1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2020 by Delphix. All rights reserved. 24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2017, Intel Corporation. 26 * Copyright (c) 2019, Klara Inc. 27 * Copyright (c) 2019, Allan Jude 28 * Copyright (c) 2021, Datto, Inc. 29 */ 30 31 #include <sys/sysmacros.h> 32 #include <sys/zfs_context.h> 33 #include <sys/fm/fs/zfs.h> 34 #include <sys/spa.h> 35 #include <sys/txg.h> 36 #include <sys/spa_impl.h> 37 #include <sys/vdev_impl.h> 38 #include <sys/vdev_trim.h> 39 #include <sys/zio_impl.h> 40 #include <sys/zio_compress.h> 41 #include <sys/zio_checksum.h> 42 #include <sys/dmu_objset.h> 43 #include <sys/arc.h> 44 #include <sys/ddt.h> 45 #include <sys/blkptr.h> 46 #include <sys/zfeature.h> 47 #include <sys/dsl_scan.h> 48 #include <sys/metaslab_impl.h> 49 #include <sys/time.h> 50 #include <sys/trace_zfs.h> 51 #include <sys/abd.h> 52 #include <sys/dsl_crypt.h> 53 #include <cityhash.h> 54 55 /* 56 * ========================================================================== 57 * I/O type descriptions 58 * ========================================================================== 59 */ 60 const char *const zio_type_name[ZIO_TYPES] = { 61 /* 62 * Note: Linux kernel thread name length is limited 63 * so these names will differ from upstream open zfs. 64 */ 65 "z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_ioctl", "z_trim" 66 }; 67 68 int zio_dva_throttle_enabled = B_TRUE; 69 static int zio_deadman_log_all = B_FALSE; 70 71 /* 72 * ========================================================================== 73 * I/O kmem caches 74 * ========================================================================== 75 */ 76 static kmem_cache_t *zio_cache; 77 static kmem_cache_t *zio_link_cache; 78 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 79 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 80 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 81 static uint64_t zio_buf_cache_allocs[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 82 static uint64_t zio_buf_cache_frees[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 83 #endif 84 85 /* Mark IOs as "slow" if they take longer than 30 seconds */ 86 static int zio_slow_io_ms = (30 * MILLISEC); 87 88 #define BP_SPANB(indblkshift, level) \ 89 (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT))) 90 #define COMPARE_META_LEVEL 0x80000000ul 91 /* 92 * The following actions directly effect the spa's sync-to-convergence logic. 93 * The values below define the sync pass when we start performing the action. 94 * Care should be taken when changing these values as they directly impact 95 * spa_sync() performance. Tuning these values may introduce subtle performance 96 * pathologies and should only be done in the context of performance analysis. 97 * These tunables will eventually be removed and replaced with #defines once 98 * enough analysis has been done to determine optimal values. 99 * 100 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that 101 * regular blocks are not deferred. 102 * 103 * Starting in sync pass 8 (zfs_sync_pass_dont_compress), we disable 104 * compression (including of metadata). In practice, we don't have this 105 * many sync passes, so this has no effect. 106 * 107 * The original intent was that disabling compression would help the sync 108 * passes to converge. However, in practice disabling compression increases 109 * the average number of sync passes, because when we turn compression off, a 110 * lot of block's size will change and thus we have to re-allocate (not 111 * overwrite) them. It also increases the number of 128KB allocations (e.g. 112 * for indirect blocks and spacemaps) because these will not be compressed. 113 * The 128K allocations are especially detrimental to performance on highly 114 * fragmented systems, which may have very few free segments of this size, 115 * and may need to load new metaslabs to satisfy 128K allocations. 116 */ 117 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */ 118 static int zfs_sync_pass_dont_compress = 8; /* don't compress s. i. t. p. */ 119 static int zfs_sync_pass_rewrite = 2; /* rewrite new bps s. i. t. p. */ 120 121 /* 122 * An allocating zio is one that either currently has the DVA allocate 123 * stage set or will have it later in its lifetime. 124 */ 125 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE) 126 127 /* 128 * Enable smaller cores by excluding metadata 129 * allocations as well. 130 */ 131 int zio_exclude_metadata = 0; 132 static int zio_requeue_io_start_cut_in_line = 1; 133 134 #ifdef ZFS_DEBUG 135 static const int zio_buf_debug_limit = 16384; 136 #else 137 static const int zio_buf_debug_limit = 0; 138 #endif 139 140 static inline void __zio_execute(zio_t *zio); 141 142 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t); 143 144 void 145 zio_init(void) 146 { 147 size_t c; 148 149 zio_cache = kmem_cache_create("zio_cache", 150 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 151 zio_link_cache = kmem_cache_create("zio_link_cache", 152 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 153 154 /* 155 * For small buffers, we want a cache for each multiple of 156 * SPA_MINBLOCKSIZE. For larger buffers, we want a cache 157 * for each quarter-power of 2. 158 */ 159 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 160 size_t size = (c + 1) << SPA_MINBLOCKSHIFT; 161 size_t p2 = size; 162 size_t align = 0; 163 size_t data_cflags, cflags; 164 165 data_cflags = KMC_NODEBUG; 166 cflags = (zio_exclude_metadata || size > zio_buf_debug_limit) ? 167 KMC_NODEBUG : 0; 168 169 #if defined(_ILP32) && defined(_KERNEL) 170 /* 171 * Cache size limited to 1M on 32-bit platforms until ARC 172 * buffers no longer require virtual address space. 173 */ 174 if (size > zfs_max_recordsize) 175 break; 176 #endif 177 178 while (!ISP2(p2)) 179 p2 &= p2 - 1; 180 181 #ifndef _KERNEL 182 /* 183 * If we are using watchpoints, put each buffer on its own page, 184 * to eliminate the performance overhead of trapping to the 185 * kernel when modifying a non-watched buffer that shares the 186 * page with a watched buffer. 187 */ 188 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE)) 189 continue; 190 /* 191 * Here's the problem - on 4K native devices in userland on 192 * Linux using O_DIRECT, buffers must be 4K aligned or I/O 193 * will fail with EINVAL, causing zdb (and others) to coredump. 194 * Since userland probably doesn't need optimized buffer caches, 195 * we just force 4K alignment on everything. 196 */ 197 align = 8 * SPA_MINBLOCKSIZE; 198 #else 199 if (size < PAGESIZE) { 200 align = SPA_MINBLOCKSIZE; 201 } else if (IS_P2ALIGNED(size, p2 >> 2)) { 202 align = PAGESIZE; 203 } 204 #endif 205 206 if (align != 0) { 207 char name[36]; 208 if (cflags == data_cflags) { 209 /* 210 * Resulting kmem caches would be identical. 211 * Save memory by creating only one. 212 */ 213 (void) snprintf(name, sizeof (name), 214 "zio_buf_comb_%lu", (ulong_t)size); 215 zio_buf_cache[c] = kmem_cache_create(name, 216 size, align, NULL, NULL, NULL, NULL, NULL, 217 cflags); 218 zio_data_buf_cache[c] = zio_buf_cache[c]; 219 continue; 220 } 221 (void) snprintf(name, sizeof (name), "zio_buf_%lu", 222 (ulong_t)size); 223 zio_buf_cache[c] = kmem_cache_create(name, size, 224 align, NULL, NULL, NULL, NULL, NULL, cflags); 225 226 (void) snprintf(name, sizeof (name), "zio_data_buf_%lu", 227 (ulong_t)size); 228 zio_data_buf_cache[c] = kmem_cache_create(name, size, 229 align, NULL, NULL, NULL, NULL, NULL, data_cflags); 230 } 231 } 232 233 while (--c != 0) { 234 ASSERT(zio_buf_cache[c] != NULL); 235 if (zio_buf_cache[c - 1] == NULL) 236 zio_buf_cache[c - 1] = zio_buf_cache[c]; 237 238 ASSERT(zio_data_buf_cache[c] != NULL); 239 if (zio_data_buf_cache[c - 1] == NULL) 240 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c]; 241 } 242 243 zio_inject_init(); 244 245 lz4_init(); 246 } 247 248 void 249 zio_fini(void) 250 { 251 size_t n = SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; 252 253 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 254 for (size_t i = 0; i < n; i++) { 255 if (zio_buf_cache_allocs[i] != zio_buf_cache_frees[i]) 256 (void) printf("zio_fini: [%d] %llu != %llu\n", 257 (int)((i + 1) << SPA_MINBLOCKSHIFT), 258 (long long unsigned)zio_buf_cache_allocs[i], 259 (long long unsigned)zio_buf_cache_frees[i]); 260 } 261 #endif 262 263 /* 264 * The same kmem cache can show up multiple times in both zio_buf_cache 265 * and zio_data_buf_cache. Do a wasteful but trivially correct scan to 266 * sort it out. 267 */ 268 for (size_t i = 0; i < n; i++) { 269 kmem_cache_t *cache = zio_buf_cache[i]; 270 if (cache == NULL) 271 continue; 272 for (size_t j = i; j < n; j++) { 273 if (cache == zio_buf_cache[j]) 274 zio_buf_cache[j] = NULL; 275 if (cache == zio_data_buf_cache[j]) 276 zio_data_buf_cache[j] = NULL; 277 } 278 kmem_cache_destroy(cache); 279 } 280 281 for (size_t i = 0; i < n; i++) { 282 kmem_cache_t *cache = zio_data_buf_cache[i]; 283 if (cache == NULL) 284 continue; 285 for (size_t j = i; j < n; j++) { 286 if (cache == zio_data_buf_cache[j]) 287 zio_data_buf_cache[j] = NULL; 288 } 289 kmem_cache_destroy(cache); 290 } 291 292 for (size_t i = 0; i < n; i++) { 293 VERIFY3P(zio_buf_cache[i], ==, NULL); 294 VERIFY3P(zio_data_buf_cache[i], ==, NULL); 295 } 296 297 kmem_cache_destroy(zio_link_cache); 298 kmem_cache_destroy(zio_cache); 299 300 zio_inject_fini(); 301 302 lz4_fini(); 303 } 304 305 /* 306 * ========================================================================== 307 * Allocate and free I/O buffers 308 * ========================================================================== 309 */ 310 311 /* 312 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a 313 * crashdump if the kernel panics, so use it judiciously. Obviously, it's 314 * useful to inspect ZFS metadata, but if possible, we should avoid keeping 315 * excess / transient data in-core during a crashdump. 316 */ 317 void * 318 zio_buf_alloc(size_t size) 319 { 320 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 321 322 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 323 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 324 atomic_add_64(&zio_buf_cache_allocs[c], 1); 325 #endif 326 327 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE)); 328 } 329 330 /* 331 * Use zio_data_buf_alloc to allocate data. The data will not appear in a 332 * crashdump if the kernel panics. This exists so that we will limit the amount 333 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount 334 * of kernel heap dumped to disk when the kernel panics) 335 */ 336 void * 337 zio_data_buf_alloc(size_t size) 338 { 339 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 340 341 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 342 343 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE)); 344 } 345 346 void 347 zio_buf_free(void *buf, size_t size) 348 { 349 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 350 351 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 352 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 353 atomic_add_64(&zio_buf_cache_frees[c], 1); 354 #endif 355 356 kmem_cache_free(zio_buf_cache[c], buf); 357 } 358 359 void 360 zio_data_buf_free(void *buf, size_t size) 361 { 362 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 363 364 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 365 366 kmem_cache_free(zio_data_buf_cache[c], buf); 367 } 368 369 static void 370 zio_abd_free(void *abd, size_t size) 371 { 372 (void) size; 373 abd_free((abd_t *)abd); 374 } 375 376 /* 377 * ========================================================================== 378 * Push and pop I/O transform buffers 379 * ========================================================================== 380 */ 381 void 382 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize, 383 zio_transform_func_t *transform) 384 { 385 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP); 386 387 zt->zt_orig_abd = zio->io_abd; 388 zt->zt_orig_size = zio->io_size; 389 zt->zt_bufsize = bufsize; 390 zt->zt_transform = transform; 391 392 zt->zt_next = zio->io_transform_stack; 393 zio->io_transform_stack = zt; 394 395 zio->io_abd = data; 396 zio->io_size = size; 397 } 398 399 void 400 zio_pop_transforms(zio_t *zio) 401 { 402 zio_transform_t *zt; 403 404 while ((zt = zio->io_transform_stack) != NULL) { 405 if (zt->zt_transform != NULL) 406 zt->zt_transform(zio, 407 zt->zt_orig_abd, zt->zt_orig_size); 408 409 if (zt->zt_bufsize != 0) 410 abd_free(zio->io_abd); 411 412 zio->io_abd = zt->zt_orig_abd; 413 zio->io_size = zt->zt_orig_size; 414 zio->io_transform_stack = zt->zt_next; 415 416 kmem_free(zt, sizeof (zio_transform_t)); 417 } 418 } 419 420 /* 421 * ========================================================================== 422 * I/O transform callbacks for subblocks, decompression, and decryption 423 * ========================================================================== 424 */ 425 static void 426 zio_subblock(zio_t *zio, abd_t *data, uint64_t size) 427 { 428 ASSERT(zio->io_size > size); 429 430 if (zio->io_type == ZIO_TYPE_READ) 431 abd_copy(data, zio->io_abd, size); 432 } 433 434 static void 435 zio_decompress(zio_t *zio, abd_t *data, uint64_t size) 436 { 437 if (zio->io_error == 0) { 438 void *tmp = abd_borrow_buf(data, size); 439 int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp), 440 zio->io_abd, tmp, zio->io_size, size, 441 &zio->io_prop.zp_complevel); 442 abd_return_buf_copy(data, tmp, size); 443 444 if (zio_injection_enabled && ret == 0) 445 ret = zio_handle_fault_injection(zio, EINVAL); 446 447 if (ret != 0) 448 zio->io_error = SET_ERROR(EIO); 449 } 450 } 451 452 static void 453 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size) 454 { 455 int ret; 456 void *tmp; 457 blkptr_t *bp = zio->io_bp; 458 spa_t *spa = zio->io_spa; 459 uint64_t dsobj = zio->io_bookmark.zb_objset; 460 uint64_t lsize = BP_GET_LSIZE(bp); 461 dmu_object_type_t ot = BP_GET_TYPE(bp); 462 uint8_t salt[ZIO_DATA_SALT_LEN]; 463 uint8_t iv[ZIO_DATA_IV_LEN]; 464 uint8_t mac[ZIO_DATA_MAC_LEN]; 465 boolean_t no_crypt = B_FALSE; 466 467 ASSERT(BP_USES_CRYPT(bp)); 468 ASSERT3U(size, !=, 0); 469 470 if (zio->io_error != 0) 471 return; 472 473 /* 474 * Verify the cksum of MACs stored in an indirect bp. It will always 475 * be possible to verify this since it does not require an encryption 476 * key. 477 */ 478 if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) { 479 zio_crypt_decode_mac_bp(bp, mac); 480 481 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) { 482 /* 483 * We haven't decompressed the data yet, but 484 * zio_crypt_do_indirect_mac_checksum() requires 485 * decompressed data to be able to parse out the MACs 486 * from the indirect block. We decompress it now and 487 * throw away the result after we are finished. 488 */ 489 tmp = zio_buf_alloc(lsize); 490 ret = zio_decompress_data(BP_GET_COMPRESS(bp), 491 zio->io_abd, tmp, zio->io_size, lsize, 492 &zio->io_prop.zp_complevel); 493 if (ret != 0) { 494 ret = SET_ERROR(EIO); 495 goto error; 496 } 497 ret = zio_crypt_do_indirect_mac_checksum(B_FALSE, 498 tmp, lsize, BP_SHOULD_BYTESWAP(bp), mac); 499 zio_buf_free(tmp, lsize); 500 } else { 501 ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE, 502 zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac); 503 } 504 abd_copy(data, zio->io_abd, size); 505 506 if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) { 507 ret = zio_handle_decrypt_injection(spa, 508 &zio->io_bookmark, ot, ECKSUM); 509 } 510 if (ret != 0) 511 goto error; 512 513 return; 514 } 515 516 /* 517 * If this is an authenticated block, just check the MAC. It would be 518 * nice to separate this out into its own flag, but for the moment 519 * enum zio_flag is out of bits. 520 */ 521 if (BP_IS_AUTHENTICATED(bp)) { 522 if (ot == DMU_OT_OBJSET) { 523 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, 524 dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp)); 525 } else { 526 zio_crypt_decode_mac_bp(bp, mac); 527 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, 528 zio->io_abd, size, mac); 529 if (zio_injection_enabled && ret == 0) { 530 ret = zio_handle_decrypt_injection(spa, 531 &zio->io_bookmark, ot, ECKSUM); 532 } 533 } 534 abd_copy(data, zio->io_abd, size); 535 536 if (ret != 0) 537 goto error; 538 539 return; 540 } 541 542 zio_crypt_decode_params_bp(bp, salt, iv); 543 544 if (ot == DMU_OT_INTENT_LOG) { 545 tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t)); 546 zio_crypt_decode_mac_zil(tmp, mac); 547 abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t)); 548 } else { 549 zio_crypt_decode_mac_bp(bp, mac); 550 } 551 552 ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp), 553 BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data, 554 zio->io_abd, &no_crypt); 555 if (no_crypt) 556 abd_copy(data, zio->io_abd, size); 557 558 if (ret != 0) 559 goto error; 560 561 return; 562 563 error: 564 /* assert that the key was found unless this was speculative */ 565 ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE)); 566 567 /* 568 * If there was a decryption / authentication error return EIO as 569 * the io_error. If this was not a speculative zio, create an ereport. 570 */ 571 if (ret == ECKSUM) { 572 zio->io_error = SET_ERROR(EIO); 573 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) { 574 spa_log_error(spa, &zio->io_bookmark); 575 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION, 576 spa, NULL, &zio->io_bookmark, zio, 0); 577 } 578 } else { 579 zio->io_error = ret; 580 } 581 } 582 583 /* 584 * ========================================================================== 585 * I/O parent/child relationships and pipeline interlocks 586 * ========================================================================== 587 */ 588 zio_t * 589 zio_walk_parents(zio_t *cio, zio_link_t **zl) 590 { 591 list_t *pl = &cio->io_parent_list; 592 593 *zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl); 594 if (*zl == NULL) 595 return (NULL); 596 597 ASSERT((*zl)->zl_child == cio); 598 return ((*zl)->zl_parent); 599 } 600 601 zio_t * 602 zio_walk_children(zio_t *pio, zio_link_t **zl) 603 { 604 list_t *cl = &pio->io_child_list; 605 606 ASSERT(MUTEX_HELD(&pio->io_lock)); 607 608 *zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl); 609 if (*zl == NULL) 610 return (NULL); 611 612 ASSERT((*zl)->zl_parent == pio); 613 return ((*zl)->zl_child); 614 } 615 616 zio_t * 617 zio_unique_parent(zio_t *cio) 618 { 619 zio_link_t *zl = NULL; 620 zio_t *pio = zio_walk_parents(cio, &zl); 621 622 VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL); 623 return (pio); 624 } 625 626 void 627 zio_add_child(zio_t *pio, zio_t *cio) 628 { 629 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP); 630 631 /* 632 * Logical I/Os can have logical, gang, or vdev children. 633 * Gang I/Os can have gang or vdev children. 634 * Vdev I/Os can only have vdev children. 635 * The following ASSERT captures all of these constraints. 636 */ 637 ASSERT3S(cio->io_child_type, <=, pio->io_child_type); 638 639 zl->zl_parent = pio; 640 zl->zl_child = cio; 641 642 mutex_enter(&pio->io_lock); 643 mutex_enter(&cio->io_lock); 644 645 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0); 646 647 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 648 pio->io_children[cio->io_child_type][w] += !cio->io_state[w]; 649 650 list_insert_head(&pio->io_child_list, zl); 651 list_insert_head(&cio->io_parent_list, zl); 652 653 pio->io_child_count++; 654 cio->io_parent_count++; 655 656 mutex_exit(&cio->io_lock); 657 mutex_exit(&pio->io_lock); 658 } 659 660 static void 661 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl) 662 { 663 ASSERT(zl->zl_parent == pio); 664 ASSERT(zl->zl_child == cio); 665 666 mutex_enter(&pio->io_lock); 667 mutex_enter(&cio->io_lock); 668 669 list_remove(&pio->io_child_list, zl); 670 list_remove(&cio->io_parent_list, zl); 671 672 pio->io_child_count--; 673 cio->io_parent_count--; 674 675 mutex_exit(&cio->io_lock); 676 mutex_exit(&pio->io_lock); 677 kmem_cache_free(zio_link_cache, zl); 678 } 679 680 static boolean_t 681 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait) 682 { 683 boolean_t waiting = B_FALSE; 684 685 mutex_enter(&zio->io_lock); 686 ASSERT(zio->io_stall == NULL); 687 for (int c = 0; c < ZIO_CHILD_TYPES; c++) { 688 if (!(ZIO_CHILD_BIT_IS_SET(childbits, c))) 689 continue; 690 691 uint64_t *countp = &zio->io_children[c][wait]; 692 if (*countp != 0) { 693 zio->io_stage >>= 1; 694 ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN); 695 zio->io_stall = countp; 696 waiting = B_TRUE; 697 break; 698 } 699 } 700 mutex_exit(&zio->io_lock); 701 return (waiting); 702 } 703 704 __attribute__((always_inline)) 705 static inline void 706 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait, 707 zio_t **next_to_executep) 708 { 709 uint64_t *countp = &pio->io_children[zio->io_child_type][wait]; 710 int *errorp = &pio->io_child_error[zio->io_child_type]; 711 712 mutex_enter(&pio->io_lock); 713 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 714 *errorp = zio_worst_error(*errorp, zio->io_error); 715 pio->io_reexecute |= zio->io_reexecute; 716 ASSERT3U(*countp, >, 0); 717 718 (*countp)--; 719 720 if (*countp == 0 && pio->io_stall == countp) { 721 zio_taskq_type_t type = 722 pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE : 723 ZIO_TASKQ_INTERRUPT; 724 pio->io_stall = NULL; 725 mutex_exit(&pio->io_lock); 726 727 /* 728 * If we can tell the caller to execute this parent next, do 729 * so. Otherwise dispatch the parent zio as its own task. 730 * 731 * Having the caller execute the parent when possible reduces 732 * locking on the zio taskq's, reduces context switch 733 * overhead, and has no recursion penalty. Note that one 734 * read from disk typically causes at least 3 zio's: a 735 * zio_null(), the logical zio_read(), and then a physical 736 * zio. When the physical ZIO completes, we are able to call 737 * zio_done() on all 3 of these zio's from one invocation of 738 * zio_execute() by returning the parent back to 739 * zio_execute(). Since the parent isn't executed until this 740 * thread returns back to zio_execute(), the caller should do 741 * so promptly. 742 * 743 * In other cases, dispatching the parent prevents 744 * overflowing the stack when we have deeply nested 745 * parent-child relationships, as we do with the "mega zio" 746 * of writes for spa_sync(), and the chain of ZIL blocks. 747 */ 748 if (next_to_executep != NULL && *next_to_executep == NULL) { 749 *next_to_executep = pio; 750 } else { 751 zio_taskq_dispatch(pio, type, B_FALSE); 752 } 753 } else { 754 mutex_exit(&pio->io_lock); 755 } 756 } 757 758 static void 759 zio_inherit_child_errors(zio_t *zio, enum zio_child c) 760 { 761 if (zio->io_child_error[c] != 0 && zio->io_error == 0) 762 zio->io_error = zio->io_child_error[c]; 763 } 764 765 int 766 zio_bookmark_compare(const void *x1, const void *x2) 767 { 768 const zio_t *z1 = x1; 769 const zio_t *z2 = x2; 770 771 if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset) 772 return (-1); 773 if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset) 774 return (1); 775 776 if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object) 777 return (-1); 778 if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object) 779 return (1); 780 781 if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level) 782 return (-1); 783 if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level) 784 return (1); 785 786 if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid) 787 return (-1); 788 if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid) 789 return (1); 790 791 if (z1 < z2) 792 return (-1); 793 if (z1 > z2) 794 return (1); 795 796 return (0); 797 } 798 799 /* 800 * ========================================================================== 801 * Create the various types of I/O (read, write, free, etc) 802 * ========================================================================== 803 */ 804 static zio_t * 805 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 806 abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done, 807 void *private, zio_type_t type, zio_priority_t priority, 808 enum zio_flag flags, vdev_t *vd, uint64_t offset, 809 const zbookmark_phys_t *zb, enum zio_stage stage, 810 enum zio_stage pipeline) 811 { 812 zio_t *zio; 813 814 IMPLY(type != ZIO_TYPE_TRIM, psize <= SPA_MAXBLOCKSIZE); 815 ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0); 816 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0); 817 818 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER)); 819 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER)); 820 ASSERT(vd || stage == ZIO_STAGE_OPEN); 821 822 IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0); 823 824 zio = kmem_cache_alloc(zio_cache, KM_SLEEP); 825 bzero(zio, sizeof (zio_t)); 826 827 mutex_init(&zio->io_lock, NULL, MUTEX_NOLOCKDEP, NULL); 828 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL); 829 830 list_create(&zio->io_parent_list, sizeof (zio_link_t), 831 offsetof(zio_link_t, zl_parent_node)); 832 list_create(&zio->io_child_list, sizeof (zio_link_t), 833 offsetof(zio_link_t, zl_child_node)); 834 metaslab_trace_init(&zio->io_alloc_list); 835 836 if (vd != NULL) 837 zio->io_child_type = ZIO_CHILD_VDEV; 838 else if (flags & ZIO_FLAG_GANG_CHILD) 839 zio->io_child_type = ZIO_CHILD_GANG; 840 else if (flags & ZIO_FLAG_DDT_CHILD) 841 zio->io_child_type = ZIO_CHILD_DDT; 842 else 843 zio->io_child_type = ZIO_CHILD_LOGICAL; 844 845 if (bp != NULL) { 846 zio->io_bp = (blkptr_t *)bp; 847 zio->io_bp_copy = *bp; 848 zio->io_bp_orig = *bp; 849 if (type != ZIO_TYPE_WRITE || 850 zio->io_child_type == ZIO_CHILD_DDT) 851 zio->io_bp = &zio->io_bp_copy; /* so caller can free */ 852 if (zio->io_child_type == ZIO_CHILD_LOGICAL) 853 zio->io_logical = zio; 854 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp)) 855 pipeline |= ZIO_GANG_STAGES; 856 } 857 858 zio->io_spa = spa; 859 zio->io_txg = txg; 860 zio->io_done = done; 861 zio->io_private = private; 862 zio->io_type = type; 863 zio->io_priority = priority; 864 zio->io_vd = vd; 865 zio->io_offset = offset; 866 zio->io_orig_abd = zio->io_abd = data; 867 zio->io_orig_size = zio->io_size = psize; 868 zio->io_lsize = lsize; 869 zio->io_orig_flags = zio->io_flags = flags; 870 zio->io_orig_stage = zio->io_stage = stage; 871 zio->io_orig_pipeline = zio->io_pipeline = pipeline; 872 zio->io_pipeline_trace = ZIO_STAGE_OPEN; 873 874 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY); 875 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE); 876 877 if (zb != NULL) 878 zio->io_bookmark = *zb; 879 880 if (pio != NULL) { 881 zio->io_metaslab_class = pio->io_metaslab_class; 882 if (zio->io_logical == NULL) 883 zio->io_logical = pio->io_logical; 884 if (zio->io_child_type == ZIO_CHILD_GANG) 885 zio->io_gang_leader = pio->io_gang_leader; 886 zio_add_child(pio, zio); 887 } 888 889 taskq_init_ent(&zio->io_tqent); 890 891 return (zio); 892 } 893 894 static void 895 zio_destroy(zio_t *zio) 896 { 897 metaslab_trace_fini(&zio->io_alloc_list); 898 list_destroy(&zio->io_parent_list); 899 list_destroy(&zio->io_child_list); 900 mutex_destroy(&zio->io_lock); 901 cv_destroy(&zio->io_cv); 902 kmem_cache_free(zio_cache, zio); 903 } 904 905 zio_t * 906 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done, 907 void *private, enum zio_flag flags) 908 { 909 zio_t *zio; 910 911 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private, 912 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 913 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE); 914 915 return (zio); 916 } 917 918 zio_t * 919 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags) 920 { 921 return (zio_null(NULL, spa, NULL, done, private, flags)); 922 } 923 924 static int 925 zfs_blkptr_verify_log(spa_t *spa, const blkptr_t *bp, 926 enum blk_verify_flag blk_verify, const char *fmt, ...) 927 { 928 va_list adx; 929 char buf[256]; 930 931 va_start(adx, fmt); 932 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 933 va_end(adx); 934 935 switch (blk_verify) { 936 case BLK_VERIFY_HALT: 937 dprintf_bp(bp, "blkptr at %p dprintf_bp():", bp); 938 zfs_panic_recover("%s: %s", spa_name(spa), buf); 939 break; 940 case BLK_VERIFY_LOG: 941 zfs_dbgmsg("%s: %s", spa_name(spa), buf); 942 break; 943 case BLK_VERIFY_ONLY: 944 break; 945 } 946 947 return (1); 948 } 949 950 /* 951 * Verify the block pointer fields contain reasonable values. This means 952 * it only contains known object types, checksum/compression identifiers, 953 * block sizes within the maximum allowed limits, valid DVAs, etc. 954 * 955 * If everything checks out B_TRUE is returned. The zfs_blkptr_verify 956 * argument controls the behavior when an invalid field is detected. 957 * 958 * Modes for zfs_blkptr_verify: 959 * 1) BLK_VERIFY_ONLY (evaluate the block) 960 * 2) BLK_VERIFY_LOG (evaluate the block and log problems) 961 * 3) BLK_VERIFY_HALT (call zfs_panic_recover on error) 962 */ 963 boolean_t 964 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp, boolean_t config_held, 965 enum blk_verify_flag blk_verify) 966 { 967 int errors = 0; 968 969 if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) { 970 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 971 "blkptr at %p has invalid TYPE %llu", 972 bp, (longlong_t)BP_GET_TYPE(bp)); 973 } 974 if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS || 975 BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) { 976 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 977 "blkptr at %p has invalid CHECKSUM %llu", 978 bp, (longlong_t)BP_GET_CHECKSUM(bp)); 979 } 980 if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS || 981 BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) { 982 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 983 "blkptr at %p has invalid COMPRESS %llu", 984 bp, (longlong_t)BP_GET_COMPRESS(bp)); 985 } 986 if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) { 987 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 988 "blkptr at %p has invalid LSIZE %llu", 989 bp, (longlong_t)BP_GET_LSIZE(bp)); 990 } 991 if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) { 992 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 993 "blkptr at %p has invalid PSIZE %llu", 994 bp, (longlong_t)BP_GET_PSIZE(bp)); 995 } 996 997 if (BP_IS_EMBEDDED(bp)) { 998 if (BPE_GET_ETYPE(bp) >= NUM_BP_EMBEDDED_TYPES) { 999 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1000 "blkptr at %p has invalid ETYPE %llu", 1001 bp, (longlong_t)BPE_GET_ETYPE(bp)); 1002 } 1003 } 1004 1005 /* 1006 * Do not verify individual DVAs if the config is not trusted. This 1007 * will be done once the zio is executed in vdev_mirror_map_alloc. 1008 */ 1009 if (!spa->spa_trust_config) 1010 return (errors == 0); 1011 1012 if (!config_held) 1013 spa_config_enter(spa, SCL_VDEV, bp, RW_READER); 1014 else 1015 ASSERT(spa_config_held(spa, SCL_VDEV, RW_WRITER)); 1016 /* 1017 * Pool-specific checks. 1018 * 1019 * Note: it would be nice to verify that the blk_birth and 1020 * BP_PHYSICAL_BIRTH() are not too large. However, spa_freeze() 1021 * allows the birth time of log blocks (and dmu_sync()-ed blocks 1022 * that are in the log) to be arbitrarily large. 1023 */ 1024 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 1025 const dva_t *dva = &bp->blk_dva[i]; 1026 uint64_t vdevid = DVA_GET_VDEV(dva); 1027 1028 if (vdevid >= spa->spa_root_vdev->vdev_children) { 1029 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1030 "blkptr at %p DVA %u has invalid VDEV %llu", 1031 bp, i, (longlong_t)vdevid); 1032 continue; 1033 } 1034 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid]; 1035 if (vd == NULL) { 1036 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1037 "blkptr at %p DVA %u has invalid VDEV %llu", 1038 bp, i, (longlong_t)vdevid); 1039 continue; 1040 } 1041 if (vd->vdev_ops == &vdev_hole_ops) { 1042 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1043 "blkptr at %p DVA %u has hole VDEV %llu", 1044 bp, i, (longlong_t)vdevid); 1045 continue; 1046 } 1047 if (vd->vdev_ops == &vdev_missing_ops) { 1048 /* 1049 * "missing" vdevs are valid during import, but we 1050 * don't have their detailed info (e.g. asize), so 1051 * we can't perform any more checks on them. 1052 */ 1053 continue; 1054 } 1055 uint64_t offset = DVA_GET_OFFSET(dva); 1056 uint64_t asize = DVA_GET_ASIZE(dva); 1057 if (DVA_GET_GANG(dva)) 1058 asize = vdev_gang_header_asize(vd); 1059 if (offset + asize > vd->vdev_asize) { 1060 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1061 "blkptr at %p DVA %u has invalid OFFSET %llu", 1062 bp, i, (longlong_t)offset); 1063 } 1064 } 1065 if (errors > 0) 1066 dprintf_bp(bp, "blkptr at %p dprintf_bp():", bp); 1067 if (!config_held) 1068 spa_config_exit(spa, SCL_VDEV, bp); 1069 1070 return (errors == 0); 1071 } 1072 1073 boolean_t 1074 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp) 1075 { 1076 (void) bp; 1077 uint64_t vdevid = DVA_GET_VDEV(dva); 1078 1079 if (vdevid >= spa->spa_root_vdev->vdev_children) 1080 return (B_FALSE); 1081 1082 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid]; 1083 if (vd == NULL) 1084 return (B_FALSE); 1085 1086 if (vd->vdev_ops == &vdev_hole_ops) 1087 return (B_FALSE); 1088 1089 if (vd->vdev_ops == &vdev_missing_ops) { 1090 return (B_FALSE); 1091 } 1092 1093 uint64_t offset = DVA_GET_OFFSET(dva); 1094 uint64_t asize = DVA_GET_ASIZE(dva); 1095 1096 if (DVA_GET_GANG(dva)) 1097 asize = vdev_gang_header_asize(vd); 1098 if (offset + asize > vd->vdev_asize) 1099 return (B_FALSE); 1100 1101 return (B_TRUE); 1102 } 1103 1104 zio_t * 1105 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, 1106 abd_t *data, uint64_t size, zio_done_func_t *done, void *private, 1107 zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb) 1108 { 1109 zio_t *zio; 1110 1111 zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp, 1112 data, size, size, done, private, 1113 ZIO_TYPE_READ, priority, flags, NULL, 0, zb, 1114 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 1115 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE); 1116 1117 return (zio); 1118 } 1119 1120 zio_t * 1121 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 1122 abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp, 1123 zio_done_func_t *ready, zio_done_func_t *children_ready, 1124 zio_done_func_t *physdone, zio_done_func_t *done, 1125 void *private, zio_priority_t priority, enum zio_flag flags, 1126 const zbookmark_phys_t *zb) 1127 { 1128 zio_t *zio; 1129 1130 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF && 1131 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS && 1132 zp->zp_compress >= ZIO_COMPRESS_OFF && 1133 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS && 1134 DMU_OT_IS_VALID(zp->zp_type) && 1135 zp->zp_level < 32 && 1136 zp->zp_copies > 0 && 1137 zp->zp_copies <= spa_max_replication(spa)); 1138 1139 zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private, 1140 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb, 1141 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 1142 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE); 1143 1144 zio->io_ready = ready; 1145 zio->io_children_ready = children_ready; 1146 zio->io_physdone = physdone; 1147 zio->io_prop = *zp; 1148 1149 /* 1150 * Data can be NULL if we are going to call zio_write_override() to 1151 * provide the already-allocated BP. But we may need the data to 1152 * verify a dedup hit (if requested). In this case, don't try to 1153 * dedup (just take the already-allocated BP verbatim). Encrypted 1154 * dedup blocks need data as well so we also disable dedup in this 1155 * case. 1156 */ 1157 if (data == NULL && 1158 (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) { 1159 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE; 1160 } 1161 1162 return (zio); 1163 } 1164 1165 zio_t * 1166 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data, 1167 uint64_t size, zio_done_func_t *done, void *private, 1168 zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb) 1169 { 1170 zio_t *zio; 1171 1172 zio = zio_create(pio, spa, txg, bp, data, size, size, done, private, 1173 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb, 1174 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE); 1175 1176 return (zio); 1177 } 1178 1179 void 1180 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite) 1181 { 1182 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 1183 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1184 ASSERT(zio->io_stage == ZIO_STAGE_OPEN); 1185 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa)); 1186 1187 /* 1188 * We must reset the io_prop to match the values that existed 1189 * when the bp was first written by dmu_sync() keeping in mind 1190 * that nopwrite and dedup are mutually exclusive. 1191 */ 1192 zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup; 1193 zio->io_prop.zp_nopwrite = nopwrite; 1194 zio->io_prop.zp_copies = copies; 1195 zio->io_bp_override = bp; 1196 } 1197 1198 void 1199 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp) 1200 { 1201 1202 (void) zfs_blkptr_verify(spa, bp, B_FALSE, BLK_VERIFY_HALT); 1203 1204 /* 1205 * The check for EMBEDDED is a performance optimization. We 1206 * process the free here (by ignoring it) rather than 1207 * putting it on the list and then processing it in zio_free_sync(). 1208 */ 1209 if (BP_IS_EMBEDDED(bp)) 1210 return; 1211 metaslab_check_free(spa, bp); 1212 1213 /* 1214 * Frees that are for the currently-syncing txg, are not going to be 1215 * deferred, and which will not need to do a read (i.e. not GANG or 1216 * DEDUP), can be processed immediately. Otherwise, put them on the 1217 * in-memory list for later processing. 1218 * 1219 * Note that we only defer frees after zfs_sync_pass_deferred_free 1220 * when the log space map feature is disabled. [see relevant comment 1221 * in spa_sync_iterate_to_convergence()] 1222 */ 1223 if (BP_IS_GANG(bp) || 1224 BP_GET_DEDUP(bp) || 1225 txg != spa->spa_syncing_txg || 1226 (spa_sync_pass(spa) >= zfs_sync_pass_deferred_free && 1227 !spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))) { 1228 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp); 1229 } else { 1230 VERIFY3P(zio_free_sync(NULL, spa, txg, bp, 0), ==, NULL); 1231 } 1232 } 1233 1234 /* 1235 * To improve performance, this function may return NULL if we were able 1236 * to do the free immediately. This avoids the cost of creating a zio 1237 * (and linking it to the parent, etc). 1238 */ 1239 zio_t * 1240 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 1241 enum zio_flag flags) 1242 { 1243 ASSERT(!BP_IS_HOLE(bp)); 1244 ASSERT(spa_syncing_txg(spa) == txg); 1245 1246 if (BP_IS_EMBEDDED(bp)) 1247 return (NULL); 1248 1249 metaslab_check_free(spa, bp); 1250 arc_freed(spa, bp); 1251 dsl_scan_freed(spa, bp); 1252 1253 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp)) { 1254 /* 1255 * GANG and DEDUP blocks can induce a read (for the gang block 1256 * header, or the DDT), so issue them asynchronously so that 1257 * this thread is not tied up. 1258 */ 1259 enum zio_stage stage = 1260 ZIO_FREE_PIPELINE | ZIO_STAGE_ISSUE_ASYNC; 1261 1262 return (zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 1263 BP_GET_PSIZE(bp), NULL, NULL, 1264 ZIO_TYPE_FREE, ZIO_PRIORITY_NOW, 1265 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage)); 1266 } else { 1267 metaslab_free(spa, bp, txg, B_FALSE); 1268 return (NULL); 1269 } 1270 } 1271 1272 zio_t * 1273 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 1274 zio_done_func_t *done, void *private, enum zio_flag flags) 1275 { 1276 zio_t *zio; 1277 1278 (void) zfs_blkptr_verify(spa, bp, flags & ZIO_FLAG_CONFIG_WRITER, 1279 BLK_VERIFY_HALT); 1280 1281 if (BP_IS_EMBEDDED(bp)) 1282 return (zio_null(pio, spa, NULL, NULL, NULL, 0)); 1283 1284 /* 1285 * A claim is an allocation of a specific block. Claims are needed 1286 * to support immediate writes in the intent log. The issue is that 1287 * immediate writes contain committed data, but in a txg that was 1288 * *not* committed. Upon opening the pool after an unclean shutdown, 1289 * the intent log claims all blocks that contain immediate write data 1290 * so that the SPA knows they're in use. 1291 * 1292 * All claims *must* be resolved in the first txg -- before the SPA 1293 * starts allocating blocks -- so that nothing is allocated twice. 1294 * If txg == 0 we just verify that the block is claimable. 1295 */ 1296 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, 1297 spa_min_claim_txg(spa)); 1298 ASSERT(txg == spa_min_claim_txg(spa) || txg == 0); 1299 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(8) */ 1300 1301 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 1302 BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, 1303 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE); 1304 ASSERT0(zio->io_queued_timestamp); 1305 1306 return (zio); 1307 } 1308 1309 zio_t * 1310 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, 1311 zio_done_func_t *done, void *private, enum zio_flag flags) 1312 { 1313 zio_t *zio; 1314 int c; 1315 1316 if (vd->vdev_children == 0) { 1317 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private, 1318 ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 1319 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE); 1320 1321 zio->io_cmd = cmd; 1322 } else { 1323 zio = zio_null(pio, spa, NULL, NULL, NULL, flags); 1324 1325 for (c = 0; c < vd->vdev_children; c++) 1326 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd, 1327 done, private, flags)); 1328 } 1329 1330 return (zio); 1331 } 1332 1333 zio_t * 1334 zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1335 zio_done_func_t *done, void *private, zio_priority_t priority, 1336 enum zio_flag flags, enum trim_flag trim_flags) 1337 { 1338 zio_t *zio; 1339 1340 ASSERT0(vd->vdev_children); 1341 ASSERT0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 1342 ASSERT0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 1343 ASSERT3U(size, !=, 0); 1344 1345 zio = zio_create(pio, vd->vdev_spa, 0, NULL, NULL, size, size, done, 1346 private, ZIO_TYPE_TRIM, priority, flags | ZIO_FLAG_PHYSICAL, 1347 vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_TRIM_PIPELINE); 1348 zio->io_trim_flags = trim_flags; 1349 1350 return (zio); 1351 } 1352 1353 zio_t * 1354 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1355 abd_t *data, int checksum, zio_done_func_t *done, void *private, 1356 zio_priority_t priority, enum zio_flag flags, boolean_t labels) 1357 { 1358 zio_t *zio; 1359 1360 ASSERT(vd->vdev_children == 0); 1361 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 1362 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 1363 ASSERT3U(offset + size, <=, vd->vdev_psize); 1364 1365 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, 1366 private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd, 1367 offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE); 1368 1369 zio->io_prop.zp_checksum = checksum; 1370 1371 return (zio); 1372 } 1373 1374 zio_t * 1375 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1376 abd_t *data, int checksum, zio_done_func_t *done, void *private, 1377 zio_priority_t priority, enum zio_flag flags, boolean_t labels) 1378 { 1379 zio_t *zio; 1380 1381 ASSERT(vd->vdev_children == 0); 1382 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 1383 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 1384 ASSERT3U(offset + size, <=, vd->vdev_psize); 1385 1386 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, 1387 private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd, 1388 offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE); 1389 1390 zio->io_prop.zp_checksum = checksum; 1391 1392 if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) { 1393 /* 1394 * zec checksums are necessarily destructive -- they modify 1395 * the end of the write buffer to hold the verifier/checksum. 1396 * Therefore, we must make a local copy in case the data is 1397 * being written to multiple places in parallel. 1398 */ 1399 abd_t *wbuf = abd_alloc_sametype(data, size); 1400 abd_copy(wbuf, data, size); 1401 1402 zio_push_transform(zio, wbuf, size, size, NULL); 1403 } 1404 1405 return (zio); 1406 } 1407 1408 /* 1409 * Create a child I/O to do some work for us. 1410 */ 1411 zio_t * 1412 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset, 1413 abd_t *data, uint64_t size, int type, zio_priority_t priority, 1414 enum zio_flag flags, zio_done_func_t *done, void *private) 1415 { 1416 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE; 1417 zio_t *zio; 1418 1419 /* 1420 * vdev child I/Os do not propagate their error to the parent. 1421 * Therefore, for correct operation the caller *must* check for 1422 * and handle the error in the child i/o's done callback. 1423 * The only exceptions are i/os that we don't care about 1424 * (OPTIONAL or REPAIR). 1425 */ 1426 ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) || 1427 done != NULL); 1428 1429 if (type == ZIO_TYPE_READ && bp != NULL) { 1430 /* 1431 * If we have the bp, then the child should perform the 1432 * checksum and the parent need not. This pushes error 1433 * detection as close to the leaves as possible and 1434 * eliminates redundant checksums in the interior nodes. 1435 */ 1436 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY; 1437 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 1438 } 1439 1440 if (vd->vdev_ops->vdev_op_leaf) { 1441 ASSERT0(vd->vdev_children); 1442 offset += VDEV_LABEL_START_SIZE; 1443 } 1444 1445 flags |= ZIO_VDEV_CHILD_FLAGS(pio); 1446 1447 /* 1448 * If we've decided to do a repair, the write is not speculative -- 1449 * even if the original read was. 1450 */ 1451 if (flags & ZIO_FLAG_IO_REPAIR) 1452 flags &= ~ZIO_FLAG_SPECULATIVE; 1453 1454 /* 1455 * If we're creating a child I/O that is not associated with a 1456 * top-level vdev, then the child zio is not an allocating I/O. 1457 * If this is a retried I/O then we ignore it since we will 1458 * have already processed the original allocating I/O. 1459 */ 1460 if (flags & ZIO_FLAG_IO_ALLOCATING && 1461 (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) { 1462 ASSERT(pio->io_metaslab_class != NULL); 1463 ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled); 1464 ASSERT(type == ZIO_TYPE_WRITE); 1465 ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE); 1466 ASSERT(!(flags & ZIO_FLAG_IO_REPAIR)); 1467 ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) || 1468 pio->io_child_type == ZIO_CHILD_GANG); 1469 1470 flags &= ~ZIO_FLAG_IO_ALLOCATING; 1471 } 1472 1473 1474 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size, 1475 done, private, type, priority, flags, vd, offset, &pio->io_bookmark, 1476 ZIO_STAGE_VDEV_IO_START >> 1, pipeline); 1477 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); 1478 1479 zio->io_physdone = pio->io_physdone; 1480 if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL) 1481 zio->io_logical->io_phys_children++; 1482 1483 return (zio); 1484 } 1485 1486 zio_t * 1487 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size, 1488 zio_type_t type, zio_priority_t priority, enum zio_flag flags, 1489 zio_done_func_t *done, void *private) 1490 { 1491 zio_t *zio; 1492 1493 ASSERT(vd->vdev_ops->vdev_op_leaf); 1494 1495 zio = zio_create(NULL, vd->vdev_spa, 0, NULL, 1496 data, size, size, done, private, type, priority, 1497 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED, 1498 vd, offset, NULL, 1499 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE); 1500 1501 return (zio); 1502 } 1503 1504 void 1505 zio_flush(zio_t *zio, vdev_t *vd) 1506 { 1507 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE, 1508 NULL, NULL, 1509 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY)); 1510 } 1511 1512 void 1513 zio_shrink(zio_t *zio, uint64_t size) 1514 { 1515 ASSERT3P(zio->io_executor, ==, NULL); 1516 ASSERT3U(zio->io_orig_size, ==, zio->io_size); 1517 ASSERT3U(size, <=, zio->io_size); 1518 1519 /* 1520 * We don't shrink for raidz because of problems with the 1521 * reconstruction when reading back less than the block size. 1522 * Note, BP_IS_RAIDZ() assumes no compression. 1523 */ 1524 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 1525 if (!BP_IS_RAIDZ(zio->io_bp)) { 1526 /* we are not doing a raw write */ 1527 ASSERT3U(zio->io_size, ==, zio->io_lsize); 1528 zio->io_orig_size = zio->io_size = zio->io_lsize = size; 1529 } 1530 } 1531 1532 /* 1533 * ========================================================================== 1534 * Prepare to read and write logical blocks 1535 * ========================================================================== 1536 */ 1537 1538 static zio_t * 1539 zio_read_bp_init(zio_t *zio) 1540 { 1541 blkptr_t *bp = zio->io_bp; 1542 uint64_t psize = 1543 BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp); 1544 1545 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 1546 1547 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF && 1548 zio->io_child_type == ZIO_CHILD_LOGICAL && 1549 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) { 1550 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize), 1551 psize, psize, zio_decompress); 1552 } 1553 1554 if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) || 1555 BP_HAS_INDIRECT_MAC_CKSUM(bp)) && 1556 zio->io_child_type == ZIO_CHILD_LOGICAL) { 1557 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize), 1558 psize, psize, zio_decrypt); 1559 } 1560 1561 if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) { 1562 int psize = BPE_GET_PSIZE(bp); 1563 void *data = abd_borrow_buf(zio->io_abd, psize); 1564 1565 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1566 decode_embedded_bp_compressed(bp, data); 1567 abd_return_buf_copy(zio->io_abd, data, psize); 1568 } else { 1569 ASSERT(!BP_IS_EMBEDDED(bp)); 1570 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 1571 } 1572 1573 if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0) 1574 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 1575 1576 if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP) 1577 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 1578 1579 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL) 1580 zio->io_pipeline = ZIO_DDT_READ_PIPELINE; 1581 1582 return (zio); 1583 } 1584 1585 static zio_t * 1586 zio_write_bp_init(zio_t *zio) 1587 { 1588 if (!IO_IS_ALLOCATING(zio)) 1589 return (zio); 1590 1591 ASSERT(zio->io_child_type != ZIO_CHILD_DDT); 1592 1593 if (zio->io_bp_override) { 1594 blkptr_t *bp = zio->io_bp; 1595 zio_prop_t *zp = &zio->io_prop; 1596 1597 ASSERT(bp->blk_birth != zio->io_txg); 1598 ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0); 1599 1600 *bp = *zio->io_bp_override; 1601 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1602 1603 if (BP_IS_EMBEDDED(bp)) 1604 return (zio); 1605 1606 /* 1607 * If we've been overridden and nopwrite is set then 1608 * set the flag accordingly to indicate that a nopwrite 1609 * has already occurred. 1610 */ 1611 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) { 1612 ASSERT(!zp->zp_dedup); 1613 ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum); 1614 zio->io_flags |= ZIO_FLAG_NOPWRITE; 1615 return (zio); 1616 } 1617 1618 ASSERT(!zp->zp_nopwrite); 1619 1620 if (BP_IS_HOLE(bp) || !zp->zp_dedup) 1621 return (zio); 1622 1623 ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags & 1624 ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify); 1625 1626 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum && 1627 !zp->zp_encrypt) { 1628 BP_SET_DEDUP(bp, 1); 1629 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE; 1630 return (zio); 1631 } 1632 1633 /* 1634 * We were unable to handle this as an override bp, treat 1635 * it as a regular write I/O. 1636 */ 1637 zio->io_bp_override = NULL; 1638 *bp = zio->io_bp_orig; 1639 zio->io_pipeline = zio->io_orig_pipeline; 1640 } 1641 1642 return (zio); 1643 } 1644 1645 static zio_t * 1646 zio_write_compress(zio_t *zio) 1647 { 1648 spa_t *spa = zio->io_spa; 1649 zio_prop_t *zp = &zio->io_prop; 1650 enum zio_compress compress = zp->zp_compress; 1651 blkptr_t *bp = zio->io_bp; 1652 uint64_t lsize = zio->io_lsize; 1653 uint64_t psize = zio->io_size; 1654 int pass = 1; 1655 1656 /* 1657 * If our children haven't all reached the ready stage, 1658 * wait for them and then repeat this pipeline stage. 1659 */ 1660 if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT | 1661 ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) { 1662 return (NULL); 1663 } 1664 1665 if (!IO_IS_ALLOCATING(zio)) 1666 return (zio); 1667 1668 if (zio->io_children_ready != NULL) { 1669 /* 1670 * Now that all our children are ready, run the callback 1671 * associated with this zio in case it wants to modify the 1672 * data to be written. 1673 */ 1674 ASSERT3U(zp->zp_level, >, 0); 1675 zio->io_children_ready(zio); 1676 } 1677 1678 ASSERT(zio->io_child_type != ZIO_CHILD_DDT); 1679 ASSERT(zio->io_bp_override == NULL); 1680 1681 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) { 1682 /* 1683 * We're rewriting an existing block, which means we're 1684 * working on behalf of spa_sync(). For spa_sync() to 1685 * converge, it must eventually be the case that we don't 1686 * have to allocate new blocks. But compression changes 1687 * the blocksize, which forces a reallocate, and makes 1688 * convergence take longer. Therefore, after the first 1689 * few passes, stop compressing to ensure convergence. 1690 */ 1691 pass = spa_sync_pass(spa); 1692 1693 ASSERT(zio->io_txg == spa_syncing_txg(spa)); 1694 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1695 ASSERT(!BP_GET_DEDUP(bp)); 1696 1697 if (pass >= zfs_sync_pass_dont_compress) 1698 compress = ZIO_COMPRESS_OFF; 1699 1700 /* Make sure someone doesn't change their mind on overwrites */ 1701 ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp), 1702 spa_max_replication(spa)) == BP_GET_NDVAS(bp)); 1703 } 1704 1705 /* If it's a compressed write that is not raw, compress the buffer. */ 1706 if (compress != ZIO_COMPRESS_OFF && 1707 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) { 1708 void *cbuf = zio_buf_alloc(lsize); 1709 psize = zio_compress_data(compress, zio->io_abd, cbuf, lsize, 1710 zp->zp_complevel); 1711 if (psize == 0 || psize >= lsize) { 1712 compress = ZIO_COMPRESS_OFF; 1713 zio_buf_free(cbuf, lsize); 1714 } else if (!zp->zp_dedup && !zp->zp_encrypt && 1715 psize <= BPE_PAYLOAD_SIZE && 1716 zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) && 1717 spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) { 1718 encode_embedded_bp_compressed(bp, 1719 cbuf, compress, lsize, psize); 1720 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA); 1721 BP_SET_TYPE(bp, zio->io_prop.zp_type); 1722 BP_SET_LEVEL(bp, zio->io_prop.zp_level); 1723 zio_buf_free(cbuf, lsize); 1724 bp->blk_birth = zio->io_txg; 1725 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1726 ASSERT(spa_feature_is_active(spa, 1727 SPA_FEATURE_EMBEDDED_DATA)); 1728 return (zio); 1729 } else { 1730 /* 1731 * Round compressed size up to the minimum allocation 1732 * size of the smallest-ashift device, and zero the 1733 * tail. This ensures that the compressed size of the 1734 * BP (and thus compressratio property) are correct, 1735 * in that we charge for the padding used to fill out 1736 * the last sector. 1737 */ 1738 ASSERT3U(spa->spa_min_alloc, >=, SPA_MINBLOCKSHIFT); 1739 size_t rounded = (size_t)roundup(psize, 1740 spa->spa_min_alloc); 1741 if (rounded >= lsize) { 1742 compress = ZIO_COMPRESS_OFF; 1743 zio_buf_free(cbuf, lsize); 1744 psize = lsize; 1745 } else { 1746 abd_t *cdata = abd_get_from_buf(cbuf, lsize); 1747 abd_take_ownership_of_buf(cdata, B_TRUE); 1748 abd_zero_off(cdata, psize, rounded - psize); 1749 psize = rounded; 1750 zio_push_transform(zio, cdata, 1751 psize, lsize, NULL); 1752 } 1753 } 1754 1755 /* 1756 * We were unable to handle this as an override bp, treat 1757 * it as a regular write I/O. 1758 */ 1759 zio->io_bp_override = NULL; 1760 *bp = zio->io_bp_orig; 1761 zio->io_pipeline = zio->io_orig_pipeline; 1762 1763 } else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 && 1764 zp->zp_type == DMU_OT_DNODE) { 1765 /* 1766 * The DMU actually relies on the zio layer's compression 1767 * to free metadnode blocks that have had all contained 1768 * dnodes freed. As a result, even when doing a raw 1769 * receive, we must check whether the block can be compressed 1770 * to a hole. 1771 */ 1772 psize = zio_compress_data(ZIO_COMPRESS_EMPTY, 1773 zio->io_abd, NULL, lsize, zp->zp_complevel); 1774 if (psize == 0 || psize >= lsize) 1775 compress = ZIO_COMPRESS_OFF; 1776 } else if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS && 1777 !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) { 1778 /* 1779 * If we are raw receiving an encrypted dataset we should not 1780 * take this codepath because it will change the on-disk block 1781 * and decryption will fail. 1782 */ 1783 size_t rounded = MIN((size_t)roundup(psize, 1784 spa->spa_min_alloc), lsize); 1785 1786 if (rounded != psize) { 1787 abd_t *cdata = abd_alloc_linear(rounded, B_TRUE); 1788 abd_zero_off(cdata, psize, rounded - psize); 1789 abd_copy_off(cdata, zio->io_abd, 0, 0, psize); 1790 psize = rounded; 1791 zio_push_transform(zio, cdata, 1792 psize, rounded, NULL); 1793 } 1794 } else { 1795 ASSERT3U(psize, !=, 0); 1796 } 1797 1798 /* 1799 * The final pass of spa_sync() must be all rewrites, but the first 1800 * few passes offer a trade-off: allocating blocks defers convergence, 1801 * but newly allocated blocks are sequential, so they can be written 1802 * to disk faster. Therefore, we allow the first few passes of 1803 * spa_sync() to allocate new blocks, but force rewrites after that. 1804 * There should only be a handful of blocks after pass 1 in any case. 1805 */ 1806 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg && 1807 BP_GET_PSIZE(bp) == psize && 1808 pass >= zfs_sync_pass_rewrite) { 1809 VERIFY3U(psize, !=, 0); 1810 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES; 1811 1812 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages; 1813 zio->io_flags |= ZIO_FLAG_IO_REWRITE; 1814 } else { 1815 BP_ZERO(bp); 1816 zio->io_pipeline = ZIO_WRITE_PIPELINE; 1817 } 1818 1819 if (psize == 0) { 1820 if (zio->io_bp_orig.blk_birth != 0 && 1821 spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) { 1822 BP_SET_LSIZE(bp, lsize); 1823 BP_SET_TYPE(bp, zp->zp_type); 1824 BP_SET_LEVEL(bp, zp->zp_level); 1825 BP_SET_BIRTH(bp, zio->io_txg, 0); 1826 } 1827 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1828 } else { 1829 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER); 1830 BP_SET_LSIZE(bp, lsize); 1831 BP_SET_TYPE(bp, zp->zp_type); 1832 BP_SET_LEVEL(bp, zp->zp_level); 1833 BP_SET_PSIZE(bp, psize); 1834 BP_SET_COMPRESS(bp, compress); 1835 BP_SET_CHECKSUM(bp, zp->zp_checksum); 1836 BP_SET_DEDUP(bp, zp->zp_dedup); 1837 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 1838 if (zp->zp_dedup) { 1839 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1840 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1841 ASSERT(!zp->zp_encrypt || 1842 DMU_OT_IS_ENCRYPTED(zp->zp_type)); 1843 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE; 1844 } 1845 if (zp->zp_nopwrite) { 1846 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1847 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1848 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE; 1849 } 1850 } 1851 return (zio); 1852 } 1853 1854 static zio_t * 1855 zio_free_bp_init(zio_t *zio) 1856 { 1857 blkptr_t *bp = zio->io_bp; 1858 1859 if (zio->io_child_type == ZIO_CHILD_LOGICAL) { 1860 if (BP_GET_DEDUP(bp)) 1861 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE; 1862 } 1863 1864 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 1865 1866 return (zio); 1867 } 1868 1869 /* 1870 * ========================================================================== 1871 * Execute the I/O pipeline 1872 * ========================================================================== 1873 */ 1874 1875 static void 1876 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline) 1877 { 1878 spa_t *spa = zio->io_spa; 1879 zio_type_t t = zio->io_type; 1880 int flags = (cutinline ? TQ_FRONT : 0); 1881 1882 /* 1883 * If we're a config writer or a probe, the normal issue and 1884 * interrupt threads may all be blocked waiting for the config lock. 1885 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL. 1886 */ 1887 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE)) 1888 t = ZIO_TYPE_NULL; 1889 1890 /* 1891 * A similar issue exists for the L2ARC write thread until L2ARC 2.0. 1892 */ 1893 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux) 1894 t = ZIO_TYPE_NULL; 1895 1896 /* 1897 * If this is a high priority I/O, then use the high priority taskq if 1898 * available. 1899 */ 1900 if ((zio->io_priority == ZIO_PRIORITY_NOW || 1901 zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) && 1902 spa->spa_zio_taskq[t][q + 1].stqs_count != 0) 1903 q++; 1904 1905 ASSERT3U(q, <, ZIO_TASKQ_TYPES); 1906 1907 /* 1908 * NB: We are assuming that the zio can only be dispatched 1909 * to a single taskq at a time. It would be a grievous error 1910 * to dispatch the zio to another taskq at the same time. 1911 */ 1912 ASSERT(taskq_empty_ent(&zio->io_tqent)); 1913 spa_taskq_dispatch_ent(spa, t, q, zio_execute, zio, flags, 1914 &zio->io_tqent); 1915 } 1916 1917 static boolean_t 1918 zio_taskq_member(zio_t *zio, zio_taskq_type_t q) 1919 { 1920 spa_t *spa = zio->io_spa; 1921 1922 taskq_t *tq = taskq_of_curthread(); 1923 1924 for (zio_type_t t = 0; t < ZIO_TYPES; t++) { 1925 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1926 uint_t i; 1927 for (i = 0; i < tqs->stqs_count; i++) { 1928 if (tqs->stqs_taskq[i] == tq) 1929 return (B_TRUE); 1930 } 1931 } 1932 1933 return (B_FALSE); 1934 } 1935 1936 static zio_t * 1937 zio_issue_async(zio_t *zio) 1938 { 1939 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 1940 1941 return (NULL); 1942 } 1943 1944 void 1945 zio_interrupt(void *zio) 1946 { 1947 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE); 1948 } 1949 1950 void 1951 zio_delay_interrupt(zio_t *zio) 1952 { 1953 /* 1954 * The timeout_generic() function isn't defined in userspace, so 1955 * rather than trying to implement the function, the zio delay 1956 * functionality has been disabled for userspace builds. 1957 */ 1958 1959 #ifdef _KERNEL 1960 /* 1961 * If io_target_timestamp is zero, then no delay has been registered 1962 * for this IO, thus jump to the end of this function and "skip" the 1963 * delay; issuing it directly to the zio layer. 1964 */ 1965 if (zio->io_target_timestamp != 0) { 1966 hrtime_t now = gethrtime(); 1967 1968 if (now >= zio->io_target_timestamp) { 1969 /* 1970 * This IO has already taken longer than the target 1971 * delay to complete, so we don't want to delay it 1972 * any longer; we "miss" the delay and issue it 1973 * directly to the zio layer. This is likely due to 1974 * the target latency being set to a value less than 1975 * the underlying hardware can satisfy (e.g. delay 1976 * set to 1ms, but the disks take 10ms to complete an 1977 * IO request). 1978 */ 1979 1980 DTRACE_PROBE2(zio__delay__miss, zio_t *, zio, 1981 hrtime_t, now); 1982 1983 zio_interrupt(zio); 1984 } else { 1985 taskqid_t tid; 1986 hrtime_t diff = zio->io_target_timestamp - now; 1987 clock_t expire_at_tick = ddi_get_lbolt() + 1988 NSEC_TO_TICK(diff); 1989 1990 DTRACE_PROBE3(zio__delay__hit, zio_t *, zio, 1991 hrtime_t, now, hrtime_t, diff); 1992 1993 if (NSEC_TO_TICK(diff) == 0) { 1994 /* Our delay is less than a jiffy - just spin */ 1995 zfs_sleep_until(zio->io_target_timestamp); 1996 zio_interrupt(zio); 1997 } else { 1998 /* 1999 * Use taskq_dispatch_delay() in the place of 2000 * OpenZFS's timeout_generic(). 2001 */ 2002 tid = taskq_dispatch_delay(system_taskq, 2003 zio_interrupt, zio, TQ_NOSLEEP, 2004 expire_at_tick); 2005 if (tid == TASKQID_INVALID) { 2006 /* 2007 * Couldn't allocate a task. Just 2008 * finish the zio without a delay. 2009 */ 2010 zio_interrupt(zio); 2011 } 2012 } 2013 } 2014 return; 2015 } 2016 #endif 2017 DTRACE_PROBE1(zio__delay__skip, zio_t *, zio); 2018 zio_interrupt(zio); 2019 } 2020 2021 static void 2022 zio_deadman_impl(zio_t *pio, int ziodepth) 2023 { 2024 zio_t *cio, *cio_next; 2025 zio_link_t *zl = NULL; 2026 vdev_t *vd = pio->io_vd; 2027 2028 if (zio_deadman_log_all || (vd != NULL && vd->vdev_ops->vdev_op_leaf)) { 2029 vdev_queue_t *vq = vd ? &vd->vdev_queue : NULL; 2030 zbookmark_phys_t *zb = &pio->io_bookmark; 2031 uint64_t delta = gethrtime() - pio->io_timestamp; 2032 uint64_t failmode = spa_get_deadman_failmode(pio->io_spa); 2033 2034 zfs_dbgmsg("slow zio[%d]: zio=%px timestamp=%llu " 2035 "delta=%llu queued=%llu io=%llu " 2036 "path=%s " 2037 "last=%llu type=%d " 2038 "priority=%d flags=0x%x stage=0x%x " 2039 "pipeline=0x%x pipeline-trace=0x%x " 2040 "objset=%llu object=%llu " 2041 "level=%llu blkid=%llu " 2042 "offset=%llu size=%llu " 2043 "error=%d", 2044 ziodepth, pio, pio->io_timestamp, 2045 (u_longlong_t)delta, pio->io_delta, pio->io_delay, 2046 vd ? vd->vdev_path : "NULL", 2047 vq ? vq->vq_io_complete_ts : 0, pio->io_type, 2048 pio->io_priority, pio->io_flags, pio->io_stage, 2049 pio->io_pipeline, pio->io_pipeline_trace, 2050 (u_longlong_t)zb->zb_objset, (u_longlong_t)zb->zb_object, 2051 (u_longlong_t)zb->zb_level, (u_longlong_t)zb->zb_blkid, 2052 (u_longlong_t)pio->io_offset, (u_longlong_t)pio->io_size, 2053 pio->io_error); 2054 (void) zfs_ereport_post(FM_EREPORT_ZFS_DEADMAN, 2055 pio->io_spa, vd, zb, pio, 0); 2056 2057 if (failmode == ZIO_FAILURE_MODE_CONTINUE && 2058 taskq_empty_ent(&pio->io_tqent)) { 2059 zio_interrupt(pio); 2060 } 2061 } 2062 2063 mutex_enter(&pio->io_lock); 2064 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 2065 cio_next = zio_walk_children(pio, &zl); 2066 zio_deadman_impl(cio, ziodepth + 1); 2067 } 2068 mutex_exit(&pio->io_lock); 2069 } 2070 2071 /* 2072 * Log the critical information describing this zio and all of its children 2073 * using the zfs_dbgmsg() interface then post deadman event for the ZED. 2074 */ 2075 void 2076 zio_deadman(zio_t *pio, char *tag) 2077 { 2078 spa_t *spa = pio->io_spa; 2079 char *name = spa_name(spa); 2080 2081 if (!zfs_deadman_enabled || spa_suspended(spa)) 2082 return; 2083 2084 zio_deadman_impl(pio, 0); 2085 2086 switch (spa_get_deadman_failmode(spa)) { 2087 case ZIO_FAILURE_MODE_WAIT: 2088 zfs_dbgmsg("%s waiting for hung I/O to pool '%s'", tag, name); 2089 break; 2090 2091 case ZIO_FAILURE_MODE_CONTINUE: 2092 zfs_dbgmsg("%s restarting hung I/O for pool '%s'", tag, name); 2093 break; 2094 2095 case ZIO_FAILURE_MODE_PANIC: 2096 fm_panic("%s determined I/O to pool '%s' is hung.", tag, name); 2097 break; 2098 } 2099 } 2100 2101 /* 2102 * Execute the I/O pipeline until one of the following occurs: 2103 * (1) the I/O completes; (2) the pipeline stalls waiting for 2104 * dependent child I/Os; (3) the I/O issues, so we're waiting 2105 * for an I/O completion interrupt; (4) the I/O is delegated by 2106 * vdev-level caching or aggregation; (5) the I/O is deferred 2107 * due to vdev-level queueing; (6) the I/O is handed off to 2108 * another thread. In all cases, the pipeline stops whenever 2109 * there's no CPU work; it never burns a thread in cv_wait_io(). 2110 * 2111 * There's no locking on io_stage because there's no legitimate way 2112 * for multiple threads to be attempting to process the same I/O. 2113 */ 2114 static zio_pipe_stage_t *zio_pipeline[]; 2115 2116 /* 2117 * zio_execute() is a wrapper around the static function 2118 * __zio_execute() so that we can force __zio_execute() to be 2119 * inlined. This reduces stack overhead which is important 2120 * because __zio_execute() is called recursively in several zio 2121 * code paths. zio_execute() itself cannot be inlined because 2122 * it is externally visible. 2123 */ 2124 void 2125 zio_execute(void *zio) 2126 { 2127 fstrans_cookie_t cookie; 2128 2129 cookie = spl_fstrans_mark(); 2130 __zio_execute(zio); 2131 spl_fstrans_unmark(cookie); 2132 } 2133 2134 /* 2135 * Used to determine if in the current context the stack is sized large 2136 * enough to allow zio_execute() to be called recursively. A minimum 2137 * stack size of 16K is required to avoid needing to re-dispatch the zio. 2138 */ 2139 static boolean_t 2140 zio_execute_stack_check(zio_t *zio) 2141 { 2142 #if !defined(HAVE_LARGE_STACKS) 2143 dsl_pool_t *dp = spa_get_dsl(zio->io_spa); 2144 2145 /* Executing in txg_sync_thread() context. */ 2146 if (dp && curthread == dp->dp_tx.tx_sync_thread) 2147 return (B_TRUE); 2148 2149 /* Pool initialization outside of zio_taskq context. */ 2150 if (dp && spa_is_initializing(dp->dp_spa) && 2151 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE) && 2152 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE_HIGH)) 2153 return (B_TRUE); 2154 #else 2155 (void) zio; 2156 #endif /* HAVE_LARGE_STACKS */ 2157 2158 return (B_FALSE); 2159 } 2160 2161 __attribute__((always_inline)) 2162 static inline void 2163 __zio_execute(zio_t *zio) 2164 { 2165 ASSERT3U(zio->io_queued_timestamp, >, 0); 2166 2167 while (zio->io_stage < ZIO_STAGE_DONE) { 2168 enum zio_stage pipeline = zio->io_pipeline; 2169 enum zio_stage stage = zio->io_stage; 2170 2171 zio->io_executor = curthread; 2172 2173 ASSERT(!MUTEX_HELD(&zio->io_lock)); 2174 ASSERT(ISP2(stage)); 2175 ASSERT(zio->io_stall == NULL); 2176 2177 do { 2178 stage <<= 1; 2179 } while ((stage & pipeline) == 0); 2180 2181 ASSERT(stage <= ZIO_STAGE_DONE); 2182 2183 /* 2184 * If we are in interrupt context and this pipeline stage 2185 * will grab a config lock that is held across I/O, 2186 * or may wait for an I/O that needs an interrupt thread 2187 * to complete, issue async to avoid deadlock. 2188 * 2189 * For VDEV_IO_START, we cut in line so that the io will 2190 * be sent to disk promptly. 2191 */ 2192 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL && 2193 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) { 2194 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ? 2195 zio_requeue_io_start_cut_in_line : B_FALSE; 2196 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut); 2197 return; 2198 } 2199 2200 /* 2201 * If the current context doesn't have large enough stacks 2202 * the zio must be issued asynchronously to prevent overflow. 2203 */ 2204 if (zio_execute_stack_check(zio)) { 2205 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ? 2206 zio_requeue_io_start_cut_in_line : B_FALSE; 2207 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut); 2208 return; 2209 } 2210 2211 zio->io_stage = stage; 2212 zio->io_pipeline_trace |= zio->io_stage; 2213 2214 /* 2215 * The zio pipeline stage returns the next zio to execute 2216 * (typically the same as this one), or NULL if we should 2217 * stop. 2218 */ 2219 zio = zio_pipeline[highbit64(stage) - 1](zio); 2220 2221 if (zio == NULL) 2222 return; 2223 } 2224 } 2225 2226 2227 /* 2228 * ========================================================================== 2229 * Initiate I/O, either sync or async 2230 * ========================================================================== 2231 */ 2232 int 2233 zio_wait(zio_t *zio) 2234 { 2235 /* 2236 * Some routines, like zio_free_sync(), may return a NULL zio 2237 * to avoid the performance overhead of creating and then destroying 2238 * an unneeded zio. For the callers' simplicity, we accept a NULL 2239 * zio and ignore it. 2240 */ 2241 if (zio == NULL) 2242 return (0); 2243 2244 long timeout = MSEC_TO_TICK(zfs_deadman_ziotime_ms); 2245 int error; 2246 2247 ASSERT3S(zio->io_stage, ==, ZIO_STAGE_OPEN); 2248 ASSERT3P(zio->io_executor, ==, NULL); 2249 2250 zio->io_waiter = curthread; 2251 ASSERT0(zio->io_queued_timestamp); 2252 zio->io_queued_timestamp = gethrtime(); 2253 2254 __zio_execute(zio); 2255 2256 mutex_enter(&zio->io_lock); 2257 while (zio->io_executor != NULL) { 2258 error = cv_timedwait_io(&zio->io_cv, &zio->io_lock, 2259 ddi_get_lbolt() + timeout); 2260 2261 if (zfs_deadman_enabled && error == -1 && 2262 gethrtime() - zio->io_queued_timestamp > 2263 spa_deadman_ziotime(zio->io_spa)) { 2264 mutex_exit(&zio->io_lock); 2265 timeout = MSEC_TO_TICK(zfs_deadman_checktime_ms); 2266 zio_deadman(zio, FTAG); 2267 mutex_enter(&zio->io_lock); 2268 } 2269 } 2270 mutex_exit(&zio->io_lock); 2271 2272 error = zio->io_error; 2273 zio_destroy(zio); 2274 2275 return (error); 2276 } 2277 2278 void 2279 zio_nowait(zio_t *zio) 2280 { 2281 /* 2282 * See comment in zio_wait(). 2283 */ 2284 if (zio == NULL) 2285 return; 2286 2287 ASSERT3P(zio->io_executor, ==, NULL); 2288 2289 if (zio->io_child_type == ZIO_CHILD_LOGICAL && 2290 zio_unique_parent(zio) == NULL) { 2291 zio_t *pio; 2292 2293 /* 2294 * This is a logical async I/O with no parent to wait for it. 2295 * We add it to the spa_async_root_zio "Godfather" I/O which 2296 * will ensure they complete prior to unloading the pool. 2297 */ 2298 spa_t *spa = zio->io_spa; 2299 pio = spa->spa_async_zio_root[CPU_SEQID_UNSTABLE]; 2300 2301 zio_add_child(pio, zio); 2302 } 2303 2304 ASSERT0(zio->io_queued_timestamp); 2305 zio->io_queued_timestamp = gethrtime(); 2306 __zio_execute(zio); 2307 } 2308 2309 /* 2310 * ========================================================================== 2311 * Reexecute, cancel, or suspend/resume failed I/O 2312 * ========================================================================== 2313 */ 2314 2315 static void 2316 zio_reexecute(void *arg) 2317 { 2318 zio_t *pio = arg; 2319 zio_t *cio, *cio_next; 2320 2321 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL); 2322 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN); 2323 ASSERT(pio->io_gang_leader == NULL); 2324 ASSERT(pio->io_gang_tree == NULL); 2325 2326 pio->io_flags = pio->io_orig_flags; 2327 pio->io_stage = pio->io_orig_stage; 2328 pio->io_pipeline = pio->io_orig_pipeline; 2329 pio->io_reexecute = 0; 2330 pio->io_flags |= ZIO_FLAG_REEXECUTED; 2331 pio->io_pipeline_trace = 0; 2332 pio->io_error = 0; 2333 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 2334 pio->io_state[w] = 0; 2335 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 2336 pio->io_child_error[c] = 0; 2337 2338 if (IO_IS_ALLOCATING(pio)) 2339 BP_ZERO(pio->io_bp); 2340 2341 /* 2342 * As we reexecute pio's children, new children could be created. 2343 * New children go to the head of pio's io_child_list, however, 2344 * so we will (correctly) not reexecute them. The key is that 2345 * the remainder of pio's io_child_list, from 'cio_next' onward, 2346 * cannot be affected by any side effects of reexecuting 'cio'. 2347 */ 2348 zio_link_t *zl = NULL; 2349 mutex_enter(&pio->io_lock); 2350 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 2351 cio_next = zio_walk_children(pio, &zl); 2352 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 2353 pio->io_children[cio->io_child_type][w]++; 2354 mutex_exit(&pio->io_lock); 2355 zio_reexecute(cio); 2356 mutex_enter(&pio->io_lock); 2357 } 2358 mutex_exit(&pio->io_lock); 2359 2360 /* 2361 * Now that all children have been reexecuted, execute the parent. 2362 * We don't reexecute "The Godfather" I/O here as it's the 2363 * responsibility of the caller to wait on it. 2364 */ 2365 if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) { 2366 pio->io_queued_timestamp = gethrtime(); 2367 __zio_execute(pio); 2368 } 2369 } 2370 2371 void 2372 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason) 2373 { 2374 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC) 2375 fm_panic("Pool '%s' has encountered an uncorrectable I/O " 2376 "failure and the failure mode property for this pool " 2377 "is set to panic.", spa_name(spa)); 2378 2379 cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable I/O " 2380 "failure and has been suspended.\n", spa_name(spa)); 2381 2382 (void) zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, 2383 NULL, NULL, 0); 2384 2385 mutex_enter(&spa->spa_suspend_lock); 2386 2387 if (spa->spa_suspend_zio_root == NULL) 2388 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL, 2389 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 2390 ZIO_FLAG_GODFATHER); 2391 2392 spa->spa_suspended = reason; 2393 2394 if (zio != NULL) { 2395 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 2396 ASSERT(zio != spa->spa_suspend_zio_root); 2397 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2398 ASSERT(zio_unique_parent(zio) == NULL); 2399 ASSERT(zio->io_stage == ZIO_STAGE_DONE); 2400 zio_add_child(spa->spa_suspend_zio_root, zio); 2401 } 2402 2403 mutex_exit(&spa->spa_suspend_lock); 2404 } 2405 2406 int 2407 zio_resume(spa_t *spa) 2408 { 2409 zio_t *pio; 2410 2411 /* 2412 * Reexecute all previously suspended i/o. 2413 */ 2414 mutex_enter(&spa->spa_suspend_lock); 2415 spa->spa_suspended = ZIO_SUSPEND_NONE; 2416 cv_broadcast(&spa->spa_suspend_cv); 2417 pio = spa->spa_suspend_zio_root; 2418 spa->spa_suspend_zio_root = NULL; 2419 mutex_exit(&spa->spa_suspend_lock); 2420 2421 if (pio == NULL) 2422 return (0); 2423 2424 zio_reexecute(pio); 2425 return (zio_wait(pio)); 2426 } 2427 2428 void 2429 zio_resume_wait(spa_t *spa) 2430 { 2431 mutex_enter(&spa->spa_suspend_lock); 2432 while (spa_suspended(spa)) 2433 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock); 2434 mutex_exit(&spa->spa_suspend_lock); 2435 } 2436 2437 /* 2438 * ========================================================================== 2439 * Gang blocks. 2440 * 2441 * A gang block is a collection of small blocks that looks to the DMU 2442 * like one large block. When zio_dva_allocate() cannot find a block 2443 * of the requested size, due to either severe fragmentation or the pool 2444 * being nearly full, it calls zio_write_gang_block() to construct the 2445 * block from smaller fragments. 2446 * 2447 * A gang block consists of a gang header (zio_gbh_phys_t) and up to 2448 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like 2449 * an indirect block: it's an array of block pointers. It consumes 2450 * only one sector and hence is allocatable regardless of fragmentation. 2451 * The gang header's bps point to its gang members, which hold the data. 2452 * 2453 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg> 2454 * as the verifier to ensure uniqueness of the SHA256 checksum. 2455 * Critically, the gang block bp's blk_cksum is the checksum of the data, 2456 * not the gang header. This ensures that data block signatures (needed for 2457 * deduplication) are independent of how the block is physically stored. 2458 * 2459 * Gang blocks can be nested: a gang member may itself be a gang block. 2460 * Thus every gang block is a tree in which root and all interior nodes are 2461 * gang headers, and the leaves are normal blocks that contain user data. 2462 * The root of the gang tree is called the gang leader. 2463 * 2464 * To perform any operation (read, rewrite, free, claim) on a gang block, 2465 * zio_gang_assemble() first assembles the gang tree (minus data leaves) 2466 * in the io_gang_tree field of the original logical i/o by recursively 2467 * reading the gang leader and all gang headers below it. This yields 2468 * an in-core tree containing the contents of every gang header and the 2469 * bps for every constituent of the gang block. 2470 * 2471 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree 2472 * and invokes a callback on each bp. To free a gang block, zio_gang_issue() 2473 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp. 2474 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim(). 2475 * zio_read_gang() is a wrapper around zio_read() that omits reading gang 2476 * headers, since we already have those in io_gang_tree. zio_rewrite_gang() 2477 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite() 2478 * of the gang header plus zio_checksum_compute() of the data to update the 2479 * gang header's blk_cksum as described above. 2480 * 2481 * The two-phase assemble/issue model solves the problem of partial failure -- 2482 * what if you'd freed part of a gang block but then couldn't read the 2483 * gang header for another part? Assembling the entire gang tree first 2484 * ensures that all the necessary gang header I/O has succeeded before 2485 * starting the actual work of free, claim, or write. Once the gang tree 2486 * is assembled, free and claim are in-memory operations that cannot fail. 2487 * 2488 * In the event that a gang write fails, zio_dva_unallocate() walks the 2489 * gang tree to immediately free (i.e. insert back into the space map) 2490 * everything we've allocated. This ensures that we don't get ENOSPC 2491 * errors during repeated suspend/resume cycles due to a flaky device. 2492 * 2493 * Gang rewrites only happen during sync-to-convergence. If we can't assemble 2494 * the gang tree, we won't modify the block, so we can safely defer the free 2495 * (knowing that the block is still intact). If we *can* assemble the gang 2496 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free 2497 * each constituent bp and we can allocate a new block on the next sync pass. 2498 * 2499 * In all cases, the gang tree allows complete recovery from partial failure. 2500 * ========================================================================== 2501 */ 2502 2503 static void 2504 zio_gang_issue_func_done(zio_t *zio) 2505 { 2506 abd_free(zio->io_abd); 2507 } 2508 2509 static zio_t * 2510 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2511 uint64_t offset) 2512 { 2513 if (gn != NULL) 2514 return (pio); 2515 2516 return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset), 2517 BP_GET_PSIZE(bp), zio_gang_issue_func_done, 2518 NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 2519 &pio->io_bookmark)); 2520 } 2521 2522 static zio_t * 2523 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2524 uint64_t offset) 2525 { 2526 zio_t *zio; 2527 2528 if (gn != NULL) { 2529 abd_t *gbh_abd = 2530 abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2531 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 2532 gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL, 2533 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 2534 &pio->io_bookmark); 2535 /* 2536 * As we rewrite each gang header, the pipeline will compute 2537 * a new gang block header checksum for it; but no one will 2538 * compute a new data checksum, so we do that here. The one 2539 * exception is the gang leader: the pipeline already computed 2540 * its data checksum because that stage precedes gang assembly. 2541 * (Presently, nothing actually uses interior data checksums; 2542 * this is just good hygiene.) 2543 */ 2544 if (gn != pio->io_gang_leader->io_gang_tree) { 2545 abd_t *buf = abd_get_offset(data, offset); 2546 2547 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp), 2548 buf, BP_GET_PSIZE(bp)); 2549 2550 abd_free(buf); 2551 } 2552 /* 2553 * If we are here to damage data for testing purposes, 2554 * leave the GBH alone so that we can detect the damage. 2555 */ 2556 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE) 2557 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 2558 } else { 2559 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 2560 abd_get_offset(data, offset), BP_GET_PSIZE(bp), 2561 zio_gang_issue_func_done, NULL, pio->io_priority, 2562 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2563 } 2564 2565 return (zio); 2566 } 2567 2568 static zio_t * 2569 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2570 uint64_t offset) 2571 { 2572 (void) gn, (void) data, (void) offset; 2573 2574 zio_t *zio = zio_free_sync(pio, pio->io_spa, pio->io_txg, bp, 2575 ZIO_GANG_CHILD_FLAGS(pio)); 2576 if (zio == NULL) { 2577 zio = zio_null(pio, pio->io_spa, 2578 NULL, NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)); 2579 } 2580 return (zio); 2581 } 2582 2583 static zio_t * 2584 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2585 uint64_t offset) 2586 { 2587 (void) gn, (void) data, (void) offset; 2588 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp, 2589 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio))); 2590 } 2591 2592 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = { 2593 NULL, 2594 zio_read_gang, 2595 zio_rewrite_gang, 2596 zio_free_gang, 2597 zio_claim_gang, 2598 NULL 2599 }; 2600 2601 static void zio_gang_tree_assemble_done(zio_t *zio); 2602 2603 static zio_gang_node_t * 2604 zio_gang_node_alloc(zio_gang_node_t **gnpp) 2605 { 2606 zio_gang_node_t *gn; 2607 2608 ASSERT(*gnpp == NULL); 2609 2610 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP); 2611 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE); 2612 *gnpp = gn; 2613 2614 return (gn); 2615 } 2616 2617 static void 2618 zio_gang_node_free(zio_gang_node_t **gnpp) 2619 { 2620 zio_gang_node_t *gn = *gnpp; 2621 2622 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 2623 ASSERT(gn->gn_child[g] == NULL); 2624 2625 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2626 kmem_free(gn, sizeof (*gn)); 2627 *gnpp = NULL; 2628 } 2629 2630 static void 2631 zio_gang_tree_free(zio_gang_node_t **gnpp) 2632 { 2633 zio_gang_node_t *gn = *gnpp; 2634 2635 if (gn == NULL) 2636 return; 2637 2638 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 2639 zio_gang_tree_free(&gn->gn_child[g]); 2640 2641 zio_gang_node_free(gnpp); 2642 } 2643 2644 static void 2645 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp) 2646 { 2647 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp); 2648 abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2649 2650 ASSERT(gio->io_gang_leader == gio); 2651 ASSERT(BP_IS_GANG(bp)); 2652 2653 zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE, 2654 zio_gang_tree_assemble_done, gn, gio->io_priority, 2655 ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark)); 2656 } 2657 2658 static void 2659 zio_gang_tree_assemble_done(zio_t *zio) 2660 { 2661 zio_t *gio = zio->io_gang_leader; 2662 zio_gang_node_t *gn = zio->io_private; 2663 blkptr_t *bp = zio->io_bp; 2664 2665 ASSERT(gio == zio_unique_parent(zio)); 2666 ASSERT(zio->io_child_count == 0); 2667 2668 if (zio->io_error) 2669 return; 2670 2671 /* this ABD was created from a linear buf in zio_gang_tree_assemble */ 2672 if (BP_SHOULD_BYTESWAP(bp)) 2673 byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size); 2674 2675 ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh); 2676 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE); 2677 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 2678 2679 abd_free(zio->io_abd); 2680 2681 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2682 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 2683 if (!BP_IS_GANG(gbp)) 2684 continue; 2685 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]); 2686 } 2687 } 2688 2689 static void 2690 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data, 2691 uint64_t offset) 2692 { 2693 zio_t *gio = pio->io_gang_leader; 2694 zio_t *zio; 2695 2696 ASSERT(BP_IS_GANG(bp) == !!gn); 2697 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp)); 2698 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree); 2699 2700 /* 2701 * If you're a gang header, your data is in gn->gn_gbh. 2702 * If you're a gang member, your data is in 'data' and gn == NULL. 2703 */ 2704 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset); 2705 2706 if (gn != NULL) { 2707 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 2708 2709 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2710 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 2711 if (BP_IS_HOLE(gbp)) 2712 continue; 2713 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data, 2714 offset); 2715 offset += BP_GET_PSIZE(gbp); 2716 } 2717 } 2718 2719 if (gn == gio->io_gang_tree) 2720 ASSERT3U(gio->io_size, ==, offset); 2721 2722 if (zio != pio) 2723 zio_nowait(zio); 2724 } 2725 2726 static zio_t * 2727 zio_gang_assemble(zio_t *zio) 2728 { 2729 blkptr_t *bp = zio->io_bp; 2730 2731 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL); 2732 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2733 2734 zio->io_gang_leader = zio; 2735 2736 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree); 2737 2738 return (zio); 2739 } 2740 2741 static zio_t * 2742 zio_gang_issue(zio_t *zio) 2743 { 2744 blkptr_t *bp = zio->io_bp; 2745 2746 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) { 2747 return (NULL); 2748 } 2749 2750 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio); 2751 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2752 2753 if (zio->io_child_error[ZIO_CHILD_GANG] == 0) 2754 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd, 2755 0); 2756 else 2757 zio_gang_tree_free(&zio->io_gang_tree); 2758 2759 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2760 2761 return (zio); 2762 } 2763 2764 static void 2765 zio_write_gang_member_ready(zio_t *zio) 2766 { 2767 zio_t *pio = zio_unique_parent(zio); 2768 dva_t *cdva = zio->io_bp->blk_dva; 2769 dva_t *pdva = pio->io_bp->blk_dva; 2770 uint64_t asize; 2771 zio_t *gio __maybe_unused = zio->io_gang_leader; 2772 2773 if (BP_IS_HOLE(zio->io_bp)) 2774 return; 2775 2776 ASSERT(BP_IS_HOLE(&zio->io_bp_orig)); 2777 2778 ASSERT(zio->io_child_type == ZIO_CHILD_GANG); 2779 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies); 2780 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp)); 2781 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp)); 2782 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp)); 2783 2784 mutex_enter(&pio->io_lock); 2785 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) { 2786 ASSERT(DVA_GET_GANG(&pdva[d])); 2787 asize = DVA_GET_ASIZE(&pdva[d]); 2788 asize += DVA_GET_ASIZE(&cdva[d]); 2789 DVA_SET_ASIZE(&pdva[d], asize); 2790 } 2791 mutex_exit(&pio->io_lock); 2792 } 2793 2794 static void 2795 zio_write_gang_done(zio_t *zio) 2796 { 2797 /* 2798 * The io_abd field will be NULL for a zio with no data. The io_flags 2799 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't 2800 * check for it here as it is cleared in zio_ready. 2801 */ 2802 if (zio->io_abd != NULL) 2803 abd_free(zio->io_abd); 2804 } 2805 2806 static zio_t * 2807 zio_write_gang_block(zio_t *pio, metaslab_class_t *mc) 2808 { 2809 spa_t *spa = pio->io_spa; 2810 blkptr_t *bp = pio->io_bp; 2811 zio_t *gio = pio->io_gang_leader; 2812 zio_t *zio; 2813 zio_gang_node_t *gn, **gnpp; 2814 zio_gbh_phys_t *gbh; 2815 abd_t *gbh_abd; 2816 uint64_t txg = pio->io_txg; 2817 uint64_t resid = pio->io_size; 2818 uint64_t lsize; 2819 int copies = gio->io_prop.zp_copies; 2820 int gbh_copies; 2821 zio_prop_t zp; 2822 int error; 2823 boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA); 2824 2825 /* 2826 * encrypted blocks need DVA[2] free so encrypted gang headers can't 2827 * have a third copy. 2828 */ 2829 gbh_copies = MIN(copies + 1, spa_max_replication(spa)); 2830 if (gio->io_prop.zp_encrypt && gbh_copies >= SPA_DVAS_PER_BP) 2831 gbh_copies = SPA_DVAS_PER_BP - 1; 2832 2833 int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER; 2834 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2835 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2836 ASSERT(has_data); 2837 2838 flags |= METASLAB_ASYNC_ALLOC; 2839 VERIFY(zfs_refcount_held(&mc->mc_allocator[pio->io_allocator]. 2840 mca_alloc_slots, pio)); 2841 2842 /* 2843 * The logical zio has already placed a reservation for 2844 * 'copies' allocation slots but gang blocks may require 2845 * additional copies. These additional copies 2846 * (i.e. gbh_copies - copies) are guaranteed to succeed 2847 * since metaslab_class_throttle_reserve() always allows 2848 * additional reservations for gang blocks. 2849 */ 2850 VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies, 2851 pio->io_allocator, pio, flags)); 2852 } 2853 2854 error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE, 2855 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags, 2856 &pio->io_alloc_list, pio, pio->io_allocator); 2857 if (error) { 2858 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2859 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2860 ASSERT(has_data); 2861 2862 /* 2863 * If we failed to allocate the gang block header then 2864 * we remove any additional allocation reservations that 2865 * we placed here. The original reservation will 2866 * be removed when the logical I/O goes to the ready 2867 * stage. 2868 */ 2869 metaslab_class_throttle_unreserve(mc, 2870 gbh_copies - copies, pio->io_allocator, pio); 2871 } 2872 2873 pio->io_error = error; 2874 return (pio); 2875 } 2876 2877 if (pio == gio) { 2878 gnpp = &gio->io_gang_tree; 2879 } else { 2880 gnpp = pio->io_private; 2881 ASSERT(pio->io_ready == zio_write_gang_member_ready); 2882 } 2883 2884 gn = zio_gang_node_alloc(gnpp); 2885 gbh = gn->gn_gbh; 2886 bzero(gbh, SPA_GANGBLOCKSIZE); 2887 gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE); 2888 2889 /* 2890 * Create the gang header. 2891 */ 2892 zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE, 2893 zio_write_gang_done, NULL, pio->io_priority, 2894 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2895 2896 /* 2897 * Create and nowait the gang children. 2898 */ 2899 for (int g = 0; resid != 0; resid -= lsize, g++) { 2900 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g), 2901 SPA_MINBLOCKSIZE); 2902 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid); 2903 2904 zp.zp_checksum = gio->io_prop.zp_checksum; 2905 zp.zp_compress = ZIO_COMPRESS_OFF; 2906 zp.zp_complevel = gio->io_prop.zp_complevel; 2907 zp.zp_type = DMU_OT_NONE; 2908 zp.zp_level = 0; 2909 zp.zp_copies = gio->io_prop.zp_copies; 2910 zp.zp_dedup = B_FALSE; 2911 zp.zp_dedup_verify = B_FALSE; 2912 zp.zp_nopwrite = B_FALSE; 2913 zp.zp_encrypt = gio->io_prop.zp_encrypt; 2914 zp.zp_byteorder = gio->io_prop.zp_byteorder; 2915 bzero(zp.zp_salt, ZIO_DATA_SALT_LEN); 2916 bzero(zp.zp_iv, ZIO_DATA_IV_LEN); 2917 bzero(zp.zp_mac, ZIO_DATA_MAC_LEN); 2918 2919 zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g], 2920 has_data ? abd_get_offset(pio->io_abd, pio->io_size - 2921 resid) : NULL, lsize, lsize, &zp, 2922 zio_write_gang_member_ready, NULL, NULL, 2923 zio_write_gang_done, &gn->gn_child[g], pio->io_priority, 2924 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2925 2926 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2927 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2928 ASSERT(has_data); 2929 2930 /* 2931 * Gang children won't throttle but we should 2932 * account for their work, so reserve an allocation 2933 * slot for them here. 2934 */ 2935 VERIFY(metaslab_class_throttle_reserve(mc, 2936 zp.zp_copies, cio->io_allocator, cio, flags)); 2937 } 2938 zio_nowait(cio); 2939 } 2940 2941 /* 2942 * Set pio's pipeline to just wait for zio to finish. 2943 */ 2944 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2945 2946 /* 2947 * We didn't allocate this bp, so make sure it doesn't get unmarked. 2948 */ 2949 pio->io_flags &= ~ZIO_FLAG_FASTWRITE; 2950 2951 zio_nowait(zio); 2952 2953 return (pio); 2954 } 2955 2956 /* 2957 * The zio_nop_write stage in the pipeline determines if allocating a 2958 * new bp is necessary. The nopwrite feature can handle writes in 2959 * either syncing or open context (i.e. zil writes) and as a result is 2960 * mutually exclusive with dedup. 2961 * 2962 * By leveraging a cryptographically secure checksum, such as SHA256, we 2963 * can compare the checksums of the new data and the old to determine if 2964 * allocating a new block is required. Note that our requirements for 2965 * cryptographic strength are fairly weak: there can't be any accidental 2966 * hash collisions, but we don't need to be secure against intentional 2967 * (malicious) collisions. To trigger a nopwrite, you have to be able 2968 * to write the file to begin with, and triggering an incorrect (hash 2969 * collision) nopwrite is no worse than simply writing to the file. 2970 * That said, there are no known attacks against the checksum algorithms 2971 * used for nopwrite, assuming that the salt and the checksums 2972 * themselves remain secret. 2973 */ 2974 static zio_t * 2975 zio_nop_write(zio_t *zio) 2976 { 2977 blkptr_t *bp = zio->io_bp; 2978 blkptr_t *bp_orig = &zio->io_bp_orig; 2979 zio_prop_t *zp = &zio->io_prop; 2980 2981 ASSERT(BP_GET_LEVEL(bp) == 0); 2982 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 2983 ASSERT(zp->zp_nopwrite); 2984 ASSERT(!zp->zp_dedup); 2985 ASSERT(zio->io_bp_override == NULL); 2986 ASSERT(IO_IS_ALLOCATING(zio)); 2987 2988 /* 2989 * Check to see if the original bp and the new bp have matching 2990 * characteristics (i.e. same checksum, compression algorithms, etc). 2991 * If they don't then just continue with the pipeline which will 2992 * allocate a new bp. 2993 */ 2994 if (BP_IS_HOLE(bp_orig) || 2995 !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags & 2996 ZCHECKSUM_FLAG_NOPWRITE) || 2997 BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) || 2998 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) || 2999 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) || 3000 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) || 3001 zp->zp_copies != BP_GET_NDVAS(bp_orig)) 3002 return (zio); 3003 3004 /* 3005 * If the checksums match then reset the pipeline so that we 3006 * avoid allocating a new bp and issuing any I/O. 3007 */ 3008 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) { 3009 ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags & 3010 ZCHECKSUM_FLAG_NOPWRITE); 3011 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig)); 3012 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig)); 3013 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF); 3014 ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop, 3015 sizeof (uint64_t)) == 0); 3016 3017 /* 3018 * If we're overwriting a block that is currently on an 3019 * indirect vdev, then ignore the nopwrite request and 3020 * allow a new block to be allocated on a concrete vdev. 3021 */ 3022 spa_config_enter(zio->io_spa, SCL_VDEV, FTAG, RW_READER); 3023 vdev_t *tvd = vdev_lookup_top(zio->io_spa, 3024 DVA_GET_VDEV(&bp->blk_dva[0])); 3025 if (tvd->vdev_ops == &vdev_indirect_ops) { 3026 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG); 3027 return (zio); 3028 } 3029 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG); 3030 3031 *bp = *bp_orig; 3032 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 3033 zio->io_flags |= ZIO_FLAG_NOPWRITE; 3034 } 3035 3036 return (zio); 3037 } 3038 3039 /* 3040 * ========================================================================== 3041 * Dedup 3042 * ========================================================================== 3043 */ 3044 static void 3045 zio_ddt_child_read_done(zio_t *zio) 3046 { 3047 blkptr_t *bp = zio->io_bp; 3048 ddt_entry_t *dde = zio->io_private; 3049 ddt_phys_t *ddp; 3050 zio_t *pio = zio_unique_parent(zio); 3051 3052 mutex_enter(&pio->io_lock); 3053 ddp = ddt_phys_select(dde, bp); 3054 if (zio->io_error == 0) 3055 ddt_phys_clear(ddp); /* this ddp doesn't need repair */ 3056 3057 if (zio->io_error == 0 && dde->dde_repair_abd == NULL) 3058 dde->dde_repair_abd = zio->io_abd; 3059 else 3060 abd_free(zio->io_abd); 3061 mutex_exit(&pio->io_lock); 3062 } 3063 3064 static zio_t * 3065 zio_ddt_read_start(zio_t *zio) 3066 { 3067 blkptr_t *bp = zio->io_bp; 3068 3069 ASSERT(BP_GET_DEDUP(bp)); 3070 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 3071 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3072 3073 if (zio->io_child_error[ZIO_CHILD_DDT]) { 3074 ddt_t *ddt = ddt_select(zio->io_spa, bp); 3075 ddt_entry_t *dde = ddt_repair_start(ddt, bp); 3076 ddt_phys_t *ddp = dde->dde_phys; 3077 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp); 3078 blkptr_t blk; 3079 3080 ASSERT(zio->io_vsd == NULL); 3081 zio->io_vsd = dde; 3082 3083 if (ddp_self == NULL) 3084 return (zio); 3085 3086 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 3087 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self) 3088 continue; 3089 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp, 3090 &blk); 3091 zio_nowait(zio_read(zio, zio->io_spa, &blk, 3092 abd_alloc_for_io(zio->io_size, B_TRUE), 3093 zio->io_size, zio_ddt_child_read_done, dde, 3094 zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) | 3095 ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark)); 3096 } 3097 return (zio); 3098 } 3099 3100 zio_nowait(zio_read(zio, zio->io_spa, bp, 3101 zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority, 3102 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark)); 3103 3104 return (zio); 3105 } 3106 3107 static zio_t * 3108 zio_ddt_read_done(zio_t *zio) 3109 { 3110 blkptr_t *bp = zio->io_bp; 3111 3112 if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) { 3113 return (NULL); 3114 } 3115 3116 ASSERT(BP_GET_DEDUP(bp)); 3117 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 3118 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3119 3120 if (zio->io_child_error[ZIO_CHILD_DDT]) { 3121 ddt_t *ddt = ddt_select(zio->io_spa, bp); 3122 ddt_entry_t *dde = zio->io_vsd; 3123 if (ddt == NULL) { 3124 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE); 3125 return (zio); 3126 } 3127 if (dde == NULL) { 3128 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1; 3129 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 3130 return (NULL); 3131 } 3132 if (dde->dde_repair_abd != NULL) { 3133 abd_copy(zio->io_abd, dde->dde_repair_abd, 3134 zio->io_size); 3135 zio->io_child_error[ZIO_CHILD_DDT] = 0; 3136 } 3137 ddt_repair_done(ddt, dde); 3138 zio->io_vsd = NULL; 3139 } 3140 3141 ASSERT(zio->io_vsd == NULL); 3142 3143 return (zio); 3144 } 3145 3146 static boolean_t 3147 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde) 3148 { 3149 spa_t *spa = zio->io_spa; 3150 boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW); 3151 3152 ASSERT(!(zio->io_bp_override && do_raw)); 3153 3154 /* 3155 * Note: we compare the original data, not the transformed data, 3156 * because when zio->io_bp is an override bp, we will not have 3157 * pushed the I/O transforms. That's an important optimization 3158 * because otherwise we'd compress/encrypt all dmu_sync() data twice. 3159 * However, we should never get a raw, override zio so in these 3160 * cases we can compare the io_abd directly. This is useful because 3161 * it allows us to do dedup verification even if we don't have access 3162 * to the original data (for instance, if the encryption keys aren't 3163 * loaded). 3164 */ 3165 3166 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 3167 zio_t *lio = dde->dde_lead_zio[p]; 3168 3169 if (lio != NULL && do_raw) { 3170 return (lio->io_size != zio->io_size || 3171 abd_cmp(zio->io_abd, lio->io_abd) != 0); 3172 } else if (lio != NULL) { 3173 return (lio->io_orig_size != zio->io_orig_size || 3174 abd_cmp(zio->io_orig_abd, lio->io_orig_abd) != 0); 3175 } 3176 } 3177 3178 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 3179 ddt_phys_t *ddp = &dde->dde_phys[p]; 3180 3181 if (ddp->ddp_phys_birth != 0 && do_raw) { 3182 blkptr_t blk = *zio->io_bp; 3183 uint64_t psize; 3184 abd_t *tmpabd; 3185 int error; 3186 3187 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth); 3188 psize = BP_GET_PSIZE(&blk); 3189 3190 if (psize != zio->io_size) 3191 return (B_TRUE); 3192 3193 ddt_exit(ddt); 3194 3195 tmpabd = abd_alloc_for_io(psize, B_TRUE); 3196 3197 error = zio_wait(zio_read(NULL, spa, &blk, tmpabd, 3198 psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ, 3199 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 3200 ZIO_FLAG_RAW, &zio->io_bookmark)); 3201 3202 if (error == 0) { 3203 if (abd_cmp(tmpabd, zio->io_abd) != 0) 3204 error = SET_ERROR(ENOENT); 3205 } 3206 3207 abd_free(tmpabd); 3208 ddt_enter(ddt); 3209 return (error != 0); 3210 } else if (ddp->ddp_phys_birth != 0) { 3211 arc_buf_t *abuf = NULL; 3212 arc_flags_t aflags = ARC_FLAG_WAIT; 3213 blkptr_t blk = *zio->io_bp; 3214 int error; 3215 3216 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth); 3217 3218 if (BP_GET_LSIZE(&blk) != zio->io_orig_size) 3219 return (B_TRUE); 3220 3221 ddt_exit(ddt); 3222 3223 error = arc_read(NULL, spa, &blk, 3224 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ, 3225 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 3226 &aflags, &zio->io_bookmark); 3227 3228 if (error == 0) { 3229 if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data, 3230 zio->io_orig_size) != 0) 3231 error = SET_ERROR(ENOENT); 3232 arc_buf_destroy(abuf, &abuf); 3233 } 3234 3235 ddt_enter(ddt); 3236 return (error != 0); 3237 } 3238 } 3239 3240 return (B_FALSE); 3241 } 3242 3243 static void 3244 zio_ddt_child_write_ready(zio_t *zio) 3245 { 3246 int p = zio->io_prop.zp_copies; 3247 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 3248 ddt_entry_t *dde = zio->io_private; 3249 ddt_phys_t *ddp = &dde->dde_phys[p]; 3250 zio_t *pio; 3251 3252 if (zio->io_error) 3253 return; 3254 3255 ddt_enter(ddt); 3256 3257 ASSERT(dde->dde_lead_zio[p] == zio); 3258 3259 ddt_phys_fill(ddp, zio->io_bp); 3260 3261 zio_link_t *zl = NULL; 3262 while ((pio = zio_walk_parents(zio, &zl)) != NULL) 3263 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg); 3264 3265 ddt_exit(ddt); 3266 } 3267 3268 static void 3269 zio_ddt_child_write_done(zio_t *zio) 3270 { 3271 int p = zio->io_prop.zp_copies; 3272 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 3273 ddt_entry_t *dde = zio->io_private; 3274 ddt_phys_t *ddp = &dde->dde_phys[p]; 3275 3276 ddt_enter(ddt); 3277 3278 ASSERT(ddp->ddp_refcnt == 0); 3279 ASSERT(dde->dde_lead_zio[p] == zio); 3280 dde->dde_lead_zio[p] = NULL; 3281 3282 if (zio->io_error == 0) { 3283 zio_link_t *zl = NULL; 3284 while (zio_walk_parents(zio, &zl) != NULL) 3285 ddt_phys_addref(ddp); 3286 } else { 3287 ddt_phys_clear(ddp); 3288 } 3289 3290 ddt_exit(ddt); 3291 } 3292 3293 static zio_t * 3294 zio_ddt_write(zio_t *zio) 3295 { 3296 spa_t *spa = zio->io_spa; 3297 blkptr_t *bp = zio->io_bp; 3298 uint64_t txg = zio->io_txg; 3299 zio_prop_t *zp = &zio->io_prop; 3300 int p = zp->zp_copies; 3301 zio_t *cio = NULL; 3302 ddt_t *ddt = ddt_select(spa, bp); 3303 ddt_entry_t *dde; 3304 ddt_phys_t *ddp; 3305 3306 ASSERT(BP_GET_DEDUP(bp)); 3307 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum); 3308 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override); 3309 ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW))); 3310 3311 ddt_enter(ddt); 3312 dde = ddt_lookup(ddt, bp, B_TRUE); 3313 ddp = &dde->dde_phys[p]; 3314 3315 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) { 3316 /* 3317 * If we're using a weak checksum, upgrade to a strong checksum 3318 * and try again. If we're already using a strong checksum, 3319 * we can't resolve it, so just convert to an ordinary write. 3320 * (And automatically e-mail a paper to Nature?) 3321 */ 3322 if (!(zio_checksum_table[zp->zp_checksum].ci_flags & 3323 ZCHECKSUM_FLAG_DEDUP)) { 3324 zp->zp_checksum = spa_dedup_checksum(spa); 3325 zio_pop_transforms(zio); 3326 zio->io_stage = ZIO_STAGE_OPEN; 3327 BP_ZERO(bp); 3328 } else { 3329 zp->zp_dedup = B_FALSE; 3330 BP_SET_DEDUP(bp, B_FALSE); 3331 } 3332 ASSERT(!BP_GET_DEDUP(bp)); 3333 zio->io_pipeline = ZIO_WRITE_PIPELINE; 3334 ddt_exit(ddt); 3335 return (zio); 3336 } 3337 3338 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) { 3339 if (ddp->ddp_phys_birth != 0) 3340 ddt_bp_fill(ddp, bp, txg); 3341 if (dde->dde_lead_zio[p] != NULL) 3342 zio_add_child(zio, dde->dde_lead_zio[p]); 3343 else 3344 ddt_phys_addref(ddp); 3345 } else if (zio->io_bp_override) { 3346 ASSERT(bp->blk_birth == txg); 3347 ASSERT(BP_EQUAL(bp, zio->io_bp_override)); 3348 ddt_phys_fill(ddp, bp); 3349 ddt_phys_addref(ddp); 3350 } else { 3351 cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd, 3352 zio->io_orig_size, zio->io_orig_size, zp, 3353 zio_ddt_child_write_ready, NULL, NULL, 3354 zio_ddt_child_write_done, dde, zio->io_priority, 3355 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark); 3356 3357 zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL); 3358 dde->dde_lead_zio[p] = cio; 3359 } 3360 3361 ddt_exit(ddt); 3362 3363 zio_nowait(cio); 3364 3365 return (zio); 3366 } 3367 3368 ddt_entry_t *freedde; /* for debugging */ 3369 3370 static zio_t * 3371 zio_ddt_free(zio_t *zio) 3372 { 3373 spa_t *spa = zio->io_spa; 3374 blkptr_t *bp = zio->io_bp; 3375 ddt_t *ddt = ddt_select(spa, bp); 3376 ddt_entry_t *dde; 3377 ddt_phys_t *ddp; 3378 3379 ASSERT(BP_GET_DEDUP(bp)); 3380 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3381 3382 ddt_enter(ddt); 3383 freedde = dde = ddt_lookup(ddt, bp, B_TRUE); 3384 if (dde) { 3385 ddp = ddt_phys_select(dde, bp); 3386 if (ddp) 3387 ddt_phys_decref(ddp); 3388 } 3389 ddt_exit(ddt); 3390 3391 return (zio); 3392 } 3393 3394 /* 3395 * ========================================================================== 3396 * Allocate and free blocks 3397 * ========================================================================== 3398 */ 3399 3400 static zio_t * 3401 zio_io_to_allocate(spa_t *spa, int allocator) 3402 { 3403 zio_t *zio; 3404 3405 ASSERT(MUTEX_HELD(&spa->spa_allocs[allocator].spaa_lock)); 3406 3407 zio = avl_first(&spa->spa_allocs[allocator].spaa_tree); 3408 if (zio == NULL) 3409 return (NULL); 3410 3411 ASSERT(IO_IS_ALLOCATING(zio)); 3412 3413 /* 3414 * Try to place a reservation for this zio. If we're unable to 3415 * reserve then we throttle. 3416 */ 3417 ASSERT3U(zio->io_allocator, ==, allocator); 3418 if (!metaslab_class_throttle_reserve(zio->io_metaslab_class, 3419 zio->io_prop.zp_copies, allocator, zio, 0)) { 3420 return (NULL); 3421 } 3422 3423 avl_remove(&spa->spa_allocs[allocator].spaa_tree, zio); 3424 ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE); 3425 3426 return (zio); 3427 } 3428 3429 static zio_t * 3430 zio_dva_throttle(zio_t *zio) 3431 { 3432 spa_t *spa = zio->io_spa; 3433 zio_t *nio; 3434 metaslab_class_t *mc; 3435 3436 /* locate an appropriate allocation class */ 3437 mc = spa_preferred_class(spa, zio->io_size, zio->io_prop.zp_type, 3438 zio->io_prop.zp_level, zio->io_prop.zp_zpl_smallblk); 3439 3440 if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE || 3441 !mc->mc_alloc_throttle_enabled || 3442 zio->io_child_type == ZIO_CHILD_GANG || 3443 zio->io_flags & ZIO_FLAG_NODATA) { 3444 return (zio); 3445 } 3446 3447 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 3448 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 3449 ASSERT3U(zio->io_queued_timestamp, >, 0); 3450 ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE); 3451 3452 zbookmark_phys_t *bm = &zio->io_bookmark; 3453 /* 3454 * We want to try to use as many allocators as possible to help improve 3455 * performance, but we also want logically adjacent IOs to be physically 3456 * adjacent to improve sequential read performance. We chunk each object 3457 * into 2^20 block regions, and then hash based on the objset, object, 3458 * level, and region to accomplish both of these goals. 3459 */ 3460 int allocator = (uint_t)cityhash4(bm->zb_objset, bm->zb_object, 3461 bm->zb_level, bm->zb_blkid >> 20) % spa->spa_alloc_count; 3462 zio->io_allocator = allocator; 3463 zio->io_metaslab_class = mc; 3464 mutex_enter(&spa->spa_allocs[allocator].spaa_lock); 3465 avl_add(&spa->spa_allocs[allocator].spaa_tree, zio); 3466 nio = zio_io_to_allocate(spa, allocator); 3467 mutex_exit(&spa->spa_allocs[allocator].spaa_lock); 3468 return (nio); 3469 } 3470 3471 static void 3472 zio_allocate_dispatch(spa_t *spa, int allocator) 3473 { 3474 zio_t *zio; 3475 3476 mutex_enter(&spa->spa_allocs[allocator].spaa_lock); 3477 zio = zio_io_to_allocate(spa, allocator); 3478 mutex_exit(&spa->spa_allocs[allocator].spaa_lock); 3479 if (zio == NULL) 3480 return; 3481 3482 ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE); 3483 ASSERT0(zio->io_error); 3484 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE); 3485 } 3486 3487 static zio_t * 3488 zio_dva_allocate(zio_t *zio) 3489 { 3490 spa_t *spa = zio->io_spa; 3491 metaslab_class_t *mc; 3492 blkptr_t *bp = zio->io_bp; 3493 int error; 3494 int flags = 0; 3495 3496 if (zio->io_gang_leader == NULL) { 3497 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 3498 zio->io_gang_leader = zio; 3499 } 3500 3501 ASSERT(BP_IS_HOLE(bp)); 3502 ASSERT0(BP_GET_NDVAS(bp)); 3503 ASSERT3U(zio->io_prop.zp_copies, >, 0); 3504 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa)); 3505 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp)); 3506 3507 flags |= (zio->io_flags & ZIO_FLAG_FASTWRITE) ? METASLAB_FASTWRITE : 0; 3508 if (zio->io_flags & ZIO_FLAG_NODATA) 3509 flags |= METASLAB_DONT_THROTTLE; 3510 if (zio->io_flags & ZIO_FLAG_GANG_CHILD) 3511 flags |= METASLAB_GANG_CHILD; 3512 if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE) 3513 flags |= METASLAB_ASYNC_ALLOC; 3514 3515 /* 3516 * if not already chosen, locate an appropriate allocation class 3517 */ 3518 mc = zio->io_metaslab_class; 3519 if (mc == NULL) { 3520 mc = spa_preferred_class(spa, zio->io_size, 3521 zio->io_prop.zp_type, zio->io_prop.zp_level, 3522 zio->io_prop.zp_zpl_smallblk); 3523 zio->io_metaslab_class = mc; 3524 } 3525 3526 /* 3527 * Try allocating the block in the usual metaslab class. 3528 * If that's full, allocate it in the normal class. 3529 * If that's full, allocate as a gang block, 3530 * and if all are full, the allocation fails (which shouldn't happen). 3531 * 3532 * Note that we do not fall back on embedded slog (ZIL) space, to 3533 * preserve unfragmented slog space, which is critical for decent 3534 * sync write performance. If a log allocation fails, we will fall 3535 * back to spa_sync() which is abysmal for performance. 3536 */ 3537 error = metaslab_alloc(spa, mc, zio->io_size, bp, 3538 zio->io_prop.zp_copies, zio->io_txg, NULL, flags, 3539 &zio->io_alloc_list, zio, zio->io_allocator); 3540 3541 /* 3542 * Fallback to normal class when an alloc class is full 3543 */ 3544 if (error == ENOSPC && mc != spa_normal_class(spa)) { 3545 /* 3546 * If throttling, transfer reservation over to normal class. 3547 * The io_allocator slot can remain the same even though we 3548 * are switching classes. 3549 */ 3550 if (mc->mc_alloc_throttle_enabled && 3551 (zio->io_flags & ZIO_FLAG_IO_ALLOCATING)) { 3552 metaslab_class_throttle_unreserve(mc, 3553 zio->io_prop.zp_copies, zio->io_allocator, zio); 3554 zio->io_flags &= ~ZIO_FLAG_IO_ALLOCATING; 3555 3556 VERIFY(metaslab_class_throttle_reserve( 3557 spa_normal_class(spa), 3558 zio->io_prop.zp_copies, zio->io_allocator, zio, 3559 flags | METASLAB_MUST_RESERVE)); 3560 } 3561 zio->io_metaslab_class = mc = spa_normal_class(spa); 3562 if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) { 3563 zfs_dbgmsg("%s: metaslab allocation failure, " 3564 "trying normal class: zio %px, size %llu, error %d", 3565 spa_name(spa), zio, (u_longlong_t)zio->io_size, 3566 error); 3567 } 3568 3569 error = metaslab_alloc(spa, mc, zio->io_size, bp, 3570 zio->io_prop.zp_copies, zio->io_txg, NULL, flags, 3571 &zio->io_alloc_list, zio, zio->io_allocator); 3572 } 3573 3574 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) { 3575 if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) { 3576 zfs_dbgmsg("%s: metaslab allocation failure, " 3577 "trying ganging: zio %px, size %llu, error %d", 3578 spa_name(spa), zio, (u_longlong_t)zio->io_size, 3579 error); 3580 } 3581 return (zio_write_gang_block(zio, mc)); 3582 } 3583 if (error != 0) { 3584 if (error != ENOSPC || 3585 (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC)) { 3586 zfs_dbgmsg("%s: metaslab allocation failure: zio %px, " 3587 "size %llu, error %d", 3588 spa_name(spa), zio, (u_longlong_t)zio->io_size, 3589 error); 3590 } 3591 zio->io_error = error; 3592 } 3593 3594 return (zio); 3595 } 3596 3597 static zio_t * 3598 zio_dva_free(zio_t *zio) 3599 { 3600 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE); 3601 3602 return (zio); 3603 } 3604 3605 static zio_t * 3606 zio_dva_claim(zio_t *zio) 3607 { 3608 int error; 3609 3610 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg); 3611 if (error) 3612 zio->io_error = error; 3613 3614 return (zio); 3615 } 3616 3617 /* 3618 * Undo an allocation. This is used by zio_done() when an I/O fails 3619 * and we want to give back the block we just allocated. 3620 * This handles both normal blocks and gang blocks. 3621 */ 3622 static void 3623 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp) 3624 { 3625 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp)); 3626 ASSERT(zio->io_bp_override == NULL); 3627 3628 if (!BP_IS_HOLE(bp)) 3629 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE); 3630 3631 if (gn != NULL) { 3632 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 3633 zio_dva_unallocate(zio, gn->gn_child[g], 3634 &gn->gn_gbh->zg_blkptr[g]); 3635 } 3636 } 3637 } 3638 3639 /* 3640 * Try to allocate an intent log block. Return 0 on success, errno on failure. 3641 */ 3642 int 3643 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp, 3644 uint64_t size, boolean_t *slog) 3645 { 3646 int error = 1; 3647 zio_alloc_list_t io_alloc_list; 3648 3649 ASSERT(txg > spa_syncing_txg(spa)); 3650 3651 metaslab_trace_init(&io_alloc_list); 3652 3653 /* 3654 * Block pointer fields are useful to metaslabs for stats and debugging. 3655 * Fill in the obvious ones before calling into metaslab_alloc(). 3656 */ 3657 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 3658 BP_SET_PSIZE(new_bp, size); 3659 BP_SET_LEVEL(new_bp, 0); 3660 3661 /* 3662 * When allocating a zil block, we don't have information about 3663 * the final destination of the block except the objset it's part 3664 * of, so we just hash the objset ID to pick the allocator to get 3665 * some parallelism. 3666 */ 3667 int flags = METASLAB_FASTWRITE | METASLAB_ZIL; 3668 int allocator = (uint_t)cityhash4(0, 0, 0, 3669 os->os_dsl_dataset->ds_object) % spa->spa_alloc_count; 3670 error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1, 3671 txg, NULL, flags, &io_alloc_list, NULL, allocator); 3672 *slog = (error == 0); 3673 if (error != 0) { 3674 error = metaslab_alloc(spa, spa_embedded_log_class(spa), size, 3675 new_bp, 1, txg, NULL, flags, 3676 &io_alloc_list, NULL, allocator); 3677 } 3678 if (error != 0) { 3679 error = metaslab_alloc(spa, spa_normal_class(spa), size, 3680 new_bp, 1, txg, NULL, flags, 3681 &io_alloc_list, NULL, allocator); 3682 } 3683 metaslab_trace_fini(&io_alloc_list); 3684 3685 if (error == 0) { 3686 BP_SET_LSIZE(new_bp, size); 3687 BP_SET_PSIZE(new_bp, size); 3688 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF); 3689 BP_SET_CHECKSUM(new_bp, 3690 spa_version(spa) >= SPA_VERSION_SLIM_ZIL 3691 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG); 3692 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 3693 BP_SET_LEVEL(new_bp, 0); 3694 BP_SET_DEDUP(new_bp, 0); 3695 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER); 3696 3697 /* 3698 * encrypted blocks will require an IV and salt. We generate 3699 * these now since we will not be rewriting the bp at 3700 * rewrite time. 3701 */ 3702 if (os->os_encrypted) { 3703 uint8_t iv[ZIO_DATA_IV_LEN]; 3704 uint8_t salt[ZIO_DATA_SALT_LEN]; 3705 3706 BP_SET_CRYPT(new_bp, B_TRUE); 3707 VERIFY0(spa_crypt_get_salt(spa, 3708 dmu_objset_id(os), salt)); 3709 VERIFY0(zio_crypt_generate_iv(iv)); 3710 3711 zio_crypt_encode_params_bp(new_bp, salt, iv); 3712 } 3713 } else { 3714 zfs_dbgmsg("%s: zil block allocation failure: " 3715 "size %llu, error %d", spa_name(spa), (u_longlong_t)size, 3716 error); 3717 } 3718 3719 return (error); 3720 } 3721 3722 /* 3723 * ========================================================================== 3724 * Read and write to physical devices 3725 * ========================================================================== 3726 */ 3727 3728 /* 3729 * Issue an I/O to the underlying vdev. Typically the issue pipeline 3730 * stops after this stage and will resume upon I/O completion. 3731 * However, there are instances where the vdev layer may need to 3732 * continue the pipeline when an I/O was not issued. Since the I/O 3733 * that was sent to the vdev layer might be different than the one 3734 * currently active in the pipeline (see vdev_queue_io()), we explicitly 3735 * force the underlying vdev layers to call either zio_execute() or 3736 * zio_interrupt() to ensure that the pipeline continues with the correct I/O. 3737 */ 3738 static zio_t * 3739 zio_vdev_io_start(zio_t *zio) 3740 { 3741 vdev_t *vd = zio->io_vd; 3742 uint64_t align; 3743 spa_t *spa = zio->io_spa; 3744 3745 zio->io_delay = 0; 3746 3747 ASSERT(zio->io_error == 0); 3748 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0); 3749 3750 if (vd == NULL) { 3751 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 3752 spa_config_enter(spa, SCL_ZIO, zio, RW_READER); 3753 3754 /* 3755 * The mirror_ops handle multiple DVAs in a single BP. 3756 */ 3757 vdev_mirror_ops.vdev_op_io_start(zio); 3758 return (NULL); 3759 } 3760 3761 ASSERT3P(zio->io_logical, !=, zio); 3762 if (zio->io_type == ZIO_TYPE_WRITE) { 3763 ASSERT(spa->spa_trust_config); 3764 3765 /* 3766 * Note: the code can handle other kinds of writes, 3767 * but we don't expect them. 3768 */ 3769 if (zio->io_vd->vdev_noalloc) { 3770 ASSERT(zio->io_flags & 3771 (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL | 3772 ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE)); 3773 } 3774 } 3775 3776 align = 1ULL << vd->vdev_top->vdev_ashift; 3777 3778 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) && 3779 P2PHASE(zio->io_size, align) != 0) { 3780 /* Transform logical writes to be a full physical block size. */ 3781 uint64_t asize = P2ROUNDUP(zio->io_size, align); 3782 abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize); 3783 ASSERT(vd == vd->vdev_top); 3784 if (zio->io_type == ZIO_TYPE_WRITE) { 3785 abd_copy(abuf, zio->io_abd, zio->io_size); 3786 abd_zero_off(abuf, zio->io_size, asize - zio->io_size); 3787 } 3788 zio_push_transform(zio, abuf, asize, asize, zio_subblock); 3789 } 3790 3791 /* 3792 * If this is not a physical io, make sure that it is properly aligned 3793 * before proceeding. 3794 */ 3795 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) { 3796 ASSERT0(P2PHASE(zio->io_offset, align)); 3797 ASSERT0(P2PHASE(zio->io_size, align)); 3798 } else { 3799 /* 3800 * For physical writes, we allow 512b aligned writes and assume 3801 * the device will perform a read-modify-write as necessary. 3802 */ 3803 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE)); 3804 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE)); 3805 } 3806 3807 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa)); 3808 3809 /* 3810 * If this is a repair I/O, and there's no self-healing involved -- 3811 * that is, we're just resilvering what we expect to resilver -- 3812 * then don't do the I/O unless zio's txg is actually in vd's DTL. 3813 * This prevents spurious resilvering. 3814 * 3815 * There are a few ways that we can end up creating these spurious 3816 * resilver i/os: 3817 * 3818 * 1. A resilver i/o will be issued if any DVA in the BP has a 3819 * dirty DTL. The mirror code will issue resilver writes to 3820 * each DVA, including the one(s) that are not on vdevs with dirty 3821 * DTLs. 3822 * 3823 * 2. With nested replication, which happens when we have a 3824 * "replacing" or "spare" vdev that's a child of a mirror or raidz. 3825 * For example, given mirror(replacing(A+B), C), it's likely that 3826 * only A is out of date (it's the new device). In this case, we'll 3827 * read from C, then use the data to resilver A+B -- but we don't 3828 * actually want to resilver B, just A. The top-level mirror has no 3829 * way to know this, so instead we just discard unnecessary repairs 3830 * as we work our way down the vdev tree. 3831 * 3832 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc. 3833 * The same logic applies to any form of nested replication: ditto 3834 * + mirror, RAID-Z + replacing, etc. 3835 * 3836 * However, indirect vdevs point off to other vdevs which may have 3837 * DTL's, so we never bypass them. The child i/os on concrete vdevs 3838 * will be properly bypassed instead. 3839 * 3840 * Leaf DTL_PARTIAL can be empty when a legitimate write comes from 3841 * a dRAID spare vdev. For example, when a dRAID spare is first 3842 * used, its spare blocks need to be written to but the leaf vdev's 3843 * of such blocks can have empty DTL_PARTIAL. 3844 * 3845 * There seemed no clean way to allow such writes while bypassing 3846 * spurious ones. At this point, just avoid all bypassing for dRAID 3847 * for correctness. 3848 */ 3849 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) && 3850 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) && 3851 zio->io_txg != 0 && /* not a delegated i/o */ 3852 vd->vdev_ops != &vdev_indirect_ops && 3853 vd->vdev_top->vdev_ops != &vdev_draid_ops && 3854 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) { 3855 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 3856 zio_vdev_io_bypass(zio); 3857 return (zio); 3858 } 3859 3860 /* 3861 * Select the next best leaf I/O to process. Distributed spares are 3862 * excluded since they dispatch the I/O directly to a leaf vdev after 3863 * applying the dRAID mapping. 3864 */ 3865 if (vd->vdev_ops->vdev_op_leaf && 3866 vd->vdev_ops != &vdev_draid_spare_ops && 3867 (zio->io_type == ZIO_TYPE_READ || 3868 zio->io_type == ZIO_TYPE_WRITE || 3869 zio->io_type == ZIO_TYPE_TRIM)) { 3870 3871 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio)) 3872 return (zio); 3873 3874 if ((zio = vdev_queue_io(zio)) == NULL) 3875 return (NULL); 3876 3877 if (!vdev_accessible(vd, zio)) { 3878 zio->io_error = SET_ERROR(ENXIO); 3879 zio_interrupt(zio); 3880 return (NULL); 3881 } 3882 zio->io_delay = gethrtime(); 3883 } 3884 3885 vd->vdev_ops->vdev_op_io_start(zio); 3886 return (NULL); 3887 } 3888 3889 static zio_t * 3890 zio_vdev_io_done(zio_t *zio) 3891 { 3892 vdev_t *vd = zio->io_vd; 3893 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops; 3894 boolean_t unexpected_error = B_FALSE; 3895 3896 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) { 3897 return (NULL); 3898 } 3899 3900 ASSERT(zio->io_type == ZIO_TYPE_READ || 3901 zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM); 3902 3903 if (zio->io_delay) 3904 zio->io_delay = gethrtime() - zio->io_delay; 3905 3906 if (vd != NULL && vd->vdev_ops->vdev_op_leaf && 3907 vd->vdev_ops != &vdev_draid_spare_ops) { 3908 vdev_queue_io_done(zio); 3909 3910 if (zio->io_type == ZIO_TYPE_WRITE) 3911 vdev_cache_write(zio); 3912 3913 if (zio_injection_enabled && zio->io_error == 0) 3914 zio->io_error = zio_handle_device_injections(vd, zio, 3915 EIO, EILSEQ); 3916 3917 if (zio_injection_enabled && zio->io_error == 0) 3918 zio->io_error = zio_handle_label_injection(zio, EIO); 3919 3920 if (zio->io_error && zio->io_type != ZIO_TYPE_TRIM) { 3921 if (!vdev_accessible(vd, zio)) { 3922 zio->io_error = SET_ERROR(ENXIO); 3923 } else { 3924 unexpected_error = B_TRUE; 3925 } 3926 } 3927 } 3928 3929 ops->vdev_op_io_done(zio); 3930 3931 if (unexpected_error) 3932 VERIFY(vdev_probe(vd, zio) == NULL); 3933 3934 return (zio); 3935 } 3936 3937 /* 3938 * This function is used to change the priority of an existing zio that is 3939 * currently in-flight. This is used by the arc to upgrade priority in the 3940 * event that a demand read is made for a block that is currently queued 3941 * as a scrub or async read IO. Otherwise, the high priority read request 3942 * would end up having to wait for the lower priority IO. 3943 */ 3944 void 3945 zio_change_priority(zio_t *pio, zio_priority_t priority) 3946 { 3947 zio_t *cio, *cio_next; 3948 zio_link_t *zl = NULL; 3949 3950 ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 3951 3952 if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) { 3953 vdev_queue_change_io_priority(pio, priority); 3954 } else { 3955 pio->io_priority = priority; 3956 } 3957 3958 mutex_enter(&pio->io_lock); 3959 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 3960 cio_next = zio_walk_children(pio, &zl); 3961 zio_change_priority(cio, priority); 3962 } 3963 mutex_exit(&pio->io_lock); 3964 } 3965 3966 /* 3967 * For non-raidz ZIOs, we can just copy aside the bad data read from the 3968 * disk, and use that to finish the checksum ereport later. 3969 */ 3970 static void 3971 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr, 3972 const abd_t *good_buf) 3973 { 3974 /* no processing needed */ 3975 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE); 3976 } 3977 3978 void 3979 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr) 3980 { 3981 void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size); 3982 3983 abd_copy(abd, zio->io_abd, zio->io_size); 3984 3985 zcr->zcr_cbinfo = zio->io_size; 3986 zcr->zcr_cbdata = abd; 3987 zcr->zcr_finish = zio_vsd_default_cksum_finish; 3988 zcr->zcr_free = zio_abd_free; 3989 } 3990 3991 static zio_t * 3992 zio_vdev_io_assess(zio_t *zio) 3993 { 3994 vdev_t *vd = zio->io_vd; 3995 3996 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) { 3997 return (NULL); 3998 } 3999 4000 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 4001 spa_config_exit(zio->io_spa, SCL_ZIO, zio); 4002 4003 if (zio->io_vsd != NULL) { 4004 zio->io_vsd_ops->vsd_free(zio); 4005 zio->io_vsd = NULL; 4006 } 4007 4008 if (zio_injection_enabled && zio->io_error == 0) 4009 zio->io_error = zio_handle_fault_injection(zio, EIO); 4010 4011 /* 4012 * If the I/O failed, determine whether we should attempt to retry it. 4013 * 4014 * On retry, we cut in line in the issue queue, since we don't want 4015 * compression/checksumming/etc. work to prevent our (cheap) IO reissue. 4016 */ 4017 if (zio->io_error && vd == NULL && 4018 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) { 4019 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */ 4020 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */ 4021 zio->io_error = 0; 4022 zio->io_flags |= ZIO_FLAG_IO_RETRY | 4023 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE; 4024 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1; 4025 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, 4026 zio_requeue_io_start_cut_in_line); 4027 return (NULL); 4028 } 4029 4030 /* 4031 * If we got an error on a leaf device, convert it to ENXIO 4032 * if the device is not accessible at all. 4033 */ 4034 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf && 4035 !vdev_accessible(vd, zio)) 4036 zio->io_error = SET_ERROR(ENXIO); 4037 4038 /* 4039 * If we can't write to an interior vdev (mirror or RAID-Z), 4040 * set vdev_cant_write so that we stop trying to allocate from it. 4041 */ 4042 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE && 4043 vd != NULL && !vd->vdev_ops->vdev_op_leaf) { 4044 vdev_dbgmsg(vd, "zio_vdev_io_assess(zio=%px) setting " 4045 "cant_write=TRUE due to write failure with ENXIO", 4046 zio); 4047 vd->vdev_cant_write = B_TRUE; 4048 } 4049 4050 /* 4051 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future 4052 * attempts will ever succeed. In this case we set a persistent 4053 * boolean flag so that we don't bother with it in the future. 4054 */ 4055 if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) && 4056 zio->io_type == ZIO_TYPE_IOCTL && 4057 zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL) 4058 vd->vdev_nowritecache = B_TRUE; 4059 4060 if (zio->io_error) 4061 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 4062 4063 if (vd != NULL && vd->vdev_ops->vdev_op_leaf && 4064 zio->io_physdone != NULL) { 4065 ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED)); 4066 ASSERT(zio->io_child_type == ZIO_CHILD_VDEV); 4067 zio->io_physdone(zio->io_logical); 4068 } 4069 4070 return (zio); 4071 } 4072 4073 void 4074 zio_vdev_io_reissue(zio_t *zio) 4075 { 4076 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 4077 ASSERT(zio->io_error == 0); 4078 4079 zio->io_stage >>= 1; 4080 } 4081 4082 void 4083 zio_vdev_io_redone(zio_t *zio) 4084 { 4085 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE); 4086 4087 zio->io_stage >>= 1; 4088 } 4089 4090 void 4091 zio_vdev_io_bypass(zio_t *zio) 4092 { 4093 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 4094 ASSERT(zio->io_error == 0); 4095 4096 zio->io_flags |= ZIO_FLAG_IO_BYPASS; 4097 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1; 4098 } 4099 4100 /* 4101 * ========================================================================== 4102 * Encrypt and store encryption parameters 4103 * ========================================================================== 4104 */ 4105 4106 4107 /* 4108 * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for 4109 * managing the storage of encryption parameters and passing them to the 4110 * lower-level encryption functions. 4111 */ 4112 static zio_t * 4113 zio_encrypt(zio_t *zio) 4114 { 4115 zio_prop_t *zp = &zio->io_prop; 4116 spa_t *spa = zio->io_spa; 4117 blkptr_t *bp = zio->io_bp; 4118 uint64_t psize = BP_GET_PSIZE(bp); 4119 uint64_t dsobj = zio->io_bookmark.zb_objset; 4120 dmu_object_type_t ot = BP_GET_TYPE(bp); 4121 void *enc_buf = NULL; 4122 abd_t *eabd = NULL; 4123 uint8_t salt[ZIO_DATA_SALT_LEN]; 4124 uint8_t iv[ZIO_DATA_IV_LEN]; 4125 uint8_t mac[ZIO_DATA_MAC_LEN]; 4126 boolean_t no_crypt = B_FALSE; 4127 4128 /* the root zio already encrypted the data */ 4129 if (zio->io_child_type == ZIO_CHILD_GANG) 4130 return (zio); 4131 4132 /* only ZIL blocks are re-encrypted on rewrite */ 4133 if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG) 4134 return (zio); 4135 4136 if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) { 4137 BP_SET_CRYPT(bp, B_FALSE); 4138 return (zio); 4139 } 4140 4141 /* if we are doing raw encryption set the provided encryption params */ 4142 if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) { 4143 ASSERT0(BP_GET_LEVEL(bp)); 4144 BP_SET_CRYPT(bp, B_TRUE); 4145 BP_SET_BYTEORDER(bp, zp->zp_byteorder); 4146 if (ot != DMU_OT_OBJSET) 4147 zio_crypt_encode_mac_bp(bp, zp->zp_mac); 4148 4149 /* dnode blocks must be written out in the provided byteorder */ 4150 if (zp->zp_byteorder != ZFS_HOST_BYTEORDER && 4151 ot == DMU_OT_DNODE) { 4152 void *bswap_buf = zio_buf_alloc(psize); 4153 abd_t *babd = abd_get_from_buf(bswap_buf, psize); 4154 4155 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 4156 abd_copy_to_buf(bswap_buf, zio->io_abd, psize); 4157 dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf, 4158 psize); 4159 4160 abd_take_ownership_of_buf(babd, B_TRUE); 4161 zio_push_transform(zio, babd, psize, psize, NULL); 4162 } 4163 4164 if (DMU_OT_IS_ENCRYPTED(ot)) 4165 zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv); 4166 return (zio); 4167 } 4168 4169 /* indirect blocks only maintain a cksum of the lower level MACs */ 4170 if (BP_GET_LEVEL(bp) > 0) { 4171 BP_SET_CRYPT(bp, B_TRUE); 4172 VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE, 4173 zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp), 4174 mac)); 4175 zio_crypt_encode_mac_bp(bp, mac); 4176 return (zio); 4177 } 4178 4179 /* 4180 * Objset blocks are a special case since they have 2 256-bit MACs 4181 * embedded within them. 4182 */ 4183 if (ot == DMU_OT_OBJSET) { 4184 ASSERT0(DMU_OT_IS_ENCRYPTED(ot)); 4185 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 4186 BP_SET_CRYPT(bp, B_TRUE); 4187 VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj, 4188 zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp))); 4189 return (zio); 4190 } 4191 4192 /* unencrypted object types are only authenticated with a MAC */ 4193 if (!DMU_OT_IS_ENCRYPTED(ot)) { 4194 BP_SET_CRYPT(bp, B_TRUE); 4195 VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj, 4196 zio->io_abd, psize, mac)); 4197 zio_crypt_encode_mac_bp(bp, mac); 4198 return (zio); 4199 } 4200 4201 /* 4202 * Later passes of sync-to-convergence may decide to rewrite data 4203 * in place to avoid more disk reallocations. This presents a problem 4204 * for encryption because this constitutes rewriting the new data with 4205 * the same encryption key and IV. However, this only applies to blocks 4206 * in the MOS (particularly the spacemaps) and we do not encrypt the 4207 * MOS. We assert that the zio is allocating or an intent log write 4208 * to enforce this. 4209 */ 4210 ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG); 4211 ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG); 4212 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION)); 4213 ASSERT3U(psize, !=, 0); 4214 4215 enc_buf = zio_buf_alloc(psize); 4216 eabd = abd_get_from_buf(enc_buf, psize); 4217 abd_take_ownership_of_buf(eabd, B_TRUE); 4218 4219 /* 4220 * For an explanation of what encryption parameters are stored 4221 * where, see the block comment in zio_crypt.c. 4222 */ 4223 if (ot == DMU_OT_INTENT_LOG) { 4224 zio_crypt_decode_params_bp(bp, salt, iv); 4225 } else { 4226 BP_SET_CRYPT(bp, B_TRUE); 4227 } 4228 4229 /* Perform the encryption. This should not fail */ 4230 VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark, 4231 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), 4232 salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt)); 4233 4234 /* encode encryption metadata into the bp */ 4235 if (ot == DMU_OT_INTENT_LOG) { 4236 /* 4237 * ZIL blocks store the MAC in the embedded checksum, so the 4238 * transform must always be applied. 4239 */ 4240 zio_crypt_encode_mac_zil(enc_buf, mac); 4241 zio_push_transform(zio, eabd, psize, psize, NULL); 4242 } else { 4243 BP_SET_CRYPT(bp, B_TRUE); 4244 zio_crypt_encode_params_bp(bp, salt, iv); 4245 zio_crypt_encode_mac_bp(bp, mac); 4246 4247 if (no_crypt) { 4248 ASSERT3U(ot, ==, DMU_OT_DNODE); 4249 abd_free(eabd); 4250 } else { 4251 zio_push_transform(zio, eabd, psize, psize, NULL); 4252 } 4253 } 4254 4255 return (zio); 4256 } 4257 4258 /* 4259 * ========================================================================== 4260 * Generate and verify checksums 4261 * ========================================================================== 4262 */ 4263 static zio_t * 4264 zio_checksum_generate(zio_t *zio) 4265 { 4266 blkptr_t *bp = zio->io_bp; 4267 enum zio_checksum checksum; 4268 4269 if (bp == NULL) { 4270 /* 4271 * This is zio_write_phys(). 4272 * We're either generating a label checksum, or none at all. 4273 */ 4274 checksum = zio->io_prop.zp_checksum; 4275 4276 if (checksum == ZIO_CHECKSUM_OFF) 4277 return (zio); 4278 4279 ASSERT(checksum == ZIO_CHECKSUM_LABEL); 4280 } else { 4281 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) { 4282 ASSERT(!IO_IS_ALLOCATING(zio)); 4283 checksum = ZIO_CHECKSUM_GANG_HEADER; 4284 } else { 4285 checksum = BP_GET_CHECKSUM(bp); 4286 } 4287 } 4288 4289 zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size); 4290 4291 return (zio); 4292 } 4293 4294 static zio_t * 4295 zio_checksum_verify(zio_t *zio) 4296 { 4297 zio_bad_cksum_t info; 4298 blkptr_t *bp = zio->io_bp; 4299 int error; 4300 4301 ASSERT(zio->io_vd != NULL); 4302 4303 if (bp == NULL) { 4304 /* 4305 * This is zio_read_phys(). 4306 * We're either verifying a label checksum, or nothing at all. 4307 */ 4308 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF) 4309 return (zio); 4310 4311 ASSERT3U(zio->io_prop.zp_checksum, ==, ZIO_CHECKSUM_LABEL); 4312 } 4313 4314 if ((error = zio_checksum_error(zio, &info)) != 0) { 4315 zio->io_error = error; 4316 if (error == ECKSUM && 4317 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 4318 (void) zfs_ereport_start_checksum(zio->io_spa, 4319 zio->io_vd, &zio->io_bookmark, zio, 4320 zio->io_offset, zio->io_size, &info); 4321 mutex_enter(&zio->io_vd->vdev_stat_lock); 4322 zio->io_vd->vdev_stat.vs_checksum_errors++; 4323 mutex_exit(&zio->io_vd->vdev_stat_lock); 4324 } 4325 } 4326 4327 return (zio); 4328 } 4329 4330 /* 4331 * Called by RAID-Z to ensure we don't compute the checksum twice. 4332 */ 4333 void 4334 zio_checksum_verified(zio_t *zio) 4335 { 4336 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 4337 } 4338 4339 /* 4340 * ========================================================================== 4341 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other. 4342 * An error of 0 indicates success. ENXIO indicates whole-device failure, 4343 * which may be transient (e.g. unplugged) or permanent. ECKSUM and EIO 4344 * indicate errors that are specific to one I/O, and most likely permanent. 4345 * Any other error is presumed to be worse because we weren't expecting it. 4346 * ========================================================================== 4347 */ 4348 int 4349 zio_worst_error(int e1, int e2) 4350 { 4351 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO }; 4352 int r1, r2; 4353 4354 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++) 4355 if (e1 == zio_error_rank[r1]) 4356 break; 4357 4358 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++) 4359 if (e2 == zio_error_rank[r2]) 4360 break; 4361 4362 return (r1 > r2 ? e1 : e2); 4363 } 4364 4365 /* 4366 * ========================================================================== 4367 * I/O completion 4368 * ========================================================================== 4369 */ 4370 static zio_t * 4371 zio_ready(zio_t *zio) 4372 { 4373 blkptr_t *bp = zio->io_bp; 4374 zio_t *pio, *pio_next; 4375 zio_link_t *zl = NULL; 4376 4377 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT, 4378 ZIO_WAIT_READY)) { 4379 return (NULL); 4380 } 4381 4382 if (zio->io_ready) { 4383 ASSERT(IO_IS_ALLOCATING(zio)); 4384 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) || 4385 (zio->io_flags & ZIO_FLAG_NOPWRITE)); 4386 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0); 4387 4388 zio->io_ready(zio); 4389 } 4390 4391 if (bp != NULL && bp != &zio->io_bp_copy) 4392 zio->io_bp_copy = *bp; 4393 4394 if (zio->io_error != 0) { 4395 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 4396 4397 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 4398 ASSERT(IO_IS_ALLOCATING(zio)); 4399 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 4400 ASSERT(zio->io_metaslab_class != NULL); 4401 4402 /* 4403 * We were unable to allocate anything, unreserve and 4404 * issue the next I/O to allocate. 4405 */ 4406 metaslab_class_throttle_unreserve( 4407 zio->io_metaslab_class, zio->io_prop.zp_copies, 4408 zio->io_allocator, zio); 4409 zio_allocate_dispatch(zio->io_spa, zio->io_allocator); 4410 } 4411 } 4412 4413 mutex_enter(&zio->io_lock); 4414 zio->io_state[ZIO_WAIT_READY] = 1; 4415 pio = zio_walk_parents(zio, &zl); 4416 mutex_exit(&zio->io_lock); 4417 4418 /* 4419 * As we notify zio's parents, new parents could be added. 4420 * New parents go to the head of zio's io_parent_list, however, 4421 * so we will (correctly) not notify them. The remainder of zio's 4422 * io_parent_list, from 'pio_next' onward, cannot change because 4423 * all parents must wait for us to be done before they can be done. 4424 */ 4425 for (; pio != NULL; pio = pio_next) { 4426 pio_next = zio_walk_parents(zio, &zl); 4427 zio_notify_parent(pio, zio, ZIO_WAIT_READY, NULL); 4428 } 4429 4430 if (zio->io_flags & ZIO_FLAG_NODATA) { 4431 if (BP_IS_GANG(bp)) { 4432 zio->io_flags &= ~ZIO_FLAG_NODATA; 4433 } else { 4434 ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE); 4435 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 4436 } 4437 } 4438 4439 if (zio_injection_enabled && 4440 zio->io_spa->spa_syncing_txg == zio->io_txg) 4441 zio_handle_ignored_writes(zio); 4442 4443 return (zio); 4444 } 4445 4446 /* 4447 * Update the allocation throttle accounting. 4448 */ 4449 static void 4450 zio_dva_throttle_done(zio_t *zio) 4451 { 4452 zio_t *lio __maybe_unused = zio->io_logical; 4453 zio_t *pio = zio_unique_parent(zio); 4454 vdev_t *vd = zio->io_vd; 4455 int flags = METASLAB_ASYNC_ALLOC; 4456 4457 ASSERT3P(zio->io_bp, !=, NULL); 4458 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE); 4459 ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE); 4460 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); 4461 ASSERT(vd != NULL); 4462 ASSERT3P(vd, ==, vd->vdev_top); 4463 ASSERT(zio_injection_enabled || !(zio->io_flags & ZIO_FLAG_IO_RETRY)); 4464 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR)); 4465 ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING); 4466 ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE)); 4467 ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA)); 4468 4469 /* 4470 * Parents of gang children can have two flavors -- ones that 4471 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set) 4472 * and ones that allocated the constituent blocks. The allocation 4473 * throttle needs to know the allocating parent zio so we must find 4474 * it here. 4475 */ 4476 if (pio->io_child_type == ZIO_CHILD_GANG) { 4477 /* 4478 * If our parent is a rewrite gang child then our grandparent 4479 * would have been the one that performed the allocation. 4480 */ 4481 if (pio->io_flags & ZIO_FLAG_IO_REWRITE) 4482 pio = zio_unique_parent(pio); 4483 flags |= METASLAB_GANG_CHILD; 4484 } 4485 4486 ASSERT(IO_IS_ALLOCATING(pio)); 4487 ASSERT3P(zio, !=, zio->io_logical); 4488 ASSERT(zio->io_logical != NULL); 4489 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR)); 4490 ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE); 4491 ASSERT(zio->io_metaslab_class != NULL); 4492 4493 mutex_enter(&pio->io_lock); 4494 metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags, 4495 pio->io_allocator, B_TRUE); 4496 mutex_exit(&pio->io_lock); 4497 4498 metaslab_class_throttle_unreserve(zio->io_metaslab_class, 1, 4499 pio->io_allocator, pio); 4500 4501 /* 4502 * Call into the pipeline to see if there is more work that 4503 * needs to be done. If there is work to be done it will be 4504 * dispatched to another taskq thread. 4505 */ 4506 zio_allocate_dispatch(zio->io_spa, pio->io_allocator); 4507 } 4508 4509 static zio_t * 4510 zio_done(zio_t *zio) 4511 { 4512 /* 4513 * Always attempt to keep stack usage minimal here since 4514 * we can be called recursively up to 19 levels deep. 4515 */ 4516 const uint64_t psize = zio->io_size; 4517 zio_t *pio, *pio_next; 4518 zio_link_t *zl = NULL; 4519 4520 /* 4521 * If our children haven't all completed, 4522 * wait for them and then repeat this pipeline stage. 4523 */ 4524 if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) { 4525 return (NULL); 4526 } 4527 4528 /* 4529 * If the allocation throttle is enabled, then update the accounting. 4530 * We only track child I/Os that are part of an allocating async 4531 * write. We must do this since the allocation is performed 4532 * by the logical I/O but the actual write is done by child I/Os. 4533 */ 4534 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING && 4535 zio->io_child_type == ZIO_CHILD_VDEV) { 4536 ASSERT(zio->io_metaslab_class != NULL); 4537 ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled); 4538 zio_dva_throttle_done(zio); 4539 } 4540 4541 /* 4542 * If the allocation throttle is enabled, verify that 4543 * we have decremented the refcounts for every I/O that was throttled. 4544 */ 4545 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 4546 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 4547 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 4548 ASSERT(zio->io_bp != NULL); 4549 4550 metaslab_group_alloc_verify(zio->io_spa, zio->io_bp, zio, 4551 zio->io_allocator); 4552 VERIFY(zfs_refcount_not_held(&zio->io_metaslab_class-> 4553 mc_allocator[zio->io_allocator].mca_alloc_slots, zio)); 4554 } 4555 4556 4557 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 4558 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 4559 ASSERT(zio->io_children[c][w] == 0); 4560 4561 if (zio->io_bp != NULL && !BP_IS_EMBEDDED(zio->io_bp)) { 4562 ASSERT(zio->io_bp->blk_pad[0] == 0); 4563 ASSERT(zio->io_bp->blk_pad[1] == 0); 4564 ASSERT(bcmp(zio->io_bp, &zio->io_bp_copy, 4565 sizeof (blkptr_t)) == 0 || 4566 (zio->io_bp == zio_unique_parent(zio)->io_bp)); 4567 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) && 4568 zio->io_bp_override == NULL && 4569 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) { 4570 ASSERT3U(zio->io_prop.zp_copies, <=, 4571 BP_GET_NDVAS(zio->io_bp)); 4572 ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 || 4573 (BP_COUNT_GANG(zio->io_bp) == 4574 BP_GET_NDVAS(zio->io_bp))); 4575 } 4576 if (zio->io_flags & ZIO_FLAG_NOPWRITE) 4577 VERIFY(BP_EQUAL(zio->io_bp, &zio->io_bp_orig)); 4578 } 4579 4580 /* 4581 * If there were child vdev/gang/ddt errors, they apply to us now. 4582 */ 4583 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV); 4584 zio_inherit_child_errors(zio, ZIO_CHILD_GANG); 4585 zio_inherit_child_errors(zio, ZIO_CHILD_DDT); 4586 4587 /* 4588 * If the I/O on the transformed data was successful, generate any 4589 * checksum reports now while we still have the transformed data. 4590 */ 4591 if (zio->io_error == 0) { 4592 while (zio->io_cksum_report != NULL) { 4593 zio_cksum_report_t *zcr = zio->io_cksum_report; 4594 uint64_t align = zcr->zcr_align; 4595 uint64_t asize = P2ROUNDUP(psize, align); 4596 abd_t *adata = zio->io_abd; 4597 4598 if (adata != NULL && asize != psize) { 4599 adata = abd_alloc(asize, B_TRUE); 4600 abd_copy(adata, zio->io_abd, psize); 4601 abd_zero_off(adata, psize, asize - psize); 4602 } 4603 4604 zio->io_cksum_report = zcr->zcr_next; 4605 zcr->zcr_next = NULL; 4606 zcr->zcr_finish(zcr, adata); 4607 zfs_ereport_free_checksum(zcr); 4608 4609 if (adata != NULL && asize != psize) 4610 abd_free(adata); 4611 } 4612 } 4613 4614 zio_pop_transforms(zio); /* note: may set zio->io_error */ 4615 4616 vdev_stat_update(zio, psize); 4617 4618 /* 4619 * If this I/O is attached to a particular vdev is slow, exceeding 4620 * 30 seconds to complete, post an error described the I/O delay. 4621 * We ignore these errors if the device is currently unavailable. 4622 */ 4623 if (zio->io_delay >= MSEC2NSEC(zio_slow_io_ms)) { 4624 if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) { 4625 /* 4626 * We want to only increment our slow IO counters if 4627 * the IO is valid (i.e. not if the drive is removed). 4628 * 4629 * zfs_ereport_post() will also do these checks, but 4630 * it can also ratelimit and have other failures, so we 4631 * need to increment the slow_io counters independent 4632 * of it. 4633 */ 4634 if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY, 4635 zio->io_spa, zio->io_vd, zio)) { 4636 mutex_enter(&zio->io_vd->vdev_stat_lock); 4637 zio->io_vd->vdev_stat.vs_slow_ios++; 4638 mutex_exit(&zio->io_vd->vdev_stat_lock); 4639 4640 (void) zfs_ereport_post(FM_EREPORT_ZFS_DELAY, 4641 zio->io_spa, zio->io_vd, &zio->io_bookmark, 4642 zio, 0); 4643 } 4644 } 4645 } 4646 4647 if (zio->io_error) { 4648 /* 4649 * If this I/O is attached to a particular vdev, 4650 * generate an error message describing the I/O failure 4651 * at the block level. We ignore these errors if the 4652 * device is currently unavailable. 4653 */ 4654 if (zio->io_error != ECKSUM && zio->io_vd != NULL && 4655 !vdev_is_dead(zio->io_vd)) { 4656 int ret = zfs_ereport_post(FM_EREPORT_ZFS_IO, 4657 zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0); 4658 if (ret != EALREADY) { 4659 mutex_enter(&zio->io_vd->vdev_stat_lock); 4660 if (zio->io_type == ZIO_TYPE_READ) 4661 zio->io_vd->vdev_stat.vs_read_errors++; 4662 else if (zio->io_type == ZIO_TYPE_WRITE) 4663 zio->io_vd->vdev_stat.vs_write_errors++; 4664 mutex_exit(&zio->io_vd->vdev_stat_lock); 4665 } 4666 } 4667 4668 if ((zio->io_error == EIO || !(zio->io_flags & 4669 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) && 4670 zio == zio->io_logical) { 4671 /* 4672 * For logical I/O requests, tell the SPA to log the 4673 * error and generate a logical data ereport. 4674 */ 4675 spa_log_error(zio->io_spa, &zio->io_bookmark); 4676 (void) zfs_ereport_post(FM_EREPORT_ZFS_DATA, 4677 zio->io_spa, NULL, &zio->io_bookmark, zio, 0); 4678 } 4679 } 4680 4681 if (zio->io_error && zio == zio->io_logical) { 4682 /* 4683 * Determine whether zio should be reexecuted. This will 4684 * propagate all the way to the root via zio_notify_parent(). 4685 */ 4686 ASSERT(zio->io_vd == NULL && zio->io_bp != NULL); 4687 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 4688 4689 if (IO_IS_ALLOCATING(zio) && 4690 !(zio->io_flags & ZIO_FLAG_CANFAIL)) { 4691 if (zio->io_error != ENOSPC) 4692 zio->io_reexecute |= ZIO_REEXECUTE_NOW; 4693 else 4694 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 4695 } 4696 4697 if ((zio->io_type == ZIO_TYPE_READ || 4698 zio->io_type == ZIO_TYPE_FREE) && 4699 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && 4700 zio->io_error == ENXIO && 4701 spa_load_state(zio->io_spa) == SPA_LOAD_NONE && 4702 spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE) 4703 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 4704 4705 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute) 4706 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 4707 4708 /* 4709 * Here is a possibly good place to attempt to do 4710 * either combinatorial reconstruction or error correction 4711 * based on checksums. It also might be a good place 4712 * to send out preliminary ereports before we suspend 4713 * processing. 4714 */ 4715 } 4716 4717 /* 4718 * If there were logical child errors, they apply to us now. 4719 * We defer this until now to avoid conflating logical child 4720 * errors with errors that happened to the zio itself when 4721 * updating vdev stats and reporting FMA events above. 4722 */ 4723 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL); 4724 4725 if ((zio->io_error || zio->io_reexecute) && 4726 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio && 4727 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE))) 4728 zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp); 4729 4730 zio_gang_tree_free(&zio->io_gang_tree); 4731 4732 /* 4733 * Godfather I/Os should never suspend. 4734 */ 4735 if ((zio->io_flags & ZIO_FLAG_GODFATHER) && 4736 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) 4737 zio->io_reexecute &= ~ZIO_REEXECUTE_SUSPEND; 4738 4739 if (zio->io_reexecute) { 4740 /* 4741 * This is a logical I/O that wants to reexecute. 4742 * 4743 * Reexecute is top-down. When an i/o fails, if it's not 4744 * the root, it simply notifies its parent and sticks around. 4745 * The parent, seeing that it still has children in zio_done(), 4746 * does the same. This percolates all the way up to the root. 4747 * The root i/o will reexecute or suspend the entire tree. 4748 * 4749 * This approach ensures that zio_reexecute() honors 4750 * all the original i/o dependency relationships, e.g. 4751 * parents not executing until children are ready. 4752 */ 4753 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 4754 4755 zio->io_gang_leader = NULL; 4756 4757 mutex_enter(&zio->io_lock); 4758 zio->io_state[ZIO_WAIT_DONE] = 1; 4759 mutex_exit(&zio->io_lock); 4760 4761 /* 4762 * "The Godfather" I/O monitors its children but is 4763 * not a true parent to them. It will track them through 4764 * the pipeline but severs its ties whenever they get into 4765 * trouble (e.g. suspended). This allows "The Godfather" 4766 * I/O to return status without blocking. 4767 */ 4768 zl = NULL; 4769 for (pio = zio_walk_parents(zio, &zl); pio != NULL; 4770 pio = pio_next) { 4771 zio_link_t *remove_zl = zl; 4772 pio_next = zio_walk_parents(zio, &zl); 4773 4774 if ((pio->io_flags & ZIO_FLAG_GODFATHER) && 4775 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) { 4776 zio_remove_child(pio, zio, remove_zl); 4777 /* 4778 * This is a rare code path, so we don't 4779 * bother with "next_to_execute". 4780 */ 4781 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, 4782 NULL); 4783 } 4784 } 4785 4786 if ((pio = zio_unique_parent(zio)) != NULL) { 4787 /* 4788 * We're not a root i/o, so there's nothing to do 4789 * but notify our parent. Don't propagate errors 4790 * upward since we haven't permanently failed yet. 4791 */ 4792 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 4793 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE; 4794 /* 4795 * This is a rare code path, so we don't bother with 4796 * "next_to_execute". 4797 */ 4798 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, NULL); 4799 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) { 4800 /* 4801 * We'd fail again if we reexecuted now, so suspend 4802 * until conditions improve (e.g. device comes online). 4803 */ 4804 zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR); 4805 } else { 4806 /* 4807 * Reexecution is potentially a huge amount of work. 4808 * Hand it off to the otherwise-unused claim taskq. 4809 */ 4810 ASSERT(taskq_empty_ent(&zio->io_tqent)); 4811 spa_taskq_dispatch_ent(zio->io_spa, 4812 ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE, 4813 zio_reexecute, zio, 0, &zio->io_tqent); 4814 } 4815 return (NULL); 4816 } 4817 4818 ASSERT(zio->io_child_count == 0); 4819 ASSERT(zio->io_reexecute == 0); 4820 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL)); 4821 4822 /* 4823 * Report any checksum errors, since the I/O is complete. 4824 */ 4825 while (zio->io_cksum_report != NULL) { 4826 zio_cksum_report_t *zcr = zio->io_cksum_report; 4827 zio->io_cksum_report = zcr->zcr_next; 4828 zcr->zcr_next = NULL; 4829 zcr->zcr_finish(zcr, NULL); 4830 zfs_ereport_free_checksum(zcr); 4831 } 4832 4833 if (zio->io_flags & ZIO_FLAG_FASTWRITE && zio->io_bp && 4834 !BP_IS_HOLE(zio->io_bp) && !BP_IS_EMBEDDED(zio->io_bp) && 4835 !(zio->io_flags & ZIO_FLAG_NOPWRITE)) { 4836 metaslab_fastwrite_unmark(zio->io_spa, zio->io_bp); 4837 } 4838 4839 /* 4840 * It is the responsibility of the done callback to ensure that this 4841 * particular zio is no longer discoverable for adoption, and as 4842 * such, cannot acquire any new parents. 4843 */ 4844 if (zio->io_done) 4845 zio->io_done(zio); 4846 4847 mutex_enter(&zio->io_lock); 4848 zio->io_state[ZIO_WAIT_DONE] = 1; 4849 mutex_exit(&zio->io_lock); 4850 4851 /* 4852 * We are done executing this zio. We may want to execute a parent 4853 * next. See the comment in zio_notify_parent(). 4854 */ 4855 zio_t *next_to_execute = NULL; 4856 zl = NULL; 4857 for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) { 4858 zio_link_t *remove_zl = zl; 4859 pio_next = zio_walk_parents(zio, &zl); 4860 zio_remove_child(pio, zio, remove_zl); 4861 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, &next_to_execute); 4862 } 4863 4864 if (zio->io_waiter != NULL) { 4865 mutex_enter(&zio->io_lock); 4866 zio->io_executor = NULL; 4867 cv_broadcast(&zio->io_cv); 4868 mutex_exit(&zio->io_lock); 4869 } else { 4870 zio_destroy(zio); 4871 } 4872 4873 return (next_to_execute); 4874 } 4875 4876 /* 4877 * ========================================================================== 4878 * I/O pipeline definition 4879 * ========================================================================== 4880 */ 4881 static zio_pipe_stage_t *zio_pipeline[] = { 4882 NULL, 4883 zio_read_bp_init, 4884 zio_write_bp_init, 4885 zio_free_bp_init, 4886 zio_issue_async, 4887 zio_write_compress, 4888 zio_encrypt, 4889 zio_checksum_generate, 4890 zio_nop_write, 4891 zio_ddt_read_start, 4892 zio_ddt_read_done, 4893 zio_ddt_write, 4894 zio_ddt_free, 4895 zio_gang_assemble, 4896 zio_gang_issue, 4897 zio_dva_throttle, 4898 zio_dva_allocate, 4899 zio_dva_free, 4900 zio_dva_claim, 4901 zio_ready, 4902 zio_vdev_io_start, 4903 zio_vdev_io_done, 4904 zio_vdev_io_assess, 4905 zio_checksum_verify, 4906 zio_done 4907 }; 4908 4909 4910 4911 4912 /* 4913 * Compare two zbookmark_phys_t's to see which we would reach first in a 4914 * pre-order traversal of the object tree. 4915 * 4916 * This is simple in every case aside from the meta-dnode object. For all other 4917 * objects, we traverse them in order (object 1 before object 2, and so on). 4918 * However, all of these objects are traversed while traversing object 0, since 4919 * the data it points to is the list of objects. Thus, we need to convert to a 4920 * canonical representation so we can compare meta-dnode bookmarks to 4921 * non-meta-dnode bookmarks. 4922 * 4923 * We do this by calculating "equivalents" for each field of the zbookmark. 4924 * zbookmarks outside of the meta-dnode use their own object and level, and 4925 * calculate the level 0 equivalent (the first L0 blkid that is contained in the 4926 * blocks this bookmark refers to) by multiplying their blkid by their span 4927 * (the number of L0 blocks contained within one block at their level). 4928 * zbookmarks inside the meta-dnode calculate their object equivalent 4929 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use 4930 * level + 1<<31 (any value larger than a level could ever be) for their level. 4931 * This causes them to always compare before a bookmark in their object 4932 * equivalent, compare appropriately to bookmarks in other objects, and to 4933 * compare appropriately to other bookmarks in the meta-dnode. 4934 */ 4935 int 4936 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2, 4937 const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2) 4938 { 4939 /* 4940 * These variables represent the "equivalent" values for the zbookmark, 4941 * after converting zbookmarks inside the meta dnode to their 4942 * normal-object equivalents. 4943 */ 4944 uint64_t zb1obj, zb2obj; 4945 uint64_t zb1L0, zb2L0; 4946 uint64_t zb1level, zb2level; 4947 4948 if (zb1->zb_object == zb2->zb_object && 4949 zb1->zb_level == zb2->zb_level && 4950 zb1->zb_blkid == zb2->zb_blkid) 4951 return (0); 4952 4953 IMPLY(zb1->zb_level > 0, ibs1 >= SPA_MINBLOCKSHIFT); 4954 IMPLY(zb2->zb_level > 0, ibs2 >= SPA_MINBLOCKSHIFT); 4955 4956 /* 4957 * BP_SPANB calculates the span in blocks. 4958 */ 4959 zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level); 4960 zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level); 4961 4962 if (zb1->zb_object == DMU_META_DNODE_OBJECT) { 4963 zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 4964 zb1L0 = 0; 4965 zb1level = zb1->zb_level + COMPARE_META_LEVEL; 4966 } else { 4967 zb1obj = zb1->zb_object; 4968 zb1level = zb1->zb_level; 4969 } 4970 4971 if (zb2->zb_object == DMU_META_DNODE_OBJECT) { 4972 zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 4973 zb2L0 = 0; 4974 zb2level = zb2->zb_level + COMPARE_META_LEVEL; 4975 } else { 4976 zb2obj = zb2->zb_object; 4977 zb2level = zb2->zb_level; 4978 } 4979 4980 /* Now that we have a canonical representation, do the comparison. */ 4981 if (zb1obj != zb2obj) 4982 return (zb1obj < zb2obj ? -1 : 1); 4983 else if (zb1L0 != zb2L0) 4984 return (zb1L0 < zb2L0 ? -1 : 1); 4985 else if (zb1level != zb2level) 4986 return (zb1level > zb2level ? -1 : 1); 4987 /* 4988 * This can (theoretically) happen if the bookmarks have the same object 4989 * and level, but different blkids, if the block sizes are not the same. 4990 * There is presently no way to change the indirect block sizes 4991 */ 4992 return (0); 4993 } 4994 4995 /* 4996 * This function checks the following: given that last_block is the place that 4997 * our traversal stopped last time, does that guarantee that we've visited 4998 * every node under subtree_root? Therefore, we can't just use the raw output 4999 * of zbookmark_compare. We have to pass in a modified version of 5000 * subtree_root; by incrementing the block id, and then checking whether 5001 * last_block is before or equal to that, we can tell whether or not having 5002 * visited last_block implies that all of subtree_root's children have been 5003 * visited. 5004 */ 5005 boolean_t 5006 zbookmark_subtree_completed(const dnode_phys_t *dnp, 5007 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block) 5008 { 5009 zbookmark_phys_t mod_zb = *subtree_root; 5010 mod_zb.zb_blkid++; 5011 ASSERT(last_block->zb_level == 0); 5012 5013 /* The objset_phys_t isn't before anything. */ 5014 if (dnp == NULL) 5015 return (B_FALSE); 5016 5017 /* 5018 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the 5019 * data block size in sectors, because that variable is only used if 5020 * the bookmark refers to a block in the meta-dnode. Since we don't 5021 * know without examining it what object it refers to, and there's no 5022 * harm in passing in this value in other cases, we always pass it in. 5023 * 5024 * We pass in 0 for the indirect block size shift because zb2 must be 5025 * level 0. The indirect block size is only used to calculate the span 5026 * of the bookmark, but since the bookmark must be level 0, the span is 5027 * always 1, so the math works out. 5028 * 5029 * If you make changes to how the zbookmark_compare code works, be sure 5030 * to make sure that this code still works afterwards. 5031 */ 5032 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift, 5033 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb, 5034 last_block) <= 0); 5035 } 5036 5037 EXPORT_SYMBOL(zio_type_name); 5038 EXPORT_SYMBOL(zio_buf_alloc); 5039 EXPORT_SYMBOL(zio_data_buf_alloc); 5040 EXPORT_SYMBOL(zio_buf_free); 5041 EXPORT_SYMBOL(zio_data_buf_free); 5042 5043 ZFS_MODULE_PARAM(zfs_zio, zio_, slow_io_ms, INT, ZMOD_RW, 5044 "Max I/O completion time (milliseconds) before marking it as slow"); 5045 5046 ZFS_MODULE_PARAM(zfs_zio, zio_, requeue_io_start_cut_in_line, INT, ZMOD_RW, 5047 "Prioritize requeued I/O"); 5048 5049 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_deferred_free, INT, ZMOD_RW, 5050 "Defer frees starting in this pass"); 5051 5052 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_dont_compress, INT, ZMOD_RW, 5053 "Don't compress starting in this pass"); 5054 5055 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_rewrite, INT, ZMOD_RW, 5056 "Rewrite new bps starting in this pass"); 5057 5058 ZFS_MODULE_PARAM(zfs_zio, zio_, dva_throttle_enabled, INT, ZMOD_RW, 5059 "Throttle block allocations in the ZIO pipeline"); 5060 5061 ZFS_MODULE_PARAM(zfs_zio, zio_, deadman_log_all, INT, ZMOD_RW, 5062 "Log all slow ZIOs, not just those with vdevs"); 5063