xref: /freebsd/sys/contrib/openzfs/module/zfs/zio.c (revision 849f9ac370bd66993ce5cc6fca0d2ef9bd03c2c9)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2022 by Delphix. All rights reserved.
24  * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25  * Copyright (c) 2017, Intel Corporation.
26  * Copyright (c) 2019, 2023, 2024, Klara Inc.
27  * Copyright (c) 2019, Allan Jude
28  * Copyright (c) 2021, Datto, Inc.
29  */
30 
31 #include <sys/sysmacros.h>
32 #include <sys/zfs_context.h>
33 #include <sys/fm/fs/zfs.h>
34 #include <sys/spa.h>
35 #include <sys/txg.h>
36 #include <sys/spa_impl.h>
37 #include <sys/vdev_impl.h>
38 #include <sys/vdev_trim.h>
39 #include <sys/zio_impl.h>
40 #include <sys/zio_compress.h>
41 #include <sys/zio_checksum.h>
42 #include <sys/dmu_objset.h>
43 #include <sys/arc.h>
44 #include <sys/brt.h>
45 #include <sys/ddt.h>
46 #include <sys/blkptr.h>
47 #include <sys/zfeature.h>
48 #include <sys/dsl_scan.h>
49 #include <sys/metaslab_impl.h>
50 #include <sys/time.h>
51 #include <sys/trace_zfs.h>
52 #include <sys/abd.h>
53 #include <sys/dsl_crypt.h>
54 #include <cityhash.h>
55 
56 /*
57  * ==========================================================================
58  * I/O type descriptions
59  * ==========================================================================
60  */
61 const char *const zio_type_name[ZIO_TYPES] = {
62 	/*
63 	 * Note: Linux kernel thread name length is limited
64 	 * so these names will differ from upstream open zfs.
65 	 */
66 	"z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_flush", "z_trim"
67 };
68 
69 int zio_dva_throttle_enabled = B_TRUE;
70 static int zio_deadman_log_all = B_FALSE;
71 
72 /*
73  * ==========================================================================
74  * I/O kmem caches
75  * ==========================================================================
76  */
77 static kmem_cache_t *zio_cache;
78 static kmem_cache_t *zio_link_cache;
79 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
80 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
81 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
82 static uint64_t zio_buf_cache_allocs[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
83 static uint64_t zio_buf_cache_frees[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
84 #endif
85 
86 /* Mark IOs as "slow" if they take longer than 30 seconds */
87 static uint_t zio_slow_io_ms = (30 * MILLISEC);
88 
89 #define	BP_SPANB(indblkshift, level) \
90 	(((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
91 #define	COMPARE_META_LEVEL	0x80000000ul
92 /*
93  * The following actions directly effect the spa's sync-to-convergence logic.
94  * The values below define the sync pass when we start performing the action.
95  * Care should be taken when changing these values as they directly impact
96  * spa_sync() performance. Tuning these values may introduce subtle performance
97  * pathologies and should only be done in the context of performance analysis.
98  * These tunables will eventually be removed and replaced with #defines once
99  * enough analysis has been done to determine optimal values.
100  *
101  * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
102  * regular blocks are not deferred.
103  *
104  * Starting in sync pass 8 (zfs_sync_pass_dont_compress), we disable
105  * compression (including of metadata).  In practice, we don't have this
106  * many sync passes, so this has no effect.
107  *
108  * The original intent was that disabling compression would help the sync
109  * passes to converge. However, in practice disabling compression increases
110  * the average number of sync passes, because when we turn compression off, a
111  * lot of block's size will change and thus we have to re-allocate (not
112  * overwrite) them. It also increases the number of 128KB allocations (e.g.
113  * for indirect blocks and spacemaps) because these will not be compressed.
114  * The 128K allocations are especially detrimental to performance on highly
115  * fragmented systems, which may have very few free segments of this size,
116  * and may need to load new metaslabs to satisfy 128K allocations.
117  */
118 
119 /* defer frees starting in this pass */
120 uint_t zfs_sync_pass_deferred_free = 2;
121 
122 /* don't compress starting in this pass */
123 static uint_t zfs_sync_pass_dont_compress = 8;
124 
125 /* rewrite new bps starting in this pass */
126 static uint_t zfs_sync_pass_rewrite = 2;
127 
128 /*
129  * An allocating zio is one that either currently has the DVA allocate
130  * stage set or will have it later in its lifetime.
131  */
132 #define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
133 
134 /*
135  * Enable smaller cores by excluding metadata
136  * allocations as well.
137  */
138 int zio_exclude_metadata = 0;
139 static int zio_requeue_io_start_cut_in_line = 1;
140 
141 #ifdef ZFS_DEBUG
142 static const int zio_buf_debug_limit = 16384;
143 #else
144 static const int zio_buf_debug_limit = 0;
145 #endif
146 
147 static inline void __zio_execute(zio_t *zio);
148 
149 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t);
150 
151 void
152 zio_init(void)
153 {
154 	size_t c;
155 
156 	zio_cache = kmem_cache_create("zio_cache",
157 	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
158 	zio_link_cache = kmem_cache_create("zio_link_cache",
159 	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
160 
161 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
162 		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
163 		size_t align, cflags, data_cflags;
164 		char name[32];
165 
166 		/*
167 		 * Create cache for each half-power of 2 size, starting from
168 		 * SPA_MINBLOCKSIZE.  It should give us memory space efficiency
169 		 * of ~7/8, sufficient for transient allocations mostly using
170 		 * these caches.
171 		 */
172 		size_t p2 = size;
173 		while (!ISP2(p2))
174 			p2 &= p2 - 1;
175 		if (!IS_P2ALIGNED(size, p2 / 2))
176 			continue;
177 
178 #ifndef _KERNEL
179 		/*
180 		 * If we are using watchpoints, put each buffer on its own page,
181 		 * to eliminate the performance overhead of trapping to the
182 		 * kernel when modifying a non-watched buffer that shares the
183 		 * page with a watched buffer.
184 		 */
185 		if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
186 			continue;
187 #endif
188 
189 		if (IS_P2ALIGNED(size, PAGESIZE))
190 			align = PAGESIZE;
191 		else
192 			align = 1 << (highbit64(size ^ (size - 1)) - 1);
193 
194 		cflags = (zio_exclude_metadata || size > zio_buf_debug_limit) ?
195 		    KMC_NODEBUG : 0;
196 		data_cflags = KMC_NODEBUG;
197 		if (abd_size_alloc_linear(size)) {
198 			cflags |= KMC_RECLAIMABLE;
199 			data_cflags |= KMC_RECLAIMABLE;
200 		}
201 		if (cflags == data_cflags) {
202 			/*
203 			 * Resulting kmem caches would be identical.
204 			 * Save memory by creating only one.
205 			 */
206 			(void) snprintf(name, sizeof (name),
207 			    "zio_buf_comb_%lu", (ulong_t)size);
208 			zio_buf_cache[c] = kmem_cache_create(name, size, align,
209 			    NULL, NULL, NULL, NULL, NULL, cflags);
210 			zio_data_buf_cache[c] = zio_buf_cache[c];
211 			continue;
212 		}
213 		(void) snprintf(name, sizeof (name), "zio_buf_%lu",
214 		    (ulong_t)size);
215 		zio_buf_cache[c] = kmem_cache_create(name, size, align,
216 		    NULL, NULL, NULL, NULL, NULL, cflags);
217 
218 		(void) snprintf(name, sizeof (name), "zio_data_buf_%lu",
219 		    (ulong_t)size);
220 		zio_data_buf_cache[c] = kmem_cache_create(name, size, align,
221 		    NULL, NULL, NULL, NULL, NULL, data_cflags);
222 	}
223 
224 	while (--c != 0) {
225 		ASSERT(zio_buf_cache[c] != NULL);
226 		if (zio_buf_cache[c - 1] == NULL)
227 			zio_buf_cache[c - 1] = zio_buf_cache[c];
228 
229 		ASSERT(zio_data_buf_cache[c] != NULL);
230 		if (zio_data_buf_cache[c - 1] == NULL)
231 			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
232 	}
233 
234 	zio_inject_init();
235 
236 	lz4_init();
237 }
238 
239 void
240 zio_fini(void)
241 {
242 	size_t n = SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT;
243 
244 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
245 	for (size_t i = 0; i < n; i++) {
246 		if (zio_buf_cache_allocs[i] != zio_buf_cache_frees[i])
247 			(void) printf("zio_fini: [%d] %llu != %llu\n",
248 			    (int)((i + 1) << SPA_MINBLOCKSHIFT),
249 			    (long long unsigned)zio_buf_cache_allocs[i],
250 			    (long long unsigned)zio_buf_cache_frees[i]);
251 	}
252 #endif
253 
254 	/*
255 	 * The same kmem cache can show up multiple times in both zio_buf_cache
256 	 * and zio_data_buf_cache. Do a wasteful but trivially correct scan to
257 	 * sort it out.
258 	 */
259 	for (size_t i = 0; i < n; i++) {
260 		kmem_cache_t *cache = zio_buf_cache[i];
261 		if (cache == NULL)
262 			continue;
263 		for (size_t j = i; j < n; j++) {
264 			if (cache == zio_buf_cache[j])
265 				zio_buf_cache[j] = NULL;
266 			if (cache == zio_data_buf_cache[j])
267 				zio_data_buf_cache[j] = NULL;
268 		}
269 		kmem_cache_destroy(cache);
270 	}
271 
272 	for (size_t i = 0; i < n; i++) {
273 		kmem_cache_t *cache = zio_data_buf_cache[i];
274 		if (cache == NULL)
275 			continue;
276 		for (size_t j = i; j < n; j++) {
277 			if (cache == zio_data_buf_cache[j])
278 				zio_data_buf_cache[j] = NULL;
279 		}
280 		kmem_cache_destroy(cache);
281 	}
282 
283 	for (size_t i = 0; i < n; i++) {
284 		VERIFY3P(zio_buf_cache[i], ==, NULL);
285 		VERIFY3P(zio_data_buf_cache[i], ==, NULL);
286 	}
287 
288 	kmem_cache_destroy(zio_link_cache);
289 	kmem_cache_destroy(zio_cache);
290 
291 	zio_inject_fini();
292 
293 	lz4_fini();
294 }
295 
296 /*
297  * ==========================================================================
298  * Allocate and free I/O buffers
299  * ==========================================================================
300  */
301 
302 #ifdef ZFS_DEBUG
303 static const ulong_t zio_buf_canary = (ulong_t)0xdeadc0dedead210b;
304 #endif
305 
306 /*
307  * Use empty space after the buffer to detect overflows.
308  *
309  * Since zio_init() creates kmem caches only for certain set of buffer sizes,
310  * allocations of different sizes may have some unused space after the data.
311  * Filling part of that space with a known pattern on allocation and checking
312  * it on free should allow us to detect some buffer overflows.
313  */
314 static void
315 zio_buf_put_canary(ulong_t *p, size_t size, kmem_cache_t **cache, size_t c)
316 {
317 #ifdef ZFS_DEBUG
318 	size_t off = P2ROUNDUP(size, sizeof (ulong_t));
319 	ulong_t *canary = p + off / sizeof (ulong_t);
320 	size_t asize = (c + 1) << SPA_MINBLOCKSHIFT;
321 	if (c + 1 < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT &&
322 	    cache[c] == cache[c + 1])
323 		asize = (c + 2) << SPA_MINBLOCKSHIFT;
324 	for (; off < asize; canary++, off += sizeof (ulong_t))
325 		*canary = zio_buf_canary;
326 #endif
327 }
328 
329 static void
330 zio_buf_check_canary(ulong_t *p, size_t size, kmem_cache_t **cache, size_t c)
331 {
332 #ifdef ZFS_DEBUG
333 	size_t off = P2ROUNDUP(size, sizeof (ulong_t));
334 	ulong_t *canary = p + off / sizeof (ulong_t);
335 	size_t asize = (c + 1) << SPA_MINBLOCKSHIFT;
336 	if (c + 1 < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT &&
337 	    cache[c] == cache[c + 1])
338 		asize = (c + 2) << SPA_MINBLOCKSHIFT;
339 	for (; off < asize; canary++, off += sizeof (ulong_t)) {
340 		if (unlikely(*canary != zio_buf_canary)) {
341 			PANIC("ZIO buffer overflow %p (%zu) + %zu %#lx != %#lx",
342 			    p, size, (canary - p) * sizeof (ulong_t),
343 			    *canary, zio_buf_canary);
344 		}
345 	}
346 #endif
347 }
348 
349 /*
350  * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
351  * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
352  * useful to inspect ZFS metadata, but if possible, we should avoid keeping
353  * excess / transient data in-core during a crashdump.
354  */
355 void *
356 zio_buf_alloc(size_t size)
357 {
358 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
359 
360 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
361 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
362 	atomic_add_64(&zio_buf_cache_allocs[c], 1);
363 #endif
364 
365 	void *p = kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE);
366 	zio_buf_put_canary(p, size, zio_buf_cache, c);
367 	return (p);
368 }
369 
370 /*
371  * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
372  * crashdump if the kernel panics.  This exists so that we will limit the amount
373  * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
374  * of kernel heap dumped to disk when the kernel panics)
375  */
376 void *
377 zio_data_buf_alloc(size_t size)
378 {
379 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
380 
381 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
382 
383 	void *p = kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE);
384 	zio_buf_put_canary(p, size, zio_data_buf_cache, c);
385 	return (p);
386 }
387 
388 void
389 zio_buf_free(void *buf, size_t size)
390 {
391 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
392 
393 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
394 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
395 	atomic_add_64(&zio_buf_cache_frees[c], 1);
396 #endif
397 
398 	zio_buf_check_canary(buf, size, zio_buf_cache, c);
399 	kmem_cache_free(zio_buf_cache[c], buf);
400 }
401 
402 void
403 zio_data_buf_free(void *buf, size_t size)
404 {
405 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
406 
407 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
408 
409 	zio_buf_check_canary(buf, size, zio_data_buf_cache, c);
410 	kmem_cache_free(zio_data_buf_cache[c], buf);
411 }
412 
413 static void
414 zio_abd_free(void *abd, size_t size)
415 {
416 	(void) size;
417 	abd_free((abd_t *)abd);
418 }
419 
420 /*
421  * ==========================================================================
422  * Push and pop I/O transform buffers
423  * ==========================================================================
424  */
425 void
426 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize,
427     zio_transform_func_t *transform)
428 {
429 	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
430 
431 	zt->zt_orig_abd = zio->io_abd;
432 	zt->zt_orig_size = zio->io_size;
433 	zt->zt_bufsize = bufsize;
434 	zt->zt_transform = transform;
435 
436 	zt->zt_next = zio->io_transform_stack;
437 	zio->io_transform_stack = zt;
438 
439 	zio->io_abd = data;
440 	zio->io_size = size;
441 }
442 
443 void
444 zio_pop_transforms(zio_t *zio)
445 {
446 	zio_transform_t *zt;
447 
448 	while ((zt = zio->io_transform_stack) != NULL) {
449 		if (zt->zt_transform != NULL)
450 			zt->zt_transform(zio,
451 			    zt->zt_orig_abd, zt->zt_orig_size);
452 
453 		if (zt->zt_bufsize != 0)
454 			abd_free(zio->io_abd);
455 
456 		zio->io_abd = zt->zt_orig_abd;
457 		zio->io_size = zt->zt_orig_size;
458 		zio->io_transform_stack = zt->zt_next;
459 
460 		kmem_free(zt, sizeof (zio_transform_t));
461 	}
462 }
463 
464 /*
465  * ==========================================================================
466  * I/O transform callbacks for subblocks, decompression, and decryption
467  * ==========================================================================
468  */
469 static void
470 zio_subblock(zio_t *zio, abd_t *data, uint64_t size)
471 {
472 	ASSERT(zio->io_size > size);
473 
474 	if (zio->io_type == ZIO_TYPE_READ)
475 		abd_copy(data, zio->io_abd, size);
476 }
477 
478 static void
479 zio_decompress(zio_t *zio, abd_t *data, uint64_t size)
480 {
481 	if (zio->io_error == 0) {
482 		void *tmp = abd_borrow_buf(data, size);
483 		int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
484 		    zio->io_abd, tmp, zio->io_size, size,
485 		    &zio->io_prop.zp_complevel);
486 		abd_return_buf_copy(data, tmp, size);
487 
488 		if (zio_injection_enabled && ret == 0)
489 			ret = zio_handle_fault_injection(zio, EINVAL);
490 
491 		if (ret != 0)
492 			zio->io_error = SET_ERROR(EIO);
493 	}
494 }
495 
496 static void
497 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size)
498 {
499 	int ret;
500 	void *tmp;
501 	blkptr_t *bp = zio->io_bp;
502 	spa_t *spa = zio->io_spa;
503 	uint64_t dsobj = zio->io_bookmark.zb_objset;
504 	uint64_t lsize = BP_GET_LSIZE(bp);
505 	dmu_object_type_t ot = BP_GET_TYPE(bp);
506 	uint8_t salt[ZIO_DATA_SALT_LEN];
507 	uint8_t iv[ZIO_DATA_IV_LEN];
508 	uint8_t mac[ZIO_DATA_MAC_LEN];
509 	boolean_t no_crypt = B_FALSE;
510 
511 	ASSERT(BP_USES_CRYPT(bp));
512 	ASSERT3U(size, !=, 0);
513 
514 	if (zio->io_error != 0)
515 		return;
516 
517 	/*
518 	 * Verify the cksum of MACs stored in an indirect bp. It will always
519 	 * be possible to verify this since it does not require an encryption
520 	 * key.
521 	 */
522 	if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) {
523 		zio_crypt_decode_mac_bp(bp, mac);
524 
525 		if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) {
526 			/*
527 			 * We haven't decompressed the data yet, but
528 			 * zio_crypt_do_indirect_mac_checksum() requires
529 			 * decompressed data to be able to parse out the MACs
530 			 * from the indirect block. We decompress it now and
531 			 * throw away the result after we are finished.
532 			 */
533 			tmp = zio_buf_alloc(lsize);
534 			ret = zio_decompress_data(BP_GET_COMPRESS(bp),
535 			    zio->io_abd, tmp, zio->io_size, lsize,
536 			    &zio->io_prop.zp_complevel);
537 			if (ret != 0) {
538 				ret = SET_ERROR(EIO);
539 				goto error;
540 			}
541 			ret = zio_crypt_do_indirect_mac_checksum(B_FALSE,
542 			    tmp, lsize, BP_SHOULD_BYTESWAP(bp), mac);
543 			zio_buf_free(tmp, lsize);
544 		} else {
545 			ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE,
546 			    zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac);
547 		}
548 		abd_copy(data, zio->io_abd, size);
549 
550 		if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) {
551 			ret = zio_handle_decrypt_injection(spa,
552 			    &zio->io_bookmark, ot, ECKSUM);
553 		}
554 		if (ret != 0)
555 			goto error;
556 
557 		return;
558 	}
559 
560 	/*
561 	 * If this is an authenticated block, just check the MAC. It would be
562 	 * nice to separate this out into its own flag, but when this was done,
563 	 * we had run out of bits in what is now zio_flag_t. Future cleanup
564 	 * could make this a flag bit.
565 	 */
566 	if (BP_IS_AUTHENTICATED(bp)) {
567 		if (ot == DMU_OT_OBJSET) {
568 			ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa,
569 			    dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp));
570 		} else {
571 			zio_crypt_decode_mac_bp(bp, mac);
572 			ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj,
573 			    zio->io_abd, size, mac);
574 			if (zio_injection_enabled && ret == 0) {
575 				ret = zio_handle_decrypt_injection(spa,
576 				    &zio->io_bookmark, ot, ECKSUM);
577 			}
578 		}
579 		abd_copy(data, zio->io_abd, size);
580 
581 		if (ret != 0)
582 			goto error;
583 
584 		return;
585 	}
586 
587 	zio_crypt_decode_params_bp(bp, salt, iv);
588 
589 	if (ot == DMU_OT_INTENT_LOG) {
590 		tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t));
591 		zio_crypt_decode_mac_zil(tmp, mac);
592 		abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t));
593 	} else {
594 		zio_crypt_decode_mac_bp(bp, mac);
595 	}
596 
597 	ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp),
598 	    BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data,
599 	    zio->io_abd, &no_crypt);
600 	if (no_crypt)
601 		abd_copy(data, zio->io_abd, size);
602 
603 	if (ret != 0)
604 		goto error;
605 
606 	return;
607 
608 error:
609 	/* assert that the key was found unless this was speculative */
610 	ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE));
611 
612 	/*
613 	 * If there was a decryption / authentication error return EIO as
614 	 * the io_error. If this was not a speculative zio, create an ereport.
615 	 */
616 	if (ret == ECKSUM) {
617 		zio->io_error = SET_ERROR(EIO);
618 		if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
619 			spa_log_error(spa, &zio->io_bookmark,
620 			    BP_GET_LOGICAL_BIRTH(zio->io_bp));
621 			(void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
622 			    spa, NULL, &zio->io_bookmark, zio, 0);
623 		}
624 	} else {
625 		zio->io_error = ret;
626 	}
627 }
628 
629 /*
630  * ==========================================================================
631  * I/O parent/child relationships and pipeline interlocks
632  * ==========================================================================
633  */
634 zio_t *
635 zio_walk_parents(zio_t *cio, zio_link_t **zl)
636 {
637 	list_t *pl = &cio->io_parent_list;
638 
639 	*zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl);
640 	if (*zl == NULL)
641 		return (NULL);
642 
643 	ASSERT((*zl)->zl_child == cio);
644 	return ((*zl)->zl_parent);
645 }
646 
647 zio_t *
648 zio_walk_children(zio_t *pio, zio_link_t **zl)
649 {
650 	list_t *cl = &pio->io_child_list;
651 
652 	ASSERT(MUTEX_HELD(&pio->io_lock));
653 
654 	*zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl);
655 	if (*zl == NULL)
656 		return (NULL);
657 
658 	ASSERT((*zl)->zl_parent == pio);
659 	return ((*zl)->zl_child);
660 }
661 
662 zio_t *
663 zio_unique_parent(zio_t *cio)
664 {
665 	zio_link_t *zl = NULL;
666 	zio_t *pio = zio_walk_parents(cio, &zl);
667 
668 	VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL);
669 	return (pio);
670 }
671 
672 void
673 zio_add_child(zio_t *pio, zio_t *cio)
674 {
675 	/*
676 	 * Logical I/Os can have logical, gang, or vdev children.
677 	 * Gang I/Os can have gang or vdev children.
678 	 * Vdev I/Os can only have vdev children.
679 	 * The following ASSERT captures all of these constraints.
680 	 */
681 	ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
682 
683 	/* Parent should not have READY stage if child doesn't have it. */
684 	IMPLY((cio->io_pipeline & ZIO_STAGE_READY) == 0 &&
685 	    (cio->io_child_type != ZIO_CHILD_VDEV),
686 	    (pio->io_pipeline & ZIO_STAGE_READY) == 0);
687 
688 	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
689 	zl->zl_parent = pio;
690 	zl->zl_child = cio;
691 
692 	mutex_enter(&pio->io_lock);
693 	mutex_enter(&cio->io_lock);
694 
695 	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
696 
697 	uint64_t *countp = pio->io_children[cio->io_child_type];
698 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
699 		countp[w] += !cio->io_state[w];
700 
701 	list_insert_head(&pio->io_child_list, zl);
702 	list_insert_head(&cio->io_parent_list, zl);
703 
704 	mutex_exit(&cio->io_lock);
705 	mutex_exit(&pio->io_lock);
706 }
707 
708 void
709 zio_add_child_first(zio_t *pio, zio_t *cio)
710 {
711 	/*
712 	 * Logical I/Os can have logical, gang, or vdev children.
713 	 * Gang I/Os can have gang or vdev children.
714 	 * Vdev I/Os can only have vdev children.
715 	 * The following ASSERT captures all of these constraints.
716 	 */
717 	ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
718 
719 	/* Parent should not have READY stage if child doesn't have it. */
720 	IMPLY((cio->io_pipeline & ZIO_STAGE_READY) == 0 &&
721 	    (cio->io_child_type != ZIO_CHILD_VDEV),
722 	    (pio->io_pipeline & ZIO_STAGE_READY) == 0);
723 
724 	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
725 	zl->zl_parent = pio;
726 	zl->zl_child = cio;
727 
728 	ASSERT(list_is_empty(&cio->io_parent_list));
729 	list_insert_head(&cio->io_parent_list, zl);
730 
731 	mutex_enter(&pio->io_lock);
732 
733 	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
734 
735 	uint64_t *countp = pio->io_children[cio->io_child_type];
736 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
737 		countp[w] += !cio->io_state[w];
738 
739 	list_insert_head(&pio->io_child_list, zl);
740 
741 	mutex_exit(&pio->io_lock);
742 }
743 
744 static void
745 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
746 {
747 	ASSERT(zl->zl_parent == pio);
748 	ASSERT(zl->zl_child == cio);
749 
750 	mutex_enter(&pio->io_lock);
751 	mutex_enter(&cio->io_lock);
752 
753 	list_remove(&pio->io_child_list, zl);
754 	list_remove(&cio->io_parent_list, zl);
755 
756 	mutex_exit(&cio->io_lock);
757 	mutex_exit(&pio->io_lock);
758 	kmem_cache_free(zio_link_cache, zl);
759 }
760 
761 static boolean_t
762 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait)
763 {
764 	boolean_t waiting = B_FALSE;
765 
766 	mutex_enter(&zio->io_lock);
767 	ASSERT(zio->io_stall == NULL);
768 	for (int c = 0; c < ZIO_CHILD_TYPES; c++) {
769 		if (!(ZIO_CHILD_BIT_IS_SET(childbits, c)))
770 			continue;
771 
772 		uint64_t *countp = &zio->io_children[c][wait];
773 		if (*countp != 0) {
774 			zio->io_stage >>= 1;
775 			ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN);
776 			zio->io_stall = countp;
777 			waiting = B_TRUE;
778 			break;
779 		}
780 	}
781 	mutex_exit(&zio->io_lock);
782 	return (waiting);
783 }
784 
785 __attribute__((always_inline))
786 static inline void
787 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait,
788     zio_t **next_to_executep)
789 {
790 	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
791 	int *errorp = &pio->io_child_error[zio->io_child_type];
792 
793 	mutex_enter(&pio->io_lock);
794 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
795 		*errorp = zio_worst_error(*errorp, zio->io_error);
796 	pio->io_reexecute |= zio->io_reexecute;
797 	ASSERT3U(*countp, >, 0);
798 
799 	(*countp)--;
800 
801 	if (*countp == 0 && pio->io_stall == countp) {
802 		zio_taskq_type_t type =
803 		    pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE :
804 		    ZIO_TASKQ_INTERRUPT;
805 		pio->io_stall = NULL;
806 		mutex_exit(&pio->io_lock);
807 
808 		/*
809 		 * If we can tell the caller to execute this parent next, do
810 		 * so. We do this if the parent's zio type matches the child's
811 		 * type, or if it's a zio_null() with no done callback, and so
812 		 * has no actual work to do. Otherwise dispatch the parent zio
813 		 * in its own taskq.
814 		 *
815 		 * Having the caller execute the parent when possible reduces
816 		 * locking on the zio taskq's, reduces context switch
817 		 * overhead, and has no recursion penalty.  Note that one
818 		 * read from disk typically causes at least 3 zio's: a
819 		 * zio_null(), the logical zio_read(), and then a physical
820 		 * zio.  When the physical ZIO completes, we are able to call
821 		 * zio_done() on all 3 of these zio's from one invocation of
822 		 * zio_execute() by returning the parent back to
823 		 * zio_execute().  Since the parent isn't executed until this
824 		 * thread returns back to zio_execute(), the caller should do
825 		 * so promptly.
826 		 *
827 		 * In other cases, dispatching the parent prevents
828 		 * overflowing the stack when we have deeply nested
829 		 * parent-child relationships, as we do with the "mega zio"
830 		 * of writes for spa_sync(), and the chain of ZIL blocks.
831 		 */
832 		if (next_to_executep != NULL && *next_to_executep == NULL &&
833 		    (pio->io_type == zio->io_type ||
834 		    (pio->io_type == ZIO_TYPE_NULL && !pio->io_done))) {
835 			*next_to_executep = pio;
836 		} else {
837 			zio_taskq_dispatch(pio, type, B_FALSE);
838 		}
839 	} else {
840 		mutex_exit(&pio->io_lock);
841 	}
842 }
843 
844 static void
845 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
846 {
847 	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
848 		zio->io_error = zio->io_child_error[c];
849 }
850 
851 int
852 zio_bookmark_compare(const void *x1, const void *x2)
853 {
854 	const zio_t *z1 = x1;
855 	const zio_t *z2 = x2;
856 
857 	if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset)
858 		return (-1);
859 	if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset)
860 		return (1);
861 
862 	if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object)
863 		return (-1);
864 	if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object)
865 		return (1);
866 
867 	if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level)
868 		return (-1);
869 	if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level)
870 		return (1);
871 
872 	if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid)
873 		return (-1);
874 	if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid)
875 		return (1);
876 
877 	if (z1 < z2)
878 		return (-1);
879 	if (z1 > z2)
880 		return (1);
881 
882 	return (0);
883 }
884 
885 /*
886  * ==========================================================================
887  * Create the various types of I/O (read, write, free, etc)
888  * ==========================================================================
889  */
890 static zio_t *
891 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
892     abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done,
893     void *private, zio_type_t type, zio_priority_t priority,
894     zio_flag_t flags, vdev_t *vd, uint64_t offset,
895     const zbookmark_phys_t *zb, enum zio_stage stage,
896     enum zio_stage pipeline)
897 {
898 	zio_t *zio;
899 
900 	IMPLY(type != ZIO_TYPE_TRIM, psize <= SPA_MAXBLOCKSIZE);
901 	ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0);
902 	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
903 
904 	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
905 	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
906 	ASSERT(vd || stage == ZIO_STAGE_OPEN);
907 
908 	IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0);
909 
910 	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
911 	memset(zio, 0, sizeof (zio_t));
912 
913 	mutex_init(&zio->io_lock, NULL, MUTEX_NOLOCKDEP, NULL);
914 	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
915 
916 	list_create(&zio->io_parent_list, sizeof (zio_link_t),
917 	    offsetof(zio_link_t, zl_parent_node));
918 	list_create(&zio->io_child_list, sizeof (zio_link_t),
919 	    offsetof(zio_link_t, zl_child_node));
920 	metaslab_trace_init(&zio->io_alloc_list);
921 
922 	if (vd != NULL)
923 		zio->io_child_type = ZIO_CHILD_VDEV;
924 	else if (flags & ZIO_FLAG_GANG_CHILD)
925 		zio->io_child_type = ZIO_CHILD_GANG;
926 	else if (flags & ZIO_FLAG_DDT_CHILD)
927 		zio->io_child_type = ZIO_CHILD_DDT;
928 	else
929 		zio->io_child_type = ZIO_CHILD_LOGICAL;
930 
931 	if (bp != NULL) {
932 		if (type != ZIO_TYPE_WRITE ||
933 		    zio->io_child_type == ZIO_CHILD_DDT) {
934 			zio->io_bp_copy = *bp;
935 			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
936 		} else {
937 			zio->io_bp = (blkptr_t *)bp;
938 		}
939 		zio->io_bp_orig = *bp;
940 		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
941 			zio->io_logical = zio;
942 		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
943 			pipeline |= ZIO_GANG_STAGES;
944 	}
945 
946 	zio->io_spa = spa;
947 	zio->io_txg = txg;
948 	zio->io_done = done;
949 	zio->io_private = private;
950 	zio->io_type = type;
951 	zio->io_priority = priority;
952 	zio->io_vd = vd;
953 	zio->io_offset = offset;
954 	zio->io_orig_abd = zio->io_abd = data;
955 	zio->io_orig_size = zio->io_size = psize;
956 	zio->io_lsize = lsize;
957 	zio->io_orig_flags = zio->io_flags = flags;
958 	zio->io_orig_stage = zio->io_stage = stage;
959 	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
960 	zio->io_pipeline_trace = ZIO_STAGE_OPEN;
961 	zio->io_allocator = ZIO_ALLOCATOR_NONE;
962 
963 	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY) ||
964 	    (pipeline & ZIO_STAGE_READY) == 0;
965 	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
966 
967 	if (zb != NULL)
968 		zio->io_bookmark = *zb;
969 
970 	if (pio != NULL) {
971 		zio->io_metaslab_class = pio->io_metaslab_class;
972 		if (zio->io_logical == NULL)
973 			zio->io_logical = pio->io_logical;
974 		if (zio->io_child_type == ZIO_CHILD_GANG)
975 			zio->io_gang_leader = pio->io_gang_leader;
976 		zio_add_child_first(pio, zio);
977 	}
978 
979 	taskq_init_ent(&zio->io_tqent);
980 
981 	return (zio);
982 }
983 
984 void
985 zio_destroy(zio_t *zio)
986 {
987 	metaslab_trace_fini(&zio->io_alloc_list);
988 	list_destroy(&zio->io_parent_list);
989 	list_destroy(&zio->io_child_list);
990 	mutex_destroy(&zio->io_lock);
991 	cv_destroy(&zio->io_cv);
992 	kmem_cache_free(zio_cache, zio);
993 }
994 
995 /*
996  * ZIO intended to be between others.  Provides synchronization at READY
997  * and DONE pipeline stages and calls the respective callbacks.
998  */
999 zio_t *
1000 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
1001     void *private, zio_flag_t flags)
1002 {
1003 	zio_t *zio;
1004 
1005 	zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
1006 	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
1007 	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
1008 
1009 	return (zio);
1010 }
1011 
1012 /*
1013  * ZIO intended to be a root of a tree.  Unlike null ZIO does not have a
1014  * READY pipeline stage (is ready on creation), so it should not be used
1015  * as child of any ZIO that may need waiting for grandchildren READY stage
1016  * (any other ZIO type).
1017  */
1018 zio_t *
1019 zio_root(spa_t *spa, zio_done_func_t *done, void *private, zio_flag_t flags)
1020 {
1021 	zio_t *zio;
1022 
1023 	zio = zio_create(NULL, spa, 0, NULL, NULL, 0, 0, done, private,
1024 	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, NULL, 0, NULL,
1025 	    ZIO_STAGE_OPEN, ZIO_ROOT_PIPELINE);
1026 
1027 	return (zio);
1028 }
1029 
1030 static int
1031 zfs_blkptr_verify_log(spa_t *spa, const blkptr_t *bp,
1032     enum blk_verify_flag blk_verify, const char *fmt, ...)
1033 {
1034 	va_list adx;
1035 	char buf[256];
1036 
1037 	va_start(adx, fmt);
1038 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
1039 	va_end(adx);
1040 
1041 	zfs_dbgmsg("bad blkptr at %px: "
1042 	    "DVA[0]=%#llx/%#llx "
1043 	    "DVA[1]=%#llx/%#llx "
1044 	    "DVA[2]=%#llx/%#llx "
1045 	    "prop=%#llx "
1046 	    "pad=%#llx,%#llx "
1047 	    "phys_birth=%#llx "
1048 	    "birth=%#llx "
1049 	    "fill=%#llx "
1050 	    "cksum=%#llx/%#llx/%#llx/%#llx",
1051 	    bp,
1052 	    (long long)bp->blk_dva[0].dva_word[0],
1053 	    (long long)bp->blk_dva[0].dva_word[1],
1054 	    (long long)bp->blk_dva[1].dva_word[0],
1055 	    (long long)bp->blk_dva[1].dva_word[1],
1056 	    (long long)bp->blk_dva[2].dva_word[0],
1057 	    (long long)bp->blk_dva[2].dva_word[1],
1058 	    (long long)bp->blk_prop,
1059 	    (long long)bp->blk_pad[0],
1060 	    (long long)bp->blk_pad[1],
1061 	    (long long)BP_GET_PHYSICAL_BIRTH(bp),
1062 	    (long long)BP_GET_LOGICAL_BIRTH(bp),
1063 	    (long long)bp->blk_fill,
1064 	    (long long)bp->blk_cksum.zc_word[0],
1065 	    (long long)bp->blk_cksum.zc_word[1],
1066 	    (long long)bp->blk_cksum.zc_word[2],
1067 	    (long long)bp->blk_cksum.zc_word[3]);
1068 	switch (blk_verify) {
1069 	case BLK_VERIFY_HALT:
1070 		zfs_panic_recover("%s: %s", spa_name(spa), buf);
1071 		break;
1072 	case BLK_VERIFY_LOG:
1073 		zfs_dbgmsg("%s: %s", spa_name(spa), buf);
1074 		break;
1075 	case BLK_VERIFY_ONLY:
1076 		break;
1077 	}
1078 
1079 	return (1);
1080 }
1081 
1082 /*
1083  * Verify the block pointer fields contain reasonable values.  This means
1084  * it only contains known object types, checksum/compression identifiers,
1085  * block sizes within the maximum allowed limits, valid DVAs, etc.
1086  *
1087  * If everything checks out B_TRUE is returned.  The zfs_blkptr_verify
1088  * argument controls the behavior when an invalid field is detected.
1089  *
1090  * Values for blk_verify_flag:
1091  *   BLK_VERIFY_ONLY: evaluate the block
1092  *   BLK_VERIFY_LOG: evaluate the block and log problems
1093  *   BLK_VERIFY_HALT: call zfs_panic_recover on error
1094  *
1095  * Values for blk_config_flag:
1096  *   BLK_CONFIG_HELD: caller holds SCL_VDEV for writer
1097  *   BLK_CONFIG_NEEDED: caller holds no config lock, SCL_VDEV will be
1098  *   obtained for reader
1099  *   BLK_CONFIG_SKIP: skip checks which require SCL_VDEV, for better
1100  *   performance
1101  */
1102 boolean_t
1103 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp,
1104     enum blk_config_flag blk_config, enum blk_verify_flag blk_verify)
1105 {
1106 	int errors = 0;
1107 
1108 	if (unlikely(!DMU_OT_IS_VALID(BP_GET_TYPE(bp)))) {
1109 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1110 		    "blkptr at %px has invalid TYPE %llu",
1111 		    bp, (longlong_t)BP_GET_TYPE(bp));
1112 	}
1113 	if (unlikely(BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS)) {
1114 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1115 		    "blkptr at %px has invalid COMPRESS %llu",
1116 		    bp, (longlong_t)BP_GET_COMPRESS(bp));
1117 	}
1118 	if (unlikely(BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE)) {
1119 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1120 		    "blkptr at %px has invalid LSIZE %llu",
1121 		    bp, (longlong_t)BP_GET_LSIZE(bp));
1122 	}
1123 	if (BP_IS_EMBEDDED(bp)) {
1124 		if (unlikely(BPE_GET_ETYPE(bp) >= NUM_BP_EMBEDDED_TYPES)) {
1125 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1126 			    "blkptr at %px has invalid ETYPE %llu",
1127 			    bp, (longlong_t)BPE_GET_ETYPE(bp));
1128 		}
1129 		if (unlikely(BPE_GET_PSIZE(bp) > BPE_PAYLOAD_SIZE)) {
1130 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1131 			    "blkptr at %px has invalid PSIZE %llu",
1132 			    bp, (longlong_t)BPE_GET_PSIZE(bp));
1133 		}
1134 		return (errors == 0);
1135 	}
1136 	if (unlikely(BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS)) {
1137 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1138 		    "blkptr at %px has invalid CHECKSUM %llu",
1139 		    bp, (longlong_t)BP_GET_CHECKSUM(bp));
1140 	}
1141 	if (unlikely(BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE)) {
1142 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1143 		    "blkptr at %px has invalid PSIZE %llu",
1144 		    bp, (longlong_t)BP_GET_PSIZE(bp));
1145 	}
1146 
1147 	/*
1148 	 * Do not verify individual DVAs if the config is not trusted. This
1149 	 * will be done once the zio is executed in vdev_mirror_map_alloc.
1150 	 */
1151 	if (unlikely(!spa->spa_trust_config))
1152 		return (errors == 0);
1153 
1154 	switch (blk_config) {
1155 	case BLK_CONFIG_HELD:
1156 		ASSERT(spa_config_held(spa, SCL_VDEV, RW_WRITER));
1157 		break;
1158 	case BLK_CONFIG_NEEDED:
1159 		spa_config_enter(spa, SCL_VDEV, bp, RW_READER);
1160 		break;
1161 	case BLK_CONFIG_SKIP:
1162 		return (errors == 0);
1163 	default:
1164 		panic("invalid blk_config %u", blk_config);
1165 	}
1166 
1167 	/*
1168 	 * Pool-specific checks.
1169 	 *
1170 	 * Note: it would be nice to verify that the logical birth
1171 	 * and physical birth are not too large.  However,
1172 	 * spa_freeze() allows the birth time of log blocks (and
1173 	 * dmu_sync()-ed blocks that are in the log) to be arbitrarily
1174 	 * large.
1175 	 */
1176 	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
1177 		const dva_t *dva = &bp->blk_dva[i];
1178 		uint64_t vdevid = DVA_GET_VDEV(dva);
1179 
1180 		if (unlikely(vdevid >= spa->spa_root_vdev->vdev_children)) {
1181 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1182 			    "blkptr at %px DVA %u has invalid VDEV %llu",
1183 			    bp, i, (longlong_t)vdevid);
1184 			continue;
1185 		}
1186 		vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1187 		if (unlikely(vd == NULL)) {
1188 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1189 			    "blkptr at %px DVA %u has invalid VDEV %llu",
1190 			    bp, i, (longlong_t)vdevid);
1191 			continue;
1192 		}
1193 		if (unlikely(vd->vdev_ops == &vdev_hole_ops)) {
1194 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1195 			    "blkptr at %px DVA %u has hole VDEV %llu",
1196 			    bp, i, (longlong_t)vdevid);
1197 			continue;
1198 		}
1199 		if (vd->vdev_ops == &vdev_missing_ops) {
1200 			/*
1201 			 * "missing" vdevs are valid during import, but we
1202 			 * don't have their detailed info (e.g. asize), so
1203 			 * we can't perform any more checks on them.
1204 			 */
1205 			continue;
1206 		}
1207 		uint64_t offset = DVA_GET_OFFSET(dva);
1208 		uint64_t asize = DVA_GET_ASIZE(dva);
1209 		if (DVA_GET_GANG(dva))
1210 			asize = vdev_gang_header_asize(vd);
1211 		if (unlikely(offset + asize > vd->vdev_asize)) {
1212 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1213 			    "blkptr at %px DVA %u has invalid OFFSET %llu",
1214 			    bp, i, (longlong_t)offset);
1215 		}
1216 	}
1217 	if (blk_config == BLK_CONFIG_NEEDED)
1218 		spa_config_exit(spa, SCL_VDEV, bp);
1219 
1220 	return (errors == 0);
1221 }
1222 
1223 boolean_t
1224 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp)
1225 {
1226 	(void) bp;
1227 	uint64_t vdevid = DVA_GET_VDEV(dva);
1228 
1229 	if (vdevid >= spa->spa_root_vdev->vdev_children)
1230 		return (B_FALSE);
1231 
1232 	vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1233 	if (vd == NULL)
1234 		return (B_FALSE);
1235 
1236 	if (vd->vdev_ops == &vdev_hole_ops)
1237 		return (B_FALSE);
1238 
1239 	if (vd->vdev_ops == &vdev_missing_ops) {
1240 		return (B_FALSE);
1241 	}
1242 
1243 	uint64_t offset = DVA_GET_OFFSET(dva);
1244 	uint64_t asize = DVA_GET_ASIZE(dva);
1245 
1246 	if (DVA_GET_GANG(dva))
1247 		asize = vdev_gang_header_asize(vd);
1248 	if (offset + asize > vd->vdev_asize)
1249 		return (B_FALSE);
1250 
1251 	return (B_TRUE);
1252 }
1253 
1254 zio_t *
1255 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
1256     abd_t *data, uint64_t size, zio_done_func_t *done, void *private,
1257     zio_priority_t priority, zio_flag_t flags, const zbookmark_phys_t *zb)
1258 {
1259 	zio_t *zio;
1260 
1261 	zio = zio_create(pio, spa, BP_GET_BIRTH(bp), bp,
1262 	    data, size, size, done, private,
1263 	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
1264 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1265 	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
1266 
1267 	return (zio);
1268 }
1269 
1270 zio_t *
1271 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
1272     abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp,
1273     zio_done_func_t *ready, zio_done_func_t *children_ready,
1274     zio_done_func_t *done, void *private, zio_priority_t priority,
1275     zio_flag_t flags, const zbookmark_phys_t *zb)
1276 {
1277 	zio_t *zio;
1278 
1279 	ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
1280 	    zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
1281 	    zp->zp_compress >= ZIO_COMPRESS_OFF &&
1282 	    zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
1283 	    DMU_OT_IS_VALID(zp->zp_type) &&
1284 	    zp->zp_level < 32 &&
1285 	    zp->zp_copies > 0 &&
1286 	    zp->zp_copies <= spa_max_replication(spa));
1287 
1288 	zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private,
1289 	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
1290 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1291 	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
1292 
1293 	zio->io_ready = ready;
1294 	zio->io_children_ready = children_ready;
1295 	zio->io_prop = *zp;
1296 
1297 	/*
1298 	 * Data can be NULL if we are going to call zio_write_override() to
1299 	 * provide the already-allocated BP.  But we may need the data to
1300 	 * verify a dedup hit (if requested).  In this case, don't try to
1301 	 * dedup (just take the already-allocated BP verbatim). Encrypted
1302 	 * dedup blocks need data as well so we also disable dedup in this
1303 	 * case.
1304 	 */
1305 	if (data == NULL &&
1306 	    (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) {
1307 		zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
1308 	}
1309 
1310 	return (zio);
1311 }
1312 
1313 zio_t *
1314 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data,
1315     uint64_t size, zio_done_func_t *done, void *private,
1316     zio_priority_t priority, zio_flag_t flags, zbookmark_phys_t *zb)
1317 {
1318 	zio_t *zio;
1319 
1320 	zio = zio_create(pio, spa, txg, bp, data, size, size, done, private,
1321 	    ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb,
1322 	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
1323 
1324 	return (zio);
1325 }
1326 
1327 void
1328 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite,
1329     boolean_t brtwrite)
1330 {
1331 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
1332 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1333 	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1334 	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
1335 	ASSERT(!brtwrite || !nopwrite);
1336 
1337 	/*
1338 	 * We must reset the io_prop to match the values that existed
1339 	 * when the bp was first written by dmu_sync() keeping in mind
1340 	 * that nopwrite and dedup are mutually exclusive.
1341 	 */
1342 	zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
1343 	zio->io_prop.zp_nopwrite = nopwrite;
1344 	zio->io_prop.zp_brtwrite = brtwrite;
1345 	zio->io_prop.zp_copies = copies;
1346 	zio->io_bp_override = bp;
1347 }
1348 
1349 void
1350 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
1351 {
1352 
1353 	(void) zfs_blkptr_verify(spa, bp, BLK_CONFIG_NEEDED, BLK_VERIFY_HALT);
1354 
1355 	/*
1356 	 * The check for EMBEDDED is a performance optimization.  We
1357 	 * process the free here (by ignoring it) rather than
1358 	 * putting it on the list and then processing it in zio_free_sync().
1359 	 */
1360 	if (BP_IS_EMBEDDED(bp))
1361 		return;
1362 
1363 	/*
1364 	 * Frees that are for the currently-syncing txg, are not going to be
1365 	 * deferred, and which will not need to do a read (i.e. not GANG or
1366 	 * DEDUP), can be processed immediately.  Otherwise, put them on the
1367 	 * in-memory list for later processing.
1368 	 *
1369 	 * Note that we only defer frees after zfs_sync_pass_deferred_free
1370 	 * when the log space map feature is disabled. [see relevant comment
1371 	 * in spa_sync_iterate_to_convergence()]
1372 	 */
1373 	if (BP_IS_GANG(bp) ||
1374 	    BP_GET_DEDUP(bp) ||
1375 	    txg != spa->spa_syncing_txg ||
1376 	    (spa_sync_pass(spa) >= zfs_sync_pass_deferred_free &&
1377 	    !spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) ||
1378 	    brt_maybe_exists(spa, bp)) {
1379 		metaslab_check_free(spa, bp);
1380 		bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
1381 	} else {
1382 		VERIFY3P(zio_free_sync(NULL, spa, txg, bp, 0), ==, NULL);
1383 	}
1384 }
1385 
1386 /*
1387  * To improve performance, this function may return NULL if we were able
1388  * to do the free immediately.  This avoids the cost of creating a zio
1389  * (and linking it to the parent, etc).
1390  */
1391 zio_t *
1392 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1393     zio_flag_t flags)
1394 {
1395 	ASSERT(!BP_IS_HOLE(bp));
1396 	ASSERT(spa_syncing_txg(spa) == txg);
1397 
1398 	if (BP_IS_EMBEDDED(bp))
1399 		return (NULL);
1400 
1401 	metaslab_check_free(spa, bp);
1402 	arc_freed(spa, bp);
1403 	dsl_scan_freed(spa, bp);
1404 
1405 	if (BP_IS_GANG(bp) ||
1406 	    BP_GET_DEDUP(bp) ||
1407 	    brt_maybe_exists(spa, bp)) {
1408 		/*
1409 		 * GANG, DEDUP and BRT blocks can induce a read (for the gang
1410 		 * block header, the DDT or the BRT), so issue them
1411 		 * asynchronously so that this thread is not tied up.
1412 		 */
1413 		enum zio_stage stage =
1414 		    ZIO_FREE_PIPELINE | ZIO_STAGE_ISSUE_ASYNC;
1415 
1416 		return (zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1417 		    BP_GET_PSIZE(bp), NULL, NULL,
1418 		    ZIO_TYPE_FREE, ZIO_PRIORITY_NOW,
1419 		    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage));
1420 	} else {
1421 		metaslab_free(spa, bp, txg, B_FALSE);
1422 		return (NULL);
1423 	}
1424 }
1425 
1426 zio_t *
1427 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1428     zio_done_func_t *done, void *private, zio_flag_t flags)
1429 {
1430 	zio_t *zio;
1431 
1432 	(void) zfs_blkptr_verify(spa, bp, (flags & ZIO_FLAG_CONFIG_WRITER) ?
1433 	    BLK_CONFIG_HELD : BLK_CONFIG_NEEDED, BLK_VERIFY_HALT);
1434 
1435 	if (BP_IS_EMBEDDED(bp))
1436 		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
1437 
1438 	/*
1439 	 * A claim is an allocation of a specific block.  Claims are needed
1440 	 * to support immediate writes in the intent log.  The issue is that
1441 	 * immediate writes contain committed data, but in a txg that was
1442 	 * *not* committed.  Upon opening the pool after an unclean shutdown,
1443 	 * the intent log claims all blocks that contain immediate write data
1444 	 * so that the SPA knows they're in use.
1445 	 *
1446 	 * All claims *must* be resolved in the first txg -- before the SPA
1447 	 * starts allocating blocks -- so that nothing is allocated twice.
1448 	 * If txg == 0 we just verify that the block is claimable.
1449 	 */
1450 	ASSERT3U(BP_GET_LOGICAL_BIRTH(&spa->spa_uberblock.ub_rootbp), <,
1451 	    spa_min_claim_txg(spa));
1452 	ASSERT(txg == spa_min_claim_txg(spa) || txg == 0);
1453 	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(8) */
1454 
1455 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1456 	    BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW,
1457 	    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
1458 	ASSERT0(zio->io_queued_timestamp);
1459 
1460 	return (zio);
1461 }
1462 
1463 zio_t *
1464 zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1465     zio_done_func_t *done, void *private, zio_priority_t priority,
1466     zio_flag_t flags, enum trim_flag trim_flags)
1467 {
1468 	zio_t *zio;
1469 
1470 	ASSERT0(vd->vdev_children);
1471 	ASSERT0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
1472 	ASSERT0(P2PHASE(size, 1ULL << vd->vdev_ashift));
1473 	ASSERT3U(size, !=, 0);
1474 
1475 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, NULL, size, size, done,
1476 	    private, ZIO_TYPE_TRIM, priority, flags | ZIO_FLAG_PHYSICAL,
1477 	    vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_TRIM_PIPELINE);
1478 	zio->io_trim_flags = trim_flags;
1479 
1480 	return (zio);
1481 }
1482 
1483 zio_t *
1484 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1485     abd_t *data, int checksum, zio_done_func_t *done, void *private,
1486     zio_priority_t priority, zio_flag_t flags, boolean_t labels)
1487 {
1488 	zio_t *zio;
1489 
1490 	ASSERT(vd->vdev_children == 0);
1491 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1492 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1493 	ASSERT3U(offset + size, <=, vd->vdev_psize);
1494 
1495 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1496 	    private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1497 	    offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
1498 
1499 	zio->io_prop.zp_checksum = checksum;
1500 
1501 	return (zio);
1502 }
1503 
1504 zio_t *
1505 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1506     abd_t *data, int checksum, zio_done_func_t *done, void *private,
1507     zio_priority_t priority, zio_flag_t flags, boolean_t labels)
1508 {
1509 	zio_t *zio;
1510 
1511 	ASSERT(vd->vdev_children == 0);
1512 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1513 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1514 	ASSERT3U(offset + size, <=, vd->vdev_psize);
1515 
1516 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1517 	    private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1518 	    offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
1519 
1520 	zio->io_prop.zp_checksum = checksum;
1521 
1522 	if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
1523 		/*
1524 		 * zec checksums are necessarily destructive -- they modify
1525 		 * the end of the write buffer to hold the verifier/checksum.
1526 		 * Therefore, we must make a local copy in case the data is
1527 		 * being written to multiple places in parallel.
1528 		 */
1529 		abd_t *wbuf = abd_alloc_sametype(data, size);
1530 		abd_copy(wbuf, data, size);
1531 
1532 		zio_push_transform(zio, wbuf, size, size, NULL);
1533 	}
1534 
1535 	return (zio);
1536 }
1537 
1538 /*
1539  * Create a child I/O to do some work for us.
1540  */
1541 zio_t *
1542 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1543     abd_t *data, uint64_t size, int type, zio_priority_t priority,
1544     zio_flag_t flags, zio_done_func_t *done, void *private)
1545 {
1546 	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1547 	zio_t *zio;
1548 
1549 	/*
1550 	 * vdev child I/Os do not propagate their error to the parent.
1551 	 * Therefore, for correct operation the caller *must* check for
1552 	 * and handle the error in the child i/o's done callback.
1553 	 * The only exceptions are i/os that we don't care about
1554 	 * (OPTIONAL or REPAIR).
1555 	 */
1556 	ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) ||
1557 	    done != NULL);
1558 
1559 	if (type == ZIO_TYPE_READ && bp != NULL) {
1560 		/*
1561 		 * If we have the bp, then the child should perform the
1562 		 * checksum and the parent need not.  This pushes error
1563 		 * detection as close to the leaves as possible and
1564 		 * eliminates redundant checksums in the interior nodes.
1565 		 */
1566 		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1567 		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1568 	}
1569 
1570 	if (vd->vdev_ops->vdev_op_leaf) {
1571 		ASSERT0(vd->vdev_children);
1572 		offset += VDEV_LABEL_START_SIZE;
1573 	}
1574 
1575 	flags |= ZIO_VDEV_CHILD_FLAGS(pio);
1576 
1577 	/*
1578 	 * If we've decided to do a repair, the write is not speculative --
1579 	 * even if the original read was.
1580 	 */
1581 	if (flags & ZIO_FLAG_IO_REPAIR)
1582 		flags &= ~ZIO_FLAG_SPECULATIVE;
1583 
1584 	/*
1585 	 * If we're creating a child I/O that is not associated with a
1586 	 * top-level vdev, then the child zio is not an allocating I/O.
1587 	 * If this is a retried I/O then we ignore it since we will
1588 	 * have already processed the original allocating I/O.
1589 	 */
1590 	if (flags & ZIO_FLAG_IO_ALLOCATING &&
1591 	    (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) {
1592 		ASSERT(pio->io_metaslab_class != NULL);
1593 		ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled);
1594 		ASSERT(type == ZIO_TYPE_WRITE);
1595 		ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE);
1596 		ASSERT(!(flags & ZIO_FLAG_IO_REPAIR));
1597 		ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) ||
1598 		    pio->io_child_type == ZIO_CHILD_GANG);
1599 
1600 		flags &= ~ZIO_FLAG_IO_ALLOCATING;
1601 	}
1602 
1603 	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size,
1604 	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1605 	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1606 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
1607 
1608 	return (zio);
1609 }
1610 
1611 zio_t *
1612 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size,
1613     zio_type_t type, zio_priority_t priority, zio_flag_t flags,
1614     zio_done_func_t *done, void *private)
1615 {
1616 	zio_t *zio;
1617 
1618 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1619 
1620 	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1621 	    data, size, size, done, private, type, priority,
1622 	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1623 	    vd, offset, NULL,
1624 	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1625 
1626 	return (zio);
1627 }
1628 
1629 
1630 /*
1631  * Send a flush command to the given vdev. Unlike most zio creation functions,
1632  * the flush zios are issued immediately. You can wait on pio to pause until
1633  * the flushes complete.
1634  */
1635 void
1636 zio_flush(zio_t *pio, vdev_t *vd)
1637 {
1638 	const zio_flag_t flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE |
1639 	    ZIO_FLAG_DONT_RETRY;
1640 
1641 	if (vd->vdev_nowritecache)
1642 		return;
1643 
1644 	if (vd->vdev_children == 0) {
1645 		zio_nowait(zio_create(pio, vd->vdev_spa, 0, NULL, NULL, 0, 0,
1646 		    NULL, NULL, ZIO_TYPE_FLUSH, ZIO_PRIORITY_NOW, flags, vd, 0,
1647 		    NULL, ZIO_STAGE_OPEN, ZIO_FLUSH_PIPELINE));
1648 	} else {
1649 		for (uint64_t c = 0; c < vd->vdev_children; c++)
1650 			zio_flush(pio, vd->vdev_child[c]);
1651 	}
1652 }
1653 
1654 void
1655 zio_shrink(zio_t *zio, uint64_t size)
1656 {
1657 	ASSERT3P(zio->io_executor, ==, NULL);
1658 	ASSERT3U(zio->io_orig_size, ==, zio->io_size);
1659 	ASSERT3U(size, <=, zio->io_size);
1660 
1661 	/*
1662 	 * We don't shrink for raidz because of problems with the
1663 	 * reconstruction when reading back less than the block size.
1664 	 * Note, BP_IS_RAIDZ() assumes no compression.
1665 	 */
1666 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1667 	if (!BP_IS_RAIDZ(zio->io_bp)) {
1668 		/* we are not doing a raw write */
1669 		ASSERT3U(zio->io_size, ==, zio->io_lsize);
1670 		zio->io_orig_size = zio->io_size = zio->io_lsize = size;
1671 	}
1672 }
1673 
1674 /*
1675  * Round provided allocation size up to a value that can be allocated
1676  * by at least some vdev(s) in the pool with minimum or no additional
1677  * padding and without extra space usage on others
1678  */
1679 static uint64_t
1680 zio_roundup_alloc_size(spa_t *spa, uint64_t size)
1681 {
1682 	if (size > spa->spa_min_alloc)
1683 		return (roundup(size, spa->spa_gcd_alloc));
1684 	return (spa->spa_min_alloc);
1685 }
1686 
1687 /*
1688  * ==========================================================================
1689  * Prepare to read and write logical blocks
1690  * ==========================================================================
1691  */
1692 
1693 static zio_t *
1694 zio_read_bp_init(zio_t *zio)
1695 {
1696 	blkptr_t *bp = zio->io_bp;
1697 	uint64_t psize =
1698 	    BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1699 
1700 	ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1701 
1702 	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1703 	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
1704 	    !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1705 		zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1706 		    psize, psize, zio_decompress);
1707 	}
1708 
1709 	if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) ||
1710 	    BP_HAS_INDIRECT_MAC_CKSUM(bp)) &&
1711 	    zio->io_child_type == ZIO_CHILD_LOGICAL) {
1712 		zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1713 		    psize, psize, zio_decrypt);
1714 	}
1715 
1716 	if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1717 		int psize = BPE_GET_PSIZE(bp);
1718 		void *data = abd_borrow_buf(zio->io_abd, psize);
1719 
1720 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1721 		decode_embedded_bp_compressed(bp, data);
1722 		abd_return_buf_copy(zio->io_abd, data, psize);
1723 	} else {
1724 		ASSERT(!BP_IS_EMBEDDED(bp));
1725 	}
1726 
1727 	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1728 		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1729 
1730 	return (zio);
1731 }
1732 
1733 static zio_t *
1734 zio_write_bp_init(zio_t *zio)
1735 {
1736 	if (!IO_IS_ALLOCATING(zio))
1737 		return (zio);
1738 
1739 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1740 
1741 	if (zio->io_bp_override) {
1742 		blkptr_t *bp = zio->io_bp;
1743 		zio_prop_t *zp = &zio->io_prop;
1744 
1745 		ASSERT(BP_GET_LOGICAL_BIRTH(bp) != zio->io_txg);
1746 
1747 		*bp = *zio->io_bp_override;
1748 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1749 
1750 		if (zp->zp_brtwrite)
1751 			return (zio);
1752 
1753 		ASSERT(!BP_GET_DEDUP(zio->io_bp_override));
1754 
1755 		if (BP_IS_EMBEDDED(bp))
1756 			return (zio);
1757 
1758 		/*
1759 		 * If we've been overridden and nopwrite is set then
1760 		 * set the flag accordingly to indicate that a nopwrite
1761 		 * has already occurred.
1762 		 */
1763 		if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1764 			ASSERT(!zp->zp_dedup);
1765 			ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum);
1766 			zio->io_flags |= ZIO_FLAG_NOPWRITE;
1767 			return (zio);
1768 		}
1769 
1770 		ASSERT(!zp->zp_nopwrite);
1771 
1772 		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1773 			return (zio);
1774 
1775 		ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1776 		    ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1777 
1778 		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum &&
1779 		    !zp->zp_encrypt) {
1780 			BP_SET_DEDUP(bp, 1);
1781 			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1782 			return (zio);
1783 		}
1784 
1785 		/*
1786 		 * We were unable to handle this as an override bp, treat
1787 		 * it as a regular write I/O.
1788 		 */
1789 		zio->io_bp_override = NULL;
1790 		*bp = zio->io_bp_orig;
1791 		zio->io_pipeline = zio->io_orig_pipeline;
1792 	}
1793 
1794 	return (zio);
1795 }
1796 
1797 static zio_t *
1798 zio_write_compress(zio_t *zio)
1799 {
1800 	spa_t *spa = zio->io_spa;
1801 	zio_prop_t *zp = &zio->io_prop;
1802 	enum zio_compress compress = zp->zp_compress;
1803 	blkptr_t *bp = zio->io_bp;
1804 	uint64_t lsize = zio->io_lsize;
1805 	uint64_t psize = zio->io_size;
1806 	uint32_t pass = 1;
1807 
1808 	/*
1809 	 * If our children haven't all reached the ready stage,
1810 	 * wait for them and then repeat this pipeline stage.
1811 	 */
1812 	if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
1813 	    ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) {
1814 		return (NULL);
1815 	}
1816 
1817 	if (!IO_IS_ALLOCATING(zio))
1818 		return (zio);
1819 
1820 	if (zio->io_children_ready != NULL) {
1821 		/*
1822 		 * Now that all our children are ready, run the callback
1823 		 * associated with this zio in case it wants to modify the
1824 		 * data to be written.
1825 		 */
1826 		ASSERT3U(zp->zp_level, >, 0);
1827 		zio->io_children_ready(zio);
1828 	}
1829 
1830 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1831 	ASSERT(zio->io_bp_override == NULL);
1832 
1833 	if (!BP_IS_HOLE(bp) && BP_GET_LOGICAL_BIRTH(bp) == zio->io_txg) {
1834 		/*
1835 		 * We're rewriting an existing block, which means we're
1836 		 * working on behalf of spa_sync().  For spa_sync() to
1837 		 * converge, it must eventually be the case that we don't
1838 		 * have to allocate new blocks.  But compression changes
1839 		 * the blocksize, which forces a reallocate, and makes
1840 		 * convergence take longer.  Therefore, after the first
1841 		 * few passes, stop compressing to ensure convergence.
1842 		 */
1843 		pass = spa_sync_pass(spa);
1844 
1845 		ASSERT(zio->io_txg == spa_syncing_txg(spa));
1846 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1847 		ASSERT(!BP_GET_DEDUP(bp));
1848 
1849 		if (pass >= zfs_sync_pass_dont_compress)
1850 			compress = ZIO_COMPRESS_OFF;
1851 
1852 		/* Make sure someone doesn't change their mind on overwrites */
1853 		ASSERT(BP_IS_EMBEDDED(bp) || BP_IS_GANG(bp) ||
1854 		    MIN(zp->zp_copies, spa_max_replication(spa))
1855 		    == BP_GET_NDVAS(bp));
1856 	}
1857 
1858 	/* If it's a compressed write that is not raw, compress the buffer. */
1859 	if (compress != ZIO_COMPRESS_OFF &&
1860 	    !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1861 		void *cbuf = NULL;
1862 		if (abd_cmp_zero(zio->io_abd, lsize) == 0)
1863 			psize = 0;
1864 		else if (compress == ZIO_COMPRESS_EMPTY)
1865 			psize = lsize;
1866 		else
1867 			psize = zio_compress_data(compress, zio->io_abd, &cbuf,
1868 			    lsize, zp->zp_complevel);
1869 		if (psize == 0) {
1870 			compress = ZIO_COMPRESS_OFF;
1871 		} else if (psize >= lsize) {
1872 			compress = ZIO_COMPRESS_OFF;
1873 			if (cbuf != NULL)
1874 				zio_buf_free(cbuf, lsize);
1875 		} else if (!zp->zp_dedup && !zp->zp_encrypt &&
1876 		    psize <= BPE_PAYLOAD_SIZE &&
1877 		    zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1878 		    spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1879 			encode_embedded_bp_compressed(bp,
1880 			    cbuf, compress, lsize, psize);
1881 			BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1882 			BP_SET_TYPE(bp, zio->io_prop.zp_type);
1883 			BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1884 			zio_buf_free(cbuf, lsize);
1885 			BP_SET_LOGICAL_BIRTH(bp, zio->io_txg);
1886 			zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1887 			ASSERT(spa_feature_is_active(spa,
1888 			    SPA_FEATURE_EMBEDDED_DATA));
1889 			return (zio);
1890 		} else {
1891 			/*
1892 			 * Round compressed size up to the minimum allocation
1893 			 * size of the smallest-ashift device, and zero the
1894 			 * tail. This ensures that the compressed size of the
1895 			 * BP (and thus compressratio property) are correct,
1896 			 * in that we charge for the padding used to fill out
1897 			 * the last sector.
1898 			 */
1899 			size_t rounded = (size_t)zio_roundup_alloc_size(spa,
1900 			    psize);
1901 			if (rounded >= lsize) {
1902 				compress = ZIO_COMPRESS_OFF;
1903 				zio_buf_free(cbuf, lsize);
1904 				psize = lsize;
1905 			} else {
1906 				abd_t *cdata = abd_get_from_buf(cbuf, lsize);
1907 				abd_take_ownership_of_buf(cdata, B_TRUE);
1908 				abd_zero_off(cdata, psize, rounded - psize);
1909 				psize = rounded;
1910 				zio_push_transform(zio, cdata,
1911 				    psize, lsize, NULL);
1912 			}
1913 		}
1914 
1915 		/*
1916 		 * We were unable to handle this as an override bp, treat
1917 		 * it as a regular write I/O.
1918 		 */
1919 		zio->io_bp_override = NULL;
1920 		*bp = zio->io_bp_orig;
1921 		zio->io_pipeline = zio->io_orig_pipeline;
1922 
1923 	} else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 &&
1924 	    zp->zp_type == DMU_OT_DNODE) {
1925 		/*
1926 		 * The DMU actually relies on the zio layer's compression
1927 		 * to free metadnode blocks that have had all contained
1928 		 * dnodes freed. As a result, even when doing a raw
1929 		 * receive, we must check whether the block can be compressed
1930 		 * to a hole.
1931 		 */
1932 		if (abd_cmp_zero(zio->io_abd, lsize) == 0) {
1933 			psize = 0;
1934 			compress = ZIO_COMPRESS_OFF;
1935 		} else {
1936 			psize = lsize;
1937 		}
1938 	} else if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS &&
1939 	    !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) {
1940 		/*
1941 		 * If we are raw receiving an encrypted dataset we should not
1942 		 * take this codepath because it will change the on-disk block
1943 		 * and decryption will fail.
1944 		 */
1945 		size_t rounded = MIN((size_t)zio_roundup_alloc_size(spa, psize),
1946 		    lsize);
1947 
1948 		if (rounded != psize) {
1949 			abd_t *cdata = abd_alloc_linear(rounded, B_TRUE);
1950 			abd_zero_off(cdata, psize, rounded - psize);
1951 			abd_copy_off(cdata, zio->io_abd, 0, 0, psize);
1952 			psize = rounded;
1953 			zio_push_transform(zio, cdata,
1954 			    psize, rounded, NULL);
1955 		}
1956 	} else {
1957 		ASSERT3U(psize, !=, 0);
1958 	}
1959 
1960 	/*
1961 	 * The final pass of spa_sync() must be all rewrites, but the first
1962 	 * few passes offer a trade-off: allocating blocks defers convergence,
1963 	 * but newly allocated blocks are sequential, so they can be written
1964 	 * to disk faster.  Therefore, we allow the first few passes of
1965 	 * spa_sync() to allocate new blocks, but force rewrites after that.
1966 	 * There should only be a handful of blocks after pass 1 in any case.
1967 	 */
1968 	if (!BP_IS_HOLE(bp) && BP_GET_LOGICAL_BIRTH(bp) == zio->io_txg &&
1969 	    BP_GET_PSIZE(bp) == psize &&
1970 	    pass >= zfs_sync_pass_rewrite) {
1971 		VERIFY3U(psize, !=, 0);
1972 		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1973 
1974 		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1975 		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1976 	} else {
1977 		BP_ZERO(bp);
1978 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
1979 	}
1980 
1981 	if (psize == 0) {
1982 		if (BP_GET_LOGICAL_BIRTH(&zio->io_bp_orig) != 0 &&
1983 		    spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1984 			BP_SET_LSIZE(bp, lsize);
1985 			BP_SET_TYPE(bp, zp->zp_type);
1986 			BP_SET_LEVEL(bp, zp->zp_level);
1987 			BP_SET_BIRTH(bp, zio->io_txg, 0);
1988 		}
1989 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1990 	} else {
1991 		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1992 		BP_SET_LSIZE(bp, lsize);
1993 		BP_SET_TYPE(bp, zp->zp_type);
1994 		BP_SET_LEVEL(bp, zp->zp_level);
1995 		BP_SET_PSIZE(bp, psize);
1996 		BP_SET_COMPRESS(bp, compress);
1997 		BP_SET_CHECKSUM(bp, zp->zp_checksum);
1998 		BP_SET_DEDUP(bp, zp->zp_dedup);
1999 		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
2000 		if (zp->zp_dedup) {
2001 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2002 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2003 			ASSERT(!zp->zp_encrypt ||
2004 			    DMU_OT_IS_ENCRYPTED(zp->zp_type));
2005 			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
2006 		}
2007 		if (zp->zp_nopwrite) {
2008 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2009 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2010 			zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
2011 		}
2012 	}
2013 	return (zio);
2014 }
2015 
2016 static zio_t *
2017 zio_free_bp_init(zio_t *zio)
2018 {
2019 	blkptr_t *bp = zio->io_bp;
2020 
2021 	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
2022 		if (BP_GET_DEDUP(bp))
2023 			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
2024 	}
2025 
2026 	ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
2027 
2028 	return (zio);
2029 }
2030 
2031 /*
2032  * ==========================================================================
2033  * Execute the I/O pipeline
2034  * ==========================================================================
2035  */
2036 
2037 static void
2038 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
2039 {
2040 	spa_t *spa = zio->io_spa;
2041 	zio_type_t t = zio->io_type;
2042 
2043 	/*
2044 	 * If we're a config writer or a probe, the normal issue and
2045 	 * interrupt threads may all be blocked waiting for the config lock.
2046 	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
2047 	 */
2048 	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
2049 		t = ZIO_TYPE_NULL;
2050 
2051 	/*
2052 	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
2053 	 */
2054 	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
2055 		t = ZIO_TYPE_NULL;
2056 
2057 	/*
2058 	 * If this is a high priority I/O, then use the high priority taskq if
2059 	 * available or cut the line otherwise.
2060 	 */
2061 	if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) {
2062 		if (spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
2063 			q++;
2064 		else
2065 			cutinline = B_TRUE;
2066 	}
2067 
2068 	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
2069 
2070 	spa_taskq_dispatch(spa, t, q, zio_execute, zio, cutinline);
2071 }
2072 
2073 static boolean_t
2074 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
2075 {
2076 	spa_t *spa = zio->io_spa;
2077 
2078 	taskq_t *tq = taskq_of_curthread();
2079 
2080 	for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
2081 		spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
2082 		uint_t i;
2083 		for (i = 0; i < tqs->stqs_count; i++) {
2084 			if (tqs->stqs_taskq[i] == tq)
2085 				return (B_TRUE);
2086 		}
2087 	}
2088 
2089 	return (B_FALSE);
2090 }
2091 
2092 static zio_t *
2093 zio_issue_async(zio_t *zio)
2094 {
2095 	ASSERT((zio->io_type != ZIO_TYPE_WRITE) || ZIO_HAS_ALLOCATOR(zio));
2096 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2097 	return (NULL);
2098 }
2099 
2100 void
2101 zio_interrupt(void *zio)
2102 {
2103 	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
2104 }
2105 
2106 void
2107 zio_delay_interrupt(zio_t *zio)
2108 {
2109 	/*
2110 	 * The timeout_generic() function isn't defined in userspace, so
2111 	 * rather than trying to implement the function, the zio delay
2112 	 * functionality has been disabled for userspace builds.
2113 	 */
2114 
2115 #ifdef _KERNEL
2116 	/*
2117 	 * If io_target_timestamp is zero, then no delay has been registered
2118 	 * for this IO, thus jump to the end of this function and "skip" the
2119 	 * delay; issuing it directly to the zio layer.
2120 	 */
2121 	if (zio->io_target_timestamp != 0) {
2122 		hrtime_t now = gethrtime();
2123 
2124 		if (now >= zio->io_target_timestamp) {
2125 			/*
2126 			 * This IO has already taken longer than the target
2127 			 * delay to complete, so we don't want to delay it
2128 			 * any longer; we "miss" the delay and issue it
2129 			 * directly to the zio layer. This is likely due to
2130 			 * the target latency being set to a value less than
2131 			 * the underlying hardware can satisfy (e.g. delay
2132 			 * set to 1ms, but the disks take 10ms to complete an
2133 			 * IO request).
2134 			 */
2135 
2136 			DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
2137 			    hrtime_t, now);
2138 
2139 			zio_interrupt(zio);
2140 		} else {
2141 			taskqid_t tid;
2142 			hrtime_t diff = zio->io_target_timestamp - now;
2143 			clock_t expire_at_tick = ddi_get_lbolt() +
2144 			    NSEC_TO_TICK(diff);
2145 
2146 			DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
2147 			    hrtime_t, now, hrtime_t, diff);
2148 
2149 			if (NSEC_TO_TICK(diff) == 0) {
2150 				/* Our delay is less than a jiffy - just spin */
2151 				zfs_sleep_until(zio->io_target_timestamp);
2152 				zio_interrupt(zio);
2153 			} else {
2154 				/*
2155 				 * Use taskq_dispatch_delay() in the place of
2156 				 * OpenZFS's timeout_generic().
2157 				 */
2158 				tid = taskq_dispatch_delay(system_taskq,
2159 				    zio_interrupt, zio, TQ_NOSLEEP,
2160 				    expire_at_tick);
2161 				if (tid == TASKQID_INVALID) {
2162 					/*
2163 					 * Couldn't allocate a task.  Just
2164 					 * finish the zio without a delay.
2165 					 */
2166 					zio_interrupt(zio);
2167 				}
2168 			}
2169 		}
2170 		return;
2171 	}
2172 #endif
2173 	DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
2174 	zio_interrupt(zio);
2175 }
2176 
2177 static void
2178 zio_deadman_impl(zio_t *pio, int ziodepth)
2179 {
2180 	zio_t *cio, *cio_next;
2181 	zio_link_t *zl = NULL;
2182 	vdev_t *vd = pio->io_vd;
2183 
2184 	if (zio_deadman_log_all || (vd != NULL && vd->vdev_ops->vdev_op_leaf)) {
2185 		vdev_queue_t *vq = vd ? &vd->vdev_queue : NULL;
2186 		zbookmark_phys_t *zb = &pio->io_bookmark;
2187 		uint64_t delta = gethrtime() - pio->io_timestamp;
2188 		uint64_t failmode = spa_get_deadman_failmode(pio->io_spa);
2189 
2190 		zfs_dbgmsg("slow zio[%d]: zio=%px timestamp=%llu "
2191 		    "delta=%llu queued=%llu io=%llu "
2192 		    "path=%s "
2193 		    "last=%llu type=%d "
2194 		    "priority=%d flags=0x%llx stage=0x%x "
2195 		    "pipeline=0x%x pipeline-trace=0x%x "
2196 		    "objset=%llu object=%llu "
2197 		    "level=%llu blkid=%llu "
2198 		    "offset=%llu size=%llu "
2199 		    "error=%d",
2200 		    ziodepth, pio, pio->io_timestamp,
2201 		    (u_longlong_t)delta, pio->io_delta, pio->io_delay,
2202 		    vd ? vd->vdev_path : "NULL",
2203 		    vq ? vq->vq_io_complete_ts : 0, pio->io_type,
2204 		    pio->io_priority, (u_longlong_t)pio->io_flags,
2205 		    pio->io_stage, pio->io_pipeline, pio->io_pipeline_trace,
2206 		    (u_longlong_t)zb->zb_objset, (u_longlong_t)zb->zb_object,
2207 		    (u_longlong_t)zb->zb_level, (u_longlong_t)zb->zb_blkid,
2208 		    (u_longlong_t)pio->io_offset, (u_longlong_t)pio->io_size,
2209 		    pio->io_error);
2210 		(void) zfs_ereport_post(FM_EREPORT_ZFS_DEADMAN,
2211 		    pio->io_spa, vd, zb, pio, 0);
2212 
2213 		if (failmode == ZIO_FAILURE_MODE_CONTINUE &&
2214 		    taskq_empty_ent(&pio->io_tqent)) {
2215 			zio_interrupt(pio);
2216 		}
2217 	}
2218 
2219 	mutex_enter(&pio->io_lock);
2220 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2221 		cio_next = zio_walk_children(pio, &zl);
2222 		zio_deadman_impl(cio, ziodepth + 1);
2223 	}
2224 	mutex_exit(&pio->io_lock);
2225 }
2226 
2227 /*
2228  * Log the critical information describing this zio and all of its children
2229  * using the zfs_dbgmsg() interface then post deadman event for the ZED.
2230  */
2231 void
2232 zio_deadman(zio_t *pio, const char *tag)
2233 {
2234 	spa_t *spa = pio->io_spa;
2235 	char *name = spa_name(spa);
2236 
2237 	if (!zfs_deadman_enabled || spa_suspended(spa))
2238 		return;
2239 
2240 	zio_deadman_impl(pio, 0);
2241 
2242 	switch (spa_get_deadman_failmode(spa)) {
2243 	case ZIO_FAILURE_MODE_WAIT:
2244 		zfs_dbgmsg("%s waiting for hung I/O to pool '%s'", tag, name);
2245 		break;
2246 
2247 	case ZIO_FAILURE_MODE_CONTINUE:
2248 		zfs_dbgmsg("%s restarting hung I/O for pool '%s'", tag, name);
2249 		break;
2250 
2251 	case ZIO_FAILURE_MODE_PANIC:
2252 		fm_panic("%s determined I/O to pool '%s' is hung.", tag, name);
2253 		break;
2254 	}
2255 }
2256 
2257 /*
2258  * Execute the I/O pipeline until one of the following occurs:
2259  * (1) the I/O completes; (2) the pipeline stalls waiting for
2260  * dependent child I/Os; (3) the I/O issues, so we're waiting
2261  * for an I/O completion interrupt; (4) the I/O is delegated by
2262  * vdev-level caching or aggregation; (5) the I/O is deferred
2263  * due to vdev-level queueing; (6) the I/O is handed off to
2264  * another thread.  In all cases, the pipeline stops whenever
2265  * there's no CPU work; it never burns a thread in cv_wait_io().
2266  *
2267  * There's no locking on io_stage because there's no legitimate way
2268  * for multiple threads to be attempting to process the same I/O.
2269  */
2270 static zio_pipe_stage_t *zio_pipeline[];
2271 
2272 /*
2273  * zio_execute() is a wrapper around the static function
2274  * __zio_execute() so that we can force  __zio_execute() to be
2275  * inlined.  This reduces stack overhead which is important
2276  * because __zio_execute() is called recursively in several zio
2277  * code paths.  zio_execute() itself cannot be inlined because
2278  * it is externally visible.
2279  */
2280 void
2281 zio_execute(void *zio)
2282 {
2283 	fstrans_cookie_t cookie;
2284 
2285 	cookie = spl_fstrans_mark();
2286 	__zio_execute(zio);
2287 	spl_fstrans_unmark(cookie);
2288 }
2289 
2290 /*
2291  * Used to determine if in the current context the stack is sized large
2292  * enough to allow zio_execute() to be called recursively.  A minimum
2293  * stack size of 16K is required to avoid needing to re-dispatch the zio.
2294  */
2295 static boolean_t
2296 zio_execute_stack_check(zio_t *zio)
2297 {
2298 #if !defined(HAVE_LARGE_STACKS)
2299 	dsl_pool_t *dp = spa_get_dsl(zio->io_spa);
2300 
2301 	/* Executing in txg_sync_thread() context. */
2302 	if (dp && curthread == dp->dp_tx.tx_sync_thread)
2303 		return (B_TRUE);
2304 
2305 	/* Pool initialization outside of zio_taskq context. */
2306 	if (dp && spa_is_initializing(dp->dp_spa) &&
2307 	    !zio_taskq_member(zio, ZIO_TASKQ_ISSUE) &&
2308 	    !zio_taskq_member(zio, ZIO_TASKQ_ISSUE_HIGH))
2309 		return (B_TRUE);
2310 #else
2311 	(void) zio;
2312 #endif /* HAVE_LARGE_STACKS */
2313 
2314 	return (B_FALSE);
2315 }
2316 
2317 __attribute__((always_inline))
2318 static inline void
2319 __zio_execute(zio_t *zio)
2320 {
2321 	ASSERT3U(zio->io_queued_timestamp, >, 0);
2322 
2323 	while (zio->io_stage < ZIO_STAGE_DONE) {
2324 		enum zio_stage pipeline = zio->io_pipeline;
2325 		enum zio_stage stage = zio->io_stage;
2326 
2327 		zio->io_executor = curthread;
2328 
2329 		ASSERT(!MUTEX_HELD(&zio->io_lock));
2330 		ASSERT(ISP2(stage));
2331 		ASSERT(zio->io_stall == NULL);
2332 
2333 		do {
2334 			stage <<= 1;
2335 		} while ((stage & pipeline) == 0);
2336 
2337 		ASSERT(stage <= ZIO_STAGE_DONE);
2338 
2339 		/*
2340 		 * If we are in interrupt context and this pipeline stage
2341 		 * will grab a config lock that is held across I/O,
2342 		 * or may wait for an I/O that needs an interrupt thread
2343 		 * to complete, issue async to avoid deadlock.
2344 		 *
2345 		 * For VDEV_IO_START, we cut in line so that the io will
2346 		 * be sent to disk promptly.
2347 		 */
2348 		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
2349 		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
2350 			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2351 			    zio_requeue_io_start_cut_in_line : B_FALSE;
2352 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2353 			return;
2354 		}
2355 
2356 		/*
2357 		 * If the current context doesn't have large enough stacks
2358 		 * the zio must be issued asynchronously to prevent overflow.
2359 		 */
2360 		if (zio_execute_stack_check(zio)) {
2361 			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2362 			    zio_requeue_io_start_cut_in_line : B_FALSE;
2363 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2364 			return;
2365 		}
2366 
2367 		zio->io_stage = stage;
2368 		zio->io_pipeline_trace |= zio->io_stage;
2369 
2370 		/*
2371 		 * The zio pipeline stage returns the next zio to execute
2372 		 * (typically the same as this one), or NULL if we should
2373 		 * stop.
2374 		 */
2375 		zio = zio_pipeline[highbit64(stage) - 1](zio);
2376 
2377 		if (zio == NULL)
2378 			return;
2379 	}
2380 }
2381 
2382 
2383 /*
2384  * ==========================================================================
2385  * Initiate I/O, either sync or async
2386  * ==========================================================================
2387  */
2388 int
2389 zio_wait(zio_t *zio)
2390 {
2391 	/*
2392 	 * Some routines, like zio_free_sync(), may return a NULL zio
2393 	 * to avoid the performance overhead of creating and then destroying
2394 	 * an unneeded zio.  For the callers' simplicity, we accept a NULL
2395 	 * zio and ignore it.
2396 	 */
2397 	if (zio == NULL)
2398 		return (0);
2399 
2400 	long timeout = MSEC_TO_TICK(zfs_deadman_ziotime_ms);
2401 	int error;
2402 
2403 	ASSERT3S(zio->io_stage, ==, ZIO_STAGE_OPEN);
2404 	ASSERT3P(zio->io_executor, ==, NULL);
2405 
2406 	zio->io_waiter = curthread;
2407 	ASSERT0(zio->io_queued_timestamp);
2408 	zio->io_queued_timestamp = gethrtime();
2409 
2410 	if (zio->io_type == ZIO_TYPE_WRITE) {
2411 		spa_select_allocator(zio);
2412 	}
2413 	__zio_execute(zio);
2414 
2415 	mutex_enter(&zio->io_lock);
2416 	while (zio->io_executor != NULL) {
2417 		error = cv_timedwait_io(&zio->io_cv, &zio->io_lock,
2418 		    ddi_get_lbolt() + timeout);
2419 
2420 		if (zfs_deadman_enabled && error == -1 &&
2421 		    gethrtime() - zio->io_queued_timestamp >
2422 		    spa_deadman_ziotime(zio->io_spa)) {
2423 			mutex_exit(&zio->io_lock);
2424 			timeout = MSEC_TO_TICK(zfs_deadman_checktime_ms);
2425 			zio_deadman(zio, FTAG);
2426 			mutex_enter(&zio->io_lock);
2427 		}
2428 	}
2429 	mutex_exit(&zio->io_lock);
2430 
2431 	error = zio->io_error;
2432 	zio_destroy(zio);
2433 
2434 	return (error);
2435 }
2436 
2437 void
2438 zio_nowait(zio_t *zio)
2439 {
2440 	/*
2441 	 * See comment in zio_wait().
2442 	 */
2443 	if (zio == NULL)
2444 		return;
2445 
2446 	ASSERT3P(zio->io_executor, ==, NULL);
2447 
2448 	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
2449 	    list_is_empty(&zio->io_parent_list)) {
2450 		zio_t *pio;
2451 
2452 		/*
2453 		 * This is a logical async I/O with no parent to wait for it.
2454 		 * We add it to the spa_async_root_zio "Godfather" I/O which
2455 		 * will ensure they complete prior to unloading the pool.
2456 		 */
2457 		spa_t *spa = zio->io_spa;
2458 		pio = spa->spa_async_zio_root[CPU_SEQID_UNSTABLE];
2459 
2460 		zio_add_child(pio, zio);
2461 	}
2462 
2463 	ASSERT0(zio->io_queued_timestamp);
2464 	zio->io_queued_timestamp = gethrtime();
2465 	if (zio->io_type == ZIO_TYPE_WRITE) {
2466 		spa_select_allocator(zio);
2467 	}
2468 	__zio_execute(zio);
2469 }
2470 
2471 /*
2472  * ==========================================================================
2473  * Reexecute, cancel, or suspend/resume failed I/O
2474  * ==========================================================================
2475  */
2476 
2477 static void
2478 zio_reexecute(void *arg)
2479 {
2480 	zio_t *pio = arg;
2481 	zio_t *cio, *cio_next, *gio;
2482 
2483 	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
2484 	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
2485 	ASSERT(pio->io_gang_leader == NULL);
2486 	ASSERT(pio->io_gang_tree == NULL);
2487 
2488 	mutex_enter(&pio->io_lock);
2489 	pio->io_flags = pio->io_orig_flags;
2490 	pio->io_stage = pio->io_orig_stage;
2491 	pio->io_pipeline = pio->io_orig_pipeline;
2492 	pio->io_reexecute = 0;
2493 	pio->io_flags |= ZIO_FLAG_REEXECUTED;
2494 	pio->io_pipeline_trace = 0;
2495 	pio->io_error = 0;
2496 	pio->io_state[ZIO_WAIT_READY] = (pio->io_stage >= ZIO_STAGE_READY) ||
2497 	    (pio->io_pipeline & ZIO_STAGE_READY) == 0;
2498 	pio->io_state[ZIO_WAIT_DONE] = (pio->io_stage >= ZIO_STAGE_DONE);
2499 	zio_link_t *zl = NULL;
2500 	while ((gio = zio_walk_parents(pio, &zl)) != NULL) {
2501 		for (int w = 0; w < ZIO_WAIT_TYPES; w++) {
2502 			gio->io_children[pio->io_child_type][w] +=
2503 			    !pio->io_state[w];
2504 		}
2505 	}
2506 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2507 		pio->io_child_error[c] = 0;
2508 
2509 	if (IO_IS_ALLOCATING(pio))
2510 		BP_ZERO(pio->io_bp);
2511 
2512 	/*
2513 	 * As we reexecute pio's children, new children could be created.
2514 	 * New children go to the head of pio's io_child_list, however,
2515 	 * so we will (correctly) not reexecute them.  The key is that
2516 	 * the remainder of pio's io_child_list, from 'cio_next' onward,
2517 	 * cannot be affected by any side effects of reexecuting 'cio'.
2518 	 */
2519 	zl = NULL;
2520 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2521 		cio_next = zio_walk_children(pio, &zl);
2522 		mutex_exit(&pio->io_lock);
2523 		zio_reexecute(cio);
2524 		mutex_enter(&pio->io_lock);
2525 	}
2526 	mutex_exit(&pio->io_lock);
2527 
2528 	/*
2529 	 * Now that all children have been reexecuted, execute the parent.
2530 	 * We don't reexecute "The Godfather" I/O here as it's the
2531 	 * responsibility of the caller to wait on it.
2532 	 */
2533 	if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) {
2534 		pio->io_queued_timestamp = gethrtime();
2535 		__zio_execute(pio);
2536 	}
2537 }
2538 
2539 void
2540 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason)
2541 {
2542 	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
2543 		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
2544 		    "failure and the failure mode property for this pool "
2545 		    "is set to panic.", spa_name(spa));
2546 
2547 	if (reason != ZIO_SUSPEND_MMP) {
2548 		cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable "
2549 		    "I/O failure and has been suspended.\n", spa_name(spa));
2550 	}
2551 
2552 	(void) zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL,
2553 	    NULL, NULL, 0);
2554 
2555 	mutex_enter(&spa->spa_suspend_lock);
2556 
2557 	if (spa->spa_suspend_zio_root == NULL)
2558 		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
2559 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2560 		    ZIO_FLAG_GODFATHER);
2561 
2562 	spa->spa_suspended = reason;
2563 
2564 	if (zio != NULL) {
2565 		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
2566 		ASSERT(zio != spa->spa_suspend_zio_root);
2567 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2568 		ASSERT(zio_unique_parent(zio) == NULL);
2569 		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
2570 		zio_add_child(spa->spa_suspend_zio_root, zio);
2571 	}
2572 
2573 	mutex_exit(&spa->spa_suspend_lock);
2574 }
2575 
2576 int
2577 zio_resume(spa_t *spa)
2578 {
2579 	zio_t *pio;
2580 
2581 	/*
2582 	 * Reexecute all previously suspended i/o.
2583 	 */
2584 	mutex_enter(&spa->spa_suspend_lock);
2585 	spa->spa_suspended = ZIO_SUSPEND_NONE;
2586 	cv_broadcast(&spa->spa_suspend_cv);
2587 	pio = spa->spa_suspend_zio_root;
2588 	spa->spa_suspend_zio_root = NULL;
2589 	mutex_exit(&spa->spa_suspend_lock);
2590 
2591 	if (pio == NULL)
2592 		return (0);
2593 
2594 	zio_reexecute(pio);
2595 	return (zio_wait(pio));
2596 }
2597 
2598 void
2599 zio_resume_wait(spa_t *spa)
2600 {
2601 	mutex_enter(&spa->spa_suspend_lock);
2602 	while (spa_suspended(spa))
2603 		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
2604 	mutex_exit(&spa->spa_suspend_lock);
2605 }
2606 
2607 /*
2608  * ==========================================================================
2609  * Gang blocks.
2610  *
2611  * A gang block is a collection of small blocks that looks to the DMU
2612  * like one large block.  When zio_dva_allocate() cannot find a block
2613  * of the requested size, due to either severe fragmentation or the pool
2614  * being nearly full, it calls zio_write_gang_block() to construct the
2615  * block from smaller fragments.
2616  *
2617  * A gang block consists of a gang header (zio_gbh_phys_t) and up to
2618  * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
2619  * an indirect block: it's an array of block pointers.  It consumes
2620  * only one sector and hence is allocatable regardless of fragmentation.
2621  * The gang header's bps point to its gang members, which hold the data.
2622  *
2623  * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
2624  * as the verifier to ensure uniqueness of the SHA256 checksum.
2625  * Critically, the gang block bp's blk_cksum is the checksum of the data,
2626  * not the gang header.  This ensures that data block signatures (needed for
2627  * deduplication) are independent of how the block is physically stored.
2628  *
2629  * Gang blocks can be nested: a gang member may itself be a gang block.
2630  * Thus every gang block is a tree in which root and all interior nodes are
2631  * gang headers, and the leaves are normal blocks that contain user data.
2632  * The root of the gang tree is called the gang leader.
2633  *
2634  * To perform any operation (read, rewrite, free, claim) on a gang block,
2635  * zio_gang_assemble() first assembles the gang tree (minus data leaves)
2636  * in the io_gang_tree field of the original logical i/o by recursively
2637  * reading the gang leader and all gang headers below it.  This yields
2638  * an in-core tree containing the contents of every gang header and the
2639  * bps for every constituent of the gang block.
2640  *
2641  * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
2642  * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
2643  * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
2644  * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
2645  * zio_read_gang() is a wrapper around zio_read() that omits reading gang
2646  * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
2647  * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
2648  * of the gang header plus zio_checksum_compute() of the data to update the
2649  * gang header's blk_cksum as described above.
2650  *
2651  * The two-phase assemble/issue model solves the problem of partial failure --
2652  * what if you'd freed part of a gang block but then couldn't read the
2653  * gang header for another part?  Assembling the entire gang tree first
2654  * ensures that all the necessary gang header I/O has succeeded before
2655  * starting the actual work of free, claim, or write.  Once the gang tree
2656  * is assembled, free and claim are in-memory operations that cannot fail.
2657  *
2658  * In the event that a gang write fails, zio_dva_unallocate() walks the
2659  * gang tree to immediately free (i.e. insert back into the space map)
2660  * everything we've allocated.  This ensures that we don't get ENOSPC
2661  * errors during repeated suspend/resume cycles due to a flaky device.
2662  *
2663  * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
2664  * the gang tree, we won't modify the block, so we can safely defer the free
2665  * (knowing that the block is still intact).  If we *can* assemble the gang
2666  * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
2667  * each constituent bp and we can allocate a new block on the next sync pass.
2668  *
2669  * In all cases, the gang tree allows complete recovery from partial failure.
2670  * ==========================================================================
2671  */
2672 
2673 static void
2674 zio_gang_issue_func_done(zio_t *zio)
2675 {
2676 	abd_free(zio->io_abd);
2677 }
2678 
2679 static zio_t *
2680 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2681     uint64_t offset)
2682 {
2683 	if (gn != NULL)
2684 		return (pio);
2685 
2686 	return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset),
2687 	    BP_GET_PSIZE(bp), zio_gang_issue_func_done,
2688 	    NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2689 	    &pio->io_bookmark));
2690 }
2691 
2692 static zio_t *
2693 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2694     uint64_t offset)
2695 {
2696 	zio_t *zio;
2697 
2698 	if (gn != NULL) {
2699 		abd_t *gbh_abd =
2700 		    abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2701 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2702 		    gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL,
2703 		    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2704 		    &pio->io_bookmark);
2705 		/*
2706 		 * As we rewrite each gang header, the pipeline will compute
2707 		 * a new gang block header checksum for it; but no one will
2708 		 * compute a new data checksum, so we do that here.  The one
2709 		 * exception is the gang leader: the pipeline already computed
2710 		 * its data checksum because that stage precedes gang assembly.
2711 		 * (Presently, nothing actually uses interior data checksums;
2712 		 * this is just good hygiene.)
2713 		 */
2714 		if (gn != pio->io_gang_leader->io_gang_tree) {
2715 			abd_t *buf = abd_get_offset(data, offset);
2716 
2717 			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
2718 			    buf, BP_GET_PSIZE(bp));
2719 
2720 			abd_free(buf);
2721 		}
2722 		/*
2723 		 * If we are here to damage data for testing purposes,
2724 		 * leave the GBH alone so that we can detect the damage.
2725 		 */
2726 		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
2727 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2728 	} else {
2729 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2730 		    abd_get_offset(data, offset), BP_GET_PSIZE(bp),
2731 		    zio_gang_issue_func_done, NULL, pio->io_priority,
2732 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2733 	}
2734 
2735 	return (zio);
2736 }
2737 
2738 static zio_t *
2739 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2740     uint64_t offset)
2741 {
2742 	(void) gn, (void) data, (void) offset;
2743 
2744 	zio_t *zio = zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
2745 	    ZIO_GANG_CHILD_FLAGS(pio));
2746 	if (zio == NULL) {
2747 		zio = zio_null(pio, pio->io_spa,
2748 		    NULL, NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio));
2749 	}
2750 	return (zio);
2751 }
2752 
2753 static zio_t *
2754 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2755     uint64_t offset)
2756 {
2757 	(void) gn, (void) data, (void) offset;
2758 	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
2759 	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
2760 }
2761 
2762 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
2763 	NULL,
2764 	zio_read_gang,
2765 	zio_rewrite_gang,
2766 	zio_free_gang,
2767 	zio_claim_gang,
2768 	NULL
2769 };
2770 
2771 static void zio_gang_tree_assemble_done(zio_t *zio);
2772 
2773 static zio_gang_node_t *
2774 zio_gang_node_alloc(zio_gang_node_t **gnpp)
2775 {
2776 	zio_gang_node_t *gn;
2777 
2778 	ASSERT(*gnpp == NULL);
2779 
2780 	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
2781 	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
2782 	*gnpp = gn;
2783 
2784 	return (gn);
2785 }
2786 
2787 static void
2788 zio_gang_node_free(zio_gang_node_t **gnpp)
2789 {
2790 	zio_gang_node_t *gn = *gnpp;
2791 
2792 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2793 		ASSERT(gn->gn_child[g] == NULL);
2794 
2795 	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2796 	kmem_free(gn, sizeof (*gn));
2797 	*gnpp = NULL;
2798 }
2799 
2800 static void
2801 zio_gang_tree_free(zio_gang_node_t **gnpp)
2802 {
2803 	zio_gang_node_t *gn = *gnpp;
2804 
2805 	if (gn == NULL)
2806 		return;
2807 
2808 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2809 		zio_gang_tree_free(&gn->gn_child[g]);
2810 
2811 	zio_gang_node_free(gnpp);
2812 }
2813 
2814 static void
2815 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
2816 {
2817 	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
2818 	abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2819 
2820 	ASSERT(gio->io_gang_leader == gio);
2821 	ASSERT(BP_IS_GANG(bp));
2822 
2823 	zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2824 	    zio_gang_tree_assemble_done, gn, gio->io_priority,
2825 	    ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
2826 }
2827 
2828 static void
2829 zio_gang_tree_assemble_done(zio_t *zio)
2830 {
2831 	zio_t *gio = zio->io_gang_leader;
2832 	zio_gang_node_t *gn = zio->io_private;
2833 	blkptr_t *bp = zio->io_bp;
2834 
2835 	ASSERT(gio == zio_unique_parent(zio));
2836 	ASSERT(list_is_empty(&zio->io_child_list));
2837 
2838 	if (zio->io_error)
2839 		return;
2840 
2841 	/* this ABD was created from a linear buf in zio_gang_tree_assemble */
2842 	if (BP_SHOULD_BYTESWAP(bp))
2843 		byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size);
2844 
2845 	ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh);
2846 	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
2847 	ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2848 
2849 	abd_free(zio->io_abd);
2850 
2851 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2852 		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2853 		if (!BP_IS_GANG(gbp))
2854 			continue;
2855 		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
2856 	}
2857 }
2858 
2859 static void
2860 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data,
2861     uint64_t offset)
2862 {
2863 	zio_t *gio = pio->io_gang_leader;
2864 	zio_t *zio;
2865 
2866 	ASSERT(BP_IS_GANG(bp) == !!gn);
2867 	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
2868 	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
2869 
2870 	/*
2871 	 * If you're a gang header, your data is in gn->gn_gbh.
2872 	 * If you're a gang member, your data is in 'data' and gn == NULL.
2873 	 */
2874 	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset);
2875 
2876 	if (gn != NULL) {
2877 		ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2878 
2879 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2880 			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2881 			if (BP_IS_HOLE(gbp))
2882 				continue;
2883 			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data,
2884 			    offset);
2885 			offset += BP_GET_PSIZE(gbp);
2886 		}
2887 	}
2888 
2889 	if (gn == gio->io_gang_tree)
2890 		ASSERT3U(gio->io_size, ==, offset);
2891 
2892 	if (zio != pio)
2893 		zio_nowait(zio);
2894 }
2895 
2896 static zio_t *
2897 zio_gang_assemble(zio_t *zio)
2898 {
2899 	blkptr_t *bp = zio->io_bp;
2900 
2901 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
2902 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2903 
2904 	zio->io_gang_leader = zio;
2905 
2906 	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
2907 
2908 	return (zio);
2909 }
2910 
2911 static zio_t *
2912 zio_gang_issue(zio_t *zio)
2913 {
2914 	blkptr_t *bp = zio->io_bp;
2915 
2916 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) {
2917 		return (NULL);
2918 	}
2919 
2920 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
2921 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2922 
2923 	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
2924 		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd,
2925 		    0);
2926 	else
2927 		zio_gang_tree_free(&zio->io_gang_tree);
2928 
2929 	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2930 
2931 	return (zio);
2932 }
2933 
2934 static void
2935 zio_gang_inherit_allocator(zio_t *pio, zio_t *cio)
2936 {
2937 	cio->io_allocator = pio->io_allocator;
2938 }
2939 
2940 static void
2941 zio_write_gang_member_ready(zio_t *zio)
2942 {
2943 	zio_t *pio = zio_unique_parent(zio);
2944 	dva_t *cdva = zio->io_bp->blk_dva;
2945 	dva_t *pdva = pio->io_bp->blk_dva;
2946 	uint64_t asize;
2947 	zio_t *gio __maybe_unused = zio->io_gang_leader;
2948 
2949 	if (BP_IS_HOLE(zio->io_bp))
2950 		return;
2951 
2952 	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
2953 
2954 	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
2955 	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
2956 	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
2957 	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
2958 	VERIFY3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
2959 
2960 	mutex_enter(&pio->io_lock);
2961 	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
2962 		ASSERT(DVA_GET_GANG(&pdva[d]));
2963 		asize = DVA_GET_ASIZE(&pdva[d]);
2964 		asize += DVA_GET_ASIZE(&cdva[d]);
2965 		DVA_SET_ASIZE(&pdva[d], asize);
2966 	}
2967 	mutex_exit(&pio->io_lock);
2968 }
2969 
2970 static void
2971 zio_write_gang_done(zio_t *zio)
2972 {
2973 	/*
2974 	 * The io_abd field will be NULL for a zio with no data.  The io_flags
2975 	 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't
2976 	 * check for it here as it is cleared in zio_ready.
2977 	 */
2978 	if (zio->io_abd != NULL)
2979 		abd_free(zio->io_abd);
2980 }
2981 
2982 static zio_t *
2983 zio_write_gang_block(zio_t *pio, metaslab_class_t *mc)
2984 {
2985 	spa_t *spa = pio->io_spa;
2986 	blkptr_t *bp = pio->io_bp;
2987 	zio_t *gio = pio->io_gang_leader;
2988 	zio_t *zio;
2989 	zio_gang_node_t *gn, **gnpp;
2990 	zio_gbh_phys_t *gbh;
2991 	abd_t *gbh_abd;
2992 	uint64_t txg = pio->io_txg;
2993 	uint64_t resid = pio->io_size;
2994 	uint64_t lsize;
2995 	int copies = gio->io_prop.zp_copies;
2996 	zio_prop_t zp;
2997 	int error;
2998 	boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA);
2999 
3000 	/*
3001 	 * If one copy was requested, store 2 copies of the GBH, so that we
3002 	 * can still traverse all the data (e.g. to free or scrub) even if a
3003 	 * block is damaged.  Note that we can't store 3 copies of the GBH in
3004 	 * all cases, e.g. with encryption, which uses DVA[2] for the IV+salt.
3005 	 */
3006 	int gbh_copies = copies;
3007 	if (gbh_copies == 1) {
3008 		gbh_copies = MIN(2, spa_max_replication(spa));
3009 	}
3010 
3011 	ASSERT(ZIO_HAS_ALLOCATOR(pio));
3012 	int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER;
3013 	if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
3014 		ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
3015 		ASSERT(has_data);
3016 
3017 		flags |= METASLAB_ASYNC_ALLOC;
3018 		VERIFY(zfs_refcount_held(&mc->mc_allocator[pio->io_allocator].
3019 		    mca_alloc_slots, pio));
3020 
3021 		/*
3022 		 * The logical zio has already placed a reservation for
3023 		 * 'copies' allocation slots but gang blocks may require
3024 		 * additional copies. These additional copies
3025 		 * (i.e. gbh_copies - copies) are guaranteed to succeed
3026 		 * since metaslab_class_throttle_reserve() always allows
3027 		 * additional reservations for gang blocks.
3028 		 */
3029 		VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies,
3030 		    pio->io_allocator, pio, flags));
3031 	}
3032 
3033 	error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE,
3034 	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags,
3035 	    &pio->io_alloc_list, pio, pio->io_allocator);
3036 	if (error) {
3037 		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
3038 			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
3039 			ASSERT(has_data);
3040 
3041 			/*
3042 			 * If we failed to allocate the gang block header then
3043 			 * we remove any additional allocation reservations that
3044 			 * we placed here. The original reservation will
3045 			 * be removed when the logical I/O goes to the ready
3046 			 * stage.
3047 			 */
3048 			metaslab_class_throttle_unreserve(mc,
3049 			    gbh_copies - copies, pio->io_allocator, pio);
3050 		}
3051 
3052 		pio->io_error = error;
3053 		return (pio);
3054 	}
3055 
3056 	if (pio == gio) {
3057 		gnpp = &gio->io_gang_tree;
3058 	} else {
3059 		gnpp = pio->io_private;
3060 		ASSERT(pio->io_ready == zio_write_gang_member_ready);
3061 	}
3062 
3063 	gn = zio_gang_node_alloc(gnpp);
3064 	gbh = gn->gn_gbh;
3065 	memset(gbh, 0, SPA_GANGBLOCKSIZE);
3066 	gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE);
3067 
3068 	/*
3069 	 * Create the gang header.
3070 	 */
3071 	zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE,
3072 	    zio_write_gang_done, NULL, pio->io_priority,
3073 	    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
3074 
3075 	zio_gang_inherit_allocator(pio, zio);
3076 
3077 	/*
3078 	 * Create and nowait the gang children.
3079 	 */
3080 	for (int g = 0; resid != 0; resid -= lsize, g++) {
3081 		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
3082 		    SPA_MINBLOCKSIZE);
3083 		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
3084 
3085 		zp.zp_checksum = gio->io_prop.zp_checksum;
3086 		zp.zp_compress = ZIO_COMPRESS_OFF;
3087 		zp.zp_complevel = gio->io_prop.zp_complevel;
3088 		zp.zp_type = zp.zp_storage_type = DMU_OT_NONE;
3089 		zp.zp_level = 0;
3090 		zp.zp_copies = gio->io_prop.zp_copies;
3091 		zp.zp_dedup = B_FALSE;
3092 		zp.zp_dedup_verify = B_FALSE;
3093 		zp.zp_nopwrite = B_FALSE;
3094 		zp.zp_encrypt = gio->io_prop.zp_encrypt;
3095 		zp.zp_byteorder = gio->io_prop.zp_byteorder;
3096 		memset(zp.zp_salt, 0, ZIO_DATA_SALT_LEN);
3097 		memset(zp.zp_iv, 0, ZIO_DATA_IV_LEN);
3098 		memset(zp.zp_mac, 0, ZIO_DATA_MAC_LEN);
3099 
3100 		zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
3101 		    has_data ? abd_get_offset(pio->io_abd, pio->io_size -
3102 		    resid) : NULL, lsize, lsize, &zp,
3103 		    zio_write_gang_member_ready, NULL,
3104 		    zio_write_gang_done, &gn->gn_child[g], pio->io_priority,
3105 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
3106 
3107 		zio_gang_inherit_allocator(zio, cio);
3108 
3109 		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
3110 			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
3111 			ASSERT(has_data);
3112 
3113 			/*
3114 			 * Gang children won't throttle but we should
3115 			 * account for their work, so reserve an allocation
3116 			 * slot for them here.
3117 			 */
3118 			VERIFY(metaslab_class_throttle_reserve(mc,
3119 			    zp.zp_copies, cio->io_allocator, cio, flags));
3120 		}
3121 		zio_nowait(cio);
3122 	}
3123 
3124 	/*
3125 	 * Set pio's pipeline to just wait for zio to finish.
3126 	 */
3127 	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3128 
3129 	zio_nowait(zio);
3130 
3131 	return (pio);
3132 }
3133 
3134 /*
3135  * The zio_nop_write stage in the pipeline determines if allocating a
3136  * new bp is necessary.  The nopwrite feature can handle writes in
3137  * either syncing or open context (i.e. zil writes) and as a result is
3138  * mutually exclusive with dedup.
3139  *
3140  * By leveraging a cryptographically secure checksum, such as SHA256, we
3141  * can compare the checksums of the new data and the old to determine if
3142  * allocating a new block is required.  Note that our requirements for
3143  * cryptographic strength are fairly weak: there can't be any accidental
3144  * hash collisions, but we don't need to be secure against intentional
3145  * (malicious) collisions.  To trigger a nopwrite, you have to be able
3146  * to write the file to begin with, and triggering an incorrect (hash
3147  * collision) nopwrite is no worse than simply writing to the file.
3148  * That said, there are no known attacks against the checksum algorithms
3149  * used for nopwrite, assuming that the salt and the checksums
3150  * themselves remain secret.
3151  */
3152 static zio_t *
3153 zio_nop_write(zio_t *zio)
3154 {
3155 	blkptr_t *bp = zio->io_bp;
3156 	blkptr_t *bp_orig = &zio->io_bp_orig;
3157 	zio_prop_t *zp = &zio->io_prop;
3158 
3159 	ASSERT(BP_IS_HOLE(bp));
3160 	ASSERT(BP_GET_LEVEL(bp) == 0);
3161 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
3162 	ASSERT(zp->zp_nopwrite);
3163 	ASSERT(!zp->zp_dedup);
3164 	ASSERT(zio->io_bp_override == NULL);
3165 	ASSERT(IO_IS_ALLOCATING(zio));
3166 
3167 	/*
3168 	 * Check to see if the original bp and the new bp have matching
3169 	 * characteristics (i.e. same checksum, compression algorithms, etc).
3170 	 * If they don't then just continue with the pipeline which will
3171 	 * allocate a new bp.
3172 	 */
3173 	if (BP_IS_HOLE(bp_orig) ||
3174 	    !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
3175 	    ZCHECKSUM_FLAG_NOPWRITE) ||
3176 	    BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) ||
3177 	    BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
3178 	    BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
3179 	    BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
3180 	    zp->zp_copies != BP_GET_NDVAS(bp_orig))
3181 		return (zio);
3182 
3183 	/*
3184 	 * If the checksums match then reset the pipeline so that we
3185 	 * avoid allocating a new bp and issuing any I/O.
3186 	 */
3187 	if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
3188 		ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
3189 		    ZCHECKSUM_FLAG_NOPWRITE);
3190 		ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
3191 		ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
3192 		ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
3193 		ASSERT3U(bp->blk_prop, ==, bp_orig->blk_prop);
3194 
3195 		/*
3196 		 * If we're overwriting a block that is currently on an
3197 		 * indirect vdev, then ignore the nopwrite request and
3198 		 * allow a new block to be allocated on a concrete vdev.
3199 		 */
3200 		spa_config_enter(zio->io_spa, SCL_VDEV, FTAG, RW_READER);
3201 		for (int d = 0; d < BP_GET_NDVAS(bp_orig); d++) {
3202 			vdev_t *tvd = vdev_lookup_top(zio->io_spa,
3203 			    DVA_GET_VDEV(&bp_orig->blk_dva[d]));
3204 			if (tvd->vdev_ops == &vdev_indirect_ops) {
3205 				spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
3206 				return (zio);
3207 			}
3208 		}
3209 		spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
3210 
3211 		*bp = *bp_orig;
3212 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3213 		zio->io_flags |= ZIO_FLAG_NOPWRITE;
3214 	}
3215 
3216 	return (zio);
3217 }
3218 
3219 /*
3220  * ==========================================================================
3221  * Block Reference Table
3222  * ==========================================================================
3223  */
3224 static zio_t *
3225 zio_brt_free(zio_t *zio)
3226 {
3227 	blkptr_t *bp;
3228 
3229 	bp = zio->io_bp;
3230 
3231 	if (BP_GET_LEVEL(bp) > 0 ||
3232 	    BP_IS_METADATA(bp) ||
3233 	    !brt_maybe_exists(zio->io_spa, bp)) {
3234 		return (zio);
3235 	}
3236 
3237 	if (!brt_entry_decref(zio->io_spa, bp)) {
3238 		/*
3239 		 * This isn't the last reference, so we cannot free
3240 		 * the data yet.
3241 		 */
3242 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3243 	}
3244 
3245 	return (zio);
3246 }
3247 
3248 /*
3249  * ==========================================================================
3250  * Dedup
3251  * ==========================================================================
3252  */
3253 static void
3254 zio_ddt_child_read_done(zio_t *zio)
3255 {
3256 	blkptr_t *bp = zio->io_bp;
3257 	ddt_entry_t *dde = zio->io_private;
3258 	ddt_phys_t *ddp;
3259 	zio_t *pio = zio_unique_parent(zio);
3260 
3261 	mutex_enter(&pio->io_lock);
3262 	ddp = ddt_phys_select(dde, bp);
3263 	if (zio->io_error == 0)
3264 		ddt_phys_clear(ddp);	/* this ddp doesn't need repair */
3265 
3266 	if (zio->io_error == 0 && dde->dde_repair_abd == NULL)
3267 		dde->dde_repair_abd = zio->io_abd;
3268 	else
3269 		abd_free(zio->io_abd);
3270 	mutex_exit(&pio->io_lock);
3271 }
3272 
3273 static zio_t *
3274 zio_ddt_read_start(zio_t *zio)
3275 {
3276 	blkptr_t *bp = zio->io_bp;
3277 
3278 	ASSERT(BP_GET_DEDUP(bp));
3279 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3280 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3281 
3282 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
3283 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
3284 		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
3285 		ddt_phys_t *ddp = dde->dde_phys;
3286 		ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
3287 		blkptr_t blk;
3288 
3289 		ASSERT(zio->io_vsd == NULL);
3290 		zio->io_vsd = dde;
3291 
3292 		if (ddp_self == NULL)
3293 			return (zio);
3294 
3295 		for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
3296 			if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
3297 				continue;
3298 			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
3299 			    &blk);
3300 			zio_nowait(zio_read(zio, zio->io_spa, &blk,
3301 			    abd_alloc_for_io(zio->io_size, B_TRUE),
3302 			    zio->io_size, zio_ddt_child_read_done, dde,
3303 			    zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) |
3304 			    ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark));
3305 		}
3306 		return (zio);
3307 	}
3308 
3309 	zio_nowait(zio_read(zio, zio->io_spa, bp,
3310 	    zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority,
3311 	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
3312 
3313 	return (zio);
3314 }
3315 
3316 static zio_t *
3317 zio_ddt_read_done(zio_t *zio)
3318 {
3319 	blkptr_t *bp = zio->io_bp;
3320 
3321 	if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) {
3322 		return (NULL);
3323 	}
3324 
3325 	ASSERT(BP_GET_DEDUP(bp));
3326 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3327 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3328 
3329 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
3330 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
3331 		ddt_entry_t *dde = zio->io_vsd;
3332 		if (ddt == NULL) {
3333 			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
3334 			return (zio);
3335 		}
3336 		if (dde == NULL) {
3337 			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
3338 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
3339 			return (NULL);
3340 		}
3341 		if (dde->dde_repair_abd != NULL) {
3342 			abd_copy(zio->io_abd, dde->dde_repair_abd,
3343 			    zio->io_size);
3344 			zio->io_child_error[ZIO_CHILD_DDT] = 0;
3345 		}
3346 		ddt_repair_done(ddt, dde);
3347 		zio->io_vsd = NULL;
3348 	}
3349 
3350 	ASSERT(zio->io_vsd == NULL);
3351 
3352 	return (zio);
3353 }
3354 
3355 static boolean_t
3356 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
3357 {
3358 	spa_t *spa = zio->io_spa;
3359 	boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW);
3360 
3361 	ASSERT(!(zio->io_bp_override && do_raw));
3362 
3363 	/*
3364 	 * Note: we compare the original data, not the transformed data,
3365 	 * because when zio->io_bp is an override bp, we will not have
3366 	 * pushed the I/O transforms.  That's an important optimization
3367 	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
3368 	 * However, we should never get a raw, override zio so in these
3369 	 * cases we can compare the io_abd directly. This is useful because
3370 	 * it allows us to do dedup verification even if we don't have access
3371 	 * to the original data (for instance, if the encryption keys aren't
3372 	 * loaded).
3373 	 */
3374 
3375 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
3376 		zio_t *lio = dde->dde_lead_zio[p];
3377 
3378 		if (lio != NULL && do_raw) {
3379 			return (lio->io_size != zio->io_size ||
3380 			    abd_cmp(zio->io_abd, lio->io_abd) != 0);
3381 		} else if (lio != NULL) {
3382 			return (lio->io_orig_size != zio->io_orig_size ||
3383 			    abd_cmp(zio->io_orig_abd, lio->io_orig_abd) != 0);
3384 		}
3385 	}
3386 
3387 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
3388 		ddt_phys_t *ddp = &dde->dde_phys[p];
3389 
3390 		if (ddp->ddp_phys_birth != 0 && do_raw) {
3391 			blkptr_t blk = *zio->io_bp;
3392 			uint64_t psize;
3393 			abd_t *tmpabd;
3394 			int error;
3395 
3396 			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
3397 			psize = BP_GET_PSIZE(&blk);
3398 
3399 			if (psize != zio->io_size)
3400 				return (B_TRUE);
3401 
3402 			ddt_exit(ddt);
3403 
3404 			tmpabd = abd_alloc_for_io(psize, B_TRUE);
3405 
3406 			error = zio_wait(zio_read(NULL, spa, &blk, tmpabd,
3407 			    psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
3408 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3409 			    ZIO_FLAG_RAW, &zio->io_bookmark));
3410 
3411 			if (error == 0) {
3412 				if (abd_cmp(tmpabd, zio->io_abd) != 0)
3413 					error = SET_ERROR(ENOENT);
3414 			}
3415 
3416 			abd_free(tmpabd);
3417 			ddt_enter(ddt);
3418 			return (error != 0);
3419 		} else if (ddp->ddp_phys_birth != 0) {
3420 			arc_buf_t *abuf = NULL;
3421 			arc_flags_t aflags = ARC_FLAG_WAIT;
3422 			blkptr_t blk = *zio->io_bp;
3423 			int error;
3424 
3425 			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
3426 
3427 			if (BP_GET_LSIZE(&blk) != zio->io_orig_size)
3428 				return (B_TRUE);
3429 
3430 			ddt_exit(ddt);
3431 
3432 			error = arc_read(NULL, spa, &blk,
3433 			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
3434 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3435 			    &aflags, &zio->io_bookmark);
3436 
3437 			if (error == 0) {
3438 				if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data,
3439 				    zio->io_orig_size) != 0)
3440 					error = SET_ERROR(ENOENT);
3441 				arc_buf_destroy(abuf, &abuf);
3442 			}
3443 
3444 			ddt_enter(ddt);
3445 			return (error != 0);
3446 		}
3447 	}
3448 
3449 	return (B_FALSE);
3450 }
3451 
3452 static void
3453 zio_ddt_child_write_ready(zio_t *zio)
3454 {
3455 	int p = zio->io_prop.zp_copies;
3456 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3457 	ddt_entry_t *dde = zio->io_private;
3458 	ddt_phys_t *ddp = &dde->dde_phys[p];
3459 	zio_t *pio;
3460 
3461 	if (zio->io_error)
3462 		return;
3463 
3464 	ddt_enter(ddt);
3465 
3466 	ASSERT(dde->dde_lead_zio[p] == zio);
3467 
3468 	ddt_phys_fill(ddp, zio->io_bp);
3469 
3470 	zio_link_t *zl = NULL;
3471 	while ((pio = zio_walk_parents(zio, &zl)) != NULL)
3472 		ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
3473 
3474 	ddt_exit(ddt);
3475 }
3476 
3477 static void
3478 zio_ddt_child_write_done(zio_t *zio)
3479 {
3480 	int p = zio->io_prop.zp_copies;
3481 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3482 	ddt_entry_t *dde = zio->io_private;
3483 	ddt_phys_t *ddp = &dde->dde_phys[p];
3484 
3485 	ddt_enter(ddt);
3486 
3487 	ASSERT(ddp->ddp_refcnt == 0);
3488 	ASSERT(dde->dde_lead_zio[p] == zio);
3489 	dde->dde_lead_zio[p] = NULL;
3490 
3491 	if (zio->io_error == 0) {
3492 		zio_link_t *zl = NULL;
3493 		while (zio_walk_parents(zio, &zl) != NULL)
3494 			ddt_phys_addref(ddp);
3495 	} else {
3496 		ddt_phys_clear(ddp);
3497 	}
3498 
3499 	ddt_exit(ddt);
3500 }
3501 
3502 static zio_t *
3503 zio_ddt_write(zio_t *zio)
3504 {
3505 	spa_t *spa = zio->io_spa;
3506 	blkptr_t *bp = zio->io_bp;
3507 	uint64_t txg = zio->io_txg;
3508 	zio_prop_t *zp = &zio->io_prop;
3509 	int p = zp->zp_copies;
3510 	zio_t *cio = NULL;
3511 	ddt_t *ddt = ddt_select(spa, bp);
3512 	ddt_entry_t *dde;
3513 	ddt_phys_t *ddp;
3514 
3515 	ASSERT(BP_GET_DEDUP(bp));
3516 	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
3517 	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
3518 	ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW)));
3519 
3520 	ddt_enter(ddt);
3521 	dde = ddt_lookup(ddt, bp, B_TRUE);
3522 	if (dde == NULL) {
3523 		/* DDT size is over its quota so no new entries */
3524 		zp->zp_dedup = B_FALSE;
3525 		BP_SET_DEDUP(bp, B_FALSE);
3526 		if (zio->io_bp_override == NULL)
3527 			zio->io_pipeline = ZIO_WRITE_PIPELINE;
3528 		ddt_exit(ddt);
3529 		return (zio);
3530 	}
3531 	ddp = &dde->dde_phys[p];
3532 
3533 	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
3534 		/*
3535 		 * If we're using a weak checksum, upgrade to a strong checksum
3536 		 * and try again.  If we're already using a strong checksum,
3537 		 * we can't resolve it, so just convert to an ordinary write.
3538 		 * (And automatically e-mail a paper to Nature?)
3539 		 */
3540 		if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
3541 		    ZCHECKSUM_FLAG_DEDUP)) {
3542 			zp->zp_checksum = spa_dedup_checksum(spa);
3543 			zio_pop_transforms(zio);
3544 			zio->io_stage = ZIO_STAGE_OPEN;
3545 			BP_ZERO(bp);
3546 		} else {
3547 			zp->zp_dedup = B_FALSE;
3548 			BP_SET_DEDUP(bp, B_FALSE);
3549 		}
3550 		ASSERT(!BP_GET_DEDUP(bp));
3551 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
3552 		ddt_exit(ddt);
3553 		return (zio);
3554 	}
3555 
3556 	if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
3557 		if (ddp->ddp_phys_birth != 0)
3558 			ddt_bp_fill(ddp, bp, txg);
3559 		if (dde->dde_lead_zio[p] != NULL)
3560 			zio_add_child(zio, dde->dde_lead_zio[p]);
3561 		else
3562 			ddt_phys_addref(ddp);
3563 	} else if (zio->io_bp_override) {
3564 		ASSERT(BP_GET_LOGICAL_BIRTH(bp) == txg);
3565 		ASSERT(BP_EQUAL(bp, zio->io_bp_override));
3566 		ddt_phys_fill(ddp, bp);
3567 		ddt_phys_addref(ddp);
3568 	} else {
3569 		cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
3570 		    zio->io_orig_size, zio->io_orig_size, zp,
3571 		    zio_ddt_child_write_ready, NULL,
3572 		    zio_ddt_child_write_done, dde, zio->io_priority,
3573 		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
3574 
3575 		zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL);
3576 		dde->dde_lead_zio[p] = cio;
3577 	}
3578 
3579 	ddt_exit(ddt);
3580 
3581 	zio_nowait(cio);
3582 
3583 	return (zio);
3584 }
3585 
3586 static ddt_entry_t *freedde; /* for debugging */
3587 
3588 static zio_t *
3589 zio_ddt_free(zio_t *zio)
3590 {
3591 	spa_t *spa = zio->io_spa;
3592 	blkptr_t *bp = zio->io_bp;
3593 	ddt_t *ddt = ddt_select(spa, bp);
3594 	ddt_entry_t *dde;
3595 	ddt_phys_t *ddp;
3596 
3597 	ASSERT(BP_GET_DEDUP(bp));
3598 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3599 
3600 	ddt_enter(ddt);
3601 	freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
3602 	if (dde) {
3603 		ddp = ddt_phys_select(dde, bp);
3604 		if (ddp)
3605 			ddt_phys_decref(ddp);
3606 	}
3607 	ddt_exit(ddt);
3608 
3609 	return (zio);
3610 }
3611 
3612 /*
3613  * ==========================================================================
3614  * Allocate and free blocks
3615  * ==========================================================================
3616  */
3617 
3618 static zio_t *
3619 zio_io_to_allocate(spa_t *spa, int allocator)
3620 {
3621 	zio_t *zio;
3622 
3623 	ASSERT(MUTEX_HELD(&spa->spa_allocs[allocator].spaa_lock));
3624 
3625 	zio = avl_first(&spa->spa_allocs[allocator].spaa_tree);
3626 	if (zio == NULL)
3627 		return (NULL);
3628 
3629 	ASSERT(IO_IS_ALLOCATING(zio));
3630 	ASSERT(ZIO_HAS_ALLOCATOR(zio));
3631 
3632 	/*
3633 	 * Try to place a reservation for this zio. If we're unable to
3634 	 * reserve then we throttle.
3635 	 */
3636 	ASSERT3U(zio->io_allocator, ==, allocator);
3637 	if (!metaslab_class_throttle_reserve(zio->io_metaslab_class,
3638 	    zio->io_prop.zp_copies, allocator, zio, 0)) {
3639 		return (NULL);
3640 	}
3641 
3642 	avl_remove(&spa->spa_allocs[allocator].spaa_tree, zio);
3643 	ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE);
3644 
3645 	return (zio);
3646 }
3647 
3648 static zio_t *
3649 zio_dva_throttle(zio_t *zio)
3650 {
3651 	spa_t *spa = zio->io_spa;
3652 	zio_t *nio;
3653 	metaslab_class_t *mc;
3654 
3655 	/* locate an appropriate allocation class */
3656 	mc = spa_preferred_class(spa, zio);
3657 
3658 	if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE ||
3659 	    !mc->mc_alloc_throttle_enabled ||
3660 	    zio->io_child_type == ZIO_CHILD_GANG ||
3661 	    zio->io_flags & ZIO_FLAG_NODATA) {
3662 		return (zio);
3663 	}
3664 
3665 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3666 	ASSERT(ZIO_HAS_ALLOCATOR(zio));
3667 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3668 	ASSERT3U(zio->io_queued_timestamp, >, 0);
3669 	ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE);
3670 
3671 	int allocator = zio->io_allocator;
3672 	zio->io_metaslab_class = mc;
3673 	mutex_enter(&spa->spa_allocs[allocator].spaa_lock);
3674 	avl_add(&spa->spa_allocs[allocator].spaa_tree, zio);
3675 	nio = zio_io_to_allocate(spa, allocator);
3676 	mutex_exit(&spa->spa_allocs[allocator].spaa_lock);
3677 	return (nio);
3678 }
3679 
3680 static void
3681 zio_allocate_dispatch(spa_t *spa, int allocator)
3682 {
3683 	zio_t *zio;
3684 
3685 	mutex_enter(&spa->spa_allocs[allocator].spaa_lock);
3686 	zio = zio_io_to_allocate(spa, allocator);
3687 	mutex_exit(&spa->spa_allocs[allocator].spaa_lock);
3688 	if (zio == NULL)
3689 		return;
3690 
3691 	ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE);
3692 	ASSERT0(zio->io_error);
3693 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE);
3694 }
3695 
3696 static zio_t *
3697 zio_dva_allocate(zio_t *zio)
3698 {
3699 	spa_t *spa = zio->io_spa;
3700 	metaslab_class_t *mc;
3701 	blkptr_t *bp = zio->io_bp;
3702 	int error;
3703 	int flags = 0;
3704 
3705 	if (zio->io_gang_leader == NULL) {
3706 		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3707 		zio->io_gang_leader = zio;
3708 	}
3709 
3710 	ASSERT(BP_IS_HOLE(bp));
3711 	ASSERT0(BP_GET_NDVAS(bp));
3712 	ASSERT3U(zio->io_prop.zp_copies, >, 0);
3713 	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
3714 	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
3715 
3716 	if (zio->io_flags & ZIO_FLAG_NODATA)
3717 		flags |= METASLAB_DONT_THROTTLE;
3718 	if (zio->io_flags & ZIO_FLAG_GANG_CHILD)
3719 		flags |= METASLAB_GANG_CHILD;
3720 	if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE)
3721 		flags |= METASLAB_ASYNC_ALLOC;
3722 
3723 	/*
3724 	 * if not already chosen, locate an appropriate allocation class
3725 	 */
3726 	mc = zio->io_metaslab_class;
3727 	if (mc == NULL) {
3728 		mc = spa_preferred_class(spa, zio);
3729 		zio->io_metaslab_class = mc;
3730 	}
3731 
3732 	/*
3733 	 * Try allocating the block in the usual metaslab class.
3734 	 * If that's full, allocate it in the normal class.
3735 	 * If that's full, allocate as a gang block,
3736 	 * and if all are full, the allocation fails (which shouldn't happen).
3737 	 *
3738 	 * Note that we do not fall back on embedded slog (ZIL) space, to
3739 	 * preserve unfragmented slog space, which is critical for decent
3740 	 * sync write performance.  If a log allocation fails, we will fall
3741 	 * back to spa_sync() which is abysmal for performance.
3742 	 */
3743 	ASSERT(ZIO_HAS_ALLOCATOR(zio));
3744 	error = metaslab_alloc(spa, mc, zio->io_size, bp,
3745 	    zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3746 	    &zio->io_alloc_list, zio, zio->io_allocator);
3747 
3748 	/*
3749 	 * Fallback to normal class when an alloc class is full
3750 	 */
3751 	if (error == ENOSPC && mc != spa_normal_class(spa)) {
3752 		/*
3753 		 * When the dedup or special class is spilling into the  normal
3754 		 * class, there can still be significant space available due
3755 		 * to deferred frees that are in-flight.  We track the txg when
3756 		 * this occurred and back off adding new DDT entries for a few
3757 		 * txgs to allow the free blocks to be processed.
3758 		 */
3759 		if ((mc == spa_dedup_class(spa) || (spa_special_has_ddt(spa) &&
3760 		    mc == spa_special_class(spa))) &&
3761 		    spa->spa_dedup_class_full_txg != zio->io_txg) {
3762 			spa->spa_dedup_class_full_txg = zio->io_txg;
3763 			zfs_dbgmsg("%s[%d]: %s class spilling, req size %d, "
3764 			    "%llu allocated of %llu",
3765 			    spa_name(spa), (int)zio->io_txg,
3766 			    mc == spa_dedup_class(spa) ? "dedup" : "special",
3767 			    (int)zio->io_size,
3768 			    (u_longlong_t)metaslab_class_get_alloc(mc),
3769 			    (u_longlong_t)metaslab_class_get_space(mc));
3770 		}
3771 
3772 		/*
3773 		 * If throttling, transfer reservation over to normal class.
3774 		 * The io_allocator slot can remain the same even though we
3775 		 * are switching classes.
3776 		 */
3777 		if (mc->mc_alloc_throttle_enabled &&
3778 		    (zio->io_flags & ZIO_FLAG_IO_ALLOCATING)) {
3779 			metaslab_class_throttle_unreserve(mc,
3780 			    zio->io_prop.zp_copies, zio->io_allocator, zio);
3781 			zio->io_flags &= ~ZIO_FLAG_IO_ALLOCATING;
3782 
3783 			VERIFY(metaslab_class_throttle_reserve(
3784 			    spa_normal_class(spa),
3785 			    zio->io_prop.zp_copies, zio->io_allocator, zio,
3786 			    flags | METASLAB_MUST_RESERVE));
3787 		}
3788 		zio->io_metaslab_class = mc = spa_normal_class(spa);
3789 		if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) {
3790 			zfs_dbgmsg("%s: metaslab allocation failure, "
3791 			    "trying normal class: zio %px, size %llu, error %d",
3792 			    spa_name(spa), zio, (u_longlong_t)zio->io_size,
3793 			    error);
3794 		}
3795 
3796 		error = metaslab_alloc(spa, mc, zio->io_size, bp,
3797 		    zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3798 		    &zio->io_alloc_list, zio, zio->io_allocator);
3799 	}
3800 
3801 	if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) {
3802 		if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) {
3803 			zfs_dbgmsg("%s: metaslab allocation failure, "
3804 			    "trying ganging: zio %px, size %llu, error %d",
3805 			    spa_name(spa), zio, (u_longlong_t)zio->io_size,
3806 			    error);
3807 		}
3808 		return (zio_write_gang_block(zio, mc));
3809 	}
3810 	if (error != 0) {
3811 		if (error != ENOSPC ||
3812 		    (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC)) {
3813 			zfs_dbgmsg("%s: metaslab allocation failure: zio %px, "
3814 			    "size %llu, error %d",
3815 			    spa_name(spa), zio, (u_longlong_t)zio->io_size,
3816 			    error);
3817 		}
3818 		zio->io_error = error;
3819 	}
3820 
3821 	return (zio);
3822 }
3823 
3824 static zio_t *
3825 zio_dva_free(zio_t *zio)
3826 {
3827 	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
3828 
3829 	return (zio);
3830 }
3831 
3832 static zio_t *
3833 zio_dva_claim(zio_t *zio)
3834 {
3835 	int error;
3836 
3837 	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
3838 	if (error)
3839 		zio->io_error = error;
3840 
3841 	return (zio);
3842 }
3843 
3844 /*
3845  * Undo an allocation.  This is used by zio_done() when an I/O fails
3846  * and we want to give back the block we just allocated.
3847  * This handles both normal blocks and gang blocks.
3848  */
3849 static void
3850 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
3851 {
3852 	ASSERT(BP_GET_LOGICAL_BIRTH(bp) == zio->io_txg || BP_IS_HOLE(bp));
3853 	ASSERT(zio->io_bp_override == NULL);
3854 
3855 	if (!BP_IS_HOLE(bp)) {
3856 		metaslab_free(zio->io_spa, bp, BP_GET_LOGICAL_BIRTH(bp),
3857 		    B_TRUE);
3858 	}
3859 
3860 	if (gn != NULL) {
3861 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
3862 			zio_dva_unallocate(zio, gn->gn_child[g],
3863 			    &gn->gn_gbh->zg_blkptr[g]);
3864 		}
3865 	}
3866 }
3867 
3868 /*
3869  * Try to allocate an intent log block.  Return 0 on success, errno on failure.
3870  */
3871 int
3872 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp,
3873     uint64_t size, boolean_t *slog)
3874 {
3875 	int error = 1;
3876 	zio_alloc_list_t io_alloc_list;
3877 
3878 	ASSERT(txg > spa_syncing_txg(spa));
3879 
3880 	metaslab_trace_init(&io_alloc_list);
3881 
3882 	/*
3883 	 * Block pointer fields are useful to metaslabs for stats and debugging.
3884 	 * Fill in the obvious ones before calling into metaslab_alloc().
3885 	 */
3886 	BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3887 	BP_SET_PSIZE(new_bp, size);
3888 	BP_SET_LEVEL(new_bp, 0);
3889 
3890 	/*
3891 	 * When allocating a zil block, we don't have information about
3892 	 * the final destination of the block except the objset it's part
3893 	 * of, so we just hash the objset ID to pick the allocator to get
3894 	 * some parallelism.
3895 	 */
3896 	int flags = METASLAB_ZIL;
3897 	int allocator = (uint_t)cityhash4(0, 0, 0,
3898 	    os->os_dsl_dataset->ds_object) % spa->spa_alloc_count;
3899 	error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1,
3900 	    txg, NULL, flags, &io_alloc_list, NULL, allocator);
3901 	*slog = (error == 0);
3902 	if (error != 0) {
3903 		error = metaslab_alloc(spa, spa_embedded_log_class(spa), size,
3904 		    new_bp, 1, txg, NULL, flags,
3905 		    &io_alloc_list, NULL, allocator);
3906 	}
3907 	if (error != 0) {
3908 		error = metaslab_alloc(spa, spa_normal_class(spa), size,
3909 		    new_bp, 1, txg, NULL, flags,
3910 		    &io_alloc_list, NULL, allocator);
3911 	}
3912 	metaslab_trace_fini(&io_alloc_list);
3913 
3914 	if (error == 0) {
3915 		BP_SET_LSIZE(new_bp, size);
3916 		BP_SET_PSIZE(new_bp, size);
3917 		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
3918 		BP_SET_CHECKSUM(new_bp,
3919 		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL
3920 		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
3921 		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3922 		BP_SET_LEVEL(new_bp, 0);
3923 		BP_SET_DEDUP(new_bp, 0);
3924 		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
3925 
3926 		/*
3927 		 * encrypted blocks will require an IV and salt. We generate
3928 		 * these now since we will not be rewriting the bp at
3929 		 * rewrite time.
3930 		 */
3931 		if (os->os_encrypted) {
3932 			uint8_t iv[ZIO_DATA_IV_LEN];
3933 			uint8_t salt[ZIO_DATA_SALT_LEN];
3934 
3935 			BP_SET_CRYPT(new_bp, B_TRUE);
3936 			VERIFY0(spa_crypt_get_salt(spa,
3937 			    dmu_objset_id(os), salt));
3938 			VERIFY0(zio_crypt_generate_iv(iv));
3939 
3940 			zio_crypt_encode_params_bp(new_bp, salt, iv);
3941 		}
3942 	} else {
3943 		zfs_dbgmsg("%s: zil block allocation failure: "
3944 		    "size %llu, error %d", spa_name(spa), (u_longlong_t)size,
3945 		    error);
3946 	}
3947 
3948 	return (error);
3949 }
3950 
3951 /*
3952  * ==========================================================================
3953  * Read and write to physical devices
3954  * ==========================================================================
3955  */
3956 
3957 /*
3958  * Issue an I/O to the underlying vdev. Typically the issue pipeline
3959  * stops after this stage and will resume upon I/O completion.
3960  * However, there are instances where the vdev layer may need to
3961  * continue the pipeline when an I/O was not issued. Since the I/O
3962  * that was sent to the vdev layer might be different than the one
3963  * currently active in the pipeline (see vdev_queue_io()), we explicitly
3964  * force the underlying vdev layers to call either zio_execute() or
3965  * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
3966  */
3967 static zio_t *
3968 zio_vdev_io_start(zio_t *zio)
3969 {
3970 	vdev_t *vd = zio->io_vd;
3971 	uint64_t align;
3972 	spa_t *spa = zio->io_spa;
3973 
3974 	zio->io_delay = 0;
3975 
3976 	ASSERT(zio->io_error == 0);
3977 	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
3978 
3979 	if (vd == NULL) {
3980 		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3981 			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
3982 
3983 		/*
3984 		 * The mirror_ops handle multiple DVAs in a single BP.
3985 		 */
3986 		vdev_mirror_ops.vdev_op_io_start(zio);
3987 		return (NULL);
3988 	}
3989 
3990 	ASSERT3P(zio->io_logical, !=, zio);
3991 	if (zio->io_type == ZIO_TYPE_WRITE) {
3992 		ASSERT(spa->spa_trust_config);
3993 
3994 		/*
3995 		 * Note: the code can handle other kinds of writes,
3996 		 * but we don't expect them.
3997 		 */
3998 		if (zio->io_vd->vdev_noalloc) {
3999 			ASSERT(zio->io_flags &
4000 			    (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL |
4001 			    ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE));
4002 		}
4003 	}
4004 
4005 	align = 1ULL << vd->vdev_top->vdev_ashift;
4006 
4007 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
4008 	    P2PHASE(zio->io_size, align) != 0) {
4009 		/* Transform logical writes to be a full physical block size. */
4010 		uint64_t asize = P2ROUNDUP(zio->io_size, align);
4011 		abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize);
4012 		ASSERT(vd == vd->vdev_top);
4013 		if (zio->io_type == ZIO_TYPE_WRITE) {
4014 			abd_copy(abuf, zio->io_abd, zio->io_size);
4015 			abd_zero_off(abuf, zio->io_size, asize - zio->io_size);
4016 		}
4017 		zio_push_transform(zio, abuf, asize, asize, zio_subblock);
4018 	}
4019 
4020 	/*
4021 	 * If this is not a physical io, make sure that it is properly aligned
4022 	 * before proceeding.
4023 	 */
4024 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
4025 		ASSERT0(P2PHASE(zio->io_offset, align));
4026 		ASSERT0(P2PHASE(zio->io_size, align));
4027 	} else {
4028 		/*
4029 		 * For physical writes, we allow 512b aligned writes and assume
4030 		 * the device will perform a read-modify-write as necessary.
4031 		 */
4032 		ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
4033 		ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
4034 	}
4035 
4036 	VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
4037 
4038 	/*
4039 	 * If this is a repair I/O, and there's no self-healing involved --
4040 	 * that is, we're just resilvering what we expect to resilver --
4041 	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
4042 	 * This prevents spurious resilvering.
4043 	 *
4044 	 * There are a few ways that we can end up creating these spurious
4045 	 * resilver i/os:
4046 	 *
4047 	 * 1. A resilver i/o will be issued if any DVA in the BP has a
4048 	 * dirty DTL.  The mirror code will issue resilver writes to
4049 	 * each DVA, including the one(s) that are not on vdevs with dirty
4050 	 * DTLs.
4051 	 *
4052 	 * 2. With nested replication, which happens when we have a
4053 	 * "replacing" or "spare" vdev that's a child of a mirror or raidz.
4054 	 * For example, given mirror(replacing(A+B), C), it's likely that
4055 	 * only A is out of date (it's the new device). In this case, we'll
4056 	 * read from C, then use the data to resilver A+B -- but we don't
4057 	 * actually want to resilver B, just A. The top-level mirror has no
4058 	 * way to know this, so instead we just discard unnecessary repairs
4059 	 * as we work our way down the vdev tree.
4060 	 *
4061 	 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc.
4062 	 * The same logic applies to any form of nested replication: ditto
4063 	 * + mirror, RAID-Z + replacing, etc.
4064 	 *
4065 	 * However, indirect vdevs point off to other vdevs which may have
4066 	 * DTL's, so we never bypass them.  The child i/os on concrete vdevs
4067 	 * will be properly bypassed instead.
4068 	 *
4069 	 * Leaf DTL_PARTIAL can be empty when a legitimate write comes from
4070 	 * a dRAID spare vdev. For example, when a dRAID spare is first
4071 	 * used, its spare blocks need to be written to but the leaf vdev's
4072 	 * of such blocks can have empty DTL_PARTIAL.
4073 	 *
4074 	 * There seemed no clean way to allow such writes while bypassing
4075 	 * spurious ones. At this point, just avoid all bypassing for dRAID
4076 	 * for correctness.
4077 	 */
4078 	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
4079 	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
4080 	    zio->io_txg != 0 &&	/* not a delegated i/o */
4081 	    vd->vdev_ops != &vdev_indirect_ops &&
4082 	    vd->vdev_top->vdev_ops != &vdev_draid_ops &&
4083 	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
4084 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
4085 		zio_vdev_io_bypass(zio);
4086 		return (zio);
4087 	}
4088 
4089 	/*
4090 	 * Select the next best leaf I/O to process.  Distributed spares are
4091 	 * excluded since they dispatch the I/O directly to a leaf vdev after
4092 	 * applying the dRAID mapping.
4093 	 */
4094 	if (vd->vdev_ops->vdev_op_leaf &&
4095 	    vd->vdev_ops != &vdev_draid_spare_ops &&
4096 	    (zio->io_type == ZIO_TYPE_READ ||
4097 	    zio->io_type == ZIO_TYPE_WRITE ||
4098 	    zio->io_type == ZIO_TYPE_TRIM)) {
4099 
4100 		if (zio_handle_device_injection(vd, zio, ENOSYS) != 0) {
4101 			/*
4102 			 * "no-op" injections return success, but do no actual
4103 			 * work. Just skip the remaining vdev stages.
4104 			 */
4105 			zio_vdev_io_bypass(zio);
4106 			zio_interrupt(zio);
4107 			return (NULL);
4108 		}
4109 
4110 		if ((zio = vdev_queue_io(zio)) == NULL)
4111 			return (NULL);
4112 
4113 		if (!vdev_accessible(vd, zio)) {
4114 			zio->io_error = SET_ERROR(ENXIO);
4115 			zio_interrupt(zio);
4116 			return (NULL);
4117 		}
4118 		zio->io_delay = gethrtime();
4119 	}
4120 
4121 	vd->vdev_ops->vdev_op_io_start(zio);
4122 	return (NULL);
4123 }
4124 
4125 static zio_t *
4126 zio_vdev_io_done(zio_t *zio)
4127 {
4128 	vdev_t *vd = zio->io_vd;
4129 	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
4130 	boolean_t unexpected_error = B_FALSE;
4131 
4132 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
4133 		return (NULL);
4134 	}
4135 
4136 	ASSERT(zio->io_type == ZIO_TYPE_READ ||
4137 	    zio->io_type == ZIO_TYPE_WRITE ||
4138 	    zio->io_type == ZIO_TYPE_FLUSH ||
4139 	    zio->io_type == ZIO_TYPE_TRIM);
4140 
4141 	if (zio->io_delay)
4142 		zio->io_delay = gethrtime() - zio->io_delay;
4143 
4144 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
4145 	    vd->vdev_ops != &vdev_draid_spare_ops) {
4146 		if (zio->io_type != ZIO_TYPE_FLUSH)
4147 			vdev_queue_io_done(zio);
4148 
4149 		if (zio_injection_enabled && zio->io_error == 0)
4150 			zio->io_error = zio_handle_device_injections(vd, zio,
4151 			    EIO, EILSEQ);
4152 
4153 		if (zio_injection_enabled && zio->io_error == 0)
4154 			zio->io_error = zio_handle_label_injection(zio, EIO);
4155 
4156 		if (zio->io_error && zio->io_type != ZIO_TYPE_FLUSH &&
4157 		    zio->io_type != ZIO_TYPE_TRIM) {
4158 			if (!vdev_accessible(vd, zio)) {
4159 				zio->io_error = SET_ERROR(ENXIO);
4160 			} else {
4161 				unexpected_error = B_TRUE;
4162 			}
4163 		}
4164 	}
4165 
4166 	ops->vdev_op_io_done(zio);
4167 
4168 	if (unexpected_error && vd->vdev_remove_wanted == B_FALSE)
4169 		VERIFY(vdev_probe(vd, zio) == NULL);
4170 
4171 	return (zio);
4172 }
4173 
4174 /*
4175  * This function is used to change the priority of an existing zio that is
4176  * currently in-flight. This is used by the arc to upgrade priority in the
4177  * event that a demand read is made for a block that is currently queued
4178  * as a scrub or async read IO. Otherwise, the high priority read request
4179  * would end up having to wait for the lower priority IO.
4180  */
4181 void
4182 zio_change_priority(zio_t *pio, zio_priority_t priority)
4183 {
4184 	zio_t *cio, *cio_next;
4185 	zio_link_t *zl = NULL;
4186 
4187 	ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
4188 
4189 	if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) {
4190 		vdev_queue_change_io_priority(pio, priority);
4191 	} else {
4192 		pio->io_priority = priority;
4193 	}
4194 
4195 	mutex_enter(&pio->io_lock);
4196 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
4197 		cio_next = zio_walk_children(pio, &zl);
4198 		zio_change_priority(cio, priority);
4199 	}
4200 	mutex_exit(&pio->io_lock);
4201 }
4202 
4203 /*
4204  * For non-raidz ZIOs, we can just copy aside the bad data read from the
4205  * disk, and use that to finish the checksum ereport later.
4206  */
4207 static void
4208 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
4209     const abd_t *good_buf)
4210 {
4211 	/* no processing needed */
4212 	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
4213 }
4214 
4215 void
4216 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr)
4217 {
4218 	void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size);
4219 
4220 	abd_copy(abd, zio->io_abd, zio->io_size);
4221 
4222 	zcr->zcr_cbinfo = zio->io_size;
4223 	zcr->zcr_cbdata = abd;
4224 	zcr->zcr_finish = zio_vsd_default_cksum_finish;
4225 	zcr->zcr_free = zio_abd_free;
4226 }
4227 
4228 static zio_t *
4229 zio_vdev_io_assess(zio_t *zio)
4230 {
4231 	vdev_t *vd = zio->io_vd;
4232 
4233 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
4234 		return (NULL);
4235 	}
4236 
4237 	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
4238 		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
4239 
4240 	if (zio->io_vsd != NULL) {
4241 		zio->io_vsd_ops->vsd_free(zio);
4242 		zio->io_vsd = NULL;
4243 	}
4244 
4245 	if (zio_injection_enabled && zio->io_error == 0)
4246 		zio->io_error = zio_handle_fault_injection(zio, EIO);
4247 
4248 	/*
4249 	 * If the I/O failed, determine whether we should attempt to retry it.
4250 	 *
4251 	 * On retry, we cut in line in the issue queue, since we don't want
4252 	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
4253 	 */
4254 	if (zio->io_error && vd == NULL &&
4255 	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
4256 		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
4257 		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
4258 		zio->io_error = 0;
4259 		zio->io_flags |= ZIO_FLAG_IO_RETRY | ZIO_FLAG_DONT_AGGREGATE;
4260 		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
4261 		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
4262 		    zio_requeue_io_start_cut_in_line);
4263 		return (NULL);
4264 	}
4265 
4266 	/*
4267 	 * If we got an error on a leaf device, convert it to ENXIO
4268 	 * if the device is not accessible at all.
4269 	 */
4270 	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
4271 	    !vdev_accessible(vd, zio))
4272 		zio->io_error = SET_ERROR(ENXIO);
4273 
4274 	/*
4275 	 * If we can't write to an interior vdev (mirror or RAID-Z),
4276 	 * set vdev_cant_write so that we stop trying to allocate from it.
4277 	 */
4278 	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
4279 	    vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
4280 		vdev_dbgmsg(vd, "zio_vdev_io_assess(zio=%px) setting "
4281 		    "cant_write=TRUE due to write failure with ENXIO",
4282 		    zio);
4283 		vd->vdev_cant_write = B_TRUE;
4284 	}
4285 
4286 	/*
4287 	 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future
4288 	 * attempts will ever succeed. In this case we set a persistent
4289 	 * boolean flag so that we don't bother with it in the future.
4290 	 */
4291 	if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) &&
4292 	    zio->io_type == ZIO_TYPE_FLUSH && vd != NULL)
4293 		vd->vdev_nowritecache = B_TRUE;
4294 
4295 	if (zio->io_error)
4296 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4297 
4298 	return (zio);
4299 }
4300 
4301 void
4302 zio_vdev_io_reissue(zio_t *zio)
4303 {
4304 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
4305 	ASSERT(zio->io_error == 0);
4306 
4307 	zio->io_stage >>= 1;
4308 }
4309 
4310 void
4311 zio_vdev_io_redone(zio_t *zio)
4312 {
4313 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
4314 
4315 	zio->io_stage >>= 1;
4316 }
4317 
4318 void
4319 zio_vdev_io_bypass(zio_t *zio)
4320 {
4321 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
4322 	ASSERT(zio->io_error == 0);
4323 
4324 	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
4325 	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
4326 }
4327 
4328 /*
4329  * ==========================================================================
4330  * Encrypt and store encryption parameters
4331  * ==========================================================================
4332  */
4333 
4334 
4335 /*
4336  * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for
4337  * managing the storage of encryption parameters and passing them to the
4338  * lower-level encryption functions.
4339  */
4340 static zio_t *
4341 zio_encrypt(zio_t *zio)
4342 {
4343 	zio_prop_t *zp = &zio->io_prop;
4344 	spa_t *spa = zio->io_spa;
4345 	blkptr_t *bp = zio->io_bp;
4346 	uint64_t psize = BP_GET_PSIZE(bp);
4347 	uint64_t dsobj = zio->io_bookmark.zb_objset;
4348 	dmu_object_type_t ot = BP_GET_TYPE(bp);
4349 	void *enc_buf = NULL;
4350 	abd_t *eabd = NULL;
4351 	uint8_t salt[ZIO_DATA_SALT_LEN];
4352 	uint8_t iv[ZIO_DATA_IV_LEN];
4353 	uint8_t mac[ZIO_DATA_MAC_LEN];
4354 	boolean_t no_crypt = B_FALSE;
4355 
4356 	/* the root zio already encrypted the data */
4357 	if (zio->io_child_type == ZIO_CHILD_GANG)
4358 		return (zio);
4359 
4360 	/* only ZIL blocks are re-encrypted on rewrite */
4361 	if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG)
4362 		return (zio);
4363 
4364 	if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) {
4365 		BP_SET_CRYPT(bp, B_FALSE);
4366 		return (zio);
4367 	}
4368 
4369 	/* if we are doing raw encryption set the provided encryption params */
4370 	if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) {
4371 		ASSERT0(BP_GET_LEVEL(bp));
4372 		BP_SET_CRYPT(bp, B_TRUE);
4373 		BP_SET_BYTEORDER(bp, zp->zp_byteorder);
4374 		if (ot != DMU_OT_OBJSET)
4375 			zio_crypt_encode_mac_bp(bp, zp->zp_mac);
4376 
4377 		/* dnode blocks must be written out in the provided byteorder */
4378 		if (zp->zp_byteorder != ZFS_HOST_BYTEORDER &&
4379 		    ot == DMU_OT_DNODE) {
4380 			void *bswap_buf = zio_buf_alloc(psize);
4381 			abd_t *babd = abd_get_from_buf(bswap_buf, psize);
4382 
4383 			ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4384 			abd_copy_to_buf(bswap_buf, zio->io_abd, psize);
4385 			dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf,
4386 			    psize);
4387 
4388 			abd_take_ownership_of_buf(babd, B_TRUE);
4389 			zio_push_transform(zio, babd, psize, psize, NULL);
4390 		}
4391 
4392 		if (DMU_OT_IS_ENCRYPTED(ot))
4393 			zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv);
4394 		return (zio);
4395 	}
4396 
4397 	/* indirect blocks only maintain a cksum of the lower level MACs */
4398 	if (BP_GET_LEVEL(bp) > 0) {
4399 		BP_SET_CRYPT(bp, B_TRUE);
4400 		VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE,
4401 		    zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp),
4402 		    mac));
4403 		zio_crypt_encode_mac_bp(bp, mac);
4404 		return (zio);
4405 	}
4406 
4407 	/*
4408 	 * Objset blocks are a special case since they have 2 256-bit MACs
4409 	 * embedded within them.
4410 	 */
4411 	if (ot == DMU_OT_OBJSET) {
4412 		ASSERT0(DMU_OT_IS_ENCRYPTED(ot));
4413 		ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4414 		BP_SET_CRYPT(bp, B_TRUE);
4415 		VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj,
4416 		    zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp)));
4417 		return (zio);
4418 	}
4419 
4420 	/* unencrypted object types are only authenticated with a MAC */
4421 	if (!DMU_OT_IS_ENCRYPTED(ot)) {
4422 		BP_SET_CRYPT(bp, B_TRUE);
4423 		VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj,
4424 		    zio->io_abd, psize, mac));
4425 		zio_crypt_encode_mac_bp(bp, mac);
4426 		return (zio);
4427 	}
4428 
4429 	/*
4430 	 * Later passes of sync-to-convergence may decide to rewrite data
4431 	 * in place to avoid more disk reallocations. This presents a problem
4432 	 * for encryption because this constitutes rewriting the new data with
4433 	 * the same encryption key and IV. However, this only applies to blocks
4434 	 * in the MOS (particularly the spacemaps) and we do not encrypt the
4435 	 * MOS. We assert that the zio is allocating or an intent log write
4436 	 * to enforce this.
4437 	 */
4438 	ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG);
4439 	ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG);
4440 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION));
4441 	ASSERT3U(psize, !=, 0);
4442 
4443 	enc_buf = zio_buf_alloc(psize);
4444 	eabd = abd_get_from_buf(enc_buf, psize);
4445 	abd_take_ownership_of_buf(eabd, B_TRUE);
4446 
4447 	/*
4448 	 * For an explanation of what encryption parameters are stored
4449 	 * where, see the block comment in zio_crypt.c.
4450 	 */
4451 	if (ot == DMU_OT_INTENT_LOG) {
4452 		zio_crypt_decode_params_bp(bp, salt, iv);
4453 	} else {
4454 		BP_SET_CRYPT(bp, B_TRUE);
4455 	}
4456 
4457 	/* Perform the encryption. This should not fail */
4458 	VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark,
4459 	    BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
4460 	    salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt));
4461 
4462 	/* encode encryption metadata into the bp */
4463 	if (ot == DMU_OT_INTENT_LOG) {
4464 		/*
4465 		 * ZIL blocks store the MAC in the embedded checksum, so the
4466 		 * transform must always be applied.
4467 		 */
4468 		zio_crypt_encode_mac_zil(enc_buf, mac);
4469 		zio_push_transform(zio, eabd, psize, psize, NULL);
4470 	} else {
4471 		BP_SET_CRYPT(bp, B_TRUE);
4472 		zio_crypt_encode_params_bp(bp, salt, iv);
4473 		zio_crypt_encode_mac_bp(bp, mac);
4474 
4475 		if (no_crypt) {
4476 			ASSERT3U(ot, ==, DMU_OT_DNODE);
4477 			abd_free(eabd);
4478 		} else {
4479 			zio_push_transform(zio, eabd, psize, psize, NULL);
4480 		}
4481 	}
4482 
4483 	return (zio);
4484 }
4485 
4486 /*
4487  * ==========================================================================
4488  * Generate and verify checksums
4489  * ==========================================================================
4490  */
4491 static zio_t *
4492 zio_checksum_generate(zio_t *zio)
4493 {
4494 	blkptr_t *bp = zio->io_bp;
4495 	enum zio_checksum checksum;
4496 
4497 	if (bp == NULL) {
4498 		/*
4499 		 * This is zio_write_phys().
4500 		 * We're either generating a label checksum, or none at all.
4501 		 */
4502 		checksum = zio->io_prop.zp_checksum;
4503 
4504 		if (checksum == ZIO_CHECKSUM_OFF)
4505 			return (zio);
4506 
4507 		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
4508 	} else {
4509 		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
4510 			ASSERT(!IO_IS_ALLOCATING(zio));
4511 			checksum = ZIO_CHECKSUM_GANG_HEADER;
4512 		} else {
4513 			checksum = BP_GET_CHECKSUM(bp);
4514 		}
4515 	}
4516 
4517 	zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size);
4518 
4519 	return (zio);
4520 }
4521 
4522 static zio_t *
4523 zio_checksum_verify(zio_t *zio)
4524 {
4525 	zio_bad_cksum_t info;
4526 	blkptr_t *bp = zio->io_bp;
4527 	int error;
4528 
4529 	ASSERT(zio->io_vd != NULL);
4530 
4531 	if (bp == NULL) {
4532 		/*
4533 		 * This is zio_read_phys().
4534 		 * We're either verifying a label checksum, or nothing at all.
4535 		 */
4536 		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
4537 			return (zio);
4538 
4539 		ASSERT3U(zio->io_prop.zp_checksum, ==, ZIO_CHECKSUM_LABEL);
4540 	}
4541 
4542 	if ((error = zio_checksum_error(zio, &info)) != 0) {
4543 		zio->io_error = error;
4544 		if (error == ECKSUM &&
4545 		    !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
4546 			mutex_enter(&zio->io_vd->vdev_stat_lock);
4547 			zio->io_vd->vdev_stat.vs_checksum_errors++;
4548 			mutex_exit(&zio->io_vd->vdev_stat_lock);
4549 			(void) zfs_ereport_start_checksum(zio->io_spa,
4550 			    zio->io_vd, &zio->io_bookmark, zio,
4551 			    zio->io_offset, zio->io_size, &info);
4552 		}
4553 	}
4554 
4555 	return (zio);
4556 }
4557 
4558 /*
4559  * Called by RAID-Z to ensure we don't compute the checksum twice.
4560  */
4561 void
4562 zio_checksum_verified(zio_t *zio)
4563 {
4564 	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
4565 }
4566 
4567 /*
4568  * ==========================================================================
4569  * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
4570  * An error of 0 indicates success.  ENXIO indicates whole-device failure,
4571  * which may be transient (e.g. unplugged) or permanent.  ECKSUM and EIO
4572  * indicate errors that are specific to one I/O, and most likely permanent.
4573  * Any other error is presumed to be worse because we weren't expecting it.
4574  * ==========================================================================
4575  */
4576 int
4577 zio_worst_error(int e1, int e2)
4578 {
4579 	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
4580 	int r1, r2;
4581 
4582 	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
4583 		if (e1 == zio_error_rank[r1])
4584 			break;
4585 
4586 	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
4587 		if (e2 == zio_error_rank[r2])
4588 			break;
4589 
4590 	return (r1 > r2 ? e1 : e2);
4591 }
4592 
4593 /*
4594  * ==========================================================================
4595  * I/O completion
4596  * ==========================================================================
4597  */
4598 static zio_t *
4599 zio_ready(zio_t *zio)
4600 {
4601 	blkptr_t *bp = zio->io_bp;
4602 	zio_t *pio, *pio_next;
4603 	zio_link_t *zl = NULL;
4604 
4605 	if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
4606 	    ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT, ZIO_WAIT_READY)) {
4607 		return (NULL);
4608 	}
4609 
4610 	if (zio->io_ready) {
4611 		ASSERT(IO_IS_ALLOCATING(zio));
4612 		ASSERT(BP_GET_LOGICAL_BIRTH(bp) == zio->io_txg ||
4613 		    BP_IS_HOLE(bp) || (zio->io_flags & ZIO_FLAG_NOPWRITE));
4614 		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
4615 
4616 		zio->io_ready(zio);
4617 	}
4618 
4619 #ifdef ZFS_DEBUG
4620 	if (bp != NULL && bp != &zio->io_bp_copy)
4621 		zio->io_bp_copy = *bp;
4622 #endif
4623 
4624 	if (zio->io_error != 0) {
4625 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4626 
4627 		if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4628 			ASSERT(IO_IS_ALLOCATING(zio));
4629 			ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4630 			ASSERT(zio->io_metaslab_class != NULL);
4631 			ASSERT(ZIO_HAS_ALLOCATOR(zio));
4632 
4633 			/*
4634 			 * We were unable to allocate anything, unreserve and
4635 			 * issue the next I/O to allocate.
4636 			 */
4637 			metaslab_class_throttle_unreserve(
4638 			    zio->io_metaslab_class, zio->io_prop.zp_copies,
4639 			    zio->io_allocator, zio);
4640 			zio_allocate_dispatch(zio->io_spa, zio->io_allocator);
4641 		}
4642 	}
4643 
4644 	mutex_enter(&zio->io_lock);
4645 	zio->io_state[ZIO_WAIT_READY] = 1;
4646 	pio = zio_walk_parents(zio, &zl);
4647 	mutex_exit(&zio->io_lock);
4648 
4649 	/*
4650 	 * As we notify zio's parents, new parents could be added.
4651 	 * New parents go to the head of zio's io_parent_list, however,
4652 	 * so we will (correctly) not notify them.  The remainder of zio's
4653 	 * io_parent_list, from 'pio_next' onward, cannot change because
4654 	 * all parents must wait for us to be done before they can be done.
4655 	 */
4656 	for (; pio != NULL; pio = pio_next) {
4657 		pio_next = zio_walk_parents(zio, &zl);
4658 		zio_notify_parent(pio, zio, ZIO_WAIT_READY, NULL);
4659 	}
4660 
4661 	if (zio->io_flags & ZIO_FLAG_NODATA) {
4662 		if (bp != NULL && BP_IS_GANG(bp)) {
4663 			zio->io_flags &= ~ZIO_FLAG_NODATA;
4664 		} else {
4665 			ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE);
4666 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
4667 		}
4668 	}
4669 
4670 	if (zio_injection_enabled &&
4671 	    zio->io_spa->spa_syncing_txg == zio->io_txg)
4672 		zio_handle_ignored_writes(zio);
4673 
4674 	return (zio);
4675 }
4676 
4677 /*
4678  * Update the allocation throttle accounting.
4679  */
4680 static void
4681 zio_dva_throttle_done(zio_t *zio)
4682 {
4683 	zio_t *lio __maybe_unused = zio->io_logical;
4684 	zio_t *pio = zio_unique_parent(zio);
4685 	vdev_t *vd = zio->io_vd;
4686 	int flags = METASLAB_ASYNC_ALLOC;
4687 
4688 	ASSERT3P(zio->io_bp, !=, NULL);
4689 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
4690 	ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE);
4691 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
4692 	ASSERT(vd != NULL);
4693 	ASSERT3P(vd, ==, vd->vdev_top);
4694 	ASSERT(zio_injection_enabled || !(zio->io_flags & ZIO_FLAG_IO_RETRY));
4695 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4696 	ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING);
4697 	ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE));
4698 	ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA));
4699 
4700 	/*
4701 	 * Parents of gang children can have two flavors -- ones that
4702 	 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set)
4703 	 * and ones that allocated the constituent blocks. The allocation
4704 	 * throttle needs to know the allocating parent zio so we must find
4705 	 * it here.
4706 	 */
4707 	if (pio->io_child_type == ZIO_CHILD_GANG) {
4708 		/*
4709 		 * If our parent is a rewrite gang child then our grandparent
4710 		 * would have been the one that performed the allocation.
4711 		 */
4712 		if (pio->io_flags & ZIO_FLAG_IO_REWRITE)
4713 			pio = zio_unique_parent(pio);
4714 		flags |= METASLAB_GANG_CHILD;
4715 	}
4716 
4717 	ASSERT(IO_IS_ALLOCATING(pio));
4718 	ASSERT(ZIO_HAS_ALLOCATOR(pio));
4719 	ASSERT3P(zio, !=, zio->io_logical);
4720 	ASSERT(zio->io_logical != NULL);
4721 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4722 	ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE);
4723 	ASSERT(zio->io_metaslab_class != NULL);
4724 
4725 	mutex_enter(&pio->io_lock);
4726 	metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags,
4727 	    pio->io_allocator, B_TRUE);
4728 	mutex_exit(&pio->io_lock);
4729 
4730 	metaslab_class_throttle_unreserve(zio->io_metaslab_class, 1,
4731 	    pio->io_allocator, pio);
4732 
4733 	/*
4734 	 * Call into the pipeline to see if there is more work that
4735 	 * needs to be done. If there is work to be done it will be
4736 	 * dispatched to another taskq thread.
4737 	 */
4738 	zio_allocate_dispatch(zio->io_spa, pio->io_allocator);
4739 }
4740 
4741 static zio_t *
4742 zio_done(zio_t *zio)
4743 {
4744 	/*
4745 	 * Always attempt to keep stack usage minimal here since
4746 	 * we can be called recursively up to 19 levels deep.
4747 	 */
4748 	const uint64_t psize = zio->io_size;
4749 	zio_t *pio, *pio_next;
4750 	zio_link_t *zl = NULL;
4751 
4752 	/*
4753 	 * If our children haven't all completed,
4754 	 * wait for them and then repeat this pipeline stage.
4755 	 */
4756 	if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) {
4757 		return (NULL);
4758 	}
4759 
4760 	/*
4761 	 * If the allocation throttle is enabled, then update the accounting.
4762 	 * We only track child I/Os that are part of an allocating async
4763 	 * write. We must do this since the allocation is performed
4764 	 * by the logical I/O but the actual write is done by child I/Os.
4765 	 */
4766 	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING &&
4767 	    zio->io_child_type == ZIO_CHILD_VDEV) {
4768 		ASSERT(zio->io_metaslab_class != NULL);
4769 		ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled);
4770 		zio_dva_throttle_done(zio);
4771 	}
4772 
4773 	/*
4774 	 * If the allocation throttle is enabled, verify that
4775 	 * we have decremented the refcounts for every I/O that was throttled.
4776 	 */
4777 	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4778 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
4779 		ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4780 		ASSERT(zio->io_bp != NULL);
4781 		ASSERT(ZIO_HAS_ALLOCATOR(zio));
4782 
4783 		metaslab_group_alloc_verify(zio->io_spa, zio->io_bp, zio,
4784 		    zio->io_allocator);
4785 		VERIFY(zfs_refcount_not_held(&zio->io_metaslab_class->
4786 		    mc_allocator[zio->io_allocator].mca_alloc_slots, zio));
4787 	}
4788 
4789 
4790 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
4791 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
4792 			ASSERT(zio->io_children[c][w] == 0);
4793 
4794 	if (zio->io_bp != NULL && !BP_IS_EMBEDDED(zio->io_bp)) {
4795 		ASSERT(zio->io_bp->blk_pad[0] == 0);
4796 		ASSERT(zio->io_bp->blk_pad[1] == 0);
4797 		ASSERT(memcmp(zio->io_bp, &zio->io_bp_copy,
4798 		    sizeof (blkptr_t)) == 0 ||
4799 		    (zio->io_bp == zio_unique_parent(zio)->io_bp));
4800 		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) &&
4801 		    zio->io_bp_override == NULL &&
4802 		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
4803 			ASSERT3U(zio->io_prop.zp_copies, <=,
4804 			    BP_GET_NDVAS(zio->io_bp));
4805 			ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 ||
4806 			    (BP_COUNT_GANG(zio->io_bp) ==
4807 			    BP_GET_NDVAS(zio->io_bp)));
4808 		}
4809 		if (zio->io_flags & ZIO_FLAG_NOPWRITE)
4810 			VERIFY(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
4811 	}
4812 
4813 	/*
4814 	 * If there were child vdev/gang/ddt errors, they apply to us now.
4815 	 */
4816 	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
4817 	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
4818 	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
4819 
4820 	/*
4821 	 * If the I/O on the transformed data was successful, generate any
4822 	 * checksum reports now while we still have the transformed data.
4823 	 */
4824 	if (zio->io_error == 0) {
4825 		while (zio->io_cksum_report != NULL) {
4826 			zio_cksum_report_t *zcr = zio->io_cksum_report;
4827 			uint64_t align = zcr->zcr_align;
4828 			uint64_t asize = P2ROUNDUP(psize, align);
4829 			abd_t *adata = zio->io_abd;
4830 
4831 			if (adata != NULL && asize != psize) {
4832 				adata = abd_alloc(asize, B_TRUE);
4833 				abd_copy(adata, zio->io_abd, psize);
4834 				abd_zero_off(adata, psize, asize - psize);
4835 			}
4836 
4837 			zio->io_cksum_report = zcr->zcr_next;
4838 			zcr->zcr_next = NULL;
4839 			zcr->zcr_finish(zcr, adata);
4840 			zfs_ereport_free_checksum(zcr);
4841 
4842 			if (adata != NULL && asize != psize)
4843 				abd_free(adata);
4844 		}
4845 	}
4846 
4847 	zio_pop_transforms(zio);	/* note: may set zio->io_error */
4848 
4849 	vdev_stat_update(zio, psize);
4850 
4851 	/*
4852 	 * If this I/O is attached to a particular vdev is slow, exceeding
4853 	 * 30 seconds to complete, post an error described the I/O delay.
4854 	 * We ignore these errors if the device is currently unavailable.
4855 	 */
4856 	if (zio->io_delay >= MSEC2NSEC(zio_slow_io_ms)) {
4857 		if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) {
4858 			/*
4859 			 * We want to only increment our slow IO counters if
4860 			 * the IO is valid (i.e. not if the drive is removed).
4861 			 *
4862 			 * zfs_ereport_post() will also do these checks, but
4863 			 * it can also ratelimit and have other failures, so we
4864 			 * need to increment the slow_io counters independent
4865 			 * of it.
4866 			 */
4867 			if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY,
4868 			    zio->io_spa, zio->io_vd, zio)) {
4869 				mutex_enter(&zio->io_vd->vdev_stat_lock);
4870 				zio->io_vd->vdev_stat.vs_slow_ios++;
4871 				mutex_exit(&zio->io_vd->vdev_stat_lock);
4872 
4873 				(void) zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
4874 				    zio->io_spa, zio->io_vd, &zio->io_bookmark,
4875 				    zio, 0);
4876 			}
4877 		}
4878 	}
4879 
4880 	if (zio->io_error) {
4881 		/*
4882 		 * If this I/O is attached to a particular vdev,
4883 		 * generate an error message describing the I/O failure
4884 		 * at the block level.  We ignore these errors if the
4885 		 * device is currently unavailable.
4886 		 */
4887 		if (zio->io_error != ECKSUM && zio->io_vd != NULL &&
4888 		    !vdev_is_dead(zio->io_vd)) {
4889 			int ret = zfs_ereport_post(FM_EREPORT_ZFS_IO,
4890 			    zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0);
4891 			if (ret != EALREADY) {
4892 				mutex_enter(&zio->io_vd->vdev_stat_lock);
4893 				if (zio->io_type == ZIO_TYPE_READ)
4894 					zio->io_vd->vdev_stat.vs_read_errors++;
4895 				else if (zio->io_type == ZIO_TYPE_WRITE)
4896 					zio->io_vd->vdev_stat.vs_write_errors++;
4897 				mutex_exit(&zio->io_vd->vdev_stat_lock);
4898 			}
4899 		}
4900 
4901 		if ((zio->io_error == EIO || !(zio->io_flags &
4902 		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
4903 		    zio == zio->io_logical) {
4904 			/*
4905 			 * For logical I/O requests, tell the SPA to log the
4906 			 * error and generate a logical data ereport.
4907 			 */
4908 			spa_log_error(zio->io_spa, &zio->io_bookmark,
4909 			    BP_GET_LOGICAL_BIRTH(zio->io_bp));
4910 			(void) zfs_ereport_post(FM_EREPORT_ZFS_DATA,
4911 			    zio->io_spa, NULL, &zio->io_bookmark, zio, 0);
4912 		}
4913 	}
4914 
4915 	if (zio->io_error && zio == zio->io_logical) {
4916 		/*
4917 		 * Determine whether zio should be reexecuted.  This will
4918 		 * propagate all the way to the root via zio_notify_parent().
4919 		 */
4920 		ASSERT(zio->io_vd == NULL && zio->io_bp != NULL);
4921 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4922 
4923 		if (IO_IS_ALLOCATING(zio) &&
4924 		    !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
4925 			if (zio->io_error != ENOSPC)
4926 				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
4927 			else
4928 				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4929 		}
4930 
4931 		if ((zio->io_type == ZIO_TYPE_READ ||
4932 		    zio->io_type == ZIO_TYPE_FREE) &&
4933 		    !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
4934 		    zio->io_error == ENXIO &&
4935 		    spa_load_state(zio->io_spa) == SPA_LOAD_NONE &&
4936 		    spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE)
4937 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4938 
4939 		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
4940 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4941 
4942 		/*
4943 		 * Here is a possibly good place to attempt to do
4944 		 * either combinatorial reconstruction or error correction
4945 		 * based on checksums.  It also might be a good place
4946 		 * to send out preliminary ereports before we suspend
4947 		 * processing.
4948 		 */
4949 	}
4950 
4951 	/*
4952 	 * If there were logical child errors, they apply to us now.
4953 	 * We defer this until now to avoid conflating logical child
4954 	 * errors with errors that happened to the zio itself when
4955 	 * updating vdev stats and reporting FMA events above.
4956 	 */
4957 	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
4958 
4959 	if ((zio->io_error || zio->io_reexecute) &&
4960 	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
4961 	    !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
4962 		zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp);
4963 
4964 	zio_gang_tree_free(&zio->io_gang_tree);
4965 
4966 	/*
4967 	 * Godfather I/Os should never suspend.
4968 	 */
4969 	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
4970 	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
4971 		zio->io_reexecute &= ~ZIO_REEXECUTE_SUSPEND;
4972 
4973 	if (zio->io_reexecute) {
4974 		/*
4975 		 * This is a logical I/O that wants to reexecute.
4976 		 *
4977 		 * Reexecute is top-down.  When an i/o fails, if it's not
4978 		 * the root, it simply notifies its parent and sticks around.
4979 		 * The parent, seeing that it still has children in zio_done(),
4980 		 * does the same.  This percolates all the way up to the root.
4981 		 * The root i/o will reexecute or suspend the entire tree.
4982 		 *
4983 		 * This approach ensures that zio_reexecute() honors
4984 		 * all the original i/o dependency relationships, e.g.
4985 		 * parents not executing until children are ready.
4986 		 */
4987 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4988 
4989 		zio->io_gang_leader = NULL;
4990 
4991 		mutex_enter(&zio->io_lock);
4992 		zio->io_state[ZIO_WAIT_DONE] = 1;
4993 		mutex_exit(&zio->io_lock);
4994 
4995 		/*
4996 		 * "The Godfather" I/O monitors its children but is
4997 		 * not a true parent to them. It will track them through
4998 		 * the pipeline but severs its ties whenever they get into
4999 		 * trouble (e.g. suspended). This allows "The Godfather"
5000 		 * I/O to return status without blocking.
5001 		 */
5002 		zl = NULL;
5003 		for (pio = zio_walk_parents(zio, &zl); pio != NULL;
5004 		    pio = pio_next) {
5005 			zio_link_t *remove_zl = zl;
5006 			pio_next = zio_walk_parents(zio, &zl);
5007 
5008 			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
5009 			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
5010 				zio_remove_child(pio, zio, remove_zl);
5011 				/*
5012 				 * This is a rare code path, so we don't
5013 				 * bother with "next_to_execute".
5014 				 */
5015 				zio_notify_parent(pio, zio, ZIO_WAIT_DONE,
5016 				    NULL);
5017 			}
5018 		}
5019 
5020 		if ((pio = zio_unique_parent(zio)) != NULL) {
5021 			/*
5022 			 * We're not a root i/o, so there's nothing to do
5023 			 * but notify our parent.  Don't propagate errors
5024 			 * upward since we haven't permanently failed yet.
5025 			 */
5026 			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
5027 			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
5028 			/*
5029 			 * This is a rare code path, so we don't bother with
5030 			 * "next_to_execute".
5031 			 */
5032 			zio_notify_parent(pio, zio, ZIO_WAIT_DONE, NULL);
5033 		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
5034 			/*
5035 			 * We'd fail again if we reexecuted now, so suspend
5036 			 * until conditions improve (e.g. device comes online).
5037 			 */
5038 			zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR);
5039 		} else {
5040 			/*
5041 			 * Reexecution is potentially a huge amount of work.
5042 			 * Hand it off to the otherwise-unused claim taskq.
5043 			 */
5044 			spa_taskq_dispatch(zio->io_spa,
5045 			    ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE,
5046 			    zio_reexecute, zio, B_FALSE);
5047 		}
5048 		return (NULL);
5049 	}
5050 
5051 	ASSERT(list_is_empty(&zio->io_child_list));
5052 	ASSERT(zio->io_reexecute == 0);
5053 	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
5054 
5055 	/*
5056 	 * Report any checksum errors, since the I/O is complete.
5057 	 */
5058 	while (zio->io_cksum_report != NULL) {
5059 		zio_cksum_report_t *zcr = zio->io_cksum_report;
5060 		zio->io_cksum_report = zcr->zcr_next;
5061 		zcr->zcr_next = NULL;
5062 		zcr->zcr_finish(zcr, NULL);
5063 		zfs_ereport_free_checksum(zcr);
5064 	}
5065 
5066 	/*
5067 	 * It is the responsibility of the done callback to ensure that this
5068 	 * particular zio is no longer discoverable for adoption, and as
5069 	 * such, cannot acquire any new parents.
5070 	 */
5071 	if (zio->io_done)
5072 		zio->io_done(zio);
5073 
5074 	mutex_enter(&zio->io_lock);
5075 	zio->io_state[ZIO_WAIT_DONE] = 1;
5076 	mutex_exit(&zio->io_lock);
5077 
5078 	/*
5079 	 * We are done executing this zio.  We may want to execute a parent
5080 	 * next.  See the comment in zio_notify_parent().
5081 	 */
5082 	zio_t *next_to_execute = NULL;
5083 	zl = NULL;
5084 	for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) {
5085 		zio_link_t *remove_zl = zl;
5086 		pio_next = zio_walk_parents(zio, &zl);
5087 		zio_remove_child(pio, zio, remove_zl);
5088 		zio_notify_parent(pio, zio, ZIO_WAIT_DONE, &next_to_execute);
5089 	}
5090 
5091 	if (zio->io_waiter != NULL) {
5092 		mutex_enter(&zio->io_lock);
5093 		zio->io_executor = NULL;
5094 		cv_broadcast(&zio->io_cv);
5095 		mutex_exit(&zio->io_lock);
5096 	} else {
5097 		zio_destroy(zio);
5098 	}
5099 
5100 	return (next_to_execute);
5101 }
5102 
5103 /*
5104  * ==========================================================================
5105  * I/O pipeline definition
5106  * ==========================================================================
5107  */
5108 static zio_pipe_stage_t *zio_pipeline[] = {
5109 	NULL,
5110 	zio_read_bp_init,
5111 	zio_write_bp_init,
5112 	zio_free_bp_init,
5113 	zio_issue_async,
5114 	zio_write_compress,
5115 	zio_encrypt,
5116 	zio_checksum_generate,
5117 	zio_nop_write,
5118 	zio_brt_free,
5119 	zio_ddt_read_start,
5120 	zio_ddt_read_done,
5121 	zio_ddt_write,
5122 	zio_ddt_free,
5123 	zio_gang_assemble,
5124 	zio_gang_issue,
5125 	zio_dva_throttle,
5126 	zio_dva_allocate,
5127 	zio_dva_free,
5128 	zio_dva_claim,
5129 	zio_ready,
5130 	zio_vdev_io_start,
5131 	zio_vdev_io_done,
5132 	zio_vdev_io_assess,
5133 	zio_checksum_verify,
5134 	zio_done
5135 };
5136 
5137 
5138 
5139 
5140 /*
5141  * Compare two zbookmark_phys_t's to see which we would reach first in a
5142  * pre-order traversal of the object tree.
5143  *
5144  * This is simple in every case aside from the meta-dnode object. For all other
5145  * objects, we traverse them in order (object 1 before object 2, and so on).
5146  * However, all of these objects are traversed while traversing object 0, since
5147  * the data it points to is the list of objects.  Thus, we need to convert to a
5148  * canonical representation so we can compare meta-dnode bookmarks to
5149  * non-meta-dnode bookmarks.
5150  *
5151  * We do this by calculating "equivalents" for each field of the zbookmark.
5152  * zbookmarks outside of the meta-dnode use their own object and level, and
5153  * calculate the level 0 equivalent (the first L0 blkid that is contained in the
5154  * blocks this bookmark refers to) by multiplying their blkid by their span
5155  * (the number of L0 blocks contained within one block at their level).
5156  * zbookmarks inside the meta-dnode calculate their object equivalent
5157  * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
5158  * level + 1<<31 (any value larger than a level could ever be) for their level.
5159  * This causes them to always compare before a bookmark in their object
5160  * equivalent, compare appropriately to bookmarks in other objects, and to
5161  * compare appropriately to other bookmarks in the meta-dnode.
5162  */
5163 int
5164 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
5165     const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
5166 {
5167 	/*
5168 	 * These variables represent the "equivalent" values for the zbookmark,
5169 	 * after converting zbookmarks inside the meta dnode to their
5170 	 * normal-object equivalents.
5171 	 */
5172 	uint64_t zb1obj, zb2obj;
5173 	uint64_t zb1L0, zb2L0;
5174 	uint64_t zb1level, zb2level;
5175 
5176 	if (zb1->zb_object == zb2->zb_object &&
5177 	    zb1->zb_level == zb2->zb_level &&
5178 	    zb1->zb_blkid == zb2->zb_blkid)
5179 		return (0);
5180 
5181 	IMPLY(zb1->zb_level > 0, ibs1 >= SPA_MINBLOCKSHIFT);
5182 	IMPLY(zb2->zb_level > 0, ibs2 >= SPA_MINBLOCKSHIFT);
5183 
5184 	/*
5185 	 * BP_SPANB calculates the span in blocks.
5186 	 */
5187 	zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
5188 	zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
5189 
5190 	if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
5191 		zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
5192 		zb1L0 = 0;
5193 		zb1level = zb1->zb_level + COMPARE_META_LEVEL;
5194 	} else {
5195 		zb1obj = zb1->zb_object;
5196 		zb1level = zb1->zb_level;
5197 	}
5198 
5199 	if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
5200 		zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
5201 		zb2L0 = 0;
5202 		zb2level = zb2->zb_level + COMPARE_META_LEVEL;
5203 	} else {
5204 		zb2obj = zb2->zb_object;
5205 		zb2level = zb2->zb_level;
5206 	}
5207 
5208 	/* Now that we have a canonical representation, do the comparison. */
5209 	if (zb1obj != zb2obj)
5210 		return (zb1obj < zb2obj ? -1 : 1);
5211 	else if (zb1L0 != zb2L0)
5212 		return (zb1L0 < zb2L0 ? -1 : 1);
5213 	else if (zb1level != zb2level)
5214 		return (zb1level > zb2level ? -1 : 1);
5215 	/*
5216 	 * This can (theoretically) happen if the bookmarks have the same object
5217 	 * and level, but different blkids, if the block sizes are not the same.
5218 	 * There is presently no way to change the indirect block sizes
5219 	 */
5220 	return (0);
5221 }
5222 
5223 /*
5224  *  This function checks the following: given that last_block is the place that
5225  *  our traversal stopped last time, does that guarantee that we've visited
5226  *  every node under subtree_root?  Therefore, we can't just use the raw output
5227  *  of zbookmark_compare.  We have to pass in a modified version of
5228  *  subtree_root; by incrementing the block id, and then checking whether
5229  *  last_block is before or equal to that, we can tell whether or not having
5230  *  visited last_block implies that all of subtree_root's children have been
5231  *  visited.
5232  */
5233 boolean_t
5234 zbookmark_subtree_completed(const dnode_phys_t *dnp,
5235     const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
5236 {
5237 	zbookmark_phys_t mod_zb = *subtree_root;
5238 	mod_zb.zb_blkid++;
5239 	ASSERT0(last_block->zb_level);
5240 
5241 	/* The objset_phys_t isn't before anything. */
5242 	if (dnp == NULL)
5243 		return (B_FALSE);
5244 
5245 	/*
5246 	 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
5247 	 * data block size in sectors, because that variable is only used if
5248 	 * the bookmark refers to a block in the meta-dnode.  Since we don't
5249 	 * know without examining it what object it refers to, and there's no
5250 	 * harm in passing in this value in other cases, we always pass it in.
5251 	 *
5252 	 * We pass in 0 for the indirect block size shift because zb2 must be
5253 	 * level 0.  The indirect block size is only used to calculate the span
5254 	 * of the bookmark, but since the bookmark must be level 0, the span is
5255 	 * always 1, so the math works out.
5256 	 *
5257 	 * If you make changes to how the zbookmark_compare code works, be sure
5258 	 * to make sure that this code still works afterwards.
5259 	 */
5260 	return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
5261 	    1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
5262 	    last_block) <= 0);
5263 }
5264 
5265 /*
5266  * This function is similar to zbookmark_subtree_completed(), but returns true
5267  * if subtree_root is equal or ahead of last_block, i.e. still to be done.
5268  */
5269 boolean_t
5270 zbookmark_subtree_tbd(const dnode_phys_t *dnp,
5271     const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
5272 {
5273 	ASSERT0(last_block->zb_level);
5274 	if (dnp == NULL)
5275 		return (B_FALSE);
5276 	return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
5277 	    1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, subtree_root,
5278 	    last_block) >= 0);
5279 }
5280 
5281 EXPORT_SYMBOL(zio_type_name);
5282 EXPORT_SYMBOL(zio_buf_alloc);
5283 EXPORT_SYMBOL(zio_data_buf_alloc);
5284 EXPORT_SYMBOL(zio_buf_free);
5285 EXPORT_SYMBOL(zio_data_buf_free);
5286 
5287 ZFS_MODULE_PARAM(zfs_zio, zio_, slow_io_ms, INT, ZMOD_RW,
5288 	"Max I/O completion time (milliseconds) before marking it as slow");
5289 
5290 ZFS_MODULE_PARAM(zfs_zio, zio_, requeue_io_start_cut_in_line, INT, ZMOD_RW,
5291 	"Prioritize requeued I/O");
5292 
5293 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_deferred_free,  UINT, ZMOD_RW,
5294 	"Defer frees starting in this pass");
5295 
5296 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_dont_compress, UINT, ZMOD_RW,
5297 	"Don't compress starting in this pass");
5298 
5299 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_rewrite, UINT, ZMOD_RW,
5300 	"Rewrite new bps starting in this pass");
5301 
5302 ZFS_MODULE_PARAM(zfs_zio, zio_, dva_throttle_enabled, INT, ZMOD_RW,
5303 	"Throttle block allocations in the ZIO pipeline");
5304 
5305 ZFS_MODULE_PARAM(zfs_zio, zio_, deadman_log_all, INT, ZMOD_RW,
5306 	"Log all slow ZIOs, not just those with vdevs");
5307