1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2022 by Delphix. All rights reserved. 24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2017, Intel Corporation. 26 * Copyright (c) 2019, Klara Inc. 27 * Copyright (c) 2019, Allan Jude 28 * Copyright (c) 2021, Datto, Inc. 29 */ 30 31 #include <sys/sysmacros.h> 32 #include <sys/zfs_context.h> 33 #include <sys/fm/fs/zfs.h> 34 #include <sys/spa.h> 35 #include <sys/txg.h> 36 #include <sys/spa_impl.h> 37 #include <sys/vdev_impl.h> 38 #include <sys/vdev_trim.h> 39 #include <sys/zio_impl.h> 40 #include <sys/zio_compress.h> 41 #include <sys/zio_checksum.h> 42 #include <sys/dmu_objset.h> 43 #include <sys/arc.h> 44 #include <sys/brt.h> 45 #include <sys/ddt.h> 46 #include <sys/blkptr.h> 47 #include <sys/zfeature.h> 48 #include <sys/dsl_scan.h> 49 #include <sys/metaslab_impl.h> 50 #include <sys/time.h> 51 #include <sys/trace_zfs.h> 52 #include <sys/abd.h> 53 #include <sys/dsl_crypt.h> 54 #include <cityhash.h> 55 56 /* 57 * ========================================================================== 58 * I/O type descriptions 59 * ========================================================================== 60 */ 61 const char *const zio_type_name[ZIO_TYPES] = { 62 /* 63 * Note: Linux kernel thread name length is limited 64 * so these names will differ from upstream open zfs. 65 */ 66 "z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_ioctl", "z_trim" 67 }; 68 69 int zio_dva_throttle_enabled = B_TRUE; 70 static int zio_deadman_log_all = B_FALSE; 71 72 /* 73 * ========================================================================== 74 * I/O kmem caches 75 * ========================================================================== 76 */ 77 static kmem_cache_t *zio_cache; 78 static kmem_cache_t *zio_link_cache; 79 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 80 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 81 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 82 static uint64_t zio_buf_cache_allocs[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 83 static uint64_t zio_buf_cache_frees[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 84 #endif 85 86 /* Mark IOs as "slow" if they take longer than 30 seconds */ 87 static uint_t zio_slow_io_ms = (30 * MILLISEC); 88 89 #define BP_SPANB(indblkshift, level) \ 90 (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT))) 91 #define COMPARE_META_LEVEL 0x80000000ul 92 /* 93 * The following actions directly effect the spa's sync-to-convergence logic. 94 * The values below define the sync pass when we start performing the action. 95 * Care should be taken when changing these values as they directly impact 96 * spa_sync() performance. Tuning these values may introduce subtle performance 97 * pathologies and should only be done in the context of performance analysis. 98 * These tunables will eventually be removed and replaced with #defines once 99 * enough analysis has been done to determine optimal values. 100 * 101 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that 102 * regular blocks are not deferred. 103 * 104 * Starting in sync pass 8 (zfs_sync_pass_dont_compress), we disable 105 * compression (including of metadata). In practice, we don't have this 106 * many sync passes, so this has no effect. 107 * 108 * The original intent was that disabling compression would help the sync 109 * passes to converge. However, in practice disabling compression increases 110 * the average number of sync passes, because when we turn compression off, a 111 * lot of block's size will change and thus we have to re-allocate (not 112 * overwrite) them. It also increases the number of 128KB allocations (e.g. 113 * for indirect blocks and spacemaps) because these will not be compressed. 114 * The 128K allocations are especially detrimental to performance on highly 115 * fragmented systems, which may have very few free segments of this size, 116 * and may need to load new metaslabs to satisfy 128K allocations. 117 */ 118 119 /* defer frees starting in this pass */ 120 uint_t zfs_sync_pass_deferred_free = 2; 121 122 /* don't compress starting in this pass */ 123 static uint_t zfs_sync_pass_dont_compress = 8; 124 125 /* rewrite new bps starting in this pass */ 126 static uint_t zfs_sync_pass_rewrite = 2; 127 128 /* 129 * An allocating zio is one that either currently has the DVA allocate 130 * stage set or will have it later in its lifetime. 131 */ 132 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE) 133 134 /* 135 * Enable smaller cores by excluding metadata 136 * allocations as well. 137 */ 138 int zio_exclude_metadata = 0; 139 static int zio_requeue_io_start_cut_in_line = 1; 140 141 #ifdef ZFS_DEBUG 142 static const int zio_buf_debug_limit = 16384; 143 #else 144 static const int zio_buf_debug_limit = 0; 145 #endif 146 147 static inline void __zio_execute(zio_t *zio); 148 149 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t); 150 151 void 152 zio_init(void) 153 { 154 size_t c; 155 156 zio_cache = kmem_cache_create("zio_cache", 157 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 158 zio_link_cache = kmem_cache_create("zio_link_cache", 159 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 160 161 /* 162 * For small buffers, we want a cache for each multiple of 163 * SPA_MINBLOCKSIZE. For larger buffers, we want a cache 164 * for each quarter-power of 2. 165 */ 166 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 167 size_t size = (c + 1) << SPA_MINBLOCKSHIFT; 168 size_t p2 = size; 169 size_t align = 0; 170 size_t data_cflags, cflags; 171 172 data_cflags = KMC_NODEBUG; 173 cflags = (zio_exclude_metadata || size > zio_buf_debug_limit) ? 174 KMC_NODEBUG : 0; 175 176 while (!ISP2(p2)) 177 p2 &= p2 - 1; 178 179 #ifndef _KERNEL 180 /* 181 * If we are using watchpoints, put each buffer on its own page, 182 * to eliminate the performance overhead of trapping to the 183 * kernel when modifying a non-watched buffer that shares the 184 * page with a watched buffer. 185 */ 186 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE)) 187 continue; 188 /* 189 * Here's the problem - on 4K native devices in userland on 190 * Linux using O_DIRECT, buffers must be 4K aligned or I/O 191 * will fail with EINVAL, causing zdb (and others) to coredump. 192 * Since userland probably doesn't need optimized buffer caches, 193 * we just force 4K alignment on everything. 194 */ 195 align = 8 * SPA_MINBLOCKSIZE; 196 #else 197 if (size < PAGESIZE) { 198 align = SPA_MINBLOCKSIZE; 199 } else if (IS_P2ALIGNED(size, p2 >> 2)) { 200 align = PAGESIZE; 201 } 202 #endif 203 204 if (align != 0) { 205 char name[36]; 206 if (cflags == data_cflags) { 207 /* 208 * Resulting kmem caches would be identical. 209 * Save memory by creating only one. 210 */ 211 (void) snprintf(name, sizeof (name), 212 "zio_buf_comb_%lu", (ulong_t)size); 213 zio_buf_cache[c] = kmem_cache_create(name, 214 size, align, NULL, NULL, NULL, NULL, NULL, 215 cflags); 216 zio_data_buf_cache[c] = zio_buf_cache[c]; 217 continue; 218 } 219 (void) snprintf(name, sizeof (name), "zio_buf_%lu", 220 (ulong_t)size); 221 zio_buf_cache[c] = kmem_cache_create(name, size, 222 align, NULL, NULL, NULL, NULL, NULL, cflags); 223 224 (void) snprintf(name, sizeof (name), "zio_data_buf_%lu", 225 (ulong_t)size); 226 zio_data_buf_cache[c] = kmem_cache_create(name, size, 227 align, NULL, NULL, NULL, NULL, NULL, data_cflags); 228 } 229 } 230 231 while (--c != 0) { 232 ASSERT(zio_buf_cache[c] != NULL); 233 if (zio_buf_cache[c - 1] == NULL) 234 zio_buf_cache[c - 1] = zio_buf_cache[c]; 235 236 ASSERT(zio_data_buf_cache[c] != NULL); 237 if (zio_data_buf_cache[c - 1] == NULL) 238 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c]; 239 } 240 241 zio_inject_init(); 242 243 lz4_init(); 244 } 245 246 void 247 zio_fini(void) 248 { 249 size_t n = SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; 250 251 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 252 for (size_t i = 0; i < n; i++) { 253 if (zio_buf_cache_allocs[i] != zio_buf_cache_frees[i]) 254 (void) printf("zio_fini: [%d] %llu != %llu\n", 255 (int)((i + 1) << SPA_MINBLOCKSHIFT), 256 (long long unsigned)zio_buf_cache_allocs[i], 257 (long long unsigned)zio_buf_cache_frees[i]); 258 } 259 #endif 260 261 /* 262 * The same kmem cache can show up multiple times in both zio_buf_cache 263 * and zio_data_buf_cache. Do a wasteful but trivially correct scan to 264 * sort it out. 265 */ 266 for (size_t i = 0; i < n; i++) { 267 kmem_cache_t *cache = zio_buf_cache[i]; 268 if (cache == NULL) 269 continue; 270 for (size_t j = i; j < n; j++) { 271 if (cache == zio_buf_cache[j]) 272 zio_buf_cache[j] = NULL; 273 if (cache == zio_data_buf_cache[j]) 274 zio_data_buf_cache[j] = NULL; 275 } 276 kmem_cache_destroy(cache); 277 } 278 279 for (size_t i = 0; i < n; i++) { 280 kmem_cache_t *cache = zio_data_buf_cache[i]; 281 if (cache == NULL) 282 continue; 283 for (size_t j = i; j < n; j++) { 284 if (cache == zio_data_buf_cache[j]) 285 zio_data_buf_cache[j] = NULL; 286 } 287 kmem_cache_destroy(cache); 288 } 289 290 for (size_t i = 0; i < n; i++) { 291 VERIFY3P(zio_buf_cache[i], ==, NULL); 292 VERIFY3P(zio_data_buf_cache[i], ==, NULL); 293 } 294 295 kmem_cache_destroy(zio_link_cache); 296 kmem_cache_destroy(zio_cache); 297 298 zio_inject_fini(); 299 300 lz4_fini(); 301 } 302 303 /* 304 * ========================================================================== 305 * Allocate and free I/O buffers 306 * ========================================================================== 307 */ 308 309 /* 310 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a 311 * crashdump if the kernel panics, so use it judiciously. Obviously, it's 312 * useful to inspect ZFS metadata, but if possible, we should avoid keeping 313 * excess / transient data in-core during a crashdump. 314 */ 315 void * 316 zio_buf_alloc(size_t size) 317 { 318 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 319 320 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 321 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 322 atomic_add_64(&zio_buf_cache_allocs[c], 1); 323 #endif 324 325 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE)); 326 } 327 328 /* 329 * Use zio_data_buf_alloc to allocate data. The data will not appear in a 330 * crashdump if the kernel panics. This exists so that we will limit the amount 331 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount 332 * of kernel heap dumped to disk when the kernel panics) 333 */ 334 void * 335 zio_data_buf_alloc(size_t size) 336 { 337 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 338 339 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 340 341 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE)); 342 } 343 344 void 345 zio_buf_free(void *buf, size_t size) 346 { 347 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 348 349 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 350 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 351 atomic_add_64(&zio_buf_cache_frees[c], 1); 352 #endif 353 354 kmem_cache_free(zio_buf_cache[c], buf); 355 } 356 357 void 358 zio_data_buf_free(void *buf, size_t size) 359 { 360 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 361 362 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 363 364 kmem_cache_free(zio_data_buf_cache[c], buf); 365 } 366 367 static void 368 zio_abd_free(void *abd, size_t size) 369 { 370 (void) size; 371 abd_free((abd_t *)abd); 372 } 373 374 /* 375 * ========================================================================== 376 * Push and pop I/O transform buffers 377 * ========================================================================== 378 */ 379 void 380 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize, 381 zio_transform_func_t *transform) 382 { 383 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP); 384 385 zt->zt_orig_abd = zio->io_abd; 386 zt->zt_orig_size = zio->io_size; 387 zt->zt_bufsize = bufsize; 388 zt->zt_transform = transform; 389 390 zt->zt_next = zio->io_transform_stack; 391 zio->io_transform_stack = zt; 392 393 zio->io_abd = data; 394 zio->io_size = size; 395 } 396 397 void 398 zio_pop_transforms(zio_t *zio) 399 { 400 zio_transform_t *zt; 401 402 while ((zt = zio->io_transform_stack) != NULL) { 403 if (zt->zt_transform != NULL) 404 zt->zt_transform(zio, 405 zt->zt_orig_abd, zt->zt_orig_size); 406 407 if (zt->zt_bufsize != 0) 408 abd_free(zio->io_abd); 409 410 zio->io_abd = zt->zt_orig_abd; 411 zio->io_size = zt->zt_orig_size; 412 zio->io_transform_stack = zt->zt_next; 413 414 kmem_free(zt, sizeof (zio_transform_t)); 415 } 416 } 417 418 /* 419 * ========================================================================== 420 * I/O transform callbacks for subblocks, decompression, and decryption 421 * ========================================================================== 422 */ 423 static void 424 zio_subblock(zio_t *zio, abd_t *data, uint64_t size) 425 { 426 ASSERT(zio->io_size > size); 427 428 if (zio->io_type == ZIO_TYPE_READ) 429 abd_copy(data, zio->io_abd, size); 430 } 431 432 static void 433 zio_decompress(zio_t *zio, abd_t *data, uint64_t size) 434 { 435 if (zio->io_error == 0) { 436 void *tmp = abd_borrow_buf(data, size); 437 int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp), 438 zio->io_abd, tmp, zio->io_size, size, 439 &zio->io_prop.zp_complevel); 440 abd_return_buf_copy(data, tmp, size); 441 442 if (zio_injection_enabled && ret == 0) 443 ret = zio_handle_fault_injection(zio, EINVAL); 444 445 if (ret != 0) 446 zio->io_error = SET_ERROR(EIO); 447 } 448 } 449 450 static void 451 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size) 452 { 453 int ret; 454 void *tmp; 455 blkptr_t *bp = zio->io_bp; 456 spa_t *spa = zio->io_spa; 457 uint64_t dsobj = zio->io_bookmark.zb_objset; 458 uint64_t lsize = BP_GET_LSIZE(bp); 459 dmu_object_type_t ot = BP_GET_TYPE(bp); 460 uint8_t salt[ZIO_DATA_SALT_LEN]; 461 uint8_t iv[ZIO_DATA_IV_LEN]; 462 uint8_t mac[ZIO_DATA_MAC_LEN]; 463 boolean_t no_crypt = B_FALSE; 464 465 ASSERT(BP_USES_CRYPT(bp)); 466 ASSERT3U(size, !=, 0); 467 468 if (zio->io_error != 0) 469 return; 470 471 /* 472 * Verify the cksum of MACs stored in an indirect bp. It will always 473 * be possible to verify this since it does not require an encryption 474 * key. 475 */ 476 if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) { 477 zio_crypt_decode_mac_bp(bp, mac); 478 479 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) { 480 /* 481 * We haven't decompressed the data yet, but 482 * zio_crypt_do_indirect_mac_checksum() requires 483 * decompressed data to be able to parse out the MACs 484 * from the indirect block. We decompress it now and 485 * throw away the result after we are finished. 486 */ 487 tmp = zio_buf_alloc(lsize); 488 ret = zio_decompress_data(BP_GET_COMPRESS(bp), 489 zio->io_abd, tmp, zio->io_size, lsize, 490 &zio->io_prop.zp_complevel); 491 if (ret != 0) { 492 ret = SET_ERROR(EIO); 493 goto error; 494 } 495 ret = zio_crypt_do_indirect_mac_checksum(B_FALSE, 496 tmp, lsize, BP_SHOULD_BYTESWAP(bp), mac); 497 zio_buf_free(tmp, lsize); 498 } else { 499 ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE, 500 zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac); 501 } 502 abd_copy(data, zio->io_abd, size); 503 504 if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) { 505 ret = zio_handle_decrypt_injection(spa, 506 &zio->io_bookmark, ot, ECKSUM); 507 } 508 if (ret != 0) 509 goto error; 510 511 return; 512 } 513 514 /* 515 * If this is an authenticated block, just check the MAC. It would be 516 * nice to separate this out into its own flag, but when this was done, 517 * we had run out of bits in what is now zio_flag_t. Future cleanup 518 * could make this a flag bit. 519 */ 520 if (BP_IS_AUTHENTICATED(bp)) { 521 if (ot == DMU_OT_OBJSET) { 522 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, 523 dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp)); 524 } else { 525 zio_crypt_decode_mac_bp(bp, mac); 526 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, 527 zio->io_abd, size, mac); 528 if (zio_injection_enabled && ret == 0) { 529 ret = zio_handle_decrypt_injection(spa, 530 &zio->io_bookmark, ot, ECKSUM); 531 } 532 } 533 abd_copy(data, zio->io_abd, size); 534 535 if (ret != 0) 536 goto error; 537 538 return; 539 } 540 541 zio_crypt_decode_params_bp(bp, salt, iv); 542 543 if (ot == DMU_OT_INTENT_LOG) { 544 tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t)); 545 zio_crypt_decode_mac_zil(tmp, mac); 546 abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t)); 547 } else { 548 zio_crypt_decode_mac_bp(bp, mac); 549 } 550 551 ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp), 552 BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data, 553 zio->io_abd, &no_crypt); 554 if (no_crypt) 555 abd_copy(data, zio->io_abd, size); 556 557 if (ret != 0) 558 goto error; 559 560 return; 561 562 error: 563 /* assert that the key was found unless this was speculative */ 564 ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE)); 565 566 /* 567 * If there was a decryption / authentication error return EIO as 568 * the io_error. If this was not a speculative zio, create an ereport. 569 */ 570 if (ret == ECKSUM) { 571 zio->io_error = SET_ERROR(EIO); 572 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) { 573 spa_log_error(spa, &zio->io_bookmark, 574 &zio->io_bp->blk_birth); 575 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION, 576 spa, NULL, &zio->io_bookmark, zio, 0); 577 } 578 } else { 579 zio->io_error = ret; 580 } 581 } 582 583 /* 584 * ========================================================================== 585 * I/O parent/child relationships and pipeline interlocks 586 * ========================================================================== 587 */ 588 zio_t * 589 zio_walk_parents(zio_t *cio, zio_link_t **zl) 590 { 591 list_t *pl = &cio->io_parent_list; 592 593 *zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl); 594 if (*zl == NULL) 595 return (NULL); 596 597 ASSERT((*zl)->zl_child == cio); 598 return ((*zl)->zl_parent); 599 } 600 601 zio_t * 602 zio_walk_children(zio_t *pio, zio_link_t **zl) 603 { 604 list_t *cl = &pio->io_child_list; 605 606 ASSERT(MUTEX_HELD(&pio->io_lock)); 607 608 *zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl); 609 if (*zl == NULL) 610 return (NULL); 611 612 ASSERT((*zl)->zl_parent == pio); 613 return ((*zl)->zl_child); 614 } 615 616 zio_t * 617 zio_unique_parent(zio_t *cio) 618 { 619 zio_link_t *zl = NULL; 620 zio_t *pio = zio_walk_parents(cio, &zl); 621 622 VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL); 623 return (pio); 624 } 625 626 void 627 zio_add_child(zio_t *pio, zio_t *cio) 628 { 629 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP); 630 631 /* 632 * Logical I/Os can have logical, gang, or vdev children. 633 * Gang I/Os can have gang or vdev children. 634 * Vdev I/Os can only have vdev children. 635 * The following ASSERT captures all of these constraints. 636 */ 637 ASSERT3S(cio->io_child_type, <=, pio->io_child_type); 638 639 zl->zl_parent = pio; 640 zl->zl_child = cio; 641 642 mutex_enter(&pio->io_lock); 643 mutex_enter(&cio->io_lock); 644 645 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0); 646 647 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 648 pio->io_children[cio->io_child_type][w] += !cio->io_state[w]; 649 650 list_insert_head(&pio->io_child_list, zl); 651 list_insert_head(&cio->io_parent_list, zl); 652 653 pio->io_child_count++; 654 cio->io_parent_count++; 655 656 mutex_exit(&cio->io_lock); 657 mutex_exit(&pio->io_lock); 658 } 659 660 static void 661 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl) 662 { 663 ASSERT(zl->zl_parent == pio); 664 ASSERT(zl->zl_child == cio); 665 666 mutex_enter(&pio->io_lock); 667 mutex_enter(&cio->io_lock); 668 669 list_remove(&pio->io_child_list, zl); 670 list_remove(&cio->io_parent_list, zl); 671 672 pio->io_child_count--; 673 cio->io_parent_count--; 674 675 mutex_exit(&cio->io_lock); 676 mutex_exit(&pio->io_lock); 677 kmem_cache_free(zio_link_cache, zl); 678 } 679 680 static boolean_t 681 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait) 682 { 683 boolean_t waiting = B_FALSE; 684 685 mutex_enter(&zio->io_lock); 686 ASSERT(zio->io_stall == NULL); 687 for (int c = 0; c < ZIO_CHILD_TYPES; c++) { 688 if (!(ZIO_CHILD_BIT_IS_SET(childbits, c))) 689 continue; 690 691 uint64_t *countp = &zio->io_children[c][wait]; 692 if (*countp != 0) { 693 zio->io_stage >>= 1; 694 ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN); 695 zio->io_stall = countp; 696 waiting = B_TRUE; 697 break; 698 } 699 } 700 mutex_exit(&zio->io_lock); 701 return (waiting); 702 } 703 704 __attribute__((always_inline)) 705 static inline void 706 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait, 707 zio_t **next_to_executep) 708 { 709 uint64_t *countp = &pio->io_children[zio->io_child_type][wait]; 710 int *errorp = &pio->io_child_error[zio->io_child_type]; 711 712 mutex_enter(&pio->io_lock); 713 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 714 *errorp = zio_worst_error(*errorp, zio->io_error); 715 pio->io_reexecute |= zio->io_reexecute; 716 ASSERT3U(*countp, >, 0); 717 718 (*countp)--; 719 720 if (*countp == 0 && pio->io_stall == countp) { 721 zio_taskq_type_t type = 722 pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE : 723 ZIO_TASKQ_INTERRUPT; 724 pio->io_stall = NULL; 725 mutex_exit(&pio->io_lock); 726 727 /* 728 * If we can tell the caller to execute this parent next, do 729 * so. We only do this if the parent's zio type matches the 730 * child's type. Otherwise dispatch the parent zio in its 731 * own taskq. 732 * 733 * Having the caller execute the parent when possible reduces 734 * locking on the zio taskq's, reduces context switch 735 * overhead, and has no recursion penalty. Note that one 736 * read from disk typically causes at least 3 zio's: a 737 * zio_null(), the logical zio_read(), and then a physical 738 * zio. When the physical ZIO completes, we are able to call 739 * zio_done() on all 3 of these zio's from one invocation of 740 * zio_execute() by returning the parent back to 741 * zio_execute(). Since the parent isn't executed until this 742 * thread returns back to zio_execute(), the caller should do 743 * so promptly. 744 * 745 * In other cases, dispatching the parent prevents 746 * overflowing the stack when we have deeply nested 747 * parent-child relationships, as we do with the "mega zio" 748 * of writes for spa_sync(), and the chain of ZIL blocks. 749 */ 750 if (next_to_executep != NULL && *next_to_executep == NULL && 751 pio->io_type == zio->io_type) { 752 *next_to_executep = pio; 753 } else { 754 zio_taskq_dispatch(pio, type, B_FALSE); 755 } 756 } else { 757 mutex_exit(&pio->io_lock); 758 } 759 } 760 761 static void 762 zio_inherit_child_errors(zio_t *zio, enum zio_child c) 763 { 764 if (zio->io_child_error[c] != 0 && zio->io_error == 0) 765 zio->io_error = zio->io_child_error[c]; 766 } 767 768 int 769 zio_bookmark_compare(const void *x1, const void *x2) 770 { 771 const zio_t *z1 = x1; 772 const zio_t *z2 = x2; 773 774 if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset) 775 return (-1); 776 if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset) 777 return (1); 778 779 if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object) 780 return (-1); 781 if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object) 782 return (1); 783 784 if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level) 785 return (-1); 786 if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level) 787 return (1); 788 789 if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid) 790 return (-1); 791 if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid) 792 return (1); 793 794 if (z1 < z2) 795 return (-1); 796 if (z1 > z2) 797 return (1); 798 799 return (0); 800 } 801 802 /* 803 * ========================================================================== 804 * Create the various types of I/O (read, write, free, etc) 805 * ========================================================================== 806 */ 807 static zio_t * 808 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 809 abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done, 810 void *private, zio_type_t type, zio_priority_t priority, 811 zio_flag_t flags, vdev_t *vd, uint64_t offset, 812 const zbookmark_phys_t *zb, enum zio_stage stage, 813 enum zio_stage pipeline) 814 { 815 zio_t *zio; 816 817 IMPLY(type != ZIO_TYPE_TRIM, psize <= SPA_MAXBLOCKSIZE); 818 ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0); 819 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0); 820 821 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER)); 822 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER)); 823 ASSERT(vd || stage == ZIO_STAGE_OPEN); 824 825 IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0); 826 827 zio = kmem_cache_alloc(zio_cache, KM_SLEEP); 828 memset(zio, 0, sizeof (zio_t)); 829 830 mutex_init(&zio->io_lock, NULL, MUTEX_NOLOCKDEP, NULL); 831 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL); 832 833 list_create(&zio->io_parent_list, sizeof (zio_link_t), 834 offsetof(zio_link_t, zl_parent_node)); 835 list_create(&zio->io_child_list, sizeof (zio_link_t), 836 offsetof(zio_link_t, zl_child_node)); 837 metaslab_trace_init(&zio->io_alloc_list); 838 839 if (vd != NULL) 840 zio->io_child_type = ZIO_CHILD_VDEV; 841 else if (flags & ZIO_FLAG_GANG_CHILD) 842 zio->io_child_type = ZIO_CHILD_GANG; 843 else if (flags & ZIO_FLAG_DDT_CHILD) 844 zio->io_child_type = ZIO_CHILD_DDT; 845 else 846 zio->io_child_type = ZIO_CHILD_LOGICAL; 847 848 if (bp != NULL) { 849 zio->io_bp = (blkptr_t *)bp; 850 zio->io_bp_copy = *bp; 851 zio->io_bp_orig = *bp; 852 if (type != ZIO_TYPE_WRITE || 853 zio->io_child_type == ZIO_CHILD_DDT) 854 zio->io_bp = &zio->io_bp_copy; /* so caller can free */ 855 if (zio->io_child_type == ZIO_CHILD_LOGICAL) 856 zio->io_logical = zio; 857 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp)) 858 pipeline |= ZIO_GANG_STAGES; 859 } 860 861 zio->io_spa = spa; 862 zio->io_txg = txg; 863 zio->io_done = done; 864 zio->io_private = private; 865 zio->io_type = type; 866 zio->io_priority = priority; 867 zio->io_vd = vd; 868 zio->io_offset = offset; 869 zio->io_orig_abd = zio->io_abd = data; 870 zio->io_orig_size = zio->io_size = psize; 871 zio->io_lsize = lsize; 872 zio->io_orig_flags = zio->io_flags = flags; 873 zio->io_orig_stage = zio->io_stage = stage; 874 zio->io_orig_pipeline = zio->io_pipeline = pipeline; 875 zio->io_pipeline_trace = ZIO_STAGE_OPEN; 876 877 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY); 878 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE); 879 880 if (zb != NULL) 881 zio->io_bookmark = *zb; 882 883 if (pio != NULL) { 884 zio->io_metaslab_class = pio->io_metaslab_class; 885 if (zio->io_logical == NULL) 886 zio->io_logical = pio->io_logical; 887 if (zio->io_child_type == ZIO_CHILD_GANG) 888 zio->io_gang_leader = pio->io_gang_leader; 889 zio_add_child(pio, zio); 890 } 891 892 taskq_init_ent(&zio->io_tqent); 893 894 return (zio); 895 } 896 897 void 898 zio_destroy(zio_t *zio) 899 { 900 metaslab_trace_fini(&zio->io_alloc_list); 901 list_destroy(&zio->io_parent_list); 902 list_destroy(&zio->io_child_list); 903 mutex_destroy(&zio->io_lock); 904 cv_destroy(&zio->io_cv); 905 kmem_cache_free(zio_cache, zio); 906 } 907 908 zio_t * 909 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done, 910 void *private, zio_flag_t flags) 911 { 912 zio_t *zio; 913 914 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private, 915 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 916 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE); 917 918 return (zio); 919 } 920 921 zio_t * 922 zio_root(spa_t *spa, zio_done_func_t *done, void *private, zio_flag_t flags) 923 { 924 return (zio_null(NULL, spa, NULL, done, private, flags)); 925 } 926 927 static int 928 zfs_blkptr_verify_log(spa_t *spa, const blkptr_t *bp, 929 enum blk_verify_flag blk_verify, const char *fmt, ...) 930 { 931 va_list adx; 932 char buf[256]; 933 934 va_start(adx, fmt); 935 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 936 va_end(adx); 937 938 zfs_dbgmsg("bad blkptr at %px: " 939 "DVA[0]=%#llx/%#llx " 940 "DVA[1]=%#llx/%#llx " 941 "DVA[2]=%#llx/%#llx " 942 "prop=%#llx " 943 "pad=%#llx,%#llx " 944 "phys_birth=%#llx " 945 "birth=%#llx " 946 "fill=%#llx " 947 "cksum=%#llx/%#llx/%#llx/%#llx", 948 bp, 949 (long long)bp->blk_dva[0].dva_word[0], 950 (long long)bp->blk_dva[0].dva_word[1], 951 (long long)bp->blk_dva[1].dva_word[0], 952 (long long)bp->blk_dva[1].dva_word[1], 953 (long long)bp->blk_dva[2].dva_word[0], 954 (long long)bp->blk_dva[2].dva_word[1], 955 (long long)bp->blk_prop, 956 (long long)bp->blk_pad[0], 957 (long long)bp->blk_pad[1], 958 (long long)bp->blk_phys_birth, 959 (long long)bp->blk_birth, 960 (long long)bp->blk_fill, 961 (long long)bp->blk_cksum.zc_word[0], 962 (long long)bp->blk_cksum.zc_word[1], 963 (long long)bp->blk_cksum.zc_word[2], 964 (long long)bp->blk_cksum.zc_word[3]); 965 switch (blk_verify) { 966 case BLK_VERIFY_HALT: 967 zfs_panic_recover("%s: %s", spa_name(spa), buf); 968 break; 969 case BLK_VERIFY_LOG: 970 zfs_dbgmsg("%s: %s", spa_name(spa), buf); 971 break; 972 case BLK_VERIFY_ONLY: 973 break; 974 } 975 976 return (1); 977 } 978 979 /* 980 * Verify the block pointer fields contain reasonable values. This means 981 * it only contains known object types, checksum/compression identifiers, 982 * block sizes within the maximum allowed limits, valid DVAs, etc. 983 * 984 * If everything checks out B_TRUE is returned. The zfs_blkptr_verify 985 * argument controls the behavior when an invalid field is detected. 986 * 987 * Values for blk_verify_flag: 988 * BLK_VERIFY_ONLY: evaluate the block 989 * BLK_VERIFY_LOG: evaluate the block and log problems 990 * BLK_VERIFY_HALT: call zfs_panic_recover on error 991 * 992 * Values for blk_config_flag: 993 * BLK_CONFIG_HELD: caller holds SCL_VDEV for writer 994 * BLK_CONFIG_NEEDED: caller holds no config lock, SCL_VDEV will be 995 * obtained for reader 996 * BLK_CONFIG_SKIP: skip checks which require SCL_VDEV, for better 997 * performance 998 */ 999 boolean_t 1000 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp, 1001 enum blk_config_flag blk_config, enum blk_verify_flag blk_verify) 1002 { 1003 int errors = 0; 1004 1005 if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) { 1006 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1007 "blkptr at %px has invalid TYPE %llu", 1008 bp, (longlong_t)BP_GET_TYPE(bp)); 1009 } 1010 if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS) { 1011 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1012 "blkptr at %px has invalid CHECKSUM %llu", 1013 bp, (longlong_t)BP_GET_CHECKSUM(bp)); 1014 } 1015 if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS) { 1016 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1017 "blkptr at %px has invalid COMPRESS %llu", 1018 bp, (longlong_t)BP_GET_COMPRESS(bp)); 1019 } 1020 if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) { 1021 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1022 "blkptr at %px has invalid LSIZE %llu", 1023 bp, (longlong_t)BP_GET_LSIZE(bp)); 1024 } 1025 if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) { 1026 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1027 "blkptr at %px has invalid PSIZE %llu", 1028 bp, (longlong_t)BP_GET_PSIZE(bp)); 1029 } 1030 1031 if (BP_IS_EMBEDDED(bp)) { 1032 if (BPE_GET_ETYPE(bp) >= NUM_BP_EMBEDDED_TYPES) { 1033 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1034 "blkptr at %px has invalid ETYPE %llu", 1035 bp, (longlong_t)BPE_GET_ETYPE(bp)); 1036 } 1037 } 1038 1039 /* 1040 * Do not verify individual DVAs if the config is not trusted. This 1041 * will be done once the zio is executed in vdev_mirror_map_alloc. 1042 */ 1043 if (!spa->spa_trust_config) 1044 return (errors == 0); 1045 1046 switch (blk_config) { 1047 case BLK_CONFIG_HELD: 1048 ASSERT(spa_config_held(spa, SCL_VDEV, RW_WRITER)); 1049 break; 1050 case BLK_CONFIG_NEEDED: 1051 spa_config_enter(spa, SCL_VDEV, bp, RW_READER); 1052 break; 1053 case BLK_CONFIG_SKIP: 1054 return (errors == 0); 1055 default: 1056 panic("invalid blk_config %u", blk_config); 1057 } 1058 1059 /* 1060 * Pool-specific checks. 1061 * 1062 * Note: it would be nice to verify that the blk_birth and 1063 * BP_PHYSICAL_BIRTH() are not too large. However, spa_freeze() 1064 * allows the birth time of log blocks (and dmu_sync()-ed blocks 1065 * that are in the log) to be arbitrarily large. 1066 */ 1067 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 1068 const dva_t *dva = &bp->blk_dva[i]; 1069 uint64_t vdevid = DVA_GET_VDEV(dva); 1070 1071 if (vdevid >= spa->spa_root_vdev->vdev_children) { 1072 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1073 "blkptr at %px DVA %u has invalid VDEV %llu", 1074 bp, i, (longlong_t)vdevid); 1075 continue; 1076 } 1077 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid]; 1078 if (vd == NULL) { 1079 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1080 "blkptr at %px DVA %u has invalid VDEV %llu", 1081 bp, i, (longlong_t)vdevid); 1082 continue; 1083 } 1084 if (vd->vdev_ops == &vdev_hole_ops) { 1085 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1086 "blkptr at %px DVA %u has hole VDEV %llu", 1087 bp, i, (longlong_t)vdevid); 1088 continue; 1089 } 1090 if (vd->vdev_ops == &vdev_missing_ops) { 1091 /* 1092 * "missing" vdevs are valid during import, but we 1093 * don't have their detailed info (e.g. asize), so 1094 * we can't perform any more checks on them. 1095 */ 1096 continue; 1097 } 1098 uint64_t offset = DVA_GET_OFFSET(dva); 1099 uint64_t asize = DVA_GET_ASIZE(dva); 1100 if (DVA_GET_GANG(dva)) 1101 asize = vdev_gang_header_asize(vd); 1102 if (offset + asize > vd->vdev_asize) { 1103 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1104 "blkptr at %px DVA %u has invalid OFFSET %llu", 1105 bp, i, (longlong_t)offset); 1106 } 1107 } 1108 if (blk_config == BLK_CONFIG_NEEDED) 1109 spa_config_exit(spa, SCL_VDEV, bp); 1110 1111 return (errors == 0); 1112 } 1113 1114 boolean_t 1115 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp) 1116 { 1117 (void) bp; 1118 uint64_t vdevid = DVA_GET_VDEV(dva); 1119 1120 if (vdevid >= spa->spa_root_vdev->vdev_children) 1121 return (B_FALSE); 1122 1123 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid]; 1124 if (vd == NULL) 1125 return (B_FALSE); 1126 1127 if (vd->vdev_ops == &vdev_hole_ops) 1128 return (B_FALSE); 1129 1130 if (vd->vdev_ops == &vdev_missing_ops) { 1131 return (B_FALSE); 1132 } 1133 1134 uint64_t offset = DVA_GET_OFFSET(dva); 1135 uint64_t asize = DVA_GET_ASIZE(dva); 1136 1137 if (DVA_GET_GANG(dva)) 1138 asize = vdev_gang_header_asize(vd); 1139 if (offset + asize > vd->vdev_asize) 1140 return (B_FALSE); 1141 1142 return (B_TRUE); 1143 } 1144 1145 zio_t * 1146 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, 1147 abd_t *data, uint64_t size, zio_done_func_t *done, void *private, 1148 zio_priority_t priority, zio_flag_t flags, const zbookmark_phys_t *zb) 1149 { 1150 zio_t *zio; 1151 1152 zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp, 1153 data, size, size, done, private, 1154 ZIO_TYPE_READ, priority, flags, NULL, 0, zb, 1155 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 1156 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE); 1157 1158 return (zio); 1159 } 1160 1161 zio_t * 1162 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 1163 abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp, 1164 zio_done_func_t *ready, zio_done_func_t *children_ready, 1165 zio_done_func_t *physdone, zio_done_func_t *done, 1166 void *private, zio_priority_t priority, zio_flag_t flags, 1167 const zbookmark_phys_t *zb) 1168 { 1169 zio_t *zio; 1170 1171 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF && 1172 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS && 1173 zp->zp_compress >= ZIO_COMPRESS_OFF && 1174 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS && 1175 DMU_OT_IS_VALID(zp->zp_type) && 1176 zp->zp_level < 32 && 1177 zp->zp_copies > 0 && 1178 zp->zp_copies <= spa_max_replication(spa)); 1179 1180 zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private, 1181 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb, 1182 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 1183 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE); 1184 1185 zio->io_ready = ready; 1186 zio->io_children_ready = children_ready; 1187 zio->io_physdone = physdone; 1188 zio->io_prop = *zp; 1189 1190 /* 1191 * Data can be NULL if we are going to call zio_write_override() to 1192 * provide the already-allocated BP. But we may need the data to 1193 * verify a dedup hit (if requested). In this case, don't try to 1194 * dedup (just take the already-allocated BP verbatim). Encrypted 1195 * dedup blocks need data as well so we also disable dedup in this 1196 * case. 1197 */ 1198 if (data == NULL && 1199 (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) { 1200 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE; 1201 } 1202 1203 return (zio); 1204 } 1205 1206 zio_t * 1207 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data, 1208 uint64_t size, zio_done_func_t *done, void *private, 1209 zio_priority_t priority, zio_flag_t flags, zbookmark_phys_t *zb) 1210 { 1211 zio_t *zio; 1212 1213 zio = zio_create(pio, spa, txg, bp, data, size, size, done, private, 1214 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb, 1215 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE); 1216 1217 return (zio); 1218 } 1219 1220 void 1221 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite, 1222 boolean_t brtwrite) 1223 { 1224 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 1225 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1226 ASSERT(zio->io_stage == ZIO_STAGE_OPEN); 1227 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa)); 1228 ASSERT(!brtwrite || !nopwrite); 1229 1230 /* 1231 * We must reset the io_prop to match the values that existed 1232 * when the bp was first written by dmu_sync() keeping in mind 1233 * that nopwrite and dedup are mutually exclusive. 1234 */ 1235 zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup; 1236 zio->io_prop.zp_nopwrite = nopwrite; 1237 zio->io_prop.zp_brtwrite = brtwrite; 1238 zio->io_prop.zp_copies = copies; 1239 zio->io_bp_override = bp; 1240 } 1241 1242 void 1243 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp) 1244 { 1245 1246 (void) zfs_blkptr_verify(spa, bp, BLK_CONFIG_NEEDED, BLK_VERIFY_HALT); 1247 1248 /* 1249 * The check for EMBEDDED is a performance optimization. We 1250 * process the free here (by ignoring it) rather than 1251 * putting it on the list and then processing it in zio_free_sync(). 1252 */ 1253 if (BP_IS_EMBEDDED(bp)) 1254 return; 1255 1256 /* 1257 * Frees that are for the currently-syncing txg, are not going to be 1258 * deferred, and which will not need to do a read (i.e. not GANG or 1259 * DEDUP), can be processed immediately. Otherwise, put them on the 1260 * in-memory list for later processing. 1261 * 1262 * Note that we only defer frees after zfs_sync_pass_deferred_free 1263 * when the log space map feature is disabled. [see relevant comment 1264 * in spa_sync_iterate_to_convergence()] 1265 */ 1266 if (BP_IS_GANG(bp) || 1267 BP_GET_DEDUP(bp) || 1268 txg != spa->spa_syncing_txg || 1269 (spa_sync_pass(spa) >= zfs_sync_pass_deferred_free && 1270 !spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) || 1271 brt_maybe_exists(spa, bp)) { 1272 metaslab_check_free(spa, bp); 1273 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp); 1274 } else { 1275 VERIFY3P(zio_free_sync(NULL, spa, txg, bp, 0), ==, NULL); 1276 } 1277 } 1278 1279 /* 1280 * To improve performance, this function may return NULL if we were able 1281 * to do the free immediately. This avoids the cost of creating a zio 1282 * (and linking it to the parent, etc). 1283 */ 1284 zio_t * 1285 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 1286 zio_flag_t flags) 1287 { 1288 ASSERT(!BP_IS_HOLE(bp)); 1289 ASSERT(spa_syncing_txg(spa) == txg); 1290 1291 if (BP_IS_EMBEDDED(bp)) 1292 return (NULL); 1293 1294 metaslab_check_free(spa, bp); 1295 arc_freed(spa, bp); 1296 dsl_scan_freed(spa, bp); 1297 1298 if (BP_IS_GANG(bp) || 1299 BP_GET_DEDUP(bp) || 1300 brt_maybe_exists(spa, bp)) { 1301 /* 1302 * GANG, DEDUP and BRT blocks can induce a read (for the gang 1303 * block header, the DDT or the BRT), so issue them 1304 * asynchronously so that this thread is not tied up. 1305 */ 1306 enum zio_stage stage = 1307 ZIO_FREE_PIPELINE | ZIO_STAGE_ISSUE_ASYNC; 1308 1309 return (zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 1310 BP_GET_PSIZE(bp), NULL, NULL, 1311 ZIO_TYPE_FREE, ZIO_PRIORITY_NOW, 1312 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage)); 1313 } else { 1314 metaslab_free(spa, bp, txg, B_FALSE); 1315 return (NULL); 1316 } 1317 } 1318 1319 zio_t * 1320 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 1321 zio_done_func_t *done, void *private, zio_flag_t flags) 1322 { 1323 zio_t *zio; 1324 1325 (void) zfs_blkptr_verify(spa, bp, (flags & ZIO_FLAG_CONFIG_WRITER) ? 1326 BLK_CONFIG_HELD : BLK_CONFIG_NEEDED, BLK_VERIFY_HALT); 1327 1328 if (BP_IS_EMBEDDED(bp)) 1329 return (zio_null(pio, spa, NULL, NULL, NULL, 0)); 1330 1331 /* 1332 * A claim is an allocation of a specific block. Claims are needed 1333 * to support immediate writes in the intent log. The issue is that 1334 * immediate writes contain committed data, but in a txg that was 1335 * *not* committed. Upon opening the pool after an unclean shutdown, 1336 * the intent log claims all blocks that contain immediate write data 1337 * so that the SPA knows they're in use. 1338 * 1339 * All claims *must* be resolved in the first txg -- before the SPA 1340 * starts allocating blocks -- so that nothing is allocated twice. 1341 * If txg == 0 we just verify that the block is claimable. 1342 */ 1343 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, 1344 spa_min_claim_txg(spa)); 1345 ASSERT(txg == spa_min_claim_txg(spa) || txg == 0); 1346 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(8) */ 1347 1348 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 1349 BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, 1350 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE); 1351 ASSERT0(zio->io_queued_timestamp); 1352 1353 return (zio); 1354 } 1355 1356 zio_t * 1357 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, 1358 zio_done_func_t *done, void *private, zio_flag_t flags) 1359 { 1360 zio_t *zio; 1361 int c; 1362 1363 if (vd->vdev_children == 0) { 1364 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private, 1365 ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 1366 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE); 1367 1368 zio->io_cmd = cmd; 1369 } else { 1370 zio = zio_null(pio, spa, NULL, NULL, NULL, flags); 1371 1372 for (c = 0; c < vd->vdev_children; c++) 1373 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd, 1374 done, private, flags)); 1375 } 1376 1377 return (zio); 1378 } 1379 1380 zio_t * 1381 zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1382 zio_done_func_t *done, void *private, zio_priority_t priority, 1383 zio_flag_t flags, enum trim_flag trim_flags) 1384 { 1385 zio_t *zio; 1386 1387 ASSERT0(vd->vdev_children); 1388 ASSERT0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 1389 ASSERT0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 1390 ASSERT3U(size, !=, 0); 1391 1392 zio = zio_create(pio, vd->vdev_spa, 0, NULL, NULL, size, size, done, 1393 private, ZIO_TYPE_TRIM, priority, flags | ZIO_FLAG_PHYSICAL, 1394 vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_TRIM_PIPELINE); 1395 zio->io_trim_flags = trim_flags; 1396 1397 return (zio); 1398 } 1399 1400 zio_t * 1401 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1402 abd_t *data, int checksum, zio_done_func_t *done, void *private, 1403 zio_priority_t priority, zio_flag_t flags, boolean_t labels) 1404 { 1405 zio_t *zio; 1406 1407 ASSERT(vd->vdev_children == 0); 1408 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 1409 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 1410 ASSERT3U(offset + size, <=, vd->vdev_psize); 1411 1412 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, 1413 private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd, 1414 offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE); 1415 1416 zio->io_prop.zp_checksum = checksum; 1417 1418 return (zio); 1419 } 1420 1421 zio_t * 1422 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1423 abd_t *data, int checksum, zio_done_func_t *done, void *private, 1424 zio_priority_t priority, zio_flag_t flags, boolean_t labels) 1425 { 1426 zio_t *zio; 1427 1428 ASSERT(vd->vdev_children == 0); 1429 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 1430 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 1431 ASSERT3U(offset + size, <=, vd->vdev_psize); 1432 1433 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, 1434 private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd, 1435 offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE); 1436 1437 zio->io_prop.zp_checksum = checksum; 1438 1439 if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) { 1440 /* 1441 * zec checksums are necessarily destructive -- they modify 1442 * the end of the write buffer to hold the verifier/checksum. 1443 * Therefore, we must make a local copy in case the data is 1444 * being written to multiple places in parallel. 1445 */ 1446 abd_t *wbuf = abd_alloc_sametype(data, size); 1447 abd_copy(wbuf, data, size); 1448 1449 zio_push_transform(zio, wbuf, size, size, NULL); 1450 } 1451 1452 return (zio); 1453 } 1454 1455 /* 1456 * Create a child I/O to do some work for us. 1457 */ 1458 zio_t * 1459 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset, 1460 abd_t *data, uint64_t size, int type, zio_priority_t priority, 1461 zio_flag_t flags, zio_done_func_t *done, void *private) 1462 { 1463 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE; 1464 zio_t *zio; 1465 1466 /* 1467 * vdev child I/Os do not propagate their error to the parent. 1468 * Therefore, for correct operation the caller *must* check for 1469 * and handle the error in the child i/o's done callback. 1470 * The only exceptions are i/os that we don't care about 1471 * (OPTIONAL or REPAIR). 1472 */ 1473 ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) || 1474 done != NULL); 1475 1476 if (type == ZIO_TYPE_READ && bp != NULL) { 1477 /* 1478 * If we have the bp, then the child should perform the 1479 * checksum and the parent need not. This pushes error 1480 * detection as close to the leaves as possible and 1481 * eliminates redundant checksums in the interior nodes. 1482 */ 1483 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY; 1484 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 1485 } 1486 1487 if (vd->vdev_ops->vdev_op_leaf) { 1488 ASSERT0(vd->vdev_children); 1489 offset += VDEV_LABEL_START_SIZE; 1490 } 1491 1492 flags |= ZIO_VDEV_CHILD_FLAGS(pio); 1493 1494 /* 1495 * If we've decided to do a repair, the write is not speculative -- 1496 * even if the original read was. 1497 */ 1498 if (flags & ZIO_FLAG_IO_REPAIR) 1499 flags &= ~ZIO_FLAG_SPECULATIVE; 1500 1501 /* 1502 * If we're creating a child I/O that is not associated with a 1503 * top-level vdev, then the child zio is not an allocating I/O. 1504 * If this is a retried I/O then we ignore it since we will 1505 * have already processed the original allocating I/O. 1506 */ 1507 if (flags & ZIO_FLAG_IO_ALLOCATING && 1508 (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) { 1509 ASSERT(pio->io_metaslab_class != NULL); 1510 ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled); 1511 ASSERT(type == ZIO_TYPE_WRITE); 1512 ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE); 1513 ASSERT(!(flags & ZIO_FLAG_IO_REPAIR)); 1514 ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) || 1515 pio->io_child_type == ZIO_CHILD_GANG); 1516 1517 flags &= ~ZIO_FLAG_IO_ALLOCATING; 1518 } 1519 1520 1521 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size, 1522 done, private, type, priority, flags, vd, offset, &pio->io_bookmark, 1523 ZIO_STAGE_VDEV_IO_START >> 1, pipeline); 1524 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); 1525 1526 zio->io_physdone = pio->io_physdone; 1527 if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL) 1528 zio->io_logical->io_phys_children++; 1529 1530 return (zio); 1531 } 1532 1533 zio_t * 1534 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size, 1535 zio_type_t type, zio_priority_t priority, zio_flag_t flags, 1536 zio_done_func_t *done, void *private) 1537 { 1538 zio_t *zio; 1539 1540 ASSERT(vd->vdev_ops->vdev_op_leaf); 1541 1542 zio = zio_create(NULL, vd->vdev_spa, 0, NULL, 1543 data, size, size, done, private, type, priority, 1544 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED, 1545 vd, offset, NULL, 1546 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE); 1547 1548 return (zio); 1549 } 1550 1551 void 1552 zio_flush(zio_t *zio, vdev_t *vd) 1553 { 1554 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE, 1555 NULL, NULL, 1556 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY)); 1557 } 1558 1559 void 1560 zio_shrink(zio_t *zio, uint64_t size) 1561 { 1562 ASSERT3P(zio->io_executor, ==, NULL); 1563 ASSERT3U(zio->io_orig_size, ==, zio->io_size); 1564 ASSERT3U(size, <=, zio->io_size); 1565 1566 /* 1567 * We don't shrink for raidz because of problems with the 1568 * reconstruction when reading back less than the block size. 1569 * Note, BP_IS_RAIDZ() assumes no compression. 1570 */ 1571 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 1572 if (!BP_IS_RAIDZ(zio->io_bp)) { 1573 /* we are not doing a raw write */ 1574 ASSERT3U(zio->io_size, ==, zio->io_lsize); 1575 zio->io_orig_size = zio->io_size = zio->io_lsize = size; 1576 } 1577 } 1578 1579 /* 1580 * ========================================================================== 1581 * Prepare to read and write logical blocks 1582 * ========================================================================== 1583 */ 1584 1585 static zio_t * 1586 zio_read_bp_init(zio_t *zio) 1587 { 1588 blkptr_t *bp = zio->io_bp; 1589 uint64_t psize = 1590 BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp); 1591 1592 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 1593 1594 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF && 1595 zio->io_child_type == ZIO_CHILD_LOGICAL && 1596 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) { 1597 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize), 1598 psize, psize, zio_decompress); 1599 } 1600 1601 if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) || 1602 BP_HAS_INDIRECT_MAC_CKSUM(bp)) && 1603 zio->io_child_type == ZIO_CHILD_LOGICAL) { 1604 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize), 1605 psize, psize, zio_decrypt); 1606 } 1607 1608 if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) { 1609 int psize = BPE_GET_PSIZE(bp); 1610 void *data = abd_borrow_buf(zio->io_abd, psize); 1611 1612 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1613 decode_embedded_bp_compressed(bp, data); 1614 abd_return_buf_copy(zio->io_abd, data, psize); 1615 } else { 1616 ASSERT(!BP_IS_EMBEDDED(bp)); 1617 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 1618 } 1619 1620 if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0) 1621 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 1622 1623 if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP) 1624 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 1625 1626 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL) 1627 zio->io_pipeline = ZIO_DDT_READ_PIPELINE; 1628 1629 return (zio); 1630 } 1631 1632 static zio_t * 1633 zio_write_bp_init(zio_t *zio) 1634 { 1635 if (!IO_IS_ALLOCATING(zio)) 1636 return (zio); 1637 1638 ASSERT(zio->io_child_type != ZIO_CHILD_DDT); 1639 1640 if (zio->io_bp_override) { 1641 blkptr_t *bp = zio->io_bp; 1642 zio_prop_t *zp = &zio->io_prop; 1643 1644 ASSERT(bp->blk_birth != zio->io_txg); 1645 1646 *bp = *zio->io_bp_override; 1647 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1648 1649 if (zp->zp_brtwrite) 1650 return (zio); 1651 1652 ASSERT(!BP_GET_DEDUP(zio->io_bp_override)); 1653 1654 if (BP_IS_EMBEDDED(bp)) 1655 return (zio); 1656 1657 /* 1658 * If we've been overridden and nopwrite is set then 1659 * set the flag accordingly to indicate that a nopwrite 1660 * has already occurred. 1661 */ 1662 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) { 1663 ASSERT(!zp->zp_dedup); 1664 ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum); 1665 zio->io_flags |= ZIO_FLAG_NOPWRITE; 1666 return (zio); 1667 } 1668 1669 ASSERT(!zp->zp_nopwrite); 1670 1671 if (BP_IS_HOLE(bp) || !zp->zp_dedup) 1672 return (zio); 1673 1674 ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags & 1675 ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify); 1676 1677 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum && 1678 !zp->zp_encrypt) { 1679 BP_SET_DEDUP(bp, 1); 1680 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE; 1681 return (zio); 1682 } 1683 1684 /* 1685 * We were unable to handle this as an override bp, treat 1686 * it as a regular write I/O. 1687 */ 1688 zio->io_bp_override = NULL; 1689 *bp = zio->io_bp_orig; 1690 zio->io_pipeline = zio->io_orig_pipeline; 1691 } 1692 1693 return (zio); 1694 } 1695 1696 static zio_t * 1697 zio_write_compress(zio_t *zio) 1698 { 1699 spa_t *spa = zio->io_spa; 1700 zio_prop_t *zp = &zio->io_prop; 1701 enum zio_compress compress = zp->zp_compress; 1702 blkptr_t *bp = zio->io_bp; 1703 uint64_t lsize = zio->io_lsize; 1704 uint64_t psize = zio->io_size; 1705 uint32_t pass = 1; 1706 1707 /* 1708 * If our children haven't all reached the ready stage, 1709 * wait for them and then repeat this pipeline stage. 1710 */ 1711 if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT | 1712 ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) { 1713 return (NULL); 1714 } 1715 1716 if (!IO_IS_ALLOCATING(zio)) 1717 return (zio); 1718 1719 if (zio->io_children_ready != NULL) { 1720 /* 1721 * Now that all our children are ready, run the callback 1722 * associated with this zio in case it wants to modify the 1723 * data to be written. 1724 */ 1725 ASSERT3U(zp->zp_level, >, 0); 1726 zio->io_children_ready(zio); 1727 } 1728 1729 ASSERT(zio->io_child_type != ZIO_CHILD_DDT); 1730 ASSERT(zio->io_bp_override == NULL); 1731 1732 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) { 1733 /* 1734 * We're rewriting an existing block, which means we're 1735 * working on behalf of spa_sync(). For spa_sync() to 1736 * converge, it must eventually be the case that we don't 1737 * have to allocate new blocks. But compression changes 1738 * the blocksize, which forces a reallocate, and makes 1739 * convergence take longer. Therefore, after the first 1740 * few passes, stop compressing to ensure convergence. 1741 */ 1742 pass = spa_sync_pass(spa); 1743 1744 ASSERT(zio->io_txg == spa_syncing_txg(spa)); 1745 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1746 ASSERT(!BP_GET_DEDUP(bp)); 1747 1748 if (pass >= zfs_sync_pass_dont_compress) 1749 compress = ZIO_COMPRESS_OFF; 1750 1751 /* Make sure someone doesn't change their mind on overwrites */ 1752 ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp), 1753 spa_max_replication(spa)) == BP_GET_NDVAS(bp)); 1754 } 1755 1756 /* If it's a compressed write that is not raw, compress the buffer. */ 1757 if (compress != ZIO_COMPRESS_OFF && 1758 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) { 1759 void *cbuf = NULL; 1760 psize = zio_compress_data(compress, zio->io_abd, &cbuf, lsize, 1761 zp->zp_complevel); 1762 if (psize == 0) { 1763 compress = ZIO_COMPRESS_OFF; 1764 } else if (psize >= lsize) { 1765 compress = ZIO_COMPRESS_OFF; 1766 if (cbuf != NULL) 1767 zio_buf_free(cbuf, lsize); 1768 } else if (!zp->zp_dedup && !zp->zp_encrypt && 1769 psize <= BPE_PAYLOAD_SIZE && 1770 zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) && 1771 spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) { 1772 encode_embedded_bp_compressed(bp, 1773 cbuf, compress, lsize, psize); 1774 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA); 1775 BP_SET_TYPE(bp, zio->io_prop.zp_type); 1776 BP_SET_LEVEL(bp, zio->io_prop.zp_level); 1777 zio_buf_free(cbuf, lsize); 1778 bp->blk_birth = zio->io_txg; 1779 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1780 ASSERT(spa_feature_is_active(spa, 1781 SPA_FEATURE_EMBEDDED_DATA)); 1782 return (zio); 1783 } else { 1784 /* 1785 * Round compressed size up to the minimum allocation 1786 * size of the smallest-ashift device, and zero the 1787 * tail. This ensures that the compressed size of the 1788 * BP (and thus compressratio property) are correct, 1789 * in that we charge for the padding used to fill out 1790 * the last sector. 1791 */ 1792 ASSERT3U(spa->spa_min_alloc, >=, SPA_MINBLOCKSHIFT); 1793 size_t rounded = (size_t)roundup(psize, 1794 spa->spa_min_alloc); 1795 if (rounded >= lsize) { 1796 compress = ZIO_COMPRESS_OFF; 1797 zio_buf_free(cbuf, lsize); 1798 psize = lsize; 1799 } else { 1800 abd_t *cdata = abd_get_from_buf(cbuf, lsize); 1801 abd_take_ownership_of_buf(cdata, B_TRUE); 1802 abd_zero_off(cdata, psize, rounded - psize); 1803 psize = rounded; 1804 zio_push_transform(zio, cdata, 1805 psize, lsize, NULL); 1806 } 1807 } 1808 1809 /* 1810 * We were unable to handle this as an override bp, treat 1811 * it as a regular write I/O. 1812 */ 1813 zio->io_bp_override = NULL; 1814 *bp = zio->io_bp_orig; 1815 zio->io_pipeline = zio->io_orig_pipeline; 1816 1817 } else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 && 1818 zp->zp_type == DMU_OT_DNODE) { 1819 /* 1820 * The DMU actually relies on the zio layer's compression 1821 * to free metadnode blocks that have had all contained 1822 * dnodes freed. As a result, even when doing a raw 1823 * receive, we must check whether the block can be compressed 1824 * to a hole. 1825 */ 1826 psize = zio_compress_data(ZIO_COMPRESS_EMPTY, 1827 zio->io_abd, NULL, lsize, zp->zp_complevel); 1828 if (psize == 0 || psize >= lsize) 1829 compress = ZIO_COMPRESS_OFF; 1830 } else if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS && 1831 !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) { 1832 /* 1833 * If we are raw receiving an encrypted dataset we should not 1834 * take this codepath because it will change the on-disk block 1835 * and decryption will fail. 1836 */ 1837 size_t rounded = MIN((size_t)roundup(psize, 1838 spa->spa_min_alloc), lsize); 1839 1840 if (rounded != psize) { 1841 abd_t *cdata = abd_alloc_linear(rounded, B_TRUE); 1842 abd_zero_off(cdata, psize, rounded - psize); 1843 abd_copy_off(cdata, zio->io_abd, 0, 0, psize); 1844 psize = rounded; 1845 zio_push_transform(zio, cdata, 1846 psize, rounded, NULL); 1847 } 1848 } else { 1849 ASSERT3U(psize, !=, 0); 1850 } 1851 1852 /* 1853 * The final pass of spa_sync() must be all rewrites, but the first 1854 * few passes offer a trade-off: allocating blocks defers convergence, 1855 * but newly allocated blocks are sequential, so they can be written 1856 * to disk faster. Therefore, we allow the first few passes of 1857 * spa_sync() to allocate new blocks, but force rewrites after that. 1858 * There should only be a handful of blocks after pass 1 in any case. 1859 */ 1860 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg && 1861 BP_GET_PSIZE(bp) == psize && 1862 pass >= zfs_sync_pass_rewrite) { 1863 VERIFY3U(psize, !=, 0); 1864 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES; 1865 1866 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages; 1867 zio->io_flags |= ZIO_FLAG_IO_REWRITE; 1868 } else { 1869 BP_ZERO(bp); 1870 zio->io_pipeline = ZIO_WRITE_PIPELINE; 1871 } 1872 1873 if (psize == 0) { 1874 if (zio->io_bp_orig.blk_birth != 0 && 1875 spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) { 1876 BP_SET_LSIZE(bp, lsize); 1877 BP_SET_TYPE(bp, zp->zp_type); 1878 BP_SET_LEVEL(bp, zp->zp_level); 1879 BP_SET_BIRTH(bp, zio->io_txg, 0); 1880 } 1881 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1882 } else { 1883 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER); 1884 BP_SET_LSIZE(bp, lsize); 1885 BP_SET_TYPE(bp, zp->zp_type); 1886 BP_SET_LEVEL(bp, zp->zp_level); 1887 BP_SET_PSIZE(bp, psize); 1888 BP_SET_COMPRESS(bp, compress); 1889 BP_SET_CHECKSUM(bp, zp->zp_checksum); 1890 BP_SET_DEDUP(bp, zp->zp_dedup); 1891 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 1892 if (zp->zp_dedup) { 1893 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1894 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1895 ASSERT(!zp->zp_encrypt || 1896 DMU_OT_IS_ENCRYPTED(zp->zp_type)); 1897 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE; 1898 } 1899 if (zp->zp_nopwrite) { 1900 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1901 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1902 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE; 1903 } 1904 } 1905 return (zio); 1906 } 1907 1908 static zio_t * 1909 zio_free_bp_init(zio_t *zio) 1910 { 1911 blkptr_t *bp = zio->io_bp; 1912 1913 if (zio->io_child_type == ZIO_CHILD_LOGICAL) { 1914 if (BP_GET_DEDUP(bp)) 1915 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE; 1916 } 1917 1918 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 1919 1920 return (zio); 1921 } 1922 1923 /* 1924 * ========================================================================== 1925 * Execute the I/O pipeline 1926 * ========================================================================== 1927 */ 1928 1929 static void 1930 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline) 1931 { 1932 spa_t *spa = zio->io_spa; 1933 zio_type_t t = zio->io_type; 1934 int flags = (cutinline ? TQ_FRONT : 0); 1935 1936 /* 1937 * If we're a config writer or a probe, the normal issue and 1938 * interrupt threads may all be blocked waiting for the config lock. 1939 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL. 1940 */ 1941 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE)) 1942 t = ZIO_TYPE_NULL; 1943 1944 /* 1945 * A similar issue exists for the L2ARC write thread until L2ARC 2.0. 1946 */ 1947 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux) 1948 t = ZIO_TYPE_NULL; 1949 1950 /* 1951 * If this is a high priority I/O, then use the high priority taskq if 1952 * available. 1953 */ 1954 if ((zio->io_priority == ZIO_PRIORITY_NOW || 1955 zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) && 1956 spa->spa_zio_taskq[t][q + 1].stqs_count != 0) 1957 q++; 1958 1959 ASSERT3U(q, <, ZIO_TASKQ_TYPES); 1960 1961 /* 1962 * NB: We are assuming that the zio can only be dispatched 1963 * to a single taskq at a time. It would be a grievous error 1964 * to dispatch the zio to another taskq at the same time. 1965 */ 1966 ASSERT(taskq_empty_ent(&zio->io_tqent)); 1967 spa_taskq_dispatch_ent(spa, t, q, zio_execute, zio, flags, 1968 &zio->io_tqent); 1969 } 1970 1971 static boolean_t 1972 zio_taskq_member(zio_t *zio, zio_taskq_type_t q) 1973 { 1974 spa_t *spa = zio->io_spa; 1975 1976 taskq_t *tq = taskq_of_curthread(); 1977 1978 for (zio_type_t t = 0; t < ZIO_TYPES; t++) { 1979 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1980 uint_t i; 1981 for (i = 0; i < tqs->stqs_count; i++) { 1982 if (tqs->stqs_taskq[i] == tq) 1983 return (B_TRUE); 1984 } 1985 } 1986 1987 return (B_FALSE); 1988 } 1989 1990 static zio_t * 1991 zio_issue_async(zio_t *zio) 1992 { 1993 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 1994 1995 return (NULL); 1996 } 1997 1998 void 1999 zio_interrupt(void *zio) 2000 { 2001 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE); 2002 } 2003 2004 void 2005 zio_delay_interrupt(zio_t *zio) 2006 { 2007 /* 2008 * The timeout_generic() function isn't defined in userspace, so 2009 * rather than trying to implement the function, the zio delay 2010 * functionality has been disabled for userspace builds. 2011 */ 2012 2013 #ifdef _KERNEL 2014 /* 2015 * If io_target_timestamp is zero, then no delay has been registered 2016 * for this IO, thus jump to the end of this function and "skip" the 2017 * delay; issuing it directly to the zio layer. 2018 */ 2019 if (zio->io_target_timestamp != 0) { 2020 hrtime_t now = gethrtime(); 2021 2022 if (now >= zio->io_target_timestamp) { 2023 /* 2024 * This IO has already taken longer than the target 2025 * delay to complete, so we don't want to delay it 2026 * any longer; we "miss" the delay and issue it 2027 * directly to the zio layer. This is likely due to 2028 * the target latency being set to a value less than 2029 * the underlying hardware can satisfy (e.g. delay 2030 * set to 1ms, but the disks take 10ms to complete an 2031 * IO request). 2032 */ 2033 2034 DTRACE_PROBE2(zio__delay__miss, zio_t *, zio, 2035 hrtime_t, now); 2036 2037 zio_interrupt(zio); 2038 } else { 2039 taskqid_t tid; 2040 hrtime_t diff = zio->io_target_timestamp - now; 2041 clock_t expire_at_tick = ddi_get_lbolt() + 2042 NSEC_TO_TICK(diff); 2043 2044 DTRACE_PROBE3(zio__delay__hit, zio_t *, zio, 2045 hrtime_t, now, hrtime_t, diff); 2046 2047 if (NSEC_TO_TICK(diff) == 0) { 2048 /* Our delay is less than a jiffy - just spin */ 2049 zfs_sleep_until(zio->io_target_timestamp); 2050 zio_interrupt(zio); 2051 } else { 2052 /* 2053 * Use taskq_dispatch_delay() in the place of 2054 * OpenZFS's timeout_generic(). 2055 */ 2056 tid = taskq_dispatch_delay(system_taskq, 2057 zio_interrupt, zio, TQ_NOSLEEP, 2058 expire_at_tick); 2059 if (tid == TASKQID_INVALID) { 2060 /* 2061 * Couldn't allocate a task. Just 2062 * finish the zio without a delay. 2063 */ 2064 zio_interrupt(zio); 2065 } 2066 } 2067 } 2068 return; 2069 } 2070 #endif 2071 DTRACE_PROBE1(zio__delay__skip, zio_t *, zio); 2072 zio_interrupt(zio); 2073 } 2074 2075 static void 2076 zio_deadman_impl(zio_t *pio, int ziodepth) 2077 { 2078 zio_t *cio, *cio_next; 2079 zio_link_t *zl = NULL; 2080 vdev_t *vd = pio->io_vd; 2081 2082 if (zio_deadman_log_all || (vd != NULL && vd->vdev_ops->vdev_op_leaf)) { 2083 vdev_queue_t *vq = vd ? &vd->vdev_queue : NULL; 2084 zbookmark_phys_t *zb = &pio->io_bookmark; 2085 uint64_t delta = gethrtime() - pio->io_timestamp; 2086 uint64_t failmode = spa_get_deadman_failmode(pio->io_spa); 2087 2088 zfs_dbgmsg("slow zio[%d]: zio=%px timestamp=%llu " 2089 "delta=%llu queued=%llu io=%llu " 2090 "path=%s " 2091 "last=%llu type=%d " 2092 "priority=%d flags=0x%llx stage=0x%x " 2093 "pipeline=0x%x pipeline-trace=0x%x " 2094 "objset=%llu object=%llu " 2095 "level=%llu blkid=%llu " 2096 "offset=%llu size=%llu " 2097 "error=%d", 2098 ziodepth, pio, pio->io_timestamp, 2099 (u_longlong_t)delta, pio->io_delta, pio->io_delay, 2100 vd ? vd->vdev_path : "NULL", 2101 vq ? vq->vq_io_complete_ts : 0, pio->io_type, 2102 pio->io_priority, (u_longlong_t)pio->io_flags, 2103 pio->io_stage, pio->io_pipeline, pio->io_pipeline_trace, 2104 (u_longlong_t)zb->zb_objset, (u_longlong_t)zb->zb_object, 2105 (u_longlong_t)zb->zb_level, (u_longlong_t)zb->zb_blkid, 2106 (u_longlong_t)pio->io_offset, (u_longlong_t)pio->io_size, 2107 pio->io_error); 2108 (void) zfs_ereport_post(FM_EREPORT_ZFS_DEADMAN, 2109 pio->io_spa, vd, zb, pio, 0); 2110 2111 if (failmode == ZIO_FAILURE_MODE_CONTINUE && 2112 taskq_empty_ent(&pio->io_tqent)) { 2113 zio_interrupt(pio); 2114 } 2115 } 2116 2117 mutex_enter(&pio->io_lock); 2118 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 2119 cio_next = zio_walk_children(pio, &zl); 2120 zio_deadman_impl(cio, ziodepth + 1); 2121 } 2122 mutex_exit(&pio->io_lock); 2123 } 2124 2125 /* 2126 * Log the critical information describing this zio and all of its children 2127 * using the zfs_dbgmsg() interface then post deadman event for the ZED. 2128 */ 2129 void 2130 zio_deadman(zio_t *pio, const char *tag) 2131 { 2132 spa_t *spa = pio->io_spa; 2133 char *name = spa_name(spa); 2134 2135 if (!zfs_deadman_enabled || spa_suspended(spa)) 2136 return; 2137 2138 zio_deadman_impl(pio, 0); 2139 2140 switch (spa_get_deadman_failmode(spa)) { 2141 case ZIO_FAILURE_MODE_WAIT: 2142 zfs_dbgmsg("%s waiting for hung I/O to pool '%s'", tag, name); 2143 break; 2144 2145 case ZIO_FAILURE_MODE_CONTINUE: 2146 zfs_dbgmsg("%s restarting hung I/O for pool '%s'", tag, name); 2147 break; 2148 2149 case ZIO_FAILURE_MODE_PANIC: 2150 fm_panic("%s determined I/O to pool '%s' is hung.", tag, name); 2151 break; 2152 } 2153 } 2154 2155 /* 2156 * Execute the I/O pipeline until one of the following occurs: 2157 * (1) the I/O completes; (2) the pipeline stalls waiting for 2158 * dependent child I/Os; (3) the I/O issues, so we're waiting 2159 * for an I/O completion interrupt; (4) the I/O is delegated by 2160 * vdev-level caching or aggregation; (5) the I/O is deferred 2161 * due to vdev-level queueing; (6) the I/O is handed off to 2162 * another thread. In all cases, the pipeline stops whenever 2163 * there's no CPU work; it never burns a thread in cv_wait_io(). 2164 * 2165 * There's no locking on io_stage because there's no legitimate way 2166 * for multiple threads to be attempting to process the same I/O. 2167 */ 2168 static zio_pipe_stage_t *zio_pipeline[]; 2169 2170 /* 2171 * zio_execute() is a wrapper around the static function 2172 * __zio_execute() so that we can force __zio_execute() to be 2173 * inlined. This reduces stack overhead which is important 2174 * because __zio_execute() is called recursively in several zio 2175 * code paths. zio_execute() itself cannot be inlined because 2176 * it is externally visible. 2177 */ 2178 void 2179 zio_execute(void *zio) 2180 { 2181 fstrans_cookie_t cookie; 2182 2183 cookie = spl_fstrans_mark(); 2184 __zio_execute(zio); 2185 spl_fstrans_unmark(cookie); 2186 } 2187 2188 /* 2189 * Used to determine if in the current context the stack is sized large 2190 * enough to allow zio_execute() to be called recursively. A minimum 2191 * stack size of 16K is required to avoid needing to re-dispatch the zio. 2192 */ 2193 static boolean_t 2194 zio_execute_stack_check(zio_t *zio) 2195 { 2196 #if !defined(HAVE_LARGE_STACKS) 2197 dsl_pool_t *dp = spa_get_dsl(zio->io_spa); 2198 2199 /* Executing in txg_sync_thread() context. */ 2200 if (dp && curthread == dp->dp_tx.tx_sync_thread) 2201 return (B_TRUE); 2202 2203 /* Pool initialization outside of zio_taskq context. */ 2204 if (dp && spa_is_initializing(dp->dp_spa) && 2205 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE) && 2206 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE_HIGH)) 2207 return (B_TRUE); 2208 #else 2209 (void) zio; 2210 #endif /* HAVE_LARGE_STACKS */ 2211 2212 return (B_FALSE); 2213 } 2214 2215 __attribute__((always_inline)) 2216 static inline void 2217 __zio_execute(zio_t *zio) 2218 { 2219 ASSERT3U(zio->io_queued_timestamp, >, 0); 2220 2221 while (zio->io_stage < ZIO_STAGE_DONE) { 2222 enum zio_stage pipeline = zio->io_pipeline; 2223 enum zio_stage stage = zio->io_stage; 2224 2225 zio->io_executor = curthread; 2226 2227 ASSERT(!MUTEX_HELD(&zio->io_lock)); 2228 ASSERT(ISP2(stage)); 2229 ASSERT(zio->io_stall == NULL); 2230 2231 do { 2232 stage <<= 1; 2233 } while ((stage & pipeline) == 0); 2234 2235 ASSERT(stage <= ZIO_STAGE_DONE); 2236 2237 /* 2238 * If we are in interrupt context and this pipeline stage 2239 * will grab a config lock that is held across I/O, 2240 * or may wait for an I/O that needs an interrupt thread 2241 * to complete, issue async to avoid deadlock. 2242 * 2243 * For VDEV_IO_START, we cut in line so that the io will 2244 * be sent to disk promptly. 2245 */ 2246 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL && 2247 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) { 2248 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ? 2249 zio_requeue_io_start_cut_in_line : B_FALSE; 2250 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut); 2251 return; 2252 } 2253 2254 /* 2255 * If the current context doesn't have large enough stacks 2256 * the zio must be issued asynchronously to prevent overflow. 2257 */ 2258 if (zio_execute_stack_check(zio)) { 2259 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ? 2260 zio_requeue_io_start_cut_in_line : B_FALSE; 2261 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut); 2262 return; 2263 } 2264 2265 zio->io_stage = stage; 2266 zio->io_pipeline_trace |= zio->io_stage; 2267 2268 /* 2269 * The zio pipeline stage returns the next zio to execute 2270 * (typically the same as this one), or NULL if we should 2271 * stop. 2272 */ 2273 zio = zio_pipeline[highbit64(stage) - 1](zio); 2274 2275 if (zio == NULL) 2276 return; 2277 } 2278 } 2279 2280 2281 /* 2282 * ========================================================================== 2283 * Initiate I/O, either sync or async 2284 * ========================================================================== 2285 */ 2286 int 2287 zio_wait(zio_t *zio) 2288 { 2289 /* 2290 * Some routines, like zio_free_sync(), may return a NULL zio 2291 * to avoid the performance overhead of creating and then destroying 2292 * an unneeded zio. For the callers' simplicity, we accept a NULL 2293 * zio and ignore it. 2294 */ 2295 if (zio == NULL) 2296 return (0); 2297 2298 long timeout = MSEC_TO_TICK(zfs_deadman_ziotime_ms); 2299 int error; 2300 2301 ASSERT3S(zio->io_stage, ==, ZIO_STAGE_OPEN); 2302 ASSERT3P(zio->io_executor, ==, NULL); 2303 2304 zio->io_waiter = curthread; 2305 ASSERT0(zio->io_queued_timestamp); 2306 zio->io_queued_timestamp = gethrtime(); 2307 2308 __zio_execute(zio); 2309 2310 mutex_enter(&zio->io_lock); 2311 while (zio->io_executor != NULL) { 2312 error = cv_timedwait_io(&zio->io_cv, &zio->io_lock, 2313 ddi_get_lbolt() + timeout); 2314 2315 if (zfs_deadman_enabled && error == -1 && 2316 gethrtime() - zio->io_queued_timestamp > 2317 spa_deadman_ziotime(zio->io_spa)) { 2318 mutex_exit(&zio->io_lock); 2319 timeout = MSEC_TO_TICK(zfs_deadman_checktime_ms); 2320 zio_deadman(zio, FTAG); 2321 mutex_enter(&zio->io_lock); 2322 } 2323 } 2324 mutex_exit(&zio->io_lock); 2325 2326 error = zio->io_error; 2327 zio_destroy(zio); 2328 2329 return (error); 2330 } 2331 2332 void 2333 zio_nowait(zio_t *zio) 2334 { 2335 /* 2336 * See comment in zio_wait(). 2337 */ 2338 if (zio == NULL) 2339 return; 2340 2341 ASSERT3P(zio->io_executor, ==, NULL); 2342 2343 if (zio->io_child_type == ZIO_CHILD_LOGICAL && 2344 list_is_empty(&zio->io_parent_list)) { 2345 zio_t *pio; 2346 2347 /* 2348 * This is a logical async I/O with no parent to wait for it. 2349 * We add it to the spa_async_root_zio "Godfather" I/O which 2350 * will ensure they complete prior to unloading the pool. 2351 */ 2352 spa_t *spa = zio->io_spa; 2353 pio = spa->spa_async_zio_root[CPU_SEQID_UNSTABLE]; 2354 2355 zio_add_child(pio, zio); 2356 } 2357 2358 ASSERT0(zio->io_queued_timestamp); 2359 zio->io_queued_timestamp = gethrtime(); 2360 __zio_execute(zio); 2361 } 2362 2363 /* 2364 * ========================================================================== 2365 * Reexecute, cancel, or suspend/resume failed I/O 2366 * ========================================================================== 2367 */ 2368 2369 static void 2370 zio_reexecute(void *arg) 2371 { 2372 zio_t *pio = arg; 2373 zio_t *cio, *cio_next; 2374 2375 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL); 2376 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN); 2377 ASSERT(pio->io_gang_leader == NULL); 2378 ASSERT(pio->io_gang_tree == NULL); 2379 2380 pio->io_flags = pio->io_orig_flags; 2381 pio->io_stage = pio->io_orig_stage; 2382 pio->io_pipeline = pio->io_orig_pipeline; 2383 pio->io_reexecute = 0; 2384 pio->io_flags |= ZIO_FLAG_REEXECUTED; 2385 pio->io_pipeline_trace = 0; 2386 pio->io_error = 0; 2387 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 2388 pio->io_state[w] = 0; 2389 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 2390 pio->io_child_error[c] = 0; 2391 2392 if (IO_IS_ALLOCATING(pio)) 2393 BP_ZERO(pio->io_bp); 2394 2395 /* 2396 * As we reexecute pio's children, new children could be created. 2397 * New children go to the head of pio's io_child_list, however, 2398 * so we will (correctly) not reexecute them. The key is that 2399 * the remainder of pio's io_child_list, from 'cio_next' onward, 2400 * cannot be affected by any side effects of reexecuting 'cio'. 2401 */ 2402 zio_link_t *zl = NULL; 2403 mutex_enter(&pio->io_lock); 2404 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 2405 cio_next = zio_walk_children(pio, &zl); 2406 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 2407 pio->io_children[cio->io_child_type][w]++; 2408 mutex_exit(&pio->io_lock); 2409 zio_reexecute(cio); 2410 mutex_enter(&pio->io_lock); 2411 } 2412 mutex_exit(&pio->io_lock); 2413 2414 /* 2415 * Now that all children have been reexecuted, execute the parent. 2416 * We don't reexecute "The Godfather" I/O here as it's the 2417 * responsibility of the caller to wait on it. 2418 */ 2419 if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) { 2420 pio->io_queued_timestamp = gethrtime(); 2421 __zio_execute(pio); 2422 } 2423 } 2424 2425 void 2426 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason) 2427 { 2428 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC) 2429 fm_panic("Pool '%s' has encountered an uncorrectable I/O " 2430 "failure and the failure mode property for this pool " 2431 "is set to panic.", spa_name(spa)); 2432 2433 cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable I/O " 2434 "failure and has been suspended.\n", spa_name(spa)); 2435 2436 (void) zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, 2437 NULL, NULL, 0); 2438 2439 mutex_enter(&spa->spa_suspend_lock); 2440 2441 if (spa->spa_suspend_zio_root == NULL) 2442 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL, 2443 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 2444 ZIO_FLAG_GODFATHER); 2445 2446 spa->spa_suspended = reason; 2447 2448 if (zio != NULL) { 2449 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 2450 ASSERT(zio != spa->spa_suspend_zio_root); 2451 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2452 ASSERT(zio_unique_parent(zio) == NULL); 2453 ASSERT(zio->io_stage == ZIO_STAGE_DONE); 2454 zio_add_child(spa->spa_suspend_zio_root, zio); 2455 } 2456 2457 mutex_exit(&spa->spa_suspend_lock); 2458 } 2459 2460 int 2461 zio_resume(spa_t *spa) 2462 { 2463 zio_t *pio; 2464 2465 /* 2466 * Reexecute all previously suspended i/o. 2467 */ 2468 mutex_enter(&spa->spa_suspend_lock); 2469 spa->spa_suspended = ZIO_SUSPEND_NONE; 2470 cv_broadcast(&spa->spa_suspend_cv); 2471 pio = spa->spa_suspend_zio_root; 2472 spa->spa_suspend_zio_root = NULL; 2473 mutex_exit(&spa->spa_suspend_lock); 2474 2475 if (pio == NULL) 2476 return (0); 2477 2478 zio_reexecute(pio); 2479 return (zio_wait(pio)); 2480 } 2481 2482 void 2483 zio_resume_wait(spa_t *spa) 2484 { 2485 mutex_enter(&spa->spa_suspend_lock); 2486 while (spa_suspended(spa)) 2487 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock); 2488 mutex_exit(&spa->spa_suspend_lock); 2489 } 2490 2491 /* 2492 * ========================================================================== 2493 * Gang blocks. 2494 * 2495 * A gang block is a collection of small blocks that looks to the DMU 2496 * like one large block. When zio_dva_allocate() cannot find a block 2497 * of the requested size, due to either severe fragmentation or the pool 2498 * being nearly full, it calls zio_write_gang_block() to construct the 2499 * block from smaller fragments. 2500 * 2501 * A gang block consists of a gang header (zio_gbh_phys_t) and up to 2502 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like 2503 * an indirect block: it's an array of block pointers. It consumes 2504 * only one sector and hence is allocatable regardless of fragmentation. 2505 * The gang header's bps point to its gang members, which hold the data. 2506 * 2507 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg> 2508 * as the verifier to ensure uniqueness of the SHA256 checksum. 2509 * Critically, the gang block bp's blk_cksum is the checksum of the data, 2510 * not the gang header. This ensures that data block signatures (needed for 2511 * deduplication) are independent of how the block is physically stored. 2512 * 2513 * Gang blocks can be nested: a gang member may itself be a gang block. 2514 * Thus every gang block is a tree in which root and all interior nodes are 2515 * gang headers, and the leaves are normal blocks that contain user data. 2516 * The root of the gang tree is called the gang leader. 2517 * 2518 * To perform any operation (read, rewrite, free, claim) on a gang block, 2519 * zio_gang_assemble() first assembles the gang tree (minus data leaves) 2520 * in the io_gang_tree field of the original logical i/o by recursively 2521 * reading the gang leader and all gang headers below it. This yields 2522 * an in-core tree containing the contents of every gang header and the 2523 * bps for every constituent of the gang block. 2524 * 2525 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree 2526 * and invokes a callback on each bp. To free a gang block, zio_gang_issue() 2527 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp. 2528 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim(). 2529 * zio_read_gang() is a wrapper around zio_read() that omits reading gang 2530 * headers, since we already have those in io_gang_tree. zio_rewrite_gang() 2531 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite() 2532 * of the gang header plus zio_checksum_compute() of the data to update the 2533 * gang header's blk_cksum as described above. 2534 * 2535 * The two-phase assemble/issue model solves the problem of partial failure -- 2536 * what if you'd freed part of a gang block but then couldn't read the 2537 * gang header for another part? Assembling the entire gang tree first 2538 * ensures that all the necessary gang header I/O has succeeded before 2539 * starting the actual work of free, claim, or write. Once the gang tree 2540 * is assembled, free and claim are in-memory operations that cannot fail. 2541 * 2542 * In the event that a gang write fails, zio_dva_unallocate() walks the 2543 * gang tree to immediately free (i.e. insert back into the space map) 2544 * everything we've allocated. This ensures that we don't get ENOSPC 2545 * errors during repeated suspend/resume cycles due to a flaky device. 2546 * 2547 * Gang rewrites only happen during sync-to-convergence. If we can't assemble 2548 * the gang tree, we won't modify the block, so we can safely defer the free 2549 * (knowing that the block is still intact). If we *can* assemble the gang 2550 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free 2551 * each constituent bp and we can allocate a new block on the next sync pass. 2552 * 2553 * In all cases, the gang tree allows complete recovery from partial failure. 2554 * ========================================================================== 2555 */ 2556 2557 static void 2558 zio_gang_issue_func_done(zio_t *zio) 2559 { 2560 abd_free(zio->io_abd); 2561 } 2562 2563 static zio_t * 2564 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2565 uint64_t offset) 2566 { 2567 if (gn != NULL) 2568 return (pio); 2569 2570 return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset), 2571 BP_GET_PSIZE(bp), zio_gang_issue_func_done, 2572 NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 2573 &pio->io_bookmark)); 2574 } 2575 2576 static zio_t * 2577 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2578 uint64_t offset) 2579 { 2580 zio_t *zio; 2581 2582 if (gn != NULL) { 2583 abd_t *gbh_abd = 2584 abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2585 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 2586 gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL, 2587 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 2588 &pio->io_bookmark); 2589 /* 2590 * As we rewrite each gang header, the pipeline will compute 2591 * a new gang block header checksum for it; but no one will 2592 * compute a new data checksum, so we do that here. The one 2593 * exception is the gang leader: the pipeline already computed 2594 * its data checksum because that stage precedes gang assembly. 2595 * (Presently, nothing actually uses interior data checksums; 2596 * this is just good hygiene.) 2597 */ 2598 if (gn != pio->io_gang_leader->io_gang_tree) { 2599 abd_t *buf = abd_get_offset(data, offset); 2600 2601 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp), 2602 buf, BP_GET_PSIZE(bp)); 2603 2604 abd_free(buf); 2605 } 2606 /* 2607 * If we are here to damage data for testing purposes, 2608 * leave the GBH alone so that we can detect the damage. 2609 */ 2610 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE) 2611 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 2612 } else { 2613 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 2614 abd_get_offset(data, offset), BP_GET_PSIZE(bp), 2615 zio_gang_issue_func_done, NULL, pio->io_priority, 2616 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2617 } 2618 2619 return (zio); 2620 } 2621 2622 static zio_t * 2623 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2624 uint64_t offset) 2625 { 2626 (void) gn, (void) data, (void) offset; 2627 2628 zio_t *zio = zio_free_sync(pio, pio->io_spa, pio->io_txg, bp, 2629 ZIO_GANG_CHILD_FLAGS(pio)); 2630 if (zio == NULL) { 2631 zio = zio_null(pio, pio->io_spa, 2632 NULL, NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)); 2633 } 2634 return (zio); 2635 } 2636 2637 static zio_t * 2638 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2639 uint64_t offset) 2640 { 2641 (void) gn, (void) data, (void) offset; 2642 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp, 2643 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio))); 2644 } 2645 2646 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = { 2647 NULL, 2648 zio_read_gang, 2649 zio_rewrite_gang, 2650 zio_free_gang, 2651 zio_claim_gang, 2652 NULL 2653 }; 2654 2655 static void zio_gang_tree_assemble_done(zio_t *zio); 2656 2657 static zio_gang_node_t * 2658 zio_gang_node_alloc(zio_gang_node_t **gnpp) 2659 { 2660 zio_gang_node_t *gn; 2661 2662 ASSERT(*gnpp == NULL); 2663 2664 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP); 2665 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE); 2666 *gnpp = gn; 2667 2668 return (gn); 2669 } 2670 2671 static void 2672 zio_gang_node_free(zio_gang_node_t **gnpp) 2673 { 2674 zio_gang_node_t *gn = *gnpp; 2675 2676 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 2677 ASSERT(gn->gn_child[g] == NULL); 2678 2679 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2680 kmem_free(gn, sizeof (*gn)); 2681 *gnpp = NULL; 2682 } 2683 2684 static void 2685 zio_gang_tree_free(zio_gang_node_t **gnpp) 2686 { 2687 zio_gang_node_t *gn = *gnpp; 2688 2689 if (gn == NULL) 2690 return; 2691 2692 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 2693 zio_gang_tree_free(&gn->gn_child[g]); 2694 2695 zio_gang_node_free(gnpp); 2696 } 2697 2698 static void 2699 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp) 2700 { 2701 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp); 2702 abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2703 2704 ASSERT(gio->io_gang_leader == gio); 2705 ASSERT(BP_IS_GANG(bp)); 2706 2707 zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE, 2708 zio_gang_tree_assemble_done, gn, gio->io_priority, 2709 ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark)); 2710 } 2711 2712 static void 2713 zio_gang_tree_assemble_done(zio_t *zio) 2714 { 2715 zio_t *gio = zio->io_gang_leader; 2716 zio_gang_node_t *gn = zio->io_private; 2717 blkptr_t *bp = zio->io_bp; 2718 2719 ASSERT(gio == zio_unique_parent(zio)); 2720 ASSERT(zio->io_child_count == 0); 2721 2722 if (zio->io_error) 2723 return; 2724 2725 /* this ABD was created from a linear buf in zio_gang_tree_assemble */ 2726 if (BP_SHOULD_BYTESWAP(bp)) 2727 byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size); 2728 2729 ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh); 2730 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE); 2731 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 2732 2733 abd_free(zio->io_abd); 2734 2735 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2736 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 2737 if (!BP_IS_GANG(gbp)) 2738 continue; 2739 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]); 2740 } 2741 } 2742 2743 static void 2744 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data, 2745 uint64_t offset) 2746 { 2747 zio_t *gio = pio->io_gang_leader; 2748 zio_t *zio; 2749 2750 ASSERT(BP_IS_GANG(bp) == !!gn); 2751 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp)); 2752 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree); 2753 2754 /* 2755 * If you're a gang header, your data is in gn->gn_gbh. 2756 * If you're a gang member, your data is in 'data' and gn == NULL. 2757 */ 2758 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset); 2759 2760 if (gn != NULL) { 2761 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 2762 2763 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2764 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 2765 if (BP_IS_HOLE(gbp)) 2766 continue; 2767 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data, 2768 offset); 2769 offset += BP_GET_PSIZE(gbp); 2770 } 2771 } 2772 2773 if (gn == gio->io_gang_tree) 2774 ASSERT3U(gio->io_size, ==, offset); 2775 2776 if (zio != pio) 2777 zio_nowait(zio); 2778 } 2779 2780 static zio_t * 2781 zio_gang_assemble(zio_t *zio) 2782 { 2783 blkptr_t *bp = zio->io_bp; 2784 2785 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL); 2786 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2787 2788 zio->io_gang_leader = zio; 2789 2790 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree); 2791 2792 return (zio); 2793 } 2794 2795 static zio_t * 2796 zio_gang_issue(zio_t *zio) 2797 { 2798 blkptr_t *bp = zio->io_bp; 2799 2800 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) { 2801 return (NULL); 2802 } 2803 2804 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio); 2805 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2806 2807 if (zio->io_child_error[ZIO_CHILD_GANG] == 0) 2808 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd, 2809 0); 2810 else 2811 zio_gang_tree_free(&zio->io_gang_tree); 2812 2813 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2814 2815 return (zio); 2816 } 2817 2818 static void 2819 zio_write_gang_member_ready(zio_t *zio) 2820 { 2821 zio_t *pio = zio_unique_parent(zio); 2822 dva_t *cdva = zio->io_bp->blk_dva; 2823 dva_t *pdva = pio->io_bp->blk_dva; 2824 uint64_t asize; 2825 zio_t *gio __maybe_unused = zio->io_gang_leader; 2826 2827 if (BP_IS_HOLE(zio->io_bp)) 2828 return; 2829 2830 ASSERT(BP_IS_HOLE(&zio->io_bp_orig)); 2831 2832 ASSERT(zio->io_child_type == ZIO_CHILD_GANG); 2833 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies); 2834 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp)); 2835 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp)); 2836 VERIFY3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp)); 2837 2838 mutex_enter(&pio->io_lock); 2839 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) { 2840 ASSERT(DVA_GET_GANG(&pdva[d])); 2841 asize = DVA_GET_ASIZE(&pdva[d]); 2842 asize += DVA_GET_ASIZE(&cdva[d]); 2843 DVA_SET_ASIZE(&pdva[d], asize); 2844 } 2845 mutex_exit(&pio->io_lock); 2846 } 2847 2848 static void 2849 zio_write_gang_done(zio_t *zio) 2850 { 2851 /* 2852 * The io_abd field will be NULL for a zio with no data. The io_flags 2853 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't 2854 * check for it here as it is cleared in zio_ready. 2855 */ 2856 if (zio->io_abd != NULL) 2857 abd_free(zio->io_abd); 2858 } 2859 2860 static zio_t * 2861 zio_write_gang_block(zio_t *pio, metaslab_class_t *mc) 2862 { 2863 spa_t *spa = pio->io_spa; 2864 blkptr_t *bp = pio->io_bp; 2865 zio_t *gio = pio->io_gang_leader; 2866 zio_t *zio; 2867 zio_gang_node_t *gn, **gnpp; 2868 zio_gbh_phys_t *gbh; 2869 abd_t *gbh_abd; 2870 uint64_t txg = pio->io_txg; 2871 uint64_t resid = pio->io_size; 2872 uint64_t lsize; 2873 int copies = gio->io_prop.zp_copies; 2874 zio_prop_t zp; 2875 int error; 2876 boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA); 2877 2878 /* 2879 * If one copy was requested, store 2 copies of the GBH, so that we 2880 * can still traverse all the data (e.g. to free or scrub) even if a 2881 * block is damaged. Note that we can't store 3 copies of the GBH in 2882 * all cases, e.g. with encryption, which uses DVA[2] for the IV+salt. 2883 */ 2884 int gbh_copies = copies; 2885 if (gbh_copies == 1) { 2886 gbh_copies = MIN(2, spa_max_replication(spa)); 2887 } 2888 2889 int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER; 2890 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2891 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2892 ASSERT(has_data); 2893 2894 flags |= METASLAB_ASYNC_ALLOC; 2895 VERIFY(zfs_refcount_held(&mc->mc_allocator[pio->io_allocator]. 2896 mca_alloc_slots, pio)); 2897 2898 /* 2899 * The logical zio has already placed a reservation for 2900 * 'copies' allocation slots but gang blocks may require 2901 * additional copies. These additional copies 2902 * (i.e. gbh_copies - copies) are guaranteed to succeed 2903 * since metaslab_class_throttle_reserve() always allows 2904 * additional reservations for gang blocks. 2905 */ 2906 VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies, 2907 pio->io_allocator, pio, flags)); 2908 } 2909 2910 error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE, 2911 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags, 2912 &pio->io_alloc_list, pio, pio->io_allocator); 2913 if (error) { 2914 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2915 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2916 ASSERT(has_data); 2917 2918 /* 2919 * If we failed to allocate the gang block header then 2920 * we remove any additional allocation reservations that 2921 * we placed here. The original reservation will 2922 * be removed when the logical I/O goes to the ready 2923 * stage. 2924 */ 2925 metaslab_class_throttle_unreserve(mc, 2926 gbh_copies - copies, pio->io_allocator, pio); 2927 } 2928 2929 pio->io_error = error; 2930 return (pio); 2931 } 2932 2933 if (pio == gio) { 2934 gnpp = &gio->io_gang_tree; 2935 } else { 2936 gnpp = pio->io_private; 2937 ASSERT(pio->io_ready == zio_write_gang_member_ready); 2938 } 2939 2940 gn = zio_gang_node_alloc(gnpp); 2941 gbh = gn->gn_gbh; 2942 memset(gbh, 0, SPA_GANGBLOCKSIZE); 2943 gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE); 2944 2945 /* 2946 * Create the gang header. 2947 */ 2948 zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE, 2949 zio_write_gang_done, NULL, pio->io_priority, 2950 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2951 2952 /* 2953 * Create and nowait the gang children. 2954 */ 2955 for (int g = 0; resid != 0; resid -= lsize, g++) { 2956 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g), 2957 SPA_MINBLOCKSIZE); 2958 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid); 2959 2960 zp.zp_checksum = gio->io_prop.zp_checksum; 2961 zp.zp_compress = ZIO_COMPRESS_OFF; 2962 zp.zp_complevel = gio->io_prop.zp_complevel; 2963 zp.zp_type = DMU_OT_NONE; 2964 zp.zp_level = 0; 2965 zp.zp_copies = gio->io_prop.zp_copies; 2966 zp.zp_dedup = B_FALSE; 2967 zp.zp_dedup_verify = B_FALSE; 2968 zp.zp_nopwrite = B_FALSE; 2969 zp.zp_encrypt = gio->io_prop.zp_encrypt; 2970 zp.zp_byteorder = gio->io_prop.zp_byteorder; 2971 memset(zp.zp_salt, 0, ZIO_DATA_SALT_LEN); 2972 memset(zp.zp_iv, 0, ZIO_DATA_IV_LEN); 2973 memset(zp.zp_mac, 0, ZIO_DATA_MAC_LEN); 2974 2975 zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g], 2976 has_data ? abd_get_offset(pio->io_abd, pio->io_size - 2977 resid) : NULL, lsize, lsize, &zp, 2978 zio_write_gang_member_ready, NULL, NULL, 2979 zio_write_gang_done, &gn->gn_child[g], pio->io_priority, 2980 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2981 2982 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2983 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2984 ASSERT(has_data); 2985 2986 /* 2987 * Gang children won't throttle but we should 2988 * account for their work, so reserve an allocation 2989 * slot for them here. 2990 */ 2991 VERIFY(metaslab_class_throttle_reserve(mc, 2992 zp.zp_copies, cio->io_allocator, cio, flags)); 2993 } 2994 zio_nowait(cio); 2995 } 2996 2997 /* 2998 * Set pio's pipeline to just wait for zio to finish. 2999 */ 3000 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 3001 3002 /* 3003 * We didn't allocate this bp, so make sure it doesn't get unmarked. 3004 */ 3005 pio->io_flags &= ~ZIO_FLAG_FASTWRITE; 3006 3007 zio_nowait(zio); 3008 3009 return (pio); 3010 } 3011 3012 /* 3013 * The zio_nop_write stage in the pipeline determines if allocating a 3014 * new bp is necessary. The nopwrite feature can handle writes in 3015 * either syncing or open context (i.e. zil writes) and as a result is 3016 * mutually exclusive with dedup. 3017 * 3018 * By leveraging a cryptographically secure checksum, such as SHA256, we 3019 * can compare the checksums of the new data and the old to determine if 3020 * allocating a new block is required. Note that our requirements for 3021 * cryptographic strength are fairly weak: there can't be any accidental 3022 * hash collisions, but we don't need to be secure against intentional 3023 * (malicious) collisions. To trigger a nopwrite, you have to be able 3024 * to write the file to begin with, and triggering an incorrect (hash 3025 * collision) nopwrite is no worse than simply writing to the file. 3026 * That said, there are no known attacks against the checksum algorithms 3027 * used for nopwrite, assuming that the salt and the checksums 3028 * themselves remain secret. 3029 */ 3030 static zio_t * 3031 zio_nop_write(zio_t *zio) 3032 { 3033 blkptr_t *bp = zio->io_bp; 3034 blkptr_t *bp_orig = &zio->io_bp_orig; 3035 zio_prop_t *zp = &zio->io_prop; 3036 3037 ASSERT(BP_IS_HOLE(bp)); 3038 ASSERT(BP_GET_LEVEL(bp) == 0); 3039 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 3040 ASSERT(zp->zp_nopwrite); 3041 ASSERT(!zp->zp_dedup); 3042 ASSERT(zio->io_bp_override == NULL); 3043 ASSERT(IO_IS_ALLOCATING(zio)); 3044 3045 /* 3046 * Check to see if the original bp and the new bp have matching 3047 * characteristics (i.e. same checksum, compression algorithms, etc). 3048 * If they don't then just continue with the pipeline which will 3049 * allocate a new bp. 3050 */ 3051 if (BP_IS_HOLE(bp_orig) || 3052 !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags & 3053 ZCHECKSUM_FLAG_NOPWRITE) || 3054 BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) || 3055 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) || 3056 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) || 3057 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) || 3058 zp->zp_copies != BP_GET_NDVAS(bp_orig)) 3059 return (zio); 3060 3061 /* 3062 * If the checksums match then reset the pipeline so that we 3063 * avoid allocating a new bp and issuing any I/O. 3064 */ 3065 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) { 3066 ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags & 3067 ZCHECKSUM_FLAG_NOPWRITE); 3068 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig)); 3069 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig)); 3070 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF); 3071 ASSERT3U(bp->blk_prop, ==, bp_orig->blk_prop); 3072 3073 /* 3074 * If we're overwriting a block that is currently on an 3075 * indirect vdev, then ignore the nopwrite request and 3076 * allow a new block to be allocated on a concrete vdev. 3077 */ 3078 spa_config_enter(zio->io_spa, SCL_VDEV, FTAG, RW_READER); 3079 for (int d = 0; d < BP_GET_NDVAS(bp_orig); d++) { 3080 vdev_t *tvd = vdev_lookup_top(zio->io_spa, 3081 DVA_GET_VDEV(&bp_orig->blk_dva[d])); 3082 if (tvd->vdev_ops == &vdev_indirect_ops) { 3083 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG); 3084 return (zio); 3085 } 3086 } 3087 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG); 3088 3089 *bp = *bp_orig; 3090 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 3091 zio->io_flags |= ZIO_FLAG_NOPWRITE; 3092 } 3093 3094 return (zio); 3095 } 3096 3097 /* 3098 * ========================================================================== 3099 * Block Reference Table 3100 * ========================================================================== 3101 */ 3102 static zio_t * 3103 zio_brt_free(zio_t *zio) 3104 { 3105 blkptr_t *bp; 3106 3107 bp = zio->io_bp; 3108 3109 if (BP_GET_LEVEL(bp) > 0 || 3110 BP_IS_METADATA(bp) || 3111 !brt_maybe_exists(zio->io_spa, bp)) { 3112 return (zio); 3113 } 3114 3115 if (!brt_entry_decref(zio->io_spa, bp)) { 3116 /* 3117 * This isn't the last reference, so we cannot free 3118 * the data yet. 3119 */ 3120 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 3121 } 3122 3123 return (zio); 3124 } 3125 3126 /* 3127 * ========================================================================== 3128 * Dedup 3129 * ========================================================================== 3130 */ 3131 static void 3132 zio_ddt_child_read_done(zio_t *zio) 3133 { 3134 blkptr_t *bp = zio->io_bp; 3135 ddt_entry_t *dde = zio->io_private; 3136 ddt_phys_t *ddp; 3137 zio_t *pio = zio_unique_parent(zio); 3138 3139 mutex_enter(&pio->io_lock); 3140 ddp = ddt_phys_select(dde, bp); 3141 if (zio->io_error == 0) 3142 ddt_phys_clear(ddp); /* this ddp doesn't need repair */ 3143 3144 if (zio->io_error == 0 && dde->dde_repair_abd == NULL) 3145 dde->dde_repair_abd = zio->io_abd; 3146 else 3147 abd_free(zio->io_abd); 3148 mutex_exit(&pio->io_lock); 3149 } 3150 3151 static zio_t * 3152 zio_ddt_read_start(zio_t *zio) 3153 { 3154 blkptr_t *bp = zio->io_bp; 3155 3156 ASSERT(BP_GET_DEDUP(bp)); 3157 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 3158 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3159 3160 if (zio->io_child_error[ZIO_CHILD_DDT]) { 3161 ddt_t *ddt = ddt_select(zio->io_spa, bp); 3162 ddt_entry_t *dde = ddt_repair_start(ddt, bp); 3163 ddt_phys_t *ddp = dde->dde_phys; 3164 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp); 3165 blkptr_t blk; 3166 3167 ASSERT(zio->io_vsd == NULL); 3168 zio->io_vsd = dde; 3169 3170 if (ddp_self == NULL) 3171 return (zio); 3172 3173 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 3174 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self) 3175 continue; 3176 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp, 3177 &blk); 3178 zio_nowait(zio_read(zio, zio->io_spa, &blk, 3179 abd_alloc_for_io(zio->io_size, B_TRUE), 3180 zio->io_size, zio_ddt_child_read_done, dde, 3181 zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) | 3182 ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark)); 3183 } 3184 return (zio); 3185 } 3186 3187 zio_nowait(zio_read(zio, zio->io_spa, bp, 3188 zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority, 3189 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark)); 3190 3191 return (zio); 3192 } 3193 3194 static zio_t * 3195 zio_ddt_read_done(zio_t *zio) 3196 { 3197 blkptr_t *bp = zio->io_bp; 3198 3199 if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) { 3200 return (NULL); 3201 } 3202 3203 ASSERT(BP_GET_DEDUP(bp)); 3204 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 3205 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3206 3207 if (zio->io_child_error[ZIO_CHILD_DDT]) { 3208 ddt_t *ddt = ddt_select(zio->io_spa, bp); 3209 ddt_entry_t *dde = zio->io_vsd; 3210 if (ddt == NULL) { 3211 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE); 3212 return (zio); 3213 } 3214 if (dde == NULL) { 3215 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1; 3216 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 3217 return (NULL); 3218 } 3219 if (dde->dde_repair_abd != NULL) { 3220 abd_copy(zio->io_abd, dde->dde_repair_abd, 3221 zio->io_size); 3222 zio->io_child_error[ZIO_CHILD_DDT] = 0; 3223 } 3224 ddt_repair_done(ddt, dde); 3225 zio->io_vsd = NULL; 3226 } 3227 3228 ASSERT(zio->io_vsd == NULL); 3229 3230 return (zio); 3231 } 3232 3233 static boolean_t 3234 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde) 3235 { 3236 spa_t *spa = zio->io_spa; 3237 boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW); 3238 3239 ASSERT(!(zio->io_bp_override && do_raw)); 3240 3241 /* 3242 * Note: we compare the original data, not the transformed data, 3243 * because when zio->io_bp is an override bp, we will not have 3244 * pushed the I/O transforms. That's an important optimization 3245 * because otherwise we'd compress/encrypt all dmu_sync() data twice. 3246 * However, we should never get a raw, override zio so in these 3247 * cases we can compare the io_abd directly. This is useful because 3248 * it allows us to do dedup verification even if we don't have access 3249 * to the original data (for instance, if the encryption keys aren't 3250 * loaded). 3251 */ 3252 3253 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 3254 zio_t *lio = dde->dde_lead_zio[p]; 3255 3256 if (lio != NULL && do_raw) { 3257 return (lio->io_size != zio->io_size || 3258 abd_cmp(zio->io_abd, lio->io_abd) != 0); 3259 } else if (lio != NULL) { 3260 return (lio->io_orig_size != zio->io_orig_size || 3261 abd_cmp(zio->io_orig_abd, lio->io_orig_abd) != 0); 3262 } 3263 } 3264 3265 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 3266 ddt_phys_t *ddp = &dde->dde_phys[p]; 3267 3268 if (ddp->ddp_phys_birth != 0 && do_raw) { 3269 blkptr_t blk = *zio->io_bp; 3270 uint64_t psize; 3271 abd_t *tmpabd; 3272 int error; 3273 3274 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth); 3275 psize = BP_GET_PSIZE(&blk); 3276 3277 if (psize != zio->io_size) 3278 return (B_TRUE); 3279 3280 ddt_exit(ddt); 3281 3282 tmpabd = abd_alloc_for_io(psize, B_TRUE); 3283 3284 error = zio_wait(zio_read(NULL, spa, &blk, tmpabd, 3285 psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ, 3286 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 3287 ZIO_FLAG_RAW, &zio->io_bookmark)); 3288 3289 if (error == 0) { 3290 if (abd_cmp(tmpabd, zio->io_abd) != 0) 3291 error = SET_ERROR(ENOENT); 3292 } 3293 3294 abd_free(tmpabd); 3295 ddt_enter(ddt); 3296 return (error != 0); 3297 } else if (ddp->ddp_phys_birth != 0) { 3298 arc_buf_t *abuf = NULL; 3299 arc_flags_t aflags = ARC_FLAG_WAIT; 3300 blkptr_t blk = *zio->io_bp; 3301 int error; 3302 3303 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth); 3304 3305 if (BP_GET_LSIZE(&blk) != zio->io_orig_size) 3306 return (B_TRUE); 3307 3308 ddt_exit(ddt); 3309 3310 error = arc_read(NULL, spa, &blk, 3311 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ, 3312 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 3313 &aflags, &zio->io_bookmark); 3314 3315 if (error == 0) { 3316 if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data, 3317 zio->io_orig_size) != 0) 3318 error = SET_ERROR(ENOENT); 3319 arc_buf_destroy(abuf, &abuf); 3320 } 3321 3322 ddt_enter(ddt); 3323 return (error != 0); 3324 } 3325 } 3326 3327 return (B_FALSE); 3328 } 3329 3330 static void 3331 zio_ddt_child_write_ready(zio_t *zio) 3332 { 3333 int p = zio->io_prop.zp_copies; 3334 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 3335 ddt_entry_t *dde = zio->io_private; 3336 ddt_phys_t *ddp = &dde->dde_phys[p]; 3337 zio_t *pio; 3338 3339 if (zio->io_error) 3340 return; 3341 3342 ddt_enter(ddt); 3343 3344 ASSERT(dde->dde_lead_zio[p] == zio); 3345 3346 ddt_phys_fill(ddp, zio->io_bp); 3347 3348 zio_link_t *zl = NULL; 3349 while ((pio = zio_walk_parents(zio, &zl)) != NULL) 3350 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg); 3351 3352 ddt_exit(ddt); 3353 } 3354 3355 static void 3356 zio_ddt_child_write_done(zio_t *zio) 3357 { 3358 int p = zio->io_prop.zp_copies; 3359 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 3360 ddt_entry_t *dde = zio->io_private; 3361 ddt_phys_t *ddp = &dde->dde_phys[p]; 3362 3363 ddt_enter(ddt); 3364 3365 ASSERT(ddp->ddp_refcnt == 0); 3366 ASSERT(dde->dde_lead_zio[p] == zio); 3367 dde->dde_lead_zio[p] = NULL; 3368 3369 if (zio->io_error == 0) { 3370 zio_link_t *zl = NULL; 3371 while (zio_walk_parents(zio, &zl) != NULL) 3372 ddt_phys_addref(ddp); 3373 } else { 3374 ddt_phys_clear(ddp); 3375 } 3376 3377 ddt_exit(ddt); 3378 } 3379 3380 static zio_t * 3381 zio_ddt_write(zio_t *zio) 3382 { 3383 spa_t *spa = zio->io_spa; 3384 blkptr_t *bp = zio->io_bp; 3385 uint64_t txg = zio->io_txg; 3386 zio_prop_t *zp = &zio->io_prop; 3387 int p = zp->zp_copies; 3388 zio_t *cio = NULL; 3389 ddt_t *ddt = ddt_select(spa, bp); 3390 ddt_entry_t *dde; 3391 ddt_phys_t *ddp; 3392 3393 ASSERT(BP_GET_DEDUP(bp)); 3394 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum); 3395 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override); 3396 ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW))); 3397 3398 ddt_enter(ddt); 3399 dde = ddt_lookup(ddt, bp, B_TRUE); 3400 ddp = &dde->dde_phys[p]; 3401 3402 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) { 3403 /* 3404 * If we're using a weak checksum, upgrade to a strong checksum 3405 * and try again. If we're already using a strong checksum, 3406 * we can't resolve it, so just convert to an ordinary write. 3407 * (And automatically e-mail a paper to Nature?) 3408 */ 3409 if (!(zio_checksum_table[zp->zp_checksum].ci_flags & 3410 ZCHECKSUM_FLAG_DEDUP)) { 3411 zp->zp_checksum = spa_dedup_checksum(spa); 3412 zio_pop_transforms(zio); 3413 zio->io_stage = ZIO_STAGE_OPEN; 3414 BP_ZERO(bp); 3415 } else { 3416 zp->zp_dedup = B_FALSE; 3417 BP_SET_DEDUP(bp, B_FALSE); 3418 } 3419 ASSERT(!BP_GET_DEDUP(bp)); 3420 zio->io_pipeline = ZIO_WRITE_PIPELINE; 3421 ddt_exit(ddt); 3422 return (zio); 3423 } 3424 3425 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) { 3426 if (ddp->ddp_phys_birth != 0) 3427 ddt_bp_fill(ddp, bp, txg); 3428 if (dde->dde_lead_zio[p] != NULL) 3429 zio_add_child(zio, dde->dde_lead_zio[p]); 3430 else 3431 ddt_phys_addref(ddp); 3432 } else if (zio->io_bp_override) { 3433 ASSERT(bp->blk_birth == txg); 3434 ASSERT(BP_EQUAL(bp, zio->io_bp_override)); 3435 ddt_phys_fill(ddp, bp); 3436 ddt_phys_addref(ddp); 3437 } else { 3438 cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd, 3439 zio->io_orig_size, zio->io_orig_size, zp, 3440 zio_ddt_child_write_ready, NULL, NULL, 3441 zio_ddt_child_write_done, dde, zio->io_priority, 3442 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark); 3443 3444 zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL); 3445 dde->dde_lead_zio[p] = cio; 3446 } 3447 3448 ddt_exit(ddt); 3449 3450 zio_nowait(cio); 3451 3452 return (zio); 3453 } 3454 3455 static ddt_entry_t *freedde; /* for debugging */ 3456 3457 static zio_t * 3458 zio_ddt_free(zio_t *zio) 3459 { 3460 spa_t *spa = zio->io_spa; 3461 blkptr_t *bp = zio->io_bp; 3462 ddt_t *ddt = ddt_select(spa, bp); 3463 ddt_entry_t *dde; 3464 ddt_phys_t *ddp; 3465 3466 ASSERT(BP_GET_DEDUP(bp)); 3467 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3468 3469 ddt_enter(ddt); 3470 freedde = dde = ddt_lookup(ddt, bp, B_TRUE); 3471 if (dde) { 3472 ddp = ddt_phys_select(dde, bp); 3473 if (ddp) 3474 ddt_phys_decref(ddp); 3475 } 3476 ddt_exit(ddt); 3477 3478 return (zio); 3479 } 3480 3481 /* 3482 * ========================================================================== 3483 * Allocate and free blocks 3484 * ========================================================================== 3485 */ 3486 3487 static zio_t * 3488 zio_io_to_allocate(spa_t *spa, int allocator) 3489 { 3490 zio_t *zio; 3491 3492 ASSERT(MUTEX_HELD(&spa->spa_allocs[allocator].spaa_lock)); 3493 3494 zio = avl_first(&spa->spa_allocs[allocator].spaa_tree); 3495 if (zio == NULL) 3496 return (NULL); 3497 3498 ASSERT(IO_IS_ALLOCATING(zio)); 3499 3500 /* 3501 * Try to place a reservation for this zio. If we're unable to 3502 * reserve then we throttle. 3503 */ 3504 ASSERT3U(zio->io_allocator, ==, allocator); 3505 if (!metaslab_class_throttle_reserve(zio->io_metaslab_class, 3506 zio->io_prop.zp_copies, allocator, zio, 0)) { 3507 return (NULL); 3508 } 3509 3510 avl_remove(&spa->spa_allocs[allocator].spaa_tree, zio); 3511 ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE); 3512 3513 return (zio); 3514 } 3515 3516 static zio_t * 3517 zio_dva_throttle(zio_t *zio) 3518 { 3519 spa_t *spa = zio->io_spa; 3520 zio_t *nio; 3521 metaslab_class_t *mc; 3522 3523 /* locate an appropriate allocation class */ 3524 mc = spa_preferred_class(spa, zio->io_size, zio->io_prop.zp_type, 3525 zio->io_prop.zp_level, zio->io_prop.zp_zpl_smallblk); 3526 3527 if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE || 3528 !mc->mc_alloc_throttle_enabled || 3529 zio->io_child_type == ZIO_CHILD_GANG || 3530 zio->io_flags & ZIO_FLAG_NODATA) { 3531 return (zio); 3532 } 3533 3534 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 3535 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 3536 ASSERT3U(zio->io_queued_timestamp, >, 0); 3537 ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE); 3538 3539 zbookmark_phys_t *bm = &zio->io_bookmark; 3540 /* 3541 * We want to try to use as many allocators as possible to help improve 3542 * performance, but we also want logically adjacent IOs to be physically 3543 * adjacent to improve sequential read performance. We chunk each object 3544 * into 2^20 block regions, and then hash based on the objset, object, 3545 * level, and region to accomplish both of these goals. 3546 */ 3547 int allocator = (uint_t)cityhash4(bm->zb_objset, bm->zb_object, 3548 bm->zb_level, bm->zb_blkid >> 20) % spa->spa_alloc_count; 3549 zio->io_allocator = allocator; 3550 zio->io_metaslab_class = mc; 3551 mutex_enter(&spa->spa_allocs[allocator].spaa_lock); 3552 avl_add(&spa->spa_allocs[allocator].spaa_tree, zio); 3553 nio = zio_io_to_allocate(spa, allocator); 3554 mutex_exit(&spa->spa_allocs[allocator].spaa_lock); 3555 return (nio); 3556 } 3557 3558 static void 3559 zio_allocate_dispatch(spa_t *spa, int allocator) 3560 { 3561 zio_t *zio; 3562 3563 mutex_enter(&spa->spa_allocs[allocator].spaa_lock); 3564 zio = zio_io_to_allocate(spa, allocator); 3565 mutex_exit(&spa->spa_allocs[allocator].spaa_lock); 3566 if (zio == NULL) 3567 return; 3568 3569 ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE); 3570 ASSERT0(zio->io_error); 3571 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE); 3572 } 3573 3574 static zio_t * 3575 zio_dva_allocate(zio_t *zio) 3576 { 3577 spa_t *spa = zio->io_spa; 3578 metaslab_class_t *mc; 3579 blkptr_t *bp = zio->io_bp; 3580 int error; 3581 int flags = 0; 3582 3583 if (zio->io_gang_leader == NULL) { 3584 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 3585 zio->io_gang_leader = zio; 3586 } 3587 3588 ASSERT(BP_IS_HOLE(bp)); 3589 ASSERT0(BP_GET_NDVAS(bp)); 3590 ASSERT3U(zio->io_prop.zp_copies, >, 0); 3591 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa)); 3592 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp)); 3593 3594 flags |= (zio->io_flags & ZIO_FLAG_FASTWRITE) ? METASLAB_FASTWRITE : 0; 3595 if (zio->io_flags & ZIO_FLAG_NODATA) 3596 flags |= METASLAB_DONT_THROTTLE; 3597 if (zio->io_flags & ZIO_FLAG_GANG_CHILD) 3598 flags |= METASLAB_GANG_CHILD; 3599 if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE) 3600 flags |= METASLAB_ASYNC_ALLOC; 3601 3602 /* 3603 * if not already chosen, locate an appropriate allocation class 3604 */ 3605 mc = zio->io_metaslab_class; 3606 if (mc == NULL) { 3607 mc = spa_preferred_class(spa, zio->io_size, 3608 zio->io_prop.zp_type, zio->io_prop.zp_level, 3609 zio->io_prop.zp_zpl_smallblk); 3610 zio->io_metaslab_class = mc; 3611 } 3612 3613 /* 3614 * Try allocating the block in the usual metaslab class. 3615 * If that's full, allocate it in the normal class. 3616 * If that's full, allocate as a gang block, 3617 * and if all are full, the allocation fails (which shouldn't happen). 3618 * 3619 * Note that we do not fall back on embedded slog (ZIL) space, to 3620 * preserve unfragmented slog space, which is critical for decent 3621 * sync write performance. If a log allocation fails, we will fall 3622 * back to spa_sync() which is abysmal for performance. 3623 */ 3624 error = metaslab_alloc(spa, mc, zio->io_size, bp, 3625 zio->io_prop.zp_copies, zio->io_txg, NULL, flags, 3626 &zio->io_alloc_list, zio, zio->io_allocator); 3627 3628 /* 3629 * Fallback to normal class when an alloc class is full 3630 */ 3631 if (error == ENOSPC && mc != spa_normal_class(spa)) { 3632 /* 3633 * If throttling, transfer reservation over to normal class. 3634 * The io_allocator slot can remain the same even though we 3635 * are switching classes. 3636 */ 3637 if (mc->mc_alloc_throttle_enabled && 3638 (zio->io_flags & ZIO_FLAG_IO_ALLOCATING)) { 3639 metaslab_class_throttle_unreserve(mc, 3640 zio->io_prop.zp_copies, zio->io_allocator, zio); 3641 zio->io_flags &= ~ZIO_FLAG_IO_ALLOCATING; 3642 3643 VERIFY(metaslab_class_throttle_reserve( 3644 spa_normal_class(spa), 3645 zio->io_prop.zp_copies, zio->io_allocator, zio, 3646 flags | METASLAB_MUST_RESERVE)); 3647 } 3648 zio->io_metaslab_class = mc = spa_normal_class(spa); 3649 if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) { 3650 zfs_dbgmsg("%s: metaslab allocation failure, " 3651 "trying normal class: zio %px, size %llu, error %d", 3652 spa_name(spa), zio, (u_longlong_t)zio->io_size, 3653 error); 3654 } 3655 3656 error = metaslab_alloc(spa, mc, zio->io_size, bp, 3657 zio->io_prop.zp_copies, zio->io_txg, NULL, flags, 3658 &zio->io_alloc_list, zio, zio->io_allocator); 3659 } 3660 3661 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) { 3662 if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) { 3663 zfs_dbgmsg("%s: metaslab allocation failure, " 3664 "trying ganging: zio %px, size %llu, error %d", 3665 spa_name(spa), zio, (u_longlong_t)zio->io_size, 3666 error); 3667 } 3668 return (zio_write_gang_block(zio, mc)); 3669 } 3670 if (error != 0) { 3671 if (error != ENOSPC || 3672 (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC)) { 3673 zfs_dbgmsg("%s: metaslab allocation failure: zio %px, " 3674 "size %llu, error %d", 3675 spa_name(spa), zio, (u_longlong_t)zio->io_size, 3676 error); 3677 } 3678 zio->io_error = error; 3679 } 3680 3681 return (zio); 3682 } 3683 3684 static zio_t * 3685 zio_dva_free(zio_t *zio) 3686 { 3687 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE); 3688 3689 return (zio); 3690 } 3691 3692 static zio_t * 3693 zio_dva_claim(zio_t *zio) 3694 { 3695 int error; 3696 3697 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg); 3698 if (error) 3699 zio->io_error = error; 3700 3701 return (zio); 3702 } 3703 3704 /* 3705 * Undo an allocation. This is used by zio_done() when an I/O fails 3706 * and we want to give back the block we just allocated. 3707 * This handles both normal blocks and gang blocks. 3708 */ 3709 static void 3710 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp) 3711 { 3712 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp)); 3713 ASSERT(zio->io_bp_override == NULL); 3714 3715 if (!BP_IS_HOLE(bp)) 3716 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE); 3717 3718 if (gn != NULL) { 3719 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 3720 zio_dva_unallocate(zio, gn->gn_child[g], 3721 &gn->gn_gbh->zg_blkptr[g]); 3722 } 3723 } 3724 } 3725 3726 /* 3727 * Try to allocate an intent log block. Return 0 on success, errno on failure. 3728 */ 3729 int 3730 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp, 3731 uint64_t size, boolean_t *slog) 3732 { 3733 int error = 1; 3734 zio_alloc_list_t io_alloc_list; 3735 3736 ASSERT(txg > spa_syncing_txg(spa)); 3737 3738 metaslab_trace_init(&io_alloc_list); 3739 3740 /* 3741 * Block pointer fields are useful to metaslabs for stats and debugging. 3742 * Fill in the obvious ones before calling into metaslab_alloc(). 3743 */ 3744 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 3745 BP_SET_PSIZE(new_bp, size); 3746 BP_SET_LEVEL(new_bp, 0); 3747 3748 /* 3749 * When allocating a zil block, we don't have information about 3750 * the final destination of the block except the objset it's part 3751 * of, so we just hash the objset ID to pick the allocator to get 3752 * some parallelism. 3753 */ 3754 int flags = METASLAB_FASTWRITE | METASLAB_ZIL; 3755 int allocator = (uint_t)cityhash4(0, 0, 0, 3756 os->os_dsl_dataset->ds_object) % spa->spa_alloc_count; 3757 error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1, 3758 txg, NULL, flags, &io_alloc_list, NULL, allocator); 3759 *slog = (error == 0); 3760 if (error != 0) { 3761 error = metaslab_alloc(spa, spa_embedded_log_class(spa), size, 3762 new_bp, 1, txg, NULL, flags, 3763 &io_alloc_list, NULL, allocator); 3764 } 3765 if (error != 0) { 3766 error = metaslab_alloc(spa, spa_normal_class(spa), size, 3767 new_bp, 1, txg, NULL, flags, 3768 &io_alloc_list, NULL, allocator); 3769 } 3770 metaslab_trace_fini(&io_alloc_list); 3771 3772 if (error == 0) { 3773 BP_SET_LSIZE(new_bp, size); 3774 BP_SET_PSIZE(new_bp, size); 3775 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF); 3776 BP_SET_CHECKSUM(new_bp, 3777 spa_version(spa) >= SPA_VERSION_SLIM_ZIL 3778 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG); 3779 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 3780 BP_SET_LEVEL(new_bp, 0); 3781 BP_SET_DEDUP(new_bp, 0); 3782 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER); 3783 3784 /* 3785 * encrypted blocks will require an IV and salt. We generate 3786 * these now since we will not be rewriting the bp at 3787 * rewrite time. 3788 */ 3789 if (os->os_encrypted) { 3790 uint8_t iv[ZIO_DATA_IV_LEN]; 3791 uint8_t salt[ZIO_DATA_SALT_LEN]; 3792 3793 BP_SET_CRYPT(new_bp, B_TRUE); 3794 VERIFY0(spa_crypt_get_salt(spa, 3795 dmu_objset_id(os), salt)); 3796 VERIFY0(zio_crypt_generate_iv(iv)); 3797 3798 zio_crypt_encode_params_bp(new_bp, salt, iv); 3799 } 3800 } else { 3801 zfs_dbgmsg("%s: zil block allocation failure: " 3802 "size %llu, error %d", spa_name(spa), (u_longlong_t)size, 3803 error); 3804 } 3805 3806 return (error); 3807 } 3808 3809 /* 3810 * ========================================================================== 3811 * Read and write to physical devices 3812 * ========================================================================== 3813 */ 3814 3815 /* 3816 * Issue an I/O to the underlying vdev. Typically the issue pipeline 3817 * stops after this stage and will resume upon I/O completion. 3818 * However, there are instances where the vdev layer may need to 3819 * continue the pipeline when an I/O was not issued. Since the I/O 3820 * that was sent to the vdev layer might be different than the one 3821 * currently active in the pipeline (see vdev_queue_io()), we explicitly 3822 * force the underlying vdev layers to call either zio_execute() or 3823 * zio_interrupt() to ensure that the pipeline continues with the correct I/O. 3824 */ 3825 static zio_t * 3826 zio_vdev_io_start(zio_t *zio) 3827 { 3828 vdev_t *vd = zio->io_vd; 3829 uint64_t align; 3830 spa_t *spa = zio->io_spa; 3831 3832 zio->io_delay = 0; 3833 3834 ASSERT(zio->io_error == 0); 3835 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0); 3836 3837 if (vd == NULL) { 3838 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 3839 spa_config_enter(spa, SCL_ZIO, zio, RW_READER); 3840 3841 /* 3842 * The mirror_ops handle multiple DVAs in a single BP. 3843 */ 3844 vdev_mirror_ops.vdev_op_io_start(zio); 3845 return (NULL); 3846 } 3847 3848 ASSERT3P(zio->io_logical, !=, zio); 3849 if (zio->io_type == ZIO_TYPE_WRITE) { 3850 ASSERT(spa->spa_trust_config); 3851 3852 /* 3853 * Note: the code can handle other kinds of writes, 3854 * but we don't expect them. 3855 */ 3856 if (zio->io_vd->vdev_noalloc) { 3857 ASSERT(zio->io_flags & 3858 (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL | 3859 ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE)); 3860 } 3861 } 3862 3863 align = 1ULL << vd->vdev_top->vdev_ashift; 3864 3865 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) && 3866 P2PHASE(zio->io_size, align) != 0) { 3867 /* Transform logical writes to be a full physical block size. */ 3868 uint64_t asize = P2ROUNDUP(zio->io_size, align); 3869 abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize); 3870 ASSERT(vd == vd->vdev_top); 3871 if (zio->io_type == ZIO_TYPE_WRITE) { 3872 abd_copy(abuf, zio->io_abd, zio->io_size); 3873 abd_zero_off(abuf, zio->io_size, asize - zio->io_size); 3874 } 3875 zio_push_transform(zio, abuf, asize, asize, zio_subblock); 3876 } 3877 3878 /* 3879 * If this is not a physical io, make sure that it is properly aligned 3880 * before proceeding. 3881 */ 3882 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) { 3883 ASSERT0(P2PHASE(zio->io_offset, align)); 3884 ASSERT0(P2PHASE(zio->io_size, align)); 3885 } else { 3886 /* 3887 * For physical writes, we allow 512b aligned writes and assume 3888 * the device will perform a read-modify-write as necessary. 3889 */ 3890 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE)); 3891 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE)); 3892 } 3893 3894 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa)); 3895 3896 /* 3897 * If this is a repair I/O, and there's no self-healing involved -- 3898 * that is, we're just resilvering what we expect to resilver -- 3899 * then don't do the I/O unless zio's txg is actually in vd's DTL. 3900 * This prevents spurious resilvering. 3901 * 3902 * There are a few ways that we can end up creating these spurious 3903 * resilver i/os: 3904 * 3905 * 1. A resilver i/o will be issued if any DVA in the BP has a 3906 * dirty DTL. The mirror code will issue resilver writes to 3907 * each DVA, including the one(s) that are not on vdevs with dirty 3908 * DTLs. 3909 * 3910 * 2. With nested replication, which happens when we have a 3911 * "replacing" or "spare" vdev that's a child of a mirror or raidz. 3912 * For example, given mirror(replacing(A+B), C), it's likely that 3913 * only A is out of date (it's the new device). In this case, we'll 3914 * read from C, then use the data to resilver A+B -- but we don't 3915 * actually want to resilver B, just A. The top-level mirror has no 3916 * way to know this, so instead we just discard unnecessary repairs 3917 * as we work our way down the vdev tree. 3918 * 3919 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc. 3920 * The same logic applies to any form of nested replication: ditto 3921 * + mirror, RAID-Z + replacing, etc. 3922 * 3923 * However, indirect vdevs point off to other vdevs which may have 3924 * DTL's, so we never bypass them. The child i/os on concrete vdevs 3925 * will be properly bypassed instead. 3926 * 3927 * Leaf DTL_PARTIAL can be empty when a legitimate write comes from 3928 * a dRAID spare vdev. For example, when a dRAID spare is first 3929 * used, its spare blocks need to be written to but the leaf vdev's 3930 * of such blocks can have empty DTL_PARTIAL. 3931 * 3932 * There seemed no clean way to allow such writes while bypassing 3933 * spurious ones. At this point, just avoid all bypassing for dRAID 3934 * for correctness. 3935 */ 3936 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) && 3937 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) && 3938 zio->io_txg != 0 && /* not a delegated i/o */ 3939 vd->vdev_ops != &vdev_indirect_ops && 3940 vd->vdev_top->vdev_ops != &vdev_draid_ops && 3941 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) { 3942 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 3943 zio_vdev_io_bypass(zio); 3944 return (zio); 3945 } 3946 3947 /* 3948 * Select the next best leaf I/O to process. Distributed spares are 3949 * excluded since they dispatch the I/O directly to a leaf vdev after 3950 * applying the dRAID mapping. 3951 */ 3952 if (vd->vdev_ops->vdev_op_leaf && 3953 vd->vdev_ops != &vdev_draid_spare_ops && 3954 (zio->io_type == ZIO_TYPE_READ || 3955 zio->io_type == ZIO_TYPE_WRITE || 3956 zio->io_type == ZIO_TYPE_TRIM)) { 3957 3958 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio)) 3959 return (zio); 3960 3961 if ((zio = vdev_queue_io(zio)) == NULL) 3962 return (NULL); 3963 3964 if (!vdev_accessible(vd, zio)) { 3965 zio->io_error = SET_ERROR(ENXIO); 3966 zio_interrupt(zio); 3967 return (NULL); 3968 } 3969 zio->io_delay = gethrtime(); 3970 } 3971 3972 vd->vdev_ops->vdev_op_io_start(zio); 3973 return (NULL); 3974 } 3975 3976 static zio_t * 3977 zio_vdev_io_done(zio_t *zio) 3978 { 3979 vdev_t *vd = zio->io_vd; 3980 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops; 3981 boolean_t unexpected_error = B_FALSE; 3982 3983 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) { 3984 return (NULL); 3985 } 3986 3987 ASSERT(zio->io_type == ZIO_TYPE_READ || 3988 zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM); 3989 3990 if (zio->io_delay) 3991 zio->io_delay = gethrtime() - zio->io_delay; 3992 3993 if (vd != NULL && vd->vdev_ops->vdev_op_leaf && 3994 vd->vdev_ops != &vdev_draid_spare_ops) { 3995 vdev_queue_io_done(zio); 3996 3997 if (zio->io_type == ZIO_TYPE_WRITE) 3998 vdev_cache_write(zio); 3999 4000 if (zio_injection_enabled && zio->io_error == 0) 4001 zio->io_error = zio_handle_device_injections(vd, zio, 4002 EIO, EILSEQ); 4003 4004 if (zio_injection_enabled && zio->io_error == 0) 4005 zio->io_error = zio_handle_label_injection(zio, EIO); 4006 4007 if (zio->io_error && zio->io_type != ZIO_TYPE_TRIM) { 4008 if (!vdev_accessible(vd, zio)) { 4009 zio->io_error = SET_ERROR(ENXIO); 4010 } else { 4011 unexpected_error = B_TRUE; 4012 } 4013 } 4014 } 4015 4016 ops->vdev_op_io_done(zio); 4017 4018 if (unexpected_error && vd->vdev_remove_wanted == B_FALSE) 4019 VERIFY(vdev_probe(vd, zio) == NULL); 4020 4021 return (zio); 4022 } 4023 4024 /* 4025 * This function is used to change the priority of an existing zio that is 4026 * currently in-flight. This is used by the arc to upgrade priority in the 4027 * event that a demand read is made for a block that is currently queued 4028 * as a scrub or async read IO. Otherwise, the high priority read request 4029 * would end up having to wait for the lower priority IO. 4030 */ 4031 void 4032 zio_change_priority(zio_t *pio, zio_priority_t priority) 4033 { 4034 zio_t *cio, *cio_next; 4035 zio_link_t *zl = NULL; 4036 4037 ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 4038 4039 if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) { 4040 vdev_queue_change_io_priority(pio, priority); 4041 } else { 4042 pio->io_priority = priority; 4043 } 4044 4045 mutex_enter(&pio->io_lock); 4046 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 4047 cio_next = zio_walk_children(pio, &zl); 4048 zio_change_priority(cio, priority); 4049 } 4050 mutex_exit(&pio->io_lock); 4051 } 4052 4053 /* 4054 * For non-raidz ZIOs, we can just copy aside the bad data read from the 4055 * disk, and use that to finish the checksum ereport later. 4056 */ 4057 static void 4058 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr, 4059 const abd_t *good_buf) 4060 { 4061 /* no processing needed */ 4062 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE); 4063 } 4064 4065 void 4066 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr) 4067 { 4068 void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size); 4069 4070 abd_copy(abd, zio->io_abd, zio->io_size); 4071 4072 zcr->zcr_cbinfo = zio->io_size; 4073 zcr->zcr_cbdata = abd; 4074 zcr->zcr_finish = zio_vsd_default_cksum_finish; 4075 zcr->zcr_free = zio_abd_free; 4076 } 4077 4078 static zio_t * 4079 zio_vdev_io_assess(zio_t *zio) 4080 { 4081 vdev_t *vd = zio->io_vd; 4082 4083 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) { 4084 return (NULL); 4085 } 4086 4087 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 4088 spa_config_exit(zio->io_spa, SCL_ZIO, zio); 4089 4090 if (zio->io_vsd != NULL) { 4091 zio->io_vsd_ops->vsd_free(zio); 4092 zio->io_vsd = NULL; 4093 } 4094 4095 if (zio_injection_enabled && zio->io_error == 0) 4096 zio->io_error = zio_handle_fault_injection(zio, EIO); 4097 4098 /* 4099 * If the I/O failed, determine whether we should attempt to retry it. 4100 * 4101 * On retry, we cut in line in the issue queue, since we don't want 4102 * compression/checksumming/etc. work to prevent our (cheap) IO reissue. 4103 */ 4104 if (zio->io_error && vd == NULL && 4105 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) { 4106 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */ 4107 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */ 4108 zio->io_error = 0; 4109 zio->io_flags |= ZIO_FLAG_IO_RETRY | 4110 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE; 4111 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1; 4112 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, 4113 zio_requeue_io_start_cut_in_line); 4114 return (NULL); 4115 } 4116 4117 /* 4118 * If we got an error on a leaf device, convert it to ENXIO 4119 * if the device is not accessible at all. 4120 */ 4121 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf && 4122 !vdev_accessible(vd, zio)) 4123 zio->io_error = SET_ERROR(ENXIO); 4124 4125 /* 4126 * If we can't write to an interior vdev (mirror or RAID-Z), 4127 * set vdev_cant_write so that we stop trying to allocate from it. 4128 */ 4129 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE && 4130 vd != NULL && !vd->vdev_ops->vdev_op_leaf) { 4131 vdev_dbgmsg(vd, "zio_vdev_io_assess(zio=%px) setting " 4132 "cant_write=TRUE due to write failure with ENXIO", 4133 zio); 4134 vd->vdev_cant_write = B_TRUE; 4135 } 4136 4137 /* 4138 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future 4139 * attempts will ever succeed. In this case we set a persistent 4140 * boolean flag so that we don't bother with it in the future. 4141 */ 4142 if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) && 4143 zio->io_type == ZIO_TYPE_IOCTL && 4144 zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL) 4145 vd->vdev_nowritecache = B_TRUE; 4146 4147 if (zio->io_error) 4148 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 4149 4150 if (vd != NULL && vd->vdev_ops->vdev_op_leaf && 4151 zio->io_physdone != NULL) { 4152 ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED)); 4153 ASSERT(zio->io_child_type == ZIO_CHILD_VDEV); 4154 zio->io_physdone(zio->io_logical); 4155 } 4156 4157 return (zio); 4158 } 4159 4160 void 4161 zio_vdev_io_reissue(zio_t *zio) 4162 { 4163 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 4164 ASSERT(zio->io_error == 0); 4165 4166 zio->io_stage >>= 1; 4167 } 4168 4169 void 4170 zio_vdev_io_redone(zio_t *zio) 4171 { 4172 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE); 4173 4174 zio->io_stage >>= 1; 4175 } 4176 4177 void 4178 zio_vdev_io_bypass(zio_t *zio) 4179 { 4180 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 4181 ASSERT(zio->io_error == 0); 4182 4183 zio->io_flags |= ZIO_FLAG_IO_BYPASS; 4184 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1; 4185 } 4186 4187 /* 4188 * ========================================================================== 4189 * Encrypt and store encryption parameters 4190 * ========================================================================== 4191 */ 4192 4193 4194 /* 4195 * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for 4196 * managing the storage of encryption parameters and passing them to the 4197 * lower-level encryption functions. 4198 */ 4199 static zio_t * 4200 zio_encrypt(zio_t *zio) 4201 { 4202 zio_prop_t *zp = &zio->io_prop; 4203 spa_t *spa = zio->io_spa; 4204 blkptr_t *bp = zio->io_bp; 4205 uint64_t psize = BP_GET_PSIZE(bp); 4206 uint64_t dsobj = zio->io_bookmark.zb_objset; 4207 dmu_object_type_t ot = BP_GET_TYPE(bp); 4208 void *enc_buf = NULL; 4209 abd_t *eabd = NULL; 4210 uint8_t salt[ZIO_DATA_SALT_LEN]; 4211 uint8_t iv[ZIO_DATA_IV_LEN]; 4212 uint8_t mac[ZIO_DATA_MAC_LEN]; 4213 boolean_t no_crypt = B_FALSE; 4214 4215 /* the root zio already encrypted the data */ 4216 if (zio->io_child_type == ZIO_CHILD_GANG) 4217 return (zio); 4218 4219 /* only ZIL blocks are re-encrypted on rewrite */ 4220 if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG) 4221 return (zio); 4222 4223 if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) { 4224 BP_SET_CRYPT(bp, B_FALSE); 4225 return (zio); 4226 } 4227 4228 /* if we are doing raw encryption set the provided encryption params */ 4229 if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) { 4230 ASSERT0(BP_GET_LEVEL(bp)); 4231 BP_SET_CRYPT(bp, B_TRUE); 4232 BP_SET_BYTEORDER(bp, zp->zp_byteorder); 4233 if (ot != DMU_OT_OBJSET) 4234 zio_crypt_encode_mac_bp(bp, zp->zp_mac); 4235 4236 /* dnode blocks must be written out in the provided byteorder */ 4237 if (zp->zp_byteorder != ZFS_HOST_BYTEORDER && 4238 ot == DMU_OT_DNODE) { 4239 void *bswap_buf = zio_buf_alloc(psize); 4240 abd_t *babd = abd_get_from_buf(bswap_buf, psize); 4241 4242 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 4243 abd_copy_to_buf(bswap_buf, zio->io_abd, psize); 4244 dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf, 4245 psize); 4246 4247 abd_take_ownership_of_buf(babd, B_TRUE); 4248 zio_push_transform(zio, babd, psize, psize, NULL); 4249 } 4250 4251 if (DMU_OT_IS_ENCRYPTED(ot)) 4252 zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv); 4253 return (zio); 4254 } 4255 4256 /* indirect blocks only maintain a cksum of the lower level MACs */ 4257 if (BP_GET_LEVEL(bp) > 0) { 4258 BP_SET_CRYPT(bp, B_TRUE); 4259 VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE, 4260 zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp), 4261 mac)); 4262 zio_crypt_encode_mac_bp(bp, mac); 4263 return (zio); 4264 } 4265 4266 /* 4267 * Objset blocks are a special case since they have 2 256-bit MACs 4268 * embedded within them. 4269 */ 4270 if (ot == DMU_OT_OBJSET) { 4271 ASSERT0(DMU_OT_IS_ENCRYPTED(ot)); 4272 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 4273 BP_SET_CRYPT(bp, B_TRUE); 4274 VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj, 4275 zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp))); 4276 return (zio); 4277 } 4278 4279 /* unencrypted object types are only authenticated with a MAC */ 4280 if (!DMU_OT_IS_ENCRYPTED(ot)) { 4281 BP_SET_CRYPT(bp, B_TRUE); 4282 VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj, 4283 zio->io_abd, psize, mac)); 4284 zio_crypt_encode_mac_bp(bp, mac); 4285 return (zio); 4286 } 4287 4288 /* 4289 * Later passes of sync-to-convergence may decide to rewrite data 4290 * in place to avoid more disk reallocations. This presents a problem 4291 * for encryption because this constitutes rewriting the new data with 4292 * the same encryption key and IV. However, this only applies to blocks 4293 * in the MOS (particularly the spacemaps) and we do not encrypt the 4294 * MOS. We assert that the zio is allocating or an intent log write 4295 * to enforce this. 4296 */ 4297 ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG); 4298 ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG); 4299 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION)); 4300 ASSERT3U(psize, !=, 0); 4301 4302 enc_buf = zio_buf_alloc(psize); 4303 eabd = abd_get_from_buf(enc_buf, psize); 4304 abd_take_ownership_of_buf(eabd, B_TRUE); 4305 4306 /* 4307 * For an explanation of what encryption parameters are stored 4308 * where, see the block comment in zio_crypt.c. 4309 */ 4310 if (ot == DMU_OT_INTENT_LOG) { 4311 zio_crypt_decode_params_bp(bp, salt, iv); 4312 } else { 4313 BP_SET_CRYPT(bp, B_TRUE); 4314 } 4315 4316 /* Perform the encryption. This should not fail */ 4317 VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark, 4318 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), 4319 salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt)); 4320 4321 /* encode encryption metadata into the bp */ 4322 if (ot == DMU_OT_INTENT_LOG) { 4323 /* 4324 * ZIL blocks store the MAC in the embedded checksum, so the 4325 * transform must always be applied. 4326 */ 4327 zio_crypt_encode_mac_zil(enc_buf, mac); 4328 zio_push_transform(zio, eabd, psize, psize, NULL); 4329 } else { 4330 BP_SET_CRYPT(bp, B_TRUE); 4331 zio_crypt_encode_params_bp(bp, salt, iv); 4332 zio_crypt_encode_mac_bp(bp, mac); 4333 4334 if (no_crypt) { 4335 ASSERT3U(ot, ==, DMU_OT_DNODE); 4336 abd_free(eabd); 4337 } else { 4338 zio_push_transform(zio, eabd, psize, psize, NULL); 4339 } 4340 } 4341 4342 return (zio); 4343 } 4344 4345 /* 4346 * ========================================================================== 4347 * Generate and verify checksums 4348 * ========================================================================== 4349 */ 4350 static zio_t * 4351 zio_checksum_generate(zio_t *zio) 4352 { 4353 blkptr_t *bp = zio->io_bp; 4354 enum zio_checksum checksum; 4355 4356 if (bp == NULL) { 4357 /* 4358 * This is zio_write_phys(). 4359 * We're either generating a label checksum, or none at all. 4360 */ 4361 checksum = zio->io_prop.zp_checksum; 4362 4363 if (checksum == ZIO_CHECKSUM_OFF) 4364 return (zio); 4365 4366 ASSERT(checksum == ZIO_CHECKSUM_LABEL); 4367 } else { 4368 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) { 4369 ASSERT(!IO_IS_ALLOCATING(zio)); 4370 checksum = ZIO_CHECKSUM_GANG_HEADER; 4371 } else { 4372 checksum = BP_GET_CHECKSUM(bp); 4373 } 4374 } 4375 4376 zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size); 4377 4378 return (zio); 4379 } 4380 4381 static zio_t * 4382 zio_checksum_verify(zio_t *zio) 4383 { 4384 zio_bad_cksum_t info; 4385 blkptr_t *bp = zio->io_bp; 4386 int error; 4387 4388 ASSERT(zio->io_vd != NULL); 4389 4390 if (bp == NULL) { 4391 /* 4392 * This is zio_read_phys(). 4393 * We're either verifying a label checksum, or nothing at all. 4394 */ 4395 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF) 4396 return (zio); 4397 4398 ASSERT3U(zio->io_prop.zp_checksum, ==, ZIO_CHECKSUM_LABEL); 4399 } 4400 4401 if ((error = zio_checksum_error(zio, &info)) != 0) { 4402 zio->io_error = error; 4403 if (error == ECKSUM && 4404 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 4405 mutex_enter(&zio->io_vd->vdev_stat_lock); 4406 zio->io_vd->vdev_stat.vs_checksum_errors++; 4407 mutex_exit(&zio->io_vd->vdev_stat_lock); 4408 (void) zfs_ereport_start_checksum(zio->io_spa, 4409 zio->io_vd, &zio->io_bookmark, zio, 4410 zio->io_offset, zio->io_size, &info); 4411 } 4412 } 4413 4414 return (zio); 4415 } 4416 4417 /* 4418 * Called by RAID-Z to ensure we don't compute the checksum twice. 4419 */ 4420 void 4421 zio_checksum_verified(zio_t *zio) 4422 { 4423 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 4424 } 4425 4426 /* 4427 * ========================================================================== 4428 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other. 4429 * An error of 0 indicates success. ENXIO indicates whole-device failure, 4430 * which may be transient (e.g. unplugged) or permanent. ECKSUM and EIO 4431 * indicate errors that are specific to one I/O, and most likely permanent. 4432 * Any other error is presumed to be worse because we weren't expecting it. 4433 * ========================================================================== 4434 */ 4435 int 4436 zio_worst_error(int e1, int e2) 4437 { 4438 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO }; 4439 int r1, r2; 4440 4441 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++) 4442 if (e1 == zio_error_rank[r1]) 4443 break; 4444 4445 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++) 4446 if (e2 == zio_error_rank[r2]) 4447 break; 4448 4449 return (r1 > r2 ? e1 : e2); 4450 } 4451 4452 /* 4453 * ========================================================================== 4454 * I/O completion 4455 * ========================================================================== 4456 */ 4457 static zio_t * 4458 zio_ready(zio_t *zio) 4459 { 4460 blkptr_t *bp = zio->io_bp; 4461 zio_t *pio, *pio_next; 4462 zio_link_t *zl = NULL; 4463 4464 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT, 4465 ZIO_WAIT_READY)) { 4466 return (NULL); 4467 } 4468 4469 if (zio->io_ready) { 4470 ASSERT(IO_IS_ALLOCATING(zio)); 4471 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) || 4472 (zio->io_flags & ZIO_FLAG_NOPWRITE)); 4473 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0); 4474 4475 zio->io_ready(zio); 4476 } 4477 4478 if (bp != NULL && bp != &zio->io_bp_copy) 4479 zio->io_bp_copy = *bp; 4480 4481 if (zio->io_error != 0) { 4482 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 4483 4484 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 4485 ASSERT(IO_IS_ALLOCATING(zio)); 4486 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 4487 ASSERT(zio->io_metaslab_class != NULL); 4488 4489 /* 4490 * We were unable to allocate anything, unreserve and 4491 * issue the next I/O to allocate. 4492 */ 4493 metaslab_class_throttle_unreserve( 4494 zio->io_metaslab_class, zio->io_prop.zp_copies, 4495 zio->io_allocator, zio); 4496 zio_allocate_dispatch(zio->io_spa, zio->io_allocator); 4497 } 4498 } 4499 4500 mutex_enter(&zio->io_lock); 4501 zio->io_state[ZIO_WAIT_READY] = 1; 4502 pio = zio_walk_parents(zio, &zl); 4503 mutex_exit(&zio->io_lock); 4504 4505 /* 4506 * As we notify zio's parents, new parents could be added. 4507 * New parents go to the head of zio's io_parent_list, however, 4508 * so we will (correctly) not notify them. The remainder of zio's 4509 * io_parent_list, from 'pio_next' onward, cannot change because 4510 * all parents must wait for us to be done before they can be done. 4511 */ 4512 for (; pio != NULL; pio = pio_next) { 4513 pio_next = zio_walk_parents(zio, &zl); 4514 zio_notify_parent(pio, zio, ZIO_WAIT_READY, NULL); 4515 } 4516 4517 if (zio->io_flags & ZIO_FLAG_NODATA) { 4518 if (bp != NULL && BP_IS_GANG(bp)) { 4519 zio->io_flags &= ~ZIO_FLAG_NODATA; 4520 } else { 4521 ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE); 4522 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 4523 } 4524 } 4525 4526 if (zio_injection_enabled && 4527 zio->io_spa->spa_syncing_txg == zio->io_txg) 4528 zio_handle_ignored_writes(zio); 4529 4530 return (zio); 4531 } 4532 4533 /* 4534 * Update the allocation throttle accounting. 4535 */ 4536 static void 4537 zio_dva_throttle_done(zio_t *zio) 4538 { 4539 zio_t *lio __maybe_unused = zio->io_logical; 4540 zio_t *pio = zio_unique_parent(zio); 4541 vdev_t *vd = zio->io_vd; 4542 int flags = METASLAB_ASYNC_ALLOC; 4543 4544 ASSERT3P(zio->io_bp, !=, NULL); 4545 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE); 4546 ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE); 4547 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); 4548 ASSERT(vd != NULL); 4549 ASSERT3P(vd, ==, vd->vdev_top); 4550 ASSERT(zio_injection_enabled || !(zio->io_flags & ZIO_FLAG_IO_RETRY)); 4551 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR)); 4552 ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING); 4553 ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE)); 4554 ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA)); 4555 4556 /* 4557 * Parents of gang children can have two flavors -- ones that 4558 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set) 4559 * and ones that allocated the constituent blocks. The allocation 4560 * throttle needs to know the allocating parent zio so we must find 4561 * it here. 4562 */ 4563 if (pio->io_child_type == ZIO_CHILD_GANG) { 4564 /* 4565 * If our parent is a rewrite gang child then our grandparent 4566 * would have been the one that performed the allocation. 4567 */ 4568 if (pio->io_flags & ZIO_FLAG_IO_REWRITE) 4569 pio = zio_unique_parent(pio); 4570 flags |= METASLAB_GANG_CHILD; 4571 } 4572 4573 ASSERT(IO_IS_ALLOCATING(pio)); 4574 ASSERT3P(zio, !=, zio->io_logical); 4575 ASSERT(zio->io_logical != NULL); 4576 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR)); 4577 ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE); 4578 ASSERT(zio->io_metaslab_class != NULL); 4579 4580 mutex_enter(&pio->io_lock); 4581 metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags, 4582 pio->io_allocator, B_TRUE); 4583 mutex_exit(&pio->io_lock); 4584 4585 metaslab_class_throttle_unreserve(zio->io_metaslab_class, 1, 4586 pio->io_allocator, pio); 4587 4588 /* 4589 * Call into the pipeline to see if there is more work that 4590 * needs to be done. If there is work to be done it will be 4591 * dispatched to another taskq thread. 4592 */ 4593 zio_allocate_dispatch(zio->io_spa, pio->io_allocator); 4594 } 4595 4596 static zio_t * 4597 zio_done(zio_t *zio) 4598 { 4599 /* 4600 * Always attempt to keep stack usage minimal here since 4601 * we can be called recursively up to 19 levels deep. 4602 */ 4603 const uint64_t psize = zio->io_size; 4604 zio_t *pio, *pio_next; 4605 zio_link_t *zl = NULL; 4606 4607 /* 4608 * If our children haven't all completed, 4609 * wait for them and then repeat this pipeline stage. 4610 */ 4611 if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) { 4612 return (NULL); 4613 } 4614 4615 /* 4616 * If the allocation throttle is enabled, then update the accounting. 4617 * We only track child I/Os that are part of an allocating async 4618 * write. We must do this since the allocation is performed 4619 * by the logical I/O but the actual write is done by child I/Os. 4620 */ 4621 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING && 4622 zio->io_child_type == ZIO_CHILD_VDEV) { 4623 ASSERT(zio->io_metaslab_class != NULL); 4624 ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled); 4625 zio_dva_throttle_done(zio); 4626 } 4627 4628 /* 4629 * If the allocation throttle is enabled, verify that 4630 * we have decremented the refcounts for every I/O that was throttled. 4631 */ 4632 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 4633 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 4634 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 4635 ASSERT(zio->io_bp != NULL); 4636 4637 metaslab_group_alloc_verify(zio->io_spa, zio->io_bp, zio, 4638 zio->io_allocator); 4639 VERIFY(zfs_refcount_not_held(&zio->io_metaslab_class-> 4640 mc_allocator[zio->io_allocator].mca_alloc_slots, zio)); 4641 } 4642 4643 4644 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 4645 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 4646 ASSERT(zio->io_children[c][w] == 0); 4647 4648 if (zio->io_bp != NULL && !BP_IS_EMBEDDED(zio->io_bp)) { 4649 ASSERT(zio->io_bp->blk_pad[0] == 0); 4650 ASSERT(zio->io_bp->blk_pad[1] == 0); 4651 ASSERT(memcmp(zio->io_bp, &zio->io_bp_copy, 4652 sizeof (blkptr_t)) == 0 || 4653 (zio->io_bp == zio_unique_parent(zio)->io_bp)); 4654 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) && 4655 zio->io_bp_override == NULL && 4656 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) { 4657 ASSERT3U(zio->io_prop.zp_copies, <=, 4658 BP_GET_NDVAS(zio->io_bp)); 4659 ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 || 4660 (BP_COUNT_GANG(zio->io_bp) == 4661 BP_GET_NDVAS(zio->io_bp))); 4662 } 4663 if (zio->io_flags & ZIO_FLAG_NOPWRITE) 4664 VERIFY(BP_EQUAL(zio->io_bp, &zio->io_bp_orig)); 4665 } 4666 4667 /* 4668 * If there were child vdev/gang/ddt errors, they apply to us now. 4669 */ 4670 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV); 4671 zio_inherit_child_errors(zio, ZIO_CHILD_GANG); 4672 zio_inherit_child_errors(zio, ZIO_CHILD_DDT); 4673 4674 /* 4675 * If the I/O on the transformed data was successful, generate any 4676 * checksum reports now while we still have the transformed data. 4677 */ 4678 if (zio->io_error == 0) { 4679 while (zio->io_cksum_report != NULL) { 4680 zio_cksum_report_t *zcr = zio->io_cksum_report; 4681 uint64_t align = zcr->zcr_align; 4682 uint64_t asize = P2ROUNDUP(psize, align); 4683 abd_t *adata = zio->io_abd; 4684 4685 if (adata != NULL && asize != psize) { 4686 adata = abd_alloc(asize, B_TRUE); 4687 abd_copy(adata, zio->io_abd, psize); 4688 abd_zero_off(adata, psize, asize - psize); 4689 } 4690 4691 zio->io_cksum_report = zcr->zcr_next; 4692 zcr->zcr_next = NULL; 4693 zcr->zcr_finish(zcr, adata); 4694 zfs_ereport_free_checksum(zcr); 4695 4696 if (adata != NULL && asize != psize) 4697 abd_free(adata); 4698 } 4699 } 4700 4701 zio_pop_transforms(zio); /* note: may set zio->io_error */ 4702 4703 vdev_stat_update(zio, psize); 4704 4705 /* 4706 * If this I/O is attached to a particular vdev is slow, exceeding 4707 * 30 seconds to complete, post an error described the I/O delay. 4708 * We ignore these errors if the device is currently unavailable. 4709 */ 4710 if (zio->io_delay >= MSEC2NSEC(zio_slow_io_ms)) { 4711 if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) { 4712 /* 4713 * We want to only increment our slow IO counters if 4714 * the IO is valid (i.e. not if the drive is removed). 4715 * 4716 * zfs_ereport_post() will also do these checks, but 4717 * it can also ratelimit and have other failures, so we 4718 * need to increment the slow_io counters independent 4719 * of it. 4720 */ 4721 if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY, 4722 zio->io_spa, zio->io_vd, zio)) { 4723 mutex_enter(&zio->io_vd->vdev_stat_lock); 4724 zio->io_vd->vdev_stat.vs_slow_ios++; 4725 mutex_exit(&zio->io_vd->vdev_stat_lock); 4726 4727 (void) zfs_ereport_post(FM_EREPORT_ZFS_DELAY, 4728 zio->io_spa, zio->io_vd, &zio->io_bookmark, 4729 zio, 0); 4730 } 4731 } 4732 } 4733 4734 if (zio->io_error) { 4735 /* 4736 * If this I/O is attached to a particular vdev, 4737 * generate an error message describing the I/O failure 4738 * at the block level. We ignore these errors if the 4739 * device is currently unavailable. 4740 */ 4741 if (zio->io_error != ECKSUM && zio->io_vd != NULL && 4742 !vdev_is_dead(zio->io_vd)) { 4743 int ret = zfs_ereport_post(FM_EREPORT_ZFS_IO, 4744 zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0); 4745 if (ret != EALREADY) { 4746 mutex_enter(&zio->io_vd->vdev_stat_lock); 4747 if (zio->io_type == ZIO_TYPE_READ) 4748 zio->io_vd->vdev_stat.vs_read_errors++; 4749 else if (zio->io_type == ZIO_TYPE_WRITE) 4750 zio->io_vd->vdev_stat.vs_write_errors++; 4751 mutex_exit(&zio->io_vd->vdev_stat_lock); 4752 } 4753 } 4754 4755 if ((zio->io_error == EIO || !(zio->io_flags & 4756 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) && 4757 zio == zio->io_logical) { 4758 /* 4759 * For logical I/O requests, tell the SPA to log the 4760 * error and generate a logical data ereport. 4761 */ 4762 spa_log_error(zio->io_spa, &zio->io_bookmark, 4763 &zio->io_bp->blk_birth); 4764 (void) zfs_ereport_post(FM_EREPORT_ZFS_DATA, 4765 zio->io_spa, NULL, &zio->io_bookmark, zio, 0); 4766 } 4767 } 4768 4769 if (zio->io_error && zio == zio->io_logical) { 4770 /* 4771 * Determine whether zio should be reexecuted. This will 4772 * propagate all the way to the root via zio_notify_parent(). 4773 */ 4774 ASSERT(zio->io_vd == NULL && zio->io_bp != NULL); 4775 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 4776 4777 if (IO_IS_ALLOCATING(zio) && 4778 !(zio->io_flags & ZIO_FLAG_CANFAIL)) { 4779 if (zio->io_error != ENOSPC) 4780 zio->io_reexecute |= ZIO_REEXECUTE_NOW; 4781 else 4782 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 4783 } 4784 4785 if ((zio->io_type == ZIO_TYPE_READ || 4786 zio->io_type == ZIO_TYPE_FREE) && 4787 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && 4788 zio->io_error == ENXIO && 4789 spa_load_state(zio->io_spa) == SPA_LOAD_NONE && 4790 spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE) 4791 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 4792 4793 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute) 4794 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 4795 4796 /* 4797 * Here is a possibly good place to attempt to do 4798 * either combinatorial reconstruction or error correction 4799 * based on checksums. It also might be a good place 4800 * to send out preliminary ereports before we suspend 4801 * processing. 4802 */ 4803 } 4804 4805 /* 4806 * If there were logical child errors, they apply to us now. 4807 * We defer this until now to avoid conflating logical child 4808 * errors with errors that happened to the zio itself when 4809 * updating vdev stats and reporting FMA events above. 4810 */ 4811 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL); 4812 4813 if ((zio->io_error || zio->io_reexecute) && 4814 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio && 4815 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE))) 4816 zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp); 4817 4818 zio_gang_tree_free(&zio->io_gang_tree); 4819 4820 /* 4821 * Godfather I/Os should never suspend. 4822 */ 4823 if ((zio->io_flags & ZIO_FLAG_GODFATHER) && 4824 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) 4825 zio->io_reexecute &= ~ZIO_REEXECUTE_SUSPEND; 4826 4827 if (zio->io_reexecute) { 4828 /* 4829 * This is a logical I/O that wants to reexecute. 4830 * 4831 * Reexecute is top-down. When an i/o fails, if it's not 4832 * the root, it simply notifies its parent and sticks around. 4833 * The parent, seeing that it still has children in zio_done(), 4834 * does the same. This percolates all the way up to the root. 4835 * The root i/o will reexecute or suspend the entire tree. 4836 * 4837 * This approach ensures that zio_reexecute() honors 4838 * all the original i/o dependency relationships, e.g. 4839 * parents not executing until children are ready. 4840 */ 4841 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 4842 4843 zio->io_gang_leader = NULL; 4844 4845 mutex_enter(&zio->io_lock); 4846 zio->io_state[ZIO_WAIT_DONE] = 1; 4847 mutex_exit(&zio->io_lock); 4848 4849 /* 4850 * "The Godfather" I/O monitors its children but is 4851 * not a true parent to them. It will track them through 4852 * the pipeline but severs its ties whenever they get into 4853 * trouble (e.g. suspended). This allows "The Godfather" 4854 * I/O to return status without blocking. 4855 */ 4856 zl = NULL; 4857 for (pio = zio_walk_parents(zio, &zl); pio != NULL; 4858 pio = pio_next) { 4859 zio_link_t *remove_zl = zl; 4860 pio_next = zio_walk_parents(zio, &zl); 4861 4862 if ((pio->io_flags & ZIO_FLAG_GODFATHER) && 4863 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) { 4864 zio_remove_child(pio, zio, remove_zl); 4865 /* 4866 * This is a rare code path, so we don't 4867 * bother with "next_to_execute". 4868 */ 4869 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, 4870 NULL); 4871 } 4872 } 4873 4874 if ((pio = zio_unique_parent(zio)) != NULL) { 4875 /* 4876 * We're not a root i/o, so there's nothing to do 4877 * but notify our parent. Don't propagate errors 4878 * upward since we haven't permanently failed yet. 4879 */ 4880 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 4881 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE; 4882 /* 4883 * This is a rare code path, so we don't bother with 4884 * "next_to_execute". 4885 */ 4886 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, NULL); 4887 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) { 4888 /* 4889 * We'd fail again if we reexecuted now, so suspend 4890 * until conditions improve (e.g. device comes online). 4891 */ 4892 zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR); 4893 } else { 4894 /* 4895 * Reexecution is potentially a huge amount of work. 4896 * Hand it off to the otherwise-unused claim taskq. 4897 */ 4898 ASSERT(taskq_empty_ent(&zio->io_tqent)); 4899 spa_taskq_dispatch_ent(zio->io_spa, 4900 ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE, 4901 zio_reexecute, zio, 0, &zio->io_tqent); 4902 } 4903 return (NULL); 4904 } 4905 4906 ASSERT(zio->io_child_count == 0); 4907 ASSERT(zio->io_reexecute == 0); 4908 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL)); 4909 4910 /* 4911 * Report any checksum errors, since the I/O is complete. 4912 */ 4913 while (zio->io_cksum_report != NULL) { 4914 zio_cksum_report_t *zcr = zio->io_cksum_report; 4915 zio->io_cksum_report = zcr->zcr_next; 4916 zcr->zcr_next = NULL; 4917 zcr->zcr_finish(zcr, NULL); 4918 zfs_ereport_free_checksum(zcr); 4919 } 4920 4921 if (zio->io_flags & ZIO_FLAG_FASTWRITE && zio->io_bp && 4922 !BP_IS_HOLE(zio->io_bp) && !BP_IS_EMBEDDED(zio->io_bp) && 4923 !(zio->io_flags & ZIO_FLAG_NOPWRITE)) { 4924 metaslab_fastwrite_unmark(zio->io_spa, zio->io_bp); 4925 } 4926 4927 /* 4928 * It is the responsibility of the done callback to ensure that this 4929 * particular zio is no longer discoverable for adoption, and as 4930 * such, cannot acquire any new parents. 4931 */ 4932 if (zio->io_done) 4933 zio->io_done(zio); 4934 4935 mutex_enter(&zio->io_lock); 4936 zio->io_state[ZIO_WAIT_DONE] = 1; 4937 mutex_exit(&zio->io_lock); 4938 4939 /* 4940 * We are done executing this zio. We may want to execute a parent 4941 * next. See the comment in zio_notify_parent(). 4942 */ 4943 zio_t *next_to_execute = NULL; 4944 zl = NULL; 4945 for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) { 4946 zio_link_t *remove_zl = zl; 4947 pio_next = zio_walk_parents(zio, &zl); 4948 zio_remove_child(pio, zio, remove_zl); 4949 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, &next_to_execute); 4950 } 4951 4952 if (zio->io_waiter != NULL) { 4953 mutex_enter(&zio->io_lock); 4954 zio->io_executor = NULL; 4955 cv_broadcast(&zio->io_cv); 4956 mutex_exit(&zio->io_lock); 4957 } else { 4958 zio_destroy(zio); 4959 } 4960 4961 return (next_to_execute); 4962 } 4963 4964 /* 4965 * ========================================================================== 4966 * I/O pipeline definition 4967 * ========================================================================== 4968 */ 4969 static zio_pipe_stage_t *zio_pipeline[] = { 4970 NULL, 4971 zio_read_bp_init, 4972 zio_write_bp_init, 4973 zio_free_bp_init, 4974 zio_issue_async, 4975 zio_write_compress, 4976 zio_encrypt, 4977 zio_checksum_generate, 4978 zio_nop_write, 4979 zio_brt_free, 4980 zio_ddt_read_start, 4981 zio_ddt_read_done, 4982 zio_ddt_write, 4983 zio_ddt_free, 4984 zio_gang_assemble, 4985 zio_gang_issue, 4986 zio_dva_throttle, 4987 zio_dva_allocate, 4988 zio_dva_free, 4989 zio_dva_claim, 4990 zio_ready, 4991 zio_vdev_io_start, 4992 zio_vdev_io_done, 4993 zio_vdev_io_assess, 4994 zio_checksum_verify, 4995 zio_done 4996 }; 4997 4998 4999 5000 5001 /* 5002 * Compare two zbookmark_phys_t's to see which we would reach first in a 5003 * pre-order traversal of the object tree. 5004 * 5005 * This is simple in every case aside from the meta-dnode object. For all other 5006 * objects, we traverse them in order (object 1 before object 2, and so on). 5007 * However, all of these objects are traversed while traversing object 0, since 5008 * the data it points to is the list of objects. Thus, we need to convert to a 5009 * canonical representation so we can compare meta-dnode bookmarks to 5010 * non-meta-dnode bookmarks. 5011 * 5012 * We do this by calculating "equivalents" for each field of the zbookmark. 5013 * zbookmarks outside of the meta-dnode use their own object and level, and 5014 * calculate the level 0 equivalent (the first L0 blkid that is contained in the 5015 * blocks this bookmark refers to) by multiplying their blkid by their span 5016 * (the number of L0 blocks contained within one block at their level). 5017 * zbookmarks inside the meta-dnode calculate their object equivalent 5018 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use 5019 * level + 1<<31 (any value larger than a level could ever be) for their level. 5020 * This causes them to always compare before a bookmark in their object 5021 * equivalent, compare appropriately to bookmarks in other objects, and to 5022 * compare appropriately to other bookmarks in the meta-dnode. 5023 */ 5024 int 5025 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2, 5026 const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2) 5027 { 5028 /* 5029 * These variables represent the "equivalent" values for the zbookmark, 5030 * after converting zbookmarks inside the meta dnode to their 5031 * normal-object equivalents. 5032 */ 5033 uint64_t zb1obj, zb2obj; 5034 uint64_t zb1L0, zb2L0; 5035 uint64_t zb1level, zb2level; 5036 5037 if (zb1->zb_object == zb2->zb_object && 5038 zb1->zb_level == zb2->zb_level && 5039 zb1->zb_blkid == zb2->zb_blkid) 5040 return (0); 5041 5042 IMPLY(zb1->zb_level > 0, ibs1 >= SPA_MINBLOCKSHIFT); 5043 IMPLY(zb2->zb_level > 0, ibs2 >= SPA_MINBLOCKSHIFT); 5044 5045 /* 5046 * BP_SPANB calculates the span in blocks. 5047 */ 5048 zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level); 5049 zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level); 5050 5051 if (zb1->zb_object == DMU_META_DNODE_OBJECT) { 5052 zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 5053 zb1L0 = 0; 5054 zb1level = zb1->zb_level + COMPARE_META_LEVEL; 5055 } else { 5056 zb1obj = zb1->zb_object; 5057 zb1level = zb1->zb_level; 5058 } 5059 5060 if (zb2->zb_object == DMU_META_DNODE_OBJECT) { 5061 zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 5062 zb2L0 = 0; 5063 zb2level = zb2->zb_level + COMPARE_META_LEVEL; 5064 } else { 5065 zb2obj = zb2->zb_object; 5066 zb2level = zb2->zb_level; 5067 } 5068 5069 /* Now that we have a canonical representation, do the comparison. */ 5070 if (zb1obj != zb2obj) 5071 return (zb1obj < zb2obj ? -1 : 1); 5072 else if (zb1L0 != zb2L0) 5073 return (zb1L0 < zb2L0 ? -1 : 1); 5074 else if (zb1level != zb2level) 5075 return (zb1level > zb2level ? -1 : 1); 5076 /* 5077 * This can (theoretically) happen if the bookmarks have the same object 5078 * and level, but different blkids, if the block sizes are not the same. 5079 * There is presently no way to change the indirect block sizes 5080 */ 5081 return (0); 5082 } 5083 5084 /* 5085 * This function checks the following: given that last_block is the place that 5086 * our traversal stopped last time, does that guarantee that we've visited 5087 * every node under subtree_root? Therefore, we can't just use the raw output 5088 * of zbookmark_compare. We have to pass in a modified version of 5089 * subtree_root; by incrementing the block id, and then checking whether 5090 * last_block is before or equal to that, we can tell whether or not having 5091 * visited last_block implies that all of subtree_root's children have been 5092 * visited. 5093 */ 5094 boolean_t 5095 zbookmark_subtree_completed(const dnode_phys_t *dnp, 5096 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block) 5097 { 5098 zbookmark_phys_t mod_zb = *subtree_root; 5099 mod_zb.zb_blkid++; 5100 ASSERT0(last_block->zb_level); 5101 5102 /* The objset_phys_t isn't before anything. */ 5103 if (dnp == NULL) 5104 return (B_FALSE); 5105 5106 /* 5107 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the 5108 * data block size in sectors, because that variable is only used if 5109 * the bookmark refers to a block in the meta-dnode. Since we don't 5110 * know without examining it what object it refers to, and there's no 5111 * harm in passing in this value in other cases, we always pass it in. 5112 * 5113 * We pass in 0 for the indirect block size shift because zb2 must be 5114 * level 0. The indirect block size is only used to calculate the span 5115 * of the bookmark, but since the bookmark must be level 0, the span is 5116 * always 1, so the math works out. 5117 * 5118 * If you make changes to how the zbookmark_compare code works, be sure 5119 * to make sure that this code still works afterwards. 5120 */ 5121 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift, 5122 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb, 5123 last_block) <= 0); 5124 } 5125 5126 /* 5127 * This function is similar to zbookmark_subtree_completed(), but returns true 5128 * if subtree_root is equal or ahead of last_block, i.e. still to be done. 5129 */ 5130 boolean_t 5131 zbookmark_subtree_tbd(const dnode_phys_t *dnp, 5132 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block) 5133 { 5134 ASSERT0(last_block->zb_level); 5135 if (dnp == NULL) 5136 return (B_FALSE); 5137 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift, 5138 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, subtree_root, 5139 last_block) >= 0); 5140 } 5141 5142 EXPORT_SYMBOL(zio_type_name); 5143 EXPORT_SYMBOL(zio_buf_alloc); 5144 EXPORT_SYMBOL(zio_data_buf_alloc); 5145 EXPORT_SYMBOL(zio_buf_free); 5146 EXPORT_SYMBOL(zio_data_buf_free); 5147 5148 ZFS_MODULE_PARAM(zfs_zio, zio_, slow_io_ms, INT, ZMOD_RW, 5149 "Max I/O completion time (milliseconds) before marking it as slow"); 5150 5151 ZFS_MODULE_PARAM(zfs_zio, zio_, requeue_io_start_cut_in_line, INT, ZMOD_RW, 5152 "Prioritize requeued I/O"); 5153 5154 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_deferred_free, UINT, ZMOD_RW, 5155 "Defer frees starting in this pass"); 5156 5157 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_dont_compress, UINT, ZMOD_RW, 5158 "Don't compress starting in this pass"); 5159 5160 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_rewrite, UINT, ZMOD_RW, 5161 "Rewrite new bps starting in this pass"); 5162 5163 ZFS_MODULE_PARAM(zfs_zio, zio_, dva_throttle_enabled, INT, ZMOD_RW, 5164 "Throttle block allocations in the ZIO pipeline"); 5165 5166 ZFS_MODULE_PARAM(zfs_zio, zio_, deadman_log_all, INT, ZMOD_RW, 5167 "Log all slow ZIOs, not just those with vdevs"); 5168