1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2022 by Delphix. All rights reserved. 24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2017, Intel Corporation. 26 * Copyright (c) 2019, Klara Inc. 27 * Copyright (c) 2019, Allan Jude 28 * Copyright (c) 2021, Datto, Inc. 29 */ 30 31 #include <sys/sysmacros.h> 32 #include <sys/zfs_context.h> 33 #include <sys/fm/fs/zfs.h> 34 #include <sys/spa.h> 35 #include <sys/txg.h> 36 #include <sys/spa_impl.h> 37 #include <sys/vdev_impl.h> 38 #include <sys/vdev_trim.h> 39 #include <sys/zio_impl.h> 40 #include <sys/zio_compress.h> 41 #include <sys/zio_checksum.h> 42 #include <sys/dmu_objset.h> 43 #include <sys/arc.h> 44 #include <sys/brt.h> 45 #include <sys/ddt.h> 46 #include <sys/blkptr.h> 47 #include <sys/zfeature.h> 48 #include <sys/dsl_scan.h> 49 #include <sys/metaslab_impl.h> 50 #include <sys/time.h> 51 #include <sys/trace_zfs.h> 52 #include <sys/abd.h> 53 #include <sys/dsl_crypt.h> 54 #include <cityhash.h> 55 56 /* 57 * ========================================================================== 58 * I/O type descriptions 59 * ========================================================================== 60 */ 61 const char *const zio_type_name[ZIO_TYPES] = { 62 /* 63 * Note: Linux kernel thread name length is limited 64 * so these names will differ from upstream open zfs. 65 */ 66 "z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_ioctl", "z_trim" 67 }; 68 69 int zio_dva_throttle_enabled = B_TRUE; 70 static int zio_deadman_log_all = B_FALSE; 71 72 /* 73 * ========================================================================== 74 * I/O kmem caches 75 * ========================================================================== 76 */ 77 static kmem_cache_t *zio_cache; 78 static kmem_cache_t *zio_link_cache; 79 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 80 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 81 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 82 static uint64_t zio_buf_cache_allocs[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 83 static uint64_t zio_buf_cache_frees[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 84 #endif 85 86 /* Mark IOs as "slow" if they take longer than 30 seconds */ 87 static uint_t zio_slow_io_ms = (30 * MILLISEC); 88 89 #define BP_SPANB(indblkshift, level) \ 90 (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT))) 91 #define COMPARE_META_LEVEL 0x80000000ul 92 /* 93 * The following actions directly effect the spa's sync-to-convergence logic. 94 * The values below define the sync pass when we start performing the action. 95 * Care should be taken when changing these values as they directly impact 96 * spa_sync() performance. Tuning these values may introduce subtle performance 97 * pathologies and should only be done in the context of performance analysis. 98 * These tunables will eventually be removed and replaced with #defines once 99 * enough analysis has been done to determine optimal values. 100 * 101 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that 102 * regular blocks are not deferred. 103 * 104 * Starting in sync pass 8 (zfs_sync_pass_dont_compress), we disable 105 * compression (including of metadata). In practice, we don't have this 106 * many sync passes, so this has no effect. 107 * 108 * The original intent was that disabling compression would help the sync 109 * passes to converge. However, in practice disabling compression increases 110 * the average number of sync passes, because when we turn compression off, a 111 * lot of block's size will change and thus we have to re-allocate (not 112 * overwrite) them. It also increases the number of 128KB allocations (e.g. 113 * for indirect blocks and spacemaps) because these will not be compressed. 114 * The 128K allocations are especially detrimental to performance on highly 115 * fragmented systems, which may have very few free segments of this size, 116 * and may need to load new metaslabs to satisfy 128K allocations. 117 */ 118 119 /* defer frees starting in this pass */ 120 uint_t zfs_sync_pass_deferred_free = 2; 121 122 /* don't compress starting in this pass */ 123 static uint_t zfs_sync_pass_dont_compress = 8; 124 125 /* rewrite new bps starting in this pass */ 126 static uint_t zfs_sync_pass_rewrite = 2; 127 128 /* 129 * An allocating zio is one that either currently has the DVA allocate 130 * stage set or will have it later in its lifetime. 131 */ 132 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE) 133 134 /* 135 * Enable smaller cores by excluding metadata 136 * allocations as well. 137 */ 138 int zio_exclude_metadata = 0; 139 static int zio_requeue_io_start_cut_in_line = 1; 140 141 #ifdef ZFS_DEBUG 142 static const int zio_buf_debug_limit = 16384; 143 #else 144 static const int zio_buf_debug_limit = 0; 145 #endif 146 147 static inline void __zio_execute(zio_t *zio); 148 149 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t); 150 151 void 152 zio_init(void) 153 { 154 size_t c; 155 156 zio_cache = kmem_cache_create("zio_cache", 157 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 158 zio_link_cache = kmem_cache_create("zio_link_cache", 159 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 160 161 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 162 size_t size = (c + 1) << SPA_MINBLOCKSHIFT; 163 size_t align, cflags, data_cflags; 164 char name[32]; 165 166 /* 167 * Create cache for each half-power of 2 size, starting from 168 * SPA_MINBLOCKSIZE. It should give us memory space efficiency 169 * of ~7/8, sufficient for transient allocations mostly using 170 * these caches. 171 */ 172 size_t p2 = size; 173 while (!ISP2(p2)) 174 p2 &= p2 - 1; 175 if (!IS_P2ALIGNED(size, p2 / 2)) 176 continue; 177 178 #ifndef _KERNEL 179 /* 180 * If we are using watchpoints, put each buffer on its own page, 181 * to eliminate the performance overhead of trapping to the 182 * kernel when modifying a non-watched buffer that shares the 183 * page with a watched buffer. 184 */ 185 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE)) 186 continue; 187 #endif 188 189 if (IS_P2ALIGNED(size, PAGESIZE)) 190 align = PAGESIZE; 191 else 192 align = 1 << (highbit64(size ^ (size - 1)) - 1); 193 194 cflags = (zio_exclude_metadata || size > zio_buf_debug_limit) ? 195 KMC_NODEBUG : 0; 196 data_cflags = KMC_NODEBUG; 197 if (cflags == data_cflags) { 198 /* 199 * Resulting kmem caches would be identical. 200 * Save memory by creating only one. 201 */ 202 (void) snprintf(name, sizeof (name), 203 "zio_buf_comb_%lu", (ulong_t)size); 204 zio_buf_cache[c] = kmem_cache_create(name, size, align, 205 NULL, NULL, NULL, NULL, NULL, cflags); 206 zio_data_buf_cache[c] = zio_buf_cache[c]; 207 continue; 208 } 209 (void) snprintf(name, sizeof (name), "zio_buf_%lu", 210 (ulong_t)size); 211 zio_buf_cache[c] = kmem_cache_create(name, size, align, 212 NULL, NULL, NULL, NULL, NULL, cflags); 213 214 (void) snprintf(name, sizeof (name), "zio_data_buf_%lu", 215 (ulong_t)size); 216 zio_data_buf_cache[c] = kmem_cache_create(name, size, align, 217 NULL, NULL, NULL, NULL, NULL, data_cflags); 218 } 219 220 while (--c != 0) { 221 ASSERT(zio_buf_cache[c] != NULL); 222 if (zio_buf_cache[c - 1] == NULL) 223 zio_buf_cache[c - 1] = zio_buf_cache[c]; 224 225 ASSERT(zio_data_buf_cache[c] != NULL); 226 if (zio_data_buf_cache[c - 1] == NULL) 227 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c]; 228 } 229 230 zio_inject_init(); 231 232 lz4_init(); 233 } 234 235 void 236 zio_fini(void) 237 { 238 size_t n = SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; 239 240 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 241 for (size_t i = 0; i < n; i++) { 242 if (zio_buf_cache_allocs[i] != zio_buf_cache_frees[i]) 243 (void) printf("zio_fini: [%d] %llu != %llu\n", 244 (int)((i + 1) << SPA_MINBLOCKSHIFT), 245 (long long unsigned)zio_buf_cache_allocs[i], 246 (long long unsigned)zio_buf_cache_frees[i]); 247 } 248 #endif 249 250 /* 251 * The same kmem cache can show up multiple times in both zio_buf_cache 252 * and zio_data_buf_cache. Do a wasteful but trivially correct scan to 253 * sort it out. 254 */ 255 for (size_t i = 0; i < n; i++) { 256 kmem_cache_t *cache = zio_buf_cache[i]; 257 if (cache == NULL) 258 continue; 259 for (size_t j = i; j < n; j++) { 260 if (cache == zio_buf_cache[j]) 261 zio_buf_cache[j] = NULL; 262 if (cache == zio_data_buf_cache[j]) 263 zio_data_buf_cache[j] = NULL; 264 } 265 kmem_cache_destroy(cache); 266 } 267 268 for (size_t i = 0; i < n; i++) { 269 kmem_cache_t *cache = zio_data_buf_cache[i]; 270 if (cache == NULL) 271 continue; 272 for (size_t j = i; j < n; j++) { 273 if (cache == zio_data_buf_cache[j]) 274 zio_data_buf_cache[j] = NULL; 275 } 276 kmem_cache_destroy(cache); 277 } 278 279 for (size_t i = 0; i < n; i++) { 280 VERIFY3P(zio_buf_cache[i], ==, NULL); 281 VERIFY3P(zio_data_buf_cache[i], ==, NULL); 282 } 283 284 kmem_cache_destroy(zio_link_cache); 285 kmem_cache_destroy(zio_cache); 286 287 zio_inject_fini(); 288 289 lz4_fini(); 290 } 291 292 /* 293 * ========================================================================== 294 * Allocate and free I/O buffers 295 * ========================================================================== 296 */ 297 298 #ifdef ZFS_DEBUG 299 static const ulong_t zio_buf_canary = (ulong_t)0xdeadc0dedead210b; 300 #endif 301 302 /* 303 * Use empty space after the buffer to detect overflows. 304 * 305 * Since zio_init() creates kmem caches only for certain set of buffer sizes, 306 * allocations of different sizes may have some unused space after the data. 307 * Filling part of that space with a known pattern on allocation and checking 308 * it on free should allow us to detect some buffer overflows. 309 */ 310 static void 311 zio_buf_put_canary(ulong_t *p, size_t size, kmem_cache_t **cache, size_t c) 312 { 313 #ifdef ZFS_DEBUG 314 size_t off = P2ROUNDUP(size, sizeof (ulong_t)); 315 ulong_t *canary = p + off / sizeof (ulong_t); 316 size_t asize = (c + 1) << SPA_MINBLOCKSHIFT; 317 if (c + 1 < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT && 318 cache[c] == cache[c + 1]) 319 asize = (c + 2) << SPA_MINBLOCKSHIFT; 320 for (; off < asize; canary++, off += sizeof (ulong_t)) 321 *canary = zio_buf_canary; 322 #endif 323 } 324 325 static void 326 zio_buf_check_canary(ulong_t *p, size_t size, kmem_cache_t **cache, size_t c) 327 { 328 #ifdef ZFS_DEBUG 329 size_t off = P2ROUNDUP(size, sizeof (ulong_t)); 330 ulong_t *canary = p + off / sizeof (ulong_t); 331 size_t asize = (c + 1) << SPA_MINBLOCKSHIFT; 332 if (c + 1 < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT && 333 cache[c] == cache[c + 1]) 334 asize = (c + 2) << SPA_MINBLOCKSHIFT; 335 for (; off < asize; canary++, off += sizeof (ulong_t)) { 336 if (unlikely(*canary != zio_buf_canary)) { 337 PANIC("ZIO buffer overflow %p (%zu) + %zu %#lx != %#lx", 338 p, size, (canary - p) * sizeof (ulong_t), 339 *canary, zio_buf_canary); 340 } 341 } 342 #endif 343 } 344 345 /* 346 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a 347 * crashdump if the kernel panics, so use it judiciously. Obviously, it's 348 * useful to inspect ZFS metadata, but if possible, we should avoid keeping 349 * excess / transient data in-core during a crashdump. 350 */ 351 void * 352 zio_buf_alloc(size_t size) 353 { 354 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 355 356 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 357 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 358 atomic_add_64(&zio_buf_cache_allocs[c], 1); 359 #endif 360 361 void *p = kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE); 362 zio_buf_put_canary(p, size, zio_buf_cache, c); 363 return (p); 364 } 365 366 /* 367 * Use zio_data_buf_alloc to allocate data. The data will not appear in a 368 * crashdump if the kernel panics. This exists so that we will limit the amount 369 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount 370 * of kernel heap dumped to disk when the kernel panics) 371 */ 372 void * 373 zio_data_buf_alloc(size_t size) 374 { 375 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 376 377 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 378 379 void *p = kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE); 380 zio_buf_put_canary(p, size, zio_data_buf_cache, c); 381 return (p); 382 } 383 384 void 385 zio_buf_free(void *buf, size_t size) 386 { 387 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 388 389 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 390 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 391 atomic_add_64(&zio_buf_cache_frees[c], 1); 392 #endif 393 394 zio_buf_check_canary(buf, size, zio_buf_cache, c); 395 kmem_cache_free(zio_buf_cache[c], buf); 396 } 397 398 void 399 zio_data_buf_free(void *buf, size_t size) 400 { 401 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 402 403 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 404 405 zio_buf_check_canary(buf, size, zio_data_buf_cache, c); 406 kmem_cache_free(zio_data_buf_cache[c], buf); 407 } 408 409 static void 410 zio_abd_free(void *abd, size_t size) 411 { 412 (void) size; 413 abd_free((abd_t *)abd); 414 } 415 416 /* 417 * ========================================================================== 418 * Push and pop I/O transform buffers 419 * ========================================================================== 420 */ 421 void 422 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize, 423 zio_transform_func_t *transform) 424 { 425 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP); 426 427 zt->zt_orig_abd = zio->io_abd; 428 zt->zt_orig_size = zio->io_size; 429 zt->zt_bufsize = bufsize; 430 zt->zt_transform = transform; 431 432 zt->zt_next = zio->io_transform_stack; 433 zio->io_transform_stack = zt; 434 435 zio->io_abd = data; 436 zio->io_size = size; 437 } 438 439 void 440 zio_pop_transforms(zio_t *zio) 441 { 442 zio_transform_t *zt; 443 444 while ((zt = zio->io_transform_stack) != NULL) { 445 if (zt->zt_transform != NULL) 446 zt->zt_transform(zio, 447 zt->zt_orig_abd, zt->zt_orig_size); 448 449 if (zt->zt_bufsize != 0) 450 abd_free(zio->io_abd); 451 452 zio->io_abd = zt->zt_orig_abd; 453 zio->io_size = zt->zt_orig_size; 454 zio->io_transform_stack = zt->zt_next; 455 456 kmem_free(zt, sizeof (zio_transform_t)); 457 } 458 } 459 460 /* 461 * ========================================================================== 462 * I/O transform callbacks for subblocks, decompression, and decryption 463 * ========================================================================== 464 */ 465 static void 466 zio_subblock(zio_t *zio, abd_t *data, uint64_t size) 467 { 468 ASSERT(zio->io_size > size); 469 470 if (zio->io_type == ZIO_TYPE_READ) 471 abd_copy(data, zio->io_abd, size); 472 } 473 474 static void 475 zio_decompress(zio_t *zio, abd_t *data, uint64_t size) 476 { 477 if (zio->io_error == 0) { 478 void *tmp = abd_borrow_buf(data, size); 479 int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp), 480 zio->io_abd, tmp, zio->io_size, size, 481 &zio->io_prop.zp_complevel); 482 abd_return_buf_copy(data, tmp, size); 483 484 if (zio_injection_enabled && ret == 0) 485 ret = zio_handle_fault_injection(zio, EINVAL); 486 487 if (ret != 0) 488 zio->io_error = SET_ERROR(EIO); 489 } 490 } 491 492 static void 493 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size) 494 { 495 int ret; 496 void *tmp; 497 blkptr_t *bp = zio->io_bp; 498 spa_t *spa = zio->io_spa; 499 uint64_t dsobj = zio->io_bookmark.zb_objset; 500 uint64_t lsize = BP_GET_LSIZE(bp); 501 dmu_object_type_t ot = BP_GET_TYPE(bp); 502 uint8_t salt[ZIO_DATA_SALT_LEN]; 503 uint8_t iv[ZIO_DATA_IV_LEN]; 504 uint8_t mac[ZIO_DATA_MAC_LEN]; 505 boolean_t no_crypt = B_FALSE; 506 507 ASSERT(BP_USES_CRYPT(bp)); 508 ASSERT3U(size, !=, 0); 509 510 if (zio->io_error != 0) 511 return; 512 513 /* 514 * Verify the cksum of MACs stored in an indirect bp. It will always 515 * be possible to verify this since it does not require an encryption 516 * key. 517 */ 518 if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) { 519 zio_crypt_decode_mac_bp(bp, mac); 520 521 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) { 522 /* 523 * We haven't decompressed the data yet, but 524 * zio_crypt_do_indirect_mac_checksum() requires 525 * decompressed data to be able to parse out the MACs 526 * from the indirect block. We decompress it now and 527 * throw away the result after we are finished. 528 */ 529 tmp = zio_buf_alloc(lsize); 530 ret = zio_decompress_data(BP_GET_COMPRESS(bp), 531 zio->io_abd, tmp, zio->io_size, lsize, 532 &zio->io_prop.zp_complevel); 533 if (ret != 0) { 534 ret = SET_ERROR(EIO); 535 goto error; 536 } 537 ret = zio_crypt_do_indirect_mac_checksum(B_FALSE, 538 tmp, lsize, BP_SHOULD_BYTESWAP(bp), mac); 539 zio_buf_free(tmp, lsize); 540 } else { 541 ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE, 542 zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac); 543 } 544 abd_copy(data, zio->io_abd, size); 545 546 if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) { 547 ret = zio_handle_decrypt_injection(spa, 548 &zio->io_bookmark, ot, ECKSUM); 549 } 550 if (ret != 0) 551 goto error; 552 553 return; 554 } 555 556 /* 557 * If this is an authenticated block, just check the MAC. It would be 558 * nice to separate this out into its own flag, but when this was done, 559 * we had run out of bits in what is now zio_flag_t. Future cleanup 560 * could make this a flag bit. 561 */ 562 if (BP_IS_AUTHENTICATED(bp)) { 563 if (ot == DMU_OT_OBJSET) { 564 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, 565 dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp)); 566 } else { 567 zio_crypt_decode_mac_bp(bp, mac); 568 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, 569 zio->io_abd, size, mac); 570 if (zio_injection_enabled && ret == 0) { 571 ret = zio_handle_decrypt_injection(spa, 572 &zio->io_bookmark, ot, ECKSUM); 573 } 574 } 575 abd_copy(data, zio->io_abd, size); 576 577 if (ret != 0) 578 goto error; 579 580 return; 581 } 582 583 zio_crypt_decode_params_bp(bp, salt, iv); 584 585 if (ot == DMU_OT_INTENT_LOG) { 586 tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t)); 587 zio_crypt_decode_mac_zil(tmp, mac); 588 abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t)); 589 } else { 590 zio_crypt_decode_mac_bp(bp, mac); 591 } 592 593 ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp), 594 BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data, 595 zio->io_abd, &no_crypt); 596 if (no_crypt) 597 abd_copy(data, zio->io_abd, size); 598 599 if (ret != 0) 600 goto error; 601 602 return; 603 604 error: 605 /* assert that the key was found unless this was speculative */ 606 ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE)); 607 608 /* 609 * If there was a decryption / authentication error return EIO as 610 * the io_error. If this was not a speculative zio, create an ereport. 611 */ 612 if (ret == ECKSUM) { 613 zio->io_error = SET_ERROR(EIO); 614 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) { 615 spa_log_error(spa, &zio->io_bookmark, 616 BP_GET_LOGICAL_BIRTH(zio->io_bp)); 617 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION, 618 spa, NULL, &zio->io_bookmark, zio, 0); 619 } 620 } else { 621 zio->io_error = ret; 622 } 623 } 624 625 /* 626 * ========================================================================== 627 * I/O parent/child relationships and pipeline interlocks 628 * ========================================================================== 629 */ 630 zio_t * 631 zio_walk_parents(zio_t *cio, zio_link_t **zl) 632 { 633 list_t *pl = &cio->io_parent_list; 634 635 *zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl); 636 if (*zl == NULL) 637 return (NULL); 638 639 ASSERT((*zl)->zl_child == cio); 640 return ((*zl)->zl_parent); 641 } 642 643 zio_t * 644 zio_walk_children(zio_t *pio, zio_link_t **zl) 645 { 646 list_t *cl = &pio->io_child_list; 647 648 ASSERT(MUTEX_HELD(&pio->io_lock)); 649 650 *zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl); 651 if (*zl == NULL) 652 return (NULL); 653 654 ASSERT((*zl)->zl_parent == pio); 655 return ((*zl)->zl_child); 656 } 657 658 zio_t * 659 zio_unique_parent(zio_t *cio) 660 { 661 zio_link_t *zl = NULL; 662 zio_t *pio = zio_walk_parents(cio, &zl); 663 664 VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL); 665 return (pio); 666 } 667 668 void 669 zio_add_child(zio_t *pio, zio_t *cio) 670 { 671 /* 672 * Logical I/Os can have logical, gang, or vdev children. 673 * Gang I/Os can have gang or vdev children. 674 * Vdev I/Os can only have vdev children. 675 * The following ASSERT captures all of these constraints. 676 */ 677 ASSERT3S(cio->io_child_type, <=, pio->io_child_type); 678 679 /* Parent should not have READY stage if child doesn't have it. */ 680 IMPLY((cio->io_pipeline & ZIO_STAGE_READY) == 0 && 681 (cio->io_child_type != ZIO_CHILD_VDEV), 682 (pio->io_pipeline & ZIO_STAGE_READY) == 0); 683 684 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP); 685 zl->zl_parent = pio; 686 zl->zl_child = cio; 687 688 mutex_enter(&pio->io_lock); 689 mutex_enter(&cio->io_lock); 690 691 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0); 692 693 uint64_t *countp = pio->io_children[cio->io_child_type]; 694 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 695 countp[w] += !cio->io_state[w]; 696 697 list_insert_head(&pio->io_child_list, zl); 698 list_insert_head(&cio->io_parent_list, zl); 699 700 mutex_exit(&cio->io_lock); 701 mutex_exit(&pio->io_lock); 702 } 703 704 void 705 zio_add_child_first(zio_t *pio, zio_t *cio) 706 { 707 /* 708 * Logical I/Os can have logical, gang, or vdev children. 709 * Gang I/Os can have gang or vdev children. 710 * Vdev I/Os can only have vdev children. 711 * The following ASSERT captures all of these constraints. 712 */ 713 ASSERT3S(cio->io_child_type, <=, pio->io_child_type); 714 715 /* Parent should not have READY stage if child doesn't have it. */ 716 IMPLY((cio->io_pipeline & ZIO_STAGE_READY) == 0 && 717 (cio->io_child_type != ZIO_CHILD_VDEV), 718 (pio->io_pipeline & ZIO_STAGE_READY) == 0); 719 720 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP); 721 zl->zl_parent = pio; 722 zl->zl_child = cio; 723 724 ASSERT(list_is_empty(&cio->io_parent_list)); 725 list_insert_head(&cio->io_parent_list, zl); 726 727 mutex_enter(&pio->io_lock); 728 729 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0); 730 731 uint64_t *countp = pio->io_children[cio->io_child_type]; 732 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 733 countp[w] += !cio->io_state[w]; 734 735 list_insert_head(&pio->io_child_list, zl); 736 737 mutex_exit(&pio->io_lock); 738 } 739 740 static void 741 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl) 742 { 743 ASSERT(zl->zl_parent == pio); 744 ASSERT(zl->zl_child == cio); 745 746 mutex_enter(&pio->io_lock); 747 mutex_enter(&cio->io_lock); 748 749 list_remove(&pio->io_child_list, zl); 750 list_remove(&cio->io_parent_list, zl); 751 752 mutex_exit(&cio->io_lock); 753 mutex_exit(&pio->io_lock); 754 kmem_cache_free(zio_link_cache, zl); 755 } 756 757 static boolean_t 758 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait) 759 { 760 boolean_t waiting = B_FALSE; 761 762 mutex_enter(&zio->io_lock); 763 ASSERT(zio->io_stall == NULL); 764 for (int c = 0; c < ZIO_CHILD_TYPES; c++) { 765 if (!(ZIO_CHILD_BIT_IS_SET(childbits, c))) 766 continue; 767 768 uint64_t *countp = &zio->io_children[c][wait]; 769 if (*countp != 0) { 770 zio->io_stage >>= 1; 771 ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN); 772 zio->io_stall = countp; 773 waiting = B_TRUE; 774 break; 775 } 776 } 777 mutex_exit(&zio->io_lock); 778 return (waiting); 779 } 780 781 __attribute__((always_inline)) 782 static inline void 783 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait, 784 zio_t **next_to_executep) 785 { 786 uint64_t *countp = &pio->io_children[zio->io_child_type][wait]; 787 int *errorp = &pio->io_child_error[zio->io_child_type]; 788 789 mutex_enter(&pio->io_lock); 790 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 791 *errorp = zio_worst_error(*errorp, zio->io_error); 792 pio->io_reexecute |= zio->io_reexecute; 793 ASSERT3U(*countp, >, 0); 794 795 (*countp)--; 796 797 if (*countp == 0 && pio->io_stall == countp) { 798 zio_taskq_type_t type = 799 pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE : 800 ZIO_TASKQ_INTERRUPT; 801 pio->io_stall = NULL; 802 mutex_exit(&pio->io_lock); 803 804 /* 805 * If we can tell the caller to execute this parent next, do 806 * so. We only do this if the parent's zio type matches the 807 * child's type. Otherwise dispatch the parent zio in its 808 * own taskq. 809 * 810 * Having the caller execute the parent when possible reduces 811 * locking on the zio taskq's, reduces context switch 812 * overhead, and has no recursion penalty. Note that one 813 * read from disk typically causes at least 3 zio's: a 814 * zio_null(), the logical zio_read(), and then a physical 815 * zio. When the physical ZIO completes, we are able to call 816 * zio_done() on all 3 of these zio's from one invocation of 817 * zio_execute() by returning the parent back to 818 * zio_execute(). Since the parent isn't executed until this 819 * thread returns back to zio_execute(), the caller should do 820 * so promptly. 821 * 822 * In other cases, dispatching the parent prevents 823 * overflowing the stack when we have deeply nested 824 * parent-child relationships, as we do with the "mega zio" 825 * of writes for spa_sync(), and the chain of ZIL blocks. 826 */ 827 if (next_to_executep != NULL && *next_to_executep == NULL && 828 pio->io_type == zio->io_type) { 829 *next_to_executep = pio; 830 } else { 831 zio_taskq_dispatch(pio, type, B_FALSE); 832 } 833 } else { 834 mutex_exit(&pio->io_lock); 835 } 836 } 837 838 static void 839 zio_inherit_child_errors(zio_t *zio, enum zio_child c) 840 { 841 if (zio->io_child_error[c] != 0 && zio->io_error == 0) 842 zio->io_error = zio->io_child_error[c]; 843 } 844 845 int 846 zio_bookmark_compare(const void *x1, const void *x2) 847 { 848 const zio_t *z1 = x1; 849 const zio_t *z2 = x2; 850 851 if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset) 852 return (-1); 853 if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset) 854 return (1); 855 856 if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object) 857 return (-1); 858 if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object) 859 return (1); 860 861 if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level) 862 return (-1); 863 if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level) 864 return (1); 865 866 if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid) 867 return (-1); 868 if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid) 869 return (1); 870 871 if (z1 < z2) 872 return (-1); 873 if (z1 > z2) 874 return (1); 875 876 return (0); 877 } 878 879 /* 880 * ========================================================================== 881 * Create the various types of I/O (read, write, free, etc) 882 * ========================================================================== 883 */ 884 static zio_t * 885 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 886 abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done, 887 void *private, zio_type_t type, zio_priority_t priority, 888 zio_flag_t flags, vdev_t *vd, uint64_t offset, 889 const zbookmark_phys_t *zb, enum zio_stage stage, 890 enum zio_stage pipeline) 891 { 892 zio_t *zio; 893 894 IMPLY(type != ZIO_TYPE_TRIM, psize <= SPA_MAXBLOCKSIZE); 895 ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0); 896 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0); 897 898 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER)); 899 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER)); 900 ASSERT(vd || stage == ZIO_STAGE_OPEN); 901 902 IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0); 903 904 zio = kmem_cache_alloc(zio_cache, KM_SLEEP); 905 memset(zio, 0, sizeof (zio_t)); 906 907 mutex_init(&zio->io_lock, NULL, MUTEX_NOLOCKDEP, NULL); 908 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL); 909 910 list_create(&zio->io_parent_list, sizeof (zio_link_t), 911 offsetof(zio_link_t, zl_parent_node)); 912 list_create(&zio->io_child_list, sizeof (zio_link_t), 913 offsetof(zio_link_t, zl_child_node)); 914 metaslab_trace_init(&zio->io_alloc_list); 915 916 if (vd != NULL) 917 zio->io_child_type = ZIO_CHILD_VDEV; 918 else if (flags & ZIO_FLAG_GANG_CHILD) 919 zio->io_child_type = ZIO_CHILD_GANG; 920 else if (flags & ZIO_FLAG_DDT_CHILD) 921 zio->io_child_type = ZIO_CHILD_DDT; 922 else 923 zio->io_child_type = ZIO_CHILD_LOGICAL; 924 925 if (bp != NULL) { 926 if (type != ZIO_TYPE_WRITE || 927 zio->io_child_type == ZIO_CHILD_DDT) { 928 zio->io_bp_copy = *bp; 929 zio->io_bp = &zio->io_bp_copy; /* so caller can free */ 930 } else { 931 zio->io_bp = (blkptr_t *)bp; 932 } 933 zio->io_bp_orig = *bp; 934 if (zio->io_child_type == ZIO_CHILD_LOGICAL) 935 zio->io_logical = zio; 936 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp)) 937 pipeline |= ZIO_GANG_STAGES; 938 } 939 940 zio->io_spa = spa; 941 zio->io_txg = txg; 942 zio->io_done = done; 943 zio->io_private = private; 944 zio->io_type = type; 945 zio->io_priority = priority; 946 zio->io_vd = vd; 947 zio->io_offset = offset; 948 zio->io_orig_abd = zio->io_abd = data; 949 zio->io_orig_size = zio->io_size = psize; 950 zio->io_lsize = lsize; 951 zio->io_orig_flags = zio->io_flags = flags; 952 zio->io_orig_stage = zio->io_stage = stage; 953 zio->io_orig_pipeline = zio->io_pipeline = pipeline; 954 zio->io_pipeline_trace = ZIO_STAGE_OPEN; 955 zio->io_allocator = ZIO_ALLOCATOR_NONE; 956 957 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY) || 958 (pipeline & ZIO_STAGE_READY) == 0; 959 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE); 960 961 if (zb != NULL) 962 zio->io_bookmark = *zb; 963 964 if (pio != NULL) { 965 zio->io_metaslab_class = pio->io_metaslab_class; 966 if (zio->io_logical == NULL) 967 zio->io_logical = pio->io_logical; 968 if (zio->io_child_type == ZIO_CHILD_GANG) 969 zio->io_gang_leader = pio->io_gang_leader; 970 zio_add_child_first(pio, zio); 971 } 972 973 taskq_init_ent(&zio->io_tqent); 974 975 return (zio); 976 } 977 978 void 979 zio_destroy(zio_t *zio) 980 { 981 metaslab_trace_fini(&zio->io_alloc_list); 982 list_destroy(&zio->io_parent_list); 983 list_destroy(&zio->io_child_list); 984 mutex_destroy(&zio->io_lock); 985 cv_destroy(&zio->io_cv); 986 kmem_cache_free(zio_cache, zio); 987 } 988 989 /* 990 * ZIO intended to be between others. Provides synchronization at READY 991 * and DONE pipeline stages and calls the respective callbacks. 992 */ 993 zio_t * 994 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done, 995 void *private, zio_flag_t flags) 996 { 997 zio_t *zio; 998 999 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private, 1000 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 1001 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE); 1002 1003 return (zio); 1004 } 1005 1006 /* 1007 * ZIO intended to be a root of a tree. Unlike null ZIO does not have a 1008 * READY pipeline stage (is ready on creation), so it should not be used 1009 * as child of any ZIO that may need waiting for grandchildren READY stage 1010 * (any other ZIO type). 1011 */ 1012 zio_t * 1013 zio_root(spa_t *spa, zio_done_func_t *done, void *private, zio_flag_t flags) 1014 { 1015 zio_t *zio; 1016 1017 zio = zio_create(NULL, spa, 0, NULL, NULL, 0, 0, done, private, 1018 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, NULL, 0, NULL, 1019 ZIO_STAGE_OPEN, ZIO_ROOT_PIPELINE); 1020 1021 return (zio); 1022 } 1023 1024 static int 1025 zfs_blkptr_verify_log(spa_t *spa, const blkptr_t *bp, 1026 enum blk_verify_flag blk_verify, const char *fmt, ...) 1027 { 1028 va_list adx; 1029 char buf[256]; 1030 1031 va_start(adx, fmt); 1032 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 1033 va_end(adx); 1034 1035 zfs_dbgmsg("bad blkptr at %px: " 1036 "DVA[0]=%#llx/%#llx " 1037 "DVA[1]=%#llx/%#llx " 1038 "DVA[2]=%#llx/%#llx " 1039 "prop=%#llx " 1040 "pad=%#llx,%#llx " 1041 "phys_birth=%#llx " 1042 "birth=%#llx " 1043 "fill=%#llx " 1044 "cksum=%#llx/%#llx/%#llx/%#llx", 1045 bp, 1046 (long long)bp->blk_dva[0].dva_word[0], 1047 (long long)bp->blk_dva[0].dva_word[1], 1048 (long long)bp->blk_dva[1].dva_word[0], 1049 (long long)bp->blk_dva[1].dva_word[1], 1050 (long long)bp->blk_dva[2].dva_word[0], 1051 (long long)bp->blk_dva[2].dva_word[1], 1052 (long long)bp->blk_prop, 1053 (long long)bp->blk_pad[0], 1054 (long long)bp->blk_pad[1], 1055 (long long)BP_GET_PHYSICAL_BIRTH(bp), 1056 (long long)BP_GET_LOGICAL_BIRTH(bp), 1057 (long long)bp->blk_fill, 1058 (long long)bp->blk_cksum.zc_word[0], 1059 (long long)bp->blk_cksum.zc_word[1], 1060 (long long)bp->blk_cksum.zc_word[2], 1061 (long long)bp->blk_cksum.zc_word[3]); 1062 switch (blk_verify) { 1063 case BLK_VERIFY_HALT: 1064 zfs_panic_recover("%s: %s", spa_name(spa), buf); 1065 break; 1066 case BLK_VERIFY_LOG: 1067 zfs_dbgmsg("%s: %s", spa_name(spa), buf); 1068 break; 1069 case BLK_VERIFY_ONLY: 1070 break; 1071 } 1072 1073 return (1); 1074 } 1075 1076 /* 1077 * Verify the block pointer fields contain reasonable values. This means 1078 * it only contains known object types, checksum/compression identifiers, 1079 * block sizes within the maximum allowed limits, valid DVAs, etc. 1080 * 1081 * If everything checks out B_TRUE is returned. The zfs_blkptr_verify 1082 * argument controls the behavior when an invalid field is detected. 1083 * 1084 * Values for blk_verify_flag: 1085 * BLK_VERIFY_ONLY: evaluate the block 1086 * BLK_VERIFY_LOG: evaluate the block and log problems 1087 * BLK_VERIFY_HALT: call zfs_panic_recover on error 1088 * 1089 * Values for blk_config_flag: 1090 * BLK_CONFIG_HELD: caller holds SCL_VDEV for writer 1091 * BLK_CONFIG_NEEDED: caller holds no config lock, SCL_VDEV will be 1092 * obtained for reader 1093 * BLK_CONFIG_SKIP: skip checks which require SCL_VDEV, for better 1094 * performance 1095 */ 1096 boolean_t 1097 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp, 1098 enum blk_config_flag blk_config, enum blk_verify_flag blk_verify) 1099 { 1100 int errors = 0; 1101 1102 if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) { 1103 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1104 "blkptr at %px has invalid TYPE %llu", 1105 bp, (longlong_t)BP_GET_TYPE(bp)); 1106 } 1107 if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS) { 1108 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1109 "blkptr at %px has invalid CHECKSUM %llu", 1110 bp, (longlong_t)BP_GET_CHECKSUM(bp)); 1111 } 1112 if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS) { 1113 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1114 "blkptr at %px has invalid COMPRESS %llu", 1115 bp, (longlong_t)BP_GET_COMPRESS(bp)); 1116 } 1117 if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) { 1118 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1119 "blkptr at %px has invalid LSIZE %llu", 1120 bp, (longlong_t)BP_GET_LSIZE(bp)); 1121 } 1122 if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) { 1123 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1124 "blkptr at %px has invalid PSIZE %llu", 1125 bp, (longlong_t)BP_GET_PSIZE(bp)); 1126 } 1127 1128 if (BP_IS_EMBEDDED(bp)) { 1129 if (BPE_GET_ETYPE(bp) >= NUM_BP_EMBEDDED_TYPES) { 1130 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1131 "blkptr at %px has invalid ETYPE %llu", 1132 bp, (longlong_t)BPE_GET_ETYPE(bp)); 1133 } 1134 } 1135 1136 /* 1137 * Do not verify individual DVAs if the config is not trusted. This 1138 * will be done once the zio is executed in vdev_mirror_map_alloc. 1139 */ 1140 if (!spa->spa_trust_config) 1141 return (errors == 0); 1142 1143 switch (blk_config) { 1144 case BLK_CONFIG_HELD: 1145 ASSERT(spa_config_held(spa, SCL_VDEV, RW_WRITER)); 1146 break; 1147 case BLK_CONFIG_NEEDED: 1148 spa_config_enter(spa, SCL_VDEV, bp, RW_READER); 1149 break; 1150 case BLK_CONFIG_SKIP: 1151 return (errors == 0); 1152 default: 1153 panic("invalid blk_config %u", blk_config); 1154 } 1155 1156 /* 1157 * Pool-specific checks. 1158 * 1159 * Note: it would be nice to verify that the logical birth 1160 * and physical birth are not too large. However, 1161 * spa_freeze() allows the birth time of log blocks (and 1162 * dmu_sync()-ed blocks that are in the log) to be arbitrarily 1163 * large. 1164 */ 1165 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 1166 const dva_t *dva = &bp->blk_dva[i]; 1167 uint64_t vdevid = DVA_GET_VDEV(dva); 1168 1169 if (vdevid >= spa->spa_root_vdev->vdev_children) { 1170 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1171 "blkptr at %px DVA %u has invalid VDEV %llu", 1172 bp, i, (longlong_t)vdevid); 1173 continue; 1174 } 1175 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid]; 1176 if (vd == NULL) { 1177 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1178 "blkptr at %px DVA %u has invalid VDEV %llu", 1179 bp, i, (longlong_t)vdevid); 1180 continue; 1181 } 1182 if (vd->vdev_ops == &vdev_hole_ops) { 1183 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1184 "blkptr at %px DVA %u has hole VDEV %llu", 1185 bp, i, (longlong_t)vdevid); 1186 continue; 1187 } 1188 if (vd->vdev_ops == &vdev_missing_ops) { 1189 /* 1190 * "missing" vdevs are valid during import, but we 1191 * don't have their detailed info (e.g. asize), so 1192 * we can't perform any more checks on them. 1193 */ 1194 continue; 1195 } 1196 uint64_t offset = DVA_GET_OFFSET(dva); 1197 uint64_t asize = DVA_GET_ASIZE(dva); 1198 if (DVA_GET_GANG(dva)) 1199 asize = vdev_gang_header_asize(vd); 1200 if (offset + asize > vd->vdev_asize) { 1201 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1202 "blkptr at %px DVA %u has invalid OFFSET %llu", 1203 bp, i, (longlong_t)offset); 1204 } 1205 } 1206 if (blk_config == BLK_CONFIG_NEEDED) 1207 spa_config_exit(spa, SCL_VDEV, bp); 1208 1209 return (errors == 0); 1210 } 1211 1212 boolean_t 1213 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp) 1214 { 1215 (void) bp; 1216 uint64_t vdevid = DVA_GET_VDEV(dva); 1217 1218 if (vdevid >= spa->spa_root_vdev->vdev_children) 1219 return (B_FALSE); 1220 1221 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid]; 1222 if (vd == NULL) 1223 return (B_FALSE); 1224 1225 if (vd->vdev_ops == &vdev_hole_ops) 1226 return (B_FALSE); 1227 1228 if (vd->vdev_ops == &vdev_missing_ops) { 1229 return (B_FALSE); 1230 } 1231 1232 uint64_t offset = DVA_GET_OFFSET(dva); 1233 uint64_t asize = DVA_GET_ASIZE(dva); 1234 1235 if (DVA_GET_GANG(dva)) 1236 asize = vdev_gang_header_asize(vd); 1237 if (offset + asize > vd->vdev_asize) 1238 return (B_FALSE); 1239 1240 return (B_TRUE); 1241 } 1242 1243 zio_t * 1244 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, 1245 abd_t *data, uint64_t size, zio_done_func_t *done, void *private, 1246 zio_priority_t priority, zio_flag_t flags, const zbookmark_phys_t *zb) 1247 { 1248 zio_t *zio; 1249 1250 zio = zio_create(pio, spa, BP_GET_BIRTH(bp), bp, 1251 data, size, size, done, private, 1252 ZIO_TYPE_READ, priority, flags, NULL, 0, zb, 1253 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 1254 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE); 1255 1256 return (zio); 1257 } 1258 1259 zio_t * 1260 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 1261 abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp, 1262 zio_done_func_t *ready, zio_done_func_t *children_ready, 1263 zio_done_func_t *done, void *private, zio_priority_t priority, 1264 zio_flag_t flags, const zbookmark_phys_t *zb) 1265 { 1266 zio_t *zio; 1267 1268 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF && 1269 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS && 1270 zp->zp_compress >= ZIO_COMPRESS_OFF && 1271 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS && 1272 DMU_OT_IS_VALID(zp->zp_type) && 1273 zp->zp_level < 32 && 1274 zp->zp_copies > 0 && 1275 zp->zp_copies <= spa_max_replication(spa)); 1276 1277 zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private, 1278 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb, 1279 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 1280 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE); 1281 1282 zio->io_ready = ready; 1283 zio->io_children_ready = children_ready; 1284 zio->io_prop = *zp; 1285 1286 /* 1287 * Data can be NULL if we are going to call zio_write_override() to 1288 * provide the already-allocated BP. But we may need the data to 1289 * verify a dedup hit (if requested). In this case, don't try to 1290 * dedup (just take the already-allocated BP verbatim). Encrypted 1291 * dedup blocks need data as well so we also disable dedup in this 1292 * case. 1293 */ 1294 if (data == NULL && 1295 (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) { 1296 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE; 1297 } 1298 1299 return (zio); 1300 } 1301 1302 zio_t * 1303 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data, 1304 uint64_t size, zio_done_func_t *done, void *private, 1305 zio_priority_t priority, zio_flag_t flags, zbookmark_phys_t *zb) 1306 { 1307 zio_t *zio; 1308 1309 zio = zio_create(pio, spa, txg, bp, data, size, size, done, private, 1310 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb, 1311 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE); 1312 1313 return (zio); 1314 } 1315 1316 void 1317 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite, 1318 boolean_t brtwrite) 1319 { 1320 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 1321 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1322 ASSERT(zio->io_stage == ZIO_STAGE_OPEN); 1323 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa)); 1324 ASSERT(!brtwrite || !nopwrite); 1325 1326 /* 1327 * We must reset the io_prop to match the values that existed 1328 * when the bp was first written by dmu_sync() keeping in mind 1329 * that nopwrite and dedup are mutually exclusive. 1330 */ 1331 zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup; 1332 zio->io_prop.zp_nopwrite = nopwrite; 1333 zio->io_prop.zp_brtwrite = brtwrite; 1334 zio->io_prop.zp_copies = copies; 1335 zio->io_bp_override = bp; 1336 } 1337 1338 void 1339 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp) 1340 { 1341 1342 (void) zfs_blkptr_verify(spa, bp, BLK_CONFIG_NEEDED, BLK_VERIFY_HALT); 1343 1344 /* 1345 * The check for EMBEDDED is a performance optimization. We 1346 * process the free here (by ignoring it) rather than 1347 * putting it on the list and then processing it in zio_free_sync(). 1348 */ 1349 if (BP_IS_EMBEDDED(bp)) 1350 return; 1351 1352 /* 1353 * Frees that are for the currently-syncing txg, are not going to be 1354 * deferred, and which will not need to do a read (i.e. not GANG or 1355 * DEDUP), can be processed immediately. Otherwise, put them on the 1356 * in-memory list for later processing. 1357 * 1358 * Note that we only defer frees after zfs_sync_pass_deferred_free 1359 * when the log space map feature is disabled. [see relevant comment 1360 * in spa_sync_iterate_to_convergence()] 1361 */ 1362 if (BP_IS_GANG(bp) || 1363 BP_GET_DEDUP(bp) || 1364 txg != spa->spa_syncing_txg || 1365 (spa_sync_pass(spa) >= zfs_sync_pass_deferred_free && 1366 !spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) || 1367 brt_maybe_exists(spa, bp)) { 1368 metaslab_check_free(spa, bp); 1369 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp); 1370 } else { 1371 VERIFY3P(zio_free_sync(NULL, spa, txg, bp, 0), ==, NULL); 1372 } 1373 } 1374 1375 /* 1376 * To improve performance, this function may return NULL if we were able 1377 * to do the free immediately. This avoids the cost of creating a zio 1378 * (and linking it to the parent, etc). 1379 */ 1380 zio_t * 1381 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 1382 zio_flag_t flags) 1383 { 1384 ASSERT(!BP_IS_HOLE(bp)); 1385 ASSERT(spa_syncing_txg(spa) == txg); 1386 1387 if (BP_IS_EMBEDDED(bp)) 1388 return (NULL); 1389 1390 metaslab_check_free(spa, bp); 1391 arc_freed(spa, bp); 1392 dsl_scan_freed(spa, bp); 1393 1394 if (BP_IS_GANG(bp) || 1395 BP_GET_DEDUP(bp) || 1396 brt_maybe_exists(spa, bp)) { 1397 /* 1398 * GANG, DEDUP and BRT blocks can induce a read (for the gang 1399 * block header, the DDT or the BRT), so issue them 1400 * asynchronously so that this thread is not tied up. 1401 */ 1402 enum zio_stage stage = 1403 ZIO_FREE_PIPELINE | ZIO_STAGE_ISSUE_ASYNC; 1404 1405 return (zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 1406 BP_GET_PSIZE(bp), NULL, NULL, 1407 ZIO_TYPE_FREE, ZIO_PRIORITY_NOW, 1408 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage)); 1409 } else { 1410 metaslab_free(spa, bp, txg, B_FALSE); 1411 return (NULL); 1412 } 1413 } 1414 1415 zio_t * 1416 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 1417 zio_done_func_t *done, void *private, zio_flag_t flags) 1418 { 1419 zio_t *zio; 1420 1421 (void) zfs_blkptr_verify(spa, bp, (flags & ZIO_FLAG_CONFIG_WRITER) ? 1422 BLK_CONFIG_HELD : BLK_CONFIG_NEEDED, BLK_VERIFY_HALT); 1423 1424 if (BP_IS_EMBEDDED(bp)) 1425 return (zio_null(pio, spa, NULL, NULL, NULL, 0)); 1426 1427 /* 1428 * A claim is an allocation of a specific block. Claims are needed 1429 * to support immediate writes in the intent log. The issue is that 1430 * immediate writes contain committed data, but in a txg that was 1431 * *not* committed. Upon opening the pool after an unclean shutdown, 1432 * the intent log claims all blocks that contain immediate write data 1433 * so that the SPA knows they're in use. 1434 * 1435 * All claims *must* be resolved in the first txg -- before the SPA 1436 * starts allocating blocks -- so that nothing is allocated twice. 1437 * If txg == 0 we just verify that the block is claimable. 1438 */ 1439 ASSERT3U(BP_GET_LOGICAL_BIRTH(&spa->spa_uberblock.ub_rootbp), <, 1440 spa_min_claim_txg(spa)); 1441 ASSERT(txg == spa_min_claim_txg(spa) || txg == 0); 1442 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(8) */ 1443 1444 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 1445 BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, 1446 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE); 1447 ASSERT0(zio->io_queued_timestamp); 1448 1449 return (zio); 1450 } 1451 1452 zio_t * 1453 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, 1454 zio_done_func_t *done, void *private, zio_flag_t flags) 1455 { 1456 zio_t *zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private, 1457 ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 1458 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE); 1459 zio->io_cmd = cmd; 1460 return (zio); 1461 } 1462 1463 zio_t * 1464 zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1465 zio_done_func_t *done, void *private, zio_priority_t priority, 1466 zio_flag_t flags, enum trim_flag trim_flags) 1467 { 1468 zio_t *zio; 1469 1470 ASSERT0(vd->vdev_children); 1471 ASSERT0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 1472 ASSERT0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 1473 ASSERT3U(size, !=, 0); 1474 1475 zio = zio_create(pio, vd->vdev_spa, 0, NULL, NULL, size, size, done, 1476 private, ZIO_TYPE_TRIM, priority, flags | ZIO_FLAG_PHYSICAL, 1477 vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_TRIM_PIPELINE); 1478 zio->io_trim_flags = trim_flags; 1479 1480 return (zio); 1481 } 1482 1483 zio_t * 1484 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1485 abd_t *data, int checksum, zio_done_func_t *done, void *private, 1486 zio_priority_t priority, zio_flag_t flags, boolean_t labels) 1487 { 1488 zio_t *zio; 1489 1490 ASSERT(vd->vdev_children == 0); 1491 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 1492 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 1493 ASSERT3U(offset + size, <=, vd->vdev_psize); 1494 1495 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, 1496 private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd, 1497 offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE); 1498 1499 zio->io_prop.zp_checksum = checksum; 1500 1501 return (zio); 1502 } 1503 1504 zio_t * 1505 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1506 abd_t *data, int checksum, zio_done_func_t *done, void *private, 1507 zio_priority_t priority, zio_flag_t flags, boolean_t labels) 1508 { 1509 zio_t *zio; 1510 1511 ASSERT(vd->vdev_children == 0); 1512 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 1513 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 1514 ASSERT3U(offset + size, <=, vd->vdev_psize); 1515 1516 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, 1517 private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd, 1518 offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE); 1519 1520 zio->io_prop.zp_checksum = checksum; 1521 1522 if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) { 1523 /* 1524 * zec checksums are necessarily destructive -- they modify 1525 * the end of the write buffer to hold the verifier/checksum. 1526 * Therefore, we must make a local copy in case the data is 1527 * being written to multiple places in parallel. 1528 */ 1529 abd_t *wbuf = abd_alloc_sametype(data, size); 1530 abd_copy(wbuf, data, size); 1531 1532 zio_push_transform(zio, wbuf, size, size, NULL); 1533 } 1534 1535 return (zio); 1536 } 1537 1538 /* 1539 * Create a child I/O to do some work for us. 1540 */ 1541 zio_t * 1542 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset, 1543 abd_t *data, uint64_t size, int type, zio_priority_t priority, 1544 zio_flag_t flags, zio_done_func_t *done, void *private) 1545 { 1546 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE; 1547 zio_t *zio; 1548 1549 /* 1550 * vdev child I/Os do not propagate their error to the parent. 1551 * Therefore, for correct operation the caller *must* check for 1552 * and handle the error in the child i/o's done callback. 1553 * The only exceptions are i/os that we don't care about 1554 * (OPTIONAL or REPAIR). 1555 */ 1556 ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) || 1557 done != NULL); 1558 1559 if (type == ZIO_TYPE_READ && bp != NULL) { 1560 /* 1561 * If we have the bp, then the child should perform the 1562 * checksum and the parent need not. This pushes error 1563 * detection as close to the leaves as possible and 1564 * eliminates redundant checksums in the interior nodes. 1565 */ 1566 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY; 1567 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 1568 } 1569 1570 if (vd->vdev_ops->vdev_op_leaf) { 1571 ASSERT0(vd->vdev_children); 1572 offset += VDEV_LABEL_START_SIZE; 1573 } 1574 1575 flags |= ZIO_VDEV_CHILD_FLAGS(pio); 1576 1577 /* 1578 * If we've decided to do a repair, the write is not speculative -- 1579 * even if the original read was. 1580 */ 1581 if (flags & ZIO_FLAG_IO_REPAIR) 1582 flags &= ~ZIO_FLAG_SPECULATIVE; 1583 1584 /* 1585 * If we're creating a child I/O that is not associated with a 1586 * top-level vdev, then the child zio is not an allocating I/O. 1587 * If this is a retried I/O then we ignore it since we will 1588 * have already processed the original allocating I/O. 1589 */ 1590 if (flags & ZIO_FLAG_IO_ALLOCATING && 1591 (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) { 1592 ASSERT(pio->io_metaslab_class != NULL); 1593 ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled); 1594 ASSERT(type == ZIO_TYPE_WRITE); 1595 ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE); 1596 ASSERT(!(flags & ZIO_FLAG_IO_REPAIR)); 1597 ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) || 1598 pio->io_child_type == ZIO_CHILD_GANG); 1599 1600 flags &= ~ZIO_FLAG_IO_ALLOCATING; 1601 } 1602 1603 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size, 1604 done, private, type, priority, flags, vd, offset, &pio->io_bookmark, 1605 ZIO_STAGE_VDEV_IO_START >> 1, pipeline); 1606 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); 1607 1608 return (zio); 1609 } 1610 1611 zio_t * 1612 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size, 1613 zio_type_t type, zio_priority_t priority, zio_flag_t flags, 1614 zio_done_func_t *done, void *private) 1615 { 1616 zio_t *zio; 1617 1618 ASSERT(vd->vdev_ops->vdev_op_leaf); 1619 1620 zio = zio_create(NULL, vd->vdev_spa, 0, NULL, 1621 data, size, size, done, private, type, priority, 1622 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED, 1623 vd, offset, NULL, 1624 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE); 1625 1626 return (zio); 1627 } 1628 1629 void 1630 zio_flush(zio_t *pio, vdev_t *vd) 1631 { 1632 if (vd->vdev_nowritecache) 1633 return; 1634 if (vd->vdev_children == 0) { 1635 zio_nowait(zio_ioctl(pio, vd->vdev_spa, vd, 1636 DKIOCFLUSHWRITECACHE, NULL, NULL, ZIO_FLAG_CANFAIL | 1637 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY)); 1638 } else { 1639 for (uint64_t c = 0; c < vd->vdev_children; c++) 1640 zio_flush(pio, vd->vdev_child[c]); 1641 } 1642 } 1643 1644 void 1645 zio_shrink(zio_t *zio, uint64_t size) 1646 { 1647 ASSERT3P(zio->io_executor, ==, NULL); 1648 ASSERT3U(zio->io_orig_size, ==, zio->io_size); 1649 ASSERT3U(size, <=, zio->io_size); 1650 1651 /* 1652 * We don't shrink for raidz because of problems with the 1653 * reconstruction when reading back less than the block size. 1654 * Note, BP_IS_RAIDZ() assumes no compression. 1655 */ 1656 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 1657 if (!BP_IS_RAIDZ(zio->io_bp)) { 1658 /* we are not doing a raw write */ 1659 ASSERT3U(zio->io_size, ==, zio->io_lsize); 1660 zio->io_orig_size = zio->io_size = zio->io_lsize = size; 1661 } 1662 } 1663 1664 /* 1665 * Round provided allocation size up to a value that can be allocated 1666 * by at least some vdev(s) in the pool with minimum or no additional 1667 * padding and without extra space usage on others 1668 */ 1669 static uint64_t 1670 zio_roundup_alloc_size(spa_t *spa, uint64_t size) 1671 { 1672 if (size > spa->spa_min_alloc) 1673 return (roundup(size, spa->spa_gcd_alloc)); 1674 return (spa->spa_min_alloc); 1675 } 1676 1677 /* 1678 * ========================================================================== 1679 * Prepare to read and write logical blocks 1680 * ========================================================================== 1681 */ 1682 1683 static zio_t * 1684 zio_read_bp_init(zio_t *zio) 1685 { 1686 blkptr_t *bp = zio->io_bp; 1687 uint64_t psize = 1688 BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp); 1689 1690 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 1691 1692 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF && 1693 zio->io_child_type == ZIO_CHILD_LOGICAL && 1694 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) { 1695 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize), 1696 psize, psize, zio_decompress); 1697 } 1698 1699 if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) || 1700 BP_HAS_INDIRECT_MAC_CKSUM(bp)) && 1701 zio->io_child_type == ZIO_CHILD_LOGICAL) { 1702 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize), 1703 psize, psize, zio_decrypt); 1704 } 1705 1706 if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) { 1707 int psize = BPE_GET_PSIZE(bp); 1708 void *data = abd_borrow_buf(zio->io_abd, psize); 1709 1710 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1711 decode_embedded_bp_compressed(bp, data); 1712 abd_return_buf_copy(zio->io_abd, data, psize); 1713 } else { 1714 ASSERT(!BP_IS_EMBEDDED(bp)); 1715 } 1716 1717 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL) 1718 zio->io_pipeline = ZIO_DDT_READ_PIPELINE; 1719 1720 return (zio); 1721 } 1722 1723 static zio_t * 1724 zio_write_bp_init(zio_t *zio) 1725 { 1726 if (!IO_IS_ALLOCATING(zio)) 1727 return (zio); 1728 1729 ASSERT(zio->io_child_type != ZIO_CHILD_DDT); 1730 1731 if (zio->io_bp_override) { 1732 blkptr_t *bp = zio->io_bp; 1733 zio_prop_t *zp = &zio->io_prop; 1734 1735 ASSERT(BP_GET_LOGICAL_BIRTH(bp) != zio->io_txg); 1736 1737 *bp = *zio->io_bp_override; 1738 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1739 1740 if (zp->zp_brtwrite) 1741 return (zio); 1742 1743 ASSERT(!BP_GET_DEDUP(zio->io_bp_override)); 1744 1745 if (BP_IS_EMBEDDED(bp)) 1746 return (zio); 1747 1748 /* 1749 * If we've been overridden and nopwrite is set then 1750 * set the flag accordingly to indicate that a nopwrite 1751 * has already occurred. 1752 */ 1753 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) { 1754 ASSERT(!zp->zp_dedup); 1755 ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum); 1756 zio->io_flags |= ZIO_FLAG_NOPWRITE; 1757 return (zio); 1758 } 1759 1760 ASSERT(!zp->zp_nopwrite); 1761 1762 if (BP_IS_HOLE(bp) || !zp->zp_dedup) 1763 return (zio); 1764 1765 ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags & 1766 ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify); 1767 1768 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum && 1769 !zp->zp_encrypt) { 1770 BP_SET_DEDUP(bp, 1); 1771 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE; 1772 return (zio); 1773 } 1774 1775 /* 1776 * We were unable to handle this as an override bp, treat 1777 * it as a regular write I/O. 1778 */ 1779 zio->io_bp_override = NULL; 1780 *bp = zio->io_bp_orig; 1781 zio->io_pipeline = zio->io_orig_pipeline; 1782 } 1783 1784 return (zio); 1785 } 1786 1787 static zio_t * 1788 zio_write_compress(zio_t *zio) 1789 { 1790 spa_t *spa = zio->io_spa; 1791 zio_prop_t *zp = &zio->io_prop; 1792 enum zio_compress compress = zp->zp_compress; 1793 blkptr_t *bp = zio->io_bp; 1794 uint64_t lsize = zio->io_lsize; 1795 uint64_t psize = zio->io_size; 1796 uint32_t pass = 1; 1797 1798 /* 1799 * If our children haven't all reached the ready stage, 1800 * wait for them and then repeat this pipeline stage. 1801 */ 1802 if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT | 1803 ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) { 1804 return (NULL); 1805 } 1806 1807 if (!IO_IS_ALLOCATING(zio)) 1808 return (zio); 1809 1810 if (zio->io_children_ready != NULL) { 1811 /* 1812 * Now that all our children are ready, run the callback 1813 * associated with this zio in case it wants to modify the 1814 * data to be written. 1815 */ 1816 ASSERT3U(zp->zp_level, >, 0); 1817 zio->io_children_ready(zio); 1818 } 1819 1820 ASSERT(zio->io_child_type != ZIO_CHILD_DDT); 1821 ASSERT(zio->io_bp_override == NULL); 1822 1823 if (!BP_IS_HOLE(bp) && BP_GET_LOGICAL_BIRTH(bp) == zio->io_txg) { 1824 /* 1825 * We're rewriting an existing block, which means we're 1826 * working on behalf of spa_sync(). For spa_sync() to 1827 * converge, it must eventually be the case that we don't 1828 * have to allocate new blocks. But compression changes 1829 * the blocksize, which forces a reallocate, and makes 1830 * convergence take longer. Therefore, after the first 1831 * few passes, stop compressing to ensure convergence. 1832 */ 1833 pass = spa_sync_pass(spa); 1834 1835 ASSERT(zio->io_txg == spa_syncing_txg(spa)); 1836 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1837 ASSERT(!BP_GET_DEDUP(bp)); 1838 1839 if (pass >= zfs_sync_pass_dont_compress) 1840 compress = ZIO_COMPRESS_OFF; 1841 1842 /* Make sure someone doesn't change their mind on overwrites */ 1843 ASSERT(BP_IS_EMBEDDED(bp) || BP_IS_GANG(bp) || 1844 MIN(zp->zp_copies, spa_max_replication(spa)) 1845 == BP_GET_NDVAS(bp)); 1846 } 1847 1848 /* If it's a compressed write that is not raw, compress the buffer. */ 1849 if (compress != ZIO_COMPRESS_OFF && 1850 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) { 1851 void *cbuf = NULL; 1852 psize = zio_compress_data(compress, zio->io_abd, &cbuf, lsize, 1853 zp->zp_complevel); 1854 if (psize == 0) { 1855 compress = ZIO_COMPRESS_OFF; 1856 } else if (psize >= lsize) { 1857 compress = ZIO_COMPRESS_OFF; 1858 if (cbuf != NULL) 1859 zio_buf_free(cbuf, lsize); 1860 } else if (!zp->zp_dedup && !zp->zp_encrypt && 1861 psize <= BPE_PAYLOAD_SIZE && 1862 zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) && 1863 spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) { 1864 encode_embedded_bp_compressed(bp, 1865 cbuf, compress, lsize, psize); 1866 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA); 1867 BP_SET_TYPE(bp, zio->io_prop.zp_type); 1868 BP_SET_LEVEL(bp, zio->io_prop.zp_level); 1869 zio_buf_free(cbuf, lsize); 1870 BP_SET_LOGICAL_BIRTH(bp, zio->io_txg); 1871 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1872 ASSERT(spa_feature_is_active(spa, 1873 SPA_FEATURE_EMBEDDED_DATA)); 1874 return (zio); 1875 } else { 1876 /* 1877 * Round compressed size up to the minimum allocation 1878 * size of the smallest-ashift device, and zero the 1879 * tail. This ensures that the compressed size of the 1880 * BP (and thus compressratio property) are correct, 1881 * in that we charge for the padding used to fill out 1882 * the last sector. 1883 */ 1884 size_t rounded = (size_t)zio_roundup_alloc_size(spa, 1885 psize); 1886 if (rounded >= lsize) { 1887 compress = ZIO_COMPRESS_OFF; 1888 zio_buf_free(cbuf, lsize); 1889 psize = lsize; 1890 } else { 1891 abd_t *cdata = abd_get_from_buf(cbuf, lsize); 1892 abd_take_ownership_of_buf(cdata, B_TRUE); 1893 abd_zero_off(cdata, psize, rounded - psize); 1894 psize = rounded; 1895 zio_push_transform(zio, cdata, 1896 psize, lsize, NULL); 1897 } 1898 } 1899 1900 /* 1901 * We were unable to handle this as an override bp, treat 1902 * it as a regular write I/O. 1903 */ 1904 zio->io_bp_override = NULL; 1905 *bp = zio->io_bp_orig; 1906 zio->io_pipeline = zio->io_orig_pipeline; 1907 1908 } else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 && 1909 zp->zp_type == DMU_OT_DNODE) { 1910 /* 1911 * The DMU actually relies on the zio layer's compression 1912 * to free metadnode blocks that have had all contained 1913 * dnodes freed. As a result, even when doing a raw 1914 * receive, we must check whether the block can be compressed 1915 * to a hole. 1916 */ 1917 psize = zio_compress_data(ZIO_COMPRESS_EMPTY, 1918 zio->io_abd, NULL, lsize, zp->zp_complevel); 1919 if (psize == 0 || psize >= lsize) 1920 compress = ZIO_COMPRESS_OFF; 1921 } else if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS && 1922 !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) { 1923 /* 1924 * If we are raw receiving an encrypted dataset we should not 1925 * take this codepath because it will change the on-disk block 1926 * and decryption will fail. 1927 */ 1928 size_t rounded = MIN((size_t)zio_roundup_alloc_size(spa, psize), 1929 lsize); 1930 1931 if (rounded != psize) { 1932 abd_t *cdata = abd_alloc_linear(rounded, B_TRUE); 1933 abd_zero_off(cdata, psize, rounded - psize); 1934 abd_copy_off(cdata, zio->io_abd, 0, 0, psize); 1935 psize = rounded; 1936 zio_push_transform(zio, cdata, 1937 psize, rounded, NULL); 1938 } 1939 } else { 1940 ASSERT3U(psize, !=, 0); 1941 } 1942 1943 /* 1944 * The final pass of spa_sync() must be all rewrites, but the first 1945 * few passes offer a trade-off: allocating blocks defers convergence, 1946 * but newly allocated blocks are sequential, so they can be written 1947 * to disk faster. Therefore, we allow the first few passes of 1948 * spa_sync() to allocate new blocks, but force rewrites after that. 1949 * There should only be a handful of blocks after pass 1 in any case. 1950 */ 1951 if (!BP_IS_HOLE(bp) && BP_GET_LOGICAL_BIRTH(bp) == zio->io_txg && 1952 BP_GET_PSIZE(bp) == psize && 1953 pass >= zfs_sync_pass_rewrite) { 1954 VERIFY3U(psize, !=, 0); 1955 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES; 1956 1957 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages; 1958 zio->io_flags |= ZIO_FLAG_IO_REWRITE; 1959 } else { 1960 BP_ZERO(bp); 1961 zio->io_pipeline = ZIO_WRITE_PIPELINE; 1962 } 1963 1964 if (psize == 0) { 1965 if (BP_GET_LOGICAL_BIRTH(&zio->io_bp_orig) != 0 && 1966 spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) { 1967 BP_SET_LSIZE(bp, lsize); 1968 BP_SET_TYPE(bp, zp->zp_type); 1969 BP_SET_LEVEL(bp, zp->zp_level); 1970 BP_SET_BIRTH(bp, zio->io_txg, 0); 1971 } 1972 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1973 } else { 1974 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER); 1975 BP_SET_LSIZE(bp, lsize); 1976 BP_SET_TYPE(bp, zp->zp_type); 1977 BP_SET_LEVEL(bp, zp->zp_level); 1978 BP_SET_PSIZE(bp, psize); 1979 BP_SET_COMPRESS(bp, compress); 1980 BP_SET_CHECKSUM(bp, zp->zp_checksum); 1981 BP_SET_DEDUP(bp, zp->zp_dedup); 1982 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 1983 if (zp->zp_dedup) { 1984 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1985 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1986 ASSERT(!zp->zp_encrypt || 1987 DMU_OT_IS_ENCRYPTED(zp->zp_type)); 1988 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE; 1989 } 1990 if (zp->zp_nopwrite) { 1991 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1992 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1993 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE; 1994 } 1995 } 1996 return (zio); 1997 } 1998 1999 static zio_t * 2000 zio_free_bp_init(zio_t *zio) 2001 { 2002 blkptr_t *bp = zio->io_bp; 2003 2004 if (zio->io_child_type == ZIO_CHILD_LOGICAL) { 2005 if (BP_GET_DEDUP(bp)) 2006 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE; 2007 } 2008 2009 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 2010 2011 return (zio); 2012 } 2013 2014 /* 2015 * ========================================================================== 2016 * Execute the I/O pipeline 2017 * ========================================================================== 2018 */ 2019 2020 static void 2021 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline) 2022 { 2023 spa_t *spa = zio->io_spa; 2024 zio_type_t t = zio->io_type; 2025 int flags = (cutinline ? TQ_FRONT : 0); 2026 2027 /* 2028 * If we're a config writer or a probe, the normal issue and 2029 * interrupt threads may all be blocked waiting for the config lock. 2030 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL. 2031 */ 2032 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE)) 2033 t = ZIO_TYPE_NULL; 2034 2035 /* 2036 * A similar issue exists for the L2ARC write thread until L2ARC 2.0. 2037 */ 2038 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux) 2039 t = ZIO_TYPE_NULL; 2040 2041 /* 2042 * If this is a high priority I/O, then use the high priority taskq if 2043 * available. 2044 */ 2045 if ((zio->io_priority == ZIO_PRIORITY_NOW || 2046 zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) && 2047 spa->spa_zio_taskq[t][q + 1].stqs_count != 0) 2048 q++; 2049 2050 ASSERT3U(q, <, ZIO_TASKQ_TYPES); 2051 2052 /* 2053 * NB: We are assuming that the zio can only be dispatched 2054 * to a single taskq at a time. It would be a grievous error 2055 * to dispatch the zio to another taskq at the same time. 2056 */ 2057 ASSERT(taskq_empty_ent(&zio->io_tqent)); 2058 spa_taskq_dispatch_ent(spa, t, q, zio_execute, zio, flags, 2059 &zio->io_tqent, zio); 2060 } 2061 2062 static boolean_t 2063 zio_taskq_member(zio_t *zio, zio_taskq_type_t q) 2064 { 2065 spa_t *spa = zio->io_spa; 2066 2067 taskq_t *tq = taskq_of_curthread(); 2068 2069 for (zio_type_t t = 0; t < ZIO_TYPES; t++) { 2070 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 2071 uint_t i; 2072 for (i = 0; i < tqs->stqs_count; i++) { 2073 if (tqs->stqs_taskq[i] == tq) 2074 return (B_TRUE); 2075 } 2076 } 2077 2078 return (B_FALSE); 2079 } 2080 2081 static zio_t * 2082 zio_issue_async(zio_t *zio) 2083 { 2084 ASSERT((zio->io_type != ZIO_TYPE_WRITE) || ZIO_HAS_ALLOCATOR(zio)); 2085 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 2086 return (NULL); 2087 } 2088 2089 void 2090 zio_interrupt(void *zio) 2091 { 2092 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE); 2093 } 2094 2095 void 2096 zio_delay_interrupt(zio_t *zio) 2097 { 2098 /* 2099 * The timeout_generic() function isn't defined in userspace, so 2100 * rather than trying to implement the function, the zio delay 2101 * functionality has been disabled for userspace builds. 2102 */ 2103 2104 #ifdef _KERNEL 2105 /* 2106 * If io_target_timestamp is zero, then no delay has been registered 2107 * for this IO, thus jump to the end of this function and "skip" the 2108 * delay; issuing it directly to the zio layer. 2109 */ 2110 if (zio->io_target_timestamp != 0) { 2111 hrtime_t now = gethrtime(); 2112 2113 if (now >= zio->io_target_timestamp) { 2114 /* 2115 * This IO has already taken longer than the target 2116 * delay to complete, so we don't want to delay it 2117 * any longer; we "miss" the delay and issue it 2118 * directly to the zio layer. This is likely due to 2119 * the target latency being set to a value less than 2120 * the underlying hardware can satisfy (e.g. delay 2121 * set to 1ms, but the disks take 10ms to complete an 2122 * IO request). 2123 */ 2124 2125 DTRACE_PROBE2(zio__delay__miss, zio_t *, zio, 2126 hrtime_t, now); 2127 2128 zio_interrupt(zio); 2129 } else { 2130 taskqid_t tid; 2131 hrtime_t diff = zio->io_target_timestamp - now; 2132 clock_t expire_at_tick = ddi_get_lbolt() + 2133 NSEC_TO_TICK(diff); 2134 2135 DTRACE_PROBE3(zio__delay__hit, zio_t *, zio, 2136 hrtime_t, now, hrtime_t, diff); 2137 2138 if (NSEC_TO_TICK(diff) == 0) { 2139 /* Our delay is less than a jiffy - just spin */ 2140 zfs_sleep_until(zio->io_target_timestamp); 2141 zio_interrupt(zio); 2142 } else { 2143 /* 2144 * Use taskq_dispatch_delay() in the place of 2145 * OpenZFS's timeout_generic(). 2146 */ 2147 tid = taskq_dispatch_delay(system_taskq, 2148 zio_interrupt, zio, TQ_NOSLEEP, 2149 expire_at_tick); 2150 if (tid == TASKQID_INVALID) { 2151 /* 2152 * Couldn't allocate a task. Just 2153 * finish the zio without a delay. 2154 */ 2155 zio_interrupt(zio); 2156 } 2157 } 2158 } 2159 return; 2160 } 2161 #endif 2162 DTRACE_PROBE1(zio__delay__skip, zio_t *, zio); 2163 zio_interrupt(zio); 2164 } 2165 2166 static void 2167 zio_deadman_impl(zio_t *pio, int ziodepth) 2168 { 2169 zio_t *cio, *cio_next; 2170 zio_link_t *zl = NULL; 2171 vdev_t *vd = pio->io_vd; 2172 2173 if (zio_deadman_log_all || (vd != NULL && vd->vdev_ops->vdev_op_leaf)) { 2174 vdev_queue_t *vq = vd ? &vd->vdev_queue : NULL; 2175 zbookmark_phys_t *zb = &pio->io_bookmark; 2176 uint64_t delta = gethrtime() - pio->io_timestamp; 2177 uint64_t failmode = spa_get_deadman_failmode(pio->io_spa); 2178 2179 zfs_dbgmsg("slow zio[%d]: zio=%px timestamp=%llu " 2180 "delta=%llu queued=%llu io=%llu " 2181 "path=%s " 2182 "last=%llu type=%d " 2183 "priority=%d flags=0x%llx stage=0x%x " 2184 "pipeline=0x%x pipeline-trace=0x%x " 2185 "objset=%llu object=%llu " 2186 "level=%llu blkid=%llu " 2187 "offset=%llu size=%llu " 2188 "error=%d", 2189 ziodepth, pio, pio->io_timestamp, 2190 (u_longlong_t)delta, pio->io_delta, pio->io_delay, 2191 vd ? vd->vdev_path : "NULL", 2192 vq ? vq->vq_io_complete_ts : 0, pio->io_type, 2193 pio->io_priority, (u_longlong_t)pio->io_flags, 2194 pio->io_stage, pio->io_pipeline, pio->io_pipeline_trace, 2195 (u_longlong_t)zb->zb_objset, (u_longlong_t)zb->zb_object, 2196 (u_longlong_t)zb->zb_level, (u_longlong_t)zb->zb_blkid, 2197 (u_longlong_t)pio->io_offset, (u_longlong_t)pio->io_size, 2198 pio->io_error); 2199 (void) zfs_ereport_post(FM_EREPORT_ZFS_DEADMAN, 2200 pio->io_spa, vd, zb, pio, 0); 2201 2202 if (failmode == ZIO_FAILURE_MODE_CONTINUE && 2203 taskq_empty_ent(&pio->io_tqent)) { 2204 zio_interrupt(pio); 2205 } 2206 } 2207 2208 mutex_enter(&pio->io_lock); 2209 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 2210 cio_next = zio_walk_children(pio, &zl); 2211 zio_deadman_impl(cio, ziodepth + 1); 2212 } 2213 mutex_exit(&pio->io_lock); 2214 } 2215 2216 /* 2217 * Log the critical information describing this zio and all of its children 2218 * using the zfs_dbgmsg() interface then post deadman event for the ZED. 2219 */ 2220 void 2221 zio_deadman(zio_t *pio, const char *tag) 2222 { 2223 spa_t *spa = pio->io_spa; 2224 char *name = spa_name(spa); 2225 2226 if (!zfs_deadman_enabled || spa_suspended(spa)) 2227 return; 2228 2229 zio_deadman_impl(pio, 0); 2230 2231 switch (spa_get_deadman_failmode(spa)) { 2232 case ZIO_FAILURE_MODE_WAIT: 2233 zfs_dbgmsg("%s waiting for hung I/O to pool '%s'", tag, name); 2234 break; 2235 2236 case ZIO_FAILURE_MODE_CONTINUE: 2237 zfs_dbgmsg("%s restarting hung I/O for pool '%s'", tag, name); 2238 break; 2239 2240 case ZIO_FAILURE_MODE_PANIC: 2241 fm_panic("%s determined I/O to pool '%s' is hung.", tag, name); 2242 break; 2243 } 2244 } 2245 2246 /* 2247 * Execute the I/O pipeline until one of the following occurs: 2248 * (1) the I/O completes; (2) the pipeline stalls waiting for 2249 * dependent child I/Os; (3) the I/O issues, so we're waiting 2250 * for an I/O completion interrupt; (4) the I/O is delegated by 2251 * vdev-level caching or aggregation; (5) the I/O is deferred 2252 * due to vdev-level queueing; (6) the I/O is handed off to 2253 * another thread. In all cases, the pipeline stops whenever 2254 * there's no CPU work; it never burns a thread in cv_wait_io(). 2255 * 2256 * There's no locking on io_stage because there's no legitimate way 2257 * for multiple threads to be attempting to process the same I/O. 2258 */ 2259 static zio_pipe_stage_t *zio_pipeline[]; 2260 2261 /* 2262 * zio_execute() is a wrapper around the static function 2263 * __zio_execute() so that we can force __zio_execute() to be 2264 * inlined. This reduces stack overhead which is important 2265 * because __zio_execute() is called recursively in several zio 2266 * code paths. zio_execute() itself cannot be inlined because 2267 * it is externally visible. 2268 */ 2269 void 2270 zio_execute(void *zio) 2271 { 2272 fstrans_cookie_t cookie; 2273 2274 cookie = spl_fstrans_mark(); 2275 __zio_execute(zio); 2276 spl_fstrans_unmark(cookie); 2277 } 2278 2279 /* 2280 * Used to determine if in the current context the stack is sized large 2281 * enough to allow zio_execute() to be called recursively. A minimum 2282 * stack size of 16K is required to avoid needing to re-dispatch the zio. 2283 */ 2284 static boolean_t 2285 zio_execute_stack_check(zio_t *zio) 2286 { 2287 #if !defined(HAVE_LARGE_STACKS) 2288 dsl_pool_t *dp = spa_get_dsl(zio->io_spa); 2289 2290 /* Executing in txg_sync_thread() context. */ 2291 if (dp && curthread == dp->dp_tx.tx_sync_thread) 2292 return (B_TRUE); 2293 2294 /* Pool initialization outside of zio_taskq context. */ 2295 if (dp && spa_is_initializing(dp->dp_spa) && 2296 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE) && 2297 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE_HIGH)) 2298 return (B_TRUE); 2299 #else 2300 (void) zio; 2301 #endif /* HAVE_LARGE_STACKS */ 2302 2303 return (B_FALSE); 2304 } 2305 2306 __attribute__((always_inline)) 2307 static inline void 2308 __zio_execute(zio_t *zio) 2309 { 2310 ASSERT3U(zio->io_queued_timestamp, >, 0); 2311 2312 while (zio->io_stage < ZIO_STAGE_DONE) { 2313 enum zio_stage pipeline = zio->io_pipeline; 2314 enum zio_stage stage = zio->io_stage; 2315 2316 zio->io_executor = curthread; 2317 2318 ASSERT(!MUTEX_HELD(&zio->io_lock)); 2319 ASSERT(ISP2(stage)); 2320 ASSERT(zio->io_stall == NULL); 2321 2322 do { 2323 stage <<= 1; 2324 } while ((stage & pipeline) == 0); 2325 2326 ASSERT(stage <= ZIO_STAGE_DONE); 2327 2328 /* 2329 * If we are in interrupt context and this pipeline stage 2330 * will grab a config lock that is held across I/O, 2331 * or may wait for an I/O that needs an interrupt thread 2332 * to complete, issue async to avoid deadlock. 2333 * 2334 * For VDEV_IO_START, we cut in line so that the io will 2335 * be sent to disk promptly. 2336 */ 2337 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL && 2338 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) { 2339 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ? 2340 zio_requeue_io_start_cut_in_line : B_FALSE; 2341 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut); 2342 return; 2343 } 2344 2345 /* 2346 * If the current context doesn't have large enough stacks 2347 * the zio must be issued asynchronously to prevent overflow. 2348 */ 2349 if (zio_execute_stack_check(zio)) { 2350 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ? 2351 zio_requeue_io_start_cut_in_line : B_FALSE; 2352 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut); 2353 return; 2354 } 2355 2356 zio->io_stage = stage; 2357 zio->io_pipeline_trace |= zio->io_stage; 2358 2359 /* 2360 * The zio pipeline stage returns the next zio to execute 2361 * (typically the same as this one), or NULL if we should 2362 * stop. 2363 */ 2364 zio = zio_pipeline[highbit64(stage) - 1](zio); 2365 2366 if (zio == NULL) 2367 return; 2368 } 2369 } 2370 2371 2372 /* 2373 * ========================================================================== 2374 * Initiate I/O, either sync or async 2375 * ========================================================================== 2376 */ 2377 int 2378 zio_wait(zio_t *zio) 2379 { 2380 /* 2381 * Some routines, like zio_free_sync(), may return a NULL zio 2382 * to avoid the performance overhead of creating and then destroying 2383 * an unneeded zio. For the callers' simplicity, we accept a NULL 2384 * zio and ignore it. 2385 */ 2386 if (zio == NULL) 2387 return (0); 2388 2389 long timeout = MSEC_TO_TICK(zfs_deadman_ziotime_ms); 2390 int error; 2391 2392 ASSERT3S(zio->io_stage, ==, ZIO_STAGE_OPEN); 2393 ASSERT3P(zio->io_executor, ==, NULL); 2394 2395 zio->io_waiter = curthread; 2396 ASSERT0(zio->io_queued_timestamp); 2397 zio->io_queued_timestamp = gethrtime(); 2398 2399 if (zio->io_type == ZIO_TYPE_WRITE) { 2400 spa_select_allocator(zio); 2401 } 2402 __zio_execute(zio); 2403 2404 mutex_enter(&zio->io_lock); 2405 while (zio->io_executor != NULL) { 2406 error = cv_timedwait_io(&zio->io_cv, &zio->io_lock, 2407 ddi_get_lbolt() + timeout); 2408 2409 if (zfs_deadman_enabled && error == -1 && 2410 gethrtime() - zio->io_queued_timestamp > 2411 spa_deadman_ziotime(zio->io_spa)) { 2412 mutex_exit(&zio->io_lock); 2413 timeout = MSEC_TO_TICK(zfs_deadman_checktime_ms); 2414 zio_deadman(zio, FTAG); 2415 mutex_enter(&zio->io_lock); 2416 } 2417 } 2418 mutex_exit(&zio->io_lock); 2419 2420 error = zio->io_error; 2421 zio_destroy(zio); 2422 2423 return (error); 2424 } 2425 2426 void 2427 zio_nowait(zio_t *zio) 2428 { 2429 /* 2430 * See comment in zio_wait(). 2431 */ 2432 if (zio == NULL) 2433 return; 2434 2435 ASSERT3P(zio->io_executor, ==, NULL); 2436 2437 if (zio->io_child_type == ZIO_CHILD_LOGICAL && 2438 list_is_empty(&zio->io_parent_list)) { 2439 zio_t *pio; 2440 2441 /* 2442 * This is a logical async I/O with no parent to wait for it. 2443 * We add it to the spa_async_root_zio "Godfather" I/O which 2444 * will ensure they complete prior to unloading the pool. 2445 */ 2446 spa_t *spa = zio->io_spa; 2447 pio = spa->spa_async_zio_root[CPU_SEQID_UNSTABLE]; 2448 2449 zio_add_child(pio, zio); 2450 } 2451 2452 ASSERT0(zio->io_queued_timestamp); 2453 zio->io_queued_timestamp = gethrtime(); 2454 if (zio->io_type == ZIO_TYPE_WRITE) { 2455 spa_select_allocator(zio); 2456 } 2457 __zio_execute(zio); 2458 } 2459 2460 /* 2461 * ========================================================================== 2462 * Reexecute, cancel, or suspend/resume failed I/O 2463 * ========================================================================== 2464 */ 2465 2466 static void 2467 zio_reexecute(void *arg) 2468 { 2469 zio_t *pio = arg; 2470 zio_t *cio, *cio_next, *gio; 2471 2472 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL); 2473 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN); 2474 ASSERT(pio->io_gang_leader == NULL); 2475 ASSERT(pio->io_gang_tree == NULL); 2476 2477 mutex_enter(&pio->io_lock); 2478 pio->io_flags = pio->io_orig_flags; 2479 pio->io_stage = pio->io_orig_stage; 2480 pio->io_pipeline = pio->io_orig_pipeline; 2481 pio->io_reexecute = 0; 2482 pio->io_flags |= ZIO_FLAG_REEXECUTED; 2483 pio->io_pipeline_trace = 0; 2484 pio->io_error = 0; 2485 pio->io_state[ZIO_WAIT_READY] = (pio->io_stage >= ZIO_STAGE_READY) || 2486 (pio->io_pipeline & ZIO_STAGE_READY) == 0; 2487 pio->io_state[ZIO_WAIT_DONE] = (pio->io_stage >= ZIO_STAGE_DONE); 2488 zio_link_t *zl = NULL; 2489 while ((gio = zio_walk_parents(pio, &zl)) != NULL) { 2490 for (int w = 0; w < ZIO_WAIT_TYPES; w++) { 2491 gio->io_children[pio->io_child_type][w] += 2492 !pio->io_state[w]; 2493 } 2494 } 2495 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 2496 pio->io_child_error[c] = 0; 2497 2498 if (IO_IS_ALLOCATING(pio)) 2499 BP_ZERO(pio->io_bp); 2500 2501 /* 2502 * As we reexecute pio's children, new children could be created. 2503 * New children go to the head of pio's io_child_list, however, 2504 * so we will (correctly) not reexecute them. The key is that 2505 * the remainder of pio's io_child_list, from 'cio_next' onward, 2506 * cannot be affected by any side effects of reexecuting 'cio'. 2507 */ 2508 zl = NULL; 2509 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 2510 cio_next = zio_walk_children(pio, &zl); 2511 mutex_exit(&pio->io_lock); 2512 zio_reexecute(cio); 2513 mutex_enter(&pio->io_lock); 2514 } 2515 mutex_exit(&pio->io_lock); 2516 2517 /* 2518 * Now that all children have been reexecuted, execute the parent. 2519 * We don't reexecute "The Godfather" I/O here as it's the 2520 * responsibility of the caller to wait on it. 2521 */ 2522 if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) { 2523 pio->io_queued_timestamp = gethrtime(); 2524 __zio_execute(pio); 2525 } 2526 } 2527 2528 void 2529 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason) 2530 { 2531 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC) 2532 fm_panic("Pool '%s' has encountered an uncorrectable I/O " 2533 "failure and the failure mode property for this pool " 2534 "is set to panic.", spa_name(spa)); 2535 2536 cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable I/O " 2537 "failure and has been suspended.\n", spa_name(spa)); 2538 2539 (void) zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, 2540 NULL, NULL, 0); 2541 2542 mutex_enter(&spa->spa_suspend_lock); 2543 2544 if (spa->spa_suspend_zio_root == NULL) 2545 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL, 2546 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 2547 ZIO_FLAG_GODFATHER); 2548 2549 spa->spa_suspended = reason; 2550 2551 if (zio != NULL) { 2552 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 2553 ASSERT(zio != spa->spa_suspend_zio_root); 2554 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2555 ASSERT(zio_unique_parent(zio) == NULL); 2556 ASSERT(zio->io_stage == ZIO_STAGE_DONE); 2557 zio_add_child(spa->spa_suspend_zio_root, zio); 2558 } 2559 2560 mutex_exit(&spa->spa_suspend_lock); 2561 } 2562 2563 int 2564 zio_resume(spa_t *spa) 2565 { 2566 zio_t *pio; 2567 2568 /* 2569 * Reexecute all previously suspended i/o. 2570 */ 2571 mutex_enter(&spa->spa_suspend_lock); 2572 spa->spa_suspended = ZIO_SUSPEND_NONE; 2573 cv_broadcast(&spa->spa_suspend_cv); 2574 pio = spa->spa_suspend_zio_root; 2575 spa->spa_suspend_zio_root = NULL; 2576 mutex_exit(&spa->spa_suspend_lock); 2577 2578 if (pio == NULL) 2579 return (0); 2580 2581 zio_reexecute(pio); 2582 return (zio_wait(pio)); 2583 } 2584 2585 void 2586 zio_resume_wait(spa_t *spa) 2587 { 2588 mutex_enter(&spa->spa_suspend_lock); 2589 while (spa_suspended(spa)) 2590 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock); 2591 mutex_exit(&spa->spa_suspend_lock); 2592 } 2593 2594 /* 2595 * ========================================================================== 2596 * Gang blocks. 2597 * 2598 * A gang block is a collection of small blocks that looks to the DMU 2599 * like one large block. When zio_dva_allocate() cannot find a block 2600 * of the requested size, due to either severe fragmentation or the pool 2601 * being nearly full, it calls zio_write_gang_block() to construct the 2602 * block from smaller fragments. 2603 * 2604 * A gang block consists of a gang header (zio_gbh_phys_t) and up to 2605 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like 2606 * an indirect block: it's an array of block pointers. It consumes 2607 * only one sector and hence is allocatable regardless of fragmentation. 2608 * The gang header's bps point to its gang members, which hold the data. 2609 * 2610 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg> 2611 * as the verifier to ensure uniqueness of the SHA256 checksum. 2612 * Critically, the gang block bp's blk_cksum is the checksum of the data, 2613 * not the gang header. This ensures that data block signatures (needed for 2614 * deduplication) are independent of how the block is physically stored. 2615 * 2616 * Gang blocks can be nested: a gang member may itself be a gang block. 2617 * Thus every gang block is a tree in which root and all interior nodes are 2618 * gang headers, and the leaves are normal blocks that contain user data. 2619 * The root of the gang tree is called the gang leader. 2620 * 2621 * To perform any operation (read, rewrite, free, claim) on a gang block, 2622 * zio_gang_assemble() first assembles the gang tree (minus data leaves) 2623 * in the io_gang_tree field of the original logical i/o by recursively 2624 * reading the gang leader and all gang headers below it. This yields 2625 * an in-core tree containing the contents of every gang header and the 2626 * bps for every constituent of the gang block. 2627 * 2628 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree 2629 * and invokes a callback on each bp. To free a gang block, zio_gang_issue() 2630 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp. 2631 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim(). 2632 * zio_read_gang() is a wrapper around zio_read() that omits reading gang 2633 * headers, since we already have those in io_gang_tree. zio_rewrite_gang() 2634 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite() 2635 * of the gang header plus zio_checksum_compute() of the data to update the 2636 * gang header's blk_cksum as described above. 2637 * 2638 * The two-phase assemble/issue model solves the problem of partial failure -- 2639 * what if you'd freed part of a gang block but then couldn't read the 2640 * gang header for another part? Assembling the entire gang tree first 2641 * ensures that all the necessary gang header I/O has succeeded before 2642 * starting the actual work of free, claim, or write. Once the gang tree 2643 * is assembled, free and claim are in-memory operations that cannot fail. 2644 * 2645 * In the event that a gang write fails, zio_dva_unallocate() walks the 2646 * gang tree to immediately free (i.e. insert back into the space map) 2647 * everything we've allocated. This ensures that we don't get ENOSPC 2648 * errors during repeated suspend/resume cycles due to a flaky device. 2649 * 2650 * Gang rewrites only happen during sync-to-convergence. If we can't assemble 2651 * the gang tree, we won't modify the block, so we can safely defer the free 2652 * (knowing that the block is still intact). If we *can* assemble the gang 2653 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free 2654 * each constituent bp and we can allocate a new block on the next sync pass. 2655 * 2656 * In all cases, the gang tree allows complete recovery from partial failure. 2657 * ========================================================================== 2658 */ 2659 2660 static void 2661 zio_gang_issue_func_done(zio_t *zio) 2662 { 2663 abd_free(zio->io_abd); 2664 } 2665 2666 static zio_t * 2667 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2668 uint64_t offset) 2669 { 2670 if (gn != NULL) 2671 return (pio); 2672 2673 return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset), 2674 BP_GET_PSIZE(bp), zio_gang_issue_func_done, 2675 NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 2676 &pio->io_bookmark)); 2677 } 2678 2679 static zio_t * 2680 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2681 uint64_t offset) 2682 { 2683 zio_t *zio; 2684 2685 if (gn != NULL) { 2686 abd_t *gbh_abd = 2687 abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2688 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 2689 gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL, 2690 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 2691 &pio->io_bookmark); 2692 /* 2693 * As we rewrite each gang header, the pipeline will compute 2694 * a new gang block header checksum for it; but no one will 2695 * compute a new data checksum, so we do that here. The one 2696 * exception is the gang leader: the pipeline already computed 2697 * its data checksum because that stage precedes gang assembly. 2698 * (Presently, nothing actually uses interior data checksums; 2699 * this is just good hygiene.) 2700 */ 2701 if (gn != pio->io_gang_leader->io_gang_tree) { 2702 abd_t *buf = abd_get_offset(data, offset); 2703 2704 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp), 2705 buf, BP_GET_PSIZE(bp)); 2706 2707 abd_free(buf); 2708 } 2709 /* 2710 * If we are here to damage data for testing purposes, 2711 * leave the GBH alone so that we can detect the damage. 2712 */ 2713 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE) 2714 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 2715 } else { 2716 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 2717 abd_get_offset(data, offset), BP_GET_PSIZE(bp), 2718 zio_gang_issue_func_done, NULL, pio->io_priority, 2719 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2720 } 2721 2722 return (zio); 2723 } 2724 2725 static zio_t * 2726 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2727 uint64_t offset) 2728 { 2729 (void) gn, (void) data, (void) offset; 2730 2731 zio_t *zio = zio_free_sync(pio, pio->io_spa, pio->io_txg, bp, 2732 ZIO_GANG_CHILD_FLAGS(pio)); 2733 if (zio == NULL) { 2734 zio = zio_null(pio, pio->io_spa, 2735 NULL, NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)); 2736 } 2737 return (zio); 2738 } 2739 2740 static zio_t * 2741 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2742 uint64_t offset) 2743 { 2744 (void) gn, (void) data, (void) offset; 2745 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp, 2746 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio))); 2747 } 2748 2749 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = { 2750 NULL, 2751 zio_read_gang, 2752 zio_rewrite_gang, 2753 zio_free_gang, 2754 zio_claim_gang, 2755 NULL 2756 }; 2757 2758 static void zio_gang_tree_assemble_done(zio_t *zio); 2759 2760 static zio_gang_node_t * 2761 zio_gang_node_alloc(zio_gang_node_t **gnpp) 2762 { 2763 zio_gang_node_t *gn; 2764 2765 ASSERT(*gnpp == NULL); 2766 2767 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP); 2768 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE); 2769 *gnpp = gn; 2770 2771 return (gn); 2772 } 2773 2774 static void 2775 zio_gang_node_free(zio_gang_node_t **gnpp) 2776 { 2777 zio_gang_node_t *gn = *gnpp; 2778 2779 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 2780 ASSERT(gn->gn_child[g] == NULL); 2781 2782 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2783 kmem_free(gn, sizeof (*gn)); 2784 *gnpp = NULL; 2785 } 2786 2787 static void 2788 zio_gang_tree_free(zio_gang_node_t **gnpp) 2789 { 2790 zio_gang_node_t *gn = *gnpp; 2791 2792 if (gn == NULL) 2793 return; 2794 2795 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 2796 zio_gang_tree_free(&gn->gn_child[g]); 2797 2798 zio_gang_node_free(gnpp); 2799 } 2800 2801 static void 2802 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp) 2803 { 2804 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp); 2805 abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2806 2807 ASSERT(gio->io_gang_leader == gio); 2808 ASSERT(BP_IS_GANG(bp)); 2809 2810 zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE, 2811 zio_gang_tree_assemble_done, gn, gio->io_priority, 2812 ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark)); 2813 } 2814 2815 static void 2816 zio_gang_tree_assemble_done(zio_t *zio) 2817 { 2818 zio_t *gio = zio->io_gang_leader; 2819 zio_gang_node_t *gn = zio->io_private; 2820 blkptr_t *bp = zio->io_bp; 2821 2822 ASSERT(gio == zio_unique_parent(zio)); 2823 ASSERT(list_is_empty(&zio->io_child_list)); 2824 2825 if (zio->io_error) 2826 return; 2827 2828 /* this ABD was created from a linear buf in zio_gang_tree_assemble */ 2829 if (BP_SHOULD_BYTESWAP(bp)) 2830 byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size); 2831 2832 ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh); 2833 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE); 2834 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 2835 2836 abd_free(zio->io_abd); 2837 2838 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2839 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 2840 if (!BP_IS_GANG(gbp)) 2841 continue; 2842 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]); 2843 } 2844 } 2845 2846 static void 2847 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data, 2848 uint64_t offset) 2849 { 2850 zio_t *gio = pio->io_gang_leader; 2851 zio_t *zio; 2852 2853 ASSERT(BP_IS_GANG(bp) == !!gn); 2854 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp)); 2855 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree); 2856 2857 /* 2858 * If you're a gang header, your data is in gn->gn_gbh. 2859 * If you're a gang member, your data is in 'data' and gn == NULL. 2860 */ 2861 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset); 2862 2863 if (gn != NULL) { 2864 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 2865 2866 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2867 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 2868 if (BP_IS_HOLE(gbp)) 2869 continue; 2870 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data, 2871 offset); 2872 offset += BP_GET_PSIZE(gbp); 2873 } 2874 } 2875 2876 if (gn == gio->io_gang_tree) 2877 ASSERT3U(gio->io_size, ==, offset); 2878 2879 if (zio != pio) 2880 zio_nowait(zio); 2881 } 2882 2883 static zio_t * 2884 zio_gang_assemble(zio_t *zio) 2885 { 2886 blkptr_t *bp = zio->io_bp; 2887 2888 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL); 2889 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2890 2891 zio->io_gang_leader = zio; 2892 2893 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree); 2894 2895 return (zio); 2896 } 2897 2898 static zio_t * 2899 zio_gang_issue(zio_t *zio) 2900 { 2901 blkptr_t *bp = zio->io_bp; 2902 2903 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) { 2904 return (NULL); 2905 } 2906 2907 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio); 2908 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2909 2910 if (zio->io_child_error[ZIO_CHILD_GANG] == 0) 2911 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd, 2912 0); 2913 else 2914 zio_gang_tree_free(&zio->io_gang_tree); 2915 2916 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2917 2918 return (zio); 2919 } 2920 2921 static void 2922 zio_gang_inherit_allocator(zio_t *pio, zio_t *cio) 2923 { 2924 cio->io_allocator = pio->io_allocator; 2925 cio->io_wr_iss_tq = pio->io_wr_iss_tq; 2926 } 2927 2928 static void 2929 zio_write_gang_member_ready(zio_t *zio) 2930 { 2931 zio_t *pio = zio_unique_parent(zio); 2932 dva_t *cdva = zio->io_bp->blk_dva; 2933 dva_t *pdva = pio->io_bp->blk_dva; 2934 uint64_t asize; 2935 zio_t *gio __maybe_unused = zio->io_gang_leader; 2936 2937 if (BP_IS_HOLE(zio->io_bp)) 2938 return; 2939 2940 ASSERT(BP_IS_HOLE(&zio->io_bp_orig)); 2941 2942 ASSERT(zio->io_child_type == ZIO_CHILD_GANG); 2943 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies); 2944 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp)); 2945 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp)); 2946 VERIFY3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp)); 2947 2948 mutex_enter(&pio->io_lock); 2949 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) { 2950 ASSERT(DVA_GET_GANG(&pdva[d])); 2951 asize = DVA_GET_ASIZE(&pdva[d]); 2952 asize += DVA_GET_ASIZE(&cdva[d]); 2953 DVA_SET_ASIZE(&pdva[d], asize); 2954 } 2955 mutex_exit(&pio->io_lock); 2956 } 2957 2958 static void 2959 zio_write_gang_done(zio_t *zio) 2960 { 2961 /* 2962 * The io_abd field will be NULL for a zio with no data. The io_flags 2963 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't 2964 * check for it here as it is cleared in zio_ready. 2965 */ 2966 if (zio->io_abd != NULL) 2967 abd_free(zio->io_abd); 2968 } 2969 2970 static zio_t * 2971 zio_write_gang_block(zio_t *pio, metaslab_class_t *mc) 2972 { 2973 spa_t *spa = pio->io_spa; 2974 blkptr_t *bp = pio->io_bp; 2975 zio_t *gio = pio->io_gang_leader; 2976 zio_t *zio; 2977 zio_gang_node_t *gn, **gnpp; 2978 zio_gbh_phys_t *gbh; 2979 abd_t *gbh_abd; 2980 uint64_t txg = pio->io_txg; 2981 uint64_t resid = pio->io_size; 2982 uint64_t lsize; 2983 int copies = gio->io_prop.zp_copies; 2984 zio_prop_t zp; 2985 int error; 2986 boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA); 2987 2988 /* 2989 * If one copy was requested, store 2 copies of the GBH, so that we 2990 * can still traverse all the data (e.g. to free or scrub) even if a 2991 * block is damaged. Note that we can't store 3 copies of the GBH in 2992 * all cases, e.g. with encryption, which uses DVA[2] for the IV+salt. 2993 */ 2994 int gbh_copies = copies; 2995 if (gbh_copies == 1) { 2996 gbh_copies = MIN(2, spa_max_replication(spa)); 2997 } 2998 2999 ASSERT(ZIO_HAS_ALLOCATOR(pio)); 3000 int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER; 3001 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 3002 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 3003 ASSERT(has_data); 3004 3005 flags |= METASLAB_ASYNC_ALLOC; 3006 VERIFY(zfs_refcount_held(&mc->mc_allocator[pio->io_allocator]. 3007 mca_alloc_slots, pio)); 3008 3009 /* 3010 * The logical zio has already placed a reservation for 3011 * 'copies' allocation slots but gang blocks may require 3012 * additional copies. These additional copies 3013 * (i.e. gbh_copies - copies) are guaranteed to succeed 3014 * since metaslab_class_throttle_reserve() always allows 3015 * additional reservations for gang blocks. 3016 */ 3017 VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies, 3018 pio->io_allocator, pio, flags)); 3019 } 3020 3021 error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE, 3022 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags, 3023 &pio->io_alloc_list, pio, pio->io_allocator); 3024 if (error) { 3025 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 3026 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 3027 ASSERT(has_data); 3028 3029 /* 3030 * If we failed to allocate the gang block header then 3031 * we remove any additional allocation reservations that 3032 * we placed here. The original reservation will 3033 * be removed when the logical I/O goes to the ready 3034 * stage. 3035 */ 3036 metaslab_class_throttle_unreserve(mc, 3037 gbh_copies - copies, pio->io_allocator, pio); 3038 } 3039 3040 pio->io_error = error; 3041 return (pio); 3042 } 3043 3044 if (pio == gio) { 3045 gnpp = &gio->io_gang_tree; 3046 } else { 3047 gnpp = pio->io_private; 3048 ASSERT(pio->io_ready == zio_write_gang_member_ready); 3049 } 3050 3051 gn = zio_gang_node_alloc(gnpp); 3052 gbh = gn->gn_gbh; 3053 memset(gbh, 0, SPA_GANGBLOCKSIZE); 3054 gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE); 3055 3056 /* 3057 * Create the gang header. 3058 */ 3059 zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE, 3060 zio_write_gang_done, NULL, pio->io_priority, 3061 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 3062 3063 zio_gang_inherit_allocator(pio, zio); 3064 3065 /* 3066 * Create and nowait the gang children. 3067 */ 3068 for (int g = 0; resid != 0; resid -= lsize, g++) { 3069 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g), 3070 SPA_MINBLOCKSIZE); 3071 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid); 3072 3073 zp.zp_checksum = gio->io_prop.zp_checksum; 3074 zp.zp_compress = ZIO_COMPRESS_OFF; 3075 zp.zp_complevel = gio->io_prop.zp_complevel; 3076 zp.zp_type = DMU_OT_NONE; 3077 zp.zp_level = 0; 3078 zp.zp_copies = gio->io_prop.zp_copies; 3079 zp.zp_dedup = B_FALSE; 3080 zp.zp_dedup_verify = B_FALSE; 3081 zp.zp_nopwrite = B_FALSE; 3082 zp.zp_encrypt = gio->io_prop.zp_encrypt; 3083 zp.zp_byteorder = gio->io_prop.zp_byteorder; 3084 memset(zp.zp_salt, 0, ZIO_DATA_SALT_LEN); 3085 memset(zp.zp_iv, 0, ZIO_DATA_IV_LEN); 3086 memset(zp.zp_mac, 0, ZIO_DATA_MAC_LEN); 3087 3088 zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g], 3089 has_data ? abd_get_offset(pio->io_abd, pio->io_size - 3090 resid) : NULL, lsize, lsize, &zp, 3091 zio_write_gang_member_ready, NULL, 3092 zio_write_gang_done, &gn->gn_child[g], pio->io_priority, 3093 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 3094 3095 zio_gang_inherit_allocator(zio, cio); 3096 3097 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 3098 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 3099 ASSERT(has_data); 3100 3101 /* 3102 * Gang children won't throttle but we should 3103 * account for their work, so reserve an allocation 3104 * slot for them here. 3105 */ 3106 VERIFY(metaslab_class_throttle_reserve(mc, 3107 zp.zp_copies, cio->io_allocator, cio, flags)); 3108 } 3109 zio_nowait(cio); 3110 } 3111 3112 /* 3113 * Set pio's pipeline to just wait for zio to finish. 3114 */ 3115 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 3116 3117 zio_nowait(zio); 3118 3119 return (pio); 3120 } 3121 3122 /* 3123 * The zio_nop_write stage in the pipeline determines if allocating a 3124 * new bp is necessary. The nopwrite feature can handle writes in 3125 * either syncing or open context (i.e. zil writes) and as a result is 3126 * mutually exclusive with dedup. 3127 * 3128 * By leveraging a cryptographically secure checksum, such as SHA256, we 3129 * can compare the checksums of the new data and the old to determine if 3130 * allocating a new block is required. Note that our requirements for 3131 * cryptographic strength are fairly weak: there can't be any accidental 3132 * hash collisions, but we don't need to be secure against intentional 3133 * (malicious) collisions. To trigger a nopwrite, you have to be able 3134 * to write the file to begin with, and triggering an incorrect (hash 3135 * collision) nopwrite is no worse than simply writing to the file. 3136 * That said, there are no known attacks against the checksum algorithms 3137 * used for nopwrite, assuming that the salt and the checksums 3138 * themselves remain secret. 3139 */ 3140 static zio_t * 3141 zio_nop_write(zio_t *zio) 3142 { 3143 blkptr_t *bp = zio->io_bp; 3144 blkptr_t *bp_orig = &zio->io_bp_orig; 3145 zio_prop_t *zp = &zio->io_prop; 3146 3147 ASSERT(BP_IS_HOLE(bp)); 3148 ASSERT(BP_GET_LEVEL(bp) == 0); 3149 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 3150 ASSERT(zp->zp_nopwrite); 3151 ASSERT(!zp->zp_dedup); 3152 ASSERT(zio->io_bp_override == NULL); 3153 ASSERT(IO_IS_ALLOCATING(zio)); 3154 3155 /* 3156 * Check to see if the original bp and the new bp have matching 3157 * characteristics (i.e. same checksum, compression algorithms, etc). 3158 * If they don't then just continue with the pipeline which will 3159 * allocate a new bp. 3160 */ 3161 if (BP_IS_HOLE(bp_orig) || 3162 !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags & 3163 ZCHECKSUM_FLAG_NOPWRITE) || 3164 BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) || 3165 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) || 3166 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) || 3167 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) || 3168 zp->zp_copies != BP_GET_NDVAS(bp_orig)) 3169 return (zio); 3170 3171 /* 3172 * If the checksums match then reset the pipeline so that we 3173 * avoid allocating a new bp and issuing any I/O. 3174 */ 3175 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) { 3176 ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags & 3177 ZCHECKSUM_FLAG_NOPWRITE); 3178 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig)); 3179 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig)); 3180 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF); 3181 ASSERT3U(bp->blk_prop, ==, bp_orig->blk_prop); 3182 3183 /* 3184 * If we're overwriting a block that is currently on an 3185 * indirect vdev, then ignore the nopwrite request and 3186 * allow a new block to be allocated on a concrete vdev. 3187 */ 3188 spa_config_enter(zio->io_spa, SCL_VDEV, FTAG, RW_READER); 3189 for (int d = 0; d < BP_GET_NDVAS(bp_orig); d++) { 3190 vdev_t *tvd = vdev_lookup_top(zio->io_spa, 3191 DVA_GET_VDEV(&bp_orig->blk_dva[d])); 3192 if (tvd->vdev_ops == &vdev_indirect_ops) { 3193 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG); 3194 return (zio); 3195 } 3196 } 3197 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG); 3198 3199 *bp = *bp_orig; 3200 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 3201 zio->io_flags |= ZIO_FLAG_NOPWRITE; 3202 } 3203 3204 return (zio); 3205 } 3206 3207 /* 3208 * ========================================================================== 3209 * Block Reference Table 3210 * ========================================================================== 3211 */ 3212 static zio_t * 3213 zio_brt_free(zio_t *zio) 3214 { 3215 blkptr_t *bp; 3216 3217 bp = zio->io_bp; 3218 3219 if (BP_GET_LEVEL(bp) > 0 || 3220 BP_IS_METADATA(bp) || 3221 !brt_maybe_exists(zio->io_spa, bp)) { 3222 return (zio); 3223 } 3224 3225 if (!brt_entry_decref(zio->io_spa, bp)) { 3226 /* 3227 * This isn't the last reference, so we cannot free 3228 * the data yet. 3229 */ 3230 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 3231 } 3232 3233 return (zio); 3234 } 3235 3236 /* 3237 * ========================================================================== 3238 * Dedup 3239 * ========================================================================== 3240 */ 3241 static void 3242 zio_ddt_child_read_done(zio_t *zio) 3243 { 3244 blkptr_t *bp = zio->io_bp; 3245 ddt_entry_t *dde = zio->io_private; 3246 ddt_phys_t *ddp; 3247 zio_t *pio = zio_unique_parent(zio); 3248 3249 mutex_enter(&pio->io_lock); 3250 ddp = ddt_phys_select(dde, bp); 3251 if (zio->io_error == 0) 3252 ddt_phys_clear(ddp); /* this ddp doesn't need repair */ 3253 3254 if (zio->io_error == 0 && dde->dde_repair_abd == NULL) 3255 dde->dde_repair_abd = zio->io_abd; 3256 else 3257 abd_free(zio->io_abd); 3258 mutex_exit(&pio->io_lock); 3259 } 3260 3261 static zio_t * 3262 zio_ddt_read_start(zio_t *zio) 3263 { 3264 blkptr_t *bp = zio->io_bp; 3265 3266 ASSERT(BP_GET_DEDUP(bp)); 3267 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 3268 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3269 3270 if (zio->io_child_error[ZIO_CHILD_DDT]) { 3271 ddt_t *ddt = ddt_select(zio->io_spa, bp); 3272 ddt_entry_t *dde = ddt_repair_start(ddt, bp); 3273 ddt_phys_t *ddp = dde->dde_phys; 3274 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp); 3275 blkptr_t blk; 3276 3277 ASSERT(zio->io_vsd == NULL); 3278 zio->io_vsd = dde; 3279 3280 if (ddp_self == NULL) 3281 return (zio); 3282 3283 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 3284 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self) 3285 continue; 3286 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp, 3287 &blk); 3288 zio_nowait(zio_read(zio, zio->io_spa, &blk, 3289 abd_alloc_for_io(zio->io_size, B_TRUE), 3290 zio->io_size, zio_ddt_child_read_done, dde, 3291 zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) | 3292 ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark)); 3293 } 3294 return (zio); 3295 } 3296 3297 zio_nowait(zio_read(zio, zio->io_spa, bp, 3298 zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority, 3299 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark)); 3300 3301 return (zio); 3302 } 3303 3304 static zio_t * 3305 zio_ddt_read_done(zio_t *zio) 3306 { 3307 blkptr_t *bp = zio->io_bp; 3308 3309 if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) { 3310 return (NULL); 3311 } 3312 3313 ASSERT(BP_GET_DEDUP(bp)); 3314 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 3315 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3316 3317 if (zio->io_child_error[ZIO_CHILD_DDT]) { 3318 ddt_t *ddt = ddt_select(zio->io_spa, bp); 3319 ddt_entry_t *dde = zio->io_vsd; 3320 if (ddt == NULL) { 3321 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE); 3322 return (zio); 3323 } 3324 if (dde == NULL) { 3325 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1; 3326 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 3327 return (NULL); 3328 } 3329 if (dde->dde_repair_abd != NULL) { 3330 abd_copy(zio->io_abd, dde->dde_repair_abd, 3331 zio->io_size); 3332 zio->io_child_error[ZIO_CHILD_DDT] = 0; 3333 } 3334 ddt_repair_done(ddt, dde); 3335 zio->io_vsd = NULL; 3336 } 3337 3338 ASSERT(zio->io_vsd == NULL); 3339 3340 return (zio); 3341 } 3342 3343 static boolean_t 3344 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde) 3345 { 3346 spa_t *spa = zio->io_spa; 3347 boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW); 3348 3349 ASSERT(!(zio->io_bp_override && do_raw)); 3350 3351 /* 3352 * Note: we compare the original data, not the transformed data, 3353 * because when zio->io_bp is an override bp, we will not have 3354 * pushed the I/O transforms. That's an important optimization 3355 * because otherwise we'd compress/encrypt all dmu_sync() data twice. 3356 * However, we should never get a raw, override zio so in these 3357 * cases we can compare the io_abd directly. This is useful because 3358 * it allows us to do dedup verification even if we don't have access 3359 * to the original data (for instance, if the encryption keys aren't 3360 * loaded). 3361 */ 3362 3363 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 3364 zio_t *lio = dde->dde_lead_zio[p]; 3365 3366 if (lio != NULL && do_raw) { 3367 return (lio->io_size != zio->io_size || 3368 abd_cmp(zio->io_abd, lio->io_abd) != 0); 3369 } else if (lio != NULL) { 3370 return (lio->io_orig_size != zio->io_orig_size || 3371 abd_cmp(zio->io_orig_abd, lio->io_orig_abd) != 0); 3372 } 3373 } 3374 3375 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 3376 ddt_phys_t *ddp = &dde->dde_phys[p]; 3377 3378 if (ddp->ddp_phys_birth != 0 && do_raw) { 3379 blkptr_t blk = *zio->io_bp; 3380 uint64_t psize; 3381 abd_t *tmpabd; 3382 int error; 3383 3384 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth); 3385 psize = BP_GET_PSIZE(&blk); 3386 3387 if (psize != zio->io_size) 3388 return (B_TRUE); 3389 3390 ddt_exit(ddt); 3391 3392 tmpabd = abd_alloc_for_io(psize, B_TRUE); 3393 3394 error = zio_wait(zio_read(NULL, spa, &blk, tmpabd, 3395 psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ, 3396 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 3397 ZIO_FLAG_RAW, &zio->io_bookmark)); 3398 3399 if (error == 0) { 3400 if (abd_cmp(tmpabd, zio->io_abd) != 0) 3401 error = SET_ERROR(ENOENT); 3402 } 3403 3404 abd_free(tmpabd); 3405 ddt_enter(ddt); 3406 return (error != 0); 3407 } else if (ddp->ddp_phys_birth != 0) { 3408 arc_buf_t *abuf = NULL; 3409 arc_flags_t aflags = ARC_FLAG_WAIT; 3410 blkptr_t blk = *zio->io_bp; 3411 int error; 3412 3413 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth); 3414 3415 if (BP_GET_LSIZE(&blk) != zio->io_orig_size) 3416 return (B_TRUE); 3417 3418 ddt_exit(ddt); 3419 3420 error = arc_read(NULL, spa, &blk, 3421 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ, 3422 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 3423 &aflags, &zio->io_bookmark); 3424 3425 if (error == 0) { 3426 if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data, 3427 zio->io_orig_size) != 0) 3428 error = SET_ERROR(ENOENT); 3429 arc_buf_destroy(abuf, &abuf); 3430 } 3431 3432 ddt_enter(ddt); 3433 return (error != 0); 3434 } 3435 } 3436 3437 return (B_FALSE); 3438 } 3439 3440 static void 3441 zio_ddt_child_write_ready(zio_t *zio) 3442 { 3443 int p = zio->io_prop.zp_copies; 3444 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 3445 ddt_entry_t *dde = zio->io_private; 3446 ddt_phys_t *ddp = &dde->dde_phys[p]; 3447 zio_t *pio; 3448 3449 if (zio->io_error) 3450 return; 3451 3452 ddt_enter(ddt); 3453 3454 ASSERT(dde->dde_lead_zio[p] == zio); 3455 3456 ddt_phys_fill(ddp, zio->io_bp); 3457 3458 zio_link_t *zl = NULL; 3459 while ((pio = zio_walk_parents(zio, &zl)) != NULL) 3460 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg); 3461 3462 ddt_exit(ddt); 3463 } 3464 3465 static void 3466 zio_ddt_child_write_done(zio_t *zio) 3467 { 3468 int p = zio->io_prop.zp_copies; 3469 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 3470 ddt_entry_t *dde = zio->io_private; 3471 ddt_phys_t *ddp = &dde->dde_phys[p]; 3472 3473 ddt_enter(ddt); 3474 3475 ASSERT(ddp->ddp_refcnt == 0); 3476 ASSERT(dde->dde_lead_zio[p] == zio); 3477 dde->dde_lead_zio[p] = NULL; 3478 3479 if (zio->io_error == 0) { 3480 zio_link_t *zl = NULL; 3481 while (zio_walk_parents(zio, &zl) != NULL) 3482 ddt_phys_addref(ddp); 3483 } else { 3484 ddt_phys_clear(ddp); 3485 } 3486 3487 ddt_exit(ddt); 3488 } 3489 3490 static zio_t * 3491 zio_ddt_write(zio_t *zio) 3492 { 3493 spa_t *spa = zio->io_spa; 3494 blkptr_t *bp = zio->io_bp; 3495 uint64_t txg = zio->io_txg; 3496 zio_prop_t *zp = &zio->io_prop; 3497 int p = zp->zp_copies; 3498 zio_t *cio = NULL; 3499 ddt_t *ddt = ddt_select(spa, bp); 3500 ddt_entry_t *dde; 3501 ddt_phys_t *ddp; 3502 3503 ASSERT(BP_GET_DEDUP(bp)); 3504 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum); 3505 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override); 3506 ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW))); 3507 3508 ddt_enter(ddt); 3509 dde = ddt_lookup(ddt, bp, B_TRUE); 3510 ddp = &dde->dde_phys[p]; 3511 3512 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) { 3513 /* 3514 * If we're using a weak checksum, upgrade to a strong checksum 3515 * and try again. If we're already using a strong checksum, 3516 * we can't resolve it, so just convert to an ordinary write. 3517 * (And automatically e-mail a paper to Nature?) 3518 */ 3519 if (!(zio_checksum_table[zp->zp_checksum].ci_flags & 3520 ZCHECKSUM_FLAG_DEDUP)) { 3521 zp->zp_checksum = spa_dedup_checksum(spa); 3522 zio_pop_transforms(zio); 3523 zio->io_stage = ZIO_STAGE_OPEN; 3524 BP_ZERO(bp); 3525 } else { 3526 zp->zp_dedup = B_FALSE; 3527 BP_SET_DEDUP(bp, B_FALSE); 3528 } 3529 ASSERT(!BP_GET_DEDUP(bp)); 3530 zio->io_pipeline = ZIO_WRITE_PIPELINE; 3531 ddt_exit(ddt); 3532 return (zio); 3533 } 3534 3535 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) { 3536 if (ddp->ddp_phys_birth != 0) 3537 ddt_bp_fill(ddp, bp, txg); 3538 if (dde->dde_lead_zio[p] != NULL) 3539 zio_add_child(zio, dde->dde_lead_zio[p]); 3540 else 3541 ddt_phys_addref(ddp); 3542 } else if (zio->io_bp_override) { 3543 ASSERT(BP_GET_LOGICAL_BIRTH(bp) == txg); 3544 ASSERT(BP_EQUAL(bp, zio->io_bp_override)); 3545 ddt_phys_fill(ddp, bp); 3546 ddt_phys_addref(ddp); 3547 } else { 3548 cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd, 3549 zio->io_orig_size, zio->io_orig_size, zp, 3550 zio_ddt_child_write_ready, NULL, 3551 zio_ddt_child_write_done, dde, zio->io_priority, 3552 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark); 3553 3554 zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL); 3555 dde->dde_lead_zio[p] = cio; 3556 } 3557 3558 ddt_exit(ddt); 3559 3560 zio_nowait(cio); 3561 3562 return (zio); 3563 } 3564 3565 static ddt_entry_t *freedde; /* for debugging */ 3566 3567 static zio_t * 3568 zio_ddt_free(zio_t *zio) 3569 { 3570 spa_t *spa = zio->io_spa; 3571 blkptr_t *bp = zio->io_bp; 3572 ddt_t *ddt = ddt_select(spa, bp); 3573 ddt_entry_t *dde; 3574 ddt_phys_t *ddp; 3575 3576 ASSERT(BP_GET_DEDUP(bp)); 3577 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3578 3579 ddt_enter(ddt); 3580 freedde = dde = ddt_lookup(ddt, bp, B_TRUE); 3581 if (dde) { 3582 ddp = ddt_phys_select(dde, bp); 3583 if (ddp) 3584 ddt_phys_decref(ddp); 3585 } 3586 ddt_exit(ddt); 3587 3588 return (zio); 3589 } 3590 3591 /* 3592 * ========================================================================== 3593 * Allocate and free blocks 3594 * ========================================================================== 3595 */ 3596 3597 static zio_t * 3598 zio_io_to_allocate(spa_t *spa, int allocator) 3599 { 3600 zio_t *zio; 3601 3602 ASSERT(MUTEX_HELD(&spa->spa_allocs[allocator].spaa_lock)); 3603 3604 zio = avl_first(&spa->spa_allocs[allocator].spaa_tree); 3605 if (zio == NULL) 3606 return (NULL); 3607 3608 ASSERT(IO_IS_ALLOCATING(zio)); 3609 ASSERT(ZIO_HAS_ALLOCATOR(zio)); 3610 3611 /* 3612 * Try to place a reservation for this zio. If we're unable to 3613 * reserve then we throttle. 3614 */ 3615 ASSERT3U(zio->io_allocator, ==, allocator); 3616 if (!metaslab_class_throttle_reserve(zio->io_metaslab_class, 3617 zio->io_prop.zp_copies, allocator, zio, 0)) { 3618 return (NULL); 3619 } 3620 3621 avl_remove(&spa->spa_allocs[allocator].spaa_tree, zio); 3622 ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE); 3623 3624 return (zio); 3625 } 3626 3627 static zio_t * 3628 zio_dva_throttle(zio_t *zio) 3629 { 3630 spa_t *spa = zio->io_spa; 3631 zio_t *nio; 3632 metaslab_class_t *mc; 3633 3634 /* locate an appropriate allocation class */ 3635 mc = spa_preferred_class(spa, zio->io_size, zio->io_prop.zp_type, 3636 zio->io_prop.zp_level, zio->io_prop.zp_zpl_smallblk); 3637 3638 if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE || 3639 !mc->mc_alloc_throttle_enabled || 3640 zio->io_child_type == ZIO_CHILD_GANG || 3641 zio->io_flags & ZIO_FLAG_NODATA) { 3642 return (zio); 3643 } 3644 3645 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 3646 ASSERT(ZIO_HAS_ALLOCATOR(zio)); 3647 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 3648 ASSERT3U(zio->io_queued_timestamp, >, 0); 3649 ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE); 3650 3651 int allocator = zio->io_allocator; 3652 zio->io_metaslab_class = mc; 3653 mutex_enter(&spa->spa_allocs[allocator].spaa_lock); 3654 avl_add(&spa->spa_allocs[allocator].spaa_tree, zio); 3655 nio = zio_io_to_allocate(spa, allocator); 3656 mutex_exit(&spa->spa_allocs[allocator].spaa_lock); 3657 return (nio); 3658 } 3659 3660 static void 3661 zio_allocate_dispatch(spa_t *spa, int allocator) 3662 { 3663 zio_t *zio; 3664 3665 mutex_enter(&spa->spa_allocs[allocator].spaa_lock); 3666 zio = zio_io_to_allocate(spa, allocator); 3667 mutex_exit(&spa->spa_allocs[allocator].spaa_lock); 3668 if (zio == NULL) 3669 return; 3670 3671 ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE); 3672 ASSERT0(zio->io_error); 3673 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE); 3674 } 3675 3676 static zio_t * 3677 zio_dva_allocate(zio_t *zio) 3678 { 3679 spa_t *spa = zio->io_spa; 3680 metaslab_class_t *mc; 3681 blkptr_t *bp = zio->io_bp; 3682 int error; 3683 int flags = 0; 3684 3685 if (zio->io_gang_leader == NULL) { 3686 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 3687 zio->io_gang_leader = zio; 3688 } 3689 3690 ASSERT(BP_IS_HOLE(bp)); 3691 ASSERT0(BP_GET_NDVAS(bp)); 3692 ASSERT3U(zio->io_prop.zp_copies, >, 0); 3693 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa)); 3694 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp)); 3695 3696 if (zio->io_flags & ZIO_FLAG_NODATA) 3697 flags |= METASLAB_DONT_THROTTLE; 3698 if (zio->io_flags & ZIO_FLAG_GANG_CHILD) 3699 flags |= METASLAB_GANG_CHILD; 3700 if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE) 3701 flags |= METASLAB_ASYNC_ALLOC; 3702 3703 /* 3704 * if not already chosen, locate an appropriate allocation class 3705 */ 3706 mc = zio->io_metaslab_class; 3707 if (mc == NULL) { 3708 mc = spa_preferred_class(spa, zio->io_size, 3709 zio->io_prop.zp_type, zio->io_prop.zp_level, 3710 zio->io_prop.zp_zpl_smallblk); 3711 zio->io_metaslab_class = mc; 3712 } 3713 3714 /* 3715 * Try allocating the block in the usual metaslab class. 3716 * If that's full, allocate it in the normal class. 3717 * If that's full, allocate as a gang block, 3718 * and if all are full, the allocation fails (which shouldn't happen). 3719 * 3720 * Note that we do not fall back on embedded slog (ZIL) space, to 3721 * preserve unfragmented slog space, which is critical for decent 3722 * sync write performance. If a log allocation fails, we will fall 3723 * back to spa_sync() which is abysmal for performance. 3724 */ 3725 ASSERT(ZIO_HAS_ALLOCATOR(zio)); 3726 error = metaslab_alloc(spa, mc, zio->io_size, bp, 3727 zio->io_prop.zp_copies, zio->io_txg, NULL, flags, 3728 &zio->io_alloc_list, zio, zio->io_allocator); 3729 3730 /* 3731 * Fallback to normal class when an alloc class is full 3732 */ 3733 if (error == ENOSPC && mc != spa_normal_class(spa)) { 3734 /* 3735 * If throttling, transfer reservation over to normal class. 3736 * The io_allocator slot can remain the same even though we 3737 * are switching classes. 3738 */ 3739 if (mc->mc_alloc_throttle_enabled && 3740 (zio->io_flags & ZIO_FLAG_IO_ALLOCATING)) { 3741 metaslab_class_throttle_unreserve(mc, 3742 zio->io_prop.zp_copies, zio->io_allocator, zio); 3743 zio->io_flags &= ~ZIO_FLAG_IO_ALLOCATING; 3744 3745 VERIFY(metaslab_class_throttle_reserve( 3746 spa_normal_class(spa), 3747 zio->io_prop.zp_copies, zio->io_allocator, zio, 3748 flags | METASLAB_MUST_RESERVE)); 3749 } 3750 zio->io_metaslab_class = mc = spa_normal_class(spa); 3751 if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) { 3752 zfs_dbgmsg("%s: metaslab allocation failure, " 3753 "trying normal class: zio %px, size %llu, error %d", 3754 spa_name(spa), zio, (u_longlong_t)zio->io_size, 3755 error); 3756 } 3757 3758 error = metaslab_alloc(spa, mc, zio->io_size, bp, 3759 zio->io_prop.zp_copies, zio->io_txg, NULL, flags, 3760 &zio->io_alloc_list, zio, zio->io_allocator); 3761 } 3762 3763 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) { 3764 if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) { 3765 zfs_dbgmsg("%s: metaslab allocation failure, " 3766 "trying ganging: zio %px, size %llu, error %d", 3767 spa_name(spa), zio, (u_longlong_t)zio->io_size, 3768 error); 3769 } 3770 return (zio_write_gang_block(zio, mc)); 3771 } 3772 if (error != 0) { 3773 if (error != ENOSPC || 3774 (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC)) { 3775 zfs_dbgmsg("%s: metaslab allocation failure: zio %px, " 3776 "size %llu, error %d", 3777 spa_name(spa), zio, (u_longlong_t)zio->io_size, 3778 error); 3779 } 3780 zio->io_error = error; 3781 } 3782 3783 return (zio); 3784 } 3785 3786 static zio_t * 3787 zio_dva_free(zio_t *zio) 3788 { 3789 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE); 3790 3791 return (zio); 3792 } 3793 3794 static zio_t * 3795 zio_dva_claim(zio_t *zio) 3796 { 3797 int error; 3798 3799 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg); 3800 if (error) 3801 zio->io_error = error; 3802 3803 return (zio); 3804 } 3805 3806 /* 3807 * Undo an allocation. This is used by zio_done() when an I/O fails 3808 * and we want to give back the block we just allocated. 3809 * This handles both normal blocks and gang blocks. 3810 */ 3811 static void 3812 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp) 3813 { 3814 ASSERT(BP_GET_LOGICAL_BIRTH(bp) == zio->io_txg || BP_IS_HOLE(bp)); 3815 ASSERT(zio->io_bp_override == NULL); 3816 3817 if (!BP_IS_HOLE(bp)) { 3818 metaslab_free(zio->io_spa, bp, BP_GET_LOGICAL_BIRTH(bp), 3819 B_TRUE); 3820 } 3821 3822 if (gn != NULL) { 3823 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 3824 zio_dva_unallocate(zio, gn->gn_child[g], 3825 &gn->gn_gbh->zg_blkptr[g]); 3826 } 3827 } 3828 } 3829 3830 /* 3831 * Try to allocate an intent log block. Return 0 on success, errno on failure. 3832 */ 3833 int 3834 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp, 3835 uint64_t size, boolean_t *slog) 3836 { 3837 int error = 1; 3838 zio_alloc_list_t io_alloc_list; 3839 3840 ASSERT(txg > spa_syncing_txg(spa)); 3841 3842 metaslab_trace_init(&io_alloc_list); 3843 3844 /* 3845 * Block pointer fields are useful to metaslabs for stats and debugging. 3846 * Fill in the obvious ones before calling into metaslab_alloc(). 3847 */ 3848 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 3849 BP_SET_PSIZE(new_bp, size); 3850 BP_SET_LEVEL(new_bp, 0); 3851 3852 /* 3853 * When allocating a zil block, we don't have information about 3854 * the final destination of the block except the objset it's part 3855 * of, so we just hash the objset ID to pick the allocator to get 3856 * some parallelism. 3857 */ 3858 int flags = METASLAB_ZIL; 3859 int allocator = (uint_t)cityhash4(0, 0, 0, 3860 os->os_dsl_dataset->ds_object) % spa->spa_alloc_count; 3861 error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1, 3862 txg, NULL, flags, &io_alloc_list, NULL, allocator); 3863 *slog = (error == 0); 3864 if (error != 0) { 3865 error = metaslab_alloc(spa, spa_embedded_log_class(spa), size, 3866 new_bp, 1, txg, NULL, flags, 3867 &io_alloc_list, NULL, allocator); 3868 } 3869 if (error != 0) { 3870 error = metaslab_alloc(spa, spa_normal_class(spa), size, 3871 new_bp, 1, txg, NULL, flags, 3872 &io_alloc_list, NULL, allocator); 3873 } 3874 metaslab_trace_fini(&io_alloc_list); 3875 3876 if (error == 0) { 3877 BP_SET_LSIZE(new_bp, size); 3878 BP_SET_PSIZE(new_bp, size); 3879 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF); 3880 BP_SET_CHECKSUM(new_bp, 3881 spa_version(spa) >= SPA_VERSION_SLIM_ZIL 3882 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG); 3883 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 3884 BP_SET_LEVEL(new_bp, 0); 3885 BP_SET_DEDUP(new_bp, 0); 3886 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER); 3887 3888 /* 3889 * encrypted blocks will require an IV and salt. We generate 3890 * these now since we will not be rewriting the bp at 3891 * rewrite time. 3892 */ 3893 if (os->os_encrypted) { 3894 uint8_t iv[ZIO_DATA_IV_LEN]; 3895 uint8_t salt[ZIO_DATA_SALT_LEN]; 3896 3897 BP_SET_CRYPT(new_bp, B_TRUE); 3898 VERIFY0(spa_crypt_get_salt(spa, 3899 dmu_objset_id(os), salt)); 3900 VERIFY0(zio_crypt_generate_iv(iv)); 3901 3902 zio_crypt_encode_params_bp(new_bp, salt, iv); 3903 } 3904 } else { 3905 zfs_dbgmsg("%s: zil block allocation failure: " 3906 "size %llu, error %d", spa_name(spa), (u_longlong_t)size, 3907 error); 3908 } 3909 3910 return (error); 3911 } 3912 3913 /* 3914 * ========================================================================== 3915 * Read and write to physical devices 3916 * ========================================================================== 3917 */ 3918 3919 /* 3920 * Issue an I/O to the underlying vdev. Typically the issue pipeline 3921 * stops after this stage and will resume upon I/O completion. 3922 * However, there are instances where the vdev layer may need to 3923 * continue the pipeline when an I/O was not issued. Since the I/O 3924 * that was sent to the vdev layer might be different than the one 3925 * currently active in the pipeline (see vdev_queue_io()), we explicitly 3926 * force the underlying vdev layers to call either zio_execute() or 3927 * zio_interrupt() to ensure that the pipeline continues with the correct I/O. 3928 */ 3929 static zio_t * 3930 zio_vdev_io_start(zio_t *zio) 3931 { 3932 vdev_t *vd = zio->io_vd; 3933 uint64_t align; 3934 spa_t *spa = zio->io_spa; 3935 3936 zio->io_delay = 0; 3937 3938 ASSERT(zio->io_error == 0); 3939 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0); 3940 3941 if (vd == NULL) { 3942 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 3943 spa_config_enter(spa, SCL_ZIO, zio, RW_READER); 3944 3945 /* 3946 * The mirror_ops handle multiple DVAs in a single BP. 3947 */ 3948 vdev_mirror_ops.vdev_op_io_start(zio); 3949 return (NULL); 3950 } 3951 3952 ASSERT3P(zio->io_logical, !=, zio); 3953 if (zio->io_type == ZIO_TYPE_WRITE) { 3954 ASSERT(spa->spa_trust_config); 3955 3956 /* 3957 * Note: the code can handle other kinds of writes, 3958 * but we don't expect them. 3959 */ 3960 if (zio->io_vd->vdev_noalloc) { 3961 ASSERT(zio->io_flags & 3962 (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL | 3963 ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE)); 3964 } 3965 } 3966 3967 align = 1ULL << vd->vdev_top->vdev_ashift; 3968 3969 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) && 3970 P2PHASE(zio->io_size, align) != 0) { 3971 /* Transform logical writes to be a full physical block size. */ 3972 uint64_t asize = P2ROUNDUP(zio->io_size, align); 3973 abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize); 3974 ASSERT(vd == vd->vdev_top); 3975 if (zio->io_type == ZIO_TYPE_WRITE) { 3976 abd_copy(abuf, zio->io_abd, zio->io_size); 3977 abd_zero_off(abuf, zio->io_size, asize - zio->io_size); 3978 } 3979 zio_push_transform(zio, abuf, asize, asize, zio_subblock); 3980 } 3981 3982 /* 3983 * If this is not a physical io, make sure that it is properly aligned 3984 * before proceeding. 3985 */ 3986 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) { 3987 ASSERT0(P2PHASE(zio->io_offset, align)); 3988 ASSERT0(P2PHASE(zio->io_size, align)); 3989 } else { 3990 /* 3991 * For physical writes, we allow 512b aligned writes and assume 3992 * the device will perform a read-modify-write as necessary. 3993 */ 3994 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE)); 3995 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE)); 3996 } 3997 3998 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa)); 3999 4000 /* 4001 * If this is a repair I/O, and there's no self-healing involved -- 4002 * that is, we're just resilvering what we expect to resilver -- 4003 * then don't do the I/O unless zio's txg is actually in vd's DTL. 4004 * This prevents spurious resilvering. 4005 * 4006 * There are a few ways that we can end up creating these spurious 4007 * resilver i/os: 4008 * 4009 * 1. A resilver i/o will be issued if any DVA in the BP has a 4010 * dirty DTL. The mirror code will issue resilver writes to 4011 * each DVA, including the one(s) that are not on vdevs with dirty 4012 * DTLs. 4013 * 4014 * 2. With nested replication, which happens when we have a 4015 * "replacing" or "spare" vdev that's a child of a mirror or raidz. 4016 * For example, given mirror(replacing(A+B), C), it's likely that 4017 * only A is out of date (it's the new device). In this case, we'll 4018 * read from C, then use the data to resilver A+B -- but we don't 4019 * actually want to resilver B, just A. The top-level mirror has no 4020 * way to know this, so instead we just discard unnecessary repairs 4021 * as we work our way down the vdev tree. 4022 * 4023 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc. 4024 * The same logic applies to any form of nested replication: ditto 4025 * + mirror, RAID-Z + replacing, etc. 4026 * 4027 * However, indirect vdevs point off to other vdevs which may have 4028 * DTL's, so we never bypass them. The child i/os on concrete vdevs 4029 * will be properly bypassed instead. 4030 * 4031 * Leaf DTL_PARTIAL can be empty when a legitimate write comes from 4032 * a dRAID spare vdev. For example, when a dRAID spare is first 4033 * used, its spare blocks need to be written to but the leaf vdev's 4034 * of such blocks can have empty DTL_PARTIAL. 4035 * 4036 * There seemed no clean way to allow such writes while bypassing 4037 * spurious ones. At this point, just avoid all bypassing for dRAID 4038 * for correctness. 4039 */ 4040 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) && 4041 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) && 4042 zio->io_txg != 0 && /* not a delegated i/o */ 4043 vd->vdev_ops != &vdev_indirect_ops && 4044 vd->vdev_top->vdev_ops != &vdev_draid_ops && 4045 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) { 4046 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 4047 zio_vdev_io_bypass(zio); 4048 return (zio); 4049 } 4050 4051 /* 4052 * Select the next best leaf I/O to process. Distributed spares are 4053 * excluded since they dispatch the I/O directly to a leaf vdev after 4054 * applying the dRAID mapping. 4055 */ 4056 if (vd->vdev_ops->vdev_op_leaf && 4057 vd->vdev_ops != &vdev_draid_spare_ops && 4058 (zio->io_type == ZIO_TYPE_READ || 4059 zio->io_type == ZIO_TYPE_WRITE || 4060 zio->io_type == ZIO_TYPE_TRIM)) { 4061 4062 if ((zio = vdev_queue_io(zio)) == NULL) 4063 return (NULL); 4064 4065 if (!vdev_accessible(vd, zio)) { 4066 zio->io_error = SET_ERROR(ENXIO); 4067 zio_interrupt(zio); 4068 return (NULL); 4069 } 4070 zio->io_delay = gethrtime(); 4071 } 4072 4073 vd->vdev_ops->vdev_op_io_start(zio); 4074 return (NULL); 4075 } 4076 4077 static zio_t * 4078 zio_vdev_io_done(zio_t *zio) 4079 { 4080 vdev_t *vd = zio->io_vd; 4081 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops; 4082 boolean_t unexpected_error = B_FALSE; 4083 4084 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) { 4085 return (NULL); 4086 } 4087 4088 ASSERT(zio->io_type == ZIO_TYPE_READ || 4089 zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM); 4090 4091 if (zio->io_delay) 4092 zio->io_delay = gethrtime() - zio->io_delay; 4093 4094 if (vd != NULL && vd->vdev_ops->vdev_op_leaf && 4095 vd->vdev_ops != &vdev_draid_spare_ops) { 4096 vdev_queue_io_done(zio); 4097 4098 if (zio_injection_enabled && zio->io_error == 0) 4099 zio->io_error = zio_handle_device_injections(vd, zio, 4100 EIO, EILSEQ); 4101 4102 if (zio_injection_enabled && zio->io_error == 0) 4103 zio->io_error = zio_handle_label_injection(zio, EIO); 4104 4105 if (zio->io_error && zio->io_type != ZIO_TYPE_TRIM) { 4106 if (!vdev_accessible(vd, zio)) { 4107 zio->io_error = SET_ERROR(ENXIO); 4108 } else { 4109 unexpected_error = B_TRUE; 4110 } 4111 } 4112 } 4113 4114 ops->vdev_op_io_done(zio); 4115 4116 if (unexpected_error && vd->vdev_remove_wanted == B_FALSE) 4117 VERIFY(vdev_probe(vd, zio) == NULL); 4118 4119 return (zio); 4120 } 4121 4122 /* 4123 * This function is used to change the priority of an existing zio that is 4124 * currently in-flight. This is used by the arc to upgrade priority in the 4125 * event that a demand read is made for a block that is currently queued 4126 * as a scrub or async read IO. Otherwise, the high priority read request 4127 * would end up having to wait for the lower priority IO. 4128 */ 4129 void 4130 zio_change_priority(zio_t *pio, zio_priority_t priority) 4131 { 4132 zio_t *cio, *cio_next; 4133 zio_link_t *zl = NULL; 4134 4135 ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 4136 4137 if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) { 4138 vdev_queue_change_io_priority(pio, priority); 4139 } else { 4140 pio->io_priority = priority; 4141 } 4142 4143 mutex_enter(&pio->io_lock); 4144 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 4145 cio_next = zio_walk_children(pio, &zl); 4146 zio_change_priority(cio, priority); 4147 } 4148 mutex_exit(&pio->io_lock); 4149 } 4150 4151 /* 4152 * For non-raidz ZIOs, we can just copy aside the bad data read from the 4153 * disk, and use that to finish the checksum ereport later. 4154 */ 4155 static void 4156 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr, 4157 const abd_t *good_buf) 4158 { 4159 /* no processing needed */ 4160 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE); 4161 } 4162 4163 void 4164 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr) 4165 { 4166 void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size); 4167 4168 abd_copy(abd, zio->io_abd, zio->io_size); 4169 4170 zcr->zcr_cbinfo = zio->io_size; 4171 zcr->zcr_cbdata = abd; 4172 zcr->zcr_finish = zio_vsd_default_cksum_finish; 4173 zcr->zcr_free = zio_abd_free; 4174 } 4175 4176 static zio_t * 4177 zio_vdev_io_assess(zio_t *zio) 4178 { 4179 vdev_t *vd = zio->io_vd; 4180 4181 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) { 4182 return (NULL); 4183 } 4184 4185 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 4186 spa_config_exit(zio->io_spa, SCL_ZIO, zio); 4187 4188 if (zio->io_vsd != NULL) { 4189 zio->io_vsd_ops->vsd_free(zio); 4190 zio->io_vsd = NULL; 4191 } 4192 4193 if (zio_injection_enabled && zio->io_error == 0) 4194 zio->io_error = zio_handle_fault_injection(zio, EIO); 4195 4196 /* 4197 * If the I/O failed, determine whether we should attempt to retry it. 4198 * 4199 * On retry, we cut in line in the issue queue, since we don't want 4200 * compression/checksumming/etc. work to prevent our (cheap) IO reissue. 4201 */ 4202 if (zio->io_error && vd == NULL && 4203 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) { 4204 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */ 4205 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */ 4206 zio->io_error = 0; 4207 zio->io_flags |= ZIO_FLAG_IO_RETRY | ZIO_FLAG_DONT_AGGREGATE; 4208 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1; 4209 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, 4210 zio_requeue_io_start_cut_in_line); 4211 return (NULL); 4212 } 4213 4214 /* 4215 * If we got an error on a leaf device, convert it to ENXIO 4216 * if the device is not accessible at all. 4217 */ 4218 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf && 4219 !vdev_accessible(vd, zio)) 4220 zio->io_error = SET_ERROR(ENXIO); 4221 4222 /* 4223 * If we can't write to an interior vdev (mirror or RAID-Z), 4224 * set vdev_cant_write so that we stop trying to allocate from it. 4225 */ 4226 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE && 4227 vd != NULL && !vd->vdev_ops->vdev_op_leaf) { 4228 vdev_dbgmsg(vd, "zio_vdev_io_assess(zio=%px) setting " 4229 "cant_write=TRUE due to write failure with ENXIO", 4230 zio); 4231 vd->vdev_cant_write = B_TRUE; 4232 } 4233 4234 /* 4235 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future 4236 * attempts will ever succeed. In this case we set a persistent 4237 * boolean flag so that we don't bother with it in the future. 4238 */ 4239 if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) && 4240 zio->io_type == ZIO_TYPE_IOCTL && 4241 zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL) 4242 vd->vdev_nowritecache = B_TRUE; 4243 4244 if (zio->io_error) 4245 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 4246 4247 return (zio); 4248 } 4249 4250 void 4251 zio_vdev_io_reissue(zio_t *zio) 4252 { 4253 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 4254 ASSERT(zio->io_error == 0); 4255 4256 zio->io_stage >>= 1; 4257 } 4258 4259 void 4260 zio_vdev_io_redone(zio_t *zio) 4261 { 4262 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE); 4263 4264 zio->io_stage >>= 1; 4265 } 4266 4267 void 4268 zio_vdev_io_bypass(zio_t *zio) 4269 { 4270 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 4271 ASSERT(zio->io_error == 0); 4272 4273 zio->io_flags |= ZIO_FLAG_IO_BYPASS; 4274 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1; 4275 } 4276 4277 /* 4278 * ========================================================================== 4279 * Encrypt and store encryption parameters 4280 * ========================================================================== 4281 */ 4282 4283 4284 /* 4285 * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for 4286 * managing the storage of encryption parameters and passing them to the 4287 * lower-level encryption functions. 4288 */ 4289 static zio_t * 4290 zio_encrypt(zio_t *zio) 4291 { 4292 zio_prop_t *zp = &zio->io_prop; 4293 spa_t *spa = zio->io_spa; 4294 blkptr_t *bp = zio->io_bp; 4295 uint64_t psize = BP_GET_PSIZE(bp); 4296 uint64_t dsobj = zio->io_bookmark.zb_objset; 4297 dmu_object_type_t ot = BP_GET_TYPE(bp); 4298 void *enc_buf = NULL; 4299 abd_t *eabd = NULL; 4300 uint8_t salt[ZIO_DATA_SALT_LEN]; 4301 uint8_t iv[ZIO_DATA_IV_LEN]; 4302 uint8_t mac[ZIO_DATA_MAC_LEN]; 4303 boolean_t no_crypt = B_FALSE; 4304 4305 /* the root zio already encrypted the data */ 4306 if (zio->io_child_type == ZIO_CHILD_GANG) 4307 return (zio); 4308 4309 /* only ZIL blocks are re-encrypted on rewrite */ 4310 if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG) 4311 return (zio); 4312 4313 if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) { 4314 BP_SET_CRYPT(bp, B_FALSE); 4315 return (zio); 4316 } 4317 4318 /* if we are doing raw encryption set the provided encryption params */ 4319 if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) { 4320 ASSERT0(BP_GET_LEVEL(bp)); 4321 BP_SET_CRYPT(bp, B_TRUE); 4322 BP_SET_BYTEORDER(bp, zp->zp_byteorder); 4323 if (ot != DMU_OT_OBJSET) 4324 zio_crypt_encode_mac_bp(bp, zp->zp_mac); 4325 4326 /* dnode blocks must be written out in the provided byteorder */ 4327 if (zp->zp_byteorder != ZFS_HOST_BYTEORDER && 4328 ot == DMU_OT_DNODE) { 4329 void *bswap_buf = zio_buf_alloc(psize); 4330 abd_t *babd = abd_get_from_buf(bswap_buf, psize); 4331 4332 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 4333 abd_copy_to_buf(bswap_buf, zio->io_abd, psize); 4334 dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf, 4335 psize); 4336 4337 abd_take_ownership_of_buf(babd, B_TRUE); 4338 zio_push_transform(zio, babd, psize, psize, NULL); 4339 } 4340 4341 if (DMU_OT_IS_ENCRYPTED(ot)) 4342 zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv); 4343 return (zio); 4344 } 4345 4346 /* indirect blocks only maintain a cksum of the lower level MACs */ 4347 if (BP_GET_LEVEL(bp) > 0) { 4348 BP_SET_CRYPT(bp, B_TRUE); 4349 VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE, 4350 zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp), 4351 mac)); 4352 zio_crypt_encode_mac_bp(bp, mac); 4353 return (zio); 4354 } 4355 4356 /* 4357 * Objset blocks are a special case since they have 2 256-bit MACs 4358 * embedded within them. 4359 */ 4360 if (ot == DMU_OT_OBJSET) { 4361 ASSERT0(DMU_OT_IS_ENCRYPTED(ot)); 4362 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 4363 BP_SET_CRYPT(bp, B_TRUE); 4364 VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj, 4365 zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp))); 4366 return (zio); 4367 } 4368 4369 /* unencrypted object types are only authenticated with a MAC */ 4370 if (!DMU_OT_IS_ENCRYPTED(ot)) { 4371 BP_SET_CRYPT(bp, B_TRUE); 4372 VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj, 4373 zio->io_abd, psize, mac)); 4374 zio_crypt_encode_mac_bp(bp, mac); 4375 return (zio); 4376 } 4377 4378 /* 4379 * Later passes of sync-to-convergence may decide to rewrite data 4380 * in place to avoid more disk reallocations. This presents a problem 4381 * for encryption because this constitutes rewriting the new data with 4382 * the same encryption key and IV. However, this only applies to blocks 4383 * in the MOS (particularly the spacemaps) and we do not encrypt the 4384 * MOS. We assert that the zio is allocating or an intent log write 4385 * to enforce this. 4386 */ 4387 ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG); 4388 ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG); 4389 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION)); 4390 ASSERT3U(psize, !=, 0); 4391 4392 enc_buf = zio_buf_alloc(psize); 4393 eabd = abd_get_from_buf(enc_buf, psize); 4394 abd_take_ownership_of_buf(eabd, B_TRUE); 4395 4396 /* 4397 * For an explanation of what encryption parameters are stored 4398 * where, see the block comment in zio_crypt.c. 4399 */ 4400 if (ot == DMU_OT_INTENT_LOG) { 4401 zio_crypt_decode_params_bp(bp, salt, iv); 4402 } else { 4403 BP_SET_CRYPT(bp, B_TRUE); 4404 } 4405 4406 /* Perform the encryption. This should not fail */ 4407 VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark, 4408 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), 4409 salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt)); 4410 4411 /* encode encryption metadata into the bp */ 4412 if (ot == DMU_OT_INTENT_LOG) { 4413 /* 4414 * ZIL blocks store the MAC in the embedded checksum, so the 4415 * transform must always be applied. 4416 */ 4417 zio_crypt_encode_mac_zil(enc_buf, mac); 4418 zio_push_transform(zio, eabd, psize, psize, NULL); 4419 } else { 4420 BP_SET_CRYPT(bp, B_TRUE); 4421 zio_crypt_encode_params_bp(bp, salt, iv); 4422 zio_crypt_encode_mac_bp(bp, mac); 4423 4424 if (no_crypt) { 4425 ASSERT3U(ot, ==, DMU_OT_DNODE); 4426 abd_free(eabd); 4427 } else { 4428 zio_push_transform(zio, eabd, psize, psize, NULL); 4429 } 4430 } 4431 4432 return (zio); 4433 } 4434 4435 /* 4436 * ========================================================================== 4437 * Generate and verify checksums 4438 * ========================================================================== 4439 */ 4440 static zio_t * 4441 zio_checksum_generate(zio_t *zio) 4442 { 4443 blkptr_t *bp = zio->io_bp; 4444 enum zio_checksum checksum; 4445 4446 if (bp == NULL) { 4447 /* 4448 * This is zio_write_phys(). 4449 * We're either generating a label checksum, or none at all. 4450 */ 4451 checksum = zio->io_prop.zp_checksum; 4452 4453 if (checksum == ZIO_CHECKSUM_OFF) 4454 return (zio); 4455 4456 ASSERT(checksum == ZIO_CHECKSUM_LABEL); 4457 } else { 4458 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) { 4459 ASSERT(!IO_IS_ALLOCATING(zio)); 4460 checksum = ZIO_CHECKSUM_GANG_HEADER; 4461 } else { 4462 checksum = BP_GET_CHECKSUM(bp); 4463 } 4464 } 4465 4466 zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size); 4467 4468 return (zio); 4469 } 4470 4471 static zio_t * 4472 zio_checksum_verify(zio_t *zio) 4473 { 4474 zio_bad_cksum_t info; 4475 blkptr_t *bp = zio->io_bp; 4476 int error; 4477 4478 ASSERT(zio->io_vd != NULL); 4479 4480 if (bp == NULL) { 4481 /* 4482 * This is zio_read_phys(). 4483 * We're either verifying a label checksum, or nothing at all. 4484 */ 4485 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF) 4486 return (zio); 4487 4488 ASSERT3U(zio->io_prop.zp_checksum, ==, ZIO_CHECKSUM_LABEL); 4489 } 4490 4491 if ((error = zio_checksum_error(zio, &info)) != 0) { 4492 zio->io_error = error; 4493 if (error == ECKSUM && 4494 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 4495 mutex_enter(&zio->io_vd->vdev_stat_lock); 4496 zio->io_vd->vdev_stat.vs_checksum_errors++; 4497 mutex_exit(&zio->io_vd->vdev_stat_lock); 4498 (void) zfs_ereport_start_checksum(zio->io_spa, 4499 zio->io_vd, &zio->io_bookmark, zio, 4500 zio->io_offset, zio->io_size, &info); 4501 } 4502 } 4503 4504 return (zio); 4505 } 4506 4507 /* 4508 * Called by RAID-Z to ensure we don't compute the checksum twice. 4509 */ 4510 void 4511 zio_checksum_verified(zio_t *zio) 4512 { 4513 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 4514 } 4515 4516 /* 4517 * ========================================================================== 4518 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other. 4519 * An error of 0 indicates success. ENXIO indicates whole-device failure, 4520 * which may be transient (e.g. unplugged) or permanent. ECKSUM and EIO 4521 * indicate errors that are specific to one I/O, and most likely permanent. 4522 * Any other error is presumed to be worse because we weren't expecting it. 4523 * ========================================================================== 4524 */ 4525 int 4526 zio_worst_error(int e1, int e2) 4527 { 4528 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO }; 4529 int r1, r2; 4530 4531 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++) 4532 if (e1 == zio_error_rank[r1]) 4533 break; 4534 4535 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++) 4536 if (e2 == zio_error_rank[r2]) 4537 break; 4538 4539 return (r1 > r2 ? e1 : e2); 4540 } 4541 4542 /* 4543 * ========================================================================== 4544 * I/O completion 4545 * ========================================================================== 4546 */ 4547 static zio_t * 4548 zio_ready(zio_t *zio) 4549 { 4550 blkptr_t *bp = zio->io_bp; 4551 zio_t *pio, *pio_next; 4552 zio_link_t *zl = NULL; 4553 4554 if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT | 4555 ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT, ZIO_WAIT_READY)) { 4556 return (NULL); 4557 } 4558 4559 if (zio->io_ready) { 4560 ASSERT(IO_IS_ALLOCATING(zio)); 4561 ASSERT(BP_GET_LOGICAL_BIRTH(bp) == zio->io_txg || 4562 BP_IS_HOLE(bp) || (zio->io_flags & ZIO_FLAG_NOPWRITE)); 4563 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0); 4564 4565 zio->io_ready(zio); 4566 } 4567 4568 #ifdef ZFS_DEBUG 4569 if (bp != NULL && bp != &zio->io_bp_copy) 4570 zio->io_bp_copy = *bp; 4571 #endif 4572 4573 if (zio->io_error != 0) { 4574 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 4575 4576 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 4577 ASSERT(IO_IS_ALLOCATING(zio)); 4578 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 4579 ASSERT(zio->io_metaslab_class != NULL); 4580 ASSERT(ZIO_HAS_ALLOCATOR(zio)); 4581 4582 /* 4583 * We were unable to allocate anything, unreserve and 4584 * issue the next I/O to allocate. 4585 */ 4586 metaslab_class_throttle_unreserve( 4587 zio->io_metaslab_class, zio->io_prop.zp_copies, 4588 zio->io_allocator, zio); 4589 zio_allocate_dispatch(zio->io_spa, zio->io_allocator); 4590 } 4591 } 4592 4593 mutex_enter(&zio->io_lock); 4594 zio->io_state[ZIO_WAIT_READY] = 1; 4595 pio = zio_walk_parents(zio, &zl); 4596 mutex_exit(&zio->io_lock); 4597 4598 /* 4599 * As we notify zio's parents, new parents could be added. 4600 * New parents go to the head of zio's io_parent_list, however, 4601 * so we will (correctly) not notify them. The remainder of zio's 4602 * io_parent_list, from 'pio_next' onward, cannot change because 4603 * all parents must wait for us to be done before they can be done. 4604 */ 4605 for (; pio != NULL; pio = pio_next) { 4606 pio_next = zio_walk_parents(zio, &zl); 4607 zio_notify_parent(pio, zio, ZIO_WAIT_READY, NULL); 4608 } 4609 4610 if (zio->io_flags & ZIO_FLAG_NODATA) { 4611 if (bp != NULL && BP_IS_GANG(bp)) { 4612 zio->io_flags &= ~ZIO_FLAG_NODATA; 4613 } else { 4614 ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE); 4615 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 4616 } 4617 } 4618 4619 if (zio_injection_enabled && 4620 zio->io_spa->spa_syncing_txg == zio->io_txg) 4621 zio_handle_ignored_writes(zio); 4622 4623 return (zio); 4624 } 4625 4626 /* 4627 * Update the allocation throttle accounting. 4628 */ 4629 static void 4630 zio_dva_throttle_done(zio_t *zio) 4631 { 4632 zio_t *lio __maybe_unused = zio->io_logical; 4633 zio_t *pio = zio_unique_parent(zio); 4634 vdev_t *vd = zio->io_vd; 4635 int flags = METASLAB_ASYNC_ALLOC; 4636 4637 ASSERT3P(zio->io_bp, !=, NULL); 4638 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE); 4639 ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE); 4640 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); 4641 ASSERT(vd != NULL); 4642 ASSERT3P(vd, ==, vd->vdev_top); 4643 ASSERT(zio_injection_enabled || !(zio->io_flags & ZIO_FLAG_IO_RETRY)); 4644 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR)); 4645 ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING); 4646 ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE)); 4647 ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA)); 4648 4649 /* 4650 * Parents of gang children can have two flavors -- ones that 4651 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set) 4652 * and ones that allocated the constituent blocks. The allocation 4653 * throttle needs to know the allocating parent zio so we must find 4654 * it here. 4655 */ 4656 if (pio->io_child_type == ZIO_CHILD_GANG) { 4657 /* 4658 * If our parent is a rewrite gang child then our grandparent 4659 * would have been the one that performed the allocation. 4660 */ 4661 if (pio->io_flags & ZIO_FLAG_IO_REWRITE) 4662 pio = zio_unique_parent(pio); 4663 flags |= METASLAB_GANG_CHILD; 4664 } 4665 4666 ASSERT(IO_IS_ALLOCATING(pio)); 4667 ASSERT(ZIO_HAS_ALLOCATOR(pio)); 4668 ASSERT3P(zio, !=, zio->io_logical); 4669 ASSERT(zio->io_logical != NULL); 4670 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR)); 4671 ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE); 4672 ASSERT(zio->io_metaslab_class != NULL); 4673 4674 mutex_enter(&pio->io_lock); 4675 metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags, 4676 pio->io_allocator, B_TRUE); 4677 mutex_exit(&pio->io_lock); 4678 4679 metaslab_class_throttle_unreserve(zio->io_metaslab_class, 1, 4680 pio->io_allocator, pio); 4681 4682 /* 4683 * Call into the pipeline to see if there is more work that 4684 * needs to be done. If there is work to be done it will be 4685 * dispatched to another taskq thread. 4686 */ 4687 zio_allocate_dispatch(zio->io_spa, pio->io_allocator); 4688 } 4689 4690 static zio_t * 4691 zio_done(zio_t *zio) 4692 { 4693 /* 4694 * Always attempt to keep stack usage minimal here since 4695 * we can be called recursively up to 19 levels deep. 4696 */ 4697 const uint64_t psize = zio->io_size; 4698 zio_t *pio, *pio_next; 4699 zio_link_t *zl = NULL; 4700 4701 /* 4702 * If our children haven't all completed, 4703 * wait for them and then repeat this pipeline stage. 4704 */ 4705 if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) { 4706 return (NULL); 4707 } 4708 4709 /* 4710 * If the allocation throttle is enabled, then update the accounting. 4711 * We only track child I/Os that are part of an allocating async 4712 * write. We must do this since the allocation is performed 4713 * by the logical I/O but the actual write is done by child I/Os. 4714 */ 4715 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING && 4716 zio->io_child_type == ZIO_CHILD_VDEV) { 4717 ASSERT(zio->io_metaslab_class != NULL); 4718 ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled); 4719 zio_dva_throttle_done(zio); 4720 } 4721 4722 /* 4723 * If the allocation throttle is enabled, verify that 4724 * we have decremented the refcounts for every I/O that was throttled. 4725 */ 4726 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 4727 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 4728 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 4729 ASSERT(zio->io_bp != NULL); 4730 ASSERT(ZIO_HAS_ALLOCATOR(zio)); 4731 4732 metaslab_group_alloc_verify(zio->io_spa, zio->io_bp, zio, 4733 zio->io_allocator); 4734 VERIFY(zfs_refcount_not_held(&zio->io_metaslab_class-> 4735 mc_allocator[zio->io_allocator].mca_alloc_slots, zio)); 4736 } 4737 4738 4739 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 4740 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 4741 ASSERT(zio->io_children[c][w] == 0); 4742 4743 if (zio->io_bp != NULL && !BP_IS_EMBEDDED(zio->io_bp)) { 4744 ASSERT(zio->io_bp->blk_pad[0] == 0); 4745 ASSERT(zio->io_bp->blk_pad[1] == 0); 4746 ASSERT(memcmp(zio->io_bp, &zio->io_bp_copy, 4747 sizeof (blkptr_t)) == 0 || 4748 (zio->io_bp == zio_unique_parent(zio)->io_bp)); 4749 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) && 4750 zio->io_bp_override == NULL && 4751 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) { 4752 ASSERT3U(zio->io_prop.zp_copies, <=, 4753 BP_GET_NDVAS(zio->io_bp)); 4754 ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 || 4755 (BP_COUNT_GANG(zio->io_bp) == 4756 BP_GET_NDVAS(zio->io_bp))); 4757 } 4758 if (zio->io_flags & ZIO_FLAG_NOPWRITE) 4759 VERIFY(BP_EQUAL(zio->io_bp, &zio->io_bp_orig)); 4760 } 4761 4762 /* 4763 * If there were child vdev/gang/ddt errors, they apply to us now. 4764 */ 4765 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV); 4766 zio_inherit_child_errors(zio, ZIO_CHILD_GANG); 4767 zio_inherit_child_errors(zio, ZIO_CHILD_DDT); 4768 4769 /* 4770 * If the I/O on the transformed data was successful, generate any 4771 * checksum reports now while we still have the transformed data. 4772 */ 4773 if (zio->io_error == 0) { 4774 while (zio->io_cksum_report != NULL) { 4775 zio_cksum_report_t *zcr = zio->io_cksum_report; 4776 uint64_t align = zcr->zcr_align; 4777 uint64_t asize = P2ROUNDUP(psize, align); 4778 abd_t *adata = zio->io_abd; 4779 4780 if (adata != NULL && asize != psize) { 4781 adata = abd_alloc(asize, B_TRUE); 4782 abd_copy(adata, zio->io_abd, psize); 4783 abd_zero_off(adata, psize, asize - psize); 4784 } 4785 4786 zio->io_cksum_report = zcr->zcr_next; 4787 zcr->zcr_next = NULL; 4788 zcr->zcr_finish(zcr, adata); 4789 zfs_ereport_free_checksum(zcr); 4790 4791 if (adata != NULL && asize != psize) 4792 abd_free(adata); 4793 } 4794 } 4795 4796 zio_pop_transforms(zio); /* note: may set zio->io_error */ 4797 4798 vdev_stat_update(zio, psize); 4799 4800 /* 4801 * If this I/O is attached to a particular vdev is slow, exceeding 4802 * 30 seconds to complete, post an error described the I/O delay. 4803 * We ignore these errors if the device is currently unavailable. 4804 */ 4805 if (zio->io_delay >= MSEC2NSEC(zio_slow_io_ms)) { 4806 if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) { 4807 /* 4808 * We want to only increment our slow IO counters if 4809 * the IO is valid (i.e. not if the drive is removed). 4810 * 4811 * zfs_ereport_post() will also do these checks, but 4812 * it can also ratelimit and have other failures, so we 4813 * need to increment the slow_io counters independent 4814 * of it. 4815 */ 4816 if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY, 4817 zio->io_spa, zio->io_vd, zio)) { 4818 mutex_enter(&zio->io_vd->vdev_stat_lock); 4819 zio->io_vd->vdev_stat.vs_slow_ios++; 4820 mutex_exit(&zio->io_vd->vdev_stat_lock); 4821 4822 (void) zfs_ereport_post(FM_EREPORT_ZFS_DELAY, 4823 zio->io_spa, zio->io_vd, &zio->io_bookmark, 4824 zio, 0); 4825 } 4826 } 4827 } 4828 4829 if (zio->io_error) { 4830 /* 4831 * If this I/O is attached to a particular vdev, 4832 * generate an error message describing the I/O failure 4833 * at the block level. We ignore these errors if the 4834 * device is currently unavailable. 4835 */ 4836 if (zio->io_error != ECKSUM && zio->io_vd != NULL && 4837 !vdev_is_dead(zio->io_vd)) { 4838 int ret = zfs_ereport_post(FM_EREPORT_ZFS_IO, 4839 zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0); 4840 if (ret != EALREADY) { 4841 mutex_enter(&zio->io_vd->vdev_stat_lock); 4842 if (zio->io_type == ZIO_TYPE_READ) 4843 zio->io_vd->vdev_stat.vs_read_errors++; 4844 else if (zio->io_type == ZIO_TYPE_WRITE) 4845 zio->io_vd->vdev_stat.vs_write_errors++; 4846 mutex_exit(&zio->io_vd->vdev_stat_lock); 4847 } 4848 } 4849 4850 if ((zio->io_error == EIO || !(zio->io_flags & 4851 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) && 4852 zio == zio->io_logical) { 4853 /* 4854 * For logical I/O requests, tell the SPA to log the 4855 * error and generate a logical data ereport. 4856 */ 4857 spa_log_error(zio->io_spa, &zio->io_bookmark, 4858 BP_GET_LOGICAL_BIRTH(zio->io_bp)); 4859 (void) zfs_ereport_post(FM_EREPORT_ZFS_DATA, 4860 zio->io_spa, NULL, &zio->io_bookmark, zio, 0); 4861 } 4862 } 4863 4864 if (zio->io_error && zio == zio->io_logical) { 4865 /* 4866 * Determine whether zio should be reexecuted. This will 4867 * propagate all the way to the root via zio_notify_parent(). 4868 */ 4869 ASSERT(zio->io_vd == NULL && zio->io_bp != NULL); 4870 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 4871 4872 if (IO_IS_ALLOCATING(zio) && 4873 !(zio->io_flags & ZIO_FLAG_CANFAIL)) { 4874 if (zio->io_error != ENOSPC) 4875 zio->io_reexecute |= ZIO_REEXECUTE_NOW; 4876 else 4877 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 4878 } 4879 4880 if ((zio->io_type == ZIO_TYPE_READ || 4881 zio->io_type == ZIO_TYPE_FREE) && 4882 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && 4883 zio->io_error == ENXIO && 4884 spa_load_state(zio->io_spa) == SPA_LOAD_NONE && 4885 spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE) 4886 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 4887 4888 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute) 4889 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 4890 4891 /* 4892 * Here is a possibly good place to attempt to do 4893 * either combinatorial reconstruction or error correction 4894 * based on checksums. It also might be a good place 4895 * to send out preliminary ereports before we suspend 4896 * processing. 4897 */ 4898 } 4899 4900 /* 4901 * If there were logical child errors, they apply to us now. 4902 * We defer this until now to avoid conflating logical child 4903 * errors with errors that happened to the zio itself when 4904 * updating vdev stats and reporting FMA events above. 4905 */ 4906 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL); 4907 4908 if ((zio->io_error || zio->io_reexecute) && 4909 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio && 4910 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE))) 4911 zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp); 4912 4913 zio_gang_tree_free(&zio->io_gang_tree); 4914 4915 /* 4916 * Godfather I/Os should never suspend. 4917 */ 4918 if ((zio->io_flags & ZIO_FLAG_GODFATHER) && 4919 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) 4920 zio->io_reexecute &= ~ZIO_REEXECUTE_SUSPEND; 4921 4922 if (zio->io_reexecute) { 4923 /* 4924 * This is a logical I/O that wants to reexecute. 4925 * 4926 * Reexecute is top-down. When an i/o fails, if it's not 4927 * the root, it simply notifies its parent and sticks around. 4928 * The parent, seeing that it still has children in zio_done(), 4929 * does the same. This percolates all the way up to the root. 4930 * The root i/o will reexecute or suspend the entire tree. 4931 * 4932 * This approach ensures that zio_reexecute() honors 4933 * all the original i/o dependency relationships, e.g. 4934 * parents not executing until children are ready. 4935 */ 4936 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 4937 4938 zio->io_gang_leader = NULL; 4939 4940 mutex_enter(&zio->io_lock); 4941 zio->io_state[ZIO_WAIT_DONE] = 1; 4942 mutex_exit(&zio->io_lock); 4943 4944 /* 4945 * "The Godfather" I/O monitors its children but is 4946 * not a true parent to them. It will track them through 4947 * the pipeline but severs its ties whenever they get into 4948 * trouble (e.g. suspended). This allows "The Godfather" 4949 * I/O to return status without blocking. 4950 */ 4951 zl = NULL; 4952 for (pio = zio_walk_parents(zio, &zl); pio != NULL; 4953 pio = pio_next) { 4954 zio_link_t *remove_zl = zl; 4955 pio_next = zio_walk_parents(zio, &zl); 4956 4957 if ((pio->io_flags & ZIO_FLAG_GODFATHER) && 4958 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) { 4959 zio_remove_child(pio, zio, remove_zl); 4960 /* 4961 * This is a rare code path, so we don't 4962 * bother with "next_to_execute". 4963 */ 4964 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, 4965 NULL); 4966 } 4967 } 4968 4969 if ((pio = zio_unique_parent(zio)) != NULL) { 4970 /* 4971 * We're not a root i/o, so there's nothing to do 4972 * but notify our parent. Don't propagate errors 4973 * upward since we haven't permanently failed yet. 4974 */ 4975 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 4976 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE; 4977 /* 4978 * This is a rare code path, so we don't bother with 4979 * "next_to_execute". 4980 */ 4981 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, NULL); 4982 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) { 4983 /* 4984 * We'd fail again if we reexecuted now, so suspend 4985 * until conditions improve (e.g. device comes online). 4986 */ 4987 zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR); 4988 } else { 4989 /* 4990 * Reexecution is potentially a huge amount of work. 4991 * Hand it off to the otherwise-unused claim taskq. 4992 */ 4993 ASSERT(taskq_empty_ent(&zio->io_tqent)); 4994 spa_taskq_dispatch_ent(zio->io_spa, 4995 ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE, 4996 zio_reexecute, zio, 0, &zio->io_tqent, NULL); 4997 } 4998 return (NULL); 4999 } 5000 5001 ASSERT(list_is_empty(&zio->io_child_list)); 5002 ASSERT(zio->io_reexecute == 0); 5003 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL)); 5004 5005 /* 5006 * Report any checksum errors, since the I/O is complete. 5007 */ 5008 while (zio->io_cksum_report != NULL) { 5009 zio_cksum_report_t *zcr = zio->io_cksum_report; 5010 zio->io_cksum_report = zcr->zcr_next; 5011 zcr->zcr_next = NULL; 5012 zcr->zcr_finish(zcr, NULL); 5013 zfs_ereport_free_checksum(zcr); 5014 } 5015 5016 /* 5017 * It is the responsibility of the done callback to ensure that this 5018 * particular zio is no longer discoverable for adoption, and as 5019 * such, cannot acquire any new parents. 5020 */ 5021 if (zio->io_done) 5022 zio->io_done(zio); 5023 5024 mutex_enter(&zio->io_lock); 5025 zio->io_state[ZIO_WAIT_DONE] = 1; 5026 mutex_exit(&zio->io_lock); 5027 5028 /* 5029 * We are done executing this zio. We may want to execute a parent 5030 * next. See the comment in zio_notify_parent(). 5031 */ 5032 zio_t *next_to_execute = NULL; 5033 zl = NULL; 5034 for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) { 5035 zio_link_t *remove_zl = zl; 5036 pio_next = zio_walk_parents(zio, &zl); 5037 zio_remove_child(pio, zio, remove_zl); 5038 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, &next_to_execute); 5039 } 5040 5041 if (zio->io_waiter != NULL) { 5042 mutex_enter(&zio->io_lock); 5043 zio->io_executor = NULL; 5044 cv_broadcast(&zio->io_cv); 5045 mutex_exit(&zio->io_lock); 5046 } else { 5047 zio_destroy(zio); 5048 } 5049 5050 return (next_to_execute); 5051 } 5052 5053 /* 5054 * ========================================================================== 5055 * I/O pipeline definition 5056 * ========================================================================== 5057 */ 5058 static zio_pipe_stage_t *zio_pipeline[] = { 5059 NULL, 5060 zio_read_bp_init, 5061 zio_write_bp_init, 5062 zio_free_bp_init, 5063 zio_issue_async, 5064 zio_write_compress, 5065 zio_encrypt, 5066 zio_checksum_generate, 5067 zio_nop_write, 5068 zio_brt_free, 5069 zio_ddt_read_start, 5070 zio_ddt_read_done, 5071 zio_ddt_write, 5072 zio_ddt_free, 5073 zio_gang_assemble, 5074 zio_gang_issue, 5075 zio_dva_throttle, 5076 zio_dva_allocate, 5077 zio_dva_free, 5078 zio_dva_claim, 5079 zio_ready, 5080 zio_vdev_io_start, 5081 zio_vdev_io_done, 5082 zio_vdev_io_assess, 5083 zio_checksum_verify, 5084 zio_done 5085 }; 5086 5087 5088 5089 5090 /* 5091 * Compare two zbookmark_phys_t's to see which we would reach first in a 5092 * pre-order traversal of the object tree. 5093 * 5094 * This is simple in every case aside from the meta-dnode object. For all other 5095 * objects, we traverse them in order (object 1 before object 2, and so on). 5096 * However, all of these objects are traversed while traversing object 0, since 5097 * the data it points to is the list of objects. Thus, we need to convert to a 5098 * canonical representation so we can compare meta-dnode bookmarks to 5099 * non-meta-dnode bookmarks. 5100 * 5101 * We do this by calculating "equivalents" for each field of the zbookmark. 5102 * zbookmarks outside of the meta-dnode use their own object and level, and 5103 * calculate the level 0 equivalent (the first L0 blkid that is contained in the 5104 * blocks this bookmark refers to) by multiplying their blkid by their span 5105 * (the number of L0 blocks contained within one block at their level). 5106 * zbookmarks inside the meta-dnode calculate their object equivalent 5107 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use 5108 * level + 1<<31 (any value larger than a level could ever be) for their level. 5109 * This causes them to always compare before a bookmark in their object 5110 * equivalent, compare appropriately to bookmarks in other objects, and to 5111 * compare appropriately to other bookmarks in the meta-dnode. 5112 */ 5113 int 5114 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2, 5115 const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2) 5116 { 5117 /* 5118 * These variables represent the "equivalent" values for the zbookmark, 5119 * after converting zbookmarks inside the meta dnode to their 5120 * normal-object equivalents. 5121 */ 5122 uint64_t zb1obj, zb2obj; 5123 uint64_t zb1L0, zb2L0; 5124 uint64_t zb1level, zb2level; 5125 5126 if (zb1->zb_object == zb2->zb_object && 5127 zb1->zb_level == zb2->zb_level && 5128 zb1->zb_blkid == zb2->zb_blkid) 5129 return (0); 5130 5131 IMPLY(zb1->zb_level > 0, ibs1 >= SPA_MINBLOCKSHIFT); 5132 IMPLY(zb2->zb_level > 0, ibs2 >= SPA_MINBLOCKSHIFT); 5133 5134 /* 5135 * BP_SPANB calculates the span in blocks. 5136 */ 5137 zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level); 5138 zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level); 5139 5140 if (zb1->zb_object == DMU_META_DNODE_OBJECT) { 5141 zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 5142 zb1L0 = 0; 5143 zb1level = zb1->zb_level + COMPARE_META_LEVEL; 5144 } else { 5145 zb1obj = zb1->zb_object; 5146 zb1level = zb1->zb_level; 5147 } 5148 5149 if (zb2->zb_object == DMU_META_DNODE_OBJECT) { 5150 zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 5151 zb2L0 = 0; 5152 zb2level = zb2->zb_level + COMPARE_META_LEVEL; 5153 } else { 5154 zb2obj = zb2->zb_object; 5155 zb2level = zb2->zb_level; 5156 } 5157 5158 /* Now that we have a canonical representation, do the comparison. */ 5159 if (zb1obj != zb2obj) 5160 return (zb1obj < zb2obj ? -1 : 1); 5161 else if (zb1L0 != zb2L0) 5162 return (zb1L0 < zb2L0 ? -1 : 1); 5163 else if (zb1level != zb2level) 5164 return (zb1level > zb2level ? -1 : 1); 5165 /* 5166 * This can (theoretically) happen if the bookmarks have the same object 5167 * and level, but different blkids, if the block sizes are not the same. 5168 * There is presently no way to change the indirect block sizes 5169 */ 5170 return (0); 5171 } 5172 5173 /* 5174 * This function checks the following: given that last_block is the place that 5175 * our traversal stopped last time, does that guarantee that we've visited 5176 * every node under subtree_root? Therefore, we can't just use the raw output 5177 * of zbookmark_compare. We have to pass in a modified version of 5178 * subtree_root; by incrementing the block id, and then checking whether 5179 * last_block is before or equal to that, we can tell whether or not having 5180 * visited last_block implies that all of subtree_root's children have been 5181 * visited. 5182 */ 5183 boolean_t 5184 zbookmark_subtree_completed(const dnode_phys_t *dnp, 5185 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block) 5186 { 5187 zbookmark_phys_t mod_zb = *subtree_root; 5188 mod_zb.zb_blkid++; 5189 ASSERT0(last_block->zb_level); 5190 5191 /* The objset_phys_t isn't before anything. */ 5192 if (dnp == NULL) 5193 return (B_FALSE); 5194 5195 /* 5196 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the 5197 * data block size in sectors, because that variable is only used if 5198 * the bookmark refers to a block in the meta-dnode. Since we don't 5199 * know without examining it what object it refers to, and there's no 5200 * harm in passing in this value in other cases, we always pass it in. 5201 * 5202 * We pass in 0 for the indirect block size shift because zb2 must be 5203 * level 0. The indirect block size is only used to calculate the span 5204 * of the bookmark, but since the bookmark must be level 0, the span is 5205 * always 1, so the math works out. 5206 * 5207 * If you make changes to how the zbookmark_compare code works, be sure 5208 * to make sure that this code still works afterwards. 5209 */ 5210 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift, 5211 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb, 5212 last_block) <= 0); 5213 } 5214 5215 /* 5216 * This function is similar to zbookmark_subtree_completed(), but returns true 5217 * if subtree_root is equal or ahead of last_block, i.e. still to be done. 5218 */ 5219 boolean_t 5220 zbookmark_subtree_tbd(const dnode_phys_t *dnp, 5221 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block) 5222 { 5223 ASSERT0(last_block->zb_level); 5224 if (dnp == NULL) 5225 return (B_FALSE); 5226 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift, 5227 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, subtree_root, 5228 last_block) >= 0); 5229 } 5230 5231 EXPORT_SYMBOL(zio_type_name); 5232 EXPORT_SYMBOL(zio_buf_alloc); 5233 EXPORT_SYMBOL(zio_data_buf_alloc); 5234 EXPORT_SYMBOL(zio_buf_free); 5235 EXPORT_SYMBOL(zio_data_buf_free); 5236 5237 ZFS_MODULE_PARAM(zfs_zio, zio_, slow_io_ms, INT, ZMOD_RW, 5238 "Max I/O completion time (milliseconds) before marking it as slow"); 5239 5240 ZFS_MODULE_PARAM(zfs_zio, zio_, requeue_io_start_cut_in_line, INT, ZMOD_RW, 5241 "Prioritize requeued I/O"); 5242 5243 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_deferred_free, UINT, ZMOD_RW, 5244 "Defer frees starting in this pass"); 5245 5246 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_dont_compress, UINT, ZMOD_RW, 5247 "Don't compress starting in this pass"); 5248 5249 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_rewrite, UINT, ZMOD_RW, 5250 "Rewrite new bps starting in this pass"); 5251 5252 ZFS_MODULE_PARAM(zfs_zio, zio_, dva_throttle_enabled, INT, ZMOD_RW, 5253 "Throttle block allocations in the ZIO pipeline"); 5254 5255 ZFS_MODULE_PARAM(zfs_zio, zio_, deadman_log_all, INT, ZMOD_RW, 5256 "Log all slow ZIOs, not just those with vdevs"); 5257