xref: /freebsd/sys/contrib/openzfs/module/zfs/zio.c (revision 7ec2f6bce5d28e6662c29e63f6ab6b7ef57d98b2)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
24  * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25  * Copyright (c) 2017, Intel Corporation.
26  * Copyright (c) 2019, Klara Inc.
27  * Copyright (c) 2019, Allan Jude
28  */
29 
30 #include <sys/sysmacros.h>
31 #include <sys/zfs_context.h>
32 #include <sys/fm/fs/zfs.h>
33 #include <sys/spa.h>
34 #include <sys/txg.h>
35 #include <sys/spa_impl.h>
36 #include <sys/vdev_impl.h>
37 #include <sys/vdev_trim.h>
38 #include <sys/zio_impl.h>
39 #include <sys/zio_compress.h>
40 #include <sys/zio_checksum.h>
41 #include <sys/dmu_objset.h>
42 #include <sys/arc.h>
43 #include <sys/ddt.h>
44 #include <sys/blkptr.h>
45 #include <sys/zfeature.h>
46 #include <sys/dsl_scan.h>
47 #include <sys/metaslab_impl.h>
48 #include <sys/time.h>
49 #include <sys/trace_zfs.h>
50 #include <sys/abd.h>
51 #include <sys/dsl_crypt.h>
52 #include <cityhash.h>
53 
54 /*
55  * ==========================================================================
56  * I/O type descriptions
57  * ==========================================================================
58  */
59 const char *zio_type_name[ZIO_TYPES] = {
60 	/*
61 	 * Note: Linux kernel thread name length is limited
62 	 * so these names will differ from upstream open zfs.
63 	 */
64 	"z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_ioctl", "z_trim"
65 };
66 
67 int zio_dva_throttle_enabled = B_TRUE;
68 int zio_deadman_log_all = B_FALSE;
69 
70 /*
71  * ==========================================================================
72  * I/O kmem caches
73  * ==========================================================================
74  */
75 kmem_cache_t *zio_cache;
76 kmem_cache_t *zio_link_cache;
77 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
78 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
79 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
80 uint64_t zio_buf_cache_allocs[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
81 uint64_t zio_buf_cache_frees[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
82 #endif
83 
84 /* Mark IOs as "slow" if they take longer than 30 seconds */
85 int zio_slow_io_ms = (30 * MILLISEC);
86 
87 #define	BP_SPANB(indblkshift, level) \
88 	(((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
89 #define	COMPARE_META_LEVEL	0x80000000ul
90 /*
91  * The following actions directly effect the spa's sync-to-convergence logic.
92  * The values below define the sync pass when we start performing the action.
93  * Care should be taken when changing these values as they directly impact
94  * spa_sync() performance. Tuning these values may introduce subtle performance
95  * pathologies and should only be done in the context of performance analysis.
96  * These tunables will eventually be removed and replaced with #defines once
97  * enough analysis has been done to determine optimal values.
98  *
99  * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
100  * regular blocks are not deferred.
101  *
102  * Starting in sync pass 8 (zfs_sync_pass_dont_compress), we disable
103  * compression (including of metadata).  In practice, we don't have this
104  * many sync passes, so this has no effect.
105  *
106  * The original intent was that disabling compression would help the sync
107  * passes to converge. However, in practice disabling compression increases
108  * the average number of sync passes, because when we turn compression off, a
109  * lot of block's size will change and thus we have to re-allocate (not
110  * overwrite) them. It also increases the number of 128KB allocations (e.g.
111  * for indirect blocks and spacemaps) because these will not be compressed.
112  * The 128K allocations are especially detrimental to performance on highly
113  * fragmented systems, which may have very few free segments of this size,
114  * and may need to load new metaslabs to satisfy 128K allocations.
115  */
116 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
117 int zfs_sync_pass_dont_compress = 8; /* don't compress starting in this pass */
118 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
119 
120 /*
121  * An allocating zio is one that either currently has the DVA allocate
122  * stage set or will have it later in its lifetime.
123  */
124 #define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
125 
126 /*
127  * Enable smaller cores by excluding metadata
128  * allocations as well.
129  */
130 int zio_exclude_metadata = 0;
131 int zio_requeue_io_start_cut_in_line = 1;
132 
133 #ifdef ZFS_DEBUG
134 int zio_buf_debug_limit = 16384;
135 #else
136 int zio_buf_debug_limit = 0;
137 #endif
138 
139 static inline void __zio_execute(zio_t *zio);
140 
141 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t);
142 
143 void
144 zio_init(void)
145 {
146 	size_t c;
147 	vmem_t *data_alloc_arena = NULL;
148 
149 	zio_cache = kmem_cache_create("zio_cache",
150 	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
151 	zio_link_cache = kmem_cache_create("zio_link_cache",
152 	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
153 
154 	/*
155 	 * For small buffers, we want a cache for each multiple of
156 	 * SPA_MINBLOCKSIZE.  For larger buffers, we want a cache
157 	 * for each quarter-power of 2.
158 	 */
159 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
160 		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
161 		size_t p2 = size;
162 		size_t align = 0;
163 		size_t data_cflags, cflags;
164 
165 		data_cflags = KMC_NODEBUG;
166 		cflags = (zio_exclude_metadata || size > zio_buf_debug_limit) ?
167 		    KMC_NODEBUG : 0;
168 
169 #if defined(_ILP32) && defined(_KERNEL)
170 		/*
171 		 * Cache size limited to 1M on 32-bit platforms until ARC
172 		 * buffers no longer require virtual address space.
173 		 */
174 		if (size > zfs_max_recordsize)
175 			break;
176 #endif
177 
178 		while (!ISP2(p2))
179 			p2 &= p2 - 1;
180 
181 #ifndef _KERNEL
182 		/*
183 		 * If we are using watchpoints, put each buffer on its own page,
184 		 * to eliminate the performance overhead of trapping to the
185 		 * kernel when modifying a non-watched buffer that shares the
186 		 * page with a watched buffer.
187 		 */
188 		if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
189 			continue;
190 		/*
191 		 * Here's the problem - on 4K native devices in userland on
192 		 * Linux using O_DIRECT, buffers must be 4K aligned or I/O
193 		 * will fail with EINVAL, causing zdb (and others) to coredump.
194 		 * Since userland probably doesn't need optimized buffer caches,
195 		 * we just force 4K alignment on everything.
196 		 */
197 		align = 8 * SPA_MINBLOCKSIZE;
198 #else
199 		if (size < PAGESIZE) {
200 			align = SPA_MINBLOCKSIZE;
201 		} else if (IS_P2ALIGNED(size, p2 >> 2)) {
202 			align = PAGESIZE;
203 		}
204 #endif
205 
206 		if (align != 0) {
207 			char name[36];
208 			(void) snprintf(name, sizeof (name), "zio_buf_%lu",
209 			    (ulong_t)size);
210 			zio_buf_cache[c] = kmem_cache_create(name, size,
211 			    align, NULL, NULL, NULL, NULL, NULL, cflags);
212 
213 			(void) snprintf(name, sizeof (name), "zio_data_buf_%lu",
214 			    (ulong_t)size);
215 			zio_data_buf_cache[c] = kmem_cache_create(name, size,
216 			    align, NULL, NULL, NULL, NULL,
217 			    data_alloc_arena, data_cflags);
218 		}
219 	}
220 
221 	while (--c != 0) {
222 		ASSERT(zio_buf_cache[c] != NULL);
223 		if (zio_buf_cache[c - 1] == NULL)
224 			zio_buf_cache[c - 1] = zio_buf_cache[c];
225 
226 		ASSERT(zio_data_buf_cache[c] != NULL);
227 		if (zio_data_buf_cache[c - 1] == NULL)
228 			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
229 	}
230 
231 	zio_inject_init();
232 
233 	lz4_init();
234 }
235 
236 void
237 zio_fini(void)
238 {
239 	size_t c;
240 	kmem_cache_t *last_cache = NULL;
241 	kmem_cache_t *last_data_cache = NULL;
242 
243 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
244 #ifdef _ILP32
245 		/*
246 		 * Cache size limited to 1M on 32-bit platforms until ARC
247 		 * buffers no longer require virtual address space.
248 		 */
249 		if (((c + 1) << SPA_MINBLOCKSHIFT) > zfs_max_recordsize)
250 			break;
251 #endif
252 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
253 		if (zio_buf_cache_allocs[c] != zio_buf_cache_frees[c])
254 			(void) printf("zio_fini: [%d] %llu != %llu\n",
255 			    (int)((c + 1) << SPA_MINBLOCKSHIFT),
256 			    (long long unsigned)zio_buf_cache_allocs[c],
257 			    (long long unsigned)zio_buf_cache_frees[c]);
258 #endif
259 		if (zio_buf_cache[c] != last_cache) {
260 			last_cache = zio_buf_cache[c];
261 			kmem_cache_destroy(zio_buf_cache[c]);
262 		}
263 		zio_buf_cache[c] = NULL;
264 
265 		if (zio_data_buf_cache[c] != last_data_cache) {
266 			last_data_cache = zio_data_buf_cache[c];
267 			kmem_cache_destroy(zio_data_buf_cache[c]);
268 		}
269 		zio_data_buf_cache[c] = NULL;
270 	}
271 
272 	kmem_cache_destroy(zio_link_cache);
273 	kmem_cache_destroy(zio_cache);
274 
275 	zio_inject_fini();
276 
277 	lz4_fini();
278 }
279 
280 /*
281  * ==========================================================================
282  * Allocate and free I/O buffers
283  * ==========================================================================
284  */
285 
286 /*
287  * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
288  * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
289  * useful to inspect ZFS metadata, but if possible, we should avoid keeping
290  * excess / transient data in-core during a crashdump.
291  */
292 void *
293 zio_buf_alloc(size_t size)
294 {
295 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
296 
297 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
298 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
299 	atomic_add_64(&zio_buf_cache_allocs[c], 1);
300 #endif
301 
302 	return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
303 }
304 
305 /*
306  * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
307  * crashdump if the kernel panics.  This exists so that we will limit the amount
308  * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
309  * of kernel heap dumped to disk when the kernel panics)
310  */
311 void *
312 zio_data_buf_alloc(size_t size)
313 {
314 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
315 
316 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
317 
318 	return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
319 }
320 
321 void
322 zio_buf_free(void *buf, size_t size)
323 {
324 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
325 
326 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
327 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
328 	atomic_add_64(&zio_buf_cache_frees[c], 1);
329 #endif
330 
331 	kmem_cache_free(zio_buf_cache[c], buf);
332 }
333 
334 void
335 zio_data_buf_free(void *buf, size_t size)
336 {
337 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
338 
339 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
340 
341 	kmem_cache_free(zio_data_buf_cache[c], buf);
342 }
343 
344 static void
345 zio_abd_free(void *abd, size_t size)
346 {
347 	abd_free((abd_t *)abd);
348 }
349 
350 /*
351  * ==========================================================================
352  * Push and pop I/O transform buffers
353  * ==========================================================================
354  */
355 void
356 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize,
357     zio_transform_func_t *transform)
358 {
359 	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
360 
361 	zt->zt_orig_abd = zio->io_abd;
362 	zt->zt_orig_size = zio->io_size;
363 	zt->zt_bufsize = bufsize;
364 	zt->zt_transform = transform;
365 
366 	zt->zt_next = zio->io_transform_stack;
367 	zio->io_transform_stack = zt;
368 
369 	zio->io_abd = data;
370 	zio->io_size = size;
371 }
372 
373 void
374 zio_pop_transforms(zio_t *zio)
375 {
376 	zio_transform_t *zt;
377 
378 	while ((zt = zio->io_transform_stack) != NULL) {
379 		if (zt->zt_transform != NULL)
380 			zt->zt_transform(zio,
381 			    zt->zt_orig_abd, zt->zt_orig_size);
382 
383 		if (zt->zt_bufsize != 0)
384 			abd_free(zio->io_abd);
385 
386 		zio->io_abd = zt->zt_orig_abd;
387 		zio->io_size = zt->zt_orig_size;
388 		zio->io_transform_stack = zt->zt_next;
389 
390 		kmem_free(zt, sizeof (zio_transform_t));
391 	}
392 }
393 
394 /*
395  * ==========================================================================
396  * I/O transform callbacks for subblocks, decompression, and decryption
397  * ==========================================================================
398  */
399 static void
400 zio_subblock(zio_t *zio, abd_t *data, uint64_t size)
401 {
402 	ASSERT(zio->io_size > size);
403 
404 	if (zio->io_type == ZIO_TYPE_READ)
405 		abd_copy(data, zio->io_abd, size);
406 }
407 
408 static void
409 zio_decompress(zio_t *zio, abd_t *data, uint64_t size)
410 {
411 	if (zio->io_error == 0) {
412 		void *tmp = abd_borrow_buf(data, size);
413 		int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
414 		    zio->io_abd, tmp, zio->io_size, size,
415 		    &zio->io_prop.zp_complevel);
416 		abd_return_buf_copy(data, tmp, size);
417 
418 		if (zio_injection_enabled && ret == 0)
419 			ret = zio_handle_fault_injection(zio, EINVAL);
420 
421 		if (ret != 0)
422 			zio->io_error = SET_ERROR(EIO);
423 	}
424 }
425 
426 static void
427 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size)
428 {
429 	int ret;
430 	void *tmp;
431 	blkptr_t *bp = zio->io_bp;
432 	spa_t *spa = zio->io_spa;
433 	uint64_t dsobj = zio->io_bookmark.zb_objset;
434 	uint64_t lsize = BP_GET_LSIZE(bp);
435 	dmu_object_type_t ot = BP_GET_TYPE(bp);
436 	uint8_t salt[ZIO_DATA_SALT_LEN];
437 	uint8_t iv[ZIO_DATA_IV_LEN];
438 	uint8_t mac[ZIO_DATA_MAC_LEN];
439 	boolean_t no_crypt = B_FALSE;
440 
441 	ASSERT(BP_USES_CRYPT(bp));
442 	ASSERT3U(size, !=, 0);
443 
444 	if (zio->io_error != 0)
445 		return;
446 
447 	/*
448 	 * Verify the cksum of MACs stored in an indirect bp. It will always
449 	 * be possible to verify this since it does not require an encryption
450 	 * key.
451 	 */
452 	if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) {
453 		zio_crypt_decode_mac_bp(bp, mac);
454 
455 		if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) {
456 			/*
457 			 * We haven't decompressed the data yet, but
458 			 * zio_crypt_do_indirect_mac_checksum() requires
459 			 * decompressed data to be able to parse out the MACs
460 			 * from the indirect block. We decompress it now and
461 			 * throw away the result after we are finished.
462 			 */
463 			tmp = zio_buf_alloc(lsize);
464 			ret = zio_decompress_data(BP_GET_COMPRESS(bp),
465 			    zio->io_abd, tmp, zio->io_size, lsize,
466 			    &zio->io_prop.zp_complevel);
467 			if (ret != 0) {
468 				ret = SET_ERROR(EIO);
469 				goto error;
470 			}
471 			ret = zio_crypt_do_indirect_mac_checksum(B_FALSE,
472 			    tmp, lsize, BP_SHOULD_BYTESWAP(bp), mac);
473 			zio_buf_free(tmp, lsize);
474 		} else {
475 			ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE,
476 			    zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac);
477 		}
478 		abd_copy(data, zio->io_abd, size);
479 
480 		if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) {
481 			ret = zio_handle_decrypt_injection(spa,
482 			    &zio->io_bookmark, ot, ECKSUM);
483 		}
484 		if (ret != 0)
485 			goto error;
486 
487 		return;
488 	}
489 
490 	/*
491 	 * If this is an authenticated block, just check the MAC. It would be
492 	 * nice to separate this out into its own flag, but for the moment
493 	 * enum zio_flag is out of bits.
494 	 */
495 	if (BP_IS_AUTHENTICATED(bp)) {
496 		if (ot == DMU_OT_OBJSET) {
497 			ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa,
498 			    dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp));
499 		} else {
500 			zio_crypt_decode_mac_bp(bp, mac);
501 			ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj,
502 			    zio->io_abd, size, mac);
503 			if (zio_injection_enabled && ret == 0) {
504 				ret = zio_handle_decrypt_injection(spa,
505 				    &zio->io_bookmark, ot, ECKSUM);
506 			}
507 		}
508 		abd_copy(data, zio->io_abd, size);
509 
510 		if (ret != 0)
511 			goto error;
512 
513 		return;
514 	}
515 
516 	zio_crypt_decode_params_bp(bp, salt, iv);
517 
518 	if (ot == DMU_OT_INTENT_LOG) {
519 		tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t));
520 		zio_crypt_decode_mac_zil(tmp, mac);
521 		abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t));
522 	} else {
523 		zio_crypt_decode_mac_bp(bp, mac);
524 	}
525 
526 	ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp),
527 	    BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data,
528 	    zio->io_abd, &no_crypt);
529 	if (no_crypt)
530 		abd_copy(data, zio->io_abd, size);
531 
532 	if (ret != 0)
533 		goto error;
534 
535 	return;
536 
537 error:
538 	/* assert that the key was found unless this was speculative */
539 	ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE));
540 
541 	/*
542 	 * If there was a decryption / authentication error return EIO as
543 	 * the io_error. If this was not a speculative zio, create an ereport.
544 	 */
545 	if (ret == ECKSUM) {
546 		zio->io_error = SET_ERROR(EIO);
547 		if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
548 			spa_log_error(spa, &zio->io_bookmark);
549 			(void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
550 			    spa, NULL, &zio->io_bookmark, zio, 0);
551 		}
552 	} else {
553 		zio->io_error = ret;
554 	}
555 }
556 
557 /*
558  * ==========================================================================
559  * I/O parent/child relationships and pipeline interlocks
560  * ==========================================================================
561  */
562 zio_t *
563 zio_walk_parents(zio_t *cio, zio_link_t **zl)
564 {
565 	list_t *pl = &cio->io_parent_list;
566 
567 	*zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl);
568 	if (*zl == NULL)
569 		return (NULL);
570 
571 	ASSERT((*zl)->zl_child == cio);
572 	return ((*zl)->zl_parent);
573 }
574 
575 zio_t *
576 zio_walk_children(zio_t *pio, zio_link_t **zl)
577 {
578 	list_t *cl = &pio->io_child_list;
579 
580 	ASSERT(MUTEX_HELD(&pio->io_lock));
581 
582 	*zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl);
583 	if (*zl == NULL)
584 		return (NULL);
585 
586 	ASSERT((*zl)->zl_parent == pio);
587 	return ((*zl)->zl_child);
588 }
589 
590 zio_t *
591 zio_unique_parent(zio_t *cio)
592 {
593 	zio_link_t *zl = NULL;
594 	zio_t *pio = zio_walk_parents(cio, &zl);
595 
596 	VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL);
597 	return (pio);
598 }
599 
600 void
601 zio_add_child(zio_t *pio, zio_t *cio)
602 {
603 	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
604 
605 	/*
606 	 * Logical I/Os can have logical, gang, or vdev children.
607 	 * Gang I/Os can have gang or vdev children.
608 	 * Vdev I/Os can only have vdev children.
609 	 * The following ASSERT captures all of these constraints.
610 	 */
611 	ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
612 
613 	zl->zl_parent = pio;
614 	zl->zl_child = cio;
615 
616 	mutex_enter(&pio->io_lock);
617 	mutex_enter(&cio->io_lock);
618 
619 	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
620 
621 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
622 		pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
623 
624 	list_insert_head(&pio->io_child_list, zl);
625 	list_insert_head(&cio->io_parent_list, zl);
626 
627 	pio->io_child_count++;
628 	cio->io_parent_count++;
629 
630 	mutex_exit(&cio->io_lock);
631 	mutex_exit(&pio->io_lock);
632 }
633 
634 static void
635 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
636 {
637 	ASSERT(zl->zl_parent == pio);
638 	ASSERT(zl->zl_child == cio);
639 
640 	mutex_enter(&pio->io_lock);
641 	mutex_enter(&cio->io_lock);
642 
643 	list_remove(&pio->io_child_list, zl);
644 	list_remove(&cio->io_parent_list, zl);
645 
646 	pio->io_child_count--;
647 	cio->io_parent_count--;
648 
649 	mutex_exit(&cio->io_lock);
650 	mutex_exit(&pio->io_lock);
651 	kmem_cache_free(zio_link_cache, zl);
652 }
653 
654 static boolean_t
655 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait)
656 {
657 	boolean_t waiting = B_FALSE;
658 
659 	mutex_enter(&zio->io_lock);
660 	ASSERT(zio->io_stall == NULL);
661 	for (int c = 0; c < ZIO_CHILD_TYPES; c++) {
662 		if (!(ZIO_CHILD_BIT_IS_SET(childbits, c)))
663 			continue;
664 
665 		uint64_t *countp = &zio->io_children[c][wait];
666 		if (*countp != 0) {
667 			zio->io_stage >>= 1;
668 			ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN);
669 			zio->io_stall = countp;
670 			waiting = B_TRUE;
671 			break;
672 		}
673 	}
674 	mutex_exit(&zio->io_lock);
675 	return (waiting);
676 }
677 
678 __attribute__((always_inline))
679 static inline void
680 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait,
681     zio_t **next_to_executep)
682 {
683 	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
684 	int *errorp = &pio->io_child_error[zio->io_child_type];
685 
686 	mutex_enter(&pio->io_lock);
687 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
688 		*errorp = zio_worst_error(*errorp, zio->io_error);
689 	pio->io_reexecute |= zio->io_reexecute;
690 	ASSERT3U(*countp, >, 0);
691 
692 	(*countp)--;
693 
694 	if (*countp == 0 && pio->io_stall == countp) {
695 		zio_taskq_type_t type =
696 		    pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE :
697 		    ZIO_TASKQ_INTERRUPT;
698 		pio->io_stall = NULL;
699 		mutex_exit(&pio->io_lock);
700 
701 		/*
702 		 * If we can tell the caller to execute this parent next, do
703 		 * so.  Otherwise dispatch the parent zio as its own task.
704 		 *
705 		 * Having the caller execute the parent when possible reduces
706 		 * locking on the zio taskq's, reduces context switch
707 		 * overhead, and has no recursion penalty.  Note that one
708 		 * read from disk typically causes at least 3 zio's: a
709 		 * zio_null(), the logical zio_read(), and then a physical
710 		 * zio.  When the physical ZIO completes, we are able to call
711 		 * zio_done() on all 3 of these zio's from one invocation of
712 		 * zio_execute() by returning the parent back to
713 		 * zio_execute().  Since the parent isn't executed until this
714 		 * thread returns back to zio_execute(), the caller should do
715 		 * so promptly.
716 		 *
717 		 * In other cases, dispatching the parent prevents
718 		 * overflowing the stack when we have deeply nested
719 		 * parent-child relationships, as we do with the "mega zio"
720 		 * of writes for spa_sync(), and the chain of ZIL blocks.
721 		 */
722 		if (next_to_executep != NULL && *next_to_executep == NULL) {
723 			*next_to_executep = pio;
724 		} else {
725 			zio_taskq_dispatch(pio, type, B_FALSE);
726 		}
727 	} else {
728 		mutex_exit(&pio->io_lock);
729 	}
730 }
731 
732 static void
733 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
734 {
735 	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
736 		zio->io_error = zio->io_child_error[c];
737 }
738 
739 int
740 zio_bookmark_compare(const void *x1, const void *x2)
741 {
742 	const zio_t *z1 = x1;
743 	const zio_t *z2 = x2;
744 
745 	if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset)
746 		return (-1);
747 	if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset)
748 		return (1);
749 
750 	if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object)
751 		return (-1);
752 	if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object)
753 		return (1);
754 
755 	if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level)
756 		return (-1);
757 	if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level)
758 		return (1);
759 
760 	if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid)
761 		return (-1);
762 	if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid)
763 		return (1);
764 
765 	if (z1 < z2)
766 		return (-1);
767 	if (z1 > z2)
768 		return (1);
769 
770 	return (0);
771 }
772 
773 /*
774  * ==========================================================================
775  * Create the various types of I/O (read, write, free, etc)
776  * ==========================================================================
777  */
778 static zio_t *
779 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
780     abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done,
781     void *private, zio_type_t type, zio_priority_t priority,
782     enum zio_flag flags, vdev_t *vd, uint64_t offset,
783     const zbookmark_phys_t *zb, enum zio_stage stage,
784     enum zio_stage pipeline)
785 {
786 	zio_t *zio;
787 
788 	IMPLY(type != ZIO_TYPE_TRIM, psize <= SPA_MAXBLOCKSIZE);
789 	ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0);
790 	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
791 
792 	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
793 	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
794 	ASSERT(vd || stage == ZIO_STAGE_OPEN);
795 
796 	IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0);
797 
798 	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
799 	bzero(zio, sizeof (zio_t));
800 
801 	mutex_init(&zio->io_lock, NULL, MUTEX_NOLOCKDEP, NULL);
802 	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
803 
804 	list_create(&zio->io_parent_list, sizeof (zio_link_t),
805 	    offsetof(zio_link_t, zl_parent_node));
806 	list_create(&zio->io_child_list, sizeof (zio_link_t),
807 	    offsetof(zio_link_t, zl_child_node));
808 	metaslab_trace_init(&zio->io_alloc_list);
809 
810 	if (vd != NULL)
811 		zio->io_child_type = ZIO_CHILD_VDEV;
812 	else if (flags & ZIO_FLAG_GANG_CHILD)
813 		zio->io_child_type = ZIO_CHILD_GANG;
814 	else if (flags & ZIO_FLAG_DDT_CHILD)
815 		zio->io_child_type = ZIO_CHILD_DDT;
816 	else
817 		zio->io_child_type = ZIO_CHILD_LOGICAL;
818 
819 	if (bp != NULL) {
820 		zio->io_bp = (blkptr_t *)bp;
821 		zio->io_bp_copy = *bp;
822 		zio->io_bp_orig = *bp;
823 		if (type != ZIO_TYPE_WRITE ||
824 		    zio->io_child_type == ZIO_CHILD_DDT)
825 			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
826 		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
827 			zio->io_logical = zio;
828 		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
829 			pipeline |= ZIO_GANG_STAGES;
830 	}
831 
832 	zio->io_spa = spa;
833 	zio->io_txg = txg;
834 	zio->io_done = done;
835 	zio->io_private = private;
836 	zio->io_type = type;
837 	zio->io_priority = priority;
838 	zio->io_vd = vd;
839 	zio->io_offset = offset;
840 	zio->io_orig_abd = zio->io_abd = data;
841 	zio->io_orig_size = zio->io_size = psize;
842 	zio->io_lsize = lsize;
843 	zio->io_orig_flags = zio->io_flags = flags;
844 	zio->io_orig_stage = zio->io_stage = stage;
845 	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
846 	zio->io_pipeline_trace = ZIO_STAGE_OPEN;
847 
848 	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
849 	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
850 
851 	if (zb != NULL)
852 		zio->io_bookmark = *zb;
853 
854 	if (pio != NULL) {
855 		if (zio->io_metaslab_class == NULL)
856 			zio->io_metaslab_class = pio->io_metaslab_class;
857 		if (zio->io_logical == NULL)
858 			zio->io_logical = pio->io_logical;
859 		if (zio->io_child_type == ZIO_CHILD_GANG)
860 			zio->io_gang_leader = pio->io_gang_leader;
861 		zio_add_child(pio, zio);
862 	}
863 
864 	taskq_init_ent(&zio->io_tqent);
865 
866 	return (zio);
867 }
868 
869 static void
870 zio_destroy(zio_t *zio)
871 {
872 	metaslab_trace_fini(&zio->io_alloc_list);
873 	list_destroy(&zio->io_parent_list);
874 	list_destroy(&zio->io_child_list);
875 	mutex_destroy(&zio->io_lock);
876 	cv_destroy(&zio->io_cv);
877 	kmem_cache_free(zio_cache, zio);
878 }
879 
880 zio_t *
881 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
882     void *private, enum zio_flag flags)
883 {
884 	zio_t *zio;
885 
886 	zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
887 	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
888 	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
889 
890 	return (zio);
891 }
892 
893 zio_t *
894 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
895 {
896 	return (zio_null(NULL, spa, NULL, done, private, flags));
897 }
898 
899 static int
900 zfs_blkptr_verify_log(spa_t *spa, const blkptr_t *bp,
901     enum blk_verify_flag blk_verify, const char *fmt, ...)
902 {
903 	va_list adx;
904 	char buf[256];
905 
906 	va_start(adx, fmt);
907 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
908 	va_end(adx);
909 
910 	switch (blk_verify) {
911 	case BLK_VERIFY_HALT:
912 		dprintf_bp(bp, "blkptr at %p dprintf_bp():", bp);
913 		zfs_panic_recover("%s: %s", spa_name(spa), buf);
914 		break;
915 	case BLK_VERIFY_LOG:
916 		zfs_dbgmsg("%s: %s", spa_name(spa), buf);
917 		break;
918 	case BLK_VERIFY_ONLY:
919 		break;
920 	}
921 
922 	return (1);
923 }
924 
925 /*
926  * Verify the block pointer fields contain reasonable values.  This means
927  * it only contains known object types, checksum/compression identifiers,
928  * block sizes within the maximum allowed limits, valid DVAs, etc.
929  *
930  * If everything checks out B_TRUE is returned.  The zfs_blkptr_verify
931  * argument controls the behavior when an invalid field is detected.
932  *
933  * Modes for zfs_blkptr_verify:
934  *   1) BLK_VERIFY_ONLY (evaluate the block)
935  *   2) BLK_VERIFY_LOG (evaluate the block and log problems)
936  *   3) BLK_VERIFY_HALT (call zfs_panic_recover on error)
937  */
938 boolean_t
939 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp, boolean_t config_held,
940     enum blk_verify_flag blk_verify)
941 {
942 	int errors = 0;
943 
944 	if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
945 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
946 		    "blkptr at %p has invalid TYPE %llu",
947 		    bp, (longlong_t)BP_GET_TYPE(bp));
948 	}
949 	if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS ||
950 	    BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) {
951 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
952 		    "blkptr at %p has invalid CHECKSUM %llu",
953 		    bp, (longlong_t)BP_GET_CHECKSUM(bp));
954 	}
955 	if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS ||
956 	    BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) {
957 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
958 		    "blkptr at %p has invalid COMPRESS %llu",
959 		    bp, (longlong_t)BP_GET_COMPRESS(bp));
960 	}
961 	if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
962 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
963 		    "blkptr at %p has invalid LSIZE %llu",
964 		    bp, (longlong_t)BP_GET_LSIZE(bp));
965 	}
966 	if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
967 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
968 		    "blkptr at %p has invalid PSIZE %llu",
969 		    bp, (longlong_t)BP_GET_PSIZE(bp));
970 	}
971 
972 	if (BP_IS_EMBEDDED(bp)) {
973 		if (BPE_GET_ETYPE(bp) >= NUM_BP_EMBEDDED_TYPES) {
974 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
975 			    "blkptr at %p has invalid ETYPE %llu",
976 			    bp, (longlong_t)BPE_GET_ETYPE(bp));
977 		}
978 	}
979 
980 	/*
981 	 * Do not verify individual DVAs if the config is not trusted. This
982 	 * will be done once the zio is executed in vdev_mirror_map_alloc.
983 	 */
984 	if (!spa->spa_trust_config)
985 		return (B_TRUE);
986 
987 	if (!config_held)
988 		spa_config_enter(spa, SCL_VDEV, bp, RW_READER);
989 	else
990 		ASSERT(spa_config_held(spa, SCL_VDEV, RW_WRITER));
991 	/*
992 	 * Pool-specific checks.
993 	 *
994 	 * Note: it would be nice to verify that the blk_birth and
995 	 * BP_PHYSICAL_BIRTH() are not too large.  However, spa_freeze()
996 	 * allows the birth time of log blocks (and dmu_sync()-ed blocks
997 	 * that are in the log) to be arbitrarily large.
998 	 */
999 	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
1000 		uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]);
1001 
1002 		if (vdevid >= spa->spa_root_vdev->vdev_children) {
1003 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1004 			    "blkptr at %p DVA %u has invalid VDEV %llu",
1005 			    bp, i, (longlong_t)vdevid);
1006 			continue;
1007 		}
1008 		vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1009 		if (vd == NULL) {
1010 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1011 			    "blkptr at %p DVA %u has invalid VDEV %llu",
1012 			    bp, i, (longlong_t)vdevid);
1013 			continue;
1014 		}
1015 		if (vd->vdev_ops == &vdev_hole_ops) {
1016 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1017 			    "blkptr at %p DVA %u has hole VDEV %llu",
1018 			    bp, i, (longlong_t)vdevid);
1019 			continue;
1020 		}
1021 		if (vd->vdev_ops == &vdev_missing_ops) {
1022 			/*
1023 			 * "missing" vdevs are valid during import, but we
1024 			 * don't have their detailed info (e.g. asize), so
1025 			 * we can't perform any more checks on them.
1026 			 */
1027 			continue;
1028 		}
1029 		uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
1030 		uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]);
1031 		if (BP_IS_GANG(bp))
1032 			asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
1033 		if (offset + asize > vd->vdev_asize) {
1034 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1035 			    "blkptr at %p DVA %u has invalid OFFSET %llu",
1036 			    bp, i, (longlong_t)offset);
1037 		}
1038 	}
1039 	if (errors > 0)
1040 		dprintf_bp(bp, "blkptr at %p dprintf_bp():", bp);
1041 	if (!config_held)
1042 		spa_config_exit(spa, SCL_VDEV, bp);
1043 
1044 	return (errors == 0);
1045 }
1046 
1047 boolean_t
1048 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp)
1049 {
1050 	uint64_t vdevid = DVA_GET_VDEV(dva);
1051 
1052 	if (vdevid >= spa->spa_root_vdev->vdev_children)
1053 		return (B_FALSE);
1054 
1055 	vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1056 	if (vd == NULL)
1057 		return (B_FALSE);
1058 
1059 	if (vd->vdev_ops == &vdev_hole_ops)
1060 		return (B_FALSE);
1061 
1062 	if (vd->vdev_ops == &vdev_missing_ops) {
1063 		return (B_FALSE);
1064 	}
1065 
1066 	uint64_t offset = DVA_GET_OFFSET(dva);
1067 	uint64_t asize = DVA_GET_ASIZE(dva);
1068 
1069 	if (BP_IS_GANG(bp))
1070 		asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
1071 	if (offset + asize > vd->vdev_asize)
1072 		return (B_FALSE);
1073 
1074 	return (B_TRUE);
1075 }
1076 
1077 zio_t *
1078 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
1079     abd_t *data, uint64_t size, zio_done_func_t *done, void *private,
1080     zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
1081 {
1082 	zio_t *zio;
1083 
1084 	(void) zfs_blkptr_verify(spa, bp, flags & ZIO_FLAG_CONFIG_WRITER,
1085 	    BLK_VERIFY_HALT);
1086 
1087 	zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
1088 	    data, size, size, done, private,
1089 	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
1090 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1091 	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
1092 
1093 	return (zio);
1094 }
1095 
1096 zio_t *
1097 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
1098     abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp,
1099     zio_done_func_t *ready, zio_done_func_t *children_ready,
1100     zio_done_func_t *physdone, zio_done_func_t *done,
1101     void *private, zio_priority_t priority, enum zio_flag flags,
1102     const zbookmark_phys_t *zb)
1103 {
1104 	zio_t *zio;
1105 
1106 	ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
1107 	    zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
1108 	    zp->zp_compress >= ZIO_COMPRESS_OFF &&
1109 	    zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
1110 	    DMU_OT_IS_VALID(zp->zp_type) &&
1111 	    zp->zp_level < 32 &&
1112 	    zp->zp_copies > 0 &&
1113 	    zp->zp_copies <= spa_max_replication(spa));
1114 
1115 	zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private,
1116 	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
1117 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1118 	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
1119 
1120 	zio->io_ready = ready;
1121 	zio->io_children_ready = children_ready;
1122 	zio->io_physdone = physdone;
1123 	zio->io_prop = *zp;
1124 
1125 	/*
1126 	 * Data can be NULL if we are going to call zio_write_override() to
1127 	 * provide the already-allocated BP.  But we may need the data to
1128 	 * verify a dedup hit (if requested).  In this case, don't try to
1129 	 * dedup (just take the already-allocated BP verbatim). Encrypted
1130 	 * dedup blocks need data as well so we also disable dedup in this
1131 	 * case.
1132 	 */
1133 	if (data == NULL &&
1134 	    (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) {
1135 		zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
1136 	}
1137 
1138 	return (zio);
1139 }
1140 
1141 zio_t *
1142 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data,
1143     uint64_t size, zio_done_func_t *done, void *private,
1144     zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb)
1145 {
1146 	zio_t *zio;
1147 
1148 	zio = zio_create(pio, spa, txg, bp, data, size, size, done, private,
1149 	    ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb,
1150 	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
1151 
1152 	return (zio);
1153 }
1154 
1155 void
1156 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
1157 {
1158 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
1159 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1160 	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1161 	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
1162 
1163 	/*
1164 	 * We must reset the io_prop to match the values that existed
1165 	 * when the bp was first written by dmu_sync() keeping in mind
1166 	 * that nopwrite and dedup are mutually exclusive.
1167 	 */
1168 	zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
1169 	zio->io_prop.zp_nopwrite = nopwrite;
1170 	zio->io_prop.zp_copies = copies;
1171 	zio->io_bp_override = bp;
1172 }
1173 
1174 void
1175 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
1176 {
1177 
1178 	(void) zfs_blkptr_verify(spa, bp, B_FALSE, BLK_VERIFY_HALT);
1179 
1180 	/*
1181 	 * The check for EMBEDDED is a performance optimization.  We
1182 	 * process the free here (by ignoring it) rather than
1183 	 * putting it on the list and then processing it in zio_free_sync().
1184 	 */
1185 	if (BP_IS_EMBEDDED(bp))
1186 		return;
1187 	metaslab_check_free(spa, bp);
1188 
1189 	/*
1190 	 * Frees that are for the currently-syncing txg, are not going to be
1191 	 * deferred, and which will not need to do a read (i.e. not GANG or
1192 	 * DEDUP), can be processed immediately.  Otherwise, put them on the
1193 	 * in-memory list for later processing.
1194 	 *
1195 	 * Note that we only defer frees after zfs_sync_pass_deferred_free
1196 	 * when the log space map feature is disabled. [see relevant comment
1197 	 * in spa_sync_iterate_to_convergence()]
1198 	 */
1199 	if (BP_IS_GANG(bp) ||
1200 	    BP_GET_DEDUP(bp) ||
1201 	    txg != spa->spa_syncing_txg ||
1202 	    (spa_sync_pass(spa) >= zfs_sync_pass_deferred_free &&
1203 	    !spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))) {
1204 		bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
1205 	} else {
1206 		VERIFY3P(zio_free_sync(NULL, spa, txg, bp, 0), ==, NULL);
1207 	}
1208 }
1209 
1210 /*
1211  * To improve performance, this function may return NULL if we were able
1212  * to do the free immediately.  This avoids the cost of creating a zio
1213  * (and linking it to the parent, etc).
1214  */
1215 zio_t *
1216 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1217     enum zio_flag flags)
1218 {
1219 	ASSERT(!BP_IS_HOLE(bp));
1220 	ASSERT(spa_syncing_txg(spa) == txg);
1221 
1222 	if (BP_IS_EMBEDDED(bp))
1223 		return (NULL);
1224 
1225 	metaslab_check_free(spa, bp);
1226 	arc_freed(spa, bp);
1227 	dsl_scan_freed(spa, bp);
1228 
1229 	if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp)) {
1230 		/*
1231 		 * GANG and DEDUP blocks can induce a read (for the gang block
1232 		 * header, or the DDT), so issue them asynchronously so that
1233 		 * this thread is not tied up.
1234 		 */
1235 		enum zio_stage stage =
1236 		    ZIO_FREE_PIPELINE | ZIO_STAGE_ISSUE_ASYNC;
1237 
1238 		return (zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1239 		    BP_GET_PSIZE(bp), NULL, NULL,
1240 		    ZIO_TYPE_FREE, ZIO_PRIORITY_NOW,
1241 		    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage));
1242 	} else {
1243 		metaslab_free(spa, bp, txg, B_FALSE);
1244 		return (NULL);
1245 	}
1246 }
1247 
1248 zio_t *
1249 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1250     zio_done_func_t *done, void *private, enum zio_flag flags)
1251 {
1252 	zio_t *zio;
1253 
1254 	(void) zfs_blkptr_verify(spa, bp, flags & ZIO_FLAG_CONFIG_WRITER,
1255 	    BLK_VERIFY_HALT);
1256 
1257 	if (BP_IS_EMBEDDED(bp))
1258 		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
1259 
1260 	/*
1261 	 * A claim is an allocation of a specific block.  Claims are needed
1262 	 * to support immediate writes in the intent log.  The issue is that
1263 	 * immediate writes contain committed data, but in a txg that was
1264 	 * *not* committed.  Upon opening the pool after an unclean shutdown,
1265 	 * the intent log claims all blocks that contain immediate write data
1266 	 * so that the SPA knows they're in use.
1267 	 *
1268 	 * All claims *must* be resolved in the first txg -- before the SPA
1269 	 * starts allocating blocks -- so that nothing is allocated twice.
1270 	 * If txg == 0 we just verify that the block is claimable.
1271 	 */
1272 	ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <,
1273 	    spa_min_claim_txg(spa));
1274 	ASSERT(txg == spa_min_claim_txg(spa) || txg == 0);
1275 	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(1M) */
1276 
1277 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1278 	    BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW,
1279 	    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
1280 	ASSERT0(zio->io_queued_timestamp);
1281 
1282 	return (zio);
1283 }
1284 
1285 zio_t *
1286 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
1287     zio_done_func_t *done, void *private, enum zio_flag flags)
1288 {
1289 	zio_t *zio;
1290 	int c;
1291 
1292 	if (vd->vdev_children == 0) {
1293 		zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
1294 		    ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
1295 		    ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
1296 
1297 		zio->io_cmd = cmd;
1298 	} else {
1299 		zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
1300 
1301 		for (c = 0; c < vd->vdev_children; c++)
1302 			zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
1303 			    done, private, flags));
1304 	}
1305 
1306 	return (zio);
1307 }
1308 
1309 zio_t *
1310 zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1311     zio_done_func_t *done, void *private, zio_priority_t priority,
1312     enum zio_flag flags, enum trim_flag trim_flags)
1313 {
1314 	zio_t *zio;
1315 
1316 	ASSERT0(vd->vdev_children);
1317 	ASSERT0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
1318 	ASSERT0(P2PHASE(size, 1ULL << vd->vdev_ashift));
1319 	ASSERT3U(size, !=, 0);
1320 
1321 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, NULL, size, size, done,
1322 	    private, ZIO_TYPE_TRIM, priority, flags | ZIO_FLAG_PHYSICAL,
1323 	    vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_TRIM_PIPELINE);
1324 	zio->io_trim_flags = trim_flags;
1325 
1326 	return (zio);
1327 }
1328 
1329 zio_t *
1330 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1331     abd_t *data, int checksum, zio_done_func_t *done, void *private,
1332     zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1333 {
1334 	zio_t *zio;
1335 
1336 	ASSERT(vd->vdev_children == 0);
1337 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1338 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1339 	ASSERT3U(offset + size, <=, vd->vdev_psize);
1340 
1341 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1342 	    private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1343 	    offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
1344 
1345 	zio->io_prop.zp_checksum = checksum;
1346 
1347 	return (zio);
1348 }
1349 
1350 zio_t *
1351 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1352     abd_t *data, int checksum, zio_done_func_t *done, void *private,
1353     zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1354 {
1355 	zio_t *zio;
1356 
1357 	ASSERT(vd->vdev_children == 0);
1358 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1359 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1360 	ASSERT3U(offset + size, <=, vd->vdev_psize);
1361 
1362 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1363 	    private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1364 	    offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
1365 
1366 	zio->io_prop.zp_checksum = checksum;
1367 
1368 	if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
1369 		/*
1370 		 * zec checksums are necessarily destructive -- they modify
1371 		 * the end of the write buffer to hold the verifier/checksum.
1372 		 * Therefore, we must make a local copy in case the data is
1373 		 * being written to multiple places in parallel.
1374 		 */
1375 		abd_t *wbuf = abd_alloc_sametype(data, size);
1376 		abd_copy(wbuf, data, size);
1377 
1378 		zio_push_transform(zio, wbuf, size, size, NULL);
1379 	}
1380 
1381 	return (zio);
1382 }
1383 
1384 /*
1385  * Create a child I/O to do some work for us.
1386  */
1387 zio_t *
1388 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1389     abd_t *data, uint64_t size, int type, zio_priority_t priority,
1390     enum zio_flag flags, zio_done_func_t *done, void *private)
1391 {
1392 	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1393 	zio_t *zio;
1394 
1395 	/*
1396 	 * vdev child I/Os do not propagate their error to the parent.
1397 	 * Therefore, for correct operation the caller *must* check for
1398 	 * and handle the error in the child i/o's done callback.
1399 	 * The only exceptions are i/os that we don't care about
1400 	 * (OPTIONAL or REPAIR).
1401 	 */
1402 	ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) ||
1403 	    done != NULL);
1404 
1405 	if (type == ZIO_TYPE_READ && bp != NULL) {
1406 		/*
1407 		 * If we have the bp, then the child should perform the
1408 		 * checksum and the parent need not.  This pushes error
1409 		 * detection as close to the leaves as possible and
1410 		 * eliminates redundant checksums in the interior nodes.
1411 		 */
1412 		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1413 		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1414 	}
1415 
1416 	if (vd->vdev_ops->vdev_op_leaf) {
1417 		ASSERT0(vd->vdev_children);
1418 		offset += VDEV_LABEL_START_SIZE;
1419 	}
1420 
1421 	flags |= ZIO_VDEV_CHILD_FLAGS(pio);
1422 
1423 	/*
1424 	 * If we've decided to do a repair, the write is not speculative --
1425 	 * even if the original read was.
1426 	 */
1427 	if (flags & ZIO_FLAG_IO_REPAIR)
1428 		flags &= ~ZIO_FLAG_SPECULATIVE;
1429 
1430 	/*
1431 	 * If we're creating a child I/O that is not associated with a
1432 	 * top-level vdev, then the child zio is not an allocating I/O.
1433 	 * If this is a retried I/O then we ignore it since we will
1434 	 * have already processed the original allocating I/O.
1435 	 */
1436 	if (flags & ZIO_FLAG_IO_ALLOCATING &&
1437 	    (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) {
1438 		ASSERT(pio->io_metaslab_class != NULL);
1439 		ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled);
1440 		ASSERT(type == ZIO_TYPE_WRITE);
1441 		ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE);
1442 		ASSERT(!(flags & ZIO_FLAG_IO_REPAIR));
1443 		ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) ||
1444 		    pio->io_child_type == ZIO_CHILD_GANG);
1445 
1446 		flags &= ~ZIO_FLAG_IO_ALLOCATING;
1447 	}
1448 
1449 
1450 	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size,
1451 	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1452 	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1453 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
1454 
1455 	zio->io_physdone = pio->io_physdone;
1456 	if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
1457 		zio->io_logical->io_phys_children++;
1458 
1459 	return (zio);
1460 }
1461 
1462 zio_t *
1463 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size,
1464     zio_type_t type, zio_priority_t priority, enum zio_flag flags,
1465     zio_done_func_t *done, void *private)
1466 {
1467 	zio_t *zio;
1468 
1469 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1470 
1471 	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1472 	    data, size, size, done, private, type, priority,
1473 	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1474 	    vd, offset, NULL,
1475 	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1476 
1477 	return (zio);
1478 }
1479 
1480 void
1481 zio_flush(zio_t *zio, vdev_t *vd)
1482 {
1483 	zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
1484 	    NULL, NULL,
1485 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1486 }
1487 
1488 void
1489 zio_shrink(zio_t *zio, uint64_t size)
1490 {
1491 	ASSERT3P(zio->io_executor, ==, NULL);
1492 	ASSERT3U(zio->io_orig_size, ==, zio->io_size);
1493 	ASSERT3U(size, <=, zio->io_size);
1494 
1495 	/*
1496 	 * We don't shrink for raidz because of problems with the
1497 	 * reconstruction when reading back less than the block size.
1498 	 * Note, BP_IS_RAIDZ() assumes no compression.
1499 	 */
1500 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1501 	if (!BP_IS_RAIDZ(zio->io_bp)) {
1502 		/* we are not doing a raw write */
1503 		ASSERT3U(zio->io_size, ==, zio->io_lsize);
1504 		zio->io_orig_size = zio->io_size = zio->io_lsize = size;
1505 	}
1506 }
1507 
1508 /*
1509  * ==========================================================================
1510  * Prepare to read and write logical blocks
1511  * ==========================================================================
1512  */
1513 
1514 static zio_t *
1515 zio_read_bp_init(zio_t *zio)
1516 {
1517 	blkptr_t *bp = zio->io_bp;
1518 	uint64_t psize =
1519 	    BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1520 
1521 	ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1522 
1523 	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1524 	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
1525 	    !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1526 		zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1527 		    psize, psize, zio_decompress);
1528 	}
1529 
1530 	if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) ||
1531 	    BP_HAS_INDIRECT_MAC_CKSUM(bp)) &&
1532 	    zio->io_child_type == ZIO_CHILD_LOGICAL) {
1533 		zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1534 		    psize, psize, zio_decrypt);
1535 	}
1536 
1537 	if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1538 		int psize = BPE_GET_PSIZE(bp);
1539 		void *data = abd_borrow_buf(zio->io_abd, psize);
1540 
1541 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1542 		decode_embedded_bp_compressed(bp, data);
1543 		abd_return_buf_copy(zio->io_abd, data, psize);
1544 	} else {
1545 		ASSERT(!BP_IS_EMBEDDED(bp));
1546 		ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1547 	}
1548 
1549 	if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1550 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1551 
1552 	if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1553 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1554 
1555 	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1556 		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1557 
1558 	return (zio);
1559 }
1560 
1561 static zio_t *
1562 zio_write_bp_init(zio_t *zio)
1563 {
1564 	if (!IO_IS_ALLOCATING(zio))
1565 		return (zio);
1566 
1567 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1568 
1569 	if (zio->io_bp_override) {
1570 		blkptr_t *bp = zio->io_bp;
1571 		zio_prop_t *zp = &zio->io_prop;
1572 
1573 		ASSERT(bp->blk_birth != zio->io_txg);
1574 		ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1575 
1576 		*bp = *zio->io_bp_override;
1577 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1578 
1579 		if (BP_IS_EMBEDDED(bp))
1580 			return (zio);
1581 
1582 		/*
1583 		 * If we've been overridden and nopwrite is set then
1584 		 * set the flag accordingly to indicate that a nopwrite
1585 		 * has already occurred.
1586 		 */
1587 		if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1588 			ASSERT(!zp->zp_dedup);
1589 			ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum);
1590 			zio->io_flags |= ZIO_FLAG_NOPWRITE;
1591 			return (zio);
1592 		}
1593 
1594 		ASSERT(!zp->zp_nopwrite);
1595 
1596 		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1597 			return (zio);
1598 
1599 		ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1600 		    ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1601 
1602 		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum &&
1603 		    !zp->zp_encrypt) {
1604 			BP_SET_DEDUP(bp, 1);
1605 			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1606 			return (zio);
1607 		}
1608 
1609 		/*
1610 		 * We were unable to handle this as an override bp, treat
1611 		 * it as a regular write I/O.
1612 		 */
1613 		zio->io_bp_override = NULL;
1614 		*bp = zio->io_bp_orig;
1615 		zio->io_pipeline = zio->io_orig_pipeline;
1616 	}
1617 
1618 	return (zio);
1619 }
1620 
1621 static zio_t *
1622 zio_write_compress(zio_t *zio)
1623 {
1624 	spa_t *spa = zio->io_spa;
1625 	zio_prop_t *zp = &zio->io_prop;
1626 	enum zio_compress compress = zp->zp_compress;
1627 	blkptr_t *bp = zio->io_bp;
1628 	uint64_t lsize = zio->io_lsize;
1629 	uint64_t psize = zio->io_size;
1630 	int pass = 1;
1631 
1632 	/*
1633 	 * If our children haven't all reached the ready stage,
1634 	 * wait for them and then repeat this pipeline stage.
1635 	 */
1636 	if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
1637 	    ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) {
1638 		return (NULL);
1639 	}
1640 
1641 	if (!IO_IS_ALLOCATING(zio))
1642 		return (zio);
1643 
1644 	if (zio->io_children_ready != NULL) {
1645 		/*
1646 		 * Now that all our children are ready, run the callback
1647 		 * associated with this zio in case it wants to modify the
1648 		 * data to be written.
1649 		 */
1650 		ASSERT3U(zp->zp_level, >, 0);
1651 		zio->io_children_ready(zio);
1652 	}
1653 
1654 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1655 	ASSERT(zio->io_bp_override == NULL);
1656 
1657 	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1658 		/*
1659 		 * We're rewriting an existing block, which means we're
1660 		 * working on behalf of spa_sync().  For spa_sync() to
1661 		 * converge, it must eventually be the case that we don't
1662 		 * have to allocate new blocks.  But compression changes
1663 		 * the blocksize, which forces a reallocate, and makes
1664 		 * convergence take longer.  Therefore, after the first
1665 		 * few passes, stop compressing to ensure convergence.
1666 		 */
1667 		pass = spa_sync_pass(spa);
1668 
1669 		ASSERT(zio->io_txg == spa_syncing_txg(spa));
1670 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1671 		ASSERT(!BP_GET_DEDUP(bp));
1672 
1673 		if (pass >= zfs_sync_pass_dont_compress)
1674 			compress = ZIO_COMPRESS_OFF;
1675 
1676 		/* Make sure someone doesn't change their mind on overwrites */
1677 		ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1678 		    spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1679 	}
1680 
1681 	/* If it's a compressed write that is not raw, compress the buffer. */
1682 	if (compress != ZIO_COMPRESS_OFF &&
1683 	    !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1684 		void *cbuf = zio_buf_alloc(lsize);
1685 		psize = zio_compress_data(compress, zio->io_abd, cbuf, lsize,
1686 		    zp->zp_complevel);
1687 		if (psize == 0 || psize >= lsize) {
1688 			compress = ZIO_COMPRESS_OFF;
1689 			zio_buf_free(cbuf, lsize);
1690 		} else if (!zp->zp_dedup && !zp->zp_encrypt &&
1691 		    psize <= BPE_PAYLOAD_SIZE &&
1692 		    zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1693 		    spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1694 			encode_embedded_bp_compressed(bp,
1695 			    cbuf, compress, lsize, psize);
1696 			BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1697 			BP_SET_TYPE(bp, zio->io_prop.zp_type);
1698 			BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1699 			zio_buf_free(cbuf, lsize);
1700 			bp->blk_birth = zio->io_txg;
1701 			zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1702 			ASSERT(spa_feature_is_active(spa,
1703 			    SPA_FEATURE_EMBEDDED_DATA));
1704 			return (zio);
1705 		} else {
1706 			/*
1707 			 * Round up compressed size up to the ashift
1708 			 * of the smallest-ashift device, and zero the tail.
1709 			 * This ensures that the compressed size of the BP
1710 			 * (and thus compressratio property) are correct,
1711 			 * in that we charge for the padding used to fill out
1712 			 * the last sector.
1713 			 */
1714 			ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
1715 			size_t rounded = (size_t)P2ROUNDUP(psize,
1716 			    1ULL << spa->spa_min_ashift);
1717 			if (rounded >= lsize) {
1718 				compress = ZIO_COMPRESS_OFF;
1719 				zio_buf_free(cbuf, lsize);
1720 				psize = lsize;
1721 			} else {
1722 				abd_t *cdata = abd_get_from_buf(cbuf, lsize);
1723 				abd_take_ownership_of_buf(cdata, B_TRUE);
1724 				abd_zero_off(cdata, psize, rounded - psize);
1725 				psize = rounded;
1726 				zio_push_transform(zio, cdata,
1727 				    psize, lsize, NULL);
1728 			}
1729 		}
1730 
1731 		/*
1732 		 * We were unable to handle this as an override bp, treat
1733 		 * it as a regular write I/O.
1734 		 */
1735 		zio->io_bp_override = NULL;
1736 		*bp = zio->io_bp_orig;
1737 		zio->io_pipeline = zio->io_orig_pipeline;
1738 
1739 	} else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 &&
1740 	    zp->zp_type == DMU_OT_DNODE) {
1741 		/*
1742 		 * The DMU actually relies on the zio layer's compression
1743 		 * to free metadnode blocks that have had all contained
1744 		 * dnodes freed. As a result, even when doing a raw
1745 		 * receive, we must check whether the block can be compressed
1746 		 * to a hole.
1747 		 */
1748 		psize = zio_compress_data(ZIO_COMPRESS_EMPTY,
1749 		    zio->io_abd, NULL, lsize, zp->zp_complevel);
1750 		if (psize == 0 || psize >= lsize)
1751 			compress = ZIO_COMPRESS_OFF;
1752 	} else {
1753 		ASSERT3U(psize, !=, 0);
1754 	}
1755 
1756 	/*
1757 	 * The final pass of spa_sync() must be all rewrites, but the first
1758 	 * few passes offer a trade-off: allocating blocks defers convergence,
1759 	 * but newly allocated blocks are sequential, so they can be written
1760 	 * to disk faster.  Therefore, we allow the first few passes of
1761 	 * spa_sync() to allocate new blocks, but force rewrites after that.
1762 	 * There should only be a handful of blocks after pass 1 in any case.
1763 	 */
1764 	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1765 	    BP_GET_PSIZE(bp) == psize &&
1766 	    pass >= zfs_sync_pass_rewrite) {
1767 		VERIFY3U(psize, !=, 0);
1768 		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1769 
1770 		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1771 		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1772 	} else {
1773 		BP_ZERO(bp);
1774 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
1775 	}
1776 
1777 	if (psize == 0) {
1778 		if (zio->io_bp_orig.blk_birth != 0 &&
1779 		    spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1780 			BP_SET_LSIZE(bp, lsize);
1781 			BP_SET_TYPE(bp, zp->zp_type);
1782 			BP_SET_LEVEL(bp, zp->zp_level);
1783 			BP_SET_BIRTH(bp, zio->io_txg, 0);
1784 		}
1785 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1786 	} else {
1787 		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1788 		BP_SET_LSIZE(bp, lsize);
1789 		BP_SET_TYPE(bp, zp->zp_type);
1790 		BP_SET_LEVEL(bp, zp->zp_level);
1791 		BP_SET_PSIZE(bp, psize);
1792 		BP_SET_COMPRESS(bp, compress);
1793 		BP_SET_CHECKSUM(bp, zp->zp_checksum);
1794 		BP_SET_DEDUP(bp, zp->zp_dedup);
1795 		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1796 		if (zp->zp_dedup) {
1797 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1798 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1799 			ASSERT(!zp->zp_encrypt ||
1800 			    DMU_OT_IS_ENCRYPTED(zp->zp_type));
1801 			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1802 		}
1803 		if (zp->zp_nopwrite) {
1804 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1805 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1806 			zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1807 		}
1808 	}
1809 	return (zio);
1810 }
1811 
1812 static zio_t *
1813 zio_free_bp_init(zio_t *zio)
1814 {
1815 	blkptr_t *bp = zio->io_bp;
1816 
1817 	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1818 		if (BP_GET_DEDUP(bp))
1819 			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1820 	}
1821 
1822 	ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1823 
1824 	return (zio);
1825 }
1826 
1827 /*
1828  * ==========================================================================
1829  * Execute the I/O pipeline
1830  * ==========================================================================
1831  */
1832 
1833 static void
1834 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1835 {
1836 	spa_t *spa = zio->io_spa;
1837 	zio_type_t t = zio->io_type;
1838 	int flags = (cutinline ? TQ_FRONT : 0);
1839 
1840 	/*
1841 	 * If we're a config writer or a probe, the normal issue and
1842 	 * interrupt threads may all be blocked waiting for the config lock.
1843 	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1844 	 */
1845 	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1846 		t = ZIO_TYPE_NULL;
1847 
1848 	/*
1849 	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1850 	 */
1851 	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1852 		t = ZIO_TYPE_NULL;
1853 
1854 	/*
1855 	 * If this is a high priority I/O, then use the high priority taskq if
1856 	 * available.
1857 	 */
1858 	if ((zio->io_priority == ZIO_PRIORITY_NOW ||
1859 	    zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) &&
1860 	    spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1861 		q++;
1862 
1863 	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1864 
1865 	/*
1866 	 * NB: We are assuming that the zio can only be dispatched
1867 	 * to a single taskq at a time.  It would be a grievous error
1868 	 * to dispatch the zio to another taskq at the same time.
1869 	 */
1870 	ASSERT(taskq_empty_ent(&zio->io_tqent));
1871 	spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1872 	    flags, &zio->io_tqent);
1873 }
1874 
1875 static boolean_t
1876 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1877 {
1878 	spa_t *spa = zio->io_spa;
1879 
1880 	taskq_t *tq = taskq_of_curthread();
1881 
1882 	for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1883 		spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1884 		uint_t i;
1885 		for (i = 0; i < tqs->stqs_count; i++) {
1886 			if (tqs->stqs_taskq[i] == tq)
1887 				return (B_TRUE);
1888 		}
1889 	}
1890 
1891 	return (B_FALSE);
1892 }
1893 
1894 static zio_t *
1895 zio_issue_async(zio_t *zio)
1896 {
1897 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1898 
1899 	return (NULL);
1900 }
1901 
1902 void
1903 zio_interrupt(zio_t *zio)
1904 {
1905 	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1906 }
1907 
1908 void
1909 zio_delay_interrupt(zio_t *zio)
1910 {
1911 	/*
1912 	 * The timeout_generic() function isn't defined in userspace, so
1913 	 * rather than trying to implement the function, the zio delay
1914 	 * functionality has been disabled for userspace builds.
1915 	 */
1916 
1917 #ifdef _KERNEL
1918 	/*
1919 	 * If io_target_timestamp is zero, then no delay has been registered
1920 	 * for this IO, thus jump to the end of this function and "skip" the
1921 	 * delay; issuing it directly to the zio layer.
1922 	 */
1923 	if (zio->io_target_timestamp != 0) {
1924 		hrtime_t now = gethrtime();
1925 
1926 		if (now >= zio->io_target_timestamp) {
1927 			/*
1928 			 * This IO has already taken longer than the target
1929 			 * delay to complete, so we don't want to delay it
1930 			 * any longer; we "miss" the delay and issue it
1931 			 * directly to the zio layer. This is likely due to
1932 			 * the target latency being set to a value less than
1933 			 * the underlying hardware can satisfy (e.g. delay
1934 			 * set to 1ms, but the disks take 10ms to complete an
1935 			 * IO request).
1936 			 */
1937 
1938 			DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
1939 			    hrtime_t, now);
1940 
1941 			zio_interrupt(zio);
1942 		} else {
1943 			taskqid_t tid;
1944 			hrtime_t diff = zio->io_target_timestamp - now;
1945 			clock_t expire_at_tick = ddi_get_lbolt() +
1946 			    NSEC_TO_TICK(diff);
1947 
1948 			DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
1949 			    hrtime_t, now, hrtime_t, diff);
1950 
1951 			if (NSEC_TO_TICK(diff) == 0) {
1952 				/* Our delay is less than a jiffy - just spin */
1953 				zfs_sleep_until(zio->io_target_timestamp);
1954 				zio_interrupt(zio);
1955 			} else {
1956 				/*
1957 				 * Use taskq_dispatch_delay() in the place of
1958 				 * OpenZFS's timeout_generic().
1959 				 */
1960 				tid = taskq_dispatch_delay(system_taskq,
1961 				    (task_func_t *)zio_interrupt,
1962 				    zio, TQ_NOSLEEP, expire_at_tick);
1963 				if (tid == TASKQID_INVALID) {
1964 					/*
1965 					 * Couldn't allocate a task.  Just
1966 					 * finish the zio without a delay.
1967 					 */
1968 					zio_interrupt(zio);
1969 				}
1970 			}
1971 		}
1972 		return;
1973 	}
1974 #endif
1975 	DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
1976 	zio_interrupt(zio);
1977 }
1978 
1979 static void
1980 zio_deadman_impl(zio_t *pio, int ziodepth)
1981 {
1982 	zio_t *cio, *cio_next;
1983 	zio_link_t *zl = NULL;
1984 	vdev_t *vd = pio->io_vd;
1985 
1986 	if (zio_deadman_log_all || (vd != NULL && vd->vdev_ops->vdev_op_leaf)) {
1987 		vdev_queue_t *vq = vd ? &vd->vdev_queue : NULL;
1988 		zbookmark_phys_t *zb = &pio->io_bookmark;
1989 		uint64_t delta = gethrtime() - pio->io_timestamp;
1990 		uint64_t failmode = spa_get_deadman_failmode(pio->io_spa);
1991 
1992 		zfs_dbgmsg("slow zio[%d]: zio=%px timestamp=%llu "
1993 		    "delta=%llu queued=%llu io=%llu "
1994 		    "path=%s last=%llu "
1995 		    "type=%d priority=%d flags=0x%x "
1996 		    "stage=0x%x pipeline=0x%x pipeline-trace=0x%x "
1997 		    "objset=%llu object=%llu level=%llu blkid=%llu "
1998 		    "offset=%llu size=%llu error=%d",
1999 		    ziodepth, pio, pio->io_timestamp,
2000 		    delta, pio->io_delta, pio->io_delay,
2001 		    vd ? vd->vdev_path : "NULL", vq ? vq->vq_io_complete_ts : 0,
2002 		    pio->io_type, pio->io_priority, pio->io_flags,
2003 		    pio->io_stage, pio->io_pipeline, pio->io_pipeline_trace,
2004 		    zb->zb_objset, zb->zb_object, zb->zb_level, zb->zb_blkid,
2005 		    pio->io_offset, pio->io_size, pio->io_error);
2006 		(void) zfs_ereport_post(FM_EREPORT_ZFS_DEADMAN,
2007 		    pio->io_spa, vd, zb, pio, 0);
2008 
2009 		if (failmode == ZIO_FAILURE_MODE_CONTINUE &&
2010 		    taskq_empty_ent(&pio->io_tqent)) {
2011 			zio_interrupt(pio);
2012 		}
2013 	}
2014 
2015 	mutex_enter(&pio->io_lock);
2016 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2017 		cio_next = zio_walk_children(pio, &zl);
2018 		zio_deadman_impl(cio, ziodepth + 1);
2019 	}
2020 	mutex_exit(&pio->io_lock);
2021 }
2022 
2023 /*
2024  * Log the critical information describing this zio and all of its children
2025  * using the zfs_dbgmsg() interface then post deadman event for the ZED.
2026  */
2027 void
2028 zio_deadman(zio_t *pio, char *tag)
2029 {
2030 	spa_t *spa = pio->io_spa;
2031 	char *name = spa_name(spa);
2032 
2033 	if (!zfs_deadman_enabled || spa_suspended(spa))
2034 		return;
2035 
2036 	zio_deadman_impl(pio, 0);
2037 
2038 	switch (spa_get_deadman_failmode(spa)) {
2039 	case ZIO_FAILURE_MODE_WAIT:
2040 		zfs_dbgmsg("%s waiting for hung I/O to pool '%s'", tag, name);
2041 		break;
2042 
2043 	case ZIO_FAILURE_MODE_CONTINUE:
2044 		zfs_dbgmsg("%s restarting hung I/O for pool '%s'", tag, name);
2045 		break;
2046 
2047 	case ZIO_FAILURE_MODE_PANIC:
2048 		fm_panic("%s determined I/O to pool '%s' is hung.", tag, name);
2049 		break;
2050 	}
2051 }
2052 
2053 /*
2054  * Execute the I/O pipeline until one of the following occurs:
2055  * (1) the I/O completes; (2) the pipeline stalls waiting for
2056  * dependent child I/Os; (3) the I/O issues, so we're waiting
2057  * for an I/O completion interrupt; (4) the I/O is delegated by
2058  * vdev-level caching or aggregation; (5) the I/O is deferred
2059  * due to vdev-level queueing; (6) the I/O is handed off to
2060  * another thread.  In all cases, the pipeline stops whenever
2061  * there's no CPU work; it never burns a thread in cv_wait_io().
2062  *
2063  * There's no locking on io_stage because there's no legitimate way
2064  * for multiple threads to be attempting to process the same I/O.
2065  */
2066 static zio_pipe_stage_t *zio_pipeline[];
2067 
2068 /*
2069  * zio_execute() is a wrapper around the static function
2070  * __zio_execute() so that we can force  __zio_execute() to be
2071  * inlined.  This reduces stack overhead which is important
2072  * because __zio_execute() is called recursively in several zio
2073  * code paths.  zio_execute() itself cannot be inlined because
2074  * it is externally visible.
2075  */
2076 void
2077 zio_execute(zio_t *zio)
2078 {
2079 	fstrans_cookie_t cookie;
2080 
2081 	cookie = spl_fstrans_mark();
2082 	__zio_execute(zio);
2083 	spl_fstrans_unmark(cookie);
2084 }
2085 
2086 /*
2087  * Used to determine if in the current context the stack is sized large
2088  * enough to allow zio_execute() to be called recursively.  A minimum
2089  * stack size of 16K is required to avoid needing to re-dispatch the zio.
2090  */
2091 static boolean_t
2092 zio_execute_stack_check(zio_t *zio)
2093 {
2094 #if !defined(HAVE_LARGE_STACKS)
2095 	dsl_pool_t *dp = spa_get_dsl(zio->io_spa);
2096 
2097 	/* Executing in txg_sync_thread() context. */
2098 	if (dp && curthread == dp->dp_tx.tx_sync_thread)
2099 		return (B_TRUE);
2100 
2101 	/* Pool initialization outside of zio_taskq context. */
2102 	if (dp && spa_is_initializing(dp->dp_spa) &&
2103 	    !zio_taskq_member(zio, ZIO_TASKQ_ISSUE) &&
2104 	    !zio_taskq_member(zio, ZIO_TASKQ_ISSUE_HIGH))
2105 		return (B_TRUE);
2106 #endif /* HAVE_LARGE_STACKS */
2107 
2108 	return (B_FALSE);
2109 }
2110 
2111 __attribute__((always_inline))
2112 static inline void
2113 __zio_execute(zio_t *zio)
2114 {
2115 	ASSERT3U(zio->io_queued_timestamp, >, 0);
2116 
2117 	while (zio->io_stage < ZIO_STAGE_DONE) {
2118 		enum zio_stage pipeline = zio->io_pipeline;
2119 		enum zio_stage stage = zio->io_stage;
2120 
2121 		zio->io_executor = curthread;
2122 
2123 		ASSERT(!MUTEX_HELD(&zio->io_lock));
2124 		ASSERT(ISP2(stage));
2125 		ASSERT(zio->io_stall == NULL);
2126 
2127 		do {
2128 			stage <<= 1;
2129 		} while ((stage & pipeline) == 0);
2130 
2131 		ASSERT(stage <= ZIO_STAGE_DONE);
2132 
2133 		/*
2134 		 * If we are in interrupt context and this pipeline stage
2135 		 * will grab a config lock that is held across I/O,
2136 		 * or may wait for an I/O that needs an interrupt thread
2137 		 * to complete, issue async to avoid deadlock.
2138 		 *
2139 		 * For VDEV_IO_START, we cut in line so that the io will
2140 		 * be sent to disk promptly.
2141 		 */
2142 		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
2143 		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
2144 			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2145 			    zio_requeue_io_start_cut_in_line : B_FALSE;
2146 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2147 			return;
2148 		}
2149 
2150 		/*
2151 		 * If the current context doesn't have large enough stacks
2152 		 * the zio must be issued asynchronously to prevent overflow.
2153 		 */
2154 		if (zio_execute_stack_check(zio)) {
2155 			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2156 			    zio_requeue_io_start_cut_in_line : B_FALSE;
2157 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2158 			return;
2159 		}
2160 
2161 		zio->io_stage = stage;
2162 		zio->io_pipeline_trace |= zio->io_stage;
2163 
2164 		/*
2165 		 * The zio pipeline stage returns the next zio to execute
2166 		 * (typically the same as this one), or NULL if we should
2167 		 * stop.
2168 		 */
2169 		zio = zio_pipeline[highbit64(stage) - 1](zio);
2170 
2171 		if (zio == NULL)
2172 			return;
2173 	}
2174 }
2175 
2176 
2177 /*
2178  * ==========================================================================
2179  * Initiate I/O, either sync or async
2180  * ==========================================================================
2181  */
2182 int
2183 zio_wait(zio_t *zio)
2184 {
2185 	/*
2186 	 * Some routines, like zio_free_sync(), may return a NULL zio
2187 	 * to avoid the performance overhead of creating and then destroying
2188 	 * an unneeded zio.  For the callers' simplicity, we accept a NULL
2189 	 * zio and ignore it.
2190 	 */
2191 	if (zio == NULL)
2192 		return (0);
2193 
2194 	long timeout = MSEC_TO_TICK(zfs_deadman_ziotime_ms);
2195 	int error;
2196 
2197 	ASSERT3S(zio->io_stage, ==, ZIO_STAGE_OPEN);
2198 	ASSERT3P(zio->io_executor, ==, NULL);
2199 
2200 	zio->io_waiter = curthread;
2201 	ASSERT0(zio->io_queued_timestamp);
2202 	zio->io_queued_timestamp = gethrtime();
2203 
2204 	__zio_execute(zio);
2205 
2206 	mutex_enter(&zio->io_lock);
2207 	while (zio->io_executor != NULL) {
2208 		error = cv_timedwait_io(&zio->io_cv, &zio->io_lock,
2209 		    ddi_get_lbolt() + timeout);
2210 
2211 		if (zfs_deadman_enabled && error == -1 &&
2212 		    gethrtime() - zio->io_queued_timestamp >
2213 		    spa_deadman_ziotime(zio->io_spa)) {
2214 			mutex_exit(&zio->io_lock);
2215 			timeout = MSEC_TO_TICK(zfs_deadman_checktime_ms);
2216 			zio_deadman(zio, FTAG);
2217 			mutex_enter(&zio->io_lock);
2218 		}
2219 	}
2220 	mutex_exit(&zio->io_lock);
2221 
2222 	error = zio->io_error;
2223 	zio_destroy(zio);
2224 
2225 	return (error);
2226 }
2227 
2228 void
2229 zio_nowait(zio_t *zio)
2230 {
2231 	/*
2232 	 * See comment in zio_wait().
2233 	 */
2234 	if (zio == NULL)
2235 		return;
2236 
2237 	ASSERT3P(zio->io_executor, ==, NULL);
2238 
2239 	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
2240 	    zio_unique_parent(zio) == NULL) {
2241 		zio_t *pio;
2242 
2243 		/*
2244 		 * This is a logical async I/O with no parent to wait for it.
2245 		 * We add it to the spa_async_root_zio "Godfather" I/O which
2246 		 * will ensure they complete prior to unloading the pool.
2247 		 */
2248 		spa_t *spa = zio->io_spa;
2249 		kpreempt_disable();
2250 		pio = spa->spa_async_zio_root[CPU_SEQID];
2251 		kpreempt_enable();
2252 
2253 		zio_add_child(pio, zio);
2254 	}
2255 
2256 	ASSERT0(zio->io_queued_timestamp);
2257 	zio->io_queued_timestamp = gethrtime();
2258 	__zio_execute(zio);
2259 }
2260 
2261 /*
2262  * ==========================================================================
2263  * Reexecute, cancel, or suspend/resume failed I/O
2264  * ==========================================================================
2265  */
2266 
2267 static void
2268 zio_reexecute(zio_t *pio)
2269 {
2270 	zio_t *cio, *cio_next;
2271 
2272 	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
2273 	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
2274 	ASSERT(pio->io_gang_leader == NULL);
2275 	ASSERT(pio->io_gang_tree == NULL);
2276 
2277 	pio->io_flags = pio->io_orig_flags;
2278 	pio->io_stage = pio->io_orig_stage;
2279 	pio->io_pipeline = pio->io_orig_pipeline;
2280 	pio->io_reexecute = 0;
2281 	pio->io_flags |= ZIO_FLAG_REEXECUTED;
2282 	pio->io_pipeline_trace = 0;
2283 	pio->io_error = 0;
2284 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2285 		pio->io_state[w] = 0;
2286 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2287 		pio->io_child_error[c] = 0;
2288 
2289 	if (IO_IS_ALLOCATING(pio))
2290 		BP_ZERO(pio->io_bp);
2291 
2292 	/*
2293 	 * As we reexecute pio's children, new children could be created.
2294 	 * New children go to the head of pio's io_child_list, however,
2295 	 * so we will (correctly) not reexecute them.  The key is that
2296 	 * the remainder of pio's io_child_list, from 'cio_next' onward,
2297 	 * cannot be affected by any side effects of reexecuting 'cio'.
2298 	 */
2299 	zio_link_t *zl = NULL;
2300 	mutex_enter(&pio->io_lock);
2301 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2302 		cio_next = zio_walk_children(pio, &zl);
2303 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2304 			pio->io_children[cio->io_child_type][w]++;
2305 		mutex_exit(&pio->io_lock);
2306 		zio_reexecute(cio);
2307 		mutex_enter(&pio->io_lock);
2308 	}
2309 	mutex_exit(&pio->io_lock);
2310 
2311 	/*
2312 	 * Now that all children have been reexecuted, execute the parent.
2313 	 * We don't reexecute "The Godfather" I/O here as it's the
2314 	 * responsibility of the caller to wait on it.
2315 	 */
2316 	if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) {
2317 		pio->io_queued_timestamp = gethrtime();
2318 		__zio_execute(pio);
2319 	}
2320 }
2321 
2322 void
2323 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason)
2324 {
2325 	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
2326 		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
2327 		    "failure and the failure mode property for this pool "
2328 		    "is set to panic.", spa_name(spa));
2329 
2330 	cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable I/O "
2331 	    "failure and has been suspended.\n", spa_name(spa));
2332 
2333 	(void) zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL,
2334 	    NULL, NULL, 0);
2335 
2336 	mutex_enter(&spa->spa_suspend_lock);
2337 
2338 	if (spa->spa_suspend_zio_root == NULL)
2339 		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
2340 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2341 		    ZIO_FLAG_GODFATHER);
2342 
2343 	spa->spa_suspended = reason;
2344 
2345 	if (zio != NULL) {
2346 		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
2347 		ASSERT(zio != spa->spa_suspend_zio_root);
2348 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2349 		ASSERT(zio_unique_parent(zio) == NULL);
2350 		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
2351 		zio_add_child(spa->spa_suspend_zio_root, zio);
2352 	}
2353 
2354 	mutex_exit(&spa->spa_suspend_lock);
2355 }
2356 
2357 int
2358 zio_resume(spa_t *spa)
2359 {
2360 	zio_t *pio;
2361 
2362 	/*
2363 	 * Reexecute all previously suspended i/o.
2364 	 */
2365 	mutex_enter(&spa->spa_suspend_lock);
2366 	spa->spa_suspended = ZIO_SUSPEND_NONE;
2367 	cv_broadcast(&spa->spa_suspend_cv);
2368 	pio = spa->spa_suspend_zio_root;
2369 	spa->spa_suspend_zio_root = NULL;
2370 	mutex_exit(&spa->spa_suspend_lock);
2371 
2372 	if (pio == NULL)
2373 		return (0);
2374 
2375 	zio_reexecute(pio);
2376 	return (zio_wait(pio));
2377 }
2378 
2379 void
2380 zio_resume_wait(spa_t *spa)
2381 {
2382 	mutex_enter(&spa->spa_suspend_lock);
2383 	while (spa_suspended(spa))
2384 		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
2385 	mutex_exit(&spa->spa_suspend_lock);
2386 }
2387 
2388 /*
2389  * ==========================================================================
2390  * Gang blocks.
2391  *
2392  * A gang block is a collection of small blocks that looks to the DMU
2393  * like one large block.  When zio_dva_allocate() cannot find a block
2394  * of the requested size, due to either severe fragmentation or the pool
2395  * being nearly full, it calls zio_write_gang_block() to construct the
2396  * block from smaller fragments.
2397  *
2398  * A gang block consists of a gang header (zio_gbh_phys_t) and up to
2399  * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
2400  * an indirect block: it's an array of block pointers.  It consumes
2401  * only one sector and hence is allocatable regardless of fragmentation.
2402  * The gang header's bps point to its gang members, which hold the data.
2403  *
2404  * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
2405  * as the verifier to ensure uniqueness of the SHA256 checksum.
2406  * Critically, the gang block bp's blk_cksum is the checksum of the data,
2407  * not the gang header.  This ensures that data block signatures (needed for
2408  * deduplication) are independent of how the block is physically stored.
2409  *
2410  * Gang blocks can be nested: a gang member may itself be a gang block.
2411  * Thus every gang block is a tree in which root and all interior nodes are
2412  * gang headers, and the leaves are normal blocks that contain user data.
2413  * The root of the gang tree is called the gang leader.
2414  *
2415  * To perform any operation (read, rewrite, free, claim) on a gang block,
2416  * zio_gang_assemble() first assembles the gang tree (minus data leaves)
2417  * in the io_gang_tree field of the original logical i/o by recursively
2418  * reading the gang leader and all gang headers below it.  This yields
2419  * an in-core tree containing the contents of every gang header and the
2420  * bps for every constituent of the gang block.
2421  *
2422  * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
2423  * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
2424  * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
2425  * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
2426  * zio_read_gang() is a wrapper around zio_read() that omits reading gang
2427  * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
2428  * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
2429  * of the gang header plus zio_checksum_compute() of the data to update the
2430  * gang header's blk_cksum as described above.
2431  *
2432  * The two-phase assemble/issue model solves the problem of partial failure --
2433  * what if you'd freed part of a gang block but then couldn't read the
2434  * gang header for another part?  Assembling the entire gang tree first
2435  * ensures that all the necessary gang header I/O has succeeded before
2436  * starting the actual work of free, claim, or write.  Once the gang tree
2437  * is assembled, free and claim are in-memory operations that cannot fail.
2438  *
2439  * In the event that a gang write fails, zio_dva_unallocate() walks the
2440  * gang tree to immediately free (i.e. insert back into the space map)
2441  * everything we've allocated.  This ensures that we don't get ENOSPC
2442  * errors during repeated suspend/resume cycles due to a flaky device.
2443  *
2444  * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
2445  * the gang tree, we won't modify the block, so we can safely defer the free
2446  * (knowing that the block is still intact).  If we *can* assemble the gang
2447  * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
2448  * each constituent bp and we can allocate a new block on the next sync pass.
2449  *
2450  * In all cases, the gang tree allows complete recovery from partial failure.
2451  * ==========================================================================
2452  */
2453 
2454 static void
2455 zio_gang_issue_func_done(zio_t *zio)
2456 {
2457 	abd_put(zio->io_abd);
2458 }
2459 
2460 static zio_t *
2461 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2462     uint64_t offset)
2463 {
2464 	if (gn != NULL)
2465 		return (pio);
2466 
2467 	return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset),
2468 	    BP_GET_PSIZE(bp), zio_gang_issue_func_done,
2469 	    NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2470 	    &pio->io_bookmark));
2471 }
2472 
2473 static zio_t *
2474 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2475     uint64_t offset)
2476 {
2477 	zio_t *zio;
2478 
2479 	if (gn != NULL) {
2480 		abd_t *gbh_abd =
2481 		    abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2482 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2483 		    gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL,
2484 		    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2485 		    &pio->io_bookmark);
2486 		/*
2487 		 * As we rewrite each gang header, the pipeline will compute
2488 		 * a new gang block header checksum for it; but no one will
2489 		 * compute a new data checksum, so we do that here.  The one
2490 		 * exception is the gang leader: the pipeline already computed
2491 		 * its data checksum because that stage precedes gang assembly.
2492 		 * (Presently, nothing actually uses interior data checksums;
2493 		 * this is just good hygiene.)
2494 		 */
2495 		if (gn != pio->io_gang_leader->io_gang_tree) {
2496 			abd_t *buf = abd_get_offset(data, offset);
2497 
2498 			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
2499 			    buf, BP_GET_PSIZE(bp));
2500 
2501 			abd_put(buf);
2502 		}
2503 		/*
2504 		 * If we are here to damage data for testing purposes,
2505 		 * leave the GBH alone so that we can detect the damage.
2506 		 */
2507 		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
2508 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2509 	} else {
2510 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2511 		    abd_get_offset(data, offset), BP_GET_PSIZE(bp),
2512 		    zio_gang_issue_func_done, NULL, pio->io_priority,
2513 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2514 	}
2515 
2516 	return (zio);
2517 }
2518 
2519 /* ARGSUSED */
2520 static zio_t *
2521 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2522     uint64_t offset)
2523 {
2524 	zio_t *zio = zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
2525 	    ZIO_GANG_CHILD_FLAGS(pio));
2526 	if (zio == NULL) {
2527 		zio = zio_null(pio, pio->io_spa,
2528 		    NULL, NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio));
2529 	}
2530 	return (zio);
2531 }
2532 
2533 /* ARGSUSED */
2534 static zio_t *
2535 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2536     uint64_t offset)
2537 {
2538 	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
2539 	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
2540 }
2541 
2542 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
2543 	NULL,
2544 	zio_read_gang,
2545 	zio_rewrite_gang,
2546 	zio_free_gang,
2547 	zio_claim_gang,
2548 	NULL
2549 };
2550 
2551 static void zio_gang_tree_assemble_done(zio_t *zio);
2552 
2553 static zio_gang_node_t *
2554 zio_gang_node_alloc(zio_gang_node_t **gnpp)
2555 {
2556 	zio_gang_node_t *gn;
2557 
2558 	ASSERT(*gnpp == NULL);
2559 
2560 	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
2561 	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
2562 	*gnpp = gn;
2563 
2564 	return (gn);
2565 }
2566 
2567 static void
2568 zio_gang_node_free(zio_gang_node_t **gnpp)
2569 {
2570 	zio_gang_node_t *gn = *gnpp;
2571 
2572 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2573 		ASSERT(gn->gn_child[g] == NULL);
2574 
2575 	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2576 	kmem_free(gn, sizeof (*gn));
2577 	*gnpp = NULL;
2578 }
2579 
2580 static void
2581 zio_gang_tree_free(zio_gang_node_t **gnpp)
2582 {
2583 	zio_gang_node_t *gn = *gnpp;
2584 
2585 	if (gn == NULL)
2586 		return;
2587 
2588 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2589 		zio_gang_tree_free(&gn->gn_child[g]);
2590 
2591 	zio_gang_node_free(gnpp);
2592 }
2593 
2594 static void
2595 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
2596 {
2597 	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
2598 	abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2599 
2600 	ASSERT(gio->io_gang_leader == gio);
2601 	ASSERT(BP_IS_GANG(bp));
2602 
2603 	zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2604 	    zio_gang_tree_assemble_done, gn, gio->io_priority,
2605 	    ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
2606 }
2607 
2608 static void
2609 zio_gang_tree_assemble_done(zio_t *zio)
2610 {
2611 	zio_t *gio = zio->io_gang_leader;
2612 	zio_gang_node_t *gn = zio->io_private;
2613 	blkptr_t *bp = zio->io_bp;
2614 
2615 	ASSERT(gio == zio_unique_parent(zio));
2616 	ASSERT(zio->io_child_count == 0);
2617 
2618 	if (zio->io_error)
2619 		return;
2620 
2621 	/* this ABD was created from a linear buf in zio_gang_tree_assemble */
2622 	if (BP_SHOULD_BYTESWAP(bp))
2623 		byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size);
2624 
2625 	ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh);
2626 	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
2627 	ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2628 
2629 	abd_put(zio->io_abd);
2630 
2631 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2632 		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2633 		if (!BP_IS_GANG(gbp))
2634 			continue;
2635 		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
2636 	}
2637 }
2638 
2639 static void
2640 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data,
2641     uint64_t offset)
2642 {
2643 	zio_t *gio = pio->io_gang_leader;
2644 	zio_t *zio;
2645 
2646 	ASSERT(BP_IS_GANG(bp) == !!gn);
2647 	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
2648 	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
2649 
2650 	/*
2651 	 * If you're a gang header, your data is in gn->gn_gbh.
2652 	 * If you're a gang member, your data is in 'data' and gn == NULL.
2653 	 */
2654 	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset);
2655 
2656 	if (gn != NULL) {
2657 		ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2658 
2659 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2660 			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2661 			if (BP_IS_HOLE(gbp))
2662 				continue;
2663 			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data,
2664 			    offset);
2665 			offset += BP_GET_PSIZE(gbp);
2666 		}
2667 	}
2668 
2669 	if (gn == gio->io_gang_tree)
2670 		ASSERT3U(gio->io_size, ==, offset);
2671 
2672 	if (zio != pio)
2673 		zio_nowait(zio);
2674 }
2675 
2676 static zio_t *
2677 zio_gang_assemble(zio_t *zio)
2678 {
2679 	blkptr_t *bp = zio->io_bp;
2680 
2681 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
2682 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2683 
2684 	zio->io_gang_leader = zio;
2685 
2686 	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
2687 
2688 	return (zio);
2689 }
2690 
2691 static zio_t *
2692 zio_gang_issue(zio_t *zio)
2693 {
2694 	blkptr_t *bp = zio->io_bp;
2695 
2696 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) {
2697 		return (NULL);
2698 	}
2699 
2700 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
2701 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2702 
2703 	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
2704 		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd,
2705 		    0);
2706 	else
2707 		zio_gang_tree_free(&zio->io_gang_tree);
2708 
2709 	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2710 
2711 	return (zio);
2712 }
2713 
2714 static void
2715 zio_write_gang_member_ready(zio_t *zio)
2716 {
2717 	zio_t *pio = zio_unique_parent(zio);
2718 	dva_t *cdva = zio->io_bp->blk_dva;
2719 	dva_t *pdva = pio->io_bp->blk_dva;
2720 	uint64_t asize;
2721 	zio_t *gio __maybe_unused = zio->io_gang_leader;
2722 
2723 	if (BP_IS_HOLE(zio->io_bp))
2724 		return;
2725 
2726 	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
2727 
2728 	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
2729 	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
2730 	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
2731 	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
2732 	ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
2733 
2734 	mutex_enter(&pio->io_lock);
2735 	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
2736 		ASSERT(DVA_GET_GANG(&pdva[d]));
2737 		asize = DVA_GET_ASIZE(&pdva[d]);
2738 		asize += DVA_GET_ASIZE(&cdva[d]);
2739 		DVA_SET_ASIZE(&pdva[d], asize);
2740 	}
2741 	mutex_exit(&pio->io_lock);
2742 }
2743 
2744 static void
2745 zio_write_gang_done(zio_t *zio)
2746 {
2747 	/*
2748 	 * The io_abd field will be NULL for a zio with no data.  The io_flags
2749 	 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't
2750 	 * check for it here as it is cleared in zio_ready.
2751 	 */
2752 	if (zio->io_abd != NULL)
2753 		abd_put(zio->io_abd);
2754 }
2755 
2756 static zio_t *
2757 zio_write_gang_block(zio_t *pio)
2758 {
2759 	spa_t *spa = pio->io_spa;
2760 	metaslab_class_t *mc = spa_normal_class(spa);
2761 	blkptr_t *bp = pio->io_bp;
2762 	zio_t *gio = pio->io_gang_leader;
2763 	zio_t *zio;
2764 	zio_gang_node_t *gn, **gnpp;
2765 	zio_gbh_phys_t *gbh;
2766 	abd_t *gbh_abd;
2767 	uint64_t txg = pio->io_txg;
2768 	uint64_t resid = pio->io_size;
2769 	uint64_t lsize;
2770 	int copies = gio->io_prop.zp_copies;
2771 	int gbh_copies;
2772 	zio_prop_t zp;
2773 	int error;
2774 	boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA);
2775 
2776 	/*
2777 	 * encrypted blocks need DVA[2] free so encrypted gang headers can't
2778 	 * have a third copy.
2779 	 */
2780 	gbh_copies = MIN(copies + 1, spa_max_replication(spa));
2781 	if (gio->io_prop.zp_encrypt && gbh_copies >= SPA_DVAS_PER_BP)
2782 		gbh_copies = SPA_DVAS_PER_BP - 1;
2783 
2784 	int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER;
2785 	if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2786 		ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2787 		ASSERT(has_data);
2788 
2789 		flags |= METASLAB_ASYNC_ALLOC;
2790 		VERIFY(zfs_refcount_held(&mc->mc_alloc_slots[pio->io_allocator],
2791 		    pio));
2792 
2793 		/*
2794 		 * The logical zio has already placed a reservation for
2795 		 * 'copies' allocation slots but gang blocks may require
2796 		 * additional copies. These additional copies
2797 		 * (i.e. gbh_copies - copies) are guaranteed to succeed
2798 		 * since metaslab_class_throttle_reserve() always allows
2799 		 * additional reservations for gang blocks.
2800 		 */
2801 		VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies,
2802 		    pio->io_allocator, pio, flags));
2803 	}
2804 
2805 	error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE,
2806 	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags,
2807 	    &pio->io_alloc_list, pio, pio->io_allocator);
2808 	if (error) {
2809 		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2810 			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2811 			ASSERT(has_data);
2812 
2813 			/*
2814 			 * If we failed to allocate the gang block header then
2815 			 * we remove any additional allocation reservations that
2816 			 * we placed here. The original reservation will
2817 			 * be removed when the logical I/O goes to the ready
2818 			 * stage.
2819 			 */
2820 			metaslab_class_throttle_unreserve(mc,
2821 			    gbh_copies - copies, pio->io_allocator, pio);
2822 		}
2823 
2824 		pio->io_error = error;
2825 		return (pio);
2826 	}
2827 
2828 	if (pio == gio) {
2829 		gnpp = &gio->io_gang_tree;
2830 	} else {
2831 		gnpp = pio->io_private;
2832 		ASSERT(pio->io_ready == zio_write_gang_member_ready);
2833 	}
2834 
2835 	gn = zio_gang_node_alloc(gnpp);
2836 	gbh = gn->gn_gbh;
2837 	bzero(gbh, SPA_GANGBLOCKSIZE);
2838 	gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE);
2839 
2840 	/*
2841 	 * Create the gang header.
2842 	 */
2843 	zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2844 	    zio_write_gang_done, NULL, pio->io_priority,
2845 	    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2846 
2847 	/*
2848 	 * Create and nowait the gang children.
2849 	 */
2850 	for (int g = 0; resid != 0; resid -= lsize, g++) {
2851 		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
2852 		    SPA_MINBLOCKSIZE);
2853 		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
2854 
2855 		zp.zp_checksum = gio->io_prop.zp_checksum;
2856 		zp.zp_compress = ZIO_COMPRESS_OFF;
2857 		zp.zp_complevel = gio->io_prop.zp_complevel;
2858 		zp.zp_type = DMU_OT_NONE;
2859 		zp.zp_level = 0;
2860 		zp.zp_copies = gio->io_prop.zp_copies;
2861 		zp.zp_dedup = B_FALSE;
2862 		zp.zp_dedup_verify = B_FALSE;
2863 		zp.zp_nopwrite = B_FALSE;
2864 		zp.zp_encrypt = gio->io_prop.zp_encrypt;
2865 		zp.zp_byteorder = gio->io_prop.zp_byteorder;
2866 		bzero(zp.zp_salt, ZIO_DATA_SALT_LEN);
2867 		bzero(zp.zp_iv, ZIO_DATA_IV_LEN);
2868 		bzero(zp.zp_mac, ZIO_DATA_MAC_LEN);
2869 
2870 		zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
2871 		    has_data ? abd_get_offset(pio->io_abd, pio->io_size -
2872 		    resid) : NULL, lsize, lsize, &zp,
2873 		    zio_write_gang_member_ready, NULL, NULL,
2874 		    zio_write_gang_done, &gn->gn_child[g], pio->io_priority,
2875 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2876 
2877 		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2878 			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2879 			ASSERT(has_data);
2880 
2881 			/*
2882 			 * Gang children won't throttle but we should
2883 			 * account for their work, so reserve an allocation
2884 			 * slot for them here.
2885 			 */
2886 			VERIFY(metaslab_class_throttle_reserve(mc,
2887 			    zp.zp_copies, cio->io_allocator, cio, flags));
2888 		}
2889 		zio_nowait(cio);
2890 	}
2891 
2892 	/*
2893 	 * Set pio's pipeline to just wait for zio to finish.
2894 	 */
2895 	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2896 
2897 	/*
2898 	 * We didn't allocate this bp, so make sure it doesn't get unmarked.
2899 	 */
2900 	pio->io_flags &= ~ZIO_FLAG_FASTWRITE;
2901 
2902 	zio_nowait(zio);
2903 
2904 	return (pio);
2905 }
2906 
2907 /*
2908  * The zio_nop_write stage in the pipeline determines if allocating a
2909  * new bp is necessary.  The nopwrite feature can handle writes in
2910  * either syncing or open context (i.e. zil writes) and as a result is
2911  * mutually exclusive with dedup.
2912  *
2913  * By leveraging a cryptographically secure checksum, such as SHA256, we
2914  * can compare the checksums of the new data and the old to determine if
2915  * allocating a new block is required.  Note that our requirements for
2916  * cryptographic strength are fairly weak: there can't be any accidental
2917  * hash collisions, but we don't need to be secure against intentional
2918  * (malicious) collisions.  To trigger a nopwrite, you have to be able
2919  * to write the file to begin with, and triggering an incorrect (hash
2920  * collision) nopwrite is no worse than simply writing to the file.
2921  * That said, there are no known attacks against the checksum algorithms
2922  * used for nopwrite, assuming that the salt and the checksums
2923  * themselves remain secret.
2924  */
2925 static zio_t *
2926 zio_nop_write(zio_t *zio)
2927 {
2928 	blkptr_t *bp = zio->io_bp;
2929 	blkptr_t *bp_orig = &zio->io_bp_orig;
2930 	zio_prop_t *zp = &zio->io_prop;
2931 
2932 	ASSERT(BP_GET_LEVEL(bp) == 0);
2933 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2934 	ASSERT(zp->zp_nopwrite);
2935 	ASSERT(!zp->zp_dedup);
2936 	ASSERT(zio->io_bp_override == NULL);
2937 	ASSERT(IO_IS_ALLOCATING(zio));
2938 
2939 	/*
2940 	 * Check to see if the original bp and the new bp have matching
2941 	 * characteristics (i.e. same checksum, compression algorithms, etc).
2942 	 * If they don't then just continue with the pipeline which will
2943 	 * allocate a new bp.
2944 	 */
2945 	if (BP_IS_HOLE(bp_orig) ||
2946 	    !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
2947 	    ZCHECKSUM_FLAG_NOPWRITE) ||
2948 	    BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) ||
2949 	    BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
2950 	    BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
2951 	    BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
2952 	    zp->zp_copies != BP_GET_NDVAS(bp_orig))
2953 		return (zio);
2954 
2955 	/*
2956 	 * If the checksums match then reset the pipeline so that we
2957 	 * avoid allocating a new bp and issuing any I/O.
2958 	 */
2959 	if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
2960 		ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
2961 		    ZCHECKSUM_FLAG_NOPWRITE);
2962 		ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
2963 		ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
2964 		ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
2965 		ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
2966 		    sizeof (uint64_t)) == 0);
2967 
2968 		/*
2969 		 * If we're overwriting a block that is currently on an
2970 		 * indirect vdev, then ignore the nopwrite request and
2971 		 * allow a new block to be allocated on a concrete vdev.
2972 		 */
2973 		spa_config_enter(zio->io_spa, SCL_VDEV, FTAG, RW_READER);
2974 		vdev_t *tvd = vdev_lookup_top(zio->io_spa,
2975 		    DVA_GET_VDEV(&bp->blk_dva[0]));
2976 		if (tvd->vdev_ops == &vdev_indirect_ops) {
2977 			spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
2978 			return (zio);
2979 		}
2980 		spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
2981 
2982 		*bp = *bp_orig;
2983 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2984 		zio->io_flags |= ZIO_FLAG_NOPWRITE;
2985 	}
2986 
2987 	return (zio);
2988 }
2989 
2990 /*
2991  * ==========================================================================
2992  * Dedup
2993  * ==========================================================================
2994  */
2995 static void
2996 zio_ddt_child_read_done(zio_t *zio)
2997 {
2998 	blkptr_t *bp = zio->io_bp;
2999 	ddt_entry_t *dde = zio->io_private;
3000 	ddt_phys_t *ddp;
3001 	zio_t *pio = zio_unique_parent(zio);
3002 
3003 	mutex_enter(&pio->io_lock);
3004 	ddp = ddt_phys_select(dde, bp);
3005 	if (zio->io_error == 0)
3006 		ddt_phys_clear(ddp);	/* this ddp doesn't need repair */
3007 
3008 	if (zio->io_error == 0 && dde->dde_repair_abd == NULL)
3009 		dde->dde_repair_abd = zio->io_abd;
3010 	else
3011 		abd_free(zio->io_abd);
3012 	mutex_exit(&pio->io_lock);
3013 }
3014 
3015 static zio_t *
3016 zio_ddt_read_start(zio_t *zio)
3017 {
3018 	blkptr_t *bp = zio->io_bp;
3019 
3020 	ASSERT(BP_GET_DEDUP(bp));
3021 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3022 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3023 
3024 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
3025 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
3026 		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
3027 		ddt_phys_t *ddp = dde->dde_phys;
3028 		ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
3029 		blkptr_t blk;
3030 
3031 		ASSERT(zio->io_vsd == NULL);
3032 		zio->io_vsd = dde;
3033 
3034 		if (ddp_self == NULL)
3035 			return (zio);
3036 
3037 		for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
3038 			if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
3039 				continue;
3040 			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
3041 			    &blk);
3042 			zio_nowait(zio_read(zio, zio->io_spa, &blk,
3043 			    abd_alloc_for_io(zio->io_size, B_TRUE),
3044 			    zio->io_size, zio_ddt_child_read_done, dde,
3045 			    zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) |
3046 			    ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark));
3047 		}
3048 		return (zio);
3049 	}
3050 
3051 	zio_nowait(zio_read(zio, zio->io_spa, bp,
3052 	    zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority,
3053 	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
3054 
3055 	return (zio);
3056 }
3057 
3058 static zio_t *
3059 zio_ddt_read_done(zio_t *zio)
3060 {
3061 	blkptr_t *bp = zio->io_bp;
3062 
3063 	if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) {
3064 		return (NULL);
3065 	}
3066 
3067 	ASSERT(BP_GET_DEDUP(bp));
3068 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3069 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3070 
3071 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
3072 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
3073 		ddt_entry_t *dde = zio->io_vsd;
3074 		if (ddt == NULL) {
3075 			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
3076 			return (zio);
3077 		}
3078 		if (dde == NULL) {
3079 			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
3080 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
3081 			return (NULL);
3082 		}
3083 		if (dde->dde_repair_abd != NULL) {
3084 			abd_copy(zio->io_abd, dde->dde_repair_abd,
3085 			    zio->io_size);
3086 			zio->io_child_error[ZIO_CHILD_DDT] = 0;
3087 		}
3088 		ddt_repair_done(ddt, dde);
3089 		zio->io_vsd = NULL;
3090 	}
3091 
3092 	ASSERT(zio->io_vsd == NULL);
3093 
3094 	return (zio);
3095 }
3096 
3097 static boolean_t
3098 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
3099 {
3100 	spa_t *spa = zio->io_spa;
3101 	boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW);
3102 
3103 	ASSERT(!(zio->io_bp_override && do_raw));
3104 
3105 	/*
3106 	 * Note: we compare the original data, not the transformed data,
3107 	 * because when zio->io_bp is an override bp, we will not have
3108 	 * pushed the I/O transforms.  That's an important optimization
3109 	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
3110 	 * However, we should never get a raw, override zio so in these
3111 	 * cases we can compare the io_abd directly. This is useful because
3112 	 * it allows us to do dedup verification even if we don't have access
3113 	 * to the original data (for instance, if the encryption keys aren't
3114 	 * loaded).
3115 	 */
3116 
3117 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
3118 		zio_t *lio = dde->dde_lead_zio[p];
3119 
3120 		if (lio != NULL && do_raw) {
3121 			return (lio->io_size != zio->io_size ||
3122 			    abd_cmp(zio->io_abd, lio->io_abd) != 0);
3123 		} else if (lio != NULL) {
3124 			return (lio->io_orig_size != zio->io_orig_size ||
3125 			    abd_cmp(zio->io_orig_abd, lio->io_orig_abd) != 0);
3126 		}
3127 	}
3128 
3129 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
3130 		ddt_phys_t *ddp = &dde->dde_phys[p];
3131 
3132 		if (ddp->ddp_phys_birth != 0 && do_raw) {
3133 			blkptr_t blk = *zio->io_bp;
3134 			uint64_t psize;
3135 			abd_t *tmpabd;
3136 			int error;
3137 
3138 			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
3139 			psize = BP_GET_PSIZE(&blk);
3140 
3141 			if (psize != zio->io_size)
3142 				return (B_TRUE);
3143 
3144 			ddt_exit(ddt);
3145 
3146 			tmpabd = abd_alloc_for_io(psize, B_TRUE);
3147 
3148 			error = zio_wait(zio_read(NULL, spa, &blk, tmpabd,
3149 			    psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
3150 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3151 			    ZIO_FLAG_RAW, &zio->io_bookmark));
3152 
3153 			if (error == 0) {
3154 				if (abd_cmp(tmpabd, zio->io_abd) != 0)
3155 					error = SET_ERROR(ENOENT);
3156 			}
3157 
3158 			abd_free(tmpabd);
3159 			ddt_enter(ddt);
3160 			return (error != 0);
3161 		} else if (ddp->ddp_phys_birth != 0) {
3162 			arc_buf_t *abuf = NULL;
3163 			arc_flags_t aflags = ARC_FLAG_WAIT;
3164 			blkptr_t blk = *zio->io_bp;
3165 			int error;
3166 
3167 			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
3168 
3169 			if (BP_GET_LSIZE(&blk) != zio->io_orig_size)
3170 				return (B_TRUE);
3171 
3172 			ddt_exit(ddt);
3173 
3174 			error = arc_read(NULL, spa, &blk,
3175 			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
3176 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3177 			    &aflags, &zio->io_bookmark);
3178 
3179 			if (error == 0) {
3180 				if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data,
3181 				    zio->io_orig_size) != 0)
3182 					error = SET_ERROR(ENOENT);
3183 				arc_buf_destroy(abuf, &abuf);
3184 			}
3185 
3186 			ddt_enter(ddt);
3187 			return (error != 0);
3188 		}
3189 	}
3190 
3191 	return (B_FALSE);
3192 }
3193 
3194 static void
3195 zio_ddt_child_write_ready(zio_t *zio)
3196 {
3197 	int p = zio->io_prop.zp_copies;
3198 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3199 	ddt_entry_t *dde = zio->io_private;
3200 	ddt_phys_t *ddp = &dde->dde_phys[p];
3201 	zio_t *pio;
3202 
3203 	if (zio->io_error)
3204 		return;
3205 
3206 	ddt_enter(ddt);
3207 
3208 	ASSERT(dde->dde_lead_zio[p] == zio);
3209 
3210 	ddt_phys_fill(ddp, zio->io_bp);
3211 
3212 	zio_link_t *zl = NULL;
3213 	while ((pio = zio_walk_parents(zio, &zl)) != NULL)
3214 		ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
3215 
3216 	ddt_exit(ddt);
3217 }
3218 
3219 static void
3220 zio_ddt_child_write_done(zio_t *zio)
3221 {
3222 	int p = zio->io_prop.zp_copies;
3223 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3224 	ddt_entry_t *dde = zio->io_private;
3225 	ddt_phys_t *ddp = &dde->dde_phys[p];
3226 
3227 	ddt_enter(ddt);
3228 
3229 	ASSERT(ddp->ddp_refcnt == 0);
3230 	ASSERT(dde->dde_lead_zio[p] == zio);
3231 	dde->dde_lead_zio[p] = NULL;
3232 
3233 	if (zio->io_error == 0) {
3234 		zio_link_t *zl = NULL;
3235 		while (zio_walk_parents(zio, &zl) != NULL)
3236 			ddt_phys_addref(ddp);
3237 	} else {
3238 		ddt_phys_clear(ddp);
3239 	}
3240 
3241 	ddt_exit(ddt);
3242 }
3243 
3244 static zio_t *
3245 zio_ddt_write(zio_t *zio)
3246 {
3247 	spa_t *spa = zio->io_spa;
3248 	blkptr_t *bp = zio->io_bp;
3249 	uint64_t txg = zio->io_txg;
3250 	zio_prop_t *zp = &zio->io_prop;
3251 	int p = zp->zp_copies;
3252 	zio_t *cio = NULL;
3253 	ddt_t *ddt = ddt_select(spa, bp);
3254 	ddt_entry_t *dde;
3255 	ddt_phys_t *ddp;
3256 
3257 	ASSERT(BP_GET_DEDUP(bp));
3258 	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
3259 	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
3260 	ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW)));
3261 
3262 	ddt_enter(ddt);
3263 	dde = ddt_lookup(ddt, bp, B_TRUE);
3264 	ddp = &dde->dde_phys[p];
3265 
3266 	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
3267 		/*
3268 		 * If we're using a weak checksum, upgrade to a strong checksum
3269 		 * and try again.  If we're already using a strong checksum,
3270 		 * we can't resolve it, so just convert to an ordinary write.
3271 		 * (And automatically e-mail a paper to Nature?)
3272 		 */
3273 		if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
3274 		    ZCHECKSUM_FLAG_DEDUP)) {
3275 			zp->zp_checksum = spa_dedup_checksum(spa);
3276 			zio_pop_transforms(zio);
3277 			zio->io_stage = ZIO_STAGE_OPEN;
3278 			BP_ZERO(bp);
3279 		} else {
3280 			zp->zp_dedup = B_FALSE;
3281 			BP_SET_DEDUP(bp, B_FALSE);
3282 		}
3283 		ASSERT(!BP_GET_DEDUP(bp));
3284 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
3285 		ddt_exit(ddt);
3286 		return (zio);
3287 	}
3288 
3289 	if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
3290 		if (ddp->ddp_phys_birth != 0)
3291 			ddt_bp_fill(ddp, bp, txg);
3292 		if (dde->dde_lead_zio[p] != NULL)
3293 			zio_add_child(zio, dde->dde_lead_zio[p]);
3294 		else
3295 			ddt_phys_addref(ddp);
3296 	} else if (zio->io_bp_override) {
3297 		ASSERT(bp->blk_birth == txg);
3298 		ASSERT(BP_EQUAL(bp, zio->io_bp_override));
3299 		ddt_phys_fill(ddp, bp);
3300 		ddt_phys_addref(ddp);
3301 	} else {
3302 		cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
3303 		    zio->io_orig_size, zio->io_orig_size, zp,
3304 		    zio_ddt_child_write_ready, NULL, NULL,
3305 		    zio_ddt_child_write_done, dde, zio->io_priority,
3306 		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
3307 
3308 		zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL);
3309 		dde->dde_lead_zio[p] = cio;
3310 	}
3311 
3312 	ddt_exit(ddt);
3313 
3314 	zio_nowait(cio);
3315 
3316 	return (zio);
3317 }
3318 
3319 ddt_entry_t *freedde; /* for debugging */
3320 
3321 static zio_t *
3322 zio_ddt_free(zio_t *zio)
3323 {
3324 	spa_t *spa = zio->io_spa;
3325 	blkptr_t *bp = zio->io_bp;
3326 	ddt_t *ddt = ddt_select(spa, bp);
3327 	ddt_entry_t *dde;
3328 	ddt_phys_t *ddp;
3329 
3330 	ASSERT(BP_GET_DEDUP(bp));
3331 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3332 
3333 	ddt_enter(ddt);
3334 	freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
3335 	if (dde) {
3336 		ddp = ddt_phys_select(dde, bp);
3337 		if (ddp)
3338 			ddt_phys_decref(ddp);
3339 	}
3340 	ddt_exit(ddt);
3341 
3342 	return (zio);
3343 }
3344 
3345 /*
3346  * ==========================================================================
3347  * Allocate and free blocks
3348  * ==========================================================================
3349  */
3350 
3351 static zio_t *
3352 zio_io_to_allocate(spa_t *spa, int allocator)
3353 {
3354 	zio_t *zio;
3355 
3356 	ASSERT(MUTEX_HELD(&spa->spa_alloc_locks[allocator]));
3357 
3358 	zio = avl_first(&spa->spa_alloc_trees[allocator]);
3359 	if (zio == NULL)
3360 		return (NULL);
3361 
3362 	ASSERT(IO_IS_ALLOCATING(zio));
3363 
3364 	/*
3365 	 * Try to place a reservation for this zio. If we're unable to
3366 	 * reserve then we throttle.
3367 	 */
3368 	ASSERT3U(zio->io_allocator, ==, allocator);
3369 	if (!metaslab_class_throttle_reserve(zio->io_metaslab_class,
3370 	    zio->io_prop.zp_copies, zio->io_allocator, zio, 0)) {
3371 		return (NULL);
3372 	}
3373 
3374 	avl_remove(&spa->spa_alloc_trees[allocator], zio);
3375 	ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE);
3376 
3377 	return (zio);
3378 }
3379 
3380 static zio_t *
3381 zio_dva_throttle(zio_t *zio)
3382 {
3383 	spa_t *spa = zio->io_spa;
3384 	zio_t *nio;
3385 	metaslab_class_t *mc;
3386 
3387 	/* locate an appropriate allocation class */
3388 	mc = spa_preferred_class(spa, zio->io_size, zio->io_prop.zp_type,
3389 	    zio->io_prop.zp_level, zio->io_prop.zp_zpl_smallblk);
3390 
3391 	if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE ||
3392 	    !mc->mc_alloc_throttle_enabled ||
3393 	    zio->io_child_type == ZIO_CHILD_GANG ||
3394 	    zio->io_flags & ZIO_FLAG_NODATA) {
3395 		return (zio);
3396 	}
3397 
3398 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3399 
3400 	ASSERT3U(zio->io_queued_timestamp, >, 0);
3401 	ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE);
3402 
3403 	zbookmark_phys_t *bm = &zio->io_bookmark;
3404 	/*
3405 	 * We want to try to use as many allocators as possible to help improve
3406 	 * performance, but we also want logically adjacent IOs to be physically
3407 	 * adjacent to improve sequential read performance. We chunk each object
3408 	 * into 2^20 block regions, and then hash based on the objset, object,
3409 	 * level, and region to accomplish both of these goals.
3410 	 */
3411 	zio->io_allocator = cityhash4(bm->zb_objset, bm->zb_object,
3412 	    bm->zb_level, bm->zb_blkid >> 20) % spa->spa_alloc_count;
3413 	mutex_enter(&spa->spa_alloc_locks[zio->io_allocator]);
3414 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3415 	zio->io_metaslab_class = mc;
3416 	avl_add(&spa->spa_alloc_trees[zio->io_allocator], zio);
3417 	nio = zio_io_to_allocate(spa, zio->io_allocator);
3418 	mutex_exit(&spa->spa_alloc_locks[zio->io_allocator]);
3419 	return (nio);
3420 }
3421 
3422 static void
3423 zio_allocate_dispatch(spa_t *spa, int allocator)
3424 {
3425 	zio_t *zio;
3426 
3427 	mutex_enter(&spa->spa_alloc_locks[allocator]);
3428 	zio = zio_io_to_allocate(spa, allocator);
3429 	mutex_exit(&spa->spa_alloc_locks[allocator]);
3430 	if (zio == NULL)
3431 		return;
3432 
3433 	ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE);
3434 	ASSERT0(zio->io_error);
3435 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE);
3436 }
3437 
3438 static zio_t *
3439 zio_dva_allocate(zio_t *zio)
3440 {
3441 	spa_t *spa = zio->io_spa;
3442 	metaslab_class_t *mc;
3443 	blkptr_t *bp = zio->io_bp;
3444 	int error;
3445 	int flags = 0;
3446 
3447 	if (zio->io_gang_leader == NULL) {
3448 		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3449 		zio->io_gang_leader = zio;
3450 	}
3451 
3452 	ASSERT(BP_IS_HOLE(bp));
3453 	ASSERT0(BP_GET_NDVAS(bp));
3454 	ASSERT3U(zio->io_prop.zp_copies, >, 0);
3455 	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
3456 	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
3457 
3458 	flags |= (zio->io_flags & ZIO_FLAG_FASTWRITE) ? METASLAB_FASTWRITE : 0;
3459 	if (zio->io_flags & ZIO_FLAG_NODATA)
3460 		flags |= METASLAB_DONT_THROTTLE;
3461 	if (zio->io_flags & ZIO_FLAG_GANG_CHILD)
3462 		flags |= METASLAB_GANG_CHILD;
3463 	if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE)
3464 		flags |= METASLAB_ASYNC_ALLOC;
3465 
3466 	/*
3467 	 * if not already chosen, locate an appropriate allocation class
3468 	 */
3469 	mc = zio->io_metaslab_class;
3470 	if (mc == NULL) {
3471 		mc = spa_preferred_class(spa, zio->io_size,
3472 		    zio->io_prop.zp_type, zio->io_prop.zp_level,
3473 		    zio->io_prop.zp_zpl_smallblk);
3474 		zio->io_metaslab_class = mc;
3475 	}
3476 
3477 	error = metaslab_alloc(spa, mc, zio->io_size, bp,
3478 	    zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3479 	    &zio->io_alloc_list, zio, zio->io_allocator);
3480 
3481 	/*
3482 	 * Fallback to normal class when an alloc class is full
3483 	 */
3484 	if (error == ENOSPC && mc != spa_normal_class(spa)) {
3485 		/*
3486 		 * If throttling, transfer reservation over to normal class.
3487 		 * The io_allocator slot can remain the same even though we
3488 		 * are switching classes.
3489 		 */
3490 		if (mc->mc_alloc_throttle_enabled &&
3491 		    (zio->io_flags & ZIO_FLAG_IO_ALLOCATING)) {
3492 			metaslab_class_throttle_unreserve(mc,
3493 			    zio->io_prop.zp_copies, zio->io_allocator, zio);
3494 			zio->io_flags &= ~ZIO_FLAG_IO_ALLOCATING;
3495 
3496 			mc = spa_normal_class(spa);
3497 			VERIFY(metaslab_class_throttle_reserve(mc,
3498 			    zio->io_prop.zp_copies, zio->io_allocator, zio,
3499 			    flags | METASLAB_MUST_RESERVE));
3500 		} else {
3501 			mc = spa_normal_class(spa);
3502 		}
3503 		zio->io_metaslab_class = mc;
3504 
3505 		error = metaslab_alloc(spa, mc, zio->io_size, bp,
3506 		    zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3507 		    &zio->io_alloc_list, zio, zio->io_allocator);
3508 	}
3509 
3510 	if (error != 0) {
3511 		zfs_dbgmsg("%s: metaslab allocation failure: zio %px, "
3512 		    "size %llu, error %d", spa_name(spa), zio, zio->io_size,
3513 		    error);
3514 		if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
3515 			return (zio_write_gang_block(zio));
3516 		zio->io_error = error;
3517 	}
3518 
3519 	return (zio);
3520 }
3521 
3522 static zio_t *
3523 zio_dva_free(zio_t *zio)
3524 {
3525 	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
3526 
3527 	return (zio);
3528 }
3529 
3530 static zio_t *
3531 zio_dva_claim(zio_t *zio)
3532 {
3533 	int error;
3534 
3535 	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
3536 	if (error)
3537 		zio->io_error = error;
3538 
3539 	return (zio);
3540 }
3541 
3542 /*
3543  * Undo an allocation.  This is used by zio_done() when an I/O fails
3544  * and we want to give back the block we just allocated.
3545  * This handles both normal blocks and gang blocks.
3546  */
3547 static void
3548 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
3549 {
3550 	ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
3551 	ASSERT(zio->io_bp_override == NULL);
3552 
3553 	if (!BP_IS_HOLE(bp))
3554 		metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
3555 
3556 	if (gn != NULL) {
3557 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
3558 			zio_dva_unallocate(zio, gn->gn_child[g],
3559 			    &gn->gn_gbh->zg_blkptr[g]);
3560 		}
3561 	}
3562 }
3563 
3564 /*
3565  * Try to allocate an intent log block.  Return 0 on success, errno on failure.
3566  */
3567 int
3568 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp,
3569     uint64_t size, boolean_t *slog)
3570 {
3571 	int error = 1;
3572 	zio_alloc_list_t io_alloc_list;
3573 
3574 	ASSERT(txg > spa_syncing_txg(spa));
3575 
3576 	metaslab_trace_init(&io_alloc_list);
3577 
3578 	/*
3579 	 * Block pointer fields are useful to metaslabs for stats and debugging.
3580 	 * Fill in the obvious ones before calling into metaslab_alloc().
3581 	 */
3582 	BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3583 	BP_SET_PSIZE(new_bp, size);
3584 	BP_SET_LEVEL(new_bp, 0);
3585 
3586 	/*
3587 	 * When allocating a zil block, we don't have information about
3588 	 * the final destination of the block except the objset it's part
3589 	 * of, so we just hash the objset ID to pick the allocator to get
3590 	 * some parallelism.
3591 	 */
3592 	error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1,
3593 	    txg, NULL, METASLAB_FASTWRITE, &io_alloc_list, NULL,
3594 	    cityhash4(0, 0, 0, os->os_dsl_dataset->ds_object) %
3595 	    spa->spa_alloc_count);
3596 	if (error == 0) {
3597 		*slog = TRUE;
3598 	} else {
3599 		error = metaslab_alloc(spa, spa_normal_class(spa), size,
3600 		    new_bp, 1, txg, NULL, METASLAB_FASTWRITE,
3601 		    &io_alloc_list, NULL, cityhash4(0, 0, 0,
3602 		    os->os_dsl_dataset->ds_object) % spa->spa_alloc_count);
3603 		if (error == 0)
3604 			*slog = FALSE;
3605 	}
3606 	metaslab_trace_fini(&io_alloc_list);
3607 
3608 	if (error == 0) {
3609 		BP_SET_LSIZE(new_bp, size);
3610 		BP_SET_PSIZE(new_bp, size);
3611 		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
3612 		BP_SET_CHECKSUM(new_bp,
3613 		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL
3614 		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
3615 		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3616 		BP_SET_LEVEL(new_bp, 0);
3617 		BP_SET_DEDUP(new_bp, 0);
3618 		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
3619 
3620 		/*
3621 		 * encrypted blocks will require an IV and salt. We generate
3622 		 * these now since we will not be rewriting the bp at
3623 		 * rewrite time.
3624 		 */
3625 		if (os->os_encrypted) {
3626 			uint8_t iv[ZIO_DATA_IV_LEN];
3627 			uint8_t salt[ZIO_DATA_SALT_LEN];
3628 
3629 			BP_SET_CRYPT(new_bp, B_TRUE);
3630 			VERIFY0(spa_crypt_get_salt(spa,
3631 			    dmu_objset_id(os), salt));
3632 			VERIFY0(zio_crypt_generate_iv(iv));
3633 
3634 			zio_crypt_encode_params_bp(new_bp, salt, iv);
3635 		}
3636 	} else {
3637 		zfs_dbgmsg("%s: zil block allocation failure: "
3638 		    "size %llu, error %d", spa_name(spa), size, error);
3639 	}
3640 
3641 	return (error);
3642 }
3643 
3644 /*
3645  * ==========================================================================
3646  * Read and write to physical devices
3647  * ==========================================================================
3648  */
3649 
3650 /*
3651  * Issue an I/O to the underlying vdev. Typically the issue pipeline
3652  * stops after this stage and will resume upon I/O completion.
3653  * However, there are instances where the vdev layer may need to
3654  * continue the pipeline when an I/O was not issued. Since the I/O
3655  * that was sent to the vdev layer might be different than the one
3656  * currently active in the pipeline (see vdev_queue_io()), we explicitly
3657  * force the underlying vdev layers to call either zio_execute() or
3658  * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
3659  */
3660 static zio_t *
3661 zio_vdev_io_start(zio_t *zio)
3662 {
3663 	vdev_t *vd = zio->io_vd;
3664 	uint64_t align;
3665 	spa_t *spa = zio->io_spa;
3666 
3667 	zio->io_delay = 0;
3668 
3669 	ASSERT(zio->io_error == 0);
3670 	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
3671 
3672 	if (vd == NULL) {
3673 		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3674 			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
3675 
3676 		/*
3677 		 * The mirror_ops handle multiple DVAs in a single BP.
3678 		 */
3679 		vdev_mirror_ops.vdev_op_io_start(zio);
3680 		return (NULL);
3681 	}
3682 
3683 	ASSERT3P(zio->io_logical, !=, zio);
3684 	if (zio->io_type == ZIO_TYPE_WRITE) {
3685 		ASSERT(spa->spa_trust_config);
3686 
3687 		/*
3688 		 * Note: the code can handle other kinds of writes,
3689 		 * but we don't expect them.
3690 		 */
3691 		if (zio->io_vd->vdev_removing) {
3692 			ASSERT(zio->io_flags &
3693 			    (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL |
3694 			    ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE));
3695 		}
3696 	}
3697 
3698 	align = 1ULL << vd->vdev_top->vdev_ashift;
3699 
3700 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
3701 	    P2PHASE(zio->io_size, align) != 0) {
3702 		/* Transform logical writes to be a full physical block size. */
3703 		uint64_t asize = P2ROUNDUP(zio->io_size, align);
3704 		abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize);
3705 		ASSERT(vd == vd->vdev_top);
3706 		if (zio->io_type == ZIO_TYPE_WRITE) {
3707 			abd_copy(abuf, zio->io_abd, zio->io_size);
3708 			abd_zero_off(abuf, zio->io_size, asize - zio->io_size);
3709 		}
3710 		zio_push_transform(zio, abuf, asize, asize, zio_subblock);
3711 	}
3712 
3713 	/*
3714 	 * If this is not a physical io, make sure that it is properly aligned
3715 	 * before proceeding.
3716 	 */
3717 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
3718 		ASSERT0(P2PHASE(zio->io_offset, align));
3719 		ASSERT0(P2PHASE(zio->io_size, align));
3720 	} else {
3721 		/*
3722 		 * For physical writes, we allow 512b aligned writes and assume
3723 		 * the device will perform a read-modify-write as necessary.
3724 		 */
3725 		ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
3726 		ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
3727 	}
3728 
3729 	VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
3730 
3731 	/*
3732 	 * If this is a repair I/O, and there's no self-healing involved --
3733 	 * that is, we're just resilvering what we expect to resilver --
3734 	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
3735 	 * This prevents spurious resilvering.
3736 	 *
3737 	 * There are a few ways that we can end up creating these spurious
3738 	 * resilver i/os:
3739 	 *
3740 	 * 1. A resilver i/o will be issued if any DVA in the BP has a
3741 	 * dirty DTL.  The mirror code will issue resilver writes to
3742 	 * each DVA, including the one(s) that are not on vdevs with dirty
3743 	 * DTLs.
3744 	 *
3745 	 * 2. With nested replication, which happens when we have a
3746 	 * "replacing" or "spare" vdev that's a child of a mirror or raidz.
3747 	 * For example, given mirror(replacing(A+B), C), it's likely that
3748 	 * only A is out of date (it's the new device). In this case, we'll
3749 	 * read from C, then use the data to resilver A+B -- but we don't
3750 	 * actually want to resilver B, just A. The top-level mirror has no
3751 	 * way to know this, so instead we just discard unnecessary repairs
3752 	 * as we work our way down the vdev tree.
3753 	 *
3754 	 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc.
3755 	 * The same logic applies to any form of nested replication: ditto
3756 	 * + mirror, RAID-Z + replacing, etc.
3757 	 *
3758 	 * However, indirect vdevs point off to other vdevs which may have
3759 	 * DTL's, so we never bypass them.  The child i/os on concrete vdevs
3760 	 * will be properly bypassed instead.
3761 	 */
3762 	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
3763 	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
3764 	    zio->io_txg != 0 &&	/* not a delegated i/o */
3765 	    vd->vdev_ops != &vdev_indirect_ops &&
3766 	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
3767 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3768 		zio_vdev_io_bypass(zio);
3769 		return (zio);
3770 	}
3771 
3772 	if (vd->vdev_ops->vdev_op_leaf && (zio->io_type == ZIO_TYPE_READ ||
3773 	    zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM)) {
3774 
3775 		if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio))
3776 			return (zio);
3777 
3778 		if ((zio = vdev_queue_io(zio)) == NULL)
3779 			return (NULL);
3780 
3781 		if (!vdev_accessible(vd, zio)) {
3782 			zio->io_error = SET_ERROR(ENXIO);
3783 			zio_interrupt(zio);
3784 			return (NULL);
3785 		}
3786 		zio->io_delay = gethrtime();
3787 	}
3788 
3789 	vd->vdev_ops->vdev_op_io_start(zio);
3790 	return (NULL);
3791 }
3792 
3793 static zio_t *
3794 zio_vdev_io_done(zio_t *zio)
3795 {
3796 	vdev_t *vd = zio->io_vd;
3797 	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
3798 	boolean_t unexpected_error = B_FALSE;
3799 
3800 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3801 		return (NULL);
3802 	}
3803 
3804 	ASSERT(zio->io_type == ZIO_TYPE_READ ||
3805 	    zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM);
3806 
3807 	if (zio->io_delay)
3808 		zio->io_delay = gethrtime() - zio->io_delay;
3809 
3810 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
3811 
3812 		vdev_queue_io_done(zio);
3813 
3814 		if (zio->io_type == ZIO_TYPE_WRITE)
3815 			vdev_cache_write(zio);
3816 
3817 		if (zio_injection_enabled && zio->io_error == 0)
3818 			zio->io_error = zio_handle_device_injections(vd, zio,
3819 			    EIO, EILSEQ);
3820 
3821 		if (zio_injection_enabled && zio->io_error == 0)
3822 			zio->io_error = zio_handle_label_injection(zio, EIO);
3823 
3824 		if (zio->io_error && zio->io_type != ZIO_TYPE_TRIM) {
3825 			if (!vdev_accessible(vd, zio)) {
3826 				zio->io_error = SET_ERROR(ENXIO);
3827 			} else {
3828 				unexpected_error = B_TRUE;
3829 			}
3830 		}
3831 	}
3832 
3833 	ops->vdev_op_io_done(zio);
3834 
3835 	if (unexpected_error)
3836 		VERIFY(vdev_probe(vd, zio) == NULL);
3837 
3838 	return (zio);
3839 }
3840 
3841 /*
3842  * This function is used to change the priority of an existing zio that is
3843  * currently in-flight. This is used by the arc to upgrade priority in the
3844  * event that a demand read is made for a block that is currently queued
3845  * as a scrub or async read IO. Otherwise, the high priority read request
3846  * would end up having to wait for the lower priority IO.
3847  */
3848 void
3849 zio_change_priority(zio_t *pio, zio_priority_t priority)
3850 {
3851 	zio_t *cio, *cio_next;
3852 	zio_link_t *zl = NULL;
3853 
3854 	ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
3855 
3856 	if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) {
3857 		vdev_queue_change_io_priority(pio, priority);
3858 	} else {
3859 		pio->io_priority = priority;
3860 	}
3861 
3862 	mutex_enter(&pio->io_lock);
3863 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
3864 		cio_next = zio_walk_children(pio, &zl);
3865 		zio_change_priority(cio, priority);
3866 	}
3867 	mutex_exit(&pio->io_lock);
3868 }
3869 
3870 /*
3871  * For non-raidz ZIOs, we can just copy aside the bad data read from the
3872  * disk, and use that to finish the checksum ereport later.
3873  */
3874 static void
3875 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
3876     const abd_t *good_buf)
3877 {
3878 	/* no processing needed */
3879 	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
3880 }
3881 
3882 /*ARGSUSED*/
3883 void
3884 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
3885 {
3886 	void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size);
3887 
3888 	abd_copy(abd, zio->io_abd, zio->io_size);
3889 
3890 	zcr->zcr_cbinfo = zio->io_size;
3891 	zcr->zcr_cbdata = abd;
3892 	zcr->zcr_finish = zio_vsd_default_cksum_finish;
3893 	zcr->zcr_free = zio_abd_free;
3894 }
3895 
3896 static zio_t *
3897 zio_vdev_io_assess(zio_t *zio)
3898 {
3899 	vdev_t *vd = zio->io_vd;
3900 
3901 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3902 		return (NULL);
3903 	}
3904 
3905 	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3906 		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
3907 
3908 	if (zio->io_vsd != NULL) {
3909 		zio->io_vsd_ops->vsd_free(zio);
3910 		zio->io_vsd = NULL;
3911 	}
3912 
3913 	if (zio_injection_enabled && zio->io_error == 0)
3914 		zio->io_error = zio_handle_fault_injection(zio, EIO);
3915 
3916 	/*
3917 	 * If the I/O failed, determine whether we should attempt to retry it.
3918 	 *
3919 	 * On retry, we cut in line in the issue queue, since we don't want
3920 	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
3921 	 */
3922 	if (zio->io_error && vd == NULL &&
3923 	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
3924 		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
3925 		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
3926 		zio->io_error = 0;
3927 		zio->io_flags |= ZIO_FLAG_IO_RETRY |
3928 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
3929 		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
3930 		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
3931 		    zio_requeue_io_start_cut_in_line);
3932 		return (NULL);
3933 	}
3934 
3935 	/*
3936 	 * If we got an error on a leaf device, convert it to ENXIO
3937 	 * if the device is not accessible at all.
3938 	 */
3939 	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3940 	    !vdev_accessible(vd, zio))
3941 		zio->io_error = SET_ERROR(ENXIO);
3942 
3943 	/*
3944 	 * If we can't write to an interior vdev (mirror or RAID-Z),
3945 	 * set vdev_cant_write so that we stop trying to allocate from it.
3946 	 */
3947 	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
3948 	    vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
3949 		vd->vdev_cant_write = B_TRUE;
3950 	}
3951 
3952 	/*
3953 	 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future
3954 	 * attempts will ever succeed. In this case we set a persistent
3955 	 * boolean flag so that we don't bother with it in the future.
3956 	 */
3957 	if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) &&
3958 	    zio->io_type == ZIO_TYPE_IOCTL &&
3959 	    zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL)
3960 		vd->vdev_nowritecache = B_TRUE;
3961 
3962 	if (zio->io_error)
3963 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3964 
3965 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3966 	    zio->io_physdone != NULL) {
3967 		ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
3968 		ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
3969 		zio->io_physdone(zio->io_logical);
3970 	}
3971 
3972 	return (zio);
3973 }
3974 
3975 void
3976 zio_vdev_io_reissue(zio_t *zio)
3977 {
3978 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3979 	ASSERT(zio->io_error == 0);
3980 
3981 	zio->io_stage >>= 1;
3982 }
3983 
3984 void
3985 zio_vdev_io_redone(zio_t *zio)
3986 {
3987 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
3988 
3989 	zio->io_stage >>= 1;
3990 }
3991 
3992 void
3993 zio_vdev_io_bypass(zio_t *zio)
3994 {
3995 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3996 	ASSERT(zio->io_error == 0);
3997 
3998 	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
3999 	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
4000 }
4001 
4002 /*
4003  * ==========================================================================
4004  * Encrypt and store encryption parameters
4005  * ==========================================================================
4006  */
4007 
4008 
4009 /*
4010  * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for
4011  * managing the storage of encryption parameters and passing them to the
4012  * lower-level encryption functions.
4013  */
4014 static zio_t *
4015 zio_encrypt(zio_t *zio)
4016 {
4017 	zio_prop_t *zp = &zio->io_prop;
4018 	spa_t *spa = zio->io_spa;
4019 	blkptr_t *bp = zio->io_bp;
4020 	uint64_t psize = BP_GET_PSIZE(bp);
4021 	uint64_t dsobj = zio->io_bookmark.zb_objset;
4022 	dmu_object_type_t ot = BP_GET_TYPE(bp);
4023 	void *enc_buf = NULL;
4024 	abd_t *eabd = NULL;
4025 	uint8_t salt[ZIO_DATA_SALT_LEN];
4026 	uint8_t iv[ZIO_DATA_IV_LEN];
4027 	uint8_t mac[ZIO_DATA_MAC_LEN];
4028 	boolean_t no_crypt = B_FALSE;
4029 
4030 	/* the root zio already encrypted the data */
4031 	if (zio->io_child_type == ZIO_CHILD_GANG)
4032 		return (zio);
4033 
4034 	/* only ZIL blocks are re-encrypted on rewrite */
4035 	if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG)
4036 		return (zio);
4037 
4038 	if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) {
4039 		BP_SET_CRYPT(bp, B_FALSE);
4040 		return (zio);
4041 	}
4042 
4043 	/* if we are doing raw encryption set the provided encryption params */
4044 	if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) {
4045 		ASSERT0(BP_GET_LEVEL(bp));
4046 		BP_SET_CRYPT(bp, B_TRUE);
4047 		BP_SET_BYTEORDER(bp, zp->zp_byteorder);
4048 		if (ot != DMU_OT_OBJSET)
4049 			zio_crypt_encode_mac_bp(bp, zp->zp_mac);
4050 
4051 		/* dnode blocks must be written out in the provided byteorder */
4052 		if (zp->zp_byteorder != ZFS_HOST_BYTEORDER &&
4053 		    ot == DMU_OT_DNODE) {
4054 			void *bswap_buf = zio_buf_alloc(psize);
4055 			abd_t *babd = abd_get_from_buf(bswap_buf, psize);
4056 
4057 			ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4058 			abd_copy_to_buf(bswap_buf, zio->io_abd, psize);
4059 			dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf,
4060 			    psize);
4061 
4062 			abd_take_ownership_of_buf(babd, B_TRUE);
4063 			zio_push_transform(zio, babd, psize, psize, NULL);
4064 		}
4065 
4066 		if (DMU_OT_IS_ENCRYPTED(ot))
4067 			zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv);
4068 		return (zio);
4069 	}
4070 
4071 	/* indirect blocks only maintain a cksum of the lower level MACs */
4072 	if (BP_GET_LEVEL(bp) > 0) {
4073 		BP_SET_CRYPT(bp, B_TRUE);
4074 		VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE,
4075 		    zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp),
4076 		    mac));
4077 		zio_crypt_encode_mac_bp(bp, mac);
4078 		return (zio);
4079 	}
4080 
4081 	/*
4082 	 * Objset blocks are a special case since they have 2 256-bit MACs
4083 	 * embedded within them.
4084 	 */
4085 	if (ot == DMU_OT_OBJSET) {
4086 		ASSERT0(DMU_OT_IS_ENCRYPTED(ot));
4087 		ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4088 		BP_SET_CRYPT(bp, B_TRUE);
4089 		VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj,
4090 		    zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp)));
4091 		return (zio);
4092 	}
4093 
4094 	/* unencrypted object types are only authenticated with a MAC */
4095 	if (!DMU_OT_IS_ENCRYPTED(ot)) {
4096 		BP_SET_CRYPT(bp, B_TRUE);
4097 		VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj,
4098 		    zio->io_abd, psize, mac));
4099 		zio_crypt_encode_mac_bp(bp, mac);
4100 		return (zio);
4101 	}
4102 
4103 	/*
4104 	 * Later passes of sync-to-convergence may decide to rewrite data
4105 	 * in place to avoid more disk reallocations. This presents a problem
4106 	 * for encryption because this constitutes rewriting the new data with
4107 	 * the same encryption key and IV. However, this only applies to blocks
4108 	 * in the MOS (particularly the spacemaps) and we do not encrypt the
4109 	 * MOS. We assert that the zio is allocating or an intent log write
4110 	 * to enforce this.
4111 	 */
4112 	ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG);
4113 	ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG);
4114 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION));
4115 	ASSERT3U(psize, !=, 0);
4116 
4117 	enc_buf = zio_buf_alloc(psize);
4118 	eabd = abd_get_from_buf(enc_buf, psize);
4119 	abd_take_ownership_of_buf(eabd, B_TRUE);
4120 
4121 	/*
4122 	 * For an explanation of what encryption parameters are stored
4123 	 * where, see the block comment in zio_crypt.c.
4124 	 */
4125 	if (ot == DMU_OT_INTENT_LOG) {
4126 		zio_crypt_decode_params_bp(bp, salt, iv);
4127 	} else {
4128 		BP_SET_CRYPT(bp, B_TRUE);
4129 	}
4130 
4131 	/* Perform the encryption. This should not fail */
4132 	VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark,
4133 	    BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
4134 	    salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt));
4135 
4136 	/* encode encryption metadata into the bp */
4137 	if (ot == DMU_OT_INTENT_LOG) {
4138 		/*
4139 		 * ZIL blocks store the MAC in the embedded checksum, so the
4140 		 * transform must always be applied.
4141 		 */
4142 		zio_crypt_encode_mac_zil(enc_buf, mac);
4143 		zio_push_transform(zio, eabd, psize, psize, NULL);
4144 	} else {
4145 		BP_SET_CRYPT(bp, B_TRUE);
4146 		zio_crypt_encode_params_bp(bp, salt, iv);
4147 		zio_crypt_encode_mac_bp(bp, mac);
4148 
4149 		if (no_crypt) {
4150 			ASSERT3U(ot, ==, DMU_OT_DNODE);
4151 			abd_free(eabd);
4152 		} else {
4153 			zio_push_transform(zio, eabd, psize, psize, NULL);
4154 		}
4155 	}
4156 
4157 	return (zio);
4158 }
4159 
4160 /*
4161  * ==========================================================================
4162  * Generate and verify checksums
4163  * ==========================================================================
4164  */
4165 static zio_t *
4166 zio_checksum_generate(zio_t *zio)
4167 {
4168 	blkptr_t *bp = zio->io_bp;
4169 	enum zio_checksum checksum;
4170 
4171 	if (bp == NULL) {
4172 		/*
4173 		 * This is zio_write_phys().
4174 		 * We're either generating a label checksum, or none at all.
4175 		 */
4176 		checksum = zio->io_prop.zp_checksum;
4177 
4178 		if (checksum == ZIO_CHECKSUM_OFF)
4179 			return (zio);
4180 
4181 		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
4182 	} else {
4183 		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
4184 			ASSERT(!IO_IS_ALLOCATING(zio));
4185 			checksum = ZIO_CHECKSUM_GANG_HEADER;
4186 		} else {
4187 			checksum = BP_GET_CHECKSUM(bp);
4188 		}
4189 	}
4190 
4191 	zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size);
4192 
4193 	return (zio);
4194 }
4195 
4196 static zio_t *
4197 zio_checksum_verify(zio_t *zio)
4198 {
4199 	zio_bad_cksum_t info;
4200 	blkptr_t *bp = zio->io_bp;
4201 	int error;
4202 
4203 	ASSERT(zio->io_vd != NULL);
4204 
4205 	if (bp == NULL) {
4206 		/*
4207 		 * This is zio_read_phys().
4208 		 * We're either verifying a label checksum, or nothing at all.
4209 		 */
4210 		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
4211 			return (zio);
4212 
4213 		ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
4214 	}
4215 
4216 	if ((error = zio_checksum_error(zio, &info)) != 0) {
4217 		zio->io_error = error;
4218 		if (error == ECKSUM &&
4219 		    !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
4220 			int ret = zfs_ereport_start_checksum(zio->io_spa,
4221 			    zio->io_vd, &zio->io_bookmark, zio,
4222 			    zio->io_offset, zio->io_size, NULL, &info);
4223 
4224 			if (ret != EALREADY) {
4225 				mutex_enter(&zio->io_vd->vdev_stat_lock);
4226 				zio->io_vd->vdev_stat.vs_checksum_errors++;
4227 				mutex_exit(&zio->io_vd->vdev_stat_lock);
4228 			}
4229 		}
4230 	}
4231 
4232 	return (zio);
4233 }
4234 
4235 /*
4236  * Called by RAID-Z to ensure we don't compute the checksum twice.
4237  */
4238 void
4239 zio_checksum_verified(zio_t *zio)
4240 {
4241 	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
4242 }
4243 
4244 /*
4245  * ==========================================================================
4246  * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
4247  * An error of 0 indicates success.  ENXIO indicates whole-device failure,
4248  * which may be transient (e.g. unplugged) or permanent.  ECKSUM and EIO
4249  * indicate errors that are specific to one I/O, and most likely permanent.
4250  * Any other error is presumed to be worse because we weren't expecting it.
4251  * ==========================================================================
4252  */
4253 int
4254 zio_worst_error(int e1, int e2)
4255 {
4256 	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
4257 	int r1, r2;
4258 
4259 	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
4260 		if (e1 == zio_error_rank[r1])
4261 			break;
4262 
4263 	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
4264 		if (e2 == zio_error_rank[r2])
4265 			break;
4266 
4267 	return (r1 > r2 ? e1 : e2);
4268 }
4269 
4270 /*
4271  * ==========================================================================
4272  * I/O completion
4273  * ==========================================================================
4274  */
4275 static zio_t *
4276 zio_ready(zio_t *zio)
4277 {
4278 	blkptr_t *bp = zio->io_bp;
4279 	zio_t *pio, *pio_next;
4280 	zio_link_t *zl = NULL;
4281 
4282 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT,
4283 	    ZIO_WAIT_READY)) {
4284 		return (NULL);
4285 	}
4286 
4287 	if (zio->io_ready) {
4288 		ASSERT(IO_IS_ALLOCATING(zio));
4289 		ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
4290 		    (zio->io_flags & ZIO_FLAG_NOPWRITE));
4291 		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
4292 
4293 		zio->io_ready(zio);
4294 	}
4295 
4296 	if (bp != NULL && bp != &zio->io_bp_copy)
4297 		zio->io_bp_copy = *bp;
4298 
4299 	if (zio->io_error != 0) {
4300 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4301 
4302 		if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4303 			ASSERT(IO_IS_ALLOCATING(zio));
4304 			ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4305 			ASSERT(zio->io_metaslab_class != NULL);
4306 
4307 			/*
4308 			 * We were unable to allocate anything, unreserve and
4309 			 * issue the next I/O to allocate.
4310 			 */
4311 			metaslab_class_throttle_unreserve(
4312 			    zio->io_metaslab_class, zio->io_prop.zp_copies,
4313 			    zio->io_allocator, zio);
4314 			zio_allocate_dispatch(zio->io_spa, zio->io_allocator);
4315 		}
4316 	}
4317 
4318 	mutex_enter(&zio->io_lock);
4319 	zio->io_state[ZIO_WAIT_READY] = 1;
4320 	pio = zio_walk_parents(zio, &zl);
4321 	mutex_exit(&zio->io_lock);
4322 
4323 	/*
4324 	 * As we notify zio's parents, new parents could be added.
4325 	 * New parents go to the head of zio's io_parent_list, however,
4326 	 * so we will (correctly) not notify them.  The remainder of zio's
4327 	 * io_parent_list, from 'pio_next' onward, cannot change because
4328 	 * all parents must wait for us to be done before they can be done.
4329 	 */
4330 	for (; pio != NULL; pio = pio_next) {
4331 		pio_next = zio_walk_parents(zio, &zl);
4332 		zio_notify_parent(pio, zio, ZIO_WAIT_READY, NULL);
4333 	}
4334 
4335 	if (zio->io_flags & ZIO_FLAG_NODATA) {
4336 		if (BP_IS_GANG(bp)) {
4337 			zio->io_flags &= ~ZIO_FLAG_NODATA;
4338 		} else {
4339 			ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE);
4340 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
4341 		}
4342 	}
4343 
4344 	if (zio_injection_enabled &&
4345 	    zio->io_spa->spa_syncing_txg == zio->io_txg)
4346 		zio_handle_ignored_writes(zio);
4347 
4348 	return (zio);
4349 }
4350 
4351 /*
4352  * Update the allocation throttle accounting.
4353  */
4354 static void
4355 zio_dva_throttle_done(zio_t *zio)
4356 {
4357 	zio_t *lio __maybe_unused = zio->io_logical;
4358 	zio_t *pio = zio_unique_parent(zio);
4359 	vdev_t *vd = zio->io_vd;
4360 	int flags = METASLAB_ASYNC_ALLOC;
4361 
4362 	ASSERT3P(zio->io_bp, !=, NULL);
4363 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
4364 	ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE);
4365 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
4366 	ASSERT(vd != NULL);
4367 	ASSERT3P(vd, ==, vd->vdev_top);
4368 	ASSERT(zio_injection_enabled || !(zio->io_flags & ZIO_FLAG_IO_RETRY));
4369 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4370 	ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING);
4371 	ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE));
4372 	ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA));
4373 
4374 	/*
4375 	 * Parents of gang children can have two flavors -- ones that
4376 	 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set)
4377 	 * and ones that allocated the constituent blocks. The allocation
4378 	 * throttle needs to know the allocating parent zio so we must find
4379 	 * it here.
4380 	 */
4381 	if (pio->io_child_type == ZIO_CHILD_GANG) {
4382 		/*
4383 		 * If our parent is a rewrite gang child then our grandparent
4384 		 * would have been the one that performed the allocation.
4385 		 */
4386 		if (pio->io_flags & ZIO_FLAG_IO_REWRITE)
4387 			pio = zio_unique_parent(pio);
4388 		flags |= METASLAB_GANG_CHILD;
4389 	}
4390 
4391 	ASSERT(IO_IS_ALLOCATING(pio));
4392 	ASSERT3P(zio, !=, zio->io_logical);
4393 	ASSERT(zio->io_logical != NULL);
4394 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4395 	ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE);
4396 	ASSERT(zio->io_metaslab_class != NULL);
4397 
4398 	mutex_enter(&pio->io_lock);
4399 	metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags,
4400 	    pio->io_allocator, B_TRUE);
4401 	mutex_exit(&pio->io_lock);
4402 
4403 	metaslab_class_throttle_unreserve(zio->io_metaslab_class, 1,
4404 	    pio->io_allocator, pio);
4405 
4406 	/*
4407 	 * Call into the pipeline to see if there is more work that
4408 	 * needs to be done. If there is work to be done it will be
4409 	 * dispatched to another taskq thread.
4410 	 */
4411 	zio_allocate_dispatch(zio->io_spa, pio->io_allocator);
4412 }
4413 
4414 static zio_t *
4415 zio_done(zio_t *zio)
4416 {
4417 	/*
4418 	 * Always attempt to keep stack usage minimal here since
4419 	 * we can be called recursively up to 19 levels deep.
4420 	 */
4421 	const uint64_t psize = zio->io_size;
4422 	zio_t *pio, *pio_next;
4423 	zio_link_t *zl = NULL;
4424 
4425 	/*
4426 	 * If our children haven't all completed,
4427 	 * wait for them and then repeat this pipeline stage.
4428 	 */
4429 	if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) {
4430 		return (NULL);
4431 	}
4432 
4433 	/*
4434 	 * If the allocation throttle is enabled, then update the accounting.
4435 	 * We only track child I/Os that are part of an allocating async
4436 	 * write. We must do this since the allocation is performed
4437 	 * by the logical I/O but the actual write is done by child I/Os.
4438 	 */
4439 	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING &&
4440 	    zio->io_child_type == ZIO_CHILD_VDEV) {
4441 		ASSERT(zio->io_metaslab_class != NULL);
4442 		ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled);
4443 		zio_dva_throttle_done(zio);
4444 	}
4445 
4446 	/*
4447 	 * If the allocation throttle is enabled, verify that
4448 	 * we have decremented the refcounts for every I/O that was throttled.
4449 	 */
4450 	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4451 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
4452 		ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4453 		ASSERT(zio->io_bp != NULL);
4454 
4455 		metaslab_group_alloc_verify(zio->io_spa, zio->io_bp, zio,
4456 		    zio->io_allocator);
4457 		VERIFY(zfs_refcount_not_held(
4458 		    &zio->io_metaslab_class->mc_alloc_slots[zio->io_allocator],
4459 		    zio));
4460 	}
4461 
4462 
4463 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
4464 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
4465 			ASSERT(zio->io_children[c][w] == 0);
4466 
4467 	if (zio->io_bp != NULL && !BP_IS_EMBEDDED(zio->io_bp)) {
4468 		ASSERT(zio->io_bp->blk_pad[0] == 0);
4469 		ASSERT(zio->io_bp->blk_pad[1] == 0);
4470 		ASSERT(bcmp(zio->io_bp, &zio->io_bp_copy,
4471 		    sizeof (blkptr_t)) == 0 ||
4472 		    (zio->io_bp == zio_unique_parent(zio)->io_bp));
4473 		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) &&
4474 		    zio->io_bp_override == NULL &&
4475 		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
4476 			ASSERT3U(zio->io_prop.zp_copies, <=,
4477 			    BP_GET_NDVAS(zio->io_bp));
4478 			ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 ||
4479 			    (BP_COUNT_GANG(zio->io_bp) ==
4480 			    BP_GET_NDVAS(zio->io_bp)));
4481 		}
4482 		if (zio->io_flags & ZIO_FLAG_NOPWRITE)
4483 			VERIFY(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
4484 	}
4485 
4486 	/*
4487 	 * If there were child vdev/gang/ddt errors, they apply to us now.
4488 	 */
4489 	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
4490 	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
4491 	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
4492 
4493 	/*
4494 	 * If the I/O on the transformed data was successful, generate any
4495 	 * checksum reports now while we still have the transformed data.
4496 	 */
4497 	if (zio->io_error == 0) {
4498 		while (zio->io_cksum_report != NULL) {
4499 			zio_cksum_report_t *zcr = zio->io_cksum_report;
4500 			uint64_t align = zcr->zcr_align;
4501 			uint64_t asize = P2ROUNDUP(psize, align);
4502 			abd_t *adata = zio->io_abd;
4503 
4504 			if (asize != psize) {
4505 				adata = abd_alloc(asize, B_TRUE);
4506 				abd_copy(adata, zio->io_abd, psize);
4507 				abd_zero_off(adata, psize, asize - psize);
4508 			}
4509 
4510 			zio->io_cksum_report = zcr->zcr_next;
4511 			zcr->zcr_next = NULL;
4512 			zcr->zcr_finish(zcr, adata);
4513 			zfs_ereport_free_checksum(zcr);
4514 
4515 			if (asize != psize)
4516 				abd_free(adata);
4517 		}
4518 	}
4519 
4520 	zio_pop_transforms(zio);	/* note: may set zio->io_error */
4521 
4522 	vdev_stat_update(zio, psize);
4523 
4524 	/*
4525 	 * If this I/O is attached to a particular vdev is slow, exceeding
4526 	 * 30 seconds to complete, post an error described the I/O delay.
4527 	 * We ignore these errors if the device is currently unavailable.
4528 	 */
4529 	if (zio->io_delay >= MSEC2NSEC(zio_slow_io_ms)) {
4530 		if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) {
4531 			/*
4532 			 * We want to only increment our slow IO counters if
4533 			 * the IO is valid (i.e. not if the drive is removed).
4534 			 *
4535 			 * zfs_ereport_post() will also do these checks, but
4536 			 * it can also ratelimit and have other failures, so we
4537 			 * need to increment the slow_io counters independent
4538 			 * of it.
4539 			 */
4540 			if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY,
4541 			    zio->io_spa, zio->io_vd, zio)) {
4542 				mutex_enter(&zio->io_vd->vdev_stat_lock);
4543 				zio->io_vd->vdev_stat.vs_slow_ios++;
4544 				mutex_exit(&zio->io_vd->vdev_stat_lock);
4545 
4546 				(void) zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
4547 				    zio->io_spa, zio->io_vd, &zio->io_bookmark,
4548 				    zio, 0);
4549 			}
4550 		}
4551 	}
4552 
4553 	if (zio->io_error) {
4554 		/*
4555 		 * If this I/O is attached to a particular vdev,
4556 		 * generate an error message describing the I/O failure
4557 		 * at the block level.  We ignore these errors if the
4558 		 * device is currently unavailable.
4559 		 */
4560 		if (zio->io_error != ECKSUM && zio->io_vd != NULL &&
4561 		    !vdev_is_dead(zio->io_vd)) {
4562 			int ret = zfs_ereport_post(FM_EREPORT_ZFS_IO,
4563 			    zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0);
4564 			if (ret != EALREADY) {
4565 				mutex_enter(&zio->io_vd->vdev_stat_lock);
4566 				if (zio->io_type == ZIO_TYPE_READ)
4567 					zio->io_vd->vdev_stat.vs_read_errors++;
4568 				else if (zio->io_type == ZIO_TYPE_WRITE)
4569 					zio->io_vd->vdev_stat.vs_write_errors++;
4570 				mutex_exit(&zio->io_vd->vdev_stat_lock);
4571 			}
4572 		}
4573 
4574 		if ((zio->io_error == EIO || !(zio->io_flags &
4575 		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
4576 		    zio == zio->io_logical) {
4577 			/*
4578 			 * For logical I/O requests, tell the SPA to log the
4579 			 * error and generate a logical data ereport.
4580 			 */
4581 			spa_log_error(zio->io_spa, &zio->io_bookmark);
4582 			(void) zfs_ereport_post(FM_EREPORT_ZFS_DATA,
4583 			    zio->io_spa, NULL, &zio->io_bookmark, zio, 0);
4584 		}
4585 	}
4586 
4587 	if (zio->io_error && zio == zio->io_logical) {
4588 		/*
4589 		 * Determine whether zio should be reexecuted.  This will
4590 		 * propagate all the way to the root via zio_notify_parent().
4591 		 */
4592 		ASSERT(zio->io_vd == NULL && zio->io_bp != NULL);
4593 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4594 
4595 		if (IO_IS_ALLOCATING(zio) &&
4596 		    !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
4597 			if (zio->io_error != ENOSPC)
4598 				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
4599 			else
4600 				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4601 		}
4602 
4603 		if ((zio->io_type == ZIO_TYPE_READ ||
4604 		    zio->io_type == ZIO_TYPE_FREE) &&
4605 		    !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
4606 		    zio->io_error == ENXIO &&
4607 		    spa_load_state(zio->io_spa) == SPA_LOAD_NONE &&
4608 		    spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE)
4609 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4610 
4611 		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
4612 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4613 
4614 		/*
4615 		 * Here is a possibly good place to attempt to do
4616 		 * either combinatorial reconstruction or error correction
4617 		 * based on checksums.  It also might be a good place
4618 		 * to send out preliminary ereports before we suspend
4619 		 * processing.
4620 		 */
4621 	}
4622 
4623 	/*
4624 	 * If there were logical child errors, they apply to us now.
4625 	 * We defer this until now to avoid conflating logical child
4626 	 * errors with errors that happened to the zio itself when
4627 	 * updating vdev stats and reporting FMA events above.
4628 	 */
4629 	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
4630 
4631 	if ((zio->io_error || zio->io_reexecute) &&
4632 	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
4633 	    !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
4634 		zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp);
4635 
4636 	zio_gang_tree_free(&zio->io_gang_tree);
4637 
4638 	/*
4639 	 * Godfather I/Os should never suspend.
4640 	 */
4641 	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
4642 	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
4643 		zio->io_reexecute &= ~ZIO_REEXECUTE_SUSPEND;
4644 
4645 	if (zio->io_reexecute) {
4646 		/*
4647 		 * This is a logical I/O that wants to reexecute.
4648 		 *
4649 		 * Reexecute is top-down.  When an i/o fails, if it's not
4650 		 * the root, it simply notifies its parent and sticks around.
4651 		 * The parent, seeing that it still has children in zio_done(),
4652 		 * does the same.  This percolates all the way up to the root.
4653 		 * The root i/o will reexecute or suspend the entire tree.
4654 		 *
4655 		 * This approach ensures that zio_reexecute() honors
4656 		 * all the original i/o dependency relationships, e.g.
4657 		 * parents not executing until children are ready.
4658 		 */
4659 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4660 
4661 		zio->io_gang_leader = NULL;
4662 
4663 		mutex_enter(&zio->io_lock);
4664 		zio->io_state[ZIO_WAIT_DONE] = 1;
4665 		mutex_exit(&zio->io_lock);
4666 
4667 		/*
4668 		 * "The Godfather" I/O monitors its children but is
4669 		 * not a true parent to them. It will track them through
4670 		 * the pipeline but severs its ties whenever they get into
4671 		 * trouble (e.g. suspended). This allows "The Godfather"
4672 		 * I/O to return status without blocking.
4673 		 */
4674 		zl = NULL;
4675 		for (pio = zio_walk_parents(zio, &zl); pio != NULL;
4676 		    pio = pio_next) {
4677 			zio_link_t *remove_zl = zl;
4678 			pio_next = zio_walk_parents(zio, &zl);
4679 
4680 			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
4681 			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
4682 				zio_remove_child(pio, zio, remove_zl);
4683 				/*
4684 				 * This is a rare code path, so we don't
4685 				 * bother with "next_to_execute".
4686 				 */
4687 				zio_notify_parent(pio, zio, ZIO_WAIT_DONE,
4688 				    NULL);
4689 			}
4690 		}
4691 
4692 		if ((pio = zio_unique_parent(zio)) != NULL) {
4693 			/*
4694 			 * We're not a root i/o, so there's nothing to do
4695 			 * but notify our parent.  Don't propagate errors
4696 			 * upward since we haven't permanently failed yet.
4697 			 */
4698 			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
4699 			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
4700 			/*
4701 			 * This is a rare code path, so we don't bother with
4702 			 * "next_to_execute".
4703 			 */
4704 			zio_notify_parent(pio, zio, ZIO_WAIT_DONE, NULL);
4705 		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
4706 			/*
4707 			 * We'd fail again if we reexecuted now, so suspend
4708 			 * until conditions improve (e.g. device comes online).
4709 			 */
4710 			zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR);
4711 		} else {
4712 			/*
4713 			 * Reexecution is potentially a huge amount of work.
4714 			 * Hand it off to the otherwise-unused claim taskq.
4715 			 */
4716 			ASSERT(taskq_empty_ent(&zio->io_tqent));
4717 			spa_taskq_dispatch_ent(zio->io_spa,
4718 			    ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE,
4719 			    (task_func_t *)zio_reexecute, zio, 0,
4720 			    &zio->io_tqent);
4721 		}
4722 		return (NULL);
4723 	}
4724 
4725 	ASSERT(zio->io_child_count == 0);
4726 	ASSERT(zio->io_reexecute == 0);
4727 	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
4728 
4729 	/*
4730 	 * Report any checksum errors, since the I/O is complete.
4731 	 */
4732 	while (zio->io_cksum_report != NULL) {
4733 		zio_cksum_report_t *zcr = zio->io_cksum_report;
4734 		zio->io_cksum_report = zcr->zcr_next;
4735 		zcr->zcr_next = NULL;
4736 		zcr->zcr_finish(zcr, NULL);
4737 		zfs_ereport_free_checksum(zcr);
4738 	}
4739 
4740 	if (zio->io_flags & ZIO_FLAG_FASTWRITE && zio->io_bp &&
4741 	    !BP_IS_HOLE(zio->io_bp) && !BP_IS_EMBEDDED(zio->io_bp) &&
4742 	    !(zio->io_flags & ZIO_FLAG_NOPWRITE)) {
4743 		metaslab_fastwrite_unmark(zio->io_spa, zio->io_bp);
4744 	}
4745 
4746 	/*
4747 	 * It is the responsibility of the done callback to ensure that this
4748 	 * particular zio is no longer discoverable for adoption, and as
4749 	 * such, cannot acquire any new parents.
4750 	 */
4751 	if (zio->io_done)
4752 		zio->io_done(zio);
4753 
4754 	mutex_enter(&zio->io_lock);
4755 	zio->io_state[ZIO_WAIT_DONE] = 1;
4756 	mutex_exit(&zio->io_lock);
4757 
4758 	/*
4759 	 * We are done executing this zio.  We may want to execute a parent
4760 	 * next.  See the comment in zio_notify_parent().
4761 	 */
4762 	zio_t *next_to_execute = NULL;
4763 	zl = NULL;
4764 	for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) {
4765 		zio_link_t *remove_zl = zl;
4766 		pio_next = zio_walk_parents(zio, &zl);
4767 		zio_remove_child(pio, zio, remove_zl);
4768 		zio_notify_parent(pio, zio, ZIO_WAIT_DONE, &next_to_execute);
4769 	}
4770 
4771 	if (zio->io_waiter != NULL) {
4772 		mutex_enter(&zio->io_lock);
4773 		zio->io_executor = NULL;
4774 		cv_broadcast(&zio->io_cv);
4775 		mutex_exit(&zio->io_lock);
4776 	} else {
4777 		zio_destroy(zio);
4778 	}
4779 
4780 	return (next_to_execute);
4781 }
4782 
4783 /*
4784  * ==========================================================================
4785  * I/O pipeline definition
4786  * ==========================================================================
4787  */
4788 static zio_pipe_stage_t *zio_pipeline[] = {
4789 	NULL,
4790 	zio_read_bp_init,
4791 	zio_write_bp_init,
4792 	zio_free_bp_init,
4793 	zio_issue_async,
4794 	zio_write_compress,
4795 	zio_encrypt,
4796 	zio_checksum_generate,
4797 	zio_nop_write,
4798 	zio_ddt_read_start,
4799 	zio_ddt_read_done,
4800 	zio_ddt_write,
4801 	zio_ddt_free,
4802 	zio_gang_assemble,
4803 	zio_gang_issue,
4804 	zio_dva_throttle,
4805 	zio_dva_allocate,
4806 	zio_dva_free,
4807 	zio_dva_claim,
4808 	zio_ready,
4809 	zio_vdev_io_start,
4810 	zio_vdev_io_done,
4811 	zio_vdev_io_assess,
4812 	zio_checksum_verify,
4813 	zio_done
4814 };
4815 
4816 
4817 
4818 
4819 /*
4820  * Compare two zbookmark_phys_t's to see which we would reach first in a
4821  * pre-order traversal of the object tree.
4822  *
4823  * This is simple in every case aside from the meta-dnode object. For all other
4824  * objects, we traverse them in order (object 1 before object 2, and so on).
4825  * However, all of these objects are traversed while traversing object 0, since
4826  * the data it points to is the list of objects.  Thus, we need to convert to a
4827  * canonical representation so we can compare meta-dnode bookmarks to
4828  * non-meta-dnode bookmarks.
4829  *
4830  * We do this by calculating "equivalents" for each field of the zbookmark.
4831  * zbookmarks outside of the meta-dnode use their own object and level, and
4832  * calculate the level 0 equivalent (the first L0 blkid that is contained in the
4833  * blocks this bookmark refers to) by multiplying their blkid by their span
4834  * (the number of L0 blocks contained within one block at their level).
4835  * zbookmarks inside the meta-dnode calculate their object equivalent
4836  * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
4837  * level + 1<<31 (any value larger than a level could ever be) for their level.
4838  * This causes them to always compare before a bookmark in their object
4839  * equivalent, compare appropriately to bookmarks in other objects, and to
4840  * compare appropriately to other bookmarks in the meta-dnode.
4841  */
4842 int
4843 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
4844     const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
4845 {
4846 	/*
4847 	 * These variables represent the "equivalent" values for the zbookmark,
4848 	 * after converting zbookmarks inside the meta dnode to their
4849 	 * normal-object equivalents.
4850 	 */
4851 	uint64_t zb1obj, zb2obj;
4852 	uint64_t zb1L0, zb2L0;
4853 	uint64_t zb1level, zb2level;
4854 
4855 	if (zb1->zb_object == zb2->zb_object &&
4856 	    zb1->zb_level == zb2->zb_level &&
4857 	    zb1->zb_blkid == zb2->zb_blkid)
4858 		return (0);
4859 
4860 	IMPLY(zb1->zb_level > 0, ibs1 >= SPA_MINBLOCKSHIFT);
4861 	IMPLY(zb2->zb_level > 0, ibs2 >= SPA_MINBLOCKSHIFT);
4862 
4863 	/*
4864 	 * BP_SPANB calculates the span in blocks.
4865 	 */
4866 	zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
4867 	zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
4868 
4869 	if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
4870 		zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4871 		zb1L0 = 0;
4872 		zb1level = zb1->zb_level + COMPARE_META_LEVEL;
4873 	} else {
4874 		zb1obj = zb1->zb_object;
4875 		zb1level = zb1->zb_level;
4876 	}
4877 
4878 	if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
4879 		zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4880 		zb2L0 = 0;
4881 		zb2level = zb2->zb_level + COMPARE_META_LEVEL;
4882 	} else {
4883 		zb2obj = zb2->zb_object;
4884 		zb2level = zb2->zb_level;
4885 	}
4886 
4887 	/* Now that we have a canonical representation, do the comparison. */
4888 	if (zb1obj != zb2obj)
4889 		return (zb1obj < zb2obj ? -1 : 1);
4890 	else if (zb1L0 != zb2L0)
4891 		return (zb1L0 < zb2L0 ? -1 : 1);
4892 	else if (zb1level != zb2level)
4893 		return (zb1level > zb2level ? -1 : 1);
4894 	/*
4895 	 * This can (theoretically) happen if the bookmarks have the same object
4896 	 * and level, but different blkids, if the block sizes are not the same.
4897 	 * There is presently no way to change the indirect block sizes
4898 	 */
4899 	return (0);
4900 }
4901 
4902 /*
4903  *  This function checks the following: given that last_block is the place that
4904  *  our traversal stopped last time, does that guarantee that we've visited
4905  *  every node under subtree_root?  Therefore, we can't just use the raw output
4906  *  of zbookmark_compare.  We have to pass in a modified version of
4907  *  subtree_root; by incrementing the block id, and then checking whether
4908  *  last_block is before or equal to that, we can tell whether or not having
4909  *  visited last_block implies that all of subtree_root's children have been
4910  *  visited.
4911  */
4912 boolean_t
4913 zbookmark_subtree_completed(const dnode_phys_t *dnp,
4914     const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
4915 {
4916 	zbookmark_phys_t mod_zb = *subtree_root;
4917 	mod_zb.zb_blkid++;
4918 	ASSERT(last_block->zb_level == 0);
4919 
4920 	/* The objset_phys_t isn't before anything. */
4921 	if (dnp == NULL)
4922 		return (B_FALSE);
4923 
4924 	/*
4925 	 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
4926 	 * data block size in sectors, because that variable is only used if
4927 	 * the bookmark refers to a block in the meta-dnode.  Since we don't
4928 	 * know without examining it what object it refers to, and there's no
4929 	 * harm in passing in this value in other cases, we always pass it in.
4930 	 *
4931 	 * We pass in 0 for the indirect block size shift because zb2 must be
4932 	 * level 0.  The indirect block size is only used to calculate the span
4933 	 * of the bookmark, but since the bookmark must be level 0, the span is
4934 	 * always 1, so the math works out.
4935 	 *
4936 	 * If you make changes to how the zbookmark_compare code works, be sure
4937 	 * to make sure that this code still works afterwards.
4938 	 */
4939 	return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
4940 	    1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
4941 	    last_block) <= 0);
4942 }
4943 
4944 EXPORT_SYMBOL(zio_type_name);
4945 EXPORT_SYMBOL(zio_buf_alloc);
4946 EXPORT_SYMBOL(zio_data_buf_alloc);
4947 EXPORT_SYMBOL(zio_buf_free);
4948 EXPORT_SYMBOL(zio_data_buf_free);
4949 
4950 /* BEGIN CSTYLED */
4951 ZFS_MODULE_PARAM(zfs_zio, zio_, slow_io_ms, INT, ZMOD_RW,
4952 	"Max I/O completion time (milliseconds) before marking it as slow");
4953 
4954 ZFS_MODULE_PARAM(zfs_zio, zio_, requeue_io_start_cut_in_line, INT, ZMOD_RW,
4955 	"Prioritize requeued I/O");
4956 
4957 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_deferred_free,  INT, ZMOD_RW,
4958 	"Defer frees starting in this pass");
4959 
4960 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_dont_compress, INT, ZMOD_RW,
4961 	"Don't compress starting in this pass");
4962 
4963 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_rewrite, INT, ZMOD_RW,
4964 	"Rewrite new bps starting in this pass");
4965 
4966 ZFS_MODULE_PARAM(zfs_zio, zio_, dva_throttle_enabled, INT, ZMOD_RW,
4967 	"Throttle block allocations in the ZIO pipeline");
4968 
4969 ZFS_MODULE_PARAM(zfs_zio, zio_, deadman_log_all, INT, ZMOD_RW,
4970 	"Log all slow ZIOs, not just those with vdevs");
4971 /* END CSTYLED */
4972