1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2020 by Delphix. All rights reserved. 24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2017, Intel Corporation. 26 * Copyright (c) 2019, Klara Inc. 27 * Copyright (c) 2019, Allan Jude 28 */ 29 30 #include <sys/sysmacros.h> 31 #include <sys/zfs_context.h> 32 #include <sys/fm/fs/zfs.h> 33 #include <sys/spa.h> 34 #include <sys/txg.h> 35 #include <sys/spa_impl.h> 36 #include <sys/vdev_impl.h> 37 #include <sys/vdev_trim.h> 38 #include <sys/zio_impl.h> 39 #include <sys/zio_compress.h> 40 #include <sys/zio_checksum.h> 41 #include <sys/dmu_objset.h> 42 #include <sys/arc.h> 43 #include <sys/ddt.h> 44 #include <sys/blkptr.h> 45 #include <sys/zfeature.h> 46 #include <sys/dsl_scan.h> 47 #include <sys/metaslab_impl.h> 48 #include <sys/time.h> 49 #include <sys/trace_zfs.h> 50 #include <sys/abd.h> 51 #include <sys/dsl_crypt.h> 52 #include <cityhash.h> 53 54 /* 55 * ========================================================================== 56 * I/O type descriptions 57 * ========================================================================== 58 */ 59 const char *zio_type_name[ZIO_TYPES] = { 60 /* 61 * Note: Linux kernel thread name length is limited 62 * so these names will differ from upstream open zfs. 63 */ 64 "z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_ioctl", "z_trim" 65 }; 66 67 int zio_dva_throttle_enabled = B_TRUE; 68 int zio_deadman_log_all = B_FALSE; 69 70 /* 71 * ========================================================================== 72 * I/O kmem caches 73 * ========================================================================== 74 */ 75 kmem_cache_t *zio_cache; 76 kmem_cache_t *zio_link_cache; 77 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 78 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 79 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 80 uint64_t zio_buf_cache_allocs[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 81 uint64_t zio_buf_cache_frees[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 82 #endif 83 84 /* Mark IOs as "slow" if they take longer than 30 seconds */ 85 int zio_slow_io_ms = (30 * MILLISEC); 86 87 #define BP_SPANB(indblkshift, level) \ 88 (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT))) 89 #define COMPARE_META_LEVEL 0x80000000ul 90 /* 91 * The following actions directly effect the spa's sync-to-convergence logic. 92 * The values below define the sync pass when we start performing the action. 93 * Care should be taken when changing these values as they directly impact 94 * spa_sync() performance. Tuning these values may introduce subtle performance 95 * pathologies and should only be done in the context of performance analysis. 96 * These tunables will eventually be removed and replaced with #defines once 97 * enough analysis has been done to determine optimal values. 98 * 99 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that 100 * regular blocks are not deferred. 101 * 102 * Starting in sync pass 8 (zfs_sync_pass_dont_compress), we disable 103 * compression (including of metadata). In practice, we don't have this 104 * many sync passes, so this has no effect. 105 * 106 * The original intent was that disabling compression would help the sync 107 * passes to converge. However, in practice disabling compression increases 108 * the average number of sync passes, because when we turn compression off, a 109 * lot of block's size will change and thus we have to re-allocate (not 110 * overwrite) them. It also increases the number of 128KB allocations (e.g. 111 * for indirect blocks and spacemaps) because these will not be compressed. 112 * The 128K allocations are especially detrimental to performance on highly 113 * fragmented systems, which may have very few free segments of this size, 114 * and may need to load new metaslabs to satisfy 128K allocations. 115 */ 116 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */ 117 int zfs_sync_pass_dont_compress = 8; /* don't compress starting in this pass */ 118 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */ 119 120 /* 121 * An allocating zio is one that either currently has the DVA allocate 122 * stage set or will have it later in its lifetime. 123 */ 124 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE) 125 126 /* 127 * Enable smaller cores by excluding metadata 128 * allocations as well. 129 */ 130 int zio_exclude_metadata = 0; 131 int zio_requeue_io_start_cut_in_line = 1; 132 133 #ifdef ZFS_DEBUG 134 int zio_buf_debug_limit = 16384; 135 #else 136 int zio_buf_debug_limit = 0; 137 #endif 138 139 static inline void __zio_execute(zio_t *zio); 140 141 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t); 142 143 void 144 zio_init(void) 145 { 146 size_t c; 147 vmem_t *data_alloc_arena = NULL; 148 149 zio_cache = kmem_cache_create("zio_cache", 150 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 151 zio_link_cache = kmem_cache_create("zio_link_cache", 152 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 153 154 /* 155 * For small buffers, we want a cache for each multiple of 156 * SPA_MINBLOCKSIZE. For larger buffers, we want a cache 157 * for each quarter-power of 2. 158 */ 159 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 160 size_t size = (c + 1) << SPA_MINBLOCKSHIFT; 161 size_t p2 = size; 162 size_t align = 0; 163 size_t data_cflags, cflags; 164 165 data_cflags = KMC_NODEBUG; 166 cflags = (zio_exclude_metadata || size > zio_buf_debug_limit) ? 167 KMC_NODEBUG : 0; 168 169 #if defined(_ILP32) && defined(_KERNEL) 170 /* 171 * Cache size limited to 1M on 32-bit platforms until ARC 172 * buffers no longer require virtual address space. 173 */ 174 if (size > zfs_max_recordsize) 175 break; 176 #endif 177 178 while (!ISP2(p2)) 179 p2 &= p2 - 1; 180 181 #ifndef _KERNEL 182 /* 183 * If we are using watchpoints, put each buffer on its own page, 184 * to eliminate the performance overhead of trapping to the 185 * kernel when modifying a non-watched buffer that shares the 186 * page with a watched buffer. 187 */ 188 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE)) 189 continue; 190 /* 191 * Here's the problem - on 4K native devices in userland on 192 * Linux using O_DIRECT, buffers must be 4K aligned or I/O 193 * will fail with EINVAL, causing zdb (and others) to coredump. 194 * Since userland probably doesn't need optimized buffer caches, 195 * we just force 4K alignment on everything. 196 */ 197 align = 8 * SPA_MINBLOCKSIZE; 198 #else 199 if (size < PAGESIZE) { 200 align = SPA_MINBLOCKSIZE; 201 } else if (IS_P2ALIGNED(size, p2 >> 2)) { 202 align = PAGESIZE; 203 } 204 #endif 205 206 if (align != 0) { 207 char name[36]; 208 (void) snprintf(name, sizeof (name), "zio_buf_%lu", 209 (ulong_t)size); 210 zio_buf_cache[c] = kmem_cache_create(name, size, 211 align, NULL, NULL, NULL, NULL, NULL, cflags); 212 213 (void) snprintf(name, sizeof (name), "zio_data_buf_%lu", 214 (ulong_t)size); 215 zio_data_buf_cache[c] = kmem_cache_create(name, size, 216 align, NULL, NULL, NULL, NULL, 217 data_alloc_arena, data_cflags); 218 } 219 } 220 221 while (--c != 0) { 222 ASSERT(zio_buf_cache[c] != NULL); 223 if (zio_buf_cache[c - 1] == NULL) 224 zio_buf_cache[c - 1] = zio_buf_cache[c]; 225 226 ASSERT(zio_data_buf_cache[c] != NULL); 227 if (zio_data_buf_cache[c - 1] == NULL) 228 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c]; 229 } 230 231 zio_inject_init(); 232 233 lz4_init(); 234 } 235 236 void 237 zio_fini(void) 238 { 239 size_t c; 240 kmem_cache_t *last_cache = NULL; 241 kmem_cache_t *last_data_cache = NULL; 242 243 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 244 #ifdef _ILP32 245 /* 246 * Cache size limited to 1M on 32-bit platforms until ARC 247 * buffers no longer require virtual address space. 248 */ 249 if (((c + 1) << SPA_MINBLOCKSHIFT) > zfs_max_recordsize) 250 break; 251 #endif 252 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 253 if (zio_buf_cache_allocs[c] != zio_buf_cache_frees[c]) 254 (void) printf("zio_fini: [%d] %llu != %llu\n", 255 (int)((c + 1) << SPA_MINBLOCKSHIFT), 256 (long long unsigned)zio_buf_cache_allocs[c], 257 (long long unsigned)zio_buf_cache_frees[c]); 258 #endif 259 if (zio_buf_cache[c] != last_cache) { 260 last_cache = zio_buf_cache[c]; 261 kmem_cache_destroy(zio_buf_cache[c]); 262 } 263 zio_buf_cache[c] = NULL; 264 265 if (zio_data_buf_cache[c] != last_data_cache) { 266 last_data_cache = zio_data_buf_cache[c]; 267 kmem_cache_destroy(zio_data_buf_cache[c]); 268 } 269 zio_data_buf_cache[c] = NULL; 270 } 271 272 kmem_cache_destroy(zio_link_cache); 273 kmem_cache_destroy(zio_cache); 274 275 zio_inject_fini(); 276 277 lz4_fini(); 278 } 279 280 /* 281 * ========================================================================== 282 * Allocate and free I/O buffers 283 * ========================================================================== 284 */ 285 286 /* 287 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a 288 * crashdump if the kernel panics, so use it judiciously. Obviously, it's 289 * useful to inspect ZFS metadata, but if possible, we should avoid keeping 290 * excess / transient data in-core during a crashdump. 291 */ 292 void * 293 zio_buf_alloc(size_t size) 294 { 295 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 296 297 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 298 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 299 atomic_add_64(&zio_buf_cache_allocs[c], 1); 300 #endif 301 302 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE)); 303 } 304 305 /* 306 * Use zio_data_buf_alloc to allocate data. The data will not appear in a 307 * crashdump if the kernel panics. This exists so that we will limit the amount 308 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount 309 * of kernel heap dumped to disk when the kernel panics) 310 */ 311 void * 312 zio_data_buf_alloc(size_t size) 313 { 314 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 315 316 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 317 318 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE)); 319 } 320 321 void 322 zio_buf_free(void *buf, size_t size) 323 { 324 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 325 326 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 327 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 328 atomic_add_64(&zio_buf_cache_frees[c], 1); 329 #endif 330 331 kmem_cache_free(zio_buf_cache[c], buf); 332 } 333 334 void 335 zio_data_buf_free(void *buf, size_t size) 336 { 337 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 338 339 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 340 341 kmem_cache_free(zio_data_buf_cache[c], buf); 342 } 343 344 static void 345 zio_abd_free(void *abd, size_t size) 346 { 347 abd_free((abd_t *)abd); 348 } 349 350 /* 351 * ========================================================================== 352 * Push and pop I/O transform buffers 353 * ========================================================================== 354 */ 355 void 356 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize, 357 zio_transform_func_t *transform) 358 { 359 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP); 360 361 zt->zt_orig_abd = zio->io_abd; 362 zt->zt_orig_size = zio->io_size; 363 zt->zt_bufsize = bufsize; 364 zt->zt_transform = transform; 365 366 zt->zt_next = zio->io_transform_stack; 367 zio->io_transform_stack = zt; 368 369 zio->io_abd = data; 370 zio->io_size = size; 371 } 372 373 void 374 zio_pop_transforms(zio_t *zio) 375 { 376 zio_transform_t *zt; 377 378 while ((zt = zio->io_transform_stack) != NULL) { 379 if (zt->zt_transform != NULL) 380 zt->zt_transform(zio, 381 zt->zt_orig_abd, zt->zt_orig_size); 382 383 if (zt->zt_bufsize != 0) 384 abd_free(zio->io_abd); 385 386 zio->io_abd = zt->zt_orig_abd; 387 zio->io_size = zt->zt_orig_size; 388 zio->io_transform_stack = zt->zt_next; 389 390 kmem_free(zt, sizeof (zio_transform_t)); 391 } 392 } 393 394 /* 395 * ========================================================================== 396 * I/O transform callbacks for subblocks, decompression, and decryption 397 * ========================================================================== 398 */ 399 static void 400 zio_subblock(zio_t *zio, abd_t *data, uint64_t size) 401 { 402 ASSERT(zio->io_size > size); 403 404 if (zio->io_type == ZIO_TYPE_READ) 405 abd_copy(data, zio->io_abd, size); 406 } 407 408 static void 409 zio_decompress(zio_t *zio, abd_t *data, uint64_t size) 410 { 411 if (zio->io_error == 0) { 412 void *tmp = abd_borrow_buf(data, size); 413 int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp), 414 zio->io_abd, tmp, zio->io_size, size, 415 &zio->io_prop.zp_complevel); 416 abd_return_buf_copy(data, tmp, size); 417 418 if (zio_injection_enabled && ret == 0) 419 ret = zio_handle_fault_injection(zio, EINVAL); 420 421 if (ret != 0) 422 zio->io_error = SET_ERROR(EIO); 423 } 424 } 425 426 static void 427 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size) 428 { 429 int ret; 430 void *tmp; 431 blkptr_t *bp = zio->io_bp; 432 spa_t *spa = zio->io_spa; 433 uint64_t dsobj = zio->io_bookmark.zb_objset; 434 uint64_t lsize = BP_GET_LSIZE(bp); 435 dmu_object_type_t ot = BP_GET_TYPE(bp); 436 uint8_t salt[ZIO_DATA_SALT_LEN]; 437 uint8_t iv[ZIO_DATA_IV_LEN]; 438 uint8_t mac[ZIO_DATA_MAC_LEN]; 439 boolean_t no_crypt = B_FALSE; 440 441 ASSERT(BP_USES_CRYPT(bp)); 442 ASSERT3U(size, !=, 0); 443 444 if (zio->io_error != 0) 445 return; 446 447 /* 448 * Verify the cksum of MACs stored in an indirect bp. It will always 449 * be possible to verify this since it does not require an encryption 450 * key. 451 */ 452 if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) { 453 zio_crypt_decode_mac_bp(bp, mac); 454 455 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) { 456 /* 457 * We haven't decompressed the data yet, but 458 * zio_crypt_do_indirect_mac_checksum() requires 459 * decompressed data to be able to parse out the MACs 460 * from the indirect block. We decompress it now and 461 * throw away the result after we are finished. 462 */ 463 tmp = zio_buf_alloc(lsize); 464 ret = zio_decompress_data(BP_GET_COMPRESS(bp), 465 zio->io_abd, tmp, zio->io_size, lsize, 466 &zio->io_prop.zp_complevel); 467 if (ret != 0) { 468 ret = SET_ERROR(EIO); 469 goto error; 470 } 471 ret = zio_crypt_do_indirect_mac_checksum(B_FALSE, 472 tmp, lsize, BP_SHOULD_BYTESWAP(bp), mac); 473 zio_buf_free(tmp, lsize); 474 } else { 475 ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE, 476 zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac); 477 } 478 abd_copy(data, zio->io_abd, size); 479 480 if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) { 481 ret = zio_handle_decrypt_injection(spa, 482 &zio->io_bookmark, ot, ECKSUM); 483 } 484 if (ret != 0) 485 goto error; 486 487 return; 488 } 489 490 /* 491 * If this is an authenticated block, just check the MAC. It would be 492 * nice to separate this out into its own flag, but for the moment 493 * enum zio_flag is out of bits. 494 */ 495 if (BP_IS_AUTHENTICATED(bp)) { 496 if (ot == DMU_OT_OBJSET) { 497 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, 498 dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp)); 499 } else { 500 zio_crypt_decode_mac_bp(bp, mac); 501 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, 502 zio->io_abd, size, mac); 503 if (zio_injection_enabled && ret == 0) { 504 ret = zio_handle_decrypt_injection(spa, 505 &zio->io_bookmark, ot, ECKSUM); 506 } 507 } 508 abd_copy(data, zio->io_abd, size); 509 510 if (ret != 0) 511 goto error; 512 513 return; 514 } 515 516 zio_crypt_decode_params_bp(bp, salt, iv); 517 518 if (ot == DMU_OT_INTENT_LOG) { 519 tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t)); 520 zio_crypt_decode_mac_zil(tmp, mac); 521 abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t)); 522 } else { 523 zio_crypt_decode_mac_bp(bp, mac); 524 } 525 526 ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp), 527 BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data, 528 zio->io_abd, &no_crypt); 529 if (no_crypt) 530 abd_copy(data, zio->io_abd, size); 531 532 if (ret != 0) 533 goto error; 534 535 return; 536 537 error: 538 /* assert that the key was found unless this was speculative */ 539 ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE)); 540 541 /* 542 * If there was a decryption / authentication error return EIO as 543 * the io_error. If this was not a speculative zio, create an ereport. 544 */ 545 if (ret == ECKSUM) { 546 zio->io_error = SET_ERROR(EIO); 547 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) { 548 spa_log_error(spa, &zio->io_bookmark); 549 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION, 550 spa, NULL, &zio->io_bookmark, zio, 0); 551 } 552 } else { 553 zio->io_error = ret; 554 } 555 } 556 557 /* 558 * ========================================================================== 559 * I/O parent/child relationships and pipeline interlocks 560 * ========================================================================== 561 */ 562 zio_t * 563 zio_walk_parents(zio_t *cio, zio_link_t **zl) 564 { 565 list_t *pl = &cio->io_parent_list; 566 567 *zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl); 568 if (*zl == NULL) 569 return (NULL); 570 571 ASSERT((*zl)->zl_child == cio); 572 return ((*zl)->zl_parent); 573 } 574 575 zio_t * 576 zio_walk_children(zio_t *pio, zio_link_t **zl) 577 { 578 list_t *cl = &pio->io_child_list; 579 580 ASSERT(MUTEX_HELD(&pio->io_lock)); 581 582 *zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl); 583 if (*zl == NULL) 584 return (NULL); 585 586 ASSERT((*zl)->zl_parent == pio); 587 return ((*zl)->zl_child); 588 } 589 590 zio_t * 591 zio_unique_parent(zio_t *cio) 592 { 593 zio_link_t *zl = NULL; 594 zio_t *pio = zio_walk_parents(cio, &zl); 595 596 VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL); 597 return (pio); 598 } 599 600 void 601 zio_add_child(zio_t *pio, zio_t *cio) 602 { 603 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP); 604 605 /* 606 * Logical I/Os can have logical, gang, or vdev children. 607 * Gang I/Os can have gang or vdev children. 608 * Vdev I/Os can only have vdev children. 609 * The following ASSERT captures all of these constraints. 610 */ 611 ASSERT3S(cio->io_child_type, <=, pio->io_child_type); 612 613 zl->zl_parent = pio; 614 zl->zl_child = cio; 615 616 mutex_enter(&pio->io_lock); 617 mutex_enter(&cio->io_lock); 618 619 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0); 620 621 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 622 pio->io_children[cio->io_child_type][w] += !cio->io_state[w]; 623 624 list_insert_head(&pio->io_child_list, zl); 625 list_insert_head(&cio->io_parent_list, zl); 626 627 pio->io_child_count++; 628 cio->io_parent_count++; 629 630 mutex_exit(&cio->io_lock); 631 mutex_exit(&pio->io_lock); 632 } 633 634 static void 635 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl) 636 { 637 ASSERT(zl->zl_parent == pio); 638 ASSERT(zl->zl_child == cio); 639 640 mutex_enter(&pio->io_lock); 641 mutex_enter(&cio->io_lock); 642 643 list_remove(&pio->io_child_list, zl); 644 list_remove(&cio->io_parent_list, zl); 645 646 pio->io_child_count--; 647 cio->io_parent_count--; 648 649 mutex_exit(&cio->io_lock); 650 mutex_exit(&pio->io_lock); 651 kmem_cache_free(zio_link_cache, zl); 652 } 653 654 static boolean_t 655 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait) 656 { 657 boolean_t waiting = B_FALSE; 658 659 mutex_enter(&zio->io_lock); 660 ASSERT(zio->io_stall == NULL); 661 for (int c = 0; c < ZIO_CHILD_TYPES; c++) { 662 if (!(ZIO_CHILD_BIT_IS_SET(childbits, c))) 663 continue; 664 665 uint64_t *countp = &zio->io_children[c][wait]; 666 if (*countp != 0) { 667 zio->io_stage >>= 1; 668 ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN); 669 zio->io_stall = countp; 670 waiting = B_TRUE; 671 break; 672 } 673 } 674 mutex_exit(&zio->io_lock); 675 return (waiting); 676 } 677 678 __attribute__((always_inline)) 679 static inline void 680 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait, 681 zio_t **next_to_executep) 682 { 683 uint64_t *countp = &pio->io_children[zio->io_child_type][wait]; 684 int *errorp = &pio->io_child_error[zio->io_child_type]; 685 686 mutex_enter(&pio->io_lock); 687 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 688 *errorp = zio_worst_error(*errorp, zio->io_error); 689 pio->io_reexecute |= zio->io_reexecute; 690 ASSERT3U(*countp, >, 0); 691 692 (*countp)--; 693 694 if (*countp == 0 && pio->io_stall == countp) { 695 zio_taskq_type_t type = 696 pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE : 697 ZIO_TASKQ_INTERRUPT; 698 pio->io_stall = NULL; 699 mutex_exit(&pio->io_lock); 700 701 /* 702 * If we can tell the caller to execute this parent next, do 703 * so. Otherwise dispatch the parent zio as its own task. 704 * 705 * Having the caller execute the parent when possible reduces 706 * locking on the zio taskq's, reduces context switch 707 * overhead, and has no recursion penalty. Note that one 708 * read from disk typically causes at least 3 zio's: a 709 * zio_null(), the logical zio_read(), and then a physical 710 * zio. When the physical ZIO completes, we are able to call 711 * zio_done() on all 3 of these zio's from one invocation of 712 * zio_execute() by returning the parent back to 713 * zio_execute(). Since the parent isn't executed until this 714 * thread returns back to zio_execute(), the caller should do 715 * so promptly. 716 * 717 * In other cases, dispatching the parent prevents 718 * overflowing the stack when we have deeply nested 719 * parent-child relationships, as we do with the "mega zio" 720 * of writes for spa_sync(), and the chain of ZIL blocks. 721 */ 722 if (next_to_executep != NULL && *next_to_executep == NULL) { 723 *next_to_executep = pio; 724 } else { 725 zio_taskq_dispatch(pio, type, B_FALSE); 726 } 727 } else { 728 mutex_exit(&pio->io_lock); 729 } 730 } 731 732 static void 733 zio_inherit_child_errors(zio_t *zio, enum zio_child c) 734 { 735 if (zio->io_child_error[c] != 0 && zio->io_error == 0) 736 zio->io_error = zio->io_child_error[c]; 737 } 738 739 int 740 zio_bookmark_compare(const void *x1, const void *x2) 741 { 742 const zio_t *z1 = x1; 743 const zio_t *z2 = x2; 744 745 if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset) 746 return (-1); 747 if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset) 748 return (1); 749 750 if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object) 751 return (-1); 752 if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object) 753 return (1); 754 755 if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level) 756 return (-1); 757 if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level) 758 return (1); 759 760 if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid) 761 return (-1); 762 if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid) 763 return (1); 764 765 if (z1 < z2) 766 return (-1); 767 if (z1 > z2) 768 return (1); 769 770 return (0); 771 } 772 773 /* 774 * ========================================================================== 775 * Create the various types of I/O (read, write, free, etc) 776 * ========================================================================== 777 */ 778 static zio_t * 779 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 780 abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done, 781 void *private, zio_type_t type, zio_priority_t priority, 782 enum zio_flag flags, vdev_t *vd, uint64_t offset, 783 const zbookmark_phys_t *zb, enum zio_stage stage, 784 enum zio_stage pipeline) 785 { 786 zio_t *zio; 787 788 IMPLY(type != ZIO_TYPE_TRIM, psize <= SPA_MAXBLOCKSIZE); 789 ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0); 790 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0); 791 792 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER)); 793 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER)); 794 ASSERT(vd || stage == ZIO_STAGE_OPEN); 795 796 IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0); 797 798 zio = kmem_cache_alloc(zio_cache, KM_SLEEP); 799 bzero(zio, sizeof (zio_t)); 800 801 mutex_init(&zio->io_lock, NULL, MUTEX_NOLOCKDEP, NULL); 802 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL); 803 804 list_create(&zio->io_parent_list, sizeof (zio_link_t), 805 offsetof(zio_link_t, zl_parent_node)); 806 list_create(&zio->io_child_list, sizeof (zio_link_t), 807 offsetof(zio_link_t, zl_child_node)); 808 metaslab_trace_init(&zio->io_alloc_list); 809 810 if (vd != NULL) 811 zio->io_child_type = ZIO_CHILD_VDEV; 812 else if (flags & ZIO_FLAG_GANG_CHILD) 813 zio->io_child_type = ZIO_CHILD_GANG; 814 else if (flags & ZIO_FLAG_DDT_CHILD) 815 zio->io_child_type = ZIO_CHILD_DDT; 816 else 817 zio->io_child_type = ZIO_CHILD_LOGICAL; 818 819 if (bp != NULL) { 820 zio->io_bp = (blkptr_t *)bp; 821 zio->io_bp_copy = *bp; 822 zio->io_bp_orig = *bp; 823 if (type != ZIO_TYPE_WRITE || 824 zio->io_child_type == ZIO_CHILD_DDT) 825 zio->io_bp = &zio->io_bp_copy; /* so caller can free */ 826 if (zio->io_child_type == ZIO_CHILD_LOGICAL) 827 zio->io_logical = zio; 828 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp)) 829 pipeline |= ZIO_GANG_STAGES; 830 } 831 832 zio->io_spa = spa; 833 zio->io_txg = txg; 834 zio->io_done = done; 835 zio->io_private = private; 836 zio->io_type = type; 837 zio->io_priority = priority; 838 zio->io_vd = vd; 839 zio->io_offset = offset; 840 zio->io_orig_abd = zio->io_abd = data; 841 zio->io_orig_size = zio->io_size = psize; 842 zio->io_lsize = lsize; 843 zio->io_orig_flags = zio->io_flags = flags; 844 zio->io_orig_stage = zio->io_stage = stage; 845 zio->io_orig_pipeline = zio->io_pipeline = pipeline; 846 zio->io_pipeline_trace = ZIO_STAGE_OPEN; 847 848 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY); 849 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE); 850 851 if (zb != NULL) 852 zio->io_bookmark = *zb; 853 854 if (pio != NULL) { 855 if (zio->io_metaslab_class == NULL) 856 zio->io_metaslab_class = pio->io_metaslab_class; 857 if (zio->io_logical == NULL) 858 zio->io_logical = pio->io_logical; 859 if (zio->io_child_type == ZIO_CHILD_GANG) 860 zio->io_gang_leader = pio->io_gang_leader; 861 zio_add_child(pio, zio); 862 } 863 864 taskq_init_ent(&zio->io_tqent); 865 866 return (zio); 867 } 868 869 static void 870 zio_destroy(zio_t *zio) 871 { 872 metaslab_trace_fini(&zio->io_alloc_list); 873 list_destroy(&zio->io_parent_list); 874 list_destroy(&zio->io_child_list); 875 mutex_destroy(&zio->io_lock); 876 cv_destroy(&zio->io_cv); 877 kmem_cache_free(zio_cache, zio); 878 } 879 880 zio_t * 881 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done, 882 void *private, enum zio_flag flags) 883 { 884 zio_t *zio; 885 886 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private, 887 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 888 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE); 889 890 return (zio); 891 } 892 893 zio_t * 894 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags) 895 { 896 return (zio_null(NULL, spa, NULL, done, private, flags)); 897 } 898 899 static int 900 zfs_blkptr_verify_log(spa_t *spa, const blkptr_t *bp, 901 enum blk_verify_flag blk_verify, const char *fmt, ...) 902 { 903 va_list adx; 904 char buf[256]; 905 906 va_start(adx, fmt); 907 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 908 va_end(adx); 909 910 switch (blk_verify) { 911 case BLK_VERIFY_HALT: 912 dprintf_bp(bp, "blkptr at %p dprintf_bp():", bp); 913 zfs_panic_recover("%s: %s", spa_name(spa), buf); 914 break; 915 case BLK_VERIFY_LOG: 916 zfs_dbgmsg("%s: %s", spa_name(spa), buf); 917 break; 918 case BLK_VERIFY_ONLY: 919 break; 920 } 921 922 return (1); 923 } 924 925 /* 926 * Verify the block pointer fields contain reasonable values. This means 927 * it only contains known object types, checksum/compression identifiers, 928 * block sizes within the maximum allowed limits, valid DVAs, etc. 929 * 930 * If everything checks out B_TRUE is returned. The zfs_blkptr_verify 931 * argument controls the behavior when an invalid field is detected. 932 * 933 * Modes for zfs_blkptr_verify: 934 * 1) BLK_VERIFY_ONLY (evaluate the block) 935 * 2) BLK_VERIFY_LOG (evaluate the block and log problems) 936 * 3) BLK_VERIFY_HALT (call zfs_panic_recover on error) 937 */ 938 boolean_t 939 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp, boolean_t config_held, 940 enum blk_verify_flag blk_verify) 941 { 942 int errors = 0; 943 944 if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) { 945 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 946 "blkptr at %p has invalid TYPE %llu", 947 bp, (longlong_t)BP_GET_TYPE(bp)); 948 } 949 if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS || 950 BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) { 951 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 952 "blkptr at %p has invalid CHECKSUM %llu", 953 bp, (longlong_t)BP_GET_CHECKSUM(bp)); 954 } 955 if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS || 956 BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) { 957 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 958 "blkptr at %p has invalid COMPRESS %llu", 959 bp, (longlong_t)BP_GET_COMPRESS(bp)); 960 } 961 if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) { 962 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 963 "blkptr at %p has invalid LSIZE %llu", 964 bp, (longlong_t)BP_GET_LSIZE(bp)); 965 } 966 if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) { 967 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 968 "blkptr at %p has invalid PSIZE %llu", 969 bp, (longlong_t)BP_GET_PSIZE(bp)); 970 } 971 972 if (BP_IS_EMBEDDED(bp)) { 973 if (BPE_GET_ETYPE(bp) >= NUM_BP_EMBEDDED_TYPES) { 974 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 975 "blkptr at %p has invalid ETYPE %llu", 976 bp, (longlong_t)BPE_GET_ETYPE(bp)); 977 } 978 } 979 980 /* 981 * Do not verify individual DVAs if the config is not trusted. This 982 * will be done once the zio is executed in vdev_mirror_map_alloc. 983 */ 984 if (!spa->spa_trust_config) 985 return (B_TRUE); 986 987 if (!config_held) 988 spa_config_enter(spa, SCL_VDEV, bp, RW_READER); 989 else 990 ASSERT(spa_config_held(spa, SCL_VDEV, RW_WRITER)); 991 /* 992 * Pool-specific checks. 993 * 994 * Note: it would be nice to verify that the blk_birth and 995 * BP_PHYSICAL_BIRTH() are not too large. However, spa_freeze() 996 * allows the birth time of log blocks (and dmu_sync()-ed blocks 997 * that are in the log) to be arbitrarily large. 998 */ 999 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 1000 uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]); 1001 1002 if (vdevid >= spa->spa_root_vdev->vdev_children) { 1003 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1004 "blkptr at %p DVA %u has invalid VDEV %llu", 1005 bp, i, (longlong_t)vdevid); 1006 continue; 1007 } 1008 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid]; 1009 if (vd == NULL) { 1010 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1011 "blkptr at %p DVA %u has invalid VDEV %llu", 1012 bp, i, (longlong_t)vdevid); 1013 continue; 1014 } 1015 if (vd->vdev_ops == &vdev_hole_ops) { 1016 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1017 "blkptr at %p DVA %u has hole VDEV %llu", 1018 bp, i, (longlong_t)vdevid); 1019 continue; 1020 } 1021 if (vd->vdev_ops == &vdev_missing_ops) { 1022 /* 1023 * "missing" vdevs are valid during import, but we 1024 * don't have their detailed info (e.g. asize), so 1025 * we can't perform any more checks on them. 1026 */ 1027 continue; 1028 } 1029 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]); 1030 uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]); 1031 if (BP_IS_GANG(bp)) 1032 asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); 1033 if (offset + asize > vd->vdev_asize) { 1034 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1035 "blkptr at %p DVA %u has invalid OFFSET %llu", 1036 bp, i, (longlong_t)offset); 1037 } 1038 } 1039 if (errors > 0) 1040 dprintf_bp(bp, "blkptr at %p dprintf_bp():", bp); 1041 if (!config_held) 1042 spa_config_exit(spa, SCL_VDEV, bp); 1043 1044 return (errors == 0); 1045 } 1046 1047 boolean_t 1048 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp) 1049 { 1050 uint64_t vdevid = DVA_GET_VDEV(dva); 1051 1052 if (vdevid >= spa->spa_root_vdev->vdev_children) 1053 return (B_FALSE); 1054 1055 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid]; 1056 if (vd == NULL) 1057 return (B_FALSE); 1058 1059 if (vd->vdev_ops == &vdev_hole_ops) 1060 return (B_FALSE); 1061 1062 if (vd->vdev_ops == &vdev_missing_ops) { 1063 return (B_FALSE); 1064 } 1065 1066 uint64_t offset = DVA_GET_OFFSET(dva); 1067 uint64_t asize = DVA_GET_ASIZE(dva); 1068 1069 if (BP_IS_GANG(bp)) 1070 asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); 1071 if (offset + asize > vd->vdev_asize) 1072 return (B_FALSE); 1073 1074 return (B_TRUE); 1075 } 1076 1077 zio_t * 1078 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, 1079 abd_t *data, uint64_t size, zio_done_func_t *done, void *private, 1080 zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb) 1081 { 1082 zio_t *zio; 1083 1084 (void) zfs_blkptr_verify(spa, bp, flags & ZIO_FLAG_CONFIG_WRITER, 1085 BLK_VERIFY_HALT); 1086 1087 zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp, 1088 data, size, size, done, private, 1089 ZIO_TYPE_READ, priority, flags, NULL, 0, zb, 1090 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 1091 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE); 1092 1093 return (zio); 1094 } 1095 1096 zio_t * 1097 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 1098 abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp, 1099 zio_done_func_t *ready, zio_done_func_t *children_ready, 1100 zio_done_func_t *physdone, zio_done_func_t *done, 1101 void *private, zio_priority_t priority, enum zio_flag flags, 1102 const zbookmark_phys_t *zb) 1103 { 1104 zio_t *zio; 1105 1106 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF && 1107 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS && 1108 zp->zp_compress >= ZIO_COMPRESS_OFF && 1109 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS && 1110 DMU_OT_IS_VALID(zp->zp_type) && 1111 zp->zp_level < 32 && 1112 zp->zp_copies > 0 && 1113 zp->zp_copies <= spa_max_replication(spa)); 1114 1115 zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private, 1116 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb, 1117 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 1118 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE); 1119 1120 zio->io_ready = ready; 1121 zio->io_children_ready = children_ready; 1122 zio->io_physdone = physdone; 1123 zio->io_prop = *zp; 1124 1125 /* 1126 * Data can be NULL if we are going to call zio_write_override() to 1127 * provide the already-allocated BP. But we may need the data to 1128 * verify a dedup hit (if requested). In this case, don't try to 1129 * dedup (just take the already-allocated BP verbatim). Encrypted 1130 * dedup blocks need data as well so we also disable dedup in this 1131 * case. 1132 */ 1133 if (data == NULL && 1134 (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) { 1135 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE; 1136 } 1137 1138 return (zio); 1139 } 1140 1141 zio_t * 1142 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data, 1143 uint64_t size, zio_done_func_t *done, void *private, 1144 zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb) 1145 { 1146 zio_t *zio; 1147 1148 zio = zio_create(pio, spa, txg, bp, data, size, size, done, private, 1149 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb, 1150 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE); 1151 1152 return (zio); 1153 } 1154 1155 void 1156 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite) 1157 { 1158 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 1159 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1160 ASSERT(zio->io_stage == ZIO_STAGE_OPEN); 1161 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa)); 1162 1163 /* 1164 * We must reset the io_prop to match the values that existed 1165 * when the bp was first written by dmu_sync() keeping in mind 1166 * that nopwrite and dedup are mutually exclusive. 1167 */ 1168 zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup; 1169 zio->io_prop.zp_nopwrite = nopwrite; 1170 zio->io_prop.zp_copies = copies; 1171 zio->io_bp_override = bp; 1172 } 1173 1174 void 1175 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp) 1176 { 1177 1178 (void) zfs_blkptr_verify(spa, bp, B_FALSE, BLK_VERIFY_HALT); 1179 1180 /* 1181 * The check for EMBEDDED is a performance optimization. We 1182 * process the free here (by ignoring it) rather than 1183 * putting it on the list and then processing it in zio_free_sync(). 1184 */ 1185 if (BP_IS_EMBEDDED(bp)) 1186 return; 1187 metaslab_check_free(spa, bp); 1188 1189 /* 1190 * Frees that are for the currently-syncing txg, are not going to be 1191 * deferred, and which will not need to do a read (i.e. not GANG or 1192 * DEDUP), can be processed immediately. Otherwise, put them on the 1193 * in-memory list for later processing. 1194 * 1195 * Note that we only defer frees after zfs_sync_pass_deferred_free 1196 * when the log space map feature is disabled. [see relevant comment 1197 * in spa_sync_iterate_to_convergence()] 1198 */ 1199 if (BP_IS_GANG(bp) || 1200 BP_GET_DEDUP(bp) || 1201 txg != spa->spa_syncing_txg || 1202 (spa_sync_pass(spa) >= zfs_sync_pass_deferred_free && 1203 !spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))) { 1204 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp); 1205 } else { 1206 VERIFY3P(zio_free_sync(NULL, spa, txg, bp, 0), ==, NULL); 1207 } 1208 } 1209 1210 /* 1211 * To improve performance, this function may return NULL if we were able 1212 * to do the free immediately. This avoids the cost of creating a zio 1213 * (and linking it to the parent, etc). 1214 */ 1215 zio_t * 1216 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 1217 enum zio_flag flags) 1218 { 1219 ASSERT(!BP_IS_HOLE(bp)); 1220 ASSERT(spa_syncing_txg(spa) == txg); 1221 1222 if (BP_IS_EMBEDDED(bp)) 1223 return (NULL); 1224 1225 metaslab_check_free(spa, bp); 1226 arc_freed(spa, bp); 1227 dsl_scan_freed(spa, bp); 1228 1229 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp)) { 1230 /* 1231 * GANG and DEDUP blocks can induce a read (for the gang block 1232 * header, or the DDT), so issue them asynchronously so that 1233 * this thread is not tied up. 1234 */ 1235 enum zio_stage stage = 1236 ZIO_FREE_PIPELINE | ZIO_STAGE_ISSUE_ASYNC; 1237 1238 return (zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 1239 BP_GET_PSIZE(bp), NULL, NULL, 1240 ZIO_TYPE_FREE, ZIO_PRIORITY_NOW, 1241 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage)); 1242 } else { 1243 metaslab_free(spa, bp, txg, B_FALSE); 1244 return (NULL); 1245 } 1246 } 1247 1248 zio_t * 1249 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 1250 zio_done_func_t *done, void *private, enum zio_flag flags) 1251 { 1252 zio_t *zio; 1253 1254 (void) zfs_blkptr_verify(spa, bp, flags & ZIO_FLAG_CONFIG_WRITER, 1255 BLK_VERIFY_HALT); 1256 1257 if (BP_IS_EMBEDDED(bp)) 1258 return (zio_null(pio, spa, NULL, NULL, NULL, 0)); 1259 1260 /* 1261 * A claim is an allocation of a specific block. Claims are needed 1262 * to support immediate writes in the intent log. The issue is that 1263 * immediate writes contain committed data, but in a txg that was 1264 * *not* committed. Upon opening the pool after an unclean shutdown, 1265 * the intent log claims all blocks that contain immediate write data 1266 * so that the SPA knows they're in use. 1267 * 1268 * All claims *must* be resolved in the first txg -- before the SPA 1269 * starts allocating blocks -- so that nothing is allocated twice. 1270 * If txg == 0 we just verify that the block is claimable. 1271 */ 1272 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, 1273 spa_min_claim_txg(spa)); 1274 ASSERT(txg == spa_min_claim_txg(spa) || txg == 0); 1275 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(1M) */ 1276 1277 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 1278 BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, 1279 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE); 1280 ASSERT0(zio->io_queued_timestamp); 1281 1282 return (zio); 1283 } 1284 1285 zio_t * 1286 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, 1287 zio_done_func_t *done, void *private, enum zio_flag flags) 1288 { 1289 zio_t *zio; 1290 int c; 1291 1292 if (vd->vdev_children == 0) { 1293 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private, 1294 ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 1295 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE); 1296 1297 zio->io_cmd = cmd; 1298 } else { 1299 zio = zio_null(pio, spa, NULL, NULL, NULL, flags); 1300 1301 for (c = 0; c < vd->vdev_children; c++) 1302 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd, 1303 done, private, flags)); 1304 } 1305 1306 return (zio); 1307 } 1308 1309 zio_t * 1310 zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1311 zio_done_func_t *done, void *private, zio_priority_t priority, 1312 enum zio_flag flags, enum trim_flag trim_flags) 1313 { 1314 zio_t *zio; 1315 1316 ASSERT0(vd->vdev_children); 1317 ASSERT0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 1318 ASSERT0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 1319 ASSERT3U(size, !=, 0); 1320 1321 zio = zio_create(pio, vd->vdev_spa, 0, NULL, NULL, size, size, done, 1322 private, ZIO_TYPE_TRIM, priority, flags | ZIO_FLAG_PHYSICAL, 1323 vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_TRIM_PIPELINE); 1324 zio->io_trim_flags = trim_flags; 1325 1326 return (zio); 1327 } 1328 1329 zio_t * 1330 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1331 abd_t *data, int checksum, zio_done_func_t *done, void *private, 1332 zio_priority_t priority, enum zio_flag flags, boolean_t labels) 1333 { 1334 zio_t *zio; 1335 1336 ASSERT(vd->vdev_children == 0); 1337 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 1338 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 1339 ASSERT3U(offset + size, <=, vd->vdev_psize); 1340 1341 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, 1342 private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd, 1343 offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE); 1344 1345 zio->io_prop.zp_checksum = checksum; 1346 1347 return (zio); 1348 } 1349 1350 zio_t * 1351 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1352 abd_t *data, int checksum, zio_done_func_t *done, void *private, 1353 zio_priority_t priority, enum zio_flag flags, boolean_t labels) 1354 { 1355 zio_t *zio; 1356 1357 ASSERT(vd->vdev_children == 0); 1358 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 1359 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 1360 ASSERT3U(offset + size, <=, vd->vdev_psize); 1361 1362 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, 1363 private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd, 1364 offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE); 1365 1366 zio->io_prop.zp_checksum = checksum; 1367 1368 if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) { 1369 /* 1370 * zec checksums are necessarily destructive -- they modify 1371 * the end of the write buffer to hold the verifier/checksum. 1372 * Therefore, we must make a local copy in case the data is 1373 * being written to multiple places in parallel. 1374 */ 1375 abd_t *wbuf = abd_alloc_sametype(data, size); 1376 abd_copy(wbuf, data, size); 1377 1378 zio_push_transform(zio, wbuf, size, size, NULL); 1379 } 1380 1381 return (zio); 1382 } 1383 1384 /* 1385 * Create a child I/O to do some work for us. 1386 */ 1387 zio_t * 1388 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset, 1389 abd_t *data, uint64_t size, int type, zio_priority_t priority, 1390 enum zio_flag flags, zio_done_func_t *done, void *private) 1391 { 1392 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE; 1393 zio_t *zio; 1394 1395 /* 1396 * vdev child I/Os do not propagate their error to the parent. 1397 * Therefore, for correct operation the caller *must* check for 1398 * and handle the error in the child i/o's done callback. 1399 * The only exceptions are i/os that we don't care about 1400 * (OPTIONAL or REPAIR). 1401 */ 1402 ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) || 1403 done != NULL); 1404 1405 if (type == ZIO_TYPE_READ && bp != NULL) { 1406 /* 1407 * If we have the bp, then the child should perform the 1408 * checksum and the parent need not. This pushes error 1409 * detection as close to the leaves as possible and 1410 * eliminates redundant checksums in the interior nodes. 1411 */ 1412 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY; 1413 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 1414 } 1415 1416 if (vd->vdev_ops->vdev_op_leaf) { 1417 ASSERT0(vd->vdev_children); 1418 offset += VDEV_LABEL_START_SIZE; 1419 } 1420 1421 flags |= ZIO_VDEV_CHILD_FLAGS(pio); 1422 1423 /* 1424 * If we've decided to do a repair, the write is not speculative -- 1425 * even if the original read was. 1426 */ 1427 if (flags & ZIO_FLAG_IO_REPAIR) 1428 flags &= ~ZIO_FLAG_SPECULATIVE; 1429 1430 /* 1431 * If we're creating a child I/O that is not associated with a 1432 * top-level vdev, then the child zio is not an allocating I/O. 1433 * If this is a retried I/O then we ignore it since we will 1434 * have already processed the original allocating I/O. 1435 */ 1436 if (flags & ZIO_FLAG_IO_ALLOCATING && 1437 (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) { 1438 ASSERT(pio->io_metaslab_class != NULL); 1439 ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled); 1440 ASSERT(type == ZIO_TYPE_WRITE); 1441 ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE); 1442 ASSERT(!(flags & ZIO_FLAG_IO_REPAIR)); 1443 ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) || 1444 pio->io_child_type == ZIO_CHILD_GANG); 1445 1446 flags &= ~ZIO_FLAG_IO_ALLOCATING; 1447 } 1448 1449 1450 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size, 1451 done, private, type, priority, flags, vd, offset, &pio->io_bookmark, 1452 ZIO_STAGE_VDEV_IO_START >> 1, pipeline); 1453 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); 1454 1455 zio->io_physdone = pio->io_physdone; 1456 if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL) 1457 zio->io_logical->io_phys_children++; 1458 1459 return (zio); 1460 } 1461 1462 zio_t * 1463 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size, 1464 zio_type_t type, zio_priority_t priority, enum zio_flag flags, 1465 zio_done_func_t *done, void *private) 1466 { 1467 zio_t *zio; 1468 1469 ASSERT(vd->vdev_ops->vdev_op_leaf); 1470 1471 zio = zio_create(NULL, vd->vdev_spa, 0, NULL, 1472 data, size, size, done, private, type, priority, 1473 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED, 1474 vd, offset, NULL, 1475 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE); 1476 1477 return (zio); 1478 } 1479 1480 void 1481 zio_flush(zio_t *zio, vdev_t *vd) 1482 { 1483 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE, 1484 NULL, NULL, 1485 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY)); 1486 } 1487 1488 void 1489 zio_shrink(zio_t *zio, uint64_t size) 1490 { 1491 ASSERT3P(zio->io_executor, ==, NULL); 1492 ASSERT3U(zio->io_orig_size, ==, zio->io_size); 1493 ASSERT3U(size, <=, zio->io_size); 1494 1495 /* 1496 * We don't shrink for raidz because of problems with the 1497 * reconstruction when reading back less than the block size. 1498 * Note, BP_IS_RAIDZ() assumes no compression. 1499 */ 1500 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 1501 if (!BP_IS_RAIDZ(zio->io_bp)) { 1502 /* we are not doing a raw write */ 1503 ASSERT3U(zio->io_size, ==, zio->io_lsize); 1504 zio->io_orig_size = zio->io_size = zio->io_lsize = size; 1505 } 1506 } 1507 1508 /* 1509 * ========================================================================== 1510 * Prepare to read and write logical blocks 1511 * ========================================================================== 1512 */ 1513 1514 static zio_t * 1515 zio_read_bp_init(zio_t *zio) 1516 { 1517 blkptr_t *bp = zio->io_bp; 1518 uint64_t psize = 1519 BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp); 1520 1521 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 1522 1523 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF && 1524 zio->io_child_type == ZIO_CHILD_LOGICAL && 1525 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) { 1526 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize), 1527 psize, psize, zio_decompress); 1528 } 1529 1530 if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) || 1531 BP_HAS_INDIRECT_MAC_CKSUM(bp)) && 1532 zio->io_child_type == ZIO_CHILD_LOGICAL) { 1533 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize), 1534 psize, psize, zio_decrypt); 1535 } 1536 1537 if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) { 1538 int psize = BPE_GET_PSIZE(bp); 1539 void *data = abd_borrow_buf(zio->io_abd, psize); 1540 1541 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1542 decode_embedded_bp_compressed(bp, data); 1543 abd_return_buf_copy(zio->io_abd, data, psize); 1544 } else { 1545 ASSERT(!BP_IS_EMBEDDED(bp)); 1546 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 1547 } 1548 1549 if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0) 1550 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 1551 1552 if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP) 1553 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 1554 1555 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL) 1556 zio->io_pipeline = ZIO_DDT_READ_PIPELINE; 1557 1558 return (zio); 1559 } 1560 1561 static zio_t * 1562 zio_write_bp_init(zio_t *zio) 1563 { 1564 if (!IO_IS_ALLOCATING(zio)) 1565 return (zio); 1566 1567 ASSERT(zio->io_child_type != ZIO_CHILD_DDT); 1568 1569 if (zio->io_bp_override) { 1570 blkptr_t *bp = zio->io_bp; 1571 zio_prop_t *zp = &zio->io_prop; 1572 1573 ASSERT(bp->blk_birth != zio->io_txg); 1574 ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0); 1575 1576 *bp = *zio->io_bp_override; 1577 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1578 1579 if (BP_IS_EMBEDDED(bp)) 1580 return (zio); 1581 1582 /* 1583 * If we've been overridden and nopwrite is set then 1584 * set the flag accordingly to indicate that a nopwrite 1585 * has already occurred. 1586 */ 1587 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) { 1588 ASSERT(!zp->zp_dedup); 1589 ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum); 1590 zio->io_flags |= ZIO_FLAG_NOPWRITE; 1591 return (zio); 1592 } 1593 1594 ASSERT(!zp->zp_nopwrite); 1595 1596 if (BP_IS_HOLE(bp) || !zp->zp_dedup) 1597 return (zio); 1598 1599 ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags & 1600 ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify); 1601 1602 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum && 1603 !zp->zp_encrypt) { 1604 BP_SET_DEDUP(bp, 1); 1605 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE; 1606 return (zio); 1607 } 1608 1609 /* 1610 * We were unable to handle this as an override bp, treat 1611 * it as a regular write I/O. 1612 */ 1613 zio->io_bp_override = NULL; 1614 *bp = zio->io_bp_orig; 1615 zio->io_pipeline = zio->io_orig_pipeline; 1616 } 1617 1618 return (zio); 1619 } 1620 1621 static zio_t * 1622 zio_write_compress(zio_t *zio) 1623 { 1624 spa_t *spa = zio->io_spa; 1625 zio_prop_t *zp = &zio->io_prop; 1626 enum zio_compress compress = zp->zp_compress; 1627 blkptr_t *bp = zio->io_bp; 1628 uint64_t lsize = zio->io_lsize; 1629 uint64_t psize = zio->io_size; 1630 int pass = 1; 1631 1632 /* 1633 * If our children haven't all reached the ready stage, 1634 * wait for them and then repeat this pipeline stage. 1635 */ 1636 if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT | 1637 ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) { 1638 return (NULL); 1639 } 1640 1641 if (!IO_IS_ALLOCATING(zio)) 1642 return (zio); 1643 1644 if (zio->io_children_ready != NULL) { 1645 /* 1646 * Now that all our children are ready, run the callback 1647 * associated with this zio in case it wants to modify the 1648 * data to be written. 1649 */ 1650 ASSERT3U(zp->zp_level, >, 0); 1651 zio->io_children_ready(zio); 1652 } 1653 1654 ASSERT(zio->io_child_type != ZIO_CHILD_DDT); 1655 ASSERT(zio->io_bp_override == NULL); 1656 1657 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) { 1658 /* 1659 * We're rewriting an existing block, which means we're 1660 * working on behalf of spa_sync(). For spa_sync() to 1661 * converge, it must eventually be the case that we don't 1662 * have to allocate new blocks. But compression changes 1663 * the blocksize, which forces a reallocate, and makes 1664 * convergence take longer. Therefore, after the first 1665 * few passes, stop compressing to ensure convergence. 1666 */ 1667 pass = spa_sync_pass(spa); 1668 1669 ASSERT(zio->io_txg == spa_syncing_txg(spa)); 1670 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1671 ASSERT(!BP_GET_DEDUP(bp)); 1672 1673 if (pass >= zfs_sync_pass_dont_compress) 1674 compress = ZIO_COMPRESS_OFF; 1675 1676 /* Make sure someone doesn't change their mind on overwrites */ 1677 ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp), 1678 spa_max_replication(spa)) == BP_GET_NDVAS(bp)); 1679 } 1680 1681 /* If it's a compressed write that is not raw, compress the buffer. */ 1682 if (compress != ZIO_COMPRESS_OFF && 1683 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) { 1684 void *cbuf = zio_buf_alloc(lsize); 1685 psize = zio_compress_data(compress, zio->io_abd, cbuf, lsize, 1686 zp->zp_complevel); 1687 if (psize == 0 || psize >= lsize) { 1688 compress = ZIO_COMPRESS_OFF; 1689 zio_buf_free(cbuf, lsize); 1690 } else if (!zp->zp_dedup && !zp->zp_encrypt && 1691 psize <= BPE_PAYLOAD_SIZE && 1692 zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) && 1693 spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) { 1694 encode_embedded_bp_compressed(bp, 1695 cbuf, compress, lsize, psize); 1696 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA); 1697 BP_SET_TYPE(bp, zio->io_prop.zp_type); 1698 BP_SET_LEVEL(bp, zio->io_prop.zp_level); 1699 zio_buf_free(cbuf, lsize); 1700 bp->blk_birth = zio->io_txg; 1701 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1702 ASSERT(spa_feature_is_active(spa, 1703 SPA_FEATURE_EMBEDDED_DATA)); 1704 return (zio); 1705 } else { 1706 /* 1707 * Round up compressed size up to the ashift 1708 * of the smallest-ashift device, and zero the tail. 1709 * This ensures that the compressed size of the BP 1710 * (and thus compressratio property) are correct, 1711 * in that we charge for the padding used to fill out 1712 * the last sector. 1713 */ 1714 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT); 1715 size_t rounded = (size_t)P2ROUNDUP(psize, 1716 1ULL << spa->spa_min_ashift); 1717 if (rounded >= lsize) { 1718 compress = ZIO_COMPRESS_OFF; 1719 zio_buf_free(cbuf, lsize); 1720 psize = lsize; 1721 } else { 1722 abd_t *cdata = abd_get_from_buf(cbuf, lsize); 1723 abd_take_ownership_of_buf(cdata, B_TRUE); 1724 abd_zero_off(cdata, psize, rounded - psize); 1725 psize = rounded; 1726 zio_push_transform(zio, cdata, 1727 psize, lsize, NULL); 1728 } 1729 } 1730 1731 /* 1732 * We were unable to handle this as an override bp, treat 1733 * it as a regular write I/O. 1734 */ 1735 zio->io_bp_override = NULL; 1736 *bp = zio->io_bp_orig; 1737 zio->io_pipeline = zio->io_orig_pipeline; 1738 1739 } else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 && 1740 zp->zp_type == DMU_OT_DNODE) { 1741 /* 1742 * The DMU actually relies on the zio layer's compression 1743 * to free metadnode blocks that have had all contained 1744 * dnodes freed. As a result, even when doing a raw 1745 * receive, we must check whether the block can be compressed 1746 * to a hole. 1747 */ 1748 psize = zio_compress_data(ZIO_COMPRESS_EMPTY, 1749 zio->io_abd, NULL, lsize, zp->zp_complevel); 1750 if (psize == 0 || psize >= lsize) 1751 compress = ZIO_COMPRESS_OFF; 1752 } else { 1753 ASSERT3U(psize, !=, 0); 1754 } 1755 1756 /* 1757 * The final pass of spa_sync() must be all rewrites, but the first 1758 * few passes offer a trade-off: allocating blocks defers convergence, 1759 * but newly allocated blocks are sequential, so they can be written 1760 * to disk faster. Therefore, we allow the first few passes of 1761 * spa_sync() to allocate new blocks, but force rewrites after that. 1762 * There should only be a handful of blocks after pass 1 in any case. 1763 */ 1764 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg && 1765 BP_GET_PSIZE(bp) == psize && 1766 pass >= zfs_sync_pass_rewrite) { 1767 VERIFY3U(psize, !=, 0); 1768 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES; 1769 1770 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages; 1771 zio->io_flags |= ZIO_FLAG_IO_REWRITE; 1772 } else { 1773 BP_ZERO(bp); 1774 zio->io_pipeline = ZIO_WRITE_PIPELINE; 1775 } 1776 1777 if (psize == 0) { 1778 if (zio->io_bp_orig.blk_birth != 0 && 1779 spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) { 1780 BP_SET_LSIZE(bp, lsize); 1781 BP_SET_TYPE(bp, zp->zp_type); 1782 BP_SET_LEVEL(bp, zp->zp_level); 1783 BP_SET_BIRTH(bp, zio->io_txg, 0); 1784 } 1785 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1786 } else { 1787 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER); 1788 BP_SET_LSIZE(bp, lsize); 1789 BP_SET_TYPE(bp, zp->zp_type); 1790 BP_SET_LEVEL(bp, zp->zp_level); 1791 BP_SET_PSIZE(bp, psize); 1792 BP_SET_COMPRESS(bp, compress); 1793 BP_SET_CHECKSUM(bp, zp->zp_checksum); 1794 BP_SET_DEDUP(bp, zp->zp_dedup); 1795 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 1796 if (zp->zp_dedup) { 1797 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1798 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1799 ASSERT(!zp->zp_encrypt || 1800 DMU_OT_IS_ENCRYPTED(zp->zp_type)); 1801 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE; 1802 } 1803 if (zp->zp_nopwrite) { 1804 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1805 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1806 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE; 1807 } 1808 } 1809 return (zio); 1810 } 1811 1812 static zio_t * 1813 zio_free_bp_init(zio_t *zio) 1814 { 1815 blkptr_t *bp = zio->io_bp; 1816 1817 if (zio->io_child_type == ZIO_CHILD_LOGICAL) { 1818 if (BP_GET_DEDUP(bp)) 1819 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE; 1820 } 1821 1822 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 1823 1824 return (zio); 1825 } 1826 1827 /* 1828 * ========================================================================== 1829 * Execute the I/O pipeline 1830 * ========================================================================== 1831 */ 1832 1833 static void 1834 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline) 1835 { 1836 spa_t *spa = zio->io_spa; 1837 zio_type_t t = zio->io_type; 1838 int flags = (cutinline ? TQ_FRONT : 0); 1839 1840 /* 1841 * If we're a config writer or a probe, the normal issue and 1842 * interrupt threads may all be blocked waiting for the config lock. 1843 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL. 1844 */ 1845 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE)) 1846 t = ZIO_TYPE_NULL; 1847 1848 /* 1849 * A similar issue exists for the L2ARC write thread until L2ARC 2.0. 1850 */ 1851 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux) 1852 t = ZIO_TYPE_NULL; 1853 1854 /* 1855 * If this is a high priority I/O, then use the high priority taskq if 1856 * available. 1857 */ 1858 if ((zio->io_priority == ZIO_PRIORITY_NOW || 1859 zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) && 1860 spa->spa_zio_taskq[t][q + 1].stqs_count != 0) 1861 q++; 1862 1863 ASSERT3U(q, <, ZIO_TASKQ_TYPES); 1864 1865 /* 1866 * NB: We are assuming that the zio can only be dispatched 1867 * to a single taskq at a time. It would be a grievous error 1868 * to dispatch the zio to another taskq at the same time. 1869 */ 1870 ASSERT(taskq_empty_ent(&zio->io_tqent)); 1871 spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio, 1872 flags, &zio->io_tqent); 1873 } 1874 1875 static boolean_t 1876 zio_taskq_member(zio_t *zio, zio_taskq_type_t q) 1877 { 1878 spa_t *spa = zio->io_spa; 1879 1880 taskq_t *tq = taskq_of_curthread(); 1881 1882 for (zio_type_t t = 0; t < ZIO_TYPES; t++) { 1883 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1884 uint_t i; 1885 for (i = 0; i < tqs->stqs_count; i++) { 1886 if (tqs->stqs_taskq[i] == tq) 1887 return (B_TRUE); 1888 } 1889 } 1890 1891 return (B_FALSE); 1892 } 1893 1894 static zio_t * 1895 zio_issue_async(zio_t *zio) 1896 { 1897 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 1898 1899 return (NULL); 1900 } 1901 1902 void 1903 zio_interrupt(zio_t *zio) 1904 { 1905 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE); 1906 } 1907 1908 void 1909 zio_delay_interrupt(zio_t *zio) 1910 { 1911 /* 1912 * The timeout_generic() function isn't defined in userspace, so 1913 * rather than trying to implement the function, the zio delay 1914 * functionality has been disabled for userspace builds. 1915 */ 1916 1917 #ifdef _KERNEL 1918 /* 1919 * If io_target_timestamp is zero, then no delay has been registered 1920 * for this IO, thus jump to the end of this function and "skip" the 1921 * delay; issuing it directly to the zio layer. 1922 */ 1923 if (zio->io_target_timestamp != 0) { 1924 hrtime_t now = gethrtime(); 1925 1926 if (now >= zio->io_target_timestamp) { 1927 /* 1928 * This IO has already taken longer than the target 1929 * delay to complete, so we don't want to delay it 1930 * any longer; we "miss" the delay and issue it 1931 * directly to the zio layer. This is likely due to 1932 * the target latency being set to a value less than 1933 * the underlying hardware can satisfy (e.g. delay 1934 * set to 1ms, but the disks take 10ms to complete an 1935 * IO request). 1936 */ 1937 1938 DTRACE_PROBE2(zio__delay__miss, zio_t *, zio, 1939 hrtime_t, now); 1940 1941 zio_interrupt(zio); 1942 } else { 1943 taskqid_t tid; 1944 hrtime_t diff = zio->io_target_timestamp - now; 1945 clock_t expire_at_tick = ddi_get_lbolt() + 1946 NSEC_TO_TICK(diff); 1947 1948 DTRACE_PROBE3(zio__delay__hit, zio_t *, zio, 1949 hrtime_t, now, hrtime_t, diff); 1950 1951 if (NSEC_TO_TICK(diff) == 0) { 1952 /* Our delay is less than a jiffy - just spin */ 1953 zfs_sleep_until(zio->io_target_timestamp); 1954 zio_interrupt(zio); 1955 } else { 1956 /* 1957 * Use taskq_dispatch_delay() in the place of 1958 * OpenZFS's timeout_generic(). 1959 */ 1960 tid = taskq_dispatch_delay(system_taskq, 1961 (task_func_t *)zio_interrupt, 1962 zio, TQ_NOSLEEP, expire_at_tick); 1963 if (tid == TASKQID_INVALID) { 1964 /* 1965 * Couldn't allocate a task. Just 1966 * finish the zio without a delay. 1967 */ 1968 zio_interrupt(zio); 1969 } 1970 } 1971 } 1972 return; 1973 } 1974 #endif 1975 DTRACE_PROBE1(zio__delay__skip, zio_t *, zio); 1976 zio_interrupt(zio); 1977 } 1978 1979 static void 1980 zio_deadman_impl(zio_t *pio, int ziodepth) 1981 { 1982 zio_t *cio, *cio_next; 1983 zio_link_t *zl = NULL; 1984 vdev_t *vd = pio->io_vd; 1985 1986 if (zio_deadman_log_all || (vd != NULL && vd->vdev_ops->vdev_op_leaf)) { 1987 vdev_queue_t *vq = vd ? &vd->vdev_queue : NULL; 1988 zbookmark_phys_t *zb = &pio->io_bookmark; 1989 uint64_t delta = gethrtime() - pio->io_timestamp; 1990 uint64_t failmode = spa_get_deadman_failmode(pio->io_spa); 1991 1992 zfs_dbgmsg("slow zio[%d]: zio=%px timestamp=%llu " 1993 "delta=%llu queued=%llu io=%llu " 1994 "path=%s last=%llu " 1995 "type=%d priority=%d flags=0x%x " 1996 "stage=0x%x pipeline=0x%x pipeline-trace=0x%x " 1997 "objset=%llu object=%llu level=%llu blkid=%llu " 1998 "offset=%llu size=%llu error=%d", 1999 ziodepth, pio, pio->io_timestamp, 2000 delta, pio->io_delta, pio->io_delay, 2001 vd ? vd->vdev_path : "NULL", vq ? vq->vq_io_complete_ts : 0, 2002 pio->io_type, pio->io_priority, pio->io_flags, 2003 pio->io_stage, pio->io_pipeline, pio->io_pipeline_trace, 2004 zb->zb_objset, zb->zb_object, zb->zb_level, zb->zb_blkid, 2005 pio->io_offset, pio->io_size, pio->io_error); 2006 (void) zfs_ereport_post(FM_EREPORT_ZFS_DEADMAN, 2007 pio->io_spa, vd, zb, pio, 0); 2008 2009 if (failmode == ZIO_FAILURE_MODE_CONTINUE && 2010 taskq_empty_ent(&pio->io_tqent)) { 2011 zio_interrupt(pio); 2012 } 2013 } 2014 2015 mutex_enter(&pio->io_lock); 2016 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 2017 cio_next = zio_walk_children(pio, &zl); 2018 zio_deadman_impl(cio, ziodepth + 1); 2019 } 2020 mutex_exit(&pio->io_lock); 2021 } 2022 2023 /* 2024 * Log the critical information describing this zio and all of its children 2025 * using the zfs_dbgmsg() interface then post deadman event for the ZED. 2026 */ 2027 void 2028 zio_deadman(zio_t *pio, char *tag) 2029 { 2030 spa_t *spa = pio->io_spa; 2031 char *name = spa_name(spa); 2032 2033 if (!zfs_deadman_enabled || spa_suspended(spa)) 2034 return; 2035 2036 zio_deadman_impl(pio, 0); 2037 2038 switch (spa_get_deadman_failmode(spa)) { 2039 case ZIO_FAILURE_MODE_WAIT: 2040 zfs_dbgmsg("%s waiting for hung I/O to pool '%s'", tag, name); 2041 break; 2042 2043 case ZIO_FAILURE_MODE_CONTINUE: 2044 zfs_dbgmsg("%s restarting hung I/O for pool '%s'", tag, name); 2045 break; 2046 2047 case ZIO_FAILURE_MODE_PANIC: 2048 fm_panic("%s determined I/O to pool '%s' is hung.", tag, name); 2049 break; 2050 } 2051 } 2052 2053 /* 2054 * Execute the I/O pipeline until one of the following occurs: 2055 * (1) the I/O completes; (2) the pipeline stalls waiting for 2056 * dependent child I/Os; (3) the I/O issues, so we're waiting 2057 * for an I/O completion interrupt; (4) the I/O is delegated by 2058 * vdev-level caching or aggregation; (5) the I/O is deferred 2059 * due to vdev-level queueing; (6) the I/O is handed off to 2060 * another thread. In all cases, the pipeline stops whenever 2061 * there's no CPU work; it never burns a thread in cv_wait_io(). 2062 * 2063 * There's no locking on io_stage because there's no legitimate way 2064 * for multiple threads to be attempting to process the same I/O. 2065 */ 2066 static zio_pipe_stage_t *zio_pipeline[]; 2067 2068 /* 2069 * zio_execute() is a wrapper around the static function 2070 * __zio_execute() so that we can force __zio_execute() to be 2071 * inlined. This reduces stack overhead which is important 2072 * because __zio_execute() is called recursively in several zio 2073 * code paths. zio_execute() itself cannot be inlined because 2074 * it is externally visible. 2075 */ 2076 void 2077 zio_execute(zio_t *zio) 2078 { 2079 fstrans_cookie_t cookie; 2080 2081 cookie = spl_fstrans_mark(); 2082 __zio_execute(zio); 2083 spl_fstrans_unmark(cookie); 2084 } 2085 2086 /* 2087 * Used to determine if in the current context the stack is sized large 2088 * enough to allow zio_execute() to be called recursively. A minimum 2089 * stack size of 16K is required to avoid needing to re-dispatch the zio. 2090 */ 2091 static boolean_t 2092 zio_execute_stack_check(zio_t *zio) 2093 { 2094 #if !defined(HAVE_LARGE_STACKS) 2095 dsl_pool_t *dp = spa_get_dsl(zio->io_spa); 2096 2097 /* Executing in txg_sync_thread() context. */ 2098 if (dp && curthread == dp->dp_tx.tx_sync_thread) 2099 return (B_TRUE); 2100 2101 /* Pool initialization outside of zio_taskq context. */ 2102 if (dp && spa_is_initializing(dp->dp_spa) && 2103 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE) && 2104 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE_HIGH)) 2105 return (B_TRUE); 2106 #endif /* HAVE_LARGE_STACKS */ 2107 2108 return (B_FALSE); 2109 } 2110 2111 __attribute__((always_inline)) 2112 static inline void 2113 __zio_execute(zio_t *zio) 2114 { 2115 ASSERT3U(zio->io_queued_timestamp, >, 0); 2116 2117 while (zio->io_stage < ZIO_STAGE_DONE) { 2118 enum zio_stage pipeline = zio->io_pipeline; 2119 enum zio_stage stage = zio->io_stage; 2120 2121 zio->io_executor = curthread; 2122 2123 ASSERT(!MUTEX_HELD(&zio->io_lock)); 2124 ASSERT(ISP2(stage)); 2125 ASSERT(zio->io_stall == NULL); 2126 2127 do { 2128 stage <<= 1; 2129 } while ((stage & pipeline) == 0); 2130 2131 ASSERT(stage <= ZIO_STAGE_DONE); 2132 2133 /* 2134 * If we are in interrupt context and this pipeline stage 2135 * will grab a config lock that is held across I/O, 2136 * or may wait for an I/O that needs an interrupt thread 2137 * to complete, issue async to avoid deadlock. 2138 * 2139 * For VDEV_IO_START, we cut in line so that the io will 2140 * be sent to disk promptly. 2141 */ 2142 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL && 2143 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) { 2144 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ? 2145 zio_requeue_io_start_cut_in_line : B_FALSE; 2146 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut); 2147 return; 2148 } 2149 2150 /* 2151 * If the current context doesn't have large enough stacks 2152 * the zio must be issued asynchronously to prevent overflow. 2153 */ 2154 if (zio_execute_stack_check(zio)) { 2155 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ? 2156 zio_requeue_io_start_cut_in_line : B_FALSE; 2157 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut); 2158 return; 2159 } 2160 2161 zio->io_stage = stage; 2162 zio->io_pipeline_trace |= zio->io_stage; 2163 2164 /* 2165 * The zio pipeline stage returns the next zio to execute 2166 * (typically the same as this one), or NULL if we should 2167 * stop. 2168 */ 2169 zio = zio_pipeline[highbit64(stage) - 1](zio); 2170 2171 if (zio == NULL) 2172 return; 2173 } 2174 } 2175 2176 2177 /* 2178 * ========================================================================== 2179 * Initiate I/O, either sync or async 2180 * ========================================================================== 2181 */ 2182 int 2183 zio_wait(zio_t *zio) 2184 { 2185 /* 2186 * Some routines, like zio_free_sync(), may return a NULL zio 2187 * to avoid the performance overhead of creating and then destroying 2188 * an unneeded zio. For the callers' simplicity, we accept a NULL 2189 * zio and ignore it. 2190 */ 2191 if (zio == NULL) 2192 return (0); 2193 2194 long timeout = MSEC_TO_TICK(zfs_deadman_ziotime_ms); 2195 int error; 2196 2197 ASSERT3S(zio->io_stage, ==, ZIO_STAGE_OPEN); 2198 ASSERT3P(zio->io_executor, ==, NULL); 2199 2200 zio->io_waiter = curthread; 2201 ASSERT0(zio->io_queued_timestamp); 2202 zio->io_queued_timestamp = gethrtime(); 2203 2204 __zio_execute(zio); 2205 2206 mutex_enter(&zio->io_lock); 2207 while (zio->io_executor != NULL) { 2208 error = cv_timedwait_io(&zio->io_cv, &zio->io_lock, 2209 ddi_get_lbolt() + timeout); 2210 2211 if (zfs_deadman_enabled && error == -1 && 2212 gethrtime() - zio->io_queued_timestamp > 2213 spa_deadman_ziotime(zio->io_spa)) { 2214 mutex_exit(&zio->io_lock); 2215 timeout = MSEC_TO_TICK(zfs_deadman_checktime_ms); 2216 zio_deadman(zio, FTAG); 2217 mutex_enter(&zio->io_lock); 2218 } 2219 } 2220 mutex_exit(&zio->io_lock); 2221 2222 error = zio->io_error; 2223 zio_destroy(zio); 2224 2225 return (error); 2226 } 2227 2228 void 2229 zio_nowait(zio_t *zio) 2230 { 2231 /* 2232 * See comment in zio_wait(). 2233 */ 2234 if (zio == NULL) 2235 return; 2236 2237 ASSERT3P(zio->io_executor, ==, NULL); 2238 2239 if (zio->io_child_type == ZIO_CHILD_LOGICAL && 2240 zio_unique_parent(zio) == NULL) { 2241 zio_t *pio; 2242 2243 /* 2244 * This is a logical async I/O with no parent to wait for it. 2245 * We add it to the spa_async_root_zio "Godfather" I/O which 2246 * will ensure they complete prior to unloading the pool. 2247 */ 2248 spa_t *spa = zio->io_spa; 2249 kpreempt_disable(); 2250 pio = spa->spa_async_zio_root[CPU_SEQID]; 2251 kpreempt_enable(); 2252 2253 zio_add_child(pio, zio); 2254 } 2255 2256 ASSERT0(zio->io_queued_timestamp); 2257 zio->io_queued_timestamp = gethrtime(); 2258 __zio_execute(zio); 2259 } 2260 2261 /* 2262 * ========================================================================== 2263 * Reexecute, cancel, or suspend/resume failed I/O 2264 * ========================================================================== 2265 */ 2266 2267 static void 2268 zio_reexecute(zio_t *pio) 2269 { 2270 zio_t *cio, *cio_next; 2271 2272 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL); 2273 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN); 2274 ASSERT(pio->io_gang_leader == NULL); 2275 ASSERT(pio->io_gang_tree == NULL); 2276 2277 pio->io_flags = pio->io_orig_flags; 2278 pio->io_stage = pio->io_orig_stage; 2279 pio->io_pipeline = pio->io_orig_pipeline; 2280 pio->io_reexecute = 0; 2281 pio->io_flags |= ZIO_FLAG_REEXECUTED; 2282 pio->io_pipeline_trace = 0; 2283 pio->io_error = 0; 2284 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 2285 pio->io_state[w] = 0; 2286 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 2287 pio->io_child_error[c] = 0; 2288 2289 if (IO_IS_ALLOCATING(pio)) 2290 BP_ZERO(pio->io_bp); 2291 2292 /* 2293 * As we reexecute pio's children, new children could be created. 2294 * New children go to the head of pio's io_child_list, however, 2295 * so we will (correctly) not reexecute them. The key is that 2296 * the remainder of pio's io_child_list, from 'cio_next' onward, 2297 * cannot be affected by any side effects of reexecuting 'cio'. 2298 */ 2299 zio_link_t *zl = NULL; 2300 mutex_enter(&pio->io_lock); 2301 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 2302 cio_next = zio_walk_children(pio, &zl); 2303 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 2304 pio->io_children[cio->io_child_type][w]++; 2305 mutex_exit(&pio->io_lock); 2306 zio_reexecute(cio); 2307 mutex_enter(&pio->io_lock); 2308 } 2309 mutex_exit(&pio->io_lock); 2310 2311 /* 2312 * Now that all children have been reexecuted, execute the parent. 2313 * We don't reexecute "The Godfather" I/O here as it's the 2314 * responsibility of the caller to wait on it. 2315 */ 2316 if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) { 2317 pio->io_queued_timestamp = gethrtime(); 2318 __zio_execute(pio); 2319 } 2320 } 2321 2322 void 2323 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason) 2324 { 2325 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC) 2326 fm_panic("Pool '%s' has encountered an uncorrectable I/O " 2327 "failure and the failure mode property for this pool " 2328 "is set to panic.", spa_name(spa)); 2329 2330 cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable I/O " 2331 "failure and has been suspended.\n", spa_name(spa)); 2332 2333 (void) zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, 2334 NULL, NULL, 0); 2335 2336 mutex_enter(&spa->spa_suspend_lock); 2337 2338 if (spa->spa_suspend_zio_root == NULL) 2339 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL, 2340 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 2341 ZIO_FLAG_GODFATHER); 2342 2343 spa->spa_suspended = reason; 2344 2345 if (zio != NULL) { 2346 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 2347 ASSERT(zio != spa->spa_suspend_zio_root); 2348 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2349 ASSERT(zio_unique_parent(zio) == NULL); 2350 ASSERT(zio->io_stage == ZIO_STAGE_DONE); 2351 zio_add_child(spa->spa_suspend_zio_root, zio); 2352 } 2353 2354 mutex_exit(&spa->spa_suspend_lock); 2355 } 2356 2357 int 2358 zio_resume(spa_t *spa) 2359 { 2360 zio_t *pio; 2361 2362 /* 2363 * Reexecute all previously suspended i/o. 2364 */ 2365 mutex_enter(&spa->spa_suspend_lock); 2366 spa->spa_suspended = ZIO_SUSPEND_NONE; 2367 cv_broadcast(&spa->spa_suspend_cv); 2368 pio = spa->spa_suspend_zio_root; 2369 spa->spa_suspend_zio_root = NULL; 2370 mutex_exit(&spa->spa_suspend_lock); 2371 2372 if (pio == NULL) 2373 return (0); 2374 2375 zio_reexecute(pio); 2376 return (zio_wait(pio)); 2377 } 2378 2379 void 2380 zio_resume_wait(spa_t *spa) 2381 { 2382 mutex_enter(&spa->spa_suspend_lock); 2383 while (spa_suspended(spa)) 2384 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock); 2385 mutex_exit(&spa->spa_suspend_lock); 2386 } 2387 2388 /* 2389 * ========================================================================== 2390 * Gang blocks. 2391 * 2392 * A gang block is a collection of small blocks that looks to the DMU 2393 * like one large block. When zio_dva_allocate() cannot find a block 2394 * of the requested size, due to either severe fragmentation or the pool 2395 * being nearly full, it calls zio_write_gang_block() to construct the 2396 * block from smaller fragments. 2397 * 2398 * A gang block consists of a gang header (zio_gbh_phys_t) and up to 2399 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like 2400 * an indirect block: it's an array of block pointers. It consumes 2401 * only one sector and hence is allocatable regardless of fragmentation. 2402 * The gang header's bps point to its gang members, which hold the data. 2403 * 2404 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg> 2405 * as the verifier to ensure uniqueness of the SHA256 checksum. 2406 * Critically, the gang block bp's blk_cksum is the checksum of the data, 2407 * not the gang header. This ensures that data block signatures (needed for 2408 * deduplication) are independent of how the block is physically stored. 2409 * 2410 * Gang blocks can be nested: a gang member may itself be a gang block. 2411 * Thus every gang block is a tree in which root and all interior nodes are 2412 * gang headers, and the leaves are normal blocks that contain user data. 2413 * The root of the gang tree is called the gang leader. 2414 * 2415 * To perform any operation (read, rewrite, free, claim) on a gang block, 2416 * zio_gang_assemble() first assembles the gang tree (minus data leaves) 2417 * in the io_gang_tree field of the original logical i/o by recursively 2418 * reading the gang leader and all gang headers below it. This yields 2419 * an in-core tree containing the contents of every gang header and the 2420 * bps for every constituent of the gang block. 2421 * 2422 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree 2423 * and invokes a callback on each bp. To free a gang block, zio_gang_issue() 2424 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp. 2425 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim(). 2426 * zio_read_gang() is a wrapper around zio_read() that omits reading gang 2427 * headers, since we already have those in io_gang_tree. zio_rewrite_gang() 2428 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite() 2429 * of the gang header plus zio_checksum_compute() of the data to update the 2430 * gang header's blk_cksum as described above. 2431 * 2432 * The two-phase assemble/issue model solves the problem of partial failure -- 2433 * what if you'd freed part of a gang block but then couldn't read the 2434 * gang header for another part? Assembling the entire gang tree first 2435 * ensures that all the necessary gang header I/O has succeeded before 2436 * starting the actual work of free, claim, or write. Once the gang tree 2437 * is assembled, free and claim are in-memory operations that cannot fail. 2438 * 2439 * In the event that a gang write fails, zio_dva_unallocate() walks the 2440 * gang tree to immediately free (i.e. insert back into the space map) 2441 * everything we've allocated. This ensures that we don't get ENOSPC 2442 * errors during repeated suspend/resume cycles due to a flaky device. 2443 * 2444 * Gang rewrites only happen during sync-to-convergence. If we can't assemble 2445 * the gang tree, we won't modify the block, so we can safely defer the free 2446 * (knowing that the block is still intact). If we *can* assemble the gang 2447 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free 2448 * each constituent bp and we can allocate a new block on the next sync pass. 2449 * 2450 * In all cases, the gang tree allows complete recovery from partial failure. 2451 * ========================================================================== 2452 */ 2453 2454 static void 2455 zio_gang_issue_func_done(zio_t *zio) 2456 { 2457 abd_put(zio->io_abd); 2458 } 2459 2460 static zio_t * 2461 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2462 uint64_t offset) 2463 { 2464 if (gn != NULL) 2465 return (pio); 2466 2467 return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset), 2468 BP_GET_PSIZE(bp), zio_gang_issue_func_done, 2469 NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 2470 &pio->io_bookmark)); 2471 } 2472 2473 static zio_t * 2474 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2475 uint64_t offset) 2476 { 2477 zio_t *zio; 2478 2479 if (gn != NULL) { 2480 abd_t *gbh_abd = 2481 abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2482 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 2483 gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL, 2484 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 2485 &pio->io_bookmark); 2486 /* 2487 * As we rewrite each gang header, the pipeline will compute 2488 * a new gang block header checksum for it; but no one will 2489 * compute a new data checksum, so we do that here. The one 2490 * exception is the gang leader: the pipeline already computed 2491 * its data checksum because that stage precedes gang assembly. 2492 * (Presently, nothing actually uses interior data checksums; 2493 * this is just good hygiene.) 2494 */ 2495 if (gn != pio->io_gang_leader->io_gang_tree) { 2496 abd_t *buf = abd_get_offset(data, offset); 2497 2498 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp), 2499 buf, BP_GET_PSIZE(bp)); 2500 2501 abd_put(buf); 2502 } 2503 /* 2504 * If we are here to damage data for testing purposes, 2505 * leave the GBH alone so that we can detect the damage. 2506 */ 2507 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE) 2508 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 2509 } else { 2510 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 2511 abd_get_offset(data, offset), BP_GET_PSIZE(bp), 2512 zio_gang_issue_func_done, NULL, pio->io_priority, 2513 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2514 } 2515 2516 return (zio); 2517 } 2518 2519 /* ARGSUSED */ 2520 static zio_t * 2521 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2522 uint64_t offset) 2523 { 2524 zio_t *zio = zio_free_sync(pio, pio->io_spa, pio->io_txg, bp, 2525 ZIO_GANG_CHILD_FLAGS(pio)); 2526 if (zio == NULL) { 2527 zio = zio_null(pio, pio->io_spa, 2528 NULL, NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)); 2529 } 2530 return (zio); 2531 } 2532 2533 /* ARGSUSED */ 2534 static zio_t * 2535 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2536 uint64_t offset) 2537 { 2538 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp, 2539 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio))); 2540 } 2541 2542 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = { 2543 NULL, 2544 zio_read_gang, 2545 zio_rewrite_gang, 2546 zio_free_gang, 2547 zio_claim_gang, 2548 NULL 2549 }; 2550 2551 static void zio_gang_tree_assemble_done(zio_t *zio); 2552 2553 static zio_gang_node_t * 2554 zio_gang_node_alloc(zio_gang_node_t **gnpp) 2555 { 2556 zio_gang_node_t *gn; 2557 2558 ASSERT(*gnpp == NULL); 2559 2560 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP); 2561 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE); 2562 *gnpp = gn; 2563 2564 return (gn); 2565 } 2566 2567 static void 2568 zio_gang_node_free(zio_gang_node_t **gnpp) 2569 { 2570 zio_gang_node_t *gn = *gnpp; 2571 2572 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 2573 ASSERT(gn->gn_child[g] == NULL); 2574 2575 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2576 kmem_free(gn, sizeof (*gn)); 2577 *gnpp = NULL; 2578 } 2579 2580 static void 2581 zio_gang_tree_free(zio_gang_node_t **gnpp) 2582 { 2583 zio_gang_node_t *gn = *gnpp; 2584 2585 if (gn == NULL) 2586 return; 2587 2588 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 2589 zio_gang_tree_free(&gn->gn_child[g]); 2590 2591 zio_gang_node_free(gnpp); 2592 } 2593 2594 static void 2595 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp) 2596 { 2597 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp); 2598 abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2599 2600 ASSERT(gio->io_gang_leader == gio); 2601 ASSERT(BP_IS_GANG(bp)); 2602 2603 zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE, 2604 zio_gang_tree_assemble_done, gn, gio->io_priority, 2605 ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark)); 2606 } 2607 2608 static void 2609 zio_gang_tree_assemble_done(zio_t *zio) 2610 { 2611 zio_t *gio = zio->io_gang_leader; 2612 zio_gang_node_t *gn = zio->io_private; 2613 blkptr_t *bp = zio->io_bp; 2614 2615 ASSERT(gio == zio_unique_parent(zio)); 2616 ASSERT(zio->io_child_count == 0); 2617 2618 if (zio->io_error) 2619 return; 2620 2621 /* this ABD was created from a linear buf in zio_gang_tree_assemble */ 2622 if (BP_SHOULD_BYTESWAP(bp)) 2623 byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size); 2624 2625 ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh); 2626 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE); 2627 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 2628 2629 abd_put(zio->io_abd); 2630 2631 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2632 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 2633 if (!BP_IS_GANG(gbp)) 2634 continue; 2635 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]); 2636 } 2637 } 2638 2639 static void 2640 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data, 2641 uint64_t offset) 2642 { 2643 zio_t *gio = pio->io_gang_leader; 2644 zio_t *zio; 2645 2646 ASSERT(BP_IS_GANG(bp) == !!gn); 2647 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp)); 2648 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree); 2649 2650 /* 2651 * If you're a gang header, your data is in gn->gn_gbh. 2652 * If you're a gang member, your data is in 'data' and gn == NULL. 2653 */ 2654 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset); 2655 2656 if (gn != NULL) { 2657 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 2658 2659 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2660 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 2661 if (BP_IS_HOLE(gbp)) 2662 continue; 2663 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data, 2664 offset); 2665 offset += BP_GET_PSIZE(gbp); 2666 } 2667 } 2668 2669 if (gn == gio->io_gang_tree) 2670 ASSERT3U(gio->io_size, ==, offset); 2671 2672 if (zio != pio) 2673 zio_nowait(zio); 2674 } 2675 2676 static zio_t * 2677 zio_gang_assemble(zio_t *zio) 2678 { 2679 blkptr_t *bp = zio->io_bp; 2680 2681 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL); 2682 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2683 2684 zio->io_gang_leader = zio; 2685 2686 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree); 2687 2688 return (zio); 2689 } 2690 2691 static zio_t * 2692 zio_gang_issue(zio_t *zio) 2693 { 2694 blkptr_t *bp = zio->io_bp; 2695 2696 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) { 2697 return (NULL); 2698 } 2699 2700 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio); 2701 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2702 2703 if (zio->io_child_error[ZIO_CHILD_GANG] == 0) 2704 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd, 2705 0); 2706 else 2707 zio_gang_tree_free(&zio->io_gang_tree); 2708 2709 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2710 2711 return (zio); 2712 } 2713 2714 static void 2715 zio_write_gang_member_ready(zio_t *zio) 2716 { 2717 zio_t *pio = zio_unique_parent(zio); 2718 dva_t *cdva = zio->io_bp->blk_dva; 2719 dva_t *pdva = pio->io_bp->blk_dva; 2720 uint64_t asize; 2721 zio_t *gio __maybe_unused = zio->io_gang_leader; 2722 2723 if (BP_IS_HOLE(zio->io_bp)) 2724 return; 2725 2726 ASSERT(BP_IS_HOLE(&zio->io_bp_orig)); 2727 2728 ASSERT(zio->io_child_type == ZIO_CHILD_GANG); 2729 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies); 2730 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp)); 2731 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp)); 2732 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp)); 2733 2734 mutex_enter(&pio->io_lock); 2735 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) { 2736 ASSERT(DVA_GET_GANG(&pdva[d])); 2737 asize = DVA_GET_ASIZE(&pdva[d]); 2738 asize += DVA_GET_ASIZE(&cdva[d]); 2739 DVA_SET_ASIZE(&pdva[d], asize); 2740 } 2741 mutex_exit(&pio->io_lock); 2742 } 2743 2744 static void 2745 zio_write_gang_done(zio_t *zio) 2746 { 2747 /* 2748 * The io_abd field will be NULL for a zio with no data. The io_flags 2749 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't 2750 * check for it here as it is cleared in zio_ready. 2751 */ 2752 if (zio->io_abd != NULL) 2753 abd_put(zio->io_abd); 2754 } 2755 2756 static zio_t * 2757 zio_write_gang_block(zio_t *pio) 2758 { 2759 spa_t *spa = pio->io_spa; 2760 metaslab_class_t *mc = spa_normal_class(spa); 2761 blkptr_t *bp = pio->io_bp; 2762 zio_t *gio = pio->io_gang_leader; 2763 zio_t *zio; 2764 zio_gang_node_t *gn, **gnpp; 2765 zio_gbh_phys_t *gbh; 2766 abd_t *gbh_abd; 2767 uint64_t txg = pio->io_txg; 2768 uint64_t resid = pio->io_size; 2769 uint64_t lsize; 2770 int copies = gio->io_prop.zp_copies; 2771 int gbh_copies; 2772 zio_prop_t zp; 2773 int error; 2774 boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA); 2775 2776 /* 2777 * encrypted blocks need DVA[2] free so encrypted gang headers can't 2778 * have a third copy. 2779 */ 2780 gbh_copies = MIN(copies + 1, spa_max_replication(spa)); 2781 if (gio->io_prop.zp_encrypt && gbh_copies >= SPA_DVAS_PER_BP) 2782 gbh_copies = SPA_DVAS_PER_BP - 1; 2783 2784 int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER; 2785 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2786 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2787 ASSERT(has_data); 2788 2789 flags |= METASLAB_ASYNC_ALLOC; 2790 VERIFY(zfs_refcount_held(&mc->mc_alloc_slots[pio->io_allocator], 2791 pio)); 2792 2793 /* 2794 * The logical zio has already placed a reservation for 2795 * 'copies' allocation slots but gang blocks may require 2796 * additional copies. These additional copies 2797 * (i.e. gbh_copies - copies) are guaranteed to succeed 2798 * since metaslab_class_throttle_reserve() always allows 2799 * additional reservations for gang blocks. 2800 */ 2801 VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies, 2802 pio->io_allocator, pio, flags)); 2803 } 2804 2805 error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE, 2806 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags, 2807 &pio->io_alloc_list, pio, pio->io_allocator); 2808 if (error) { 2809 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2810 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2811 ASSERT(has_data); 2812 2813 /* 2814 * If we failed to allocate the gang block header then 2815 * we remove any additional allocation reservations that 2816 * we placed here. The original reservation will 2817 * be removed when the logical I/O goes to the ready 2818 * stage. 2819 */ 2820 metaslab_class_throttle_unreserve(mc, 2821 gbh_copies - copies, pio->io_allocator, pio); 2822 } 2823 2824 pio->io_error = error; 2825 return (pio); 2826 } 2827 2828 if (pio == gio) { 2829 gnpp = &gio->io_gang_tree; 2830 } else { 2831 gnpp = pio->io_private; 2832 ASSERT(pio->io_ready == zio_write_gang_member_ready); 2833 } 2834 2835 gn = zio_gang_node_alloc(gnpp); 2836 gbh = gn->gn_gbh; 2837 bzero(gbh, SPA_GANGBLOCKSIZE); 2838 gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE); 2839 2840 /* 2841 * Create the gang header. 2842 */ 2843 zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE, 2844 zio_write_gang_done, NULL, pio->io_priority, 2845 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2846 2847 /* 2848 * Create and nowait the gang children. 2849 */ 2850 for (int g = 0; resid != 0; resid -= lsize, g++) { 2851 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g), 2852 SPA_MINBLOCKSIZE); 2853 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid); 2854 2855 zp.zp_checksum = gio->io_prop.zp_checksum; 2856 zp.zp_compress = ZIO_COMPRESS_OFF; 2857 zp.zp_complevel = gio->io_prop.zp_complevel; 2858 zp.zp_type = DMU_OT_NONE; 2859 zp.zp_level = 0; 2860 zp.zp_copies = gio->io_prop.zp_copies; 2861 zp.zp_dedup = B_FALSE; 2862 zp.zp_dedup_verify = B_FALSE; 2863 zp.zp_nopwrite = B_FALSE; 2864 zp.zp_encrypt = gio->io_prop.zp_encrypt; 2865 zp.zp_byteorder = gio->io_prop.zp_byteorder; 2866 bzero(zp.zp_salt, ZIO_DATA_SALT_LEN); 2867 bzero(zp.zp_iv, ZIO_DATA_IV_LEN); 2868 bzero(zp.zp_mac, ZIO_DATA_MAC_LEN); 2869 2870 zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g], 2871 has_data ? abd_get_offset(pio->io_abd, pio->io_size - 2872 resid) : NULL, lsize, lsize, &zp, 2873 zio_write_gang_member_ready, NULL, NULL, 2874 zio_write_gang_done, &gn->gn_child[g], pio->io_priority, 2875 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2876 2877 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2878 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2879 ASSERT(has_data); 2880 2881 /* 2882 * Gang children won't throttle but we should 2883 * account for their work, so reserve an allocation 2884 * slot for them here. 2885 */ 2886 VERIFY(metaslab_class_throttle_reserve(mc, 2887 zp.zp_copies, cio->io_allocator, cio, flags)); 2888 } 2889 zio_nowait(cio); 2890 } 2891 2892 /* 2893 * Set pio's pipeline to just wait for zio to finish. 2894 */ 2895 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2896 2897 /* 2898 * We didn't allocate this bp, so make sure it doesn't get unmarked. 2899 */ 2900 pio->io_flags &= ~ZIO_FLAG_FASTWRITE; 2901 2902 zio_nowait(zio); 2903 2904 return (pio); 2905 } 2906 2907 /* 2908 * The zio_nop_write stage in the pipeline determines if allocating a 2909 * new bp is necessary. The nopwrite feature can handle writes in 2910 * either syncing or open context (i.e. zil writes) and as a result is 2911 * mutually exclusive with dedup. 2912 * 2913 * By leveraging a cryptographically secure checksum, such as SHA256, we 2914 * can compare the checksums of the new data and the old to determine if 2915 * allocating a new block is required. Note that our requirements for 2916 * cryptographic strength are fairly weak: there can't be any accidental 2917 * hash collisions, but we don't need to be secure against intentional 2918 * (malicious) collisions. To trigger a nopwrite, you have to be able 2919 * to write the file to begin with, and triggering an incorrect (hash 2920 * collision) nopwrite is no worse than simply writing to the file. 2921 * That said, there are no known attacks against the checksum algorithms 2922 * used for nopwrite, assuming that the salt and the checksums 2923 * themselves remain secret. 2924 */ 2925 static zio_t * 2926 zio_nop_write(zio_t *zio) 2927 { 2928 blkptr_t *bp = zio->io_bp; 2929 blkptr_t *bp_orig = &zio->io_bp_orig; 2930 zio_prop_t *zp = &zio->io_prop; 2931 2932 ASSERT(BP_GET_LEVEL(bp) == 0); 2933 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 2934 ASSERT(zp->zp_nopwrite); 2935 ASSERT(!zp->zp_dedup); 2936 ASSERT(zio->io_bp_override == NULL); 2937 ASSERT(IO_IS_ALLOCATING(zio)); 2938 2939 /* 2940 * Check to see if the original bp and the new bp have matching 2941 * characteristics (i.e. same checksum, compression algorithms, etc). 2942 * If they don't then just continue with the pipeline which will 2943 * allocate a new bp. 2944 */ 2945 if (BP_IS_HOLE(bp_orig) || 2946 !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags & 2947 ZCHECKSUM_FLAG_NOPWRITE) || 2948 BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) || 2949 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) || 2950 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) || 2951 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) || 2952 zp->zp_copies != BP_GET_NDVAS(bp_orig)) 2953 return (zio); 2954 2955 /* 2956 * If the checksums match then reset the pipeline so that we 2957 * avoid allocating a new bp and issuing any I/O. 2958 */ 2959 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) { 2960 ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags & 2961 ZCHECKSUM_FLAG_NOPWRITE); 2962 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig)); 2963 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig)); 2964 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF); 2965 ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop, 2966 sizeof (uint64_t)) == 0); 2967 2968 /* 2969 * If we're overwriting a block that is currently on an 2970 * indirect vdev, then ignore the nopwrite request and 2971 * allow a new block to be allocated on a concrete vdev. 2972 */ 2973 spa_config_enter(zio->io_spa, SCL_VDEV, FTAG, RW_READER); 2974 vdev_t *tvd = vdev_lookup_top(zio->io_spa, 2975 DVA_GET_VDEV(&bp->blk_dva[0])); 2976 if (tvd->vdev_ops == &vdev_indirect_ops) { 2977 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG); 2978 return (zio); 2979 } 2980 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG); 2981 2982 *bp = *bp_orig; 2983 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2984 zio->io_flags |= ZIO_FLAG_NOPWRITE; 2985 } 2986 2987 return (zio); 2988 } 2989 2990 /* 2991 * ========================================================================== 2992 * Dedup 2993 * ========================================================================== 2994 */ 2995 static void 2996 zio_ddt_child_read_done(zio_t *zio) 2997 { 2998 blkptr_t *bp = zio->io_bp; 2999 ddt_entry_t *dde = zio->io_private; 3000 ddt_phys_t *ddp; 3001 zio_t *pio = zio_unique_parent(zio); 3002 3003 mutex_enter(&pio->io_lock); 3004 ddp = ddt_phys_select(dde, bp); 3005 if (zio->io_error == 0) 3006 ddt_phys_clear(ddp); /* this ddp doesn't need repair */ 3007 3008 if (zio->io_error == 0 && dde->dde_repair_abd == NULL) 3009 dde->dde_repair_abd = zio->io_abd; 3010 else 3011 abd_free(zio->io_abd); 3012 mutex_exit(&pio->io_lock); 3013 } 3014 3015 static zio_t * 3016 zio_ddt_read_start(zio_t *zio) 3017 { 3018 blkptr_t *bp = zio->io_bp; 3019 3020 ASSERT(BP_GET_DEDUP(bp)); 3021 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 3022 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3023 3024 if (zio->io_child_error[ZIO_CHILD_DDT]) { 3025 ddt_t *ddt = ddt_select(zio->io_spa, bp); 3026 ddt_entry_t *dde = ddt_repair_start(ddt, bp); 3027 ddt_phys_t *ddp = dde->dde_phys; 3028 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp); 3029 blkptr_t blk; 3030 3031 ASSERT(zio->io_vsd == NULL); 3032 zio->io_vsd = dde; 3033 3034 if (ddp_self == NULL) 3035 return (zio); 3036 3037 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 3038 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self) 3039 continue; 3040 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp, 3041 &blk); 3042 zio_nowait(zio_read(zio, zio->io_spa, &blk, 3043 abd_alloc_for_io(zio->io_size, B_TRUE), 3044 zio->io_size, zio_ddt_child_read_done, dde, 3045 zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) | 3046 ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark)); 3047 } 3048 return (zio); 3049 } 3050 3051 zio_nowait(zio_read(zio, zio->io_spa, bp, 3052 zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority, 3053 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark)); 3054 3055 return (zio); 3056 } 3057 3058 static zio_t * 3059 zio_ddt_read_done(zio_t *zio) 3060 { 3061 blkptr_t *bp = zio->io_bp; 3062 3063 if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) { 3064 return (NULL); 3065 } 3066 3067 ASSERT(BP_GET_DEDUP(bp)); 3068 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 3069 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3070 3071 if (zio->io_child_error[ZIO_CHILD_DDT]) { 3072 ddt_t *ddt = ddt_select(zio->io_spa, bp); 3073 ddt_entry_t *dde = zio->io_vsd; 3074 if (ddt == NULL) { 3075 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE); 3076 return (zio); 3077 } 3078 if (dde == NULL) { 3079 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1; 3080 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 3081 return (NULL); 3082 } 3083 if (dde->dde_repair_abd != NULL) { 3084 abd_copy(zio->io_abd, dde->dde_repair_abd, 3085 zio->io_size); 3086 zio->io_child_error[ZIO_CHILD_DDT] = 0; 3087 } 3088 ddt_repair_done(ddt, dde); 3089 zio->io_vsd = NULL; 3090 } 3091 3092 ASSERT(zio->io_vsd == NULL); 3093 3094 return (zio); 3095 } 3096 3097 static boolean_t 3098 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde) 3099 { 3100 spa_t *spa = zio->io_spa; 3101 boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW); 3102 3103 ASSERT(!(zio->io_bp_override && do_raw)); 3104 3105 /* 3106 * Note: we compare the original data, not the transformed data, 3107 * because when zio->io_bp is an override bp, we will not have 3108 * pushed the I/O transforms. That's an important optimization 3109 * because otherwise we'd compress/encrypt all dmu_sync() data twice. 3110 * However, we should never get a raw, override zio so in these 3111 * cases we can compare the io_abd directly. This is useful because 3112 * it allows us to do dedup verification even if we don't have access 3113 * to the original data (for instance, if the encryption keys aren't 3114 * loaded). 3115 */ 3116 3117 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 3118 zio_t *lio = dde->dde_lead_zio[p]; 3119 3120 if (lio != NULL && do_raw) { 3121 return (lio->io_size != zio->io_size || 3122 abd_cmp(zio->io_abd, lio->io_abd) != 0); 3123 } else if (lio != NULL) { 3124 return (lio->io_orig_size != zio->io_orig_size || 3125 abd_cmp(zio->io_orig_abd, lio->io_orig_abd) != 0); 3126 } 3127 } 3128 3129 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 3130 ddt_phys_t *ddp = &dde->dde_phys[p]; 3131 3132 if (ddp->ddp_phys_birth != 0 && do_raw) { 3133 blkptr_t blk = *zio->io_bp; 3134 uint64_t psize; 3135 abd_t *tmpabd; 3136 int error; 3137 3138 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth); 3139 psize = BP_GET_PSIZE(&blk); 3140 3141 if (psize != zio->io_size) 3142 return (B_TRUE); 3143 3144 ddt_exit(ddt); 3145 3146 tmpabd = abd_alloc_for_io(psize, B_TRUE); 3147 3148 error = zio_wait(zio_read(NULL, spa, &blk, tmpabd, 3149 psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ, 3150 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 3151 ZIO_FLAG_RAW, &zio->io_bookmark)); 3152 3153 if (error == 0) { 3154 if (abd_cmp(tmpabd, zio->io_abd) != 0) 3155 error = SET_ERROR(ENOENT); 3156 } 3157 3158 abd_free(tmpabd); 3159 ddt_enter(ddt); 3160 return (error != 0); 3161 } else if (ddp->ddp_phys_birth != 0) { 3162 arc_buf_t *abuf = NULL; 3163 arc_flags_t aflags = ARC_FLAG_WAIT; 3164 blkptr_t blk = *zio->io_bp; 3165 int error; 3166 3167 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth); 3168 3169 if (BP_GET_LSIZE(&blk) != zio->io_orig_size) 3170 return (B_TRUE); 3171 3172 ddt_exit(ddt); 3173 3174 error = arc_read(NULL, spa, &blk, 3175 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ, 3176 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 3177 &aflags, &zio->io_bookmark); 3178 3179 if (error == 0) { 3180 if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data, 3181 zio->io_orig_size) != 0) 3182 error = SET_ERROR(ENOENT); 3183 arc_buf_destroy(abuf, &abuf); 3184 } 3185 3186 ddt_enter(ddt); 3187 return (error != 0); 3188 } 3189 } 3190 3191 return (B_FALSE); 3192 } 3193 3194 static void 3195 zio_ddt_child_write_ready(zio_t *zio) 3196 { 3197 int p = zio->io_prop.zp_copies; 3198 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 3199 ddt_entry_t *dde = zio->io_private; 3200 ddt_phys_t *ddp = &dde->dde_phys[p]; 3201 zio_t *pio; 3202 3203 if (zio->io_error) 3204 return; 3205 3206 ddt_enter(ddt); 3207 3208 ASSERT(dde->dde_lead_zio[p] == zio); 3209 3210 ddt_phys_fill(ddp, zio->io_bp); 3211 3212 zio_link_t *zl = NULL; 3213 while ((pio = zio_walk_parents(zio, &zl)) != NULL) 3214 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg); 3215 3216 ddt_exit(ddt); 3217 } 3218 3219 static void 3220 zio_ddt_child_write_done(zio_t *zio) 3221 { 3222 int p = zio->io_prop.zp_copies; 3223 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 3224 ddt_entry_t *dde = zio->io_private; 3225 ddt_phys_t *ddp = &dde->dde_phys[p]; 3226 3227 ddt_enter(ddt); 3228 3229 ASSERT(ddp->ddp_refcnt == 0); 3230 ASSERT(dde->dde_lead_zio[p] == zio); 3231 dde->dde_lead_zio[p] = NULL; 3232 3233 if (zio->io_error == 0) { 3234 zio_link_t *zl = NULL; 3235 while (zio_walk_parents(zio, &zl) != NULL) 3236 ddt_phys_addref(ddp); 3237 } else { 3238 ddt_phys_clear(ddp); 3239 } 3240 3241 ddt_exit(ddt); 3242 } 3243 3244 static zio_t * 3245 zio_ddt_write(zio_t *zio) 3246 { 3247 spa_t *spa = zio->io_spa; 3248 blkptr_t *bp = zio->io_bp; 3249 uint64_t txg = zio->io_txg; 3250 zio_prop_t *zp = &zio->io_prop; 3251 int p = zp->zp_copies; 3252 zio_t *cio = NULL; 3253 ddt_t *ddt = ddt_select(spa, bp); 3254 ddt_entry_t *dde; 3255 ddt_phys_t *ddp; 3256 3257 ASSERT(BP_GET_DEDUP(bp)); 3258 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum); 3259 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override); 3260 ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW))); 3261 3262 ddt_enter(ddt); 3263 dde = ddt_lookup(ddt, bp, B_TRUE); 3264 ddp = &dde->dde_phys[p]; 3265 3266 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) { 3267 /* 3268 * If we're using a weak checksum, upgrade to a strong checksum 3269 * and try again. If we're already using a strong checksum, 3270 * we can't resolve it, so just convert to an ordinary write. 3271 * (And automatically e-mail a paper to Nature?) 3272 */ 3273 if (!(zio_checksum_table[zp->zp_checksum].ci_flags & 3274 ZCHECKSUM_FLAG_DEDUP)) { 3275 zp->zp_checksum = spa_dedup_checksum(spa); 3276 zio_pop_transforms(zio); 3277 zio->io_stage = ZIO_STAGE_OPEN; 3278 BP_ZERO(bp); 3279 } else { 3280 zp->zp_dedup = B_FALSE; 3281 BP_SET_DEDUP(bp, B_FALSE); 3282 } 3283 ASSERT(!BP_GET_DEDUP(bp)); 3284 zio->io_pipeline = ZIO_WRITE_PIPELINE; 3285 ddt_exit(ddt); 3286 return (zio); 3287 } 3288 3289 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) { 3290 if (ddp->ddp_phys_birth != 0) 3291 ddt_bp_fill(ddp, bp, txg); 3292 if (dde->dde_lead_zio[p] != NULL) 3293 zio_add_child(zio, dde->dde_lead_zio[p]); 3294 else 3295 ddt_phys_addref(ddp); 3296 } else if (zio->io_bp_override) { 3297 ASSERT(bp->blk_birth == txg); 3298 ASSERT(BP_EQUAL(bp, zio->io_bp_override)); 3299 ddt_phys_fill(ddp, bp); 3300 ddt_phys_addref(ddp); 3301 } else { 3302 cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd, 3303 zio->io_orig_size, zio->io_orig_size, zp, 3304 zio_ddt_child_write_ready, NULL, NULL, 3305 zio_ddt_child_write_done, dde, zio->io_priority, 3306 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark); 3307 3308 zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL); 3309 dde->dde_lead_zio[p] = cio; 3310 } 3311 3312 ddt_exit(ddt); 3313 3314 zio_nowait(cio); 3315 3316 return (zio); 3317 } 3318 3319 ddt_entry_t *freedde; /* for debugging */ 3320 3321 static zio_t * 3322 zio_ddt_free(zio_t *zio) 3323 { 3324 spa_t *spa = zio->io_spa; 3325 blkptr_t *bp = zio->io_bp; 3326 ddt_t *ddt = ddt_select(spa, bp); 3327 ddt_entry_t *dde; 3328 ddt_phys_t *ddp; 3329 3330 ASSERT(BP_GET_DEDUP(bp)); 3331 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3332 3333 ddt_enter(ddt); 3334 freedde = dde = ddt_lookup(ddt, bp, B_TRUE); 3335 if (dde) { 3336 ddp = ddt_phys_select(dde, bp); 3337 if (ddp) 3338 ddt_phys_decref(ddp); 3339 } 3340 ddt_exit(ddt); 3341 3342 return (zio); 3343 } 3344 3345 /* 3346 * ========================================================================== 3347 * Allocate and free blocks 3348 * ========================================================================== 3349 */ 3350 3351 static zio_t * 3352 zio_io_to_allocate(spa_t *spa, int allocator) 3353 { 3354 zio_t *zio; 3355 3356 ASSERT(MUTEX_HELD(&spa->spa_alloc_locks[allocator])); 3357 3358 zio = avl_first(&spa->spa_alloc_trees[allocator]); 3359 if (zio == NULL) 3360 return (NULL); 3361 3362 ASSERT(IO_IS_ALLOCATING(zio)); 3363 3364 /* 3365 * Try to place a reservation for this zio. If we're unable to 3366 * reserve then we throttle. 3367 */ 3368 ASSERT3U(zio->io_allocator, ==, allocator); 3369 if (!metaslab_class_throttle_reserve(zio->io_metaslab_class, 3370 zio->io_prop.zp_copies, zio->io_allocator, zio, 0)) { 3371 return (NULL); 3372 } 3373 3374 avl_remove(&spa->spa_alloc_trees[allocator], zio); 3375 ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE); 3376 3377 return (zio); 3378 } 3379 3380 static zio_t * 3381 zio_dva_throttle(zio_t *zio) 3382 { 3383 spa_t *spa = zio->io_spa; 3384 zio_t *nio; 3385 metaslab_class_t *mc; 3386 3387 /* locate an appropriate allocation class */ 3388 mc = spa_preferred_class(spa, zio->io_size, zio->io_prop.zp_type, 3389 zio->io_prop.zp_level, zio->io_prop.zp_zpl_smallblk); 3390 3391 if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE || 3392 !mc->mc_alloc_throttle_enabled || 3393 zio->io_child_type == ZIO_CHILD_GANG || 3394 zio->io_flags & ZIO_FLAG_NODATA) { 3395 return (zio); 3396 } 3397 3398 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 3399 3400 ASSERT3U(zio->io_queued_timestamp, >, 0); 3401 ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE); 3402 3403 zbookmark_phys_t *bm = &zio->io_bookmark; 3404 /* 3405 * We want to try to use as many allocators as possible to help improve 3406 * performance, but we also want logically adjacent IOs to be physically 3407 * adjacent to improve sequential read performance. We chunk each object 3408 * into 2^20 block regions, and then hash based on the objset, object, 3409 * level, and region to accomplish both of these goals. 3410 */ 3411 zio->io_allocator = cityhash4(bm->zb_objset, bm->zb_object, 3412 bm->zb_level, bm->zb_blkid >> 20) % spa->spa_alloc_count; 3413 mutex_enter(&spa->spa_alloc_locks[zio->io_allocator]); 3414 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 3415 zio->io_metaslab_class = mc; 3416 avl_add(&spa->spa_alloc_trees[zio->io_allocator], zio); 3417 nio = zio_io_to_allocate(spa, zio->io_allocator); 3418 mutex_exit(&spa->spa_alloc_locks[zio->io_allocator]); 3419 return (nio); 3420 } 3421 3422 static void 3423 zio_allocate_dispatch(spa_t *spa, int allocator) 3424 { 3425 zio_t *zio; 3426 3427 mutex_enter(&spa->spa_alloc_locks[allocator]); 3428 zio = zio_io_to_allocate(spa, allocator); 3429 mutex_exit(&spa->spa_alloc_locks[allocator]); 3430 if (zio == NULL) 3431 return; 3432 3433 ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE); 3434 ASSERT0(zio->io_error); 3435 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE); 3436 } 3437 3438 static zio_t * 3439 zio_dva_allocate(zio_t *zio) 3440 { 3441 spa_t *spa = zio->io_spa; 3442 metaslab_class_t *mc; 3443 blkptr_t *bp = zio->io_bp; 3444 int error; 3445 int flags = 0; 3446 3447 if (zio->io_gang_leader == NULL) { 3448 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 3449 zio->io_gang_leader = zio; 3450 } 3451 3452 ASSERT(BP_IS_HOLE(bp)); 3453 ASSERT0(BP_GET_NDVAS(bp)); 3454 ASSERT3U(zio->io_prop.zp_copies, >, 0); 3455 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa)); 3456 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp)); 3457 3458 flags |= (zio->io_flags & ZIO_FLAG_FASTWRITE) ? METASLAB_FASTWRITE : 0; 3459 if (zio->io_flags & ZIO_FLAG_NODATA) 3460 flags |= METASLAB_DONT_THROTTLE; 3461 if (zio->io_flags & ZIO_FLAG_GANG_CHILD) 3462 flags |= METASLAB_GANG_CHILD; 3463 if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE) 3464 flags |= METASLAB_ASYNC_ALLOC; 3465 3466 /* 3467 * if not already chosen, locate an appropriate allocation class 3468 */ 3469 mc = zio->io_metaslab_class; 3470 if (mc == NULL) { 3471 mc = spa_preferred_class(spa, zio->io_size, 3472 zio->io_prop.zp_type, zio->io_prop.zp_level, 3473 zio->io_prop.zp_zpl_smallblk); 3474 zio->io_metaslab_class = mc; 3475 } 3476 3477 error = metaslab_alloc(spa, mc, zio->io_size, bp, 3478 zio->io_prop.zp_copies, zio->io_txg, NULL, flags, 3479 &zio->io_alloc_list, zio, zio->io_allocator); 3480 3481 /* 3482 * Fallback to normal class when an alloc class is full 3483 */ 3484 if (error == ENOSPC && mc != spa_normal_class(spa)) { 3485 /* 3486 * If throttling, transfer reservation over to normal class. 3487 * The io_allocator slot can remain the same even though we 3488 * are switching classes. 3489 */ 3490 if (mc->mc_alloc_throttle_enabled && 3491 (zio->io_flags & ZIO_FLAG_IO_ALLOCATING)) { 3492 metaslab_class_throttle_unreserve(mc, 3493 zio->io_prop.zp_copies, zio->io_allocator, zio); 3494 zio->io_flags &= ~ZIO_FLAG_IO_ALLOCATING; 3495 3496 mc = spa_normal_class(spa); 3497 VERIFY(metaslab_class_throttle_reserve(mc, 3498 zio->io_prop.zp_copies, zio->io_allocator, zio, 3499 flags | METASLAB_MUST_RESERVE)); 3500 } else { 3501 mc = spa_normal_class(spa); 3502 } 3503 zio->io_metaslab_class = mc; 3504 3505 error = metaslab_alloc(spa, mc, zio->io_size, bp, 3506 zio->io_prop.zp_copies, zio->io_txg, NULL, flags, 3507 &zio->io_alloc_list, zio, zio->io_allocator); 3508 } 3509 3510 if (error != 0) { 3511 zfs_dbgmsg("%s: metaslab allocation failure: zio %px, " 3512 "size %llu, error %d", spa_name(spa), zio, zio->io_size, 3513 error); 3514 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) 3515 return (zio_write_gang_block(zio)); 3516 zio->io_error = error; 3517 } 3518 3519 return (zio); 3520 } 3521 3522 static zio_t * 3523 zio_dva_free(zio_t *zio) 3524 { 3525 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE); 3526 3527 return (zio); 3528 } 3529 3530 static zio_t * 3531 zio_dva_claim(zio_t *zio) 3532 { 3533 int error; 3534 3535 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg); 3536 if (error) 3537 zio->io_error = error; 3538 3539 return (zio); 3540 } 3541 3542 /* 3543 * Undo an allocation. This is used by zio_done() when an I/O fails 3544 * and we want to give back the block we just allocated. 3545 * This handles both normal blocks and gang blocks. 3546 */ 3547 static void 3548 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp) 3549 { 3550 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp)); 3551 ASSERT(zio->io_bp_override == NULL); 3552 3553 if (!BP_IS_HOLE(bp)) 3554 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE); 3555 3556 if (gn != NULL) { 3557 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 3558 zio_dva_unallocate(zio, gn->gn_child[g], 3559 &gn->gn_gbh->zg_blkptr[g]); 3560 } 3561 } 3562 } 3563 3564 /* 3565 * Try to allocate an intent log block. Return 0 on success, errno on failure. 3566 */ 3567 int 3568 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp, 3569 uint64_t size, boolean_t *slog) 3570 { 3571 int error = 1; 3572 zio_alloc_list_t io_alloc_list; 3573 3574 ASSERT(txg > spa_syncing_txg(spa)); 3575 3576 metaslab_trace_init(&io_alloc_list); 3577 3578 /* 3579 * Block pointer fields are useful to metaslabs for stats and debugging. 3580 * Fill in the obvious ones before calling into metaslab_alloc(). 3581 */ 3582 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 3583 BP_SET_PSIZE(new_bp, size); 3584 BP_SET_LEVEL(new_bp, 0); 3585 3586 /* 3587 * When allocating a zil block, we don't have information about 3588 * the final destination of the block except the objset it's part 3589 * of, so we just hash the objset ID to pick the allocator to get 3590 * some parallelism. 3591 */ 3592 error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1, 3593 txg, NULL, METASLAB_FASTWRITE, &io_alloc_list, NULL, 3594 cityhash4(0, 0, 0, os->os_dsl_dataset->ds_object) % 3595 spa->spa_alloc_count); 3596 if (error == 0) { 3597 *slog = TRUE; 3598 } else { 3599 error = metaslab_alloc(spa, spa_normal_class(spa), size, 3600 new_bp, 1, txg, NULL, METASLAB_FASTWRITE, 3601 &io_alloc_list, NULL, cityhash4(0, 0, 0, 3602 os->os_dsl_dataset->ds_object) % spa->spa_alloc_count); 3603 if (error == 0) 3604 *slog = FALSE; 3605 } 3606 metaslab_trace_fini(&io_alloc_list); 3607 3608 if (error == 0) { 3609 BP_SET_LSIZE(new_bp, size); 3610 BP_SET_PSIZE(new_bp, size); 3611 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF); 3612 BP_SET_CHECKSUM(new_bp, 3613 spa_version(spa) >= SPA_VERSION_SLIM_ZIL 3614 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG); 3615 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 3616 BP_SET_LEVEL(new_bp, 0); 3617 BP_SET_DEDUP(new_bp, 0); 3618 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER); 3619 3620 /* 3621 * encrypted blocks will require an IV and salt. We generate 3622 * these now since we will not be rewriting the bp at 3623 * rewrite time. 3624 */ 3625 if (os->os_encrypted) { 3626 uint8_t iv[ZIO_DATA_IV_LEN]; 3627 uint8_t salt[ZIO_DATA_SALT_LEN]; 3628 3629 BP_SET_CRYPT(new_bp, B_TRUE); 3630 VERIFY0(spa_crypt_get_salt(spa, 3631 dmu_objset_id(os), salt)); 3632 VERIFY0(zio_crypt_generate_iv(iv)); 3633 3634 zio_crypt_encode_params_bp(new_bp, salt, iv); 3635 } 3636 } else { 3637 zfs_dbgmsg("%s: zil block allocation failure: " 3638 "size %llu, error %d", spa_name(spa), size, error); 3639 } 3640 3641 return (error); 3642 } 3643 3644 /* 3645 * ========================================================================== 3646 * Read and write to physical devices 3647 * ========================================================================== 3648 */ 3649 3650 /* 3651 * Issue an I/O to the underlying vdev. Typically the issue pipeline 3652 * stops after this stage and will resume upon I/O completion. 3653 * However, there are instances where the vdev layer may need to 3654 * continue the pipeline when an I/O was not issued. Since the I/O 3655 * that was sent to the vdev layer might be different than the one 3656 * currently active in the pipeline (see vdev_queue_io()), we explicitly 3657 * force the underlying vdev layers to call either zio_execute() or 3658 * zio_interrupt() to ensure that the pipeline continues with the correct I/O. 3659 */ 3660 static zio_t * 3661 zio_vdev_io_start(zio_t *zio) 3662 { 3663 vdev_t *vd = zio->io_vd; 3664 uint64_t align; 3665 spa_t *spa = zio->io_spa; 3666 3667 zio->io_delay = 0; 3668 3669 ASSERT(zio->io_error == 0); 3670 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0); 3671 3672 if (vd == NULL) { 3673 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 3674 spa_config_enter(spa, SCL_ZIO, zio, RW_READER); 3675 3676 /* 3677 * The mirror_ops handle multiple DVAs in a single BP. 3678 */ 3679 vdev_mirror_ops.vdev_op_io_start(zio); 3680 return (NULL); 3681 } 3682 3683 ASSERT3P(zio->io_logical, !=, zio); 3684 if (zio->io_type == ZIO_TYPE_WRITE) { 3685 ASSERT(spa->spa_trust_config); 3686 3687 /* 3688 * Note: the code can handle other kinds of writes, 3689 * but we don't expect them. 3690 */ 3691 if (zio->io_vd->vdev_removing) { 3692 ASSERT(zio->io_flags & 3693 (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL | 3694 ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE)); 3695 } 3696 } 3697 3698 align = 1ULL << vd->vdev_top->vdev_ashift; 3699 3700 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) && 3701 P2PHASE(zio->io_size, align) != 0) { 3702 /* Transform logical writes to be a full physical block size. */ 3703 uint64_t asize = P2ROUNDUP(zio->io_size, align); 3704 abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize); 3705 ASSERT(vd == vd->vdev_top); 3706 if (zio->io_type == ZIO_TYPE_WRITE) { 3707 abd_copy(abuf, zio->io_abd, zio->io_size); 3708 abd_zero_off(abuf, zio->io_size, asize - zio->io_size); 3709 } 3710 zio_push_transform(zio, abuf, asize, asize, zio_subblock); 3711 } 3712 3713 /* 3714 * If this is not a physical io, make sure that it is properly aligned 3715 * before proceeding. 3716 */ 3717 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) { 3718 ASSERT0(P2PHASE(zio->io_offset, align)); 3719 ASSERT0(P2PHASE(zio->io_size, align)); 3720 } else { 3721 /* 3722 * For physical writes, we allow 512b aligned writes and assume 3723 * the device will perform a read-modify-write as necessary. 3724 */ 3725 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE)); 3726 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE)); 3727 } 3728 3729 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa)); 3730 3731 /* 3732 * If this is a repair I/O, and there's no self-healing involved -- 3733 * that is, we're just resilvering what we expect to resilver -- 3734 * then don't do the I/O unless zio's txg is actually in vd's DTL. 3735 * This prevents spurious resilvering. 3736 * 3737 * There are a few ways that we can end up creating these spurious 3738 * resilver i/os: 3739 * 3740 * 1. A resilver i/o will be issued if any DVA in the BP has a 3741 * dirty DTL. The mirror code will issue resilver writes to 3742 * each DVA, including the one(s) that are not on vdevs with dirty 3743 * DTLs. 3744 * 3745 * 2. With nested replication, which happens when we have a 3746 * "replacing" or "spare" vdev that's a child of a mirror or raidz. 3747 * For example, given mirror(replacing(A+B), C), it's likely that 3748 * only A is out of date (it's the new device). In this case, we'll 3749 * read from C, then use the data to resilver A+B -- but we don't 3750 * actually want to resilver B, just A. The top-level mirror has no 3751 * way to know this, so instead we just discard unnecessary repairs 3752 * as we work our way down the vdev tree. 3753 * 3754 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc. 3755 * The same logic applies to any form of nested replication: ditto 3756 * + mirror, RAID-Z + replacing, etc. 3757 * 3758 * However, indirect vdevs point off to other vdevs which may have 3759 * DTL's, so we never bypass them. The child i/os on concrete vdevs 3760 * will be properly bypassed instead. 3761 */ 3762 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) && 3763 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) && 3764 zio->io_txg != 0 && /* not a delegated i/o */ 3765 vd->vdev_ops != &vdev_indirect_ops && 3766 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) { 3767 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 3768 zio_vdev_io_bypass(zio); 3769 return (zio); 3770 } 3771 3772 if (vd->vdev_ops->vdev_op_leaf && (zio->io_type == ZIO_TYPE_READ || 3773 zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM)) { 3774 3775 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio)) 3776 return (zio); 3777 3778 if ((zio = vdev_queue_io(zio)) == NULL) 3779 return (NULL); 3780 3781 if (!vdev_accessible(vd, zio)) { 3782 zio->io_error = SET_ERROR(ENXIO); 3783 zio_interrupt(zio); 3784 return (NULL); 3785 } 3786 zio->io_delay = gethrtime(); 3787 } 3788 3789 vd->vdev_ops->vdev_op_io_start(zio); 3790 return (NULL); 3791 } 3792 3793 static zio_t * 3794 zio_vdev_io_done(zio_t *zio) 3795 { 3796 vdev_t *vd = zio->io_vd; 3797 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops; 3798 boolean_t unexpected_error = B_FALSE; 3799 3800 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) { 3801 return (NULL); 3802 } 3803 3804 ASSERT(zio->io_type == ZIO_TYPE_READ || 3805 zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM); 3806 3807 if (zio->io_delay) 3808 zio->io_delay = gethrtime() - zio->io_delay; 3809 3810 if (vd != NULL && vd->vdev_ops->vdev_op_leaf) { 3811 3812 vdev_queue_io_done(zio); 3813 3814 if (zio->io_type == ZIO_TYPE_WRITE) 3815 vdev_cache_write(zio); 3816 3817 if (zio_injection_enabled && zio->io_error == 0) 3818 zio->io_error = zio_handle_device_injections(vd, zio, 3819 EIO, EILSEQ); 3820 3821 if (zio_injection_enabled && zio->io_error == 0) 3822 zio->io_error = zio_handle_label_injection(zio, EIO); 3823 3824 if (zio->io_error && zio->io_type != ZIO_TYPE_TRIM) { 3825 if (!vdev_accessible(vd, zio)) { 3826 zio->io_error = SET_ERROR(ENXIO); 3827 } else { 3828 unexpected_error = B_TRUE; 3829 } 3830 } 3831 } 3832 3833 ops->vdev_op_io_done(zio); 3834 3835 if (unexpected_error) 3836 VERIFY(vdev_probe(vd, zio) == NULL); 3837 3838 return (zio); 3839 } 3840 3841 /* 3842 * This function is used to change the priority of an existing zio that is 3843 * currently in-flight. This is used by the arc to upgrade priority in the 3844 * event that a demand read is made for a block that is currently queued 3845 * as a scrub or async read IO. Otherwise, the high priority read request 3846 * would end up having to wait for the lower priority IO. 3847 */ 3848 void 3849 zio_change_priority(zio_t *pio, zio_priority_t priority) 3850 { 3851 zio_t *cio, *cio_next; 3852 zio_link_t *zl = NULL; 3853 3854 ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 3855 3856 if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) { 3857 vdev_queue_change_io_priority(pio, priority); 3858 } else { 3859 pio->io_priority = priority; 3860 } 3861 3862 mutex_enter(&pio->io_lock); 3863 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 3864 cio_next = zio_walk_children(pio, &zl); 3865 zio_change_priority(cio, priority); 3866 } 3867 mutex_exit(&pio->io_lock); 3868 } 3869 3870 /* 3871 * For non-raidz ZIOs, we can just copy aside the bad data read from the 3872 * disk, and use that to finish the checksum ereport later. 3873 */ 3874 static void 3875 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr, 3876 const abd_t *good_buf) 3877 { 3878 /* no processing needed */ 3879 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE); 3880 } 3881 3882 /*ARGSUSED*/ 3883 void 3884 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored) 3885 { 3886 void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size); 3887 3888 abd_copy(abd, zio->io_abd, zio->io_size); 3889 3890 zcr->zcr_cbinfo = zio->io_size; 3891 zcr->zcr_cbdata = abd; 3892 zcr->zcr_finish = zio_vsd_default_cksum_finish; 3893 zcr->zcr_free = zio_abd_free; 3894 } 3895 3896 static zio_t * 3897 zio_vdev_io_assess(zio_t *zio) 3898 { 3899 vdev_t *vd = zio->io_vd; 3900 3901 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) { 3902 return (NULL); 3903 } 3904 3905 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 3906 spa_config_exit(zio->io_spa, SCL_ZIO, zio); 3907 3908 if (zio->io_vsd != NULL) { 3909 zio->io_vsd_ops->vsd_free(zio); 3910 zio->io_vsd = NULL; 3911 } 3912 3913 if (zio_injection_enabled && zio->io_error == 0) 3914 zio->io_error = zio_handle_fault_injection(zio, EIO); 3915 3916 /* 3917 * If the I/O failed, determine whether we should attempt to retry it. 3918 * 3919 * On retry, we cut in line in the issue queue, since we don't want 3920 * compression/checksumming/etc. work to prevent our (cheap) IO reissue. 3921 */ 3922 if (zio->io_error && vd == NULL && 3923 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) { 3924 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */ 3925 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */ 3926 zio->io_error = 0; 3927 zio->io_flags |= ZIO_FLAG_IO_RETRY | 3928 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE; 3929 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1; 3930 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, 3931 zio_requeue_io_start_cut_in_line); 3932 return (NULL); 3933 } 3934 3935 /* 3936 * If we got an error on a leaf device, convert it to ENXIO 3937 * if the device is not accessible at all. 3938 */ 3939 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf && 3940 !vdev_accessible(vd, zio)) 3941 zio->io_error = SET_ERROR(ENXIO); 3942 3943 /* 3944 * If we can't write to an interior vdev (mirror or RAID-Z), 3945 * set vdev_cant_write so that we stop trying to allocate from it. 3946 */ 3947 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE && 3948 vd != NULL && !vd->vdev_ops->vdev_op_leaf) { 3949 vd->vdev_cant_write = B_TRUE; 3950 } 3951 3952 /* 3953 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future 3954 * attempts will ever succeed. In this case we set a persistent 3955 * boolean flag so that we don't bother with it in the future. 3956 */ 3957 if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) && 3958 zio->io_type == ZIO_TYPE_IOCTL && 3959 zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL) 3960 vd->vdev_nowritecache = B_TRUE; 3961 3962 if (zio->io_error) 3963 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 3964 3965 if (vd != NULL && vd->vdev_ops->vdev_op_leaf && 3966 zio->io_physdone != NULL) { 3967 ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED)); 3968 ASSERT(zio->io_child_type == ZIO_CHILD_VDEV); 3969 zio->io_physdone(zio->io_logical); 3970 } 3971 3972 return (zio); 3973 } 3974 3975 void 3976 zio_vdev_io_reissue(zio_t *zio) 3977 { 3978 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 3979 ASSERT(zio->io_error == 0); 3980 3981 zio->io_stage >>= 1; 3982 } 3983 3984 void 3985 zio_vdev_io_redone(zio_t *zio) 3986 { 3987 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE); 3988 3989 zio->io_stage >>= 1; 3990 } 3991 3992 void 3993 zio_vdev_io_bypass(zio_t *zio) 3994 { 3995 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 3996 ASSERT(zio->io_error == 0); 3997 3998 zio->io_flags |= ZIO_FLAG_IO_BYPASS; 3999 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1; 4000 } 4001 4002 /* 4003 * ========================================================================== 4004 * Encrypt and store encryption parameters 4005 * ========================================================================== 4006 */ 4007 4008 4009 /* 4010 * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for 4011 * managing the storage of encryption parameters and passing them to the 4012 * lower-level encryption functions. 4013 */ 4014 static zio_t * 4015 zio_encrypt(zio_t *zio) 4016 { 4017 zio_prop_t *zp = &zio->io_prop; 4018 spa_t *spa = zio->io_spa; 4019 blkptr_t *bp = zio->io_bp; 4020 uint64_t psize = BP_GET_PSIZE(bp); 4021 uint64_t dsobj = zio->io_bookmark.zb_objset; 4022 dmu_object_type_t ot = BP_GET_TYPE(bp); 4023 void *enc_buf = NULL; 4024 abd_t *eabd = NULL; 4025 uint8_t salt[ZIO_DATA_SALT_LEN]; 4026 uint8_t iv[ZIO_DATA_IV_LEN]; 4027 uint8_t mac[ZIO_DATA_MAC_LEN]; 4028 boolean_t no_crypt = B_FALSE; 4029 4030 /* the root zio already encrypted the data */ 4031 if (zio->io_child_type == ZIO_CHILD_GANG) 4032 return (zio); 4033 4034 /* only ZIL blocks are re-encrypted on rewrite */ 4035 if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG) 4036 return (zio); 4037 4038 if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) { 4039 BP_SET_CRYPT(bp, B_FALSE); 4040 return (zio); 4041 } 4042 4043 /* if we are doing raw encryption set the provided encryption params */ 4044 if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) { 4045 ASSERT0(BP_GET_LEVEL(bp)); 4046 BP_SET_CRYPT(bp, B_TRUE); 4047 BP_SET_BYTEORDER(bp, zp->zp_byteorder); 4048 if (ot != DMU_OT_OBJSET) 4049 zio_crypt_encode_mac_bp(bp, zp->zp_mac); 4050 4051 /* dnode blocks must be written out in the provided byteorder */ 4052 if (zp->zp_byteorder != ZFS_HOST_BYTEORDER && 4053 ot == DMU_OT_DNODE) { 4054 void *bswap_buf = zio_buf_alloc(psize); 4055 abd_t *babd = abd_get_from_buf(bswap_buf, psize); 4056 4057 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 4058 abd_copy_to_buf(bswap_buf, zio->io_abd, psize); 4059 dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf, 4060 psize); 4061 4062 abd_take_ownership_of_buf(babd, B_TRUE); 4063 zio_push_transform(zio, babd, psize, psize, NULL); 4064 } 4065 4066 if (DMU_OT_IS_ENCRYPTED(ot)) 4067 zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv); 4068 return (zio); 4069 } 4070 4071 /* indirect blocks only maintain a cksum of the lower level MACs */ 4072 if (BP_GET_LEVEL(bp) > 0) { 4073 BP_SET_CRYPT(bp, B_TRUE); 4074 VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE, 4075 zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp), 4076 mac)); 4077 zio_crypt_encode_mac_bp(bp, mac); 4078 return (zio); 4079 } 4080 4081 /* 4082 * Objset blocks are a special case since they have 2 256-bit MACs 4083 * embedded within them. 4084 */ 4085 if (ot == DMU_OT_OBJSET) { 4086 ASSERT0(DMU_OT_IS_ENCRYPTED(ot)); 4087 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 4088 BP_SET_CRYPT(bp, B_TRUE); 4089 VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj, 4090 zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp))); 4091 return (zio); 4092 } 4093 4094 /* unencrypted object types are only authenticated with a MAC */ 4095 if (!DMU_OT_IS_ENCRYPTED(ot)) { 4096 BP_SET_CRYPT(bp, B_TRUE); 4097 VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj, 4098 zio->io_abd, psize, mac)); 4099 zio_crypt_encode_mac_bp(bp, mac); 4100 return (zio); 4101 } 4102 4103 /* 4104 * Later passes of sync-to-convergence may decide to rewrite data 4105 * in place to avoid more disk reallocations. This presents a problem 4106 * for encryption because this constitutes rewriting the new data with 4107 * the same encryption key and IV. However, this only applies to blocks 4108 * in the MOS (particularly the spacemaps) and we do not encrypt the 4109 * MOS. We assert that the zio is allocating or an intent log write 4110 * to enforce this. 4111 */ 4112 ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG); 4113 ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG); 4114 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION)); 4115 ASSERT3U(psize, !=, 0); 4116 4117 enc_buf = zio_buf_alloc(psize); 4118 eabd = abd_get_from_buf(enc_buf, psize); 4119 abd_take_ownership_of_buf(eabd, B_TRUE); 4120 4121 /* 4122 * For an explanation of what encryption parameters are stored 4123 * where, see the block comment in zio_crypt.c. 4124 */ 4125 if (ot == DMU_OT_INTENT_LOG) { 4126 zio_crypt_decode_params_bp(bp, salt, iv); 4127 } else { 4128 BP_SET_CRYPT(bp, B_TRUE); 4129 } 4130 4131 /* Perform the encryption. This should not fail */ 4132 VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark, 4133 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), 4134 salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt)); 4135 4136 /* encode encryption metadata into the bp */ 4137 if (ot == DMU_OT_INTENT_LOG) { 4138 /* 4139 * ZIL blocks store the MAC in the embedded checksum, so the 4140 * transform must always be applied. 4141 */ 4142 zio_crypt_encode_mac_zil(enc_buf, mac); 4143 zio_push_transform(zio, eabd, psize, psize, NULL); 4144 } else { 4145 BP_SET_CRYPT(bp, B_TRUE); 4146 zio_crypt_encode_params_bp(bp, salt, iv); 4147 zio_crypt_encode_mac_bp(bp, mac); 4148 4149 if (no_crypt) { 4150 ASSERT3U(ot, ==, DMU_OT_DNODE); 4151 abd_free(eabd); 4152 } else { 4153 zio_push_transform(zio, eabd, psize, psize, NULL); 4154 } 4155 } 4156 4157 return (zio); 4158 } 4159 4160 /* 4161 * ========================================================================== 4162 * Generate and verify checksums 4163 * ========================================================================== 4164 */ 4165 static zio_t * 4166 zio_checksum_generate(zio_t *zio) 4167 { 4168 blkptr_t *bp = zio->io_bp; 4169 enum zio_checksum checksum; 4170 4171 if (bp == NULL) { 4172 /* 4173 * This is zio_write_phys(). 4174 * We're either generating a label checksum, or none at all. 4175 */ 4176 checksum = zio->io_prop.zp_checksum; 4177 4178 if (checksum == ZIO_CHECKSUM_OFF) 4179 return (zio); 4180 4181 ASSERT(checksum == ZIO_CHECKSUM_LABEL); 4182 } else { 4183 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) { 4184 ASSERT(!IO_IS_ALLOCATING(zio)); 4185 checksum = ZIO_CHECKSUM_GANG_HEADER; 4186 } else { 4187 checksum = BP_GET_CHECKSUM(bp); 4188 } 4189 } 4190 4191 zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size); 4192 4193 return (zio); 4194 } 4195 4196 static zio_t * 4197 zio_checksum_verify(zio_t *zio) 4198 { 4199 zio_bad_cksum_t info; 4200 blkptr_t *bp = zio->io_bp; 4201 int error; 4202 4203 ASSERT(zio->io_vd != NULL); 4204 4205 if (bp == NULL) { 4206 /* 4207 * This is zio_read_phys(). 4208 * We're either verifying a label checksum, or nothing at all. 4209 */ 4210 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF) 4211 return (zio); 4212 4213 ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL); 4214 } 4215 4216 if ((error = zio_checksum_error(zio, &info)) != 0) { 4217 zio->io_error = error; 4218 if (error == ECKSUM && 4219 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 4220 int ret = zfs_ereport_start_checksum(zio->io_spa, 4221 zio->io_vd, &zio->io_bookmark, zio, 4222 zio->io_offset, zio->io_size, NULL, &info); 4223 4224 if (ret != EALREADY) { 4225 mutex_enter(&zio->io_vd->vdev_stat_lock); 4226 zio->io_vd->vdev_stat.vs_checksum_errors++; 4227 mutex_exit(&zio->io_vd->vdev_stat_lock); 4228 } 4229 } 4230 } 4231 4232 return (zio); 4233 } 4234 4235 /* 4236 * Called by RAID-Z to ensure we don't compute the checksum twice. 4237 */ 4238 void 4239 zio_checksum_verified(zio_t *zio) 4240 { 4241 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 4242 } 4243 4244 /* 4245 * ========================================================================== 4246 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other. 4247 * An error of 0 indicates success. ENXIO indicates whole-device failure, 4248 * which may be transient (e.g. unplugged) or permanent. ECKSUM and EIO 4249 * indicate errors that are specific to one I/O, and most likely permanent. 4250 * Any other error is presumed to be worse because we weren't expecting it. 4251 * ========================================================================== 4252 */ 4253 int 4254 zio_worst_error(int e1, int e2) 4255 { 4256 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO }; 4257 int r1, r2; 4258 4259 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++) 4260 if (e1 == zio_error_rank[r1]) 4261 break; 4262 4263 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++) 4264 if (e2 == zio_error_rank[r2]) 4265 break; 4266 4267 return (r1 > r2 ? e1 : e2); 4268 } 4269 4270 /* 4271 * ========================================================================== 4272 * I/O completion 4273 * ========================================================================== 4274 */ 4275 static zio_t * 4276 zio_ready(zio_t *zio) 4277 { 4278 blkptr_t *bp = zio->io_bp; 4279 zio_t *pio, *pio_next; 4280 zio_link_t *zl = NULL; 4281 4282 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT, 4283 ZIO_WAIT_READY)) { 4284 return (NULL); 4285 } 4286 4287 if (zio->io_ready) { 4288 ASSERT(IO_IS_ALLOCATING(zio)); 4289 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) || 4290 (zio->io_flags & ZIO_FLAG_NOPWRITE)); 4291 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0); 4292 4293 zio->io_ready(zio); 4294 } 4295 4296 if (bp != NULL && bp != &zio->io_bp_copy) 4297 zio->io_bp_copy = *bp; 4298 4299 if (zio->io_error != 0) { 4300 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 4301 4302 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 4303 ASSERT(IO_IS_ALLOCATING(zio)); 4304 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 4305 ASSERT(zio->io_metaslab_class != NULL); 4306 4307 /* 4308 * We were unable to allocate anything, unreserve and 4309 * issue the next I/O to allocate. 4310 */ 4311 metaslab_class_throttle_unreserve( 4312 zio->io_metaslab_class, zio->io_prop.zp_copies, 4313 zio->io_allocator, zio); 4314 zio_allocate_dispatch(zio->io_spa, zio->io_allocator); 4315 } 4316 } 4317 4318 mutex_enter(&zio->io_lock); 4319 zio->io_state[ZIO_WAIT_READY] = 1; 4320 pio = zio_walk_parents(zio, &zl); 4321 mutex_exit(&zio->io_lock); 4322 4323 /* 4324 * As we notify zio's parents, new parents could be added. 4325 * New parents go to the head of zio's io_parent_list, however, 4326 * so we will (correctly) not notify them. The remainder of zio's 4327 * io_parent_list, from 'pio_next' onward, cannot change because 4328 * all parents must wait for us to be done before they can be done. 4329 */ 4330 for (; pio != NULL; pio = pio_next) { 4331 pio_next = zio_walk_parents(zio, &zl); 4332 zio_notify_parent(pio, zio, ZIO_WAIT_READY, NULL); 4333 } 4334 4335 if (zio->io_flags & ZIO_FLAG_NODATA) { 4336 if (BP_IS_GANG(bp)) { 4337 zio->io_flags &= ~ZIO_FLAG_NODATA; 4338 } else { 4339 ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE); 4340 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 4341 } 4342 } 4343 4344 if (zio_injection_enabled && 4345 zio->io_spa->spa_syncing_txg == zio->io_txg) 4346 zio_handle_ignored_writes(zio); 4347 4348 return (zio); 4349 } 4350 4351 /* 4352 * Update the allocation throttle accounting. 4353 */ 4354 static void 4355 zio_dva_throttle_done(zio_t *zio) 4356 { 4357 zio_t *lio __maybe_unused = zio->io_logical; 4358 zio_t *pio = zio_unique_parent(zio); 4359 vdev_t *vd = zio->io_vd; 4360 int flags = METASLAB_ASYNC_ALLOC; 4361 4362 ASSERT3P(zio->io_bp, !=, NULL); 4363 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE); 4364 ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE); 4365 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); 4366 ASSERT(vd != NULL); 4367 ASSERT3P(vd, ==, vd->vdev_top); 4368 ASSERT(zio_injection_enabled || !(zio->io_flags & ZIO_FLAG_IO_RETRY)); 4369 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR)); 4370 ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING); 4371 ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE)); 4372 ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA)); 4373 4374 /* 4375 * Parents of gang children can have two flavors -- ones that 4376 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set) 4377 * and ones that allocated the constituent blocks. The allocation 4378 * throttle needs to know the allocating parent zio so we must find 4379 * it here. 4380 */ 4381 if (pio->io_child_type == ZIO_CHILD_GANG) { 4382 /* 4383 * If our parent is a rewrite gang child then our grandparent 4384 * would have been the one that performed the allocation. 4385 */ 4386 if (pio->io_flags & ZIO_FLAG_IO_REWRITE) 4387 pio = zio_unique_parent(pio); 4388 flags |= METASLAB_GANG_CHILD; 4389 } 4390 4391 ASSERT(IO_IS_ALLOCATING(pio)); 4392 ASSERT3P(zio, !=, zio->io_logical); 4393 ASSERT(zio->io_logical != NULL); 4394 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR)); 4395 ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE); 4396 ASSERT(zio->io_metaslab_class != NULL); 4397 4398 mutex_enter(&pio->io_lock); 4399 metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags, 4400 pio->io_allocator, B_TRUE); 4401 mutex_exit(&pio->io_lock); 4402 4403 metaslab_class_throttle_unreserve(zio->io_metaslab_class, 1, 4404 pio->io_allocator, pio); 4405 4406 /* 4407 * Call into the pipeline to see if there is more work that 4408 * needs to be done. If there is work to be done it will be 4409 * dispatched to another taskq thread. 4410 */ 4411 zio_allocate_dispatch(zio->io_spa, pio->io_allocator); 4412 } 4413 4414 static zio_t * 4415 zio_done(zio_t *zio) 4416 { 4417 /* 4418 * Always attempt to keep stack usage minimal here since 4419 * we can be called recursively up to 19 levels deep. 4420 */ 4421 const uint64_t psize = zio->io_size; 4422 zio_t *pio, *pio_next; 4423 zio_link_t *zl = NULL; 4424 4425 /* 4426 * If our children haven't all completed, 4427 * wait for them and then repeat this pipeline stage. 4428 */ 4429 if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) { 4430 return (NULL); 4431 } 4432 4433 /* 4434 * If the allocation throttle is enabled, then update the accounting. 4435 * We only track child I/Os that are part of an allocating async 4436 * write. We must do this since the allocation is performed 4437 * by the logical I/O but the actual write is done by child I/Os. 4438 */ 4439 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING && 4440 zio->io_child_type == ZIO_CHILD_VDEV) { 4441 ASSERT(zio->io_metaslab_class != NULL); 4442 ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled); 4443 zio_dva_throttle_done(zio); 4444 } 4445 4446 /* 4447 * If the allocation throttle is enabled, verify that 4448 * we have decremented the refcounts for every I/O that was throttled. 4449 */ 4450 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 4451 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 4452 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 4453 ASSERT(zio->io_bp != NULL); 4454 4455 metaslab_group_alloc_verify(zio->io_spa, zio->io_bp, zio, 4456 zio->io_allocator); 4457 VERIFY(zfs_refcount_not_held( 4458 &zio->io_metaslab_class->mc_alloc_slots[zio->io_allocator], 4459 zio)); 4460 } 4461 4462 4463 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 4464 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 4465 ASSERT(zio->io_children[c][w] == 0); 4466 4467 if (zio->io_bp != NULL && !BP_IS_EMBEDDED(zio->io_bp)) { 4468 ASSERT(zio->io_bp->blk_pad[0] == 0); 4469 ASSERT(zio->io_bp->blk_pad[1] == 0); 4470 ASSERT(bcmp(zio->io_bp, &zio->io_bp_copy, 4471 sizeof (blkptr_t)) == 0 || 4472 (zio->io_bp == zio_unique_parent(zio)->io_bp)); 4473 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) && 4474 zio->io_bp_override == NULL && 4475 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) { 4476 ASSERT3U(zio->io_prop.zp_copies, <=, 4477 BP_GET_NDVAS(zio->io_bp)); 4478 ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 || 4479 (BP_COUNT_GANG(zio->io_bp) == 4480 BP_GET_NDVAS(zio->io_bp))); 4481 } 4482 if (zio->io_flags & ZIO_FLAG_NOPWRITE) 4483 VERIFY(BP_EQUAL(zio->io_bp, &zio->io_bp_orig)); 4484 } 4485 4486 /* 4487 * If there were child vdev/gang/ddt errors, they apply to us now. 4488 */ 4489 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV); 4490 zio_inherit_child_errors(zio, ZIO_CHILD_GANG); 4491 zio_inherit_child_errors(zio, ZIO_CHILD_DDT); 4492 4493 /* 4494 * If the I/O on the transformed data was successful, generate any 4495 * checksum reports now while we still have the transformed data. 4496 */ 4497 if (zio->io_error == 0) { 4498 while (zio->io_cksum_report != NULL) { 4499 zio_cksum_report_t *zcr = zio->io_cksum_report; 4500 uint64_t align = zcr->zcr_align; 4501 uint64_t asize = P2ROUNDUP(psize, align); 4502 abd_t *adata = zio->io_abd; 4503 4504 if (asize != psize) { 4505 adata = abd_alloc(asize, B_TRUE); 4506 abd_copy(adata, zio->io_abd, psize); 4507 abd_zero_off(adata, psize, asize - psize); 4508 } 4509 4510 zio->io_cksum_report = zcr->zcr_next; 4511 zcr->zcr_next = NULL; 4512 zcr->zcr_finish(zcr, adata); 4513 zfs_ereport_free_checksum(zcr); 4514 4515 if (asize != psize) 4516 abd_free(adata); 4517 } 4518 } 4519 4520 zio_pop_transforms(zio); /* note: may set zio->io_error */ 4521 4522 vdev_stat_update(zio, psize); 4523 4524 /* 4525 * If this I/O is attached to a particular vdev is slow, exceeding 4526 * 30 seconds to complete, post an error described the I/O delay. 4527 * We ignore these errors if the device is currently unavailable. 4528 */ 4529 if (zio->io_delay >= MSEC2NSEC(zio_slow_io_ms)) { 4530 if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) { 4531 /* 4532 * We want to only increment our slow IO counters if 4533 * the IO is valid (i.e. not if the drive is removed). 4534 * 4535 * zfs_ereport_post() will also do these checks, but 4536 * it can also ratelimit and have other failures, so we 4537 * need to increment the slow_io counters independent 4538 * of it. 4539 */ 4540 if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY, 4541 zio->io_spa, zio->io_vd, zio)) { 4542 mutex_enter(&zio->io_vd->vdev_stat_lock); 4543 zio->io_vd->vdev_stat.vs_slow_ios++; 4544 mutex_exit(&zio->io_vd->vdev_stat_lock); 4545 4546 (void) zfs_ereport_post(FM_EREPORT_ZFS_DELAY, 4547 zio->io_spa, zio->io_vd, &zio->io_bookmark, 4548 zio, 0); 4549 } 4550 } 4551 } 4552 4553 if (zio->io_error) { 4554 /* 4555 * If this I/O is attached to a particular vdev, 4556 * generate an error message describing the I/O failure 4557 * at the block level. We ignore these errors if the 4558 * device is currently unavailable. 4559 */ 4560 if (zio->io_error != ECKSUM && zio->io_vd != NULL && 4561 !vdev_is_dead(zio->io_vd)) { 4562 int ret = zfs_ereport_post(FM_EREPORT_ZFS_IO, 4563 zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0); 4564 if (ret != EALREADY) { 4565 mutex_enter(&zio->io_vd->vdev_stat_lock); 4566 if (zio->io_type == ZIO_TYPE_READ) 4567 zio->io_vd->vdev_stat.vs_read_errors++; 4568 else if (zio->io_type == ZIO_TYPE_WRITE) 4569 zio->io_vd->vdev_stat.vs_write_errors++; 4570 mutex_exit(&zio->io_vd->vdev_stat_lock); 4571 } 4572 } 4573 4574 if ((zio->io_error == EIO || !(zio->io_flags & 4575 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) && 4576 zio == zio->io_logical) { 4577 /* 4578 * For logical I/O requests, tell the SPA to log the 4579 * error and generate a logical data ereport. 4580 */ 4581 spa_log_error(zio->io_spa, &zio->io_bookmark); 4582 (void) zfs_ereport_post(FM_EREPORT_ZFS_DATA, 4583 zio->io_spa, NULL, &zio->io_bookmark, zio, 0); 4584 } 4585 } 4586 4587 if (zio->io_error && zio == zio->io_logical) { 4588 /* 4589 * Determine whether zio should be reexecuted. This will 4590 * propagate all the way to the root via zio_notify_parent(). 4591 */ 4592 ASSERT(zio->io_vd == NULL && zio->io_bp != NULL); 4593 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 4594 4595 if (IO_IS_ALLOCATING(zio) && 4596 !(zio->io_flags & ZIO_FLAG_CANFAIL)) { 4597 if (zio->io_error != ENOSPC) 4598 zio->io_reexecute |= ZIO_REEXECUTE_NOW; 4599 else 4600 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 4601 } 4602 4603 if ((zio->io_type == ZIO_TYPE_READ || 4604 zio->io_type == ZIO_TYPE_FREE) && 4605 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && 4606 zio->io_error == ENXIO && 4607 spa_load_state(zio->io_spa) == SPA_LOAD_NONE && 4608 spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE) 4609 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 4610 4611 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute) 4612 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 4613 4614 /* 4615 * Here is a possibly good place to attempt to do 4616 * either combinatorial reconstruction or error correction 4617 * based on checksums. It also might be a good place 4618 * to send out preliminary ereports before we suspend 4619 * processing. 4620 */ 4621 } 4622 4623 /* 4624 * If there were logical child errors, they apply to us now. 4625 * We defer this until now to avoid conflating logical child 4626 * errors with errors that happened to the zio itself when 4627 * updating vdev stats and reporting FMA events above. 4628 */ 4629 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL); 4630 4631 if ((zio->io_error || zio->io_reexecute) && 4632 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio && 4633 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE))) 4634 zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp); 4635 4636 zio_gang_tree_free(&zio->io_gang_tree); 4637 4638 /* 4639 * Godfather I/Os should never suspend. 4640 */ 4641 if ((zio->io_flags & ZIO_FLAG_GODFATHER) && 4642 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) 4643 zio->io_reexecute &= ~ZIO_REEXECUTE_SUSPEND; 4644 4645 if (zio->io_reexecute) { 4646 /* 4647 * This is a logical I/O that wants to reexecute. 4648 * 4649 * Reexecute is top-down. When an i/o fails, if it's not 4650 * the root, it simply notifies its parent and sticks around. 4651 * The parent, seeing that it still has children in zio_done(), 4652 * does the same. This percolates all the way up to the root. 4653 * The root i/o will reexecute or suspend the entire tree. 4654 * 4655 * This approach ensures that zio_reexecute() honors 4656 * all the original i/o dependency relationships, e.g. 4657 * parents not executing until children are ready. 4658 */ 4659 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 4660 4661 zio->io_gang_leader = NULL; 4662 4663 mutex_enter(&zio->io_lock); 4664 zio->io_state[ZIO_WAIT_DONE] = 1; 4665 mutex_exit(&zio->io_lock); 4666 4667 /* 4668 * "The Godfather" I/O monitors its children but is 4669 * not a true parent to them. It will track them through 4670 * the pipeline but severs its ties whenever they get into 4671 * trouble (e.g. suspended). This allows "The Godfather" 4672 * I/O to return status without blocking. 4673 */ 4674 zl = NULL; 4675 for (pio = zio_walk_parents(zio, &zl); pio != NULL; 4676 pio = pio_next) { 4677 zio_link_t *remove_zl = zl; 4678 pio_next = zio_walk_parents(zio, &zl); 4679 4680 if ((pio->io_flags & ZIO_FLAG_GODFATHER) && 4681 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) { 4682 zio_remove_child(pio, zio, remove_zl); 4683 /* 4684 * This is a rare code path, so we don't 4685 * bother with "next_to_execute". 4686 */ 4687 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, 4688 NULL); 4689 } 4690 } 4691 4692 if ((pio = zio_unique_parent(zio)) != NULL) { 4693 /* 4694 * We're not a root i/o, so there's nothing to do 4695 * but notify our parent. Don't propagate errors 4696 * upward since we haven't permanently failed yet. 4697 */ 4698 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 4699 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE; 4700 /* 4701 * This is a rare code path, so we don't bother with 4702 * "next_to_execute". 4703 */ 4704 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, NULL); 4705 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) { 4706 /* 4707 * We'd fail again if we reexecuted now, so suspend 4708 * until conditions improve (e.g. device comes online). 4709 */ 4710 zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR); 4711 } else { 4712 /* 4713 * Reexecution is potentially a huge amount of work. 4714 * Hand it off to the otherwise-unused claim taskq. 4715 */ 4716 ASSERT(taskq_empty_ent(&zio->io_tqent)); 4717 spa_taskq_dispatch_ent(zio->io_spa, 4718 ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE, 4719 (task_func_t *)zio_reexecute, zio, 0, 4720 &zio->io_tqent); 4721 } 4722 return (NULL); 4723 } 4724 4725 ASSERT(zio->io_child_count == 0); 4726 ASSERT(zio->io_reexecute == 0); 4727 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL)); 4728 4729 /* 4730 * Report any checksum errors, since the I/O is complete. 4731 */ 4732 while (zio->io_cksum_report != NULL) { 4733 zio_cksum_report_t *zcr = zio->io_cksum_report; 4734 zio->io_cksum_report = zcr->zcr_next; 4735 zcr->zcr_next = NULL; 4736 zcr->zcr_finish(zcr, NULL); 4737 zfs_ereport_free_checksum(zcr); 4738 } 4739 4740 if (zio->io_flags & ZIO_FLAG_FASTWRITE && zio->io_bp && 4741 !BP_IS_HOLE(zio->io_bp) && !BP_IS_EMBEDDED(zio->io_bp) && 4742 !(zio->io_flags & ZIO_FLAG_NOPWRITE)) { 4743 metaslab_fastwrite_unmark(zio->io_spa, zio->io_bp); 4744 } 4745 4746 /* 4747 * It is the responsibility of the done callback to ensure that this 4748 * particular zio is no longer discoverable for adoption, and as 4749 * such, cannot acquire any new parents. 4750 */ 4751 if (zio->io_done) 4752 zio->io_done(zio); 4753 4754 mutex_enter(&zio->io_lock); 4755 zio->io_state[ZIO_WAIT_DONE] = 1; 4756 mutex_exit(&zio->io_lock); 4757 4758 /* 4759 * We are done executing this zio. We may want to execute a parent 4760 * next. See the comment in zio_notify_parent(). 4761 */ 4762 zio_t *next_to_execute = NULL; 4763 zl = NULL; 4764 for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) { 4765 zio_link_t *remove_zl = zl; 4766 pio_next = zio_walk_parents(zio, &zl); 4767 zio_remove_child(pio, zio, remove_zl); 4768 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, &next_to_execute); 4769 } 4770 4771 if (zio->io_waiter != NULL) { 4772 mutex_enter(&zio->io_lock); 4773 zio->io_executor = NULL; 4774 cv_broadcast(&zio->io_cv); 4775 mutex_exit(&zio->io_lock); 4776 } else { 4777 zio_destroy(zio); 4778 } 4779 4780 return (next_to_execute); 4781 } 4782 4783 /* 4784 * ========================================================================== 4785 * I/O pipeline definition 4786 * ========================================================================== 4787 */ 4788 static zio_pipe_stage_t *zio_pipeline[] = { 4789 NULL, 4790 zio_read_bp_init, 4791 zio_write_bp_init, 4792 zio_free_bp_init, 4793 zio_issue_async, 4794 zio_write_compress, 4795 zio_encrypt, 4796 zio_checksum_generate, 4797 zio_nop_write, 4798 zio_ddt_read_start, 4799 zio_ddt_read_done, 4800 zio_ddt_write, 4801 zio_ddt_free, 4802 zio_gang_assemble, 4803 zio_gang_issue, 4804 zio_dva_throttle, 4805 zio_dva_allocate, 4806 zio_dva_free, 4807 zio_dva_claim, 4808 zio_ready, 4809 zio_vdev_io_start, 4810 zio_vdev_io_done, 4811 zio_vdev_io_assess, 4812 zio_checksum_verify, 4813 zio_done 4814 }; 4815 4816 4817 4818 4819 /* 4820 * Compare two zbookmark_phys_t's to see which we would reach first in a 4821 * pre-order traversal of the object tree. 4822 * 4823 * This is simple in every case aside from the meta-dnode object. For all other 4824 * objects, we traverse them in order (object 1 before object 2, and so on). 4825 * However, all of these objects are traversed while traversing object 0, since 4826 * the data it points to is the list of objects. Thus, we need to convert to a 4827 * canonical representation so we can compare meta-dnode bookmarks to 4828 * non-meta-dnode bookmarks. 4829 * 4830 * We do this by calculating "equivalents" for each field of the zbookmark. 4831 * zbookmarks outside of the meta-dnode use their own object and level, and 4832 * calculate the level 0 equivalent (the first L0 blkid that is contained in the 4833 * blocks this bookmark refers to) by multiplying their blkid by their span 4834 * (the number of L0 blocks contained within one block at their level). 4835 * zbookmarks inside the meta-dnode calculate their object equivalent 4836 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use 4837 * level + 1<<31 (any value larger than a level could ever be) for their level. 4838 * This causes them to always compare before a bookmark in their object 4839 * equivalent, compare appropriately to bookmarks in other objects, and to 4840 * compare appropriately to other bookmarks in the meta-dnode. 4841 */ 4842 int 4843 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2, 4844 const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2) 4845 { 4846 /* 4847 * These variables represent the "equivalent" values for the zbookmark, 4848 * after converting zbookmarks inside the meta dnode to their 4849 * normal-object equivalents. 4850 */ 4851 uint64_t zb1obj, zb2obj; 4852 uint64_t zb1L0, zb2L0; 4853 uint64_t zb1level, zb2level; 4854 4855 if (zb1->zb_object == zb2->zb_object && 4856 zb1->zb_level == zb2->zb_level && 4857 zb1->zb_blkid == zb2->zb_blkid) 4858 return (0); 4859 4860 IMPLY(zb1->zb_level > 0, ibs1 >= SPA_MINBLOCKSHIFT); 4861 IMPLY(zb2->zb_level > 0, ibs2 >= SPA_MINBLOCKSHIFT); 4862 4863 /* 4864 * BP_SPANB calculates the span in blocks. 4865 */ 4866 zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level); 4867 zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level); 4868 4869 if (zb1->zb_object == DMU_META_DNODE_OBJECT) { 4870 zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 4871 zb1L0 = 0; 4872 zb1level = zb1->zb_level + COMPARE_META_LEVEL; 4873 } else { 4874 zb1obj = zb1->zb_object; 4875 zb1level = zb1->zb_level; 4876 } 4877 4878 if (zb2->zb_object == DMU_META_DNODE_OBJECT) { 4879 zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 4880 zb2L0 = 0; 4881 zb2level = zb2->zb_level + COMPARE_META_LEVEL; 4882 } else { 4883 zb2obj = zb2->zb_object; 4884 zb2level = zb2->zb_level; 4885 } 4886 4887 /* Now that we have a canonical representation, do the comparison. */ 4888 if (zb1obj != zb2obj) 4889 return (zb1obj < zb2obj ? -1 : 1); 4890 else if (zb1L0 != zb2L0) 4891 return (zb1L0 < zb2L0 ? -1 : 1); 4892 else if (zb1level != zb2level) 4893 return (zb1level > zb2level ? -1 : 1); 4894 /* 4895 * This can (theoretically) happen if the bookmarks have the same object 4896 * and level, but different blkids, if the block sizes are not the same. 4897 * There is presently no way to change the indirect block sizes 4898 */ 4899 return (0); 4900 } 4901 4902 /* 4903 * This function checks the following: given that last_block is the place that 4904 * our traversal stopped last time, does that guarantee that we've visited 4905 * every node under subtree_root? Therefore, we can't just use the raw output 4906 * of zbookmark_compare. We have to pass in a modified version of 4907 * subtree_root; by incrementing the block id, and then checking whether 4908 * last_block is before or equal to that, we can tell whether or not having 4909 * visited last_block implies that all of subtree_root's children have been 4910 * visited. 4911 */ 4912 boolean_t 4913 zbookmark_subtree_completed(const dnode_phys_t *dnp, 4914 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block) 4915 { 4916 zbookmark_phys_t mod_zb = *subtree_root; 4917 mod_zb.zb_blkid++; 4918 ASSERT(last_block->zb_level == 0); 4919 4920 /* The objset_phys_t isn't before anything. */ 4921 if (dnp == NULL) 4922 return (B_FALSE); 4923 4924 /* 4925 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the 4926 * data block size in sectors, because that variable is only used if 4927 * the bookmark refers to a block in the meta-dnode. Since we don't 4928 * know without examining it what object it refers to, and there's no 4929 * harm in passing in this value in other cases, we always pass it in. 4930 * 4931 * We pass in 0 for the indirect block size shift because zb2 must be 4932 * level 0. The indirect block size is only used to calculate the span 4933 * of the bookmark, but since the bookmark must be level 0, the span is 4934 * always 1, so the math works out. 4935 * 4936 * If you make changes to how the zbookmark_compare code works, be sure 4937 * to make sure that this code still works afterwards. 4938 */ 4939 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift, 4940 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb, 4941 last_block) <= 0); 4942 } 4943 4944 EXPORT_SYMBOL(zio_type_name); 4945 EXPORT_SYMBOL(zio_buf_alloc); 4946 EXPORT_SYMBOL(zio_data_buf_alloc); 4947 EXPORT_SYMBOL(zio_buf_free); 4948 EXPORT_SYMBOL(zio_data_buf_free); 4949 4950 /* BEGIN CSTYLED */ 4951 ZFS_MODULE_PARAM(zfs_zio, zio_, slow_io_ms, INT, ZMOD_RW, 4952 "Max I/O completion time (milliseconds) before marking it as slow"); 4953 4954 ZFS_MODULE_PARAM(zfs_zio, zio_, requeue_io_start_cut_in_line, INT, ZMOD_RW, 4955 "Prioritize requeued I/O"); 4956 4957 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_deferred_free, INT, ZMOD_RW, 4958 "Defer frees starting in this pass"); 4959 4960 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_dont_compress, INT, ZMOD_RW, 4961 "Don't compress starting in this pass"); 4962 4963 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_rewrite, INT, ZMOD_RW, 4964 "Rewrite new bps starting in this pass"); 4965 4966 ZFS_MODULE_PARAM(zfs_zio, zio_, dva_throttle_enabled, INT, ZMOD_RW, 4967 "Throttle block allocations in the ZIO pipeline"); 4968 4969 ZFS_MODULE_PARAM(zfs_zio, zio_, deadman_log_all, INT, ZMOD_RW, 4970 "Log all slow ZIOs, not just those with vdevs"); 4971 /* END CSTYLED */ 4972