xref: /freebsd/sys/contrib/openzfs/module/zfs/zio.c (revision ae8d58814089308028046ac80aeeb9cbb784bd0a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2022 by Delphix. All rights reserved.
24  * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25  * Copyright (c) 2017, Intel Corporation.
26  * Copyright (c) 2019, 2023, 2024, Klara Inc.
27  * Copyright (c) 2019, Allan Jude
28  * Copyright (c) 2021, Datto, Inc.
29  */
30 
31 #include <sys/sysmacros.h>
32 #include <sys/zfs_context.h>
33 #include <sys/fm/fs/zfs.h>
34 #include <sys/spa.h>
35 #include <sys/txg.h>
36 #include <sys/spa_impl.h>
37 #include <sys/vdev_impl.h>
38 #include <sys/vdev_trim.h>
39 #include <sys/zio_impl.h>
40 #include <sys/zio_compress.h>
41 #include <sys/zio_checksum.h>
42 #include <sys/dmu_objset.h>
43 #include <sys/arc.h>
44 #include <sys/brt.h>
45 #include <sys/ddt.h>
46 #include <sys/blkptr.h>
47 #include <sys/zfeature.h>
48 #include <sys/dsl_scan.h>
49 #include <sys/metaslab_impl.h>
50 #include <sys/time.h>
51 #include <sys/trace_zfs.h>
52 #include <sys/abd.h>
53 #include <sys/dsl_crypt.h>
54 #include <cityhash.h>
55 
56 /*
57  * ==========================================================================
58  * I/O type descriptions
59  * ==========================================================================
60  */
61 const char *const zio_type_name[ZIO_TYPES] = {
62 	/*
63 	 * Note: Linux kernel thread name length is limited
64 	 * so these names will differ from upstream open zfs.
65 	 */
66 	"z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_flush", "z_trim"
67 };
68 
69 int zio_dva_throttle_enabled = B_TRUE;
70 static int zio_deadman_log_all = B_FALSE;
71 
72 /*
73  * ==========================================================================
74  * I/O kmem caches
75  * ==========================================================================
76  */
77 static kmem_cache_t *zio_cache;
78 static kmem_cache_t *zio_link_cache;
79 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
80 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
81 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
82 static uint64_t zio_buf_cache_allocs[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
83 static uint64_t zio_buf_cache_frees[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
84 #endif
85 
86 /* Mark IOs as "slow" if they take longer than 30 seconds */
87 static uint_t zio_slow_io_ms = (30 * MILLISEC);
88 
89 #define	BP_SPANB(indblkshift, level) \
90 	(((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
91 #define	COMPARE_META_LEVEL	0x80000000ul
92 /*
93  * The following actions directly effect the spa's sync-to-convergence logic.
94  * The values below define the sync pass when we start performing the action.
95  * Care should be taken when changing these values as they directly impact
96  * spa_sync() performance. Tuning these values may introduce subtle performance
97  * pathologies and should only be done in the context of performance analysis.
98  * These tunables will eventually be removed and replaced with #defines once
99  * enough analysis has been done to determine optimal values.
100  *
101  * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
102  * regular blocks are not deferred.
103  *
104  * Starting in sync pass 8 (zfs_sync_pass_dont_compress), we disable
105  * compression (including of metadata).  In practice, we don't have this
106  * many sync passes, so this has no effect.
107  *
108  * The original intent was that disabling compression would help the sync
109  * passes to converge. However, in practice disabling compression increases
110  * the average number of sync passes, because when we turn compression off, a
111  * lot of block's size will change and thus we have to re-allocate (not
112  * overwrite) them. It also increases the number of 128KB allocations (e.g.
113  * for indirect blocks and spacemaps) because these will not be compressed.
114  * The 128K allocations are especially detrimental to performance on highly
115  * fragmented systems, which may have very few free segments of this size,
116  * and may need to load new metaslabs to satisfy 128K allocations.
117  */
118 
119 /* defer frees starting in this pass */
120 uint_t zfs_sync_pass_deferred_free = 2;
121 
122 /* don't compress starting in this pass */
123 static uint_t zfs_sync_pass_dont_compress = 8;
124 
125 /* rewrite new bps starting in this pass */
126 static uint_t zfs_sync_pass_rewrite = 2;
127 
128 /*
129  * An allocating zio is one that either currently has the DVA allocate
130  * stage set or will have it later in its lifetime.
131  */
132 #define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
133 
134 /*
135  * Enable smaller cores by excluding metadata
136  * allocations as well.
137  */
138 int zio_exclude_metadata = 0;
139 static int zio_requeue_io_start_cut_in_line = 1;
140 
141 #ifdef ZFS_DEBUG
142 static const int zio_buf_debug_limit = 16384;
143 #else
144 static const int zio_buf_debug_limit = 0;
145 #endif
146 
147 static inline void __zio_execute(zio_t *zio);
148 
149 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t);
150 
151 void
152 zio_init(void)
153 {
154 	size_t c;
155 
156 	zio_cache = kmem_cache_create("zio_cache",
157 	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
158 	zio_link_cache = kmem_cache_create("zio_link_cache",
159 	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
160 
161 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
162 		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
163 		size_t align, cflags, data_cflags;
164 		char name[32];
165 
166 		/*
167 		 * Create cache for each half-power of 2 size, starting from
168 		 * SPA_MINBLOCKSIZE.  It should give us memory space efficiency
169 		 * of ~7/8, sufficient for transient allocations mostly using
170 		 * these caches.
171 		 */
172 		size_t p2 = size;
173 		while (!ISP2(p2))
174 			p2 &= p2 - 1;
175 		if (!IS_P2ALIGNED(size, p2 / 2))
176 			continue;
177 
178 #ifndef _KERNEL
179 		/*
180 		 * If we are using watchpoints, put each buffer on its own page,
181 		 * to eliminate the performance overhead of trapping to the
182 		 * kernel when modifying a non-watched buffer that shares the
183 		 * page with a watched buffer.
184 		 */
185 		if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
186 			continue;
187 #endif
188 
189 		if (IS_P2ALIGNED(size, PAGESIZE))
190 			align = PAGESIZE;
191 		else
192 			align = 1 << (highbit64(size ^ (size - 1)) - 1);
193 
194 		cflags = (zio_exclude_metadata || size > zio_buf_debug_limit) ?
195 		    KMC_NODEBUG : 0;
196 		data_cflags = KMC_NODEBUG;
197 		if (cflags == data_cflags) {
198 			/*
199 			 * Resulting kmem caches would be identical.
200 			 * Save memory by creating only one.
201 			 */
202 			(void) snprintf(name, sizeof (name),
203 			    "zio_buf_comb_%lu", (ulong_t)size);
204 			zio_buf_cache[c] = kmem_cache_create(name, size, align,
205 			    NULL, NULL, NULL, NULL, NULL, cflags);
206 			zio_data_buf_cache[c] = zio_buf_cache[c];
207 			continue;
208 		}
209 		(void) snprintf(name, sizeof (name), "zio_buf_%lu",
210 		    (ulong_t)size);
211 		zio_buf_cache[c] = kmem_cache_create(name, size, align,
212 		    NULL, NULL, NULL, NULL, NULL, cflags);
213 
214 		(void) snprintf(name, sizeof (name), "zio_data_buf_%lu",
215 		    (ulong_t)size);
216 		zio_data_buf_cache[c] = kmem_cache_create(name, size, align,
217 		    NULL, NULL, NULL, NULL, NULL, data_cflags);
218 	}
219 
220 	while (--c != 0) {
221 		ASSERT(zio_buf_cache[c] != NULL);
222 		if (zio_buf_cache[c - 1] == NULL)
223 			zio_buf_cache[c - 1] = zio_buf_cache[c];
224 
225 		ASSERT(zio_data_buf_cache[c] != NULL);
226 		if (zio_data_buf_cache[c - 1] == NULL)
227 			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
228 	}
229 
230 	zio_inject_init();
231 
232 	lz4_init();
233 }
234 
235 void
236 zio_fini(void)
237 {
238 	size_t n = SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT;
239 
240 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
241 	for (size_t i = 0; i < n; i++) {
242 		if (zio_buf_cache_allocs[i] != zio_buf_cache_frees[i])
243 			(void) printf("zio_fini: [%d] %llu != %llu\n",
244 			    (int)((i + 1) << SPA_MINBLOCKSHIFT),
245 			    (long long unsigned)zio_buf_cache_allocs[i],
246 			    (long long unsigned)zio_buf_cache_frees[i]);
247 	}
248 #endif
249 
250 	/*
251 	 * The same kmem cache can show up multiple times in both zio_buf_cache
252 	 * and zio_data_buf_cache. Do a wasteful but trivially correct scan to
253 	 * sort it out.
254 	 */
255 	for (size_t i = 0; i < n; i++) {
256 		kmem_cache_t *cache = zio_buf_cache[i];
257 		if (cache == NULL)
258 			continue;
259 		for (size_t j = i; j < n; j++) {
260 			if (cache == zio_buf_cache[j])
261 				zio_buf_cache[j] = NULL;
262 			if (cache == zio_data_buf_cache[j])
263 				zio_data_buf_cache[j] = NULL;
264 		}
265 		kmem_cache_destroy(cache);
266 	}
267 
268 	for (size_t i = 0; i < n; i++) {
269 		kmem_cache_t *cache = zio_data_buf_cache[i];
270 		if (cache == NULL)
271 			continue;
272 		for (size_t j = i; j < n; j++) {
273 			if (cache == zio_data_buf_cache[j])
274 				zio_data_buf_cache[j] = NULL;
275 		}
276 		kmem_cache_destroy(cache);
277 	}
278 
279 	for (size_t i = 0; i < n; i++) {
280 		VERIFY3P(zio_buf_cache[i], ==, NULL);
281 		VERIFY3P(zio_data_buf_cache[i], ==, NULL);
282 	}
283 
284 	kmem_cache_destroy(zio_link_cache);
285 	kmem_cache_destroy(zio_cache);
286 
287 	zio_inject_fini();
288 
289 	lz4_fini();
290 }
291 
292 /*
293  * ==========================================================================
294  * Allocate and free I/O buffers
295  * ==========================================================================
296  */
297 
298 #ifdef ZFS_DEBUG
299 static const ulong_t zio_buf_canary = (ulong_t)0xdeadc0dedead210b;
300 #endif
301 
302 /*
303  * Use empty space after the buffer to detect overflows.
304  *
305  * Since zio_init() creates kmem caches only for certain set of buffer sizes,
306  * allocations of different sizes may have some unused space after the data.
307  * Filling part of that space with a known pattern on allocation and checking
308  * it on free should allow us to detect some buffer overflows.
309  */
310 static void
311 zio_buf_put_canary(ulong_t *p, size_t size, kmem_cache_t **cache, size_t c)
312 {
313 #ifdef ZFS_DEBUG
314 	size_t off = P2ROUNDUP(size, sizeof (ulong_t));
315 	ulong_t *canary = p + off / sizeof (ulong_t);
316 	size_t asize = (c + 1) << SPA_MINBLOCKSHIFT;
317 	if (c + 1 < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT &&
318 	    cache[c] == cache[c + 1])
319 		asize = (c + 2) << SPA_MINBLOCKSHIFT;
320 	for (; off < asize; canary++, off += sizeof (ulong_t))
321 		*canary = zio_buf_canary;
322 #endif
323 }
324 
325 static void
326 zio_buf_check_canary(ulong_t *p, size_t size, kmem_cache_t **cache, size_t c)
327 {
328 #ifdef ZFS_DEBUG
329 	size_t off = P2ROUNDUP(size, sizeof (ulong_t));
330 	ulong_t *canary = p + off / sizeof (ulong_t);
331 	size_t asize = (c + 1) << SPA_MINBLOCKSHIFT;
332 	if (c + 1 < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT &&
333 	    cache[c] == cache[c + 1])
334 		asize = (c + 2) << SPA_MINBLOCKSHIFT;
335 	for (; off < asize; canary++, off += sizeof (ulong_t)) {
336 		if (unlikely(*canary != zio_buf_canary)) {
337 			PANIC("ZIO buffer overflow %p (%zu) + %zu %#lx != %#lx",
338 			    p, size, (canary - p) * sizeof (ulong_t),
339 			    *canary, zio_buf_canary);
340 		}
341 	}
342 #endif
343 }
344 
345 /*
346  * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
347  * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
348  * useful to inspect ZFS metadata, but if possible, we should avoid keeping
349  * excess / transient data in-core during a crashdump.
350  */
351 void *
352 zio_buf_alloc(size_t size)
353 {
354 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
355 
356 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
357 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
358 	atomic_add_64(&zio_buf_cache_allocs[c], 1);
359 #endif
360 
361 	void *p = kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE);
362 	zio_buf_put_canary(p, size, zio_buf_cache, c);
363 	return (p);
364 }
365 
366 /*
367  * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
368  * crashdump if the kernel panics.  This exists so that we will limit the amount
369  * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
370  * of kernel heap dumped to disk when the kernel panics)
371  */
372 void *
373 zio_data_buf_alloc(size_t size)
374 {
375 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
376 
377 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
378 
379 	void *p = kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE);
380 	zio_buf_put_canary(p, size, zio_data_buf_cache, c);
381 	return (p);
382 }
383 
384 void
385 zio_buf_free(void *buf, size_t size)
386 {
387 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
388 
389 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
390 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
391 	atomic_add_64(&zio_buf_cache_frees[c], 1);
392 #endif
393 
394 	zio_buf_check_canary(buf, size, zio_buf_cache, c);
395 	kmem_cache_free(zio_buf_cache[c], buf);
396 }
397 
398 void
399 zio_data_buf_free(void *buf, size_t size)
400 {
401 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
402 
403 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
404 
405 	zio_buf_check_canary(buf, size, zio_data_buf_cache, c);
406 	kmem_cache_free(zio_data_buf_cache[c], buf);
407 }
408 
409 static void
410 zio_abd_free(void *abd, size_t size)
411 {
412 	(void) size;
413 	abd_free((abd_t *)abd);
414 }
415 
416 /*
417  * ==========================================================================
418  * Push and pop I/O transform buffers
419  * ==========================================================================
420  */
421 void
422 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize,
423     zio_transform_func_t *transform)
424 {
425 	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
426 
427 	zt->zt_orig_abd = zio->io_abd;
428 	zt->zt_orig_size = zio->io_size;
429 	zt->zt_bufsize = bufsize;
430 	zt->zt_transform = transform;
431 
432 	zt->zt_next = zio->io_transform_stack;
433 	zio->io_transform_stack = zt;
434 
435 	zio->io_abd = data;
436 	zio->io_size = size;
437 }
438 
439 void
440 zio_pop_transforms(zio_t *zio)
441 {
442 	zio_transform_t *zt;
443 
444 	while ((zt = zio->io_transform_stack) != NULL) {
445 		if (zt->zt_transform != NULL)
446 			zt->zt_transform(zio,
447 			    zt->zt_orig_abd, zt->zt_orig_size);
448 
449 		if (zt->zt_bufsize != 0)
450 			abd_free(zio->io_abd);
451 
452 		zio->io_abd = zt->zt_orig_abd;
453 		zio->io_size = zt->zt_orig_size;
454 		zio->io_transform_stack = zt->zt_next;
455 
456 		kmem_free(zt, sizeof (zio_transform_t));
457 	}
458 }
459 
460 /*
461  * ==========================================================================
462  * I/O transform callbacks for subblocks, decompression, and decryption
463  * ==========================================================================
464  */
465 static void
466 zio_subblock(zio_t *zio, abd_t *data, uint64_t size)
467 {
468 	ASSERT(zio->io_size > size);
469 
470 	if (zio->io_type == ZIO_TYPE_READ)
471 		abd_copy(data, zio->io_abd, size);
472 }
473 
474 static void
475 zio_decompress(zio_t *zio, abd_t *data, uint64_t size)
476 {
477 	if (zio->io_error == 0) {
478 		void *tmp = abd_borrow_buf(data, size);
479 		int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
480 		    zio->io_abd, tmp, zio->io_size, size,
481 		    &zio->io_prop.zp_complevel);
482 		abd_return_buf_copy(data, tmp, size);
483 
484 		if (zio_injection_enabled && ret == 0)
485 			ret = zio_handle_fault_injection(zio, EINVAL);
486 
487 		if (ret != 0)
488 			zio->io_error = SET_ERROR(EIO);
489 	}
490 }
491 
492 static void
493 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size)
494 {
495 	int ret;
496 	void *tmp;
497 	blkptr_t *bp = zio->io_bp;
498 	spa_t *spa = zio->io_spa;
499 	uint64_t dsobj = zio->io_bookmark.zb_objset;
500 	uint64_t lsize = BP_GET_LSIZE(bp);
501 	dmu_object_type_t ot = BP_GET_TYPE(bp);
502 	uint8_t salt[ZIO_DATA_SALT_LEN];
503 	uint8_t iv[ZIO_DATA_IV_LEN];
504 	uint8_t mac[ZIO_DATA_MAC_LEN];
505 	boolean_t no_crypt = B_FALSE;
506 
507 	ASSERT(BP_USES_CRYPT(bp));
508 	ASSERT3U(size, !=, 0);
509 
510 	if (zio->io_error != 0)
511 		return;
512 
513 	/*
514 	 * Verify the cksum of MACs stored in an indirect bp. It will always
515 	 * be possible to verify this since it does not require an encryption
516 	 * key.
517 	 */
518 	if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) {
519 		zio_crypt_decode_mac_bp(bp, mac);
520 
521 		if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) {
522 			/*
523 			 * We haven't decompressed the data yet, but
524 			 * zio_crypt_do_indirect_mac_checksum() requires
525 			 * decompressed data to be able to parse out the MACs
526 			 * from the indirect block. We decompress it now and
527 			 * throw away the result after we are finished.
528 			 */
529 			tmp = zio_buf_alloc(lsize);
530 			ret = zio_decompress_data(BP_GET_COMPRESS(bp),
531 			    zio->io_abd, tmp, zio->io_size, lsize,
532 			    &zio->io_prop.zp_complevel);
533 			if (ret != 0) {
534 				ret = SET_ERROR(EIO);
535 				goto error;
536 			}
537 			ret = zio_crypt_do_indirect_mac_checksum(B_FALSE,
538 			    tmp, lsize, BP_SHOULD_BYTESWAP(bp), mac);
539 			zio_buf_free(tmp, lsize);
540 		} else {
541 			ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE,
542 			    zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac);
543 		}
544 		abd_copy(data, zio->io_abd, size);
545 
546 		if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) {
547 			ret = zio_handle_decrypt_injection(spa,
548 			    &zio->io_bookmark, ot, ECKSUM);
549 		}
550 		if (ret != 0)
551 			goto error;
552 
553 		return;
554 	}
555 
556 	/*
557 	 * If this is an authenticated block, just check the MAC. It would be
558 	 * nice to separate this out into its own flag, but when this was done,
559 	 * we had run out of bits in what is now zio_flag_t. Future cleanup
560 	 * could make this a flag bit.
561 	 */
562 	if (BP_IS_AUTHENTICATED(bp)) {
563 		if (ot == DMU_OT_OBJSET) {
564 			ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa,
565 			    dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp));
566 		} else {
567 			zio_crypt_decode_mac_bp(bp, mac);
568 			ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj,
569 			    zio->io_abd, size, mac);
570 			if (zio_injection_enabled && ret == 0) {
571 				ret = zio_handle_decrypt_injection(spa,
572 				    &zio->io_bookmark, ot, ECKSUM);
573 			}
574 		}
575 		abd_copy(data, zio->io_abd, size);
576 
577 		if (ret != 0)
578 			goto error;
579 
580 		return;
581 	}
582 
583 	zio_crypt_decode_params_bp(bp, salt, iv);
584 
585 	if (ot == DMU_OT_INTENT_LOG) {
586 		tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t));
587 		zio_crypt_decode_mac_zil(tmp, mac);
588 		abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t));
589 	} else {
590 		zio_crypt_decode_mac_bp(bp, mac);
591 	}
592 
593 	ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp),
594 	    BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data,
595 	    zio->io_abd, &no_crypt);
596 	if (no_crypt)
597 		abd_copy(data, zio->io_abd, size);
598 
599 	if (ret != 0)
600 		goto error;
601 
602 	return;
603 
604 error:
605 	/* assert that the key was found unless this was speculative */
606 	ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE));
607 
608 	/*
609 	 * If there was a decryption / authentication error return EIO as
610 	 * the io_error. If this was not a speculative zio, create an ereport.
611 	 */
612 	if (ret == ECKSUM) {
613 		zio->io_error = SET_ERROR(EIO);
614 		if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
615 			spa_log_error(spa, &zio->io_bookmark,
616 			    BP_GET_LOGICAL_BIRTH(zio->io_bp));
617 			(void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
618 			    spa, NULL, &zio->io_bookmark, zio, 0);
619 		}
620 	} else {
621 		zio->io_error = ret;
622 	}
623 }
624 
625 /*
626  * ==========================================================================
627  * I/O parent/child relationships and pipeline interlocks
628  * ==========================================================================
629  */
630 zio_t *
631 zio_walk_parents(zio_t *cio, zio_link_t **zl)
632 {
633 	list_t *pl = &cio->io_parent_list;
634 
635 	*zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl);
636 	if (*zl == NULL)
637 		return (NULL);
638 
639 	ASSERT((*zl)->zl_child == cio);
640 	return ((*zl)->zl_parent);
641 }
642 
643 zio_t *
644 zio_walk_children(zio_t *pio, zio_link_t **zl)
645 {
646 	list_t *cl = &pio->io_child_list;
647 
648 	ASSERT(MUTEX_HELD(&pio->io_lock));
649 
650 	*zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl);
651 	if (*zl == NULL)
652 		return (NULL);
653 
654 	ASSERT((*zl)->zl_parent == pio);
655 	return ((*zl)->zl_child);
656 }
657 
658 zio_t *
659 zio_unique_parent(zio_t *cio)
660 {
661 	zio_link_t *zl = NULL;
662 	zio_t *pio = zio_walk_parents(cio, &zl);
663 
664 	VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL);
665 	return (pio);
666 }
667 
668 void
669 zio_add_child(zio_t *pio, zio_t *cio)
670 {
671 	/*
672 	 * Logical I/Os can have logical, gang, or vdev children.
673 	 * Gang I/Os can have gang or vdev children.
674 	 * Vdev I/Os can only have vdev children.
675 	 * The following ASSERT captures all of these constraints.
676 	 */
677 	ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
678 
679 	/* Parent should not have READY stage if child doesn't have it. */
680 	IMPLY((cio->io_pipeline & ZIO_STAGE_READY) == 0 &&
681 	    (cio->io_child_type != ZIO_CHILD_VDEV),
682 	    (pio->io_pipeline & ZIO_STAGE_READY) == 0);
683 
684 	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
685 	zl->zl_parent = pio;
686 	zl->zl_child = cio;
687 
688 	mutex_enter(&pio->io_lock);
689 	mutex_enter(&cio->io_lock);
690 
691 	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
692 
693 	uint64_t *countp = pio->io_children[cio->io_child_type];
694 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
695 		countp[w] += !cio->io_state[w];
696 
697 	list_insert_head(&pio->io_child_list, zl);
698 	list_insert_head(&cio->io_parent_list, zl);
699 
700 	mutex_exit(&cio->io_lock);
701 	mutex_exit(&pio->io_lock);
702 }
703 
704 void
705 zio_add_child_first(zio_t *pio, zio_t *cio)
706 {
707 	/*
708 	 * Logical I/Os can have logical, gang, or vdev children.
709 	 * Gang I/Os can have gang or vdev children.
710 	 * Vdev I/Os can only have vdev children.
711 	 * The following ASSERT captures all of these constraints.
712 	 */
713 	ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
714 
715 	/* Parent should not have READY stage if child doesn't have it. */
716 	IMPLY((cio->io_pipeline & ZIO_STAGE_READY) == 0 &&
717 	    (cio->io_child_type != ZIO_CHILD_VDEV),
718 	    (pio->io_pipeline & ZIO_STAGE_READY) == 0);
719 
720 	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
721 	zl->zl_parent = pio;
722 	zl->zl_child = cio;
723 
724 	ASSERT(list_is_empty(&cio->io_parent_list));
725 	list_insert_head(&cio->io_parent_list, zl);
726 
727 	mutex_enter(&pio->io_lock);
728 
729 	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
730 
731 	uint64_t *countp = pio->io_children[cio->io_child_type];
732 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
733 		countp[w] += !cio->io_state[w];
734 
735 	list_insert_head(&pio->io_child_list, zl);
736 
737 	mutex_exit(&pio->io_lock);
738 }
739 
740 static void
741 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
742 {
743 	ASSERT(zl->zl_parent == pio);
744 	ASSERT(zl->zl_child == cio);
745 
746 	mutex_enter(&pio->io_lock);
747 	mutex_enter(&cio->io_lock);
748 
749 	list_remove(&pio->io_child_list, zl);
750 	list_remove(&cio->io_parent_list, zl);
751 
752 	mutex_exit(&cio->io_lock);
753 	mutex_exit(&pio->io_lock);
754 	kmem_cache_free(zio_link_cache, zl);
755 }
756 
757 static boolean_t
758 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait)
759 {
760 	boolean_t waiting = B_FALSE;
761 
762 	mutex_enter(&zio->io_lock);
763 	ASSERT(zio->io_stall == NULL);
764 	for (int c = 0; c < ZIO_CHILD_TYPES; c++) {
765 		if (!(ZIO_CHILD_BIT_IS_SET(childbits, c)))
766 			continue;
767 
768 		uint64_t *countp = &zio->io_children[c][wait];
769 		if (*countp != 0) {
770 			zio->io_stage >>= 1;
771 			ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN);
772 			zio->io_stall = countp;
773 			waiting = B_TRUE;
774 			break;
775 		}
776 	}
777 	mutex_exit(&zio->io_lock);
778 	return (waiting);
779 }
780 
781 __attribute__((always_inline))
782 static inline void
783 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait,
784     zio_t **next_to_executep)
785 {
786 	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
787 	int *errorp = &pio->io_child_error[zio->io_child_type];
788 
789 	mutex_enter(&pio->io_lock);
790 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
791 		*errorp = zio_worst_error(*errorp, zio->io_error);
792 	pio->io_reexecute |= zio->io_reexecute;
793 	ASSERT3U(*countp, >, 0);
794 
795 	(*countp)--;
796 
797 	if (*countp == 0 && pio->io_stall == countp) {
798 		zio_taskq_type_t type =
799 		    pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE :
800 		    ZIO_TASKQ_INTERRUPT;
801 		pio->io_stall = NULL;
802 		mutex_exit(&pio->io_lock);
803 
804 		/*
805 		 * If we can tell the caller to execute this parent next, do
806 		 * so. We do this if the parent's zio type matches the child's
807 		 * type, or if it's a zio_null() with no done callback, and so
808 		 * has no actual work to do. Otherwise dispatch the parent zio
809 		 * in its own taskq.
810 		 *
811 		 * Having the caller execute the parent when possible reduces
812 		 * locking on the zio taskq's, reduces context switch
813 		 * overhead, and has no recursion penalty.  Note that one
814 		 * read from disk typically causes at least 3 zio's: a
815 		 * zio_null(), the logical zio_read(), and then a physical
816 		 * zio.  When the physical ZIO completes, we are able to call
817 		 * zio_done() on all 3 of these zio's from one invocation of
818 		 * zio_execute() by returning the parent back to
819 		 * zio_execute().  Since the parent isn't executed until this
820 		 * thread returns back to zio_execute(), the caller should do
821 		 * so promptly.
822 		 *
823 		 * In other cases, dispatching the parent prevents
824 		 * overflowing the stack when we have deeply nested
825 		 * parent-child relationships, as we do with the "mega zio"
826 		 * of writes for spa_sync(), and the chain of ZIL blocks.
827 		 */
828 		if (next_to_executep != NULL && *next_to_executep == NULL &&
829 		    (pio->io_type == zio->io_type ||
830 		    (pio->io_type == ZIO_TYPE_NULL && !pio->io_done))) {
831 			*next_to_executep = pio;
832 		} else {
833 			zio_taskq_dispatch(pio, type, B_FALSE);
834 		}
835 	} else {
836 		mutex_exit(&pio->io_lock);
837 	}
838 }
839 
840 static void
841 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
842 {
843 	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
844 		zio->io_error = zio->io_child_error[c];
845 }
846 
847 int
848 zio_bookmark_compare(const void *x1, const void *x2)
849 {
850 	const zio_t *z1 = x1;
851 	const zio_t *z2 = x2;
852 
853 	if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset)
854 		return (-1);
855 	if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset)
856 		return (1);
857 
858 	if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object)
859 		return (-1);
860 	if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object)
861 		return (1);
862 
863 	if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level)
864 		return (-1);
865 	if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level)
866 		return (1);
867 
868 	if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid)
869 		return (-1);
870 	if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid)
871 		return (1);
872 
873 	if (z1 < z2)
874 		return (-1);
875 	if (z1 > z2)
876 		return (1);
877 
878 	return (0);
879 }
880 
881 /*
882  * ==========================================================================
883  * Create the various types of I/O (read, write, free, etc)
884  * ==========================================================================
885  */
886 static zio_t *
887 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
888     abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done,
889     void *private, zio_type_t type, zio_priority_t priority,
890     zio_flag_t flags, vdev_t *vd, uint64_t offset,
891     const zbookmark_phys_t *zb, enum zio_stage stage,
892     enum zio_stage pipeline)
893 {
894 	zio_t *zio;
895 
896 	IMPLY(type != ZIO_TYPE_TRIM, psize <= SPA_MAXBLOCKSIZE);
897 	ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0);
898 	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
899 
900 	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
901 	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
902 	ASSERT(vd || stage == ZIO_STAGE_OPEN);
903 
904 	IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0);
905 
906 	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
907 	memset(zio, 0, sizeof (zio_t));
908 
909 	mutex_init(&zio->io_lock, NULL, MUTEX_NOLOCKDEP, NULL);
910 	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
911 
912 	list_create(&zio->io_parent_list, sizeof (zio_link_t),
913 	    offsetof(zio_link_t, zl_parent_node));
914 	list_create(&zio->io_child_list, sizeof (zio_link_t),
915 	    offsetof(zio_link_t, zl_child_node));
916 	metaslab_trace_init(&zio->io_alloc_list);
917 
918 	if (vd != NULL)
919 		zio->io_child_type = ZIO_CHILD_VDEV;
920 	else if (flags & ZIO_FLAG_GANG_CHILD)
921 		zio->io_child_type = ZIO_CHILD_GANG;
922 	else if (flags & ZIO_FLAG_DDT_CHILD)
923 		zio->io_child_type = ZIO_CHILD_DDT;
924 	else
925 		zio->io_child_type = ZIO_CHILD_LOGICAL;
926 
927 	if (bp != NULL) {
928 		if (type != ZIO_TYPE_WRITE ||
929 		    zio->io_child_type == ZIO_CHILD_DDT) {
930 			zio->io_bp_copy = *bp;
931 			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
932 		} else {
933 			zio->io_bp = (blkptr_t *)bp;
934 		}
935 		zio->io_bp_orig = *bp;
936 		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
937 			zio->io_logical = zio;
938 		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
939 			pipeline |= ZIO_GANG_STAGES;
940 	}
941 
942 	zio->io_spa = spa;
943 	zio->io_txg = txg;
944 	zio->io_done = done;
945 	zio->io_private = private;
946 	zio->io_type = type;
947 	zio->io_priority = priority;
948 	zio->io_vd = vd;
949 	zio->io_offset = offset;
950 	zio->io_orig_abd = zio->io_abd = data;
951 	zio->io_orig_size = zio->io_size = psize;
952 	zio->io_lsize = lsize;
953 	zio->io_orig_flags = zio->io_flags = flags;
954 	zio->io_orig_stage = zio->io_stage = stage;
955 	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
956 	zio->io_pipeline_trace = ZIO_STAGE_OPEN;
957 	zio->io_allocator = ZIO_ALLOCATOR_NONE;
958 
959 	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY) ||
960 	    (pipeline & ZIO_STAGE_READY) == 0;
961 	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
962 
963 	if (zb != NULL)
964 		zio->io_bookmark = *zb;
965 
966 	if (pio != NULL) {
967 		zio->io_metaslab_class = pio->io_metaslab_class;
968 		if (zio->io_logical == NULL)
969 			zio->io_logical = pio->io_logical;
970 		if (zio->io_child_type == ZIO_CHILD_GANG)
971 			zio->io_gang_leader = pio->io_gang_leader;
972 		zio_add_child_first(pio, zio);
973 	}
974 
975 	taskq_init_ent(&zio->io_tqent);
976 
977 	return (zio);
978 }
979 
980 void
981 zio_destroy(zio_t *zio)
982 {
983 	metaslab_trace_fini(&zio->io_alloc_list);
984 	list_destroy(&zio->io_parent_list);
985 	list_destroy(&zio->io_child_list);
986 	mutex_destroy(&zio->io_lock);
987 	cv_destroy(&zio->io_cv);
988 	kmem_cache_free(zio_cache, zio);
989 }
990 
991 /*
992  * ZIO intended to be between others.  Provides synchronization at READY
993  * and DONE pipeline stages and calls the respective callbacks.
994  */
995 zio_t *
996 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
997     void *private, zio_flag_t flags)
998 {
999 	zio_t *zio;
1000 
1001 	zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
1002 	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
1003 	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
1004 
1005 	return (zio);
1006 }
1007 
1008 /*
1009  * ZIO intended to be a root of a tree.  Unlike null ZIO does not have a
1010  * READY pipeline stage (is ready on creation), so it should not be used
1011  * as child of any ZIO that may need waiting for grandchildren READY stage
1012  * (any other ZIO type).
1013  */
1014 zio_t *
1015 zio_root(spa_t *spa, zio_done_func_t *done, void *private, zio_flag_t flags)
1016 {
1017 	zio_t *zio;
1018 
1019 	zio = zio_create(NULL, spa, 0, NULL, NULL, 0, 0, done, private,
1020 	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, NULL, 0, NULL,
1021 	    ZIO_STAGE_OPEN, ZIO_ROOT_PIPELINE);
1022 
1023 	return (zio);
1024 }
1025 
1026 static int
1027 zfs_blkptr_verify_log(spa_t *spa, const blkptr_t *bp,
1028     enum blk_verify_flag blk_verify, const char *fmt, ...)
1029 {
1030 	va_list adx;
1031 	char buf[256];
1032 
1033 	va_start(adx, fmt);
1034 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
1035 	va_end(adx);
1036 
1037 	zfs_dbgmsg("bad blkptr at %px: "
1038 	    "DVA[0]=%#llx/%#llx "
1039 	    "DVA[1]=%#llx/%#llx "
1040 	    "DVA[2]=%#llx/%#llx "
1041 	    "prop=%#llx "
1042 	    "pad=%#llx,%#llx "
1043 	    "phys_birth=%#llx "
1044 	    "birth=%#llx "
1045 	    "fill=%#llx "
1046 	    "cksum=%#llx/%#llx/%#llx/%#llx",
1047 	    bp,
1048 	    (long long)bp->blk_dva[0].dva_word[0],
1049 	    (long long)bp->blk_dva[0].dva_word[1],
1050 	    (long long)bp->blk_dva[1].dva_word[0],
1051 	    (long long)bp->blk_dva[1].dva_word[1],
1052 	    (long long)bp->blk_dva[2].dva_word[0],
1053 	    (long long)bp->blk_dva[2].dva_word[1],
1054 	    (long long)bp->blk_prop,
1055 	    (long long)bp->blk_pad[0],
1056 	    (long long)bp->blk_pad[1],
1057 	    (long long)BP_GET_PHYSICAL_BIRTH(bp),
1058 	    (long long)BP_GET_LOGICAL_BIRTH(bp),
1059 	    (long long)bp->blk_fill,
1060 	    (long long)bp->blk_cksum.zc_word[0],
1061 	    (long long)bp->blk_cksum.zc_word[1],
1062 	    (long long)bp->blk_cksum.zc_word[2],
1063 	    (long long)bp->blk_cksum.zc_word[3]);
1064 	switch (blk_verify) {
1065 	case BLK_VERIFY_HALT:
1066 		zfs_panic_recover("%s: %s", spa_name(spa), buf);
1067 		break;
1068 	case BLK_VERIFY_LOG:
1069 		zfs_dbgmsg("%s: %s", spa_name(spa), buf);
1070 		break;
1071 	case BLK_VERIFY_ONLY:
1072 		break;
1073 	}
1074 
1075 	return (1);
1076 }
1077 
1078 /*
1079  * Verify the block pointer fields contain reasonable values.  This means
1080  * it only contains known object types, checksum/compression identifiers,
1081  * block sizes within the maximum allowed limits, valid DVAs, etc.
1082  *
1083  * If everything checks out B_TRUE is returned.  The zfs_blkptr_verify
1084  * argument controls the behavior when an invalid field is detected.
1085  *
1086  * Values for blk_verify_flag:
1087  *   BLK_VERIFY_ONLY: evaluate the block
1088  *   BLK_VERIFY_LOG: evaluate the block and log problems
1089  *   BLK_VERIFY_HALT: call zfs_panic_recover on error
1090  *
1091  * Values for blk_config_flag:
1092  *   BLK_CONFIG_HELD: caller holds SCL_VDEV for writer
1093  *   BLK_CONFIG_NEEDED: caller holds no config lock, SCL_VDEV will be
1094  *   obtained for reader
1095  *   BLK_CONFIG_SKIP: skip checks which require SCL_VDEV, for better
1096  *   performance
1097  */
1098 boolean_t
1099 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp,
1100     enum blk_config_flag blk_config, enum blk_verify_flag blk_verify)
1101 {
1102 	int errors = 0;
1103 
1104 	if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
1105 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1106 		    "blkptr at %px has invalid TYPE %llu",
1107 		    bp, (longlong_t)BP_GET_TYPE(bp));
1108 	}
1109 	if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS) {
1110 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1111 		    "blkptr at %px has invalid CHECKSUM %llu",
1112 		    bp, (longlong_t)BP_GET_CHECKSUM(bp));
1113 	}
1114 	if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS) {
1115 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1116 		    "blkptr at %px has invalid COMPRESS %llu",
1117 		    bp, (longlong_t)BP_GET_COMPRESS(bp));
1118 	}
1119 	if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
1120 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1121 		    "blkptr at %px has invalid LSIZE %llu",
1122 		    bp, (longlong_t)BP_GET_LSIZE(bp));
1123 	}
1124 	if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
1125 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1126 		    "blkptr at %px has invalid PSIZE %llu",
1127 		    bp, (longlong_t)BP_GET_PSIZE(bp));
1128 	}
1129 
1130 	if (BP_IS_EMBEDDED(bp)) {
1131 		if (BPE_GET_ETYPE(bp) >= NUM_BP_EMBEDDED_TYPES) {
1132 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1133 			    "blkptr at %px has invalid ETYPE %llu",
1134 			    bp, (longlong_t)BPE_GET_ETYPE(bp));
1135 		}
1136 	}
1137 
1138 	/*
1139 	 * Do not verify individual DVAs if the config is not trusted. This
1140 	 * will be done once the zio is executed in vdev_mirror_map_alloc.
1141 	 */
1142 	if (!spa->spa_trust_config)
1143 		return (errors == 0);
1144 
1145 	switch (blk_config) {
1146 	case BLK_CONFIG_HELD:
1147 		ASSERT(spa_config_held(spa, SCL_VDEV, RW_WRITER));
1148 		break;
1149 	case BLK_CONFIG_NEEDED:
1150 		spa_config_enter(spa, SCL_VDEV, bp, RW_READER);
1151 		break;
1152 	case BLK_CONFIG_SKIP:
1153 		return (errors == 0);
1154 	default:
1155 		panic("invalid blk_config %u", blk_config);
1156 	}
1157 
1158 	/*
1159 	 * Pool-specific checks.
1160 	 *
1161 	 * Note: it would be nice to verify that the logical birth
1162 	 * and physical birth are not too large.  However,
1163 	 * spa_freeze() allows the birth time of log blocks (and
1164 	 * dmu_sync()-ed blocks that are in the log) to be arbitrarily
1165 	 * large.
1166 	 */
1167 	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
1168 		const dva_t *dva = &bp->blk_dva[i];
1169 		uint64_t vdevid = DVA_GET_VDEV(dva);
1170 
1171 		if (vdevid >= spa->spa_root_vdev->vdev_children) {
1172 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1173 			    "blkptr at %px DVA %u has invalid VDEV %llu",
1174 			    bp, i, (longlong_t)vdevid);
1175 			continue;
1176 		}
1177 		vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1178 		if (vd == NULL) {
1179 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1180 			    "blkptr at %px DVA %u has invalid VDEV %llu",
1181 			    bp, i, (longlong_t)vdevid);
1182 			continue;
1183 		}
1184 		if (vd->vdev_ops == &vdev_hole_ops) {
1185 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1186 			    "blkptr at %px DVA %u has hole VDEV %llu",
1187 			    bp, i, (longlong_t)vdevid);
1188 			continue;
1189 		}
1190 		if (vd->vdev_ops == &vdev_missing_ops) {
1191 			/*
1192 			 * "missing" vdevs are valid during import, but we
1193 			 * don't have their detailed info (e.g. asize), so
1194 			 * we can't perform any more checks on them.
1195 			 */
1196 			continue;
1197 		}
1198 		uint64_t offset = DVA_GET_OFFSET(dva);
1199 		uint64_t asize = DVA_GET_ASIZE(dva);
1200 		if (DVA_GET_GANG(dva))
1201 			asize = vdev_gang_header_asize(vd);
1202 		if (offset + asize > vd->vdev_asize) {
1203 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1204 			    "blkptr at %px DVA %u has invalid OFFSET %llu",
1205 			    bp, i, (longlong_t)offset);
1206 		}
1207 	}
1208 	if (blk_config == BLK_CONFIG_NEEDED)
1209 		spa_config_exit(spa, SCL_VDEV, bp);
1210 
1211 	return (errors == 0);
1212 }
1213 
1214 boolean_t
1215 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp)
1216 {
1217 	(void) bp;
1218 	uint64_t vdevid = DVA_GET_VDEV(dva);
1219 
1220 	if (vdevid >= spa->spa_root_vdev->vdev_children)
1221 		return (B_FALSE);
1222 
1223 	vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1224 	if (vd == NULL)
1225 		return (B_FALSE);
1226 
1227 	if (vd->vdev_ops == &vdev_hole_ops)
1228 		return (B_FALSE);
1229 
1230 	if (vd->vdev_ops == &vdev_missing_ops) {
1231 		return (B_FALSE);
1232 	}
1233 
1234 	uint64_t offset = DVA_GET_OFFSET(dva);
1235 	uint64_t asize = DVA_GET_ASIZE(dva);
1236 
1237 	if (DVA_GET_GANG(dva))
1238 		asize = vdev_gang_header_asize(vd);
1239 	if (offset + asize > vd->vdev_asize)
1240 		return (B_FALSE);
1241 
1242 	return (B_TRUE);
1243 }
1244 
1245 zio_t *
1246 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
1247     abd_t *data, uint64_t size, zio_done_func_t *done, void *private,
1248     zio_priority_t priority, zio_flag_t flags, const zbookmark_phys_t *zb)
1249 {
1250 	zio_t *zio;
1251 
1252 	zio = zio_create(pio, spa, BP_GET_BIRTH(bp), bp,
1253 	    data, size, size, done, private,
1254 	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
1255 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1256 	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
1257 
1258 	return (zio);
1259 }
1260 
1261 zio_t *
1262 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
1263     abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp,
1264     zio_done_func_t *ready, zio_done_func_t *children_ready,
1265     zio_done_func_t *done, void *private, zio_priority_t priority,
1266     zio_flag_t flags, const zbookmark_phys_t *zb)
1267 {
1268 	zio_t *zio;
1269 
1270 	ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
1271 	    zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
1272 	    zp->zp_compress >= ZIO_COMPRESS_OFF &&
1273 	    zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
1274 	    DMU_OT_IS_VALID(zp->zp_type) &&
1275 	    zp->zp_level < 32 &&
1276 	    zp->zp_copies > 0 &&
1277 	    zp->zp_copies <= spa_max_replication(spa));
1278 
1279 	zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private,
1280 	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
1281 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1282 	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
1283 
1284 	zio->io_ready = ready;
1285 	zio->io_children_ready = children_ready;
1286 	zio->io_prop = *zp;
1287 
1288 	/*
1289 	 * Data can be NULL if we are going to call zio_write_override() to
1290 	 * provide the already-allocated BP.  But we may need the data to
1291 	 * verify a dedup hit (if requested).  In this case, don't try to
1292 	 * dedup (just take the already-allocated BP verbatim). Encrypted
1293 	 * dedup blocks need data as well so we also disable dedup in this
1294 	 * case.
1295 	 */
1296 	if (data == NULL &&
1297 	    (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) {
1298 		zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
1299 	}
1300 
1301 	return (zio);
1302 }
1303 
1304 zio_t *
1305 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data,
1306     uint64_t size, zio_done_func_t *done, void *private,
1307     zio_priority_t priority, zio_flag_t flags, zbookmark_phys_t *zb)
1308 {
1309 	zio_t *zio;
1310 
1311 	zio = zio_create(pio, spa, txg, bp, data, size, size, done, private,
1312 	    ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb,
1313 	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
1314 
1315 	return (zio);
1316 }
1317 
1318 void
1319 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite,
1320     boolean_t brtwrite)
1321 {
1322 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
1323 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1324 	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1325 	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
1326 	ASSERT(!brtwrite || !nopwrite);
1327 
1328 	/*
1329 	 * We must reset the io_prop to match the values that existed
1330 	 * when the bp was first written by dmu_sync() keeping in mind
1331 	 * that nopwrite and dedup are mutually exclusive.
1332 	 */
1333 	zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
1334 	zio->io_prop.zp_nopwrite = nopwrite;
1335 	zio->io_prop.zp_brtwrite = brtwrite;
1336 	zio->io_prop.zp_copies = copies;
1337 	zio->io_bp_override = bp;
1338 }
1339 
1340 void
1341 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
1342 {
1343 
1344 	(void) zfs_blkptr_verify(spa, bp, BLK_CONFIG_NEEDED, BLK_VERIFY_HALT);
1345 
1346 	/*
1347 	 * The check for EMBEDDED is a performance optimization.  We
1348 	 * process the free here (by ignoring it) rather than
1349 	 * putting it on the list and then processing it in zio_free_sync().
1350 	 */
1351 	if (BP_IS_EMBEDDED(bp))
1352 		return;
1353 
1354 	/*
1355 	 * Frees that are for the currently-syncing txg, are not going to be
1356 	 * deferred, and which will not need to do a read (i.e. not GANG or
1357 	 * DEDUP), can be processed immediately.  Otherwise, put them on the
1358 	 * in-memory list for later processing.
1359 	 *
1360 	 * Note that we only defer frees after zfs_sync_pass_deferred_free
1361 	 * when the log space map feature is disabled. [see relevant comment
1362 	 * in spa_sync_iterate_to_convergence()]
1363 	 */
1364 	if (BP_IS_GANG(bp) ||
1365 	    BP_GET_DEDUP(bp) ||
1366 	    txg != spa->spa_syncing_txg ||
1367 	    (spa_sync_pass(spa) >= zfs_sync_pass_deferred_free &&
1368 	    !spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) ||
1369 	    brt_maybe_exists(spa, bp)) {
1370 		metaslab_check_free(spa, bp);
1371 		bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
1372 	} else {
1373 		VERIFY3P(zio_free_sync(NULL, spa, txg, bp, 0), ==, NULL);
1374 	}
1375 }
1376 
1377 /*
1378  * To improve performance, this function may return NULL if we were able
1379  * to do the free immediately.  This avoids the cost of creating a zio
1380  * (and linking it to the parent, etc).
1381  */
1382 zio_t *
1383 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1384     zio_flag_t flags)
1385 {
1386 	ASSERT(!BP_IS_HOLE(bp));
1387 	ASSERT(spa_syncing_txg(spa) == txg);
1388 
1389 	if (BP_IS_EMBEDDED(bp))
1390 		return (NULL);
1391 
1392 	metaslab_check_free(spa, bp);
1393 	arc_freed(spa, bp);
1394 	dsl_scan_freed(spa, bp);
1395 
1396 	if (BP_IS_GANG(bp) ||
1397 	    BP_GET_DEDUP(bp) ||
1398 	    brt_maybe_exists(spa, bp)) {
1399 		/*
1400 		 * GANG, DEDUP and BRT blocks can induce a read (for the gang
1401 		 * block header, the DDT or the BRT), so issue them
1402 		 * asynchronously so that this thread is not tied up.
1403 		 */
1404 		enum zio_stage stage =
1405 		    ZIO_FREE_PIPELINE | ZIO_STAGE_ISSUE_ASYNC;
1406 
1407 		return (zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1408 		    BP_GET_PSIZE(bp), NULL, NULL,
1409 		    ZIO_TYPE_FREE, ZIO_PRIORITY_NOW,
1410 		    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage));
1411 	} else {
1412 		metaslab_free(spa, bp, txg, B_FALSE);
1413 		return (NULL);
1414 	}
1415 }
1416 
1417 zio_t *
1418 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1419     zio_done_func_t *done, void *private, zio_flag_t flags)
1420 {
1421 	zio_t *zio;
1422 
1423 	(void) zfs_blkptr_verify(spa, bp, (flags & ZIO_FLAG_CONFIG_WRITER) ?
1424 	    BLK_CONFIG_HELD : BLK_CONFIG_NEEDED, BLK_VERIFY_HALT);
1425 
1426 	if (BP_IS_EMBEDDED(bp))
1427 		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
1428 
1429 	/*
1430 	 * A claim is an allocation of a specific block.  Claims are needed
1431 	 * to support immediate writes in the intent log.  The issue is that
1432 	 * immediate writes contain committed data, but in a txg that was
1433 	 * *not* committed.  Upon opening the pool after an unclean shutdown,
1434 	 * the intent log claims all blocks that contain immediate write data
1435 	 * so that the SPA knows they're in use.
1436 	 *
1437 	 * All claims *must* be resolved in the first txg -- before the SPA
1438 	 * starts allocating blocks -- so that nothing is allocated twice.
1439 	 * If txg == 0 we just verify that the block is claimable.
1440 	 */
1441 	ASSERT3U(BP_GET_LOGICAL_BIRTH(&spa->spa_uberblock.ub_rootbp), <,
1442 	    spa_min_claim_txg(spa));
1443 	ASSERT(txg == spa_min_claim_txg(spa) || txg == 0);
1444 	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(8) */
1445 
1446 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1447 	    BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW,
1448 	    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
1449 	ASSERT0(zio->io_queued_timestamp);
1450 
1451 	return (zio);
1452 }
1453 
1454 zio_t *
1455 zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1456     zio_done_func_t *done, void *private, zio_priority_t priority,
1457     zio_flag_t flags, enum trim_flag trim_flags)
1458 {
1459 	zio_t *zio;
1460 
1461 	ASSERT0(vd->vdev_children);
1462 	ASSERT0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
1463 	ASSERT0(P2PHASE(size, 1ULL << vd->vdev_ashift));
1464 	ASSERT3U(size, !=, 0);
1465 
1466 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, NULL, size, size, done,
1467 	    private, ZIO_TYPE_TRIM, priority, flags | ZIO_FLAG_PHYSICAL,
1468 	    vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_TRIM_PIPELINE);
1469 	zio->io_trim_flags = trim_flags;
1470 
1471 	return (zio);
1472 }
1473 
1474 zio_t *
1475 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1476     abd_t *data, int checksum, zio_done_func_t *done, void *private,
1477     zio_priority_t priority, zio_flag_t flags, boolean_t labels)
1478 {
1479 	zio_t *zio;
1480 
1481 	ASSERT(vd->vdev_children == 0);
1482 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1483 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1484 	ASSERT3U(offset + size, <=, vd->vdev_psize);
1485 
1486 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1487 	    private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1488 	    offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
1489 
1490 	zio->io_prop.zp_checksum = checksum;
1491 
1492 	return (zio);
1493 }
1494 
1495 zio_t *
1496 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1497     abd_t *data, int checksum, zio_done_func_t *done, void *private,
1498     zio_priority_t priority, zio_flag_t flags, boolean_t labels)
1499 {
1500 	zio_t *zio;
1501 
1502 	ASSERT(vd->vdev_children == 0);
1503 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1504 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1505 	ASSERT3U(offset + size, <=, vd->vdev_psize);
1506 
1507 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1508 	    private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1509 	    offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
1510 
1511 	zio->io_prop.zp_checksum = checksum;
1512 
1513 	if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
1514 		/*
1515 		 * zec checksums are necessarily destructive -- they modify
1516 		 * the end of the write buffer to hold the verifier/checksum.
1517 		 * Therefore, we must make a local copy in case the data is
1518 		 * being written to multiple places in parallel.
1519 		 */
1520 		abd_t *wbuf = abd_alloc_sametype(data, size);
1521 		abd_copy(wbuf, data, size);
1522 
1523 		zio_push_transform(zio, wbuf, size, size, NULL);
1524 	}
1525 
1526 	return (zio);
1527 }
1528 
1529 /*
1530  * Create a child I/O to do some work for us.
1531  */
1532 zio_t *
1533 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1534     abd_t *data, uint64_t size, int type, zio_priority_t priority,
1535     zio_flag_t flags, zio_done_func_t *done, void *private)
1536 {
1537 	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1538 	zio_t *zio;
1539 
1540 	/*
1541 	 * vdev child I/Os do not propagate their error to the parent.
1542 	 * Therefore, for correct operation the caller *must* check for
1543 	 * and handle the error in the child i/o's done callback.
1544 	 * The only exceptions are i/os that we don't care about
1545 	 * (OPTIONAL or REPAIR).
1546 	 */
1547 	ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) ||
1548 	    done != NULL);
1549 
1550 	if (type == ZIO_TYPE_READ && bp != NULL) {
1551 		/*
1552 		 * If we have the bp, then the child should perform the
1553 		 * checksum and the parent need not.  This pushes error
1554 		 * detection as close to the leaves as possible and
1555 		 * eliminates redundant checksums in the interior nodes.
1556 		 */
1557 		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1558 		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1559 	}
1560 
1561 	if (vd->vdev_ops->vdev_op_leaf) {
1562 		ASSERT0(vd->vdev_children);
1563 		offset += VDEV_LABEL_START_SIZE;
1564 	}
1565 
1566 	flags |= ZIO_VDEV_CHILD_FLAGS(pio);
1567 
1568 	/*
1569 	 * If we've decided to do a repair, the write is not speculative --
1570 	 * even if the original read was.
1571 	 */
1572 	if (flags & ZIO_FLAG_IO_REPAIR)
1573 		flags &= ~ZIO_FLAG_SPECULATIVE;
1574 
1575 	/*
1576 	 * If we're creating a child I/O that is not associated with a
1577 	 * top-level vdev, then the child zio is not an allocating I/O.
1578 	 * If this is a retried I/O then we ignore it since we will
1579 	 * have already processed the original allocating I/O.
1580 	 */
1581 	if (flags & ZIO_FLAG_IO_ALLOCATING &&
1582 	    (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) {
1583 		ASSERT(pio->io_metaslab_class != NULL);
1584 		ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled);
1585 		ASSERT(type == ZIO_TYPE_WRITE);
1586 		ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE);
1587 		ASSERT(!(flags & ZIO_FLAG_IO_REPAIR));
1588 		ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) ||
1589 		    pio->io_child_type == ZIO_CHILD_GANG);
1590 
1591 		flags &= ~ZIO_FLAG_IO_ALLOCATING;
1592 	}
1593 
1594 	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size,
1595 	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1596 	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1597 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
1598 
1599 	return (zio);
1600 }
1601 
1602 zio_t *
1603 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size,
1604     zio_type_t type, zio_priority_t priority, zio_flag_t flags,
1605     zio_done_func_t *done, void *private)
1606 {
1607 	zio_t *zio;
1608 
1609 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1610 
1611 	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1612 	    data, size, size, done, private, type, priority,
1613 	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1614 	    vd, offset, NULL,
1615 	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1616 
1617 	return (zio);
1618 }
1619 
1620 
1621 /*
1622  * Send a flush command to the given vdev. Unlike most zio creation functions,
1623  * the flush zios are issued immediately. You can wait on pio to pause until
1624  * the flushes complete.
1625  */
1626 void
1627 zio_flush(zio_t *pio, vdev_t *vd)
1628 {
1629 	const zio_flag_t flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE |
1630 	    ZIO_FLAG_DONT_RETRY;
1631 
1632 	if (vd->vdev_nowritecache)
1633 		return;
1634 
1635 	if (vd->vdev_children == 0) {
1636 		zio_nowait(zio_create(pio, vd->vdev_spa, 0, NULL, NULL, 0, 0,
1637 		    NULL, NULL, ZIO_TYPE_FLUSH, ZIO_PRIORITY_NOW, flags, vd, 0,
1638 		    NULL, ZIO_STAGE_OPEN, ZIO_FLUSH_PIPELINE));
1639 	} else {
1640 		for (uint64_t c = 0; c < vd->vdev_children; c++)
1641 			zio_flush(pio, vd->vdev_child[c]);
1642 	}
1643 }
1644 
1645 void
1646 zio_shrink(zio_t *zio, uint64_t size)
1647 {
1648 	ASSERT3P(zio->io_executor, ==, NULL);
1649 	ASSERT3U(zio->io_orig_size, ==, zio->io_size);
1650 	ASSERT3U(size, <=, zio->io_size);
1651 
1652 	/*
1653 	 * We don't shrink for raidz because of problems with the
1654 	 * reconstruction when reading back less than the block size.
1655 	 * Note, BP_IS_RAIDZ() assumes no compression.
1656 	 */
1657 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1658 	if (!BP_IS_RAIDZ(zio->io_bp)) {
1659 		/* we are not doing a raw write */
1660 		ASSERT3U(zio->io_size, ==, zio->io_lsize);
1661 		zio->io_orig_size = zio->io_size = zio->io_lsize = size;
1662 	}
1663 }
1664 
1665 /*
1666  * Round provided allocation size up to a value that can be allocated
1667  * by at least some vdev(s) in the pool with minimum or no additional
1668  * padding and without extra space usage on others
1669  */
1670 static uint64_t
1671 zio_roundup_alloc_size(spa_t *spa, uint64_t size)
1672 {
1673 	if (size > spa->spa_min_alloc)
1674 		return (roundup(size, spa->spa_gcd_alloc));
1675 	return (spa->spa_min_alloc);
1676 }
1677 
1678 /*
1679  * ==========================================================================
1680  * Prepare to read and write logical blocks
1681  * ==========================================================================
1682  */
1683 
1684 static zio_t *
1685 zio_read_bp_init(zio_t *zio)
1686 {
1687 	blkptr_t *bp = zio->io_bp;
1688 	uint64_t psize =
1689 	    BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1690 
1691 	ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1692 
1693 	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1694 	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
1695 	    !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1696 		zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1697 		    psize, psize, zio_decompress);
1698 	}
1699 
1700 	if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) ||
1701 	    BP_HAS_INDIRECT_MAC_CKSUM(bp)) &&
1702 	    zio->io_child_type == ZIO_CHILD_LOGICAL) {
1703 		zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1704 		    psize, psize, zio_decrypt);
1705 	}
1706 
1707 	if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1708 		int psize = BPE_GET_PSIZE(bp);
1709 		void *data = abd_borrow_buf(zio->io_abd, psize);
1710 
1711 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1712 		decode_embedded_bp_compressed(bp, data);
1713 		abd_return_buf_copy(zio->io_abd, data, psize);
1714 	} else {
1715 		ASSERT(!BP_IS_EMBEDDED(bp));
1716 	}
1717 
1718 	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1719 		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1720 
1721 	return (zio);
1722 }
1723 
1724 static zio_t *
1725 zio_write_bp_init(zio_t *zio)
1726 {
1727 	if (!IO_IS_ALLOCATING(zio))
1728 		return (zio);
1729 
1730 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1731 
1732 	if (zio->io_bp_override) {
1733 		blkptr_t *bp = zio->io_bp;
1734 		zio_prop_t *zp = &zio->io_prop;
1735 
1736 		ASSERT(BP_GET_LOGICAL_BIRTH(bp) != zio->io_txg);
1737 
1738 		*bp = *zio->io_bp_override;
1739 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1740 
1741 		if (zp->zp_brtwrite)
1742 			return (zio);
1743 
1744 		ASSERT(!BP_GET_DEDUP(zio->io_bp_override));
1745 
1746 		if (BP_IS_EMBEDDED(bp))
1747 			return (zio);
1748 
1749 		/*
1750 		 * If we've been overridden and nopwrite is set then
1751 		 * set the flag accordingly to indicate that a nopwrite
1752 		 * has already occurred.
1753 		 */
1754 		if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1755 			ASSERT(!zp->zp_dedup);
1756 			ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum);
1757 			zio->io_flags |= ZIO_FLAG_NOPWRITE;
1758 			return (zio);
1759 		}
1760 
1761 		ASSERT(!zp->zp_nopwrite);
1762 
1763 		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1764 			return (zio);
1765 
1766 		ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1767 		    ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1768 
1769 		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum &&
1770 		    !zp->zp_encrypt) {
1771 			BP_SET_DEDUP(bp, 1);
1772 			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1773 			return (zio);
1774 		}
1775 
1776 		/*
1777 		 * We were unable to handle this as an override bp, treat
1778 		 * it as a regular write I/O.
1779 		 */
1780 		zio->io_bp_override = NULL;
1781 		*bp = zio->io_bp_orig;
1782 		zio->io_pipeline = zio->io_orig_pipeline;
1783 	}
1784 
1785 	return (zio);
1786 }
1787 
1788 static zio_t *
1789 zio_write_compress(zio_t *zio)
1790 {
1791 	spa_t *spa = zio->io_spa;
1792 	zio_prop_t *zp = &zio->io_prop;
1793 	enum zio_compress compress = zp->zp_compress;
1794 	blkptr_t *bp = zio->io_bp;
1795 	uint64_t lsize = zio->io_lsize;
1796 	uint64_t psize = zio->io_size;
1797 	uint32_t pass = 1;
1798 
1799 	/*
1800 	 * If our children haven't all reached the ready stage,
1801 	 * wait for them and then repeat this pipeline stage.
1802 	 */
1803 	if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
1804 	    ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) {
1805 		return (NULL);
1806 	}
1807 
1808 	if (!IO_IS_ALLOCATING(zio))
1809 		return (zio);
1810 
1811 	if (zio->io_children_ready != NULL) {
1812 		/*
1813 		 * Now that all our children are ready, run the callback
1814 		 * associated with this zio in case it wants to modify the
1815 		 * data to be written.
1816 		 */
1817 		ASSERT3U(zp->zp_level, >, 0);
1818 		zio->io_children_ready(zio);
1819 	}
1820 
1821 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1822 	ASSERT(zio->io_bp_override == NULL);
1823 
1824 	if (!BP_IS_HOLE(bp) && BP_GET_LOGICAL_BIRTH(bp) == zio->io_txg) {
1825 		/*
1826 		 * We're rewriting an existing block, which means we're
1827 		 * working on behalf of spa_sync().  For spa_sync() to
1828 		 * converge, it must eventually be the case that we don't
1829 		 * have to allocate new blocks.  But compression changes
1830 		 * the blocksize, which forces a reallocate, and makes
1831 		 * convergence take longer.  Therefore, after the first
1832 		 * few passes, stop compressing to ensure convergence.
1833 		 */
1834 		pass = spa_sync_pass(spa);
1835 
1836 		ASSERT(zio->io_txg == spa_syncing_txg(spa));
1837 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1838 		ASSERT(!BP_GET_DEDUP(bp));
1839 
1840 		if (pass >= zfs_sync_pass_dont_compress)
1841 			compress = ZIO_COMPRESS_OFF;
1842 
1843 		/* Make sure someone doesn't change their mind on overwrites */
1844 		ASSERT(BP_IS_EMBEDDED(bp) || BP_IS_GANG(bp) ||
1845 		    MIN(zp->zp_copies, spa_max_replication(spa))
1846 		    == BP_GET_NDVAS(bp));
1847 	}
1848 
1849 	/* If it's a compressed write that is not raw, compress the buffer. */
1850 	if (compress != ZIO_COMPRESS_OFF &&
1851 	    !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1852 		void *cbuf = NULL;
1853 		psize = zio_compress_data(compress, zio->io_abd, &cbuf, lsize,
1854 		    zp->zp_complevel);
1855 		if (psize == 0) {
1856 			compress = ZIO_COMPRESS_OFF;
1857 		} else if (psize >= lsize) {
1858 			compress = ZIO_COMPRESS_OFF;
1859 			if (cbuf != NULL)
1860 				zio_buf_free(cbuf, lsize);
1861 		} else if (!zp->zp_dedup && !zp->zp_encrypt &&
1862 		    psize <= BPE_PAYLOAD_SIZE &&
1863 		    zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1864 		    spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1865 			encode_embedded_bp_compressed(bp,
1866 			    cbuf, compress, lsize, psize);
1867 			BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1868 			BP_SET_TYPE(bp, zio->io_prop.zp_type);
1869 			BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1870 			zio_buf_free(cbuf, lsize);
1871 			BP_SET_LOGICAL_BIRTH(bp, zio->io_txg);
1872 			zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1873 			ASSERT(spa_feature_is_active(spa,
1874 			    SPA_FEATURE_EMBEDDED_DATA));
1875 			return (zio);
1876 		} else {
1877 			/*
1878 			 * Round compressed size up to the minimum allocation
1879 			 * size of the smallest-ashift device, and zero the
1880 			 * tail. This ensures that the compressed size of the
1881 			 * BP (and thus compressratio property) are correct,
1882 			 * in that we charge for the padding used to fill out
1883 			 * the last sector.
1884 			 */
1885 			size_t rounded = (size_t)zio_roundup_alloc_size(spa,
1886 			    psize);
1887 			if (rounded >= lsize) {
1888 				compress = ZIO_COMPRESS_OFF;
1889 				zio_buf_free(cbuf, lsize);
1890 				psize = lsize;
1891 			} else {
1892 				abd_t *cdata = abd_get_from_buf(cbuf, lsize);
1893 				abd_take_ownership_of_buf(cdata, B_TRUE);
1894 				abd_zero_off(cdata, psize, rounded - psize);
1895 				psize = rounded;
1896 				zio_push_transform(zio, cdata,
1897 				    psize, lsize, NULL);
1898 			}
1899 		}
1900 
1901 		/*
1902 		 * We were unable to handle this as an override bp, treat
1903 		 * it as a regular write I/O.
1904 		 */
1905 		zio->io_bp_override = NULL;
1906 		*bp = zio->io_bp_orig;
1907 		zio->io_pipeline = zio->io_orig_pipeline;
1908 
1909 	} else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 &&
1910 	    zp->zp_type == DMU_OT_DNODE) {
1911 		/*
1912 		 * The DMU actually relies on the zio layer's compression
1913 		 * to free metadnode blocks that have had all contained
1914 		 * dnodes freed. As a result, even when doing a raw
1915 		 * receive, we must check whether the block can be compressed
1916 		 * to a hole.
1917 		 */
1918 		psize = zio_compress_data(ZIO_COMPRESS_EMPTY,
1919 		    zio->io_abd, NULL, lsize, zp->zp_complevel);
1920 		if (psize == 0 || psize >= lsize)
1921 			compress = ZIO_COMPRESS_OFF;
1922 	} else if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS &&
1923 	    !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) {
1924 		/*
1925 		 * If we are raw receiving an encrypted dataset we should not
1926 		 * take this codepath because it will change the on-disk block
1927 		 * and decryption will fail.
1928 		 */
1929 		size_t rounded = MIN((size_t)zio_roundup_alloc_size(spa, psize),
1930 		    lsize);
1931 
1932 		if (rounded != psize) {
1933 			abd_t *cdata = abd_alloc_linear(rounded, B_TRUE);
1934 			abd_zero_off(cdata, psize, rounded - psize);
1935 			abd_copy_off(cdata, zio->io_abd, 0, 0, psize);
1936 			psize = rounded;
1937 			zio_push_transform(zio, cdata,
1938 			    psize, rounded, NULL);
1939 		}
1940 	} else {
1941 		ASSERT3U(psize, !=, 0);
1942 	}
1943 
1944 	/*
1945 	 * The final pass of spa_sync() must be all rewrites, but the first
1946 	 * few passes offer a trade-off: allocating blocks defers convergence,
1947 	 * but newly allocated blocks are sequential, so they can be written
1948 	 * to disk faster.  Therefore, we allow the first few passes of
1949 	 * spa_sync() to allocate new blocks, but force rewrites after that.
1950 	 * There should only be a handful of blocks after pass 1 in any case.
1951 	 */
1952 	if (!BP_IS_HOLE(bp) && BP_GET_LOGICAL_BIRTH(bp) == zio->io_txg &&
1953 	    BP_GET_PSIZE(bp) == psize &&
1954 	    pass >= zfs_sync_pass_rewrite) {
1955 		VERIFY3U(psize, !=, 0);
1956 		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1957 
1958 		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1959 		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1960 	} else {
1961 		BP_ZERO(bp);
1962 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
1963 	}
1964 
1965 	if (psize == 0) {
1966 		if (BP_GET_LOGICAL_BIRTH(&zio->io_bp_orig) != 0 &&
1967 		    spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1968 			BP_SET_LSIZE(bp, lsize);
1969 			BP_SET_TYPE(bp, zp->zp_type);
1970 			BP_SET_LEVEL(bp, zp->zp_level);
1971 			BP_SET_BIRTH(bp, zio->io_txg, 0);
1972 		}
1973 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1974 	} else {
1975 		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1976 		BP_SET_LSIZE(bp, lsize);
1977 		BP_SET_TYPE(bp, zp->zp_type);
1978 		BP_SET_LEVEL(bp, zp->zp_level);
1979 		BP_SET_PSIZE(bp, psize);
1980 		BP_SET_COMPRESS(bp, compress);
1981 		BP_SET_CHECKSUM(bp, zp->zp_checksum);
1982 		BP_SET_DEDUP(bp, zp->zp_dedup);
1983 		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1984 		if (zp->zp_dedup) {
1985 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1986 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1987 			ASSERT(!zp->zp_encrypt ||
1988 			    DMU_OT_IS_ENCRYPTED(zp->zp_type));
1989 			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1990 		}
1991 		if (zp->zp_nopwrite) {
1992 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1993 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1994 			zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1995 		}
1996 	}
1997 	return (zio);
1998 }
1999 
2000 static zio_t *
2001 zio_free_bp_init(zio_t *zio)
2002 {
2003 	blkptr_t *bp = zio->io_bp;
2004 
2005 	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
2006 		if (BP_GET_DEDUP(bp))
2007 			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
2008 	}
2009 
2010 	ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
2011 
2012 	return (zio);
2013 }
2014 
2015 /*
2016  * ==========================================================================
2017  * Execute the I/O pipeline
2018  * ==========================================================================
2019  */
2020 
2021 static void
2022 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
2023 {
2024 	spa_t *spa = zio->io_spa;
2025 	zio_type_t t = zio->io_type;
2026 
2027 	/*
2028 	 * If we're a config writer or a probe, the normal issue and
2029 	 * interrupt threads may all be blocked waiting for the config lock.
2030 	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
2031 	 */
2032 	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
2033 		t = ZIO_TYPE_NULL;
2034 
2035 	/*
2036 	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
2037 	 */
2038 	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
2039 		t = ZIO_TYPE_NULL;
2040 
2041 	/*
2042 	 * If this is a high priority I/O, then use the high priority taskq if
2043 	 * available or cut the line otherwise.
2044 	 */
2045 	if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) {
2046 		if (spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
2047 			q++;
2048 		else
2049 			cutinline = B_TRUE;
2050 	}
2051 
2052 	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
2053 
2054 	spa_taskq_dispatch(spa, t, q, zio_execute, zio, cutinline);
2055 }
2056 
2057 static boolean_t
2058 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
2059 {
2060 	spa_t *spa = zio->io_spa;
2061 
2062 	taskq_t *tq = taskq_of_curthread();
2063 
2064 	for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
2065 		spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
2066 		uint_t i;
2067 		for (i = 0; i < tqs->stqs_count; i++) {
2068 			if (tqs->stqs_taskq[i] == tq)
2069 				return (B_TRUE);
2070 		}
2071 	}
2072 
2073 	return (B_FALSE);
2074 }
2075 
2076 static zio_t *
2077 zio_issue_async(zio_t *zio)
2078 {
2079 	ASSERT((zio->io_type != ZIO_TYPE_WRITE) || ZIO_HAS_ALLOCATOR(zio));
2080 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2081 	return (NULL);
2082 }
2083 
2084 void
2085 zio_interrupt(void *zio)
2086 {
2087 	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
2088 }
2089 
2090 void
2091 zio_delay_interrupt(zio_t *zio)
2092 {
2093 	/*
2094 	 * The timeout_generic() function isn't defined in userspace, so
2095 	 * rather than trying to implement the function, the zio delay
2096 	 * functionality has been disabled for userspace builds.
2097 	 */
2098 
2099 #ifdef _KERNEL
2100 	/*
2101 	 * If io_target_timestamp is zero, then no delay has been registered
2102 	 * for this IO, thus jump to the end of this function and "skip" the
2103 	 * delay; issuing it directly to the zio layer.
2104 	 */
2105 	if (zio->io_target_timestamp != 0) {
2106 		hrtime_t now = gethrtime();
2107 
2108 		if (now >= zio->io_target_timestamp) {
2109 			/*
2110 			 * This IO has already taken longer than the target
2111 			 * delay to complete, so we don't want to delay it
2112 			 * any longer; we "miss" the delay and issue it
2113 			 * directly to the zio layer. This is likely due to
2114 			 * the target latency being set to a value less than
2115 			 * the underlying hardware can satisfy (e.g. delay
2116 			 * set to 1ms, but the disks take 10ms to complete an
2117 			 * IO request).
2118 			 */
2119 
2120 			DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
2121 			    hrtime_t, now);
2122 
2123 			zio_interrupt(zio);
2124 		} else {
2125 			taskqid_t tid;
2126 			hrtime_t diff = zio->io_target_timestamp - now;
2127 			clock_t expire_at_tick = ddi_get_lbolt() +
2128 			    NSEC_TO_TICK(diff);
2129 
2130 			DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
2131 			    hrtime_t, now, hrtime_t, diff);
2132 
2133 			if (NSEC_TO_TICK(diff) == 0) {
2134 				/* Our delay is less than a jiffy - just spin */
2135 				zfs_sleep_until(zio->io_target_timestamp);
2136 				zio_interrupt(zio);
2137 			} else {
2138 				/*
2139 				 * Use taskq_dispatch_delay() in the place of
2140 				 * OpenZFS's timeout_generic().
2141 				 */
2142 				tid = taskq_dispatch_delay(system_taskq,
2143 				    zio_interrupt, zio, TQ_NOSLEEP,
2144 				    expire_at_tick);
2145 				if (tid == TASKQID_INVALID) {
2146 					/*
2147 					 * Couldn't allocate a task.  Just
2148 					 * finish the zio without a delay.
2149 					 */
2150 					zio_interrupt(zio);
2151 				}
2152 			}
2153 		}
2154 		return;
2155 	}
2156 #endif
2157 	DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
2158 	zio_interrupt(zio);
2159 }
2160 
2161 static void
2162 zio_deadman_impl(zio_t *pio, int ziodepth)
2163 {
2164 	zio_t *cio, *cio_next;
2165 	zio_link_t *zl = NULL;
2166 	vdev_t *vd = pio->io_vd;
2167 
2168 	if (zio_deadman_log_all || (vd != NULL && vd->vdev_ops->vdev_op_leaf)) {
2169 		vdev_queue_t *vq = vd ? &vd->vdev_queue : NULL;
2170 		zbookmark_phys_t *zb = &pio->io_bookmark;
2171 		uint64_t delta = gethrtime() - pio->io_timestamp;
2172 		uint64_t failmode = spa_get_deadman_failmode(pio->io_spa);
2173 
2174 		zfs_dbgmsg("slow zio[%d]: zio=%px timestamp=%llu "
2175 		    "delta=%llu queued=%llu io=%llu "
2176 		    "path=%s "
2177 		    "last=%llu type=%d "
2178 		    "priority=%d flags=0x%llx stage=0x%x "
2179 		    "pipeline=0x%x pipeline-trace=0x%x "
2180 		    "objset=%llu object=%llu "
2181 		    "level=%llu blkid=%llu "
2182 		    "offset=%llu size=%llu "
2183 		    "error=%d",
2184 		    ziodepth, pio, pio->io_timestamp,
2185 		    (u_longlong_t)delta, pio->io_delta, pio->io_delay,
2186 		    vd ? vd->vdev_path : "NULL",
2187 		    vq ? vq->vq_io_complete_ts : 0, pio->io_type,
2188 		    pio->io_priority, (u_longlong_t)pio->io_flags,
2189 		    pio->io_stage, pio->io_pipeline, pio->io_pipeline_trace,
2190 		    (u_longlong_t)zb->zb_objset, (u_longlong_t)zb->zb_object,
2191 		    (u_longlong_t)zb->zb_level, (u_longlong_t)zb->zb_blkid,
2192 		    (u_longlong_t)pio->io_offset, (u_longlong_t)pio->io_size,
2193 		    pio->io_error);
2194 		(void) zfs_ereport_post(FM_EREPORT_ZFS_DEADMAN,
2195 		    pio->io_spa, vd, zb, pio, 0);
2196 
2197 		if (failmode == ZIO_FAILURE_MODE_CONTINUE &&
2198 		    taskq_empty_ent(&pio->io_tqent)) {
2199 			zio_interrupt(pio);
2200 		}
2201 	}
2202 
2203 	mutex_enter(&pio->io_lock);
2204 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2205 		cio_next = zio_walk_children(pio, &zl);
2206 		zio_deadman_impl(cio, ziodepth + 1);
2207 	}
2208 	mutex_exit(&pio->io_lock);
2209 }
2210 
2211 /*
2212  * Log the critical information describing this zio and all of its children
2213  * using the zfs_dbgmsg() interface then post deadman event for the ZED.
2214  */
2215 void
2216 zio_deadman(zio_t *pio, const char *tag)
2217 {
2218 	spa_t *spa = pio->io_spa;
2219 	char *name = spa_name(spa);
2220 
2221 	if (!zfs_deadman_enabled || spa_suspended(spa))
2222 		return;
2223 
2224 	zio_deadman_impl(pio, 0);
2225 
2226 	switch (spa_get_deadman_failmode(spa)) {
2227 	case ZIO_FAILURE_MODE_WAIT:
2228 		zfs_dbgmsg("%s waiting for hung I/O to pool '%s'", tag, name);
2229 		break;
2230 
2231 	case ZIO_FAILURE_MODE_CONTINUE:
2232 		zfs_dbgmsg("%s restarting hung I/O for pool '%s'", tag, name);
2233 		break;
2234 
2235 	case ZIO_FAILURE_MODE_PANIC:
2236 		fm_panic("%s determined I/O to pool '%s' is hung.", tag, name);
2237 		break;
2238 	}
2239 }
2240 
2241 /*
2242  * Execute the I/O pipeline until one of the following occurs:
2243  * (1) the I/O completes; (2) the pipeline stalls waiting for
2244  * dependent child I/Os; (3) the I/O issues, so we're waiting
2245  * for an I/O completion interrupt; (4) the I/O is delegated by
2246  * vdev-level caching or aggregation; (5) the I/O is deferred
2247  * due to vdev-level queueing; (6) the I/O is handed off to
2248  * another thread.  In all cases, the pipeline stops whenever
2249  * there's no CPU work; it never burns a thread in cv_wait_io().
2250  *
2251  * There's no locking on io_stage because there's no legitimate way
2252  * for multiple threads to be attempting to process the same I/O.
2253  */
2254 static zio_pipe_stage_t *zio_pipeline[];
2255 
2256 /*
2257  * zio_execute() is a wrapper around the static function
2258  * __zio_execute() so that we can force  __zio_execute() to be
2259  * inlined.  This reduces stack overhead which is important
2260  * because __zio_execute() is called recursively in several zio
2261  * code paths.  zio_execute() itself cannot be inlined because
2262  * it is externally visible.
2263  */
2264 void
2265 zio_execute(void *zio)
2266 {
2267 	fstrans_cookie_t cookie;
2268 
2269 	cookie = spl_fstrans_mark();
2270 	__zio_execute(zio);
2271 	spl_fstrans_unmark(cookie);
2272 }
2273 
2274 /*
2275  * Used to determine if in the current context the stack is sized large
2276  * enough to allow zio_execute() to be called recursively.  A minimum
2277  * stack size of 16K is required to avoid needing to re-dispatch the zio.
2278  */
2279 static boolean_t
2280 zio_execute_stack_check(zio_t *zio)
2281 {
2282 #if !defined(HAVE_LARGE_STACKS)
2283 	dsl_pool_t *dp = spa_get_dsl(zio->io_spa);
2284 
2285 	/* Executing in txg_sync_thread() context. */
2286 	if (dp && curthread == dp->dp_tx.tx_sync_thread)
2287 		return (B_TRUE);
2288 
2289 	/* Pool initialization outside of zio_taskq context. */
2290 	if (dp && spa_is_initializing(dp->dp_spa) &&
2291 	    !zio_taskq_member(zio, ZIO_TASKQ_ISSUE) &&
2292 	    !zio_taskq_member(zio, ZIO_TASKQ_ISSUE_HIGH))
2293 		return (B_TRUE);
2294 #else
2295 	(void) zio;
2296 #endif /* HAVE_LARGE_STACKS */
2297 
2298 	return (B_FALSE);
2299 }
2300 
2301 __attribute__((always_inline))
2302 static inline void
2303 __zio_execute(zio_t *zio)
2304 {
2305 	ASSERT3U(zio->io_queued_timestamp, >, 0);
2306 
2307 	while (zio->io_stage < ZIO_STAGE_DONE) {
2308 		enum zio_stage pipeline = zio->io_pipeline;
2309 		enum zio_stage stage = zio->io_stage;
2310 
2311 		zio->io_executor = curthread;
2312 
2313 		ASSERT(!MUTEX_HELD(&zio->io_lock));
2314 		ASSERT(ISP2(stage));
2315 		ASSERT(zio->io_stall == NULL);
2316 
2317 		do {
2318 			stage <<= 1;
2319 		} while ((stage & pipeline) == 0);
2320 
2321 		ASSERT(stage <= ZIO_STAGE_DONE);
2322 
2323 		/*
2324 		 * If we are in interrupt context and this pipeline stage
2325 		 * will grab a config lock that is held across I/O,
2326 		 * or may wait for an I/O that needs an interrupt thread
2327 		 * to complete, issue async to avoid deadlock.
2328 		 *
2329 		 * For VDEV_IO_START, we cut in line so that the io will
2330 		 * be sent to disk promptly.
2331 		 */
2332 		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
2333 		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
2334 			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2335 			    zio_requeue_io_start_cut_in_line : B_FALSE;
2336 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2337 			return;
2338 		}
2339 
2340 		/*
2341 		 * If the current context doesn't have large enough stacks
2342 		 * the zio must be issued asynchronously to prevent overflow.
2343 		 */
2344 		if (zio_execute_stack_check(zio)) {
2345 			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2346 			    zio_requeue_io_start_cut_in_line : B_FALSE;
2347 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2348 			return;
2349 		}
2350 
2351 		zio->io_stage = stage;
2352 		zio->io_pipeline_trace |= zio->io_stage;
2353 
2354 		/*
2355 		 * The zio pipeline stage returns the next zio to execute
2356 		 * (typically the same as this one), or NULL if we should
2357 		 * stop.
2358 		 */
2359 		zio = zio_pipeline[highbit64(stage) - 1](zio);
2360 
2361 		if (zio == NULL)
2362 			return;
2363 	}
2364 }
2365 
2366 
2367 /*
2368  * ==========================================================================
2369  * Initiate I/O, either sync or async
2370  * ==========================================================================
2371  */
2372 int
2373 zio_wait(zio_t *zio)
2374 {
2375 	/*
2376 	 * Some routines, like zio_free_sync(), may return a NULL zio
2377 	 * to avoid the performance overhead of creating and then destroying
2378 	 * an unneeded zio.  For the callers' simplicity, we accept a NULL
2379 	 * zio and ignore it.
2380 	 */
2381 	if (zio == NULL)
2382 		return (0);
2383 
2384 	long timeout = MSEC_TO_TICK(zfs_deadman_ziotime_ms);
2385 	int error;
2386 
2387 	ASSERT3S(zio->io_stage, ==, ZIO_STAGE_OPEN);
2388 	ASSERT3P(zio->io_executor, ==, NULL);
2389 
2390 	zio->io_waiter = curthread;
2391 	ASSERT0(zio->io_queued_timestamp);
2392 	zio->io_queued_timestamp = gethrtime();
2393 
2394 	if (zio->io_type == ZIO_TYPE_WRITE) {
2395 		spa_select_allocator(zio);
2396 	}
2397 	__zio_execute(zio);
2398 
2399 	mutex_enter(&zio->io_lock);
2400 	while (zio->io_executor != NULL) {
2401 		error = cv_timedwait_io(&zio->io_cv, &zio->io_lock,
2402 		    ddi_get_lbolt() + timeout);
2403 
2404 		if (zfs_deadman_enabled && error == -1 &&
2405 		    gethrtime() - zio->io_queued_timestamp >
2406 		    spa_deadman_ziotime(zio->io_spa)) {
2407 			mutex_exit(&zio->io_lock);
2408 			timeout = MSEC_TO_TICK(zfs_deadman_checktime_ms);
2409 			zio_deadman(zio, FTAG);
2410 			mutex_enter(&zio->io_lock);
2411 		}
2412 	}
2413 	mutex_exit(&zio->io_lock);
2414 
2415 	error = zio->io_error;
2416 	zio_destroy(zio);
2417 
2418 	return (error);
2419 }
2420 
2421 void
2422 zio_nowait(zio_t *zio)
2423 {
2424 	/*
2425 	 * See comment in zio_wait().
2426 	 */
2427 	if (zio == NULL)
2428 		return;
2429 
2430 	ASSERT3P(zio->io_executor, ==, NULL);
2431 
2432 	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
2433 	    list_is_empty(&zio->io_parent_list)) {
2434 		zio_t *pio;
2435 
2436 		/*
2437 		 * This is a logical async I/O with no parent to wait for it.
2438 		 * We add it to the spa_async_root_zio "Godfather" I/O which
2439 		 * will ensure they complete prior to unloading the pool.
2440 		 */
2441 		spa_t *spa = zio->io_spa;
2442 		pio = spa->spa_async_zio_root[CPU_SEQID_UNSTABLE];
2443 
2444 		zio_add_child(pio, zio);
2445 	}
2446 
2447 	ASSERT0(zio->io_queued_timestamp);
2448 	zio->io_queued_timestamp = gethrtime();
2449 	if (zio->io_type == ZIO_TYPE_WRITE) {
2450 		spa_select_allocator(zio);
2451 	}
2452 	__zio_execute(zio);
2453 }
2454 
2455 /*
2456  * ==========================================================================
2457  * Reexecute, cancel, or suspend/resume failed I/O
2458  * ==========================================================================
2459  */
2460 
2461 static void
2462 zio_reexecute(void *arg)
2463 {
2464 	zio_t *pio = arg;
2465 	zio_t *cio, *cio_next, *gio;
2466 
2467 	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
2468 	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
2469 	ASSERT(pio->io_gang_leader == NULL);
2470 	ASSERT(pio->io_gang_tree == NULL);
2471 
2472 	mutex_enter(&pio->io_lock);
2473 	pio->io_flags = pio->io_orig_flags;
2474 	pio->io_stage = pio->io_orig_stage;
2475 	pio->io_pipeline = pio->io_orig_pipeline;
2476 	pio->io_reexecute = 0;
2477 	pio->io_flags |= ZIO_FLAG_REEXECUTED;
2478 	pio->io_pipeline_trace = 0;
2479 	pio->io_error = 0;
2480 	pio->io_state[ZIO_WAIT_READY] = (pio->io_stage >= ZIO_STAGE_READY) ||
2481 	    (pio->io_pipeline & ZIO_STAGE_READY) == 0;
2482 	pio->io_state[ZIO_WAIT_DONE] = (pio->io_stage >= ZIO_STAGE_DONE);
2483 	zio_link_t *zl = NULL;
2484 	while ((gio = zio_walk_parents(pio, &zl)) != NULL) {
2485 		for (int w = 0; w < ZIO_WAIT_TYPES; w++) {
2486 			gio->io_children[pio->io_child_type][w] +=
2487 			    !pio->io_state[w];
2488 		}
2489 	}
2490 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2491 		pio->io_child_error[c] = 0;
2492 
2493 	if (IO_IS_ALLOCATING(pio))
2494 		BP_ZERO(pio->io_bp);
2495 
2496 	/*
2497 	 * As we reexecute pio's children, new children could be created.
2498 	 * New children go to the head of pio's io_child_list, however,
2499 	 * so we will (correctly) not reexecute them.  The key is that
2500 	 * the remainder of pio's io_child_list, from 'cio_next' onward,
2501 	 * cannot be affected by any side effects of reexecuting 'cio'.
2502 	 */
2503 	zl = NULL;
2504 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2505 		cio_next = zio_walk_children(pio, &zl);
2506 		mutex_exit(&pio->io_lock);
2507 		zio_reexecute(cio);
2508 		mutex_enter(&pio->io_lock);
2509 	}
2510 	mutex_exit(&pio->io_lock);
2511 
2512 	/*
2513 	 * Now that all children have been reexecuted, execute the parent.
2514 	 * We don't reexecute "The Godfather" I/O here as it's the
2515 	 * responsibility of the caller to wait on it.
2516 	 */
2517 	if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) {
2518 		pio->io_queued_timestamp = gethrtime();
2519 		__zio_execute(pio);
2520 	}
2521 }
2522 
2523 void
2524 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason)
2525 {
2526 	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
2527 		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
2528 		    "failure and the failure mode property for this pool "
2529 		    "is set to panic.", spa_name(spa));
2530 
2531 	if (reason != ZIO_SUSPEND_MMP) {
2532 		cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable "
2533 		    "I/O failure and has been suspended.\n", spa_name(spa));
2534 	}
2535 
2536 	(void) zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL,
2537 	    NULL, NULL, 0);
2538 
2539 	mutex_enter(&spa->spa_suspend_lock);
2540 
2541 	if (spa->spa_suspend_zio_root == NULL)
2542 		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
2543 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2544 		    ZIO_FLAG_GODFATHER);
2545 
2546 	spa->spa_suspended = reason;
2547 
2548 	if (zio != NULL) {
2549 		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
2550 		ASSERT(zio != spa->spa_suspend_zio_root);
2551 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2552 		ASSERT(zio_unique_parent(zio) == NULL);
2553 		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
2554 		zio_add_child(spa->spa_suspend_zio_root, zio);
2555 	}
2556 
2557 	mutex_exit(&spa->spa_suspend_lock);
2558 }
2559 
2560 int
2561 zio_resume(spa_t *spa)
2562 {
2563 	zio_t *pio;
2564 
2565 	/*
2566 	 * Reexecute all previously suspended i/o.
2567 	 */
2568 	mutex_enter(&spa->spa_suspend_lock);
2569 	spa->spa_suspended = ZIO_SUSPEND_NONE;
2570 	cv_broadcast(&spa->spa_suspend_cv);
2571 	pio = spa->spa_suspend_zio_root;
2572 	spa->spa_suspend_zio_root = NULL;
2573 	mutex_exit(&spa->spa_suspend_lock);
2574 
2575 	if (pio == NULL)
2576 		return (0);
2577 
2578 	zio_reexecute(pio);
2579 	return (zio_wait(pio));
2580 }
2581 
2582 void
2583 zio_resume_wait(spa_t *spa)
2584 {
2585 	mutex_enter(&spa->spa_suspend_lock);
2586 	while (spa_suspended(spa))
2587 		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
2588 	mutex_exit(&spa->spa_suspend_lock);
2589 }
2590 
2591 /*
2592  * ==========================================================================
2593  * Gang blocks.
2594  *
2595  * A gang block is a collection of small blocks that looks to the DMU
2596  * like one large block.  When zio_dva_allocate() cannot find a block
2597  * of the requested size, due to either severe fragmentation or the pool
2598  * being nearly full, it calls zio_write_gang_block() to construct the
2599  * block from smaller fragments.
2600  *
2601  * A gang block consists of a gang header (zio_gbh_phys_t) and up to
2602  * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
2603  * an indirect block: it's an array of block pointers.  It consumes
2604  * only one sector and hence is allocatable regardless of fragmentation.
2605  * The gang header's bps point to its gang members, which hold the data.
2606  *
2607  * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
2608  * as the verifier to ensure uniqueness of the SHA256 checksum.
2609  * Critically, the gang block bp's blk_cksum is the checksum of the data,
2610  * not the gang header.  This ensures that data block signatures (needed for
2611  * deduplication) are independent of how the block is physically stored.
2612  *
2613  * Gang blocks can be nested: a gang member may itself be a gang block.
2614  * Thus every gang block is a tree in which root and all interior nodes are
2615  * gang headers, and the leaves are normal blocks that contain user data.
2616  * The root of the gang tree is called the gang leader.
2617  *
2618  * To perform any operation (read, rewrite, free, claim) on a gang block,
2619  * zio_gang_assemble() first assembles the gang tree (minus data leaves)
2620  * in the io_gang_tree field of the original logical i/o by recursively
2621  * reading the gang leader and all gang headers below it.  This yields
2622  * an in-core tree containing the contents of every gang header and the
2623  * bps for every constituent of the gang block.
2624  *
2625  * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
2626  * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
2627  * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
2628  * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
2629  * zio_read_gang() is a wrapper around zio_read() that omits reading gang
2630  * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
2631  * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
2632  * of the gang header plus zio_checksum_compute() of the data to update the
2633  * gang header's blk_cksum as described above.
2634  *
2635  * The two-phase assemble/issue model solves the problem of partial failure --
2636  * what if you'd freed part of a gang block but then couldn't read the
2637  * gang header for another part?  Assembling the entire gang tree first
2638  * ensures that all the necessary gang header I/O has succeeded before
2639  * starting the actual work of free, claim, or write.  Once the gang tree
2640  * is assembled, free and claim are in-memory operations that cannot fail.
2641  *
2642  * In the event that a gang write fails, zio_dva_unallocate() walks the
2643  * gang tree to immediately free (i.e. insert back into the space map)
2644  * everything we've allocated.  This ensures that we don't get ENOSPC
2645  * errors during repeated suspend/resume cycles due to a flaky device.
2646  *
2647  * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
2648  * the gang tree, we won't modify the block, so we can safely defer the free
2649  * (knowing that the block is still intact).  If we *can* assemble the gang
2650  * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
2651  * each constituent bp and we can allocate a new block on the next sync pass.
2652  *
2653  * In all cases, the gang tree allows complete recovery from partial failure.
2654  * ==========================================================================
2655  */
2656 
2657 static void
2658 zio_gang_issue_func_done(zio_t *zio)
2659 {
2660 	abd_free(zio->io_abd);
2661 }
2662 
2663 static zio_t *
2664 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2665     uint64_t offset)
2666 {
2667 	if (gn != NULL)
2668 		return (pio);
2669 
2670 	return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset),
2671 	    BP_GET_PSIZE(bp), zio_gang_issue_func_done,
2672 	    NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2673 	    &pio->io_bookmark));
2674 }
2675 
2676 static zio_t *
2677 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2678     uint64_t offset)
2679 {
2680 	zio_t *zio;
2681 
2682 	if (gn != NULL) {
2683 		abd_t *gbh_abd =
2684 		    abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2685 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2686 		    gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL,
2687 		    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2688 		    &pio->io_bookmark);
2689 		/*
2690 		 * As we rewrite each gang header, the pipeline will compute
2691 		 * a new gang block header checksum for it; but no one will
2692 		 * compute a new data checksum, so we do that here.  The one
2693 		 * exception is the gang leader: the pipeline already computed
2694 		 * its data checksum because that stage precedes gang assembly.
2695 		 * (Presently, nothing actually uses interior data checksums;
2696 		 * this is just good hygiene.)
2697 		 */
2698 		if (gn != pio->io_gang_leader->io_gang_tree) {
2699 			abd_t *buf = abd_get_offset(data, offset);
2700 
2701 			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
2702 			    buf, BP_GET_PSIZE(bp));
2703 
2704 			abd_free(buf);
2705 		}
2706 		/*
2707 		 * If we are here to damage data for testing purposes,
2708 		 * leave the GBH alone so that we can detect the damage.
2709 		 */
2710 		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
2711 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2712 	} else {
2713 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2714 		    abd_get_offset(data, offset), BP_GET_PSIZE(bp),
2715 		    zio_gang_issue_func_done, NULL, pio->io_priority,
2716 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2717 	}
2718 
2719 	return (zio);
2720 }
2721 
2722 static zio_t *
2723 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2724     uint64_t offset)
2725 {
2726 	(void) gn, (void) data, (void) offset;
2727 
2728 	zio_t *zio = zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
2729 	    ZIO_GANG_CHILD_FLAGS(pio));
2730 	if (zio == NULL) {
2731 		zio = zio_null(pio, pio->io_spa,
2732 		    NULL, NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio));
2733 	}
2734 	return (zio);
2735 }
2736 
2737 static zio_t *
2738 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2739     uint64_t offset)
2740 {
2741 	(void) gn, (void) data, (void) offset;
2742 	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
2743 	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
2744 }
2745 
2746 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
2747 	NULL,
2748 	zio_read_gang,
2749 	zio_rewrite_gang,
2750 	zio_free_gang,
2751 	zio_claim_gang,
2752 	NULL
2753 };
2754 
2755 static void zio_gang_tree_assemble_done(zio_t *zio);
2756 
2757 static zio_gang_node_t *
2758 zio_gang_node_alloc(zio_gang_node_t **gnpp)
2759 {
2760 	zio_gang_node_t *gn;
2761 
2762 	ASSERT(*gnpp == NULL);
2763 
2764 	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
2765 	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
2766 	*gnpp = gn;
2767 
2768 	return (gn);
2769 }
2770 
2771 static void
2772 zio_gang_node_free(zio_gang_node_t **gnpp)
2773 {
2774 	zio_gang_node_t *gn = *gnpp;
2775 
2776 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2777 		ASSERT(gn->gn_child[g] == NULL);
2778 
2779 	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2780 	kmem_free(gn, sizeof (*gn));
2781 	*gnpp = NULL;
2782 }
2783 
2784 static void
2785 zio_gang_tree_free(zio_gang_node_t **gnpp)
2786 {
2787 	zio_gang_node_t *gn = *gnpp;
2788 
2789 	if (gn == NULL)
2790 		return;
2791 
2792 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2793 		zio_gang_tree_free(&gn->gn_child[g]);
2794 
2795 	zio_gang_node_free(gnpp);
2796 }
2797 
2798 static void
2799 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
2800 {
2801 	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
2802 	abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2803 
2804 	ASSERT(gio->io_gang_leader == gio);
2805 	ASSERT(BP_IS_GANG(bp));
2806 
2807 	zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2808 	    zio_gang_tree_assemble_done, gn, gio->io_priority,
2809 	    ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
2810 }
2811 
2812 static void
2813 zio_gang_tree_assemble_done(zio_t *zio)
2814 {
2815 	zio_t *gio = zio->io_gang_leader;
2816 	zio_gang_node_t *gn = zio->io_private;
2817 	blkptr_t *bp = zio->io_bp;
2818 
2819 	ASSERT(gio == zio_unique_parent(zio));
2820 	ASSERT(list_is_empty(&zio->io_child_list));
2821 
2822 	if (zio->io_error)
2823 		return;
2824 
2825 	/* this ABD was created from a linear buf in zio_gang_tree_assemble */
2826 	if (BP_SHOULD_BYTESWAP(bp))
2827 		byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size);
2828 
2829 	ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh);
2830 	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
2831 	ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2832 
2833 	abd_free(zio->io_abd);
2834 
2835 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2836 		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2837 		if (!BP_IS_GANG(gbp))
2838 			continue;
2839 		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
2840 	}
2841 }
2842 
2843 static void
2844 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data,
2845     uint64_t offset)
2846 {
2847 	zio_t *gio = pio->io_gang_leader;
2848 	zio_t *zio;
2849 
2850 	ASSERT(BP_IS_GANG(bp) == !!gn);
2851 	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
2852 	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
2853 
2854 	/*
2855 	 * If you're a gang header, your data is in gn->gn_gbh.
2856 	 * If you're a gang member, your data is in 'data' and gn == NULL.
2857 	 */
2858 	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset);
2859 
2860 	if (gn != NULL) {
2861 		ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2862 
2863 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2864 			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2865 			if (BP_IS_HOLE(gbp))
2866 				continue;
2867 			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data,
2868 			    offset);
2869 			offset += BP_GET_PSIZE(gbp);
2870 		}
2871 	}
2872 
2873 	if (gn == gio->io_gang_tree)
2874 		ASSERT3U(gio->io_size, ==, offset);
2875 
2876 	if (zio != pio)
2877 		zio_nowait(zio);
2878 }
2879 
2880 static zio_t *
2881 zio_gang_assemble(zio_t *zio)
2882 {
2883 	blkptr_t *bp = zio->io_bp;
2884 
2885 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
2886 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2887 
2888 	zio->io_gang_leader = zio;
2889 
2890 	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
2891 
2892 	return (zio);
2893 }
2894 
2895 static zio_t *
2896 zio_gang_issue(zio_t *zio)
2897 {
2898 	blkptr_t *bp = zio->io_bp;
2899 
2900 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) {
2901 		return (NULL);
2902 	}
2903 
2904 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
2905 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2906 
2907 	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
2908 		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd,
2909 		    0);
2910 	else
2911 		zio_gang_tree_free(&zio->io_gang_tree);
2912 
2913 	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2914 
2915 	return (zio);
2916 }
2917 
2918 static void
2919 zio_gang_inherit_allocator(zio_t *pio, zio_t *cio)
2920 {
2921 	cio->io_allocator = pio->io_allocator;
2922 }
2923 
2924 static void
2925 zio_write_gang_member_ready(zio_t *zio)
2926 {
2927 	zio_t *pio = zio_unique_parent(zio);
2928 	dva_t *cdva = zio->io_bp->blk_dva;
2929 	dva_t *pdva = pio->io_bp->blk_dva;
2930 	uint64_t asize;
2931 	zio_t *gio __maybe_unused = zio->io_gang_leader;
2932 
2933 	if (BP_IS_HOLE(zio->io_bp))
2934 		return;
2935 
2936 	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
2937 
2938 	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
2939 	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
2940 	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
2941 	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
2942 	VERIFY3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
2943 
2944 	mutex_enter(&pio->io_lock);
2945 	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
2946 		ASSERT(DVA_GET_GANG(&pdva[d]));
2947 		asize = DVA_GET_ASIZE(&pdva[d]);
2948 		asize += DVA_GET_ASIZE(&cdva[d]);
2949 		DVA_SET_ASIZE(&pdva[d], asize);
2950 	}
2951 	mutex_exit(&pio->io_lock);
2952 }
2953 
2954 static void
2955 zio_write_gang_done(zio_t *zio)
2956 {
2957 	/*
2958 	 * The io_abd field will be NULL for a zio with no data.  The io_flags
2959 	 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't
2960 	 * check for it here as it is cleared in zio_ready.
2961 	 */
2962 	if (zio->io_abd != NULL)
2963 		abd_free(zio->io_abd);
2964 }
2965 
2966 static zio_t *
2967 zio_write_gang_block(zio_t *pio, metaslab_class_t *mc)
2968 {
2969 	spa_t *spa = pio->io_spa;
2970 	blkptr_t *bp = pio->io_bp;
2971 	zio_t *gio = pio->io_gang_leader;
2972 	zio_t *zio;
2973 	zio_gang_node_t *gn, **gnpp;
2974 	zio_gbh_phys_t *gbh;
2975 	abd_t *gbh_abd;
2976 	uint64_t txg = pio->io_txg;
2977 	uint64_t resid = pio->io_size;
2978 	uint64_t lsize;
2979 	int copies = gio->io_prop.zp_copies;
2980 	zio_prop_t zp;
2981 	int error;
2982 	boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA);
2983 
2984 	/*
2985 	 * If one copy was requested, store 2 copies of the GBH, so that we
2986 	 * can still traverse all the data (e.g. to free or scrub) even if a
2987 	 * block is damaged.  Note that we can't store 3 copies of the GBH in
2988 	 * all cases, e.g. with encryption, which uses DVA[2] for the IV+salt.
2989 	 */
2990 	int gbh_copies = copies;
2991 	if (gbh_copies == 1) {
2992 		gbh_copies = MIN(2, spa_max_replication(spa));
2993 	}
2994 
2995 	ASSERT(ZIO_HAS_ALLOCATOR(pio));
2996 	int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER;
2997 	if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2998 		ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2999 		ASSERT(has_data);
3000 
3001 		flags |= METASLAB_ASYNC_ALLOC;
3002 		VERIFY(zfs_refcount_held(&mc->mc_allocator[pio->io_allocator].
3003 		    mca_alloc_slots, pio));
3004 
3005 		/*
3006 		 * The logical zio has already placed a reservation for
3007 		 * 'copies' allocation slots but gang blocks may require
3008 		 * additional copies. These additional copies
3009 		 * (i.e. gbh_copies - copies) are guaranteed to succeed
3010 		 * since metaslab_class_throttle_reserve() always allows
3011 		 * additional reservations for gang blocks.
3012 		 */
3013 		VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies,
3014 		    pio->io_allocator, pio, flags));
3015 	}
3016 
3017 	error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE,
3018 	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags,
3019 	    &pio->io_alloc_list, pio, pio->io_allocator);
3020 	if (error) {
3021 		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
3022 			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
3023 			ASSERT(has_data);
3024 
3025 			/*
3026 			 * If we failed to allocate the gang block header then
3027 			 * we remove any additional allocation reservations that
3028 			 * we placed here. The original reservation will
3029 			 * be removed when the logical I/O goes to the ready
3030 			 * stage.
3031 			 */
3032 			metaslab_class_throttle_unreserve(mc,
3033 			    gbh_copies - copies, pio->io_allocator, pio);
3034 		}
3035 
3036 		pio->io_error = error;
3037 		return (pio);
3038 	}
3039 
3040 	if (pio == gio) {
3041 		gnpp = &gio->io_gang_tree;
3042 	} else {
3043 		gnpp = pio->io_private;
3044 		ASSERT(pio->io_ready == zio_write_gang_member_ready);
3045 	}
3046 
3047 	gn = zio_gang_node_alloc(gnpp);
3048 	gbh = gn->gn_gbh;
3049 	memset(gbh, 0, SPA_GANGBLOCKSIZE);
3050 	gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE);
3051 
3052 	/*
3053 	 * Create the gang header.
3054 	 */
3055 	zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE,
3056 	    zio_write_gang_done, NULL, pio->io_priority,
3057 	    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
3058 
3059 	zio_gang_inherit_allocator(pio, zio);
3060 
3061 	/*
3062 	 * Create and nowait the gang children.
3063 	 */
3064 	for (int g = 0; resid != 0; resid -= lsize, g++) {
3065 		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
3066 		    SPA_MINBLOCKSIZE);
3067 		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
3068 
3069 		zp.zp_checksum = gio->io_prop.zp_checksum;
3070 		zp.zp_compress = ZIO_COMPRESS_OFF;
3071 		zp.zp_complevel = gio->io_prop.zp_complevel;
3072 		zp.zp_type = DMU_OT_NONE;
3073 		zp.zp_level = 0;
3074 		zp.zp_copies = gio->io_prop.zp_copies;
3075 		zp.zp_dedup = B_FALSE;
3076 		zp.zp_dedup_verify = B_FALSE;
3077 		zp.zp_nopwrite = B_FALSE;
3078 		zp.zp_encrypt = gio->io_prop.zp_encrypt;
3079 		zp.zp_byteorder = gio->io_prop.zp_byteorder;
3080 		memset(zp.zp_salt, 0, ZIO_DATA_SALT_LEN);
3081 		memset(zp.zp_iv, 0, ZIO_DATA_IV_LEN);
3082 		memset(zp.zp_mac, 0, ZIO_DATA_MAC_LEN);
3083 
3084 		zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
3085 		    has_data ? abd_get_offset(pio->io_abd, pio->io_size -
3086 		    resid) : NULL, lsize, lsize, &zp,
3087 		    zio_write_gang_member_ready, NULL,
3088 		    zio_write_gang_done, &gn->gn_child[g], pio->io_priority,
3089 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
3090 
3091 		zio_gang_inherit_allocator(zio, cio);
3092 
3093 		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
3094 			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
3095 			ASSERT(has_data);
3096 
3097 			/*
3098 			 * Gang children won't throttle but we should
3099 			 * account for their work, so reserve an allocation
3100 			 * slot for them here.
3101 			 */
3102 			VERIFY(metaslab_class_throttle_reserve(mc,
3103 			    zp.zp_copies, cio->io_allocator, cio, flags));
3104 		}
3105 		zio_nowait(cio);
3106 	}
3107 
3108 	/*
3109 	 * Set pio's pipeline to just wait for zio to finish.
3110 	 */
3111 	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3112 
3113 	zio_nowait(zio);
3114 
3115 	return (pio);
3116 }
3117 
3118 /*
3119  * The zio_nop_write stage in the pipeline determines if allocating a
3120  * new bp is necessary.  The nopwrite feature can handle writes in
3121  * either syncing or open context (i.e. zil writes) and as a result is
3122  * mutually exclusive with dedup.
3123  *
3124  * By leveraging a cryptographically secure checksum, such as SHA256, we
3125  * can compare the checksums of the new data and the old to determine if
3126  * allocating a new block is required.  Note that our requirements for
3127  * cryptographic strength are fairly weak: there can't be any accidental
3128  * hash collisions, but we don't need to be secure against intentional
3129  * (malicious) collisions.  To trigger a nopwrite, you have to be able
3130  * to write the file to begin with, and triggering an incorrect (hash
3131  * collision) nopwrite is no worse than simply writing to the file.
3132  * That said, there are no known attacks against the checksum algorithms
3133  * used for nopwrite, assuming that the salt and the checksums
3134  * themselves remain secret.
3135  */
3136 static zio_t *
3137 zio_nop_write(zio_t *zio)
3138 {
3139 	blkptr_t *bp = zio->io_bp;
3140 	blkptr_t *bp_orig = &zio->io_bp_orig;
3141 	zio_prop_t *zp = &zio->io_prop;
3142 
3143 	ASSERT(BP_IS_HOLE(bp));
3144 	ASSERT(BP_GET_LEVEL(bp) == 0);
3145 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
3146 	ASSERT(zp->zp_nopwrite);
3147 	ASSERT(!zp->zp_dedup);
3148 	ASSERT(zio->io_bp_override == NULL);
3149 	ASSERT(IO_IS_ALLOCATING(zio));
3150 
3151 	/*
3152 	 * Check to see if the original bp and the new bp have matching
3153 	 * characteristics (i.e. same checksum, compression algorithms, etc).
3154 	 * If they don't then just continue with the pipeline which will
3155 	 * allocate a new bp.
3156 	 */
3157 	if (BP_IS_HOLE(bp_orig) ||
3158 	    !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
3159 	    ZCHECKSUM_FLAG_NOPWRITE) ||
3160 	    BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) ||
3161 	    BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
3162 	    BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
3163 	    BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
3164 	    zp->zp_copies != BP_GET_NDVAS(bp_orig))
3165 		return (zio);
3166 
3167 	/*
3168 	 * If the checksums match then reset the pipeline so that we
3169 	 * avoid allocating a new bp and issuing any I/O.
3170 	 */
3171 	if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
3172 		ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
3173 		    ZCHECKSUM_FLAG_NOPWRITE);
3174 		ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
3175 		ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
3176 		ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
3177 		ASSERT3U(bp->blk_prop, ==, bp_orig->blk_prop);
3178 
3179 		/*
3180 		 * If we're overwriting a block that is currently on an
3181 		 * indirect vdev, then ignore the nopwrite request and
3182 		 * allow a new block to be allocated on a concrete vdev.
3183 		 */
3184 		spa_config_enter(zio->io_spa, SCL_VDEV, FTAG, RW_READER);
3185 		for (int d = 0; d < BP_GET_NDVAS(bp_orig); d++) {
3186 			vdev_t *tvd = vdev_lookup_top(zio->io_spa,
3187 			    DVA_GET_VDEV(&bp_orig->blk_dva[d]));
3188 			if (tvd->vdev_ops == &vdev_indirect_ops) {
3189 				spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
3190 				return (zio);
3191 			}
3192 		}
3193 		spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
3194 
3195 		*bp = *bp_orig;
3196 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3197 		zio->io_flags |= ZIO_FLAG_NOPWRITE;
3198 	}
3199 
3200 	return (zio);
3201 }
3202 
3203 /*
3204  * ==========================================================================
3205  * Block Reference Table
3206  * ==========================================================================
3207  */
3208 static zio_t *
3209 zio_brt_free(zio_t *zio)
3210 {
3211 	blkptr_t *bp;
3212 
3213 	bp = zio->io_bp;
3214 
3215 	if (BP_GET_LEVEL(bp) > 0 ||
3216 	    BP_IS_METADATA(bp) ||
3217 	    !brt_maybe_exists(zio->io_spa, bp)) {
3218 		return (zio);
3219 	}
3220 
3221 	if (!brt_entry_decref(zio->io_spa, bp)) {
3222 		/*
3223 		 * This isn't the last reference, so we cannot free
3224 		 * the data yet.
3225 		 */
3226 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3227 	}
3228 
3229 	return (zio);
3230 }
3231 
3232 /*
3233  * ==========================================================================
3234  * Dedup
3235  * ==========================================================================
3236  */
3237 static void
3238 zio_ddt_child_read_done(zio_t *zio)
3239 {
3240 	blkptr_t *bp = zio->io_bp;
3241 	ddt_entry_t *dde = zio->io_private;
3242 	ddt_phys_t *ddp;
3243 	zio_t *pio = zio_unique_parent(zio);
3244 
3245 	mutex_enter(&pio->io_lock);
3246 	ddp = ddt_phys_select(dde, bp);
3247 	if (zio->io_error == 0)
3248 		ddt_phys_clear(ddp);	/* this ddp doesn't need repair */
3249 
3250 	if (zio->io_error == 0 && dde->dde_repair_abd == NULL)
3251 		dde->dde_repair_abd = zio->io_abd;
3252 	else
3253 		abd_free(zio->io_abd);
3254 	mutex_exit(&pio->io_lock);
3255 }
3256 
3257 static zio_t *
3258 zio_ddt_read_start(zio_t *zio)
3259 {
3260 	blkptr_t *bp = zio->io_bp;
3261 
3262 	ASSERT(BP_GET_DEDUP(bp));
3263 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3264 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3265 
3266 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
3267 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
3268 		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
3269 		ddt_phys_t *ddp = dde->dde_phys;
3270 		ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
3271 		blkptr_t blk;
3272 
3273 		ASSERT(zio->io_vsd == NULL);
3274 		zio->io_vsd = dde;
3275 
3276 		if (ddp_self == NULL)
3277 			return (zio);
3278 
3279 		for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
3280 			if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
3281 				continue;
3282 			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
3283 			    &blk);
3284 			zio_nowait(zio_read(zio, zio->io_spa, &blk,
3285 			    abd_alloc_for_io(zio->io_size, B_TRUE),
3286 			    zio->io_size, zio_ddt_child_read_done, dde,
3287 			    zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) |
3288 			    ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark));
3289 		}
3290 		return (zio);
3291 	}
3292 
3293 	zio_nowait(zio_read(zio, zio->io_spa, bp,
3294 	    zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority,
3295 	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
3296 
3297 	return (zio);
3298 }
3299 
3300 static zio_t *
3301 zio_ddt_read_done(zio_t *zio)
3302 {
3303 	blkptr_t *bp = zio->io_bp;
3304 
3305 	if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) {
3306 		return (NULL);
3307 	}
3308 
3309 	ASSERT(BP_GET_DEDUP(bp));
3310 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3311 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3312 
3313 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
3314 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
3315 		ddt_entry_t *dde = zio->io_vsd;
3316 		if (ddt == NULL) {
3317 			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
3318 			return (zio);
3319 		}
3320 		if (dde == NULL) {
3321 			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
3322 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
3323 			return (NULL);
3324 		}
3325 		if (dde->dde_repair_abd != NULL) {
3326 			abd_copy(zio->io_abd, dde->dde_repair_abd,
3327 			    zio->io_size);
3328 			zio->io_child_error[ZIO_CHILD_DDT] = 0;
3329 		}
3330 		ddt_repair_done(ddt, dde);
3331 		zio->io_vsd = NULL;
3332 	}
3333 
3334 	ASSERT(zio->io_vsd == NULL);
3335 
3336 	return (zio);
3337 }
3338 
3339 static boolean_t
3340 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
3341 {
3342 	spa_t *spa = zio->io_spa;
3343 	boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW);
3344 
3345 	ASSERT(!(zio->io_bp_override && do_raw));
3346 
3347 	/*
3348 	 * Note: we compare the original data, not the transformed data,
3349 	 * because when zio->io_bp is an override bp, we will not have
3350 	 * pushed the I/O transforms.  That's an important optimization
3351 	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
3352 	 * However, we should never get a raw, override zio so in these
3353 	 * cases we can compare the io_abd directly. This is useful because
3354 	 * it allows us to do dedup verification even if we don't have access
3355 	 * to the original data (for instance, if the encryption keys aren't
3356 	 * loaded).
3357 	 */
3358 
3359 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
3360 		zio_t *lio = dde->dde_lead_zio[p];
3361 
3362 		if (lio != NULL && do_raw) {
3363 			return (lio->io_size != zio->io_size ||
3364 			    abd_cmp(zio->io_abd, lio->io_abd) != 0);
3365 		} else if (lio != NULL) {
3366 			return (lio->io_orig_size != zio->io_orig_size ||
3367 			    abd_cmp(zio->io_orig_abd, lio->io_orig_abd) != 0);
3368 		}
3369 	}
3370 
3371 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
3372 		ddt_phys_t *ddp = &dde->dde_phys[p];
3373 
3374 		if (ddp->ddp_phys_birth != 0 && do_raw) {
3375 			blkptr_t blk = *zio->io_bp;
3376 			uint64_t psize;
3377 			abd_t *tmpabd;
3378 			int error;
3379 
3380 			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
3381 			psize = BP_GET_PSIZE(&blk);
3382 
3383 			if (psize != zio->io_size)
3384 				return (B_TRUE);
3385 
3386 			ddt_exit(ddt);
3387 
3388 			tmpabd = abd_alloc_for_io(psize, B_TRUE);
3389 
3390 			error = zio_wait(zio_read(NULL, spa, &blk, tmpabd,
3391 			    psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
3392 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3393 			    ZIO_FLAG_RAW, &zio->io_bookmark));
3394 
3395 			if (error == 0) {
3396 				if (abd_cmp(tmpabd, zio->io_abd) != 0)
3397 					error = SET_ERROR(ENOENT);
3398 			}
3399 
3400 			abd_free(tmpabd);
3401 			ddt_enter(ddt);
3402 			return (error != 0);
3403 		} else if (ddp->ddp_phys_birth != 0) {
3404 			arc_buf_t *abuf = NULL;
3405 			arc_flags_t aflags = ARC_FLAG_WAIT;
3406 			blkptr_t blk = *zio->io_bp;
3407 			int error;
3408 
3409 			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
3410 
3411 			if (BP_GET_LSIZE(&blk) != zio->io_orig_size)
3412 				return (B_TRUE);
3413 
3414 			ddt_exit(ddt);
3415 
3416 			error = arc_read(NULL, spa, &blk,
3417 			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
3418 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3419 			    &aflags, &zio->io_bookmark);
3420 
3421 			if (error == 0) {
3422 				if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data,
3423 				    zio->io_orig_size) != 0)
3424 					error = SET_ERROR(ENOENT);
3425 				arc_buf_destroy(abuf, &abuf);
3426 			}
3427 
3428 			ddt_enter(ddt);
3429 			return (error != 0);
3430 		}
3431 	}
3432 
3433 	return (B_FALSE);
3434 }
3435 
3436 static void
3437 zio_ddt_child_write_ready(zio_t *zio)
3438 {
3439 	int p = zio->io_prop.zp_copies;
3440 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3441 	ddt_entry_t *dde = zio->io_private;
3442 	ddt_phys_t *ddp = &dde->dde_phys[p];
3443 	zio_t *pio;
3444 
3445 	if (zio->io_error)
3446 		return;
3447 
3448 	ddt_enter(ddt);
3449 
3450 	ASSERT(dde->dde_lead_zio[p] == zio);
3451 
3452 	ddt_phys_fill(ddp, zio->io_bp);
3453 
3454 	zio_link_t *zl = NULL;
3455 	while ((pio = zio_walk_parents(zio, &zl)) != NULL)
3456 		ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
3457 
3458 	ddt_exit(ddt);
3459 }
3460 
3461 static void
3462 zio_ddt_child_write_done(zio_t *zio)
3463 {
3464 	int p = zio->io_prop.zp_copies;
3465 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3466 	ddt_entry_t *dde = zio->io_private;
3467 	ddt_phys_t *ddp = &dde->dde_phys[p];
3468 
3469 	ddt_enter(ddt);
3470 
3471 	ASSERT(ddp->ddp_refcnt == 0);
3472 	ASSERT(dde->dde_lead_zio[p] == zio);
3473 	dde->dde_lead_zio[p] = NULL;
3474 
3475 	if (zio->io_error == 0) {
3476 		zio_link_t *zl = NULL;
3477 		while (zio_walk_parents(zio, &zl) != NULL)
3478 			ddt_phys_addref(ddp);
3479 	} else {
3480 		ddt_phys_clear(ddp);
3481 	}
3482 
3483 	ddt_exit(ddt);
3484 }
3485 
3486 static zio_t *
3487 zio_ddt_write(zio_t *zio)
3488 {
3489 	spa_t *spa = zio->io_spa;
3490 	blkptr_t *bp = zio->io_bp;
3491 	uint64_t txg = zio->io_txg;
3492 	zio_prop_t *zp = &zio->io_prop;
3493 	int p = zp->zp_copies;
3494 	zio_t *cio = NULL;
3495 	ddt_t *ddt = ddt_select(spa, bp);
3496 	ddt_entry_t *dde;
3497 	ddt_phys_t *ddp;
3498 
3499 	ASSERT(BP_GET_DEDUP(bp));
3500 	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
3501 	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
3502 	ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW)));
3503 
3504 	ddt_enter(ddt);
3505 	dde = ddt_lookup(ddt, bp, B_TRUE);
3506 	ddp = &dde->dde_phys[p];
3507 
3508 	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
3509 		/*
3510 		 * If we're using a weak checksum, upgrade to a strong checksum
3511 		 * and try again.  If we're already using a strong checksum,
3512 		 * we can't resolve it, so just convert to an ordinary write.
3513 		 * (And automatically e-mail a paper to Nature?)
3514 		 */
3515 		if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
3516 		    ZCHECKSUM_FLAG_DEDUP)) {
3517 			zp->zp_checksum = spa_dedup_checksum(spa);
3518 			zio_pop_transforms(zio);
3519 			zio->io_stage = ZIO_STAGE_OPEN;
3520 			BP_ZERO(bp);
3521 		} else {
3522 			zp->zp_dedup = B_FALSE;
3523 			BP_SET_DEDUP(bp, B_FALSE);
3524 		}
3525 		ASSERT(!BP_GET_DEDUP(bp));
3526 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
3527 		ddt_exit(ddt);
3528 		return (zio);
3529 	}
3530 
3531 	if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
3532 		if (ddp->ddp_phys_birth != 0)
3533 			ddt_bp_fill(ddp, bp, txg);
3534 		if (dde->dde_lead_zio[p] != NULL)
3535 			zio_add_child(zio, dde->dde_lead_zio[p]);
3536 		else
3537 			ddt_phys_addref(ddp);
3538 	} else if (zio->io_bp_override) {
3539 		ASSERT(BP_GET_LOGICAL_BIRTH(bp) == txg);
3540 		ASSERT(BP_EQUAL(bp, zio->io_bp_override));
3541 		ddt_phys_fill(ddp, bp);
3542 		ddt_phys_addref(ddp);
3543 	} else {
3544 		cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
3545 		    zio->io_orig_size, zio->io_orig_size, zp,
3546 		    zio_ddt_child_write_ready, NULL,
3547 		    zio_ddt_child_write_done, dde, zio->io_priority,
3548 		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
3549 
3550 		zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL);
3551 		dde->dde_lead_zio[p] = cio;
3552 	}
3553 
3554 	ddt_exit(ddt);
3555 
3556 	zio_nowait(cio);
3557 
3558 	return (zio);
3559 }
3560 
3561 static ddt_entry_t *freedde; /* for debugging */
3562 
3563 static zio_t *
3564 zio_ddt_free(zio_t *zio)
3565 {
3566 	spa_t *spa = zio->io_spa;
3567 	blkptr_t *bp = zio->io_bp;
3568 	ddt_t *ddt = ddt_select(spa, bp);
3569 	ddt_entry_t *dde;
3570 	ddt_phys_t *ddp;
3571 
3572 	ASSERT(BP_GET_DEDUP(bp));
3573 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3574 
3575 	ddt_enter(ddt);
3576 	freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
3577 	if (dde) {
3578 		ddp = ddt_phys_select(dde, bp);
3579 		if (ddp)
3580 			ddt_phys_decref(ddp);
3581 	}
3582 	ddt_exit(ddt);
3583 
3584 	return (zio);
3585 }
3586 
3587 /*
3588  * ==========================================================================
3589  * Allocate and free blocks
3590  * ==========================================================================
3591  */
3592 
3593 static zio_t *
3594 zio_io_to_allocate(spa_t *spa, int allocator)
3595 {
3596 	zio_t *zio;
3597 
3598 	ASSERT(MUTEX_HELD(&spa->spa_allocs[allocator].spaa_lock));
3599 
3600 	zio = avl_first(&spa->spa_allocs[allocator].spaa_tree);
3601 	if (zio == NULL)
3602 		return (NULL);
3603 
3604 	ASSERT(IO_IS_ALLOCATING(zio));
3605 	ASSERT(ZIO_HAS_ALLOCATOR(zio));
3606 
3607 	/*
3608 	 * Try to place a reservation for this zio. If we're unable to
3609 	 * reserve then we throttle.
3610 	 */
3611 	ASSERT3U(zio->io_allocator, ==, allocator);
3612 	if (!metaslab_class_throttle_reserve(zio->io_metaslab_class,
3613 	    zio->io_prop.zp_copies, allocator, zio, 0)) {
3614 		return (NULL);
3615 	}
3616 
3617 	avl_remove(&spa->spa_allocs[allocator].spaa_tree, zio);
3618 	ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE);
3619 
3620 	return (zio);
3621 }
3622 
3623 static zio_t *
3624 zio_dva_throttle(zio_t *zio)
3625 {
3626 	spa_t *spa = zio->io_spa;
3627 	zio_t *nio;
3628 	metaslab_class_t *mc;
3629 
3630 	/* locate an appropriate allocation class */
3631 	mc = spa_preferred_class(spa, zio->io_size, zio->io_prop.zp_type,
3632 	    zio->io_prop.zp_level, zio->io_prop.zp_zpl_smallblk);
3633 
3634 	if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE ||
3635 	    !mc->mc_alloc_throttle_enabled ||
3636 	    zio->io_child_type == ZIO_CHILD_GANG ||
3637 	    zio->io_flags & ZIO_FLAG_NODATA) {
3638 		return (zio);
3639 	}
3640 
3641 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3642 	ASSERT(ZIO_HAS_ALLOCATOR(zio));
3643 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3644 	ASSERT3U(zio->io_queued_timestamp, >, 0);
3645 	ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE);
3646 
3647 	int allocator = zio->io_allocator;
3648 	zio->io_metaslab_class = mc;
3649 	mutex_enter(&spa->spa_allocs[allocator].spaa_lock);
3650 	avl_add(&spa->spa_allocs[allocator].spaa_tree, zio);
3651 	nio = zio_io_to_allocate(spa, allocator);
3652 	mutex_exit(&spa->spa_allocs[allocator].spaa_lock);
3653 	return (nio);
3654 }
3655 
3656 static void
3657 zio_allocate_dispatch(spa_t *spa, int allocator)
3658 {
3659 	zio_t *zio;
3660 
3661 	mutex_enter(&spa->spa_allocs[allocator].spaa_lock);
3662 	zio = zio_io_to_allocate(spa, allocator);
3663 	mutex_exit(&spa->spa_allocs[allocator].spaa_lock);
3664 	if (zio == NULL)
3665 		return;
3666 
3667 	ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE);
3668 	ASSERT0(zio->io_error);
3669 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE);
3670 }
3671 
3672 static zio_t *
3673 zio_dva_allocate(zio_t *zio)
3674 {
3675 	spa_t *spa = zio->io_spa;
3676 	metaslab_class_t *mc;
3677 	blkptr_t *bp = zio->io_bp;
3678 	int error;
3679 	int flags = 0;
3680 
3681 	if (zio->io_gang_leader == NULL) {
3682 		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3683 		zio->io_gang_leader = zio;
3684 	}
3685 
3686 	ASSERT(BP_IS_HOLE(bp));
3687 	ASSERT0(BP_GET_NDVAS(bp));
3688 	ASSERT3U(zio->io_prop.zp_copies, >, 0);
3689 	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
3690 	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
3691 
3692 	if (zio->io_flags & ZIO_FLAG_NODATA)
3693 		flags |= METASLAB_DONT_THROTTLE;
3694 	if (zio->io_flags & ZIO_FLAG_GANG_CHILD)
3695 		flags |= METASLAB_GANG_CHILD;
3696 	if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE)
3697 		flags |= METASLAB_ASYNC_ALLOC;
3698 
3699 	/*
3700 	 * if not already chosen, locate an appropriate allocation class
3701 	 */
3702 	mc = zio->io_metaslab_class;
3703 	if (mc == NULL) {
3704 		mc = spa_preferred_class(spa, zio->io_size,
3705 		    zio->io_prop.zp_type, zio->io_prop.zp_level,
3706 		    zio->io_prop.zp_zpl_smallblk);
3707 		zio->io_metaslab_class = mc;
3708 	}
3709 
3710 	/*
3711 	 * Try allocating the block in the usual metaslab class.
3712 	 * If that's full, allocate it in the normal class.
3713 	 * If that's full, allocate as a gang block,
3714 	 * and if all are full, the allocation fails (which shouldn't happen).
3715 	 *
3716 	 * Note that we do not fall back on embedded slog (ZIL) space, to
3717 	 * preserve unfragmented slog space, which is critical for decent
3718 	 * sync write performance.  If a log allocation fails, we will fall
3719 	 * back to spa_sync() which is abysmal for performance.
3720 	 */
3721 	ASSERT(ZIO_HAS_ALLOCATOR(zio));
3722 	error = metaslab_alloc(spa, mc, zio->io_size, bp,
3723 	    zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3724 	    &zio->io_alloc_list, zio, zio->io_allocator);
3725 
3726 	/*
3727 	 * Fallback to normal class when an alloc class is full
3728 	 */
3729 	if (error == ENOSPC && mc != spa_normal_class(spa)) {
3730 		/*
3731 		 * If throttling, transfer reservation over to normal class.
3732 		 * The io_allocator slot can remain the same even though we
3733 		 * are switching classes.
3734 		 */
3735 		if (mc->mc_alloc_throttle_enabled &&
3736 		    (zio->io_flags & ZIO_FLAG_IO_ALLOCATING)) {
3737 			metaslab_class_throttle_unreserve(mc,
3738 			    zio->io_prop.zp_copies, zio->io_allocator, zio);
3739 			zio->io_flags &= ~ZIO_FLAG_IO_ALLOCATING;
3740 
3741 			VERIFY(metaslab_class_throttle_reserve(
3742 			    spa_normal_class(spa),
3743 			    zio->io_prop.zp_copies, zio->io_allocator, zio,
3744 			    flags | METASLAB_MUST_RESERVE));
3745 		}
3746 		zio->io_metaslab_class = mc = spa_normal_class(spa);
3747 		if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) {
3748 			zfs_dbgmsg("%s: metaslab allocation failure, "
3749 			    "trying normal class: zio %px, size %llu, error %d",
3750 			    spa_name(spa), zio, (u_longlong_t)zio->io_size,
3751 			    error);
3752 		}
3753 
3754 		error = metaslab_alloc(spa, mc, zio->io_size, bp,
3755 		    zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3756 		    &zio->io_alloc_list, zio, zio->io_allocator);
3757 	}
3758 
3759 	if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) {
3760 		if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) {
3761 			zfs_dbgmsg("%s: metaslab allocation failure, "
3762 			    "trying ganging: zio %px, size %llu, error %d",
3763 			    spa_name(spa), zio, (u_longlong_t)zio->io_size,
3764 			    error);
3765 		}
3766 		return (zio_write_gang_block(zio, mc));
3767 	}
3768 	if (error != 0) {
3769 		if (error != ENOSPC ||
3770 		    (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC)) {
3771 			zfs_dbgmsg("%s: metaslab allocation failure: zio %px, "
3772 			    "size %llu, error %d",
3773 			    spa_name(spa), zio, (u_longlong_t)zio->io_size,
3774 			    error);
3775 		}
3776 		zio->io_error = error;
3777 	}
3778 
3779 	return (zio);
3780 }
3781 
3782 static zio_t *
3783 zio_dva_free(zio_t *zio)
3784 {
3785 	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
3786 
3787 	return (zio);
3788 }
3789 
3790 static zio_t *
3791 zio_dva_claim(zio_t *zio)
3792 {
3793 	int error;
3794 
3795 	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
3796 	if (error)
3797 		zio->io_error = error;
3798 
3799 	return (zio);
3800 }
3801 
3802 /*
3803  * Undo an allocation.  This is used by zio_done() when an I/O fails
3804  * and we want to give back the block we just allocated.
3805  * This handles both normal blocks and gang blocks.
3806  */
3807 static void
3808 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
3809 {
3810 	ASSERT(BP_GET_LOGICAL_BIRTH(bp) == zio->io_txg || BP_IS_HOLE(bp));
3811 	ASSERT(zio->io_bp_override == NULL);
3812 
3813 	if (!BP_IS_HOLE(bp)) {
3814 		metaslab_free(zio->io_spa, bp, BP_GET_LOGICAL_BIRTH(bp),
3815 		    B_TRUE);
3816 	}
3817 
3818 	if (gn != NULL) {
3819 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
3820 			zio_dva_unallocate(zio, gn->gn_child[g],
3821 			    &gn->gn_gbh->zg_blkptr[g]);
3822 		}
3823 	}
3824 }
3825 
3826 /*
3827  * Try to allocate an intent log block.  Return 0 on success, errno on failure.
3828  */
3829 int
3830 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp,
3831     uint64_t size, boolean_t *slog)
3832 {
3833 	int error = 1;
3834 	zio_alloc_list_t io_alloc_list;
3835 
3836 	ASSERT(txg > spa_syncing_txg(spa));
3837 
3838 	metaslab_trace_init(&io_alloc_list);
3839 
3840 	/*
3841 	 * Block pointer fields are useful to metaslabs for stats and debugging.
3842 	 * Fill in the obvious ones before calling into metaslab_alloc().
3843 	 */
3844 	BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3845 	BP_SET_PSIZE(new_bp, size);
3846 	BP_SET_LEVEL(new_bp, 0);
3847 
3848 	/*
3849 	 * When allocating a zil block, we don't have information about
3850 	 * the final destination of the block except the objset it's part
3851 	 * of, so we just hash the objset ID to pick the allocator to get
3852 	 * some parallelism.
3853 	 */
3854 	int flags = METASLAB_ZIL;
3855 	int allocator = (uint_t)cityhash4(0, 0, 0,
3856 	    os->os_dsl_dataset->ds_object) % spa->spa_alloc_count;
3857 	error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1,
3858 	    txg, NULL, flags, &io_alloc_list, NULL, allocator);
3859 	*slog = (error == 0);
3860 	if (error != 0) {
3861 		error = metaslab_alloc(spa, spa_embedded_log_class(spa), size,
3862 		    new_bp, 1, txg, NULL, flags,
3863 		    &io_alloc_list, NULL, allocator);
3864 	}
3865 	if (error != 0) {
3866 		error = metaslab_alloc(spa, spa_normal_class(spa), size,
3867 		    new_bp, 1, txg, NULL, flags,
3868 		    &io_alloc_list, NULL, allocator);
3869 	}
3870 	metaslab_trace_fini(&io_alloc_list);
3871 
3872 	if (error == 0) {
3873 		BP_SET_LSIZE(new_bp, size);
3874 		BP_SET_PSIZE(new_bp, size);
3875 		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
3876 		BP_SET_CHECKSUM(new_bp,
3877 		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL
3878 		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
3879 		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3880 		BP_SET_LEVEL(new_bp, 0);
3881 		BP_SET_DEDUP(new_bp, 0);
3882 		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
3883 
3884 		/*
3885 		 * encrypted blocks will require an IV and salt. We generate
3886 		 * these now since we will not be rewriting the bp at
3887 		 * rewrite time.
3888 		 */
3889 		if (os->os_encrypted) {
3890 			uint8_t iv[ZIO_DATA_IV_LEN];
3891 			uint8_t salt[ZIO_DATA_SALT_LEN];
3892 
3893 			BP_SET_CRYPT(new_bp, B_TRUE);
3894 			VERIFY0(spa_crypt_get_salt(spa,
3895 			    dmu_objset_id(os), salt));
3896 			VERIFY0(zio_crypt_generate_iv(iv));
3897 
3898 			zio_crypt_encode_params_bp(new_bp, salt, iv);
3899 		}
3900 	} else {
3901 		zfs_dbgmsg("%s: zil block allocation failure: "
3902 		    "size %llu, error %d", spa_name(spa), (u_longlong_t)size,
3903 		    error);
3904 	}
3905 
3906 	return (error);
3907 }
3908 
3909 /*
3910  * ==========================================================================
3911  * Read and write to physical devices
3912  * ==========================================================================
3913  */
3914 
3915 /*
3916  * Issue an I/O to the underlying vdev. Typically the issue pipeline
3917  * stops after this stage and will resume upon I/O completion.
3918  * However, there are instances where the vdev layer may need to
3919  * continue the pipeline when an I/O was not issued. Since the I/O
3920  * that was sent to the vdev layer might be different than the one
3921  * currently active in the pipeline (see vdev_queue_io()), we explicitly
3922  * force the underlying vdev layers to call either zio_execute() or
3923  * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
3924  */
3925 static zio_t *
3926 zio_vdev_io_start(zio_t *zio)
3927 {
3928 	vdev_t *vd = zio->io_vd;
3929 	uint64_t align;
3930 	spa_t *spa = zio->io_spa;
3931 
3932 	zio->io_delay = 0;
3933 
3934 	ASSERT(zio->io_error == 0);
3935 	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
3936 
3937 	if (vd == NULL) {
3938 		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3939 			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
3940 
3941 		/*
3942 		 * The mirror_ops handle multiple DVAs in a single BP.
3943 		 */
3944 		vdev_mirror_ops.vdev_op_io_start(zio);
3945 		return (NULL);
3946 	}
3947 
3948 	ASSERT3P(zio->io_logical, !=, zio);
3949 	if (zio->io_type == ZIO_TYPE_WRITE) {
3950 		ASSERT(spa->spa_trust_config);
3951 
3952 		/*
3953 		 * Note: the code can handle other kinds of writes,
3954 		 * but we don't expect them.
3955 		 */
3956 		if (zio->io_vd->vdev_noalloc) {
3957 			ASSERT(zio->io_flags &
3958 			    (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL |
3959 			    ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE));
3960 		}
3961 	}
3962 
3963 	align = 1ULL << vd->vdev_top->vdev_ashift;
3964 
3965 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
3966 	    P2PHASE(zio->io_size, align) != 0) {
3967 		/* Transform logical writes to be a full physical block size. */
3968 		uint64_t asize = P2ROUNDUP(zio->io_size, align);
3969 		abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize);
3970 		ASSERT(vd == vd->vdev_top);
3971 		if (zio->io_type == ZIO_TYPE_WRITE) {
3972 			abd_copy(abuf, zio->io_abd, zio->io_size);
3973 			abd_zero_off(abuf, zio->io_size, asize - zio->io_size);
3974 		}
3975 		zio_push_transform(zio, abuf, asize, asize, zio_subblock);
3976 	}
3977 
3978 	/*
3979 	 * If this is not a physical io, make sure that it is properly aligned
3980 	 * before proceeding.
3981 	 */
3982 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
3983 		ASSERT0(P2PHASE(zio->io_offset, align));
3984 		ASSERT0(P2PHASE(zio->io_size, align));
3985 	} else {
3986 		/*
3987 		 * For physical writes, we allow 512b aligned writes and assume
3988 		 * the device will perform a read-modify-write as necessary.
3989 		 */
3990 		ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
3991 		ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
3992 	}
3993 
3994 	VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
3995 
3996 	/*
3997 	 * If this is a repair I/O, and there's no self-healing involved --
3998 	 * that is, we're just resilvering what we expect to resilver --
3999 	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
4000 	 * This prevents spurious resilvering.
4001 	 *
4002 	 * There are a few ways that we can end up creating these spurious
4003 	 * resilver i/os:
4004 	 *
4005 	 * 1. A resilver i/o will be issued if any DVA in the BP has a
4006 	 * dirty DTL.  The mirror code will issue resilver writes to
4007 	 * each DVA, including the one(s) that are not on vdevs with dirty
4008 	 * DTLs.
4009 	 *
4010 	 * 2. With nested replication, which happens when we have a
4011 	 * "replacing" or "spare" vdev that's a child of a mirror or raidz.
4012 	 * For example, given mirror(replacing(A+B), C), it's likely that
4013 	 * only A is out of date (it's the new device). In this case, we'll
4014 	 * read from C, then use the data to resilver A+B -- but we don't
4015 	 * actually want to resilver B, just A. The top-level mirror has no
4016 	 * way to know this, so instead we just discard unnecessary repairs
4017 	 * as we work our way down the vdev tree.
4018 	 *
4019 	 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc.
4020 	 * The same logic applies to any form of nested replication: ditto
4021 	 * + mirror, RAID-Z + replacing, etc.
4022 	 *
4023 	 * However, indirect vdevs point off to other vdevs which may have
4024 	 * DTL's, so we never bypass them.  The child i/os on concrete vdevs
4025 	 * will be properly bypassed instead.
4026 	 *
4027 	 * Leaf DTL_PARTIAL can be empty when a legitimate write comes from
4028 	 * a dRAID spare vdev. For example, when a dRAID spare is first
4029 	 * used, its spare blocks need to be written to but the leaf vdev's
4030 	 * of such blocks can have empty DTL_PARTIAL.
4031 	 *
4032 	 * There seemed no clean way to allow such writes while bypassing
4033 	 * spurious ones. At this point, just avoid all bypassing for dRAID
4034 	 * for correctness.
4035 	 */
4036 	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
4037 	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
4038 	    zio->io_txg != 0 &&	/* not a delegated i/o */
4039 	    vd->vdev_ops != &vdev_indirect_ops &&
4040 	    vd->vdev_top->vdev_ops != &vdev_draid_ops &&
4041 	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
4042 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
4043 		zio_vdev_io_bypass(zio);
4044 		return (zio);
4045 	}
4046 
4047 	/*
4048 	 * Select the next best leaf I/O to process.  Distributed spares are
4049 	 * excluded since they dispatch the I/O directly to a leaf vdev after
4050 	 * applying the dRAID mapping.
4051 	 */
4052 	if (vd->vdev_ops->vdev_op_leaf &&
4053 	    vd->vdev_ops != &vdev_draid_spare_ops &&
4054 	    (zio->io_type == ZIO_TYPE_READ ||
4055 	    zio->io_type == ZIO_TYPE_WRITE ||
4056 	    zio->io_type == ZIO_TYPE_TRIM)) {
4057 
4058 		if (zio_handle_device_injection(vd, zio, ENOSYS) != 0) {
4059 			/*
4060 			 * "no-op" injections return success, but do no actual
4061 			 * work. Just skip the remaining vdev stages.
4062 			 */
4063 			zio_vdev_io_bypass(zio);
4064 			zio_interrupt(zio);
4065 			return (NULL);
4066 		}
4067 
4068 		if ((zio = vdev_queue_io(zio)) == NULL)
4069 			return (NULL);
4070 
4071 		if (!vdev_accessible(vd, zio)) {
4072 			zio->io_error = SET_ERROR(ENXIO);
4073 			zio_interrupt(zio);
4074 			return (NULL);
4075 		}
4076 		zio->io_delay = gethrtime();
4077 	}
4078 
4079 	vd->vdev_ops->vdev_op_io_start(zio);
4080 	return (NULL);
4081 }
4082 
4083 static zio_t *
4084 zio_vdev_io_done(zio_t *zio)
4085 {
4086 	vdev_t *vd = zio->io_vd;
4087 	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
4088 	boolean_t unexpected_error = B_FALSE;
4089 
4090 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
4091 		return (NULL);
4092 	}
4093 
4094 	ASSERT(zio->io_type == ZIO_TYPE_READ ||
4095 	    zio->io_type == ZIO_TYPE_WRITE ||
4096 	    zio->io_type == ZIO_TYPE_FLUSH ||
4097 	    zio->io_type == ZIO_TYPE_TRIM);
4098 
4099 	if (zio->io_delay)
4100 		zio->io_delay = gethrtime() - zio->io_delay;
4101 
4102 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
4103 	    vd->vdev_ops != &vdev_draid_spare_ops) {
4104 		if (zio->io_type != ZIO_TYPE_FLUSH)
4105 			vdev_queue_io_done(zio);
4106 
4107 		if (zio_injection_enabled && zio->io_error == 0)
4108 			zio->io_error = zio_handle_device_injections(vd, zio,
4109 			    EIO, EILSEQ);
4110 
4111 		if (zio_injection_enabled && zio->io_error == 0)
4112 			zio->io_error = zio_handle_label_injection(zio, EIO);
4113 
4114 		if (zio->io_error && zio->io_type != ZIO_TYPE_FLUSH &&
4115 		    zio->io_type != ZIO_TYPE_TRIM) {
4116 			if (!vdev_accessible(vd, zio)) {
4117 				zio->io_error = SET_ERROR(ENXIO);
4118 			} else {
4119 				unexpected_error = B_TRUE;
4120 			}
4121 		}
4122 	}
4123 
4124 	ops->vdev_op_io_done(zio);
4125 
4126 	if (unexpected_error && vd->vdev_remove_wanted == B_FALSE)
4127 		VERIFY(vdev_probe(vd, zio) == NULL);
4128 
4129 	return (zio);
4130 }
4131 
4132 /*
4133  * This function is used to change the priority of an existing zio that is
4134  * currently in-flight. This is used by the arc to upgrade priority in the
4135  * event that a demand read is made for a block that is currently queued
4136  * as a scrub or async read IO. Otherwise, the high priority read request
4137  * would end up having to wait for the lower priority IO.
4138  */
4139 void
4140 zio_change_priority(zio_t *pio, zio_priority_t priority)
4141 {
4142 	zio_t *cio, *cio_next;
4143 	zio_link_t *zl = NULL;
4144 
4145 	ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
4146 
4147 	if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) {
4148 		vdev_queue_change_io_priority(pio, priority);
4149 	} else {
4150 		pio->io_priority = priority;
4151 	}
4152 
4153 	mutex_enter(&pio->io_lock);
4154 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
4155 		cio_next = zio_walk_children(pio, &zl);
4156 		zio_change_priority(cio, priority);
4157 	}
4158 	mutex_exit(&pio->io_lock);
4159 }
4160 
4161 /*
4162  * For non-raidz ZIOs, we can just copy aside the bad data read from the
4163  * disk, and use that to finish the checksum ereport later.
4164  */
4165 static void
4166 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
4167     const abd_t *good_buf)
4168 {
4169 	/* no processing needed */
4170 	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
4171 }
4172 
4173 void
4174 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr)
4175 {
4176 	void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size);
4177 
4178 	abd_copy(abd, zio->io_abd, zio->io_size);
4179 
4180 	zcr->zcr_cbinfo = zio->io_size;
4181 	zcr->zcr_cbdata = abd;
4182 	zcr->zcr_finish = zio_vsd_default_cksum_finish;
4183 	zcr->zcr_free = zio_abd_free;
4184 }
4185 
4186 static zio_t *
4187 zio_vdev_io_assess(zio_t *zio)
4188 {
4189 	vdev_t *vd = zio->io_vd;
4190 
4191 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
4192 		return (NULL);
4193 	}
4194 
4195 	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
4196 		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
4197 
4198 	if (zio->io_vsd != NULL) {
4199 		zio->io_vsd_ops->vsd_free(zio);
4200 		zio->io_vsd = NULL;
4201 	}
4202 
4203 	if (zio_injection_enabled && zio->io_error == 0)
4204 		zio->io_error = zio_handle_fault_injection(zio, EIO);
4205 
4206 	/*
4207 	 * If the I/O failed, determine whether we should attempt to retry it.
4208 	 *
4209 	 * On retry, we cut in line in the issue queue, since we don't want
4210 	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
4211 	 */
4212 	if (zio->io_error && vd == NULL &&
4213 	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
4214 		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
4215 		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
4216 		zio->io_error = 0;
4217 		zio->io_flags |= ZIO_FLAG_IO_RETRY | ZIO_FLAG_DONT_AGGREGATE;
4218 		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
4219 		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
4220 		    zio_requeue_io_start_cut_in_line);
4221 		return (NULL);
4222 	}
4223 
4224 	/*
4225 	 * If we got an error on a leaf device, convert it to ENXIO
4226 	 * if the device is not accessible at all.
4227 	 */
4228 	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
4229 	    !vdev_accessible(vd, zio))
4230 		zio->io_error = SET_ERROR(ENXIO);
4231 
4232 	/*
4233 	 * If we can't write to an interior vdev (mirror or RAID-Z),
4234 	 * set vdev_cant_write so that we stop trying to allocate from it.
4235 	 */
4236 	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
4237 	    vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
4238 		vdev_dbgmsg(vd, "zio_vdev_io_assess(zio=%px) setting "
4239 		    "cant_write=TRUE due to write failure with ENXIO",
4240 		    zio);
4241 		vd->vdev_cant_write = B_TRUE;
4242 	}
4243 
4244 	/*
4245 	 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future
4246 	 * attempts will ever succeed. In this case we set a persistent
4247 	 * boolean flag so that we don't bother with it in the future.
4248 	 */
4249 	if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) &&
4250 	    zio->io_type == ZIO_TYPE_FLUSH && vd != NULL)
4251 		vd->vdev_nowritecache = B_TRUE;
4252 
4253 	if (zio->io_error)
4254 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4255 
4256 	return (zio);
4257 }
4258 
4259 void
4260 zio_vdev_io_reissue(zio_t *zio)
4261 {
4262 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
4263 	ASSERT(zio->io_error == 0);
4264 
4265 	zio->io_stage >>= 1;
4266 }
4267 
4268 void
4269 zio_vdev_io_redone(zio_t *zio)
4270 {
4271 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
4272 
4273 	zio->io_stage >>= 1;
4274 }
4275 
4276 void
4277 zio_vdev_io_bypass(zio_t *zio)
4278 {
4279 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
4280 	ASSERT(zio->io_error == 0);
4281 
4282 	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
4283 	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
4284 }
4285 
4286 /*
4287  * ==========================================================================
4288  * Encrypt and store encryption parameters
4289  * ==========================================================================
4290  */
4291 
4292 
4293 /*
4294  * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for
4295  * managing the storage of encryption parameters and passing them to the
4296  * lower-level encryption functions.
4297  */
4298 static zio_t *
4299 zio_encrypt(zio_t *zio)
4300 {
4301 	zio_prop_t *zp = &zio->io_prop;
4302 	spa_t *spa = zio->io_spa;
4303 	blkptr_t *bp = zio->io_bp;
4304 	uint64_t psize = BP_GET_PSIZE(bp);
4305 	uint64_t dsobj = zio->io_bookmark.zb_objset;
4306 	dmu_object_type_t ot = BP_GET_TYPE(bp);
4307 	void *enc_buf = NULL;
4308 	abd_t *eabd = NULL;
4309 	uint8_t salt[ZIO_DATA_SALT_LEN];
4310 	uint8_t iv[ZIO_DATA_IV_LEN];
4311 	uint8_t mac[ZIO_DATA_MAC_LEN];
4312 	boolean_t no_crypt = B_FALSE;
4313 
4314 	/* the root zio already encrypted the data */
4315 	if (zio->io_child_type == ZIO_CHILD_GANG)
4316 		return (zio);
4317 
4318 	/* only ZIL blocks are re-encrypted on rewrite */
4319 	if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG)
4320 		return (zio);
4321 
4322 	if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) {
4323 		BP_SET_CRYPT(bp, B_FALSE);
4324 		return (zio);
4325 	}
4326 
4327 	/* if we are doing raw encryption set the provided encryption params */
4328 	if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) {
4329 		ASSERT0(BP_GET_LEVEL(bp));
4330 		BP_SET_CRYPT(bp, B_TRUE);
4331 		BP_SET_BYTEORDER(bp, zp->zp_byteorder);
4332 		if (ot != DMU_OT_OBJSET)
4333 			zio_crypt_encode_mac_bp(bp, zp->zp_mac);
4334 
4335 		/* dnode blocks must be written out in the provided byteorder */
4336 		if (zp->zp_byteorder != ZFS_HOST_BYTEORDER &&
4337 		    ot == DMU_OT_DNODE) {
4338 			void *bswap_buf = zio_buf_alloc(psize);
4339 			abd_t *babd = abd_get_from_buf(bswap_buf, psize);
4340 
4341 			ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4342 			abd_copy_to_buf(bswap_buf, zio->io_abd, psize);
4343 			dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf,
4344 			    psize);
4345 
4346 			abd_take_ownership_of_buf(babd, B_TRUE);
4347 			zio_push_transform(zio, babd, psize, psize, NULL);
4348 		}
4349 
4350 		if (DMU_OT_IS_ENCRYPTED(ot))
4351 			zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv);
4352 		return (zio);
4353 	}
4354 
4355 	/* indirect blocks only maintain a cksum of the lower level MACs */
4356 	if (BP_GET_LEVEL(bp) > 0) {
4357 		BP_SET_CRYPT(bp, B_TRUE);
4358 		VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE,
4359 		    zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp),
4360 		    mac));
4361 		zio_crypt_encode_mac_bp(bp, mac);
4362 		return (zio);
4363 	}
4364 
4365 	/*
4366 	 * Objset blocks are a special case since they have 2 256-bit MACs
4367 	 * embedded within them.
4368 	 */
4369 	if (ot == DMU_OT_OBJSET) {
4370 		ASSERT0(DMU_OT_IS_ENCRYPTED(ot));
4371 		ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4372 		BP_SET_CRYPT(bp, B_TRUE);
4373 		VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj,
4374 		    zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp)));
4375 		return (zio);
4376 	}
4377 
4378 	/* unencrypted object types are only authenticated with a MAC */
4379 	if (!DMU_OT_IS_ENCRYPTED(ot)) {
4380 		BP_SET_CRYPT(bp, B_TRUE);
4381 		VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj,
4382 		    zio->io_abd, psize, mac));
4383 		zio_crypt_encode_mac_bp(bp, mac);
4384 		return (zio);
4385 	}
4386 
4387 	/*
4388 	 * Later passes of sync-to-convergence may decide to rewrite data
4389 	 * in place to avoid more disk reallocations. This presents a problem
4390 	 * for encryption because this constitutes rewriting the new data with
4391 	 * the same encryption key and IV. However, this only applies to blocks
4392 	 * in the MOS (particularly the spacemaps) and we do not encrypt the
4393 	 * MOS. We assert that the zio is allocating or an intent log write
4394 	 * to enforce this.
4395 	 */
4396 	ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG);
4397 	ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG);
4398 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION));
4399 	ASSERT3U(psize, !=, 0);
4400 
4401 	enc_buf = zio_buf_alloc(psize);
4402 	eabd = abd_get_from_buf(enc_buf, psize);
4403 	abd_take_ownership_of_buf(eabd, B_TRUE);
4404 
4405 	/*
4406 	 * For an explanation of what encryption parameters are stored
4407 	 * where, see the block comment in zio_crypt.c.
4408 	 */
4409 	if (ot == DMU_OT_INTENT_LOG) {
4410 		zio_crypt_decode_params_bp(bp, salt, iv);
4411 	} else {
4412 		BP_SET_CRYPT(bp, B_TRUE);
4413 	}
4414 
4415 	/* Perform the encryption. This should not fail */
4416 	VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark,
4417 	    BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
4418 	    salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt));
4419 
4420 	/* encode encryption metadata into the bp */
4421 	if (ot == DMU_OT_INTENT_LOG) {
4422 		/*
4423 		 * ZIL blocks store the MAC in the embedded checksum, so the
4424 		 * transform must always be applied.
4425 		 */
4426 		zio_crypt_encode_mac_zil(enc_buf, mac);
4427 		zio_push_transform(zio, eabd, psize, psize, NULL);
4428 	} else {
4429 		BP_SET_CRYPT(bp, B_TRUE);
4430 		zio_crypt_encode_params_bp(bp, salt, iv);
4431 		zio_crypt_encode_mac_bp(bp, mac);
4432 
4433 		if (no_crypt) {
4434 			ASSERT3U(ot, ==, DMU_OT_DNODE);
4435 			abd_free(eabd);
4436 		} else {
4437 			zio_push_transform(zio, eabd, psize, psize, NULL);
4438 		}
4439 	}
4440 
4441 	return (zio);
4442 }
4443 
4444 /*
4445  * ==========================================================================
4446  * Generate and verify checksums
4447  * ==========================================================================
4448  */
4449 static zio_t *
4450 zio_checksum_generate(zio_t *zio)
4451 {
4452 	blkptr_t *bp = zio->io_bp;
4453 	enum zio_checksum checksum;
4454 
4455 	if (bp == NULL) {
4456 		/*
4457 		 * This is zio_write_phys().
4458 		 * We're either generating a label checksum, or none at all.
4459 		 */
4460 		checksum = zio->io_prop.zp_checksum;
4461 
4462 		if (checksum == ZIO_CHECKSUM_OFF)
4463 			return (zio);
4464 
4465 		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
4466 	} else {
4467 		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
4468 			ASSERT(!IO_IS_ALLOCATING(zio));
4469 			checksum = ZIO_CHECKSUM_GANG_HEADER;
4470 		} else {
4471 			checksum = BP_GET_CHECKSUM(bp);
4472 		}
4473 	}
4474 
4475 	zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size);
4476 
4477 	return (zio);
4478 }
4479 
4480 static zio_t *
4481 zio_checksum_verify(zio_t *zio)
4482 {
4483 	zio_bad_cksum_t info;
4484 	blkptr_t *bp = zio->io_bp;
4485 	int error;
4486 
4487 	ASSERT(zio->io_vd != NULL);
4488 
4489 	if (bp == NULL) {
4490 		/*
4491 		 * This is zio_read_phys().
4492 		 * We're either verifying a label checksum, or nothing at all.
4493 		 */
4494 		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
4495 			return (zio);
4496 
4497 		ASSERT3U(zio->io_prop.zp_checksum, ==, ZIO_CHECKSUM_LABEL);
4498 	}
4499 
4500 	if ((error = zio_checksum_error(zio, &info)) != 0) {
4501 		zio->io_error = error;
4502 		if (error == ECKSUM &&
4503 		    !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
4504 			mutex_enter(&zio->io_vd->vdev_stat_lock);
4505 			zio->io_vd->vdev_stat.vs_checksum_errors++;
4506 			mutex_exit(&zio->io_vd->vdev_stat_lock);
4507 			(void) zfs_ereport_start_checksum(zio->io_spa,
4508 			    zio->io_vd, &zio->io_bookmark, zio,
4509 			    zio->io_offset, zio->io_size, &info);
4510 		}
4511 	}
4512 
4513 	return (zio);
4514 }
4515 
4516 /*
4517  * Called by RAID-Z to ensure we don't compute the checksum twice.
4518  */
4519 void
4520 zio_checksum_verified(zio_t *zio)
4521 {
4522 	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
4523 }
4524 
4525 /*
4526  * ==========================================================================
4527  * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
4528  * An error of 0 indicates success.  ENXIO indicates whole-device failure,
4529  * which may be transient (e.g. unplugged) or permanent.  ECKSUM and EIO
4530  * indicate errors that are specific to one I/O, and most likely permanent.
4531  * Any other error is presumed to be worse because we weren't expecting it.
4532  * ==========================================================================
4533  */
4534 int
4535 zio_worst_error(int e1, int e2)
4536 {
4537 	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
4538 	int r1, r2;
4539 
4540 	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
4541 		if (e1 == zio_error_rank[r1])
4542 			break;
4543 
4544 	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
4545 		if (e2 == zio_error_rank[r2])
4546 			break;
4547 
4548 	return (r1 > r2 ? e1 : e2);
4549 }
4550 
4551 /*
4552  * ==========================================================================
4553  * I/O completion
4554  * ==========================================================================
4555  */
4556 static zio_t *
4557 zio_ready(zio_t *zio)
4558 {
4559 	blkptr_t *bp = zio->io_bp;
4560 	zio_t *pio, *pio_next;
4561 	zio_link_t *zl = NULL;
4562 
4563 	if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
4564 	    ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT, ZIO_WAIT_READY)) {
4565 		return (NULL);
4566 	}
4567 
4568 	if (zio->io_ready) {
4569 		ASSERT(IO_IS_ALLOCATING(zio));
4570 		ASSERT(BP_GET_LOGICAL_BIRTH(bp) == zio->io_txg ||
4571 		    BP_IS_HOLE(bp) || (zio->io_flags & ZIO_FLAG_NOPWRITE));
4572 		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
4573 
4574 		zio->io_ready(zio);
4575 	}
4576 
4577 #ifdef ZFS_DEBUG
4578 	if (bp != NULL && bp != &zio->io_bp_copy)
4579 		zio->io_bp_copy = *bp;
4580 #endif
4581 
4582 	if (zio->io_error != 0) {
4583 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4584 
4585 		if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4586 			ASSERT(IO_IS_ALLOCATING(zio));
4587 			ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4588 			ASSERT(zio->io_metaslab_class != NULL);
4589 			ASSERT(ZIO_HAS_ALLOCATOR(zio));
4590 
4591 			/*
4592 			 * We were unable to allocate anything, unreserve and
4593 			 * issue the next I/O to allocate.
4594 			 */
4595 			metaslab_class_throttle_unreserve(
4596 			    zio->io_metaslab_class, zio->io_prop.zp_copies,
4597 			    zio->io_allocator, zio);
4598 			zio_allocate_dispatch(zio->io_spa, zio->io_allocator);
4599 		}
4600 	}
4601 
4602 	mutex_enter(&zio->io_lock);
4603 	zio->io_state[ZIO_WAIT_READY] = 1;
4604 	pio = zio_walk_parents(zio, &zl);
4605 	mutex_exit(&zio->io_lock);
4606 
4607 	/*
4608 	 * As we notify zio's parents, new parents could be added.
4609 	 * New parents go to the head of zio's io_parent_list, however,
4610 	 * so we will (correctly) not notify them.  The remainder of zio's
4611 	 * io_parent_list, from 'pio_next' onward, cannot change because
4612 	 * all parents must wait for us to be done before they can be done.
4613 	 */
4614 	for (; pio != NULL; pio = pio_next) {
4615 		pio_next = zio_walk_parents(zio, &zl);
4616 		zio_notify_parent(pio, zio, ZIO_WAIT_READY, NULL);
4617 	}
4618 
4619 	if (zio->io_flags & ZIO_FLAG_NODATA) {
4620 		if (bp != NULL && BP_IS_GANG(bp)) {
4621 			zio->io_flags &= ~ZIO_FLAG_NODATA;
4622 		} else {
4623 			ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE);
4624 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
4625 		}
4626 	}
4627 
4628 	if (zio_injection_enabled &&
4629 	    zio->io_spa->spa_syncing_txg == zio->io_txg)
4630 		zio_handle_ignored_writes(zio);
4631 
4632 	return (zio);
4633 }
4634 
4635 /*
4636  * Update the allocation throttle accounting.
4637  */
4638 static void
4639 zio_dva_throttle_done(zio_t *zio)
4640 {
4641 	zio_t *lio __maybe_unused = zio->io_logical;
4642 	zio_t *pio = zio_unique_parent(zio);
4643 	vdev_t *vd = zio->io_vd;
4644 	int flags = METASLAB_ASYNC_ALLOC;
4645 
4646 	ASSERT3P(zio->io_bp, !=, NULL);
4647 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
4648 	ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE);
4649 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
4650 	ASSERT(vd != NULL);
4651 	ASSERT3P(vd, ==, vd->vdev_top);
4652 	ASSERT(zio_injection_enabled || !(zio->io_flags & ZIO_FLAG_IO_RETRY));
4653 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4654 	ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING);
4655 	ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE));
4656 	ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA));
4657 
4658 	/*
4659 	 * Parents of gang children can have two flavors -- ones that
4660 	 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set)
4661 	 * and ones that allocated the constituent blocks. The allocation
4662 	 * throttle needs to know the allocating parent zio so we must find
4663 	 * it here.
4664 	 */
4665 	if (pio->io_child_type == ZIO_CHILD_GANG) {
4666 		/*
4667 		 * If our parent is a rewrite gang child then our grandparent
4668 		 * would have been the one that performed the allocation.
4669 		 */
4670 		if (pio->io_flags & ZIO_FLAG_IO_REWRITE)
4671 			pio = zio_unique_parent(pio);
4672 		flags |= METASLAB_GANG_CHILD;
4673 	}
4674 
4675 	ASSERT(IO_IS_ALLOCATING(pio));
4676 	ASSERT(ZIO_HAS_ALLOCATOR(pio));
4677 	ASSERT3P(zio, !=, zio->io_logical);
4678 	ASSERT(zio->io_logical != NULL);
4679 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4680 	ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE);
4681 	ASSERT(zio->io_metaslab_class != NULL);
4682 
4683 	mutex_enter(&pio->io_lock);
4684 	metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags,
4685 	    pio->io_allocator, B_TRUE);
4686 	mutex_exit(&pio->io_lock);
4687 
4688 	metaslab_class_throttle_unreserve(zio->io_metaslab_class, 1,
4689 	    pio->io_allocator, pio);
4690 
4691 	/*
4692 	 * Call into the pipeline to see if there is more work that
4693 	 * needs to be done. If there is work to be done it will be
4694 	 * dispatched to another taskq thread.
4695 	 */
4696 	zio_allocate_dispatch(zio->io_spa, pio->io_allocator);
4697 }
4698 
4699 static zio_t *
4700 zio_done(zio_t *zio)
4701 {
4702 	/*
4703 	 * Always attempt to keep stack usage minimal here since
4704 	 * we can be called recursively up to 19 levels deep.
4705 	 */
4706 	const uint64_t psize = zio->io_size;
4707 	zio_t *pio, *pio_next;
4708 	zio_link_t *zl = NULL;
4709 
4710 	/*
4711 	 * If our children haven't all completed,
4712 	 * wait for them and then repeat this pipeline stage.
4713 	 */
4714 	if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) {
4715 		return (NULL);
4716 	}
4717 
4718 	/*
4719 	 * If the allocation throttle is enabled, then update the accounting.
4720 	 * We only track child I/Os that are part of an allocating async
4721 	 * write. We must do this since the allocation is performed
4722 	 * by the logical I/O but the actual write is done by child I/Os.
4723 	 */
4724 	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING &&
4725 	    zio->io_child_type == ZIO_CHILD_VDEV) {
4726 		ASSERT(zio->io_metaslab_class != NULL);
4727 		ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled);
4728 		zio_dva_throttle_done(zio);
4729 	}
4730 
4731 	/*
4732 	 * If the allocation throttle is enabled, verify that
4733 	 * we have decremented the refcounts for every I/O that was throttled.
4734 	 */
4735 	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4736 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
4737 		ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4738 		ASSERT(zio->io_bp != NULL);
4739 		ASSERT(ZIO_HAS_ALLOCATOR(zio));
4740 
4741 		metaslab_group_alloc_verify(zio->io_spa, zio->io_bp, zio,
4742 		    zio->io_allocator);
4743 		VERIFY(zfs_refcount_not_held(&zio->io_metaslab_class->
4744 		    mc_allocator[zio->io_allocator].mca_alloc_slots, zio));
4745 	}
4746 
4747 
4748 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
4749 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
4750 			ASSERT(zio->io_children[c][w] == 0);
4751 
4752 	if (zio->io_bp != NULL && !BP_IS_EMBEDDED(zio->io_bp)) {
4753 		ASSERT(zio->io_bp->blk_pad[0] == 0);
4754 		ASSERT(zio->io_bp->blk_pad[1] == 0);
4755 		ASSERT(memcmp(zio->io_bp, &zio->io_bp_copy,
4756 		    sizeof (blkptr_t)) == 0 ||
4757 		    (zio->io_bp == zio_unique_parent(zio)->io_bp));
4758 		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) &&
4759 		    zio->io_bp_override == NULL &&
4760 		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
4761 			ASSERT3U(zio->io_prop.zp_copies, <=,
4762 			    BP_GET_NDVAS(zio->io_bp));
4763 			ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 ||
4764 			    (BP_COUNT_GANG(zio->io_bp) ==
4765 			    BP_GET_NDVAS(zio->io_bp)));
4766 		}
4767 		if (zio->io_flags & ZIO_FLAG_NOPWRITE)
4768 			VERIFY(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
4769 	}
4770 
4771 	/*
4772 	 * If there were child vdev/gang/ddt errors, they apply to us now.
4773 	 */
4774 	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
4775 	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
4776 	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
4777 
4778 	/*
4779 	 * If the I/O on the transformed data was successful, generate any
4780 	 * checksum reports now while we still have the transformed data.
4781 	 */
4782 	if (zio->io_error == 0) {
4783 		while (zio->io_cksum_report != NULL) {
4784 			zio_cksum_report_t *zcr = zio->io_cksum_report;
4785 			uint64_t align = zcr->zcr_align;
4786 			uint64_t asize = P2ROUNDUP(psize, align);
4787 			abd_t *adata = zio->io_abd;
4788 
4789 			if (adata != NULL && asize != psize) {
4790 				adata = abd_alloc(asize, B_TRUE);
4791 				abd_copy(adata, zio->io_abd, psize);
4792 				abd_zero_off(adata, psize, asize - psize);
4793 			}
4794 
4795 			zio->io_cksum_report = zcr->zcr_next;
4796 			zcr->zcr_next = NULL;
4797 			zcr->zcr_finish(zcr, adata);
4798 			zfs_ereport_free_checksum(zcr);
4799 
4800 			if (adata != NULL && asize != psize)
4801 				abd_free(adata);
4802 		}
4803 	}
4804 
4805 	zio_pop_transforms(zio);	/* note: may set zio->io_error */
4806 
4807 	vdev_stat_update(zio, psize);
4808 
4809 	/*
4810 	 * If this I/O is attached to a particular vdev is slow, exceeding
4811 	 * 30 seconds to complete, post an error described the I/O delay.
4812 	 * We ignore these errors if the device is currently unavailable.
4813 	 */
4814 	if (zio->io_delay >= MSEC2NSEC(zio_slow_io_ms)) {
4815 		if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) {
4816 			/*
4817 			 * We want to only increment our slow IO counters if
4818 			 * the IO is valid (i.e. not if the drive is removed).
4819 			 *
4820 			 * zfs_ereport_post() will also do these checks, but
4821 			 * it can also ratelimit and have other failures, so we
4822 			 * need to increment the slow_io counters independent
4823 			 * of it.
4824 			 */
4825 			if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY,
4826 			    zio->io_spa, zio->io_vd, zio)) {
4827 				mutex_enter(&zio->io_vd->vdev_stat_lock);
4828 				zio->io_vd->vdev_stat.vs_slow_ios++;
4829 				mutex_exit(&zio->io_vd->vdev_stat_lock);
4830 
4831 				(void) zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
4832 				    zio->io_spa, zio->io_vd, &zio->io_bookmark,
4833 				    zio, 0);
4834 			}
4835 		}
4836 	}
4837 
4838 	if (zio->io_error) {
4839 		/*
4840 		 * If this I/O is attached to a particular vdev,
4841 		 * generate an error message describing the I/O failure
4842 		 * at the block level.  We ignore these errors if the
4843 		 * device is currently unavailable.
4844 		 */
4845 		if (zio->io_error != ECKSUM && zio->io_vd != NULL &&
4846 		    !vdev_is_dead(zio->io_vd)) {
4847 			int ret = zfs_ereport_post(FM_EREPORT_ZFS_IO,
4848 			    zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0);
4849 			if (ret != EALREADY) {
4850 				mutex_enter(&zio->io_vd->vdev_stat_lock);
4851 				if (zio->io_type == ZIO_TYPE_READ)
4852 					zio->io_vd->vdev_stat.vs_read_errors++;
4853 				else if (zio->io_type == ZIO_TYPE_WRITE)
4854 					zio->io_vd->vdev_stat.vs_write_errors++;
4855 				mutex_exit(&zio->io_vd->vdev_stat_lock);
4856 			}
4857 		}
4858 
4859 		if ((zio->io_error == EIO || !(zio->io_flags &
4860 		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
4861 		    zio == zio->io_logical) {
4862 			/*
4863 			 * For logical I/O requests, tell the SPA to log the
4864 			 * error and generate a logical data ereport.
4865 			 */
4866 			spa_log_error(zio->io_spa, &zio->io_bookmark,
4867 			    BP_GET_LOGICAL_BIRTH(zio->io_bp));
4868 			(void) zfs_ereport_post(FM_EREPORT_ZFS_DATA,
4869 			    zio->io_spa, NULL, &zio->io_bookmark, zio, 0);
4870 		}
4871 	}
4872 
4873 	if (zio->io_error && zio == zio->io_logical) {
4874 		/*
4875 		 * Determine whether zio should be reexecuted.  This will
4876 		 * propagate all the way to the root via zio_notify_parent().
4877 		 */
4878 		ASSERT(zio->io_vd == NULL && zio->io_bp != NULL);
4879 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4880 
4881 		if (IO_IS_ALLOCATING(zio) &&
4882 		    !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
4883 			if (zio->io_error != ENOSPC)
4884 				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
4885 			else
4886 				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4887 		}
4888 
4889 		if ((zio->io_type == ZIO_TYPE_READ ||
4890 		    zio->io_type == ZIO_TYPE_FREE) &&
4891 		    !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
4892 		    zio->io_error == ENXIO &&
4893 		    spa_load_state(zio->io_spa) == SPA_LOAD_NONE &&
4894 		    spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE)
4895 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4896 
4897 		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
4898 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4899 
4900 		/*
4901 		 * Here is a possibly good place to attempt to do
4902 		 * either combinatorial reconstruction or error correction
4903 		 * based on checksums.  It also might be a good place
4904 		 * to send out preliminary ereports before we suspend
4905 		 * processing.
4906 		 */
4907 	}
4908 
4909 	/*
4910 	 * If there were logical child errors, they apply to us now.
4911 	 * We defer this until now to avoid conflating logical child
4912 	 * errors with errors that happened to the zio itself when
4913 	 * updating vdev stats and reporting FMA events above.
4914 	 */
4915 	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
4916 
4917 	if ((zio->io_error || zio->io_reexecute) &&
4918 	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
4919 	    !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
4920 		zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp);
4921 
4922 	zio_gang_tree_free(&zio->io_gang_tree);
4923 
4924 	/*
4925 	 * Godfather I/Os should never suspend.
4926 	 */
4927 	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
4928 	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
4929 		zio->io_reexecute &= ~ZIO_REEXECUTE_SUSPEND;
4930 
4931 	if (zio->io_reexecute) {
4932 		/*
4933 		 * This is a logical I/O that wants to reexecute.
4934 		 *
4935 		 * Reexecute is top-down.  When an i/o fails, if it's not
4936 		 * the root, it simply notifies its parent and sticks around.
4937 		 * The parent, seeing that it still has children in zio_done(),
4938 		 * does the same.  This percolates all the way up to the root.
4939 		 * The root i/o will reexecute or suspend the entire tree.
4940 		 *
4941 		 * This approach ensures that zio_reexecute() honors
4942 		 * all the original i/o dependency relationships, e.g.
4943 		 * parents not executing until children are ready.
4944 		 */
4945 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4946 
4947 		zio->io_gang_leader = NULL;
4948 
4949 		mutex_enter(&zio->io_lock);
4950 		zio->io_state[ZIO_WAIT_DONE] = 1;
4951 		mutex_exit(&zio->io_lock);
4952 
4953 		/*
4954 		 * "The Godfather" I/O monitors its children but is
4955 		 * not a true parent to them. It will track them through
4956 		 * the pipeline but severs its ties whenever they get into
4957 		 * trouble (e.g. suspended). This allows "The Godfather"
4958 		 * I/O to return status without blocking.
4959 		 */
4960 		zl = NULL;
4961 		for (pio = zio_walk_parents(zio, &zl); pio != NULL;
4962 		    pio = pio_next) {
4963 			zio_link_t *remove_zl = zl;
4964 			pio_next = zio_walk_parents(zio, &zl);
4965 
4966 			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
4967 			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
4968 				zio_remove_child(pio, zio, remove_zl);
4969 				/*
4970 				 * This is a rare code path, so we don't
4971 				 * bother with "next_to_execute".
4972 				 */
4973 				zio_notify_parent(pio, zio, ZIO_WAIT_DONE,
4974 				    NULL);
4975 			}
4976 		}
4977 
4978 		if ((pio = zio_unique_parent(zio)) != NULL) {
4979 			/*
4980 			 * We're not a root i/o, so there's nothing to do
4981 			 * but notify our parent.  Don't propagate errors
4982 			 * upward since we haven't permanently failed yet.
4983 			 */
4984 			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
4985 			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
4986 			/*
4987 			 * This is a rare code path, so we don't bother with
4988 			 * "next_to_execute".
4989 			 */
4990 			zio_notify_parent(pio, zio, ZIO_WAIT_DONE, NULL);
4991 		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
4992 			/*
4993 			 * We'd fail again if we reexecuted now, so suspend
4994 			 * until conditions improve (e.g. device comes online).
4995 			 */
4996 			zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR);
4997 		} else {
4998 			/*
4999 			 * Reexecution is potentially a huge amount of work.
5000 			 * Hand it off to the otherwise-unused claim taskq.
5001 			 */
5002 			spa_taskq_dispatch(zio->io_spa,
5003 			    ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE,
5004 			    zio_reexecute, zio, B_FALSE);
5005 		}
5006 		return (NULL);
5007 	}
5008 
5009 	ASSERT(list_is_empty(&zio->io_child_list));
5010 	ASSERT(zio->io_reexecute == 0);
5011 	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
5012 
5013 	/*
5014 	 * Report any checksum errors, since the I/O is complete.
5015 	 */
5016 	while (zio->io_cksum_report != NULL) {
5017 		zio_cksum_report_t *zcr = zio->io_cksum_report;
5018 		zio->io_cksum_report = zcr->zcr_next;
5019 		zcr->zcr_next = NULL;
5020 		zcr->zcr_finish(zcr, NULL);
5021 		zfs_ereport_free_checksum(zcr);
5022 	}
5023 
5024 	/*
5025 	 * It is the responsibility of the done callback to ensure that this
5026 	 * particular zio is no longer discoverable for adoption, and as
5027 	 * such, cannot acquire any new parents.
5028 	 */
5029 	if (zio->io_done)
5030 		zio->io_done(zio);
5031 
5032 	mutex_enter(&zio->io_lock);
5033 	zio->io_state[ZIO_WAIT_DONE] = 1;
5034 	mutex_exit(&zio->io_lock);
5035 
5036 	/*
5037 	 * We are done executing this zio.  We may want to execute a parent
5038 	 * next.  See the comment in zio_notify_parent().
5039 	 */
5040 	zio_t *next_to_execute = NULL;
5041 	zl = NULL;
5042 	for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) {
5043 		zio_link_t *remove_zl = zl;
5044 		pio_next = zio_walk_parents(zio, &zl);
5045 		zio_remove_child(pio, zio, remove_zl);
5046 		zio_notify_parent(pio, zio, ZIO_WAIT_DONE, &next_to_execute);
5047 	}
5048 
5049 	if (zio->io_waiter != NULL) {
5050 		mutex_enter(&zio->io_lock);
5051 		zio->io_executor = NULL;
5052 		cv_broadcast(&zio->io_cv);
5053 		mutex_exit(&zio->io_lock);
5054 	} else {
5055 		zio_destroy(zio);
5056 	}
5057 
5058 	return (next_to_execute);
5059 }
5060 
5061 /*
5062  * ==========================================================================
5063  * I/O pipeline definition
5064  * ==========================================================================
5065  */
5066 static zio_pipe_stage_t *zio_pipeline[] = {
5067 	NULL,
5068 	zio_read_bp_init,
5069 	zio_write_bp_init,
5070 	zio_free_bp_init,
5071 	zio_issue_async,
5072 	zio_write_compress,
5073 	zio_encrypt,
5074 	zio_checksum_generate,
5075 	zio_nop_write,
5076 	zio_brt_free,
5077 	zio_ddt_read_start,
5078 	zio_ddt_read_done,
5079 	zio_ddt_write,
5080 	zio_ddt_free,
5081 	zio_gang_assemble,
5082 	zio_gang_issue,
5083 	zio_dva_throttle,
5084 	zio_dva_allocate,
5085 	zio_dva_free,
5086 	zio_dva_claim,
5087 	zio_ready,
5088 	zio_vdev_io_start,
5089 	zio_vdev_io_done,
5090 	zio_vdev_io_assess,
5091 	zio_checksum_verify,
5092 	zio_done
5093 };
5094 
5095 
5096 
5097 
5098 /*
5099  * Compare two zbookmark_phys_t's to see which we would reach first in a
5100  * pre-order traversal of the object tree.
5101  *
5102  * This is simple in every case aside from the meta-dnode object. For all other
5103  * objects, we traverse them in order (object 1 before object 2, and so on).
5104  * However, all of these objects are traversed while traversing object 0, since
5105  * the data it points to is the list of objects.  Thus, we need to convert to a
5106  * canonical representation so we can compare meta-dnode bookmarks to
5107  * non-meta-dnode bookmarks.
5108  *
5109  * We do this by calculating "equivalents" for each field of the zbookmark.
5110  * zbookmarks outside of the meta-dnode use their own object and level, and
5111  * calculate the level 0 equivalent (the first L0 blkid that is contained in the
5112  * blocks this bookmark refers to) by multiplying their blkid by their span
5113  * (the number of L0 blocks contained within one block at their level).
5114  * zbookmarks inside the meta-dnode calculate their object equivalent
5115  * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
5116  * level + 1<<31 (any value larger than a level could ever be) for their level.
5117  * This causes them to always compare before a bookmark in their object
5118  * equivalent, compare appropriately to bookmarks in other objects, and to
5119  * compare appropriately to other bookmarks in the meta-dnode.
5120  */
5121 int
5122 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
5123     const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
5124 {
5125 	/*
5126 	 * These variables represent the "equivalent" values for the zbookmark,
5127 	 * after converting zbookmarks inside the meta dnode to their
5128 	 * normal-object equivalents.
5129 	 */
5130 	uint64_t zb1obj, zb2obj;
5131 	uint64_t zb1L0, zb2L0;
5132 	uint64_t zb1level, zb2level;
5133 
5134 	if (zb1->zb_object == zb2->zb_object &&
5135 	    zb1->zb_level == zb2->zb_level &&
5136 	    zb1->zb_blkid == zb2->zb_blkid)
5137 		return (0);
5138 
5139 	IMPLY(zb1->zb_level > 0, ibs1 >= SPA_MINBLOCKSHIFT);
5140 	IMPLY(zb2->zb_level > 0, ibs2 >= SPA_MINBLOCKSHIFT);
5141 
5142 	/*
5143 	 * BP_SPANB calculates the span in blocks.
5144 	 */
5145 	zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
5146 	zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
5147 
5148 	if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
5149 		zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
5150 		zb1L0 = 0;
5151 		zb1level = zb1->zb_level + COMPARE_META_LEVEL;
5152 	} else {
5153 		zb1obj = zb1->zb_object;
5154 		zb1level = zb1->zb_level;
5155 	}
5156 
5157 	if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
5158 		zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
5159 		zb2L0 = 0;
5160 		zb2level = zb2->zb_level + COMPARE_META_LEVEL;
5161 	} else {
5162 		zb2obj = zb2->zb_object;
5163 		zb2level = zb2->zb_level;
5164 	}
5165 
5166 	/* Now that we have a canonical representation, do the comparison. */
5167 	if (zb1obj != zb2obj)
5168 		return (zb1obj < zb2obj ? -1 : 1);
5169 	else if (zb1L0 != zb2L0)
5170 		return (zb1L0 < zb2L0 ? -1 : 1);
5171 	else if (zb1level != zb2level)
5172 		return (zb1level > zb2level ? -1 : 1);
5173 	/*
5174 	 * This can (theoretically) happen if the bookmarks have the same object
5175 	 * and level, but different blkids, if the block sizes are not the same.
5176 	 * There is presently no way to change the indirect block sizes
5177 	 */
5178 	return (0);
5179 }
5180 
5181 /*
5182  *  This function checks the following: given that last_block is the place that
5183  *  our traversal stopped last time, does that guarantee that we've visited
5184  *  every node under subtree_root?  Therefore, we can't just use the raw output
5185  *  of zbookmark_compare.  We have to pass in a modified version of
5186  *  subtree_root; by incrementing the block id, and then checking whether
5187  *  last_block is before or equal to that, we can tell whether or not having
5188  *  visited last_block implies that all of subtree_root's children have been
5189  *  visited.
5190  */
5191 boolean_t
5192 zbookmark_subtree_completed(const dnode_phys_t *dnp,
5193     const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
5194 {
5195 	zbookmark_phys_t mod_zb = *subtree_root;
5196 	mod_zb.zb_blkid++;
5197 	ASSERT0(last_block->zb_level);
5198 
5199 	/* The objset_phys_t isn't before anything. */
5200 	if (dnp == NULL)
5201 		return (B_FALSE);
5202 
5203 	/*
5204 	 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
5205 	 * data block size in sectors, because that variable is only used if
5206 	 * the bookmark refers to a block in the meta-dnode.  Since we don't
5207 	 * know without examining it what object it refers to, and there's no
5208 	 * harm in passing in this value in other cases, we always pass it in.
5209 	 *
5210 	 * We pass in 0 for the indirect block size shift because zb2 must be
5211 	 * level 0.  The indirect block size is only used to calculate the span
5212 	 * of the bookmark, but since the bookmark must be level 0, the span is
5213 	 * always 1, so the math works out.
5214 	 *
5215 	 * If you make changes to how the zbookmark_compare code works, be sure
5216 	 * to make sure that this code still works afterwards.
5217 	 */
5218 	return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
5219 	    1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
5220 	    last_block) <= 0);
5221 }
5222 
5223 /*
5224  * This function is similar to zbookmark_subtree_completed(), but returns true
5225  * if subtree_root is equal or ahead of last_block, i.e. still to be done.
5226  */
5227 boolean_t
5228 zbookmark_subtree_tbd(const dnode_phys_t *dnp,
5229     const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
5230 {
5231 	ASSERT0(last_block->zb_level);
5232 	if (dnp == NULL)
5233 		return (B_FALSE);
5234 	return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
5235 	    1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, subtree_root,
5236 	    last_block) >= 0);
5237 }
5238 
5239 EXPORT_SYMBOL(zio_type_name);
5240 EXPORT_SYMBOL(zio_buf_alloc);
5241 EXPORT_SYMBOL(zio_data_buf_alloc);
5242 EXPORT_SYMBOL(zio_buf_free);
5243 EXPORT_SYMBOL(zio_data_buf_free);
5244 
5245 ZFS_MODULE_PARAM(zfs_zio, zio_, slow_io_ms, INT, ZMOD_RW,
5246 	"Max I/O completion time (milliseconds) before marking it as slow");
5247 
5248 ZFS_MODULE_PARAM(zfs_zio, zio_, requeue_io_start_cut_in_line, INT, ZMOD_RW,
5249 	"Prioritize requeued I/O");
5250 
5251 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_deferred_free,  UINT, ZMOD_RW,
5252 	"Defer frees starting in this pass");
5253 
5254 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_dont_compress, UINT, ZMOD_RW,
5255 	"Don't compress starting in this pass");
5256 
5257 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_rewrite, UINT, ZMOD_RW,
5258 	"Rewrite new bps starting in this pass");
5259 
5260 ZFS_MODULE_PARAM(zfs_zio, zio_, dva_throttle_enabled, INT, ZMOD_RW,
5261 	"Throttle block allocations in the ZIO pipeline");
5262 
5263 ZFS_MODULE_PARAM(zfs_zio, zio_, deadman_log_all, INT, ZMOD_RW,
5264 	"Log all slow ZIOs, not just those with vdevs");
5265