1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2022 by Delphix. All rights reserved. 24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2017, Intel Corporation. 26 * Copyright (c) 2019, Klara Inc. 27 * Copyright (c) 2019, Allan Jude 28 * Copyright (c) 2021, Datto, Inc. 29 */ 30 31 #include <sys/sysmacros.h> 32 #include <sys/zfs_context.h> 33 #include <sys/fm/fs/zfs.h> 34 #include <sys/spa.h> 35 #include <sys/txg.h> 36 #include <sys/spa_impl.h> 37 #include <sys/vdev_impl.h> 38 #include <sys/vdev_trim.h> 39 #include <sys/zio_impl.h> 40 #include <sys/zio_compress.h> 41 #include <sys/zio_checksum.h> 42 #include <sys/dmu_objset.h> 43 #include <sys/arc.h> 44 #include <sys/brt.h> 45 #include <sys/ddt.h> 46 #include <sys/blkptr.h> 47 #include <sys/zfeature.h> 48 #include <sys/dsl_scan.h> 49 #include <sys/metaslab_impl.h> 50 #include <sys/time.h> 51 #include <sys/trace_zfs.h> 52 #include <sys/abd.h> 53 #include <sys/dsl_crypt.h> 54 #include <cityhash.h> 55 56 /* 57 * ========================================================================== 58 * I/O type descriptions 59 * ========================================================================== 60 */ 61 const char *const zio_type_name[ZIO_TYPES] = { 62 /* 63 * Note: Linux kernel thread name length is limited 64 * so these names will differ from upstream open zfs. 65 */ 66 "z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_ioctl", "z_trim" 67 }; 68 69 int zio_dva_throttle_enabled = B_TRUE; 70 static int zio_deadman_log_all = B_FALSE; 71 72 /* 73 * ========================================================================== 74 * I/O kmem caches 75 * ========================================================================== 76 */ 77 static kmem_cache_t *zio_cache; 78 static kmem_cache_t *zio_link_cache; 79 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 80 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 81 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 82 static uint64_t zio_buf_cache_allocs[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 83 static uint64_t zio_buf_cache_frees[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 84 #endif 85 86 /* Mark IOs as "slow" if they take longer than 30 seconds */ 87 static uint_t zio_slow_io_ms = (30 * MILLISEC); 88 89 #define BP_SPANB(indblkshift, level) \ 90 (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT))) 91 #define COMPARE_META_LEVEL 0x80000000ul 92 /* 93 * The following actions directly effect the spa's sync-to-convergence logic. 94 * The values below define the sync pass when we start performing the action. 95 * Care should be taken when changing these values as they directly impact 96 * spa_sync() performance. Tuning these values may introduce subtle performance 97 * pathologies and should only be done in the context of performance analysis. 98 * These tunables will eventually be removed and replaced with #defines once 99 * enough analysis has been done to determine optimal values. 100 * 101 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that 102 * regular blocks are not deferred. 103 * 104 * Starting in sync pass 8 (zfs_sync_pass_dont_compress), we disable 105 * compression (including of metadata). In practice, we don't have this 106 * many sync passes, so this has no effect. 107 * 108 * The original intent was that disabling compression would help the sync 109 * passes to converge. However, in practice disabling compression increases 110 * the average number of sync passes, because when we turn compression off, a 111 * lot of block's size will change and thus we have to re-allocate (not 112 * overwrite) them. It also increases the number of 128KB allocations (e.g. 113 * for indirect blocks and spacemaps) because these will not be compressed. 114 * The 128K allocations are especially detrimental to performance on highly 115 * fragmented systems, which may have very few free segments of this size, 116 * and may need to load new metaslabs to satisfy 128K allocations. 117 */ 118 119 /* defer frees starting in this pass */ 120 uint_t zfs_sync_pass_deferred_free = 2; 121 122 /* don't compress starting in this pass */ 123 static uint_t zfs_sync_pass_dont_compress = 8; 124 125 /* rewrite new bps starting in this pass */ 126 static uint_t zfs_sync_pass_rewrite = 2; 127 128 /* 129 * An allocating zio is one that either currently has the DVA allocate 130 * stage set or will have it later in its lifetime. 131 */ 132 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE) 133 134 /* 135 * Enable smaller cores by excluding metadata 136 * allocations as well. 137 */ 138 int zio_exclude_metadata = 0; 139 static int zio_requeue_io_start_cut_in_line = 1; 140 141 #ifdef ZFS_DEBUG 142 static const int zio_buf_debug_limit = 16384; 143 #else 144 static const int zio_buf_debug_limit = 0; 145 #endif 146 147 static inline void __zio_execute(zio_t *zio); 148 149 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t); 150 151 void 152 zio_init(void) 153 { 154 size_t c; 155 156 zio_cache = kmem_cache_create("zio_cache", 157 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 158 zio_link_cache = kmem_cache_create("zio_link_cache", 159 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 160 161 /* 162 * For small buffers, we want a cache for each multiple of 163 * SPA_MINBLOCKSIZE. For larger buffers, we want a cache 164 * for each quarter-power of 2. 165 */ 166 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 167 size_t size = (c + 1) << SPA_MINBLOCKSHIFT; 168 size_t p2 = size; 169 size_t align = 0; 170 size_t data_cflags, cflags; 171 172 data_cflags = KMC_NODEBUG; 173 cflags = (zio_exclude_metadata || size > zio_buf_debug_limit) ? 174 KMC_NODEBUG : 0; 175 176 while (!ISP2(p2)) 177 p2 &= p2 - 1; 178 179 #ifndef _KERNEL 180 /* 181 * If we are using watchpoints, put each buffer on its own page, 182 * to eliminate the performance overhead of trapping to the 183 * kernel when modifying a non-watched buffer that shares the 184 * page with a watched buffer. 185 */ 186 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE)) 187 continue; 188 /* 189 * Here's the problem - on 4K native devices in userland on 190 * Linux using O_DIRECT, buffers must be 4K aligned or I/O 191 * will fail with EINVAL, causing zdb (and others) to coredump. 192 * Since userland probably doesn't need optimized buffer caches, 193 * we just force 4K alignment on everything. 194 */ 195 align = 8 * SPA_MINBLOCKSIZE; 196 #else 197 if (size < PAGESIZE) { 198 align = SPA_MINBLOCKSIZE; 199 } else if (IS_P2ALIGNED(size, p2 >> 2)) { 200 align = PAGESIZE; 201 } 202 #endif 203 204 if (align != 0) { 205 char name[36]; 206 if (cflags == data_cflags) { 207 /* 208 * Resulting kmem caches would be identical. 209 * Save memory by creating only one. 210 */ 211 (void) snprintf(name, sizeof (name), 212 "zio_buf_comb_%lu", (ulong_t)size); 213 zio_buf_cache[c] = kmem_cache_create(name, 214 size, align, NULL, NULL, NULL, NULL, NULL, 215 cflags); 216 zio_data_buf_cache[c] = zio_buf_cache[c]; 217 continue; 218 } 219 (void) snprintf(name, sizeof (name), "zio_buf_%lu", 220 (ulong_t)size); 221 zio_buf_cache[c] = kmem_cache_create(name, size, 222 align, NULL, NULL, NULL, NULL, NULL, cflags); 223 224 (void) snprintf(name, sizeof (name), "zio_data_buf_%lu", 225 (ulong_t)size); 226 zio_data_buf_cache[c] = kmem_cache_create(name, size, 227 align, NULL, NULL, NULL, NULL, NULL, data_cflags); 228 } 229 } 230 231 while (--c != 0) { 232 ASSERT(zio_buf_cache[c] != NULL); 233 if (zio_buf_cache[c - 1] == NULL) 234 zio_buf_cache[c - 1] = zio_buf_cache[c]; 235 236 ASSERT(zio_data_buf_cache[c] != NULL); 237 if (zio_data_buf_cache[c - 1] == NULL) 238 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c]; 239 } 240 241 zio_inject_init(); 242 243 lz4_init(); 244 } 245 246 void 247 zio_fini(void) 248 { 249 size_t n = SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; 250 251 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 252 for (size_t i = 0; i < n; i++) { 253 if (zio_buf_cache_allocs[i] != zio_buf_cache_frees[i]) 254 (void) printf("zio_fini: [%d] %llu != %llu\n", 255 (int)((i + 1) << SPA_MINBLOCKSHIFT), 256 (long long unsigned)zio_buf_cache_allocs[i], 257 (long long unsigned)zio_buf_cache_frees[i]); 258 } 259 #endif 260 261 /* 262 * The same kmem cache can show up multiple times in both zio_buf_cache 263 * and zio_data_buf_cache. Do a wasteful but trivially correct scan to 264 * sort it out. 265 */ 266 for (size_t i = 0; i < n; i++) { 267 kmem_cache_t *cache = zio_buf_cache[i]; 268 if (cache == NULL) 269 continue; 270 for (size_t j = i; j < n; j++) { 271 if (cache == zio_buf_cache[j]) 272 zio_buf_cache[j] = NULL; 273 if (cache == zio_data_buf_cache[j]) 274 zio_data_buf_cache[j] = NULL; 275 } 276 kmem_cache_destroy(cache); 277 } 278 279 for (size_t i = 0; i < n; i++) { 280 kmem_cache_t *cache = zio_data_buf_cache[i]; 281 if (cache == NULL) 282 continue; 283 for (size_t j = i; j < n; j++) { 284 if (cache == zio_data_buf_cache[j]) 285 zio_data_buf_cache[j] = NULL; 286 } 287 kmem_cache_destroy(cache); 288 } 289 290 for (size_t i = 0; i < n; i++) { 291 VERIFY3P(zio_buf_cache[i], ==, NULL); 292 VERIFY3P(zio_data_buf_cache[i], ==, NULL); 293 } 294 295 kmem_cache_destroy(zio_link_cache); 296 kmem_cache_destroy(zio_cache); 297 298 zio_inject_fini(); 299 300 lz4_fini(); 301 } 302 303 /* 304 * ========================================================================== 305 * Allocate and free I/O buffers 306 * ========================================================================== 307 */ 308 309 /* 310 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a 311 * crashdump if the kernel panics, so use it judiciously. Obviously, it's 312 * useful to inspect ZFS metadata, but if possible, we should avoid keeping 313 * excess / transient data in-core during a crashdump. 314 */ 315 void * 316 zio_buf_alloc(size_t size) 317 { 318 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 319 320 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 321 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 322 atomic_add_64(&zio_buf_cache_allocs[c], 1); 323 #endif 324 325 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE)); 326 } 327 328 /* 329 * Use zio_data_buf_alloc to allocate data. The data will not appear in a 330 * crashdump if the kernel panics. This exists so that we will limit the amount 331 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount 332 * of kernel heap dumped to disk when the kernel panics) 333 */ 334 void * 335 zio_data_buf_alloc(size_t size) 336 { 337 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 338 339 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 340 341 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE)); 342 } 343 344 void 345 zio_buf_free(void *buf, size_t size) 346 { 347 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 348 349 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 350 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 351 atomic_add_64(&zio_buf_cache_frees[c], 1); 352 #endif 353 354 kmem_cache_free(zio_buf_cache[c], buf); 355 } 356 357 void 358 zio_data_buf_free(void *buf, size_t size) 359 { 360 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 361 362 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 363 364 kmem_cache_free(zio_data_buf_cache[c], buf); 365 } 366 367 static void 368 zio_abd_free(void *abd, size_t size) 369 { 370 (void) size; 371 abd_free((abd_t *)abd); 372 } 373 374 /* 375 * ========================================================================== 376 * Push and pop I/O transform buffers 377 * ========================================================================== 378 */ 379 void 380 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize, 381 zio_transform_func_t *transform) 382 { 383 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP); 384 385 zt->zt_orig_abd = zio->io_abd; 386 zt->zt_orig_size = zio->io_size; 387 zt->zt_bufsize = bufsize; 388 zt->zt_transform = transform; 389 390 zt->zt_next = zio->io_transform_stack; 391 zio->io_transform_stack = zt; 392 393 zio->io_abd = data; 394 zio->io_size = size; 395 } 396 397 void 398 zio_pop_transforms(zio_t *zio) 399 { 400 zio_transform_t *zt; 401 402 while ((zt = zio->io_transform_stack) != NULL) { 403 if (zt->zt_transform != NULL) 404 zt->zt_transform(zio, 405 zt->zt_orig_abd, zt->zt_orig_size); 406 407 if (zt->zt_bufsize != 0) 408 abd_free(zio->io_abd); 409 410 zio->io_abd = zt->zt_orig_abd; 411 zio->io_size = zt->zt_orig_size; 412 zio->io_transform_stack = zt->zt_next; 413 414 kmem_free(zt, sizeof (zio_transform_t)); 415 } 416 } 417 418 /* 419 * ========================================================================== 420 * I/O transform callbacks for subblocks, decompression, and decryption 421 * ========================================================================== 422 */ 423 static void 424 zio_subblock(zio_t *zio, abd_t *data, uint64_t size) 425 { 426 ASSERT(zio->io_size > size); 427 428 if (zio->io_type == ZIO_TYPE_READ) 429 abd_copy(data, zio->io_abd, size); 430 } 431 432 static void 433 zio_decompress(zio_t *zio, abd_t *data, uint64_t size) 434 { 435 if (zio->io_error == 0) { 436 void *tmp = abd_borrow_buf(data, size); 437 int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp), 438 zio->io_abd, tmp, zio->io_size, size, 439 &zio->io_prop.zp_complevel); 440 abd_return_buf_copy(data, tmp, size); 441 442 if (zio_injection_enabled && ret == 0) 443 ret = zio_handle_fault_injection(zio, EINVAL); 444 445 if (ret != 0) 446 zio->io_error = SET_ERROR(EIO); 447 } 448 } 449 450 static void 451 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size) 452 { 453 int ret; 454 void *tmp; 455 blkptr_t *bp = zio->io_bp; 456 spa_t *spa = zio->io_spa; 457 uint64_t dsobj = zio->io_bookmark.zb_objset; 458 uint64_t lsize = BP_GET_LSIZE(bp); 459 dmu_object_type_t ot = BP_GET_TYPE(bp); 460 uint8_t salt[ZIO_DATA_SALT_LEN]; 461 uint8_t iv[ZIO_DATA_IV_LEN]; 462 uint8_t mac[ZIO_DATA_MAC_LEN]; 463 boolean_t no_crypt = B_FALSE; 464 465 ASSERT(BP_USES_CRYPT(bp)); 466 ASSERT3U(size, !=, 0); 467 468 if (zio->io_error != 0) 469 return; 470 471 /* 472 * Verify the cksum of MACs stored in an indirect bp. It will always 473 * be possible to verify this since it does not require an encryption 474 * key. 475 */ 476 if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) { 477 zio_crypt_decode_mac_bp(bp, mac); 478 479 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) { 480 /* 481 * We haven't decompressed the data yet, but 482 * zio_crypt_do_indirect_mac_checksum() requires 483 * decompressed data to be able to parse out the MACs 484 * from the indirect block. We decompress it now and 485 * throw away the result after we are finished. 486 */ 487 tmp = zio_buf_alloc(lsize); 488 ret = zio_decompress_data(BP_GET_COMPRESS(bp), 489 zio->io_abd, tmp, zio->io_size, lsize, 490 &zio->io_prop.zp_complevel); 491 if (ret != 0) { 492 ret = SET_ERROR(EIO); 493 goto error; 494 } 495 ret = zio_crypt_do_indirect_mac_checksum(B_FALSE, 496 tmp, lsize, BP_SHOULD_BYTESWAP(bp), mac); 497 zio_buf_free(tmp, lsize); 498 } else { 499 ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE, 500 zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac); 501 } 502 abd_copy(data, zio->io_abd, size); 503 504 if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) { 505 ret = zio_handle_decrypt_injection(spa, 506 &zio->io_bookmark, ot, ECKSUM); 507 } 508 if (ret != 0) 509 goto error; 510 511 return; 512 } 513 514 /* 515 * If this is an authenticated block, just check the MAC. It would be 516 * nice to separate this out into its own flag, but when this was done, 517 * we had run out of bits in what is now zio_flag_t. Future cleanup 518 * could make this a flag bit. 519 */ 520 if (BP_IS_AUTHENTICATED(bp)) { 521 if (ot == DMU_OT_OBJSET) { 522 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, 523 dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp)); 524 } else { 525 zio_crypt_decode_mac_bp(bp, mac); 526 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, 527 zio->io_abd, size, mac); 528 if (zio_injection_enabled && ret == 0) { 529 ret = zio_handle_decrypt_injection(spa, 530 &zio->io_bookmark, ot, ECKSUM); 531 } 532 } 533 abd_copy(data, zio->io_abd, size); 534 535 if (ret != 0) 536 goto error; 537 538 return; 539 } 540 541 zio_crypt_decode_params_bp(bp, salt, iv); 542 543 if (ot == DMU_OT_INTENT_LOG) { 544 tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t)); 545 zio_crypt_decode_mac_zil(tmp, mac); 546 abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t)); 547 } else { 548 zio_crypt_decode_mac_bp(bp, mac); 549 } 550 551 ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp), 552 BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data, 553 zio->io_abd, &no_crypt); 554 if (no_crypt) 555 abd_copy(data, zio->io_abd, size); 556 557 if (ret != 0) 558 goto error; 559 560 return; 561 562 error: 563 /* assert that the key was found unless this was speculative */ 564 ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE)); 565 566 /* 567 * If there was a decryption / authentication error return EIO as 568 * the io_error. If this was not a speculative zio, create an ereport. 569 */ 570 if (ret == ECKSUM) { 571 zio->io_error = SET_ERROR(EIO); 572 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) { 573 spa_log_error(spa, &zio->io_bookmark, 574 &zio->io_bp->blk_birth); 575 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION, 576 spa, NULL, &zio->io_bookmark, zio, 0); 577 } 578 } else { 579 zio->io_error = ret; 580 } 581 } 582 583 /* 584 * ========================================================================== 585 * I/O parent/child relationships and pipeline interlocks 586 * ========================================================================== 587 */ 588 zio_t * 589 zio_walk_parents(zio_t *cio, zio_link_t **zl) 590 { 591 list_t *pl = &cio->io_parent_list; 592 593 *zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl); 594 if (*zl == NULL) 595 return (NULL); 596 597 ASSERT((*zl)->zl_child == cio); 598 return ((*zl)->zl_parent); 599 } 600 601 zio_t * 602 zio_walk_children(zio_t *pio, zio_link_t **zl) 603 { 604 list_t *cl = &pio->io_child_list; 605 606 ASSERT(MUTEX_HELD(&pio->io_lock)); 607 608 *zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl); 609 if (*zl == NULL) 610 return (NULL); 611 612 ASSERT((*zl)->zl_parent == pio); 613 return ((*zl)->zl_child); 614 } 615 616 zio_t * 617 zio_unique_parent(zio_t *cio) 618 { 619 zio_link_t *zl = NULL; 620 zio_t *pio = zio_walk_parents(cio, &zl); 621 622 VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL); 623 return (pio); 624 } 625 626 void 627 zio_add_child(zio_t *pio, zio_t *cio) 628 { 629 /* 630 * Logical I/Os can have logical, gang, or vdev children. 631 * Gang I/Os can have gang or vdev children. 632 * Vdev I/Os can only have vdev children. 633 * The following ASSERT captures all of these constraints. 634 */ 635 ASSERT3S(cio->io_child_type, <=, pio->io_child_type); 636 637 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP); 638 zl->zl_parent = pio; 639 zl->zl_child = cio; 640 641 mutex_enter(&pio->io_lock); 642 mutex_enter(&cio->io_lock); 643 644 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0); 645 646 uint64_t *countp = pio->io_children[cio->io_child_type]; 647 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 648 countp[w] += !cio->io_state[w]; 649 650 list_insert_head(&pio->io_child_list, zl); 651 list_insert_head(&cio->io_parent_list, zl); 652 653 mutex_exit(&cio->io_lock); 654 mutex_exit(&pio->io_lock); 655 } 656 657 void 658 zio_add_child_first(zio_t *pio, zio_t *cio) 659 { 660 /* 661 * Logical I/Os can have logical, gang, or vdev children. 662 * Gang I/Os can have gang or vdev children. 663 * Vdev I/Os can only have vdev children. 664 * The following ASSERT captures all of these constraints. 665 */ 666 ASSERT3S(cio->io_child_type, <=, pio->io_child_type); 667 668 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP); 669 zl->zl_parent = pio; 670 zl->zl_child = cio; 671 672 ASSERT(list_is_empty(&cio->io_parent_list)); 673 list_insert_head(&cio->io_parent_list, zl); 674 675 mutex_enter(&pio->io_lock); 676 677 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0); 678 679 uint64_t *countp = pio->io_children[cio->io_child_type]; 680 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 681 countp[w] += !cio->io_state[w]; 682 683 list_insert_head(&pio->io_child_list, zl); 684 685 mutex_exit(&pio->io_lock); 686 } 687 688 static void 689 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl) 690 { 691 ASSERT(zl->zl_parent == pio); 692 ASSERT(zl->zl_child == cio); 693 694 mutex_enter(&pio->io_lock); 695 mutex_enter(&cio->io_lock); 696 697 list_remove(&pio->io_child_list, zl); 698 list_remove(&cio->io_parent_list, zl); 699 700 mutex_exit(&cio->io_lock); 701 mutex_exit(&pio->io_lock); 702 kmem_cache_free(zio_link_cache, zl); 703 } 704 705 static boolean_t 706 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait) 707 { 708 boolean_t waiting = B_FALSE; 709 710 mutex_enter(&zio->io_lock); 711 ASSERT(zio->io_stall == NULL); 712 for (int c = 0; c < ZIO_CHILD_TYPES; c++) { 713 if (!(ZIO_CHILD_BIT_IS_SET(childbits, c))) 714 continue; 715 716 uint64_t *countp = &zio->io_children[c][wait]; 717 if (*countp != 0) { 718 zio->io_stage >>= 1; 719 ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN); 720 zio->io_stall = countp; 721 waiting = B_TRUE; 722 break; 723 } 724 } 725 mutex_exit(&zio->io_lock); 726 return (waiting); 727 } 728 729 __attribute__((always_inline)) 730 static inline void 731 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait, 732 zio_t **next_to_executep) 733 { 734 uint64_t *countp = &pio->io_children[zio->io_child_type][wait]; 735 int *errorp = &pio->io_child_error[zio->io_child_type]; 736 737 mutex_enter(&pio->io_lock); 738 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 739 *errorp = zio_worst_error(*errorp, zio->io_error); 740 pio->io_reexecute |= zio->io_reexecute; 741 ASSERT3U(*countp, >, 0); 742 743 (*countp)--; 744 745 if (*countp == 0 && pio->io_stall == countp) { 746 zio_taskq_type_t type = 747 pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE : 748 ZIO_TASKQ_INTERRUPT; 749 pio->io_stall = NULL; 750 mutex_exit(&pio->io_lock); 751 752 /* 753 * If we can tell the caller to execute this parent next, do 754 * so. We only do this if the parent's zio type matches the 755 * child's type. Otherwise dispatch the parent zio in its 756 * own taskq. 757 * 758 * Having the caller execute the parent when possible reduces 759 * locking on the zio taskq's, reduces context switch 760 * overhead, and has no recursion penalty. Note that one 761 * read from disk typically causes at least 3 zio's: a 762 * zio_null(), the logical zio_read(), and then a physical 763 * zio. When the physical ZIO completes, we are able to call 764 * zio_done() on all 3 of these zio's from one invocation of 765 * zio_execute() by returning the parent back to 766 * zio_execute(). Since the parent isn't executed until this 767 * thread returns back to zio_execute(), the caller should do 768 * so promptly. 769 * 770 * In other cases, dispatching the parent prevents 771 * overflowing the stack when we have deeply nested 772 * parent-child relationships, as we do with the "mega zio" 773 * of writes for spa_sync(), and the chain of ZIL blocks. 774 */ 775 if (next_to_executep != NULL && *next_to_executep == NULL && 776 pio->io_type == zio->io_type) { 777 *next_to_executep = pio; 778 } else { 779 zio_taskq_dispatch(pio, type, B_FALSE); 780 } 781 } else { 782 mutex_exit(&pio->io_lock); 783 } 784 } 785 786 static void 787 zio_inherit_child_errors(zio_t *zio, enum zio_child c) 788 { 789 if (zio->io_child_error[c] != 0 && zio->io_error == 0) 790 zio->io_error = zio->io_child_error[c]; 791 } 792 793 int 794 zio_bookmark_compare(const void *x1, const void *x2) 795 { 796 const zio_t *z1 = x1; 797 const zio_t *z2 = x2; 798 799 if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset) 800 return (-1); 801 if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset) 802 return (1); 803 804 if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object) 805 return (-1); 806 if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object) 807 return (1); 808 809 if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level) 810 return (-1); 811 if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level) 812 return (1); 813 814 if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid) 815 return (-1); 816 if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid) 817 return (1); 818 819 if (z1 < z2) 820 return (-1); 821 if (z1 > z2) 822 return (1); 823 824 return (0); 825 } 826 827 /* 828 * ========================================================================== 829 * Create the various types of I/O (read, write, free, etc) 830 * ========================================================================== 831 */ 832 static zio_t * 833 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 834 abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done, 835 void *private, zio_type_t type, zio_priority_t priority, 836 zio_flag_t flags, vdev_t *vd, uint64_t offset, 837 const zbookmark_phys_t *zb, enum zio_stage stage, 838 enum zio_stage pipeline) 839 { 840 zio_t *zio; 841 842 IMPLY(type != ZIO_TYPE_TRIM, psize <= SPA_MAXBLOCKSIZE); 843 ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0); 844 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0); 845 846 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER)); 847 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER)); 848 ASSERT(vd || stage == ZIO_STAGE_OPEN); 849 850 IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0); 851 852 zio = kmem_cache_alloc(zio_cache, KM_SLEEP); 853 memset(zio, 0, sizeof (zio_t)); 854 855 mutex_init(&zio->io_lock, NULL, MUTEX_NOLOCKDEP, NULL); 856 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL); 857 858 list_create(&zio->io_parent_list, sizeof (zio_link_t), 859 offsetof(zio_link_t, zl_parent_node)); 860 list_create(&zio->io_child_list, sizeof (zio_link_t), 861 offsetof(zio_link_t, zl_child_node)); 862 metaslab_trace_init(&zio->io_alloc_list); 863 864 if (vd != NULL) 865 zio->io_child_type = ZIO_CHILD_VDEV; 866 else if (flags & ZIO_FLAG_GANG_CHILD) 867 zio->io_child_type = ZIO_CHILD_GANG; 868 else if (flags & ZIO_FLAG_DDT_CHILD) 869 zio->io_child_type = ZIO_CHILD_DDT; 870 else 871 zio->io_child_type = ZIO_CHILD_LOGICAL; 872 873 if (bp != NULL) { 874 if (type != ZIO_TYPE_WRITE || 875 zio->io_child_type == ZIO_CHILD_DDT) { 876 zio->io_bp_copy = *bp; 877 zio->io_bp = &zio->io_bp_copy; /* so caller can free */ 878 } else { 879 zio->io_bp = (blkptr_t *)bp; 880 } 881 zio->io_bp_orig = *bp; 882 if (zio->io_child_type == ZIO_CHILD_LOGICAL) 883 zio->io_logical = zio; 884 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp)) 885 pipeline |= ZIO_GANG_STAGES; 886 } 887 888 zio->io_spa = spa; 889 zio->io_txg = txg; 890 zio->io_done = done; 891 zio->io_private = private; 892 zio->io_type = type; 893 zio->io_priority = priority; 894 zio->io_vd = vd; 895 zio->io_offset = offset; 896 zio->io_orig_abd = zio->io_abd = data; 897 zio->io_orig_size = zio->io_size = psize; 898 zio->io_lsize = lsize; 899 zio->io_orig_flags = zio->io_flags = flags; 900 zio->io_orig_stage = zio->io_stage = stage; 901 zio->io_orig_pipeline = zio->io_pipeline = pipeline; 902 zio->io_pipeline_trace = ZIO_STAGE_OPEN; 903 904 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY); 905 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE); 906 907 if (zb != NULL) 908 zio->io_bookmark = *zb; 909 910 if (pio != NULL) { 911 zio->io_metaslab_class = pio->io_metaslab_class; 912 if (zio->io_logical == NULL) 913 zio->io_logical = pio->io_logical; 914 if (zio->io_child_type == ZIO_CHILD_GANG) 915 zio->io_gang_leader = pio->io_gang_leader; 916 zio_add_child_first(pio, zio); 917 } 918 919 taskq_init_ent(&zio->io_tqent); 920 921 return (zio); 922 } 923 924 void 925 zio_destroy(zio_t *zio) 926 { 927 metaslab_trace_fini(&zio->io_alloc_list); 928 list_destroy(&zio->io_parent_list); 929 list_destroy(&zio->io_child_list); 930 mutex_destroy(&zio->io_lock); 931 cv_destroy(&zio->io_cv); 932 kmem_cache_free(zio_cache, zio); 933 } 934 935 zio_t * 936 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done, 937 void *private, zio_flag_t flags) 938 { 939 zio_t *zio; 940 941 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private, 942 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 943 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE); 944 945 return (zio); 946 } 947 948 zio_t * 949 zio_root(spa_t *spa, zio_done_func_t *done, void *private, zio_flag_t flags) 950 { 951 return (zio_null(NULL, spa, NULL, done, private, flags)); 952 } 953 954 static int 955 zfs_blkptr_verify_log(spa_t *spa, const blkptr_t *bp, 956 enum blk_verify_flag blk_verify, const char *fmt, ...) 957 { 958 va_list adx; 959 char buf[256]; 960 961 va_start(adx, fmt); 962 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 963 va_end(adx); 964 965 zfs_dbgmsg("bad blkptr at %px: " 966 "DVA[0]=%#llx/%#llx " 967 "DVA[1]=%#llx/%#llx " 968 "DVA[2]=%#llx/%#llx " 969 "prop=%#llx " 970 "pad=%#llx,%#llx " 971 "phys_birth=%#llx " 972 "birth=%#llx " 973 "fill=%#llx " 974 "cksum=%#llx/%#llx/%#llx/%#llx", 975 bp, 976 (long long)bp->blk_dva[0].dva_word[0], 977 (long long)bp->blk_dva[0].dva_word[1], 978 (long long)bp->blk_dva[1].dva_word[0], 979 (long long)bp->blk_dva[1].dva_word[1], 980 (long long)bp->blk_dva[2].dva_word[0], 981 (long long)bp->blk_dva[2].dva_word[1], 982 (long long)bp->blk_prop, 983 (long long)bp->blk_pad[0], 984 (long long)bp->blk_pad[1], 985 (long long)bp->blk_phys_birth, 986 (long long)bp->blk_birth, 987 (long long)bp->blk_fill, 988 (long long)bp->blk_cksum.zc_word[0], 989 (long long)bp->blk_cksum.zc_word[1], 990 (long long)bp->blk_cksum.zc_word[2], 991 (long long)bp->blk_cksum.zc_word[3]); 992 switch (blk_verify) { 993 case BLK_VERIFY_HALT: 994 zfs_panic_recover("%s: %s", spa_name(spa), buf); 995 break; 996 case BLK_VERIFY_LOG: 997 zfs_dbgmsg("%s: %s", spa_name(spa), buf); 998 break; 999 case BLK_VERIFY_ONLY: 1000 break; 1001 } 1002 1003 return (1); 1004 } 1005 1006 /* 1007 * Verify the block pointer fields contain reasonable values. This means 1008 * it only contains known object types, checksum/compression identifiers, 1009 * block sizes within the maximum allowed limits, valid DVAs, etc. 1010 * 1011 * If everything checks out B_TRUE is returned. The zfs_blkptr_verify 1012 * argument controls the behavior when an invalid field is detected. 1013 * 1014 * Values for blk_verify_flag: 1015 * BLK_VERIFY_ONLY: evaluate the block 1016 * BLK_VERIFY_LOG: evaluate the block and log problems 1017 * BLK_VERIFY_HALT: call zfs_panic_recover on error 1018 * 1019 * Values for blk_config_flag: 1020 * BLK_CONFIG_HELD: caller holds SCL_VDEV for writer 1021 * BLK_CONFIG_NEEDED: caller holds no config lock, SCL_VDEV will be 1022 * obtained for reader 1023 * BLK_CONFIG_SKIP: skip checks which require SCL_VDEV, for better 1024 * performance 1025 */ 1026 boolean_t 1027 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp, 1028 enum blk_config_flag blk_config, enum blk_verify_flag blk_verify) 1029 { 1030 int errors = 0; 1031 1032 if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) { 1033 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1034 "blkptr at %px has invalid TYPE %llu", 1035 bp, (longlong_t)BP_GET_TYPE(bp)); 1036 } 1037 if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS) { 1038 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1039 "blkptr at %px has invalid CHECKSUM %llu", 1040 bp, (longlong_t)BP_GET_CHECKSUM(bp)); 1041 } 1042 if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS) { 1043 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1044 "blkptr at %px has invalid COMPRESS %llu", 1045 bp, (longlong_t)BP_GET_COMPRESS(bp)); 1046 } 1047 if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) { 1048 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1049 "blkptr at %px has invalid LSIZE %llu", 1050 bp, (longlong_t)BP_GET_LSIZE(bp)); 1051 } 1052 if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) { 1053 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1054 "blkptr at %px has invalid PSIZE %llu", 1055 bp, (longlong_t)BP_GET_PSIZE(bp)); 1056 } 1057 1058 if (BP_IS_EMBEDDED(bp)) { 1059 if (BPE_GET_ETYPE(bp) >= NUM_BP_EMBEDDED_TYPES) { 1060 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1061 "blkptr at %px has invalid ETYPE %llu", 1062 bp, (longlong_t)BPE_GET_ETYPE(bp)); 1063 } 1064 } 1065 1066 /* 1067 * Do not verify individual DVAs if the config is not trusted. This 1068 * will be done once the zio is executed in vdev_mirror_map_alloc. 1069 */ 1070 if (!spa->spa_trust_config) 1071 return (errors == 0); 1072 1073 switch (blk_config) { 1074 case BLK_CONFIG_HELD: 1075 ASSERT(spa_config_held(spa, SCL_VDEV, RW_WRITER)); 1076 break; 1077 case BLK_CONFIG_NEEDED: 1078 spa_config_enter(spa, SCL_VDEV, bp, RW_READER); 1079 break; 1080 case BLK_CONFIG_SKIP: 1081 return (errors == 0); 1082 default: 1083 panic("invalid blk_config %u", blk_config); 1084 } 1085 1086 /* 1087 * Pool-specific checks. 1088 * 1089 * Note: it would be nice to verify that the blk_birth and 1090 * BP_PHYSICAL_BIRTH() are not too large. However, spa_freeze() 1091 * allows the birth time of log blocks (and dmu_sync()-ed blocks 1092 * that are in the log) to be arbitrarily large. 1093 */ 1094 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 1095 const dva_t *dva = &bp->blk_dva[i]; 1096 uint64_t vdevid = DVA_GET_VDEV(dva); 1097 1098 if (vdevid >= spa->spa_root_vdev->vdev_children) { 1099 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1100 "blkptr at %px DVA %u has invalid VDEV %llu", 1101 bp, i, (longlong_t)vdevid); 1102 continue; 1103 } 1104 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid]; 1105 if (vd == NULL) { 1106 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1107 "blkptr at %px DVA %u has invalid VDEV %llu", 1108 bp, i, (longlong_t)vdevid); 1109 continue; 1110 } 1111 if (vd->vdev_ops == &vdev_hole_ops) { 1112 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1113 "blkptr at %px DVA %u has hole VDEV %llu", 1114 bp, i, (longlong_t)vdevid); 1115 continue; 1116 } 1117 if (vd->vdev_ops == &vdev_missing_ops) { 1118 /* 1119 * "missing" vdevs are valid during import, but we 1120 * don't have their detailed info (e.g. asize), so 1121 * we can't perform any more checks on them. 1122 */ 1123 continue; 1124 } 1125 uint64_t offset = DVA_GET_OFFSET(dva); 1126 uint64_t asize = DVA_GET_ASIZE(dva); 1127 if (DVA_GET_GANG(dva)) 1128 asize = vdev_gang_header_asize(vd); 1129 if (offset + asize > vd->vdev_asize) { 1130 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1131 "blkptr at %px DVA %u has invalid OFFSET %llu", 1132 bp, i, (longlong_t)offset); 1133 } 1134 } 1135 if (blk_config == BLK_CONFIG_NEEDED) 1136 spa_config_exit(spa, SCL_VDEV, bp); 1137 1138 return (errors == 0); 1139 } 1140 1141 boolean_t 1142 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp) 1143 { 1144 (void) bp; 1145 uint64_t vdevid = DVA_GET_VDEV(dva); 1146 1147 if (vdevid >= spa->spa_root_vdev->vdev_children) 1148 return (B_FALSE); 1149 1150 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid]; 1151 if (vd == NULL) 1152 return (B_FALSE); 1153 1154 if (vd->vdev_ops == &vdev_hole_ops) 1155 return (B_FALSE); 1156 1157 if (vd->vdev_ops == &vdev_missing_ops) { 1158 return (B_FALSE); 1159 } 1160 1161 uint64_t offset = DVA_GET_OFFSET(dva); 1162 uint64_t asize = DVA_GET_ASIZE(dva); 1163 1164 if (DVA_GET_GANG(dva)) 1165 asize = vdev_gang_header_asize(vd); 1166 if (offset + asize > vd->vdev_asize) 1167 return (B_FALSE); 1168 1169 return (B_TRUE); 1170 } 1171 1172 zio_t * 1173 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, 1174 abd_t *data, uint64_t size, zio_done_func_t *done, void *private, 1175 zio_priority_t priority, zio_flag_t flags, const zbookmark_phys_t *zb) 1176 { 1177 zio_t *zio; 1178 1179 zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp, 1180 data, size, size, done, private, 1181 ZIO_TYPE_READ, priority, flags, NULL, 0, zb, 1182 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 1183 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE); 1184 1185 return (zio); 1186 } 1187 1188 zio_t * 1189 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 1190 abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp, 1191 zio_done_func_t *ready, zio_done_func_t *children_ready, 1192 zio_done_func_t *done, void *private, zio_priority_t priority, 1193 zio_flag_t flags, const zbookmark_phys_t *zb) 1194 { 1195 zio_t *zio; 1196 1197 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF && 1198 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS && 1199 zp->zp_compress >= ZIO_COMPRESS_OFF && 1200 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS && 1201 DMU_OT_IS_VALID(zp->zp_type) && 1202 zp->zp_level < 32 && 1203 zp->zp_copies > 0 && 1204 zp->zp_copies <= spa_max_replication(spa)); 1205 1206 zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private, 1207 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb, 1208 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 1209 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE); 1210 1211 zio->io_ready = ready; 1212 zio->io_children_ready = children_ready; 1213 zio->io_prop = *zp; 1214 1215 /* 1216 * Data can be NULL if we are going to call zio_write_override() to 1217 * provide the already-allocated BP. But we may need the data to 1218 * verify a dedup hit (if requested). In this case, don't try to 1219 * dedup (just take the already-allocated BP verbatim). Encrypted 1220 * dedup blocks need data as well so we also disable dedup in this 1221 * case. 1222 */ 1223 if (data == NULL && 1224 (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) { 1225 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE; 1226 } 1227 1228 return (zio); 1229 } 1230 1231 zio_t * 1232 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data, 1233 uint64_t size, zio_done_func_t *done, void *private, 1234 zio_priority_t priority, zio_flag_t flags, zbookmark_phys_t *zb) 1235 { 1236 zio_t *zio; 1237 1238 zio = zio_create(pio, spa, txg, bp, data, size, size, done, private, 1239 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb, 1240 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE); 1241 1242 return (zio); 1243 } 1244 1245 void 1246 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite, 1247 boolean_t brtwrite) 1248 { 1249 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 1250 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1251 ASSERT(zio->io_stage == ZIO_STAGE_OPEN); 1252 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa)); 1253 ASSERT(!brtwrite || !nopwrite); 1254 1255 /* 1256 * We must reset the io_prop to match the values that existed 1257 * when the bp was first written by dmu_sync() keeping in mind 1258 * that nopwrite and dedup are mutually exclusive. 1259 */ 1260 zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup; 1261 zio->io_prop.zp_nopwrite = nopwrite; 1262 zio->io_prop.zp_brtwrite = brtwrite; 1263 zio->io_prop.zp_copies = copies; 1264 zio->io_bp_override = bp; 1265 } 1266 1267 void 1268 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp) 1269 { 1270 1271 (void) zfs_blkptr_verify(spa, bp, BLK_CONFIG_NEEDED, BLK_VERIFY_HALT); 1272 1273 /* 1274 * The check for EMBEDDED is a performance optimization. We 1275 * process the free here (by ignoring it) rather than 1276 * putting it on the list and then processing it in zio_free_sync(). 1277 */ 1278 if (BP_IS_EMBEDDED(bp)) 1279 return; 1280 1281 /* 1282 * Frees that are for the currently-syncing txg, are not going to be 1283 * deferred, and which will not need to do a read (i.e. not GANG or 1284 * DEDUP), can be processed immediately. Otherwise, put them on the 1285 * in-memory list for later processing. 1286 * 1287 * Note that we only defer frees after zfs_sync_pass_deferred_free 1288 * when the log space map feature is disabled. [see relevant comment 1289 * in spa_sync_iterate_to_convergence()] 1290 */ 1291 if (BP_IS_GANG(bp) || 1292 BP_GET_DEDUP(bp) || 1293 txg != spa->spa_syncing_txg || 1294 (spa_sync_pass(spa) >= zfs_sync_pass_deferred_free && 1295 !spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) || 1296 brt_maybe_exists(spa, bp)) { 1297 metaslab_check_free(spa, bp); 1298 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp); 1299 } else { 1300 VERIFY3P(zio_free_sync(NULL, spa, txg, bp, 0), ==, NULL); 1301 } 1302 } 1303 1304 /* 1305 * To improve performance, this function may return NULL if we were able 1306 * to do the free immediately. This avoids the cost of creating a zio 1307 * (and linking it to the parent, etc). 1308 */ 1309 zio_t * 1310 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 1311 zio_flag_t flags) 1312 { 1313 ASSERT(!BP_IS_HOLE(bp)); 1314 ASSERT(spa_syncing_txg(spa) == txg); 1315 1316 if (BP_IS_EMBEDDED(bp)) 1317 return (NULL); 1318 1319 metaslab_check_free(spa, bp); 1320 arc_freed(spa, bp); 1321 dsl_scan_freed(spa, bp); 1322 1323 if (BP_IS_GANG(bp) || 1324 BP_GET_DEDUP(bp) || 1325 brt_maybe_exists(spa, bp)) { 1326 /* 1327 * GANG, DEDUP and BRT blocks can induce a read (for the gang 1328 * block header, the DDT or the BRT), so issue them 1329 * asynchronously so that this thread is not tied up. 1330 */ 1331 enum zio_stage stage = 1332 ZIO_FREE_PIPELINE | ZIO_STAGE_ISSUE_ASYNC; 1333 1334 return (zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 1335 BP_GET_PSIZE(bp), NULL, NULL, 1336 ZIO_TYPE_FREE, ZIO_PRIORITY_NOW, 1337 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage)); 1338 } else { 1339 metaslab_free(spa, bp, txg, B_FALSE); 1340 return (NULL); 1341 } 1342 } 1343 1344 zio_t * 1345 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 1346 zio_done_func_t *done, void *private, zio_flag_t flags) 1347 { 1348 zio_t *zio; 1349 1350 (void) zfs_blkptr_verify(spa, bp, (flags & ZIO_FLAG_CONFIG_WRITER) ? 1351 BLK_CONFIG_HELD : BLK_CONFIG_NEEDED, BLK_VERIFY_HALT); 1352 1353 if (BP_IS_EMBEDDED(bp)) 1354 return (zio_null(pio, spa, NULL, NULL, NULL, 0)); 1355 1356 /* 1357 * A claim is an allocation of a specific block. Claims are needed 1358 * to support immediate writes in the intent log. The issue is that 1359 * immediate writes contain committed data, but in a txg that was 1360 * *not* committed. Upon opening the pool after an unclean shutdown, 1361 * the intent log claims all blocks that contain immediate write data 1362 * so that the SPA knows they're in use. 1363 * 1364 * All claims *must* be resolved in the first txg -- before the SPA 1365 * starts allocating blocks -- so that nothing is allocated twice. 1366 * If txg == 0 we just verify that the block is claimable. 1367 */ 1368 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, 1369 spa_min_claim_txg(spa)); 1370 ASSERT(txg == spa_min_claim_txg(spa) || txg == 0); 1371 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(8) */ 1372 1373 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 1374 BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, 1375 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE); 1376 ASSERT0(zio->io_queued_timestamp); 1377 1378 return (zio); 1379 } 1380 1381 zio_t * 1382 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, 1383 zio_done_func_t *done, void *private, zio_flag_t flags) 1384 { 1385 zio_t *zio; 1386 int c; 1387 1388 if (vd->vdev_children == 0) { 1389 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private, 1390 ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 1391 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE); 1392 1393 zio->io_cmd = cmd; 1394 } else { 1395 zio = zio_null(pio, spa, NULL, NULL, NULL, flags); 1396 1397 for (c = 0; c < vd->vdev_children; c++) 1398 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd, 1399 done, private, flags)); 1400 } 1401 1402 return (zio); 1403 } 1404 1405 zio_t * 1406 zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1407 zio_done_func_t *done, void *private, zio_priority_t priority, 1408 zio_flag_t flags, enum trim_flag trim_flags) 1409 { 1410 zio_t *zio; 1411 1412 ASSERT0(vd->vdev_children); 1413 ASSERT0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 1414 ASSERT0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 1415 ASSERT3U(size, !=, 0); 1416 1417 zio = zio_create(pio, vd->vdev_spa, 0, NULL, NULL, size, size, done, 1418 private, ZIO_TYPE_TRIM, priority, flags | ZIO_FLAG_PHYSICAL, 1419 vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_TRIM_PIPELINE); 1420 zio->io_trim_flags = trim_flags; 1421 1422 return (zio); 1423 } 1424 1425 zio_t * 1426 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1427 abd_t *data, int checksum, zio_done_func_t *done, void *private, 1428 zio_priority_t priority, zio_flag_t flags, boolean_t labels) 1429 { 1430 zio_t *zio; 1431 1432 ASSERT(vd->vdev_children == 0); 1433 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 1434 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 1435 ASSERT3U(offset + size, <=, vd->vdev_psize); 1436 1437 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, 1438 private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd, 1439 offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE); 1440 1441 zio->io_prop.zp_checksum = checksum; 1442 1443 return (zio); 1444 } 1445 1446 zio_t * 1447 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1448 abd_t *data, int checksum, zio_done_func_t *done, void *private, 1449 zio_priority_t priority, zio_flag_t flags, boolean_t labels) 1450 { 1451 zio_t *zio; 1452 1453 ASSERT(vd->vdev_children == 0); 1454 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 1455 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 1456 ASSERT3U(offset + size, <=, vd->vdev_psize); 1457 1458 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, 1459 private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd, 1460 offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE); 1461 1462 zio->io_prop.zp_checksum = checksum; 1463 1464 if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) { 1465 /* 1466 * zec checksums are necessarily destructive -- they modify 1467 * the end of the write buffer to hold the verifier/checksum. 1468 * Therefore, we must make a local copy in case the data is 1469 * being written to multiple places in parallel. 1470 */ 1471 abd_t *wbuf = abd_alloc_sametype(data, size); 1472 abd_copy(wbuf, data, size); 1473 1474 zio_push_transform(zio, wbuf, size, size, NULL); 1475 } 1476 1477 return (zio); 1478 } 1479 1480 /* 1481 * Create a child I/O to do some work for us. 1482 */ 1483 zio_t * 1484 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset, 1485 abd_t *data, uint64_t size, int type, zio_priority_t priority, 1486 zio_flag_t flags, zio_done_func_t *done, void *private) 1487 { 1488 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE; 1489 zio_t *zio; 1490 1491 /* 1492 * vdev child I/Os do not propagate their error to the parent. 1493 * Therefore, for correct operation the caller *must* check for 1494 * and handle the error in the child i/o's done callback. 1495 * The only exceptions are i/os that we don't care about 1496 * (OPTIONAL or REPAIR). 1497 */ 1498 ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) || 1499 done != NULL); 1500 1501 if (type == ZIO_TYPE_READ && bp != NULL) { 1502 /* 1503 * If we have the bp, then the child should perform the 1504 * checksum and the parent need not. This pushes error 1505 * detection as close to the leaves as possible and 1506 * eliminates redundant checksums in the interior nodes. 1507 */ 1508 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY; 1509 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 1510 } 1511 1512 if (vd->vdev_ops->vdev_op_leaf) { 1513 ASSERT0(vd->vdev_children); 1514 offset += VDEV_LABEL_START_SIZE; 1515 } 1516 1517 flags |= ZIO_VDEV_CHILD_FLAGS(pio); 1518 1519 /* 1520 * If we've decided to do a repair, the write is not speculative -- 1521 * even if the original read was. 1522 */ 1523 if (flags & ZIO_FLAG_IO_REPAIR) 1524 flags &= ~ZIO_FLAG_SPECULATIVE; 1525 1526 /* 1527 * If we're creating a child I/O that is not associated with a 1528 * top-level vdev, then the child zio is not an allocating I/O. 1529 * If this is a retried I/O then we ignore it since we will 1530 * have already processed the original allocating I/O. 1531 */ 1532 if (flags & ZIO_FLAG_IO_ALLOCATING && 1533 (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) { 1534 ASSERT(pio->io_metaslab_class != NULL); 1535 ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled); 1536 ASSERT(type == ZIO_TYPE_WRITE); 1537 ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE); 1538 ASSERT(!(flags & ZIO_FLAG_IO_REPAIR)); 1539 ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) || 1540 pio->io_child_type == ZIO_CHILD_GANG); 1541 1542 flags &= ~ZIO_FLAG_IO_ALLOCATING; 1543 } 1544 1545 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size, 1546 done, private, type, priority, flags, vd, offset, &pio->io_bookmark, 1547 ZIO_STAGE_VDEV_IO_START >> 1, pipeline); 1548 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); 1549 1550 return (zio); 1551 } 1552 1553 zio_t * 1554 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size, 1555 zio_type_t type, zio_priority_t priority, zio_flag_t flags, 1556 zio_done_func_t *done, void *private) 1557 { 1558 zio_t *zio; 1559 1560 ASSERT(vd->vdev_ops->vdev_op_leaf); 1561 1562 zio = zio_create(NULL, vd->vdev_spa, 0, NULL, 1563 data, size, size, done, private, type, priority, 1564 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED, 1565 vd, offset, NULL, 1566 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE); 1567 1568 return (zio); 1569 } 1570 1571 void 1572 zio_flush(zio_t *zio, vdev_t *vd) 1573 { 1574 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE, 1575 NULL, NULL, 1576 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY)); 1577 } 1578 1579 void 1580 zio_shrink(zio_t *zio, uint64_t size) 1581 { 1582 ASSERT3P(zio->io_executor, ==, NULL); 1583 ASSERT3U(zio->io_orig_size, ==, zio->io_size); 1584 ASSERT3U(size, <=, zio->io_size); 1585 1586 /* 1587 * We don't shrink for raidz because of problems with the 1588 * reconstruction when reading back less than the block size. 1589 * Note, BP_IS_RAIDZ() assumes no compression. 1590 */ 1591 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 1592 if (!BP_IS_RAIDZ(zio->io_bp)) { 1593 /* we are not doing a raw write */ 1594 ASSERT3U(zio->io_size, ==, zio->io_lsize); 1595 zio->io_orig_size = zio->io_size = zio->io_lsize = size; 1596 } 1597 } 1598 1599 /* 1600 * ========================================================================== 1601 * Prepare to read and write logical blocks 1602 * ========================================================================== 1603 */ 1604 1605 static zio_t * 1606 zio_read_bp_init(zio_t *zio) 1607 { 1608 blkptr_t *bp = zio->io_bp; 1609 uint64_t psize = 1610 BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp); 1611 1612 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 1613 1614 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF && 1615 zio->io_child_type == ZIO_CHILD_LOGICAL && 1616 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) { 1617 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize), 1618 psize, psize, zio_decompress); 1619 } 1620 1621 if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) || 1622 BP_HAS_INDIRECT_MAC_CKSUM(bp)) && 1623 zio->io_child_type == ZIO_CHILD_LOGICAL) { 1624 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize), 1625 psize, psize, zio_decrypt); 1626 } 1627 1628 if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) { 1629 int psize = BPE_GET_PSIZE(bp); 1630 void *data = abd_borrow_buf(zio->io_abd, psize); 1631 1632 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1633 decode_embedded_bp_compressed(bp, data); 1634 abd_return_buf_copy(zio->io_abd, data, psize); 1635 } else { 1636 ASSERT(!BP_IS_EMBEDDED(bp)); 1637 } 1638 1639 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL) 1640 zio->io_pipeline = ZIO_DDT_READ_PIPELINE; 1641 1642 return (zio); 1643 } 1644 1645 static zio_t * 1646 zio_write_bp_init(zio_t *zio) 1647 { 1648 if (!IO_IS_ALLOCATING(zio)) 1649 return (zio); 1650 1651 ASSERT(zio->io_child_type != ZIO_CHILD_DDT); 1652 1653 if (zio->io_bp_override) { 1654 blkptr_t *bp = zio->io_bp; 1655 zio_prop_t *zp = &zio->io_prop; 1656 1657 ASSERT(bp->blk_birth != zio->io_txg); 1658 1659 *bp = *zio->io_bp_override; 1660 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1661 1662 if (zp->zp_brtwrite) 1663 return (zio); 1664 1665 ASSERT(!BP_GET_DEDUP(zio->io_bp_override)); 1666 1667 if (BP_IS_EMBEDDED(bp)) 1668 return (zio); 1669 1670 /* 1671 * If we've been overridden and nopwrite is set then 1672 * set the flag accordingly to indicate that a nopwrite 1673 * has already occurred. 1674 */ 1675 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) { 1676 ASSERT(!zp->zp_dedup); 1677 ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum); 1678 zio->io_flags |= ZIO_FLAG_NOPWRITE; 1679 return (zio); 1680 } 1681 1682 ASSERT(!zp->zp_nopwrite); 1683 1684 if (BP_IS_HOLE(bp) || !zp->zp_dedup) 1685 return (zio); 1686 1687 ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags & 1688 ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify); 1689 1690 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum && 1691 !zp->zp_encrypt) { 1692 BP_SET_DEDUP(bp, 1); 1693 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE; 1694 return (zio); 1695 } 1696 1697 /* 1698 * We were unable to handle this as an override bp, treat 1699 * it as a regular write I/O. 1700 */ 1701 zio->io_bp_override = NULL; 1702 *bp = zio->io_bp_orig; 1703 zio->io_pipeline = zio->io_orig_pipeline; 1704 } 1705 1706 return (zio); 1707 } 1708 1709 static zio_t * 1710 zio_write_compress(zio_t *zio) 1711 { 1712 spa_t *spa = zio->io_spa; 1713 zio_prop_t *zp = &zio->io_prop; 1714 enum zio_compress compress = zp->zp_compress; 1715 blkptr_t *bp = zio->io_bp; 1716 uint64_t lsize = zio->io_lsize; 1717 uint64_t psize = zio->io_size; 1718 uint32_t pass = 1; 1719 1720 /* 1721 * If our children haven't all reached the ready stage, 1722 * wait for them and then repeat this pipeline stage. 1723 */ 1724 if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT | 1725 ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) { 1726 return (NULL); 1727 } 1728 1729 if (!IO_IS_ALLOCATING(zio)) 1730 return (zio); 1731 1732 if (zio->io_children_ready != NULL) { 1733 /* 1734 * Now that all our children are ready, run the callback 1735 * associated with this zio in case it wants to modify the 1736 * data to be written. 1737 */ 1738 ASSERT3U(zp->zp_level, >, 0); 1739 zio->io_children_ready(zio); 1740 } 1741 1742 ASSERT(zio->io_child_type != ZIO_CHILD_DDT); 1743 ASSERT(zio->io_bp_override == NULL); 1744 1745 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) { 1746 /* 1747 * We're rewriting an existing block, which means we're 1748 * working on behalf of spa_sync(). For spa_sync() to 1749 * converge, it must eventually be the case that we don't 1750 * have to allocate new blocks. But compression changes 1751 * the blocksize, which forces a reallocate, and makes 1752 * convergence take longer. Therefore, after the first 1753 * few passes, stop compressing to ensure convergence. 1754 */ 1755 pass = spa_sync_pass(spa); 1756 1757 ASSERT(zio->io_txg == spa_syncing_txg(spa)); 1758 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1759 ASSERT(!BP_GET_DEDUP(bp)); 1760 1761 if (pass >= zfs_sync_pass_dont_compress) 1762 compress = ZIO_COMPRESS_OFF; 1763 1764 /* Make sure someone doesn't change their mind on overwrites */ 1765 ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp), 1766 spa_max_replication(spa)) == BP_GET_NDVAS(bp)); 1767 } 1768 1769 /* If it's a compressed write that is not raw, compress the buffer. */ 1770 if (compress != ZIO_COMPRESS_OFF && 1771 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) { 1772 void *cbuf = NULL; 1773 psize = zio_compress_data(compress, zio->io_abd, &cbuf, lsize, 1774 zp->zp_complevel); 1775 if (psize == 0) { 1776 compress = ZIO_COMPRESS_OFF; 1777 } else if (psize >= lsize) { 1778 compress = ZIO_COMPRESS_OFF; 1779 if (cbuf != NULL) 1780 zio_buf_free(cbuf, lsize); 1781 } else if (!zp->zp_dedup && !zp->zp_encrypt && 1782 psize <= BPE_PAYLOAD_SIZE && 1783 zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) && 1784 spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) { 1785 encode_embedded_bp_compressed(bp, 1786 cbuf, compress, lsize, psize); 1787 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA); 1788 BP_SET_TYPE(bp, zio->io_prop.zp_type); 1789 BP_SET_LEVEL(bp, zio->io_prop.zp_level); 1790 zio_buf_free(cbuf, lsize); 1791 bp->blk_birth = zio->io_txg; 1792 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1793 ASSERT(spa_feature_is_active(spa, 1794 SPA_FEATURE_EMBEDDED_DATA)); 1795 return (zio); 1796 } else { 1797 /* 1798 * Round compressed size up to the minimum allocation 1799 * size of the smallest-ashift device, and zero the 1800 * tail. This ensures that the compressed size of the 1801 * BP (and thus compressratio property) are correct, 1802 * in that we charge for the padding used to fill out 1803 * the last sector. 1804 */ 1805 ASSERT3U(spa->spa_min_alloc, >=, SPA_MINBLOCKSHIFT); 1806 size_t rounded = (size_t)roundup(psize, 1807 spa->spa_min_alloc); 1808 if (rounded >= lsize) { 1809 compress = ZIO_COMPRESS_OFF; 1810 zio_buf_free(cbuf, lsize); 1811 psize = lsize; 1812 } else { 1813 abd_t *cdata = abd_get_from_buf(cbuf, lsize); 1814 abd_take_ownership_of_buf(cdata, B_TRUE); 1815 abd_zero_off(cdata, psize, rounded - psize); 1816 psize = rounded; 1817 zio_push_transform(zio, cdata, 1818 psize, lsize, NULL); 1819 } 1820 } 1821 1822 /* 1823 * We were unable to handle this as an override bp, treat 1824 * it as a regular write I/O. 1825 */ 1826 zio->io_bp_override = NULL; 1827 *bp = zio->io_bp_orig; 1828 zio->io_pipeline = zio->io_orig_pipeline; 1829 1830 } else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 && 1831 zp->zp_type == DMU_OT_DNODE) { 1832 /* 1833 * The DMU actually relies on the zio layer's compression 1834 * to free metadnode blocks that have had all contained 1835 * dnodes freed. As a result, even when doing a raw 1836 * receive, we must check whether the block can be compressed 1837 * to a hole. 1838 */ 1839 psize = zio_compress_data(ZIO_COMPRESS_EMPTY, 1840 zio->io_abd, NULL, lsize, zp->zp_complevel); 1841 if (psize == 0 || psize >= lsize) 1842 compress = ZIO_COMPRESS_OFF; 1843 } else if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS && 1844 !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) { 1845 /* 1846 * If we are raw receiving an encrypted dataset we should not 1847 * take this codepath because it will change the on-disk block 1848 * and decryption will fail. 1849 */ 1850 size_t rounded = MIN((size_t)roundup(psize, 1851 spa->spa_min_alloc), lsize); 1852 1853 if (rounded != psize) { 1854 abd_t *cdata = abd_alloc_linear(rounded, B_TRUE); 1855 abd_zero_off(cdata, psize, rounded - psize); 1856 abd_copy_off(cdata, zio->io_abd, 0, 0, psize); 1857 psize = rounded; 1858 zio_push_transform(zio, cdata, 1859 psize, rounded, NULL); 1860 } 1861 } else { 1862 ASSERT3U(psize, !=, 0); 1863 } 1864 1865 /* 1866 * The final pass of spa_sync() must be all rewrites, but the first 1867 * few passes offer a trade-off: allocating blocks defers convergence, 1868 * but newly allocated blocks are sequential, so they can be written 1869 * to disk faster. Therefore, we allow the first few passes of 1870 * spa_sync() to allocate new blocks, but force rewrites after that. 1871 * There should only be a handful of blocks after pass 1 in any case. 1872 */ 1873 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg && 1874 BP_GET_PSIZE(bp) == psize && 1875 pass >= zfs_sync_pass_rewrite) { 1876 VERIFY3U(psize, !=, 0); 1877 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES; 1878 1879 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages; 1880 zio->io_flags |= ZIO_FLAG_IO_REWRITE; 1881 } else { 1882 BP_ZERO(bp); 1883 zio->io_pipeline = ZIO_WRITE_PIPELINE; 1884 } 1885 1886 if (psize == 0) { 1887 if (zio->io_bp_orig.blk_birth != 0 && 1888 spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) { 1889 BP_SET_LSIZE(bp, lsize); 1890 BP_SET_TYPE(bp, zp->zp_type); 1891 BP_SET_LEVEL(bp, zp->zp_level); 1892 BP_SET_BIRTH(bp, zio->io_txg, 0); 1893 } 1894 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1895 } else { 1896 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER); 1897 BP_SET_LSIZE(bp, lsize); 1898 BP_SET_TYPE(bp, zp->zp_type); 1899 BP_SET_LEVEL(bp, zp->zp_level); 1900 BP_SET_PSIZE(bp, psize); 1901 BP_SET_COMPRESS(bp, compress); 1902 BP_SET_CHECKSUM(bp, zp->zp_checksum); 1903 BP_SET_DEDUP(bp, zp->zp_dedup); 1904 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 1905 if (zp->zp_dedup) { 1906 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1907 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1908 ASSERT(!zp->zp_encrypt || 1909 DMU_OT_IS_ENCRYPTED(zp->zp_type)); 1910 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE; 1911 } 1912 if (zp->zp_nopwrite) { 1913 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1914 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1915 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE; 1916 } 1917 } 1918 return (zio); 1919 } 1920 1921 static zio_t * 1922 zio_free_bp_init(zio_t *zio) 1923 { 1924 blkptr_t *bp = zio->io_bp; 1925 1926 if (zio->io_child_type == ZIO_CHILD_LOGICAL) { 1927 if (BP_GET_DEDUP(bp)) 1928 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE; 1929 } 1930 1931 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 1932 1933 return (zio); 1934 } 1935 1936 /* 1937 * ========================================================================== 1938 * Execute the I/O pipeline 1939 * ========================================================================== 1940 */ 1941 1942 static void 1943 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline) 1944 { 1945 spa_t *spa = zio->io_spa; 1946 zio_type_t t = zio->io_type; 1947 int flags = (cutinline ? TQ_FRONT : 0); 1948 1949 /* 1950 * If we're a config writer or a probe, the normal issue and 1951 * interrupt threads may all be blocked waiting for the config lock. 1952 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL. 1953 */ 1954 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE)) 1955 t = ZIO_TYPE_NULL; 1956 1957 /* 1958 * A similar issue exists for the L2ARC write thread until L2ARC 2.0. 1959 */ 1960 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux) 1961 t = ZIO_TYPE_NULL; 1962 1963 /* 1964 * If this is a high priority I/O, then use the high priority taskq if 1965 * available. 1966 */ 1967 if ((zio->io_priority == ZIO_PRIORITY_NOW || 1968 zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) && 1969 spa->spa_zio_taskq[t][q + 1].stqs_count != 0) 1970 q++; 1971 1972 ASSERT3U(q, <, ZIO_TASKQ_TYPES); 1973 1974 /* 1975 * NB: We are assuming that the zio can only be dispatched 1976 * to a single taskq at a time. It would be a grievous error 1977 * to dispatch the zio to another taskq at the same time. 1978 */ 1979 ASSERT(taskq_empty_ent(&zio->io_tqent)); 1980 spa_taskq_dispatch_ent(spa, t, q, zio_execute, zio, flags, 1981 &zio->io_tqent); 1982 } 1983 1984 static boolean_t 1985 zio_taskq_member(zio_t *zio, zio_taskq_type_t q) 1986 { 1987 spa_t *spa = zio->io_spa; 1988 1989 taskq_t *tq = taskq_of_curthread(); 1990 1991 for (zio_type_t t = 0; t < ZIO_TYPES; t++) { 1992 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1993 uint_t i; 1994 for (i = 0; i < tqs->stqs_count; i++) { 1995 if (tqs->stqs_taskq[i] == tq) 1996 return (B_TRUE); 1997 } 1998 } 1999 2000 return (B_FALSE); 2001 } 2002 2003 static zio_t * 2004 zio_issue_async(zio_t *zio) 2005 { 2006 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 2007 2008 return (NULL); 2009 } 2010 2011 void 2012 zio_interrupt(void *zio) 2013 { 2014 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE); 2015 } 2016 2017 void 2018 zio_delay_interrupt(zio_t *zio) 2019 { 2020 /* 2021 * The timeout_generic() function isn't defined in userspace, so 2022 * rather than trying to implement the function, the zio delay 2023 * functionality has been disabled for userspace builds. 2024 */ 2025 2026 #ifdef _KERNEL 2027 /* 2028 * If io_target_timestamp is zero, then no delay has been registered 2029 * for this IO, thus jump to the end of this function and "skip" the 2030 * delay; issuing it directly to the zio layer. 2031 */ 2032 if (zio->io_target_timestamp != 0) { 2033 hrtime_t now = gethrtime(); 2034 2035 if (now >= zio->io_target_timestamp) { 2036 /* 2037 * This IO has already taken longer than the target 2038 * delay to complete, so we don't want to delay it 2039 * any longer; we "miss" the delay and issue it 2040 * directly to the zio layer. This is likely due to 2041 * the target latency being set to a value less than 2042 * the underlying hardware can satisfy (e.g. delay 2043 * set to 1ms, but the disks take 10ms to complete an 2044 * IO request). 2045 */ 2046 2047 DTRACE_PROBE2(zio__delay__miss, zio_t *, zio, 2048 hrtime_t, now); 2049 2050 zio_interrupt(zio); 2051 } else { 2052 taskqid_t tid; 2053 hrtime_t diff = zio->io_target_timestamp - now; 2054 clock_t expire_at_tick = ddi_get_lbolt() + 2055 NSEC_TO_TICK(diff); 2056 2057 DTRACE_PROBE3(zio__delay__hit, zio_t *, zio, 2058 hrtime_t, now, hrtime_t, diff); 2059 2060 if (NSEC_TO_TICK(diff) == 0) { 2061 /* Our delay is less than a jiffy - just spin */ 2062 zfs_sleep_until(zio->io_target_timestamp); 2063 zio_interrupt(zio); 2064 } else { 2065 /* 2066 * Use taskq_dispatch_delay() in the place of 2067 * OpenZFS's timeout_generic(). 2068 */ 2069 tid = taskq_dispatch_delay(system_taskq, 2070 zio_interrupt, zio, TQ_NOSLEEP, 2071 expire_at_tick); 2072 if (tid == TASKQID_INVALID) { 2073 /* 2074 * Couldn't allocate a task. Just 2075 * finish the zio without a delay. 2076 */ 2077 zio_interrupt(zio); 2078 } 2079 } 2080 } 2081 return; 2082 } 2083 #endif 2084 DTRACE_PROBE1(zio__delay__skip, zio_t *, zio); 2085 zio_interrupt(zio); 2086 } 2087 2088 static void 2089 zio_deadman_impl(zio_t *pio, int ziodepth) 2090 { 2091 zio_t *cio, *cio_next; 2092 zio_link_t *zl = NULL; 2093 vdev_t *vd = pio->io_vd; 2094 2095 if (zio_deadman_log_all || (vd != NULL && vd->vdev_ops->vdev_op_leaf)) { 2096 vdev_queue_t *vq = vd ? &vd->vdev_queue : NULL; 2097 zbookmark_phys_t *zb = &pio->io_bookmark; 2098 uint64_t delta = gethrtime() - pio->io_timestamp; 2099 uint64_t failmode = spa_get_deadman_failmode(pio->io_spa); 2100 2101 zfs_dbgmsg("slow zio[%d]: zio=%px timestamp=%llu " 2102 "delta=%llu queued=%llu io=%llu " 2103 "path=%s " 2104 "last=%llu type=%d " 2105 "priority=%d flags=0x%llx stage=0x%x " 2106 "pipeline=0x%x pipeline-trace=0x%x " 2107 "objset=%llu object=%llu " 2108 "level=%llu blkid=%llu " 2109 "offset=%llu size=%llu " 2110 "error=%d", 2111 ziodepth, pio, pio->io_timestamp, 2112 (u_longlong_t)delta, pio->io_delta, pio->io_delay, 2113 vd ? vd->vdev_path : "NULL", 2114 vq ? vq->vq_io_complete_ts : 0, pio->io_type, 2115 pio->io_priority, (u_longlong_t)pio->io_flags, 2116 pio->io_stage, pio->io_pipeline, pio->io_pipeline_trace, 2117 (u_longlong_t)zb->zb_objset, (u_longlong_t)zb->zb_object, 2118 (u_longlong_t)zb->zb_level, (u_longlong_t)zb->zb_blkid, 2119 (u_longlong_t)pio->io_offset, (u_longlong_t)pio->io_size, 2120 pio->io_error); 2121 (void) zfs_ereport_post(FM_EREPORT_ZFS_DEADMAN, 2122 pio->io_spa, vd, zb, pio, 0); 2123 2124 if (failmode == ZIO_FAILURE_MODE_CONTINUE && 2125 taskq_empty_ent(&pio->io_tqent)) { 2126 zio_interrupt(pio); 2127 } 2128 } 2129 2130 mutex_enter(&pio->io_lock); 2131 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 2132 cio_next = zio_walk_children(pio, &zl); 2133 zio_deadman_impl(cio, ziodepth + 1); 2134 } 2135 mutex_exit(&pio->io_lock); 2136 } 2137 2138 /* 2139 * Log the critical information describing this zio and all of its children 2140 * using the zfs_dbgmsg() interface then post deadman event for the ZED. 2141 */ 2142 void 2143 zio_deadman(zio_t *pio, const char *tag) 2144 { 2145 spa_t *spa = pio->io_spa; 2146 char *name = spa_name(spa); 2147 2148 if (!zfs_deadman_enabled || spa_suspended(spa)) 2149 return; 2150 2151 zio_deadman_impl(pio, 0); 2152 2153 switch (spa_get_deadman_failmode(spa)) { 2154 case ZIO_FAILURE_MODE_WAIT: 2155 zfs_dbgmsg("%s waiting for hung I/O to pool '%s'", tag, name); 2156 break; 2157 2158 case ZIO_FAILURE_MODE_CONTINUE: 2159 zfs_dbgmsg("%s restarting hung I/O for pool '%s'", tag, name); 2160 break; 2161 2162 case ZIO_FAILURE_MODE_PANIC: 2163 fm_panic("%s determined I/O to pool '%s' is hung.", tag, name); 2164 break; 2165 } 2166 } 2167 2168 /* 2169 * Execute the I/O pipeline until one of the following occurs: 2170 * (1) the I/O completes; (2) the pipeline stalls waiting for 2171 * dependent child I/Os; (3) the I/O issues, so we're waiting 2172 * for an I/O completion interrupt; (4) the I/O is delegated by 2173 * vdev-level caching or aggregation; (5) the I/O is deferred 2174 * due to vdev-level queueing; (6) the I/O is handed off to 2175 * another thread. In all cases, the pipeline stops whenever 2176 * there's no CPU work; it never burns a thread in cv_wait_io(). 2177 * 2178 * There's no locking on io_stage because there's no legitimate way 2179 * for multiple threads to be attempting to process the same I/O. 2180 */ 2181 static zio_pipe_stage_t *zio_pipeline[]; 2182 2183 /* 2184 * zio_execute() is a wrapper around the static function 2185 * __zio_execute() so that we can force __zio_execute() to be 2186 * inlined. This reduces stack overhead which is important 2187 * because __zio_execute() is called recursively in several zio 2188 * code paths. zio_execute() itself cannot be inlined because 2189 * it is externally visible. 2190 */ 2191 void 2192 zio_execute(void *zio) 2193 { 2194 fstrans_cookie_t cookie; 2195 2196 cookie = spl_fstrans_mark(); 2197 __zio_execute(zio); 2198 spl_fstrans_unmark(cookie); 2199 } 2200 2201 /* 2202 * Used to determine if in the current context the stack is sized large 2203 * enough to allow zio_execute() to be called recursively. A minimum 2204 * stack size of 16K is required to avoid needing to re-dispatch the zio. 2205 */ 2206 static boolean_t 2207 zio_execute_stack_check(zio_t *zio) 2208 { 2209 #if !defined(HAVE_LARGE_STACKS) 2210 dsl_pool_t *dp = spa_get_dsl(zio->io_spa); 2211 2212 /* Executing in txg_sync_thread() context. */ 2213 if (dp && curthread == dp->dp_tx.tx_sync_thread) 2214 return (B_TRUE); 2215 2216 /* Pool initialization outside of zio_taskq context. */ 2217 if (dp && spa_is_initializing(dp->dp_spa) && 2218 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE) && 2219 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE_HIGH)) 2220 return (B_TRUE); 2221 #else 2222 (void) zio; 2223 #endif /* HAVE_LARGE_STACKS */ 2224 2225 return (B_FALSE); 2226 } 2227 2228 __attribute__((always_inline)) 2229 static inline void 2230 __zio_execute(zio_t *zio) 2231 { 2232 ASSERT3U(zio->io_queued_timestamp, >, 0); 2233 2234 while (zio->io_stage < ZIO_STAGE_DONE) { 2235 enum zio_stage pipeline = zio->io_pipeline; 2236 enum zio_stage stage = zio->io_stage; 2237 2238 zio->io_executor = curthread; 2239 2240 ASSERT(!MUTEX_HELD(&zio->io_lock)); 2241 ASSERT(ISP2(stage)); 2242 ASSERT(zio->io_stall == NULL); 2243 2244 do { 2245 stage <<= 1; 2246 } while ((stage & pipeline) == 0); 2247 2248 ASSERT(stage <= ZIO_STAGE_DONE); 2249 2250 /* 2251 * If we are in interrupt context and this pipeline stage 2252 * will grab a config lock that is held across I/O, 2253 * or may wait for an I/O that needs an interrupt thread 2254 * to complete, issue async to avoid deadlock. 2255 * 2256 * For VDEV_IO_START, we cut in line so that the io will 2257 * be sent to disk promptly. 2258 */ 2259 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL && 2260 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) { 2261 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ? 2262 zio_requeue_io_start_cut_in_line : B_FALSE; 2263 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut); 2264 return; 2265 } 2266 2267 /* 2268 * If the current context doesn't have large enough stacks 2269 * the zio must be issued asynchronously to prevent overflow. 2270 */ 2271 if (zio_execute_stack_check(zio)) { 2272 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ? 2273 zio_requeue_io_start_cut_in_line : B_FALSE; 2274 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut); 2275 return; 2276 } 2277 2278 zio->io_stage = stage; 2279 zio->io_pipeline_trace |= zio->io_stage; 2280 2281 /* 2282 * The zio pipeline stage returns the next zio to execute 2283 * (typically the same as this one), or NULL if we should 2284 * stop. 2285 */ 2286 zio = zio_pipeline[highbit64(stage) - 1](zio); 2287 2288 if (zio == NULL) 2289 return; 2290 } 2291 } 2292 2293 2294 /* 2295 * ========================================================================== 2296 * Initiate I/O, either sync or async 2297 * ========================================================================== 2298 */ 2299 int 2300 zio_wait(zio_t *zio) 2301 { 2302 /* 2303 * Some routines, like zio_free_sync(), may return a NULL zio 2304 * to avoid the performance overhead of creating and then destroying 2305 * an unneeded zio. For the callers' simplicity, we accept a NULL 2306 * zio and ignore it. 2307 */ 2308 if (zio == NULL) 2309 return (0); 2310 2311 long timeout = MSEC_TO_TICK(zfs_deadman_ziotime_ms); 2312 int error; 2313 2314 ASSERT3S(zio->io_stage, ==, ZIO_STAGE_OPEN); 2315 ASSERT3P(zio->io_executor, ==, NULL); 2316 2317 zio->io_waiter = curthread; 2318 ASSERT0(zio->io_queued_timestamp); 2319 zio->io_queued_timestamp = gethrtime(); 2320 2321 __zio_execute(zio); 2322 2323 mutex_enter(&zio->io_lock); 2324 while (zio->io_executor != NULL) { 2325 error = cv_timedwait_io(&zio->io_cv, &zio->io_lock, 2326 ddi_get_lbolt() + timeout); 2327 2328 if (zfs_deadman_enabled && error == -1 && 2329 gethrtime() - zio->io_queued_timestamp > 2330 spa_deadman_ziotime(zio->io_spa)) { 2331 mutex_exit(&zio->io_lock); 2332 timeout = MSEC_TO_TICK(zfs_deadman_checktime_ms); 2333 zio_deadman(zio, FTAG); 2334 mutex_enter(&zio->io_lock); 2335 } 2336 } 2337 mutex_exit(&zio->io_lock); 2338 2339 error = zio->io_error; 2340 zio_destroy(zio); 2341 2342 return (error); 2343 } 2344 2345 void 2346 zio_nowait(zio_t *zio) 2347 { 2348 /* 2349 * See comment in zio_wait(). 2350 */ 2351 if (zio == NULL) 2352 return; 2353 2354 ASSERT3P(zio->io_executor, ==, NULL); 2355 2356 if (zio->io_child_type == ZIO_CHILD_LOGICAL && 2357 list_is_empty(&zio->io_parent_list)) { 2358 zio_t *pio; 2359 2360 /* 2361 * This is a logical async I/O with no parent to wait for it. 2362 * We add it to the spa_async_root_zio "Godfather" I/O which 2363 * will ensure they complete prior to unloading the pool. 2364 */ 2365 spa_t *spa = zio->io_spa; 2366 pio = spa->spa_async_zio_root[CPU_SEQID_UNSTABLE]; 2367 2368 zio_add_child(pio, zio); 2369 } 2370 2371 ASSERT0(zio->io_queued_timestamp); 2372 zio->io_queued_timestamp = gethrtime(); 2373 __zio_execute(zio); 2374 } 2375 2376 /* 2377 * ========================================================================== 2378 * Reexecute, cancel, or suspend/resume failed I/O 2379 * ========================================================================== 2380 */ 2381 2382 static void 2383 zio_reexecute(void *arg) 2384 { 2385 zio_t *pio = arg; 2386 zio_t *cio, *cio_next; 2387 2388 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL); 2389 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN); 2390 ASSERT(pio->io_gang_leader == NULL); 2391 ASSERT(pio->io_gang_tree == NULL); 2392 2393 pio->io_flags = pio->io_orig_flags; 2394 pio->io_stage = pio->io_orig_stage; 2395 pio->io_pipeline = pio->io_orig_pipeline; 2396 pio->io_reexecute = 0; 2397 pio->io_flags |= ZIO_FLAG_REEXECUTED; 2398 pio->io_pipeline_trace = 0; 2399 pio->io_error = 0; 2400 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 2401 pio->io_state[w] = 0; 2402 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 2403 pio->io_child_error[c] = 0; 2404 2405 if (IO_IS_ALLOCATING(pio)) 2406 BP_ZERO(pio->io_bp); 2407 2408 /* 2409 * As we reexecute pio's children, new children could be created. 2410 * New children go to the head of pio's io_child_list, however, 2411 * so we will (correctly) not reexecute them. The key is that 2412 * the remainder of pio's io_child_list, from 'cio_next' onward, 2413 * cannot be affected by any side effects of reexecuting 'cio'. 2414 */ 2415 zio_link_t *zl = NULL; 2416 mutex_enter(&pio->io_lock); 2417 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 2418 cio_next = zio_walk_children(pio, &zl); 2419 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 2420 pio->io_children[cio->io_child_type][w]++; 2421 mutex_exit(&pio->io_lock); 2422 zio_reexecute(cio); 2423 mutex_enter(&pio->io_lock); 2424 } 2425 mutex_exit(&pio->io_lock); 2426 2427 /* 2428 * Now that all children have been reexecuted, execute the parent. 2429 * We don't reexecute "The Godfather" I/O here as it's the 2430 * responsibility of the caller to wait on it. 2431 */ 2432 if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) { 2433 pio->io_queued_timestamp = gethrtime(); 2434 __zio_execute(pio); 2435 } 2436 } 2437 2438 void 2439 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason) 2440 { 2441 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC) 2442 fm_panic("Pool '%s' has encountered an uncorrectable I/O " 2443 "failure and the failure mode property for this pool " 2444 "is set to panic.", spa_name(spa)); 2445 2446 cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable I/O " 2447 "failure and has been suspended.\n", spa_name(spa)); 2448 2449 (void) zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, 2450 NULL, NULL, 0); 2451 2452 mutex_enter(&spa->spa_suspend_lock); 2453 2454 if (spa->spa_suspend_zio_root == NULL) 2455 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL, 2456 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 2457 ZIO_FLAG_GODFATHER); 2458 2459 spa->spa_suspended = reason; 2460 2461 if (zio != NULL) { 2462 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 2463 ASSERT(zio != spa->spa_suspend_zio_root); 2464 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2465 ASSERT(zio_unique_parent(zio) == NULL); 2466 ASSERT(zio->io_stage == ZIO_STAGE_DONE); 2467 zio_add_child(spa->spa_suspend_zio_root, zio); 2468 } 2469 2470 mutex_exit(&spa->spa_suspend_lock); 2471 } 2472 2473 int 2474 zio_resume(spa_t *spa) 2475 { 2476 zio_t *pio; 2477 2478 /* 2479 * Reexecute all previously suspended i/o. 2480 */ 2481 mutex_enter(&spa->spa_suspend_lock); 2482 spa->spa_suspended = ZIO_SUSPEND_NONE; 2483 cv_broadcast(&spa->spa_suspend_cv); 2484 pio = spa->spa_suspend_zio_root; 2485 spa->spa_suspend_zio_root = NULL; 2486 mutex_exit(&spa->spa_suspend_lock); 2487 2488 if (pio == NULL) 2489 return (0); 2490 2491 zio_reexecute(pio); 2492 return (zio_wait(pio)); 2493 } 2494 2495 void 2496 zio_resume_wait(spa_t *spa) 2497 { 2498 mutex_enter(&spa->spa_suspend_lock); 2499 while (spa_suspended(spa)) 2500 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock); 2501 mutex_exit(&spa->spa_suspend_lock); 2502 } 2503 2504 /* 2505 * ========================================================================== 2506 * Gang blocks. 2507 * 2508 * A gang block is a collection of small blocks that looks to the DMU 2509 * like one large block. When zio_dva_allocate() cannot find a block 2510 * of the requested size, due to either severe fragmentation or the pool 2511 * being nearly full, it calls zio_write_gang_block() to construct the 2512 * block from smaller fragments. 2513 * 2514 * A gang block consists of a gang header (zio_gbh_phys_t) and up to 2515 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like 2516 * an indirect block: it's an array of block pointers. It consumes 2517 * only one sector and hence is allocatable regardless of fragmentation. 2518 * The gang header's bps point to its gang members, which hold the data. 2519 * 2520 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg> 2521 * as the verifier to ensure uniqueness of the SHA256 checksum. 2522 * Critically, the gang block bp's blk_cksum is the checksum of the data, 2523 * not the gang header. This ensures that data block signatures (needed for 2524 * deduplication) are independent of how the block is physically stored. 2525 * 2526 * Gang blocks can be nested: a gang member may itself be a gang block. 2527 * Thus every gang block is a tree in which root and all interior nodes are 2528 * gang headers, and the leaves are normal blocks that contain user data. 2529 * The root of the gang tree is called the gang leader. 2530 * 2531 * To perform any operation (read, rewrite, free, claim) on a gang block, 2532 * zio_gang_assemble() first assembles the gang tree (minus data leaves) 2533 * in the io_gang_tree field of the original logical i/o by recursively 2534 * reading the gang leader and all gang headers below it. This yields 2535 * an in-core tree containing the contents of every gang header and the 2536 * bps for every constituent of the gang block. 2537 * 2538 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree 2539 * and invokes a callback on each bp. To free a gang block, zio_gang_issue() 2540 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp. 2541 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim(). 2542 * zio_read_gang() is a wrapper around zio_read() that omits reading gang 2543 * headers, since we already have those in io_gang_tree. zio_rewrite_gang() 2544 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite() 2545 * of the gang header plus zio_checksum_compute() of the data to update the 2546 * gang header's blk_cksum as described above. 2547 * 2548 * The two-phase assemble/issue model solves the problem of partial failure -- 2549 * what if you'd freed part of a gang block but then couldn't read the 2550 * gang header for another part? Assembling the entire gang tree first 2551 * ensures that all the necessary gang header I/O has succeeded before 2552 * starting the actual work of free, claim, or write. Once the gang tree 2553 * is assembled, free and claim are in-memory operations that cannot fail. 2554 * 2555 * In the event that a gang write fails, zio_dva_unallocate() walks the 2556 * gang tree to immediately free (i.e. insert back into the space map) 2557 * everything we've allocated. This ensures that we don't get ENOSPC 2558 * errors during repeated suspend/resume cycles due to a flaky device. 2559 * 2560 * Gang rewrites only happen during sync-to-convergence. If we can't assemble 2561 * the gang tree, we won't modify the block, so we can safely defer the free 2562 * (knowing that the block is still intact). If we *can* assemble the gang 2563 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free 2564 * each constituent bp and we can allocate a new block on the next sync pass. 2565 * 2566 * In all cases, the gang tree allows complete recovery from partial failure. 2567 * ========================================================================== 2568 */ 2569 2570 static void 2571 zio_gang_issue_func_done(zio_t *zio) 2572 { 2573 abd_free(zio->io_abd); 2574 } 2575 2576 static zio_t * 2577 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2578 uint64_t offset) 2579 { 2580 if (gn != NULL) 2581 return (pio); 2582 2583 return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset), 2584 BP_GET_PSIZE(bp), zio_gang_issue_func_done, 2585 NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 2586 &pio->io_bookmark)); 2587 } 2588 2589 static zio_t * 2590 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2591 uint64_t offset) 2592 { 2593 zio_t *zio; 2594 2595 if (gn != NULL) { 2596 abd_t *gbh_abd = 2597 abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2598 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 2599 gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL, 2600 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 2601 &pio->io_bookmark); 2602 /* 2603 * As we rewrite each gang header, the pipeline will compute 2604 * a new gang block header checksum for it; but no one will 2605 * compute a new data checksum, so we do that here. The one 2606 * exception is the gang leader: the pipeline already computed 2607 * its data checksum because that stage precedes gang assembly. 2608 * (Presently, nothing actually uses interior data checksums; 2609 * this is just good hygiene.) 2610 */ 2611 if (gn != pio->io_gang_leader->io_gang_tree) { 2612 abd_t *buf = abd_get_offset(data, offset); 2613 2614 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp), 2615 buf, BP_GET_PSIZE(bp)); 2616 2617 abd_free(buf); 2618 } 2619 /* 2620 * If we are here to damage data for testing purposes, 2621 * leave the GBH alone so that we can detect the damage. 2622 */ 2623 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE) 2624 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 2625 } else { 2626 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 2627 abd_get_offset(data, offset), BP_GET_PSIZE(bp), 2628 zio_gang_issue_func_done, NULL, pio->io_priority, 2629 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2630 } 2631 2632 return (zio); 2633 } 2634 2635 static zio_t * 2636 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2637 uint64_t offset) 2638 { 2639 (void) gn, (void) data, (void) offset; 2640 2641 zio_t *zio = zio_free_sync(pio, pio->io_spa, pio->io_txg, bp, 2642 ZIO_GANG_CHILD_FLAGS(pio)); 2643 if (zio == NULL) { 2644 zio = zio_null(pio, pio->io_spa, 2645 NULL, NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)); 2646 } 2647 return (zio); 2648 } 2649 2650 static zio_t * 2651 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2652 uint64_t offset) 2653 { 2654 (void) gn, (void) data, (void) offset; 2655 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp, 2656 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio))); 2657 } 2658 2659 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = { 2660 NULL, 2661 zio_read_gang, 2662 zio_rewrite_gang, 2663 zio_free_gang, 2664 zio_claim_gang, 2665 NULL 2666 }; 2667 2668 static void zio_gang_tree_assemble_done(zio_t *zio); 2669 2670 static zio_gang_node_t * 2671 zio_gang_node_alloc(zio_gang_node_t **gnpp) 2672 { 2673 zio_gang_node_t *gn; 2674 2675 ASSERT(*gnpp == NULL); 2676 2677 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP); 2678 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE); 2679 *gnpp = gn; 2680 2681 return (gn); 2682 } 2683 2684 static void 2685 zio_gang_node_free(zio_gang_node_t **gnpp) 2686 { 2687 zio_gang_node_t *gn = *gnpp; 2688 2689 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 2690 ASSERT(gn->gn_child[g] == NULL); 2691 2692 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2693 kmem_free(gn, sizeof (*gn)); 2694 *gnpp = NULL; 2695 } 2696 2697 static void 2698 zio_gang_tree_free(zio_gang_node_t **gnpp) 2699 { 2700 zio_gang_node_t *gn = *gnpp; 2701 2702 if (gn == NULL) 2703 return; 2704 2705 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 2706 zio_gang_tree_free(&gn->gn_child[g]); 2707 2708 zio_gang_node_free(gnpp); 2709 } 2710 2711 static void 2712 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp) 2713 { 2714 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp); 2715 abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2716 2717 ASSERT(gio->io_gang_leader == gio); 2718 ASSERT(BP_IS_GANG(bp)); 2719 2720 zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE, 2721 zio_gang_tree_assemble_done, gn, gio->io_priority, 2722 ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark)); 2723 } 2724 2725 static void 2726 zio_gang_tree_assemble_done(zio_t *zio) 2727 { 2728 zio_t *gio = zio->io_gang_leader; 2729 zio_gang_node_t *gn = zio->io_private; 2730 blkptr_t *bp = zio->io_bp; 2731 2732 ASSERT(gio == zio_unique_parent(zio)); 2733 ASSERT(list_is_empty(&zio->io_child_list)); 2734 2735 if (zio->io_error) 2736 return; 2737 2738 /* this ABD was created from a linear buf in zio_gang_tree_assemble */ 2739 if (BP_SHOULD_BYTESWAP(bp)) 2740 byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size); 2741 2742 ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh); 2743 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE); 2744 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 2745 2746 abd_free(zio->io_abd); 2747 2748 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2749 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 2750 if (!BP_IS_GANG(gbp)) 2751 continue; 2752 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]); 2753 } 2754 } 2755 2756 static void 2757 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data, 2758 uint64_t offset) 2759 { 2760 zio_t *gio = pio->io_gang_leader; 2761 zio_t *zio; 2762 2763 ASSERT(BP_IS_GANG(bp) == !!gn); 2764 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp)); 2765 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree); 2766 2767 /* 2768 * If you're a gang header, your data is in gn->gn_gbh. 2769 * If you're a gang member, your data is in 'data' and gn == NULL. 2770 */ 2771 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset); 2772 2773 if (gn != NULL) { 2774 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 2775 2776 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2777 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 2778 if (BP_IS_HOLE(gbp)) 2779 continue; 2780 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data, 2781 offset); 2782 offset += BP_GET_PSIZE(gbp); 2783 } 2784 } 2785 2786 if (gn == gio->io_gang_tree) 2787 ASSERT3U(gio->io_size, ==, offset); 2788 2789 if (zio != pio) 2790 zio_nowait(zio); 2791 } 2792 2793 static zio_t * 2794 zio_gang_assemble(zio_t *zio) 2795 { 2796 blkptr_t *bp = zio->io_bp; 2797 2798 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL); 2799 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2800 2801 zio->io_gang_leader = zio; 2802 2803 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree); 2804 2805 return (zio); 2806 } 2807 2808 static zio_t * 2809 zio_gang_issue(zio_t *zio) 2810 { 2811 blkptr_t *bp = zio->io_bp; 2812 2813 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) { 2814 return (NULL); 2815 } 2816 2817 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio); 2818 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2819 2820 if (zio->io_child_error[ZIO_CHILD_GANG] == 0) 2821 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd, 2822 0); 2823 else 2824 zio_gang_tree_free(&zio->io_gang_tree); 2825 2826 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2827 2828 return (zio); 2829 } 2830 2831 static void 2832 zio_write_gang_member_ready(zio_t *zio) 2833 { 2834 zio_t *pio = zio_unique_parent(zio); 2835 dva_t *cdva = zio->io_bp->blk_dva; 2836 dva_t *pdva = pio->io_bp->blk_dva; 2837 uint64_t asize; 2838 zio_t *gio __maybe_unused = zio->io_gang_leader; 2839 2840 if (BP_IS_HOLE(zio->io_bp)) 2841 return; 2842 2843 ASSERT(BP_IS_HOLE(&zio->io_bp_orig)); 2844 2845 ASSERT(zio->io_child_type == ZIO_CHILD_GANG); 2846 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies); 2847 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp)); 2848 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp)); 2849 VERIFY3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp)); 2850 2851 mutex_enter(&pio->io_lock); 2852 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) { 2853 ASSERT(DVA_GET_GANG(&pdva[d])); 2854 asize = DVA_GET_ASIZE(&pdva[d]); 2855 asize += DVA_GET_ASIZE(&cdva[d]); 2856 DVA_SET_ASIZE(&pdva[d], asize); 2857 } 2858 mutex_exit(&pio->io_lock); 2859 } 2860 2861 static void 2862 zio_write_gang_done(zio_t *zio) 2863 { 2864 /* 2865 * The io_abd field will be NULL for a zio with no data. The io_flags 2866 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't 2867 * check for it here as it is cleared in zio_ready. 2868 */ 2869 if (zio->io_abd != NULL) 2870 abd_free(zio->io_abd); 2871 } 2872 2873 static zio_t * 2874 zio_write_gang_block(zio_t *pio, metaslab_class_t *mc) 2875 { 2876 spa_t *spa = pio->io_spa; 2877 blkptr_t *bp = pio->io_bp; 2878 zio_t *gio = pio->io_gang_leader; 2879 zio_t *zio; 2880 zio_gang_node_t *gn, **gnpp; 2881 zio_gbh_phys_t *gbh; 2882 abd_t *gbh_abd; 2883 uint64_t txg = pio->io_txg; 2884 uint64_t resid = pio->io_size; 2885 uint64_t lsize; 2886 int copies = gio->io_prop.zp_copies; 2887 zio_prop_t zp; 2888 int error; 2889 boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA); 2890 2891 /* 2892 * If one copy was requested, store 2 copies of the GBH, so that we 2893 * can still traverse all the data (e.g. to free or scrub) even if a 2894 * block is damaged. Note that we can't store 3 copies of the GBH in 2895 * all cases, e.g. with encryption, which uses DVA[2] for the IV+salt. 2896 */ 2897 int gbh_copies = copies; 2898 if (gbh_copies == 1) { 2899 gbh_copies = MIN(2, spa_max_replication(spa)); 2900 } 2901 2902 int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER; 2903 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2904 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2905 ASSERT(has_data); 2906 2907 flags |= METASLAB_ASYNC_ALLOC; 2908 VERIFY(zfs_refcount_held(&mc->mc_allocator[pio->io_allocator]. 2909 mca_alloc_slots, pio)); 2910 2911 /* 2912 * The logical zio has already placed a reservation for 2913 * 'copies' allocation slots but gang blocks may require 2914 * additional copies. These additional copies 2915 * (i.e. gbh_copies - copies) are guaranteed to succeed 2916 * since metaslab_class_throttle_reserve() always allows 2917 * additional reservations for gang blocks. 2918 */ 2919 VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies, 2920 pio->io_allocator, pio, flags)); 2921 } 2922 2923 error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE, 2924 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags, 2925 &pio->io_alloc_list, pio, pio->io_allocator); 2926 if (error) { 2927 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2928 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2929 ASSERT(has_data); 2930 2931 /* 2932 * If we failed to allocate the gang block header then 2933 * we remove any additional allocation reservations that 2934 * we placed here. The original reservation will 2935 * be removed when the logical I/O goes to the ready 2936 * stage. 2937 */ 2938 metaslab_class_throttle_unreserve(mc, 2939 gbh_copies - copies, pio->io_allocator, pio); 2940 } 2941 2942 pio->io_error = error; 2943 return (pio); 2944 } 2945 2946 if (pio == gio) { 2947 gnpp = &gio->io_gang_tree; 2948 } else { 2949 gnpp = pio->io_private; 2950 ASSERT(pio->io_ready == zio_write_gang_member_ready); 2951 } 2952 2953 gn = zio_gang_node_alloc(gnpp); 2954 gbh = gn->gn_gbh; 2955 memset(gbh, 0, SPA_GANGBLOCKSIZE); 2956 gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE); 2957 2958 /* 2959 * Create the gang header. 2960 */ 2961 zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE, 2962 zio_write_gang_done, NULL, pio->io_priority, 2963 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2964 2965 /* 2966 * Create and nowait the gang children. 2967 */ 2968 for (int g = 0; resid != 0; resid -= lsize, g++) { 2969 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g), 2970 SPA_MINBLOCKSIZE); 2971 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid); 2972 2973 zp.zp_checksum = gio->io_prop.zp_checksum; 2974 zp.zp_compress = ZIO_COMPRESS_OFF; 2975 zp.zp_complevel = gio->io_prop.zp_complevel; 2976 zp.zp_type = DMU_OT_NONE; 2977 zp.zp_level = 0; 2978 zp.zp_copies = gio->io_prop.zp_copies; 2979 zp.zp_dedup = B_FALSE; 2980 zp.zp_dedup_verify = B_FALSE; 2981 zp.zp_nopwrite = B_FALSE; 2982 zp.zp_encrypt = gio->io_prop.zp_encrypt; 2983 zp.zp_byteorder = gio->io_prop.zp_byteorder; 2984 memset(zp.zp_salt, 0, ZIO_DATA_SALT_LEN); 2985 memset(zp.zp_iv, 0, ZIO_DATA_IV_LEN); 2986 memset(zp.zp_mac, 0, ZIO_DATA_MAC_LEN); 2987 2988 zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g], 2989 has_data ? abd_get_offset(pio->io_abd, pio->io_size - 2990 resid) : NULL, lsize, lsize, &zp, 2991 zio_write_gang_member_ready, NULL, 2992 zio_write_gang_done, &gn->gn_child[g], pio->io_priority, 2993 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2994 2995 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2996 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2997 ASSERT(has_data); 2998 2999 /* 3000 * Gang children won't throttle but we should 3001 * account for their work, so reserve an allocation 3002 * slot for them here. 3003 */ 3004 VERIFY(metaslab_class_throttle_reserve(mc, 3005 zp.zp_copies, cio->io_allocator, cio, flags)); 3006 } 3007 zio_nowait(cio); 3008 } 3009 3010 /* 3011 * Set pio's pipeline to just wait for zio to finish. 3012 */ 3013 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 3014 3015 /* 3016 * We didn't allocate this bp, so make sure it doesn't get unmarked. 3017 */ 3018 pio->io_flags &= ~ZIO_FLAG_FASTWRITE; 3019 3020 zio_nowait(zio); 3021 3022 return (pio); 3023 } 3024 3025 /* 3026 * The zio_nop_write stage in the pipeline determines if allocating a 3027 * new bp is necessary. The nopwrite feature can handle writes in 3028 * either syncing or open context (i.e. zil writes) and as a result is 3029 * mutually exclusive with dedup. 3030 * 3031 * By leveraging a cryptographically secure checksum, such as SHA256, we 3032 * can compare the checksums of the new data and the old to determine if 3033 * allocating a new block is required. Note that our requirements for 3034 * cryptographic strength are fairly weak: there can't be any accidental 3035 * hash collisions, but we don't need to be secure against intentional 3036 * (malicious) collisions. To trigger a nopwrite, you have to be able 3037 * to write the file to begin with, and triggering an incorrect (hash 3038 * collision) nopwrite is no worse than simply writing to the file. 3039 * That said, there are no known attacks against the checksum algorithms 3040 * used for nopwrite, assuming that the salt and the checksums 3041 * themselves remain secret. 3042 */ 3043 static zio_t * 3044 zio_nop_write(zio_t *zio) 3045 { 3046 blkptr_t *bp = zio->io_bp; 3047 blkptr_t *bp_orig = &zio->io_bp_orig; 3048 zio_prop_t *zp = &zio->io_prop; 3049 3050 ASSERT(BP_IS_HOLE(bp)); 3051 ASSERT(BP_GET_LEVEL(bp) == 0); 3052 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 3053 ASSERT(zp->zp_nopwrite); 3054 ASSERT(!zp->zp_dedup); 3055 ASSERT(zio->io_bp_override == NULL); 3056 ASSERT(IO_IS_ALLOCATING(zio)); 3057 3058 /* 3059 * Check to see if the original bp and the new bp have matching 3060 * characteristics (i.e. same checksum, compression algorithms, etc). 3061 * If they don't then just continue with the pipeline which will 3062 * allocate a new bp. 3063 */ 3064 if (BP_IS_HOLE(bp_orig) || 3065 !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags & 3066 ZCHECKSUM_FLAG_NOPWRITE) || 3067 BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) || 3068 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) || 3069 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) || 3070 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) || 3071 zp->zp_copies != BP_GET_NDVAS(bp_orig)) 3072 return (zio); 3073 3074 /* 3075 * If the checksums match then reset the pipeline so that we 3076 * avoid allocating a new bp and issuing any I/O. 3077 */ 3078 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) { 3079 ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags & 3080 ZCHECKSUM_FLAG_NOPWRITE); 3081 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig)); 3082 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig)); 3083 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF); 3084 ASSERT3U(bp->blk_prop, ==, bp_orig->blk_prop); 3085 3086 /* 3087 * If we're overwriting a block that is currently on an 3088 * indirect vdev, then ignore the nopwrite request and 3089 * allow a new block to be allocated on a concrete vdev. 3090 */ 3091 spa_config_enter(zio->io_spa, SCL_VDEV, FTAG, RW_READER); 3092 for (int d = 0; d < BP_GET_NDVAS(bp_orig); d++) { 3093 vdev_t *tvd = vdev_lookup_top(zio->io_spa, 3094 DVA_GET_VDEV(&bp_orig->blk_dva[d])); 3095 if (tvd->vdev_ops == &vdev_indirect_ops) { 3096 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG); 3097 return (zio); 3098 } 3099 } 3100 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG); 3101 3102 *bp = *bp_orig; 3103 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 3104 zio->io_flags |= ZIO_FLAG_NOPWRITE; 3105 } 3106 3107 return (zio); 3108 } 3109 3110 /* 3111 * ========================================================================== 3112 * Block Reference Table 3113 * ========================================================================== 3114 */ 3115 static zio_t * 3116 zio_brt_free(zio_t *zio) 3117 { 3118 blkptr_t *bp; 3119 3120 bp = zio->io_bp; 3121 3122 if (BP_GET_LEVEL(bp) > 0 || 3123 BP_IS_METADATA(bp) || 3124 !brt_maybe_exists(zio->io_spa, bp)) { 3125 return (zio); 3126 } 3127 3128 if (!brt_entry_decref(zio->io_spa, bp)) { 3129 /* 3130 * This isn't the last reference, so we cannot free 3131 * the data yet. 3132 */ 3133 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 3134 } 3135 3136 return (zio); 3137 } 3138 3139 /* 3140 * ========================================================================== 3141 * Dedup 3142 * ========================================================================== 3143 */ 3144 static void 3145 zio_ddt_child_read_done(zio_t *zio) 3146 { 3147 blkptr_t *bp = zio->io_bp; 3148 ddt_entry_t *dde = zio->io_private; 3149 ddt_phys_t *ddp; 3150 zio_t *pio = zio_unique_parent(zio); 3151 3152 mutex_enter(&pio->io_lock); 3153 ddp = ddt_phys_select(dde, bp); 3154 if (zio->io_error == 0) 3155 ddt_phys_clear(ddp); /* this ddp doesn't need repair */ 3156 3157 if (zio->io_error == 0 && dde->dde_repair_abd == NULL) 3158 dde->dde_repair_abd = zio->io_abd; 3159 else 3160 abd_free(zio->io_abd); 3161 mutex_exit(&pio->io_lock); 3162 } 3163 3164 static zio_t * 3165 zio_ddt_read_start(zio_t *zio) 3166 { 3167 blkptr_t *bp = zio->io_bp; 3168 3169 ASSERT(BP_GET_DEDUP(bp)); 3170 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 3171 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3172 3173 if (zio->io_child_error[ZIO_CHILD_DDT]) { 3174 ddt_t *ddt = ddt_select(zio->io_spa, bp); 3175 ddt_entry_t *dde = ddt_repair_start(ddt, bp); 3176 ddt_phys_t *ddp = dde->dde_phys; 3177 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp); 3178 blkptr_t blk; 3179 3180 ASSERT(zio->io_vsd == NULL); 3181 zio->io_vsd = dde; 3182 3183 if (ddp_self == NULL) 3184 return (zio); 3185 3186 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 3187 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self) 3188 continue; 3189 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp, 3190 &blk); 3191 zio_nowait(zio_read(zio, zio->io_spa, &blk, 3192 abd_alloc_for_io(zio->io_size, B_TRUE), 3193 zio->io_size, zio_ddt_child_read_done, dde, 3194 zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) | 3195 ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark)); 3196 } 3197 return (zio); 3198 } 3199 3200 zio_nowait(zio_read(zio, zio->io_spa, bp, 3201 zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority, 3202 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark)); 3203 3204 return (zio); 3205 } 3206 3207 static zio_t * 3208 zio_ddt_read_done(zio_t *zio) 3209 { 3210 blkptr_t *bp = zio->io_bp; 3211 3212 if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) { 3213 return (NULL); 3214 } 3215 3216 ASSERT(BP_GET_DEDUP(bp)); 3217 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 3218 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3219 3220 if (zio->io_child_error[ZIO_CHILD_DDT]) { 3221 ddt_t *ddt = ddt_select(zio->io_spa, bp); 3222 ddt_entry_t *dde = zio->io_vsd; 3223 if (ddt == NULL) { 3224 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE); 3225 return (zio); 3226 } 3227 if (dde == NULL) { 3228 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1; 3229 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 3230 return (NULL); 3231 } 3232 if (dde->dde_repair_abd != NULL) { 3233 abd_copy(zio->io_abd, dde->dde_repair_abd, 3234 zio->io_size); 3235 zio->io_child_error[ZIO_CHILD_DDT] = 0; 3236 } 3237 ddt_repair_done(ddt, dde); 3238 zio->io_vsd = NULL; 3239 } 3240 3241 ASSERT(zio->io_vsd == NULL); 3242 3243 return (zio); 3244 } 3245 3246 static boolean_t 3247 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde) 3248 { 3249 spa_t *spa = zio->io_spa; 3250 boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW); 3251 3252 ASSERT(!(zio->io_bp_override && do_raw)); 3253 3254 /* 3255 * Note: we compare the original data, not the transformed data, 3256 * because when zio->io_bp is an override bp, we will not have 3257 * pushed the I/O transforms. That's an important optimization 3258 * because otherwise we'd compress/encrypt all dmu_sync() data twice. 3259 * However, we should never get a raw, override zio so in these 3260 * cases we can compare the io_abd directly. This is useful because 3261 * it allows us to do dedup verification even if we don't have access 3262 * to the original data (for instance, if the encryption keys aren't 3263 * loaded). 3264 */ 3265 3266 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 3267 zio_t *lio = dde->dde_lead_zio[p]; 3268 3269 if (lio != NULL && do_raw) { 3270 return (lio->io_size != zio->io_size || 3271 abd_cmp(zio->io_abd, lio->io_abd) != 0); 3272 } else if (lio != NULL) { 3273 return (lio->io_orig_size != zio->io_orig_size || 3274 abd_cmp(zio->io_orig_abd, lio->io_orig_abd) != 0); 3275 } 3276 } 3277 3278 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 3279 ddt_phys_t *ddp = &dde->dde_phys[p]; 3280 3281 if (ddp->ddp_phys_birth != 0 && do_raw) { 3282 blkptr_t blk = *zio->io_bp; 3283 uint64_t psize; 3284 abd_t *tmpabd; 3285 int error; 3286 3287 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth); 3288 psize = BP_GET_PSIZE(&blk); 3289 3290 if (psize != zio->io_size) 3291 return (B_TRUE); 3292 3293 ddt_exit(ddt); 3294 3295 tmpabd = abd_alloc_for_io(psize, B_TRUE); 3296 3297 error = zio_wait(zio_read(NULL, spa, &blk, tmpabd, 3298 psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ, 3299 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 3300 ZIO_FLAG_RAW, &zio->io_bookmark)); 3301 3302 if (error == 0) { 3303 if (abd_cmp(tmpabd, zio->io_abd) != 0) 3304 error = SET_ERROR(ENOENT); 3305 } 3306 3307 abd_free(tmpabd); 3308 ddt_enter(ddt); 3309 return (error != 0); 3310 } else if (ddp->ddp_phys_birth != 0) { 3311 arc_buf_t *abuf = NULL; 3312 arc_flags_t aflags = ARC_FLAG_WAIT; 3313 blkptr_t blk = *zio->io_bp; 3314 int error; 3315 3316 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth); 3317 3318 if (BP_GET_LSIZE(&blk) != zio->io_orig_size) 3319 return (B_TRUE); 3320 3321 ddt_exit(ddt); 3322 3323 error = arc_read(NULL, spa, &blk, 3324 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ, 3325 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 3326 &aflags, &zio->io_bookmark); 3327 3328 if (error == 0) { 3329 if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data, 3330 zio->io_orig_size) != 0) 3331 error = SET_ERROR(ENOENT); 3332 arc_buf_destroy(abuf, &abuf); 3333 } 3334 3335 ddt_enter(ddt); 3336 return (error != 0); 3337 } 3338 } 3339 3340 return (B_FALSE); 3341 } 3342 3343 static void 3344 zio_ddt_child_write_ready(zio_t *zio) 3345 { 3346 int p = zio->io_prop.zp_copies; 3347 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 3348 ddt_entry_t *dde = zio->io_private; 3349 ddt_phys_t *ddp = &dde->dde_phys[p]; 3350 zio_t *pio; 3351 3352 if (zio->io_error) 3353 return; 3354 3355 ddt_enter(ddt); 3356 3357 ASSERT(dde->dde_lead_zio[p] == zio); 3358 3359 ddt_phys_fill(ddp, zio->io_bp); 3360 3361 zio_link_t *zl = NULL; 3362 while ((pio = zio_walk_parents(zio, &zl)) != NULL) 3363 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg); 3364 3365 ddt_exit(ddt); 3366 } 3367 3368 static void 3369 zio_ddt_child_write_done(zio_t *zio) 3370 { 3371 int p = zio->io_prop.zp_copies; 3372 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 3373 ddt_entry_t *dde = zio->io_private; 3374 ddt_phys_t *ddp = &dde->dde_phys[p]; 3375 3376 ddt_enter(ddt); 3377 3378 ASSERT(ddp->ddp_refcnt == 0); 3379 ASSERT(dde->dde_lead_zio[p] == zio); 3380 dde->dde_lead_zio[p] = NULL; 3381 3382 if (zio->io_error == 0) { 3383 zio_link_t *zl = NULL; 3384 while (zio_walk_parents(zio, &zl) != NULL) 3385 ddt_phys_addref(ddp); 3386 } else { 3387 ddt_phys_clear(ddp); 3388 } 3389 3390 ddt_exit(ddt); 3391 } 3392 3393 static zio_t * 3394 zio_ddt_write(zio_t *zio) 3395 { 3396 spa_t *spa = zio->io_spa; 3397 blkptr_t *bp = zio->io_bp; 3398 uint64_t txg = zio->io_txg; 3399 zio_prop_t *zp = &zio->io_prop; 3400 int p = zp->zp_copies; 3401 zio_t *cio = NULL; 3402 ddt_t *ddt = ddt_select(spa, bp); 3403 ddt_entry_t *dde; 3404 ddt_phys_t *ddp; 3405 3406 ASSERT(BP_GET_DEDUP(bp)); 3407 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum); 3408 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override); 3409 ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW))); 3410 3411 ddt_enter(ddt); 3412 dde = ddt_lookup(ddt, bp, B_TRUE); 3413 ddp = &dde->dde_phys[p]; 3414 3415 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) { 3416 /* 3417 * If we're using a weak checksum, upgrade to a strong checksum 3418 * and try again. If we're already using a strong checksum, 3419 * we can't resolve it, so just convert to an ordinary write. 3420 * (And automatically e-mail a paper to Nature?) 3421 */ 3422 if (!(zio_checksum_table[zp->zp_checksum].ci_flags & 3423 ZCHECKSUM_FLAG_DEDUP)) { 3424 zp->zp_checksum = spa_dedup_checksum(spa); 3425 zio_pop_transforms(zio); 3426 zio->io_stage = ZIO_STAGE_OPEN; 3427 BP_ZERO(bp); 3428 } else { 3429 zp->zp_dedup = B_FALSE; 3430 BP_SET_DEDUP(bp, B_FALSE); 3431 } 3432 ASSERT(!BP_GET_DEDUP(bp)); 3433 zio->io_pipeline = ZIO_WRITE_PIPELINE; 3434 ddt_exit(ddt); 3435 return (zio); 3436 } 3437 3438 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) { 3439 if (ddp->ddp_phys_birth != 0) 3440 ddt_bp_fill(ddp, bp, txg); 3441 if (dde->dde_lead_zio[p] != NULL) 3442 zio_add_child(zio, dde->dde_lead_zio[p]); 3443 else 3444 ddt_phys_addref(ddp); 3445 } else if (zio->io_bp_override) { 3446 ASSERT(bp->blk_birth == txg); 3447 ASSERT(BP_EQUAL(bp, zio->io_bp_override)); 3448 ddt_phys_fill(ddp, bp); 3449 ddt_phys_addref(ddp); 3450 } else { 3451 cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd, 3452 zio->io_orig_size, zio->io_orig_size, zp, 3453 zio_ddt_child_write_ready, NULL, 3454 zio_ddt_child_write_done, dde, zio->io_priority, 3455 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark); 3456 3457 zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL); 3458 dde->dde_lead_zio[p] = cio; 3459 } 3460 3461 ddt_exit(ddt); 3462 3463 zio_nowait(cio); 3464 3465 return (zio); 3466 } 3467 3468 static ddt_entry_t *freedde; /* for debugging */ 3469 3470 static zio_t * 3471 zio_ddt_free(zio_t *zio) 3472 { 3473 spa_t *spa = zio->io_spa; 3474 blkptr_t *bp = zio->io_bp; 3475 ddt_t *ddt = ddt_select(spa, bp); 3476 ddt_entry_t *dde; 3477 ddt_phys_t *ddp; 3478 3479 ASSERT(BP_GET_DEDUP(bp)); 3480 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3481 3482 ddt_enter(ddt); 3483 freedde = dde = ddt_lookup(ddt, bp, B_TRUE); 3484 if (dde) { 3485 ddp = ddt_phys_select(dde, bp); 3486 if (ddp) 3487 ddt_phys_decref(ddp); 3488 } 3489 ddt_exit(ddt); 3490 3491 return (zio); 3492 } 3493 3494 /* 3495 * ========================================================================== 3496 * Allocate and free blocks 3497 * ========================================================================== 3498 */ 3499 3500 static zio_t * 3501 zio_io_to_allocate(spa_t *spa, int allocator) 3502 { 3503 zio_t *zio; 3504 3505 ASSERT(MUTEX_HELD(&spa->spa_allocs[allocator].spaa_lock)); 3506 3507 zio = avl_first(&spa->spa_allocs[allocator].spaa_tree); 3508 if (zio == NULL) 3509 return (NULL); 3510 3511 ASSERT(IO_IS_ALLOCATING(zio)); 3512 3513 /* 3514 * Try to place a reservation for this zio. If we're unable to 3515 * reserve then we throttle. 3516 */ 3517 ASSERT3U(zio->io_allocator, ==, allocator); 3518 if (!metaslab_class_throttle_reserve(zio->io_metaslab_class, 3519 zio->io_prop.zp_copies, allocator, zio, 0)) { 3520 return (NULL); 3521 } 3522 3523 avl_remove(&spa->spa_allocs[allocator].spaa_tree, zio); 3524 ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE); 3525 3526 return (zio); 3527 } 3528 3529 static zio_t * 3530 zio_dva_throttle(zio_t *zio) 3531 { 3532 spa_t *spa = zio->io_spa; 3533 zio_t *nio; 3534 metaslab_class_t *mc; 3535 3536 /* locate an appropriate allocation class */ 3537 mc = spa_preferred_class(spa, zio->io_size, zio->io_prop.zp_type, 3538 zio->io_prop.zp_level, zio->io_prop.zp_zpl_smallblk); 3539 3540 if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE || 3541 !mc->mc_alloc_throttle_enabled || 3542 zio->io_child_type == ZIO_CHILD_GANG || 3543 zio->io_flags & ZIO_FLAG_NODATA) { 3544 return (zio); 3545 } 3546 3547 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 3548 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 3549 ASSERT3U(zio->io_queued_timestamp, >, 0); 3550 ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE); 3551 3552 zbookmark_phys_t *bm = &zio->io_bookmark; 3553 /* 3554 * We want to try to use as many allocators as possible to help improve 3555 * performance, but we also want logically adjacent IOs to be physically 3556 * adjacent to improve sequential read performance. We chunk each object 3557 * into 2^20 block regions, and then hash based on the objset, object, 3558 * level, and region to accomplish both of these goals. 3559 */ 3560 int allocator = (uint_t)cityhash4(bm->zb_objset, bm->zb_object, 3561 bm->zb_level, bm->zb_blkid >> 20) % spa->spa_alloc_count; 3562 zio->io_allocator = allocator; 3563 zio->io_metaslab_class = mc; 3564 mutex_enter(&spa->spa_allocs[allocator].spaa_lock); 3565 avl_add(&spa->spa_allocs[allocator].spaa_tree, zio); 3566 nio = zio_io_to_allocate(spa, allocator); 3567 mutex_exit(&spa->spa_allocs[allocator].spaa_lock); 3568 return (nio); 3569 } 3570 3571 static void 3572 zio_allocate_dispatch(spa_t *spa, int allocator) 3573 { 3574 zio_t *zio; 3575 3576 mutex_enter(&spa->spa_allocs[allocator].spaa_lock); 3577 zio = zio_io_to_allocate(spa, allocator); 3578 mutex_exit(&spa->spa_allocs[allocator].spaa_lock); 3579 if (zio == NULL) 3580 return; 3581 3582 ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE); 3583 ASSERT0(zio->io_error); 3584 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE); 3585 } 3586 3587 static zio_t * 3588 zio_dva_allocate(zio_t *zio) 3589 { 3590 spa_t *spa = zio->io_spa; 3591 metaslab_class_t *mc; 3592 blkptr_t *bp = zio->io_bp; 3593 int error; 3594 int flags = 0; 3595 3596 if (zio->io_gang_leader == NULL) { 3597 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 3598 zio->io_gang_leader = zio; 3599 } 3600 3601 ASSERT(BP_IS_HOLE(bp)); 3602 ASSERT0(BP_GET_NDVAS(bp)); 3603 ASSERT3U(zio->io_prop.zp_copies, >, 0); 3604 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa)); 3605 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp)); 3606 3607 flags |= (zio->io_flags & ZIO_FLAG_FASTWRITE) ? METASLAB_FASTWRITE : 0; 3608 if (zio->io_flags & ZIO_FLAG_NODATA) 3609 flags |= METASLAB_DONT_THROTTLE; 3610 if (zio->io_flags & ZIO_FLAG_GANG_CHILD) 3611 flags |= METASLAB_GANG_CHILD; 3612 if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE) 3613 flags |= METASLAB_ASYNC_ALLOC; 3614 3615 /* 3616 * if not already chosen, locate an appropriate allocation class 3617 */ 3618 mc = zio->io_metaslab_class; 3619 if (mc == NULL) { 3620 mc = spa_preferred_class(spa, zio->io_size, 3621 zio->io_prop.zp_type, zio->io_prop.zp_level, 3622 zio->io_prop.zp_zpl_smallblk); 3623 zio->io_metaslab_class = mc; 3624 } 3625 3626 /* 3627 * Try allocating the block in the usual metaslab class. 3628 * If that's full, allocate it in the normal class. 3629 * If that's full, allocate as a gang block, 3630 * and if all are full, the allocation fails (which shouldn't happen). 3631 * 3632 * Note that we do not fall back on embedded slog (ZIL) space, to 3633 * preserve unfragmented slog space, which is critical for decent 3634 * sync write performance. If a log allocation fails, we will fall 3635 * back to spa_sync() which is abysmal for performance. 3636 */ 3637 error = metaslab_alloc(spa, mc, zio->io_size, bp, 3638 zio->io_prop.zp_copies, zio->io_txg, NULL, flags, 3639 &zio->io_alloc_list, zio, zio->io_allocator); 3640 3641 /* 3642 * Fallback to normal class when an alloc class is full 3643 */ 3644 if (error == ENOSPC && mc != spa_normal_class(spa)) { 3645 /* 3646 * If throttling, transfer reservation over to normal class. 3647 * The io_allocator slot can remain the same even though we 3648 * are switching classes. 3649 */ 3650 if (mc->mc_alloc_throttle_enabled && 3651 (zio->io_flags & ZIO_FLAG_IO_ALLOCATING)) { 3652 metaslab_class_throttle_unreserve(mc, 3653 zio->io_prop.zp_copies, zio->io_allocator, zio); 3654 zio->io_flags &= ~ZIO_FLAG_IO_ALLOCATING; 3655 3656 VERIFY(metaslab_class_throttle_reserve( 3657 spa_normal_class(spa), 3658 zio->io_prop.zp_copies, zio->io_allocator, zio, 3659 flags | METASLAB_MUST_RESERVE)); 3660 } 3661 zio->io_metaslab_class = mc = spa_normal_class(spa); 3662 if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) { 3663 zfs_dbgmsg("%s: metaslab allocation failure, " 3664 "trying normal class: zio %px, size %llu, error %d", 3665 spa_name(spa), zio, (u_longlong_t)zio->io_size, 3666 error); 3667 } 3668 3669 error = metaslab_alloc(spa, mc, zio->io_size, bp, 3670 zio->io_prop.zp_copies, zio->io_txg, NULL, flags, 3671 &zio->io_alloc_list, zio, zio->io_allocator); 3672 } 3673 3674 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) { 3675 if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) { 3676 zfs_dbgmsg("%s: metaslab allocation failure, " 3677 "trying ganging: zio %px, size %llu, error %d", 3678 spa_name(spa), zio, (u_longlong_t)zio->io_size, 3679 error); 3680 } 3681 return (zio_write_gang_block(zio, mc)); 3682 } 3683 if (error != 0) { 3684 if (error != ENOSPC || 3685 (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC)) { 3686 zfs_dbgmsg("%s: metaslab allocation failure: zio %px, " 3687 "size %llu, error %d", 3688 spa_name(spa), zio, (u_longlong_t)zio->io_size, 3689 error); 3690 } 3691 zio->io_error = error; 3692 } 3693 3694 return (zio); 3695 } 3696 3697 static zio_t * 3698 zio_dva_free(zio_t *zio) 3699 { 3700 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE); 3701 3702 return (zio); 3703 } 3704 3705 static zio_t * 3706 zio_dva_claim(zio_t *zio) 3707 { 3708 int error; 3709 3710 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg); 3711 if (error) 3712 zio->io_error = error; 3713 3714 return (zio); 3715 } 3716 3717 /* 3718 * Undo an allocation. This is used by zio_done() when an I/O fails 3719 * and we want to give back the block we just allocated. 3720 * This handles both normal blocks and gang blocks. 3721 */ 3722 static void 3723 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp) 3724 { 3725 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp)); 3726 ASSERT(zio->io_bp_override == NULL); 3727 3728 if (!BP_IS_HOLE(bp)) 3729 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE); 3730 3731 if (gn != NULL) { 3732 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 3733 zio_dva_unallocate(zio, gn->gn_child[g], 3734 &gn->gn_gbh->zg_blkptr[g]); 3735 } 3736 } 3737 } 3738 3739 /* 3740 * Try to allocate an intent log block. Return 0 on success, errno on failure. 3741 */ 3742 int 3743 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp, 3744 uint64_t size, boolean_t *slog) 3745 { 3746 int error = 1; 3747 zio_alloc_list_t io_alloc_list; 3748 3749 ASSERT(txg > spa_syncing_txg(spa)); 3750 3751 metaslab_trace_init(&io_alloc_list); 3752 3753 /* 3754 * Block pointer fields are useful to metaslabs for stats and debugging. 3755 * Fill in the obvious ones before calling into metaslab_alloc(). 3756 */ 3757 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 3758 BP_SET_PSIZE(new_bp, size); 3759 BP_SET_LEVEL(new_bp, 0); 3760 3761 /* 3762 * When allocating a zil block, we don't have information about 3763 * the final destination of the block except the objset it's part 3764 * of, so we just hash the objset ID to pick the allocator to get 3765 * some parallelism. 3766 */ 3767 int flags = METASLAB_FASTWRITE | METASLAB_ZIL; 3768 int allocator = (uint_t)cityhash4(0, 0, 0, 3769 os->os_dsl_dataset->ds_object) % spa->spa_alloc_count; 3770 error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1, 3771 txg, NULL, flags, &io_alloc_list, NULL, allocator); 3772 *slog = (error == 0); 3773 if (error != 0) { 3774 error = metaslab_alloc(spa, spa_embedded_log_class(spa), size, 3775 new_bp, 1, txg, NULL, flags, 3776 &io_alloc_list, NULL, allocator); 3777 } 3778 if (error != 0) { 3779 error = metaslab_alloc(spa, spa_normal_class(spa), size, 3780 new_bp, 1, txg, NULL, flags, 3781 &io_alloc_list, NULL, allocator); 3782 } 3783 metaslab_trace_fini(&io_alloc_list); 3784 3785 if (error == 0) { 3786 BP_SET_LSIZE(new_bp, size); 3787 BP_SET_PSIZE(new_bp, size); 3788 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF); 3789 BP_SET_CHECKSUM(new_bp, 3790 spa_version(spa) >= SPA_VERSION_SLIM_ZIL 3791 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG); 3792 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 3793 BP_SET_LEVEL(new_bp, 0); 3794 BP_SET_DEDUP(new_bp, 0); 3795 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER); 3796 3797 /* 3798 * encrypted blocks will require an IV and salt. We generate 3799 * these now since we will not be rewriting the bp at 3800 * rewrite time. 3801 */ 3802 if (os->os_encrypted) { 3803 uint8_t iv[ZIO_DATA_IV_LEN]; 3804 uint8_t salt[ZIO_DATA_SALT_LEN]; 3805 3806 BP_SET_CRYPT(new_bp, B_TRUE); 3807 VERIFY0(spa_crypt_get_salt(spa, 3808 dmu_objset_id(os), salt)); 3809 VERIFY0(zio_crypt_generate_iv(iv)); 3810 3811 zio_crypt_encode_params_bp(new_bp, salt, iv); 3812 } 3813 } else { 3814 zfs_dbgmsg("%s: zil block allocation failure: " 3815 "size %llu, error %d", spa_name(spa), (u_longlong_t)size, 3816 error); 3817 } 3818 3819 return (error); 3820 } 3821 3822 /* 3823 * ========================================================================== 3824 * Read and write to physical devices 3825 * ========================================================================== 3826 */ 3827 3828 /* 3829 * Issue an I/O to the underlying vdev. Typically the issue pipeline 3830 * stops after this stage and will resume upon I/O completion. 3831 * However, there are instances where the vdev layer may need to 3832 * continue the pipeline when an I/O was not issued. Since the I/O 3833 * that was sent to the vdev layer might be different than the one 3834 * currently active in the pipeline (see vdev_queue_io()), we explicitly 3835 * force the underlying vdev layers to call either zio_execute() or 3836 * zio_interrupt() to ensure that the pipeline continues with the correct I/O. 3837 */ 3838 static zio_t * 3839 zio_vdev_io_start(zio_t *zio) 3840 { 3841 vdev_t *vd = zio->io_vd; 3842 uint64_t align; 3843 spa_t *spa = zio->io_spa; 3844 3845 zio->io_delay = 0; 3846 3847 ASSERT(zio->io_error == 0); 3848 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0); 3849 3850 if (vd == NULL) { 3851 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 3852 spa_config_enter(spa, SCL_ZIO, zio, RW_READER); 3853 3854 /* 3855 * The mirror_ops handle multiple DVAs in a single BP. 3856 */ 3857 vdev_mirror_ops.vdev_op_io_start(zio); 3858 return (NULL); 3859 } 3860 3861 ASSERT3P(zio->io_logical, !=, zio); 3862 if (zio->io_type == ZIO_TYPE_WRITE) { 3863 ASSERT(spa->spa_trust_config); 3864 3865 /* 3866 * Note: the code can handle other kinds of writes, 3867 * but we don't expect them. 3868 */ 3869 if (zio->io_vd->vdev_noalloc) { 3870 ASSERT(zio->io_flags & 3871 (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL | 3872 ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE)); 3873 } 3874 } 3875 3876 align = 1ULL << vd->vdev_top->vdev_ashift; 3877 3878 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) && 3879 P2PHASE(zio->io_size, align) != 0) { 3880 /* Transform logical writes to be a full physical block size. */ 3881 uint64_t asize = P2ROUNDUP(zio->io_size, align); 3882 abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize); 3883 ASSERT(vd == vd->vdev_top); 3884 if (zio->io_type == ZIO_TYPE_WRITE) { 3885 abd_copy(abuf, zio->io_abd, zio->io_size); 3886 abd_zero_off(abuf, zio->io_size, asize - zio->io_size); 3887 } 3888 zio_push_transform(zio, abuf, asize, asize, zio_subblock); 3889 } 3890 3891 /* 3892 * If this is not a physical io, make sure that it is properly aligned 3893 * before proceeding. 3894 */ 3895 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) { 3896 ASSERT0(P2PHASE(zio->io_offset, align)); 3897 ASSERT0(P2PHASE(zio->io_size, align)); 3898 } else { 3899 /* 3900 * For physical writes, we allow 512b aligned writes and assume 3901 * the device will perform a read-modify-write as necessary. 3902 */ 3903 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE)); 3904 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE)); 3905 } 3906 3907 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa)); 3908 3909 /* 3910 * If this is a repair I/O, and there's no self-healing involved -- 3911 * that is, we're just resilvering what we expect to resilver -- 3912 * then don't do the I/O unless zio's txg is actually in vd's DTL. 3913 * This prevents spurious resilvering. 3914 * 3915 * There are a few ways that we can end up creating these spurious 3916 * resilver i/os: 3917 * 3918 * 1. A resilver i/o will be issued if any DVA in the BP has a 3919 * dirty DTL. The mirror code will issue resilver writes to 3920 * each DVA, including the one(s) that are not on vdevs with dirty 3921 * DTLs. 3922 * 3923 * 2. With nested replication, which happens when we have a 3924 * "replacing" or "spare" vdev that's a child of a mirror or raidz. 3925 * For example, given mirror(replacing(A+B), C), it's likely that 3926 * only A is out of date (it's the new device). In this case, we'll 3927 * read from C, then use the data to resilver A+B -- but we don't 3928 * actually want to resilver B, just A. The top-level mirror has no 3929 * way to know this, so instead we just discard unnecessary repairs 3930 * as we work our way down the vdev tree. 3931 * 3932 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc. 3933 * The same logic applies to any form of nested replication: ditto 3934 * + mirror, RAID-Z + replacing, etc. 3935 * 3936 * However, indirect vdevs point off to other vdevs which may have 3937 * DTL's, so we never bypass them. The child i/os on concrete vdevs 3938 * will be properly bypassed instead. 3939 * 3940 * Leaf DTL_PARTIAL can be empty when a legitimate write comes from 3941 * a dRAID spare vdev. For example, when a dRAID spare is first 3942 * used, its spare blocks need to be written to but the leaf vdev's 3943 * of such blocks can have empty DTL_PARTIAL. 3944 * 3945 * There seemed no clean way to allow such writes while bypassing 3946 * spurious ones. At this point, just avoid all bypassing for dRAID 3947 * for correctness. 3948 */ 3949 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) && 3950 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) && 3951 zio->io_txg != 0 && /* not a delegated i/o */ 3952 vd->vdev_ops != &vdev_indirect_ops && 3953 vd->vdev_top->vdev_ops != &vdev_draid_ops && 3954 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) { 3955 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 3956 zio_vdev_io_bypass(zio); 3957 return (zio); 3958 } 3959 3960 /* 3961 * Select the next best leaf I/O to process. Distributed spares are 3962 * excluded since they dispatch the I/O directly to a leaf vdev after 3963 * applying the dRAID mapping. 3964 */ 3965 if (vd->vdev_ops->vdev_op_leaf && 3966 vd->vdev_ops != &vdev_draid_spare_ops && 3967 (zio->io_type == ZIO_TYPE_READ || 3968 zio->io_type == ZIO_TYPE_WRITE || 3969 zio->io_type == ZIO_TYPE_TRIM)) { 3970 3971 if ((zio = vdev_queue_io(zio)) == NULL) 3972 return (NULL); 3973 3974 if (!vdev_accessible(vd, zio)) { 3975 zio->io_error = SET_ERROR(ENXIO); 3976 zio_interrupt(zio); 3977 return (NULL); 3978 } 3979 zio->io_delay = gethrtime(); 3980 } 3981 3982 vd->vdev_ops->vdev_op_io_start(zio); 3983 return (NULL); 3984 } 3985 3986 static zio_t * 3987 zio_vdev_io_done(zio_t *zio) 3988 { 3989 vdev_t *vd = zio->io_vd; 3990 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops; 3991 boolean_t unexpected_error = B_FALSE; 3992 3993 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) { 3994 return (NULL); 3995 } 3996 3997 ASSERT(zio->io_type == ZIO_TYPE_READ || 3998 zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM); 3999 4000 if (zio->io_delay) 4001 zio->io_delay = gethrtime() - zio->io_delay; 4002 4003 if (vd != NULL && vd->vdev_ops->vdev_op_leaf && 4004 vd->vdev_ops != &vdev_draid_spare_ops) { 4005 vdev_queue_io_done(zio); 4006 4007 if (zio_injection_enabled && zio->io_error == 0) 4008 zio->io_error = zio_handle_device_injections(vd, zio, 4009 EIO, EILSEQ); 4010 4011 if (zio_injection_enabled && zio->io_error == 0) 4012 zio->io_error = zio_handle_label_injection(zio, EIO); 4013 4014 if (zio->io_error && zio->io_type != ZIO_TYPE_TRIM) { 4015 if (!vdev_accessible(vd, zio)) { 4016 zio->io_error = SET_ERROR(ENXIO); 4017 } else { 4018 unexpected_error = B_TRUE; 4019 } 4020 } 4021 } 4022 4023 ops->vdev_op_io_done(zio); 4024 4025 if (unexpected_error && vd->vdev_remove_wanted == B_FALSE) 4026 VERIFY(vdev_probe(vd, zio) == NULL); 4027 4028 return (zio); 4029 } 4030 4031 /* 4032 * This function is used to change the priority of an existing zio that is 4033 * currently in-flight. This is used by the arc to upgrade priority in the 4034 * event that a demand read is made for a block that is currently queued 4035 * as a scrub or async read IO. Otherwise, the high priority read request 4036 * would end up having to wait for the lower priority IO. 4037 */ 4038 void 4039 zio_change_priority(zio_t *pio, zio_priority_t priority) 4040 { 4041 zio_t *cio, *cio_next; 4042 zio_link_t *zl = NULL; 4043 4044 ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 4045 4046 if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) { 4047 vdev_queue_change_io_priority(pio, priority); 4048 } else { 4049 pio->io_priority = priority; 4050 } 4051 4052 mutex_enter(&pio->io_lock); 4053 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 4054 cio_next = zio_walk_children(pio, &zl); 4055 zio_change_priority(cio, priority); 4056 } 4057 mutex_exit(&pio->io_lock); 4058 } 4059 4060 /* 4061 * For non-raidz ZIOs, we can just copy aside the bad data read from the 4062 * disk, and use that to finish the checksum ereport later. 4063 */ 4064 static void 4065 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr, 4066 const abd_t *good_buf) 4067 { 4068 /* no processing needed */ 4069 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE); 4070 } 4071 4072 void 4073 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr) 4074 { 4075 void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size); 4076 4077 abd_copy(abd, zio->io_abd, zio->io_size); 4078 4079 zcr->zcr_cbinfo = zio->io_size; 4080 zcr->zcr_cbdata = abd; 4081 zcr->zcr_finish = zio_vsd_default_cksum_finish; 4082 zcr->zcr_free = zio_abd_free; 4083 } 4084 4085 static zio_t * 4086 zio_vdev_io_assess(zio_t *zio) 4087 { 4088 vdev_t *vd = zio->io_vd; 4089 4090 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) { 4091 return (NULL); 4092 } 4093 4094 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 4095 spa_config_exit(zio->io_spa, SCL_ZIO, zio); 4096 4097 if (zio->io_vsd != NULL) { 4098 zio->io_vsd_ops->vsd_free(zio); 4099 zio->io_vsd = NULL; 4100 } 4101 4102 if (zio_injection_enabled && zio->io_error == 0) 4103 zio->io_error = zio_handle_fault_injection(zio, EIO); 4104 4105 /* 4106 * If the I/O failed, determine whether we should attempt to retry it. 4107 * 4108 * On retry, we cut in line in the issue queue, since we don't want 4109 * compression/checksumming/etc. work to prevent our (cheap) IO reissue. 4110 */ 4111 if (zio->io_error && vd == NULL && 4112 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) { 4113 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */ 4114 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */ 4115 zio->io_error = 0; 4116 zio->io_flags |= ZIO_FLAG_IO_RETRY | ZIO_FLAG_DONT_AGGREGATE; 4117 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1; 4118 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, 4119 zio_requeue_io_start_cut_in_line); 4120 return (NULL); 4121 } 4122 4123 /* 4124 * If we got an error on a leaf device, convert it to ENXIO 4125 * if the device is not accessible at all. 4126 */ 4127 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf && 4128 !vdev_accessible(vd, zio)) 4129 zio->io_error = SET_ERROR(ENXIO); 4130 4131 /* 4132 * If we can't write to an interior vdev (mirror or RAID-Z), 4133 * set vdev_cant_write so that we stop trying to allocate from it. 4134 */ 4135 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE && 4136 vd != NULL && !vd->vdev_ops->vdev_op_leaf) { 4137 vdev_dbgmsg(vd, "zio_vdev_io_assess(zio=%px) setting " 4138 "cant_write=TRUE due to write failure with ENXIO", 4139 zio); 4140 vd->vdev_cant_write = B_TRUE; 4141 } 4142 4143 /* 4144 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future 4145 * attempts will ever succeed. In this case we set a persistent 4146 * boolean flag so that we don't bother with it in the future. 4147 */ 4148 if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) && 4149 zio->io_type == ZIO_TYPE_IOCTL && 4150 zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL) 4151 vd->vdev_nowritecache = B_TRUE; 4152 4153 if (zio->io_error) 4154 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 4155 4156 return (zio); 4157 } 4158 4159 void 4160 zio_vdev_io_reissue(zio_t *zio) 4161 { 4162 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 4163 ASSERT(zio->io_error == 0); 4164 4165 zio->io_stage >>= 1; 4166 } 4167 4168 void 4169 zio_vdev_io_redone(zio_t *zio) 4170 { 4171 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE); 4172 4173 zio->io_stage >>= 1; 4174 } 4175 4176 void 4177 zio_vdev_io_bypass(zio_t *zio) 4178 { 4179 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 4180 ASSERT(zio->io_error == 0); 4181 4182 zio->io_flags |= ZIO_FLAG_IO_BYPASS; 4183 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1; 4184 } 4185 4186 /* 4187 * ========================================================================== 4188 * Encrypt and store encryption parameters 4189 * ========================================================================== 4190 */ 4191 4192 4193 /* 4194 * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for 4195 * managing the storage of encryption parameters and passing them to the 4196 * lower-level encryption functions. 4197 */ 4198 static zio_t * 4199 zio_encrypt(zio_t *zio) 4200 { 4201 zio_prop_t *zp = &zio->io_prop; 4202 spa_t *spa = zio->io_spa; 4203 blkptr_t *bp = zio->io_bp; 4204 uint64_t psize = BP_GET_PSIZE(bp); 4205 uint64_t dsobj = zio->io_bookmark.zb_objset; 4206 dmu_object_type_t ot = BP_GET_TYPE(bp); 4207 void *enc_buf = NULL; 4208 abd_t *eabd = NULL; 4209 uint8_t salt[ZIO_DATA_SALT_LEN]; 4210 uint8_t iv[ZIO_DATA_IV_LEN]; 4211 uint8_t mac[ZIO_DATA_MAC_LEN]; 4212 boolean_t no_crypt = B_FALSE; 4213 4214 /* the root zio already encrypted the data */ 4215 if (zio->io_child_type == ZIO_CHILD_GANG) 4216 return (zio); 4217 4218 /* only ZIL blocks are re-encrypted on rewrite */ 4219 if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG) 4220 return (zio); 4221 4222 if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) { 4223 BP_SET_CRYPT(bp, B_FALSE); 4224 return (zio); 4225 } 4226 4227 /* if we are doing raw encryption set the provided encryption params */ 4228 if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) { 4229 ASSERT0(BP_GET_LEVEL(bp)); 4230 BP_SET_CRYPT(bp, B_TRUE); 4231 BP_SET_BYTEORDER(bp, zp->zp_byteorder); 4232 if (ot != DMU_OT_OBJSET) 4233 zio_crypt_encode_mac_bp(bp, zp->zp_mac); 4234 4235 /* dnode blocks must be written out in the provided byteorder */ 4236 if (zp->zp_byteorder != ZFS_HOST_BYTEORDER && 4237 ot == DMU_OT_DNODE) { 4238 void *bswap_buf = zio_buf_alloc(psize); 4239 abd_t *babd = abd_get_from_buf(bswap_buf, psize); 4240 4241 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 4242 abd_copy_to_buf(bswap_buf, zio->io_abd, psize); 4243 dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf, 4244 psize); 4245 4246 abd_take_ownership_of_buf(babd, B_TRUE); 4247 zio_push_transform(zio, babd, psize, psize, NULL); 4248 } 4249 4250 if (DMU_OT_IS_ENCRYPTED(ot)) 4251 zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv); 4252 return (zio); 4253 } 4254 4255 /* indirect blocks only maintain a cksum of the lower level MACs */ 4256 if (BP_GET_LEVEL(bp) > 0) { 4257 BP_SET_CRYPT(bp, B_TRUE); 4258 VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE, 4259 zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp), 4260 mac)); 4261 zio_crypt_encode_mac_bp(bp, mac); 4262 return (zio); 4263 } 4264 4265 /* 4266 * Objset blocks are a special case since they have 2 256-bit MACs 4267 * embedded within them. 4268 */ 4269 if (ot == DMU_OT_OBJSET) { 4270 ASSERT0(DMU_OT_IS_ENCRYPTED(ot)); 4271 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 4272 BP_SET_CRYPT(bp, B_TRUE); 4273 VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj, 4274 zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp))); 4275 return (zio); 4276 } 4277 4278 /* unencrypted object types are only authenticated with a MAC */ 4279 if (!DMU_OT_IS_ENCRYPTED(ot)) { 4280 BP_SET_CRYPT(bp, B_TRUE); 4281 VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj, 4282 zio->io_abd, psize, mac)); 4283 zio_crypt_encode_mac_bp(bp, mac); 4284 return (zio); 4285 } 4286 4287 /* 4288 * Later passes of sync-to-convergence may decide to rewrite data 4289 * in place to avoid more disk reallocations. This presents a problem 4290 * for encryption because this constitutes rewriting the new data with 4291 * the same encryption key and IV. However, this only applies to blocks 4292 * in the MOS (particularly the spacemaps) and we do not encrypt the 4293 * MOS. We assert that the zio is allocating or an intent log write 4294 * to enforce this. 4295 */ 4296 ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG); 4297 ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG); 4298 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION)); 4299 ASSERT3U(psize, !=, 0); 4300 4301 enc_buf = zio_buf_alloc(psize); 4302 eabd = abd_get_from_buf(enc_buf, psize); 4303 abd_take_ownership_of_buf(eabd, B_TRUE); 4304 4305 /* 4306 * For an explanation of what encryption parameters are stored 4307 * where, see the block comment in zio_crypt.c. 4308 */ 4309 if (ot == DMU_OT_INTENT_LOG) { 4310 zio_crypt_decode_params_bp(bp, salt, iv); 4311 } else { 4312 BP_SET_CRYPT(bp, B_TRUE); 4313 } 4314 4315 /* Perform the encryption. This should not fail */ 4316 VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark, 4317 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), 4318 salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt)); 4319 4320 /* encode encryption metadata into the bp */ 4321 if (ot == DMU_OT_INTENT_LOG) { 4322 /* 4323 * ZIL blocks store the MAC in the embedded checksum, so the 4324 * transform must always be applied. 4325 */ 4326 zio_crypt_encode_mac_zil(enc_buf, mac); 4327 zio_push_transform(zio, eabd, psize, psize, NULL); 4328 } else { 4329 BP_SET_CRYPT(bp, B_TRUE); 4330 zio_crypt_encode_params_bp(bp, salt, iv); 4331 zio_crypt_encode_mac_bp(bp, mac); 4332 4333 if (no_crypt) { 4334 ASSERT3U(ot, ==, DMU_OT_DNODE); 4335 abd_free(eabd); 4336 } else { 4337 zio_push_transform(zio, eabd, psize, psize, NULL); 4338 } 4339 } 4340 4341 return (zio); 4342 } 4343 4344 /* 4345 * ========================================================================== 4346 * Generate and verify checksums 4347 * ========================================================================== 4348 */ 4349 static zio_t * 4350 zio_checksum_generate(zio_t *zio) 4351 { 4352 blkptr_t *bp = zio->io_bp; 4353 enum zio_checksum checksum; 4354 4355 if (bp == NULL) { 4356 /* 4357 * This is zio_write_phys(). 4358 * We're either generating a label checksum, or none at all. 4359 */ 4360 checksum = zio->io_prop.zp_checksum; 4361 4362 if (checksum == ZIO_CHECKSUM_OFF) 4363 return (zio); 4364 4365 ASSERT(checksum == ZIO_CHECKSUM_LABEL); 4366 } else { 4367 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) { 4368 ASSERT(!IO_IS_ALLOCATING(zio)); 4369 checksum = ZIO_CHECKSUM_GANG_HEADER; 4370 } else { 4371 checksum = BP_GET_CHECKSUM(bp); 4372 } 4373 } 4374 4375 zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size); 4376 4377 return (zio); 4378 } 4379 4380 static zio_t * 4381 zio_checksum_verify(zio_t *zio) 4382 { 4383 zio_bad_cksum_t info; 4384 blkptr_t *bp = zio->io_bp; 4385 int error; 4386 4387 ASSERT(zio->io_vd != NULL); 4388 4389 if (bp == NULL) { 4390 /* 4391 * This is zio_read_phys(). 4392 * We're either verifying a label checksum, or nothing at all. 4393 */ 4394 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF) 4395 return (zio); 4396 4397 ASSERT3U(zio->io_prop.zp_checksum, ==, ZIO_CHECKSUM_LABEL); 4398 } 4399 4400 if ((error = zio_checksum_error(zio, &info)) != 0) { 4401 zio->io_error = error; 4402 if (error == ECKSUM && 4403 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 4404 mutex_enter(&zio->io_vd->vdev_stat_lock); 4405 zio->io_vd->vdev_stat.vs_checksum_errors++; 4406 mutex_exit(&zio->io_vd->vdev_stat_lock); 4407 (void) zfs_ereport_start_checksum(zio->io_spa, 4408 zio->io_vd, &zio->io_bookmark, zio, 4409 zio->io_offset, zio->io_size, &info); 4410 } 4411 } 4412 4413 return (zio); 4414 } 4415 4416 /* 4417 * Called by RAID-Z to ensure we don't compute the checksum twice. 4418 */ 4419 void 4420 zio_checksum_verified(zio_t *zio) 4421 { 4422 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 4423 } 4424 4425 /* 4426 * ========================================================================== 4427 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other. 4428 * An error of 0 indicates success. ENXIO indicates whole-device failure, 4429 * which may be transient (e.g. unplugged) or permanent. ECKSUM and EIO 4430 * indicate errors that are specific to one I/O, and most likely permanent. 4431 * Any other error is presumed to be worse because we weren't expecting it. 4432 * ========================================================================== 4433 */ 4434 int 4435 zio_worst_error(int e1, int e2) 4436 { 4437 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO }; 4438 int r1, r2; 4439 4440 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++) 4441 if (e1 == zio_error_rank[r1]) 4442 break; 4443 4444 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++) 4445 if (e2 == zio_error_rank[r2]) 4446 break; 4447 4448 return (r1 > r2 ? e1 : e2); 4449 } 4450 4451 /* 4452 * ========================================================================== 4453 * I/O completion 4454 * ========================================================================== 4455 */ 4456 static zio_t * 4457 zio_ready(zio_t *zio) 4458 { 4459 blkptr_t *bp = zio->io_bp; 4460 zio_t *pio, *pio_next; 4461 zio_link_t *zl = NULL; 4462 4463 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT, 4464 ZIO_WAIT_READY)) { 4465 return (NULL); 4466 } 4467 4468 if (zio->io_ready) { 4469 ASSERT(IO_IS_ALLOCATING(zio)); 4470 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) || 4471 (zio->io_flags & ZIO_FLAG_NOPWRITE)); 4472 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0); 4473 4474 zio->io_ready(zio); 4475 } 4476 4477 #ifdef ZFS_DEBUG 4478 if (bp != NULL && bp != &zio->io_bp_copy) 4479 zio->io_bp_copy = *bp; 4480 #endif 4481 4482 if (zio->io_error != 0) { 4483 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 4484 4485 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 4486 ASSERT(IO_IS_ALLOCATING(zio)); 4487 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 4488 ASSERT(zio->io_metaslab_class != NULL); 4489 4490 /* 4491 * We were unable to allocate anything, unreserve and 4492 * issue the next I/O to allocate. 4493 */ 4494 metaslab_class_throttle_unreserve( 4495 zio->io_metaslab_class, zio->io_prop.zp_copies, 4496 zio->io_allocator, zio); 4497 zio_allocate_dispatch(zio->io_spa, zio->io_allocator); 4498 } 4499 } 4500 4501 mutex_enter(&zio->io_lock); 4502 zio->io_state[ZIO_WAIT_READY] = 1; 4503 pio = zio_walk_parents(zio, &zl); 4504 mutex_exit(&zio->io_lock); 4505 4506 /* 4507 * As we notify zio's parents, new parents could be added. 4508 * New parents go to the head of zio's io_parent_list, however, 4509 * so we will (correctly) not notify them. The remainder of zio's 4510 * io_parent_list, from 'pio_next' onward, cannot change because 4511 * all parents must wait for us to be done before they can be done. 4512 */ 4513 for (; pio != NULL; pio = pio_next) { 4514 pio_next = zio_walk_parents(zio, &zl); 4515 zio_notify_parent(pio, zio, ZIO_WAIT_READY, NULL); 4516 } 4517 4518 if (zio->io_flags & ZIO_FLAG_NODATA) { 4519 if (bp != NULL && BP_IS_GANG(bp)) { 4520 zio->io_flags &= ~ZIO_FLAG_NODATA; 4521 } else { 4522 ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE); 4523 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 4524 } 4525 } 4526 4527 if (zio_injection_enabled && 4528 zio->io_spa->spa_syncing_txg == zio->io_txg) 4529 zio_handle_ignored_writes(zio); 4530 4531 return (zio); 4532 } 4533 4534 /* 4535 * Update the allocation throttle accounting. 4536 */ 4537 static void 4538 zio_dva_throttle_done(zio_t *zio) 4539 { 4540 zio_t *lio __maybe_unused = zio->io_logical; 4541 zio_t *pio = zio_unique_parent(zio); 4542 vdev_t *vd = zio->io_vd; 4543 int flags = METASLAB_ASYNC_ALLOC; 4544 4545 ASSERT3P(zio->io_bp, !=, NULL); 4546 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE); 4547 ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE); 4548 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); 4549 ASSERT(vd != NULL); 4550 ASSERT3P(vd, ==, vd->vdev_top); 4551 ASSERT(zio_injection_enabled || !(zio->io_flags & ZIO_FLAG_IO_RETRY)); 4552 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR)); 4553 ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING); 4554 ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE)); 4555 ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA)); 4556 4557 /* 4558 * Parents of gang children can have two flavors -- ones that 4559 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set) 4560 * and ones that allocated the constituent blocks. The allocation 4561 * throttle needs to know the allocating parent zio so we must find 4562 * it here. 4563 */ 4564 if (pio->io_child_type == ZIO_CHILD_GANG) { 4565 /* 4566 * If our parent is a rewrite gang child then our grandparent 4567 * would have been the one that performed the allocation. 4568 */ 4569 if (pio->io_flags & ZIO_FLAG_IO_REWRITE) 4570 pio = zio_unique_parent(pio); 4571 flags |= METASLAB_GANG_CHILD; 4572 } 4573 4574 ASSERT(IO_IS_ALLOCATING(pio)); 4575 ASSERT3P(zio, !=, zio->io_logical); 4576 ASSERT(zio->io_logical != NULL); 4577 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR)); 4578 ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE); 4579 ASSERT(zio->io_metaslab_class != NULL); 4580 4581 mutex_enter(&pio->io_lock); 4582 metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags, 4583 pio->io_allocator, B_TRUE); 4584 mutex_exit(&pio->io_lock); 4585 4586 metaslab_class_throttle_unreserve(zio->io_metaslab_class, 1, 4587 pio->io_allocator, pio); 4588 4589 /* 4590 * Call into the pipeline to see if there is more work that 4591 * needs to be done. If there is work to be done it will be 4592 * dispatched to another taskq thread. 4593 */ 4594 zio_allocate_dispatch(zio->io_spa, pio->io_allocator); 4595 } 4596 4597 static zio_t * 4598 zio_done(zio_t *zio) 4599 { 4600 /* 4601 * Always attempt to keep stack usage minimal here since 4602 * we can be called recursively up to 19 levels deep. 4603 */ 4604 const uint64_t psize = zio->io_size; 4605 zio_t *pio, *pio_next; 4606 zio_link_t *zl = NULL; 4607 4608 /* 4609 * If our children haven't all completed, 4610 * wait for them and then repeat this pipeline stage. 4611 */ 4612 if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) { 4613 return (NULL); 4614 } 4615 4616 /* 4617 * If the allocation throttle is enabled, then update the accounting. 4618 * We only track child I/Os that are part of an allocating async 4619 * write. We must do this since the allocation is performed 4620 * by the logical I/O but the actual write is done by child I/Os. 4621 */ 4622 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING && 4623 zio->io_child_type == ZIO_CHILD_VDEV) { 4624 ASSERT(zio->io_metaslab_class != NULL); 4625 ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled); 4626 zio_dva_throttle_done(zio); 4627 } 4628 4629 /* 4630 * If the allocation throttle is enabled, verify that 4631 * we have decremented the refcounts for every I/O that was throttled. 4632 */ 4633 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 4634 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 4635 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 4636 ASSERT(zio->io_bp != NULL); 4637 4638 metaslab_group_alloc_verify(zio->io_spa, zio->io_bp, zio, 4639 zio->io_allocator); 4640 VERIFY(zfs_refcount_not_held(&zio->io_metaslab_class-> 4641 mc_allocator[zio->io_allocator].mca_alloc_slots, zio)); 4642 } 4643 4644 4645 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 4646 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 4647 ASSERT(zio->io_children[c][w] == 0); 4648 4649 if (zio->io_bp != NULL && !BP_IS_EMBEDDED(zio->io_bp)) { 4650 ASSERT(zio->io_bp->blk_pad[0] == 0); 4651 ASSERT(zio->io_bp->blk_pad[1] == 0); 4652 ASSERT(memcmp(zio->io_bp, &zio->io_bp_copy, 4653 sizeof (blkptr_t)) == 0 || 4654 (zio->io_bp == zio_unique_parent(zio)->io_bp)); 4655 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) && 4656 zio->io_bp_override == NULL && 4657 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) { 4658 ASSERT3U(zio->io_prop.zp_copies, <=, 4659 BP_GET_NDVAS(zio->io_bp)); 4660 ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 || 4661 (BP_COUNT_GANG(zio->io_bp) == 4662 BP_GET_NDVAS(zio->io_bp))); 4663 } 4664 if (zio->io_flags & ZIO_FLAG_NOPWRITE) 4665 VERIFY(BP_EQUAL(zio->io_bp, &zio->io_bp_orig)); 4666 } 4667 4668 /* 4669 * If there were child vdev/gang/ddt errors, they apply to us now. 4670 */ 4671 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV); 4672 zio_inherit_child_errors(zio, ZIO_CHILD_GANG); 4673 zio_inherit_child_errors(zio, ZIO_CHILD_DDT); 4674 4675 /* 4676 * If the I/O on the transformed data was successful, generate any 4677 * checksum reports now while we still have the transformed data. 4678 */ 4679 if (zio->io_error == 0) { 4680 while (zio->io_cksum_report != NULL) { 4681 zio_cksum_report_t *zcr = zio->io_cksum_report; 4682 uint64_t align = zcr->zcr_align; 4683 uint64_t asize = P2ROUNDUP(psize, align); 4684 abd_t *adata = zio->io_abd; 4685 4686 if (adata != NULL && asize != psize) { 4687 adata = abd_alloc(asize, B_TRUE); 4688 abd_copy(adata, zio->io_abd, psize); 4689 abd_zero_off(adata, psize, asize - psize); 4690 } 4691 4692 zio->io_cksum_report = zcr->zcr_next; 4693 zcr->zcr_next = NULL; 4694 zcr->zcr_finish(zcr, adata); 4695 zfs_ereport_free_checksum(zcr); 4696 4697 if (adata != NULL && asize != psize) 4698 abd_free(adata); 4699 } 4700 } 4701 4702 zio_pop_transforms(zio); /* note: may set zio->io_error */ 4703 4704 vdev_stat_update(zio, psize); 4705 4706 /* 4707 * If this I/O is attached to a particular vdev is slow, exceeding 4708 * 30 seconds to complete, post an error described the I/O delay. 4709 * We ignore these errors if the device is currently unavailable. 4710 */ 4711 if (zio->io_delay >= MSEC2NSEC(zio_slow_io_ms)) { 4712 if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) { 4713 /* 4714 * We want to only increment our slow IO counters if 4715 * the IO is valid (i.e. not if the drive is removed). 4716 * 4717 * zfs_ereport_post() will also do these checks, but 4718 * it can also ratelimit and have other failures, so we 4719 * need to increment the slow_io counters independent 4720 * of it. 4721 */ 4722 if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY, 4723 zio->io_spa, zio->io_vd, zio)) { 4724 mutex_enter(&zio->io_vd->vdev_stat_lock); 4725 zio->io_vd->vdev_stat.vs_slow_ios++; 4726 mutex_exit(&zio->io_vd->vdev_stat_lock); 4727 4728 (void) zfs_ereport_post(FM_EREPORT_ZFS_DELAY, 4729 zio->io_spa, zio->io_vd, &zio->io_bookmark, 4730 zio, 0); 4731 } 4732 } 4733 } 4734 4735 if (zio->io_error) { 4736 /* 4737 * If this I/O is attached to a particular vdev, 4738 * generate an error message describing the I/O failure 4739 * at the block level. We ignore these errors if the 4740 * device is currently unavailable. 4741 */ 4742 if (zio->io_error != ECKSUM && zio->io_vd != NULL && 4743 !vdev_is_dead(zio->io_vd)) { 4744 int ret = zfs_ereport_post(FM_EREPORT_ZFS_IO, 4745 zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0); 4746 if (ret != EALREADY) { 4747 mutex_enter(&zio->io_vd->vdev_stat_lock); 4748 if (zio->io_type == ZIO_TYPE_READ) 4749 zio->io_vd->vdev_stat.vs_read_errors++; 4750 else if (zio->io_type == ZIO_TYPE_WRITE) 4751 zio->io_vd->vdev_stat.vs_write_errors++; 4752 mutex_exit(&zio->io_vd->vdev_stat_lock); 4753 } 4754 } 4755 4756 if ((zio->io_error == EIO || !(zio->io_flags & 4757 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) && 4758 zio == zio->io_logical) { 4759 /* 4760 * For logical I/O requests, tell the SPA to log the 4761 * error and generate a logical data ereport. 4762 */ 4763 spa_log_error(zio->io_spa, &zio->io_bookmark, 4764 &zio->io_bp->blk_birth); 4765 (void) zfs_ereport_post(FM_EREPORT_ZFS_DATA, 4766 zio->io_spa, NULL, &zio->io_bookmark, zio, 0); 4767 } 4768 } 4769 4770 if (zio->io_error && zio == zio->io_logical) { 4771 /* 4772 * Determine whether zio should be reexecuted. This will 4773 * propagate all the way to the root via zio_notify_parent(). 4774 */ 4775 ASSERT(zio->io_vd == NULL && zio->io_bp != NULL); 4776 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 4777 4778 if (IO_IS_ALLOCATING(zio) && 4779 !(zio->io_flags & ZIO_FLAG_CANFAIL)) { 4780 if (zio->io_error != ENOSPC) 4781 zio->io_reexecute |= ZIO_REEXECUTE_NOW; 4782 else 4783 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 4784 } 4785 4786 if ((zio->io_type == ZIO_TYPE_READ || 4787 zio->io_type == ZIO_TYPE_FREE) && 4788 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && 4789 zio->io_error == ENXIO && 4790 spa_load_state(zio->io_spa) == SPA_LOAD_NONE && 4791 spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE) 4792 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 4793 4794 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute) 4795 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 4796 4797 /* 4798 * Here is a possibly good place to attempt to do 4799 * either combinatorial reconstruction or error correction 4800 * based on checksums. It also might be a good place 4801 * to send out preliminary ereports before we suspend 4802 * processing. 4803 */ 4804 } 4805 4806 /* 4807 * If there were logical child errors, they apply to us now. 4808 * We defer this until now to avoid conflating logical child 4809 * errors with errors that happened to the zio itself when 4810 * updating vdev stats and reporting FMA events above. 4811 */ 4812 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL); 4813 4814 if ((zio->io_error || zio->io_reexecute) && 4815 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio && 4816 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE))) 4817 zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp); 4818 4819 zio_gang_tree_free(&zio->io_gang_tree); 4820 4821 /* 4822 * Godfather I/Os should never suspend. 4823 */ 4824 if ((zio->io_flags & ZIO_FLAG_GODFATHER) && 4825 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) 4826 zio->io_reexecute &= ~ZIO_REEXECUTE_SUSPEND; 4827 4828 if (zio->io_reexecute) { 4829 /* 4830 * This is a logical I/O that wants to reexecute. 4831 * 4832 * Reexecute is top-down. When an i/o fails, if it's not 4833 * the root, it simply notifies its parent and sticks around. 4834 * The parent, seeing that it still has children in zio_done(), 4835 * does the same. This percolates all the way up to the root. 4836 * The root i/o will reexecute or suspend the entire tree. 4837 * 4838 * This approach ensures that zio_reexecute() honors 4839 * all the original i/o dependency relationships, e.g. 4840 * parents not executing until children are ready. 4841 */ 4842 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 4843 4844 zio->io_gang_leader = NULL; 4845 4846 mutex_enter(&zio->io_lock); 4847 zio->io_state[ZIO_WAIT_DONE] = 1; 4848 mutex_exit(&zio->io_lock); 4849 4850 /* 4851 * "The Godfather" I/O monitors its children but is 4852 * not a true parent to them. It will track them through 4853 * the pipeline but severs its ties whenever they get into 4854 * trouble (e.g. suspended). This allows "The Godfather" 4855 * I/O to return status without blocking. 4856 */ 4857 zl = NULL; 4858 for (pio = zio_walk_parents(zio, &zl); pio != NULL; 4859 pio = pio_next) { 4860 zio_link_t *remove_zl = zl; 4861 pio_next = zio_walk_parents(zio, &zl); 4862 4863 if ((pio->io_flags & ZIO_FLAG_GODFATHER) && 4864 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) { 4865 zio_remove_child(pio, zio, remove_zl); 4866 /* 4867 * This is a rare code path, so we don't 4868 * bother with "next_to_execute". 4869 */ 4870 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, 4871 NULL); 4872 } 4873 } 4874 4875 if ((pio = zio_unique_parent(zio)) != NULL) { 4876 /* 4877 * We're not a root i/o, so there's nothing to do 4878 * but notify our parent. Don't propagate errors 4879 * upward since we haven't permanently failed yet. 4880 */ 4881 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 4882 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE; 4883 /* 4884 * This is a rare code path, so we don't bother with 4885 * "next_to_execute". 4886 */ 4887 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, NULL); 4888 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) { 4889 /* 4890 * We'd fail again if we reexecuted now, so suspend 4891 * until conditions improve (e.g. device comes online). 4892 */ 4893 zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR); 4894 } else { 4895 /* 4896 * Reexecution is potentially a huge amount of work. 4897 * Hand it off to the otherwise-unused claim taskq. 4898 */ 4899 ASSERT(taskq_empty_ent(&zio->io_tqent)); 4900 spa_taskq_dispatch_ent(zio->io_spa, 4901 ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE, 4902 zio_reexecute, zio, 0, &zio->io_tqent); 4903 } 4904 return (NULL); 4905 } 4906 4907 ASSERT(list_is_empty(&zio->io_child_list)); 4908 ASSERT(zio->io_reexecute == 0); 4909 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL)); 4910 4911 /* 4912 * Report any checksum errors, since the I/O is complete. 4913 */ 4914 while (zio->io_cksum_report != NULL) { 4915 zio_cksum_report_t *zcr = zio->io_cksum_report; 4916 zio->io_cksum_report = zcr->zcr_next; 4917 zcr->zcr_next = NULL; 4918 zcr->zcr_finish(zcr, NULL); 4919 zfs_ereport_free_checksum(zcr); 4920 } 4921 4922 if (zio->io_flags & ZIO_FLAG_FASTWRITE && zio->io_bp && 4923 !BP_IS_HOLE(zio->io_bp) && !BP_IS_EMBEDDED(zio->io_bp) && 4924 !(zio->io_flags & ZIO_FLAG_NOPWRITE)) { 4925 metaslab_fastwrite_unmark(zio->io_spa, zio->io_bp); 4926 } 4927 4928 /* 4929 * It is the responsibility of the done callback to ensure that this 4930 * particular zio is no longer discoverable for adoption, and as 4931 * such, cannot acquire any new parents. 4932 */ 4933 if (zio->io_done) 4934 zio->io_done(zio); 4935 4936 mutex_enter(&zio->io_lock); 4937 zio->io_state[ZIO_WAIT_DONE] = 1; 4938 mutex_exit(&zio->io_lock); 4939 4940 /* 4941 * We are done executing this zio. We may want to execute a parent 4942 * next. See the comment in zio_notify_parent(). 4943 */ 4944 zio_t *next_to_execute = NULL; 4945 zl = NULL; 4946 for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) { 4947 zio_link_t *remove_zl = zl; 4948 pio_next = zio_walk_parents(zio, &zl); 4949 zio_remove_child(pio, zio, remove_zl); 4950 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, &next_to_execute); 4951 } 4952 4953 if (zio->io_waiter != NULL) { 4954 mutex_enter(&zio->io_lock); 4955 zio->io_executor = NULL; 4956 cv_broadcast(&zio->io_cv); 4957 mutex_exit(&zio->io_lock); 4958 } else { 4959 zio_destroy(zio); 4960 } 4961 4962 return (next_to_execute); 4963 } 4964 4965 /* 4966 * ========================================================================== 4967 * I/O pipeline definition 4968 * ========================================================================== 4969 */ 4970 static zio_pipe_stage_t *zio_pipeline[] = { 4971 NULL, 4972 zio_read_bp_init, 4973 zio_write_bp_init, 4974 zio_free_bp_init, 4975 zio_issue_async, 4976 zio_write_compress, 4977 zio_encrypt, 4978 zio_checksum_generate, 4979 zio_nop_write, 4980 zio_brt_free, 4981 zio_ddt_read_start, 4982 zio_ddt_read_done, 4983 zio_ddt_write, 4984 zio_ddt_free, 4985 zio_gang_assemble, 4986 zio_gang_issue, 4987 zio_dva_throttle, 4988 zio_dva_allocate, 4989 zio_dva_free, 4990 zio_dva_claim, 4991 zio_ready, 4992 zio_vdev_io_start, 4993 zio_vdev_io_done, 4994 zio_vdev_io_assess, 4995 zio_checksum_verify, 4996 zio_done 4997 }; 4998 4999 5000 5001 5002 /* 5003 * Compare two zbookmark_phys_t's to see which we would reach first in a 5004 * pre-order traversal of the object tree. 5005 * 5006 * This is simple in every case aside from the meta-dnode object. For all other 5007 * objects, we traverse them in order (object 1 before object 2, and so on). 5008 * However, all of these objects are traversed while traversing object 0, since 5009 * the data it points to is the list of objects. Thus, we need to convert to a 5010 * canonical representation so we can compare meta-dnode bookmarks to 5011 * non-meta-dnode bookmarks. 5012 * 5013 * We do this by calculating "equivalents" for each field of the zbookmark. 5014 * zbookmarks outside of the meta-dnode use their own object and level, and 5015 * calculate the level 0 equivalent (the first L0 blkid that is contained in the 5016 * blocks this bookmark refers to) by multiplying their blkid by their span 5017 * (the number of L0 blocks contained within one block at their level). 5018 * zbookmarks inside the meta-dnode calculate their object equivalent 5019 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use 5020 * level + 1<<31 (any value larger than a level could ever be) for their level. 5021 * This causes them to always compare before a bookmark in their object 5022 * equivalent, compare appropriately to bookmarks in other objects, and to 5023 * compare appropriately to other bookmarks in the meta-dnode. 5024 */ 5025 int 5026 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2, 5027 const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2) 5028 { 5029 /* 5030 * These variables represent the "equivalent" values for the zbookmark, 5031 * after converting zbookmarks inside the meta dnode to their 5032 * normal-object equivalents. 5033 */ 5034 uint64_t zb1obj, zb2obj; 5035 uint64_t zb1L0, zb2L0; 5036 uint64_t zb1level, zb2level; 5037 5038 if (zb1->zb_object == zb2->zb_object && 5039 zb1->zb_level == zb2->zb_level && 5040 zb1->zb_blkid == zb2->zb_blkid) 5041 return (0); 5042 5043 IMPLY(zb1->zb_level > 0, ibs1 >= SPA_MINBLOCKSHIFT); 5044 IMPLY(zb2->zb_level > 0, ibs2 >= SPA_MINBLOCKSHIFT); 5045 5046 /* 5047 * BP_SPANB calculates the span in blocks. 5048 */ 5049 zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level); 5050 zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level); 5051 5052 if (zb1->zb_object == DMU_META_DNODE_OBJECT) { 5053 zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 5054 zb1L0 = 0; 5055 zb1level = zb1->zb_level + COMPARE_META_LEVEL; 5056 } else { 5057 zb1obj = zb1->zb_object; 5058 zb1level = zb1->zb_level; 5059 } 5060 5061 if (zb2->zb_object == DMU_META_DNODE_OBJECT) { 5062 zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 5063 zb2L0 = 0; 5064 zb2level = zb2->zb_level + COMPARE_META_LEVEL; 5065 } else { 5066 zb2obj = zb2->zb_object; 5067 zb2level = zb2->zb_level; 5068 } 5069 5070 /* Now that we have a canonical representation, do the comparison. */ 5071 if (zb1obj != zb2obj) 5072 return (zb1obj < zb2obj ? -1 : 1); 5073 else if (zb1L0 != zb2L0) 5074 return (zb1L0 < zb2L0 ? -1 : 1); 5075 else if (zb1level != zb2level) 5076 return (zb1level > zb2level ? -1 : 1); 5077 /* 5078 * This can (theoretically) happen if the bookmarks have the same object 5079 * and level, but different blkids, if the block sizes are not the same. 5080 * There is presently no way to change the indirect block sizes 5081 */ 5082 return (0); 5083 } 5084 5085 /* 5086 * This function checks the following: given that last_block is the place that 5087 * our traversal stopped last time, does that guarantee that we've visited 5088 * every node under subtree_root? Therefore, we can't just use the raw output 5089 * of zbookmark_compare. We have to pass in a modified version of 5090 * subtree_root; by incrementing the block id, and then checking whether 5091 * last_block is before or equal to that, we can tell whether or not having 5092 * visited last_block implies that all of subtree_root's children have been 5093 * visited. 5094 */ 5095 boolean_t 5096 zbookmark_subtree_completed(const dnode_phys_t *dnp, 5097 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block) 5098 { 5099 zbookmark_phys_t mod_zb = *subtree_root; 5100 mod_zb.zb_blkid++; 5101 ASSERT0(last_block->zb_level); 5102 5103 /* The objset_phys_t isn't before anything. */ 5104 if (dnp == NULL) 5105 return (B_FALSE); 5106 5107 /* 5108 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the 5109 * data block size in sectors, because that variable is only used if 5110 * the bookmark refers to a block in the meta-dnode. Since we don't 5111 * know without examining it what object it refers to, and there's no 5112 * harm in passing in this value in other cases, we always pass it in. 5113 * 5114 * We pass in 0 for the indirect block size shift because zb2 must be 5115 * level 0. The indirect block size is only used to calculate the span 5116 * of the bookmark, but since the bookmark must be level 0, the span is 5117 * always 1, so the math works out. 5118 * 5119 * If you make changes to how the zbookmark_compare code works, be sure 5120 * to make sure that this code still works afterwards. 5121 */ 5122 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift, 5123 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb, 5124 last_block) <= 0); 5125 } 5126 5127 /* 5128 * This function is similar to zbookmark_subtree_completed(), but returns true 5129 * if subtree_root is equal or ahead of last_block, i.e. still to be done. 5130 */ 5131 boolean_t 5132 zbookmark_subtree_tbd(const dnode_phys_t *dnp, 5133 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block) 5134 { 5135 ASSERT0(last_block->zb_level); 5136 if (dnp == NULL) 5137 return (B_FALSE); 5138 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift, 5139 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, subtree_root, 5140 last_block) >= 0); 5141 } 5142 5143 EXPORT_SYMBOL(zio_type_name); 5144 EXPORT_SYMBOL(zio_buf_alloc); 5145 EXPORT_SYMBOL(zio_data_buf_alloc); 5146 EXPORT_SYMBOL(zio_buf_free); 5147 EXPORT_SYMBOL(zio_data_buf_free); 5148 5149 ZFS_MODULE_PARAM(zfs_zio, zio_, slow_io_ms, INT, ZMOD_RW, 5150 "Max I/O completion time (milliseconds) before marking it as slow"); 5151 5152 ZFS_MODULE_PARAM(zfs_zio, zio_, requeue_io_start_cut_in_line, INT, ZMOD_RW, 5153 "Prioritize requeued I/O"); 5154 5155 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_deferred_free, UINT, ZMOD_RW, 5156 "Defer frees starting in this pass"); 5157 5158 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_dont_compress, UINT, ZMOD_RW, 5159 "Don't compress starting in this pass"); 5160 5161 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_rewrite, UINT, ZMOD_RW, 5162 "Rewrite new bps starting in this pass"); 5163 5164 ZFS_MODULE_PARAM(zfs_zio, zio_, dva_throttle_enabled, INT, ZMOD_RW, 5165 "Throttle block allocations in the ZIO pipeline"); 5166 5167 ZFS_MODULE_PARAM(zfs_zio, zio_, deadman_log_all, INT, ZMOD_RW, 5168 "Log all slow ZIOs, not just those with vdevs"); 5169