1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2022 by Delphix. All rights reserved. 24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2017, Intel Corporation. 26 * Copyright (c) 2019, Klara Inc. 27 * Copyright (c) 2019, Allan Jude 28 * Copyright (c) 2021, Datto, Inc. 29 */ 30 31 #include <sys/sysmacros.h> 32 #include <sys/zfs_context.h> 33 #include <sys/fm/fs/zfs.h> 34 #include <sys/spa.h> 35 #include <sys/txg.h> 36 #include <sys/spa_impl.h> 37 #include <sys/vdev_impl.h> 38 #include <sys/vdev_trim.h> 39 #include <sys/zio_impl.h> 40 #include <sys/zio_compress.h> 41 #include <sys/zio_checksum.h> 42 #include <sys/dmu_objset.h> 43 #include <sys/arc.h> 44 #include <sys/brt.h> 45 #include <sys/ddt.h> 46 #include <sys/blkptr.h> 47 #include <sys/zfeature.h> 48 #include <sys/dsl_scan.h> 49 #include <sys/metaslab_impl.h> 50 #include <sys/time.h> 51 #include <sys/trace_zfs.h> 52 #include <sys/abd.h> 53 #include <sys/dsl_crypt.h> 54 #include <cityhash.h> 55 56 /* 57 * ========================================================================== 58 * I/O type descriptions 59 * ========================================================================== 60 */ 61 const char *const zio_type_name[ZIO_TYPES] = { 62 /* 63 * Note: Linux kernel thread name length is limited 64 * so these names will differ from upstream open zfs. 65 */ 66 "z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_ioctl", "z_trim" 67 }; 68 69 int zio_dva_throttle_enabled = B_TRUE; 70 static int zio_deadman_log_all = B_FALSE; 71 72 /* 73 * ========================================================================== 74 * I/O kmem caches 75 * ========================================================================== 76 */ 77 static kmem_cache_t *zio_cache; 78 static kmem_cache_t *zio_link_cache; 79 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 80 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 81 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 82 static uint64_t zio_buf_cache_allocs[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 83 static uint64_t zio_buf_cache_frees[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 84 #endif 85 86 /* Mark IOs as "slow" if they take longer than 30 seconds */ 87 static uint_t zio_slow_io_ms = (30 * MILLISEC); 88 89 #define BP_SPANB(indblkshift, level) \ 90 (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT))) 91 #define COMPARE_META_LEVEL 0x80000000ul 92 /* 93 * The following actions directly effect the spa's sync-to-convergence logic. 94 * The values below define the sync pass when we start performing the action. 95 * Care should be taken when changing these values as they directly impact 96 * spa_sync() performance. Tuning these values may introduce subtle performance 97 * pathologies and should only be done in the context of performance analysis. 98 * These tunables will eventually be removed and replaced with #defines once 99 * enough analysis has been done to determine optimal values. 100 * 101 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that 102 * regular blocks are not deferred. 103 * 104 * Starting in sync pass 8 (zfs_sync_pass_dont_compress), we disable 105 * compression (including of metadata). In practice, we don't have this 106 * many sync passes, so this has no effect. 107 * 108 * The original intent was that disabling compression would help the sync 109 * passes to converge. However, in practice disabling compression increases 110 * the average number of sync passes, because when we turn compression off, a 111 * lot of block's size will change and thus we have to re-allocate (not 112 * overwrite) them. It also increases the number of 128KB allocations (e.g. 113 * for indirect blocks and spacemaps) because these will not be compressed. 114 * The 128K allocations are especially detrimental to performance on highly 115 * fragmented systems, which may have very few free segments of this size, 116 * and may need to load new metaslabs to satisfy 128K allocations. 117 */ 118 119 /* defer frees starting in this pass */ 120 uint_t zfs_sync_pass_deferred_free = 2; 121 122 /* don't compress starting in this pass */ 123 static uint_t zfs_sync_pass_dont_compress = 8; 124 125 /* rewrite new bps starting in this pass */ 126 static uint_t zfs_sync_pass_rewrite = 2; 127 128 /* 129 * An allocating zio is one that either currently has the DVA allocate 130 * stage set or will have it later in its lifetime. 131 */ 132 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE) 133 134 /* 135 * Enable smaller cores by excluding metadata 136 * allocations as well. 137 */ 138 int zio_exclude_metadata = 0; 139 static int zio_requeue_io_start_cut_in_line = 1; 140 141 #ifdef ZFS_DEBUG 142 static const int zio_buf_debug_limit = 16384; 143 #else 144 static const int zio_buf_debug_limit = 0; 145 #endif 146 147 static inline void __zio_execute(zio_t *zio); 148 149 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t); 150 151 void 152 zio_init(void) 153 { 154 size_t c; 155 156 zio_cache = kmem_cache_create("zio_cache", 157 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 158 zio_link_cache = kmem_cache_create("zio_link_cache", 159 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 160 161 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 162 size_t size = (c + 1) << SPA_MINBLOCKSHIFT; 163 size_t align, cflags, data_cflags; 164 char name[32]; 165 166 /* 167 * Create cache for each half-power of 2 size, starting from 168 * SPA_MINBLOCKSIZE. It should give us memory space efficiency 169 * of ~7/8, sufficient for transient allocations mostly using 170 * these caches. 171 */ 172 size_t p2 = size; 173 while (!ISP2(p2)) 174 p2 &= p2 - 1; 175 if (!IS_P2ALIGNED(size, p2 / 2)) 176 continue; 177 178 #ifndef _KERNEL 179 /* 180 * If we are using watchpoints, put each buffer on its own page, 181 * to eliminate the performance overhead of trapping to the 182 * kernel when modifying a non-watched buffer that shares the 183 * page with a watched buffer. 184 */ 185 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE)) 186 continue; 187 #endif 188 189 if (IS_P2ALIGNED(size, PAGESIZE)) 190 align = PAGESIZE; 191 else 192 align = 1 << (highbit64(size ^ (size - 1)) - 1); 193 194 cflags = (zio_exclude_metadata || size > zio_buf_debug_limit) ? 195 KMC_NODEBUG : 0; 196 data_cflags = KMC_NODEBUG; 197 if (cflags == data_cflags) { 198 /* 199 * Resulting kmem caches would be identical. 200 * Save memory by creating only one. 201 */ 202 (void) snprintf(name, sizeof (name), 203 "zio_buf_comb_%lu", (ulong_t)size); 204 zio_buf_cache[c] = kmem_cache_create(name, size, align, 205 NULL, NULL, NULL, NULL, NULL, cflags); 206 zio_data_buf_cache[c] = zio_buf_cache[c]; 207 continue; 208 } 209 (void) snprintf(name, sizeof (name), "zio_buf_%lu", 210 (ulong_t)size); 211 zio_buf_cache[c] = kmem_cache_create(name, size, align, 212 NULL, NULL, NULL, NULL, NULL, cflags); 213 214 (void) snprintf(name, sizeof (name), "zio_data_buf_%lu", 215 (ulong_t)size); 216 zio_data_buf_cache[c] = kmem_cache_create(name, size, align, 217 NULL, NULL, NULL, NULL, NULL, data_cflags); 218 } 219 220 while (--c != 0) { 221 ASSERT(zio_buf_cache[c] != NULL); 222 if (zio_buf_cache[c - 1] == NULL) 223 zio_buf_cache[c - 1] = zio_buf_cache[c]; 224 225 ASSERT(zio_data_buf_cache[c] != NULL); 226 if (zio_data_buf_cache[c - 1] == NULL) 227 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c]; 228 } 229 230 zio_inject_init(); 231 232 lz4_init(); 233 } 234 235 void 236 zio_fini(void) 237 { 238 size_t n = SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; 239 240 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 241 for (size_t i = 0; i < n; i++) { 242 if (zio_buf_cache_allocs[i] != zio_buf_cache_frees[i]) 243 (void) printf("zio_fini: [%d] %llu != %llu\n", 244 (int)((i + 1) << SPA_MINBLOCKSHIFT), 245 (long long unsigned)zio_buf_cache_allocs[i], 246 (long long unsigned)zio_buf_cache_frees[i]); 247 } 248 #endif 249 250 /* 251 * The same kmem cache can show up multiple times in both zio_buf_cache 252 * and zio_data_buf_cache. Do a wasteful but trivially correct scan to 253 * sort it out. 254 */ 255 for (size_t i = 0; i < n; i++) { 256 kmem_cache_t *cache = zio_buf_cache[i]; 257 if (cache == NULL) 258 continue; 259 for (size_t j = i; j < n; j++) { 260 if (cache == zio_buf_cache[j]) 261 zio_buf_cache[j] = NULL; 262 if (cache == zio_data_buf_cache[j]) 263 zio_data_buf_cache[j] = NULL; 264 } 265 kmem_cache_destroy(cache); 266 } 267 268 for (size_t i = 0; i < n; i++) { 269 kmem_cache_t *cache = zio_data_buf_cache[i]; 270 if (cache == NULL) 271 continue; 272 for (size_t j = i; j < n; j++) { 273 if (cache == zio_data_buf_cache[j]) 274 zio_data_buf_cache[j] = NULL; 275 } 276 kmem_cache_destroy(cache); 277 } 278 279 for (size_t i = 0; i < n; i++) { 280 VERIFY3P(zio_buf_cache[i], ==, NULL); 281 VERIFY3P(zio_data_buf_cache[i], ==, NULL); 282 } 283 284 kmem_cache_destroy(zio_link_cache); 285 kmem_cache_destroy(zio_cache); 286 287 zio_inject_fini(); 288 289 lz4_fini(); 290 } 291 292 /* 293 * ========================================================================== 294 * Allocate and free I/O buffers 295 * ========================================================================== 296 */ 297 298 /* 299 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a 300 * crashdump if the kernel panics, so use it judiciously. Obviously, it's 301 * useful to inspect ZFS metadata, but if possible, we should avoid keeping 302 * excess / transient data in-core during a crashdump. 303 */ 304 void * 305 zio_buf_alloc(size_t size) 306 { 307 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 308 309 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 310 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 311 atomic_add_64(&zio_buf_cache_allocs[c], 1); 312 #endif 313 314 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE)); 315 } 316 317 /* 318 * Use zio_data_buf_alloc to allocate data. The data will not appear in a 319 * crashdump if the kernel panics. This exists so that we will limit the amount 320 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount 321 * of kernel heap dumped to disk when the kernel panics) 322 */ 323 void * 324 zio_data_buf_alloc(size_t size) 325 { 326 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 327 328 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 329 330 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE)); 331 } 332 333 void 334 zio_buf_free(void *buf, size_t size) 335 { 336 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 337 338 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 339 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 340 atomic_add_64(&zio_buf_cache_frees[c], 1); 341 #endif 342 343 kmem_cache_free(zio_buf_cache[c], buf); 344 } 345 346 void 347 zio_data_buf_free(void *buf, size_t size) 348 { 349 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 350 351 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 352 353 kmem_cache_free(zio_data_buf_cache[c], buf); 354 } 355 356 static void 357 zio_abd_free(void *abd, size_t size) 358 { 359 (void) size; 360 abd_free((abd_t *)abd); 361 } 362 363 /* 364 * ========================================================================== 365 * Push and pop I/O transform buffers 366 * ========================================================================== 367 */ 368 void 369 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize, 370 zio_transform_func_t *transform) 371 { 372 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP); 373 374 zt->zt_orig_abd = zio->io_abd; 375 zt->zt_orig_size = zio->io_size; 376 zt->zt_bufsize = bufsize; 377 zt->zt_transform = transform; 378 379 zt->zt_next = zio->io_transform_stack; 380 zio->io_transform_stack = zt; 381 382 zio->io_abd = data; 383 zio->io_size = size; 384 } 385 386 void 387 zio_pop_transforms(zio_t *zio) 388 { 389 zio_transform_t *zt; 390 391 while ((zt = zio->io_transform_stack) != NULL) { 392 if (zt->zt_transform != NULL) 393 zt->zt_transform(zio, 394 zt->zt_orig_abd, zt->zt_orig_size); 395 396 if (zt->zt_bufsize != 0) 397 abd_free(zio->io_abd); 398 399 zio->io_abd = zt->zt_orig_abd; 400 zio->io_size = zt->zt_orig_size; 401 zio->io_transform_stack = zt->zt_next; 402 403 kmem_free(zt, sizeof (zio_transform_t)); 404 } 405 } 406 407 /* 408 * ========================================================================== 409 * I/O transform callbacks for subblocks, decompression, and decryption 410 * ========================================================================== 411 */ 412 static void 413 zio_subblock(zio_t *zio, abd_t *data, uint64_t size) 414 { 415 ASSERT(zio->io_size > size); 416 417 if (zio->io_type == ZIO_TYPE_READ) 418 abd_copy(data, zio->io_abd, size); 419 } 420 421 static void 422 zio_decompress(zio_t *zio, abd_t *data, uint64_t size) 423 { 424 if (zio->io_error == 0) { 425 void *tmp = abd_borrow_buf(data, size); 426 int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp), 427 zio->io_abd, tmp, zio->io_size, size, 428 &zio->io_prop.zp_complevel); 429 abd_return_buf_copy(data, tmp, size); 430 431 if (zio_injection_enabled && ret == 0) 432 ret = zio_handle_fault_injection(zio, EINVAL); 433 434 if (ret != 0) 435 zio->io_error = SET_ERROR(EIO); 436 } 437 } 438 439 static void 440 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size) 441 { 442 int ret; 443 void *tmp; 444 blkptr_t *bp = zio->io_bp; 445 spa_t *spa = zio->io_spa; 446 uint64_t dsobj = zio->io_bookmark.zb_objset; 447 uint64_t lsize = BP_GET_LSIZE(bp); 448 dmu_object_type_t ot = BP_GET_TYPE(bp); 449 uint8_t salt[ZIO_DATA_SALT_LEN]; 450 uint8_t iv[ZIO_DATA_IV_LEN]; 451 uint8_t mac[ZIO_DATA_MAC_LEN]; 452 boolean_t no_crypt = B_FALSE; 453 454 ASSERT(BP_USES_CRYPT(bp)); 455 ASSERT3U(size, !=, 0); 456 457 if (zio->io_error != 0) 458 return; 459 460 /* 461 * Verify the cksum of MACs stored in an indirect bp. It will always 462 * be possible to verify this since it does not require an encryption 463 * key. 464 */ 465 if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) { 466 zio_crypt_decode_mac_bp(bp, mac); 467 468 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) { 469 /* 470 * We haven't decompressed the data yet, but 471 * zio_crypt_do_indirect_mac_checksum() requires 472 * decompressed data to be able to parse out the MACs 473 * from the indirect block. We decompress it now and 474 * throw away the result after we are finished. 475 */ 476 tmp = zio_buf_alloc(lsize); 477 ret = zio_decompress_data(BP_GET_COMPRESS(bp), 478 zio->io_abd, tmp, zio->io_size, lsize, 479 &zio->io_prop.zp_complevel); 480 if (ret != 0) { 481 ret = SET_ERROR(EIO); 482 goto error; 483 } 484 ret = zio_crypt_do_indirect_mac_checksum(B_FALSE, 485 tmp, lsize, BP_SHOULD_BYTESWAP(bp), mac); 486 zio_buf_free(tmp, lsize); 487 } else { 488 ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE, 489 zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac); 490 } 491 abd_copy(data, zio->io_abd, size); 492 493 if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) { 494 ret = zio_handle_decrypt_injection(spa, 495 &zio->io_bookmark, ot, ECKSUM); 496 } 497 if (ret != 0) 498 goto error; 499 500 return; 501 } 502 503 /* 504 * If this is an authenticated block, just check the MAC. It would be 505 * nice to separate this out into its own flag, but when this was done, 506 * we had run out of bits in what is now zio_flag_t. Future cleanup 507 * could make this a flag bit. 508 */ 509 if (BP_IS_AUTHENTICATED(bp)) { 510 if (ot == DMU_OT_OBJSET) { 511 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, 512 dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp)); 513 } else { 514 zio_crypt_decode_mac_bp(bp, mac); 515 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, 516 zio->io_abd, size, mac); 517 if (zio_injection_enabled && ret == 0) { 518 ret = zio_handle_decrypt_injection(spa, 519 &zio->io_bookmark, ot, ECKSUM); 520 } 521 } 522 abd_copy(data, zio->io_abd, size); 523 524 if (ret != 0) 525 goto error; 526 527 return; 528 } 529 530 zio_crypt_decode_params_bp(bp, salt, iv); 531 532 if (ot == DMU_OT_INTENT_LOG) { 533 tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t)); 534 zio_crypt_decode_mac_zil(tmp, mac); 535 abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t)); 536 } else { 537 zio_crypt_decode_mac_bp(bp, mac); 538 } 539 540 ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp), 541 BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data, 542 zio->io_abd, &no_crypt); 543 if (no_crypt) 544 abd_copy(data, zio->io_abd, size); 545 546 if (ret != 0) 547 goto error; 548 549 return; 550 551 error: 552 /* assert that the key was found unless this was speculative */ 553 ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE)); 554 555 /* 556 * If there was a decryption / authentication error return EIO as 557 * the io_error. If this was not a speculative zio, create an ereport. 558 */ 559 if (ret == ECKSUM) { 560 zio->io_error = SET_ERROR(EIO); 561 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) { 562 spa_log_error(spa, &zio->io_bookmark, 563 &zio->io_bp->blk_birth); 564 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION, 565 spa, NULL, &zio->io_bookmark, zio, 0); 566 } 567 } else { 568 zio->io_error = ret; 569 } 570 } 571 572 /* 573 * ========================================================================== 574 * I/O parent/child relationships and pipeline interlocks 575 * ========================================================================== 576 */ 577 zio_t * 578 zio_walk_parents(zio_t *cio, zio_link_t **zl) 579 { 580 list_t *pl = &cio->io_parent_list; 581 582 *zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl); 583 if (*zl == NULL) 584 return (NULL); 585 586 ASSERT((*zl)->zl_child == cio); 587 return ((*zl)->zl_parent); 588 } 589 590 zio_t * 591 zio_walk_children(zio_t *pio, zio_link_t **zl) 592 { 593 list_t *cl = &pio->io_child_list; 594 595 ASSERT(MUTEX_HELD(&pio->io_lock)); 596 597 *zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl); 598 if (*zl == NULL) 599 return (NULL); 600 601 ASSERT((*zl)->zl_parent == pio); 602 return ((*zl)->zl_child); 603 } 604 605 zio_t * 606 zio_unique_parent(zio_t *cio) 607 { 608 zio_link_t *zl = NULL; 609 zio_t *pio = zio_walk_parents(cio, &zl); 610 611 VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL); 612 return (pio); 613 } 614 615 void 616 zio_add_child(zio_t *pio, zio_t *cio) 617 { 618 /* 619 * Logical I/Os can have logical, gang, or vdev children. 620 * Gang I/Os can have gang or vdev children. 621 * Vdev I/Os can only have vdev children. 622 * The following ASSERT captures all of these constraints. 623 */ 624 ASSERT3S(cio->io_child_type, <=, pio->io_child_type); 625 626 /* Parent should not have READY stage if child doesn't have it. */ 627 IMPLY((cio->io_pipeline & ZIO_STAGE_READY) == 0 && 628 (cio->io_child_type != ZIO_CHILD_VDEV), 629 (pio->io_pipeline & ZIO_STAGE_READY) == 0); 630 631 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP); 632 zl->zl_parent = pio; 633 zl->zl_child = cio; 634 635 mutex_enter(&pio->io_lock); 636 mutex_enter(&cio->io_lock); 637 638 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0); 639 640 uint64_t *countp = pio->io_children[cio->io_child_type]; 641 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 642 countp[w] += !cio->io_state[w]; 643 644 list_insert_head(&pio->io_child_list, zl); 645 list_insert_head(&cio->io_parent_list, zl); 646 647 mutex_exit(&cio->io_lock); 648 mutex_exit(&pio->io_lock); 649 } 650 651 void 652 zio_add_child_first(zio_t *pio, zio_t *cio) 653 { 654 /* 655 * Logical I/Os can have logical, gang, or vdev children. 656 * Gang I/Os can have gang or vdev children. 657 * Vdev I/Os can only have vdev children. 658 * The following ASSERT captures all of these constraints. 659 */ 660 ASSERT3S(cio->io_child_type, <=, pio->io_child_type); 661 662 /* Parent should not have READY stage if child doesn't have it. */ 663 IMPLY((cio->io_pipeline & ZIO_STAGE_READY) == 0 && 664 (cio->io_child_type != ZIO_CHILD_VDEV), 665 (pio->io_pipeline & ZIO_STAGE_READY) == 0); 666 667 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP); 668 zl->zl_parent = pio; 669 zl->zl_child = cio; 670 671 ASSERT(list_is_empty(&cio->io_parent_list)); 672 list_insert_head(&cio->io_parent_list, zl); 673 674 mutex_enter(&pio->io_lock); 675 676 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0); 677 678 uint64_t *countp = pio->io_children[cio->io_child_type]; 679 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 680 countp[w] += !cio->io_state[w]; 681 682 list_insert_head(&pio->io_child_list, zl); 683 684 mutex_exit(&pio->io_lock); 685 } 686 687 static void 688 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl) 689 { 690 ASSERT(zl->zl_parent == pio); 691 ASSERT(zl->zl_child == cio); 692 693 mutex_enter(&pio->io_lock); 694 mutex_enter(&cio->io_lock); 695 696 list_remove(&pio->io_child_list, zl); 697 list_remove(&cio->io_parent_list, zl); 698 699 mutex_exit(&cio->io_lock); 700 mutex_exit(&pio->io_lock); 701 kmem_cache_free(zio_link_cache, zl); 702 } 703 704 static boolean_t 705 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait) 706 { 707 boolean_t waiting = B_FALSE; 708 709 mutex_enter(&zio->io_lock); 710 ASSERT(zio->io_stall == NULL); 711 for (int c = 0; c < ZIO_CHILD_TYPES; c++) { 712 if (!(ZIO_CHILD_BIT_IS_SET(childbits, c))) 713 continue; 714 715 uint64_t *countp = &zio->io_children[c][wait]; 716 if (*countp != 0) { 717 zio->io_stage >>= 1; 718 ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN); 719 zio->io_stall = countp; 720 waiting = B_TRUE; 721 break; 722 } 723 } 724 mutex_exit(&zio->io_lock); 725 return (waiting); 726 } 727 728 __attribute__((always_inline)) 729 static inline void 730 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait, 731 zio_t **next_to_executep) 732 { 733 uint64_t *countp = &pio->io_children[zio->io_child_type][wait]; 734 int *errorp = &pio->io_child_error[zio->io_child_type]; 735 736 mutex_enter(&pio->io_lock); 737 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 738 *errorp = zio_worst_error(*errorp, zio->io_error); 739 pio->io_reexecute |= zio->io_reexecute; 740 ASSERT3U(*countp, >, 0); 741 742 (*countp)--; 743 744 if (*countp == 0 && pio->io_stall == countp) { 745 zio_taskq_type_t type = 746 pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE : 747 ZIO_TASKQ_INTERRUPT; 748 pio->io_stall = NULL; 749 mutex_exit(&pio->io_lock); 750 751 /* 752 * If we can tell the caller to execute this parent next, do 753 * so. We only do this if the parent's zio type matches the 754 * child's type. Otherwise dispatch the parent zio in its 755 * own taskq. 756 * 757 * Having the caller execute the parent when possible reduces 758 * locking on the zio taskq's, reduces context switch 759 * overhead, and has no recursion penalty. Note that one 760 * read from disk typically causes at least 3 zio's: a 761 * zio_null(), the logical zio_read(), and then a physical 762 * zio. When the physical ZIO completes, we are able to call 763 * zio_done() on all 3 of these zio's from one invocation of 764 * zio_execute() by returning the parent back to 765 * zio_execute(). Since the parent isn't executed until this 766 * thread returns back to zio_execute(), the caller should do 767 * so promptly. 768 * 769 * In other cases, dispatching the parent prevents 770 * overflowing the stack when we have deeply nested 771 * parent-child relationships, as we do with the "mega zio" 772 * of writes for spa_sync(), and the chain of ZIL blocks. 773 */ 774 if (next_to_executep != NULL && *next_to_executep == NULL && 775 pio->io_type == zio->io_type) { 776 *next_to_executep = pio; 777 } else { 778 zio_taskq_dispatch(pio, type, B_FALSE); 779 } 780 } else { 781 mutex_exit(&pio->io_lock); 782 } 783 } 784 785 static void 786 zio_inherit_child_errors(zio_t *zio, enum zio_child c) 787 { 788 if (zio->io_child_error[c] != 0 && zio->io_error == 0) 789 zio->io_error = zio->io_child_error[c]; 790 } 791 792 int 793 zio_bookmark_compare(const void *x1, const void *x2) 794 { 795 const zio_t *z1 = x1; 796 const zio_t *z2 = x2; 797 798 if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset) 799 return (-1); 800 if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset) 801 return (1); 802 803 if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object) 804 return (-1); 805 if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object) 806 return (1); 807 808 if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level) 809 return (-1); 810 if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level) 811 return (1); 812 813 if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid) 814 return (-1); 815 if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid) 816 return (1); 817 818 if (z1 < z2) 819 return (-1); 820 if (z1 > z2) 821 return (1); 822 823 return (0); 824 } 825 826 /* 827 * ========================================================================== 828 * Create the various types of I/O (read, write, free, etc) 829 * ========================================================================== 830 */ 831 static zio_t * 832 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 833 abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done, 834 void *private, zio_type_t type, zio_priority_t priority, 835 zio_flag_t flags, vdev_t *vd, uint64_t offset, 836 const zbookmark_phys_t *zb, enum zio_stage stage, 837 enum zio_stage pipeline) 838 { 839 zio_t *zio; 840 841 IMPLY(type != ZIO_TYPE_TRIM, psize <= SPA_MAXBLOCKSIZE); 842 ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0); 843 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0); 844 845 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER)); 846 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER)); 847 ASSERT(vd || stage == ZIO_STAGE_OPEN); 848 849 IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0); 850 851 zio = kmem_cache_alloc(zio_cache, KM_SLEEP); 852 memset(zio, 0, sizeof (zio_t)); 853 854 mutex_init(&zio->io_lock, NULL, MUTEX_NOLOCKDEP, NULL); 855 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL); 856 857 list_create(&zio->io_parent_list, sizeof (zio_link_t), 858 offsetof(zio_link_t, zl_parent_node)); 859 list_create(&zio->io_child_list, sizeof (zio_link_t), 860 offsetof(zio_link_t, zl_child_node)); 861 metaslab_trace_init(&zio->io_alloc_list); 862 863 if (vd != NULL) 864 zio->io_child_type = ZIO_CHILD_VDEV; 865 else if (flags & ZIO_FLAG_GANG_CHILD) 866 zio->io_child_type = ZIO_CHILD_GANG; 867 else if (flags & ZIO_FLAG_DDT_CHILD) 868 zio->io_child_type = ZIO_CHILD_DDT; 869 else 870 zio->io_child_type = ZIO_CHILD_LOGICAL; 871 872 if (bp != NULL) { 873 if (type != ZIO_TYPE_WRITE || 874 zio->io_child_type == ZIO_CHILD_DDT) { 875 zio->io_bp_copy = *bp; 876 zio->io_bp = &zio->io_bp_copy; /* so caller can free */ 877 } else { 878 zio->io_bp = (blkptr_t *)bp; 879 } 880 zio->io_bp_orig = *bp; 881 if (zio->io_child_type == ZIO_CHILD_LOGICAL) 882 zio->io_logical = zio; 883 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp)) 884 pipeline |= ZIO_GANG_STAGES; 885 } 886 887 zio->io_spa = spa; 888 zio->io_txg = txg; 889 zio->io_done = done; 890 zio->io_private = private; 891 zio->io_type = type; 892 zio->io_priority = priority; 893 zio->io_vd = vd; 894 zio->io_offset = offset; 895 zio->io_orig_abd = zio->io_abd = data; 896 zio->io_orig_size = zio->io_size = psize; 897 zio->io_lsize = lsize; 898 zio->io_orig_flags = zio->io_flags = flags; 899 zio->io_orig_stage = zio->io_stage = stage; 900 zio->io_orig_pipeline = zio->io_pipeline = pipeline; 901 zio->io_pipeline_trace = ZIO_STAGE_OPEN; 902 zio->io_allocator = ZIO_ALLOCATOR_NONE; 903 904 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY) || 905 (pipeline & ZIO_STAGE_READY) == 0; 906 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE); 907 908 if (zb != NULL) 909 zio->io_bookmark = *zb; 910 911 if (pio != NULL) { 912 zio->io_metaslab_class = pio->io_metaslab_class; 913 if (zio->io_logical == NULL) 914 zio->io_logical = pio->io_logical; 915 if (zio->io_child_type == ZIO_CHILD_GANG) 916 zio->io_gang_leader = pio->io_gang_leader; 917 zio_add_child_first(pio, zio); 918 } 919 920 taskq_init_ent(&zio->io_tqent); 921 922 return (zio); 923 } 924 925 void 926 zio_destroy(zio_t *zio) 927 { 928 metaslab_trace_fini(&zio->io_alloc_list); 929 list_destroy(&zio->io_parent_list); 930 list_destroy(&zio->io_child_list); 931 mutex_destroy(&zio->io_lock); 932 cv_destroy(&zio->io_cv); 933 kmem_cache_free(zio_cache, zio); 934 } 935 936 /* 937 * ZIO intended to be between others. Provides synchronization at READY 938 * and DONE pipeline stages and calls the respective callbacks. 939 */ 940 zio_t * 941 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done, 942 void *private, zio_flag_t flags) 943 { 944 zio_t *zio; 945 946 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private, 947 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 948 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE); 949 950 return (zio); 951 } 952 953 /* 954 * ZIO intended to be a root of a tree. Unlike null ZIO does not have a 955 * READY pipeline stage (is ready on creation), so it should not be used 956 * as child of any ZIO that may need waiting for grandchildren READY stage 957 * (any other ZIO type). 958 */ 959 zio_t * 960 zio_root(spa_t *spa, zio_done_func_t *done, void *private, zio_flag_t flags) 961 { 962 zio_t *zio; 963 964 zio = zio_create(NULL, spa, 0, NULL, NULL, 0, 0, done, private, 965 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, NULL, 0, NULL, 966 ZIO_STAGE_OPEN, ZIO_ROOT_PIPELINE); 967 968 return (zio); 969 } 970 971 static int 972 zfs_blkptr_verify_log(spa_t *spa, const blkptr_t *bp, 973 enum blk_verify_flag blk_verify, const char *fmt, ...) 974 { 975 va_list adx; 976 char buf[256]; 977 978 va_start(adx, fmt); 979 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 980 va_end(adx); 981 982 zfs_dbgmsg("bad blkptr at %px: " 983 "DVA[0]=%#llx/%#llx " 984 "DVA[1]=%#llx/%#llx " 985 "DVA[2]=%#llx/%#llx " 986 "prop=%#llx " 987 "pad=%#llx,%#llx " 988 "phys_birth=%#llx " 989 "birth=%#llx " 990 "fill=%#llx " 991 "cksum=%#llx/%#llx/%#llx/%#llx", 992 bp, 993 (long long)bp->blk_dva[0].dva_word[0], 994 (long long)bp->blk_dva[0].dva_word[1], 995 (long long)bp->blk_dva[1].dva_word[0], 996 (long long)bp->blk_dva[1].dva_word[1], 997 (long long)bp->blk_dva[2].dva_word[0], 998 (long long)bp->blk_dva[2].dva_word[1], 999 (long long)bp->blk_prop, 1000 (long long)bp->blk_pad[0], 1001 (long long)bp->blk_pad[1], 1002 (long long)bp->blk_phys_birth, 1003 (long long)bp->blk_birth, 1004 (long long)bp->blk_fill, 1005 (long long)bp->blk_cksum.zc_word[0], 1006 (long long)bp->blk_cksum.zc_word[1], 1007 (long long)bp->blk_cksum.zc_word[2], 1008 (long long)bp->blk_cksum.zc_word[3]); 1009 switch (blk_verify) { 1010 case BLK_VERIFY_HALT: 1011 zfs_panic_recover("%s: %s", spa_name(spa), buf); 1012 break; 1013 case BLK_VERIFY_LOG: 1014 zfs_dbgmsg("%s: %s", spa_name(spa), buf); 1015 break; 1016 case BLK_VERIFY_ONLY: 1017 break; 1018 } 1019 1020 return (1); 1021 } 1022 1023 /* 1024 * Verify the block pointer fields contain reasonable values. This means 1025 * it only contains known object types, checksum/compression identifiers, 1026 * block sizes within the maximum allowed limits, valid DVAs, etc. 1027 * 1028 * If everything checks out B_TRUE is returned. The zfs_blkptr_verify 1029 * argument controls the behavior when an invalid field is detected. 1030 * 1031 * Values for blk_verify_flag: 1032 * BLK_VERIFY_ONLY: evaluate the block 1033 * BLK_VERIFY_LOG: evaluate the block and log problems 1034 * BLK_VERIFY_HALT: call zfs_panic_recover on error 1035 * 1036 * Values for blk_config_flag: 1037 * BLK_CONFIG_HELD: caller holds SCL_VDEV for writer 1038 * BLK_CONFIG_NEEDED: caller holds no config lock, SCL_VDEV will be 1039 * obtained for reader 1040 * BLK_CONFIG_SKIP: skip checks which require SCL_VDEV, for better 1041 * performance 1042 */ 1043 boolean_t 1044 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp, 1045 enum blk_config_flag blk_config, enum blk_verify_flag blk_verify) 1046 { 1047 int errors = 0; 1048 1049 if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) { 1050 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1051 "blkptr at %px has invalid TYPE %llu", 1052 bp, (longlong_t)BP_GET_TYPE(bp)); 1053 } 1054 if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS) { 1055 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1056 "blkptr at %px has invalid CHECKSUM %llu", 1057 bp, (longlong_t)BP_GET_CHECKSUM(bp)); 1058 } 1059 if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS) { 1060 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1061 "blkptr at %px has invalid COMPRESS %llu", 1062 bp, (longlong_t)BP_GET_COMPRESS(bp)); 1063 } 1064 if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) { 1065 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1066 "blkptr at %px has invalid LSIZE %llu", 1067 bp, (longlong_t)BP_GET_LSIZE(bp)); 1068 } 1069 if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) { 1070 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1071 "blkptr at %px has invalid PSIZE %llu", 1072 bp, (longlong_t)BP_GET_PSIZE(bp)); 1073 } 1074 1075 if (BP_IS_EMBEDDED(bp)) { 1076 if (BPE_GET_ETYPE(bp) >= NUM_BP_EMBEDDED_TYPES) { 1077 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1078 "blkptr at %px has invalid ETYPE %llu", 1079 bp, (longlong_t)BPE_GET_ETYPE(bp)); 1080 } 1081 } 1082 1083 /* 1084 * Do not verify individual DVAs if the config is not trusted. This 1085 * will be done once the zio is executed in vdev_mirror_map_alloc. 1086 */ 1087 if (!spa->spa_trust_config) 1088 return (errors == 0); 1089 1090 switch (blk_config) { 1091 case BLK_CONFIG_HELD: 1092 ASSERT(spa_config_held(spa, SCL_VDEV, RW_WRITER)); 1093 break; 1094 case BLK_CONFIG_NEEDED: 1095 spa_config_enter(spa, SCL_VDEV, bp, RW_READER); 1096 break; 1097 case BLK_CONFIG_SKIP: 1098 return (errors == 0); 1099 default: 1100 panic("invalid blk_config %u", blk_config); 1101 } 1102 1103 /* 1104 * Pool-specific checks. 1105 * 1106 * Note: it would be nice to verify that the blk_birth and 1107 * BP_PHYSICAL_BIRTH() are not too large. However, spa_freeze() 1108 * allows the birth time of log blocks (and dmu_sync()-ed blocks 1109 * that are in the log) to be arbitrarily large. 1110 */ 1111 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 1112 const dva_t *dva = &bp->blk_dva[i]; 1113 uint64_t vdevid = DVA_GET_VDEV(dva); 1114 1115 if (vdevid >= spa->spa_root_vdev->vdev_children) { 1116 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1117 "blkptr at %px DVA %u has invalid VDEV %llu", 1118 bp, i, (longlong_t)vdevid); 1119 continue; 1120 } 1121 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid]; 1122 if (vd == NULL) { 1123 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1124 "blkptr at %px DVA %u has invalid VDEV %llu", 1125 bp, i, (longlong_t)vdevid); 1126 continue; 1127 } 1128 if (vd->vdev_ops == &vdev_hole_ops) { 1129 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1130 "blkptr at %px DVA %u has hole VDEV %llu", 1131 bp, i, (longlong_t)vdevid); 1132 continue; 1133 } 1134 if (vd->vdev_ops == &vdev_missing_ops) { 1135 /* 1136 * "missing" vdevs are valid during import, but we 1137 * don't have their detailed info (e.g. asize), so 1138 * we can't perform any more checks on them. 1139 */ 1140 continue; 1141 } 1142 uint64_t offset = DVA_GET_OFFSET(dva); 1143 uint64_t asize = DVA_GET_ASIZE(dva); 1144 if (DVA_GET_GANG(dva)) 1145 asize = vdev_gang_header_asize(vd); 1146 if (offset + asize > vd->vdev_asize) { 1147 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1148 "blkptr at %px DVA %u has invalid OFFSET %llu", 1149 bp, i, (longlong_t)offset); 1150 } 1151 } 1152 if (blk_config == BLK_CONFIG_NEEDED) 1153 spa_config_exit(spa, SCL_VDEV, bp); 1154 1155 return (errors == 0); 1156 } 1157 1158 boolean_t 1159 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp) 1160 { 1161 (void) bp; 1162 uint64_t vdevid = DVA_GET_VDEV(dva); 1163 1164 if (vdevid >= spa->spa_root_vdev->vdev_children) 1165 return (B_FALSE); 1166 1167 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid]; 1168 if (vd == NULL) 1169 return (B_FALSE); 1170 1171 if (vd->vdev_ops == &vdev_hole_ops) 1172 return (B_FALSE); 1173 1174 if (vd->vdev_ops == &vdev_missing_ops) { 1175 return (B_FALSE); 1176 } 1177 1178 uint64_t offset = DVA_GET_OFFSET(dva); 1179 uint64_t asize = DVA_GET_ASIZE(dva); 1180 1181 if (DVA_GET_GANG(dva)) 1182 asize = vdev_gang_header_asize(vd); 1183 if (offset + asize > vd->vdev_asize) 1184 return (B_FALSE); 1185 1186 return (B_TRUE); 1187 } 1188 1189 zio_t * 1190 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, 1191 abd_t *data, uint64_t size, zio_done_func_t *done, void *private, 1192 zio_priority_t priority, zio_flag_t flags, const zbookmark_phys_t *zb) 1193 { 1194 zio_t *zio; 1195 1196 zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp, 1197 data, size, size, done, private, 1198 ZIO_TYPE_READ, priority, flags, NULL, 0, zb, 1199 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 1200 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE); 1201 1202 return (zio); 1203 } 1204 1205 zio_t * 1206 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 1207 abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp, 1208 zio_done_func_t *ready, zio_done_func_t *children_ready, 1209 zio_done_func_t *done, void *private, zio_priority_t priority, 1210 zio_flag_t flags, const zbookmark_phys_t *zb) 1211 { 1212 zio_t *zio; 1213 1214 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF && 1215 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS && 1216 zp->zp_compress >= ZIO_COMPRESS_OFF && 1217 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS && 1218 DMU_OT_IS_VALID(zp->zp_type) && 1219 zp->zp_level < 32 && 1220 zp->zp_copies > 0 && 1221 zp->zp_copies <= spa_max_replication(spa)); 1222 1223 zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private, 1224 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb, 1225 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 1226 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE); 1227 1228 zio->io_ready = ready; 1229 zio->io_children_ready = children_ready; 1230 zio->io_prop = *zp; 1231 1232 /* 1233 * Data can be NULL if we are going to call zio_write_override() to 1234 * provide the already-allocated BP. But we may need the data to 1235 * verify a dedup hit (if requested). In this case, don't try to 1236 * dedup (just take the already-allocated BP verbatim). Encrypted 1237 * dedup blocks need data as well so we also disable dedup in this 1238 * case. 1239 */ 1240 if (data == NULL && 1241 (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) { 1242 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE; 1243 } 1244 1245 return (zio); 1246 } 1247 1248 zio_t * 1249 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data, 1250 uint64_t size, zio_done_func_t *done, void *private, 1251 zio_priority_t priority, zio_flag_t flags, zbookmark_phys_t *zb) 1252 { 1253 zio_t *zio; 1254 1255 zio = zio_create(pio, spa, txg, bp, data, size, size, done, private, 1256 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb, 1257 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE); 1258 1259 return (zio); 1260 } 1261 1262 void 1263 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite, 1264 boolean_t brtwrite) 1265 { 1266 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 1267 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1268 ASSERT(zio->io_stage == ZIO_STAGE_OPEN); 1269 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa)); 1270 ASSERT(!brtwrite || !nopwrite); 1271 1272 /* 1273 * We must reset the io_prop to match the values that existed 1274 * when the bp was first written by dmu_sync() keeping in mind 1275 * that nopwrite and dedup are mutually exclusive. 1276 */ 1277 zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup; 1278 zio->io_prop.zp_nopwrite = nopwrite; 1279 zio->io_prop.zp_brtwrite = brtwrite; 1280 zio->io_prop.zp_copies = copies; 1281 zio->io_bp_override = bp; 1282 } 1283 1284 void 1285 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp) 1286 { 1287 1288 (void) zfs_blkptr_verify(spa, bp, BLK_CONFIG_NEEDED, BLK_VERIFY_HALT); 1289 1290 /* 1291 * The check for EMBEDDED is a performance optimization. We 1292 * process the free here (by ignoring it) rather than 1293 * putting it on the list and then processing it in zio_free_sync(). 1294 */ 1295 if (BP_IS_EMBEDDED(bp)) 1296 return; 1297 1298 /* 1299 * Frees that are for the currently-syncing txg, are not going to be 1300 * deferred, and which will not need to do a read (i.e. not GANG or 1301 * DEDUP), can be processed immediately. Otherwise, put them on the 1302 * in-memory list for later processing. 1303 * 1304 * Note that we only defer frees after zfs_sync_pass_deferred_free 1305 * when the log space map feature is disabled. [see relevant comment 1306 * in spa_sync_iterate_to_convergence()] 1307 */ 1308 if (BP_IS_GANG(bp) || 1309 BP_GET_DEDUP(bp) || 1310 txg != spa->spa_syncing_txg || 1311 (spa_sync_pass(spa) >= zfs_sync_pass_deferred_free && 1312 !spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) || 1313 brt_maybe_exists(spa, bp)) { 1314 metaslab_check_free(spa, bp); 1315 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp); 1316 } else { 1317 VERIFY3P(zio_free_sync(NULL, spa, txg, bp, 0), ==, NULL); 1318 } 1319 } 1320 1321 /* 1322 * To improve performance, this function may return NULL if we were able 1323 * to do the free immediately. This avoids the cost of creating a zio 1324 * (and linking it to the parent, etc). 1325 */ 1326 zio_t * 1327 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 1328 zio_flag_t flags) 1329 { 1330 ASSERT(!BP_IS_HOLE(bp)); 1331 ASSERT(spa_syncing_txg(spa) == txg); 1332 1333 if (BP_IS_EMBEDDED(bp)) 1334 return (NULL); 1335 1336 metaslab_check_free(spa, bp); 1337 arc_freed(spa, bp); 1338 dsl_scan_freed(spa, bp); 1339 1340 if (BP_IS_GANG(bp) || 1341 BP_GET_DEDUP(bp) || 1342 brt_maybe_exists(spa, bp)) { 1343 /* 1344 * GANG, DEDUP and BRT blocks can induce a read (for the gang 1345 * block header, the DDT or the BRT), so issue them 1346 * asynchronously so that this thread is not tied up. 1347 */ 1348 enum zio_stage stage = 1349 ZIO_FREE_PIPELINE | ZIO_STAGE_ISSUE_ASYNC; 1350 1351 return (zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 1352 BP_GET_PSIZE(bp), NULL, NULL, 1353 ZIO_TYPE_FREE, ZIO_PRIORITY_NOW, 1354 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage)); 1355 } else { 1356 metaslab_free(spa, bp, txg, B_FALSE); 1357 return (NULL); 1358 } 1359 } 1360 1361 zio_t * 1362 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 1363 zio_done_func_t *done, void *private, zio_flag_t flags) 1364 { 1365 zio_t *zio; 1366 1367 (void) zfs_blkptr_verify(spa, bp, (flags & ZIO_FLAG_CONFIG_WRITER) ? 1368 BLK_CONFIG_HELD : BLK_CONFIG_NEEDED, BLK_VERIFY_HALT); 1369 1370 if (BP_IS_EMBEDDED(bp)) 1371 return (zio_null(pio, spa, NULL, NULL, NULL, 0)); 1372 1373 /* 1374 * A claim is an allocation of a specific block. Claims are needed 1375 * to support immediate writes in the intent log. The issue is that 1376 * immediate writes contain committed data, but in a txg that was 1377 * *not* committed. Upon opening the pool after an unclean shutdown, 1378 * the intent log claims all blocks that contain immediate write data 1379 * so that the SPA knows they're in use. 1380 * 1381 * All claims *must* be resolved in the first txg -- before the SPA 1382 * starts allocating blocks -- so that nothing is allocated twice. 1383 * If txg == 0 we just verify that the block is claimable. 1384 */ 1385 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, 1386 spa_min_claim_txg(spa)); 1387 ASSERT(txg == spa_min_claim_txg(spa) || txg == 0); 1388 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(8) */ 1389 1390 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 1391 BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, 1392 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE); 1393 ASSERT0(zio->io_queued_timestamp); 1394 1395 return (zio); 1396 } 1397 1398 zio_t * 1399 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, 1400 zio_done_func_t *done, void *private, zio_flag_t flags) 1401 { 1402 zio_t *zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private, 1403 ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 1404 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE); 1405 zio->io_cmd = cmd; 1406 return (zio); 1407 } 1408 1409 zio_t * 1410 zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1411 zio_done_func_t *done, void *private, zio_priority_t priority, 1412 zio_flag_t flags, enum trim_flag trim_flags) 1413 { 1414 zio_t *zio; 1415 1416 ASSERT0(vd->vdev_children); 1417 ASSERT0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 1418 ASSERT0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 1419 ASSERT3U(size, !=, 0); 1420 1421 zio = zio_create(pio, vd->vdev_spa, 0, NULL, NULL, size, size, done, 1422 private, ZIO_TYPE_TRIM, priority, flags | ZIO_FLAG_PHYSICAL, 1423 vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_TRIM_PIPELINE); 1424 zio->io_trim_flags = trim_flags; 1425 1426 return (zio); 1427 } 1428 1429 zio_t * 1430 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1431 abd_t *data, int checksum, zio_done_func_t *done, void *private, 1432 zio_priority_t priority, zio_flag_t flags, boolean_t labels) 1433 { 1434 zio_t *zio; 1435 1436 ASSERT(vd->vdev_children == 0); 1437 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 1438 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 1439 ASSERT3U(offset + size, <=, vd->vdev_psize); 1440 1441 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, 1442 private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd, 1443 offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE); 1444 1445 zio->io_prop.zp_checksum = checksum; 1446 1447 return (zio); 1448 } 1449 1450 zio_t * 1451 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1452 abd_t *data, int checksum, zio_done_func_t *done, void *private, 1453 zio_priority_t priority, zio_flag_t flags, boolean_t labels) 1454 { 1455 zio_t *zio; 1456 1457 ASSERT(vd->vdev_children == 0); 1458 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 1459 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 1460 ASSERT3U(offset + size, <=, vd->vdev_psize); 1461 1462 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, 1463 private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd, 1464 offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE); 1465 1466 zio->io_prop.zp_checksum = checksum; 1467 1468 if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) { 1469 /* 1470 * zec checksums are necessarily destructive -- they modify 1471 * the end of the write buffer to hold the verifier/checksum. 1472 * Therefore, we must make a local copy in case the data is 1473 * being written to multiple places in parallel. 1474 */ 1475 abd_t *wbuf = abd_alloc_sametype(data, size); 1476 abd_copy(wbuf, data, size); 1477 1478 zio_push_transform(zio, wbuf, size, size, NULL); 1479 } 1480 1481 return (zio); 1482 } 1483 1484 /* 1485 * Create a child I/O to do some work for us. 1486 */ 1487 zio_t * 1488 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset, 1489 abd_t *data, uint64_t size, int type, zio_priority_t priority, 1490 zio_flag_t flags, zio_done_func_t *done, void *private) 1491 { 1492 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE; 1493 zio_t *zio; 1494 1495 /* 1496 * vdev child I/Os do not propagate their error to the parent. 1497 * Therefore, for correct operation the caller *must* check for 1498 * and handle the error in the child i/o's done callback. 1499 * The only exceptions are i/os that we don't care about 1500 * (OPTIONAL or REPAIR). 1501 */ 1502 ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) || 1503 done != NULL); 1504 1505 if (type == ZIO_TYPE_READ && bp != NULL) { 1506 /* 1507 * If we have the bp, then the child should perform the 1508 * checksum and the parent need not. This pushes error 1509 * detection as close to the leaves as possible and 1510 * eliminates redundant checksums in the interior nodes. 1511 */ 1512 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY; 1513 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 1514 } 1515 1516 if (vd->vdev_ops->vdev_op_leaf) { 1517 ASSERT0(vd->vdev_children); 1518 offset += VDEV_LABEL_START_SIZE; 1519 } 1520 1521 flags |= ZIO_VDEV_CHILD_FLAGS(pio); 1522 1523 /* 1524 * If we've decided to do a repair, the write is not speculative -- 1525 * even if the original read was. 1526 */ 1527 if (flags & ZIO_FLAG_IO_REPAIR) 1528 flags &= ~ZIO_FLAG_SPECULATIVE; 1529 1530 /* 1531 * If we're creating a child I/O that is not associated with a 1532 * top-level vdev, then the child zio is not an allocating I/O. 1533 * If this is a retried I/O then we ignore it since we will 1534 * have already processed the original allocating I/O. 1535 */ 1536 if (flags & ZIO_FLAG_IO_ALLOCATING && 1537 (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) { 1538 ASSERT(pio->io_metaslab_class != NULL); 1539 ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled); 1540 ASSERT(type == ZIO_TYPE_WRITE); 1541 ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE); 1542 ASSERT(!(flags & ZIO_FLAG_IO_REPAIR)); 1543 ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) || 1544 pio->io_child_type == ZIO_CHILD_GANG); 1545 1546 flags &= ~ZIO_FLAG_IO_ALLOCATING; 1547 } 1548 1549 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size, 1550 done, private, type, priority, flags, vd, offset, &pio->io_bookmark, 1551 ZIO_STAGE_VDEV_IO_START >> 1, pipeline); 1552 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); 1553 1554 return (zio); 1555 } 1556 1557 zio_t * 1558 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size, 1559 zio_type_t type, zio_priority_t priority, zio_flag_t flags, 1560 zio_done_func_t *done, void *private) 1561 { 1562 zio_t *zio; 1563 1564 ASSERT(vd->vdev_ops->vdev_op_leaf); 1565 1566 zio = zio_create(NULL, vd->vdev_spa, 0, NULL, 1567 data, size, size, done, private, type, priority, 1568 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED, 1569 vd, offset, NULL, 1570 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE); 1571 1572 return (zio); 1573 } 1574 1575 void 1576 zio_flush(zio_t *pio, vdev_t *vd) 1577 { 1578 if (vd->vdev_nowritecache) 1579 return; 1580 if (vd->vdev_children == 0) { 1581 zio_nowait(zio_ioctl(pio, vd->vdev_spa, vd, 1582 DKIOCFLUSHWRITECACHE, NULL, NULL, ZIO_FLAG_CANFAIL | 1583 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY)); 1584 } else { 1585 for (uint64_t c = 0; c < vd->vdev_children; c++) 1586 zio_flush(pio, vd->vdev_child[c]); 1587 } 1588 } 1589 1590 void 1591 zio_shrink(zio_t *zio, uint64_t size) 1592 { 1593 ASSERT3P(zio->io_executor, ==, NULL); 1594 ASSERT3U(zio->io_orig_size, ==, zio->io_size); 1595 ASSERT3U(size, <=, zio->io_size); 1596 1597 /* 1598 * We don't shrink for raidz because of problems with the 1599 * reconstruction when reading back less than the block size. 1600 * Note, BP_IS_RAIDZ() assumes no compression. 1601 */ 1602 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 1603 if (!BP_IS_RAIDZ(zio->io_bp)) { 1604 /* we are not doing a raw write */ 1605 ASSERT3U(zio->io_size, ==, zio->io_lsize); 1606 zio->io_orig_size = zio->io_size = zio->io_lsize = size; 1607 } 1608 } 1609 1610 /* 1611 * Round provided allocation size up to a value that can be allocated 1612 * by at least some vdev(s) in the pool with minimum or no additional 1613 * padding and without extra space usage on others 1614 */ 1615 static uint64_t 1616 zio_roundup_alloc_size(spa_t *spa, uint64_t size) 1617 { 1618 if (size > spa->spa_min_alloc) 1619 return (roundup(size, spa->spa_gcd_alloc)); 1620 return (spa->spa_min_alloc); 1621 } 1622 1623 /* 1624 * ========================================================================== 1625 * Prepare to read and write logical blocks 1626 * ========================================================================== 1627 */ 1628 1629 static zio_t * 1630 zio_read_bp_init(zio_t *zio) 1631 { 1632 blkptr_t *bp = zio->io_bp; 1633 uint64_t psize = 1634 BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp); 1635 1636 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 1637 1638 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF && 1639 zio->io_child_type == ZIO_CHILD_LOGICAL && 1640 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) { 1641 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize), 1642 psize, psize, zio_decompress); 1643 } 1644 1645 if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) || 1646 BP_HAS_INDIRECT_MAC_CKSUM(bp)) && 1647 zio->io_child_type == ZIO_CHILD_LOGICAL) { 1648 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize), 1649 psize, psize, zio_decrypt); 1650 } 1651 1652 if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) { 1653 int psize = BPE_GET_PSIZE(bp); 1654 void *data = abd_borrow_buf(zio->io_abd, psize); 1655 1656 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1657 decode_embedded_bp_compressed(bp, data); 1658 abd_return_buf_copy(zio->io_abd, data, psize); 1659 } else { 1660 ASSERT(!BP_IS_EMBEDDED(bp)); 1661 } 1662 1663 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL) 1664 zio->io_pipeline = ZIO_DDT_READ_PIPELINE; 1665 1666 return (zio); 1667 } 1668 1669 static zio_t * 1670 zio_write_bp_init(zio_t *zio) 1671 { 1672 if (!IO_IS_ALLOCATING(zio)) 1673 return (zio); 1674 1675 ASSERT(zio->io_child_type != ZIO_CHILD_DDT); 1676 1677 if (zio->io_bp_override) { 1678 blkptr_t *bp = zio->io_bp; 1679 zio_prop_t *zp = &zio->io_prop; 1680 1681 ASSERT(bp->blk_birth != zio->io_txg); 1682 1683 *bp = *zio->io_bp_override; 1684 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1685 1686 if (zp->zp_brtwrite) 1687 return (zio); 1688 1689 ASSERT(!BP_GET_DEDUP(zio->io_bp_override)); 1690 1691 if (BP_IS_EMBEDDED(bp)) 1692 return (zio); 1693 1694 /* 1695 * If we've been overridden and nopwrite is set then 1696 * set the flag accordingly to indicate that a nopwrite 1697 * has already occurred. 1698 */ 1699 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) { 1700 ASSERT(!zp->zp_dedup); 1701 ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum); 1702 zio->io_flags |= ZIO_FLAG_NOPWRITE; 1703 return (zio); 1704 } 1705 1706 ASSERT(!zp->zp_nopwrite); 1707 1708 if (BP_IS_HOLE(bp) || !zp->zp_dedup) 1709 return (zio); 1710 1711 ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags & 1712 ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify); 1713 1714 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum && 1715 !zp->zp_encrypt) { 1716 BP_SET_DEDUP(bp, 1); 1717 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE; 1718 return (zio); 1719 } 1720 1721 /* 1722 * We were unable to handle this as an override bp, treat 1723 * it as a regular write I/O. 1724 */ 1725 zio->io_bp_override = NULL; 1726 *bp = zio->io_bp_orig; 1727 zio->io_pipeline = zio->io_orig_pipeline; 1728 } 1729 1730 return (zio); 1731 } 1732 1733 static zio_t * 1734 zio_write_compress(zio_t *zio) 1735 { 1736 spa_t *spa = zio->io_spa; 1737 zio_prop_t *zp = &zio->io_prop; 1738 enum zio_compress compress = zp->zp_compress; 1739 blkptr_t *bp = zio->io_bp; 1740 uint64_t lsize = zio->io_lsize; 1741 uint64_t psize = zio->io_size; 1742 uint32_t pass = 1; 1743 1744 /* 1745 * If our children haven't all reached the ready stage, 1746 * wait for them and then repeat this pipeline stage. 1747 */ 1748 if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT | 1749 ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) { 1750 return (NULL); 1751 } 1752 1753 if (!IO_IS_ALLOCATING(zio)) 1754 return (zio); 1755 1756 if (zio->io_children_ready != NULL) { 1757 /* 1758 * Now that all our children are ready, run the callback 1759 * associated with this zio in case it wants to modify the 1760 * data to be written. 1761 */ 1762 ASSERT3U(zp->zp_level, >, 0); 1763 zio->io_children_ready(zio); 1764 } 1765 1766 ASSERT(zio->io_child_type != ZIO_CHILD_DDT); 1767 ASSERT(zio->io_bp_override == NULL); 1768 1769 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) { 1770 /* 1771 * We're rewriting an existing block, which means we're 1772 * working on behalf of spa_sync(). For spa_sync() to 1773 * converge, it must eventually be the case that we don't 1774 * have to allocate new blocks. But compression changes 1775 * the blocksize, which forces a reallocate, and makes 1776 * convergence take longer. Therefore, after the first 1777 * few passes, stop compressing to ensure convergence. 1778 */ 1779 pass = spa_sync_pass(spa); 1780 1781 ASSERT(zio->io_txg == spa_syncing_txg(spa)); 1782 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1783 ASSERT(!BP_GET_DEDUP(bp)); 1784 1785 if (pass >= zfs_sync_pass_dont_compress) 1786 compress = ZIO_COMPRESS_OFF; 1787 1788 /* Make sure someone doesn't change their mind on overwrites */ 1789 ASSERT(BP_IS_EMBEDDED(bp) || BP_IS_GANG(bp) || 1790 MIN(zp->zp_copies, spa_max_replication(spa)) 1791 == BP_GET_NDVAS(bp)); 1792 } 1793 1794 /* If it's a compressed write that is not raw, compress the buffer. */ 1795 if (compress != ZIO_COMPRESS_OFF && 1796 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) { 1797 void *cbuf = NULL; 1798 psize = zio_compress_data(compress, zio->io_abd, &cbuf, lsize, 1799 zp->zp_complevel); 1800 if (psize == 0) { 1801 compress = ZIO_COMPRESS_OFF; 1802 } else if (psize >= lsize) { 1803 compress = ZIO_COMPRESS_OFF; 1804 if (cbuf != NULL) 1805 zio_buf_free(cbuf, lsize); 1806 } else if (!zp->zp_dedup && !zp->zp_encrypt && 1807 psize <= BPE_PAYLOAD_SIZE && 1808 zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) && 1809 spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) { 1810 encode_embedded_bp_compressed(bp, 1811 cbuf, compress, lsize, psize); 1812 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA); 1813 BP_SET_TYPE(bp, zio->io_prop.zp_type); 1814 BP_SET_LEVEL(bp, zio->io_prop.zp_level); 1815 zio_buf_free(cbuf, lsize); 1816 bp->blk_birth = zio->io_txg; 1817 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1818 ASSERT(spa_feature_is_active(spa, 1819 SPA_FEATURE_EMBEDDED_DATA)); 1820 return (zio); 1821 } else { 1822 /* 1823 * Round compressed size up to the minimum allocation 1824 * size of the smallest-ashift device, and zero the 1825 * tail. This ensures that the compressed size of the 1826 * BP (and thus compressratio property) are correct, 1827 * in that we charge for the padding used to fill out 1828 * the last sector. 1829 */ 1830 size_t rounded = (size_t)zio_roundup_alloc_size(spa, 1831 psize); 1832 if (rounded >= lsize) { 1833 compress = ZIO_COMPRESS_OFF; 1834 zio_buf_free(cbuf, lsize); 1835 psize = lsize; 1836 } else { 1837 abd_t *cdata = abd_get_from_buf(cbuf, lsize); 1838 abd_take_ownership_of_buf(cdata, B_TRUE); 1839 abd_zero_off(cdata, psize, rounded - psize); 1840 psize = rounded; 1841 zio_push_transform(zio, cdata, 1842 psize, lsize, NULL); 1843 } 1844 } 1845 1846 /* 1847 * We were unable to handle this as an override bp, treat 1848 * it as a regular write I/O. 1849 */ 1850 zio->io_bp_override = NULL; 1851 *bp = zio->io_bp_orig; 1852 zio->io_pipeline = zio->io_orig_pipeline; 1853 1854 } else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 && 1855 zp->zp_type == DMU_OT_DNODE) { 1856 /* 1857 * The DMU actually relies on the zio layer's compression 1858 * to free metadnode blocks that have had all contained 1859 * dnodes freed. As a result, even when doing a raw 1860 * receive, we must check whether the block can be compressed 1861 * to a hole. 1862 */ 1863 psize = zio_compress_data(ZIO_COMPRESS_EMPTY, 1864 zio->io_abd, NULL, lsize, zp->zp_complevel); 1865 if (psize == 0 || psize >= lsize) 1866 compress = ZIO_COMPRESS_OFF; 1867 } else if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS && 1868 !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) { 1869 /* 1870 * If we are raw receiving an encrypted dataset we should not 1871 * take this codepath because it will change the on-disk block 1872 * and decryption will fail. 1873 */ 1874 size_t rounded = MIN((size_t)zio_roundup_alloc_size(spa, psize), 1875 lsize); 1876 1877 if (rounded != psize) { 1878 abd_t *cdata = abd_alloc_linear(rounded, B_TRUE); 1879 abd_zero_off(cdata, psize, rounded - psize); 1880 abd_copy_off(cdata, zio->io_abd, 0, 0, psize); 1881 psize = rounded; 1882 zio_push_transform(zio, cdata, 1883 psize, rounded, NULL); 1884 } 1885 } else { 1886 ASSERT3U(psize, !=, 0); 1887 } 1888 1889 /* 1890 * The final pass of spa_sync() must be all rewrites, but the first 1891 * few passes offer a trade-off: allocating blocks defers convergence, 1892 * but newly allocated blocks are sequential, so they can be written 1893 * to disk faster. Therefore, we allow the first few passes of 1894 * spa_sync() to allocate new blocks, but force rewrites after that. 1895 * There should only be a handful of blocks after pass 1 in any case. 1896 */ 1897 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg && 1898 BP_GET_PSIZE(bp) == psize && 1899 pass >= zfs_sync_pass_rewrite) { 1900 VERIFY3U(psize, !=, 0); 1901 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES; 1902 1903 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages; 1904 zio->io_flags |= ZIO_FLAG_IO_REWRITE; 1905 } else { 1906 BP_ZERO(bp); 1907 zio->io_pipeline = ZIO_WRITE_PIPELINE; 1908 } 1909 1910 if (psize == 0) { 1911 if (zio->io_bp_orig.blk_birth != 0 && 1912 spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) { 1913 BP_SET_LSIZE(bp, lsize); 1914 BP_SET_TYPE(bp, zp->zp_type); 1915 BP_SET_LEVEL(bp, zp->zp_level); 1916 BP_SET_BIRTH(bp, zio->io_txg, 0); 1917 } 1918 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1919 } else { 1920 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER); 1921 BP_SET_LSIZE(bp, lsize); 1922 BP_SET_TYPE(bp, zp->zp_type); 1923 BP_SET_LEVEL(bp, zp->zp_level); 1924 BP_SET_PSIZE(bp, psize); 1925 BP_SET_COMPRESS(bp, compress); 1926 BP_SET_CHECKSUM(bp, zp->zp_checksum); 1927 BP_SET_DEDUP(bp, zp->zp_dedup); 1928 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 1929 if (zp->zp_dedup) { 1930 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1931 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1932 ASSERT(!zp->zp_encrypt || 1933 DMU_OT_IS_ENCRYPTED(zp->zp_type)); 1934 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE; 1935 } 1936 if (zp->zp_nopwrite) { 1937 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1938 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1939 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE; 1940 } 1941 } 1942 return (zio); 1943 } 1944 1945 static zio_t * 1946 zio_free_bp_init(zio_t *zio) 1947 { 1948 blkptr_t *bp = zio->io_bp; 1949 1950 if (zio->io_child_type == ZIO_CHILD_LOGICAL) { 1951 if (BP_GET_DEDUP(bp)) 1952 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE; 1953 } 1954 1955 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 1956 1957 return (zio); 1958 } 1959 1960 /* 1961 * ========================================================================== 1962 * Execute the I/O pipeline 1963 * ========================================================================== 1964 */ 1965 1966 static void 1967 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline) 1968 { 1969 spa_t *spa = zio->io_spa; 1970 zio_type_t t = zio->io_type; 1971 int flags = (cutinline ? TQ_FRONT : 0); 1972 1973 /* 1974 * If we're a config writer or a probe, the normal issue and 1975 * interrupt threads may all be blocked waiting for the config lock. 1976 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL. 1977 */ 1978 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE)) 1979 t = ZIO_TYPE_NULL; 1980 1981 /* 1982 * A similar issue exists for the L2ARC write thread until L2ARC 2.0. 1983 */ 1984 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux) 1985 t = ZIO_TYPE_NULL; 1986 1987 /* 1988 * If this is a high priority I/O, then use the high priority taskq if 1989 * available. 1990 */ 1991 if ((zio->io_priority == ZIO_PRIORITY_NOW || 1992 zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) && 1993 spa->spa_zio_taskq[t][q + 1].stqs_count != 0) 1994 q++; 1995 1996 ASSERT3U(q, <, ZIO_TASKQ_TYPES); 1997 1998 /* 1999 * NB: We are assuming that the zio can only be dispatched 2000 * to a single taskq at a time. It would be a grievous error 2001 * to dispatch the zio to another taskq at the same time. 2002 */ 2003 ASSERT(taskq_empty_ent(&zio->io_tqent)); 2004 spa_taskq_dispatch_ent(spa, t, q, zio_execute, zio, flags, 2005 &zio->io_tqent, zio); 2006 } 2007 2008 static boolean_t 2009 zio_taskq_member(zio_t *zio, zio_taskq_type_t q) 2010 { 2011 spa_t *spa = zio->io_spa; 2012 2013 taskq_t *tq = taskq_of_curthread(); 2014 2015 for (zio_type_t t = 0; t < ZIO_TYPES; t++) { 2016 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 2017 uint_t i; 2018 for (i = 0; i < tqs->stqs_count; i++) { 2019 if (tqs->stqs_taskq[i] == tq) 2020 return (B_TRUE); 2021 } 2022 } 2023 2024 return (B_FALSE); 2025 } 2026 2027 static zio_t * 2028 zio_issue_async(zio_t *zio) 2029 { 2030 ASSERT((zio->io_type != ZIO_TYPE_WRITE) || ZIO_HAS_ALLOCATOR(zio)); 2031 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 2032 return (NULL); 2033 } 2034 2035 void 2036 zio_interrupt(void *zio) 2037 { 2038 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE); 2039 } 2040 2041 void 2042 zio_delay_interrupt(zio_t *zio) 2043 { 2044 /* 2045 * The timeout_generic() function isn't defined in userspace, so 2046 * rather than trying to implement the function, the zio delay 2047 * functionality has been disabled for userspace builds. 2048 */ 2049 2050 #ifdef _KERNEL 2051 /* 2052 * If io_target_timestamp is zero, then no delay has been registered 2053 * for this IO, thus jump to the end of this function and "skip" the 2054 * delay; issuing it directly to the zio layer. 2055 */ 2056 if (zio->io_target_timestamp != 0) { 2057 hrtime_t now = gethrtime(); 2058 2059 if (now >= zio->io_target_timestamp) { 2060 /* 2061 * This IO has already taken longer than the target 2062 * delay to complete, so we don't want to delay it 2063 * any longer; we "miss" the delay and issue it 2064 * directly to the zio layer. This is likely due to 2065 * the target latency being set to a value less than 2066 * the underlying hardware can satisfy (e.g. delay 2067 * set to 1ms, but the disks take 10ms to complete an 2068 * IO request). 2069 */ 2070 2071 DTRACE_PROBE2(zio__delay__miss, zio_t *, zio, 2072 hrtime_t, now); 2073 2074 zio_interrupt(zio); 2075 } else { 2076 taskqid_t tid; 2077 hrtime_t diff = zio->io_target_timestamp - now; 2078 clock_t expire_at_tick = ddi_get_lbolt() + 2079 NSEC_TO_TICK(diff); 2080 2081 DTRACE_PROBE3(zio__delay__hit, zio_t *, zio, 2082 hrtime_t, now, hrtime_t, diff); 2083 2084 if (NSEC_TO_TICK(diff) == 0) { 2085 /* Our delay is less than a jiffy - just spin */ 2086 zfs_sleep_until(zio->io_target_timestamp); 2087 zio_interrupt(zio); 2088 } else { 2089 /* 2090 * Use taskq_dispatch_delay() in the place of 2091 * OpenZFS's timeout_generic(). 2092 */ 2093 tid = taskq_dispatch_delay(system_taskq, 2094 zio_interrupt, zio, TQ_NOSLEEP, 2095 expire_at_tick); 2096 if (tid == TASKQID_INVALID) { 2097 /* 2098 * Couldn't allocate a task. Just 2099 * finish the zio without a delay. 2100 */ 2101 zio_interrupt(zio); 2102 } 2103 } 2104 } 2105 return; 2106 } 2107 #endif 2108 DTRACE_PROBE1(zio__delay__skip, zio_t *, zio); 2109 zio_interrupt(zio); 2110 } 2111 2112 static void 2113 zio_deadman_impl(zio_t *pio, int ziodepth) 2114 { 2115 zio_t *cio, *cio_next; 2116 zio_link_t *zl = NULL; 2117 vdev_t *vd = pio->io_vd; 2118 2119 if (zio_deadman_log_all || (vd != NULL && vd->vdev_ops->vdev_op_leaf)) { 2120 vdev_queue_t *vq = vd ? &vd->vdev_queue : NULL; 2121 zbookmark_phys_t *zb = &pio->io_bookmark; 2122 uint64_t delta = gethrtime() - pio->io_timestamp; 2123 uint64_t failmode = spa_get_deadman_failmode(pio->io_spa); 2124 2125 zfs_dbgmsg("slow zio[%d]: zio=%px timestamp=%llu " 2126 "delta=%llu queued=%llu io=%llu " 2127 "path=%s " 2128 "last=%llu type=%d " 2129 "priority=%d flags=0x%llx stage=0x%x " 2130 "pipeline=0x%x pipeline-trace=0x%x " 2131 "objset=%llu object=%llu " 2132 "level=%llu blkid=%llu " 2133 "offset=%llu size=%llu " 2134 "error=%d", 2135 ziodepth, pio, pio->io_timestamp, 2136 (u_longlong_t)delta, pio->io_delta, pio->io_delay, 2137 vd ? vd->vdev_path : "NULL", 2138 vq ? vq->vq_io_complete_ts : 0, pio->io_type, 2139 pio->io_priority, (u_longlong_t)pio->io_flags, 2140 pio->io_stage, pio->io_pipeline, pio->io_pipeline_trace, 2141 (u_longlong_t)zb->zb_objset, (u_longlong_t)zb->zb_object, 2142 (u_longlong_t)zb->zb_level, (u_longlong_t)zb->zb_blkid, 2143 (u_longlong_t)pio->io_offset, (u_longlong_t)pio->io_size, 2144 pio->io_error); 2145 (void) zfs_ereport_post(FM_EREPORT_ZFS_DEADMAN, 2146 pio->io_spa, vd, zb, pio, 0); 2147 2148 if (failmode == ZIO_FAILURE_MODE_CONTINUE && 2149 taskq_empty_ent(&pio->io_tqent)) { 2150 zio_interrupt(pio); 2151 } 2152 } 2153 2154 mutex_enter(&pio->io_lock); 2155 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 2156 cio_next = zio_walk_children(pio, &zl); 2157 zio_deadman_impl(cio, ziodepth + 1); 2158 } 2159 mutex_exit(&pio->io_lock); 2160 } 2161 2162 /* 2163 * Log the critical information describing this zio and all of its children 2164 * using the zfs_dbgmsg() interface then post deadman event for the ZED. 2165 */ 2166 void 2167 zio_deadman(zio_t *pio, const char *tag) 2168 { 2169 spa_t *spa = pio->io_spa; 2170 char *name = spa_name(spa); 2171 2172 if (!zfs_deadman_enabled || spa_suspended(spa)) 2173 return; 2174 2175 zio_deadman_impl(pio, 0); 2176 2177 switch (spa_get_deadman_failmode(spa)) { 2178 case ZIO_FAILURE_MODE_WAIT: 2179 zfs_dbgmsg("%s waiting for hung I/O to pool '%s'", tag, name); 2180 break; 2181 2182 case ZIO_FAILURE_MODE_CONTINUE: 2183 zfs_dbgmsg("%s restarting hung I/O for pool '%s'", tag, name); 2184 break; 2185 2186 case ZIO_FAILURE_MODE_PANIC: 2187 fm_panic("%s determined I/O to pool '%s' is hung.", tag, name); 2188 break; 2189 } 2190 } 2191 2192 /* 2193 * Execute the I/O pipeline until one of the following occurs: 2194 * (1) the I/O completes; (2) the pipeline stalls waiting for 2195 * dependent child I/Os; (3) the I/O issues, so we're waiting 2196 * for an I/O completion interrupt; (4) the I/O is delegated by 2197 * vdev-level caching or aggregation; (5) the I/O is deferred 2198 * due to vdev-level queueing; (6) the I/O is handed off to 2199 * another thread. In all cases, the pipeline stops whenever 2200 * there's no CPU work; it never burns a thread in cv_wait_io(). 2201 * 2202 * There's no locking on io_stage because there's no legitimate way 2203 * for multiple threads to be attempting to process the same I/O. 2204 */ 2205 static zio_pipe_stage_t *zio_pipeline[]; 2206 2207 /* 2208 * zio_execute() is a wrapper around the static function 2209 * __zio_execute() so that we can force __zio_execute() to be 2210 * inlined. This reduces stack overhead which is important 2211 * because __zio_execute() is called recursively in several zio 2212 * code paths. zio_execute() itself cannot be inlined because 2213 * it is externally visible. 2214 */ 2215 void 2216 zio_execute(void *zio) 2217 { 2218 fstrans_cookie_t cookie; 2219 2220 cookie = spl_fstrans_mark(); 2221 __zio_execute(zio); 2222 spl_fstrans_unmark(cookie); 2223 } 2224 2225 /* 2226 * Used to determine if in the current context the stack is sized large 2227 * enough to allow zio_execute() to be called recursively. A minimum 2228 * stack size of 16K is required to avoid needing to re-dispatch the zio. 2229 */ 2230 static boolean_t 2231 zio_execute_stack_check(zio_t *zio) 2232 { 2233 #if !defined(HAVE_LARGE_STACKS) 2234 dsl_pool_t *dp = spa_get_dsl(zio->io_spa); 2235 2236 /* Executing in txg_sync_thread() context. */ 2237 if (dp && curthread == dp->dp_tx.tx_sync_thread) 2238 return (B_TRUE); 2239 2240 /* Pool initialization outside of zio_taskq context. */ 2241 if (dp && spa_is_initializing(dp->dp_spa) && 2242 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE) && 2243 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE_HIGH)) 2244 return (B_TRUE); 2245 #else 2246 (void) zio; 2247 #endif /* HAVE_LARGE_STACKS */ 2248 2249 return (B_FALSE); 2250 } 2251 2252 __attribute__((always_inline)) 2253 static inline void 2254 __zio_execute(zio_t *zio) 2255 { 2256 ASSERT3U(zio->io_queued_timestamp, >, 0); 2257 2258 while (zio->io_stage < ZIO_STAGE_DONE) { 2259 enum zio_stage pipeline = zio->io_pipeline; 2260 enum zio_stage stage = zio->io_stage; 2261 2262 zio->io_executor = curthread; 2263 2264 ASSERT(!MUTEX_HELD(&zio->io_lock)); 2265 ASSERT(ISP2(stage)); 2266 ASSERT(zio->io_stall == NULL); 2267 2268 do { 2269 stage <<= 1; 2270 } while ((stage & pipeline) == 0); 2271 2272 ASSERT(stage <= ZIO_STAGE_DONE); 2273 2274 /* 2275 * If we are in interrupt context and this pipeline stage 2276 * will grab a config lock that is held across I/O, 2277 * or may wait for an I/O that needs an interrupt thread 2278 * to complete, issue async to avoid deadlock. 2279 * 2280 * For VDEV_IO_START, we cut in line so that the io will 2281 * be sent to disk promptly. 2282 */ 2283 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL && 2284 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) { 2285 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ? 2286 zio_requeue_io_start_cut_in_line : B_FALSE; 2287 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut); 2288 return; 2289 } 2290 2291 /* 2292 * If the current context doesn't have large enough stacks 2293 * the zio must be issued asynchronously to prevent overflow. 2294 */ 2295 if (zio_execute_stack_check(zio)) { 2296 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ? 2297 zio_requeue_io_start_cut_in_line : B_FALSE; 2298 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut); 2299 return; 2300 } 2301 2302 zio->io_stage = stage; 2303 zio->io_pipeline_trace |= zio->io_stage; 2304 2305 /* 2306 * The zio pipeline stage returns the next zio to execute 2307 * (typically the same as this one), or NULL if we should 2308 * stop. 2309 */ 2310 zio = zio_pipeline[highbit64(stage) - 1](zio); 2311 2312 if (zio == NULL) 2313 return; 2314 } 2315 } 2316 2317 2318 /* 2319 * ========================================================================== 2320 * Initiate I/O, either sync or async 2321 * ========================================================================== 2322 */ 2323 int 2324 zio_wait(zio_t *zio) 2325 { 2326 /* 2327 * Some routines, like zio_free_sync(), may return a NULL zio 2328 * to avoid the performance overhead of creating and then destroying 2329 * an unneeded zio. For the callers' simplicity, we accept a NULL 2330 * zio and ignore it. 2331 */ 2332 if (zio == NULL) 2333 return (0); 2334 2335 long timeout = MSEC_TO_TICK(zfs_deadman_ziotime_ms); 2336 int error; 2337 2338 ASSERT3S(zio->io_stage, ==, ZIO_STAGE_OPEN); 2339 ASSERT3P(zio->io_executor, ==, NULL); 2340 2341 zio->io_waiter = curthread; 2342 ASSERT0(zio->io_queued_timestamp); 2343 zio->io_queued_timestamp = gethrtime(); 2344 2345 if (zio->io_type == ZIO_TYPE_WRITE) { 2346 spa_select_allocator(zio); 2347 } 2348 __zio_execute(zio); 2349 2350 mutex_enter(&zio->io_lock); 2351 while (zio->io_executor != NULL) { 2352 error = cv_timedwait_io(&zio->io_cv, &zio->io_lock, 2353 ddi_get_lbolt() + timeout); 2354 2355 if (zfs_deadman_enabled && error == -1 && 2356 gethrtime() - zio->io_queued_timestamp > 2357 spa_deadman_ziotime(zio->io_spa)) { 2358 mutex_exit(&zio->io_lock); 2359 timeout = MSEC_TO_TICK(zfs_deadman_checktime_ms); 2360 zio_deadman(zio, FTAG); 2361 mutex_enter(&zio->io_lock); 2362 } 2363 } 2364 mutex_exit(&zio->io_lock); 2365 2366 error = zio->io_error; 2367 zio_destroy(zio); 2368 2369 return (error); 2370 } 2371 2372 void 2373 zio_nowait(zio_t *zio) 2374 { 2375 /* 2376 * See comment in zio_wait(). 2377 */ 2378 if (zio == NULL) 2379 return; 2380 2381 ASSERT3P(zio->io_executor, ==, NULL); 2382 2383 if (zio->io_child_type == ZIO_CHILD_LOGICAL && 2384 list_is_empty(&zio->io_parent_list)) { 2385 zio_t *pio; 2386 2387 /* 2388 * This is a logical async I/O with no parent to wait for it. 2389 * We add it to the spa_async_root_zio "Godfather" I/O which 2390 * will ensure they complete prior to unloading the pool. 2391 */ 2392 spa_t *spa = zio->io_spa; 2393 pio = spa->spa_async_zio_root[CPU_SEQID_UNSTABLE]; 2394 2395 zio_add_child(pio, zio); 2396 } 2397 2398 ASSERT0(zio->io_queued_timestamp); 2399 zio->io_queued_timestamp = gethrtime(); 2400 if (zio->io_type == ZIO_TYPE_WRITE) { 2401 spa_select_allocator(zio); 2402 } 2403 __zio_execute(zio); 2404 } 2405 2406 /* 2407 * ========================================================================== 2408 * Reexecute, cancel, or suspend/resume failed I/O 2409 * ========================================================================== 2410 */ 2411 2412 static void 2413 zio_reexecute(void *arg) 2414 { 2415 zio_t *pio = arg; 2416 zio_t *cio, *cio_next, *gio; 2417 2418 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL); 2419 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN); 2420 ASSERT(pio->io_gang_leader == NULL); 2421 ASSERT(pio->io_gang_tree == NULL); 2422 2423 mutex_enter(&pio->io_lock); 2424 pio->io_flags = pio->io_orig_flags; 2425 pio->io_stage = pio->io_orig_stage; 2426 pio->io_pipeline = pio->io_orig_pipeline; 2427 pio->io_reexecute = 0; 2428 pio->io_flags |= ZIO_FLAG_REEXECUTED; 2429 pio->io_pipeline_trace = 0; 2430 pio->io_error = 0; 2431 pio->io_state[ZIO_WAIT_READY] = (pio->io_stage >= ZIO_STAGE_READY) || 2432 (pio->io_pipeline & ZIO_STAGE_READY) == 0; 2433 pio->io_state[ZIO_WAIT_DONE] = (pio->io_stage >= ZIO_STAGE_DONE); 2434 zio_link_t *zl = NULL; 2435 while ((gio = zio_walk_parents(pio, &zl)) != NULL) { 2436 for (int w = 0; w < ZIO_WAIT_TYPES; w++) { 2437 gio->io_children[pio->io_child_type][w] += 2438 !pio->io_state[w]; 2439 } 2440 } 2441 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 2442 pio->io_child_error[c] = 0; 2443 2444 if (IO_IS_ALLOCATING(pio)) 2445 BP_ZERO(pio->io_bp); 2446 2447 /* 2448 * As we reexecute pio's children, new children could be created. 2449 * New children go to the head of pio's io_child_list, however, 2450 * so we will (correctly) not reexecute them. The key is that 2451 * the remainder of pio's io_child_list, from 'cio_next' onward, 2452 * cannot be affected by any side effects of reexecuting 'cio'. 2453 */ 2454 zl = NULL; 2455 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 2456 cio_next = zio_walk_children(pio, &zl); 2457 mutex_exit(&pio->io_lock); 2458 zio_reexecute(cio); 2459 mutex_enter(&pio->io_lock); 2460 } 2461 mutex_exit(&pio->io_lock); 2462 2463 /* 2464 * Now that all children have been reexecuted, execute the parent. 2465 * We don't reexecute "The Godfather" I/O here as it's the 2466 * responsibility of the caller to wait on it. 2467 */ 2468 if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) { 2469 pio->io_queued_timestamp = gethrtime(); 2470 __zio_execute(pio); 2471 } 2472 } 2473 2474 void 2475 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason) 2476 { 2477 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC) 2478 fm_panic("Pool '%s' has encountered an uncorrectable I/O " 2479 "failure and the failure mode property for this pool " 2480 "is set to panic.", spa_name(spa)); 2481 2482 cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable I/O " 2483 "failure and has been suspended.\n", spa_name(spa)); 2484 2485 (void) zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, 2486 NULL, NULL, 0); 2487 2488 mutex_enter(&spa->spa_suspend_lock); 2489 2490 if (spa->spa_suspend_zio_root == NULL) 2491 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL, 2492 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 2493 ZIO_FLAG_GODFATHER); 2494 2495 spa->spa_suspended = reason; 2496 2497 if (zio != NULL) { 2498 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 2499 ASSERT(zio != spa->spa_suspend_zio_root); 2500 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2501 ASSERT(zio_unique_parent(zio) == NULL); 2502 ASSERT(zio->io_stage == ZIO_STAGE_DONE); 2503 zio_add_child(spa->spa_suspend_zio_root, zio); 2504 } 2505 2506 mutex_exit(&spa->spa_suspend_lock); 2507 } 2508 2509 int 2510 zio_resume(spa_t *spa) 2511 { 2512 zio_t *pio; 2513 2514 /* 2515 * Reexecute all previously suspended i/o. 2516 */ 2517 mutex_enter(&spa->spa_suspend_lock); 2518 spa->spa_suspended = ZIO_SUSPEND_NONE; 2519 cv_broadcast(&spa->spa_suspend_cv); 2520 pio = spa->spa_suspend_zio_root; 2521 spa->spa_suspend_zio_root = NULL; 2522 mutex_exit(&spa->spa_suspend_lock); 2523 2524 if (pio == NULL) 2525 return (0); 2526 2527 zio_reexecute(pio); 2528 return (zio_wait(pio)); 2529 } 2530 2531 void 2532 zio_resume_wait(spa_t *spa) 2533 { 2534 mutex_enter(&spa->spa_suspend_lock); 2535 while (spa_suspended(spa)) 2536 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock); 2537 mutex_exit(&spa->spa_suspend_lock); 2538 } 2539 2540 /* 2541 * ========================================================================== 2542 * Gang blocks. 2543 * 2544 * A gang block is a collection of small blocks that looks to the DMU 2545 * like one large block. When zio_dva_allocate() cannot find a block 2546 * of the requested size, due to either severe fragmentation or the pool 2547 * being nearly full, it calls zio_write_gang_block() to construct the 2548 * block from smaller fragments. 2549 * 2550 * A gang block consists of a gang header (zio_gbh_phys_t) and up to 2551 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like 2552 * an indirect block: it's an array of block pointers. It consumes 2553 * only one sector and hence is allocatable regardless of fragmentation. 2554 * The gang header's bps point to its gang members, which hold the data. 2555 * 2556 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg> 2557 * as the verifier to ensure uniqueness of the SHA256 checksum. 2558 * Critically, the gang block bp's blk_cksum is the checksum of the data, 2559 * not the gang header. This ensures that data block signatures (needed for 2560 * deduplication) are independent of how the block is physically stored. 2561 * 2562 * Gang blocks can be nested: a gang member may itself be a gang block. 2563 * Thus every gang block is a tree in which root and all interior nodes are 2564 * gang headers, and the leaves are normal blocks that contain user data. 2565 * The root of the gang tree is called the gang leader. 2566 * 2567 * To perform any operation (read, rewrite, free, claim) on a gang block, 2568 * zio_gang_assemble() first assembles the gang tree (minus data leaves) 2569 * in the io_gang_tree field of the original logical i/o by recursively 2570 * reading the gang leader and all gang headers below it. This yields 2571 * an in-core tree containing the contents of every gang header and the 2572 * bps for every constituent of the gang block. 2573 * 2574 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree 2575 * and invokes a callback on each bp. To free a gang block, zio_gang_issue() 2576 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp. 2577 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim(). 2578 * zio_read_gang() is a wrapper around zio_read() that omits reading gang 2579 * headers, since we already have those in io_gang_tree. zio_rewrite_gang() 2580 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite() 2581 * of the gang header plus zio_checksum_compute() of the data to update the 2582 * gang header's blk_cksum as described above. 2583 * 2584 * The two-phase assemble/issue model solves the problem of partial failure -- 2585 * what if you'd freed part of a gang block but then couldn't read the 2586 * gang header for another part? Assembling the entire gang tree first 2587 * ensures that all the necessary gang header I/O has succeeded before 2588 * starting the actual work of free, claim, or write. Once the gang tree 2589 * is assembled, free and claim are in-memory operations that cannot fail. 2590 * 2591 * In the event that a gang write fails, zio_dva_unallocate() walks the 2592 * gang tree to immediately free (i.e. insert back into the space map) 2593 * everything we've allocated. This ensures that we don't get ENOSPC 2594 * errors during repeated suspend/resume cycles due to a flaky device. 2595 * 2596 * Gang rewrites only happen during sync-to-convergence. If we can't assemble 2597 * the gang tree, we won't modify the block, so we can safely defer the free 2598 * (knowing that the block is still intact). If we *can* assemble the gang 2599 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free 2600 * each constituent bp and we can allocate a new block on the next sync pass. 2601 * 2602 * In all cases, the gang tree allows complete recovery from partial failure. 2603 * ========================================================================== 2604 */ 2605 2606 static void 2607 zio_gang_issue_func_done(zio_t *zio) 2608 { 2609 abd_free(zio->io_abd); 2610 } 2611 2612 static zio_t * 2613 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2614 uint64_t offset) 2615 { 2616 if (gn != NULL) 2617 return (pio); 2618 2619 return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset), 2620 BP_GET_PSIZE(bp), zio_gang_issue_func_done, 2621 NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 2622 &pio->io_bookmark)); 2623 } 2624 2625 static zio_t * 2626 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2627 uint64_t offset) 2628 { 2629 zio_t *zio; 2630 2631 if (gn != NULL) { 2632 abd_t *gbh_abd = 2633 abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2634 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 2635 gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL, 2636 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 2637 &pio->io_bookmark); 2638 /* 2639 * As we rewrite each gang header, the pipeline will compute 2640 * a new gang block header checksum for it; but no one will 2641 * compute a new data checksum, so we do that here. The one 2642 * exception is the gang leader: the pipeline already computed 2643 * its data checksum because that stage precedes gang assembly. 2644 * (Presently, nothing actually uses interior data checksums; 2645 * this is just good hygiene.) 2646 */ 2647 if (gn != pio->io_gang_leader->io_gang_tree) { 2648 abd_t *buf = abd_get_offset(data, offset); 2649 2650 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp), 2651 buf, BP_GET_PSIZE(bp)); 2652 2653 abd_free(buf); 2654 } 2655 /* 2656 * If we are here to damage data for testing purposes, 2657 * leave the GBH alone so that we can detect the damage. 2658 */ 2659 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE) 2660 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 2661 } else { 2662 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 2663 abd_get_offset(data, offset), BP_GET_PSIZE(bp), 2664 zio_gang_issue_func_done, NULL, pio->io_priority, 2665 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2666 } 2667 2668 return (zio); 2669 } 2670 2671 static zio_t * 2672 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2673 uint64_t offset) 2674 { 2675 (void) gn, (void) data, (void) offset; 2676 2677 zio_t *zio = zio_free_sync(pio, pio->io_spa, pio->io_txg, bp, 2678 ZIO_GANG_CHILD_FLAGS(pio)); 2679 if (zio == NULL) { 2680 zio = zio_null(pio, pio->io_spa, 2681 NULL, NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)); 2682 } 2683 return (zio); 2684 } 2685 2686 static zio_t * 2687 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2688 uint64_t offset) 2689 { 2690 (void) gn, (void) data, (void) offset; 2691 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp, 2692 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio))); 2693 } 2694 2695 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = { 2696 NULL, 2697 zio_read_gang, 2698 zio_rewrite_gang, 2699 zio_free_gang, 2700 zio_claim_gang, 2701 NULL 2702 }; 2703 2704 static void zio_gang_tree_assemble_done(zio_t *zio); 2705 2706 static zio_gang_node_t * 2707 zio_gang_node_alloc(zio_gang_node_t **gnpp) 2708 { 2709 zio_gang_node_t *gn; 2710 2711 ASSERT(*gnpp == NULL); 2712 2713 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP); 2714 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE); 2715 *gnpp = gn; 2716 2717 return (gn); 2718 } 2719 2720 static void 2721 zio_gang_node_free(zio_gang_node_t **gnpp) 2722 { 2723 zio_gang_node_t *gn = *gnpp; 2724 2725 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 2726 ASSERT(gn->gn_child[g] == NULL); 2727 2728 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2729 kmem_free(gn, sizeof (*gn)); 2730 *gnpp = NULL; 2731 } 2732 2733 static void 2734 zio_gang_tree_free(zio_gang_node_t **gnpp) 2735 { 2736 zio_gang_node_t *gn = *gnpp; 2737 2738 if (gn == NULL) 2739 return; 2740 2741 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 2742 zio_gang_tree_free(&gn->gn_child[g]); 2743 2744 zio_gang_node_free(gnpp); 2745 } 2746 2747 static void 2748 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp) 2749 { 2750 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp); 2751 abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2752 2753 ASSERT(gio->io_gang_leader == gio); 2754 ASSERT(BP_IS_GANG(bp)); 2755 2756 zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE, 2757 zio_gang_tree_assemble_done, gn, gio->io_priority, 2758 ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark)); 2759 } 2760 2761 static void 2762 zio_gang_tree_assemble_done(zio_t *zio) 2763 { 2764 zio_t *gio = zio->io_gang_leader; 2765 zio_gang_node_t *gn = zio->io_private; 2766 blkptr_t *bp = zio->io_bp; 2767 2768 ASSERT(gio == zio_unique_parent(zio)); 2769 ASSERT(list_is_empty(&zio->io_child_list)); 2770 2771 if (zio->io_error) 2772 return; 2773 2774 /* this ABD was created from a linear buf in zio_gang_tree_assemble */ 2775 if (BP_SHOULD_BYTESWAP(bp)) 2776 byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size); 2777 2778 ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh); 2779 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE); 2780 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 2781 2782 abd_free(zio->io_abd); 2783 2784 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2785 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 2786 if (!BP_IS_GANG(gbp)) 2787 continue; 2788 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]); 2789 } 2790 } 2791 2792 static void 2793 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data, 2794 uint64_t offset) 2795 { 2796 zio_t *gio = pio->io_gang_leader; 2797 zio_t *zio; 2798 2799 ASSERT(BP_IS_GANG(bp) == !!gn); 2800 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp)); 2801 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree); 2802 2803 /* 2804 * If you're a gang header, your data is in gn->gn_gbh. 2805 * If you're a gang member, your data is in 'data' and gn == NULL. 2806 */ 2807 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset); 2808 2809 if (gn != NULL) { 2810 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 2811 2812 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2813 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 2814 if (BP_IS_HOLE(gbp)) 2815 continue; 2816 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data, 2817 offset); 2818 offset += BP_GET_PSIZE(gbp); 2819 } 2820 } 2821 2822 if (gn == gio->io_gang_tree) 2823 ASSERT3U(gio->io_size, ==, offset); 2824 2825 if (zio != pio) 2826 zio_nowait(zio); 2827 } 2828 2829 static zio_t * 2830 zio_gang_assemble(zio_t *zio) 2831 { 2832 blkptr_t *bp = zio->io_bp; 2833 2834 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL); 2835 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2836 2837 zio->io_gang_leader = zio; 2838 2839 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree); 2840 2841 return (zio); 2842 } 2843 2844 static zio_t * 2845 zio_gang_issue(zio_t *zio) 2846 { 2847 blkptr_t *bp = zio->io_bp; 2848 2849 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) { 2850 return (NULL); 2851 } 2852 2853 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio); 2854 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2855 2856 if (zio->io_child_error[ZIO_CHILD_GANG] == 0) 2857 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd, 2858 0); 2859 else 2860 zio_gang_tree_free(&zio->io_gang_tree); 2861 2862 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2863 2864 return (zio); 2865 } 2866 2867 static void 2868 zio_gang_inherit_allocator(zio_t *pio, zio_t *cio) 2869 { 2870 cio->io_allocator = pio->io_allocator; 2871 cio->io_wr_iss_tq = pio->io_wr_iss_tq; 2872 } 2873 2874 static void 2875 zio_write_gang_member_ready(zio_t *zio) 2876 { 2877 zio_t *pio = zio_unique_parent(zio); 2878 dva_t *cdva = zio->io_bp->blk_dva; 2879 dva_t *pdva = pio->io_bp->blk_dva; 2880 uint64_t asize; 2881 zio_t *gio __maybe_unused = zio->io_gang_leader; 2882 2883 if (BP_IS_HOLE(zio->io_bp)) 2884 return; 2885 2886 ASSERT(BP_IS_HOLE(&zio->io_bp_orig)); 2887 2888 ASSERT(zio->io_child_type == ZIO_CHILD_GANG); 2889 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies); 2890 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp)); 2891 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp)); 2892 VERIFY3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp)); 2893 2894 mutex_enter(&pio->io_lock); 2895 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) { 2896 ASSERT(DVA_GET_GANG(&pdva[d])); 2897 asize = DVA_GET_ASIZE(&pdva[d]); 2898 asize += DVA_GET_ASIZE(&cdva[d]); 2899 DVA_SET_ASIZE(&pdva[d], asize); 2900 } 2901 mutex_exit(&pio->io_lock); 2902 } 2903 2904 static void 2905 zio_write_gang_done(zio_t *zio) 2906 { 2907 /* 2908 * The io_abd field will be NULL for a zio with no data. The io_flags 2909 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't 2910 * check for it here as it is cleared in zio_ready. 2911 */ 2912 if (zio->io_abd != NULL) 2913 abd_free(zio->io_abd); 2914 } 2915 2916 static zio_t * 2917 zio_write_gang_block(zio_t *pio, metaslab_class_t *mc) 2918 { 2919 spa_t *spa = pio->io_spa; 2920 blkptr_t *bp = pio->io_bp; 2921 zio_t *gio = pio->io_gang_leader; 2922 zio_t *zio; 2923 zio_gang_node_t *gn, **gnpp; 2924 zio_gbh_phys_t *gbh; 2925 abd_t *gbh_abd; 2926 uint64_t txg = pio->io_txg; 2927 uint64_t resid = pio->io_size; 2928 uint64_t lsize; 2929 int copies = gio->io_prop.zp_copies; 2930 zio_prop_t zp; 2931 int error; 2932 boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA); 2933 2934 /* 2935 * If one copy was requested, store 2 copies of the GBH, so that we 2936 * can still traverse all the data (e.g. to free or scrub) even if a 2937 * block is damaged. Note that we can't store 3 copies of the GBH in 2938 * all cases, e.g. with encryption, which uses DVA[2] for the IV+salt. 2939 */ 2940 int gbh_copies = copies; 2941 if (gbh_copies == 1) { 2942 gbh_copies = MIN(2, spa_max_replication(spa)); 2943 } 2944 2945 ASSERT(ZIO_HAS_ALLOCATOR(pio)); 2946 int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER; 2947 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2948 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2949 ASSERT(has_data); 2950 2951 flags |= METASLAB_ASYNC_ALLOC; 2952 VERIFY(zfs_refcount_held(&mc->mc_allocator[pio->io_allocator]. 2953 mca_alloc_slots, pio)); 2954 2955 /* 2956 * The logical zio has already placed a reservation for 2957 * 'copies' allocation slots but gang blocks may require 2958 * additional copies. These additional copies 2959 * (i.e. gbh_copies - copies) are guaranteed to succeed 2960 * since metaslab_class_throttle_reserve() always allows 2961 * additional reservations for gang blocks. 2962 */ 2963 VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies, 2964 pio->io_allocator, pio, flags)); 2965 } 2966 2967 error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE, 2968 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags, 2969 &pio->io_alloc_list, pio, pio->io_allocator); 2970 if (error) { 2971 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2972 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2973 ASSERT(has_data); 2974 2975 /* 2976 * If we failed to allocate the gang block header then 2977 * we remove any additional allocation reservations that 2978 * we placed here. The original reservation will 2979 * be removed when the logical I/O goes to the ready 2980 * stage. 2981 */ 2982 metaslab_class_throttle_unreserve(mc, 2983 gbh_copies - copies, pio->io_allocator, pio); 2984 } 2985 2986 pio->io_error = error; 2987 return (pio); 2988 } 2989 2990 if (pio == gio) { 2991 gnpp = &gio->io_gang_tree; 2992 } else { 2993 gnpp = pio->io_private; 2994 ASSERT(pio->io_ready == zio_write_gang_member_ready); 2995 } 2996 2997 gn = zio_gang_node_alloc(gnpp); 2998 gbh = gn->gn_gbh; 2999 memset(gbh, 0, SPA_GANGBLOCKSIZE); 3000 gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE); 3001 3002 /* 3003 * Create the gang header. 3004 */ 3005 zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE, 3006 zio_write_gang_done, NULL, pio->io_priority, 3007 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 3008 3009 zio_gang_inherit_allocator(pio, zio); 3010 3011 /* 3012 * Create and nowait the gang children. 3013 */ 3014 for (int g = 0; resid != 0; resid -= lsize, g++) { 3015 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g), 3016 SPA_MINBLOCKSIZE); 3017 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid); 3018 3019 zp.zp_checksum = gio->io_prop.zp_checksum; 3020 zp.zp_compress = ZIO_COMPRESS_OFF; 3021 zp.zp_complevel = gio->io_prop.zp_complevel; 3022 zp.zp_type = DMU_OT_NONE; 3023 zp.zp_level = 0; 3024 zp.zp_copies = gio->io_prop.zp_copies; 3025 zp.zp_dedup = B_FALSE; 3026 zp.zp_dedup_verify = B_FALSE; 3027 zp.zp_nopwrite = B_FALSE; 3028 zp.zp_encrypt = gio->io_prop.zp_encrypt; 3029 zp.zp_byteorder = gio->io_prop.zp_byteorder; 3030 memset(zp.zp_salt, 0, ZIO_DATA_SALT_LEN); 3031 memset(zp.zp_iv, 0, ZIO_DATA_IV_LEN); 3032 memset(zp.zp_mac, 0, ZIO_DATA_MAC_LEN); 3033 3034 zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g], 3035 has_data ? abd_get_offset(pio->io_abd, pio->io_size - 3036 resid) : NULL, lsize, lsize, &zp, 3037 zio_write_gang_member_ready, NULL, 3038 zio_write_gang_done, &gn->gn_child[g], pio->io_priority, 3039 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 3040 3041 zio_gang_inherit_allocator(zio, cio); 3042 3043 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 3044 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 3045 ASSERT(has_data); 3046 3047 /* 3048 * Gang children won't throttle but we should 3049 * account for their work, so reserve an allocation 3050 * slot for them here. 3051 */ 3052 VERIFY(metaslab_class_throttle_reserve(mc, 3053 zp.zp_copies, cio->io_allocator, cio, flags)); 3054 } 3055 zio_nowait(cio); 3056 } 3057 3058 /* 3059 * Set pio's pipeline to just wait for zio to finish. 3060 */ 3061 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 3062 3063 zio_nowait(zio); 3064 3065 return (pio); 3066 } 3067 3068 /* 3069 * The zio_nop_write stage in the pipeline determines if allocating a 3070 * new bp is necessary. The nopwrite feature can handle writes in 3071 * either syncing or open context (i.e. zil writes) and as a result is 3072 * mutually exclusive with dedup. 3073 * 3074 * By leveraging a cryptographically secure checksum, such as SHA256, we 3075 * can compare the checksums of the new data and the old to determine if 3076 * allocating a new block is required. Note that our requirements for 3077 * cryptographic strength are fairly weak: there can't be any accidental 3078 * hash collisions, but we don't need to be secure against intentional 3079 * (malicious) collisions. To trigger a nopwrite, you have to be able 3080 * to write the file to begin with, and triggering an incorrect (hash 3081 * collision) nopwrite is no worse than simply writing to the file. 3082 * That said, there are no known attacks against the checksum algorithms 3083 * used for nopwrite, assuming that the salt and the checksums 3084 * themselves remain secret. 3085 */ 3086 static zio_t * 3087 zio_nop_write(zio_t *zio) 3088 { 3089 blkptr_t *bp = zio->io_bp; 3090 blkptr_t *bp_orig = &zio->io_bp_orig; 3091 zio_prop_t *zp = &zio->io_prop; 3092 3093 ASSERT(BP_IS_HOLE(bp)); 3094 ASSERT(BP_GET_LEVEL(bp) == 0); 3095 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 3096 ASSERT(zp->zp_nopwrite); 3097 ASSERT(!zp->zp_dedup); 3098 ASSERT(zio->io_bp_override == NULL); 3099 ASSERT(IO_IS_ALLOCATING(zio)); 3100 3101 /* 3102 * Check to see if the original bp and the new bp have matching 3103 * characteristics (i.e. same checksum, compression algorithms, etc). 3104 * If they don't then just continue with the pipeline which will 3105 * allocate a new bp. 3106 */ 3107 if (BP_IS_HOLE(bp_orig) || 3108 !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags & 3109 ZCHECKSUM_FLAG_NOPWRITE) || 3110 BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) || 3111 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) || 3112 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) || 3113 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) || 3114 zp->zp_copies != BP_GET_NDVAS(bp_orig)) 3115 return (zio); 3116 3117 /* 3118 * If the checksums match then reset the pipeline so that we 3119 * avoid allocating a new bp and issuing any I/O. 3120 */ 3121 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) { 3122 ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags & 3123 ZCHECKSUM_FLAG_NOPWRITE); 3124 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig)); 3125 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig)); 3126 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF); 3127 ASSERT3U(bp->blk_prop, ==, bp_orig->blk_prop); 3128 3129 /* 3130 * If we're overwriting a block that is currently on an 3131 * indirect vdev, then ignore the nopwrite request and 3132 * allow a new block to be allocated on a concrete vdev. 3133 */ 3134 spa_config_enter(zio->io_spa, SCL_VDEV, FTAG, RW_READER); 3135 for (int d = 0; d < BP_GET_NDVAS(bp_orig); d++) { 3136 vdev_t *tvd = vdev_lookup_top(zio->io_spa, 3137 DVA_GET_VDEV(&bp_orig->blk_dva[d])); 3138 if (tvd->vdev_ops == &vdev_indirect_ops) { 3139 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG); 3140 return (zio); 3141 } 3142 } 3143 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG); 3144 3145 *bp = *bp_orig; 3146 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 3147 zio->io_flags |= ZIO_FLAG_NOPWRITE; 3148 } 3149 3150 return (zio); 3151 } 3152 3153 /* 3154 * ========================================================================== 3155 * Block Reference Table 3156 * ========================================================================== 3157 */ 3158 static zio_t * 3159 zio_brt_free(zio_t *zio) 3160 { 3161 blkptr_t *bp; 3162 3163 bp = zio->io_bp; 3164 3165 if (BP_GET_LEVEL(bp) > 0 || 3166 BP_IS_METADATA(bp) || 3167 !brt_maybe_exists(zio->io_spa, bp)) { 3168 return (zio); 3169 } 3170 3171 if (!brt_entry_decref(zio->io_spa, bp)) { 3172 /* 3173 * This isn't the last reference, so we cannot free 3174 * the data yet. 3175 */ 3176 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 3177 } 3178 3179 return (zio); 3180 } 3181 3182 /* 3183 * ========================================================================== 3184 * Dedup 3185 * ========================================================================== 3186 */ 3187 static void 3188 zio_ddt_child_read_done(zio_t *zio) 3189 { 3190 blkptr_t *bp = zio->io_bp; 3191 ddt_entry_t *dde = zio->io_private; 3192 ddt_phys_t *ddp; 3193 zio_t *pio = zio_unique_parent(zio); 3194 3195 mutex_enter(&pio->io_lock); 3196 ddp = ddt_phys_select(dde, bp); 3197 if (zio->io_error == 0) 3198 ddt_phys_clear(ddp); /* this ddp doesn't need repair */ 3199 3200 if (zio->io_error == 0 && dde->dde_repair_abd == NULL) 3201 dde->dde_repair_abd = zio->io_abd; 3202 else 3203 abd_free(zio->io_abd); 3204 mutex_exit(&pio->io_lock); 3205 } 3206 3207 static zio_t * 3208 zio_ddt_read_start(zio_t *zio) 3209 { 3210 blkptr_t *bp = zio->io_bp; 3211 3212 ASSERT(BP_GET_DEDUP(bp)); 3213 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 3214 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3215 3216 if (zio->io_child_error[ZIO_CHILD_DDT]) { 3217 ddt_t *ddt = ddt_select(zio->io_spa, bp); 3218 ddt_entry_t *dde = ddt_repair_start(ddt, bp); 3219 ddt_phys_t *ddp = dde->dde_phys; 3220 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp); 3221 blkptr_t blk; 3222 3223 ASSERT(zio->io_vsd == NULL); 3224 zio->io_vsd = dde; 3225 3226 if (ddp_self == NULL) 3227 return (zio); 3228 3229 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 3230 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self) 3231 continue; 3232 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp, 3233 &blk); 3234 zio_nowait(zio_read(zio, zio->io_spa, &blk, 3235 abd_alloc_for_io(zio->io_size, B_TRUE), 3236 zio->io_size, zio_ddt_child_read_done, dde, 3237 zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) | 3238 ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark)); 3239 } 3240 return (zio); 3241 } 3242 3243 zio_nowait(zio_read(zio, zio->io_spa, bp, 3244 zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority, 3245 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark)); 3246 3247 return (zio); 3248 } 3249 3250 static zio_t * 3251 zio_ddt_read_done(zio_t *zio) 3252 { 3253 blkptr_t *bp = zio->io_bp; 3254 3255 if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) { 3256 return (NULL); 3257 } 3258 3259 ASSERT(BP_GET_DEDUP(bp)); 3260 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 3261 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3262 3263 if (zio->io_child_error[ZIO_CHILD_DDT]) { 3264 ddt_t *ddt = ddt_select(zio->io_spa, bp); 3265 ddt_entry_t *dde = zio->io_vsd; 3266 if (ddt == NULL) { 3267 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE); 3268 return (zio); 3269 } 3270 if (dde == NULL) { 3271 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1; 3272 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 3273 return (NULL); 3274 } 3275 if (dde->dde_repair_abd != NULL) { 3276 abd_copy(zio->io_abd, dde->dde_repair_abd, 3277 zio->io_size); 3278 zio->io_child_error[ZIO_CHILD_DDT] = 0; 3279 } 3280 ddt_repair_done(ddt, dde); 3281 zio->io_vsd = NULL; 3282 } 3283 3284 ASSERT(zio->io_vsd == NULL); 3285 3286 return (zio); 3287 } 3288 3289 static boolean_t 3290 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde) 3291 { 3292 spa_t *spa = zio->io_spa; 3293 boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW); 3294 3295 ASSERT(!(zio->io_bp_override && do_raw)); 3296 3297 /* 3298 * Note: we compare the original data, not the transformed data, 3299 * because when zio->io_bp is an override bp, we will not have 3300 * pushed the I/O transforms. That's an important optimization 3301 * because otherwise we'd compress/encrypt all dmu_sync() data twice. 3302 * However, we should never get a raw, override zio so in these 3303 * cases we can compare the io_abd directly. This is useful because 3304 * it allows us to do dedup verification even if we don't have access 3305 * to the original data (for instance, if the encryption keys aren't 3306 * loaded). 3307 */ 3308 3309 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 3310 zio_t *lio = dde->dde_lead_zio[p]; 3311 3312 if (lio != NULL && do_raw) { 3313 return (lio->io_size != zio->io_size || 3314 abd_cmp(zio->io_abd, lio->io_abd) != 0); 3315 } else if (lio != NULL) { 3316 return (lio->io_orig_size != zio->io_orig_size || 3317 abd_cmp(zio->io_orig_abd, lio->io_orig_abd) != 0); 3318 } 3319 } 3320 3321 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 3322 ddt_phys_t *ddp = &dde->dde_phys[p]; 3323 3324 if (ddp->ddp_phys_birth != 0 && do_raw) { 3325 blkptr_t blk = *zio->io_bp; 3326 uint64_t psize; 3327 abd_t *tmpabd; 3328 int error; 3329 3330 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth); 3331 psize = BP_GET_PSIZE(&blk); 3332 3333 if (psize != zio->io_size) 3334 return (B_TRUE); 3335 3336 ddt_exit(ddt); 3337 3338 tmpabd = abd_alloc_for_io(psize, B_TRUE); 3339 3340 error = zio_wait(zio_read(NULL, spa, &blk, tmpabd, 3341 psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ, 3342 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 3343 ZIO_FLAG_RAW, &zio->io_bookmark)); 3344 3345 if (error == 0) { 3346 if (abd_cmp(tmpabd, zio->io_abd) != 0) 3347 error = SET_ERROR(ENOENT); 3348 } 3349 3350 abd_free(tmpabd); 3351 ddt_enter(ddt); 3352 return (error != 0); 3353 } else if (ddp->ddp_phys_birth != 0) { 3354 arc_buf_t *abuf = NULL; 3355 arc_flags_t aflags = ARC_FLAG_WAIT; 3356 blkptr_t blk = *zio->io_bp; 3357 int error; 3358 3359 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth); 3360 3361 if (BP_GET_LSIZE(&blk) != zio->io_orig_size) 3362 return (B_TRUE); 3363 3364 ddt_exit(ddt); 3365 3366 error = arc_read(NULL, spa, &blk, 3367 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ, 3368 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 3369 &aflags, &zio->io_bookmark); 3370 3371 if (error == 0) { 3372 if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data, 3373 zio->io_orig_size) != 0) 3374 error = SET_ERROR(ENOENT); 3375 arc_buf_destroy(abuf, &abuf); 3376 } 3377 3378 ddt_enter(ddt); 3379 return (error != 0); 3380 } 3381 } 3382 3383 return (B_FALSE); 3384 } 3385 3386 static void 3387 zio_ddt_child_write_ready(zio_t *zio) 3388 { 3389 int p = zio->io_prop.zp_copies; 3390 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 3391 ddt_entry_t *dde = zio->io_private; 3392 ddt_phys_t *ddp = &dde->dde_phys[p]; 3393 zio_t *pio; 3394 3395 if (zio->io_error) 3396 return; 3397 3398 ddt_enter(ddt); 3399 3400 ASSERT(dde->dde_lead_zio[p] == zio); 3401 3402 ddt_phys_fill(ddp, zio->io_bp); 3403 3404 zio_link_t *zl = NULL; 3405 while ((pio = zio_walk_parents(zio, &zl)) != NULL) 3406 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg); 3407 3408 ddt_exit(ddt); 3409 } 3410 3411 static void 3412 zio_ddt_child_write_done(zio_t *zio) 3413 { 3414 int p = zio->io_prop.zp_copies; 3415 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 3416 ddt_entry_t *dde = zio->io_private; 3417 ddt_phys_t *ddp = &dde->dde_phys[p]; 3418 3419 ddt_enter(ddt); 3420 3421 ASSERT(ddp->ddp_refcnt == 0); 3422 ASSERT(dde->dde_lead_zio[p] == zio); 3423 dde->dde_lead_zio[p] = NULL; 3424 3425 if (zio->io_error == 0) { 3426 zio_link_t *zl = NULL; 3427 while (zio_walk_parents(zio, &zl) != NULL) 3428 ddt_phys_addref(ddp); 3429 } else { 3430 ddt_phys_clear(ddp); 3431 } 3432 3433 ddt_exit(ddt); 3434 } 3435 3436 static zio_t * 3437 zio_ddt_write(zio_t *zio) 3438 { 3439 spa_t *spa = zio->io_spa; 3440 blkptr_t *bp = zio->io_bp; 3441 uint64_t txg = zio->io_txg; 3442 zio_prop_t *zp = &zio->io_prop; 3443 int p = zp->zp_copies; 3444 zio_t *cio = NULL; 3445 ddt_t *ddt = ddt_select(spa, bp); 3446 ddt_entry_t *dde; 3447 ddt_phys_t *ddp; 3448 3449 ASSERT(BP_GET_DEDUP(bp)); 3450 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum); 3451 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override); 3452 ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW))); 3453 3454 ddt_enter(ddt); 3455 dde = ddt_lookup(ddt, bp, B_TRUE); 3456 ddp = &dde->dde_phys[p]; 3457 3458 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) { 3459 /* 3460 * If we're using a weak checksum, upgrade to a strong checksum 3461 * and try again. If we're already using a strong checksum, 3462 * we can't resolve it, so just convert to an ordinary write. 3463 * (And automatically e-mail a paper to Nature?) 3464 */ 3465 if (!(zio_checksum_table[zp->zp_checksum].ci_flags & 3466 ZCHECKSUM_FLAG_DEDUP)) { 3467 zp->zp_checksum = spa_dedup_checksum(spa); 3468 zio_pop_transforms(zio); 3469 zio->io_stage = ZIO_STAGE_OPEN; 3470 BP_ZERO(bp); 3471 } else { 3472 zp->zp_dedup = B_FALSE; 3473 BP_SET_DEDUP(bp, B_FALSE); 3474 } 3475 ASSERT(!BP_GET_DEDUP(bp)); 3476 zio->io_pipeline = ZIO_WRITE_PIPELINE; 3477 ddt_exit(ddt); 3478 return (zio); 3479 } 3480 3481 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) { 3482 if (ddp->ddp_phys_birth != 0) 3483 ddt_bp_fill(ddp, bp, txg); 3484 if (dde->dde_lead_zio[p] != NULL) 3485 zio_add_child(zio, dde->dde_lead_zio[p]); 3486 else 3487 ddt_phys_addref(ddp); 3488 } else if (zio->io_bp_override) { 3489 ASSERT(bp->blk_birth == txg); 3490 ASSERT(BP_EQUAL(bp, zio->io_bp_override)); 3491 ddt_phys_fill(ddp, bp); 3492 ddt_phys_addref(ddp); 3493 } else { 3494 cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd, 3495 zio->io_orig_size, zio->io_orig_size, zp, 3496 zio_ddt_child_write_ready, NULL, 3497 zio_ddt_child_write_done, dde, zio->io_priority, 3498 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark); 3499 3500 zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL); 3501 dde->dde_lead_zio[p] = cio; 3502 } 3503 3504 ddt_exit(ddt); 3505 3506 zio_nowait(cio); 3507 3508 return (zio); 3509 } 3510 3511 static ddt_entry_t *freedde; /* for debugging */ 3512 3513 static zio_t * 3514 zio_ddt_free(zio_t *zio) 3515 { 3516 spa_t *spa = zio->io_spa; 3517 blkptr_t *bp = zio->io_bp; 3518 ddt_t *ddt = ddt_select(spa, bp); 3519 ddt_entry_t *dde; 3520 ddt_phys_t *ddp; 3521 3522 ASSERT(BP_GET_DEDUP(bp)); 3523 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3524 3525 ddt_enter(ddt); 3526 freedde = dde = ddt_lookup(ddt, bp, B_TRUE); 3527 if (dde) { 3528 ddp = ddt_phys_select(dde, bp); 3529 if (ddp) 3530 ddt_phys_decref(ddp); 3531 } 3532 ddt_exit(ddt); 3533 3534 return (zio); 3535 } 3536 3537 /* 3538 * ========================================================================== 3539 * Allocate and free blocks 3540 * ========================================================================== 3541 */ 3542 3543 static zio_t * 3544 zio_io_to_allocate(spa_t *spa, int allocator) 3545 { 3546 zio_t *zio; 3547 3548 ASSERT(MUTEX_HELD(&spa->spa_allocs[allocator].spaa_lock)); 3549 3550 zio = avl_first(&spa->spa_allocs[allocator].spaa_tree); 3551 if (zio == NULL) 3552 return (NULL); 3553 3554 ASSERT(IO_IS_ALLOCATING(zio)); 3555 ASSERT(ZIO_HAS_ALLOCATOR(zio)); 3556 3557 /* 3558 * Try to place a reservation for this zio. If we're unable to 3559 * reserve then we throttle. 3560 */ 3561 ASSERT3U(zio->io_allocator, ==, allocator); 3562 if (!metaslab_class_throttle_reserve(zio->io_metaslab_class, 3563 zio->io_prop.zp_copies, allocator, zio, 0)) { 3564 return (NULL); 3565 } 3566 3567 avl_remove(&spa->spa_allocs[allocator].spaa_tree, zio); 3568 ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE); 3569 3570 return (zio); 3571 } 3572 3573 static zio_t * 3574 zio_dva_throttle(zio_t *zio) 3575 { 3576 spa_t *spa = zio->io_spa; 3577 zio_t *nio; 3578 metaslab_class_t *mc; 3579 3580 /* locate an appropriate allocation class */ 3581 mc = spa_preferred_class(spa, zio->io_size, zio->io_prop.zp_type, 3582 zio->io_prop.zp_level, zio->io_prop.zp_zpl_smallblk); 3583 3584 if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE || 3585 !mc->mc_alloc_throttle_enabled || 3586 zio->io_child_type == ZIO_CHILD_GANG || 3587 zio->io_flags & ZIO_FLAG_NODATA) { 3588 return (zio); 3589 } 3590 3591 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 3592 ASSERT(ZIO_HAS_ALLOCATOR(zio)); 3593 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 3594 ASSERT3U(zio->io_queued_timestamp, >, 0); 3595 ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE); 3596 3597 int allocator = zio->io_allocator; 3598 zio->io_metaslab_class = mc; 3599 mutex_enter(&spa->spa_allocs[allocator].spaa_lock); 3600 avl_add(&spa->spa_allocs[allocator].spaa_tree, zio); 3601 nio = zio_io_to_allocate(spa, allocator); 3602 mutex_exit(&spa->spa_allocs[allocator].spaa_lock); 3603 return (nio); 3604 } 3605 3606 static void 3607 zio_allocate_dispatch(spa_t *spa, int allocator) 3608 { 3609 zio_t *zio; 3610 3611 mutex_enter(&spa->spa_allocs[allocator].spaa_lock); 3612 zio = zio_io_to_allocate(spa, allocator); 3613 mutex_exit(&spa->spa_allocs[allocator].spaa_lock); 3614 if (zio == NULL) 3615 return; 3616 3617 ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE); 3618 ASSERT0(zio->io_error); 3619 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE); 3620 } 3621 3622 static zio_t * 3623 zio_dva_allocate(zio_t *zio) 3624 { 3625 spa_t *spa = zio->io_spa; 3626 metaslab_class_t *mc; 3627 blkptr_t *bp = zio->io_bp; 3628 int error; 3629 int flags = 0; 3630 3631 if (zio->io_gang_leader == NULL) { 3632 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 3633 zio->io_gang_leader = zio; 3634 } 3635 3636 ASSERT(BP_IS_HOLE(bp)); 3637 ASSERT0(BP_GET_NDVAS(bp)); 3638 ASSERT3U(zio->io_prop.zp_copies, >, 0); 3639 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa)); 3640 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp)); 3641 3642 if (zio->io_flags & ZIO_FLAG_NODATA) 3643 flags |= METASLAB_DONT_THROTTLE; 3644 if (zio->io_flags & ZIO_FLAG_GANG_CHILD) 3645 flags |= METASLAB_GANG_CHILD; 3646 if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE) 3647 flags |= METASLAB_ASYNC_ALLOC; 3648 3649 /* 3650 * if not already chosen, locate an appropriate allocation class 3651 */ 3652 mc = zio->io_metaslab_class; 3653 if (mc == NULL) { 3654 mc = spa_preferred_class(spa, zio->io_size, 3655 zio->io_prop.zp_type, zio->io_prop.zp_level, 3656 zio->io_prop.zp_zpl_smallblk); 3657 zio->io_metaslab_class = mc; 3658 } 3659 3660 /* 3661 * Try allocating the block in the usual metaslab class. 3662 * If that's full, allocate it in the normal class. 3663 * If that's full, allocate as a gang block, 3664 * and if all are full, the allocation fails (which shouldn't happen). 3665 * 3666 * Note that we do not fall back on embedded slog (ZIL) space, to 3667 * preserve unfragmented slog space, which is critical for decent 3668 * sync write performance. If a log allocation fails, we will fall 3669 * back to spa_sync() which is abysmal for performance. 3670 */ 3671 ASSERT(ZIO_HAS_ALLOCATOR(zio)); 3672 error = metaslab_alloc(spa, mc, zio->io_size, bp, 3673 zio->io_prop.zp_copies, zio->io_txg, NULL, flags, 3674 &zio->io_alloc_list, zio, zio->io_allocator); 3675 3676 /* 3677 * Fallback to normal class when an alloc class is full 3678 */ 3679 if (error == ENOSPC && mc != spa_normal_class(spa)) { 3680 /* 3681 * If throttling, transfer reservation over to normal class. 3682 * The io_allocator slot can remain the same even though we 3683 * are switching classes. 3684 */ 3685 if (mc->mc_alloc_throttle_enabled && 3686 (zio->io_flags & ZIO_FLAG_IO_ALLOCATING)) { 3687 metaslab_class_throttle_unreserve(mc, 3688 zio->io_prop.zp_copies, zio->io_allocator, zio); 3689 zio->io_flags &= ~ZIO_FLAG_IO_ALLOCATING; 3690 3691 VERIFY(metaslab_class_throttle_reserve( 3692 spa_normal_class(spa), 3693 zio->io_prop.zp_copies, zio->io_allocator, zio, 3694 flags | METASLAB_MUST_RESERVE)); 3695 } 3696 zio->io_metaslab_class = mc = spa_normal_class(spa); 3697 if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) { 3698 zfs_dbgmsg("%s: metaslab allocation failure, " 3699 "trying normal class: zio %px, size %llu, error %d", 3700 spa_name(spa), zio, (u_longlong_t)zio->io_size, 3701 error); 3702 } 3703 3704 error = metaslab_alloc(spa, mc, zio->io_size, bp, 3705 zio->io_prop.zp_copies, zio->io_txg, NULL, flags, 3706 &zio->io_alloc_list, zio, zio->io_allocator); 3707 } 3708 3709 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) { 3710 if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) { 3711 zfs_dbgmsg("%s: metaslab allocation failure, " 3712 "trying ganging: zio %px, size %llu, error %d", 3713 spa_name(spa), zio, (u_longlong_t)zio->io_size, 3714 error); 3715 } 3716 return (zio_write_gang_block(zio, mc)); 3717 } 3718 if (error != 0) { 3719 if (error != ENOSPC || 3720 (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC)) { 3721 zfs_dbgmsg("%s: metaslab allocation failure: zio %px, " 3722 "size %llu, error %d", 3723 spa_name(spa), zio, (u_longlong_t)zio->io_size, 3724 error); 3725 } 3726 zio->io_error = error; 3727 } 3728 3729 return (zio); 3730 } 3731 3732 static zio_t * 3733 zio_dva_free(zio_t *zio) 3734 { 3735 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE); 3736 3737 return (zio); 3738 } 3739 3740 static zio_t * 3741 zio_dva_claim(zio_t *zio) 3742 { 3743 int error; 3744 3745 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg); 3746 if (error) 3747 zio->io_error = error; 3748 3749 return (zio); 3750 } 3751 3752 /* 3753 * Undo an allocation. This is used by zio_done() when an I/O fails 3754 * and we want to give back the block we just allocated. 3755 * This handles both normal blocks and gang blocks. 3756 */ 3757 static void 3758 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp) 3759 { 3760 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp)); 3761 ASSERT(zio->io_bp_override == NULL); 3762 3763 if (!BP_IS_HOLE(bp)) 3764 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE); 3765 3766 if (gn != NULL) { 3767 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 3768 zio_dva_unallocate(zio, gn->gn_child[g], 3769 &gn->gn_gbh->zg_blkptr[g]); 3770 } 3771 } 3772 } 3773 3774 /* 3775 * Try to allocate an intent log block. Return 0 on success, errno on failure. 3776 */ 3777 int 3778 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp, 3779 uint64_t size, boolean_t *slog) 3780 { 3781 int error = 1; 3782 zio_alloc_list_t io_alloc_list; 3783 3784 ASSERT(txg > spa_syncing_txg(spa)); 3785 3786 metaslab_trace_init(&io_alloc_list); 3787 3788 /* 3789 * Block pointer fields are useful to metaslabs for stats and debugging. 3790 * Fill in the obvious ones before calling into metaslab_alloc(). 3791 */ 3792 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 3793 BP_SET_PSIZE(new_bp, size); 3794 BP_SET_LEVEL(new_bp, 0); 3795 3796 /* 3797 * When allocating a zil block, we don't have information about 3798 * the final destination of the block except the objset it's part 3799 * of, so we just hash the objset ID to pick the allocator to get 3800 * some parallelism. 3801 */ 3802 int flags = METASLAB_ZIL; 3803 int allocator = (uint_t)cityhash4(0, 0, 0, 3804 os->os_dsl_dataset->ds_object) % spa->spa_alloc_count; 3805 error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1, 3806 txg, NULL, flags, &io_alloc_list, NULL, allocator); 3807 *slog = (error == 0); 3808 if (error != 0) { 3809 error = metaslab_alloc(spa, spa_embedded_log_class(spa), size, 3810 new_bp, 1, txg, NULL, flags, 3811 &io_alloc_list, NULL, allocator); 3812 } 3813 if (error != 0) { 3814 error = metaslab_alloc(spa, spa_normal_class(spa), size, 3815 new_bp, 1, txg, NULL, flags, 3816 &io_alloc_list, NULL, allocator); 3817 } 3818 metaslab_trace_fini(&io_alloc_list); 3819 3820 if (error == 0) { 3821 BP_SET_LSIZE(new_bp, size); 3822 BP_SET_PSIZE(new_bp, size); 3823 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF); 3824 BP_SET_CHECKSUM(new_bp, 3825 spa_version(spa) >= SPA_VERSION_SLIM_ZIL 3826 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG); 3827 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 3828 BP_SET_LEVEL(new_bp, 0); 3829 BP_SET_DEDUP(new_bp, 0); 3830 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER); 3831 3832 /* 3833 * encrypted blocks will require an IV and salt. We generate 3834 * these now since we will not be rewriting the bp at 3835 * rewrite time. 3836 */ 3837 if (os->os_encrypted) { 3838 uint8_t iv[ZIO_DATA_IV_LEN]; 3839 uint8_t salt[ZIO_DATA_SALT_LEN]; 3840 3841 BP_SET_CRYPT(new_bp, B_TRUE); 3842 VERIFY0(spa_crypt_get_salt(spa, 3843 dmu_objset_id(os), salt)); 3844 VERIFY0(zio_crypt_generate_iv(iv)); 3845 3846 zio_crypt_encode_params_bp(new_bp, salt, iv); 3847 } 3848 } else { 3849 zfs_dbgmsg("%s: zil block allocation failure: " 3850 "size %llu, error %d", spa_name(spa), (u_longlong_t)size, 3851 error); 3852 } 3853 3854 return (error); 3855 } 3856 3857 /* 3858 * ========================================================================== 3859 * Read and write to physical devices 3860 * ========================================================================== 3861 */ 3862 3863 /* 3864 * Issue an I/O to the underlying vdev. Typically the issue pipeline 3865 * stops after this stage and will resume upon I/O completion. 3866 * However, there are instances where the vdev layer may need to 3867 * continue the pipeline when an I/O was not issued. Since the I/O 3868 * that was sent to the vdev layer might be different than the one 3869 * currently active in the pipeline (see vdev_queue_io()), we explicitly 3870 * force the underlying vdev layers to call either zio_execute() or 3871 * zio_interrupt() to ensure that the pipeline continues with the correct I/O. 3872 */ 3873 static zio_t * 3874 zio_vdev_io_start(zio_t *zio) 3875 { 3876 vdev_t *vd = zio->io_vd; 3877 uint64_t align; 3878 spa_t *spa = zio->io_spa; 3879 3880 zio->io_delay = 0; 3881 3882 ASSERT(zio->io_error == 0); 3883 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0); 3884 3885 if (vd == NULL) { 3886 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 3887 spa_config_enter(spa, SCL_ZIO, zio, RW_READER); 3888 3889 /* 3890 * The mirror_ops handle multiple DVAs in a single BP. 3891 */ 3892 vdev_mirror_ops.vdev_op_io_start(zio); 3893 return (NULL); 3894 } 3895 3896 ASSERT3P(zio->io_logical, !=, zio); 3897 if (zio->io_type == ZIO_TYPE_WRITE) { 3898 ASSERT(spa->spa_trust_config); 3899 3900 /* 3901 * Note: the code can handle other kinds of writes, 3902 * but we don't expect them. 3903 */ 3904 if (zio->io_vd->vdev_noalloc) { 3905 ASSERT(zio->io_flags & 3906 (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL | 3907 ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE)); 3908 } 3909 } 3910 3911 align = 1ULL << vd->vdev_top->vdev_ashift; 3912 3913 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) && 3914 P2PHASE(zio->io_size, align) != 0) { 3915 /* Transform logical writes to be a full physical block size. */ 3916 uint64_t asize = P2ROUNDUP(zio->io_size, align); 3917 abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize); 3918 ASSERT(vd == vd->vdev_top); 3919 if (zio->io_type == ZIO_TYPE_WRITE) { 3920 abd_copy(abuf, zio->io_abd, zio->io_size); 3921 abd_zero_off(abuf, zio->io_size, asize - zio->io_size); 3922 } 3923 zio_push_transform(zio, abuf, asize, asize, zio_subblock); 3924 } 3925 3926 /* 3927 * If this is not a physical io, make sure that it is properly aligned 3928 * before proceeding. 3929 */ 3930 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) { 3931 ASSERT0(P2PHASE(zio->io_offset, align)); 3932 ASSERT0(P2PHASE(zio->io_size, align)); 3933 } else { 3934 /* 3935 * For physical writes, we allow 512b aligned writes and assume 3936 * the device will perform a read-modify-write as necessary. 3937 */ 3938 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE)); 3939 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE)); 3940 } 3941 3942 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa)); 3943 3944 /* 3945 * If this is a repair I/O, and there's no self-healing involved -- 3946 * that is, we're just resilvering what we expect to resilver -- 3947 * then don't do the I/O unless zio's txg is actually in vd's DTL. 3948 * This prevents spurious resilvering. 3949 * 3950 * There are a few ways that we can end up creating these spurious 3951 * resilver i/os: 3952 * 3953 * 1. A resilver i/o will be issued if any DVA in the BP has a 3954 * dirty DTL. The mirror code will issue resilver writes to 3955 * each DVA, including the one(s) that are not on vdevs with dirty 3956 * DTLs. 3957 * 3958 * 2. With nested replication, which happens when we have a 3959 * "replacing" or "spare" vdev that's a child of a mirror or raidz. 3960 * For example, given mirror(replacing(A+B), C), it's likely that 3961 * only A is out of date (it's the new device). In this case, we'll 3962 * read from C, then use the data to resilver A+B -- but we don't 3963 * actually want to resilver B, just A. The top-level mirror has no 3964 * way to know this, so instead we just discard unnecessary repairs 3965 * as we work our way down the vdev tree. 3966 * 3967 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc. 3968 * The same logic applies to any form of nested replication: ditto 3969 * + mirror, RAID-Z + replacing, etc. 3970 * 3971 * However, indirect vdevs point off to other vdevs which may have 3972 * DTL's, so we never bypass them. The child i/os on concrete vdevs 3973 * will be properly bypassed instead. 3974 * 3975 * Leaf DTL_PARTIAL can be empty when a legitimate write comes from 3976 * a dRAID spare vdev. For example, when a dRAID spare is first 3977 * used, its spare blocks need to be written to but the leaf vdev's 3978 * of such blocks can have empty DTL_PARTIAL. 3979 * 3980 * There seemed no clean way to allow such writes while bypassing 3981 * spurious ones. At this point, just avoid all bypassing for dRAID 3982 * for correctness. 3983 */ 3984 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) && 3985 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) && 3986 zio->io_txg != 0 && /* not a delegated i/o */ 3987 vd->vdev_ops != &vdev_indirect_ops && 3988 vd->vdev_top->vdev_ops != &vdev_draid_ops && 3989 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) { 3990 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 3991 zio_vdev_io_bypass(zio); 3992 return (zio); 3993 } 3994 3995 /* 3996 * Select the next best leaf I/O to process. Distributed spares are 3997 * excluded since they dispatch the I/O directly to a leaf vdev after 3998 * applying the dRAID mapping. 3999 */ 4000 if (vd->vdev_ops->vdev_op_leaf && 4001 vd->vdev_ops != &vdev_draid_spare_ops && 4002 (zio->io_type == ZIO_TYPE_READ || 4003 zio->io_type == ZIO_TYPE_WRITE || 4004 zio->io_type == ZIO_TYPE_TRIM)) { 4005 4006 if ((zio = vdev_queue_io(zio)) == NULL) 4007 return (NULL); 4008 4009 if (!vdev_accessible(vd, zio)) { 4010 zio->io_error = SET_ERROR(ENXIO); 4011 zio_interrupt(zio); 4012 return (NULL); 4013 } 4014 zio->io_delay = gethrtime(); 4015 } 4016 4017 vd->vdev_ops->vdev_op_io_start(zio); 4018 return (NULL); 4019 } 4020 4021 static zio_t * 4022 zio_vdev_io_done(zio_t *zio) 4023 { 4024 vdev_t *vd = zio->io_vd; 4025 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops; 4026 boolean_t unexpected_error = B_FALSE; 4027 4028 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) { 4029 return (NULL); 4030 } 4031 4032 ASSERT(zio->io_type == ZIO_TYPE_READ || 4033 zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM); 4034 4035 if (zio->io_delay) 4036 zio->io_delay = gethrtime() - zio->io_delay; 4037 4038 if (vd != NULL && vd->vdev_ops->vdev_op_leaf && 4039 vd->vdev_ops != &vdev_draid_spare_ops) { 4040 vdev_queue_io_done(zio); 4041 4042 if (zio_injection_enabled && zio->io_error == 0) 4043 zio->io_error = zio_handle_device_injections(vd, zio, 4044 EIO, EILSEQ); 4045 4046 if (zio_injection_enabled && zio->io_error == 0) 4047 zio->io_error = zio_handle_label_injection(zio, EIO); 4048 4049 if (zio->io_error && zio->io_type != ZIO_TYPE_TRIM) { 4050 if (!vdev_accessible(vd, zio)) { 4051 zio->io_error = SET_ERROR(ENXIO); 4052 } else { 4053 unexpected_error = B_TRUE; 4054 } 4055 } 4056 } 4057 4058 ops->vdev_op_io_done(zio); 4059 4060 if (unexpected_error && vd->vdev_remove_wanted == B_FALSE) 4061 VERIFY(vdev_probe(vd, zio) == NULL); 4062 4063 return (zio); 4064 } 4065 4066 /* 4067 * This function is used to change the priority of an existing zio that is 4068 * currently in-flight. This is used by the arc to upgrade priority in the 4069 * event that a demand read is made for a block that is currently queued 4070 * as a scrub or async read IO. Otherwise, the high priority read request 4071 * would end up having to wait for the lower priority IO. 4072 */ 4073 void 4074 zio_change_priority(zio_t *pio, zio_priority_t priority) 4075 { 4076 zio_t *cio, *cio_next; 4077 zio_link_t *zl = NULL; 4078 4079 ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 4080 4081 if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) { 4082 vdev_queue_change_io_priority(pio, priority); 4083 } else { 4084 pio->io_priority = priority; 4085 } 4086 4087 mutex_enter(&pio->io_lock); 4088 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 4089 cio_next = zio_walk_children(pio, &zl); 4090 zio_change_priority(cio, priority); 4091 } 4092 mutex_exit(&pio->io_lock); 4093 } 4094 4095 /* 4096 * For non-raidz ZIOs, we can just copy aside the bad data read from the 4097 * disk, and use that to finish the checksum ereport later. 4098 */ 4099 static void 4100 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr, 4101 const abd_t *good_buf) 4102 { 4103 /* no processing needed */ 4104 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE); 4105 } 4106 4107 void 4108 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr) 4109 { 4110 void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size); 4111 4112 abd_copy(abd, zio->io_abd, zio->io_size); 4113 4114 zcr->zcr_cbinfo = zio->io_size; 4115 zcr->zcr_cbdata = abd; 4116 zcr->zcr_finish = zio_vsd_default_cksum_finish; 4117 zcr->zcr_free = zio_abd_free; 4118 } 4119 4120 static zio_t * 4121 zio_vdev_io_assess(zio_t *zio) 4122 { 4123 vdev_t *vd = zio->io_vd; 4124 4125 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) { 4126 return (NULL); 4127 } 4128 4129 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 4130 spa_config_exit(zio->io_spa, SCL_ZIO, zio); 4131 4132 if (zio->io_vsd != NULL) { 4133 zio->io_vsd_ops->vsd_free(zio); 4134 zio->io_vsd = NULL; 4135 } 4136 4137 if (zio_injection_enabled && zio->io_error == 0) 4138 zio->io_error = zio_handle_fault_injection(zio, EIO); 4139 4140 /* 4141 * If the I/O failed, determine whether we should attempt to retry it. 4142 * 4143 * On retry, we cut in line in the issue queue, since we don't want 4144 * compression/checksumming/etc. work to prevent our (cheap) IO reissue. 4145 */ 4146 if (zio->io_error && vd == NULL && 4147 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) { 4148 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */ 4149 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */ 4150 zio->io_error = 0; 4151 zio->io_flags |= ZIO_FLAG_IO_RETRY | ZIO_FLAG_DONT_AGGREGATE; 4152 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1; 4153 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, 4154 zio_requeue_io_start_cut_in_line); 4155 return (NULL); 4156 } 4157 4158 /* 4159 * If we got an error on a leaf device, convert it to ENXIO 4160 * if the device is not accessible at all. 4161 */ 4162 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf && 4163 !vdev_accessible(vd, zio)) 4164 zio->io_error = SET_ERROR(ENXIO); 4165 4166 /* 4167 * If we can't write to an interior vdev (mirror or RAID-Z), 4168 * set vdev_cant_write so that we stop trying to allocate from it. 4169 */ 4170 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE && 4171 vd != NULL && !vd->vdev_ops->vdev_op_leaf) { 4172 vdev_dbgmsg(vd, "zio_vdev_io_assess(zio=%px) setting " 4173 "cant_write=TRUE due to write failure with ENXIO", 4174 zio); 4175 vd->vdev_cant_write = B_TRUE; 4176 } 4177 4178 /* 4179 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future 4180 * attempts will ever succeed. In this case we set a persistent 4181 * boolean flag so that we don't bother with it in the future. 4182 */ 4183 if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) && 4184 zio->io_type == ZIO_TYPE_IOCTL && 4185 zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL) 4186 vd->vdev_nowritecache = B_TRUE; 4187 4188 if (zio->io_error) 4189 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 4190 4191 return (zio); 4192 } 4193 4194 void 4195 zio_vdev_io_reissue(zio_t *zio) 4196 { 4197 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 4198 ASSERT(zio->io_error == 0); 4199 4200 zio->io_stage >>= 1; 4201 } 4202 4203 void 4204 zio_vdev_io_redone(zio_t *zio) 4205 { 4206 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE); 4207 4208 zio->io_stage >>= 1; 4209 } 4210 4211 void 4212 zio_vdev_io_bypass(zio_t *zio) 4213 { 4214 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 4215 ASSERT(zio->io_error == 0); 4216 4217 zio->io_flags |= ZIO_FLAG_IO_BYPASS; 4218 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1; 4219 } 4220 4221 /* 4222 * ========================================================================== 4223 * Encrypt and store encryption parameters 4224 * ========================================================================== 4225 */ 4226 4227 4228 /* 4229 * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for 4230 * managing the storage of encryption parameters and passing them to the 4231 * lower-level encryption functions. 4232 */ 4233 static zio_t * 4234 zio_encrypt(zio_t *zio) 4235 { 4236 zio_prop_t *zp = &zio->io_prop; 4237 spa_t *spa = zio->io_spa; 4238 blkptr_t *bp = zio->io_bp; 4239 uint64_t psize = BP_GET_PSIZE(bp); 4240 uint64_t dsobj = zio->io_bookmark.zb_objset; 4241 dmu_object_type_t ot = BP_GET_TYPE(bp); 4242 void *enc_buf = NULL; 4243 abd_t *eabd = NULL; 4244 uint8_t salt[ZIO_DATA_SALT_LEN]; 4245 uint8_t iv[ZIO_DATA_IV_LEN]; 4246 uint8_t mac[ZIO_DATA_MAC_LEN]; 4247 boolean_t no_crypt = B_FALSE; 4248 4249 /* the root zio already encrypted the data */ 4250 if (zio->io_child_type == ZIO_CHILD_GANG) 4251 return (zio); 4252 4253 /* only ZIL blocks are re-encrypted on rewrite */ 4254 if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG) 4255 return (zio); 4256 4257 if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) { 4258 BP_SET_CRYPT(bp, B_FALSE); 4259 return (zio); 4260 } 4261 4262 /* if we are doing raw encryption set the provided encryption params */ 4263 if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) { 4264 ASSERT0(BP_GET_LEVEL(bp)); 4265 BP_SET_CRYPT(bp, B_TRUE); 4266 BP_SET_BYTEORDER(bp, zp->zp_byteorder); 4267 if (ot != DMU_OT_OBJSET) 4268 zio_crypt_encode_mac_bp(bp, zp->zp_mac); 4269 4270 /* dnode blocks must be written out in the provided byteorder */ 4271 if (zp->zp_byteorder != ZFS_HOST_BYTEORDER && 4272 ot == DMU_OT_DNODE) { 4273 void *bswap_buf = zio_buf_alloc(psize); 4274 abd_t *babd = abd_get_from_buf(bswap_buf, psize); 4275 4276 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 4277 abd_copy_to_buf(bswap_buf, zio->io_abd, psize); 4278 dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf, 4279 psize); 4280 4281 abd_take_ownership_of_buf(babd, B_TRUE); 4282 zio_push_transform(zio, babd, psize, psize, NULL); 4283 } 4284 4285 if (DMU_OT_IS_ENCRYPTED(ot)) 4286 zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv); 4287 return (zio); 4288 } 4289 4290 /* indirect blocks only maintain a cksum of the lower level MACs */ 4291 if (BP_GET_LEVEL(bp) > 0) { 4292 BP_SET_CRYPT(bp, B_TRUE); 4293 VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE, 4294 zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp), 4295 mac)); 4296 zio_crypt_encode_mac_bp(bp, mac); 4297 return (zio); 4298 } 4299 4300 /* 4301 * Objset blocks are a special case since they have 2 256-bit MACs 4302 * embedded within them. 4303 */ 4304 if (ot == DMU_OT_OBJSET) { 4305 ASSERT0(DMU_OT_IS_ENCRYPTED(ot)); 4306 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 4307 BP_SET_CRYPT(bp, B_TRUE); 4308 VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj, 4309 zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp))); 4310 return (zio); 4311 } 4312 4313 /* unencrypted object types are only authenticated with a MAC */ 4314 if (!DMU_OT_IS_ENCRYPTED(ot)) { 4315 BP_SET_CRYPT(bp, B_TRUE); 4316 VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj, 4317 zio->io_abd, psize, mac)); 4318 zio_crypt_encode_mac_bp(bp, mac); 4319 return (zio); 4320 } 4321 4322 /* 4323 * Later passes of sync-to-convergence may decide to rewrite data 4324 * in place to avoid more disk reallocations. This presents a problem 4325 * for encryption because this constitutes rewriting the new data with 4326 * the same encryption key and IV. However, this only applies to blocks 4327 * in the MOS (particularly the spacemaps) and we do not encrypt the 4328 * MOS. We assert that the zio is allocating or an intent log write 4329 * to enforce this. 4330 */ 4331 ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG); 4332 ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG); 4333 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION)); 4334 ASSERT3U(psize, !=, 0); 4335 4336 enc_buf = zio_buf_alloc(psize); 4337 eabd = abd_get_from_buf(enc_buf, psize); 4338 abd_take_ownership_of_buf(eabd, B_TRUE); 4339 4340 /* 4341 * For an explanation of what encryption parameters are stored 4342 * where, see the block comment in zio_crypt.c. 4343 */ 4344 if (ot == DMU_OT_INTENT_LOG) { 4345 zio_crypt_decode_params_bp(bp, salt, iv); 4346 } else { 4347 BP_SET_CRYPT(bp, B_TRUE); 4348 } 4349 4350 /* Perform the encryption. This should not fail */ 4351 VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark, 4352 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), 4353 salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt)); 4354 4355 /* encode encryption metadata into the bp */ 4356 if (ot == DMU_OT_INTENT_LOG) { 4357 /* 4358 * ZIL blocks store the MAC in the embedded checksum, so the 4359 * transform must always be applied. 4360 */ 4361 zio_crypt_encode_mac_zil(enc_buf, mac); 4362 zio_push_transform(zio, eabd, psize, psize, NULL); 4363 } else { 4364 BP_SET_CRYPT(bp, B_TRUE); 4365 zio_crypt_encode_params_bp(bp, salt, iv); 4366 zio_crypt_encode_mac_bp(bp, mac); 4367 4368 if (no_crypt) { 4369 ASSERT3U(ot, ==, DMU_OT_DNODE); 4370 abd_free(eabd); 4371 } else { 4372 zio_push_transform(zio, eabd, psize, psize, NULL); 4373 } 4374 } 4375 4376 return (zio); 4377 } 4378 4379 /* 4380 * ========================================================================== 4381 * Generate and verify checksums 4382 * ========================================================================== 4383 */ 4384 static zio_t * 4385 zio_checksum_generate(zio_t *zio) 4386 { 4387 blkptr_t *bp = zio->io_bp; 4388 enum zio_checksum checksum; 4389 4390 if (bp == NULL) { 4391 /* 4392 * This is zio_write_phys(). 4393 * We're either generating a label checksum, or none at all. 4394 */ 4395 checksum = zio->io_prop.zp_checksum; 4396 4397 if (checksum == ZIO_CHECKSUM_OFF) 4398 return (zio); 4399 4400 ASSERT(checksum == ZIO_CHECKSUM_LABEL); 4401 } else { 4402 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) { 4403 ASSERT(!IO_IS_ALLOCATING(zio)); 4404 checksum = ZIO_CHECKSUM_GANG_HEADER; 4405 } else { 4406 checksum = BP_GET_CHECKSUM(bp); 4407 } 4408 } 4409 4410 zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size); 4411 4412 return (zio); 4413 } 4414 4415 static zio_t * 4416 zio_checksum_verify(zio_t *zio) 4417 { 4418 zio_bad_cksum_t info; 4419 blkptr_t *bp = zio->io_bp; 4420 int error; 4421 4422 ASSERT(zio->io_vd != NULL); 4423 4424 if (bp == NULL) { 4425 /* 4426 * This is zio_read_phys(). 4427 * We're either verifying a label checksum, or nothing at all. 4428 */ 4429 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF) 4430 return (zio); 4431 4432 ASSERT3U(zio->io_prop.zp_checksum, ==, ZIO_CHECKSUM_LABEL); 4433 } 4434 4435 if ((error = zio_checksum_error(zio, &info)) != 0) { 4436 zio->io_error = error; 4437 if (error == ECKSUM && 4438 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 4439 mutex_enter(&zio->io_vd->vdev_stat_lock); 4440 zio->io_vd->vdev_stat.vs_checksum_errors++; 4441 mutex_exit(&zio->io_vd->vdev_stat_lock); 4442 (void) zfs_ereport_start_checksum(zio->io_spa, 4443 zio->io_vd, &zio->io_bookmark, zio, 4444 zio->io_offset, zio->io_size, &info); 4445 } 4446 } 4447 4448 return (zio); 4449 } 4450 4451 /* 4452 * Called by RAID-Z to ensure we don't compute the checksum twice. 4453 */ 4454 void 4455 zio_checksum_verified(zio_t *zio) 4456 { 4457 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 4458 } 4459 4460 /* 4461 * ========================================================================== 4462 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other. 4463 * An error of 0 indicates success. ENXIO indicates whole-device failure, 4464 * which may be transient (e.g. unplugged) or permanent. ECKSUM and EIO 4465 * indicate errors that are specific to one I/O, and most likely permanent. 4466 * Any other error is presumed to be worse because we weren't expecting it. 4467 * ========================================================================== 4468 */ 4469 int 4470 zio_worst_error(int e1, int e2) 4471 { 4472 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO }; 4473 int r1, r2; 4474 4475 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++) 4476 if (e1 == zio_error_rank[r1]) 4477 break; 4478 4479 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++) 4480 if (e2 == zio_error_rank[r2]) 4481 break; 4482 4483 return (r1 > r2 ? e1 : e2); 4484 } 4485 4486 /* 4487 * ========================================================================== 4488 * I/O completion 4489 * ========================================================================== 4490 */ 4491 static zio_t * 4492 zio_ready(zio_t *zio) 4493 { 4494 blkptr_t *bp = zio->io_bp; 4495 zio_t *pio, *pio_next; 4496 zio_link_t *zl = NULL; 4497 4498 if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT | 4499 ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT, ZIO_WAIT_READY)) { 4500 return (NULL); 4501 } 4502 4503 if (zio->io_ready) { 4504 ASSERT(IO_IS_ALLOCATING(zio)); 4505 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) || 4506 (zio->io_flags & ZIO_FLAG_NOPWRITE)); 4507 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0); 4508 4509 zio->io_ready(zio); 4510 } 4511 4512 #ifdef ZFS_DEBUG 4513 if (bp != NULL && bp != &zio->io_bp_copy) 4514 zio->io_bp_copy = *bp; 4515 #endif 4516 4517 if (zio->io_error != 0) { 4518 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 4519 4520 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 4521 ASSERT(IO_IS_ALLOCATING(zio)); 4522 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 4523 ASSERT(zio->io_metaslab_class != NULL); 4524 ASSERT(ZIO_HAS_ALLOCATOR(zio)); 4525 4526 /* 4527 * We were unable to allocate anything, unreserve and 4528 * issue the next I/O to allocate. 4529 */ 4530 metaslab_class_throttle_unreserve( 4531 zio->io_metaslab_class, zio->io_prop.zp_copies, 4532 zio->io_allocator, zio); 4533 zio_allocate_dispatch(zio->io_spa, zio->io_allocator); 4534 } 4535 } 4536 4537 mutex_enter(&zio->io_lock); 4538 zio->io_state[ZIO_WAIT_READY] = 1; 4539 pio = zio_walk_parents(zio, &zl); 4540 mutex_exit(&zio->io_lock); 4541 4542 /* 4543 * As we notify zio's parents, new parents could be added. 4544 * New parents go to the head of zio's io_parent_list, however, 4545 * so we will (correctly) not notify them. The remainder of zio's 4546 * io_parent_list, from 'pio_next' onward, cannot change because 4547 * all parents must wait for us to be done before they can be done. 4548 */ 4549 for (; pio != NULL; pio = pio_next) { 4550 pio_next = zio_walk_parents(zio, &zl); 4551 zio_notify_parent(pio, zio, ZIO_WAIT_READY, NULL); 4552 } 4553 4554 if (zio->io_flags & ZIO_FLAG_NODATA) { 4555 if (bp != NULL && BP_IS_GANG(bp)) { 4556 zio->io_flags &= ~ZIO_FLAG_NODATA; 4557 } else { 4558 ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE); 4559 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 4560 } 4561 } 4562 4563 if (zio_injection_enabled && 4564 zio->io_spa->spa_syncing_txg == zio->io_txg) 4565 zio_handle_ignored_writes(zio); 4566 4567 return (zio); 4568 } 4569 4570 /* 4571 * Update the allocation throttle accounting. 4572 */ 4573 static void 4574 zio_dva_throttle_done(zio_t *zio) 4575 { 4576 zio_t *lio __maybe_unused = zio->io_logical; 4577 zio_t *pio = zio_unique_parent(zio); 4578 vdev_t *vd = zio->io_vd; 4579 int flags = METASLAB_ASYNC_ALLOC; 4580 4581 ASSERT3P(zio->io_bp, !=, NULL); 4582 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE); 4583 ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE); 4584 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); 4585 ASSERT(vd != NULL); 4586 ASSERT3P(vd, ==, vd->vdev_top); 4587 ASSERT(zio_injection_enabled || !(zio->io_flags & ZIO_FLAG_IO_RETRY)); 4588 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR)); 4589 ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING); 4590 ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE)); 4591 ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA)); 4592 4593 /* 4594 * Parents of gang children can have two flavors -- ones that 4595 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set) 4596 * and ones that allocated the constituent blocks. The allocation 4597 * throttle needs to know the allocating parent zio so we must find 4598 * it here. 4599 */ 4600 if (pio->io_child_type == ZIO_CHILD_GANG) { 4601 /* 4602 * If our parent is a rewrite gang child then our grandparent 4603 * would have been the one that performed the allocation. 4604 */ 4605 if (pio->io_flags & ZIO_FLAG_IO_REWRITE) 4606 pio = zio_unique_parent(pio); 4607 flags |= METASLAB_GANG_CHILD; 4608 } 4609 4610 ASSERT(IO_IS_ALLOCATING(pio)); 4611 ASSERT(ZIO_HAS_ALLOCATOR(pio)); 4612 ASSERT3P(zio, !=, zio->io_logical); 4613 ASSERT(zio->io_logical != NULL); 4614 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR)); 4615 ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE); 4616 ASSERT(zio->io_metaslab_class != NULL); 4617 4618 mutex_enter(&pio->io_lock); 4619 metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags, 4620 pio->io_allocator, B_TRUE); 4621 mutex_exit(&pio->io_lock); 4622 4623 metaslab_class_throttle_unreserve(zio->io_metaslab_class, 1, 4624 pio->io_allocator, pio); 4625 4626 /* 4627 * Call into the pipeline to see if there is more work that 4628 * needs to be done. If there is work to be done it will be 4629 * dispatched to another taskq thread. 4630 */ 4631 zio_allocate_dispatch(zio->io_spa, pio->io_allocator); 4632 } 4633 4634 static zio_t * 4635 zio_done(zio_t *zio) 4636 { 4637 /* 4638 * Always attempt to keep stack usage minimal here since 4639 * we can be called recursively up to 19 levels deep. 4640 */ 4641 const uint64_t psize = zio->io_size; 4642 zio_t *pio, *pio_next; 4643 zio_link_t *zl = NULL; 4644 4645 /* 4646 * If our children haven't all completed, 4647 * wait for them and then repeat this pipeline stage. 4648 */ 4649 if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) { 4650 return (NULL); 4651 } 4652 4653 /* 4654 * If the allocation throttle is enabled, then update the accounting. 4655 * We only track child I/Os that are part of an allocating async 4656 * write. We must do this since the allocation is performed 4657 * by the logical I/O but the actual write is done by child I/Os. 4658 */ 4659 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING && 4660 zio->io_child_type == ZIO_CHILD_VDEV) { 4661 ASSERT(zio->io_metaslab_class != NULL); 4662 ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled); 4663 zio_dva_throttle_done(zio); 4664 } 4665 4666 /* 4667 * If the allocation throttle is enabled, verify that 4668 * we have decremented the refcounts for every I/O that was throttled. 4669 */ 4670 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 4671 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 4672 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 4673 ASSERT(zio->io_bp != NULL); 4674 ASSERT(ZIO_HAS_ALLOCATOR(zio)); 4675 4676 metaslab_group_alloc_verify(zio->io_spa, zio->io_bp, zio, 4677 zio->io_allocator); 4678 VERIFY(zfs_refcount_not_held(&zio->io_metaslab_class-> 4679 mc_allocator[zio->io_allocator].mca_alloc_slots, zio)); 4680 } 4681 4682 4683 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 4684 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 4685 ASSERT(zio->io_children[c][w] == 0); 4686 4687 if (zio->io_bp != NULL && !BP_IS_EMBEDDED(zio->io_bp)) { 4688 ASSERT(zio->io_bp->blk_pad[0] == 0); 4689 ASSERT(zio->io_bp->blk_pad[1] == 0); 4690 ASSERT(memcmp(zio->io_bp, &zio->io_bp_copy, 4691 sizeof (blkptr_t)) == 0 || 4692 (zio->io_bp == zio_unique_parent(zio)->io_bp)); 4693 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) && 4694 zio->io_bp_override == NULL && 4695 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) { 4696 ASSERT3U(zio->io_prop.zp_copies, <=, 4697 BP_GET_NDVAS(zio->io_bp)); 4698 ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 || 4699 (BP_COUNT_GANG(zio->io_bp) == 4700 BP_GET_NDVAS(zio->io_bp))); 4701 } 4702 if (zio->io_flags & ZIO_FLAG_NOPWRITE) 4703 VERIFY(BP_EQUAL(zio->io_bp, &zio->io_bp_orig)); 4704 } 4705 4706 /* 4707 * If there were child vdev/gang/ddt errors, they apply to us now. 4708 */ 4709 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV); 4710 zio_inherit_child_errors(zio, ZIO_CHILD_GANG); 4711 zio_inherit_child_errors(zio, ZIO_CHILD_DDT); 4712 4713 /* 4714 * If the I/O on the transformed data was successful, generate any 4715 * checksum reports now while we still have the transformed data. 4716 */ 4717 if (zio->io_error == 0) { 4718 while (zio->io_cksum_report != NULL) { 4719 zio_cksum_report_t *zcr = zio->io_cksum_report; 4720 uint64_t align = zcr->zcr_align; 4721 uint64_t asize = P2ROUNDUP(psize, align); 4722 abd_t *adata = zio->io_abd; 4723 4724 if (adata != NULL && asize != psize) { 4725 adata = abd_alloc(asize, B_TRUE); 4726 abd_copy(adata, zio->io_abd, psize); 4727 abd_zero_off(adata, psize, asize - psize); 4728 } 4729 4730 zio->io_cksum_report = zcr->zcr_next; 4731 zcr->zcr_next = NULL; 4732 zcr->zcr_finish(zcr, adata); 4733 zfs_ereport_free_checksum(zcr); 4734 4735 if (adata != NULL && asize != psize) 4736 abd_free(adata); 4737 } 4738 } 4739 4740 zio_pop_transforms(zio); /* note: may set zio->io_error */ 4741 4742 vdev_stat_update(zio, psize); 4743 4744 /* 4745 * If this I/O is attached to a particular vdev is slow, exceeding 4746 * 30 seconds to complete, post an error described the I/O delay. 4747 * We ignore these errors if the device is currently unavailable. 4748 */ 4749 if (zio->io_delay >= MSEC2NSEC(zio_slow_io_ms)) { 4750 if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) { 4751 /* 4752 * We want to only increment our slow IO counters if 4753 * the IO is valid (i.e. not if the drive is removed). 4754 * 4755 * zfs_ereport_post() will also do these checks, but 4756 * it can also ratelimit and have other failures, so we 4757 * need to increment the slow_io counters independent 4758 * of it. 4759 */ 4760 if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY, 4761 zio->io_spa, zio->io_vd, zio)) { 4762 mutex_enter(&zio->io_vd->vdev_stat_lock); 4763 zio->io_vd->vdev_stat.vs_slow_ios++; 4764 mutex_exit(&zio->io_vd->vdev_stat_lock); 4765 4766 (void) zfs_ereport_post(FM_EREPORT_ZFS_DELAY, 4767 zio->io_spa, zio->io_vd, &zio->io_bookmark, 4768 zio, 0); 4769 } 4770 } 4771 } 4772 4773 if (zio->io_error) { 4774 /* 4775 * If this I/O is attached to a particular vdev, 4776 * generate an error message describing the I/O failure 4777 * at the block level. We ignore these errors if the 4778 * device is currently unavailable. 4779 */ 4780 if (zio->io_error != ECKSUM && zio->io_vd != NULL && 4781 !vdev_is_dead(zio->io_vd)) { 4782 int ret = zfs_ereport_post(FM_EREPORT_ZFS_IO, 4783 zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0); 4784 if (ret != EALREADY) { 4785 mutex_enter(&zio->io_vd->vdev_stat_lock); 4786 if (zio->io_type == ZIO_TYPE_READ) 4787 zio->io_vd->vdev_stat.vs_read_errors++; 4788 else if (zio->io_type == ZIO_TYPE_WRITE) 4789 zio->io_vd->vdev_stat.vs_write_errors++; 4790 mutex_exit(&zio->io_vd->vdev_stat_lock); 4791 } 4792 } 4793 4794 if ((zio->io_error == EIO || !(zio->io_flags & 4795 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) && 4796 zio == zio->io_logical) { 4797 /* 4798 * For logical I/O requests, tell the SPA to log the 4799 * error and generate a logical data ereport. 4800 */ 4801 spa_log_error(zio->io_spa, &zio->io_bookmark, 4802 &zio->io_bp->blk_birth); 4803 (void) zfs_ereport_post(FM_EREPORT_ZFS_DATA, 4804 zio->io_spa, NULL, &zio->io_bookmark, zio, 0); 4805 } 4806 } 4807 4808 if (zio->io_error && zio == zio->io_logical) { 4809 /* 4810 * Determine whether zio should be reexecuted. This will 4811 * propagate all the way to the root via zio_notify_parent(). 4812 */ 4813 ASSERT(zio->io_vd == NULL && zio->io_bp != NULL); 4814 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 4815 4816 if (IO_IS_ALLOCATING(zio) && 4817 !(zio->io_flags & ZIO_FLAG_CANFAIL)) { 4818 if (zio->io_error != ENOSPC) 4819 zio->io_reexecute |= ZIO_REEXECUTE_NOW; 4820 else 4821 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 4822 } 4823 4824 if ((zio->io_type == ZIO_TYPE_READ || 4825 zio->io_type == ZIO_TYPE_FREE) && 4826 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && 4827 zio->io_error == ENXIO && 4828 spa_load_state(zio->io_spa) == SPA_LOAD_NONE && 4829 spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE) 4830 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 4831 4832 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute) 4833 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 4834 4835 /* 4836 * Here is a possibly good place to attempt to do 4837 * either combinatorial reconstruction or error correction 4838 * based on checksums. It also might be a good place 4839 * to send out preliminary ereports before we suspend 4840 * processing. 4841 */ 4842 } 4843 4844 /* 4845 * If there were logical child errors, they apply to us now. 4846 * We defer this until now to avoid conflating logical child 4847 * errors with errors that happened to the zio itself when 4848 * updating vdev stats and reporting FMA events above. 4849 */ 4850 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL); 4851 4852 if ((zio->io_error || zio->io_reexecute) && 4853 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio && 4854 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE))) 4855 zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp); 4856 4857 zio_gang_tree_free(&zio->io_gang_tree); 4858 4859 /* 4860 * Godfather I/Os should never suspend. 4861 */ 4862 if ((zio->io_flags & ZIO_FLAG_GODFATHER) && 4863 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) 4864 zio->io_reexecute &= ~ZIO_REEXECUTE_SUSPEND; 4865 4866 if (zio->io_reexecute) { 4867 /* 4868 * This is a logical I/O that wants to reexecute. 4869 * 4870 * Reexecute is top-down. When an i/o fails, if it's not 4871 * the root, it simply notifies its parent and sticks around. 4872 * The parent, seeing that it still has children in zio_done(), 4873 * does the same. This percolates all the way up to the root. 4874 * The root i/o will reexecute or suspend the entire tree. 4875 * 4876 * This approach ensures that zio_reexecute() honors 4877 * all the original i/o dependency relationships, e.g. 4878 * parents not executing until children are ready. 4879 */ 4880 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 4881 4882 zio->io_gang_leader = NULL; 4883 4884 mutex_enter(&zio->io_lock); 4885 zio->io_state[ZIO_WAIT_DONE] = 1; 4886 mutex_exit(&zio->io_lock); 4887 4888 /* 4889 * "The Godfather" I/O monitors its children but is 4890 * not a true parent to them. It will track them through 4891 * the pipeline but severs its ties whenever they get into 4892 * trouble (e.g. suspended). This allows "The Godfather" 4893 * I/O to return status without blocking. 4894 */ 4895 zl = NULL; 4896 for (pio = zio_walk_parents(zio, &zl); pio != NULL; 4897 pio = pio_next) { 4898 zio_link_t *remove_zl = zl; 4899 pio_next = zio_walk_parents(zio, &zl); 4900 4901 if ((pio->io_flags & ZIO_FLAG_GODFATHER) && 4902 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) { 4903 zio_remove_child(pio, zio, remove_zl); 4904 /* 4905 * This is a rare code path, so we don't 4906 * bother with "next_to_execute". 4907 */ 4908 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, 4909 NULL); 4910 } 4911 } 4912 4913 if ((pio = zio_unique_parent(zio)) != NULL) { 4914 /* 4915 * We're not a root i/o, so there's nothing to do 4916 * but notify our parent. Don't propagate errors 4917 * upward since we haven't permanently failed yet. 4918 */ 4919 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 4920 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE; 4921 /* 4922 * This is a rare code path, so we don't bother with 4923 * "next_to_execute". 4924 */ 4925 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, NULL); 4926 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) { 4927 /* 4928 * We'd fail again if we reexecuted now, so suspend 4929 * until conditions improve (e.g. device comes online). 4930 */ 4931 zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR); 4932 } else { 4933 /* 4934 * Reexecution is potentially a huge amount of work. 4935 * Hand it off to the otherwise-unused claim taskq. 4936 */ 4937 ASSERT(taskq_empty_ent(&zio->io_tqent)); 4938 spa_taskq_dispatch_ent(zio->io_spa, 4939 ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE, 4940 zio_reexecute, zio, 0, &zio->io_tqent, NULL); 4941 } 4942 return (NULL); 4943 } 4944 4945 ASSERT(list_is_empty(&zio->io_child_list)); 4946 ASSERT(zio->io_reexecute == 0); 4947 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL)); 4948 4949 /* 4950 * Report any checksum errors, since the I/O is complete. 4951 */ 4952 while (zio->io_cksum_report != NULL) { 4953 zio_cksum_report_t *zcr = zio->io_cksum_report; 4954 zio->io_cksum_report = zcr->zcr_next; 4955 zcr->zcr_next = NULL; 4956 zcr->zcr_finish(zcr, NULL); 4957 zfs_ereport_free_checksum(zcr); 4958 } 4959 4960 /* 4961 * It is the responsibility of the done callback to ensure that this 4962 * particular zio is no longer discoverable for adoption, and as 4963 * such, cannot acquire any new parents. 4964 */ 4965 if (zio->io_done) 4966 zio->io_done(zio); 4967 4968 mutex_enter(&zio->io_lock); 4969 zio->io_state[ZIO_WAIT_DONE] = 1; 4970 mutex_exit(&zio->io_lock); 4971 4972 /* 4973 * We are done executing this zio. We may want to execute a parent 4974 * next. See the comment in zio_notify_parent(). 4975 */ 4976 zio_t *next_to_execute = NULL; 4977 zl = NULL; 4978 for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) { 4979 zio_link_t *remove_zl = zl; 4980 pio_next = zio_walk_parents(zio, &zl); 4981 zio_remove_child(pio, zio, remove_zl); 4982 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, &next_to_execute); 4983 } 4984 4985 if (zio->io_waiter != NULL) { 4986 mutex_enter(&zio->io_lock); 4987 zio->io_executor = NULL; 4988 cv_broadcast(&zio->io_cv); 4989 mutex_exit(&zio->io_lock); 4990 } else { 4991 zio_destroy(zio); 4992 } 4993 4994 return (next_to_execute); 4995 } 4996 4997 /* 4998 * ========================================================================== 4999 * I/O pipeline definition 5000 * ========================================================================== 5001 */ 5002 static zio_pipe_stage_t *zio_pipeline[] = { 5003 NULL, 5004 zio_read_bp_init, 5005 zio_write_bp_init, 5006 zio_free_bp_init, 5007 zio_issue_async, 5008 zio_write_compress, 5009 zio_encrypt, 5010 zio_checksum_generate, 5011 zio_nop_write, 5012 zio_brt_free, 5013 zio_ddt_read_start, 5014 zio_ddt_read_done, 5015 zio_ddt_write, 5016 zio_ddt_free, 5017 zio_gang_assemble, 5018 zio_gang_issue, 5019 zio_dva_throttle, 5020 zio_dva_allocate, 5021 zio_dva_free, 5022 zio_dva_claim, 5023 zio_ready, 5024 zio_vdev_io_start, 5025 zio_vdev_io_done, 5026 zio_vdev_io_assess, 5027 zio_checksum_verify, 5028 zio_done 5029 }; 5030 5031 5032 5033 5034 /* 5035 * Compare two zbookmark_phys_t's to see which we would reach first in a 5036 * pre-order traversal of the object tree. 5037 * 5038 * This is simple in every case aside from the meta-dnode object. For all other 5039 * objects, we traverse them in order (object 1 before object 2, and so on). 5040 * However, all of these objects are traversed while traversing object 0, since 5041 * the data it points to is the list of objects. Thus, we need to convert to a 5042 * canonical representation so we can compare meta-dnode bookmarks to 5043 * non-meta-dnode bookmarks. 5044 * 5045 * We do this by calculating "equivalents" for each field of the zbookmark. 5046 * zbookmarks outside of the meta-dnode use their own object and level, and 5047 * calculate the level 0 equivalent (the first L0 blkid that is contained in the 5048 * blocks this bookmark refers to) by multiplying their blkid by their span 5049 * (the number of L0 blocks contained within one block at their level). 5050 * zbookmarks inside the meta-dnode calculate their object equivalent 5051 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use 5052 * level + 1<<31 (any value larger than a level could ever be) for their level. 5053 * This causes them to always compare before a bookmark in their object 5054 * equivalent, compare appropriately to bookmarks in other objects, and to 5055 * compare appropriately to other bookmarks in the meta-dnode. 5056 */ 5057 int 5058 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2, 5059 const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2) 5060 { 5061 /* 5062 * These variables represent the "equivalent" values for the zbookmark, 5063 * after converting zbookmarks inside the meta dnode to their 5064 * normal-object equivalents. 5065 */ 5066 uint64_t zb1obj, zb2obj; 5067 uint64_t zb1L0, zb2L0; 5068 uint64_t zb1level, zb2level; 5069 5070 if (zb1->zb_object == zb2->zb_object && 5071 zb1->zb_level == zb2->zb_level && 5072 zb1->zb_blkid == zb2->zb_blkid) 5073 return (0); 5074 5075 IMPLY(zb1->zb_level > 0, ibs1 >= SPA_MINBLOCKSHIFT); 5076 IMPLY(zb2->zb_level > 0, ibs2 >= SPA_MINBLOCKSHIFT); 5077 5078 /* 5079 * BP_SPANB calculates the span in blocks. 5080 */ 5081 zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level); 5082 zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level); 5083 5084 if (zb1->zb_object == DMU_META_DNODE_OBJECT) { 5085 zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 5086 zb1L0 = 0; 5087 zb1level = zb1->zb_level + COMPARE_META_LEVEL; 5088 } else { 5089 zb1obj = zb1->zb_object; 5090 zb1level = zb1->zb_level; 5091 } 5092 5093 if (zb2->zb_object == DMU_META_DNODE_OBJECT) { 5094 zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 5095 zb2L0 = 0; 5096 zb2level = zb2->zb_level + COMPARE_META_LEVEL; 5097 } else { 5098 zb2obj = zb2->zb_object; 5099 zb2level = zb2->zb_level; 5100 } 5101 5102 /* Now that we have a canonical representation, do the comparison. */ 5103 if (zb1obj != zb2obj) 5104 return (zb1obj < zb2obj ? -1 : 1); 5105 else if (zb1L0 != zb2L0) 5106 return (zb1L0 < zb2L0 ? -1 : 1); 5107 else if (zb1level != zb2level) 5108 return (zb1level > zb2level ? -1 : 1); 5109 /* 5110 * This can (theoretically) happen if the bookmarks have the same object 5111 * and level, but different blkids, if the block sizes are not the same. 5112 * There is presently no way to change the indirect block sizes 5113 */ 5114 return (0); 5115 } 5116 5117 /* 5118 * This function checks the following: given that last_block is the place that 5119 * our traversal stopped last time, does that guarantee that we've visited 5120 * every node under subtree_root? Therefore, we can't just use the raw output 5121 * of zbookmark_compare. We have to pass in a modified version of 5122 * subtree_root; by incrementing the block id, and then checking whether 5123 * last_block is before or equal to that, we can tell whether or not having 5124 * visited last_block implies that all of subtree_root's children have been 5125 * visited. 5126 */ 5127 boolean_t 5128 zbookmark_subtree_completed(const dnode_phys_t *dnp, 5129 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block) 5130 { 5131 zbookmark_phys_t mod_zb = *subtree_root; 5132 mod_zb.zb_blkid++; 5133 ASSERT0(last_block->zb_level); 5134 5135 /* The objset_phys_t isn't before anything. */ 5136 if (dnp == NULL) 5137 return (B_FALSE); 5138 5139 /* 5140 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the 5141 * data block size in sectors, because that variable is only used if 5142 * the bookmark refers to a block in the meta-dnode. Since we don't 5143 * know without examining it what object it refers to, and there's no 5144 * harm in passing in this value in other cases, we always pass it in. 5145 * 5146 * We pass in 0 for the indirect block size shift because zb2 must be 5147 * level 0. The indirect block size is only used to calculate the span 5148 * of the bookmark, but since the bookmark must be level 0, the span is 5149 * always 1, so the math works out. 5150 * 5151 * If you make changes to how the zbookmark_compare code works, be sure 5152 * to make sure that this code still works afterwards. 5153 */ 5154 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift, 5155 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb, 5156 last_block) <= 0); 5157 } 5158 5159 /* 5160 * This function is similar to zbookmark_subtree_completed(), but returns true 5161 * if subtree_root is equal or ahead of last_block, i.e. still to be done. 5162 */ 5163 boolean_t 5164 zbookmark_subtree_tbd(const dnode_phys_t *dnp, 5165 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block) 5166 { 5167 ASSERT0(last_block->zb_level); 5168 if (dnp == NULL) 5169 return (B_FALSE); 5170 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift, 5171 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, subtree_root, 5172 last_block) >= 0); 5173 } 5174 5175 EXPORT_SYMBOL(zio_type_name); 5176 EXPORT_SYMBOL(zio_buf_alloc); 5177 EXPORT_SYMBOL(zio_data_buf_alloc); 5178 EXPORT_SYMBOL(zio_buf_free); 5179 EXPORT_SYMBOL(zio_data_buf_free); 5180 5181 ZFS_MODULE_PARAM(zfs_zio, zio_, slow_io_ms, INT, ZMOD_RW, 5182 "Max I/O completion time (milliseconds) before marking it as slow"); 5183 5184 ZFS_MODULE_PARAM(zfs_zio, zio_, requeue_io_start_cut_in_line, INT, ZMOD_RW, 5185 "Prioritize requeued I/O"); 5186 5187 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_deferred_free, UINT, ZMOD_RW, 5188 "Defer frees starting in this pass"); 5189 5190 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_dont_compress, UINT, ZMOD_RW, 5191 "Don't compress starting in this pass"); 5192 5193 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_rewrite, UINT, ZMOD_RW, 5194 "Rewrite new bps starting in this pass"); 5195 5196 ZFS_MODULE_PARAM(zfs_zio, zio_, dva_throttle_enabled, INT, ZMOD_RW, 5197 "Throttle block allocations in the ZIO pipeline"); 5198 5199 ZFS_MODULE_PARAM(zfs_zio, zio_, deadman_log_all, INT, ZMOD_RW, 5200 "Log all slow ZIOs, not just those with vdevs"); 5201