) {
544 		tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t));
545 		zio_crypt_decode_mac_zil(tmp, mac);
546 		abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t));
547 	} else {
548 		zio_crypt_decode_mac_bp(bp, mac);
549 	}
550 
551 	ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp),
552 	    BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data,
553 	    zio->io_abd, &no_crypt);
554 	if (no_crypt)
555 		abd_copy(data, zio->io_abd, size);
556 
557 	if (ret != 0)
558 		goto error;
559 
560 	return;
561 
562 error:
563 	/* assert that the key was found unless this was speculative */
564 	ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE));
565 
566 	/*
567 	 * If there was a decryption / authentication error return EIO as
568 	 * the io_error. If this was not a speculative zio, create an ereport.
569 	 */
570 	if (ret == ECKSUM) {
571 		zio->io_error = SET_ERROR(EIO);
572 		if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
573 			spa_log_error(spa, &zio->io_bookmark,
574 			    &zio->io_bp->blk_birth);
575 			(void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
576 			    spa, NULL, &zio->io_bookmark, zio, 0);
577 		}
578 	} else {
579 		zio->io_error = ret;
580 	}
581 }
582 
583 /*
584  * ==========================================================================
585  * I/O parent/child relationships and pipeline interlocks
586  * ==========================================================================
587  */
588 zio_t *
589 zio_walk_parents(zio_t *cio, zio_link_t **zl)
590 {
591 	list_t *pl = &cio->io_parent_list;
592 
593 	*zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl);
594 	if (*zl == NULL)
595 		return (NULL);
596 
597 	ASSERT((*zl)->zl_child == cio);
598 	return ((*zl)->zl_parent);
599 }
600 
601 zio_t *
602 zio_walk_children(zio_t *pio, zio_link_t **zl)
603 {
604 	list_t *cl = &pio->io_child_list;
605 
606 	ASSERT(MUTEX_HELD(&pio->io_lock));
607 
608 	*zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl);
609 	if (*zl == NULL)
610 		return (NULL);
611 
612 	ASSERT((*zl)->zl_parent == pio);
613 	return ((*zl)->zl_child);
614 }
615 
616 zio_t *
617 zio_unique_parent(zio_t *cio)
618 {
619 	zio_link_t *zl = NULL;
620 	zio_t *pio = zio_walk_parents(cio, &zl);
621 
622 	VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL);
623 	return (pio);
624 }
625 
626 void
627 zio_add_child(zio_t *pio, zio_t *cio)
628 {
629 	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
630 
631 	/*
632 	 * Logical I/Os can have logical, gang, or vdev children.
633 	 * Gang I/Os can have gang or vdev children.
634 	 * Vdev I/Os can only have vdev children.
635 	 * The following ASSERT captures all of these constraints.
636 	 */
637 	ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
638 
639 	zl->zl_parent = pio;
640 	zl->zl_child = cio;
641 
642 	mutex_enter(&pio->io_lock);
643 	mutex_enter(&cio->io_lock);
644 
645 	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
646 
647 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
648 		pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
649 
650 	list_insert_head(&pio->io_child_list, zl);
651 	list_insert_head(&cio->io_parent_list, zl);
652 
653 	mutex_exit(&cio->io_lock);
654 	mutex_exit(&pio->io_lock);
655 }
656 
657 static void
658 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
659 {
660 	ASSERT(zl->zl_parent == pio);
661 	ASSERT(zl->zl_child == cio);
662 
663 	mutex_enter(&pio->io_lock);
664 	mutex_enter(&cio->io_lock);
665 
666 	list_remove(&pio->io_child_list, zl);
667 	list_remove(&cio->io_parent_list, zl);
668 
669 	mutex_exit(&cio->io_lock);
670 	mutex_exit(&pio->io_lock);
671 	kmem_cache_free(zio_link_cache, zl);
672 }
673 
674 static boolean_t
675 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait)
676 {
677 	boolean_t waiting = B_FALSE;
678 
679 	mutex_enter(&zio->io_lock);
680 	ASSERT(zio->io_stall == NULL);
681 	for (int c = 0; c < ZIO_CHILD_TYPES; c++) {
682 		if (!(ZIO_CHILD_BIT_IS_SET(childbits, c)))
683 			continue;
684 
685 		uint64_t *countp = &zio->io_children[c][wait];
686 		if (*countp != 0) {
687 			zio->io_stage >>= 1;
688 			ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN);
689 			zio->io_stall = countp;
690 			waiting = B_TRUE;
691 			break;
692 		}
693 	}
694 	mutex_exit(&zio->io_lock);
695 	return (waiting);
696 }
697 
698 __attribute__((always_inline))
699 static inline void
700 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait,
701     zio_t **next_to_executep)
702 {
703 	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
704 	int *errorp = &pio->io_child_error[zio->io_child_type];
705 
706 	mutex_enter(&pio->io_lock);
707 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
708 		*errorp = zio_worst_error(*errorp, zio->io_error);
709 	pio->io_reexecute |= zio->io_reexecute;
710 	ASSERT3U(*countp, >, 0);
711 
712 	(*countp)--;
713 
714 	if (*countp == 0 && pio->io_stall == countp) {
715 		zio_taskq_type_t type =
716 		    pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE :
717 		    ZIO_TASKQ_INTERRUPT;
718 		pio->io_stall = NULL;
719 		mutex_exit(&pio->io_lock);
720 
721 		/*
722 		 * If we can tell the caller to execute this parent next, do
723 		 * so. We only do this if the parent's zio type matches the
724 		 * child's type. Otherwise dispatch the parent zio in its
725 		 * own taskq.
726 		 *
727 		 * Having the caller execute the parent when possible reduces
728 		 * locking on the zio taskq's, reduces context switch
729 		 * overhead, and has no recursion penalty.  Note that one
730 		 * read from disk typically causes at least 3 zio's: a
731 		 * zio_null(), the logical zio_read(), and then a physical
732 		 * zio.  When the physical ZIO completes, we are able to call
733 		 * zio_done() on all 3 of these zio's from one invocation of
734 		 * zio_execute() by returning the parent back to
735 		 * zio_execute().  Since the parent isn't executed until this
736 		 * thread returns back to zio_execute(), the caller should do
737 		 * so promptly.
738 		 *
739 		 * In other cases, dispatching the parent prevents
740 		 * overflowing the stack when we have deeply nested
741 		 * parent-child relationships, as we do with the "mega zio"
742 		 * of writes for spa_sync(), and the chain of ZIL blocks.
743 		 */
744 		if (next_to_executep != NULL && *next_to_executep == NULL &&
745 		    pio->io_type == zio->io_type) {
746 			*next_to_executep = pio;
747 		} else {
748 			zio_taskq_dispatch(pio, type, B_FALSE);
749 		}
750 	} else {
751 		mutex_exit(&pio->io_lock);
752 	}
753 }
754 
755 static void
756 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
757 {
758 	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
759 		zio->io_error = zio->io_child_error[c];
760 }
761 
762 int
763 zio_bookmark_compare(const void *x1, const void *x2)
764 {
765 	const zio_t *z1 = x1;
766 	const zio_t *z2 = x2;
767 
768 	if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset)
769 		return (-1);
770 	if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset)
771 		return (1);
772 
773 	if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object)
774 		return (-1);
775 	if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object)
776 		return (1);
777 
778 	if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level)
779 		return (-1);
780 	if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level)
781 		return (1);
782 
783 	if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid)
784 		return (-1);
785 	if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid)
786 		return (1);
787 
788 	if (z1 < z2)
789 		return (-1);
790 	if (z1 > z2)
791 		return (1);
792 
793 	return (0);
794 }
795 
796 /*
797  * ==========================================================================
798  * Create the various types of I/O (read, write, free, etc)
799  * ==========================================================================
800  */
801 static zio_t *
802 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
803     abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done,
804     void *private, zio_type_t type, zio_priority_t priority,
805     zio_flag_t flags, vdev_t *vd, uint64_t offset,
806     const zbookmark_phys_t *zb, enum zio_stage stage,
807     enum zio_stage pipeline)
808 {
809 	zio_t *zio;
810 
811 	IMPLY(type != ZIO_TYPE_TRIM, psize <= SPA_MAXBLOCKSIZE);
812 	ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0);
813 	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
814 
815 	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
816 	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
817 	ASSERT(vd || stage == ZIO_STAGE_OPEN);
818 
819 	IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0);
820 
821 	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
822 	memset(zio, 0, sizeof (zio_t));
823 
824 	mutex_init(&zio->io_lock, NULL, MUTEX_NOLOCKDEP, NULL);
825 	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
826 
827 	list_create(&zio->io_parent_list, sizeof (zio_link_t),
828 	    offsetof(zio_link_t, zl_parent_node));
829 	list_create(&zio->io_child_list, sizeof (zio_link_t),
830 	    offsetof(zio_link_t, zl_child_node));
831 	metaslab_trace_init(&zio->io_alloc_list);
832 
833 	if (vd != NULL)
834 		zio->io_child_type = ZIO_CHILD_VDEV;
835 	else if (flags & ZIO_FLAG_GANG_CHILD)
836 		zio->io_child_type = ZIO_CHILD_GANG;
837 	else if (flags & ZIO_FLAG_DDT_CHILD)
838 		zio->io_child_type = ZIO_CHILD_DDT;
839 	else
840 		zio->io_child_type = ZIO_CHILD_LOGICAL;
841 
842 	if (bp != NULL) {
843 		zio->io_bp = (blkptr_t *)bp;
844 		zio->io_bp_copy = *bp;
845 		zio->io_bp_orig = *bp;
846 		if (type != ZIO_TYPE_WRITE ||
847 		    zio->io_child_type == ZIO_CHILD_DDT)
848 			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
849 		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
850 			zio->io_logical = zio;
851 		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
852 			pipeline |= ZIO_GANG_STAGES;
853 	}
854 
855 	zio->io_spa = spa;
856 	zio->io_txg = txg;
857 	zio->io_done = done;
858 	zio->io_private = private;
859 	zio->io_type = type;
860 	zio->io_priority = priority;
861 	zio->io_vd = vd;
862 	zio->io_offset = offset;
863 	zio->io_orig_abd = zio->io_abd = data;
864 	zio->io_orig_size = zio->io_size = psize;
865 	zio->io_lsize = lsize;
866 	zio->io_orig_flags = zio->io_flags = flags;
867 	zio->io_orig_stage = zio->io_stage = stage;
868 	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
869 	zio->io_pipeline_trace = ZIO_STAGE_OPEN;
870 
871 	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
872 	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
873 
874 	if (zb != NULL)
875 		zio->io_bookmark = *zb;
876 
877 	if (pio != NULL) {
878 		zio->io_metaslab_class = pio->io_metaslab_class;
879 		if (zio->io_logical == NULL)
880 			zio->io_logical = pio->io_logical;
881 		if (zio->io_child_type == ZIO_CHILD_GANG)
882 			zio->io_gang_leader = pio->io_gang_leader;
883 		zio_add_child(pio, zio);
884 	}
885 
886 	taskq_init_ent(&zio->io_tqent);
887 
888 	return (zio);
889 }
890 
891 void
892 zio_destroy(zio_t *zio)
893 {
894 	metaslab_trace_fini(&zio->io_alloc_list);
895 	list_destroy(&zio->io_parent_list);
896 	list_destroy(&zio->io_child_list);
897 	mutex_destroy(&zio->io_lock);
898 	cv_destroy(&zio->io_cv);
899 	kmem_cache_free(zio_cache, zio);
900 }
901 
902 zio_t *
903 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
904     void *private, zio_flag_t flags)
905 {
906 	zio_t *zio;
907 
908 	zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
909 	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
910 	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
911 
912 	return (zio);
913 }
914 
915 zio_t *
916 zio_root(spa_t *spa, zio_done_func_t *done, void *private, zio_flag_t flags)
917 {
918 	return (zio_null(NULL, spa, NULL, done, private, flags));
919 }
920 
921 static int
922 zfs_blkptr_verify_log(spa_t *spa, const blkptr_t *bp,
923     enum blk_verify_flag blk_verify, const char *fmt, ...)
924 {
925 	va_list adx;
926 	char buf[256];
927 
928 	va_start(adx, fmt);
929 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
930 	va_end(adx);
931 
932 	zfs_dbgmsg("bad blkptr at %px: "
933 	    "DVA[0]=%#llx/%#llx "
934 	    "DVA[1]=%#llx/%#llx "
935 	    "DVA[2]=%#llx/%#llx "
936 	    "prop=%#llx "
937 	    "pad=%#llx,%#llx "
938 	    "phys_birth=%#llx "
939 	    "birth=%#llx "
940 	    "fill=%#llx "
941 	    "cksum=%#llx/%#llx/%#llx/%#llx",
942 	    bp,
943 	    (long long)bp->blk_dva[0].dva_word[0],
944 	    (long long)bp->blk_dva[0].dva_word[1],
945 	    (long long)bp->blk_dva[1].dva_word[0],
946 	    (long long)bp->blk_dva[1].dva_word[1],
947 	    (long long)bp->blk_dva[2].dva_word[0],
948 	    (long long)bp->blk_dva[2].dva_word[1],
949 	    (long long)bp->blk_prop,
950 	    (long long)bp->blk_pad[0],
951 	    (long long)bp->blk_pad[1],
952 	    (long long)bp->blk_phys_birth,
953 	    (long long)bp->blk_birth,
954 	    (long long)bp->blk_fill,
955 	    (long long)bp->blk_cksum.zc_word[0],
956 	    (long long)bp->blk_cksum.zc_word[1],
957 	    (long long)bp->blk_cksum.zc_word[2],
958 	    (long long)bp->blk_cksum.zc_word[3]);
959 	switch (blk_verify) {
960 	case BLK_VERIFY_HALT:
961 		zfs_panic_recover("%s: %s", spa_name(spa), buf);
962 		break;
963 	case BLK_VERIFY_LOG:
964 		zfs_dbgmsg("%s: %s", spa_name(spa), buf);
965 		break;
966 	case BLK_VERIFY_ONLY:
967 		break;
968 	}
969 
970 	return (1);
971 }
972 
973 /*
974  * Verify the block pointer fields contain reasonable values.  This means
975  * it only contains known object types, checksum/compression identifiers,
976  * block sizes within the maximum allowed limits, valid DVAs, etc.
977  *
978  * If everything checks out B_TRUE is returned.  The zfs_blkptr_verify
979  * argument controls the behavior when an invalid field is detected.
980  *
981  * Values for blk_verify_flag:
982  *   BLK_VERIFY_ONLY: evaluate the block
983  *   BLK_VERIFY_LOG: evaluate the block and log problems
984  *   BLK_VERIFY_HALT: call zfs_panic_recover on error
985  *
986  * Values for blk_config_flag:
987  *   BLK_CONFIG_HELD: caller holds SCL_VDEV for writer
988  *   BLK_CONFIG_NEEDED: caller holds no config lock, SCL_VDEV will be
989  *   obtained for reader
990  *   BLK_CONFIG_SKIP: skip checks which require SCL_VDEV, for better
991  *   performance
992  */
993 boolean_t
994 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp,
995     enum blk_config_flag blk_config, enum blk_verify_flag blk_verify)
996 {
997 	int errors = 0;
998 
999 	if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
1000 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1001 		    "blkptr at %px has invalid TYPE %llu",
1002 		    bp, (longlong_t)BP_GET_TYPE(bp));
1003 	}
1004 	if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS) {
1005 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1006 		    "blkptr at %px has invalid CHECKSUM %llu",
1007 		    bp, (longlong_t)BP_GET_CHECKSUM(bp));
1008 	}
1009 	if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS) {
1010 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1011 		    "blkptr at %px has invalid COMPRESS %llu",
1012 		    bp, (longlong_t)BP_GET_COMPRESS(bp));
1013 	}
1014 	if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
1015 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1016 		    "blkptr at %px has invalid LSIZE %llu",
1017 		    bp, (longlong_t)BP_GET_LSIZE(bp));
1018 	}
1019 	if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
1020 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1021 		    "blkptr at %px has invalid PSIZE %llu",
1022 		    bp, (longlong_t)BP_GET_PSIZE(bp));
1023 	}
1024 
1025 	if (BP_IS_EMBEDDED(bp)) {
1026 		if (BPE_GET_ETYPE(bp) >= NUM_BP_EMBEDDED_TYPES) {
1027 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1028 			    "blkptr at %px has invalid ETYPE %llu",
1029 			    bp, (longlong_t)BPE_GET_ETYPE(bp));
1030 		}
1031 	}
1032 
1033 	/*
1034 	 * Do not verify individual DVAs if the config is not trusted. This
1035 	 * will be done once the zio is executed in vdev_mirror_map_alloc.
1036 	 */
1037 	if (!spa->spa_trust_config)
1038 		return (errors == 0);
1039 
1040 	switch (blk_config) {
1041 	case BLK_CONFIG_HELD:
1042 		ASSERT(spa_config_held(spa, SCL_VDEV, RW_WRITER));
1043 		break;
1044 	case BLK_CONFIG_NEEDED:
1045 		spa_config_enter(spa, SCL_VDEV, bp, RW_READER);
1046 		break;
1047 	case BLK_CONFIG_SKIP:
1048 		return (errors == 0);
1049 	default:
1050 		panic("invalid blk_config %u", blk_config);
1051 	}
1052 
1053 	/*
1054 	 * Pool-specific checks.
1055 	 *
1056 	 * Note: it would be nice to verify that the blk_birth and
1057 	 * BP_PHYSICAL_BIRTH() are not too large.  However, spa_freeze()
1058 	 * allows the birth time of log blocks (and dmu_sync()-ed blocks
1059 	 * that are in the log) to be arbitrarily large.
1060 	 */
1061 	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
1062 		const dva_t *dva = &bp->blk_dva[i];
1063 		uint64_t vdevid = DVA_GET_VDEV(dva);
1064 
1065 		if (vdevid >= spa->spa_root_vdev->vdev_children) {
1066 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1067 			    "blkptr at %px DVA %u has invalid VDEV %llu",
1068 			    bp, i, (longlong_t)vdevid);
1069 			continue;
1070 		}
1071 		vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1072 		if (vd == NULL) {
1073 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1074 			    "blkptr at %px DVA %u has invalid VDEV %llu",
1075 			    bp, i, (longlong_t)vdevid);
1076 			continue;
1077 		}
1078 		if (vd->vdev_ops == &vdev_hole_ops) {
1079 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1080 			    "blkptr at %px DVA %u has hole VDEV %llu",
1081 			    bp, i, (longlong_t)vdevid);
1082 			continue;
1083 		}
1084 		if (vd->vdev_ops == &vdev_missing_ops) {
1085 			/*
1086 			 * "missing" vdevs are valid during import, but we
1087 			 * don't have their detailed info (e.g. asize), so
1088 			 * we can't perform any more checks on them.
1089 			 */
1090 			continue;
1091 		}
1092 		uint64_t offset = DVA_GET_OFFSET(dva);
1093 		uint64_t asize = DVA_GET_ASIZE(dva);
1094 		if (DVA_GET_GANG(dva))
1095 			asize = vdev_gang_header_asize(vd);
1096 		if (offset + asize > vd->vdev_asize) {
1097 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1098 			    "blkptr at %px DVA %u has invalid OFFSET %llu",
1099 			    bp, i, (longlong_t)offset);
1100 		}
1101 	}
1102 	if (blk_config == BLK_CONFIG_NEEDED)
1103 		spa_config_exit(spa, SCL_VDEV, bp);
1104 
1105 	return (errors == 0);
1106 }
1107 
1108 boolean_t
1109 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp)
1110 {
1111 	(void) bp;
1112 	uint64_t vdevid = DVA_GET_VDEV(dva);
1113 
1114 	if (vdevid >= spa->spa_root_vdev->vdev_children)
1115 		return (B_FALSE);
1116 
1117 	vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1118 	if (vd == NULL)
1119 		return (B_FALSE);
1120 
1121 	if (vd->vdev_ops == &vdev_hole_ops)
1122 		return (B_FALSE);
1123 
1124 	if (vd->vdev_ops == &vdev_missing_ops) {
1125 		return (B_FALSE);
1126 	}
1127 
1128 	uint64_t offset = DVA_GET_OFFSET(dva);
1129 	uint64_t asize = DVA_GET_ASIZE(dva);
1130 
1131 	if (DVA_GET_GANG(dva))
1132 		asize = vdev_gang_header_asize(vd);
1133 	if (offset + asize > vd->vdev_asize)
1134 		return (B_FALSE);
1135 
1136 	return (B_TRUE);
1137 }
1138 
1139 zio_t *
1140 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
1141     abd_t *data, uint64_t size, zio_done_func_t *done, void *private,
1142     zio_priority_t priority, zio_flag_t flags, const zbookmark_phys_t *zb)
1143 {
1144 	zio_t *zio;
1145 
1146 	zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
1147 	    data, size, size, done, private,
1148 	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
1149 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1150 	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
1151 
1152 	return (zio);
1153 }
1154 
1155 zio_t *
1156 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
1157     abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp,
1158     zio_done_func_t *ready, zio_done_func_t *children_ready,
1159     zio_done_func_t *done, void *private, zio_priority_t priority,
1160     zio_flag_t flags, const zbookmark_phys_t *zb)
1161 {
1162 	zio_t *zio;
1163 
1164 	ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
1165 	    zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
1166 	    zp->zp_compress >= ZIO_COMPRESS_OFF &&
1167 	    zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
1168 	    DMU_OT_IS_VALID(zp->zp_type) &&
1169 	    zp->zp_level < 32 &&
1170 	    zp->zp_copies > 0 &&
1171 	    zp->zp_copies <= spa_max_replication(spa));
1172 
1173 	zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private,
1174 	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
1175 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1176 	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
1177 
1178 	zio->io_ready = ready;
1179 	zio->io_children_ready = children_ready;
1180 	zio->io_prop = *zp;
1181 
1182 	/*
1183 	 * Data can be NULL if we are going to call zio_write_override() to
1184 	 * provide the already-allocated BP.  But we may need the data to
1185 	 * verify a dedup hit (if requested).  In this case, don't try to
1186 	 * dedup (just take the already-allocated BP verbatim). Encrypted
1187 	 * dedup blocks need data as well so we also disable dedup in this
1188 	 * case.
1189 	 */
1190 	if (data == NULL &&
1191 	    (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) {
1192 		zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
1193 	}
1194 
1195 	return (zio);
1196 }
1197 
1198 zio_t *
1199 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data,
1200     uint64_t size, zio_done_func_t *done, void *private,
1201     zio_priority_t priority, zio_flag_t flags, zbookmark_phys_t *zb)
1202 {
1203 	zio_t *zio;
1204 
1205 	zio = zio_create(pio, spa, txg, bp, data, size, size, done, private,
1206 	    ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb,
1207 	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
1208 
1209 	return (zio);
1210 }
1211 
1212 void
1213 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite,
1214     boolean_t brtwrite)
1215 {
1216 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
1217 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1218 	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1219 	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
1220 	ASSERT(!brtwrite || !nopwrite);
1221 
1222 	/*
1223 	 * We must reset the io_prop to match the values that existed
1224 	 * when the bp was first written by dmu_sync() keeping in mind
1225 	 * that nopwrite and dedup are mutually exclusive.
1226 	 */
1227 	zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
1228 	zio->io_prop.zp_nopwrite = nopwrite;
1229 	zio->io_prop.zp_brtwrite = brtwrite;
1230 	zio->io_prop.zp_copies = copies;
1231 	zio->io_bp_override = bp;
1232 }
1233 
1234 void
1235 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
1236 {
1237 
1238 	(void) zfs_blkptr_verify(spa, bp, BLK_CONFIG_NEEDED, BLK_VERIFY_HALT);
1239 
1240 	/*
1241 	 * The check for EMBEDDED is a performance optimization.  We
1242 	 * process the free here (by ignoring it) rather than
1243 	 * putting it on the list and then processing it in zio_free_sync().
1244 	 */
1245 	if (BP_IS_EMBEDDED(bp))
1246 		return;
1247 
1248 	/*
1249 	 * Frees that are for the currently-syncing txg, are not going to be
1250 	 * deferred, and which will not need to do a read (i.e. not GANG or
1251 	 * DEDUP), can be processed immediately.  Otherwise, put them on the
1252 	 * in-memory list for later processing.
1253 	 *
1254 	 * Note that we only defer frees after zfs_sync_pass_deferred_free
1255 	 * when the log space map feature is disabled. [see relevant comment
1256 	 * in spa_sync_iterate_to_convergence()]
1257 	 */
1258 	if (BP_IS_GANG(bp) ||
1259 	    BP_GET_DEDUP(bp) ||
1260 	    txg != spa->spa_syncing_txg ||
1261 	    (spa_sync_pass(spa) >= zfs_sync_pass_deferred_free &&
1262 	    !spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) ||
1263 	    brt_maybe_exists(spa, bp)) {
1264 		metaslab_check_free(spa, bp);
1265 		bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
1266 	} else {
1267 		VERIFY3P(zio_free_sync(NULL, spa, txg, bp, 0), ==, NULL);
1268 	}
1269 }
1270 
1271 /*
1272  * To improve performance, this function may return NULL if we were able
1273  * to do the free immediately.  This avoids the cost of creating a zio
1274  * (and linking it to the parent, etc).
1275  */
1276 zio_t *
1277 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1278     zio_flag_t flags)
1279 {
1280 	ASSERT(!BP_IS_HOLE(bp));
1281 	ASSERT(spa_syncing_txg(spa) == txg);
1282 
1283 	if (BP_IS_EMBEDDED(bp))
1284 		return (NULL);
1285 
1286 	metaslab_check_free(spa, bp);
1287 	arc_freed(spa, bp);
1288 	dsl_scan_freed(spa, bp);
1289 
1290 	if (BP_IS_GANG(bp) ||
1291 	    BP_GET_DEDUP(bp) ||
1292 	    brt_maybe_exists(spa, bp)) {
1293 		/*
1294 		 * GANG, DEDUP and BRT blocks can induce a read (for the gang
1295 		 * block header, the DDT or the BRT), so issue them
1296 		 * asynchronously so that this thread is not tied up.
1297 		 */
1298 		enum zio_stage stage =
1299 		    ZIO_FREE_PIPELINE | ZIO_STAGE_ISSUE_ASYNC;
1300 
1301 		return (zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1302 		    BP_GET_PSIZE(bp), NULL, NULL,
1303 		    ZIO_TYPE_FREE, ZIO_PRIORITY_NOW,
1304 		    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage));
1305 	} else {
1306 		metaslab_free(spa, bp, txg, B_FALSE);
1307 		return (NULL);
1308 	}
1309 }
1310 
1311 zio_t *
1312 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1313     zio_done_func_t *done, void *private, zio_flag_t flags)
1314 {
1315 	zio_t *zio;
1316 
1317 	(void) zfs_blkptr_verify(spa, bp, (flags & ZIO_FLAG_CONFIG_WRITER) ?
1318 	    BLK_CONFIG_HELD : BLK_CONFIG_NEEDED, BLK_VERIFY_HALT);
1319 
1320 	if (BP_IS_EMBEDDED(bp))
1321 		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
1322 
1323 	/*
1324 	 * A claim is an allocation of a specific block.  Claims are needed
1325 	 * to support immediate writes in the intent log.  The issue is that
1326 	 * immediate writes contain committed data, but in a txg that was
1327 	 * *not* committed.  Upon opening the pool after an unclean shutdown,
1328 	 * the intent log claims all blocks that contain immediate write data
1329 	 * so that the SPA knows they're in use.
1330 	 *
1331 	 * All claims *must* be resolved in the first txg -- before the SPA
1332 	 * starts allocating blocks -- so that nothing is allocated twice.
1333 	 * If txg == 0 we just verify that the block is claimable.
1334 	 */
1335 	ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <,
1336 	    spa_min_claim_txg(spa));
1337 	ASSERT(txg == spa_min_claim_txg(spa) || txg == 0);
1338 	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(8) */
1339 
1340 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1341 	    BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW,
1342 	    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
1343 	ASSERT0(zio->io_queued_timestamp);
1344 
1345 	return (zio);
1346 }
1347 
1348 zio_t *
1349 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
1350     zio_done_func_t *done, void *private, zio_flag_t flags)
1351 {
1352 	zio_t *zio;
1353 	int c;
1354 
1355 	if (vd->vdev_children == 0) {
1356 		zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
1357 		    ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
1358 		    ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
1359 
1360 		zio->io_cmd = cmd;
1361 	} else {
1362 		zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
1363 
1364 		for (c = 0; c < vd->vdev_children; c++)
1365 			zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
1366 			    done, private, flags));
1367 	}
1368 
1369 	return (zio);
1370 }
1371 
1372 zio_t *
1373 zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1374     zio_done_func_t *done, void *private, zio_priority_t priority,
1375     zio_flag_t flags, enum trim_flag trim_flags)
1376 {
1377 	zio_t *zio;
1378 
1379 	ASSERT0(vd->vdev_children);
1380 	ASSERT0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
1381 	ASSERT0(P2PHASE(size, 1ULL << vd->vdev_ashift));
1382 	ASSERT3U(size, !=, 0);
1383 
1384 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, NULL, size, size, done,
1385 	    private, ZIO_TYPE_TRIM, priority, flags | ZIO_FLAG_PHYSICAL,
1386 	    vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_TRIM_PIPELINE);
1387 	zio->io_trim_flags = trim_flags;
1388 
1389 	return (zio);
1390 }
1391 
1392 zio_t *
1393 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1394     abd_t *data, int checksum, zio_done_func_t *done, void *private,
1395     zio_priority_t priority, zio_flag_t flags, boolean_t labels)
1396 {
1397 	zio_t *zio;
1398 
1399 	ASSERT(vd->vdev_children == 0);
1400 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1401 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1402 	ASSERT3U(offset + size, <=, vd->vdev_psize);
1403 
1404 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1405 	    private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1406 	    offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
1407 
1408 	zio->io_prop.zp_checksum = checksum;
1409 
1410 	return (zio);
1411 }
1412 
1413 zio_t *
1414 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1415     abd_t *data, int checksum, zio_done_func_t *done, void *private,
1416     zio_priority_t priority, zio_flag_t flags, boolean_t labels)
1417 {
1418 	zio_t *zio;
1419 
1420 	ASSERT(vd->vdev_children == 0);
1421 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1422 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1423 	ASSERT3U(offset + size, <=, vd->vdev_psize);
1424 
1425 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1426 	    private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1427 	    offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
1428 
1429 	zio->io_prop.zp_checksum = checksum;
1430 
1431 	if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
1432 		/*
1433 		 * zec checksums are necessarily destructive -- they modify
1434 		 * the end of the write buffer to hold the verifier/checksum.
1435 		 * Therefore, we must make a local copy in case the data is
1436 		 * being written to multiple places in parallel.
1437 		 */
1438 		abd_t *wbuf = abd_alloc_sametype(data, size);
1439 		abd_copy(wbuf, data, size);
1440 
1441 		zio_push_transform(zio, wbuf, size, size, NULL);
1442 	}
1443 
1444 	return (zio);
1445 }
1446 
1447 /*
1448  * Create a child I/O to do some work for us.
1449  */
1450 zio_t *
1451 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1452     abd_t *data, uint64_t size, int type, zio_priority_t priority,
1453     zio_flag_t flags, zio_done_func_t *done, void *private)
1454 {
1455 	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1456 	zio_t *zio;
1457 
1458 	/*
1459 	 * vdev child I/Os do not propagate their error to the parent.
1460 	 * Therefore, for correct operation the caller *must* check for
1461 	 * and handle the error in the child i/o's done callback.
1462 	 * The only exceptions are i/os that we don't care about
1463 	 * (OPTIONAL or REPAIR).
1464 	 */
1465 	ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) ||
1466 	    done != NULL);
1467 
1468 	if (type == ZIO_TYPE_READ && bp != NULL) {
1469 		/*
1470 		 * If we have the bp, then the child should perform the
1471 		 * checksum and the parent need not.  This pushes error
1472 		 * detection as close to the leaves as possible and
1473 		 * eliminates redundant checksums in the interior nodes.
1474 		 */
1475 		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1476 		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1477 	}
1478 
1479 	if (vd->vdev_ops->vdev_op_leaf) {
1480 		ASSERT0(vd->vdev_children);
1481 		offset += VDEV_LABEL_START_SIZE;
1482 	}
1483 
1484 	flags |= ZIO_VDEV_CHILD_FLAGS(pio);
1485 
1486 	/*
1487 	 * If we've decided to do a repair, the write is not speculative --
1488 	 * even if the original read was.
1489 	 */
1490 	if (flags & ZIO_FLAG_IO_REPAIR)
1491 		flags &= ~ZIO_FLAG_SPECULATIVE;
1492 
1493 	/*
1494 	 * If we're creating a child I/O that is not associated with a
1495 	 * top-level vdev, then the child zio is not an allocating I/O.
1496 	 * If this is a retried I/O then we ignore it since we will
1497 	 * have already processed the original allocating I/O.
1498 	 */
1499 	if (flags & ZIO_FLAG_IO_ALLOCATING &&
1500 	    (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) {
1501 		ASSERT(pio->io_metaslab_class != NULL);
1502 		ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled);
1503 		ASSERT(type == ZIO_TYPE_WRITE);
1504 		ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE);
1505 		ASSERT(!(flags & ZIO_FLAG_IO_REPAIR));
1506 		ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) ||
1507 		    pio->io_child_type == ZIO_CHILD_GANG);
1508 
1509 		flags &= ~ZIO_FLAG_IO_ALLOCATING;
1510 	}
1511 
1512 	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size,
1513 	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1514 	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1515 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
1516 
1517 	return (zio);
1518 }
1519 
1520 zio_t *
1521 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size,
1522     zio_type_t type, zio_priority_t priority, zio_flag_t flags,
1523     zio_done_func_t *done, void *private)
1524 {
1525 	zio_t *zio;
1526 
1527 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1528 
1529 	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1530 	    data, size, size, done, private, type, priority,
1531 	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1532 	    vd, offset, NULL,
1533 	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1534 
1535 	return (zio);
1536 }
1537 
1538 void
1539 zio_flush(zio_t *zio, vdev_t *vd)
1540 {
1541 	zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
1542 	    NULL, NULL,
1543 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1544 }
1545 
1546 void
1547 zio_shrink(zio_t *zio, uint64_t size)
1548 {
1549 	ASSERT3P(zio->io_executor, ==, NULL);
1550 	ASSERT3U(zio->io_orig_size, ==, zio->io_size);
1551 	ASSERT3U(size, <=, zio->io_size);
1552 
1553 	/*
1554 	 * We don't shrink for raidz because of problems with the
1555 	 * reconstruction when reading back less than the block size.
1556 	 * Note, BP_IS_RAIDZ() assumes no compression.
1557 	 */
1558 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1559 	if (!BP_IS_RAIDZ(zio->io_bp)) {
1560 		/* we are not doing a raw write */
1561 		ASSERT3U(zio->io_size, ==, zio->io_lsize);
1562 		zio->io_orig_size = zio->io_size = zio->io_lsize = size;
1563 	}
1564 }
1565 
1566 /*
1567  * ==========================================================================
1568  * Prepare to read and write logical blocks
1569  * ==========================================================================
1570  */
1571 
1572 static zio_t *
1573 zio_read_bp_init(zio_t *zio)
1574 {
1575 	blkptr_t *bp = zio->io_bp;
1576 	uint64_t psize =
1577 	    BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1578 
1579 	ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1580 
1581 	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1582 	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
1583 	    !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1584 		zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1585 		    psize, psize, zio_decompress);
1586 	}
1587 
1588 	if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) ||
1589 	    BP_HAS_INDIRECT_MAC_CKSUM(bp)) &&
1590 	    zio->io_child_type == ZIO_CHILD_LOGICAL) {
1591 		zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1592 		    psize, psize, zio_decrypt);
1593 	}
1594 
1595 	if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1596 		int psize = BPE_GET_PSIZE(bp);
1597 		void *data = abd_borrow_buf(zio->io_abd, psize);
1598 
1599 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1600 		decode_embedded_bp_compressed(bp, data);
1601 		abd_return_buf_copy(zio->io_abd, data, psize);
1602 	} else {
1603 		ASSERT(!BP_IS_EMBEDDED(bp));
1604 		ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1605 	}
1606 
1607 	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1608 		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1609 
1610 	return (zio);
1611 }
1612 
1613 static zio_t *
1614 zio_write_bp_init(zio_t *zio)
1615 {
1616 	if (!IO_IS_ALLOCATING(zio))
1617 		return (zio);
1618 
1619 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1620 
1621 	if (zio->io_bp_override) {
1622 		blkptr_t *bp = zio->io_bp;
1623 		zio_prop_t *zp = &zio->io_prop;
1624 
1625 		ASSERT(bp->blk_birth != zio->io_txg);
1626 
1627 		*bp = *zio->io_bp_override;
1628 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1629 
1630 		if (zp->zp_brtwrite)
1631 			return (zio);
1632 
1633 		ASSERT(!BP_GET_DEDUP(zio->io_bp_override));
1634 
1635 		if (BP_IS_EMBEDDED(bp))
1636 			return (zio);
1637 
1638 		/*
1639 		 * If we've been overridden and nopwrite is set then
1640 		 * set the flag accordingly to indicate that a nopwrite
1641 		 * has already occurred.
1642 		 */
1643 		if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1644 			ASSERT(!zp->zp_dedup);
1645 			ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum);
1646 			zio->io_flags |= ZIO_FLAG_NOPWRITE;
1647 			return (zio);
1648 		}
1649 
1650 		ASSERT(!zp->zp_nopwrite);
1651 
1652 		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1653 			return (zio);
1654 
1655 		ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1656 		    ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1657 
1658 		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum &&
1659 		    !zp->zp_encrypt) {
1660 			BP_SET_DEDUP(bp, 1);
1661 			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1662 			return (zio);
1663 		}
1664 
1665 		/*
1666 		 * We were unable to handle this as an override bp, treat
1667 		 * it as a regular write I/O.
1668 		 */
1669 		zio->io_bp_override = NULL;
1670 		*bp = zio->io_bp_orig;
1671 		zio->io_pipeline = zio->io_orig_pipeline;
1672 	}
1673 
1674 	return (zio);
1675 }
1676 
1677 static zio_t *
1678 zio_write_compress(zio_t *zio)
1679 {
1680 	spa_t *spa = zio->io_spa;
1681 	zio_prop_t *zp = &zio->io_prop;
1682 	enum zio_compress compress = zp->zp_compress;
1683 	blkptr_t *bp = zio->io_bp;
1684 	uint64_t lsize = zio->io_lsize;
1685 	uint64_t psize = zio->io_size;
1686 	uint32_t pass = 1;
1687 
1688 	/*
1689 	 * If our children haven't all reached the ready stage,
1690 	 * wait for them and then repeat this pipeline stage.
1691 	 */
1692 	if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
1693 	    ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) {
1694 		return (NULL);
1695 	}
1696 
1697 	if (!IO_IS_ALLOCATING(zio))
1698 		return (zio);
1699 
1700 	if (zio->io_children_ready != NULL) {
1701 		/*
1702 		 * Now that all our children are ready, run the callback
1703 		 * associated with this zio in case it wants to modify the
1704 		 * data to be written.
1705 		 */
1706 		ASSERT3U(zp->zp_level, >, 0);
1707 		zio->io_children_ready(zio);
1708 	}
1709 
1710 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1711 	ASSERT(zio->io_bp_override == NULL);
1712 
1713 	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1714 		/*
1715 		 * We're rewriting an existing block, which means we're
1716 		 * working on behalf of spa_sync().  For spa_sync() to
1717 		 * converge, it must eventually be the case that we don't
1718 		 * have to allocate new blocks.  But compression changes
1719 		 * the blocksize, which forces a reallocate, and makes
1720 		 * convergence take longer.  Therefore, after the first
1721 		 * few passes, stop compressing to ensure convergence.
1722 		 */
1723 		pass = spa_sync_pass(spa);
1724 
1725 		ASSERT(zio->io_txg == spa_syncing_txg(spa));
1726 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1727 		ASSERT(!BP_GET_DEDUP(bp));
1728 
1729 		if (pass >= zfs_sync_pass_dont_compress)
1730 			compress = ZIO_COMPRESS_OFF;
1731 
1732 		/* Make sure someone doesn't change their mind on overwrites */
1733 		ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1734 		    spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1735 	}
1736 
1737 	/* If it's a compressed write that is not raw, compress the buffer. */
1738 	if (compress != ZIO_COMPRESS_OFF &&
1739 	    !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1740 		void *cbuf = NULL;
1741 		psize = zio_compress_data(compress, zio->io_abd, &cbuf, lsize,
1742 		    zp->zp_complevel);
1743 		if (psize == 0) {
1744 			compress = ZIO_COMPRESS_OFF;
1745 		} else if (psize >= lsize) {
1746 			compress = ZIO_COMPRESS_OFF;
1747 			if (cbuf != NULL)
1748 				zio_buf_free(cbuf, lsize);
1749 		} else if (!zp->zp_dedup && !zp->zp_encrypt &&
1750 		    psize <= BPE_PAYLOAD_SIZE &&
1751 		    zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1752 		    spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1753 			encode_embedded_bp_compressed(bp,
1754 			    cbuf, compress, lsize, psize);
1755 			BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1756 			BP_SET_TYPE(bp, zio->io_prop.zp_type);
1757 			BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1758 			zio_buf_free(cbuf, lsize);
1759 			bp->blk_birth = zio->io_txg;
1760 			zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1761 			ASSERT(spa_feature_is_active(spa,
1762 			    SPA_FEATURE_EMBEDDED_DATA));
1763 			return (zio);
1764 		} else {
1765 			/*
1766 			 * Round compressed size up to the minimum allocation
1767 			 * size of the smallest-ashift device, and zero the
1768 			 * tail. This ensures that the compressed size of the
1769 			 * BP (and thus compressratio property) are correct,
1770 			 * in that we charge for the padding used to fill out
1771 			 * the last sector.
1772 			 */
1773 			ASSERT3U(spa->spa_min_alloc, >=, SPA_MINBLOCKSHIFT);
1774 			size_t rounded = (size_t)roundup(psize,
1775 			    spa->spa_min_alloc);
1776 			if (rounded >= lsize) {
1777 				compress = ZIO_COMPRESS_OFF;
1778 				zio_buf_free(cbuf, lsize);
1779 				psize = lsize;
1780 			} else {
1781 				abd_t *cdata = abd_get_from_buf(cbuf, lsize);
1782 				abd_take_ownership_of_buf(cdata, B_TRUE);
1783 				abd_zero_off(cdata, psize, rounded - psize);
1784 				psize = rounded;
1785 				zio_push_transform(zio, cdata,
1786 				    psize, lsize, NULL);
1787 			}
1788 		}
1789 
1790 		/*
1791 		 * We were unable to handle this as an override bp, treat
1792 		 * it as a regular write I/O.
1793 		 */
1794 		zio->io_bp_override = NULL;
1795 		*bp = zio->io_bp_orig;
1796 		zio->io_pipeline = zio->io_orig_pipeline;
1797 
1798 	} else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 &&
1799 	    zp->zp_type == DMU_OT_DNODE) {
1800 		/*
1801 		 * The DMU actually relies on the zio layer's compression
1802 		 * to free metadnode blocks that have had all contained
1803 		 * dnodes freed. As a result, even when doing a raw
1804 		 * receive, we must check whether the block can be compressed
1805 		 * to a hole.
1806 		 */
1807 		psize = zio_compress_data(ZIO_COMPRESS_EMPTY,
1808 		    zio->io_abd, NULL, lsize, zp->zp_complevel);
1809 		if (psize == 0 || psize >= lsize)
1810 			compress = ZIO_COMPRESS_OFF;
1811 	} else if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS &&
1812 	    !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) {
1813 		/*
1814 		 * If we are raw receiving an encrypted dataset we should not
1815 		 * take this codepath because it will change the on-disk block
1816 		 * and decryption will fail.
1817 		 */
1818 		size_t rounded = MIN((size_t)roundup(psize,
1819 		    spa->spa_min_alloc), lsize);
1820 
1821 		if (rounded != psize) {
1822 			abd_t *cdata = abd_alloc_linear(rounded, B_TRUE);
1823 			abd_zero_off(cdata, psize, rounded - psize);
1824 			abd_copy_off(cdata, zio->io_abd, 0, 0, psize);
1825 			psize = rounded;
1826 			zio_push_transform(zio, cdata,
1827 			    psize, rounded, NULL);
1828 		}
1829 	} else {
1830 		ASSERT3U(psize, !=, 0);
1831 	}
1832 
1833 	/*
1834 	 * The final pass of spa_sync() must be all rewrites, but the first
1835 	 * few passes offer a trade-off: allocating blocks defers convergence,
1836 	 * but newly allocated blocks are sequential, so they can be written
1837 	 * to disk faster.  Therefore, we allow the first few passes of
1838 	 * spa_sync() to allocate new blocks, but force rewrites after that.
1839 	 * There should only be a handful of blocks after pass 1 in any case.
1840 	 */
1841 	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1842 	    BP_GET_PSIZE(bp) == psize &&
1843 	    pass >= zfs_sync_pass_rewrite) {
1844 		VERIFY3U(psize, !=, 0);
1845 		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1846 
1847 		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1848 		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1849 	} else {
1850 		BP_ZERO(bp);
1851 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
1852 	}
1853 
1854 	if (psize == 0) {
1855 		if (zio->io_bp_orig.blk_birth != 0 &&
1856 		    spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1857 			BP_SET_LSIZE(bp, lsize);
1858 			BP_SET_TYPE(bp, zp->zp_type);
1859 			BP_SET_LEVEL(bp, zp->zp_level);
1860 			BP_SET_BIRTH(bp, zio->io_txg, 0);
1861 		}
1862 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1863 	} else {
1864 		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1865 		BP_SET_LSIZE(bp, lsize);
1866 		BP_SET_TYPE(bp, zp->zp_type);
1867 		BP_SET_LEVEL(bp, zp->zp_level);
1868 		BP_SET_PSIZE(bp, psize);
1869 		BP_SET_COMPRESS(bp, compress);
1870 		BP_SET_CHECKSUM(bp, zp->zp_checksum);
1871 		BP_SET_DEDUP(bp, zp->zp_dedup);
1872 		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1873 		if (zp->zp_dedup) {
1874 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1875 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1876 			ASSERT(!zp->zp_encrypt ||
1877 			    DMU_OT_IS_ENCRYPTED(zp->zp_type));
1878 			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1879 		}
1880 		if (zp->zp_nopwrite) {
1881 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1882 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1883 			zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1884 		}
1885 	}
1886 	return (zio);
1887 }
1888 
1889 static zio_t *
1890 zio_free_bp_init(zio_t *zio)
1891 {
1892 	blkptr_t *bp = zio->io_bp;
1893 
1894 	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1895 		if (BP_GET_DEDUP(bp))
1896 			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1897 	}
1898 
1899 	ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1900 
1901 	return (zio);
1902 }
1903 
1904 /*
1905  * ==========================================================================
1906  * Execute the I/O pipeline
1907  * ==========================================================================
1908  */
1909 
1910 static void
1911 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1912 {
1913 	spa_t *spa = zio->io_spa;
1914 	zio_type_t t = zio->io_type;
1915 	int flags = (cutinline ? TQ_FRONT : 0);
1916 
1917 	/*
1918 	 * If we're a config writer or a probe, the normal issue and
1919 	 * interrupt threads may all be blocked waiting for the config lock.
1920 	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1921 	 */
1922 	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1923 		t = ZIO_TYPE_NULL;
1924 
1925 	/*
1926 	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1927 	 */
1928 	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1929 		t = ZIO_TYPE_NULL;
1930 
1931 	/*
1932 	 * If this is a high priority I/O, then use the high priority taskq if
1933 	 * available.
1934 	 */
1935 	if ((zio->io_priority == ZIO_PRIORITY_NOW ||
1936 	    zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) &&
1937 	    spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1938 		q++;
1939 
1940 	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1941 
1942 	/*
1943 	 * NB: We are assuming that the zio can only be dispatched
1944 	 * to a single taskq at a time.  It would be a grievous error
1945 	 * to dispatch the zio to another taskq at the same time.
1946 	 */
1947 	ASSERT(taskq_empty_ent(&zio->io_tqent));
1948 	spa_taskq_dispatch_ent(spa, t, q, zio_execute, zio, flags,
1949 	    &zio->io_tqent);
1950 }
1951 
1952 static boolean_t
1953 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1954 {
1955 	spa_t *spa = zio->io_spa;
1956 
1957 	taskq_t *tq = taskq_of_curthread();
1958 
1959 	for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1960 		spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1961 		uint_t i;
1962 		for (i = 0; i < tqs->stqs_count; i++) {
1963 			if (tqs->stqs_taskq[i] == tq)
1964 				return (B_TRUE);
1965 		}
1966 	}
1967 
1968 	return (B_FALSE);
1969 }
1970 
1971 static zio_t *
1972 zio_issue_async(zio_t *zio)
1973 {
1974 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1975 
1976 	return (NULL);
1977 }
1978 
1979 void
1980 zio_interrupt(void *zio)
1981 {
1982 	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1983 }
1984 
1985 void
1986 zio_delay_interrupt(zio_t *zio)
1987 {
1988 	/*
1989 	 * The timeout_generic() function isn't defined in userspace, so
1990 	 * rather than trying to implement the function, the zio delay
1991 	 * functionality has been disabled for userspace builds.
1992 	 */
1993 
1994 #ifdef _KERNEL
1995 	/*
1996 	 * If io_target_timestamp is zero, then no delay has been registered
1997 	 * for this IO, thus jump to the end of this function and "skip" the
1998 	 * delay; issuing it directly to the zio layer.
1999 	 */
2000 	if (zio->io_target_timestamp != 0) {
2001 		hrtime_t now = gethrtime();
2002 
2003 		if (now >= zio->io_target_timestamp) {
2004 			/*
2005 			 * This IO has already taken longer than the target
2006 			 * delay to complete, so we don't want to delay it
2007 			 * any longer; we "miss" the delay and issue it
2008 			 * directly to the zio layer. This is likely due to
2009 			 * the target latency being set to a value less than
2010 			 * the underlying hardware can satisfy (e.g. delay
2011 			 * set to 1ms, but the disks take 10ms to complete an
2012 			 * IO request).
2013 			 */
2014 
2015 			DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
2016 			    hrtime_t, now);
2017 
2018 			zio_interrupt(zio);
2019 		} else {
2020 			taskqid_t tid;
2021 			hrtime_t diff = zio->io_target_timestamp - now;
2022 			clock_t expire_at_tick = ddi_get_lbolt() +
2023 			    NSEC_TO_TICK(diff);
2024 
2025 			DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
2026 			    hrtime_t, now, hrtime_t, diff);
2027 
2028 			if (NSEC_TO_TICK(diff) == 0) {
2029 				/* Our delay is less than a jiffy - just spin */
2030 				zfs_sleep_until(zio->io_target_timestamp);
2031 				zio_interrupt(zio);
2032 			} else {
2033 				/*
2034 				 * Use taskq_dispatch_delay() in the place of
2035 				 * OpenZFS's timeout_generic().
2036 				 */
2037 				tid = taskq_dispatch_delay(system_taskq,
2038 				    zio_interrupt, zio, TQ_NOSLEEP,
2039 				    expire_at_tick);
2040 				if (tid == TASKQID_INVALID) {
2041 					/*
2042 					 * Couldn't allocate a task.  Just
2043 					 * finish the zio without a delay.
2044 					 */
2045 					zio_interrupt(zio);
2046 				}
2047 			}
2048 		}
2049 		return;
2050 	}
2051 #endif
2052 	DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
2053 	zio_interrupt(zio);
2054 }
2055 
2056 static void
2057 zio_deadman_impl(zio_t *pio, int ziodepth)
2058 {
2059 	zio_t *cio, *cio_next;
2060 	zio_link_t *zl = NULL;
2061 	vdev_t *vd = pio->io_vd;
2062 
2063 	if (zio_deadman_log_all || (vd != NULL && vd->vdev_ops->vdev_op_leaf)) {
2064 		vdev_queue_t *vq = vd ? &vd->vdev_queue : NULL;
2065 		zbookmark_phys_t *zb = &pio->io_bookmark;
2066 		uint64_t delta = gethrtime() - pio->io_timestamp;
2067 		uint64_t failmode = spa_get_deadman_failmode(pio->io_spa);
2068 
2069 		zfs_dbgmsg("slow zio[%d]: zio=%px timestamp=%llu "
2070 		    "delta=%llu queued=%llu io=%llu "
2071 		    "path=%s "
2072 		    "last=%llu type=%d "
2073 		    "priority=%d flags=0x%llx stage=0x%x "
2074 		    "pipeline=0x%x pipeline-trace=0x%x "
2075 		    "objset=%llu object=%llu "
2076 		    "level=%llu blkid=%llu "
2077 		    "offset=%llu size=%llu "
2078 		    "error=%d",
2079 		    ziodepth, pio, pio->io_timestamp,
2080 		    (u_longlong_t)delta, pio->io_delta, pio->io_delay,
2081 		    vd ? vd->vdev_path : "NULL",
2082 		    vq ? vq->vq_io_complete_ts : 0, pio->io_type,
2083 		    pio->io_priority, (u_longlong_t)pio->io_flags,
2084 		    pio->io_stage, pio->io_pipeline, pio->io_pipeline_trace,
2085 		    (u_longlong_t)zb->zb_objset, (u_longlong_t)zb->zb_object,
2086 		    (u_longlong_t)zb->zb_level, (u_longlong_t)zb->zb_blkid,
2087 		    (u_longlong_t)pio->io_offset, (u_longlong_t)pio->io_size,
2088 		    pio->io_error);
2089 		(void) zfs_ereport_post(FM_EREPORT_ZFS_DEADMAN,
2090 		    pio->io_spa, vd, zb, pio, 0);
2091 
2092 		if (failmode == ZIO_FAILURE_MODE_CONTINUE &&
2093 		    taskq_empty_ent(&pio->io_tqent)) {
2094 			zio_interrupt(pio);
2095 		}
2096 	}
2097 
2098 	mutex_enter(&pio->io_lock);
2099 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2100 		cio_next = zio_walk_children(pio, &zl);
2101 		zio_deadman_impl(cio, ziodepth + 1);
2102 	}
2103 	mutex_exit(&pio->io_lock);
2104 }
2105 
2106 /*
2107  * Log the critical information describing this zio and all of its children
2108  * using the zfs_dbgmsg() interface then post deadman event for the ZED.
2109  */
2110 void
2111 zio_deadman(zio_t *pio, const char *tag)
2112 {
2113 	spa_t *spa = pio->io_spa;
2114 	char *name = spa_name(spa);
2115 
2116 	if (!zfs_deadman_enabled || spa_suspended(spa))
2117 		return;
2118 
2119 	zio_deadman_impl(pio, 0);
2120 
2121 	switch (spa_get_deadman_failmode(spa)) {
2122 	case ZIO_FAILURE_MODE_WAIT:
2123 		zfs_dbgmsg("%s waiting for hung I/O to pool '%s'", tag, name);
2124 		break;
2125 
2126 	case ZIO_FAILURE_MODE_CONTINUE:
2127 		zfs_dbgmsg("%s restarting hung I/O for pool '%s'", tag, name);
2128 		break;
2129 
2130 	case ZIO_FAILURE_MODE_PANIC:
2131 		fm_panic("%s determined I/O to pool '%s' is hung.", tag, name);
2132 		break;
2133 	}
2134 }
2135 
2136 /*
2137  * Execute the I/O pipeline until one of the following occurs:
2138  * (1) the I/O completes; (2) the pipeline stalls waiting for
2139  * dependent child I/Os; (3) the I/O issues, so we're waiting
2140  * for an I/O completion interrupt; (4) the I/O is delegated by
2141  * vdev-level caching or aggregation; (5) the I/O is deferred
2142  * due to vdev-level queueing; (6) the I/O is handed off to
2143  * another thread.  In all cases, the pipeline stops whenever
2144  * there's no CPU work; it never burns a thread in cv_wait_io().
2145  *
2146  * There's no locking on io_stage because there's no legitimate way
2147  * for multiple threads to be attempting to process the same I/O.
2148  */
2149 static zio_pipe_stage_t *zio_pipeline[];
2150 
2151 /*
2152  * zio_execute() is a wrapper around the static function
2153  * __zio_execute() so that we can force  __zio_execute() to be
2154  * inlined.  This reduces stack overhead which is important
2155  * because __zio_execute() is called recursively in several zio
2156  * code paths.  zio_execute() itself cannot be inlined because
2157  * it is externally visible.
2158  */
2159 void
2160 zio_execute(void *zio)
2161 {
2162 	fstrans_cookie_t cookie;
2163 
2164 	cookie = spl_fstrans_mark();
2165 	__zio_execute(zio);
2166 	spl_fstrans_unmark(cookie);
2167 }
2168 
2169 /*
2170  * Used to determine if in the current context the stack is sized large
2171  * enough to allow zio_execute() to be called recursively.  A minimum
2172  * stack size of 16K is required to avoid needing to re-dispatch the zio.
2173  */
2174 static boolean_t
2175 zio_execute_stack_check(zio_t *zio)
2176 {
2177 #if !defined(HAVE_LARGE_STACKS)
2178 	dsl_pool_t *dp = spa_get_dsl(zio->io_spa);
2179 
2180 	/* Executing in txg_sync_thread() context. */
2181 	if (dp && curthread == dp->dp_tx.tx_sync_thread)
2182 		return (B_TRUE);
2183 
2184 	/* Pool initialization outside of zio_taskq context. */
2185 	if (dp && spa_is_initializing(dp->dp_spa) &&
2186 	    !zio_taskq_member(zio, ZIO_TASKQ_ISSUE) &&
2187 	    !zio_taskq_member(zio, ZIO_TASKQ_ISSUE_HIGH))
2188 		return (B_TRUE);
2189 #else
2190 	(void) zio;
2191 #endif /* HAVE_LARGE_STACKS */
2192 
2193 	return (B_FALSE);
2194 }
2195 
2196 __attribute__((always_inline))
2197 static inline void
2198 __zio_execute(zio_t *zio)
2199 {
2200 	ASSERT3U(zio->io_queued_timestamp, >, 0);
2201 
2202 	while (zio->io_stage < ZIO_STAGE_DONE) {
2203 		enum zio_stage pipeline = zio->io_pipeline;
2204 		enum zio_stage stage = zio->io_stage;
2205 
2206 		zio->io_executor = curthread;
2207 
2208 		ASSERT(!MUTEX_HELD(&zio->io_lock));
2209 		ASSERT(ISP2(stage));
2210 		ASSERT(zio->io_stall == NULL);
2211 
2212 		do {
2213 			stage <<= 1;
2214 		} while ((stage & pipeline) == 0);
2215 
2216 		ASSERT(stage <= ZIO_STAGE_DONE);
2217 
2218 		/*
2219 		 * If we are in interrupt context and this pipeline stage
2220 		 * will grab a config lock that is held across I/O,
2221 		 * or may wait for an I/O that needs an interrupt thread
2222 		 * to complete, issue async to avoid deadlock.
2223 		 *
2224 		 * For VDEV_IO_START, we cut in line so that the io will
2225 		 * be sent to disk promptly.
2226 		 */
2227 		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
2228 		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
2229 			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2230 			    zio_requeue_io_start_cut_in_line : B_FALSE;
2231 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2232 			return;
2233 		}
2234 
2235 		/*
2236 		 * If the current context doesn't have large enough stacks
2237 		 * the zio must be issued asynchronously to prevent overflow.
2238 		 */
2239 		if (zio_execute_stack_check(zio)) {
2240 			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2241 			    zio_requeue_io_start_cut_in_line : B_FALSE;
2242 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2243 			return;
2244 		}
2245 
2246 		zio->io_stage = stage;
2247 		zio->io_pipeline_trace |= zio->io_stage;
2248 
2249 		/*
2250 		 * The zio pipeline stage returns the next zio to execute
2251 		 * (typically the same as this one), or NULL if we should
2252 		 * stop.
2253 		 */
2254 		zio = zio_pipeline[highbit64(stage) - 1](zio);
2255 
2256 		if (zio == NULL)
2257 			return;
2258 	}
2259 }
2260 
2261 
2262 /*
2263  * ==========================================================================
2264  * Initiate I/O, either sync or async
2265  * ==========================================================================
2266  */
2267 int
2268 zio_wait(zio_t *zio)
2269 {
2270 	/*
2271 	 * Some routines, like zio_free_sync(), may return a NULL zio
2272 	 * to avoid the performance overhead of creating and then destroying
2273 	 * an unneeded zio.  For the callers' simplicity, we accept a NULL
2274 	 * zio and ignore it.
2275 	 */
2276 	if (zio == NULL)
2277 		return (0);
2278 
2279 	long timeout = MSEC_TO_TICK(zfs_deadman_ziotime_ms);
2280 	int error;
2281 
2282 	ASSERT3S(zio->io_stage, ==, ZIO_STAGE_OPEN);
2283 	ASSERT3P(zio->io_executor, ==, NULL);
2284 
2285 	zio->io_waiter = curthread;
2286 	ASSERT0(zio->io_queued_timestamp);
2287 	zio->io_queued_timestamp = gethrtime();
2288 
2289 	__zio_execute(zio);
2290 
2291 	mutex_enter(&zio->io_lock);
2292 	while (zio->io_executor != NULL) {
2293 		error = cv_timedwait_io(&zio->io_cv, &zio->io_lock,
2294 		    ddi_get_lbolt() + timeout);
2295 
2296 		if (zfs_deadman_enabled && error == -1 &&
2297 		    gethrtime() - zio->io_queued_timestamp >
2298 		    spa_deadman_ziotime(zio->io_spa)) {
2299 			mutex_exit(&zio->io_lock);
2300 			timeout = MSEC_TO_TICK(zfs_deadman_checktime_ms);
2301 			zio_deadman(zio, FTAG);
2302 			mutex_enter(&zio->io_lock);
2303 		}
2304 	}
2305 	mutex_exit(&zio->io_lock);
2306 
2307 	error = zio->io_error;
2308 	zio_destroy(zio);
2309 
2310 	return (error);
2311 }
2312 
2313 void
2314 zio_nowait(zio_t *zio)
2315 {
2316 	/*
2317 	 * See comment in zio_wait().
2318 	 */
2319 	if (zio == NULL)
2320 		return;
2321 
2322 	ASSERT3P(zio->io_executor, ==, NULL);
2323 
2324 	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
2325 	    list_is_empty(&zio->io_parent_list)) {
2326 		zio_t *pio;
2327 
2328 		/*
2329 		 * This is a logical async I/O with no parent to wait for it.
2330 		 * We add it to the spa_async_root_zio "Godfather" I/O which
2331 		 * will ensure they complete prior to unloading the pool.
2332 		 */
2333 		spa_t *spa = zio->io_spa;
2334 		pio = spa->spa_async_zio_root[CPU_SEQID_UNSTABLE];
2335 
2336 		zio_add_child(pio, zio);
2337 	}
2338 
2339 	ASSERT0(zio->io_queued_timestamp);
2340 	zio->io_queued_timestamp = gethrtime();
2341 	__zio_execute(zio);
2342 }
2343 
2344 /*
2345  * ==========================================================================
2346  * Reexecute, cancel, or suspend/resume failed I/O
2347  * ==========================================================================
2348  */
2349 
2350 static void
2351 zio_reexecute(void *arg)
2352 {
2353 	zio_t *pio = arg;
2354 	zio_t *cio, *cio_next;
2355 
2356 	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
2357 	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
2358 	ASSERT(pio->io_gang_leader == NULL);
2359 	ASSERT(pio->io_gang_tree == NULL);
2360 
2361 	pio->io_flags = pio->io_orig_flags;
2362 	pio->io_stage = pio->io_orig_stage;
2363 	pio->io_pipeline = pio->io_orig_pipeline;
2364 	pio->io_reexecute = 0;
2365 	pio->io_flags |= ZIO_FLAG_REEXECUTED;
2366 	pio->io_pipeline_trace = 0;
2367 	pio->io_error = 0;
2368 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2369 		pio->io_state[w] = 0;
2370 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2371 		pio->io_child_error[c] = 0;
2372 
2373 	if (IO_IS_ALLOCATING(pio))
2374 		BP_ZERO(pio->io_bp);
2375 
2376 	/*
2377 	 * As we reexecute pio's children, new children could be created.
2378 	 * New children go to the head of pio's io_child_list, however,
2379 	 * so we will (correctly) not reexecute them.  The key is that
2380 	 * the remainder of pio's io_child_list, from 'cio_next' onward,
2381 	 * cannot be affected by any side effects of reexecuting 'cio'.
2382 	 */
2383 	zio_link_t *zl = NULL;
2384 	mutex_enter(&pio->io_lock);
2385 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2386 		cio_next = zio_walk_children(pio, &zl);
2387 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2388 			pio->io_children[cio->io_child_type][w]++;
2389 		mutex_exit(&pio->io_lock);
2390 		zio_reexecute(cio);
2391 		mutex_enter(&pio->io_lock);
2392 	}
2393 	mutex_exit(&pio->io_lock);
2394 
2395 	/*
2396 	 * Now that all children have been reexecuted, execute the parent.
2397 	 * We don't reexecute "The Godfather" I/O here as it's the
2398 	 * responsibility of the caller to wait on it.
2399 	 */
2400 	if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) {
2401 		pio->io_queued_timestamp = gethrtime();
2402 		__zio_execute(pio);
2403 	}
2404 }
2405 
2406 void
2407 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason)
2408 {
2409 	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
2410 		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
2411 		    "failure and the failure mode property for this pool "
2412 		    "is set to panic.", spa_name(spa));
2413 
2414 	cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable I/O "
2415 	    "failure and has been suspended.\n", spa_name(spa));
2416 
2417 	(void) zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL,
2418 	    NULL, NULL, 0);
2419 
2420 	mutex_enter(&spa->spa_suspend_lock);
2421 
2422 	if (spa->spa_suspend_zio_root == NULL)
2423 		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
2424 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2425 		    ZIO_FLAG_GODFATHER);
2426 
2427 	spa->spa_suspended = reason;
2428 
2429 	if (zio != NULL) {
2430 		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
2431 		ASSERT(zio != spa->spa_suspend_zio_root);
2432 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2433 		ASSERT(zio_unique_parent(zio) == NULL);
2434 		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
2435 		zio_add_child(spa->spa_suspend_zio_root, zio);
2436 	}
2437 
2438 	mutex_exit(&spa->spa_suspend_lock);
2439 }
2440 
2441 int
2442 zio_resume(spa_t *spa)
2443 {
2444 	zio_t *pio;
2445 
2446 	/*
2447 	 * Reexecute all previously suspended i/o.
2448 	 */
2449 	mutex_enter(&spa->spa_suspend_lock);
2450 	spa->spa_suspended = ZIO_SUSPEND_NONE;
2451 	cv_broadcast(&spa->spa_suspend_cv);
2452 	pio = spa->spa_suspend_zio_root;
2453 	spa->spa_suspend_zio_root = NULL;
2454 	mutex_exit(&spa->spa_suspend_lock);
2455 
2456 	if (pio == NULL)
2457 		return (0);
2458 
2459 	zio_reexecute(pio);
2460 	return (zio_wait(pio));
2461 }
2462 
2463 void
2464 zio_resume_wait(spa_t *spa)
2465 {
2466 	mutex_enter(&spa->spa_suspend_lock);
2467 	while (spa_suspended(spa))
2468 		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
2469 	mutex_exit(&spa->spa_suspend_lock);
2470 }
2471 
2472 /*
2473  * ==========================================================================
2474  * Gang blocks.
2475  *
2476  * A gang block is a collection of small blocks that looks to the DMU
2477  * like one large block.  When zio_dva_allocate() cannot find a block
2478  * of the requested size, due to either severe fragmentation or the pool
2479  * being nearly full, it calls zio_write_gang_block() to construct the
2480  * block from smaller fragments.
2481  *
2482  * A gang block consists of a gang header (zio_gbh_phys_t) and up to
2483  * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
2484  * an indirect block: it's an array of block pointers.  It consumes
2485  * only one sector and hence is allocatable regardless of fragmentation.
2486  * The gang header's bps point to its gang members, which hold the data.
2487  *
2488  * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
2489  * as the verifier to ensure uniqueness of the SHA256 checksum.
2490  * Critically, the gang block bp's blk_cksum is the checksum of the data,
2491  * not the gang header.  This ensures that data block signatures (needed for
2492  * deduplication) are independent of how the block is physically stored.
2493  *
2494  * Gang blocks can be nested: a gang member may itself be a gang block.
2495  * Thus every gang block is a tree in which root and all interior nodes are
2496  * gang headers, and the leaves are normal blocks that contain user data.
2497  * The root of the gang tree is called the gang leader.
2498  *
2499  * To perform any operation (read, rewrite, free, claim) on a gang block,
2500  * zio_gang_assemble() first assembles the gang tree (minus data leaves)
2501  * in the io_gang_tree field of the original logical i/o by recursively
2502  * reading the gang leader and all gang headers below it.  This yields
2503  * an in-core tree containing the contents of every gang header and the
2504  * bps for every constituent of the gang block.
2505  *
2506  * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
2507  * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
2508  * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
2509  * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
2510  * zio_read_gang() is a wrapper around zio_read() that omits reading gang
2511  * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
2512  * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
2513  * of the gang header plus zio_checksum_compute() of the data to update the
2514  * gang header's blk_cksum as described above.
2515  *
2516  * The two-phase assemble/issue model solves the problem of partial failure --
2517  * what if you'd freed part of a gang block but then couldn't read the
2518  * gang header for another part?  Assembling the entire gang tree first
2519  * ensures that all the necessary gang header I/O has succeeded before
2520  * starting the actual work of free, claim, or write.  Once the gang tree
2521  * is assembled, free and claim are in-memory operations that cannot fail.
2522  *
2523  * In the event that a gang write fails, zio_dva_unallocate() walks the
2524  * gang tree to immediately free (i.e. insert back into the space map)
2525  * everything we've allocated.  This ensures that we don't get ENOSPC
2526  * errors during repeated suspend/resume cycles due to a flaky device.
2527  *
2528  * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
2529  * the gang tree, we won't modify the block, so we can safely defer the free
2530  * (knowing that the block is still intact).  If we *can* assemble the gang
2531  * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
2532  * each constituent bp and we can allocate a new block on the next sync pass.
2533  *
2534  * In all cases, the gang tree allows complete recovery from partial failure.
2535  * ==========================================================================
2536  */
2537 
2538 static void
2539 zio_gang_issue_func_done(zio_t *zio)
2540 {
2541 	abd_free(zio->io_abd);
2542 }
2543 
2544 static zio_t *
2545 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2546     uint64_t offset)
2547 {
2548 	if (gn != NULL)
2549 		return (pio);
2550 
2551 	return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset),
2552 	    BP_GET_PSIZE(bp), zio_gang_issue_func_done,
2553 	    NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2554 	    &pio->io_bookmark));
2555 }
2556 
2557 static zio_t *
2558 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2559     uint64_t offset)
2560 {
2561 	zio_t *zio;
2562 
2563 	if (gn != NULL) {
2564 		abd_t *gbh_abd =
2565 		    abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2566 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2567 		    gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL,
2568 		    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2569 		    &pio->io_bookmark);
2570 		/*
2571 		 * As we rewrite each gang header, the pipeline will compute
2572 		 * a new gang block header checksum for it; but no one will
2573 		 * compute a new data checksum, so we do that here.  The one
2574 		 * exception is the gang leader: the pipeline already computed
2575 		 * its data checksum because that stage precedes gang assembly.
2576 		 * (Presently, nothing actually uses interior data checksums;
2577 		 * this is just good hygiene.)
2578 		 */
2579 		if (gn != pio->io_gang_leader->io_gang_tree) {
2580 			abd_t *buf = abd_get_offset(data, offset);
2581 
2582 			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
2583 			    buf, BP_GET_PSIZE(bp));
2584 
2585 			abd_free(buf);
2586 		}
2587 		/*
2588 		 * If we are here to damage data for testing purposes,
2589 		 * leave the GBH alone so that we can detect the damage.
2590 		 */
2591 		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
2592 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2593 	} else {
2594 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2595 		    abd_get_offset(data, offset), BP_GET_PSIZE(bp),
2596 		    zio_gang_issue_func_done, NULL, pio->io_priority,
2597 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2598 	}
2599 
2600 	return (zio);
2601 }
2602 
2603 static zio_t *
2604 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2605     uint64_t offset)
2606 {
2607 	(void) gn, (void) data, (void) offset;
2608 
2609 	zio_t *zio = zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
2610 	    ZIO_GANG_CHILD_FLAGS(pio));
2611 	if (zio == NULL) {
2612 		zio = zio_null(pio, pio->io_spa,
2613 		    NULL, NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio));
2614 	}
2615 	return (zio);
2616 }
2617 
2618 static zio_t *
2619 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2620     uint64_t offset)
2621 {
2622 	(void) gn, (void) data, (void) offset;
2623 	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
2624 	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
2625 }
2626 
2627 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
2628 	NULL,
2629 	zio_read_gang,
2630 	zio_rewrite_gang,
2631 	zio_free_gang,
2632 	zio_claim_gang,
2633 	NULL
2634 };
2635 
2636 static void zio_gang_tree_assemble_done(zio_t *zio);
2637 
2638 static zio_gang_node_t *
2639 zio_gang_node_alloc(zio_gang_node_t **gnpp)
2640 {
2641 	zio_gang_node_t *gn;
2642 
2643 	ASSERT(*gnpp == NULL);
2644 
2645 	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
2646 	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
2647 	*gnpp = gn;
2648 
2649 	return (gn);
2650 }
2651 
2652 static void
2653 zio_gang_node_free(zio_gang_node_t **gnpp)
2654 {
2655 	zio_gang_node_t *gn = *gnpp;
2656 
2657 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2658 		ASSERT(gn->gn_child[g] == NULL);
2659 
2660 	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2661 	kmem_free(gn, sizeof (*gn));
2662 	*gnpp = NULL;
2663 }
2664 
2665 static void
2666 zio_gang_tree_free(zio_gang_node_t **gnpp)
2667 {
2668 	zio_gang_node_t *gn = *gnpp;
2669 
2670 	if (gn == NULL)
2671 		return;
2672 
2673 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2674 		zio_gang_tree_free(&gn->gn_child[g]);
2675 
2676 	zio_gang_node_free(gnpp);
2677 }
2678 
2679 static void
2680 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
2681 {
2682 	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
2683 	abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2684 
2685 	ASSERT(gio->io_gang_leader == gio);
2686 	ASSERT(BP_IS_GANG(bp));
2687 
2688 	zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2689 	    zio_gang_tree_assemble_done, gn, gio->io_priority,
2690 	    ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
2691 }
2692 
2693 static void
2694 zio_gang_tree_assemble_done(zio_t *zio)
2695 {
2696 	zio_t *gio = zio->io_gang_leader;
2697 	zio_gang_node_t *gn = zio->io_private;
2698 	blkptr_t *bp = zio->io_bp;
2699 
2700 	ASSERT(gio == zio_unique_parent(zio));
2701 	ASSERT(list_is_empty(&zio->io_child_list));
2702 
2703 	if (zio->io_error)
2704 		return;
2705 
2706 	/* this ABD was created from a linear buf in zio_gang_tree_assemble */
2707 	if (BP_SHOULD_BYTESWAP(bp))
2708 		byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size);
2709 
2710 	ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh);
2711 	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
2712 	ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2713 
2714 	abd_free(zio->io_abd);
2715 
2716 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2717 		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2718 		if (!BP_IS_GANG(gbp))
2719 			continue;
2720 		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
2721 	}
2722 }
2723 
2724 static void
2725 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data,
2726     uint64_t offset)
2727 {
2728 	zio_t *gio = pio->io_gang_leader;
2729 	zio_t *zio;
2730 
2731 	ASSERT(BP_IS_GANG(bp) == !!gn);
2732 	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
2733 	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
2734 
2735 	/*
2736 	 * If you're a gang header, your data is in gn->gn_gbh.
2737 	 * If you're a gang member, your data is in 'data' and gn == NULL.
2738 	 */
2739 	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset);
2740 
2741 	if (gn != NULL) {
2742 		ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2743 
2744 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2745 			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2746 			if (BP_IS_HOLE(gbp))
2747 				continue;
2748 			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data,
2749 			    offset);
2750 			offset += BP_GET_PSIZE(gbp);
2751 		}
2752 	}
2753 
2754 	if (gn == gio->io_gang_tree)
2755 		ASSERT3U(gio->io_size, ==, offset);
2756 
2757 	if (zio != pio)
2758 		zio_nowait(zio);
2759 }
2760 
2761 static zio_t *
2762 zio_gang_assemble(zio_t *zio)
2763 {
2764 	blkptr_t *bp = zio->io_bp;
2765 
2766 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
2767 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2768 
2769 	zio->io_gang_leader = zio;
2770 
2771 	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
2772 
2773 	return (zio);
2774 }
2775 
2776 static zio_t *
2777 zio_gang_issue(zio_t *zio)
2778 {
2779 	blkptr_t *bp = zio->io_bp;
2780 
2781 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) {
2782 		return (NULL);
2783 	}
2784 
2785 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
2786 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2787 
2788 	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
2789 		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd,
2790 		    0);
2791 	else
2792 		zio_gang_tree_free(&zio->io_gang_tree);
2793 
2794 	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2795 
2796 	return (zio);
2797 }
2798 
2799 static void
2800 zio_write_gang_member_ready(zio_t *zio)
2801 {
2802 	zio_t *pio = zio_unique_parent(zio);
2803 	dva_t *cdva = zio->io_bp->blk_dva;
2804 	dva_t *pdva = pio->io_bp->blk_dva;
2805 	uint64_t asize;
2806 	zio_t *gio __maybe_unused = zio->io_gang_leader;
2807 
2808 	if (BP_IS_HOLE(zio->io_bp))
2809 		return;
2810 
2811 	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
2812 
2813 	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
2814 	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
2815 	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
2816 	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
2817 	VERIFY3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
2818 
2819 	mutex_enter(&pio->io_lock);
2820 	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
2821 		ASSERT(DVA_GET_GANG(&pdva[d]));
2822 		asize = DVA_GET_ASIZE(&pdva[d]);
2823 		asize += DVA_GET_ASIZE(&cdva[d]);
2824 		DVA_SET_ASIZE(&pdva[d], asize);
2825 	}
2826 	mutex_exit(&pio->io_lock);
2827 }
2828 
2829 static void
2830 zio_write_gang_done(zio_t *zio)
2831 {
2832 	/*
2833 	 * The io_abd field will be NULL for a zio with no data.  The io_flags
2834 	 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't
2835 	 * check for it here as it is cleared in zio_ready.
2836 	 */
2837 	if (zio->io_abd != NULL)
2838 		abd_free(zio->io_abd);
2839 }
2840 
2841 static zio_t *
2842 zio_write_gang_block(zio_t *pio, metaslab_class_t *mc)
2843 {
2844 	spa_t *spa = pio->io_spa;
2845 	blkptr_t *bp = pio->io_bp;
2846 	zio_t *gio = pio->io_gang_leader;
2847 	zio_t *zio;
2848 	zio_gang_node_t *gn, **gnpp;
2849 	zio_gbh_phys_t *gbh;
2850 	abd_t *gbh_abd;
2851 	uint64_t txg = pio->io_txg;
2852 	uint64_t resid = pio->io_size;
2853 	uint64_t lsize;
2854 	int copies = gio->io_prop.zp_copies;
2855 	zio_prop_t zp;
2856 	int error;
2857 	boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA);
2858 
2859 	/*
2860 	 * If one copy was requested, store 2 copies of the GBH, so that we
2861 	 * can still traverse all the data (e.g. to free or scrub) even if a
2862 	 * block is damaged.  Note that we can't store 3 copies of the GBH in
2863 	 * all cases, e.g. with encryption, which uses DVA[2] for the IV+salt.
2864 	 */
2865 	int gbh_copies = copies;
2866 	if (gbh_copies == 1) {
2867 		gbh_copies = MIN(2, spa_max_replication(spa));
2868 	}
2869 
2870 	int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER;
2871 	if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2872 		ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2873 		ASSERT(has_data);
2874 
2875 		flags |= METASLAB_ASYNC_ALLOC;
2876 		VERIFY(zfs_refcount_held(&mc->mc_allocator[pio->io_allocator].
2877 		    mca_alloc_slots, pio));
2878 
2879 		/*
2880 		 * The logical zio has already placed a reservation for
2881 		 * 'copies' allocation slots but gang blocks may require
2882 		 * additional copies. These additional copies
2883 		 * (i.e. gbh_copies - copies) are guaranteed to succeed
2884 		 * since metaslab_class_throttle_reserve() always allows
2885 		 * additional reservations for gang blocks.
2886 		 */
2887 		VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies,
2888 		    pio->io_allocator, pio, flags));
2889 	}
2890 
2891 	error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE,
2892 	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags,
2893 	    &pio->io_alloc_list, pio, pio->io_allocator);
2894 	if (error) {
2895 		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2896 			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2897 			ASSERT(has_data);
2898 
2899 			/*
2900 			 * If we failed to allocate the gang block header then
2901 			 * we remove any additional allocation reservations that
2902 			 * we placed here. The original reservation will
2903 			 * be removed when the logical I/O goes to the ready
2904 			 * stage.
2905 			 */
2906 			metaslab_class_throttle_unreserve(mc,
2907 			    gbh_copies - copies, pio->io_allocator, pio);
2908 		}
2909 
2910 		pio->io_error = error;
2911 		return (pio);
2912 	}
2913 
2914 	if (pio == gio) {
2915 		gnpp = &gio->io_gang_tree;
2916 	} else {
2917 		gnpp = pio->io_private;
2918 		ASSERT(pio->io_ready == zio_write_gang_member_ready);
2919 	}
2920 
2921 	gn = zio_gang_node_alloc(gnpp);
2922 	gbh = gn->gn_gbh;
2923 	memset(gbh, 0, SPA_GANGBLOCKSIZE);
2924 	gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE);
2925 
2926 	/*
2927 	 * Create the gang header.
2928 	 */
2929 	zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2930 	    zio_write_gang_done, NULL, pio->io_priority,
2931 	    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2932 
2933 	/*
2934 	 * Create and nowait the gang children.
2935 	 */
2936 	for (int g = 0; resid != 0; resid -= lsize, g++) {
2937 		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
2938 		    SPA_MINBLOCKSIZE);
2939 		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
2940 
2941 		zp.zp_checksum = gio->io_prop.zp_checksum;
2942 		zp.zp_compress = ZIO_COMPRESS_OFF;
2943 		zp.zp_complevel = gio->io_prop.zp_complevel;
2944 		zp.zp_type = DMU_OT_NONE;
2945 		zp.zp_level = 0;
2946 		zp.zp_copies = gio->io_prop.zp_copies;
2947 		zp.zp_dedup = B_FALSE;
2948 		zp.zp_dedup_verify = B_FALSE;
2949 		zp.zp_nopwrite = B_FALSE;
2950 		zp.zp_encrypt = gio->io_prop.zp_encrypt;
2951 		zp.zp_byteorder = gio->io_prop.zp_byteorder;
2952 		memset(zp.zp_salt, 0, ZIO_DATA_SALT_LEN);
2953 		memset(zp.zp_iv, 0, ZIO_DATA_IV_LEN);
2954 		memset(zp.zp_mac, 0, ZIO_DATA_MAC_LEN);
2955 
2956 		zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
2957 		    has_data ? abd_get_offset(pio->io_abd, pio->io_size -
2958 		    resid) : NULL, lsize, lsize, &zp,
2959 		    zio_write_gang_member_ready, NULL,
2960 		    zio_write_gang_done, &gn->gn_child[g], pio->io_priority,
2961 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2962 
2963 		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2964 			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2965 			ASSERT(has_data);
2966 
2967 			/*
2968 			 * Gang children won't throttle but we should
2969 			 * account for their work, so reserve an allocation
2970 			 * slot for them here.
2971 			 */
2972 			VERIFY(metaslab_class_throttle_reserve(mc,
2973 			    zp.zp_copies, cio->io_allocator, cio, flags));
2974 		}
2975 		zio_nowait(cio);
2976 	}
2977 
2978 	/*
2979 	 * Set pio's pipeline to just wait for zio to finish.
2980 	 */
2981 	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2982 
2983 	/*
2984 	 * We didn't allocate this bp, so make sure it doesn't get unmarked.
2985 	 */
2986 	pio->io_flags &= ~ZIO_FLAG_FASTWRITE;
2987 
2988 	zio_nowait(zio);
2989 
2990 	return (pio);
2991 }
2992 
2993 /*
2994  * The zio_nop_write stage in the pipeline determines if allocating a
2995  * new bp is necessary.  The nopwrite feature can handle writes in
2996  * either syncing or open context (i.e. zil writes) and as a result is
2997  * mutually exclusive with dedup.
2998  *
2999  * By leveraging a cryptographically secure checksum, such as SHA256, we
3000  * can compare the checksums of the new data and the old to determine if
3001  * allocating a new block is required.  Note that our requirements for
3002  * cryptographic strength are fairly weak: there can't be any accidental
3003  * hash collisions, but we don't need to be secure against intentional
3004  * (malicious) collisions.  To trigger a nopwrite, you have to be able
3005  * to write the file to begin with, and triggering an incorrect (hash
3006  * collision) nopwrite is no worse than simply writing to the file.
3007  * That said, there are no known attacks against the checksum algorithms
3008  * used for nopwrite, assuming that the salt and the checksums
3009  * themselves remain secret.
3010  */
3011 static zio_t *
3012 zio_nop_write(zio_t *zio)
3013 {
3014 	blkptr_t *bp = zio->io_bp;
3015 	blkptr_t *bp_orig = &zio->io_bp_orig;
3016 	zio_prop_t *zp = &zio->io_prop;
3017 
3018 	ASSERT(BP_IS_HOLE(bp));
3019 	ASSERT(BP_GET_LEVEL(bp) == 0);
3020 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
3021 	ASSERT(zp->zp_nopwrite);
3022 	ASSERT(!zp->zp_dedup);
3023 	ASSERT(zio->io_bp_override == NULL);
3024 	ASSERT(IO_IS_ALLOCATING(zio));
3025 
3026 	/*
3027 	 * Check to see if the original bp and the new bp have matching
3028 	 * characteristics (i.e. same checksum, compression algorithms, etc).
3029 	 * If they don't then just continue with the pipeline which will
3030 	 * allocate a new bp.
3031 	 */
3032 	if (BP_IS_HOLE(bp_orig) ||
3033 	    !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
3034 	    ZCHECKSUM_FLAG_NOPWRITE) ||
3035 	    BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) ||
3036 	    BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
3037 	    BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
3038 	    BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
3039 	    zp->zp_copies != BP_GET_NDVAS(bp_orig))
3040 		return (zio);
3041 
3042 	/*
3043 	 * If the checksums match then reset the pipeline so that we
3044 	 * avoid allocating a new bp and issuing any I/O.
3045 	 */
3046 	if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
3047 		ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
3048 		    ZCHECKSUM_FLAG_NOPWRITE);
3049 		ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
3050 		ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
3051 		ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
3052 		ASSERT3U(bp->blk_prop, ==, bp_orig->blk_prop);
3053 
3054 		/*
3055 		 * If we're overwriting a block that is currently on an
3056 		 * indirect vdev, then ignore the nopwrite request and
3057 		 * allow a new block to be allocated on a concrete vdev.
3058 		 */
3059 		spa_config_enter(zio->io_spa, SCL_VDEV, FTAG, RW_READER);
3060 		for (int d = 0; d < BP_GET_NDVAS(bp_orig); d++) {
3061 			vdev_t *tvd = vdev_lookup_top(zio->io_spa,
3062 			    DVA_GET_VDEV(&bp_orig->blk_dva[d]));
3063 			if (tvd->vdev_ops == &vdev_indirect_ops) {
3064 				spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
3065 				return (zio);
3066 			}
3067 		}
3068 		spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
3069 
3070 		*bp = *bp_orig;
3071 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3072 		zio->io_flags |= ZIO_FLAG_NOPWRITE;
3073 	}
3074 
3075 	return (zio);
3076 }
3077 
3078 /*
3079  * ==========================================================================
3080  * Block Reference Table
3081  * ==========================================================================
3082  */
3083 static zio_t *
3084 zio_brt_free(zio_t *zio)
3085 {
3086 	blkptr_t *bp;
3087 
3088 	bp = zio->io_bp;
3089 
3090 	if (BP_GET_LEVEL(bp) > 0 ||
3091 	    BP_IS_METADATA(bp) ||
3092 	    !brt_maybe_exists(zio->io_spa, bp)) {
3093 		return (zio);
3094 	}
3095 
3096 	if (!brt_entry_decref(zio->io_spa, bp)) {
3097 		/*
3098 		 * This isn't the last reference, so we cannot free
3099 		 * the data yet.
3100 		 */
3101 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3102 	}
3103 
3104 	return (zio);
3105 }
3106 
3107 /*
3108  * ==========================================================================
3109  * Dedup
3110  * ==========================================================================
3111  */
3112 static void
3113 zio_ddt_child_read_done(zio_t *zio)
3114 {
3115 	blkptr_t *bp = zio->io_bp;
3116 	ddt_entry_t *dde = zio->io_private;
3117 	ddt_phys_t *ddp;
3118 	zio_t *pio = zio_unique_parent(zio);
3119 
3120 	mutex_enter(&pio->io_lock);
3121 	ddp = ddt_phys_select(dde, bp);
3122 	if (zio->io_error == 0)
3123 		ddt_phys_clear(ddp);	/* this ddp doesn't need repair */
3124 
3125 	if (zio->io_error == 0 && dde->dde_repair_abd == NULL)
3126 		dde->dde_repair_abd = zio->io_abd;
3127 	else
3128 		abd_free(zio->io_abd);
3129 	mutex_exit(&pio->io_lock);
3130 }
3131 
3132 static zio_t *
3133 zio_ddt_read_start(zio_t *zio)
3134 {
3135 	blkptr_t *bp = zio->io_bp;
3136 
3137 	ASSERT(BP_GET_DEDUP(bp));
3138 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3139 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3140 
3141 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
3142 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
3143 		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
3144 		ddt_phys_t *ddp = dde->dde_phys;
3145 		ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
3146 		blkptr_t blk;
3147 
3148 		ASSERT(zio->io_vsd == NULL);
3149 		zio->io_vsd = dde;
3150 
3151 		if (ddp_self == NULL)
3152 			return (zio);
3153 
3154 		for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
3155 			if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
3156 				continue;
3157 			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
3158 			    &blk);
3159 			zio_nowait(zio_read(zio, zio->io_spa, &blk,
3160 			    abd_alloc_for_io(zio->io_size, B_TRUE),
3161 			    zio->io_size, zio_ddt_child_read_done, dde,
3162 			    zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) |
3163 			    ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark));
3164 		}
3165 		return (zio);
3166 	}
3167 
3168 	zio_nowait(zio_read(zio, zio->io_spa, bp,
3169 	    zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority,
3170 	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
3171 
3172 	return (zio);
3173 }
3174 
3175 static zio_t *
3176 zio_ddt_read_done(zio_t *zio)
3177 {
3178 	blkptr_t *bp = zio->io_bp;
3179 
3180 	if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) {
3181 		return (NULL);
3182 	}
3183 
3184 	ASSERT(BP_GET_DEDUP(bp));
3185 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3186 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3187 
3188 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
3189 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
3190 		ddt_entry_t *dde = zio->io_vsd;
3191 		if (ddt == NULL) {
3192 			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
3193 			return (zio);
3194 		}
3195 		if (dde == NULL) {
3196 			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
3197 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
3198 			return (NULL);
3199 		}
3200 		if (dde->dde_repair_abd != NULL) {
3201 			abd_copy(zio->io_abd, dde->dde_repair_abd,
3202 			    zio->io_size);
3203 			zio->io_child_error[ZIO_CHILD_DDT] = 0;
3204 		}
3205 		ddt_repair_done(ddt, dde);
3206 		zio->io_vsd = NULL;
3207 	}
3208 
3209 	ASSERT(zio->io_vsd == NULL);
3210 
3211 	return (zio);
3212 }
3213 
3214 static boolean_t
3215 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
3216 {
3217 	spa_t *spa = zio->io_spa;
3218 	boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW);
3219 
3220 	ASSERT(!(zio->io_bp_override && do_raw));
3221 
3222 	/*
3223 	 * Note: we compare the original data, not the transformed data,
3224 	 * because when zio->io_bp is an override bp, we will not have
3225 	 * pushed the I/O transforms.  That's an important optimization
3226 	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
3227 	 * However, we should never get a raw, override zio so in these
3228 	 * cases we can compare the io_abd directly. This is useful because
3229 	 * it allows us to do dedup verification even if we don't have access
3230 	 * to the original data (for instance, if the encryption keys aren't
3231 	 * loaded).
3232 	 */
3233 
3234 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
3235 		zio_t *lio = dde->dde_lead_zio[p];
3236 
3237 		if (lio != NULL && do_raw) {
3238 			return (lio->io_size != zio->io_size ||
3239 			    abd_cmp(zio->io_abd, lio->io_abd) != 0);
3240 		} else if (lio != NULL) {
3241 			return (lio->io_orig_size != zio->io_orig_size ||
3242 			    abd_cmp(zio->io_orig_abd, lio->io_orig_abd) != 0);
3243 		}
3244 	}
3245 
3246 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
3247 		ddt_phys_t *ddp = &dde->dde_phys[p];
3248 
3249 		if (ddp->ddp_phys_birth != 0 && do_raw) {
3250 			blkptr_t blk = *zio->io_bp;
3251 			uint64_t psize;
3252 			abd_t *tmpabd;
3253 			int error;
3254 
3255 			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
3256 			psize = BP_GET_PSIZE(&blk);
3257 
3258 			if (psize != zio->io_size)
3259 				return (B_TRUE);
3260 
3261 			ddt_exit(ddt);
3262 
3263 			tmpabd = abd_alloc_for_io(psize, B_TRUE);
3264 
3265 			error = zio_wait(zio_read(NULL, spa, &blk, tmpabd,
3266 			    psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
3267 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3268 			    ZIO_FLAG_RAW, &zio->io_bookmark));
3269 
3270 			if (error == 0) {
3271 				if (abd_cmp(tmpabd, zio->io_abd) != 0)
3272 					error = SET_ERROR(ENOENT);
3273 			}
3274 
3275 			abd_free(tmpabd);
3276 			ddt_enter(ddt);
3277 			return (error != 0);
3278 		} else if (ddp->ddp_phys_birth != 0) {
3279 			arc_buf_t *abuf = NULL;
3280 			arc_flags_t aflags = ARC_FLAG_WAIT;
3281 			blkptr_t blk = *zio->io_bp;
3282 			int error;
3283 
3284 			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
3285 
3286 			if (BP_GET_LSIZE(&blk) != zio->io_orig_size)
3287 				return (B_TRUE);
3288 
3289 			ddt_exit(ddt);
3290 
3291 			error = arc_read(NULL, spa, &blk,
3292 			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
3293 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3294 			    &aflags, &zio->io_bookmark);
3295 
3296 			if (error == 0) {
3297 				if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data,
3298 				    zio->io_orig_size) != 0)
3299 					error = SET_ERROR(ENOENT);
3300 				arc_buf_destroy(abuf, &abuf);
3301 			}
3302 
3303 			ddt_enter(ddt);
3304 			return (error != 0);
3305 		}
3306 	}
3307 
3308 	return (B_FALSE);
3309 }
3310 
3311 static void
3312 zio_ddt_child_write_ready(zio_t *zio)
3313 {
3314 	int p = zio->io_prop.zp_copies;
3315 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3316 	ddt_entry_t *dde = zio->io_private;
3317 	ddt_phys_t *ddp = &dde->dde_phys[p];
3318 	zio_t *pio;
3319 
3320 	if (zio->io_error)
3321 		return;
3322 
3323 	ddt_enter(ddt);
3324 
3325 	ASSERT(dde->dde_lead_zio[p] == zio);
3326 
3327 	ddt_phys_fill(ddp, zio->io_bp);
3328 
3329 	zio_link_t *zl = NULL;
3330 	while ((pio = zio_walk_parents(zio, &zl)) != NULL)
3331 		ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
3332 
3333 	ddt_exit(ddt);
3334 }
3335 
3336 static void
3337 zio_ddt_child_write_done(zio_t *zio)
3338 {
3339 	int p = zio->io_prop.zp_copies;
3340 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3341 	ddt_entry_t *dde = zio->io_private;
3342 	ddt_phys_t *ddp = &dde->dde_phys[p];
3343 
3344 	ddt_enter(ddt);
3345 
3346 	ASSERT(ddp->ddp_refcnt == 0);
3347 	ASSERT(dde->dde_lead_zio[p] == zio);
3348 	dde->dde_lead_zio[p] = NULL;
3349 
3350 	if (zio->io_error == 0) {
3351 		zio_link_t *zl = NULL;
3352 		while (zio_walk_parents(zio, &zl) != NULL)
3353 			ddt_phys_addref(ddp);
3354 	} else {
3355 		ddt_phys_clear(ddp);
3356 	}
3357 
3358 	ddt_exit(ddt);
3359 }
3360 
3361 static zio_t *
3362 zio_ddt_write(zio_t *zio)
3363 {
3364 	spa_t *spa = zio->io_spa;
3365 	blkptr_t *bp = zio->io_bp;
3366 	uint64_t txg = zio->io_txg;
3367 	zio_prop_t *zp = &zio->io_prop;
3368 	int p = zp->zp_copies;
3369 	zio_t *cio = NULL;
3370 	ddt_t *ddt = ddt_select(spa, bp);
3371 	ddt_entry_t *dde;
3372 	ddt_phys_t *ddp;
3373 
3374 	ASSERT(BP_GET_DEDUP(bp));
3375 	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
3376 	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
3377 	ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW)));
3378 
3379 	ddt_enter(ddt);
3380 	dde = ddt_lookup(ddt, bp, B_TRUE);
3381 	ddp = &dde->dde_phys[p];
3382 
3383 	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
3384 		/*
3385 		 * If we're using a weak checksum, upgrade to a strong checksum
3386 		 * and try again.  If we're already using a strong checksum,
3387 		 * we can't resolve it, so just convert to an ordinary write.
3388 		 * (And automatically e-mail a paper to Nature?)
3389 		 */
3390 		if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
3391 		    ZCHECKSUM_FLAG_DEDUP)) {
3392 			zp->zp_checksum = spa_dedup_checksum(spa);
3393 			zio_pop_transforms(zio);
3394 			zio->io_stage = ZIO_STAGE_OPEN;
3395 			BP_ZERO(bp);
3396 		} else {
3397 			zp->zp_dedup = B_FALSE;
3398 			BP_SET_DEDUP(bp, B_FALSE);
3399 		}
3400 		ASSERT(!BP_GET_DEDUP(bp));
3401 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
3402 		ddt_exit(ddt);
3403 		return (zio);
3404 	}
3405 
3406 	if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
3407 		if (ddp->ddp_phys_birth != 0)
3408 			ddt_bp_fill(ddp, bp, txg);
3409 		if (dde->dde_lead_zio[p] != NULL)
3410 			zio_add_child(zio, dde->dde_lead_zio[p]);
3411 		else
3412 			ddt_phys_addref(ddp);
3413 	} else if (zio->io_bp_override) {
3414 		ASSERT(bp->blk_birth == txg);
3415 		ASSERT(BP_EQUAL(bp, zio->io_bp_override));
3416 		ddt_phys_fill(ddp, bp);
3417 		ddt_phys_addref(ddp);
3418 	} else {
3419 		cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
3420 		    zio->io_orig_size, zio->io_orig_size, zp,
3421 		    zio_ddt_child_write_ready, NULL,
3422 		    zio_ddt_child_write_done, dde, zio->io_priority,
3423 		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
3424 
3425 		zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL);
3426 		dde->dde_lead_zio[p] = cio;
3427 	}
3428 
3429 	ddt_exit(ddt);
3430 
3431 	zio_nowait(cio);
3432 
3433 	return (zio);
3434 }
3435 
3436 static ddt_entry_t *freedde; /* for debugging */
3437 
3438 static zio_t *
3439 zio_ddt_free(zio_t *zio)
3440 {
3441 	spa_t *spa = zio->io_spa;
3442 	blkptr_t *bp = zio->io_bp;
3443 	ddt_t *ddt = ddt_select(spa, bp);
3444 	ddt_entry_t *dde;
3445 	ddt_phys_t *ddp;
3446 
3447 	ASSERT(BP_GET_DEDUP(bp));
3448 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3449 
3450 	ddt_enter(ddt);
3451 	freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
3452 	if (dde) {
3453 		ddp = ddt_phys_select(dde, bp);
3454 		if (ddp)
3455 			ddt_phys_decref(ddp);
3456 	}
3457 	ddt_exit(ddt);
3458 
3459 	return (zio);
3460 }
3461 
3462 /*
3463  * ==========================================================================
3464  * Allocate and free blocks
3465  * ==========================================================================
3466  */
3467 
3468 static zio_t *
3469 zio_io_to_allocate(spa_t *spa, int allocator)
3470 {
3471 	zio_t *zio;
3472 
3473 	ASSERT(MUTEX_HELD(&spa->spa_allocs[allocator].spaa_lock));
3474 
3475 	zio = avl_first(&spa->spa_allocs[allocator].spaa_tree);
3476 	if (zio == NULL)
3477 		return (NULL);
3478 
3479 	ASSERT(IO_IS_ALLOCATING(zio));
3480 
3481 	/*
3482 	 * Try to place a reservation for this zio. If we're unable to
3483 	 * reserve then we throttle.
3484 	 */
3485 	ASSERT3U(zio->io_allocator, ==, allocator);
3486 	if (!metaslab_class_throttle_reserve(zio->io_metaslab_class,
3487 	    zio->io_prop.zp_copies, allocator, zio, 0)) {
3488 		return (NULL);
3489 	}
3490 
3491 	avl_remove(&spa->spa_allocs[allocator].spaa_tree, zio);
3492 	ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE);
3493 
3494 	return (zio);
3495 }
3496 
3497 static zio_t *
3498 zio_dva_throttle(zio_t *zio)
3499 {
3500 	spa_t *spa = zio->io_spa;
3501 	zio_t *nio;
3502 	metaslab_class_t *mc;
3503 
3504 	/* locate an appropriate allocation class */
3505 	mc = spa_preferred_class(spa, zio->io_size, zio->io_prop.zp_type,
3506 	    zio->io_prop.zp_level, zio->io_prop.zp_zpl_smallblk);
3507 
3508 	if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE ||
3509 	    !mc->mc_alloc_throttle_enabled ||
3510 	    zio->io_child_type == ZIO_CHILD_GANG ||
3511 	    zio->io_flags & ZIO_FLAG_NODATA) {
3512 		return (zio);
3513 	}
3514 
3515 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3516 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3517 	ASSERT3U(zio->io_queued_timestamp, >, 0);
3518 	ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE);
3519 
3520 	zbookmark_phys_t *bm = &zio->io_bookmark;
3521 	/*
3522 	 * We want to try to use as many allocators as possible to help improve
3523 	 * performance, but we also want logically adjacent IOs to be physically
3524 	 * adjacent to improve sequential read performance. We chunk each object
3525 	 * into 2^20 block regions, and then hash based on the objset, object,
3526 	 * level, and region to accomplish both of these goals.
3527 	 */
3528 	int allocator = (uint_t)cityhash4(bm->zb_objset, bm->zb_object,
3529 	    bm->zb_level, bm->zb_blkid >> 20) % spa->spa_alloc_count;
3530 	zio->io_allocator = allocator;
3531 	zio->io_metaslab_class = mc;
3532 	mutex_enter(&spa->spa_allocs[allocator].spaa_lock);
3533 	avl_add(&spa->spa_allocs[allocator].spaa_tree, zio);
3534 	nio = zio_io_to_allocate(spa, allocator);
3535 	mutex_exit(&spa->spa_allocs[allocator].spaa_lock);
3536 	return (nio);
3537 }
3538 
3539 static void
3540 zio_allocate_dispatch(spa_t *spa, int allocator)
3541 {
3542 	zio_t *zio;
3543 
3544 	mutex_enter(&spa->spa_allocs[allocator].spaa_lock);
3545 	zio = zio_io_to_allocate(spa, allocator);
3546 	mutex_exit(&spa->spa_allocs[allocator].spaa_lock);
3547 	if (zio == NULL)
3548 		return;
3549 
3550 	ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE);
3551 	ASSERT0(zio->io_error);
3552 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE);
3553 }
3554 
3555 static zio_t *
3556 zio_dva_allocate(zio_t *zio)
3557 {
3558 	spa_t *spa = zio->io_spa;
3559 	metaslab_class_t *mc;
3560 	blkptr_t *bp = zio->io_bp;
3561 	int error;
3562 	int flags = 0;
3563 
3564 	if (zio->io_gang_leader == NULL) {
3565 		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3566 		zio->io_gang_leader = zio;
3567 	}
3568 
3569 	ASSERT(BP_IS_HOLE(bp));
3570 	ASSERT0(BP_GET_NDVAS(bp));
3571 	ASSERT3U(zio->io_prop.zp_copies, >, 0);
3572 	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
3573 	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
3574 
3575 	flags |= (zio->io_flags & ZIO_FLAG_FASTWRITE) ? METASLAB_FASTWRITE : 0;
3576 	if (zio->io_flags & ZIO_FLAG_NODATA)
3577 		flags |= METASLAB_DONT_THROTTLE;
3578 	if (zio->io_flags & ZIO_FLAG_GANG_CHILD)
3579 		flags |= METASLAB_GANG_CHILD;
3580 	if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE)
3581 		flags |= METASLAB_ASYNC_ALLOC;
3582 
3583 	/*
3584 	 * if not already chosen, locate an appropriate allocation class
3585 	 */
3586 	mc = zio->io_metaslab_class;
3587 	if (mc == NULL) {
3588 		mc = spa_preferred_class(spa, zio->io_size,
3589 		    zio->io_prop.zp_type, zio->io_prop.zp_level,
3590 		    zio->io_prop.zp_zpl_smallblk);
3591 		zio->io_metaslab_class = mc;
3592 	}
3593 
3594 	/*
3595 	 * Try allocating the block in the usual metaslab class.
3596 	 * If that's full, allocate it in the normal class.
3597 	 * If that's full, allocate as a gang block,
3598 	 * and if all are full, the allocation fails (which shouldn't happen).
3599 	 *
3600 	 * Note that we do not fall back on embedded slog (ZIL) space, to
3601 	 * preserve unfragmented slog space, which is critical for decent
3602 	 * sync write performance.  If a log allocation fails, we will fall
3603 	 * back to spa_sync() which is abysmal for performance.
3604 	 */
3605 	error = metaslab_alloc(spa, mc, zio->io_size, bp,
3606 	    zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3607 	    &zio->io_alloc_list, zio, zio->io_allocator);
3608 
3609 	/*
3610 	 * Fallback to normal class when an alloc class is full
3611 	 */
3612 	if (error == ENOSPC && mc != spa_normal_class(spa)) {
3613 		/*
3614 		 * If throttling, transfer reservation over to normal class.
3615 		 * The io_allocator slot can remain the same even though we
3616 		 * are switching classes.
3617 		 */
3618 		if (mc->mc_alloc_throttle_enabled &&
3619 		    (zio->io_flags & ZIO_FLAG_IO_ALLOCATING)) {
3620 			metaslab_class_throttle_unreserve(mc,
3621 			    zio->io_prop.zp_copies, zio->io_allocator, zio);
3622 			zio->io_flags &= ~ZIO_FLAG_IO_ALLOCATING;
3623 
3624 			VERIFY(metaslab_class_throttle_reserve(
3625 			    spa_normal_class(spa),
3626 			    zio->io_prop.zp_copies, zio->io_allocator, zio,
3627 			    flags | METASLAB_MUST_RESERVE));
3628 		}
3629 		zio->io_metaslab_class = mc = spa_normal_class(spa);
3630 		if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) {
3631 			zfs_dbgmsg("%s: metaslab allocation failure, "
3632 			    "trying normal class: zio %px, size %llu, error %d",
3633 			    spa_name(spa), zio, (u_longlong_t)zio->io_size,
3634 			    error);
3635 		}
3636 
3637 		error = metaslab_alloc(spa, mc, zio->io_size, bp,
3638 		    zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3639 		    &zio->io_alloc_list, zio, zio->io_allocator);
3640 	}
3641 
3642 	if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) {
3643 		if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) {
3644 			zfs_dbgmsg("%s: metaslab allocation failure, "
3645 			    "trying ganging: zio %px, size %llu, error %d",
3646 			    spa_name(spa), zio, (u_longlong_t)zio->io_size,
3647 			    error);
3648 		}
3649 		return (zio_write_gang_block(zio, mc));
3650 	}
3651 	if (error != 0) {
3652 		if (error != ENOSPC ||
3653 		    (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC)) {
3654 			zfs_dbgmsg("%s: metaslab allocation failure: zio %px, "
3655 			    "size %llu, error %d",
3656 			    spa_name(spa), zio, (u_longlong_t)zio->io_size,
3657 			    error);
3658 		}
3659 		zio->io_error = error;
3660 	}
3661 
3662 	return (zio);
3663 }
3664 
3665 static zio_t *
3666 zio_dva_free(zio_t *zio)
3667 {
3668 	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
3669 
3670 	return (zio);
3671 }
3672 
3673 static zio_t *
3674 zio_dva_claim(zio_t *zio)
3675 {
3676 	int error;
3677 
3678 	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
3679 	if (error)
3680 		zio->io_error = error;
3681 
3682 	return (zio);
3683 }
3684 
3685 /*
3686  * Undo an allocation.  This is used by zio_done() when an I/O fails
3687  * and we want to give back the block we just allocated.
3688  * This handles both normal blocks and gang blocks.
3689  */
3690 static void
3691 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
3692 {
3693 	ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
3694 	ASSERT(zio->io_bp_override == NULL);
3695 
3696 	if (!BP_IS_HOLE(bp))
3697 		metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
3698 
3699 	if (gn != NULL) {
3700 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
3701 			zio_dva_unallocate(zio, gn->gn_child[g],
3702 			    &gn->gn_gbh->zg_blkptr[g]);
3703 		}
3704 	}
3705 }
3706 
3707 /*
3708  * Try to allocate an intent log block.  Return 0 on success, errno on failure.
3709  */
3710 int
3711 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp,
3712     uint64_t size, boolean_t *slog)
3713 {
3714 	int error = 1;
3715 	zio_alloc_list_t io_alloc_list;
3716 
3717 	ASSERT(txg > spa_syncing_txg(spa));
3718 
3719 	metaslab_trace_init(&io_alloc_list);
3720 
3721 	/*
3722 	 * Block pointer fields are useful to metaslabs for stats and debugging.
3723 	 * Fill in the obvious ones before calling into metaslab_alloc().
3724 	 */
3725 	BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3726 	BP_SET_PSIZE(new_bp, size);
3727 	BP_SET_LEVEL(new_bp, 0);
3728 
3729 	/*
3730 	 * When allocating a zil block, we don't have information about
3731 	 * the final destination of the block except the objset it's part
3732 	 * of, so we just hash the objset ID to pick the allocator to get
3733 	 * some parallelism.
3734 	 */
3735 	int flags = METASLAB_FASTWRITE | METASLAB_ZIL;
3736 	int allocator = (uint_t)cityhash4(0, 0, 0,
3737 	    os->os_dsl_dataset->ds_object) % spa->spa_alloc_count;
3738 	error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1,
3739 	    txg, NULL, flags, &io_alloc_list, NULL, allocator);
3740 	*slog = (error == 0);
3741 	if (error != 0) {
3742 		error = metaslab_alloc(spa, spa_embedded_log_class(spa), size,
3743 		    new_bp, 1, txg, NULL, flags,
3744 		    &io_alloc_list, NULL, allocator);
3745 	}
3746 	if (error != 0) {
3747 		error = metaslab_alloc(spa, spa_normal_class(spa), size,
3748 		    new_bp, 1, txg, NULL, flags,
3749 		    &io_alloc_list, NULL, allocator);
3750 	}
3751 	metaslab_trace_fini(&io_alloc_list);
3752 
3753 	if (error == 0) {
3754 		BP_SET_LSIZE(new_bp, size);
3755 		BP_SET_PSIZE(new_bp, size);
3756 		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
3757 		BP_SET_CHECKSUM(new_bp,
3758 		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL
3759 		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
3760 		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3761 		BP_SET_LEVEL(new_bp, 0);
3762 		BP_SET_DEDUP(new_bp, 0);
3763 		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
3764 
3765 		/*
3766 		 * encrypted blocks will require an IV and salt. We generate
3767 		 * these now since we will not be rewriting the bp at
3768 		 * rewrite time.
3769 		 */
3770 		if (os->os_encrypted) {
3771 			uint8_t iv[ZIO_DATA_IV_LEN];
3772 			uint8_t salt[ZIO_DATA_SALT_LEN];
3773 
3774 			BP_SET_CRYPT(new_bp, B_TRUE);
3775 			VERIFY0(spa_crypt_get_salt(spa,
3776 			    dmu_objset_id(os), salt));
3777 			VERIFY0(zio_crypt_generate_iv(iv));
3778 
3779 			zio_crypt_encode_params_bp(new_bp, salt, iv);
3780 		}
3781 	} else {
3782 		zfs_dbgmsg("%s: zil block allocation failure: "
3783 		    "size %llu, error %d", spa_name(spa), (u_longlong_t)size,
3784 		    error);
3785 	}
3786 
3787 	return (error);
3788 }
3789 
3790 /*
3791  * ==========================================================================
3792  * Read and write to physical devices
3793  * ==========================================================================
3794  */
3795 
3796 /*
3797  * Issue an I/O to the underlying vdev. Typically the issue pipeline
3798  * stops after this stage and will resume upon I/O completion.
3799  * However, there are instances where the vdev layer may need to
3800  * continue the pipeline when an I/O was not issued. Since the I/O
3801  * that was sent to the vdev layer might be different than the one
3802  * currently active in the pipeline (see vdev_queue_io()), we explicitly
3803  * force the underlying vdev layers to call either zio_execute() or
3804  * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
3805  */
3806 static zio_t *
3807 zio_vdev_io_start(zio_t *zio)
3808 {
3809 	vdev_t *vd = zio->io_vd;
3810 	uint64_t align;
3811 	spa_t *spa = zio->io_spa;
3812 
3813 	zio->io_delay = 0;
3814 
3815 	ASSERT(zio->io_error == 0);
3816 	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
3817 
3818 	if (vd == NULL) {
3819 		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3820 			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
3821 
3822 		/*
3823 		 * The mirror_ops handle multiple DVAs in a single BP.
3824 		 */
3825 		vdev_mirror_ops.vdev_op_io_start(zio);
3826 		return (NULL);
3827 	}
3828 
3829 	ASSERT3P(zio->io_logical, !=, zio);
3830 	if (zio->io_type == ZIO_TYPE_WRITE) {
3831 		ASSERT(spa->spa_trust_config);
3832 
3833 		/*
3834 		 * Note: the code can handle other kinds of writes,
3835 		 * but we don't expect them.
3836 		 */
3837 		if (zio->io_vd->vdev_noalloc) {
3838 			ASSERT(zio->io_flags &
3839 			    (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL |
3840 			    ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE));
3841 		}
3842 	}
3843 
3844 	align = 1ULL << vd->vdev_top->vdev_ashift;
3845 
3846 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
3847 	    P2PHASE(zio->io_size, align) != 0) {
3848 		/* Transform logical writes to be a full physical block size. */
3849 		uint64_t asize = P2ROUNDUP(zio->io_size, align);
3850 		abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize);
3851 		ASSERT(vd == vd->vdev_top);
3852 		if (zio->io_type == ZIO_TYPE_WRITE) {
3853 			abd_copy(abuf, zio->io_abd, zio->io_size);
3854 			abd_zero_off(abuf, zio->io_size, asize - zio->io_size);
3855 		}
3856 		zio_push_transform(zio, abuf, asize, asize, zio_subblock);
3857 	}
3858 
3859 	/*
3860 	 * If this is not a physical io, make sure that it is properly aligned
3861 	 * before proceeding.
3862 	 */
3863 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
3864 		ASSERT0(P2PHASE(zio->io_offset, align));
3865 		ASSERT0(P2PHASE(zio->io_size, align));
3866 	} else {
3867 		/*
3868 		 * For physical writes, we allow 512b aligned writes and assume
3869 		 * the device will perform a read-modify-write as necessary.
3870 		 */
3871 		ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
3872 		ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
3873 	}
3874 
3875 	VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
3876 
3877 	/*
3878 	 * If this is a repair I/O, and there's no self-healing involved --
3879 	 * that is, we're just resilvering what we expect to resilver --
3880 	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
3881 	 * This prevents spurious resilvering.
3882 	 *
3883 	 * There are a few ways that we can end up creating these spurious
3884 	 * resilver i/os:
3885 	 *
3886 	 * 1. A resilver i/o will be issued if any DVA in the BP has a
3887 	 * dirty DTL.  The mirror code will issue resilver writes to
3888 	 * each DVA, including the one(s) that are not on vdevs with dirty
3889 	 * DTLs.
3890 	 *
3891 	 * 2. With nested replication, which happens when we have a
3892 	 * "replacing" or "spare" vdev that's a child of a mirror or raidz.
3893 	 * For example, given mirror(replacing(A+B), C), it's likely that
3894 	 * only A is out of date (it's the new device). In this case, we'll
3895 	 * read from C, then use the data to resilver A+B -- but we don't
3896 	 * actually want to resilver B, just A. The top-level mirror has no
3897 	 * way to know this, so instead we just discard unnecessary repairs
3898 	 * as we work our way down the vdev tree.
3899 	 *
3900 	 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc.
3901 	 * The same logic applies to any form of nested replication: ditto
3902 	 * + mirror, RAID-Z + replacing, etc.
3903 	 *
3904 	 * However, indirect vdevs point off to other vdevs which may have
3905 	 * DTL's, so we never bypass them.  The child i/os on concrete vdevs
3906 	 * will be properly bypassed instead.
3907 	 *
3908 	 * Leaf DTL_PARTIAL can be empty when a legitimate write comes from
3909 	 * a dRAID spare vdev. For example, when a dRAID spare is first
3910 	 * used, its spare blocks need to be written to but the leaf vdev's
3911 	 * of such blocks can have empty DTL_PARTIAL.
3912 	 *
3913 	 * There seemed no clean way to allow such writes while bypassing
3914 	 * spurious ones. At this point, just avoid all bypassing for dRAID
3915 	 * for correctness.
3916 	 */
3917 	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
3918 	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
3919 	    zio->io_txg != 0 &&	/* not a delegated i/o */
3920 	    vd->vdev_ops != &vdev_indirect_ops &&
3921 	    vd->vdev_top->vdev_ops != &vdev_draid_ops &&
3922 	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
3923 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3924 		zio_vdev_io_bypass(zio);
3925 		return (zio);
3926 	}
3927 
3928 	/*
3929 	 * Select the next best leaf I/O to process.  Distributed spares are
3930 	 * excluded since they dispatch the I/O directly to a leaf vdev after
3931 	 * applying the dRAID mapping.
3932 	 */
3933 	if (vd->vdev_ops->vdev_op_leaf &&
3934 	    vd->vdev_ops != &vdev_draid_spare_ops &&
3935 	    (zio->io_type == ZIO_TYPE_READ ||
3936 	    zio->io_type == ZIO_TYPE_WRITE ||
3937 	    zio->io_type == ZIO_TYPE_TRIM)) {
3938 
3939 		if ((zio = vdev_queue_io(zio)) == NULL)
3940 			return (NULL);
3941 
3942 		if (!vdev_accessible(vd, zio)) {
3943 			zio->io_error = SET_ERROR(ENXIO);
3944 			zio_interrupt(zio);
3945 			return (NULL);
3946 		}
3947 		zio->io_delay = gethrtime();
3948 	}
3949 
3950 	vd->vdev_ops->vdev_op_io_start(zio);
3951 	return (NULL);
3952 }
3953 
3954 static zio_t *
3955 zio_vdev_io_done(zio_t *zio)
3956 {
3957 	vdev_t *vd = zio->io_vd;
3958 	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
3959 	boolean_t unexpected_error = B_FALSE;
3960 
3961 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3962 		return (NULL);
3963 	}
3964 
3965 	ASSERT(zio->io_type == ZIO_TYPE_READ ||
3966 	    zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM);
3967 
3968 	if (zio->io_delay)
3969 		zio->io_delay = gethrtime() - zio->io_delay;
3970 
3971 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3972 	    vd->vdev_ops != &vdev_draid_spare_ops) {
3973 		vdev_queue_io_done(zio);
3974 
3975 		if (zio_injection_enabled && zio->io_error == 0)
3976 			zio->io_error = zio_handle_device_injections(vd, zio,
3977 			    EIO, EILSEQ);
3978 
3979 		if (zio_injection_enabled && zio->io_error == 0)
3980 			zio->io_error = zio_handle_label_injection(zio, EIO);
3981 
3982 		if (zio->io_error && zio->io_type != ZIO_TYPE_TRIM) {
3983 			if (!vdev_accessible(vd, zio)) {
3984 				zio->io_error = SET_ERROR(ENXIO);
3985 			} else {
3986 				unexpected_error = B_TRUE;
3987 			}
3988 		}
3989 	}
3990 
3991 	ops->vdev_op_io_done(zio);
3992 
3993 	if (unexpected_error && vd->vdev_remove_wanted == B_FALSE)
3994 		VERIFY(vdev_probe(vd, zio) == NULL);
3995 
3996 	return (zio);
3997 }
3998 
3999 /*
4000  * This function is used to change the priority of an existing zio that is
4001  * currently in-flight. This is used by the arc to upgrade priority in the
4002  * event that a demand read is made for a block that is currently queued
4003  * as a scrub or async read IO. Otherwise, the high priority read request
4004  * would end up having to wait for the lower priority IO.
4005  */
4006 void
4007 zio_change_priority(zio_t *pio, zio_priority_t priority)
4008 {
4009 	zio_t *cio, *cio_next;
4010 	zio_link_t *zl = NULL;
4011 
4012 	ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
4013 
4014 	if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) {
4015 		vdev_queue_change_io_priority(pio, priority);
4016 	} else {
4017 		pio->io_priority = priority;
4018 	}
4019 
4020 	mutex_enter(&pio->io_lock);
4021 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
4022 		cio_next = zio_walk_children(pio, &zl);
4023 		zio_change_priority(cio, priority);
4024 	}
4025 	mutex_exit(&pio->io_lock);
4026 }
4027 
4028 /*
4029  * For non-raidz ZIOs, we can just copy aside the bad data read from the
4030  * disk, and use that to finish the checksum ereport later.
4031  */
4032 static void
4033 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
4034     const abd_t *good_buf)
4035 {
4036 	/* no processing needed */
4037 	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
4038 }
4039 
4040 void
4041 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr)
4042 {
4043 	void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size);
4044 
4045 	abd_copy(abd, zio->io_abd, zio->io_size);
4046 
4047 	zcr->zcr_cbinfo = zio->io_size;
4048 	zcr->zcr_cbdata = abd;
4049 	zcr->zcr_finish = zio_vsd_default_cksum_finish;
4050 	zcr->zcr_free = zio_abd_free;
4051 }
4052 
4053 static zio_t *
4054 zio_vdev_io_assess(zio_t *zio)
4055 {
4056 	vdev_t *vd = zio->io_vd;
4057 
4058 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
4059 		return (NULL);
4060 	}
4061 
4062 	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
4063 		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
4064 
4065 	if (zio->io_vsd != NULL) {
4066 		zio->io_vsd_ops->vsd_free(zio);
4067 		zio->io_vsd = NULL;
4068 	}
4069 
4070 	if (zio_injection_enabled && zio->io_error == 0)
4071 		zio->io_error = zio_handle_fault_injection(zio, EIO);
4072 
4073 	/*
4074 	 * If the I/O failed, determine whether we should attempt to retry it.
4075 	 *
4076 	 * On retry, we cut in line in the issue queue, since we don't want
4077 	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
4078 	 */
4079 	if (zio->io_error && vd == NULL &&
4080 	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
4081 		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
4082 		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
4083 		zio->io_error = 0;
4084 		zio->io_flags |= ZIO_FLAG_IO_RETRY | ZIO_FLAG_DONT_AGGREGATE;
4085 		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
4086 		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
4087 		    zio_requeue_io_start_cut_in_line);
4088 		return (NULL);
4089 	}
4090 
4091 	/*
4092 	 * If we got an error on a leaf device, convert it to ENXIO
4093 	 * if the device is not accessible at all.
4094 	 */
4095 	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
4096 	    !vdev_accessible(vd, zio))
4097 		zio->io_error = SET_ERROR(ENXIO);
4098 
4099 	/*
4100 	 * If we can't write to an interior vdev (mirror or RAID-Z),
4101 	 * set vdev_cant_write so that we stop trying to allocate from it.
4102 	 */
4103 	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
4104 	    vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
4105 		vdev_dbgmsg(vd, "zio_vdev_io_assess(zio=%px) setting "
4106 		    "cant_write=TRUE due to write failure with ENXIO",
4107 		    zio);
4108 		vd->vdev_cant_write = B_TRUE;
4109 	}
4110 
4111 	/*
4112 	 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future
4113 	 * attempts will ever succeed. In this case we set a persistent
4114 	 * boolean flag so that we don't bother with it in the future.
4115 	 */
4116 	if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) &&
4117 	    zio->io_type == ZIO_TYPE_IOCTL &&
4118 	    zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL)
4119 		vd->vdev_nowritecache = B_TRUE;
4120 
4121 	if (zio->io_error)
4122 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4123 
4124 	return (zio);
4125 }
4126 
4127 void
4128 zio_vdev_io_reissue(zio_t *zio)
4129 {
4130 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
4131 	ASSERT(zio->io_error == 0);
4132 
4133 	zio->io_stage >>= 1;
4134 }
4135 
4136 void
4137 zio_vdev_io_redone(zio_t *zio)
4138 {
4139 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
4140 
4141 	zio->io_stage >>= 1;
4142 }
4143 
4144 void
4145 zio_vdev_io_bypass(zio_t *zio)
4146 {
4147 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
4148 	ASSERT(zio->io_error == 0);
4149 
4150 	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
4151 	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
4152 }
4153 
4154 /*
4155  * ==========================================================================
4156  * Encrypt and store encryption parameters
4157  * ==========================================================================
4158  */
4159 
4160 
4161 /*
4162  * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for
4163  * managing the storage of encryption parameters and passing them to the
4164  * lower-level encryption functions.
4165  */
4166 static zio_t *
4167 zio_encrypt(zio_t *zio)
4168 {
4169 	zio_prop_t *zp = &zio->io_prop;
4170 	spa_t *spa = zio->io_spa;
4171 	blkptr_t *bp = zio->io_bp;
4172 	uint64_t psize = BP_GET_PSIZE(bp);
4173 	uint64_t dsobj = zio->io_bookmark.zb_objset;
4174 	dmu_object_type_t ot = BP_GET_TYPE(bp);
4175 	void *enc_buf = NULL;
4176 	abd_t *eabd = NULL;
4177 	uint8_t salt[ZIO_DATA_SALT_LEN];
4178 	uint8_t iv[ZIO_DATA_IV_LEN];
4179 	uint8_t mac[ZIO_DATA_MAC_LEN];
4180 	boolean_t no_crypt = B_FALSE;
4181 
4182 	/* the root zio already encrypted the data */
4183 	if (zio->io_child_type == ZIO_CHILD_GANG)
4184 		return (zio);
4185 
4186 	/* only ZIL blocks are re-encrypted on rewrite */
4187 	if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG)
4188 		return (zio);
4189 
4190 	if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) {
4191 		BP_SET_CRYPT(bp, B_FALSE);
4192 		return (zio);
4193 	}
4194 
4195 	/* if we are doing raw encryption set the provided encryption params */
4196 	if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) {
4197 		ASSERT0(BP_GET_LEVEL(bp));
4198 		BP_SET_CRYPT(bp, B_TRUE);
4199 		BP_SET_BYTEORDER(bp, zp->zp_byteorder);
4200 		if (ot != DMU_OT_OBJSET)
4201 			zio_crypt_encode_mac_bp(bp, zp->zp_mac);
4202 
4203 		/* dnode blocks must be written out in the provided byteorder */
4204 		if (zp->zp_byteorder != ZFS_HOST_BYTEORDER &&
4205 		    ot == DMU_OT_DNODE) {
4206 			void *bswap_buf = zio_buf_alloc(psize);
4207 			abd_t *babd = abd_get_from_buf(bswap_buf, psize);
4208 
4209 			ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4210 			abd_copy_to_buf(bswap_buf, zio->io_abd, psize);
4211 			dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf,
4212 			    psize);
4213 
4214 			abd_take_ownership_of_buf(babd, B_TRUE);
4215 			zio_push_transform(zio, babd, psize, psize, NULL);
4216 		}
4217 
4218 		if (DMU_OT_IS_ENCRYPTED(ot))
4219 			zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv);
4220 		return (zio);
4221 	}
4222 
4223 	/* indirect blocks only maintain a cksum of the lower level MACs */
4224 	if (BP_GET_LEVEL(bp) > 0) {
4225 		BP_SET_CRYPT(bp, B_TRUE);
4226 		VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE,
4227 		    zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp),
4228 		    mac));
4229 		zio_crypt_encode_mac_bp(bp, mac);
4230 		return (zio);
4231 	}
4232 
4233 	/*
4234 	 * Objset blocks are a special case since they have 2 256-bit MACs
4235 	 * embedded within them.
4236 	 */
4237 	if (ot == DMU_OT_OBJSET) {
4238 		ASSERT0(DMU_OT_IS_ENCRYPTED(ot));
4239 		ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4240 		BP_SET_CRYPT(bp, B_TRUE);
4241 		VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj,
4242 		    zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp)));
4243 		return (zio);
4244 	}
4245 
4246 	/* unencrypted object types are only authenticated with a MAC */
4247 	if (!DMU_OT_IS_ENCRYPTED(ot)) {
4248 		BP_SET_CRYPT(bp, B_TRUE);
4249 		VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj,
4250 		    zio->io_abd, psize, mac));
4251 		zio_crypt_encode_mac_bp(bp, mac);
4252 		return (zio);
4253 	}
4254 
4255 	/*
4256 	 * Later passes of sync-to-convergence may decide to rewrite data
4257 	 * in place to avoid more disk reallocations. This presents a problem
4258 	 * for encryption because this constitutes rewriting the new data with
4259 	 * the same encryption key and IV. However, this only applies to blocks
4260 	 * in the MOS (particularly the spacemaps) and we do not encrypt the
4261 	 * MOS. We assert that the zio is allocating or an intent log write
4262 	 * to enforce this.
4263 	 */
4264 	ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG);
4265 	ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG);
4266 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION));
4267 	ASSERT3U(psize, !=, 0);
4268 
4269 	enc_buf = zio_buf_alloc(psize);
4270 	eabd = abd_get_from_buf(enc_buf, psize);
4271 	abd_take_ownership_of_buf(eabd, B_TRUE);
4272 
4273 	/*
4274 	 * For an explanation of what encryption parameters are stored
4275 	 * where, see the block comment in zio_crypt.c.
4276 	 */
4277 	if (ot == DMU_OT_INTENT_LOG) {
4278 		zio_crypt_decode_params_bp(bp, salt, iv);
4279 	} else {
4280 		BP_SET_CRYPT(bp, B_TRUE);
4281 	}
4282 
4283 	/* Perform the encryption. This should not fail */
4284 	VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark,
4285 	    BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
4286 	    salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt));
4287 
4288 	/* encode encryption metadata into the bp */
4289 	if (ot == DMU_OT_INTENT_LOG) {
4290 		/*
4291 		 * ZIL blocks store the MAC in the embedded checksum, so the
4292 		 * transform must always be applied.
4293 		 */
4294 		zio_crypt_encode_mac_zil(enc_buf, mac);
4295 		zio_push_transform(zio, eabd, psize, psize, NULL);
4296 	} else {
4297 		BP_SET_CRYPT(bp, B_TRUE);
4298 		zio_crypt_encode_params_bp(bp, salt, iv);
4299 		zio_crypt_encode_mac_bp(bp, mac);
4300 
4301 		if (no_crypt) {
4302 			ASSERT3U(ot, ==, DMU_OT_DNODE);
4303 			abd_free(eabd);
4304 		} else {
4305 			zio_push_transform(zio, eabd, psize, psize, NULL);
4306 		}
4307 	}
4308 
4309 	return (zio);
4310 }
4311 
4312 /*
4313  * ==========================================================================
4314  * Generate and verify checksums
4315  * ==========================================================================
4316  */
4317 static zio_t *
4318 zio_checksum_generate(zio_t *zio)
4319 {
4320 	blkptr_t *bp = zio->io_bp;
4321 	enum zio_checksum checksum;
4322 
4323 	if (bp == NULL) {
4324 		/*
4325 		 * This is zio_write_phys().
4326 		 * We're either generating a label checksum, or none at all.
4327 		 */
4328 		checksum = zio->io_prop.zp_checksum;
4329 
4330 		if (checksum == ZIO_CHECKSUM_OFF)
4331 			return (zio);
4332 
4333 		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
4334 	} else {
4335 		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
4336 			ASSERT(!IO_IS_ALLOCATING(zio));
4337 			checksum = ZIO_CHECKSUM_GANG_HEADER;
4338 		} else {
4339 			checksum = BP_GET_CHECKSUM(bp);
4340 		}
4341 	}
4342 
4343 	zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size);
4344 
4345 	return (zio);
4346 }
4347 
4348 static zio_t *
4349 zio_checksum_verify(zio_t *zio)
4350 {
4351 	zio_bad_cksum_t info;
4352 	blkptr_t *bp = zio->io_bp;
4353 	int error;
4354 
4355 	ASSERT(zio->io_vd != NULL);
4356 
4357 	if (bp == NULL) {
4358 		/*
4359 		 * This is zio_read_phys().
4360 		 * We're either verifying a label checksum, or nothing at all.
4361 		 */
4362 		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
4363 			return (zio);
4364 
4365 		ASSERT3U(zio->io_prop.zp_checksum, ==, ZIO_CHECKSUM_LABEL);
4366 	}
4367 
4368 	if ((error = zio_checksum_error(zio, &info)) != 0) {
4369 		zio->io_error = error;
4370 		if (error == ECKSUM &&
4371 		    !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
4372 			mutex_enter(&zio->io_vd->vdev_stat_lock);
4373 			zio->io_vd->vdev_stat.vs_checksum_errors++;
4374 			mutex_exit(&zio->io_vd->vdev_stat_lock);
4375 			(void) zfs_ereport_start_checksum(zio->io_spa,
4376 			    zio->io_vd, &zio->io_bookmark, zio,
4377 			    zio->io_offset, zio->io_size, &info);
4378 		}
4379 	}
4380 
4381 	return (zio);
4382 }
4383 
4384 /*
4385  * Called by RAID-Z to ensure we don't compute the checksum twice.
4386  */
4387 void
4388 zio_checksum_verified(zio_t *zio)
4389 {
4390 	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
4391 }
4392 
4393 /*
4394  * ==========================================================================
4395  * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
4396  * An error of 0 indicates success.  ENXIO indicates whole-device failure,
4397  * which may be transient (e.g. unplugged) or permanent.  ECKSUM and EIO
4398  * indicate errors that are specific to one I/O, and most likely permanent.
4399  * Any other error is presumed to be worse because we weren't expecting it.
4400  * ==========================================================================
4401  */
4402 int
4403 zio_worst_error(int e1, int e2)
4404 {
4405 	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
4406 	int r1, r2;
4407 
4408 	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
4409 		if (e1 == zio_error_rank[r1])
4410 			break;
4411 
4412 	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
4413 		if (e2 == zio_error_rank[r2])
4414 			break;
4415 
4416 	return (r1 > r2 ? e1 : e2);
4417 }
4418 
4419 /*
4420  * ==========================================================================
4421  * I/O completion
4422  * ==========================================================================
4423  */
4424 static zio_t *
4425 zio_ready(zio_t *zio)
4426 {
4427 	blkptr_t *bp = zio->io_bp;
4428 	zio_t *pio, *pio_next;
4429 	zio_link_t *zl = NULL;
4430 
4431 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT,
4432 	    ZIO_WAIT_READY)) {
4433 		return (NULL);
4434 	}
4435 
4436 	if (zio->io_ready) {
4437 		ASSERT(IO_IS_ALLOCATING(zio));
4438 		ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
4439 		    (zio->io_flags & ZIO_FLAG_NOPWRITE));
4440 		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
4441 
4442 		zio->io_ready(zio);
4443 	}
4444 
4445 	if (bp != NULL && bp != &zio->io_bp_copy)
4446 		zio->io_bp_copy = *bp;
4447 
4448 	if (zio->io_error != 0) {
4449 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4450 
4451 		if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4452 			ASSERT(IO_IS_ALLOCATING(zio));
4453 			ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4454 			ASSERT(zio->io_metaslab_class != NULL);
4455 
4456 			/*
4457 			 * We were unable to allocate anything, unreserve and
4458 			 * issue the next I/O to allocate.
4459 			 */
4460 			metaslab_class_throttle_unreserve(
4461 			    zio->io_metaslab_class, zio->io_prop.zp_copies,
4462 			    zio->io_allocator, zio);
4463 			zio_allocate_dispatch(zio->io_spa, zio->io_allocator);
4464 		}
4465 	}
4466 
4467 	mutex_enter(&zio->io_lock);
4468 	zio->io_state[ZIO_WAIT_READY] = 1;
4469 	pio = zio_walk_parents(zio, &zl);
4470 	mutex_exit(&zio->io_lock);
4471 
4472 	/*
4473 	 * As we notify zio's parents, new parents could be added.
4474 	 * New parents go to the head of zio's io_parent_list, however,
4475 	 * so we will (correctly) not notify them.  The remainder of zio's
4476 	 * io_parent_list, from 'pio_next' onward, cannot change because
4477 	 * all parents must wait for us to be done before they can be done.
4478 	 */
4479 	for (; pio != NULL; pio = pio_next) {
4480 		pio_next = zio_walk_parents(zio, &zl);
4481 		zio_notify_parent(pio, zio, ZIO_WAIT_READY, NULL);
4482 	}
4483 
4484 	if (zio->io_flags & ZIO_FLAG_NODATA) {
4485 		if (bp != NULL && BP_IS_GANG(bp)) {
4486 			zio->io_flags &= ~ZIO_FLAG_NODATA;
4487 		} else {
4488 			ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE);
4489 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
4490 		}
4491 	}
4492 
4493 	if (zio_injection_enabled &&
4494 	    zio->io_spa->spa_syncing_txg == zio->io_txg)
4495 		zio_handle_ignored_writes(zio);
4496 
4497 	return (zio);
4498 }
4499 
4500 /*
4501  * Update the allocation throttle accounting.
4502  */
4503 static void
4504 zio_dva_throttle_done(zio_t *zio)
4505 {
4506 	zio_t *lio __maybe_unused = zio->io_logical;
4507 	zio_t *pio = zio_unique_parent(zio);
4508 	vdev_t *vd = zio->io_vd;
4509 	int flags = METASLAB_ASYNC_ALLOC;
4510 
4511 	ASSERT3P(zio->io_bp, !=, NULL);
4512 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
4513 	ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE);
4514 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
4515 	ASSERT(vd != NULL);
4516 	ASSERT3P(vd, ==, vd->vdev_top);
4517 	ASSERT(zio_injection_enabled || !(zio->io_flags & ZIO_FLAG_IO_RETRY));
4518 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4519 	ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING);
4520 	ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE));
4521 	ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA));
4522 
4523 	/*
4524 	 * Parents of gang children can have two flavors -- ones that
4525 	 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set)
4526 	 * and ones that allocated the constituent blocks. The allocation
4527 	 * throttle needs to know the allocating parent zio so we must find
4528 	 * it here.
4529 	 */
4530 	if (pio->io_child_type == ZIO_CHILD_GANG) {
4531 		/*
4532 		 * If our parent is a rewrite gang child then our grandparent
4533 		 * would have been the one that performed the allocation.
4534 		 */
4535 		if (pio->io_flags & ZIO_FLAG_IO_REWRITE)
4536 			pio = zio_unique_parent(pio);
4537 		flags |= METASLAB_GANG_CHILD;
4538 	}
4539 
4540 	ASSERT(IO_IS_ALLOCATING(pio));
4541 	ASSERT3P(zio, !=, zio->io_logical);
4542 	ASSERT(zio->io_logical != NULL);
4543 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4544 	ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE);
4545 	ASSERT(zio->io_metaslab_class != NULL);
4546 
4547 	mutex_enter(&pio->io_lock);
4548 	metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags,
4549 	    pio->io_allocator, B_TRUE);
4550 	mutex_exit(&pio->io_lock);
4551 
4552 	metaslab_class_throttle_unreserve(zio->io_metaslab_class, 1,
4553 	    pio->io_allocator, pio);
4554 
4555 	/*
4556 	 * Call into the pipeline to see if there is more work that
4557 	 * needs to be done. If there is work to be done it will be
4558 	 * dispatched to another taskq thread.
4559 	 */
4560 	zio_allocate_dispatch(zio->io_spa, pio->io_allocator);
4561 }
4562 
4563 static zio_t *
4564 zio_done(zio_t *zio)
4565 {
4566 	/*
4567 	 * Always attempt to keep stack usage minimal here since
4568 	 * we can be called recursively up to 19 levels deep.
4569 	 */
4570 	const uint64_t psize = zio->io_size;
4571 	zio_t *pio, *pio_next;
4572 	zio_link_t *zl = NULL;
4573 
4574 	/*
4575 	 * If our children haven't all completed,
4576 	 * wait for them and then repeat this pipeline stage.
4577 	 */
4578 	if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) {
4579 		return (NULL);
4580 	}
4581 
4582 	/*
4583 	 * If the allocation throttle is enabled, then update the accounting.
4584 	 * We only track child I/Os that are part of an allocating async
4585 	 * write. We must do this since the allocation is performed
4586 	 * by the logical I/O but the actual write is done by child I/Os.
4587 	 */
4588 	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING &&
4589 	    zio->io_child_type == ZIO_CHILD_VDEV) {
4590 		ASSERT(zio->io_metaslab_class != NULL);
4591 		ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled);
4592 		zio_dva_throttle_done(zio);
4593 	}
4594 
4595 	/*
4596 	 * If the allocation throttle is enabled, verify that
4597 	 * we have decremented the refcounts for every I/O that was throttled.
4598 	 */
4599 	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4600 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
4601 		ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4602 		ASSERT(zio->io_bp != NULL);
4603 
4604 		metaslab_group_alloc_verify(zio->io_spa, zio->io_bp, zio,
4605 		    zio->io_allocator);
4606 		VERIFY(zfs_refcount_not_held(&zio->io_metaslab_class->
4607 		    mc_allocator[zio->io_allocator].mca_alloc_slots, zio));
4608 	}
4609 
4610 
4611 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
4612 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
4613 			ASSERT(zio->io_children[c][w] == 0);
4614 
4615 	if (zio->io_bp != NULL && !BP_IS_EMBEDDED(zio->io_bp)) {
4616 		ASSERT(zio->io_bp->blk_pad[0] == 0);
4617 		ASSERT(zio->io_bp->blk_pad[1] == 0);
4618 		ASSERT(memcmp(zio->io_bp, &zio->io_bp_copy,
4619 		    sizeof (blkptr_t)) == 0 ||
4620 		    (zio->io_bp == zio_unique_parent(zio)->io_bp));
4621 		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) &&
4622 		    zio->io_bp_override == NULL &&
4623 		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
4624 			ASSERT3U(zio->io_prop.zp_copies, <=,
4625 			    BP_GET_NDVAS(zio->io_bp));
4626 			ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 ||
4627 			    (BP_COUNT_GANG(zio->io_bp) ==
4628 			    BP_GET_NDVAS(zio->io_bp)));
4629 		}
4630 		if (zio->io_flags & ZIO_FLAG_NOPWRITE)
4631 			VERIFY(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
4632 	}
4633 
4634 	/*
4635 	 * If there were child vdev/gang/ddt errors, they apply to us now.
4636 	 */
4637 	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
4638 	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
4639 	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
4640 
4641 	/*
4642 	 * If the I/O on the transformed data was successful, generate any
4643 	 * checksum reports now while we still have the transformed data.
4644 	 */
4645 	if (zio->io_error == 0) {
4646 		while (zio->io_cksum_report != NULL) {
4647 			zio_cksum_report_t *zcr = zio->io_cksum_report;
4648 			uint64_t align = zcr->zcr_align;
4649 			uint64_t asize = P2ROUNDUP(psize, align);
4650 			abd_t *adata = zio->io_abd;
4651 
4652 			if (adata != NULL && asize != psize) {
4653 				adata = abd_alloc(asize, B_TRUE);
4654 				abd_copy(adata, zio->io_abd, psize);
4655 				abd_zero_off(adata, psize, asize - psize);
4656 			}
4657 
4658 			zio->io_cksum_report = zcr->zcr_next;
4659 			zcr->zcr_next = NULL;
4660 			zcr->zcr_finish(zcr, adata);
4661 			zfs_ereport_free_checksum(zcr);
4662 
4663 			if (adata != NULL && asize != psize)
4664 				abd_free(adata);
4665 		}
4666 	}
4667 
4668 	zio_pop_transforms(zio);	/* note: may set zio->io_error */
4669 
4670 	vdev_stat_update(zio, psize);
4671 
4672 	/*
4673 	 * If this I/O is attached to a particular vdev is slow, exceeding
4674 	 * 30 seconds to complete, post an error described the I/O delay.
4675 	 * We ignore these errors if the device is currently unavailable.
4676 	 */
4677 	if (zio->io_delay >= MSEC2NSEC(zio_slow_io_ms)) {
4678 		if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) {
4679 			/*
4680 			 * We want to only increment our slow IO counters if
4681 			 * the IO is valid (i.e. not if the drive is removed).
4682 			 *
4683 			 * zfs_ereport_post() will also do these checks, but
4684 			 * it can also ratelimit and have other failures, so we
4685 			 * need to increment the slow_io counters independent
4686 			 * of it.
4687 			 */
4688 			if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY,
4689 			    zio->io_spa, zio->io_vd, zio)) {
4690 				mutex_enter(&zio->io_vd->vdev_stat_lock);
4691 				zio->io_vd->vdev_stat.vs_slow_ios++;
4692 				mutex_exit(&zio->io_vd->vdev_stat_lock);
4693 
4694 				(void) zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
4695 				    zio->io_spa, zio->io_vd, &zio->io_bookmark,
4696 				    zio, 0);
4697 			}
4698 		}
4699 	}
4700 
4701 	if (zio->io_error) {
4702 		/*
4703 		 * If this I/O is attached to a particular vdev,
4704 		 * generate an error message describing the I/O failure
4705 		 * at the block level.  We ignore these errors if the
4706 		 * device is currently unavailable.
4707 		 */
4708 		if (zio->io_error != ECKSUM && zio->io_vd != NULL &&
4709 		    !vdev_is_dead(zio->io_vd)) {
4710 			int ret = zfs_ereport_post(FM_EREPORT_ZFS_IO,
4711 			    zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0);
4712 			if (ret != EALREADY) {
4713 				mutex_enter(&zio->io_vd->vdev_stat_lock);
4714 				if (zio->io_type == ZIO_TYPE_READ)
4715 					zio->io_vd->vdev_stat.vs_read_errors++;
4716 				else if (zio->io_type == ZIO_TYPE_WRITE)
4717 					zio->io_vd->vdev_stat.vs_write_errors++;
4718 				mutex_exit(&zio->io_vd->vdev_stat_lock);
4719 			}
4720 		}
4721 
4722 		if ((zio->io_error == EIO || !(zio->io_flags &
4723 		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
4724 		    zio == zio->io_logical) {
4725 			/*
4726 			 * For logical I/O requests, tell the SPA to log the
4727 			 * error and generate a logical data ereport.
4728 			 */
4729 			spa_log_error(zio->io_spa, &zio->io_bookmark,
4730 			    &zio->io_bp->blk_birth);
4731 			(void) zfs_ereport_post(FM_EREPORT_ZFS_DATA,
4732 			    zio->io_spa, NULL, &zio->io_bookmark, zio, 0);
4733 		}
4734 	}
4735 
4736 	if (zio->io_error && zio == zio->io_logical) {
4737 		/*
4738 		 * Determine whether zio should be reexecuted.  This will
4739 		 * propagate all the way to the root via zio_notify_parent().
4740 		 */
4741 		ASSERT(zio->io_vd == NULL && zio->io_bp != NULL);
4742 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4743 
4744 		if (IO_IS_ALLOCATING(zio) &&
4745 		    !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
4746 			if (zio->io_error != ENOSPC)
4747 				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
4748 			else
4749 				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4750 		}
4751 
4752 		if ((zio->io_type == ZIO_TYPE_READ ||
4753 		    zio->io_type == ZIO_TYPE_FREE) &&
4754 		    !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
4755 		    zio->io_error == ENXIO &&
4756 		    spa_load_state(zio->io_spa) == SPA_LOAD_NONE &&
4757 		    spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE)
4758 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4759 
4760 		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
4761 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4762 
4763 		/*
4764 		 * Here is a possibly good place to attempt to do
4765 		 * either combinatorial reconstruction or error correction
4766 		 * based on checksums.  It also might be a good place
4767 		 * to send out preliminary ereports before we suspend
4768 		 * processing.
4769 		 */
4770 	}
4771 
4772 	/*
4773 	 * If there were logical child errors, they apply to us now.
4774 	 * We defer this until now to avoid conflating logical child
4775 	 * errors with errors that happened to the zio itself when
4776 	 * updating vdev stats and reporting FMA events above.
4777 	 */
4778 	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
4779 
4780 	if ((zio->io_error || zio->io_reexecute) &&
4781 	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
4782 	    !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
4783 		zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp);
4784 
4785 	zio_gang_tree_free(&zio->io_gang_tree);
4786 
4787 	/*
4788 	 * Godfather I/Os should never suspend.
4789 	 */
4790 	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
4791 	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
4792 		zio->io_reexecute &= ~ZIO_REEXECUTE_SUSPEND;
4793 
4794 	if (zio->io_reexecute) {
4795 		/*
4796 		 * This is a logical I/O that wants to reexecute.
4797 		 *
4798 		 * Reexecute is top-down.  When an i/o fails, if it's not
4799 		 * the root, it simply notifies its parent and sticks around.
4800 		 * The parent, seeing that it still has children in zio_done(),
4801 		 * does the same.  This percolates all the way up to the root.
4802 		 * The root i/o will reexecute or suspend the entire tree.
4803 		 *
4804 		 * This approach ensures that zio_reexecute() honors
4805 		 * all the original i/o dependency relationships, e.g.
4806 		 * parents not executing until children are ready.
4807 		 */
4808 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4809 
4810 		zio->io_gang_leader = NULL;
4811 
4812 		mutex_enter(&zio->io_lock);
4813 		zio->io_state[ZIO_WAIT_DONE] = 1;
4814 		mutex_exit(&zio->io_lock);
4815 
4816 		/*
4817 		 * "The Godfather" I/O monitors its children but is
4818 		 * not a true parent to them. It will track them through
4819 		 * the pipeline but severs its ties whenever they get into
4820 		 * trouble (e.g. suspended). This allows "The Godfather"
4821 		 * I/O to return status without blocking.
4822 		 */
4823 		zl = NULL;
4824 		for (pio = zio_walk_parents(zio, &zl); pio != NULL;
4825 		    pio = pio_next) {
4826 			zio_link_t *remove_zl = zl;
4827 			pio_next = zio_walk_parents(zio, &zl);
4828 
4829 			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
4830 			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
4831 				zio_remove_child(pio, zio, remove_zl);
4832 				/*
4833 				 * This is a rare code path, so we don't
4834 				 * bother with "next_to_execute".
4835 				 */
4836 				zio_notify_parent(pio, zio, ZIO_WAIT_DONE,
4837 				    NULL);
4838 			}
4839 		}
4840 
4841 		if ((pio = zio_unique_parent(zio)) != NULL) {
4842 			/*
4843 			 * We're not a root i/o, so there's nothing to do
4844 			 * but notify our parent.  Don't propagate errors
4845 			 * upward since we haven't permanently failed yet.
4846 			 */
4847 			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
4848 			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
4849 			/*
4850 			 * This is a rare code path, so we don't bother with
4851 			 * "next_to_execute".
4852 			 */
4853 			zio_notify_parent(pio, zio, ZIO_WAIT_DONE, NULL);
4854 		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
4855 			/*
4856 			 * We'd fail again if we reexecuted now, so suspend
4857 			 * until conditions improve (e.g. device comes online).
4858 			 */
4859 			zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR);
4860 		} else {
4861 			/*
4862 			 * Reexecution is potentially a huge amount of work.
4863 			 * Hand it off to the otherwise-unused claim taskq.
4864 			 */
4865 			ASSERT(taskq_empty_ent(&zio->io_tqent));
4866 			spa_taskq_dispatch_ent(zio->io_spa,
4867 			    ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE,
4868 			    zio_reexecute, zio, 0, &zio->io_tqent);
4869 		}
4870 		return (NULL);
4871 	}
4872 
4873 	ASSERT(list_is_empty(&zio->io_child_list));
4874 	ASSERT(zio->io_reexecute == 0);
4875 	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
4876 
4877 	/*
4878 	 * Report any checksum errors, since the I/O is complete.
4879 	 */
4880 	while (zio->io_cksum_report != NULL) {
4881 		zio_cksum_report_t *zcr = zio->io_cksum_report;
4882 		zio->io_cksum_report = zcr->zcr_next;
4883 		zcr->zcr_next = NULL;
4884 		zcr->zcr_finish(zcr, NULL);
4885 		zfs_ereport_free_checksum(zcr);
4886 	}
4887 
4888 	if (zio->io_flags & ZIO_FLAG_FASTWRITE && zio->io_bp &&
4889 	    !BP_IS_HOLE(zio->io_bp) && !BP_IS_EMBEDDED(zio->io_bp) &&
4890 	    !(zio->io_flags & ZIO_FLAG_NOPWRITE)) {
4891 		metaslab_fastwrite_unmark(zio->io_spa, zio->io_bp);
4892 	}
4893 
4894 	/*
4895 	 * It is the responsibility of the done callback to ensure that this
4896 	 * particular zio is no longer discoverable for adoption, and as
4897 	 * such, cannot acquire any new parents.
4898 	 */
4899 	if (zio->io_done)
4900 		zio->io_done(zio);
4901 
4902 	mutex_enter(&zio->io_lock);
4903 	zio->io_state[ZIO_WAIT_DONE] = 1;
4904 	mutex_exit(&zio->io_lock);
4905 
4906 	/*
4907 	 * We are done executing this zio.  We may want to execute a parent
4908 	 * next.  See the comment in zio_notify_parent().
4909 	 */
4910 	zio_t *next_to_execute = NULL;
4911 	zl = NULL;
4912 	for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) {
4913 		zio_link_t *remove_zl = zl;
4914 		pio_next = zio_walk_parents(zio, &zl);
4915 		zio_remove_child(pio, zio, remove_zl);
4916 		zio_notify_parent(pio, zio, ZIO_WAIT_DONE, &next_to_execute);
4917 	}
4918 
4919 	if (zio->io_waiter != NULL) {
4920 		mutex_enter(&zio->io_lock);
4921 		zio->io_executor = NULL;
4922 		cv_broadcast(&zio->io_cv);
4923 		mutex_exit(&zio->io_lock);
4924 	} else {
4925 		zio_destroy(zio);
4926 	}
4927 
4928 	return (next_to_execute);
4929 }
4930 
4931 /*
4932  * ==========================================================================
4933  * I/O pipeline definition
4934  * ==========================================================================
4935  */
4936 static zio_pipe_stage_t *zio_pipeline[] = {
4937 	NULL,
4938 	zio_read_bp_init,
4939 	zio_write_bp_init,
4940 	zio_free_bp_init,
4941 	zio_issue_async,
4942 	zio_write_compress,
4943 	zio_encrypt,
4944 	zio_checksum_generate,
4945 	zio_nop_write,
4946 	zio_brt_free,
4947 	zio_ddt_read_start,
4948 	zio_ddt_read_done,
4949 	zio_ddt_write,
4950 	zio_ddt_free,
4951 	zio_gang_assemble,
4952 	zio_gang_issue,
4953 	zio_dva_throttle,
4954 	zio_dva_allocate,
4955 	zio_dva_free,
4956 	zio_dva_claim,
4957 	zio_ready,
4958 	zio_vdev_io_start,
4959 	zio_vdev_io_done,
4960 	zio_vdev_io_assess,
4961 	zio_checksum_verify,
4962 	zio_done
4963 };
4964 
4965 
4966 
4967 
4968 /*
4969  * Compare two zbookmark_phys_t's to see which we would reach first in a
4970  * pre-order traversal of the object tree.
4971  *
4972  * This is simple in every case aside from the meta-dnode object. For all other
4973  * objects, we traverse them in order (object 1 before object 2, and so on).
4974  * However, all of these objects are traversed while traversing object 0, since
4975  * the data it points to is the list of objects.  Thus, we need to convert to a
4976  * canonical representation so we can compare meta-dnode bookmarks to
4977  * non-meta-dnode bookmarks.
4978  *
4979  * We do this by calculating "equivalents" for each field of the zbookmark.
4980  * zbookmarks outside of the meta-dnode use their own object and level, and
4981  * calculate the level 0 equivalent (the first L0 blkid that is contained in the
4982  * blocks this bookmark refers to) by multiplying their blkid by their span
4983  * (the number of L0 blocks contained within one block at their level).
4984  * zbookmarks inside the meta-dnode calculate their object equivalent
4985  * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
4986  * level + 1<<31 (any value larger than a level could ever be) for their level.
4987  * This causes them to always compare before a bookmark in their object
4988  * equivalent, compare appropriately to bookmarks in other objects, and to
4989  * compare appropriately to other bookmarks in the meta-dnode.
4990  */
4991 int
4992 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
4993     const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
4994 {
4995 	/*
4996 	 * These variables represent the "equivalent" values for the zbookmark,
4997 	 * after converting zbookmarks inside the meta dnode to their
4998 	 * normal-object equivalents.
4999 	 */
5000 	uint64_t zb1obj, zb2obj;
5001 	uint64_t zb1L0, zb2L0;
5002 	uint64_t zb1level, zb2level;
5003 
5004 	if (zb1->zb_object == zb2->zb_object &&
5005 	    zb1->zb_level == zb2->zb_level &&
5006 	    zb1->zb_blkid == zb2->zb_blkid)
5007 		return (0);
5008 
5009 	IMPLY(zb1->zb_level > 0, ibs1 >= SPA_MINBLOCKSHIFT);
5010 	IMPLY(zb2->zb_level > 0, ibs2 >= SPA_MINBLOCKSHIFT);
5011 
5012 	/*
5013 	 * BP_SPANB calculates the span in blocks.
5014 	 */
5015 	zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
5016 	zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
5017 
5018 	if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
5019 		zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
5020 		zb1L0 = 0;
5021 		zb1level = zb1->zb_level + COMPARE_META_LEVEL;
5022 	} else {
5023 		zb1obj = zb1->zb_object;
5024 		zb1level = zb1->zb_level;
5025 	}
5026 
5027 	if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
5028 		zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
5029 		zb2L0 = 0;
5030 		zb2level = zb2->zb_level + COMPARE_META_LEVEL;
5031 	} else {
5032 		zb2obj = zb2->zb_object;
5033 		zb2level = zb2->zb_level;
5034 	}
5035 
5036 	/* Now that we have a canonical representation, do the comparison. */
5037 	if (zb1obj != zb2obj)
5038 		return (zb1obj < zb2obj ? -1 : 1);
5039 	else if (zb1L0 != zb2L0)
5040 		return (zb1L0 < zb2L0 ? -1 : 1);
5041 	else if (zb1level != zb2level)
5042 		return (zb1level > zb2level ? -1 : 1);
5043 	/*
5044 	 * This can (theoretically) happen if the bookmarks have the same object
5045 	 * and level, but different blkids, if the block sizes are not the same.
5046 	 * There is presently no way to change the indirect block sizes
5047 	 */
5048 	return (0);
5049 }
5050 
5051 /*
5052  *  This function checks the following: given that last_block is the place that
5053  *  our traversal stopped last time, does that guarantee that we've visited
5054  *  every node under subtree_root?  Therefore, we can't just use the raw output
5055  *  of zbookmark_compare.  We have to pass in a modified version of
5056  *  subtree_root; by incrementing the block id, and then checking whether
5057  *  last_block is before or equal to that, we can tell whether or not having
5058  *  visited last_block implies that all of subtree_root's children have been
5059  *  visited.
5060  */
5061 boolean_t
5062 zbookmark_subtree_completed(const dnode_phys_t *dnp,
5063     const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
5064 {
5065 	zbookmark_phys_t mod_zb = *subtree_root;
5066 	mod_zb.zb_blkid++;
5067 	ASSERT0(last_block->zb_level);
5068 
5069 	/* The objset_phys_t isn't before anything. */
5070 	if (dnp == NULL)
5071 		return (B_FALSE);
5072 
5073 	/*
5074 	 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
5075 	 * data block size in sectors, because that variable is only used if
5076 	 * the bookmark refers to a block in the meta-dnode.  Since we don't
5077 	 * know without examining it what object it refers to, and there's no
5078 	 * harm in passing in this value in other cases, we always pass it in.
5079 	 *
5080 	 * We pass in 0 for the indirect block size shift because zb2 must be
5081 	 * level 0.  The indirect block size is only used to calculate the span
5082 	 * of the bookmark, but since the bookmark must be level 0, the span is
5083 	 * always 1, so the math works out.
5084 	 *
5085 	 * If you make changes to how the zbookmark_compare code works, be sure
5086 	 * to make sure that this code still works afterwards.
5087 	 */
5088 	return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
5089 	    1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
5090 	    last_block) <= 0);
5091 }
5092 
5093 /*
5094  * This function is similar to zbookmark_subtree_completed(), but returns true
5095  * if subtree_root is equal or ahead of last_block, i.e. still to be done.
5096  */
5097 boolean_t
5098 zbookmark_subtree_tbd(const dnode_phys_t *dnp,
5099     const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
5100 {
5101 	ASSERT0(last_block->zb_level);
5102 	if (dnp == NULL)
5103 		return (B_FALSE);
5104 	return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
5105 	    1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, subtree_root,
5106 	    last_block) >= 0);
5107 }
5108 
5109 EXPORT_SYMBOL(zio_type_name);
5110 EXPORT_SYMBOL(zio_buf_alloc);
5111 EXPORT_SYMBOL(zio_data_buf_alloc);
5112 EXPORT_SYMBOL(zio_buf_free);
5113 EXPORT_SYMBOL(zio_data_buf_free);
5114 
5115 ZFS_MODULE_PARAM(zfs_zio, zio_, slow_io_ms, INT, ZMOD_RW,
5116 	"Max I/O completion time (milliseconds) before marking it as slow");
5117 
5118 ZFS_MODULE_PARAM(zfs_zio, zio_, requeue_io_start_cut_in_line, INT, ZMOD_RW,
5119 	"Prioritize requeued I/O");
5120 
5121 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_deferred_free,  UINT, ZMOD_RW,
5122 	"Defer frees starting in this pass");
5123 
5124 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_dont_compress, UINT, ZMOD_RW,
5125 	"Don't compress starting in this pass");
5126 
5127 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_rewrite, UINT, ZMOD_RW,
5128 	"Rewrite new bps starting in this pass");
5129 
5130 ZFS_MODULE_PARAM(zfs_zio, zio_, dva_throttle_enabled, INT, ZMOD_RW,
5131 	"Throttle block allocations in the ZIO pipeline");
5132 
5133 ZFS_MODULE_PARAM(zfs_zio, zio_, deadman_log_all, INT, ZMOD_RW,
5134 	"Log all slow ZIOs, not just those with vdevs");
5135