1 // SPDX-License-Identifier: CDDL-1.0 2 /* 3 * CDDL HEADER START 4 * 5 * The contents of this file are subject to the terms of the 6 * Common Development and Distribution License (the "License"). 7 * You may not use this file except in compliance with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or https://opensource.org/licenses/CDDL-1.0. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2022 by Delphix. All rights reserved. 25 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2017, Intel Corporation. 27 * Copyright (c) 2019, 2023, 2024, 2025, Klara, Inc. 28 * Copyright (c) 2019, Allan Jude 29 * Copyright (c) 2021, Datto, Inc. 30 * Copyright (c) 2021, 2024 by George Melikov. All rights reserved. 31 */ 32 33 #include <sys/sysmacros.h> 34 #include <sys/zfs_context.h> 35 #include <sys/fm/fs/zfs.h> 36 #include <sys/spa.h> 37 #include <sys/txg.h> 38 #include <sys/spa_impl.h> 39 #include <sys/vdev_impl.h> 40 #include <sys/vdev_trim.h> 41 #include <sys/zio_impl.h> 42 #include <sys/zio_compress.h> 43 #include <sys/zio_checksum.h> 44 #include <sys/dmu_objset.h> 45 #include <sys/arc.h> 46 #include <sys/brt.h> 47 #include <sys/ddt.h> 48 #include <sys/blkptr.h> 49 #include <sys/zfeature.h> 50 #include <sys/dsl_scan.h> 51 #include <sys/metaslab_impl.h> 52 #include <sys/time.h> 53 #include <sys/trace_zfs.h> 54 #include <sys/abd.h> 55 #include <sys/dsl_crypt.h> 56 #include <cityhash.h> 57 58 /* 59 * ========================================================================== 60 * I/O type descriptions 61 * ========================================================================== 62 */ 63 const char *const zio_type_name[ZIO_TYPES] = { 64 /* 65 * Note: Linux kernel thread name length is limited 66 * so these names will differ from upstream open zfs. 67 */ 68 "z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_flush", "z_trim" 69 }; 70 71 int zio_dva_throttle_enabled = B_TRUE; 72 static int zio_deadman_log_all = B_FALSE; 73 74 /* 75 * ========================================================================== 76 * I/O kmem caches 77 * ========================================================================== 78 */ 79 static kmem_cache_t *zio_cache; 80 static kmem_cache_t *zio_link_cache; 81 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 82 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 83 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 84 static uint64_t zio_buf_cache_allocs[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 85 static uint64_t zio_buf_cache_frees[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 86 #endif 87 88 /* Mark IOs as "slow" if they take longer than 30 seconds */ 89 static uint_t zio_slow_io_ms = (30 * MILLISEC); 90 91 #define BP_SPANB(indblkshift, level) \ 92 (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT))) 93 #define COMPARE_META_LEVEL 0x80000000ul 94 /* 95 * The following actions directly effect the spa's sync-to-convergence logic. 96 * The values below define the sync pass when we start performing the action. 97 * Care should be taken when changing these values as they directly impact 98 * spa_sync() performance. Tuning these values may introduce subtle performance 99 * pathologies and should only be done in the context of performance analysis. 100 * These tunables will eventually be removed and replaced with #defines once 101 * enough analysis has been done to determine optimal values. 102 * 103 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that 104 * regular blocks are not deferred. 105 * 106 * Starting in sync pass 8 (zfs_sync_pass_dont_compress), we disable 107 * compression (including of metadata). In practice, we don't have this 108 * many sync passes, so this has no effect. 109 * 110 * The original intent was that disabling compression would help the sync 111 * passes to converge. However, in practice disabling compression increases 112 * the average number of sync passes, because when we turn compression off, a 113 * lot of block's size will change and thus we have to re-allocate (not 114 * overwrite) them. It also increases the number of 128KB allocations (e.g. 115 * for indirect blocks and spacemaps) because these will not be compressed. 116 * The 128K allocations are especially detrimental to performance on highly 117 * fragmented systems, which may have very few free segments of this size, 118 * and may need to load new metaslabs to satisfy 128K allocations. 119 */ 120 121 /* defer frees starting in this pass */ 122 uint_t zfs_sync_pass_deferred_free = 2; 123 124 /* don't compress starting in this pass */ 125 static uint_t zfs_sync_pass_dont_compress = 8; 126 127 /* rewrite new bps starting in this pass */ 128 static uint_t zfs_sync_pass_rewrite = 2; 129 130 /* 131 * An allocating zio is one that either currently has the DVA allocate 132 * stage set or will have it later in its lifetime. 133 */ 134 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE) 135 136 /* 137 * Enable smaller cores by excluding metadata 138 * allocations as well. 139 */ 140 int zio_exclude_metadata = 0; 141 static int zio_requeue_io_start_cut_in_line = 1; 142 143 #ifdef ZFS_DEBUG 144 static const int zio_buf_debug_limit = 16384; 145 #else 146 static const int zio_buf_debug_limit = 0; 147 #endif 148 149 typedef struct zio_stats { 150 kstat_named_t ziostat_total_allocations; 151 kstat_named_t ziostat_alloc_class_fallbacks; 152 kstat_named_t ziostat_gang_writes; 153 kstat_named_t ziostat_gang_multilevel; 154 } zio_stats_t; 155 156 static zio_stats_t zio_stats = { 157 { "total_allocations", KSTAT_DATA_UINT64 }, 158 { "alloc_class_fallbacks", KSTAT_DATA_UINT64 }, 159 { "gang_writes", KSTAT_DATA_UINT64 }, 160 { "gang_multilevel", KSTAT_DATA_UINT64 }, 161 }; 162 163 struct { 164 wmsum_t ziostat_total_allocations; 165 wmsum_t ziostat_alloc_class_fallbacks; 166 wmsum_t ziostat_gang_writes; 167 wmsum_t ziostat_gang_multilevel; 168 } ziostat_sums; 169 170 #define ZIOSTAT_BUMP(stat) wmsum_add(&ziostat_sums.stat, 1); 171 172 static kstat_t *zio_ksp; 173 174 static inline void __zio_execute(zio_t *zio); 175 176 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t); 177 178 static int 179 zio_kstats_update(kstat_t *ksp, int rw) 180 { 181 zio_stats_t *zs = ksp->ks_data; 182 if (rw == KSTAT_WRITE) 183 return (EACCES); 184 185 zs->ziostat_total_allocations.value.ui64 = 186 wmsum_value(&ziostat_sums.ziostat_total_allocations); 187 zs->ziostat_alloc_class_fallbacks.value.ui64 = 188 wmsum_value(&ziostat_sums.ziostat_alloc_class_fallbacks); 189 zs->ziostat_gang_writes.value.ui64 = 190 wmsum_value(&ziostat_sums.ziostat_gang_writes); 191 zs->ziostat_gang_multilevel.value.ui64 = 192 wmsum_value(&ziostat_sums.ziostat_gang_multilevel); 193 return (0); 194 } 195 196 void 197 zio_init(void) 198 { 199 size_t c; 200 201 zio_cache = kmem_cache_create("zio_cache", 202 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 203 zio_link_cache = kmem_cache_create("zio_link_cache", 204 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 205 206 wmsum_init(&ziostat_sums.ziostat_total_allocations, 0); 207 wmsum_init(&ziostat_sums.ziostat_alloc_class_fallbacks, 0); 208 wmsum_init(&ziostat_sums.ziostat_gang_writes, 0); 209 wmsum_init(&ziostat_sums.ziostat_gang_multilevel, 0); 210 zio_ksp = kstat_create("zfs", 0, "zio_stats", 211 "misc", KSTAT_TYPE_NAMED, sizeof (zio_stats) / 212 sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 213 if (zio_ksp != NULL) { 214 zio_ksp->ks_data = &zio_stats; 215 zio_ksp->ks_update = zio_kstats_update; 216 kstat_install(zio_ksp); 217 } 218 219 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 220 size_t size = (c + 1) << SPA_MINBLOCKSHIFT; 221 size_t align, cflags, data_cflags; 222 char name[32]; 223 224 /* 225 * Create cache for each half-power of 2 size, starting from 226 * SPA_MINBLOCKSIZE. It should give us memory space efficiency 227 * of ~7/8, sufficient for transient allocations mostly using 228 * these caches. 229 */ 230 size_t p2 = size; 231 while (!ISP2(p2)) 232 p2 &= p2 - 1; 233 if (!IS_P2ALIGNED(size, p2 / 2)) 234 continue; 235 236 #ifndef _KERNEL 237 /* 238 * If we are using watchpoints, put each buffer on its own page, 239 * to eliminate the performance overhead of trapping to the 240 * kernel when modifying a non-watched buffer that shares the 241 * page with a watched buffer. 242 */ 243 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE)) 244 continue; 245 #endif 246 247 if (IS_P2ALIGNED(size, PAGESIZE)) 248 align = PAGESIZE; 249 else 250 align = 1 << (highbit64(size ^ (size - 1)) - 1); 251 252 cflags = (zio_exclude_metadata || size > zio_buf_debug_limit) ? 253 KMC_NODEBUG : 0; 254 data_cflags = KMC_NODEBUG; 255 if (abd_size_alloc_linear(size)) { 256 cflags |= KMC_RECLAIMABLE; 257 data_cflags |= KMC_RECLAIMABLE; 258 } 259 if (cflags == data_cflags) { 260 /* 261 * Resulting kmem caches would be identical. 262 * Save memory by creating only one. 263 */ 264 (void) snprintf(name, sizeof (name), 265 "zio_buf_comb_%lu", (ulong_t)size); 266 zio_buf_cache[c] = kmem_cache_create(name, size, align, 267 NULL, NULL, NULL, NULL, NULL, cflags); 268 zio_data_buf_cache[c] = zio_buf_cache[c]; 269 continue; 270 } 271 (void) snprintf(name, sizeof (name), "zio_buf_%lu", 272 (ulong_t)size); 273 zio_buf_cache[c] = kmem_cache_create(name, size, align, 274 NULL, NULL, NULL, NULL, NULL, cflags); 275 276 (void) snprintf(name, sizeof (name), "zio_data_buf_%lu", 277 (ulong_t)size); 278 zio_data_buf_cache[c] = kmem_cache_create(name, size, align, 279 NULL, NULL, NULL, NULL, NULL, data_cflags); 280 } 281 282 while (--c != 0) { 283 ASSERT(zio_buf_cache[c] != NULL); 284 if (zio_buf_cache[c - 1] == NULL) 285 zio_buf_cache[c - 1] = zio_buf_cache[c]; 286 287 ASSERT(zio_data_buf_cache[c] != NULL); 288 if (zio_data_buf_cache[c - 1] == NULL) 289 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c]; 290 } 291 292 zio_inject_init(); 293 294 lz4_init(); 295 } 296 297 void 298 zio_fini(void) 299 { 300 size_t n = SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; 301 302 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 303 for (size_t i = 0; i < n; i++) { 304 if (zio_buf_cache_allocs[i] != zio_buf_cache_frees[i]) 305 (void) printf("zio_fini: [%d] %llu != %llu\n", 306 (int)((i + 1) << SPA_MINBLOCKSHIFT), 307 (long long unsigned)zio_buf_cache_allocs[i], 308 (long long unsigned)zio_buf_cache_frees[i]); 309 } 310 #endif 311 312 /* 313 * The same kmem cache can show up multiple times in both zio_buf_cache 314 * and zio_data_buf_cache. Do a wasteful but trivially correct scan to 315 * sort it out. 316 */ 317 for (size_t i = 0; i < n; i++) { 318 kmem_cache_t *cache = zio_buf_cache[i]; 319 if (cache == NULL) 320 continue; 321 for (size_t j = i; j < n; j++) { 322 if (cache == zio_buf_cache[j]) 323 zio_buf_cache[j] = NULL; 324 if (cache == zio_data_buf_cache[j]) 325 zio_data_buf_cache[j] = NULL; 326 } 327 kmem_cache_destroy(cache); 328 } 329 330 for (size_t i = 0; i < n; i++) { 331 kmem_cache_t *cache = zio_data_buf_cache[i]; 332 if (cache == NULL) 333 continue; 334 for (size_t j = i; j < n; j++) { 335 if (cache == zio_data_buf_cache[j]) 336 zio_data_buf_cache[j] = NULL; 337 } 338 kmem_cache_destroy(cache); 339 } 340 341 for (size_t i = 0; i < n; i++) { 342 VERIFY3P(zio_buf_cache[i], ==, NULL); 343 VERIFY3P(zio_data_buf_cache[i], ==, NULL); 344 } 345 346 if (zio_ksp != NULL) { 347 kstat_delete(zio_ksp); 348 zio_ksp = NULL; 349 } 350 351 wmsum_fini(&ziostat_sums.ziostat_total_allocations); 352 wmsum_fini(&ziostat_sums.ziostat_alloc_class_fallbacks); 353 wmsum_fini(&ziostat_sums.ziostat_gang_writes); 354 wmsum_fini(&ziostat_sums.ziostat_gang_multilevel); 355 356 kmem_cache_destroy(zio_link_cache); 357 kmem_cache_destroy(zio_cache); 358 359 zio_inject_fini(); 360 361 lz4_fini(); 362 } 363 364 /* 365 * ========================================================================== 366 * Allocate and free I/O buffers 367 * ========================================================================== 368 */ 369 370 #if defined(ZFS_DEBUG) && defined(_KERNEL) 371 #define ZFS_ZIO_BUF_CANARY 1 372 #endif 373 374 #ifdef ZFS_ZIO_BUF_CANARY 375 static const ulong_t zio_buf_canary = (ulong_t)0xdeadc0dedead210b; 376 377 /* 378 * Use empty space after the buffer to detect overflows. 379 * 380 * Since zio_init() creates kmem caches only for certain set of buffer sizes, 381 * allocations of different sizes may have some unused space after the data. 382 * Filling part of that space with a known pattern on allocation and checking 383 * it on free should allow us to detect some buffer overflows. 384 */ 385 static void 386 zio_buf_put_canary(ulong_t *p, size_t size, kmem_cache_t **cache, size_t c) 387 { 388 size_t off = P2ROUNDUP(size, sizeof (ulong_t)); 389 ulong_t *canary = p + off / sizeof (ulong_t); 390 size_t asize = (c + 1) << SPA_MINBLOCKSHIFT; 391 if (c + 1 < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT && 392 cache[c] == cache[c + 1]) 393 asize = (c + 2) << SPA_MINBLOCKSHIFT; 394 for (; off < asize; canary++, off += sizeof (ulong_t)) 395 *canary = zio_buf_canary; 396 } 397 398 static void 399 zio_buf_check_canary(ulong_t *p, size_t size, kmem_cache_t **cache, size_t c) 400 { 401 size_t off = P2ROUNDUP(size, sizeof (ulong_t)); 402 ulong_t *canary = p + off / sizeof (ulong_t); 403 size_t asize = (c + 1) << SPA_MINBLOCKSHIFT; 404 if (c + 1 < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT && 405 cache[c] == cache[c + 1]) 406 asize = (c + 2) << SPA_MINBLOCKSHIFT; 407 for (; off < asize; canary++, off += sizeof (ulong_t)) { 408 if (unlikely(*canary != zio_buf_canary)) { 409 PANIC("ZIO buffer overflow %p (%zu) + %zu %#lx != %#lx", 410 p, size, (canary - p) * sizeof (ulong_t), 411 *canary, zio_buf_canary); 412 } 413 } 414 } 415 #endif 416 417 /* 418 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a 419 * crashdump if the kernel panics, so use it judiciously. Obviously, it's 420 * useful to inspect ZFS metadata, but if possible, we should avoid keeping 421 * excess / transient data in-core during a crashdump. 422 */ 423 void * 424 zio_buf_alloc(size_t size) 425 { 426 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 427 428 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 429 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 430 atomic_add_64(&zio_buf_cache_allocs[c], 1); 431 #endif 432 433 void *p = kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE); 434 #ifdef ZFS_ZIO_BUF_CANARY 435 zio_buf_put_canary(p, size, zio_buf_cache, c); 436 #endif 437 return (p); 438 } 439 440 /* 441 * Use zio_data_buf_alloc to allocate data. The data will not appear in a 442 * crashdump if the kernel panics. This exists so that we will limit the amount 443 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount 444 * of kernel heap dumped to disk when the kernel panics) 445 */ 446 void * 447 zio_data_buf_alloc(size_t size) 448 { 449 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 450 451 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 452 453 void *p = kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE); 454 #ifdef ZFS_ZIO_BUF_CANARY 455 zio_buf_put_canary(p, size, zio_data_buf_cache, c); 456 #endif 457 return (p); 458 } 459 460 void 461 zio_buf_free(void *buf, size_t size) 462 { 463 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 464 465 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 466 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 467 atomic_add_64(&zio_buf_cache_frees[c], 1); 468 #endif 469 470 #ifdef ZFS_ZIO_BUF_CANARY 471 zio_buf_check_canary(buf, size, zio_buf_cache, c); 472 #endif 473 kmem_cache_free(zio_buf_cache[c], buf); 474 } 475 476 void 477 zio_data_buf_free(void *buf, size_t size) 478 { 479 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 480 481 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 482 483 #ifdef ZFS_ZIO_BUF_CANARY 484 zio_buf_check_canary(buf, size, zio_data_buf_cache, c); 485 #endif 486 kmem_cache_free(zio_data_buf_cache[c], buf); 487 } 488 489 static void 490 zio_abd_free(void *abd, size_t size) 491 { 492 (void) size; 493 abd_free((abd_t *)abd); 494 } 495 496 /* 497 * ========================================================================== 498 * Push and pop I/O transform buffers 499 * ========================================================================== 500 */ 501 void 502 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize, 503 zio_transform_func_t *transform) 504 { 505 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP); 506 507 zt->zt_orig_abd = zio->io_abd; 508 zt->zt_orig_size = zio->io_size; 509 zt->zt_bufsize = bufsize; 510 zt->zt_transform = transform; 511 512 zt->zt_next = zio->io_transform_stack; 513 zio->io_transform_stack = zt; 514 515 zio->io_abd = data; 516 zio->io_size = size; 517 } 518 519 void 520 zio_pop_transforms(zio_t *zio) 521 { 522 zio_transform_t *zt; 523 524 while ((zt = zio->io_transform_stack) != NULL) { 525 if (zt->zt_transform != NULL) 526 zt->zt_transform(zio, 527 zt->zt_orig_abd, zt->zt_orig_size); 528 529 if (zt->zt_bufsize != 0) 530 abd_free(zio->io_abd); 531 532 zio->io_abd = zt->zt_orig_abd; 533 zio->io_size = zt->zt_orig_size; 534 zio->io_transform_stack = zt->zt_next; 535 536 kmem_free(zt, sizeof (zio_transform_t)); 537 } 538 } 539 540 /* 541 * ========================================================================== 542 * I/O transform callbacks for subblocks, decompression, and decryption 543 * ========================================================================== 544 */ 545 static void 546 zio_subblock(zio_t *zio, abd_t *data, uint64_t size) 547 { 548 ASSERT(zio->io_size > size); 549 550 if (zio->io_type == ZIO_TYPE_READ) 551 abd_copy(data, zio->io_abd, size); 552 } 553 554 static void 555 zio_decompress(zio_t *zio, abd_t *data, uint64_t size) 556 { 557 if (zio->io_error == 0) { 558 int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp), 559 zio->io_abd, data, zio->io_size, size, 560 &zio->io_prop.zp_complevel); 561 562 if (zio_injection_enabled && ret == 0) 563 ret = zio_handle_fault_injection(zio, EINVAL); 564 565 if (ret != 0) 566 zio->io_error = SET_ERROR(EIO); 567 } 568 } 569 570 static void 571 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size) 572 { 573 int ret; 574 void *tmp; 575 blkptr_t *bp = zio->io_bp; 576 spa_t *spa = zio->io_spa; 577 uint64_t dsobj = zio->io_bookmark.zb_objset; 578 uint64_t lsize = BP_GET_LSIZE(bp); 579 dmu_object_type_t ot = BP_GET_TYPE(bp); 580 uint8_t salt[ZIO_DATA_SALT_LEN]; 581 uint8_t iv[ZIO_DATA_IV_LEN]; 582 uint8_t mac[ZIO_DATA_MAC_LEN]; 583 boolean_t no_crypt = B_FALSE; 584 585 ASSERT(BP_USES_CRYPT(bp)); 586 ASSERT3U(size, !=, 0); 587 588 if (zio->io_error != 0) 589 return; 590 591 /* 592 * Verify the cksum of MACs stored in an indirect bp. It will always 593 * be possible to verify this since it does not require an encryption 594 * key. 595 */ 596 if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) { 597 zio_crypt_decode_mac_bp(bp, mac); 598 599 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) { 600 /* 601 * We haven't decompressed the data yet, but 602 * zio_crypt_do_indirect_mac_checksum() requires 603 * decompressed data to be able to parse out the MACs 604 * from the indirect block. We decompress it now and 605 * throw away the result after we are finished. 606 */ 607 abd_t *abd = abd_alloc_linear(lsize, B_TRUE); 608 ret = zio_decompress_data(BP_GET_COMPRESS(bp), 609 zio->io_abd, abd, zio->io_size, lsize, 610 &zio->io_prop.zp_complevel); 611 if (ret != 0) { 612 abd_free(abd); 613 ret = SET_ERROR(EIO); 614 goto error; 615 } 616 ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE, 617 abd, lsize, BP_SHOULD_BYTESWAP(bp), mac); 618 abd_free(abd); 619 } else { 620 ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE, 621 zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac); 622 } 623 abd_copy(data, zio->io_abd, size); 624 625 if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) { 626 ret = zio_handle_decrypt_injection(spa, 627 &zio->io_bookmark, ot, ECKSUM); 628 } 629 if (ret != 0) 630 goto error; 631 632 return; 633 } 634 635 /* 636 * If this is an authenticated block, just check the MAC. It would be 637 * nice to separate this out into its own flag, but when this was done, 638 * we had run out of bits in what is now zio_flag_t. Future cleanup 639 * could make this a flag bit. 640 */ 641 if (BP_IS_AUTHENTICATED(bp)) { 642 if (ot == DMU_OT_OBJSET) { 643 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, 644 dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp)); 645 } else { 646 zio_crypt_decode_mac_bp(bp, mac); 647 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, 648 zio->io_abd, size, mac); 649 if (zio_injection_enabled && ret == 0) { 650 ret = zio_handle_decrypt_injection(spa, 651 &zio->io_bookmark, ot, ECKSUM); 652 } 653 } 654 abd_copy(data, zio->io_abd, size); 655 656 if (ret != 0) 657 goto error; 658 659 return; 660 } 661 662 zio_crypt_decode_params_bp(bp, salt, iv); 663 664 if (ot == DMU_OT_INTENT_LOG) { 665 tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t)); 666 zio_crypt_decode_mac_zil(tmp, mac); 667 abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t)); 668 } else { 669 zio_crypt_decode_mac_bp(bp, mac); 670 } 671 672 ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp), 673 BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data, 674 zio->io_abd, &no_crypt); 675 if (no_crypt) 676 abd_copy(data, zio->io_abd, size); 677 678 if (ret != 0) 679 goto error; 680 681 return; 682 683 error: 684 /* assert that the key was found unless this was speculative */ 685 ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE)); 686 687 /* 688 * If there was a decryption / authentication error return EIO as 689 * the io_error. If this was not a speculative zio, create an ereport. 690 */ 691 if (ret == ECKSUM) { 692 zio->io_error = SET_ERROR(EIO); 693 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) { 694 spa_log_error(spa, &zio->io_bookmark, 695 BP_GET_LOGICAL_BIRTH(zio->io_bp)); 696 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION, 697 spa, NULL, &zio->io_bookmark, zio, 0); 698 } 699 } else { 700 zio->io_error = ret; 701 } 702 } 703 704 /* 705 * ========================================================================== 706 * I/O parent/child relationships and pipeline interlocks 707 * ========================================================================== 708 */ 709 zio_t * 710 zio_walk_parents(zio_t *cio, zio_link_t **zl) 711 { 712 list_t *pl = &cio->io_parent_list; 713 714 *zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl); 715 if (*zl == NULL) 716 return (NULL); 717 718 ASSERT((*zl)->zl_child == cio); 719 return ((*zl)->zl_parent); 720 } 721 722 zio_t * 723 zio_walk_children(zio_t *pio, zio_link_t **zl) 724 { 725 list_t *cl = &pio->io_child_list; 726 727 ASSERT(MUTEX_HELD(&pio->io_lock)); 728 729 *zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl); 730 if (*zl == NULL) 731 return (NULL); 732 733 ASSERT((*zl)->zl_parent == pio); 734 return ((*zl)->zl_child); 735 } 736 737 zio_t * 738 zio_unique_parent(zio_t *cio) 739 { 740 zio_link_t *zl = NULL; 741 zio_t *pio = zio_walk_parents(cio, &zl); 742 743 VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL); 744 return (pio); 745 } 746 747 static void 748 zio_add_child_impl(zio_t *pio, zio_t *cio, boolean_t first) 749 { 750 /* 751 * Logical I/Os can have logical, gang, or vdev children. 752 * Gang I/Os can have gang or vdev children. 753 * Vdev I/Os can only have vdev children. 754 * The following ASSERT captures all of these constraints. 755 */ 756 ASSERT3S(cio->io_child_type, <=, pio->io_child_type); 757 758 /* Parent should not have READY stage if child doesn't have it. */ 759 IMPLY((cio->io_pipeline & ZIO_STAGE_READY) == 0 && 760 (cio->io_child_type != ZIO_CHILD_VDEV), 761 (pio->io_pipeline & ZIO_STAGE_READY) == 0); 762 763 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP); 764 zl->zl_parent = pio; 765 zl->zl_child = cio; 766 767 mutex_enter(&pio->io_lock); 768 769 if (first) 770 ASSERT(list_is_empty(&cio->io_parent_list)); 771 else 772 mutex_enter(&cio->io_lock); 773 774 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0); 775 776 uint64_t *countp = pio->io_children[cio->io_child_type]; 777 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 778 countp[w] += !cio->io_state[w]; 779 780 list_insert_head(&pio->io_child_list, zl); 781 list_insert_head(&cio->io_parent_list, zl); 782 783 if (!first) 784 mutex_exit(&cio->io_lock); 785 786 mutex_exit(&pio->io_lock); 787 } 788 789 void 790 zio_add_child(zio_t *pio, zio_t *cio) 791 { 792 zio_add_child_impl(pio, cio, B_FALSE); 793 } 794 795 static void 796 zio_add_child_first(zio_t *pio, zio_t *cio) 797 { 798 zio_add_child_impl(pio, cio, B_TRUE); 799 } 800 801 static void 802 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl) 803 { 804 ASSERT(zl->zl_parent == pio); 805 ASSERT(zl->zl_child == cio); 806 807 mutex_enter(&pio->io_lock); 808 mutex_enter(&cio->io_lock); 809 810 list_remove(&pio->io_child_list, zl); 811 list_remove(&cio->io_parent_list, zl); 812 813 mutex_exit(&cio->io_lock); 814 mutex_exit(&pio->io_lock); 815 kmem_cache_free(zio_link_cache, zl); 816 } 817 818 static boolean_t 819 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait) 820 { 821 boolean_t waiting = B_FALSE; 822 823 mutex_enter(&zio->io_lock); 824 ASSERT(zio->io_stall == NULL); 825 for (int c = 0; c < ZIO_CHILD_TYPES; c++) { 826 if (!(ZIO_CHILD_BIT_IS_SET(childbits, c))) 827 continue; 828 829 uint64_t *countp = &zio->io_children[c][wait]; 830 if (*countp != 0) { 831 zio->io_stage >>= 1; 832 ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN); 833 zio->io_stall = countp; 834 waiting = B_TRUE; 835 break; 836 } 837 } 838 mutex_exit(&zio->io_lock); 839 return (waiting); 840 } 841 842 __attribute__((always_inline)) 843 static inline void 844 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait, 845 zio_t **next_to_executep) 846 { 847 uint64_t *countp = &pio->io_children[zio->io_child_type][wait]; 848 int *errorp = &pio->io_child_error[zio->io_child_type]; 849 850 mutex_enter(&pio->io_lock); 851 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 852 *errorp = zio_worst_error(*errorp, zio->io_error); 853 pio->io_reexecute |= zio->io_reexecute; 854 ASSERT3U(*countp, >, 0); 855 856 /* 857 * Propogate the Direct I/O checksum verify failure to the parent. 858 */ 859 if (zio->io_flags & ZIO_FLAG_DIO_CHKSUM_ERR) 860 pio->io_flags |= ZIO_FLAG_DIO_CHKSUM_ERR; 861 862 (*countp)--; 863 864 if (*countp == 0 && pio->io_stall == countp) { 865 zio_taskq_type_t type = 866 pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE : 867 ZIO_TASKQ_INTERRUPT; 868 pio->io_stall = NULL; 869 mutex_exit(&pio->io_lock); 870 871 /* 872 * If we can tell the caller to execute this parent next, do 873 * so. We do this if the parent's zio type matches the child's 874 * type, or if it's a zio_null() with no done callback, and so 875 * has no actual work to do. Otherwise dispatch the parent zio 876 * in its own taskq. 877 * 878 * Having the caller execute the parent when possible reduces 879 * locking on the zio taskq's, reduces context switch 880 * overhead, and has no recursion penalty. Note that one 881 * read from disk typically causes at least 3 zio's: a 882 * zio_null(), the logical zio_read(), and then a physical 883 * zio. When the physical ZIO completes, we are able to call 884 * zio_done() on all 3 of these zio's from one invocation of 885 * zio_execute() by returning the parent back to 886 * zio_execute(). Since the parent isn't executed until this 887 * thread returns back to zio_execute(), the caller should do 888 * so promptly. 889 * 890 * In other cases, dispatching the parent prevents 891 * overflowing the stack when we have deeply nested 892 * parent-child relationships, as we do with the "mega zio" 893 * of writes for spa_sync(), and the chain of ZIL blocks. 894 */ 895 if (next_to_executep != NULL && *next_to_executep == NULL && 896 (pio->io_type == zio->io_type || 897 (pio->io_type == ZIO_TYPE_NULL && !pio->io_done))) { 898 *next_to_executep = pio; 899 } else { 900 zio_taskq_dispatch(pio, type, B_FALSE); 901 } 902 } else { 903 mutex_exit(&pio->io_lock); 904 } 905 } 906 907 static void 908 zio_inherit_child_errors(zio_t *zio, enum zio_child c) 909 { 910 if (zio->io_child_error[c] != 0 && zio->io_error == 0) 911 zio->io_error = zio->io_child_error[c]; 912 } 913 914 int 915 zio_bookmark_compare(const void *x1, const void *x2) 916 { 917 const zio_t *z1 = x1; 918 const zio_t *z2 = x2; 919 920 if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset) 921 return (-1); 922 if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset) 923 return (1); 924 925 if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object) 926 return (-1); 927 if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object) 928 return (1); 929 930 if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level) 931 return (-1); 932 if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level) 933 return (1); 934 935 if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid) 936 return (-1); 937 if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid) 938 return (1); 939 940 if (z1 < z2) 941 return (-1); 942 if (z1 > z2) 943 return (1); 944 945 return (0); 946 } 947 948 /* 949 * ========================================================================== 950 * Create the various types of I/O (read, write, free, etc) 951 * ========================================================================== 952 */ 953 static zio_t * 954 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 955 abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done, 956 void *private, zio_type_t type, zio_priority_t priority, 957 zio_flag_t flags, vdev_t *vd, uint64_t offset, 958 const zbookmark_phys_t *zb, enum zio_stage stage, 959 enum zio_stage pipeline) 960 { 961 zio_t *zio; 962 963 IMPLY(type != ZIO_TYPE_TRIM, psize <= SPA_MAXBLOCKSIZE); 964 ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0); 965 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0); 966 967 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER)); 968 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER)); 969 ASSERT(vd || stage == ZIO_STAGE_OPEN); 970 971 IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0); 972 973 zio = kmem_cache_alloc(zio_cache, KM_SLEEP); 974 memset(zio, 0, sizeof (zio_t)); 975 976 mutex_init(&zio->io_lock, NULL, MUTEX_NOLOCKDEP, NULL); 977 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL); 978 979 list_create(&zio->io_parent_list, sizeof (zio_link_t), 980 offsetof(zio_link_t, zl_parent_node)); 981 list_create(&zio->io_child_list, sizeof (zio_link_t), 982 offsetof(zio_link_t, zl_child_node)); 983 metaslab_trace_init(&zio->io_alloc_list); 984 985 if (vd != NULL) 986 zio->io_child_type = ZIO_CHILD_VDEV; 987 else if (flags & ZIO_FLAG_GANG_CHILD) 988 zio->io_child_type = ZIO_CHILD_GANG; 989 else if (flags & ZIO_FLAG_DDT_CHILD) 990 zio->io_child_type = ZIO_CHILD_DDT; 991 else 992 zio->io_child_type = ZIO_CHILD_LOGICAL; 993 994 if (bp != NULL) { 995 if (type != ZIO_TYPE_WRITE || 996 zio->io_child_type == ZIO_CHILD_DDT) { 997 zio->io_bp_copy = *bp; 998 zio->io_bp = &zio->io_bp_copy; /* so caller can free */ 999 } else { 1000 zio->io_bp = (blkptr_t *)bp; 1001 } 1002 zio->io_bp_orig = *bp; 1003 if (zio->io_child_type == ZIO_CHILD_LOGICAL) 1004 zio->io_logical = zio; 1005 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp)) 1006 pipeline |= ZIO_GANG_STAGES; 1007 if (flags & ZIO_FLAG_PREALLOCATED) { 1008 BP_ZERO_DVAS(zio->io_bp); 1009 BP_SET_BIRTH(zio->io_bp, 0, 0); 1010 } 1011 } 1012 1013 zio->io_spa = spa; 1014 zio->io_txg = txg; 1015 zio->io_done = done; 1016 zio->io_private = private; 1017 zio->io_type = type; 1018 zio->io_priority = priority; 1019 zio->io_vd = vd; 1020 zio->io_offset = offset; 1021 zio->io_orig_abd = zio->io_abd = data; 1022 zio->io_orig_size = zio->io_size = psize; 1023 zio->io_lsize = lsize; 1024 zio->io_orig_flags = zio->io_flags = flags; 1025 zio->io_orig_stage = zio->io_stage = stage; 1026 zio->io_orig_pipeline = zio->io_pipeline = pipeline; 1027 zio->io_pipeline_trace = ZIO_STAGE_OPEN; 1028 zio->io_allocator = ZIO_ALLOCATOR_NONE; 1029 1030 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY) || 1031 (pipeline & ZIO_STAGE_READY) == 0; 1032 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE); 1033 1034 if (zb != NULL) 1035 zio->io_bookmark = *zb; 1036 1037 if (pio != NULL) { 1038 zio->io_metaslab_class = pio->io_metaslab_class; 1039 if (zio->io_logical == NULL) 1040 zio->io_logical = pio->io_logical; 1041 if (zio->io_child_type == ZIO_CHILD_GANG) 1042 zio->io_gang_leader = pio->io_gang_leader; 1043 zio_add_child_first(pio, zio); 1044 } 1045 1046 taskq_init_ent(&zio->io_tqent); 1047 1048 return (zio); 1049 } 1050 1051 void 1052 zio_destroy(zio_t *zio) 1053 { 1054 metaslab_trace_fini(&zio->io_alloc_list); 1055 list_destroy(&zio->io_parent_list); 1056 list_destroy(&zio->io_child_list); 1057 mutex_destroy(&zio->io_lock); 1058 cv_destroy(&zio->io_cv); 1059 kmem_cache_free(zio_cache, zio); 1060 } 1061 1062 /* 1063 * ZIO intended to be between others. Provides synchronization at READY 1064 * and DONE pipeline stages and calls the respective callbacks. 1065 */ 1066 zio_t * 1067 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done, 1068 void *private, zio_flag_t flags) 1069 { 1070 zio_t *zio; 1071 1072 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private, 1073 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 1074 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE); 1075 1076 return (zio); 1077 } 1078 1079 /* 1080 * ZIO intended to be a root of a tree. Unlike null ZIO does not have a 1081 * READY pipeline stage (is ready on creation), so it should not be used 1082 * as child of any ZIO that may need waiting for grandchildren READY stage 1083 * (any other ZIO type). 1084 */ 1085 zio_t * 1086 zio_root(spa_t *spa, zio_done_func_t *done, void *private, zio_flag_t flags) 1087 { 1088 zio_t *zio; 1089 1090 zio = zio_create(NULL, spa, 0, NULL, NULL, 0, 0, done, private, 1091 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, NULL, 0, NULL, 1092 ZIO_STAGE_OPEN, ZIO_ROOT_PIPELINE); 1093 1094 return (zio); 1095 } 1096 1097 static int 1098 zfs_blkptr_verify_log(spa_t *spa, const blkptr_t *bp, 1099 enum blk_verify_flag blk_verify, const char *fmt, ...) 1100 { 1101 va_list adx; 1102 char buf[256]; 1103 1104 va_start(adx, fmt); 1105 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 1106 va_end(adx); 1107 1108 zfs_dbgmsg("bad blkptr at %px: " 1109 "DVA[0]=%#llx/%#llx " 1110 "DVA[1]=%#llx/%#llx " 1111 "DVA[2]=%#llx/%#llx " 1112 "prop=%#llx " 1113 "pad=%#llx,%#llx " 1114 "phys_birth=%#llx " 1115 "birth=%#llx " 1116 "fill=%#llx " 1117 "cksum=%#llx/%#llx/%#llx/%#llx", 1118 bp, 1119 (long long)bp->blk_dva[0].dva_word[0], 1120 (long long)bp->blk_dva[0].dva_word[1], 1121 (long long)bp->blk_dva[1].dva_word[0], 1122 (long long)bp->blk_dva[1].dva_word[1], 1123 (long long)bp->blk_dva[2].dva_word[0], 1124 (long long)bp->blk_dva[2].dva_word[1], 1125 (long long)bp->blk_prop, 1126 (long long)bp->blk_pad[0], 1127 (long long)bp->blk_pad[1], 1128 (long long)BP_GET_PHYSICAL_BIRTH(bp), 1129 (long long)BP_GET_LOGICAL_BIRTH(bp), 1130 (long long)bp->blk_fill, 1131 (long long)bp->blk_cksum.zc_word[0], 1132 (long long)bp->blk_cksum.zc_word[1], 1133 (long long)bp->blk_cksum.zc_word[2], 1134 (long long)bp->blk_cksum.zc_word[3]); 1135 switch (blk_verify) { 1136 case BLK_VERIFY_HALT: 1137 zfs_panic_recover("%s: %s", spa_name(spa), buf); 1138 break; 1139 case BLK_VERIFY_LOG: 1140 zfs_dbgmsg("%s: %s", spa_name(spa), buf); 1141 break; 1142 case BLK_VERIFY_ONLY: 1143 break; 1144 } 1145 1146 return (1); 1147 } 1148 1149 /* 1150 * Verify the block pointer fields contain reasonable values. This means 1151 * it only contains known object types, checksum/compression identifiers, 1152 * block sizes within the maximum allowed limits, valid DVAs, etc. 1153 * 1154 * If everything checks out 0 is returned. The zfs_blkptr_verify 1155 * argument controls the behavior when an invalid field is detected. 1156 * 1157 * Values for blk_verify_flag: 1158 * BLK_VERIFY_ONLY: evaluate the block 1159 * BLK_VERIFY_LOG: evaluate the block and log problems 1160 * BLK_VERIFY_HALT: call zfs_panic_recover on error 1161 * 1162 * Values for blk_config_flag: 1163 * BLK_CONFIG_HELD: caller holds SCL_VDEV for writer 1164 * BLK_CONFIG_NEEDED: caller holds no config lock, SCL_VDEV will be 1165 * obtained for reader 1166 * BLK_CONFIG_SKIP: skip checks which require SCL_VDEV, for better 1167 * performance 1168 */ 1169 int 1170 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp, 1171 enum blk_config_flag blk_config, enum blk_verify_flag blk_verify) 1172 { 1173 int errors = 0; 1174 1175 if (unlikely(!DMU_OT_IS_VALID(BP_GET_TYPE(bp)))) { 1176 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1177 "blkptr at %px has invalid TYPE %llu", 1178 bp, (longlong_t)BP_GET_TYPE(bp)); 1179 } 1180 if (unlikely(BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS)) { 1181 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1182 "blkptr at %px has invalid COMPRESS %llu", 1183 bp, (longlong_t)BP_GET_COMPRESS(bp)); 1184 } 1185 if (unlikely(BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE)) { 1186 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1187 "blkptr at %px has invalid LSIZE %llu", 1188 bp, (longlong_t)BP_GET_LSIZE(bp)); 1189 } 1190 if (BP_IS_EMBEDDED(bp)) { 1191 if (unlikely(BPE_GET_ETYPE(bp) >= NUM_BP_EMBEDDED_TYPES)) { 1192 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1193 "blkptr at %px has invalid ETYPE %llu", 1194 bp, (longlong_t)BPE_GET_ETYPE(bp)); 1195 } 1196 if (unlikely(BPE_GET_PSIZE(bp) > BPE_PAYLOAD_SIZE)) { 1197 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1198 "blkptr at %px has invalid PSIZE %llu", 1199 bp, (longlong_t)BPE_GET_PSIZE(bp)); 1200 } 1201 return (errors ? ECKSUM : 0); 1202 } else if (BP_IS_HOLE(bp)) { 1203 /* 1204 * Holes are allowed (expected, even) to have no DVAs, no 1205 * checksum, and no psize. 1206 */ 1207 return (errors ? ECKSUM : 0); 1208 } else if (unlikely(!DVA_IS_VALID(&bp->blk_dva[0]))) { 1209 /* Non-hole, non-embedded BPs _must_ have at least one DVA */ 1210 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1211 "blkptr at %px has no valid DVAs", bp); 1212 } 1213 if (unlikely(BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS)) { 1214 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1215 "blkptr at %px has invalid CHECKSUM %llu", 1216 bp, (longlong_t)BP_GET_CHECKSUM(bp)); 1217 } 1218 if (unlikely(BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE)) { 1219 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1220 "blkptr at %px has invalid PSIZE %llu", 1221 bp, (longlong_t)BP_GET_PSIZE(bp)); 1222 } 1223 1224 /* 1225 * Do not verify individual DVAs if the config is not trusted. This 1226 * will be done once the zio is executed in vdev_mirror_map_alloc. 1227 */ 1228 if (unlikely(!spa->spa_trust_config)) 1229 return (errors ? ECKSUM : 0); 1230 1231 switch (blk_config) { 1232 case BLK_CONFIG_HELD: 1233 ASSERT(spa_config_held(spa, SCL_VDEV, RW_WRITER)); 1234 break; 1235 case BLK_CONFIG_NEEDED: 1236 spa_config_enter(spa, SCL_VDEV, bp, RW_READER); 1237 break; 1238 case BLK_CONFIG_NEEDED_TRY: 1239 if (!spa_config_tryenter(spa, SCL_VDEV, bp, RW_READER)) 1240 return (EBUSY); 1241 break; 1242 case BLK_CONFIG_SKIP: 1243 return (errors ? ECKSUM : 0); 1244 default: 1245 panic("invalid blk_config %u", blk_config); 1246 } 1247 1248 /* 1249 * Pool-specific checks. 1250 * 1251 * Note: it would be nice to verify that the logical birth 1252 * and physical birth are not too large. However, 1253 * spa_freeze() allows the birth time of log blocks (and 1254 * dmu_sync()-ed blocks that are in the log) to be arbitrarily 1255 * large. 1256 */ 1257 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 1258 const dva_t *dva = &bp->blk_dva[i]; 1259 uint64_t vdevid = DVA_GET_VDEV(dva); 1260 1261 if (unlikely(vdevid >= spa->spa_root_vdev->vdev_children)) { 1262 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1263 "blkptr at %px DVA %u has invalid VDEV %llu", 1264 bp, i, (longlong_t)vdevid); 1265 continue; 1266 } 1267 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid]; 1268 if (unlikely(vd == NULL)) { 1269 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1270 "blkptr at %px DVA %u has invalid VDEV %llu", 1271 bp, i, (longlong_t)vdevid); 1272 continue; 1273 } 1274 if (unlikely(vd->vdev_ops == &vdev_hole_ops)) { 1275 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1276 "blkptr at %px DVA %u has hole VDEV %llu", 1277 bp, i, (longlong_t)vdevid); 1278 continue; 1279 } 1280 if (vd->vdev_ops == &vdev_missing_ops) { 1281 /* 1282 * "missing" vdevs are valid during import, but we 1283 * don't have their detailed info (e.g. asize), so 1284 * we can't perform any more checks on them. 1285 */ 1286 continue; 1287 } 1288 uint64_t offset = DVA_GET_OFFSET(dva); 1289 uint64_t asize = DVA_GET_ASIZE(dva); 1290 if (DVA_GET_GANG(dva)) 1291 asize = vdev_gang_header_asize(vd); 1292 if (unlikely(offset + asize > vd->vdev_asize)) { 1293 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1294 "blkptr at %px DVA %u has invalid OFFSET %llu", 1295 bp, i, (longlong_t)offset); 1296 } 1297 } 1298 if (blk_config == BLK_CONFIG_NEEDED || blk_config == 1299 BLK_CONFIG_NEEDED_TRY) 1300 spa_config_exit(spa, SCL_VDEV, bp); 1301 1302 return (errors ? ECKSUM : 0); 1303 } 1304 1305 boolean_t 1306 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp) 1307 { 1308 (void) bp; 1309 uint64_t vdevid = DVA_GET_VDEV(dva); 1310 1311 if (vdevid >= spa->spa_root_vdev->vdev_children) 1312 return (B_FALSE); 1313 1314 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid]; 1315 if (vd == NULL) 1316 return (B_FALSE); 1317 1318 if (vd->vdev_ops == &vdev_hole_ops) 1319 return (B_FALSE); 1320 1321 if (vd->vdev_ops == &vdev_missing_ops) { 1322 return (B_FALSE); 1323 } 1324 1325 uint64_t offset = DVA_GET_OFFSET(dva); 1326 uint64_t asize = DVA_GET_ASIZE(dva); 1327 1328 if (DVA_GET_GANG(dva)) 1329 asize = vdev_gang_header_asize(vd); 1330 if (offset + asize > vd->vdev_asize) 1331 return (B_FALSE); 1332 1333 return (B_TRUE); 1334 } 1335 1336 zio_t * 1337 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, 1338 abd_t *data, uint64_t size, zio_done_func_t *done, void *private, 1339 zio_priority_t priority, zio_flag_t flags, const zbookmark_phys_t *zb) 1340 { 1341 zio_t *zio; 1342 1343 zio = zio_create(pio, spa, BP_GET_BIRTH(bp), bp, 1344 data, size, size, done, private, 1345 ZIO_TYPE_READ, priority, flags, NULL, 0, zb, 1346 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 1347 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE); 1348 1349 return (zio); 1350 } 1351 1352 zio_t * 1353 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 1354 abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp, 1355 zio_done_func_t *ready, zio_done_func_t *children_ready, 1356 zio_done_func_t *done, void *private, zio_priority_t priority, 1357 zio_flag_t flags, const zbookmark_phys_t *zb) 1358 { 1359 zio_t *zio; 1360 enum zio_stage pipeline = zp->zp_direct_write == B_TRUE ? 1361 ZIO_DIRECT_WRITE_PIPELINE : (flags & ZIO_FLAG_DDT_CHILD) ? 1362 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE; 1363 1364 1365 zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private, 1366 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb, 1367 ZIO_STAGE_OPEN, pipeline); 1368 1369 zio->io_ready = ready; 1370 zio->io_children_ready = children_ready; 1371 zio->io_prop = *zp; 1372 1373 /* 1374 * Data can be NULL if we are going to call zio_write_override() to 1375 * provide the already-allocated BP. But we may need the data to 1376 * verify a dedup hit (if requested). In this case, don't try to 1377 * dedup (just take the already-allocated BP verbatim). Encrypted 1378 * dedup blocks need data as well so we also disable dedup in this 1379 * case. 1380 */ 1381 if (data == NULL && 1382 (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) { 1383 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE; 1384 } 1385 1386 return (zio); 1387 } 1388 1389 zio_t * 1390 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data, 1391 uint64_t size, zio_done_func_t *done, void *private, 1392 zio_priority_t priority, zio_flag_t flags, zbookmark_phys_t *zb) 1393 { 1394 zio_t *zio; 1395 1396 zio = zio_create(pio, spa, txg, bp, data, size, size, done, private, 1397 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb, 1398 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE); 1399 1400 return (zio); 1401 } 1402 1403 void 1404 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, int gang_copies, 1405 boolean_t nopwrite, boolean_t brtwrite) 1406 { 1407 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 1408 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1409 ASSERT(zio->io_stage == ZIO_STAGE_OPEN); 1410 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa)); 1411 ASSERT(!brtwrite || !nopwrite); 1412 1413 /* 1414 * We must reset the io_prop to match the values that existed 1415 * when the bp was first written by dmu_sync() keeping in mind 1416 * that nopwrite and dedup are mutually exclusive. 1417 */ 1418 zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup; 1419 zio->io_prop.zp_nopwrite = nopwrite; 1420 zio->io_prop.zp_brtwrite = brtwrite; 1421 zio->io_prop.zp_copies = copies; 1422 zio->io_prop.zp_gang_copies = gang_copies; 1423 zio->io_bp_override = bp; 1424 } 1425 1426 void 1427 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp) 1428 { 1429 1430 (void) zfs_blkptr_verify(spa, bp, BLK_CONFIG_NEEDED, BLK_VERIFY_HALT); 1431 1432 /* 1433 * The check for EMBEDDED is a performance optimization. We 1434 * process the free here (by ignoring it) rather than 1435 * putting it on the list and then processing it in zio_free_sync(). 1436 */ 1437 if (BP_IS_EMBEDDED(bp)) 1438 return; 1439 1440 /* 1441 * Frees that are for the currently-syncing txg, are not going to be 1442 * deferred, and which will not need to do a read (i.e. not GANG or 1443 * DEDUP), can be processed immediately. Otherwise, put them on the 1444 * in-memory list for later processing. 1445 * 1446 * Note that we only defer frees after zfs_sync_pass_deferred_free 1447 * when the log space map feature is disabled. [see relevant comment 1448 * in spa_sync_iterate_to_convergence()] 1449 */ 1450 if (BP_IS_GANG(bp) || 1451 BP_GET_DEDUP(bp) || 1452 txg != spa->spa_syncing_txg || 1453 (spa_sync_pass(spa) >= zfs_sync_pass_deferred_free && 1454 !spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) || 1455 brt_maybe_exists(spa, bp)) { 1456 metaslab_check_free(spa, bp); 1457 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp); 1458 } else { 1459 VERIFY3P(zio_free_sync(NULL, spa, txg, bp, 0), ==, NULL); 1460 } 1461 } 1462 1463 /* 1464 * To improve performance, this function may return NULL if we were able 1465 * to do the free immediately. This avoids the cost of creating a zio 1466 * (and linking it to the parent, etc). 1467 */ 1468 zio_t * 1469 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 1470 zio_flag_t flags) 1471 { 1472 ASSERT(!BP_IS_HOLE(bp)); 1473 ASSERT(spa_syncing_txg(spa) == txg); 1474 1475 if (BP_IS_EMBEDDED(bp)) 1476 return (NULL); 1477 1478 metaslab_check_free(spa, bp); 1479 arc_freed(spa, bp); 1480 dsl_scan_freed(spa, bp); 1481 1482 if (BP_IS_GANG(bp) || 1483 BP_GET_DEDUP(bp) || 1484 brt_maybe_exists(spa, bp)) { 1485 /* 1486 * GANG, DEDUP and BRT blocks can induce a read (for the gang 1487 * block header, the DDT or the BRT), so issue them 1488 * asynchronously so that this thread is not tied up. 1489 */ 1490 enum zio_stage stage = 1491 ZIO_FREE_PIPELINE | ZIO_STAGE_ISSUE_ASYNC; 1492 1493 return (zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 1494 BP_GET_PSIZE(bp), NULL, NULL, 1495 ZIO_TYPE_FREE, ZIO_PRIORITY_NOW, 1496 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage)); 1497 } else { 1498 metaslab_free(spa, bp, txg, B_FALSE); 1499 return (NULL); 1500 } 1501 } 1502 1503 zio_t * 1504 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 1505 zio_done_func_t *done, void *private, zio_flag_t flags) 1506 { 1507 zio_t *zio; 1508 1509 (void) zfs_blkptr_verify(spa, bp, (flags & ZIO_FLAG_CONFIG_WRITER) ? 1510 BLK_CONFIG_HELD : BLK_CONFIG_NEEDED, BLK_VERIFY_HALT); 1511 1512 if (BP_IS_EMBEDDED(bp)) 1513 return (zio_null(pio, spa, NULL, NULL, NULL, 0)); 1514 1515 /* 1516 * A claim is an allocation of a specific block. Claims are needed 1517 * to support immediate writes in the intent log. The issue is that 1518 * immediate writes contain committed data, but in a txg that was 1519 * *not* committed. Upon opening the pool after an unclean shutdown, 1520 * the intent log claims all blocks that contain immediate write data 1521 * so that the SPA knows they're in use. 1522 * 1523 * All claims *must* be resolved in the first txg -- before the SPA 1524 * starts allocating blocks -- so that nothing is allocated twice. 1525 * If txg == 0 we just verify that the block is claimable. 1526 */ 1527 ASSERT3U(BP_GET_LOGICAL_BIRTH(&spa->spa_uberblock.ub_rootbp), <, 1528 spa_min_claim_txg(spa)); 1529 ASSERT(txg == spa_min_claim_txg(spa) || txg == 0); 1530 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(8) */ 1531 1532 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 1533 BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, 1534 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE); 1535 ASSERT0(zio->io_queued_timestamp); 1536 1537 return (zio); 1538 } 1539 1540 zio_t * 1541 zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1542 zio_done_func_t *done, void *private, zio_priority_t priority, 1543 zio_flag_t flags, enum trim_flag trim_flags) 1544 { 1545 zio_t *zio; 1546 1547 ASSERT0(vd->vdev_children); 1548 ASSERT0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 1549 ASSERT0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 1550 ASSERT3U(size, !=, 0); 1551 1552 zio = zio_create(pio, vd->vdev_spa, 0, NULL, NULL, size, size, done, 1553 private, ZIO_TYPE_TRIM, priority, flags | ZIO_FLAG_PHYSICAL, 1554 vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_TRIM_PIPELINE); 1555 zio->io_trim_flags = trim_flags; 1556 1557 return (zio); 1558 } 1559 1560 zio_t * 1561 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1562 abd_t *data, int checksum, zio_done_func_t *done, void *private, 1563 zio_priority_t priority, zio_flag_t flags, boolean_t labels) 1564 { 1565 zio_t *zio; 1566 1567 ASSERT(vd->vdev_children == 0); 1568 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 1569 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 1570 ASSERT3U(offset + size, <=, vd->vdev_psize); 1571 1572 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, 1573 private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd, 1574 offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE); 1575 1576 zio->io_prop.zp_checksum = checksum; 1577 1578 return (zio); 1579 } 1580 1581 zio_t * 1582 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1583 abd_t *data, int checksum, zio_done_func_t *done, void *private, 1584 zio_priority_t priority, zio_flag_t flags, boolean_t labels) 1585 { 1586 zio_t *zio; 1587 1588 ASSERT(vd->vdev_children == 0); 1589 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 1590 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 1591 ASSERT3U(offset + size, <=, vd->vdev_psize); 1592 1593 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, 1594 private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd, 1595 offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE); 1596 1597 zio->io_prop.zp_checksum = checksum; 1598 1599 if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) { 1600 /* 1601 * zec checksums are necessarily destructive -- they modify 1602 * the end of the write buffer to hold the verifier/checksum. 1603 * Therefore, we must make a local copy in case the data is 1604 * being written to multiple places in parallel. 1605 */ 1606 abd_t *wbuf = abd_alloc_sametype(data, size); 1607 abd_copy(wbuf, data, size); 1608 1609 zio_push_transform(zio, wbuf, size, size, NULL); 1610 } 1611 1612 return (zio); 1613 } 1614 1615 /* 1616 * Create a child I/O to do some work for us. 1617 */ 1618 zio_t * 1619 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset, 1620 abd_t *data, uint64_t size, int type, zio_priority_t priority, 1621 zio_flag_t flags, zio_done_func_t *done, void *private) 1622 { 1623 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE; 1624 zio_t *zio; 1625 1626 /* 1627 * vdev child I/Os do not propagate their error to the parent. 1628 * Therefore, for correct operation the caller *must* check for 1629 * and handle the error in the child i/o's done callback. 1630 * The only exceptions are i/os that we don't care about 1631 * (OPTIONAL or REPAIR). 1632 */ 1633 ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) || 1634 done != NULL); 1635 1636 if (type == ZIO_TYPE_READ && bp != NULL) { 1637 /* 1638 * If we have the bp, then the child should perform the 1639 * checksum and the parent need not. This pushes error 1640 * detection as close to the leaves as possible and 1641 * eliminates redundant checksums in the interior nodes. 1642 */ 1643 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY; 1644 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 1645 /* 1646 * We never allow the mirror VDEV to attempt reading from any 1647 * additional data copies after the first Direct I/O checksum 1648 * verify failure. This is to avoid bad data being written out 1649 * through the mirror during self healing. See comment in 1650 * vdev_mirror_io_done() for more details. 1651 */ 1652 ASSERT0(pio->io_flags & ZIO_FLAG_DIO_CHKSUM_ERR); 1653 } else if (type == ZIO_TYPE_WRITE && 1654 pio->io_prop.zp_direct_write == B_TRUE) { 1655 /* 1656 * By default we only will verify checksums for Direct I/O 1657 * writes for Linux. FreeBSD is able to place user pages under 1658 * write protection before issuing them to the ZIO pipeline. 1659 * 1660 * Checksum validation errors will only be reported through 1661 * the top-level VDEV, which is set by this child ZIO. 1662 */ 1663 ASSERT3P(bp, !=, NULL); 1664 ASSERT3U(pio->io_child_type, ==, ZIO_CHILD_LOGICAL); 1665 pipeline |= ZIO_STAGE_DIO_CHECKSUM_VERIFY; 1666 } 1667 1668 if (vd->vdev_ops->vdev_op_leaf) { 1669 ASSERT0(vd->vdev_children); 1670 offset += VDEV_LABEL_START_SIZE; 1671 } 1672 1673 flags |= ZIO_VDEV_CHILD_FLAGS(pio); 1674 1675 /* 1676 * If we've decided to do a repair, the write is not speculative -- 1677 * even if the original read was. 1678 */ 1679 if (flags & ZIO_FLAG_IO_REPAIR) 1680 flags &= ~ZIO_FLAG_SPECULATIVE; 1681 1682 /* 1683 * If we're creating a child I/O that is not associated with a 1684 * top-level vdev, then the child zio is not an allocating I/O. 1685 * If this is a retried I/O then we ignore it since we will 1686 * have already processed the original allocating I/O. 1687 */ 1688 if (flags & ZIO_FLAG_IO_ALLOCATING && 1689 (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) { 1690 ASSERT(pio->io_metaslab_class != NULL); 1691 ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled); 1692 ASSERT(type == ZIO_TYPE_WRITE); 1693 ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE); 1694 ASSERT(!(flags & ZIO_FLAG_IO_REPAIR)); 1695 ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) || 1696 pio->io_child_type == ZIO_CHILD_GANG); 1697 1698 flags &= ~ZIO_FLAG_IO_ALLOCATING; 1699 } 1700 1701 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size, 1702 done, private, type, priority, flags, vd, offset, &pio->io_bookmark, 1703 ZIO_STAGE_VDEV_IO_START >> 1, pipeline); 1704 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); 1705 1706 return (zio); 1707 } 1708 1709 zio_t * 1710 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size, 1711 zio_type_t type, zio_priority_t priority, zio_flag_t flags, 1712 zio_done_func_t *done, void *private) 1713 { 1714 zio_t *zio; 1715 1716 ASSERT(vd->vdev_ops->vdev_op_leaf); 1717 1718 zio = zio_create(NULL, vd->vdev_spa, 0, NULL, 1719 data, size, size, done, private, type, priority, 1720 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED, 1721 vd, offset, NULL, 1722 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE); 1723 1724 return (zio); 1725 } 1726 1727 1728 /* 1729 * Send a flush command to the given vdev. Unlike most zio creation functions, 1730 * the flush zios are issued immediately. You can wait on pio to pause until 1731 * the flushes complete. 1732 */ 1733 void 1734 zio_flush(zio_t *pio, vdev_t *vd) 1735 { 1736 const zio_flag_t flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | 1737 ZIO_FLAG_DONT_RETRY; 1738 1739 if (vd->vdev_nowritecache) 1740 return; 1741 1742 if (vd->vdev_children == 0) { 1743 zio_nowait(zio_create(pio, vd->vdev_spa, 0, NULL, NULL, 0, 0, 1744 NULL, NULL, ZIO_TYPE_FLUSH, ZIO_PRIORITY_NOW, flags, vd, 0, 1745 NULL, ZIO_STAGE_OPEN, ZIO_FLUSH_PIPELINE)); 1746 } else { 1747 for (uint64_t c = 0; c < vd->vdev_children; c++) 1748 zio_flush(pio, vd->vdev_child[c]); 1749 } 1750 } 1751 1752 void 1753 zio_shrink(zio_t *zio, uint64_t size) 1754 { 1755 ASSERT3P(zio->io_executor, ==, NULL); 1756 ASSERT3U(zio->io_orig_size, ==, zio->io_size); 1757 ASSERT3U(size, <=, zio->io_size); 1758 1759 /* 1760 * We don't shrink for raidz because of problems with the 1761 * reconstruction when reading back less than the block size. 1762 * Note, BP_IS_RAIDZ() assumes no compression. 1763 */ 1764 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 1765 if (!BP_IS_RAIDZ(zio->io_bp)) { 1766 /* we are not doing a raw write */ 1767 ASSERT3U(zio->io_size, ==, zio->io_lsize); 1768 zio->io_orig_size = zio->io_size = zio->io_lsize = size; 1769 } 1770 } 1771 1772 /* 1773 * Round provided allocation size up to a value that can be allocated 1774 * by at least some vdev(s) in the pool with minimum or no additional 1775 * padding and without extra space usage on others 1776 */ 1777 static uint64_t 1778 zio_roundup_alloc_size(spa_t *spa, uint64_t size) 1779 { 1780 if (size > spa->spa_min_alloc) 1781 return (roundup(size, spa->spa_gcd_alloc)); 1782 return (spa->spa_min_alloc); 1783 } 1784 1785 size_t 1786 zio_get_compression_max_size(enum zio_compress compress, uint64_t gcd_alloc, 1787 uint64_t min_alloc, size_t s_len) 1788 { 1789 size_t d_len; 1790 1791 /* minimum 12.5% must be saved (legacy value, may be changed later) */ 1792 d_len = s_len - (s_len >> 3); 1793 1794 /* ZLE can't use exactly d_len bytes, it needs more, so ignore it */ 1795 if (compress == ZIO_COMPRESS_ZLE) 1796 return (d_len); 1797 1798 d_len = d_len - d_len % gcd_alloc; 1799 1800 if (d_len < min_alloc) 1801 return (BPE_PAYLOAD_SIZE); 1802 return (d_len); 1803 } 1804 1805 /* 1806 * ========================================================================== 1807 * Prepare to read and write logical blocks 1808 * ========================================================================== 1809 */ 1810 1811 static zio_t * 1812 zio_read_bp_init(zio_t *zio) 1813 { 1814 blkptr_t *bp = zio->io_bp; 1815 uint64_t psize = 1816 BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp); 1817 1818 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 1819 1820 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF && 1821 zio->io_child_type == ZIO_CHILD_LOGICAL && 1822 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) { 1823 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize), 1824 psize, psize, zio_decompress); 1825 } 1826 1827 if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) || 1828 BP_HAS_INDIRECT_MAC_CKSUM(bp)) && 1829 zio->io_child_type == ZIO_CHILD_LOGICAL) { 1830 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize), 1831 psize, psize, zio_decrypt); 1832 } 1833 1834 if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) { 1835 int psize = BPE_GET_PSIZE(bp); 1836 void *data = abd_borrow_buf(zio->io_abd, psize); 1837 1838 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1839 decode_embedded_bp_compressed(bp, data); 1840 abd_return_buf_copy(zio->io_abd, data, psize); 1841 } else { 1842 ASSERT(!BP_IS_EMBEDDED(bp)); 1843 } 1844 1845 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL) 1846 zio->io_pipeline = ZIO_DDT_READ_PIPELINE; 1847 1848 return (zio); 1849 } 1850 1851 static zio_t * 1852 zio_write_bp_init(zio_t *zio) 1853 { 1854 if (!IO_IS_ALLOCATING(zio)) 1855 return (zio); 1856 1857 ASSERT(zio->io_child_type != ZIO_CHILD_DDT); 1858 1859 if (zio->io_bp_override) { 1860 blkptr_t *bp = zio->io_bp; 1861 zio_prop_t *zp = &zio->io_prop; 1862 1863 ASSERT(BP_GET_LOGICAL_BIRTH(bp) != zio->io_txg); 1864 1865 *bp = *zio->io_bp_override; 1866 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1867 1868 if (zp->zp_brtwrite) 1869 return (zio); 1870 1871 ASSERT(!BP_GET_DEDUP(zio->io_bp_override)); 1872 1873 if (BP_IS_EMBEDDED(bp)) 1874 return (zio); 1875 1876 /* 1877 * If we've been overridden and nopwrite is set then 1878 * set the flag accordingly to indicate that a nopwrite 1879 * has already occurred. 1880 */ 1881 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) { 1882 ASSERT(!zp->zp_dedup); 1883 ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum); 1884 zio->io_flags |= ZIO_FLAG_NOPWRITE; 1885 return (zio); 1886 } 1887 1888 ASSERT(!zp->zp_nopwrite); 1889 1890 if (BP_IS_HOLE(bp) || !zp->zp_dedup) 1891 return (zio); 1892 1893 ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags & 1894 ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify); 1895 1896 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum && 1897 !zp->zp_encrypt) { 1898 BP_SET_DEDUP(bp, 1); 1899 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE; 1900 return (zio); 1901 } 1902 1903 /* 1904 * We were unable to handle this as an override bp, treat 1905 * it as a regular write I/O. 1906 */ 1907 zio->io_bp_override = NULL; 1908 *bp = zio->io_bp_orig; 1909 zio->io_pipeline = zio->io_orig_pipeline; 1910 } 1911 1912 return (zio); 1913 } 1914 1915 static zio_t * 1916 zio_write_compress(zio_t *zio) 1917 { 1918 spa_t *spa = zio->io_spa; 1919 zio_prop_t *zp = &zio->io_prop; 1920 enum zio_compress compress = zp->zp_compress; 1921 blkptr_t *bp = zio->io_bp; 1922 uint64_t lsize = zio->io_lsize; 1923 uint64_t psize = zio->io_size; 1924 uint32_t pass = 1; 1925 1926 /* 1927 * If our children haven't all reached the ready stage, 1928 * wait for them and then repeat this pipeline stage. 1929 */ 1930 if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT | 1931 ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) { 1932 return (NULL); 1933 } 1934 1935 if (!IO_IS_ALLOCATING(zio)) 1936 return (zio); 1937 1938 if (zio->io_children_ready != NULL) { 1939 /* 1940 * Now that all our children are ready, run the callback 1941 * associated with this zio in case it wants to modify the 1942 * data to be written. 1943 */ 1944 ASSERT3U(zp->zp_level, >, 0); 1945 zio->io_children_ready(zio); 1946 } 1947 1948 ASSERT(zio->io_child_type != ZIO_CHILD_DDT); 1949 ASSERT(zio->io_bp_override == NULL); 1950 1951 if (!BP_IS_HOLE(bp) && BP_GET_LOGICAL_BIRTH(bp) == zio->io_txg) { 1952 /* 1953 * We're rewriting an existing block, which means we're 1954 * working on behalf of spa_sync(). For spa_sync() to 1955 * converge, it must eventually be the case that we don't 1956 * have to allocate new blocks. But compression changes 1957 * the blocksize, which forces a reallocate, and makes 1958 * convergence take longer. Therefore, after the first 1959 * few passes, stop compressing to ensure convergence. 1960 */ 1961 pass = spa_sync_pass(spa); 1962 1963 ASSERT(zio->io_txg == spa_syncing_txg(spa)); 1964 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1965 ASSERT(!BP_GET_DEDUP(bp)); 1966 1967 if (pass >= zfs_sync_pass_dont_compress) 1968 compress = ZIO_COMPRESS_OFF; 1969 1970 /* Make sure someone doesn't change their mind on overwrites */ 1971 ASSERT(BP_IS_EMBEDDED(bp) || BP_IS_GANG(bp) || 1972 MIN(zp->zp_copies, spa_max_replication(spa)) 1973 == BP_GET_NDVAS(bp)); 1974 } 1975 1976 /* If it's a compressed write that is not raw, compress the buffer. */ 1977 if (compress != ZIO_COMPRESS_OFF && 1978 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) { 1979 abd_t *cabd = NULL; 1980 if (abd_cmp_zero(zio->io_abd, lsize) == 0) 1981 psize = 0; 1982 else if (compress == ZIO_COMPRESS_EMPTY) 1983 psize = lsize; 1984 else 1985 psize = zio_compress_data(compress, zio->io_abd, &cabd, 1986 lsize, 1987 zio_get_compression_max_size(compress, 1988 spa->spa_gcd_alloc, spa->spa_min_alloc, lsize), 1989 zp->zp_complevel); 1990 if (psize == 0) { 1991 compress = ZIO_COMPRESS_OFF; 1992 } else if (psize >= lsize) { 1993 compress = ZIO_COMPRESS_OFF; 1994 if (cabd != NULL) 1995 abd_free(cabd); 1996 } else if (psize <= BPE_PAYLOAD_SIZE && !zp->zp_encrypt && 1997 zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) && 1998 spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) { 1999 void *cbuf = abd_borrow_buf_copy(cabd, lsize); 2000 encode_embedded_bp_compressed(bp, 2001 cbuf, compress, lsize, psize); 2002 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA); 2003 BP_SET_TYPE(bp, zio->io_prop.zp_type); 2004 BP_SET_LEVEL(bp, zio->io_prop.zp_level); 2005 abd_return_buf(cabd, cbuf, lsize); 2006 abd_free(cabd); 2007 BP_SET_LOGICAL_BIRTH(bp, zio->io_txg); 2008 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2009 ASSERT(spa_feature_is_active(spa, 2010 SPA_FEATURE_EMBEDDED_DATA)); 2011 return (zio); 2012 } else { 2013 /* 2014 * Round compressed size up to the minimum allocation 2015 * size of the smallest-ashift device, and zero the 2016 * tail. This ensures that the compressed size of the 2017 * BP (and thus compressratio property) are correct, 2018 * in that we charge for the padding used to fill out 2019 * the last sector. 2020 */ 2021 size_t rounded = (size_t)zio_roundup_alloc_size(spa, 2022 psize); 2023 if (rounded >= lsize) { 2024 compress = ZIO_COMPRESS_OFF; 2025 abd_free(cabd); 2026 psize = lsize; 2027 } else { 2028 abd_zero_off(cabd, psize, rounded - psize); 2029 psize = rounded; 2030 zio_push_transform(zio, cabd, 2031 psize, lsize, NULL); 2032 } 2033 } 2034 2035 /* 2036 * We were unable to handle this as an override bp, treat 2037 * it as a regular write I/O. 2038 */ 2039 zio->io_bp_override = NULL; 2040 *bp = zio->io_bp_orig; 2041 zio->io_pipeline = zio->io_orig_pipeline; 2042 2043 } else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 && 2044 zp->zp_type == DMU_OT_DNODE) { 2045 /* 2046 * The DMU actually relies on the zio layer's compression 2047 * to free metadnode blocks that have had all contained 2048 * dnodes freed. As a result, even when doing a raw 2049 * receive, we must check whether the block can be compressed 2050 * to a hole. 2051 */ 2052 if (abd_cmp_zero(zio->io_abd, lsize) == 0) { 2053 psize = 0; 2054 compress = ZIO_COMPRESS_OFF; 2055 } else { 2056 psize = lsize; 2057 } 2058 } else if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS && 2059 !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) { 2060 /* 2061 * If we are raw receiving an encrypted dataset we should not 2062 * take this codepath because it will change the on-disk block 2063 * and decryption will fail. 2064 */ 2065 size_t rounded = MIN((size_t)zio_roundup_alloc_size(spa, psize), 2066 lsize); 2067 2068 if (rounded != psize) { 2069 abd_t *cdata = abd_alloc_linear(rounded, B_TRUE); 2070 abd_zero_off(cdata, psize, rounded - psize); 2071 abd_copy_off(cdata, zio->io_abd, 0, 0, psize); 2072 psize = rounded; 2073 zio_push_transform(zio, cdata, 2074 psize, rounded, NULL); 2075 } 2076 } else { 2077 ASSERT3U(psize, !=, 0); 2078 } 2079 2080 /* 2081 * The final pass of spa_sync() must be all rewrites, but the first 2082 * few passes offer a trade-off: allocating blocks defers convergence, 2083 * but newly allocated blocks are sequential, so they can be written 2084 * to disk faster. Therefore, we allow the first few passes of 2085 * spa_sync() to allocate new blocks, but force rewrites after that. 2086 * There should only be a handful of blocks after pass 1 in any case. 2087 */ 2088 if (!BP_IS_HOLE(bp) && BP_GET_LOGICAL_BIRTH(bp) == zio->io_txg && 2089 BP_GET_PSIZE(bp) == psize && 2090 pass >= zfs_sync_pass_rewrite) { 2091 VERIFY3U(psize, !=, 0); 2092 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES; 2093 2094 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages; 2095 zio->io_flags |= ZIO_FLAG_IO_REWRITE; 2096 } else { 2097 BP_ZERO(bp); 2098 zio->io_pipeline = ZIO_WRITE_PIPELINE; 2099 } 2100 2101 if (psize == 0) { 2102 if (BP_GET_LOGICAL_BIRTH(&zio->io_bp_orig) != 0 && 2103 spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) { 2104 BP_SET_LSIZE(bp, lsize); 2105 BP_SET_TYPE(bp, zp->zp_type); 2106 BP_SET_LEVEL(bp, zp->zp_level); 2107 BP_SET_BIRTH(bp, zio->io_txg, 0); 2108 } 2109 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2110 } else { 2111 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER); 2112 BP_SET_LSIZE(bp, lsize); 2113 BP_SET_TYPE(bp, zp->zp_type); 2114 BP_SET_LEVEL(bp, zp->zp_level); 2115 BP_SET_PSIZE(bp, psize); 2116 BP_SET_COMPRESS(bp, compress); 2117 BP_SET_CHECKSUM(bp, zp->zp_checksum); 2118 BP_SET_DEDUP(bp, zp->zp_dedup); 2119 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 2120 if (zp->zp_dedup) { 2121 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2122 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 2123 ASSERT(!zp->zp_encrypt || 2124 DMU_OT_IS_ENCRYPTED(zp->zp_type)); 2125 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE; 2126 } 2127 if (zp->zp_nopwrite) { 2128 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2129 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 2130 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE; 2131 } 2132 } 2133 return (zio); 2134 } 2135 2136 static zio_t * 2137 zio_free_bp_init(zio_t *zio) 2138 { 2139 blkptr_t *bp = zio->io_bp; 2140 2141 if (zio->io_child_type == ZIO_CHILD_LOGICAL) { 2142 if (BP_GET_DEDUP(bp)) 2143 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE; 2144 } 2145 2146 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 2147 2148 return (zio); 2149 } 2150 2151 /* 2152 * ========================================================================== 2153 * Execute the I/O pipeline 2154 * ========================================================================== 2155 */ 2156 2157 static void 2158 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline) 2159 { 2160 spa_t *spa = zio->io_spa; 2161 zio_type_t t = zio->io_type; 2162 2163 /* 2164 * If we're a config writer or a probe, the normal issue and 2165 * interrupt threads may all be blocked waiting for the config lock. 2166 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL. 2167 */ 2168 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE)) 2169 t = ZIO_TYPE_NULL; 2170 2171 /* 2172 * A similar issue exists for the L2ARC write thread until L2ARC 2.0. 2173 */ 2174 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux) 2175 t = ZIO_TYPE_NULL; 2176 2177 /* 2178 * If this is a high priority I/O, then use the high priority taskq if 2179 * available or cut the line otherwise. 2180 */ 2181 if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) { 2182 if (spa->spa_zio_taskq[t][q + 1].stqs_count != 0) 2183 q++; 2184 else 2185 cutinline = B_TRUE; 2186 } 2187 2188 ASSERT3U(q, <, ZIO_TASKQ_TYPES); 2189 2190 spa_taskq_dispatch(spa, t, q, zio_execute, zio, cutinline); 2191 } 2192 2193 static boolean_t 2194 zio_taskq_member(zio_t *zio, zio_taskq_type_t q) 2195 { 2196 spa_t *spa = zio->io_spa; 2197 2198 taskq_t *tq = taskq_of_curthread(); 2199 2200 for (zio_type_t t = 0; t < ZIO_TYPES; t++) { 2201 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 2202 uint_t i; 2203 for (i = 0; i < tqs->stqs_count; i++) { 2204 if (tqs->stqs_taskq[i] == tq) 2205 return (B_TRUE); 2206 } 2207 } 2208 2209 return (B_FALSE); 2210 } 2211 2212 static zio_t * 2213 zio_issue_async(zio_t *zio) 2214 { 2215 ASSERT((zio->io_type != ZIO_TYPE_WRITE) || ZIO_HAS_ALLOCATOR(zio)); 2216 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 2217 return (NULL); 2218 } 2219 2220 void 2221 zio_interrupt(void *zio) 2222 { 2223 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE); 2224 } 2225 2226 void 2227 zio_delay_interrupt(zio_t *zio) 2228 { 2229 /* 2230 * The timeout_generic() function isn't defined in userspace, so 2231 * rather than trying to implement the function, the zio delay 2232 * functionality has been disabled for userspace builds. 2233 */ 2234 2235 #ifdef _KERNEL 2236 /* 2237 * If io_target_timestamp is zero, then no delay has been registered 2238 * for this IO, thus jump to the end of this function and "skip" the 2239 * delay; issuing it directly to the zio layer. 2240 */ 2241 if (zio->io_target_timestamp != 0) { 2242 hrtime_t now = gethrtime(); 2243 2244 if (now >= zio->io_target_timestamp) { 2245 /* 2246 * This IO has already taken longer than the target 2247 * delay to complete, so we don't want to delay it 2248 * any longer; we "miss" the delay and issue it 2249 * directly to the zio layer. This is likely due to 2250 * the target latency being set to a value less than 2251 * the underlying hardware can satisfy (e.g. delay 2252 * set to 1ms, but the disks take 10ms to complete an 2253 * IO request). 2254 */ 2255 2256 DTRACE_PROBE2(zio__delay__miss, zio_t *, zio, 2257 hrtime_t, now); 2258 2259 zio_interrupt(zio); 2260 } else { 2261 taskqid_t tid; 2262 hrtime_t diff = zio->io_target_timestamp - now; 2263 int ticks = MAX(1, NSEC_TO_TICK(diff)); 2264 clock_t expire_at_tick = ddi_get_lbolt() + ticks; 2265 2266 DTRACE_PROBE3(zio__delay__hit, zio_t *, zio, 2267 hrtime_t, now, hrtime_t, diff); 2268 2269 tid = taskq_dispatch_delay(system_taskq, zio_interrupt, 2270 zio, TQ_NOSLEEP, expire_at_tick); 2271 if (tid == TASKQID_INVALID) { 2272 /* 2273 * Couldn't allocate a task. Just finish the 2274 * zio without a delay. 2275 */ 2276 zio_interrupt(zio); 2277 } 2278 } 2279 return; 2280 } 2281 #endif 2282 DTRACE_PROBE1(zio__delay__skip, zio_t *, zio); 2283 zio_interrupt(zio); 2284 } 2285 2286 static void 2287 zio_deadman_impl(zio_t *pio, int ziodepth) 2288 { 2289 zio_t *cio, *cio_next; 2290 zio_link_t *zl = NULL; 2291 vdev_t *vd = pio->io_vd; 2292 uint64_t failmode = spa_get_deadman_failmode(pio->io_spa); 2293 2294 if (zio_deadman_log_all || (vd != NULL && vd->vdev_ops->vdev_op_leaf)) { 2295 vdev_queue_t *vq = vd ? &vd->vdev_queue : NULL; 2296 zbookmark_phys_t *zb = &pio->io_bookmark; 2297 uint64_t delta = gethrtime() - pio->io_timestamp; 2298 2299 zfs_dbgmsg("slow zio[%d]: zio=%px timestamp=%llu " 2300 "delta=%llu queued=%llu io=%llu " 2301 "path=%s " 2302 "last=%llu type=%d " 2303 "priority=%d flags=0x%llx stage=0x%x " 2304 "pipeline=0x%x pipeline-trace=0x%x " 2305 "objset=%llu object=%llu " 2306 "level=%llu blkid=%llu " 2307 "offset=%llu size=%llu " 2308 "error=%d", 2309 ziodepth, pio, pio->io_timestamp, 2310 (u_longlong_t)delta, pio->io_delta, pio->io_delay, 2311 vd ? vd->vdev_path : "NULL", 2312 vq ? vq->vq_io_complete_ts : 0, pio->io_type, 2313 pio->io_priority, (u_longlong_t)pio->io_flags, 2314 pio->io_stage, pio->io_pipeline, pio->io_pipeline_trace, 2315 (u_longlong_t)zb->zb_objset, (u_longlong_t)zb->zb_object, 2316 (u_longlong_t)zb->zb_level, (u_longlong_t)zb->zb_blkid, 2317 (u_longlong_t)pio->io_offset, (u_longlong_t)pio->io_size, 2318 pio->io_error); 2319 (void) zfs_ereport_post(FM_EREPORT_ZFS_DEADMAN, 2320 pio->io_spa, vd, zb, pio, 0); 2321 } 2322 2323 if (vd != NULL && vd->vdev_ops->vdev_op_leaf && 2324 list_is_empty(&pio->io_child_list) && 2325 failmode == ZIO_FAILURE_MODE_CONTINUE && 2326 taskq_empty_ent(&pio->io_tqent) && 2327 pio->io_queue_state == ZIO_QS_ACTIVE) { 2328 pio->io_error = EINTR; 2329 zio_interrupt(pio); 2330 } 2331 2332 mutex_enter(&pio->io_lock); 2333 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 2334 cio_next = zio_walk_children(pio, &zl); 2335 zio_deadman_impl(cio, ziodepth + 1); 2336 } 2337 mutex_exit(&pio->io_lock); 2338 } 2339 2340 /* 2341 * Log the critical information describing this zio and all of its children 2342 * using the zfs_dbgmsg() interface then post deadman event for the ZED. 2343 */ 2344 void 2345 zio_deadman(zio_t *pio, const char *tag) 2346 { 2347 spa_t *spa = pio->io_spa; 2348 char *name = spa_name(spa); 2349 2350 if (!zfs_deadman_enabled || spa_suspended(spa)) 2351 return; 2352 2353 zio_deadman_impl(pio, 0); 2354 2355 switch (spa_get_deadman_failmode(spa)) { 2356 case ZIO_FAILURE_MODE_WAIT: 2357 zfs_dbgmsg("%s waiting for hung I/O to pool '%s'", tag, name); 2358 break; 2359 2360 case ZIO_FAILURE_MODE_CONTINUE: 2361 zfs_dbgmsg("%s restarting hung I/O for pool '%s'", tag, name); 2362 break; 2363 2364 case ZIO_FAILURE_MODE_PANIC: 2365 fm_panic("%s determined I/O to pool '%s' is hung.", tag, name); 2366 break; 2367 } 2368 } 2369 2370 /* 2371 * Execute the I/O pipeline until one of the following occurs: 2372 * (1) the I/O completes; (2) the pipeline stalls waiting for 2373 * dependent child I/Os; (3) the I/O issues, so we're waiting 2374 * for an I/O completion interrupt; (4) the I/O is delegated by 2375 * vdev-level caching or aggregation; (5) the I/O is deferred 2376 * due to vdev-level queueing; (6) the I/O is handed off to 2377 * another thread. In all cases, the pipeline stops whenever 2378 * there's no CPU work; it never burns a thread in cv_wait_io(). 2379 * 2380 * There's no locking on io_stage because there's no legitimate way 2381 * for multiple threads to be attempting to process the same I/O. 2382 */ 2383 static zio_pipe_stage_t *zio_pipeline[]; 2384 2385 /* 2386 * zio_execute() is a wrapper around the static function 2387 * __zio_execute() so that we can force __zio_execute() to be 2388 * inlined. This reduces stack overhead which is important 2389 * because __zio_execute() is called recursively in several zio 2390 * code paths. zio_execute() itself cannot be inlined because 2391 * it is externally visible. 2392 */ 2393 void 2394 zio_execute(void *zio) 2395 { 2396 fstrans_cookie_t cookie; 2397 2398 cookie = spl_fstrans_mark(); 2399 __zio_execute(zio); 2400 spl_fstrans_unmark(cookie); 2401 } 2402 2403 /* 2404 * Used to determine if in the current context the stack is sized large 2405 * enough to allow zio_execute() to be called recursively. A minimum 2406 * stack size of 16K is required to avoid needing to re-dispatch the zio. 2407 */ 2408 static boolean_t 2409 zio_execute_stack_check(zio_t *zio) 2410 { 2411 #if !defined(HAVE_LARGE_STACKS) 2412 dsl_pool_t *dp = spa_get_dsl(zio->io_spa); 2413 2414 /* Executing in txg_sync_thread() context. */ 2415 if (dp && curthread == dp->dp_tx.tx_sync_thread) 2416 return (B_TRUE); 2417 2418 /* Pool initialization outside of zio_taskq context. */ 2419 if (dp && spa_is_initializing(dp->dp_spa) && 2420 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE) && 2421 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE_HIGH)) 2422 return (B_TRUE); 2423 #else 2424 (void) zio; 2425 #endif /* HAVE_LARGE_STACKS */ 2426 2427 return (B_FALSE); 2428 } 2429 2430 __attribute__((always_inline)) 2431 static inline void 2432 __zio_execute(zio_t *zio) 2433 { 2434 ASSERT3U(zio->io_queued_timestamp, >, 0); 2435 2436 while (zio->io_stage < ZIO_STAGE_DONE) { 2437 enum zio_stage pipeline = zio->io_pipeline; 2438 enum zio_stage stage = zio->io_stage; 2439 2440 zio->io_executor = curthread; 2441 2442 ASSERT(!MUTEX_HELD(&zio->io_lock)); 2443 ASSERT(ISP2(stage)); 2444 ASSERT(zio->io_stall == NULL); 2445 2446 do { 2447 stage <<= 1; 2448 } while ((stage & pipeline) == 0); 2449 2450 ASSERT(stage <= ZIO_STAGE_DONE); 2451 2452 /* 2453 * If we are in interrupt context and this pipeline stage 2454 * will grab a config lock that is held across I/O, 2455 * or may wait for an I/O that needs an interrupt thread 2456 * to complete, issue async to avoid deadlock. 2457 * 2458 * For VDEV_IO_START, we cut in line so that the io will 2459 * be sent to disk promptly. 2460 */ 2461 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL && 2462 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) { 2463 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ? 2464 zio_requeue_io_start_cut_in_line : B_FALSE; 2465 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut); 2466 return; 2467 } 2468 2469 /* 2470 * If the current context doesn't have large enough stacks 2471 * the zio must be issued asynchronously to prevent overflow. 2472 */ 2473 if (zio_execute_stack_check(zio)) { 2474 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ? 2475 zio_requeue_io_start_cut_in_line : B_FALSE; 2476 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut); 2477 return; 2478 } 2479 2480 zio->io_stage = stage; 2481 zio->io_pipeline_trace |= zio->io_stage; 2482 2483 /* 2484 * The zio pipeline stage returns the next zio to execute 2485 * (typically the same as this one), or NULL if we should 2486 * stop. 2487 */ 2488 zio = zio_pipeline[highbit64(stage) - 1](zio); 2489 2490 if (zio == NULL) 2491 return; 2492 } 2493 } 2494 2495 2496 /* 2497 * ========================================================================== 2498 * Initiate I/O, either sync or async 2499 * ========================================================================== 2500 */ 2501 int 2502 zio_wait(zio_t *zio) 2503 { 2504 /* 2505 * Some routines, like zio_free_sync(), may return a NULL zio 2506 * to avoid the performance overhead of creating and then destroying 2507 * an unneeded zio. For the callers' simplicity, we accept a NULL 2508 * zio and ignore it. 2509 */ 2510 if (zio == NULL) 2511 return (0); 2512 2513 long timeout = MSEC_TO_TICK(zfs_deadman_ziotime_ms); 2514 int error; 2515 2516 ASSERT3S(zio->io_stage, ==, ZIO_STAGE_OPEN); 2517 ASSERT3P(zio->io_executor, ==, NULL); 2518 2519 zio->io_waiter = curthread; 2520 ASSERT0(zio->io_queued_timestamp); 2521 zio->io_queued_timestamp = gethrtime(); 2522 2523 if (zio->io_type == ZIO_TYPE_WRITE) { 2524 spa_select_allocator(zio); 2525 } 2526 __zio_execute(zio); 2527 2528 mutex_enter(&zio->io_lock); 2529 while (zio->io_executor != NULL) { 2530 error = cv_timedwait_io(&zio->io_cv, &zio->io_lock, 2531 ddi_get_lbolt() + timeout); 2532 2533 if (zfs_deadman_enabled && error == -1 && 2534 gethrtime() - zio->io_queued_timestamp > 2535 spa_deadman_ziotime(zio->io_spa)) { 2536 mutex_exit(&zio->io_lock); 2537 timeout = MSEC_TO_TICK(zfs_deadman_checktime_ms); 2538 zio_deadman(zio, FTAG); 2539 mutex_enter(&zio->io_lock); 2540 } 2541 } 2542 mutex_exit(&zio->io_lock); 2543 2544 error = zio->io_error; 2545 zio_destroy(zio); 2546 2547 return (error); 2548 } 2549 2550 void 2551 zio_nowait(zio_t *zio) 2552 { 2553 /* 2554 * See comment in zio_wait(). 2555 */ 2556 if (zio == NULL) 2557 return; 2558 2559 ASSERT3P(zio->io_executor, ==, NULL); 2560 2561 if (zio->io_child_type == ZIO_CHILD_LOGICAL && 2562 list_is_empty(&zio->io_parent_list)) { 2563 zio_t *pio; 2564 2565 /* 2566 * This is a logical async I/O with no parent to wait for it. 2567 * We add it to the spa_async_root_zio "Godfather" I/O which 2568 * will ensure they complete prior to unloading the pool. 2569 */ 2570 spa_t *spa = zio->io_spa; 2571 pio = spa->spa_async_zio_root[CPU_SEQID_UNSTABLE]; 2572 2573 zio_add_child(pio, zio); 2574 } 2575 2576 ASSERT0(zio->io_queued_timestamp); 2577 zio->io_queued_timestamp = gethrtime(); 2578 if (zio->io_type == ZIO_TYPE_WRITE) { 2579 spa_select_allocator(zio); 2580 } 2581 __zio_execute(zio); 2582 } 2583 2584 /* 2585 * ========================================================================== 2586 * Reexecute, cancel, or suspend/resume failed I/O 2587 * ========================================================================== 2588 */ 2589 2590 static void 2591 zio_reexecute(void *arg) 2592 { 2593 zio_t *pio = arg; 2594 zio_t *cio, *cio_next, *gio; 2595 2596 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL); 2597 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN); 2598 ASSERT(pio->io_gang_leader == NULL); 2599 ASSERT(pio->io_gang_tree == NULL); 2600 2601 mutex_enter(&pio->io_lock); 2602 pio->io_flags = pio->io_orig_flags; 2603 pio->io_stage = pio->io_orig_stage; 2604 pio->io_pipeline = pio->io_orig_pipeline; 2605 pio->io_reexecute = 0; 2606 pio->io_flags |= ZIO_FLAG_REEXECUTED; 2607 pio->io_pipeline_trace = 0; 2608 pio->io_error = 0; 2609 pio->io_state[ZIO_WAIT_READY] = (pio->io_stage >= ZIO_STAGE_READY) || 2610 (pio->io_pipeline & ZIO_STAGE_READY) == 0; 2611 pio->io_state[ZIO_WAIT_DONE] = (pio->io_stage >= ZIO_STAGE_DONE); 2612 2613 /* 2614 * It's possible for a failed ZIO to be a descendant of more than one 2615 * ZIO tree. When reexecuting it, we have to be sure to add its wait 2616 * states to all parent wait counts. 2617 * 2618 * Those parents, in turn, may have other children that are currently 2619 * active, usually because they've already been reexecuted after 2620 * resuming. Those children may be executing and may call 2621 * zio_notify_parent() at the same time as we're updating our parent's 2622 * counts. To avoid races while updating the counts, we take 2623 * gio->io_lock before each update. 2624 */ 2625 zio_link_t *zl = NULL; 2626 while ((gio = zio_walk_parents(pio, &zl)) != NULL) { 2627 mutex_enter(&gio->io_lock); 2628 for (int w = 0; w < ZIO_WAIT_TYPES; w++) { 2629 gio->io_children[pio->io_child_type][w] += 2630 !pio->io_state[w]; 2631 } 2632 mutex_exit(&gio->io_lock); 2633 } 2634 2635 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 2636 pio->io_child_error[c] = 0; 2637 2638 if (IO_IS_ALLOCATING(pio)) 2639 BP_ZERO(pio->io_bp); 2640 2641 /* 2642 * As we reexecute pio's children, new children could be created. 2643 * New children go to the head of pio's io_child_list, however, 2644 * so we will (correctly) not reexecute them. The key is that 2645 * the remainder of pio's io_child_list, from 'cio_next' onward, 2646 * cannot be affected by any side effects of reexecuting 'cio'. 2647 */ 2648 zl = NULL; 2649 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 2650 cio_next = zio_walk_children(pio, &zl); 2651 mutex_exit(&pio->io_lock); 2652 zio_reexecute(cio); 2653 mutex_enter(&pio->io_lock); 2654 } 2655 mutex_exit(&pio->io_lock); 2656 2657 /* 2658 * Now that all children have been reexecuted, execute the parent. 2659 * We don't reexecute "The Godfather" I/O here as it's the 2660 * responsibility of the caller to wait on it. 2661 */ 2662 if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) { 2663 pio->io_queued_timestamp = gethrtime(); 2664 __zio_execute(pio); 2665 } 2666 } 2667 2668 void 2669 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason) 2670 { 2671 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC) 2672 fm_panic("Pool '%s' has encountered an uncorrectable I/O " 2673 "failure and the failure mode property for this pool " 2674 "is set to panic.", spa_name(spa)); 2675 2676 if (reason != ZIO_SUSPEND_MMP) { 2677 cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable " 2678 "I/O failure and has been suspended.", spa_name(spa)); 2679 } 2680 2681 (void) zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, 2682 NULL, NULL, 0); 2683 2684 mutex_enter(&spa->spa_suspend_lock); 2685 2686 if (spa->spa_suspend_zio_root == NULL) 2687 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL, 2688 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 2689 ZIO_FLAG_GODFATHER); 2690 2691 spa->spa_suspended = reason; 2692 2693 if (zio != NULL) { 2694 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 2695 ASSERT(zio != spa->spa_suspend_zio_root); 2696 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2697 ASSERT(zio_unique_parent(zio) == NULL); 2698 ASSERT(zio->io_stage == ZIO_STAGE_DONE); 2699 zio_add_child(spa->spa_suspend_zio_root, zio); 2700 } 2701 2702 mutex_exit(&spa->spa_suspend_lock); 2703 2704 txg_wait_kick(spa->spa_dsl_pool); 2705 } 2706 2707 int 2708 zio_resume(spa_t *spa) 2709 { 2710 zio_t *pio; 2711 2712 /* 2713 * Reexecute all previously suspended i/o. 2714 */ 2715 mutex_enter(&spa->spa_suspend_lock); 2716 if (spa->spa_suspended != ZIO_SUSPEND_NONE) 2717 cmn_err(CE_WARN, "Pool '%s' was suspended and is being " 2718 "resumed. Failed I/O will be retried.", 2719 spa_name(spa)); 2720 spa->spa_suspended = ZIO_SUSPEND_NONE; 2721 cv_broadcast(&spa->spa_suspend_cv); 2722 pio = spa->spa_suspend_zio_root; 2723 spa->spa_suspend_zio_root = NULL; 2724 mutex_exit(&spa->spa_suspend_lock); 2725 2726 if (pio == NULL) 2727 return (0); 2728 2729 zio_reexecute(pio); 2730 return (zio_wait(pio)); 2731 } 2732 2733 void 2734 zio_resume_wait(spa_t *spa) 2735 { 2736 mutex_enter(&spa->spa_suspend_lock); 2737 while (spa_suspended(spa)) 2738 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock); 2739 mutex_exit(&spa->spa_suspend_lock); 2740 } 2741 2742 /* 2743 * ========================================================================== 2744 * Gang blocks. 2745 * 2746 * A gang block is a collection of small blocks that looks to the DMU 2747 * like one large block. When zio_dva_allocate() cannot find a block 2748 * of the requested size, due to either severe fragmentation or the pool 2749 * being nearly full, it calls zio_write_gang_block() to construct the 2750 * block from smaller fragments. 2751 * 2752 * A gang block consists of a gang header (zio_gbh_phys_t) and up to 2753 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like 2754 * an indirect block: it's an array of block pointers. It consumes 2755 * only one sector and hence is allocatable regardless of fragmentation. 2756 * The gang header's bps point to its gang members, which hold the data. 2757 * 2758 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg> 2759 * as the verifier to ensure uniqueness of the SHA256 checksum. 2760 * Critically, the gang block bp's blk_cksum is the checksum of the data, 2761 * not the gang header. This ensures that data block signatures (needed for 2762 * deduplication) are independent of how the block is physically stored. 2763 * 2764 * Gang blocks can be nested: a gang member may itself be a gang block. 2765 * Thus every gang block is a tree in which root and all interior nodes are 2766 * gang headers, and the leaves are normal blocks that contain user data. 2767 * The root of the gang tree is called the gang leader. 2768 * 2769 * To perform any operation (read, rewrite, free, claim) on a gang block, 2770 * zio_gang_assemble() first assembles the gang tree (minus data leaves) 2771 * in the io_gang_tree field of the original logical i/o by recursively 2772 * reading the gang leader and all gang headers below it. This yields 2773 * an in-core tree containing the contents of every gang header and the 2774 * bps for every constituent of the gang block. 2775 * 2776 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree 2777 * and invokes a callback on each bp. To free a gang block, zio_gang_issue() 2778 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp. 2779 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim(). 2780 * zio_read_gang() is a wrapper around zio_read() that omits reading gang 2781 * headers, since we already have those in io_gang_tree. zio_rewrite_gang() 2782 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite() 2783 * of the gang header plus zio_checksum_compute() of the data to update the 2784 * gang header's blk_cksum as described above. 2785 * 2786 * The two-phase assemble/issue model solves the problem of partial failure -- 2787 * what if you'd freed part of a gang block but then couldn't read the 2788 * gang header for another part? Assembling the entire gang tree first 2789 * ensures that all the necessary gang header I/O has succeeded before 2790 * starting the actual work of free, claim, or write. Once the gang tree 2791 * is assembled, free and claim are in-memory operations that cannot fail. 2792 * 2793 * In the event that a gang write fails, zio_dva_unallocate() walks the 2794 * gang tree to immediately free (i.e. insert back into the space map) 2795 * everything we've allocated. This ensures that we don't get ENOSPC 2796 * errors during repeated suspend/resume cycles due to a flaky device. 2797 * 2798 * Gang rewrites only happen during sync-to-convergence. If we can't assemble 2799 * the gang tree, we won't modify the block, so we can safely defer the free 2800 * (knowing that the block is still intact). If we *can* assemble the gang 2801 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free 2802 * each constituent bp and we can allocate a new block on the next sync pass. 2803 * 2804 * In all cases, the gang tree allows complete recovery from partial failure. 2805 * ========================================================================== 2806 */ 2807 2808 static void 2809 zio_gang_issue_func_done(zio_t *zio) 2810 { 2811 abd_free(zio->io_abd); 2812 } 2813 2814 static zio_t * 2815 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2816 uint64_t offset) 2817 { 2818 if (gn != NULL) 2819 return (pio); 2820 2821 return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset), 2822 BP_GET_PSIZE(bp), zio_gang_issue_func_done, 2823 NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 2824 &pio->io_bookmark)); 2825 } 2826 2827 static zio_t * 2828 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2829 uint64_t offset) 2830 { 2831 zio_t *zio; 2832 2833 if (gn != NULL) { 2834 abd_t *gbh_abd = 2835 abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2836 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 2837 gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL, 2838 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 2839 &pio->io_bookmark); 2840 /* 2841 * As we rewrite each gang header, the pipeline will compute 2842 * a new gang block header checksum for it; but no one will 2843 * compute a new data checksum, so we do that here. The one 2844 * exception is the gang leader: the pipeline already computed 2845 * its data checksum because that stage precedes gang assembly. 2846 * (Presently, nothing actually uses interior data checksums; 2847 * this is just good hygiene.) 2848 */ 2849 if (gn != pio->io_gang_leader->io_gang_tree) { 2850 abd_t *buf = abd_get_offset(data, offset); 2851 2852 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp), 2853 buf, BP_GET_PSIZE(bp)); 2854 2855 abd_free(buf); 2856 } 2857 /* 2858 * If we are here to damage data for testing purposes, 2859 * leave the GBH alone so that we can detect the damage. 2860 */ 2861 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE) 2862 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 2863 } else { 2864 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 2865 abd_get_offset(data, offset), BP_GET_PSIZE(bp), 2866 zio_gang_issue_func_done, NULL, pio->io_priority, 2867 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2868 } 2869 2870 return (zio); 2871 } 2872 2873 static zio_t * 2874 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2875 uint64_t offset) 2876 { 2877 (void) gn, (void) data, (void) offset; 2878 2879 zio_t *zio = zio_free_sync(pio, pio->io_spa, pio->io_txg, bp, 2880 ZIO_GANG_CHILD_FLAGS(pio)); 2881 if (zio == NULL) { 2882 zio = zio_null(pio, pio->io_spa, 2883 NULL, NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)); 2884 } 2885 return (zio); 2886 } 2887 2888 static zio_t * 2889 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2890 uint64_t offset) 2891 { 2892 (void) gn, (void) data, (void) offset; 2893 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp, 2894 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio))); 2895 } 2896 2897 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = { 2898 NULL, 2899 zio_read_gang, 2900 zio_rewrite_gang, 2901 zio_free_gang, 2902 zio_claim_gang, 2903 NULL 2904 }; 2905 2906 static void zio_gang_tree_assemble_done(zio_t *zio); 2907 2908 static zio_gang_node_t * 2909 zio_gang_node_alloc(zio_gang_node_t **gnpp) 2910 { 2911 zio_gang_node_t *gn; 2912 2913 ASSERT(*gnpp == NULL); 2914 2915 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP); 2916 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE); 2917 *gnpp = gn; 2918 2919 return (gn); 2920 } 2921 2922 static void 2923 zio_gang_node_free(zio_gang_node_t **gnpp) 2924 { 2925 zio_gang_node_t *gn = *gnpp; 2926 2927 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 2928 ASSERT(gn->gn_child[g] == NULL); 2929 2930 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2931 kmem_free(gn, sizeof (*gn)); 2932 *gnpp = NULL; 2933 } 2934 2935 static void 2936 zio_gang_tree_free(zio_gang_node_t **gnpp) 2937 { 2938 zio_gang_node_t *gn = *gnpp; 2939 2940 if (gn == NULL) 2941 return; 2942 2943 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 2944 zio_gang_tree_free(&gn->gn_child[g]); 2945 2946 zio_gang_node_free(gnpp); 2947 } 2948 2949 static void 2950 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp) 2951 { 2952 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp); 2953 abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2954 2955 ASSERT(gio->io_gang_leader == gio); 2956 ASSERT(BP_IS_GANG(bp)); 2957 2958 zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE, 2959 zio_gang_tree_assemble_done, gn, gio->io_priority, 2960 ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark)); 2961 } 2962 2963 static void 2964 zio_gang_tree_assemble_done(zio_t *zio) 2965 { 2966 zio_t *gio = zio->io_gang_leader; 2967 zio_gang_node_t *gn = zio->io_private; 2968 blkptr_t *bp = zio->io_bp; 2969 2970 ASSERT(gio == zio_unique_parent(zio)); 2971 ASSERT(list_is_empty(&zio->io_child_list)); 2972 2973 if (zio->io_error) 2974 return; 2975 2976 /* this ABD was created from a linear buf in zio_gang_tree_assemble */ 2977 if (BP_SHOULD_BYTESWAP(bp)) 2978 byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size); 2979 2980 ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh); 2981 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE); 2982 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 2983 2984 abd_free(zio->io_abd); 2985 2986 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2987 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 2988 if (!BP_IS_GANG(gbp)) 2989 continue; 2990 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]); 2991 } 2992 } 2993 2994 static void 2995 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data, 2996 uint64_t offset) 2997 { 2998 zio_t *gio = pio->io_gang_leader; 2999 zio_t *zio; 3000 3001 ASSERT(BP_IS_GANG(bp) == !!gn); 3002 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp)); 3003 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree); 3004 3005 /* 3006 * If you're a gang header, your data is in gn->gn_gbh. 3007 * If you're a gang member, your data is in 'data' and gn == NULL. 3008 */ 3009 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset); 3010 3011 if (gn != NULL) { 3012 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 3013 3014 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 3015 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 3016 if (BP_IS_HOLE(gbp)) 3017 continue; 3018 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data, 3019 offset); 3020 offset += BP_GET_PSIZE(gbp); 3021 } 3022 } 3023 3024 if (gn == gio->io_gang_tree) 3025 ASSERT3U(gio->io_size, ==, offset); 3026 3027 if (zio != pio) 3028 zio_nowait(zio); 3029 } 3030 3031 static zio_t * 3032 zio_gang_assemble(zio_t *zio) 3033 { 3034 blkptr_t *bp = zio->io_bp; 3035 3036 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL); 3037 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 3038 3039 zio->io_gang_leader = zio; 3040 3041 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree); 3042 3043 return (zio); 3044 } 3045 3046 static zio_t * 3047 zio_gang_issue(zio_t *zio) 3048 { 3049 blkptr_t *bp = zio->io_bp; 3050 3051 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) { 3052 return (NULL); 3053 } 3054 3055 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio); 3056 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 3057 3058 if (zio->io_child_error[ZIO_CHILD_GANG] == 0) 3059 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd, 3060 0); 3061 else 3062 zio_gang_tree_free(&zio->io_gang_tree); 3063 3064 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 3065 3066 return (zio); 3067 } 3068 3069 static void 3070 zio_gang_inherit_allocator(zio_t *pio, zio_t *cio) 3071 { 3072 cio->io_allocator = pio->io_allocator; 3073 } 3074 3075 static void 3076 zio_write_gang_member_ready(zio_t *zio) 3077 { 3078 zio_t *pio = zio_unique_parent(zio); 3079 dva_t *cdva = zio->io_bp->blk_dva; 3080 dva_t *pdva = pio->io_bp->blk_dva; 3081 uint64_t asize; 3082 zio_t *gio __maybe_unused = zio->io_gang_leader; 3083 3084 if (BP_IS_HOLE(zio->io_bp)) 3085 return; 3086 3087 /* 3088 * If we're getting direct-invoked from zio_write_gang_block(), 3089 * the bp_orig will be set. 3090 */ 3091 ASSERT(BP_IS_HOLE(&zio->io_bp_orig) || 3092 zio->io_flags & ZIO_FLAG_PREALLOCATED); 3093 3094 ASSERT(zio->io_child_type == ZIO_CHILD_GANG); 3095 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies); 3096 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp)); 3097 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp)); 3098 VERIFY3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp)); 3099 3100 mutex_enter(&pio->io_lock); 3101 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) { 3102 ASSERT(DVA_GET_GANG(&pdva[d])); 3103 asize = DVA_GET_ASIZE(&pdva[d]); 3104 asize += DVA_GET_ASIZE(&cdva[d]); 3105 DVA_SET_ASIZE(&pdva[d], asize); 3106 } 3107 mutex_exit(&pio->io_lock); 3108 } 3109 3110 static void 3111 zio_write_gang_done(zio_t *zio) 3112 { 3113 /* 3114 * The io_abd field will be NULL for a zio with no data. The io_flags 3115 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't 3116 * check for it here as it is cleared in zio_ready. 3117 */ 3118 if (zio->io_abd != NULL) 3119 abd_free(zio->io_abd); 3120 } 3121 3122 static zio_t * 3123 zio_write_gang_block(zio_t *pio, metaslab_class_t *mc) 3124 { 3125 spa_t *spa = pio->io_spa; 3126 blkptr_t *bp = pio->io_bp; 3127 zio_t *gio = pio->io_gang_leader; 3128 zio_t *zio; 3129 zio_gang_node_t *gn, **gnpp; 3130 zio_gbh_phys_t *gbh; 3131 abd_t *gbh_abd; 3132 uint64_t txg = pio->io_txg; 3133 uint64_t resid = pio->io_size; 3134 zio_prop_t zp; 3135 int error; 3136 boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA); 3137 3138 /* 3139 * Store multiple copies of the GBH, so that we can still traverse 3140 * all the data (e.g. to free or scrub) even if a block is damaged. 3141 * This value respects the redundant_metadata property. 3142 */ 3143 int gbh_copies = gio->io_prop.zp_gang_copies; 3144 if (gbh_copies == 0) { 3145 /* 3146 * This should only happen in the case where we're filling in 3147 * DDT entries for a parent that wants more copies than the DDT 3148 * has. In that case, we cannot gang without creating a mixed 3149 * blkptr, which is illegal. 3150 */ 3151 ASSERT3U(gio->io_child_type, ==, ZIO_CHILD_DDT); 3152 pio->io_error = EAGAIN; 3153 return (pio); 3154 } 3155 ASSERT3S(gbh_copies, >, 0); 3156 ASSERT3S(gbh_copies, <=, SPA_DVAS_PER_BP); 3157 3158 ASSERT(ZIO_HAS_ALLOCATOR(pio)); 3159 int flags = METASLAB_GANG_HEADER; 3160 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 3161 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 3162 ASSERT(has_data); 3163 3164 flags |= METASLAB_ASYNC_ALLOC; 3165 } 3166 3167 error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE, 3168 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags, 3169 &pio->io_alloc_list, pio->io_allocator, pio); 3170 if (error) { 3171 pio->io_error = error; 3172 return (pio); 3173 } 3174 3175 if (pio == gio) { 3176 gnpp = &gio->io_gang_tree; 3177 } else { 3178 gnpp = pio->io_private; 3179 ASSERT(pio->io_ready == zio_write_gang_member_ready); 3180 } 3181 3182 gn = zio_gang_node_alloc(gnpp); 3183 gbh = gn->gn_gbh; 3184 memset(gbh, 0, SPA_GANGBLOCKSIZE); 3185 gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE); 3186 3187 /* 3188 * Create the gang header. 3189 */ 3190 zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE, 3191 zio_write_gang_done, NULL, pio->io_priority, 3192 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 3193 3194 zio_gang_inherit_allocator(pio, zio); 3195 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 3196 boolean_t more; 3197 VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies, 3198 zio, B_TRUE, &more)); 3199 } 3200 3201 /* 3202 * Create and nowait the gang children. First, we try to do 3203 * opportunistic allocations. If that fails to generate enough 3204 * space, we fall back to normal zio_write calls for nested gang. 3205 */ 3206 for (int g = 0; resid != 0; g++) { 3207 flags &= METASLAB_ASYNC_ALLOC; 3208 flags |= METASLAB_GANG_CHILD; 3209 zp.zp_checksum = gio->io_prop.zp_checksum; 3210 zp.zp_compress = ZIO_COMPRESS_OFF; 3211 zp.zp_complevel = gio->io_prop.zp_complevel; 3212 zp.zp_type = zp.zp_storage_type = DMU_OT_NONE; 3213 zp.zp_level = 0; 3214 zp.zp_copies = gio->io_prop.zp_copies; 3215 zp.zp_gang_copies = gio->io_prop.zp_gang_copies; 3216 zp.zp_dedup = B_FALSE; 3217 zp.zp_dedup_verify = B_FALSE; 3218 zp.zp_nopwrite = B_FALSE; 3219 zp.zp_encrypt = gio->io_prop.zp_encrypt; 3220 zp.zp_byteorder = gio->io_prop.zp_byteorder; 3221 zp.zp_direct_write = B_FALSE; 3222 memset(zp.zp_salt, 0, ZIO_DATA_SALT_LEN); 3223 memset(zp.zp_iv, 0, ZIO_DATA_IV_LEN); 3224 memset(zp.zp_mac, 0, ZIO_DATA_MAC_LEN); 3225 3226 uint64_t min_size = zio_roundup_alloc_size(spa, 3227 resid / (SPA_GBH_NBLKPTRS - g)); 3228 min_size = MIN(min_size, resid); 3229 bp = &gbh->zg_blkptr[g]; 3230 3231 zio_alloc_list_t cio_list; 3232 metaslab_trace_init(&cio_list); 3233 uint64_t allocated_size = UINT64_MAX; 3234 error = metaslab_alloc_range(spa, mc, min_size, resid, 3235 bp, gio->io_prop.zp_copies, txg, NULL, 3236 flags, &cio_list, zio->io_allocator, NULL, &allocated_size); 3237 3238 boolean_t allocated = error == 0; 3239 3240 uint64_t psize = allocated ? MIN(resid, allocated_size) : 3241 min_size; 3242 3243 zio_t *cio = zio_write(zio, spa, txg, bp, has_data ? 3244 abd_get_offset(pio->io_abd, pio->io_size - resid) : NULL, 3245 psize, psize, &zp, zio_write_gang_member_ready, NULL, 3246 zio_write_gang_done, &gn->gn_child[g], pio->io_priority, 3247 ZIO_GANG_CHILD_FLAGS(pio) | 3248 (allocated ? ZIO_FLAG_PREALLOCATED : 0), &pio->io_bookmark); 3249 3250 resid -= psize; 3251 zio_gang_inherit_allocator(zio, cio); 3252 if (allocated) { 3253 metaslab_trace_move(&cio_list, &cio->io_alloc_list); 3254 metaslab_group_alloc_increment_all(spa, 3255 &cio->io_bp_orig, zio->io_allocator, flags, psize, 3256 cio); 3257 } 3258 /* 3259 * We do not reserve for the child writes, since we already 3260 * reserved for the parent. Unreserve though will be called 3261 * for individual children. We can do this since sum of all 3262 * child's physical sizes is equal to parent's physical size. 3263 * It would not work for potentially bigger allocation sizes. 3264 */ 3265 3266 zio_nowait(cio); 3267 } 3268 3269 /* 3270 * Set pio's pipeline to just wait for zio to finish. 3271 */ 3272 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 3273 3274 zio_nowait(zio); 3275 3276 return (pio); 3277 } 3278 3279 /* 3280 * The zio_nop_write stage in the pipeline determines if allocating a 3281 * new bp is necessary. The nopwrite feature can handle writes in 3282 * either syncing or open context (i.e. zil writes) and as a result is 3283 * mutually exclusive with dedup. 3284 * 3285 * By leveraging a cryptographically secure checksum, such as SHA256, we 3286 * can compare the checksums of the new data and the old to determine if 3287 * allocating a new block is required. Note that our requirements for 3288 * cryptographic strength are fairly weak: there can't be any accidental 3289 * hash collisions, but we don't need to be secure against intentional 3290 * (malicious) collisions. To trigger a nopwrite, you have to be able 3291 * to write the file to begin with, and triggering an incorrect (hash 3292 * collision) nopwrite is no worse than simply writing to the file. 3293 * That said, there are no known attacks against the checksum algorithms 3294 * used for nopwrite, assuming that the salt and the checksums 3295 * themselves remain secret. 3296 */ 3297 static zio_t * 3298 zio_nop_write(zio_t *zio) 3299 { 3300 blkptr_t *bp = zio->io_bp; 3301 blkptr_t *bp_orig = &zio->io_bp_orig; 3302 zio_prop_t *zp = &zio->io_prop; 3303 3304 ASSERT(BP_IS_HOLE(bp)); 3305 ASSERT(BP_GET_LEVEL(bp) == 0); 3306 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 3307 ASSERT(zp->zp_nopwrite); 3308 ASSERT(!zp->zp_dedup); 3309 ASSERT(zio->io_bp_override == NULL); 3310 ASSERT(IO_IS_ALLOCATING(zio)); 3311 3312 /* 3313 * Check to see if the original bp and the new bp have matching 3314 * characteristics (i.e. same checksum, compression algorithms, etc). 3315 * If they don't then just continue with the pipeline which will 3316 * allocate a new bp. 3317 */ 3318 if (BP_IS_HOLE(bp_orig) || 3319 !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags & 3320 ZCHECKSUM_FLAG_NOPWRITE) || 3321 BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) || 3322 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) || 3323 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) || 3324 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) || 3325 zp->zp_copies != BP_GET_NDVAS(bp_orig)) 3326 return (zio); 3327 3328 /* 3329 * If the checksums match then reset the pipeline so that we 3330 * avoid allocating a new bp and issuing any I/O. 3331 */ 3332 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) { 3333 ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags & 3334 ZCHECKSUM_FLAG_NOPWRITE); 3335 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig)); 3336 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig)); 3337 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF); 3338 ASSERT3U(bp->blk_prop, ==, bp_orig->blk_prop); 3339 3340 /* 3341 * If we're overwriting a block that is currently on an 3342 * indirect vdev, then ignore the nopwrite request and 3343 * allow a new block to be allocated on a concrete vdev. 3344 */ 3345 spa_config_enter(zio->io_spa, SCL_VDEV, FTAG, RW_READER); 3346 for (int d = 0; d < BP_GET_NDVAS(bp_orig); d++) { 3347 vdev_t *tvd = vdev_lookup_top(zio->io_spa, 3348 DVA_GET_VDEV(&bp_orig->blk_dva[d])); 3349 if (tvd->vdev_ops == &vdev_indirect_ops) { 3350 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG); 3351 return (zio); 3352 } 3353 } 3354 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG); 3355 3356 *bp = *bp_orig; 3357 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 3358 zio->io_flags |= ZIO_FLAG_NOPWRITE; 3359 } 3360 3361 return (zio); 3362 } 3363 3364 /* 3365 * ========================================================================== 3366 * Block Reference Table 3367 * ========================================================================== 3368 */ 3369 static zio_t * 3370 zio_brt_free(zio_t *zio) 3371 { 3372 blkptr_t *bp; 3373 3374 bp = zio->io_bp; 3375 3376 if (BP_GET_LEVEL(bp) > 0 || 3377 BP_IS_METADATA(bp) || 3378 !brt_maybe_exists(zio->io_spa, bp)) { 3379 return (zio); 3380 } 3381 3382 if (!brt_entry_decref(zio->io_spa, bp)) { 3383 /* 3384 * This isn't the last reference, so we cannot free 3385 * the data yet. 3386 */ 3387 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 3388 } 3389 3390 return (zio); 3391 } 3392 3393 /* 3394 * ========================================================================== 3395 * Dedup 3396 * ========================================================================== 3397 */ 3398 static void 3399 zio_ddt_child_read_done(zio_t *zio) 3400 { 3401 blkptr_t *bp = zio->io_bp; 3402 ddt_t *ddt; 3403 ddt_entry_t *dde = zio->io_private; 3404 zio_t *pio = zio_unique_parent(zio); 3405 3406 mutex_enter(&pio->io_lock); 3407 ddt = ddt_select(zio->io_spa, bp); 3408 3409 if (zio->io_error == 0) { 3410 ddt_phys_variant_t v = ddt_phys_select(ddt, dde, bp); 3411 /* this phys variant doesn't need repair */ 3412 ddt_phys_clear(dde->dde_phys, v); 3413 } 3414 3415 if (zio->io_error == 0 && dde->dde_io->dde_repair_abd == NULL) 3416 dde->dde_io->dde_repair_abd = zio->io_abd; 3417 else 3418 abd_free(zio->io_abd); 3419 mutex_exit(&pio->io_lock); 3420 } 3421 3422 static zio_t * 3423 zio_ddt_read_start(zio_t *zio) 3424 { 3425 blkptr_t *bp = zio->io_bp; 3426 3427 ASSERT(BP_GET_DEDUP(bp)); 3428 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 3429 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3430 3431 if (zio->io_child_error[ZIO_CHILD_DDT]) { 3432 ddt_t *ddt = ddt_select(zio->io_spa, bp); 3433 ddt_entry_t *dde = ddt_repair_start(ddt, bp); 3434 ddt_phys_variant_t v_self = ddt_phys_select(ddt, dde, bp); 3435 ddt_univ_phys_t *ddp = dde->dde_phys; 3436 blkptr_t blk; 3437 3438 ASSERT(zio->io_vsd == NULL); 3439 zio->io_vsd = dde; 3440 3441 if (v_self == DDT_PHYS_NONE) 3442 return (zio); 3443 3444 /* issue I/O for the other copies */ 3445 for (int p = 0; p < DDT_NPHYS(ddt); p++) { 3446 ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p); 3447 3448 if (ddt_phys_birth(ddp, v) == 0 || v == v_self) 3449 continue; 3450 3451 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, 3452 ddp, v, &blk); 3453 zio_nowait(zio_read(zio, zio->io_spa, &blk, 3454 abd_alloc_for_io(zio->io_size, B_TRUE), 3455 zio->io_size, zio_ddt_child_read_done, dde, 3456 zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) | 3457 ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark)); 3458 } 3459 return (zio); 3460 } 3461 3462 zio_nowait(zio_read(zio, zio->io_spa, bp, 3463 zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority, 3464 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark)); 3465 3466 return (zio); 3467 } 3468 3469 static zio_t * 3470 zio_ddt_read_done(zio_t *zio) 3471 { 3472 blkptr_t *bp = zio->io_bp; 3473 3474 if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) { 3475 return (NULL); 3476 } 3477 3478 ASSERT(BP_GET_DEDUP(bp)); 3479 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 3480 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3481 3482 if (zio->io_child_error[ZIO_CHILD_DDT]) { 3483 ddt_t *ddt = ddt_select(zio->io_spa, bp); 3484 ddt_entry_t *dde = zio->io_vsd; 3485 if (ddt == NULL) { 3486 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE); 3487 return (zio); 3488 } 3489 if (dde == NULL) { 3490 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1; 3491 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 3492 return (NULL); 3493 } 3494 if (dde->dde_io->dde_repair_abd != NULL) { 3495 abd_copy(zio->io_abd, dde->dde_io->dde_repair_abd, 3496 zio->io_size); 3497 zio->io_child_error[ZIO_CHILD_DDT] = 0; 3498 } 3499 ddt_repair_done(ddt, dde); 3500 zio->io_vsd = NULL; 3501 } 3502 3503 ASSERT(zio->io_vsd == NULL); 3504 3505 return (zio); 3506 } 3507 3508 static boolean_t 3509 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde) 3510 { 3511 spa_t *spa = zio->io_spa; 3512 boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW); 3513 3514 ASSERT(!(zio->io_bp_override && do_raw)); 3515 3516 /* 3517 * Note: we compare the original data, not the transformed data, 3518 * because when zio->io_bp is an override bp, we will not have 3519 * pushed the I/O transforms. That's an important optimization 3520 * because otherwise we'd compress/encrypt all dmu_sync() data twice. 3521 * However, we should never get a raw, override zio so in these 3522 * cases we can compare the io_abd directly. This is useful because 3523 * it allows us to do dedup verification even if we don't have access 3524 * to the original data (for instance, if the encryption keys aren't 3525 * loaded). 3526 */ 3527 3528 for (int p = 0; p < DDT_NPHYS(ddt); p++) { 3529 if (DDT_PHYS_IS_DITTO(ddt, p)) 3530 continue; 3531 3532 if (dde->dde_io == NULL) 3533 continue; 3534 3535 zio_t *lio = dde->dde_io->dde_lead_zio[p]; 3536 if (lio == NULL) 3537 continue; 3538 3539 if (do_raw) 3540 return (lio->io_size != zio->io_size || 3541 abd_cmp(zio->io_abd, lio->io_abd) != 0); 3542 3543 return (lio->io_orig_size != zio->io_orig_size || 3544 abd_cmp(zio->io_orig_abd, lio->io_orig_abd) != 0); 3545 } 3546 3547 for (int p = 0; p < DDT_NPHYS(ddt); p++) { 3548 ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p); 3549 uint64_t phys_birth = ddt_phys_birth(dde->dde_phys, v); 3550 3551 if (phys_birth != 0 && do_raw) { 3552 blkptr_t blk = *zio->io_bp; 3553 uint64_t psize; 3554 abd_t *tmpabd; 3555 int error; 3556 3557 ddt_bp_fill(dde->dde_phys, v, &blk, phys_birth); 3558 psize = BP_GET_PSIZE(&blk); 3559 3560 if (psize != zio->io_size) 3561 return (B_TRUE); 3562 3563 ddt_exit(ddt); 3564 3565 tmpabd = abd_alloc_for_io(psize, B_TRUE); 3566 3567 error = zio_wait(zio_read(NULL, spa, &blk, tmpabd, 3568 psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ, 3569 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 3570 ZIO_FLAG_RAW, &zio->io_bookmark)); 3571 3572 if (error == 0) { 3573 if (abd_cmp(tmpabd, zio->io_abd) != 0) 3574 error = SET_ERROR(ENOENT); 3575 } 3576 3577 abd_free(tmpabd); 3578 ddt_enter(ddt); 3579 return (error != 0); 3580 } else if (phys_birth != 0) { 3581 arc_buf_t *abuf = NULL; 3582 arc_flags_t aflags = ARC_FLAG_WAIT; 3583 blkptr_t blk = *zio->io_bp; 3584 int error; 3585 3586 ddt_bp_fill(dde->dde_phys, v, &blk, phys_birth); 3587 3588 if (BP_GET_LSIZE(&blk) != zio->io_orig_size) 3589 return (B_TRUE); 3590 3591 ddt_exit(ddt); 3592 3593 error = arc_read(NULL, spa, &blk, 3594 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ, 3595 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 3596 &aflags, &zio->io_bookmark); 3597 3598 if (error == 0) { 3599 if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data, 3600 zio->io_orig_size) != 0) 3601 error = SET_ERROR(ENOENT); 3602 arc_buf_destroy(abuf, &abuf); 3603 } 3604 3605 ddt_enter(ddt); 3606 return (error != 0); 3607 } 3608 } 3609 3610 return (B_FALSE); 3611 } 3612 3613 static void 3614 zio_ddt_child_write_done(zio_t *zio) 3615 { 3616 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 3617 ddt_entry_t *dde = zio->io_private; 3618 3619 zio_link_t *zl = NULL; 3620 ASSERT3P(zio_walk_parents(zio, &zl), !=, NULL); 3621 3622 int p = DDT_PHYS_FOR_COPIES(ddt, zio->io_prop.zp_copies); 3623 ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p); 3624 ddt_univ_phys_t *ddp = dde->dde_phys; 3625 3626 ddt_enter(ddt); 3627 3628 /* we're the lead, so once we're done there's no one else outstanding */ 3629 if (dde->dde_io->dde_lead_zio[p] == zio) 3630 dde->dde_io->dde_lead_zio[p] = NULL; 3631 3632 ddt_univ_phys_t *orig = &dde->dde_io->dde_orig_phys; 3633 3634 if (zio->io_error != 0) { 3635 /* 3636 * The write failed, so we're about to abort the entire IO 3637 * chain. We need to revert the entry back to what it was at 3638 * the last time it was successfully extended. 3639 */ 3640 ddt_phys_unextend(ddp, orig, v); 3641 ddt_phys_clear(orig, v); 3642 3643 ddt_exit(ddt); 3644 return; 3645 } 3646 3647 /* 3648 * Add references for all dedup writes that were waiting on the 3649 * physical one, skipping any other physical writes that are waiting. 3650 */ 3651 zio_t *pio; 3652 zl = NULL; 3653 while ((pio = zio_walk_parents(zio, &zl)) != NULL) { 3654 if (!(pio->io_flags & ZIO_FLAG_DDT_CHILD)) 3655 ddt_phys_addref(ddp, v); 3656 } 3657 3658 /* 3659 * We've successfully added new DVAs to the entry. Clear the saved 3660 * state or, if there's still outstanding IO, remember it so we can 3661 * revert to a known good state if that IO fails. 3662 */ 3663 if (dde->dde_io->dde_lead_zio[p] == NULL) 3664 ddt_phys_clear(orig, v); 3665 else 3666 ddt_phys_copy(orig, ddp, v); 3667 3668 ddt_exit(ddt); 3669 } 3670 3671 static void 3672 zio_ddt_child_write_ready(zio_t *zio) 3673 { 3674 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 3675 ddt_entry_t *dde = zio->io_private; 3676 3677 zio_link_t *zl = NULL; 3678 ASSERT3P(zio_walk_parents(zio, &zl), !=, NULL); 3679 3680 int p = DDT_PHYS_FOR_COPIES(ddt, zio->io_prop.zp_copies); 3681 ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p); 3682 3683 if (ddt_phys_is_gang(dde->dde_phys, v)) { 3684 for (int i = 0; i < BP_GET_NDVAS(zio->io_bp); i++) { 3685 dva_t *d = &zio->io_bp->blk_dva[i]; 3686 metaslab_group_alloc_decrement(zio->io_spa, 3687 DVA_GET_VDEV(d), zio->io_allocator, 3688 METASLAB_ASYNC_ALLOC, zio->io_size, zio); 3689 } 3690 zio->io_error = EAGAIN; 3691 } 3692 3693 if (zio->io_error != 0) 3694 return; 3695 3696 ddt_enter(ddt); 3697 3698 ddt_phys_extend(dde->dde_phys, v, zio->io_bp); 3699 3700 zio_t *pio; 3701 zl = NULL; 3702 while ((pio = zio_walk_parents(zio, &zl)) != NULL) { 3703 if (!(pio->io_flags & ZIO_FLAG_DDT_CHILD)) 3704 ddt_bp_fill(dde->dde_phys, v, pio->io_bp, zio->io_txg); 3705 } 3706 3707 ddt_exit(ddt); 3708 } 3709 3710 static zio_t * 3711 zio_ddt_write(zio_t *zio) 3712 { 3713 spa_t *spa = zio->io_spa; 3714 blkptr_t *bp = zio->io_bp; 3715 uint64_t txg = zio->io_txg; 3716 zio_prop_t *zp = &zio->io_prop; 3717 ddt_t *ddt = ddt_select(spa, bp); 3718 ddt_entry_t *dde; 3719 3720 ASSERT(BP_GET_DEDUP(bp)); 3721 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum); 3722 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override); 3723 ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW))); 3724 /* 3725 * Deduplication will not take place for Direct I/O writes. The 3726 * ddt_tree will be emptied in syncing context. Direct I/O writes take 3727 * place in the open-context. Direct I/O write can not attempt to 3728 * modify the ddt_tree while issuing out a write. 3729 */ 3730 ASSERT3B(zio->io_prop.zp_direct_write, ==, B_FALSE); 3731 3732 ddt_enter(ddt); 3733 /* 3734 * Search DDT for matching entry. Skip DVAs verification here, since 3735 * they can go only from override, and once we get here the override 3736 * pointer can't have "D" flag to be confused with pruned DDT entries. 3737 */ 3738 IMPLY(zio->io_bp_override, !BP_GET_DEDUP(zio->io_bp_override)); 3739 dde = ddt_lookup(ddt, bp, B_FALSE); 3740 if (dde == NULL) { 3741 /* DDT size is over its quota so no new entries */ 3742 zp->zp_dedup = B_FALSE; 3743 BP_SET_DEDUP(bp, B_FALSE); 3744 if (zio->io_bp_override == NULL) 3745 zio->io_pipeline = ZIO_WRITE_PIPELINE; 3746 ddt_exit(ddt); 3747 return (zio); 3748 } 3749 3750 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) { 3751 /* 3752 * If we're using a weak checksum, upgrade to a strong checksum 3753 * and try again. If we're already using a strong checksum, 3754 * we can't resolve it, so just convert to an ordinary write. 3755 * (And automatically e-mail a paper to Nature?) 3756 */ 3757 if (!(zio_checksum_table[zp->zp_checksum].ci_flags & 3758 ZCHECKSUM_FLAG_DEDUP)) { 3759 zp->zp_checksum = spa_dedup_checksum(spa); 3760 zio_pop_transforms(zio); 3761 zio->io_stage = ZIO_STAGE_OPEN; 3762 BP_ZERO(bp); 3763 } else { 3764 zp->zp_dedup = B_FALSE; 3765 BP_SET_DEDUP(bp, B_FALSE); 3766 } 3767 ASSERT(!BP_GET_DEDUP(bp)); 3768 zio->io_pipeline = ZIO_WRITE_PIPELINE; 3769 ddt_exit(ddt); 3770 return (zio); 3771 } 3772 3773 int p = DDT_PHYS_FOR_COPIES(ddt, zp->zp_copies); 3774 ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p); 3775 ddt_univ_phys_t *ddp = dde->dde_phys; 3776 3777 /* 3778 * In the common cases, at this point we have a regular BP with no 3779 * allocated DVAs, and the corresponding DDT entry for its checksum. 3780 * Our goal is to fill the BP with enough DVAs to satisfy its copies= 3781 * requirement. 3782 * 3783 * One of three things needs to happen to fulfill this: 3784 * 3785 * - if the DDT entry has enough DVAs to satisfy the BP, we just copy 3786 * them out of the entry and return; 3787 * 3788 * - if the DDT entry has no DVAs (ie its brand new), then we have to 3789 * issue the write as normal so that DVAs can be allocated and the 3790 * data land on disk. We then copy the DVAs into the DDT entry on 3791 * return. 3792 * 3793 * - if the DDT entry has some DVAs, but too few, we have to issue the 3794 * write, adjusted to have allocate fewer copies. When it returns, we 3795 * add the new DVAs to the DDT entry, and update the BP to have the 3796 * full amount it originally requested. 3797 * 3798 * In all cases, if there's already a writing IO in flight, we need to 3799 * defer the action until after the write is done. If our action is to 3800 * write, we need to adjust our request for additional DVAs to match 3801 * what will be in the DDT entry after it completes. In this way every 3802 * IO can be guaranteed to recieve enough DVAs simply by joining the 3803 * end of the chain and letting the sequence play out. 3804 */ 3805 3806 /* 3807 * Number of DVAs in the DDT entry. If the BP is encrypted we ignore 3808 * the third one as normal. 3809 */ 3810 int have_dvas = ddt_phys_dva_count(ddp, v, BP_IS_ENCRYPTED(bp)); 3811 IMPLY(have_dvas == 0, ddt_phys_birth(ddp, v) == 0); 3812 boolean_t is_ganged = ddt_phys_is_gang(ddp, v); 3813 3814 /* Number of DVAs requested by the IO. */ 3815 uint8_t need_dvas = zp->zp_copies; 3816 /* Number of DVAs in outstanding writes for this dde. */ 3817 uint8_t parent_dvas = 0; 3818 3819 /* 3820 * What we do next depends on whether or not there's IO outstanding that 3821 * will update this entry. 3822 */ 3823 if (dde->dde_io == NULL || dde->dde_io->dde_lead_zio[p] == NULL) { 3824 /* 3825 * No IO outstanding, so we only need to worry about ourselves. 3826 */ 3827 3828 /* 3829 * Override BPs bring their own DVAs and their own problems. 3830 */ 3831 if (zio->io_bp_override) { 3832 /* 3833 * For a brand-new entry, all the work has been done 3834 * for us, and we can just fill it out from the provided 3835 * block and leave. 3836 */ 3837 if (have_dvas == 0) { 3838 ASSERT(BP_GET_LOGICAL_BIRTH(bp) == txg); 3839 ASSERT(BP_EQUAL(bp, zio->io_bp_override)); 3840 ddt_phys_extend(ddp, v, bp); 3841 ddt_phys_addref(ddp, v); 3842 ddt_exit(ddt); 3843 return (zio); 3844 } 3845 3846 /* 3847 * If we already have this entry, then we want to treat 3848 * it like a regular write. To do this we just wipe 3849 * them out and proceed like a regular write. 3850 * 3851 * Even if there are some DVAs in the entry, we still 3852 * have to clear them out. We can't use them to fill 3853 * out the dedup entry, as they are all referenced 3854 * together by a bp already on disk, and will be freed 3855 * as a group. 3856 */ 3857 BP_ZERO_DVAS(bp); 3858 BP_SET_BIRTH(bp, 0, 0); 3859 } 3860 3861 /* 3862 * If there are enough DVAs in the entry to service our request, 3863 * then we can just use them as-is. 3864 */ 3865 if (have_dvas >= need_dvas) { 3866 ddt_bp_fill(ddp, v, bp, txg); 3867 ddt_phys_addref(ddp, v); 3868 ddt_exit(ddt); 3869 return (zio); 3870 } 3871 3872 /* 3873 * Otherwise, we have to issue IO to fill the entry up to the 3874 * amount we need. 3875 */ 3876 need_dvas -= have_dvas; 3877 } else { 3878 /* 3879 * There's a write in-flight. If there's already enough DVAs on 3880 * the entry, then either there were already enough to start 3881 * with, or the in-flight IO is between READY and DONE, and so 3882 * has extended the entry with new DVAs. Either way, we don't 3883 * need to do anything, we can just slot in behind it. 3884 */ 3885 3886 if (zio->io_bp_override) { 3887 /* 3888 * If there's a write out, then we're soon going to 3889 * have our own copies of this block, so clear out the 3890 * override block and treat it as a regular dedup 3891 * write. See comment above. 3892 */ 3893 BP_ZERO_DVAS(bp); 3894 BP_SET_BIRTH(bp, 0, 0); 3895 } 3896 3897 if (have_dvas >= need_dvas) { 3898 /* 3899 * A minor point: there might already be enough 3900 * committed DVAs in the entry to service our request, 3901 * but we don't know which are completed and which are 3902 * allocated but not yet written. In this case, should 3903 * the IO for the new DVAs fail, we will be on the end 3904 * of the IO chain and will also recieve an error, even 3905 * though our request could have been serviced. 3906 * 3907 * This is an extremely rare case, as it requires the 3908 * original block to be copied with a request for a 3909 * larger number of DVAs, then copied again requesting 3910 * the same (or already fulfilled) number of DVAs while 3911 * the first request is active, and then that first 3912 * request errors. In return, the logic required to 3913 * catch and handle it is complex. For now, I'm just 3914 * not going to bother with it. 3915 */ 3916 3917 /* 3918 * We always fill the bp here as we may have arrived 3919 * after the in-flight write has passed READY, and so 3920 * missed out. 3921 */ 3922 ddt_bp_fill(ddp, v, bp, txg); 3923 zio_add_child(zio, dde->dde_io->dde_lead_zio[p]); 3924 ddt_exit(ddt); 3925 return (zio); 3926 } 3927 3928 /* 3929 * There's not enough in the entry yet, so we need to look at 3930 * the write in-flight and see how many DVAs it will have once 3931 * it completes. 3932 * 3933 * The in-flight write has potentially had its copies request 3934 * reduced (if we're filling out an existing entry), so we need 3935 * to reach in and get the original write to find out what it is 3936 * expecting. 3937 * 3938 * Note that the parent of the lead zio will always have the 3939 * highest zp_copies of any zio in the chain, because ones that 3940 * can be serviced without additional IO are always added to 3941 * the back of the chain. 3942 */ 3943 zio_link_t *zl = NULL; 3944 zio_t *pio = 3945 zio_walk_parents(dde->dde_io->dde_lead_zio[p], &zl); 3946 ASSERT(pio); 3947 parent_dvas = pio->io_prop.zp_copies; 3948 3949 if (parent_dvas >= need_dvas) { 3950 zio_add_child(zio, dde->dde_io->dde_lead_zio[p]); 3951 ddt_exit(ddt); 3952 return (zio); 3953 } 3954 3955 /* 3956 * Still not enough, so we will need to issue to get the 3957 * shortfall. 3958 */ 3959 need_dvas -= parent_dvas; 3960 } 3961 3962 if (is_ganged) { 3963 zp->zp_dedup = B_FALSE; 3964 BP_SET_DEDUP(bp, B_FALSE); 3965 zio->io_pipeline = ZIO_WRITE_PIPELINE; 3966 ddt_exit(ddt); 3967 return (zio); 3968 } 3969 3970 /* 3971 * We need to write. We will create a new write with the copies 3972 * property adjusted to match the number of DVAs we need to need to 3973 * grow the DDT entry by to satisfy the request. 3974 */ 3975 zio_prop_t czp = *zp; 3976 if (have_dvas > 0 || parent_dvas > 0) { 3977 czp.zp_copies = need_dvas; 3978 czp.zp_gang_copies = 0; 3979 } else { 3980 ASSERT3U(czp.zp_copies, ==, need_dvas); 3981 } 3982 3983 zio_t *cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd, 3984 zio->io_orig_size, zio->io_orig_size, &czp, 3985 zio_ddt_child_write_ready, NULL, 3986 zio_ddt_child_write_done, dde, zio->io_priority, 3987 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark); 3988 3989 zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL); 3990 3991 /* 3992 * We are the new lead zio, because our parent has the highest 3993 * zp_copies that has been requested for this entry so far. 3994 */ 3995 ddt_alloc_entry_io(dde); 3996 if (dde->dde_io->dde_lead_zio[p] == NULL) { 3997 /* 3998 * First time out, take a copy of the stable entry to revert 3999 * to if there's an error (see zio_ddt_child_write_done()) 4000 */ 4001 ddt_phys_copy(&dde->dde_io->dde_orig_phys, dde->dde_phys, v); 4002 } else { 4003 /* 4004 * Make the existing chain our child, because it cannot 4005 * complete until we have. 4006 */ 4007 zio_add_child(cio, dde->dde_io->dde_lead_zio[p]); 4008 } 4009 dde->dde_io->dde_lead_zio[p] = cio; 4010 4011 ddt_exit(ddt); 4012 4013 zio_nowait(cio); 4014 4015 return (zio); 4016 } 4017 4018 static ddt_entry_t *freedde; /* for debugging */ 4019 4020 static zio_t * 4021 zio_ddt_free(zio_t *zio) 4022 { 4023 spa_t *spa = zio->io_spa; 4024 blkptr_t *bp = zio->io_bp; 4025 ddt_t *ddt = ddt_select(spa, bp); 4026 ddt_entry_t *dde = NULL; 4027 4028 ASSERT(BP_GET_DEDUP(bp)); 4029 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 4030 4031 ddt_enter(ddt); 4032 freedde = dde = ddt_lookup(ddt, bp, B_TRUE); 4033 if (dde) { 4034 ddt_phys_variant_t v = ddt_phys_select(ddt, dde, bp); 4035 if (v != DDT_PHYS_NONE) 4036 ddt_phys_decref(dde->dde_phys, v); 4037 } 4038 ddt_exit(ddt); 4039 4040 /* 4041 * When no entry was found, it must have been pruned, 4042 * so we can free it now instead of decrementing the 4043 * refcount in the DDT. 4044 */ 4045 if (!dde) { 4046 BP_SET_DEDUP(bp, 0); 4047 zio->io_pipeline |= ZIO_STAGE_DVA_FREE; 4048 } 4049 4050 return (zio); 4051 } 4052 4053 /* 4054 * ========================================================================== 4055 * Allocate and free blocks 4056 * ========================================================================== 4057 */ 4058 4059 static zio_t * 4060 zio_io_to_allocate(metaslab_class_allocator_t *mca, boolean_t *more) 4061 { 4062 zio_t *zio; 4063 4064 ASSERT(MUTEX_HELD(&mca->mca_lock)); 4065 4066 zio = avl_first(&mca->mca_tree); 4067 if (zio == NULL) { 4068 *more = B_FALSE; 4069 return (NULL); 4070 } 4071 4072 ASSERT(IO_IS_ALLOCATING(zio)); 4073 ASSERT(ZIO_HAS_ALLOCATOR(zio)); 4074 4075 /* 4076 * Try to place a reservation for this zio. If we're unable to 4077 * reserve then we throttle. 4078 */ 4079 if (!metaslab_class_throttle_reserve(zio->io_metaslab_class, 4080 zio->io_prop.zp_copies, zio, B_FALSE, more)) { 4081 return (NULL); 4082 } 4083 4084 avl_remove(&mca->mca_tree, zio); 4085 ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE); 4086 4087 if (avl_is_empty(&mca->mca_tree)) 4088 *more = B_FALSE; 4089 return (zio); 4090 } 4091 4092 static zio_t * 4093 zio_dva_throttle(zio_t *zio) 4094 { 4095 spa_t *spa = zio->io_spa; 4096 zio_t *nio; 4097 metaslab_class_t *mc; 4098 boolean_t more; 4099 4100 /* 4101 * If not already chosen, choose an appropriate allocation class. 4102 */ 4103 mc = zio->io_metaslab_class; 4104 if (mc == NULL) 4105 mc = spa_preferred_class(spa, zio); 4106 4107 if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE || 4108 !mc->mc_alloc_throttle_enabled || 4109 zio->io_child_type == ZIO_CHILD_GANG || 4110 zio->io_flags & ZIO_FLAG_NODATA) { 4111 return (zio); 4112 } 4113 4114 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 4115 ASSERT(ZIO_HAS_ALLOCATOR(zio)); 4116 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 4117 ASSERT3U(zio->io_queued_timestamp, >, 0); 4118 ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE); 4119 4120 zio->io_metaslab_class = mc; 4121 metaslab_class_allocator_t *mca = &mc->mc_allocator[zio->io_allocator]; 4122 mutex_enter(&mca->mca_lock); 4123 avl_add(&mca->mca_tree, zio); 4124 nio = zio_io_to_allocate(mca, &more); 4125 mutex_exit(&mca->mca_lock); 4126 return (nio); 4127 } 4128 4129 static void 4130 zio_allocate_dispatch(metaslab_class_t *mc, int allocator) 4131 { 4132 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator]; 4133 zio_t *zio; 4134 boolean_t more; 4135 4136 do { 4137 mutex_enter(&mca->mca_lock); 4138 zio = zio_io_to_allocate(mca, &more); 4139 mutex_exit(&mca->mca_lock); 4140 if (zio == NULL) 4141 return; 4142 4143 ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE); 4144 ASSERT0(zio->io_error); 4145 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE); 4146 } while (more); 4147 } 4148 4149 static zio_t * 4150 zio_dva_allocate(zio_t *zio) 4151 { 4152 spa_t *spa = zio->io_spa; 4153 metaslab_class_t *mc; 4154 blkptr_t *bp = zio->io_bp; 4155 int error; 4156 int flags = 0; 4157 4158 if (zio->io_gang_leader == NULL) { 4159 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 4160 zio->io_gang_leader = zio; 4161 } 4162 if (zio->io_flags & ZIO_FLAG_PREALLOCATED) { 4163 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_GANG); 4164 memcpy(zio->io_bp->blk_dva, zio->io_bp_orig.blk_dva, 4165 3 * sizeof (dva_t)); 4166 BP_SET_BIRTH(zio->io_bp, BP_GET_LOGICAL_BIRTH(&zio->io_bp_orig), 4167 BP_GET_PHYSICAL_BIRTH(&zio->io_bp_orig)); 4168 return (zio); 4169 } 4170 4171 ASSERT(BP_IS_HOLE(bp)); 4172 ASSERT0(BP_GET_NDVAS(bp)); 4173 ASSERT3U(zio->io_prop.zp_copies, >, 0); 4174 4175 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa)); 4176 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp)); 4177 4178 if (zio->io_flags & ZIO_FLAG_GANG_CHILD) 4179 flags |= METASLAB_GANG_CHILD; 4180 if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE) 4181 flags |= METASLAB_ASYNC_ALLOC; 4182 4183 /* 4184 * If not already chosen, choose an appropriate allocation class. 4185 */ 4186 mc = zio->io_metaslab_class; 4187 if (mc == NULL) { 4188 mc = spa_preferred_class(spa, zio); 4189 zio->io_metaslab_class = mc; 4190 } 4191 ZIOSTAT_BUMP(ziostat_total_allocations); 4192 4193 again: 4194 /* 4195 * Try allocating the block in the usual metaslab class. 4196 * If that's full, allocate it in the normal class. 4197 * If that's full, allocate as a gang block, 4198 * and if all are full, the allocation fails (which shouldn't happen). 4199 * 4200 * Note that we do not fall back on embedded slog (ZIL) space, to 4201 * preserve unfragmented slog space, which is critical for decent 4202 * sync write performance. If a log allocation fails, we will fall 4203 * back to spa_sync() which is abysmal for performance. 4204 */ 4205 ASSERT(ZIO_HAS_ALLOCATOR(zio)); 4206 error = metaslab_alloc(spa, mc, zio->io_size, bp, 4207 zio->io_prop.zp_copies, zio->io_txg, NULL, flags, 4208 &zio->io_alloc_list, zio->io_allocator, zio); 4209 4210 /* 4211 * Fallback to normal class when an alloc class is full 4212 */ 4213 if (error == ENOSPC && mc != spa_normal_class(spa)) { 4214 /* 4215 * When the dedup or special class is spilling into the normal 4216 * class, there can still be significant space available due 4217 * to deferred frees that are in-flight. We track the txg when 4218 * this occurred and back off adding new DDT entries for a few 4219 * txgs to allow the free blocks to be processed. 4220 */ 4221 if ((mc == spa_dedup_class(spa) || (spa_special_has_ddt(spa) && 4222 mc == spa_special_class(spa))) && 4223 spa->spa_dedup_class_full_txg != zio->io_txg) { 4224 spa->spa_dedup_class_full_txg = zio->io_txg; 4225 zfs_dbgmsg("%s[%d]: %s class spilling, req size %d, " 4226 "%llu allocated of %llu", 4227 spa_name(spa), (int)zio->io_txg, 4228 mc == spa_dedup_class(spa) ? "dedup" : "special", 4229 (int)zio->io_size, 4230 (u_longlong_t)metaslab_class_get_alloc(mc), 4231 (u_longlong_t)metaslab_class_get_space(mc)); 4232 } 4233 4234 /* 4235 * If we are holding old class reservation, drop it. 4236 * Dispatch the next ZIO(s) there if some are waiting. 4237 */ 4238 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 4239 if (metaslab_class_throttle_unreserve(mc, 4240 zio->io_prop.zp_copies, zio)) { 4241 zio_allocate_dispatch(zio->io_metaslab_class, 4242 zio->io_allocator); 4243 } 4244 zio->io_flags &= ~ZIO_FLAG_IO_ALLOCATING; 4245 } 4246 4247 if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) { 4248 zfs_dbgmsg("%s: metaslab allocation failure, " 4249 "trying normal class: zio %px, size %llu, error %d", 4250 spa_name(spa), zio, (u_longlong_t)zio->io_size, 4251 error); 4252 } 4253 zio->io_metaslab_class = mc = spa_normal_class(spa); 4254 ZIOSTAT_BUMP(ziostat_alloc_class_fallbacks); 4255 4256 /* 4257 * If normal class uses throttling, return to that pipeline 4258 * stage. Otherwise just do another allocation attempt. 4259 */ 4260 if (zio->io_priority != ZIO_PRIORITY_SYNC_WRITE && 4261 mc->mc_alloc_throttle_enabled && 4262 zio->io_child_type != ZIO_CHILD_GANG && 4263 !(zio->io_flags & ZIO_FLAG_NODATA)) { 4264 zio->io_stage = ZIO_STAGE_DVA_THROTTLE >> 1; 4265 return (zio); 4266 } 4267 goto again; 4268 } 4269 4270 if (error == ENOSPC && zio->io_size > spa->spa_min_alloc) { 4271 if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) { 4272 zfs_dbgmsg("%s: metaslab allocation failure, " 4273 "trying ganging: zio %px, size %llu, error %d", 4274 spa_name(spa), zio, (u_longlong_t)zio->io_size, 4275 error); 4276 } 4277 ZIOSTAT_BUMP(ziostat_gang_writes); 4278 if (flags & METASLAB_GANG_CHILD) 4279 ZIOSTAT_BUMP(ziostat_gang_multilevel); 4280 return (zio_write_gang_block(zio, mc)); 4281 } 4282 if (error != 0) { 4283 if (error != ENOSPC || 4284 (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC)) { 4285 zfs_dbgmsg("%s: metaslab allocation failure: zio %px, " 4286 "size %llu, error %d", 4287 spa_name(spa), zio, (u_longlong_t)zio->io_size, 4288 error); 4289 } 4290 zio->io_error = error; 4291 } 4292 4293 return (zio); 4294 } 4295 4296 static zio_t * 4297 zio_dva_free(zio_t *zio) 4298 { 4299 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE); 4300 4301 return (zio); 4302 } 4303 4304 static zio_t * 4305 zio_dva_claim(zio_t *zio) 4306 { 4307 int error; 4308 4309 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg); 4310 if (error) 4311 zio->io_error = error; 4312 4313 return (zio); 4314 } 4315 4316 /* 4317 * Undo an allocation. This is used by zio_done() when an I/O fails 4318 * and we want to give back the block we just allocated. 4319 * This handles both normal blocks and gang blocks. 4320 */ 4321 static void 4322 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp) 4323 { 4324 ASSERT(BP_GET_LOGICAL_BIRTH(bp) == zio->io_txg || BP_IS_HOLE(bp)); 4325 ASSERT(zio->io_bp_override == NULL); 4326 4327 if (!BP_IS_HOLE(bp)) { 4328 metaslab_free(zio->io_spa, bp, BP_GET_LOGICAL_BIRTH(bp), 4329 B_TRUE); 4330 } 4331 4332 if (gn != NULL) { 4333 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 4334 zio_dva_unallocate(zio, gn->gn_child[g], 4335 &gn->gn_gbh->zg_blkptr[g]); 4336 } 4337 } 4338 } 4339 4340 /* 4341 * Try to allocate an intent log block. Return 0 on success, errno on failure. 4342 */ 4343 int 4344 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp, 4345 uint64_t size, boolean_t *slog) 4346 { 4347 int error = 1; 4348 zio_alloc_list_t io_alloc_list; 4349 4350 ASSERT(txg > spa_syncing_txg(spa)); 4351 4352 metaslab_trace_init(&io_alloc_list); 4353 4354 /* 4355 * Block pointer fields are useful to metaslabs for stats and debugging. 4356 * Fill in the obvious ones before calling into metaslab_alloc(). 4357 */ 4358 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 4359 BP_SET_PSIZE(new_bp, size); 4360 BP_SET_LEVEL(new_bp, 0); 4361 4362 /* 4363 * When allocating a zil block, we don't have information about 4364 * the final destination of the block except the objset it's part 4365 * of, so we just hash the objset ID to pick the allocator to get 4366 * some parallelism. 4367 */ 4368 int flags = METASLAB_ZIL; 4369 int allocator = (uint_t)cityhash1(os->os_dsl_dataset->ds_object) 4370 % spa->spa_alloc_count; 4371 ZIOSTAT_BUMP(ziostat_total_allocations); 4372 error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1, 4373 txg, NULL, flags, &io_alloc_list, allocator, NULL); 4374 *slog = (error == 0); 4375 if (error != 0) { 4376 error = metaslab_alloc(spa, spa_embedded_log_class(spa), size, 4377 new_bp, 1, txg, NULL, flags, &io_alloc_list, allocator, 4378 NULL); 4379 } 4380 if (error != 0) { 4381 ZIOSTAT_BUMP(ziostat_alloc_class_fallbacks); 4382 error = metaslab_alloc(spa, spa_normal_class(spa), size, 4383 new_bp, 1, txg, NULL, flags, &io_alloc_list, allocator, 4384 NULL); 4385 } 4386 metaslab_trace_fini(&io_alloc_list); 4387 4388 if (error == 0) { 4389 BP_SET_LSIZE(new_bp, size); 4390 BP_SET_PSIZE(new_bp, size); 4391 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF); 4392 BP_SET_CHECKSUM(new_bp, 4393 spa_version(spa) >= SPA_VERSION_SLIM_ZIL 4394 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG); 4395 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 4396 BP_SET_LEVEL(new_bp, 0); 4397 BP_SET_DEDUP(new_bp, 0); 4398 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER); 4399 4400 /* 4401 * encrypted blocks will require an IV and salt. We generate 4402 * these now since we will not be rewriting the bp at 4403 * rewrite time. 4404 */ 4405 if (os->os_encrypted) { 4406 uint8_t iv[ZIO_DATA_IV_LEN]; 4407 uint8_t salt[ZIO_DATA_SALT_LEN]; 4408 4409 BP_SET_CRYPT(new_bp, B_TRUE); 4410 VERIFY0(spa_crypt_get_salt(spa, 4411 dmu_objset_id(os), salt)); 4412 VERIFY0(zio_crypt_generate_iv(iv)); 4413 4414 zio_crypt_encode_params_bp(new_bp, salt, iv); 4415 } 4416 } else { 4417 zfs_dbgmsg("%s: zil block allocation failure: " 4418 "size %llu, error %d", spa_name(spa), (u_longlong_t)size, 4419 error); 4420 } 4421 4422 return (error); 4423 } 4424 4425 /* 4426 * ========================================================================== 4427 * Read and write to physical devices 4428 * ========================================================================== 4429 */ 4430 4431 /* 4432 * Issue an I/O to the underlying vdev. Typically the issue pipeline 4433 * stops after this stage and will resume upon I/O completion. 4434 * However, there are instances where the vdev layer may need to 4435 * continue the pipeline when an I/O was not issued. Since the I/O 4436 * that was sent to the vdev layer might be different than the one 4437 * currently active in the pipeline (see vdev_queue_io()), we explicitly 4438 * force the underlying vdev layers to call either zio_execute() or 4439 * zio_interrupt() to ensure that the pipeline continues with the correct I/O. 4440 */ 4441 static zio_t * 4442 zio_vdev_io_start(zio_t *zio) 4443 { 4444 vdev_t *vd = zio->io_vd; 4445 uint64_t align; 4446 spa_t *spa = zio->io_spa; 4447 4448 zio->io_delay = 0; 4449 4450 ASSERT(zio->io_error == 0); 4451 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0); 4452 4453 if (vd == NULL) { 4454 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 4455 spa_config_enter(spa, SCL_ZIO, zio, RW_READER); 4456 4457 /* 4458 * The mirror_ops handle multiple DVAs in a single BP. 4459 */ 4460 vdev_mirror_ops.vdev_op_io_start(zio); 4461 return (NULL); 4462 } 4463 4464 ASSERT3P(zio->io_logical, !=, zio); 4465 if (zio->io_type == ZIO_TYPE_WRITE) { 4466 ASSERT(spa->spa_trust_config); 4467 4468 /* 4469 * Note: the code can handle other kinds of writes, 4470 * but we don't expect them. 4471 */ 4472 if (zio->io_vd->vdev_noalloc) { 4473 ASSERT(zio->io_flags & 4474 (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL | 4475 ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE)); 4476 } 4477 } 4478 4479 align = 1ULL << vd->vdev_top->vdev_ashift; 4480 4481 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) && 4482 P2PHASE(zio->io_size, align) != 0) { 4483 /* Transform logical writes to be a full physical block size. */ 4484 uint64_t asize = P2ROUNDUP(zio->io_size, align); 4485 abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize); 4486 ASSERT(vd == vd->vdev_top); 4487 if (zio->io_type == ZIO_TYPE_WRITE) { 4488 abd_copy(abuf, zio->io_abd, zio->io_size); 4489 abd_zero_off(abuf, zio->io_size, asize - zio->io_size); 4490 } 4491 zio_push_transform(zio, abuf, asize, asize, zio_subblock); 4492 } 4493 4494 /* 4495 * If this is not a physical io, make sure that it is properly aligned 4496 * before proceeding. 4497 */ 4498 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) { 4499 ASSERT0(P2PHASE(zio->io_offset, align)); 4500 ASSERT0(P2PHASE(zio->io_size, align)); 4501 } else { 4502 /* 4503 * For physical writes, we allow 512b aligned writes and assume 4504 * the device will perform a read-modify-write as necessary. 4505 */ 4506 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE)); 4507 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE)); 4508 } 4509 4510 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa)); 4511 4512 /* 4513 * If this is a repair I/O, and there's no self-healing involved -- 4514 * that is, we're just resilvering what we expect to resilver -- 4515 * then don't do the I/O unless zio's txg is actually in vd's DTL. 4516 * This prevents spurious resilvering. 4517 * 4518 * There are a few ways that we can end up creating these spurious 4519 * resilver i/os: 4520 * 4521 * 1. A resilver i/o will be issued if any DVA in the BP has a 4522 * dirty DTL. The mirror code will issue resilver writes to 4523 * each DVA, including the one(s) that are not on vdevs with dirty 4524 * DTLs. 4525 * 4526 * 2. With nested replication, which happens when we have a 4527 * "replacing" or "spare" vdev that's a child of a mirror or raidz. 4528 * For example, given mirror(replacing(A+B), C), it's likely that 4529 * only A is out of date (it's the new device). In this case, we'll 4530 * read from C, then use the data to resilver A+B -- but we don't 4531 * actually want to resilver B, just A. The top-level mirror has no 4532 * way to know this, so instead we just discard unnecessary repairs 4533 * as we work our way down the vdev tree. 4534 * 4535 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc. 4536 * The same logic applies to any form of nested replication: ditto 4537 * + mirror, RAID-Z + replacing, etc. 4538 * 4539 * However, indirect vdevs point off to other vdevs which may have 4540 * DTL's, so we never bypass them. The child i/os on concrete vdevs 4541 * will be properly bypassed instead. 4542 * 4543 * Leaf DTL_PARTIAL can be empty when a legitimate write comes from 4544 * a dRAID spare vdev. For example, when a dRAID spare is first 4545 * used, its spare blocks need to be written to but the leaf vdev's 4546 * of such blocks can have empty DTL_PARTIAL. 4547 * 4548 * There seemed no clean way to allow such writes while bypassing 4549 * spurious ones. At this point, just avoid all bypassing for dRAID 4550 * for correctness. 4551 */ 4552 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) && 4553 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) && 4554 zio->io_txg != 0 && /* not a delegated i/o */ 4555 vd->vdev_ops != &vdev_indirect_ops && 4556 vd->vdev_top->vdev_ops != &vdev_draid_ops && 4557 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) { 4558 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 4559 zio_vdev_io_bypass(zio); 4560 return (zio); 4561 } 4562 4563 /* 4564 * Select the next best leaf I/O to process. Distributed spares are 4565 * excluded since they dispatch the I/O directly to a leaf vdev after 4566 * applying the dRAID mapping. 4567 */ 4568 if (vd->vdev_ops->vdev_op_leaf && 4569 vd->vdev_ops != &vdev_draid_spare_ops && 4570 (zio->io_type == ZIO_TYPE_READ || 4571 zio->io_type == ZIO_TYPE_WRITE || 4572 zio->io_type == ZIO_TYPE_TRIM)) { 4573 4574 if ((zio = vdev_queue_io(zio)) == NULL) 4575 return (NULL); 4576 4577 if (!vdev_accessible(vd, zio)) { 4578 zio->io_error = SET_ERROR(ENXIO); 4579 zio_interrupt(zio); 4580 return (NULL); 4581 } 4582 zio->io_delay = gethrtime(); 4583 4584 if (zio_handle_device_injection(vd, zio, ENOSYS) != 0) { 4585 /* 4586 * "no-op" injections return success, but do no actual 4587 * work. Just return it. 4588 */ 4589 zio_delay_interrupt(zio); 4590 return (NULL); 4591 } 4592 } 4593 4594 vd->vdev_ops->vdev_op_io_start(zio); 4595 return (NULL); 4596 } 4597 4598 static zio_t * 4599 zio_vdev_io_done(zio_t *zio) 4600 { 4601 vdev_t *vd = zio->io_vd; 4602 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops; 4603 boolean_t unexpected_error = B_FALSE; 4604 4605 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) { 4606 return (NULL); 4607 } 4608 4609 ASSERT(zio->io_type == ZIO_TYPE_READ || 4610 zio->io_type == ZIO_TYPE_WRITE || 4611 zio->io_type == ZIO_TYPE_FLUSH || 4612 zio->io_type == ZIO_TYPE_TRIM); 4613 4614 if (zio->io_delay) 4615 zio->io_delay = gethrtime() - zio->io_delay; 4616 4617 if (vd != NULL && vd->vdev_ops->vdev_op_leaf && 4618 vd->vdev_ops != &vdev_draid_spare_ops) { 4619 if (zio->io_type != ZIO_TYPE_FLUSH) 4620 vdev_queue_io_done(zio); 4621 4622 if (zio_injection_enabled && zio->io_error == 0) 4623 zio->io_error = zio_handle_device_injections(vd, zio, 4624 EIO, EILSEQ); 4625 4626 if (zio_injection_enabled && zio->io_error == 0) 4627 zio->io_error = zio_handle_label_injection(zio, EIO); 4628 4629 if (zio->io_error && zio->io_type != ZIO_TYPE_FLUSH && 4630 zio->io_type != ZIO_TYPE_TRIM) { 4631 if (!vdev_accessible(vd, zio)) { 4632 zio->io_error = SET_ERROR(ENXIO); 4633 } else { 4634 unexpected_error = B_TRUE; 4635 } 4636 } 4637 } 4638 4639 ops->vdev_op_io_done(zio); 4640 4641 if (unexpected_error && vd->vdev_remove_wanted == B_FALSE) 4642 VERIFY(vdev_probe(vd, zio) == NULL); 4643 4644 return (zio); 4645 } 4646 4647 /* 4648 * This function is used to change the priority of an existing zio that is 4649 * currently in-flight. This is used by the arc to upgrade priority in the 4650 * event that a demand read is made for a block that is currently queued 4651 * as a scrub or async read IO. Otherwise, the high priority read request 4652 * would end up having to wait for the lower priority IO. 4653 */ 4654 void 4655 zio_change_priority(zio_t *pio, zio_priority_t priority) 4656 { 4657 zio_t *cio, *cio_next; 4658 zio_link_t *zl = NULL; 4659 4660 ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 4661 4662 if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) { 4663 vdev_queue_change_io_priority(pio, priority); 4664 } else { 4665 pio->io_priority = priority; 4666 } 4667 4668 mutex_enter(&pio->io_lock); 4669 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 4670 cio_next = zio_walk_children(pio, &zl); 4671 zio_change_priority(cio, priority); 4672 } 4673 mutex_exit(&pio->io_lock); 4674 } 4675 4676 /* 4677 * For non-raidz ZIOs, we can just copy aside the bad data read from the 4678 * disk, and use that to finish the checksum ereport later. 4679 */ 4680 static void 4681 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr, 4682 const abd_t *good_buf) 4683 { 4684 /* no processing needed */ 4685 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE); 4686 } 4687 4688 void 4689 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr) 4690 { 4691 void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size); 4692 4693 abd_copy(abd, zio->io_abd, zio->io_size); 4694 4695 zcr->zcr_cbinfo = zio->io_size; 4696 zcr->zcr_cbdata = abd; 4697 zcr->zcr_finish = zio_vsd_default_cksum_finish; 4698 zcr->zcr_free = zio_abd_free; 4699 } 4700 4701 static zio_t * 4702 zio_vdev_io_assess(zio_t *zio) 4703 { 4704 vdev_t *vd = zio->io_vd; 4705 4706 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) { 4707 return (NULL); 4708 } 4709 4710 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 4711 spa_config_exit(zio->io_spa, SCL_ZIO, zio); 4712 4713 if (zio->io_vsd != NULL) { 4714 zio->io_vsd_ops->vsd_free(zio); 4715 zio->io_vsd = NULL; 4716 } 4717 4718 /* 4719 * If a Direct I/O operation has a checksum verify error then this I/O 4720 * should not attempt to be issued again. 4721 */ 4722 if (zio->io_flags & ZIO_FLAG_DIO_CHKSUM_ERR) { 4723 if (zio->io_type == ZIO_TYPE_WRITE) { 4724 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_LOGICAL); 4725 ASSERT3U(zio->io_error, ==, EIO); 4726 } 4727 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 4728 return (zio); 4729 } 4730 4731 if (zio_injection_enabled && zio->io_error == 0) 4732 zio->io_error = zio_handle_fault_injection(zio, EIO); 4733 4734 /* 4735 * If the I/O failed, determine whether we should attempt to retry it. 4736 * 4737 * On retry, we cut in line in the issue queue, since we don't want 4738 * compression/checksumming/etc. work to prevent our (cheap) IO reissue. 4739 */ 4740 if (zio->io_error && vd == NULL && 4741 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) { 4742 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */ 4743 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */ 4744 zio->io_error = 0; 4745 zio->io_flags |= ZIO_FLAG_IO_RETRY | ZIO_FLAG_DONT_AGGREGATE; 4746 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1; 4747 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, 4748 zio_requeue_io_start_cut_in_line); 4749 return (NULL); 4750 } 4751 4752 /* 4753 * If we got an error on a leaf device, convert it to ENXIO 4754 * if the device is not accessible at all. 4755 */ 4756 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf && 4757 !vdev_accessible(vd, zio)) 4758 zio->io_error = SET_ERROR(ENXIO); 4759 4760 /* 4761 * If we can't write to an interior vdev (mirror or RAID-Z), 4762 * set vdev_cant_write so that we stop trying to allocate from it. 4763 */ 4764 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE && 4765 vd != NULL && !vd->vdev_ops->vdev_op_leaf) { 4766 vdev_dbgmsg(vd, "zio_vdev_io_assess(zio=%px) setting " 4767 "cant_write=TRUE due to write failure with ENXIO", 4768 zio); 4769 vd->vdev_cant_write = B_TRUE; 4770 } 4771 4772 /* 4773 * If a cache flush returns ENOTSUP we know that no future 4774 * attempts will ever succeed. In this case we set a persistent 4775 * boolean flag so that we don't bother with it in the future, and 4776 * then we act like the flush succeeded. 4777 */ 4778 if (zio->io_error == ENOTSUP && zio->io_type == ZIO_TYPE_FLUSH && 4779 vd != NULL) { 4780 vd->vdev_nowritecache = B_TRUE; 4781 zio->io_error = 0; 4782 } 4783 4784 if (zio->io_error) 4785 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 4786 4787 return (zio); 4788 } 4789 4790 void 4791 zio_vdev_io_reissue(zio_t *zio) 4792 { 4793 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 4794 ASSERT(zio->io_error == 0); 4795 4796 zio->io_stage >>= 1; 4797 } 4798 4799 void 4800 zio_vdev_io_redone(zio_t *zio) 4801 { 4802 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE); 4803 4804 zio->io_stage >>= 1; 4805 } 4806 4807 void 4808 zio_vdev_io_bypass(zio_t *zio) 4809 { 4810 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 4811 ASSERT(zio->io_error == 0); 4812 4813 zio->io_flags |= ZIO_FLAG_IO_BYPASS; 4814 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1; 4815 } 4816 4817 /* 4818 * ========================================================================== 4819 * Encrypt and store encryption parameters 4820 * ========================================================================== 4821 */ 4822 4823 4824 /* 4825 * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for 4826 * managing the storage of encryption parameters and passing them to the 4827 * lower-level encryption functions. 4828 */ 4829 static zio_t * 4830 zio_encrypt(zio_t *zio) 4831 { 4832 zio_prop_t *zp = &zio->io_prop; 4833 spa_t *spa = zio->io_spa; 4834 blkptr_t *bp = zio->io_bp; 4835 uint64_t psize = BP_GET_PSIZE(bp); 4836 uint64_t dsobj = zio->io_bookmark.zb_objset; 4837 dmu_object_type_t ot = BP_GET_TYPE(bp); 4838 void *enc_buf = NULL; 4839 abd_t *eabd = NULL; 4840 uint8_t salt[ZIO_DATA_SALT_LEN]; 4841 uint8_t iv[ZIO_DATA_IV_LEN]; 4842 uint8_t mac[ZIO_DATA_MAC_LEN]; 4843 boolean_t no_crypt = B_FALSE; 4844 4845 /* the root zio already encrypted the data */ 4846 if (zio->io_child_type == ZIO_CHILD_GANG) 4847 return (zio); 4848 4849 /* only ZIL blocks are re-encrypted on rewrite */ 4850 if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG) 4851 return (zio); 4852 4853 if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) { 4854 BP_SET_CRYPT(bp, B_FALSE); 4855 return (zio); 4856 } 4857 4858 /* if we are doing raw encryption set the provided encryption params */ 4859 if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) { 4860 ASSERT0(BP_GET_LEVEL(bp)); 4861 BP_SET_CRYPT(bp, B_TRUE); 4862 BP_SET_BYTEORDER(bp, zp->zp_byteorder); 4863 if (ot != DMU_OT_OBJSET) 4864 zio_crypt_encode_mac_bp(bp, zp->zp_mac); 4865 4866 /* dnode blocks must be written out in the provided byteorder */ 4867 if (zp->zp_byteorder != ZFS_HOST_BYTEORDER && 4868 ot == DMU_OT_DNODE) { 4869 void *bswap_buf = zio_buf_alloc(psize); 4870 abd_t *babd = abd_get_from_buf(bswap_buf, psize); 4871 4872 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 4873 abd_copy_to_buf(bswap_buf, zio->io_abd, psize); 4874 dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf, 4875 psize); 4876 4877 abd_take_ownership_of_buf(babd, B_TRUE); 4878 zio_push_transform(zio, babd, psize, psize, NULL); 4879 } 4880 4881 if (DMU_OT_IS_ENCRYPTED(ot)) 4882 zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv); 4883 return (zio); 4884 } 4885 4886 /* indirect blocks only maintain a cksum of the lower level MACs */ 4887 if (BP_GET_LEVEL(bp) > 0) { 4888 BP_SET_CRYPT(bp, B_TRUE); 4889 VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE, 4890 zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp), 4891 mac)); 4892 zio_crypt_encode_mac_bp(bp, mac); 4893 return (zio); 4894 } 4895 4896 /* 4897 * Objset blocks are a special case since they have 2 256-bit MACs 4898 * embedded within them. 4899 */ 4900 if (ot == DMU_OT_OBJSET) { 4901 ASSERT0(DMU_OT_IS_ENCRYPTED(ot)); 4902 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 4903 BP_SET_CRYPT(bp, B_TRUE); 4904 VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj, 4905 zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp))); 4906 return (zio); 4907 } 4908 4909 /* unencrypted object types are only authenticated with a MAC */ 4910 if (!DMU_OT_IS_ENCRYPTED(ot)) { 4911 BP_SET_CRYPT(bp, B_TRUE); 4912 VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj, 4913 zio->io_abd, psize, mac)); 4914 zio_crypt_encode_mac_bp(bp, mac); 4915 return (zio); 4916 } 4917 4918 /* 4919 * Later passes of sync-to-convergence may decide to rewrite data 4920 * in place to avoid more disk reallocations. This presents a problem 4921 * for encryption because this constitutes rewriting the new data with 4922 * the same encryption key and IV. However, this only applies to blocks 4923 * in the MOS (particularly the spacemaps) and we do not encrypt the 4924 * MOS. We assert that the zio is allocating or an intent log write 4925 * to enforce this. 4926 */ 4927 ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG); 4928 ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG); 4929 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION)); 4930 ASSERT3U(psize, !=, 0); 4931 4932 enc_buf = zio_buf_alloc(psize); 4933 eabd = abd_get_from_buf(enc_buf, psize); 4934 abd_take_ownership_of_buf(eabd, B_TRUE); 4935 4936 /* 4937 * For an explanation of what encryption parameters are stored 4938 * where, see the block comment in zio_crypt.c. 4939 */ 4940 if (ot == DMU_OT_INTENT_LOG) { 4941 zio_crypt_decode_params_bp(bp, salt, iv); 4942 } else { 4943 BP_SET_CRYPT(bp, B_TRUE); 4944 } 4945 4946 /* Perform the encryption. This should not fail */ 4947 VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark, 4948 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), 4949 salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt)); 4950 4951 /* encode encryption metadata into the bp */ 4952 if (ot == DMU_OT_INTENT_LOG) { 4953 /* 4954 * ZIL blocks store the MAC in the embedded checksum, so the 4955 * transform must always be applied. 4956 */ 4957 zio_crypt_encode_mac_zil(enc_buf, mac); 4958 zio_push_transform(zio, eabd, psize, psize, NULL); 4959 } else { 4960 BP_SET_CRYPT(bp, B_TRUE); 4961 zio_crypt_encode_params_bp(bp, salt, iv); 4962 zio_crypt_encode_mac_bp(bp, mac); 4963 4964 if (no_crypt) { 4965 ASSERT3U(ot, ==, DMU_OT_DNODE); 4966 abd_free(eabd); 4967 } else { 4968 zio_push_transform(zio, eabd, psize, psize, NULL); 4969 } 4970 } 4971 4972 return (zio); 4973 } 4974 4975 /* 4976 * ========================================================================== 4977 * Generate and verify checksums 4978 * ========================================================================== 4979 */ 4980 static zio_t * 4981 zio_checksum_generate(zio_t *zio) 4982 { 4983 blkptr_t *bp = zio->io_bp; 4984 enum zio_checksum checksum; 4985 4986 if (bp == NULL) { 4987 /* 4988 * This is zio_write_phys(). 4989 * We're either generating a label checksum, or none at all. 4990 */ 4991 checksum = zio->io_prop.zp_checksum; 4992 4993 if (checksum == ZIO_CHECKSUM_OFF) 4994 return (zio); 4995 4996 ASSERT(checksum == ZIO_CHECKSUM_LABEL); 4997 } else { 4998 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) { 4999 ASSERT(!IO_IS_ALLOCATING(zio)); 5000 checksum = ZIO_CHECKSUM_GANG_HEADER; 5001 } else { 5002 checksum = BP_GET_CHECKSUM(bp); 5003 } 5004 } 5005 5006 zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size); 5007 5008 return (zio); 5009 } 5010 5011 static zio_t * 5012 zio_checksum_verify(zio_t *zio) 5013 { 5014 zio_bad_cksum_t info; 5015 blkptr_t *bp = zio->io_bp; 5016 int error; 5017 5018 ASSERT(zio->io_vd != NULL); 5019 5020 if (bp == NULL) { 5021 /* 5022 * This is zio_read_phys(). 5023 * We're either verifying a label checksum, or nothing at all. 5024 */ 5025 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF) 5026 return (zio); 5027 5028 ASSERT3U(zio->io_prop.zp_checksum, ==, ZIO_CHECKSUM_LABEL); 5029 } 5030 5031 ASSERT0(zio->io_flags & ZIO_FLAG_DIO_CHKSUM_ERR); 5032 IMPLY(zio->io_flags & ZIO_FLAG_DIO_READ, 5033 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)); 5034 5035 if ((error = zio_checksum_error(zio, &info)) != 0) { 5036 zio->io_error = error; 5037 if (error == ECKSUM && 5038 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 5039 if (zio->io_flags & ZIO_FLAG_DIO_READ) { 5040 zio->io_flags |= ZIO_FLAG_DIO_CHKSUM_ERR; 5041 zio_t *pio = zio_unique_parent(zio); 5042 /* 5043 * Any Direct I/O read that has a checksum 5044 * error must be treated as suspicous as the 5045 * contents of the buffer could be getting 5046 * manipulated while the I/O is taking place. 5047 * 5048 * The checksum verify error will only be 5049 * reported here for disk and file VDEV's and 5050 * will be reported on those that the failure 5051 * occurred on. Other types of VDEV's report the 5052 * verify failure in their own code paths. 5053 */ 5054 if (pio->io_child_type == ZIO_CHILD_LOGICAL) { 5055 zio_dio_chksum_verify_error_report(zio); 5056 } 5057 } else { 5058 mutex_enter(&zio->io_vd->vdev_stat_lock); 5059 zio->io_vd->vdev_stat.vs_checksum_errors++; 5060 mutex_exit(&zio->io_vd->vdev_stat_lock); 5061 (void) zfs_ereport_start_checksum(zio->io_spa, 5062 zio->io_vd, &zio->io_bookmark, zio, 5063 zio->io_offset, zio->io_size, &info); 5064 } 5065 } 5066 } 5067 5068 return (zio); 5069 } 5070 5071 static zio_t * 5072 zio_dio_checksum_verify(zio_t *zio) 5073 { 5074 zio_t *pio = zio_unique_parent(zio); 5075 int error; 5076 5077 ASSERT3P(zio->io_vd, !=, NULL); 5078 ASSERT3P(zio->io_bp, !=, NULL); 5079 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); 5080 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE); 5081 ASSERT3B(pio->io_prop.zp_direct_write, ==, B_TRUE); 5082 ASSERT3U(pio->io_child_type, ==, ZIO_CHILD_LOGICAL); 5083 5084 if (zfs_vdev_direct_write_verify == 0 || zio->io_error != 0) 5085 goto out; 5086 5087 if ((error = zio_checksum_error(zio, NULL)) != 0) { 5088 zio->io_error = error; 5089 if (error == ECKSUM) { 5090 zio->io_flags |= ZIO_FLAG_DIO_CHKSUM_ERR; 5091 zio_dio_chksum_verify_error_report(zio); 5092 } 5093 } 5094 5095 out: 5096 return (zio); 5097 } 5098 5099 5100 /* 5101 * Called by RAID-Z to ensure we don't compute the checksum twice. 5102 */ 5103 void 5104 zio_checksum_verified(zio_t *zio) 5105 { 5106 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 5107 } 5108 5109 /* 5110 * Report Direct I/O checksum verify error and create ZED event. 5111 */ 5112 void 5113 zio_dio_chksum_verify_error_report(zio_t *zio) 5114 { 5115 ASSERT(zio->io_flags & ZIO_FLAG_DIO_CHKSUM_ERR); 5116 5117 if (zio->io_child_type == ZIO_CHILD_LOGICAL) 5118 return; 5119 5120 mutex_enter(&zio->io_vd->vdev_stat_lock); 5121 zio->io_vd->vdev_stat.vs_dio_verify_errors++; 5122 mutex_exit(&zio->io_vd->vdev_stat_lock); 5123 if (zio->io_type == ZIO_TYPE_WRITE) { 5124 /* 5125 * Convert checksum error for writes into EIO. 5126 */ 5127 zio->io_error = SET_ERROR(EIO); 5128 /* 5129 * Report dio_verify_wr ZED event. 5130 */ 5131 (void) zfs_ereport_post(FM_EREPORT_ZFS_DIO_VERIFY_WR, 5132 zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0); 5133 } else { 5134 /* 5135 * Report dio_verify_rd ZED event. 5136 */ 5137 (void) zfs_ereport_post(FM_EREPORT_ZFS_DIO_VERIFY_RD, 5138 zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0); 5139 } 5140 } 5141 5142 /* 5143 * ========================================================================== 5144 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other. 5145 * An error of 0 indicates success. ENXIO indicates whole-device failure, 5146 * which may be transient (e.g. unplugged) or permanent. ECKSUM and EIO 5147 * indicate errors that are specific to one I/O, and most likely permanent. 5148 * Any other error is presumed to be worse because we weren't expecting it. 5149 * ========================================================================== 5150 */ 5151 int 5152 zio_worst_error(int e1, int e2) 5153 { 5154 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO }; 5155 int r1, r2; 5156 5157 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++) 5158 if (e1 == zio_error_rank[r1]) 5159 break; 5160 5161 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++) 5162 if (e2 == zio_error_rank[r2]) 5163 break; 5164 5165 return (r1 > r2 ? e1 : e2); 5166 } 5167 5168 /* 5169 * ========================================================================== 5170 * I/O completion 5171 * ========================================================================== 5172 */ 5173 static zio_t * 5174 zio_ready(zio_t *zio) 5175 { 5176 blkptr_t *bp = zio->io_bp; 5177 zio_t *pio, *pio_next; 5178 zio_link_t *zl = NULL; 5179 5180 if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT | 5181 ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT, ZIO_WAIT_READY)) { 5182 return (NULL); 5183 } 5184 5185 if (zio->io_ready) { 5186 ASSERT(IO_IS_ALLOCATING(zio)); 5187 ASSERT(BP_GET_LOGICAL_BIRTH(bp) == zio->io_txg || 5188 BP_IS_HOLE(bp) || (zio->io_flags & ZIO_FLAG_NOPWRITE)); 5189 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0); 5190 5191 zio->io_ready(zio); 5192 } 5193 5194 #ifdef ZFS_DEBUG 5195 if (bp != NULL && bp != &zio->io_bp_copy) 5196 zio->io_bp_copy = *bp; 5197 #endif 5198 5199 if (zio->io_error != 0) { 5200 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 5201 5202 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 5203 ASSERT(IO_IS_ALLOCATING(zio)); 5204 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 5205 ASSERT(zio->io_metaslab_class != NULL); 5206 ASSERT(ZIO_HAS_ALLOCATOR(zio)); 5207 5208 /* 5209 * We were unable to allocate anything, unreserve and 5210 * issue the next I/O to allocate. 5211 */ 5212 if (metaslab_class_throttle_unreserve( 5213 zio->io_metaslab_class, zio->io_prop.zp_copies, 5214 zio)) { 5215 zio_allocate_dispatch(zio->io_metaslab_class, 5216 zio->io_allocator); 5217 } 5218 } 5219 } 5220 5221 mutex_enter(&zio->io_lock); 5222 zio->io_state[ZIO_WAIT_READY] = 1; 5223 pio = zio_walk_parents(zio, &zl); 5224 mutex_exit(&zio->io_lock); 5225 5226 /* 5227 * As we notify zio's parents, new parents could be added. 5228 * New parents go to the head of zio's io_parent_list, however, 5229 * so we will (correctly) not notify them. The remainder of zio's 5230 * io_parent_list, from 'pio_next' onward, cannot change because 5231 * all parents must wait for us to be done before they can be done. 5232 */ 5233 for (; pio != NULL; pio = pio_next) { 5234 pio_next = zio_walk_parents(zio, &zl); 5235 zio_notify_parent(pio, zio, ZIO_WAIT_READY, NULL); 5236 } 5237 5238 if (zio->io_flags & ZIO_FLAG_NODATA) { 5239 if (bp != NULL && BP_IS_GANG(bp)) { 5240 zio->io_flags &= ~ZIO_FLAG_NODATA; 5241 } else { 5242 ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE); 5243 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 5244 } 5245 } 5246 5247 if (zio_injection_enabled && 5248 zio->io_spa->spa_syncing_txg == zio->io_txg) 5249 zio_handle_ignored_writes(zio); 5250 5251 return (zio); 5252 } 5253 5254 /* 5255 * Update the allocation throttle accounting. 5256 */ 5257 static void 5258 zio_dva_throttle_done(zio_t *zio) 5259 { 5260 zio_t *pio = zio_unique_parent(zio); 5261 vdev_t *vd = zio->io_vd; 5262 int flags = METASLAB_ASYNC_ALLOC; 5263 const void *tag = pio; 5264 5265 ASSERT3P(zio->io_bp, !=, NULL); 5266 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE); 5267 ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE); 5268 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); 5269 ASSERT(vd != NULL); 5270 ASSERT3P(vd, ==, vd->vdev_top); 5271 ASSERT(zio_injection_enabled || !(zio->io_flags & ZIO_FLAG_IO_RETRY)); 5272 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR)); 5273 ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING); 5274 5275 /* 5276 * Parents of gang children can have two flavors -- ones that allocated 5277 * the gang header (will have ZIO_FLAG_IO_REWRITE set) and ones that 5278 * allocated the constituent blocks. The first use their parent as tag. 5279 */ 5280 if (pio->io_child_type == ZIO_CHILD_GANG && 5281 (pio->io_flags & ZIO_FLAG_IO_REWRITE)) 5282 tag = zio_unique_parent(pio); 5283 5284 ASSERT(IO_IS_ALLOCATING(pio) || (pio->io_child_type == ZIO_CHILD_GANG && 5285 (pio->io_flags & ZIO_FLAG_IO_REWRITE))); 5286 ASSERT(ZIO_HAS_ALLOCATOR(pio)); 5287 ASSERT3P(zio, !=, zio->io_logical); 5288 ASSERT(zio->io_logical != NULL); 5289 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR)); 5290 ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE); 5291 ASSERT(zio->io_metaslab_class != NULL); 5292 ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled); 5293 5294 metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, 5295 pio->io_allocator, flags, pio->io_size, tag); 5296 5297 if (metaslab_class_throttle_unreserve(zio->io_metaslab_class, 1, pio)) { 5298 zio_allocate_dispatch(zio->io_metaslab_class, 5299 pio->io_allocator); 5300 } 5301 } 5302 5303 static zio_t * 5304 zio_done(zio_t *zio) 5305 { 5306 /* 5307 * Always attempt to keep stack usage minimal here since 5308 * we can be called recursively up to 19 levels deep. 5309 */ 5310 const uint64_t psize = zio->io_size; 5311 zio_t *pio, *pio_next; 5312 zio_link_t *zl = NULL; 5313 5314 /* 5315 * If our children haven't all completed, 5316 * wait for them and then repeat this pipeline stage. 5317 */ 5318 if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) { 5319 return (NULL); 5320 } 5321 5322 /* 5323 * If the allocation throttle is enabled, then update the accounting. 5324 * We only track child I/Os that are part of an allocating async 5325 * write. We must do this since the allocation is performed 5326 * by the logical I/O but the actual write is done by child I/Os. 5327 */ 5328 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING && 5329 zio->io_child_type == ZIO_CHILD_VDEV) 5330 zio_dva_throttle_done(zio); 5331 5332 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 5333 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 5334 ASSERT(zio->io_children[c][w] == 0); 5335 5336 if (zio->io_bp != NULL && !BP_IS_EMBEDDED(zio->io_bp)) { 5337 ASSERT(zio->io_bp->blk_pad[0] == 0); 5338 ASSERT(zio->io_bp->blk_pad[1] == 0); 5339 ASSERT(memcmp(zio->io_bp, &zio->io_bp_copy, 5340 sizeof (blkptr_t)) == 0 || 5341 (zio->io_bp == zio_unique_parent(zio)->io_bp)); 5342 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) && 5343 zio->io_bp_override == NULL && 5344 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) { 5345 ASSERT3U(zio->io_prop.zp_copies, <=, 5346 BP_GET_NDVAS(zio->io_bp)); 5347 ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 || 5348 (BP_COUNT_GANG(zio->io_bp) == 5349 BP_GET_NDVAS(zio->io_bp))); 5350 } 5351 if (zio->io_flags & ZIO_FLAG_NOPWRITE) 5352 VERIFY(BP_EQUAL(zio->io_bp, &zio->io_bp_orig)); 5353 } 5354 5355 /* 5356 * If there were child vdev/gang/ddt errors, they apply to us now. 5357 */ 5358 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV); 5359 zio_inherit_child_errors(zio, ZIO_CHILD_GANG); 5360 zio_inherit_child_errors(zio, ZIO_CHILD_DDT); 5361 5362 /* 5363 * If the I/O on the transformed data was successful, generate any 5364 * checksum reports now while we still have the transformed data. 5365 */ 5366 if (zio->io_error == 0) { 5367 while (zio->io_cksum_report != NULL) { 5368 zio_cksum_report_t *zcr = zio->io_cksum_report; 5369 uint64_t align = zcr->zcr_align; 5370 uint64_t asize = P2ROUNDUP(psize, align); 5371 abd_t *adata = zio->io_abd; 5372 5373 if (adata != NULL && asize != psize) { 5374 adata = abd_alloc(asize, B_TRUE); 5375 abd_copy(adata, zio->io_abd, psize); 5376 abd_zero_off(adata, psize, asize - psize); 5377 } 5378 5379 zio->io_cksum_report = zcr->zcr_next; 5380 zcr->zcr_next = NULL; 5381 zcr->zcr_finish(zcr, adata); 5382 zfs_ereport_free_checksum(zcr); 5383 5384 if (adata != NULL && asize != psize) 5385 abd_free(adata); 5386 } 5387 } 5388 5389 zio_pop_transforms(zio); /* note: may set zio->io_error */ 5390 5391 vdev_stat_update(zio, psize); 5392 5393 /* 5394 * If this I/O is attached to a particular vdev is slow, exceeding 5395 * 30 seconds to complete, post an error described the I/O delay. 5396 * We ignore these errors if the device is currently unavailable. 5397 */ 5398 if (zio->io_delay >= MSEC2NSEC(zio_slow_io_ms)) { 5399 if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) { 5400 /* 5401 * We want to only increment our slow IO counters if 5402 * the IO is valid (i.e. not if the drive is removed). 5403 * 5404 * zfs_ereport_post() will also do these checks, but 5405 * it can also ratelimit and have other failures, so we 5406 * need to increment the slow_io counters independent 5407 * of it. 5408 */ 5409 if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY, 5410 zio->io_spa, zio->io_vd, zio)) { 5411 mutex_enter(&zio->io_vd->vdev_stat_lock); 5412 zio->io_vd->vdev_stat.vs_slow_ios++; 5413 mutex_exit(&zio->io_vd->vdev_stat_lock); 5414 5415 (void) zfs_ereport_post(FM_EREPORT_ZFS_DELAY, 5416 zio->io_spa, zio->io_vd, &zio->io_bookmark, 5417 zio, 0); 5418 } 5419 } 5420 } 5421 5422 if (zio->io_error) { 5423 /* 5424 * If this I/O is attached to a particular vdev, 5425 * generate an error message describing the I/O failure 5426 * at the block level. We ignore these errors if the 5427 * device is currently unavailable. 5428 */ 5429 if (zio->io_error != ECKSUM && zio->io_vd != NULL && 5430 !vdev_is_dead(zio->io_vd) && 5431 !(zio->io_flags & ZIO_FLAG_DIO_CHKSUM_ERR)) { 5432 int ret = zfs_ereport_post(FM_EREPORT_ZFS_IO, 5433 zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0); 5434 if (ret != EALREADY) { 5435 mutex_enter(&zio->io_vd->vdev_stat_lock); 5436 if (zio->io_type == ZIO_TYPE_READ) 5437 zio->io_vd->vdev_stat.vs_read_errors++; 5438 else if (zio->io_type == ZIO_TYPE_WRITE) 5439 zio->io_vd->vdev_stat.vs_write_errors++; 5440 mutex_exit(&zio->io_vd->vdev_stat_lock); 5441 } 5442 } 5443 5444 if ((zio->io_error == EIO || !(zio->io_flags & 5445 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) && 5446 !(zio->io_flags & ZIO_FLAG_DIO_CHKSUM_ERR) && 5447 zio == zio->io_logical) { 5448 /* 5449 * For logical I/O requests, tell the SPA to log the 5450 * error and generate a logical data ereport. 5451 */ 5452 spa_log_error(zio->io_spa, &zio->io_bookmark, 5453 BP_GET_LOGICAL_BIRTH(zio->io_bp)); 5454 (void) zfs_ereport_post(FM_EREPORT_ZFS_DATA, 5455 zio->io_spa, NULL, &zio->io_bookmark, zio, 0); 5456 } 5457 } 5458 5459 if (zio->io_error && zio == zio->io_logical) { 5460 5461 /* 5462 * A DDT child tried to create a mixed gang/non-gang BP. We're 5463 * going to have to just retry as a non-dedup IO. 5464 */ 5465 if (zio->io_error == EAGAIN && IO_IS_ALLOCATING(zio) && 5466 zio->io_prop.zp_dedup) { 5467 zio->io_reexecute |= ZIO_REEXECUTE_NOW; 5468 zio->io_prop.zp_dedup = B_FALSE; 5469 } 5470 /* 5471 * Determine whether zio should be reexecuted. This will 5472 * propagate all the way to the root via zio_notify_parent(). 5473 */ 5474 ASSERT(zio->io_vd == NULL && zio->io_bp != NULL); 5475 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 5476 5477 if (IO_IS_ALLOCATING(zio) && 5478 !(zio->io_flags & ZIO_FLAG_CANFAIL) && 5479 !(zio->io_flags & ZIO_FLAG_DIO_CHKSUM_ERR)) { 5480 if (zio->io_error != ENOSPC) 5481 zio->io_reexecute |= ZIO_REEXECUTE_NOW; 5482 else 5483 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 5484 } 5485 5486 if ((zio->io_type == ZIO_TYPE_READ || 5487 zio->io_type == ZIO_TYPE_FREE) && 5488 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && 5489 zio->io_error == ENXIO && 5490 spa_load_state(zio->io_spa) == SPA_LOAD_NONE && 5491 spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE) 5492 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 5493 5494 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute) 5495 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 5496 5497 /* 5498 * Here is a possibly good place to attempt to do 5499 * either combinatorial reconstruction or error correction 5500 * based on checksums. It also might be a good place 5501 * to send out preliminary ereports before we suspend 5502 * processing. 5503 */ 5504 } 5505 5506 /* 5507 * If there were logical child errors, they apply to us now. 5508 * We defer this until now to avoid conflating logical child 5509 * errors with errors that happened to the zio itself when 5510 * updating vdev stats and reporting FMA events above. 5511 */ 5512 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL); 5513 5514 if ((zio->io_error || zio->io_reexecute) && 5515 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio && 5516 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE))) 5517 zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp); 5518 5519 zio_gang_tree_free(&zio->io_gang_tree); 5520 5521 /* 5522 * Godfather I/Os should never suspend. 5523 */ 5524 if ((zio->io_flags & ZIO_FLAG_GODFATHER) && 5525 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) 5526 zio->io_reexecute &= ~ZIO_REEXECUTE_SUSPEND; 5527 5528 if (zio->io_reexecute) { 5529 /* 5530 * A Direct I/O operation that has a checksum verify error 5531 * should not attempt to reexecute. Instead, the error should 5532 * just be propagated back. 5533 */ 5534 ASSERT(!(zio->io_flags & ZIO_FLAG_DIO_CHKSUM_ERR)); 5535 5536 /* 5537 * This is a logical I/O that wants to reexecute. 5538 * 5539 * Reexecute is top-down. When an i/o fails, if it's not 5540 * the root, it simply notifies its parent and sticks around. 5541 * The parent, seeing that it still has children in zio_done(), 5542 * does the same. This percolates all the way up to the root. 5543 * The root i/o will reexecute or suspend the entire tree. 5544 * 5545 * This approach ensures that zio_reexecute() honors 5546 * all the original i/o dependency relationships, e.g. 5547 * parents not executing until children are ready. 5548 */ 5549 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 5550 5551 zio->io_gang_leader = NULL; 5552 5553 mutex_enter(&zio->io_lock); 5554 zio->io_state[ZIO_WAIT_DONE] = 1; 5555 mutex_exit(&zio->io_lock); 5556 5557 /* 5558 * "The Godfather" I/O monitors its children but is 5559 * not a true parent to them. It will track them through 5560 * the pipeline but severs its ties whenever they get into 5561 * trouble (e.g. suspended). This allows "The Godfather" 5562 * I/O to return status without blocking. 5563 */ 5564 zl = NULL; 5565 for (pio = zio_walk_parents(zio, &zl); pio != NULL; 5566 pio = pio_next) { 5567 zio_link_t *remove_zl = zl; 5568 pio_next = zio_walk_parents(zio, &zl); 5569 5570 if ((pio->io_flags & ZIO_FLAG_GODFATHER) && 5571 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) { 5572 zio_remove_child(pio, zio, remove_zl); 5573 /* 5574 * This is a rare code path, so we don't 5575 * bother with "next_to_execute". 5576 */ 5577 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, 5578 NULL); 5579 } 5580 } 5581 5582 if ((pio = zio_unique_parent(zio)) != NULL) { 5583 /* 5584 * We're not a root i/o, so there's nothing to do 5585 * but notify our parent. Don't propagate errors 5586 * upward since we haven't permanently failed yet. 5587 */ 5588 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 5589 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE; 5590 /* 5591 * This is a rare code path, so we don't bother with 5592 * "next_to_execute". 5593 */ 5594 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, NULL); 5595 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) { 5596 /* 5597 * We'd fail again if we reexecuted now, so suspend 5598 * until conditions improve (e.g. device comes online). 5599 */ 5600 zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR); 5601 } else { 5602 /* 5603 * Reexecution is potentially a huge amount of work. 5604 * Hand it off to the otherwise-unused claim taskq. 5605 */ 5606 spa_taskq_dispatch(zio->io_spa, 5607 ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE, 5608 zio_reexecute, zio, B_FALSE); 5609 } 5610 return (NULL); 5611 } 5612 5613 ASSERT(list_is_empty(&zio->io_child_list)); 5614 ASSERT(zio->io_reexecute == 0); 5615 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL)); 5616 5617 /* 5618 * Report any checksum errors, since the I/O is complete. 5619 */ 5620 while (zio->io_cksum_report != NULL) { 5621 zio_cksum_report_t *zcr = zio->io_cksum_report; 5622 zio->io_cksum_report = zcr->zcr_next; 5623 zcr->zcr_next = NULL; 5624 zcr->zcr_finish(zcr, NULL); 5625 zfs_ereport_free_checksum(zcr); 5626 } 5627 5628 /* 5629 * It is the responsibility of the done callback to ensure that this 5630 * particular zio is no longer discoverable for adoption, and as 5631 * such, cannot acquire any new parents. 5632 */ 5633 if (zio->io_done) 5634 zio->io_done(zio); 5635 5636 mutex_enter(&zio->io_lock); 5637 zio->io_state[ZIO_WAIT_DONE] = 1; 5638 mutex_exit(&zio->io_lock); 5639 5640 /* 5641 * We are done executing this zio. We may want to execute a parent 5642 * next. See the comment in zio_notify_parent(). 5643 */ 5644 zio_t *next_to_execute = NULL; 5645 zl = NULL; 5646 for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) { 5647 zio_link_t *remove_zl = zl; 5648 pio_next = zio_walk_parents(zio, &zl); 5649 zio_remove_child(pio, zio, remove_zl); 5650 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, &next_to_execute); 5651 } 5652 5653 if (zio->io_waiter != NULL) { 5654 mutex_enter(&zio->io_lock); 5655 zio->io_executor = NULL; 5656 cv_broadcast(&zio->io_cv); 5657 mutex_exit(&zio->io_lock); 5658 } else { 5659 zio_destroy(zio); 5660 } 5661 5662 return (next_to_execute); 5663 } 5664 5665 /* 5666 * ========================================================================== 5667 * I/O pipeline definition 5668 * ========================================================================== 5669 */ 5670 static zio_pipe_stage_t *zio_pipeline[] = { 5671 NULL, 5672 zio_read_bp_init, 5673 zio_write_bp_init, 5674 zio_free_bp_init, 5675 zio_issue_async, 5676 zio_write_compress, 5677 zio_encrypt, 5678 zio_checksum_generate, 5679 zio_nop_write, 5680 zio_brt_free, 5681 zio_ddt_read_start, 5682 zio_ddt_read_done, 5683 zio_ddt_write, 5684 zio_ddt_free, 5685 zio_gang_assemble, 5686 zio_gang_issue, 5687 zio_dva_throttle, 5688 zio_dva_allocate, 5689 zio_dva_free, 5690 zio_dva_claim, 5691 zio_ready, 5692 zio_vdev_io_start, 5693 zio_vdev_io_done, 5694 zio_vdev_io_assess, 5695 zio_checksum_verify, 5696 zio_dio_checksum_verify, 5697 zio_done 5698 }; 5699 5700 5701 5702 5703 /* 5704 * Compare two zbookmark_phys_t's to see which we would reach first in a 5705 * pre-order traversal of the object tree. 5706 * 5707 * This is simple in every case aside from the meta-dnode object. For all other 5708 * objects, we traverse them in order (object 1 before object 2, and so on). 5709 * However, all of these objects are traversed while traversing object 0, since 5710 * the data it points to is the list of objects. Thus, we need to convert to a 5711 * canonical representation so we can compare meta-dnode bookmarks to 5712 * non-meta-dnode bookmarks. 5713 * 5714 * We do this by calculating "equivalents" for each field of the zbookmark. 5715 * zbookmarks outside of the meta-dnode use their own object and level, and 5716 * calculate the level 0 equivalent (the first L0 blkid that is contained in the 5717 * blocks this bookmark refers to) by multiplying their blkid by their span 5718 * (the number of L0 blocks contained within one block at their level). 5719 * zbookmarks inside the meta-dnode calculate their object equivalent 5720 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use 5721 * level + 1<<31 (any value larger than a level could ever be) for their level. 5722 * This causes them to always compare before a bookmark in their object 5723 * equivalent, compare appropriately to bookmarks in other objects, and to 5724 * compare appropriately to other bookmarks in the meta-dnode. 5725 */ 5726 int 5727 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2, 5728 const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2) 5729 { 5730 /* 5731 * These variables represent the "equivalent" values for the zbookmark, 5732 * after converting zbookmarks inside the meta dnode to their 5733 * normal-object equivalents. 5734 */ 5735 uint64_t zb1obj, zb2obj; 5736 uint64_t zb1L0, zb2L0; 5737 uint64_t zb1level, zb2level; 5738 5739 if (zb1->zb_object == zb2->zb_object && 5740 zb1->zb_level == zb2->zb_level && 5741 zb1->zb_blkid == zb2->zb_blkid) 5742 return (0); 5743 5744 IMPLY(zb1->zb_level > 0, ibs1 >= SPA_MINBLOCKSHIFT); 5745 IMPLY(zb2->zb_level > 0, ibs2 >= SPA_MINBLOCKSHIFT); 5746 5747 /* 5748 * BP_SPANB calculates the span in blocks. 5749 */ 5750 zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level); 5751 zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level); 5752 5753 if (zb1->zb_object == DMU_META_DNODE_OBJECT) { 5754 zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 5755 zb1L0 = 0; 5756 zb1level = zb1->zb_level + COMPARE_META_LEVEL; 5757 } else { 5758 zb1obj = zb1->zb_object; 5759 zb1level = zb1->zb_level; 5760 } 5761 5762 if (zb2->zb_object == DMU_META_DNODE_OBJECT) { 5763 zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 5764 zb2L0 = 0; 5765 zb2level = zb2->zb_level + COMPARE_META_LEVEL; 5766 } else { 5767 zb2obj = zb2->zb_object; 5768 zb2level = zb2->zb_level; 5769 } 5770 5771 /* Now that we have a canonical representation, do the comparison. */ 5772 if (zb1obj != zb2obj) 5773 return (zb1obj < zb2obj ? -1 : 1); 5774 else if (zb1L0 != zb2L0) 5775 return (zb1L0 < zb2L0 ? -1 : 1); 5776 else if (zb1level != zb2level) 5777 return (zb1level > zb2level ? -1 : 1); 5778 /* 5779 * This can (theoretically) happen if the bookmarks have the same object 5780 * and level, but different blkids, if the block sizes are not the same. 5781 * There is presently no way to change the indirect block sizes 5782 */ 5783 return (0); 5784 } 5785 5786 /* 5787 * This function checks the following: given that last_block is the place that 5788 * our traversal stopped last time, does that guarantee that we've visited 5789 * every node under subtree_root? Therefore, we can't just use the raw output 5790 * of zbookmark_compare. We have to pass in a modified version of 5791 * subtree_root; by incrementing the block id, and then checking whether 5792 * last_block is before or equal to that, we can tell whether or not having 5793 * visited last_block implies that all of subtree_root's children have been 5794 * visited. 5795 */ 5796 boolean_t 5797 zbookmark_subtree_completed(const dnode_phys_t *dnp, 5798 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block) 5799 { 5800 zbookmark_phys_t mod_zb = *subtree_root; 5801 mod_zb.zb_blkid++; 5802 ASSERT0(last_block->zb_level); 5803 5804 /* The objset_phys_t isn't before anything. */ 5805 if (dnp == NULL) 5806 return (B_FALSE); 5807 5808 /* 5809 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the 5810 * data block size in sectors, because that variable is only used if 5811 * the bookmark refers to a block in the meta-dnode. Since we don't 5812 * know without examining it what object it refers to, and there's no 5813 * harm in passing in this value in other cases, we always pass it in. 5814 * 5815 * We pass in 0 for the indirect block size shift because zb2 must be 5816 * level 0. The indirect block size is only used to calculate the span 5817 * of the bookmark, but since the bookmark must be level 0, the span is 5818 * always 1, so the math works out. 5819 * 5820 * If you make changes to how the zbookmark_compare code works, be sure 5821 * to make sure that this code still works afterwards. 5822 */ 5823 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift, 5824 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb, 5825 last_block) <= 0); 5826 } 5827 5828 /* 5829 * This function is similar to zbookmark_subtree_completed(), but returns true 5830 * if subtree_root is equal or ahead of last_block, i.e. still to be done. 5831 */ 5832 boolean_t 5833 zbookmark_subtree_tbd(const dnode_phys_t *dnp, 5834 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block) 5835 { 5836 ASSERT0(last_block->zb_level); 5837 if (dnp == NULL) 5838 return (B_FALSE); 5839 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift, 5840 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, subtree_root, 5841 last_block) >= 0); 5842 } 5843 5844 EXPORT_SYMBOL(zio_type_name); 5845 EXPORT_SYMBOL(zio_buf_alloc); 5846 EXPORT_SYMBOL(zio_data_buf_alloc); 5847 EXPORT_SYMBOL(zio_buf_free); 5848 EXPORT_SYMBOL(zio_data_buf_free); 5849 5850 ZFS_MODULE_PARAM(zfs_zio, zio_, slow_io_ms, INT, ZMOD_RW, 5851 "Max I/O completion time (milliseconds) before marking it as slow"); 5852 5853 ZFS_MODULE_PARAM(zfs_zio, zio_, requeue_io_start_cut_in_line, INT, ZMOD_RW, 5854 "Prioritize requeued I/O"); 5855 5856 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_deferred_free, UINT, ZMOD_RW, 5857 "Defer frees starting in this pass"); 5858 5859 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_dont_compress, UINT, ZMOD_RW, 5860 "Don't compress starting in this pass"); 5861 5862 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_rewrite, UINT, ZMOD_RW, 5863 "Rewrite new bps starting in this pass"); 5864 5865 ZFS_MODULE_PARAM(zfs_zio, zio_, dva_throttle_enabled, INT, ZMOD_RW, 5866 "Throttle block allocations in the ZIO pipeline"); 5867 5868 ZFS_MODULE_PARAM(zfs_zio, zio_, deadman_log_all, INT, ZMOD_RW, 5869 "Log all slow ZIOs, not just those with vdevs"); 5870