1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2020 by Delphix. All rights reserved. 24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2017, Intel Corporation. 26 * Copyright (c) 2019, Klara Inc. 27 * Copyright (c) 2019, Allan Jude 28 * Copyright (c) 2021, Datto, Inc. 29 */ 30 31 #include <sys/sysmacros.h> 32 #include <sys/zfs_context.h> 33 #include <sys/fm/fs/zfs.h> 34 #include <sys/spa.h> 35 #include <sys/txg.h> 36 #include <sys/spa_impl.h> 37 #include <sys/vdev_impl.h> 38 #include <sys/vdev_trim.h> 39 #include <sys/zio_impl.h> 40 #include <sys/zio_compress.h> 41 #include <sys/zio_checksum.h> 42 #include <sys/dmu_objset.h> 43 #include <sys/arc.h> 44 #include <sys/ddt.h> 45 #include <sys/blkptr.h> 46 #include <sys/zfeature.h> 47 #include <sys/dsl_scan.h> 48 #include <sys/metaslab_impl.h> 49 #include <sys/time.h> 50 #include <sys/trace_zfs.h> 51 #include <sys/abd.h> 52 #include <sys/dsl_crypt.h> 53 #include <cityhash.h> 54 55 /* 56 * ========================================================================== 57 * I/O type descriptions 58 * ========================================================================== 59 */ 60 const char *zio_type_name[ZIO_TYPES] = { 61 /* 62 * Note: Linux kernel thread name length is limited 63 * so these names will differ from upstream open zfs. 64 */ 65 "z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_ioctl", "z_trim" 66 }; 67 68 int zio_dva_throttle_enabled = B_TRUE; 69 int zio_deadman_log_all = B_FALSE; 70 71 /* 72 * ========================================================================== 73 * I/O kmem caches 74 * ========================================================================== 75 */ 76 kmem_cache_t *zio_cache; 77 kmem_cache_t *zio_link_cache; 78 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 79 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 80 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 81 uint64_t zio_buf_cache_allocs[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 82 uint64_t zio_buf_cache_frees[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 83 #endif 84 85 /* Mark IOs as "slow" if they take longer than 30 seconds */ 86 int zio_slow_io_ms = (30 * MILLISEC); 87 88 #define BP_SPANB(indblkshift, level) \ 89 (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT))) 90 #define COMPARE_META_LEVEL 0x80000000ul 91 /* 92 * The following actions directly effect the spa's sync-to-convergence logic. 93 * The values below define the sync pass when we start performing the action. 94 * Care should be taken when changing these values as they directly impact 95 * spa_sync() performance. Tuning these values may introduce subtle performance 96 * pathologies and should only be done in the context of performance analysis. 97 * These tunables will eventually be removed and replaced with #defines once 98 * enough analysis has been done to determine optimal values. 99 * 100 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that 101 * regular blocks are not deferred. 102 * 103 * Starting in sync pass 8 (zfs_sync_pass_dont_compress), we disable 104 * compression (including of metadata). In practice, we don't have this 105 * many sync passes, so this has no effect. 106 * 107 * The original intent was that disabling compression would help the sync 108 * passes to converge. However, in practice disabling compression increases 109 * the average number of sync passes, because when we turn compression off, a 110 * lot of block's size will change and thus we have to re-allocate (not 111 * overwrite) them. It also increases the number of 128KB allocations (e.g. 112 * for indirect blocks and spacemaps) because these will not be compressed. 113 * The 128K allocations are especially detrimental to performance on highly 114 * fragmented systems, which may have very few free segments of this size, 115 * and may need to load new metaslabs to satisfy 128K allocations. 116 */ 117 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */ 118 int zfs_sync_pass_dont_compress = 8; /* don't compress starting in this pass */ 119 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */ 120 121 /* 122 * An allocating zio is one that either currently has the DVA allocate 123 * stage set or will have it later in its lifetime. 124 */ 125 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE) 126 127 /* 128 * Enable smaller cores by excluding metadata 129 * allocations as well. 130 */ 131 int zio_exclude_metadata = 0; 132 int zio_requeue_io_start_cut_in_line = 1; 133 134 #ifdef ZFS_DEBUG 135 int zio_buf_debug_limit = 16384; 136 #else 137 int zio_buf_debug_limit = 0; 138 #endif 139 140 static inline void __zio_execute(zio_t *zio); 141 142 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t); 143 144 void 145 zio_init(void) 146 { 147 size_t c; 148 149 zio_cache = kmem_cache_create("zio_cache", 150 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 151 zio_link_cache = kmem_cache_create("zio_link_cache", 152 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 153 154 /* 155 * For small buffers, we want a cache for each multiple of 156 * SPA_MINBLOCKSIZE. For larger buffers, we want a cache 157 * for each quarter-power of 2. 158 */ 159 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 160 size_t size = (c + 1) << SPA_MINBLOCKSHIFT; 161 size_t p2 = size; 162 size_t align = 0; 163 size_t data_cflags, cflags; 164 165 data_cflags = KMC_NODEBUG; 166 cflags = (zio_exclude_metadata || size > zio_buf_debug_limit) ? 167 KMC_NODEBUG : 0; 168 169 #if defined(_ILP32) && defined(_KERNEL) 170 /* 171 * Cache size limited to 1M on 32-bit platforms until ARC 172 * buffers no longer require virtual address space. 173 */ 174 if (size > zfs_max_recordsize) 175 break; 176 #endif 177 178 while (!ISP2(p2)) 179 p2 &= p2 - 1; 180 181 #ifndef _KERNEL 182 /* 183 * If we are using watchpoints, put each buffer on its own page, 184 * to eliminate the performance overhead of trapping to the 185 * kernel when modifying a non-watched buffer that shares the 186 * page with a watched buffer. 187 */ 188 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE)) 189 continue; 190 /* 191 * Here's the problem - on 4K native devices in userland on 192 * Linux using O_DIRECT, buffers must be 4K aligned or I/O 193 * will fail with EINVAL, causing zdb (and others) to coredump. 194 * Since userland probably doesn't need optimized buffer caches, 195 * we just force 4K alignment on everything. 196 */ 197 align = 8 * SPA_MINBLOCKSIZE; 198 #else 199 if (size < PAGESIZE) { 200 align = SPA_MINBLOCKSIZE; 201 } else if (IS_P2ALIGNED(size, p2 >> 2)) { 202 align = PAGESIZE; 203 } 204 #endif 205 206 if (align != 0) { 207 char name[36]; 208 if (cflags == data_cflags) { 209 /* 210 * Resulting kmem caches would be identical. 211 * Save memory by creating only one. 212 */ 213 (void) snprintf(name, sizeof (name), 214 "zio_buf_comb_%lu", (ulong_t)size); 215 zio_buf_cache[c] = kmem_cache_create(name, 216 size, align, NULL, NULL, NULL, NULL, NULL, 217 cflags); 218 zio_data_buf_cache[c] = zio_buf_cache[c]; 219 continue; 220 } 221 (void) snprintf(name, sizeof (name), "zio_buf_%lu", 222 (ulong_t)size); 223 zio_buf_cache[c] = kmem_cache_create(name, size, 224 align, NULL, NULL, NULL, NULL, NULL, cflags); 225 226 (void) snprintf(name, sizeof (name), "zio_data_buf_%lu", 227 (ulong_t)size); 228 zio_data_buf_cache[c] = kmem_cache_create(name, size, 229 align, NULL, NULL, NULL, NULL, NULL, data_cflags); 230 } 231 } 232 233 while (--c != 0) { 234 ASSERT(zio_buf_cache[c] != NULL); 235 if (zio_buf_cache[c - 1] == NULL) 236 zio_buf_cache[c - 1] = zio_buf_cache[c]; 237 238 ASSERT(zio_data_buf_cache[c] != NULL); 239 if (zio_data_buf_cache[c - 1] == NULL) 240 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c]; 241 } 242 243 zio_inject_init(); 244 245 lz4_init(); 246 } 247 248 void 249 zio_fini(void) 250 { 251 size_t n = SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; 252 253 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 254 for (size_t i = 0; i < n; i++) { 255 if (zio_buf_cache_allocs[i] != zio_buf_cache_frees[i]) 256 (void) printf("zio_fini: [%d] %llu != %llu\n", 257 (int)((i + 1) << SPA_MINBLOCKSHIFT), 258 (long long unsigned)zio_buf_cache_allocs[i], 259 (long long unsigned)zio_buf_cache_frees[i]); 260 } 261 #endif 262 263 /* 264 * The same kmem cache can show up multiple times in both zio_buf_cache 265 * and zio_data_buf_cache. Do a wasteful but trivially correct scan to 266 * sort it out. 267 */ 268 for (size_t i = 0; i < n; i++) { 269 kmem_cache_t *cache = zio_buf_cache[i]; 270 if (cache == NULL) 271 continue; 272 for (size_t j = i; j < n; j++) { 273 if (cache == zio_buf_cache[j]) 274 zio_buf_cache[j] = NULL; 275 if (cache == zio_data_buf_cache[j]) 276 zio_data_buf_cache[j] = NULL; 277 } 278 kmem_cache_destroy(cache); 279 } 280 281 for (size_t i = 0; i < n; i++) { 282 kmem_cache_t *cache = zio_data_buf_cache[i]; 283 if (cache == NULL) 284 continue; 285 for (size_t j = i; j < n; j++) { 286 if (cache == zio_data_buf_cache[j]) 287 zio_data_buf_cache[j] = NULL; 288 } 289 kmem_cache_destroy(cache); 290 } 291 292 for (size_t i = 0; i < n; i++) { 293 VERIFY3P(zio_buf_cache[i], ==, NULL); 294 VERIFY3P(zio_data_buf_cache[i], ==, NULL); 295 } 296 297 kmem_cache_destroy(zio_link_cache); 298 kmem_cache_destroy(zio_cache); 299 300 zio_inject_fini(); 301 302 lz4_fini(); 303 } 304 305 /* 306 * ========================================================================== 307 * Allocate and free I/O buffers 308 * ========================================================================== 309 */ 310 311 /* 312 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a 313 * crashdump if the kernel panics, so use it judiciously. Obviously, it's 314 * useful to inspect ZFS metadata, but if possible, we should avoid keeping 315 * excess / transient data in-core during a crashdump. 316 */ 317 void * 318 zio_buf_alloc(size_t size) 319 { 320 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 321 322 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 323 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 324 atomic_add_64(&zio_buf_cache_allocs[c], 1); 325 #endif 326 327 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE)); 328 } 329 330 /* 331 * Use zio_data_buf_alloc to allocate data. The data will not appear in a 332 * crashdump if the kernel panics. This exists so that we will limit the amount 333 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount 334 * of kernel heap dumped to disk when the kernel panics) 335 */ 336 void * 337 zio_data_buf_alloc(size_t size) 338 { 339 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 340 341 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 342 343 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE)); 344 } 345 346 void 347 zio_buf_free(void *buf, size_t size) 348 { 349 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 350 351 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 352 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 353 atomic_add_64(&zio_buf_cache_frees[c], 1); 354 #endif 355 356 kmem_cache_free(zio_buf_cache[c], buf); 357 } 358 359 void 360 zio_data_buf_free(void *buf, size_t size) 361 { 362 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 363 364 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 365 366 kmem_cache_free(zio_data_buf_cache[c], buf); 367 } 368 369 static void 370 zio_abd_free(void *abd, size_t size) 371 { 372 abd_free((abd_t *)abd); 373 } 374 375 /* 376 * ========================================================================== 377 * Push and pop I/O transform buffers 378 * ========================================================================== 379 */ 380 void 381 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize, 382 zio_transform_func_t *transform) 383 { 384 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP); 385 386 zt->zt_orig_abd = zio->io_abd; 387 zt->zt_orig_size = zio->io_size; 388 zt->zt_bufsize = bufsize; 389 zt->zt_transform = transform; 390 391 zt->zt_next = zio->io_transform_stack; 392 zio->io_transform_stack = zt; 393 394 zio->io_abd = data; 395 zio->io_size = size; 396 } 397 398 void 399 zio_pop_transforms(zio_t *zio) 400 { 401 zio_transform_t *zt; 402 403 while ((zt = zio->io_transform_stack) != NULL) { 404 if (zt->zt_transform != NULL) 405 zt->zt_transform(zio, 406 zt->zt_orig_abd, zt->zt_orig_size); 407 408 if (zt->zt_bufsize != 0) 409 abd_free(zio->io_abd); 410 411 zio->io_abd = zt->zt_orig_abd; 412 zio->io_size = zt->zt_orig_size; 413 zio->io_transform_stack = zt->zt_next; 414 415 kmem_free(zt, sizeof (zio_transform_t)); 416 } 417 } 418 419 /* 420 * ========================================================================== 421 * I/O transform callbacks for subblocks, decompression, and decryption 422 * ========================================================================== 423 */ 424 static void 425 zio_subblock(zio_t *zio, abd_t *data, uint64_t size) 426 { 427 ASSERT(zio->io_size > size); 428 429 if (zio->io_type == ZIO_TYPE_READ) 430 abd_copy(data, zio->io_abd, size); 431 } 432 433 static void 434 zio_decompress(zio_t *zio, abd_t *data, uint64_t size) 435 { 436 if (zio->io_error == 0) { 437 void *tmp = abd_borrow_buf(data, size); 438 int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp), 439 zio->io_abd, tmp, zio->io_size, size, 440 &zio->io_prop.zp_complevel); 441 abd_return_buf_copy(data, tmp, size); 442 443 if (zio_injection_enabled && ret == 0) 444 ret = zio_handle_fault_injection(zio, EINVAL); 445 446 if (ret != 0) 447 zio->io_error = SET_ERROR(EIO); 448 } 449 } 450 451 static void 452 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size) 453 { 454 int ret; 455 void *tmp; 456 blkptr_t *bp = zio->io_bp; 457 spa_t *spa = zio->io_spa; 458 uint64_t dsobj = zio->io_bookmark.zb_objset; 459 uint64_t lsize = BP_GET_LSIZE(bp); 460 dmu_object_type_t ot = BP_GET_TYPE(bp); 461 uint8_t salt[ZIO_DATA_SALT_LEN]; 462 uint8_t iv[ZIO_DATA_IV_LEN]; 463 uint8_t mac[ZIO_DATA_MAC_LEN]; 464 boolean_t no_crypt = B_FALSE; 465 466 ASSERT(BP_USES_CRYPT(bp)); 467 ASSERT3U(size, !=, 0); 468 469 if (zio->io_error != 0) 470 return; 471 472 /* 473 * Verify the cksum of MACs stored in an indirect bp. It will always 474 * be possible to verify this since it does not require an encryption 475 * key. 476 */ 477 if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) { 478 zio_crypt_decode_mac_bp(bp, mac); 479 480 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) { 481 /* 482 * We haven't decompressed the data yet, but 483 * zio_crypt_do_indirect_mac_checksum() requires 484 * decompressed data to be able to parse out the MACs 485 * from the indirect block. We decompress it now and 486 * throw away the result after we are finished. 487 */ 488 tmp = zio_buf_alloc(lsize); 489 ret = zio_decompress_data(BP_GET_COMPRESS(bp), 490 zio->io_abd, tmp, zio->io_size, lsize, 491 &zio->io_prop.zp_complevel); 492 if (ret != 0) { 493 ret = SET_ERROR(EIO); 494 goto error; 495 } 496 ret = zio_crypt_do_indirect_mac_checksum(B_FALSE, 497 tmp, lsize, BP_SHOULD_BYTESWAP(bp), mac); 498 zio_buf_free(tmp, lsize); 499 } else { 500 ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE, 501 zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac); 502 } 503 abd_copy(data, zio->io_abd, size); 504 505 if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) { 506 ret = zio_handle_decrypt_injection(spa, 507 &zio->io_bookmark, ot, ECKSUM); 508 } 509 if (ret != 0) 510 goto error; 511 512 return; 513 } 514 515 /* 516 * If this is an authenticated block, just check the MAC. It would be 517 * nice to separate this out into its own flag, but for the moment 518 * enum zio_flag is out of bits. 519 */ 520 if (BP_IS_AUTHENTICATED(bp)) { 521 if (ot == DMU_OT_OBJSET) { 522 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, 523 dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp)); 524 } else { 525 zio_crypt_decode_mac_bp(bp, mac); 526 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, 527 zio->io_abd, size, mac); 528 if (zio_injection_enabled && ret == 0) { 529 ret = zio_handle_decrypt_injection(spa, 530 &zio->io_bookmark, ot, ECKSUM); 531 } 532 } 533 abd_copy(data, zio->io_abd, size); 534 535 if (ret != 0) 536 goto error; 537 538 return; 539 } 540 541 zio_crypt_decode_params_bp(bp, salt, iv); 542 543 if (ot == DMU_OT_INTENT_LOG) { 544 tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t)); 545 zio_crypt_decode_mac_zil(tmp, mac); 546 abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t)); 547 } else { 548 zio_crypt_decode_mac_bp(bp, mac); 549 } 550 551 ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp), 552 BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data, 553 zio->io_abd, &no_crypt); 554 if (no_crypt) 555 abd_copy(data, zio->io_abd, size); 556 557 if (ret != 0) 558 goto error; 559 560 return; 561 562 error: 563 /* assert that the key was found unless this was speculative */ 564 ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE)); 565 566 /* 567 * If there was a decryption / authentication error return EIO as 568 * the io_error. If this was not a speculative zio, create an ereport. 569 */ 570 if (ret == ECKSUM) { 571 zio->io_error = SET_ERROR(EIO); 572 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) { 573 spa_log_error(spa, &zio->io_bookmark); 574 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION, 575 spa, NULL, &zio->io_bookmark, zio, 0); 576 } 577 } else { 578 zio->io_error = ret; 579 } 580 } 581 582 /* 583 * ========================================================================== 584 * I/O parent/child relationships and pipeline interlocks 585 * ========================================================================== 586 */ 587 zio_t * 588 zio_walk_parents(zio_t *cio, zio_link_t **zl) 589 { 590 list_t *pl = &cio->io_parent_list; 591 592 *zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl); 593 if (*zl == NULL) 594 return (NULL); 595 596 ASSERT((*zl)->zl_child == cio); 597 return ((*zl)->zl_parent); 598 } 599 600 zio_t * 601 zio_walk_children(zio_t *pio, zio_link_t **zl) 602 { 603 list_t *cl = &pio->io_child_list; 604 605 ASSERT(MUTEX_HELD(&pio->io_lock)); 606 607 *zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl); 608 if (*zl == NULL) 609 return (NULL); 610 611 ASSERT((*zl)->zl_parent == pio); 612 return ((*zl)->zl_child); 613 } 614 615 zio_t * 616 zio_unique_parent(zio_t *cio) 617 { 618 zio_link_t *zl = NULL; 619 zio_t *pio = zio_walk_parents(cio, &zl); 620 621 VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL); 622 return (pio); 623 } 624 625 void 626 zio_add_child(zio_t *pio, zio_t *cio) 627 { 628 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP); 629 630 /* 631 * Logical I/Os can have logical, gang, or vdev children. 632 * Gang I/Os can have gang or vdev children. 633 * Vdev I/Os can only have vdev children. 634 * The following ASSERT captures all of these constraints. 635 */ 636 ASSERT3S(cio->io_child_type, <=, pio->io_child_type); 637 638 zl->zl_parent = pio; 639 zl->zl_child = cio; 640 641 mutex_enter(&pio->io_lock); 642 mutex_enter(&cio->io_lock); 643 644 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0); 645 646 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 647 pio->io_children[cio->io_child_type][w] += !cio->io_state[w]; 648 649 list_insert_head(&pio->io_child_list, zl); 650 list_insert_head(&cio->io_parent_list, zl); 651 652 pio->io_child_count++; 653 cio->io_parent_count++; 654 655 mutex_exit(&cio->io_lock); 656 mutex_exit(&pio->io_lock); 657 } 658 659 static void 660 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl) 661 { 662 ASSERT(zl->zl_parent == pio); 663 ASSERT(zl->zl_child == cio); 664 665 mutex_enter(&pio->io_lock); 666 mutex_enter(&cio->io_lock); 667 668 list_remove(&pio->io_child_list, zl); 669 list_remove(&cio->io_parent_list, zl); 670 671 pio->io_child_count--; 672 cio->io_parent_count--; 673 674 mutex_exit(&cio->io_lock); 675 mutex_exit(&pio->io_lock); 676 kmem_cache_free(zio_link_cache, zl); 677 } 678 679 static boolean_t 680 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait) 681 { 682 boolean_t waiting = B_FALSE; 683 684 mutex_enter(&zio->io_lock); 685 ASSERT(zio->io_stall == NULL); 686 for (int c = 0; c < ZIO_CHILD_TYPES; c++) { 687 if (!(ZIO_CHILD_BIT_IS_SET(childbits, c))) 688 continue; 689 690 uint64_t *countp = &zio->io_children[c][wait]; 691 if (*countp != 0) { 692 zio->io_stage >>= 1; 693 ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN); 694 zio->io_stall = countp; 695 waiting = B_TRUE; 696 break; 697 } 698 } 699 mutex_exit(&zio->io_lock); 700 return (waiting); 701 } 702 703 __attribute__((always_inline)) 704 static inline void 705 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait, 706 zio_t **next_to_executep) 707 { 708 uint64_t *countp = &pio->io_children[zio->io_child_type][wait]; 709 int *errorp = &pio->io_child_error[zio->io_child_type]; 710 711 mutex_enter(&pio->io_lock); 712 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 713 *errorp = zio_worst_error(*errorp, zio->io_error); 714 pio->io_reexecute |= zio->io_reexecute; 715 ASSERT3U(*countp, >, 0); 716 717 (*countp)--; 718 719 if (*countp == 0 && pio->io_stall == countp) { 720 zio_taskq_type_t type = 721 pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE : 722 ZIO_TASKQ_INTERRUPT; 723 pio->io_stall = NULL; 724 mutex_exit(&pio->io_lock); 725 726 /* 727 * If we can tell the caller to execute this parent next, do 728 * so. Otherwise dispatch the parent zio as its own task. 729 * 730 * Having the caller execute the parent when possible reduces 731 * locking on the zio taskq's, reduces context switch 732 * overhead, and has no recursion penalty. Note that one 733 * read from disk typically causes at least 3 zio's: a 734 * zio_null(), the logical zio_read(), and then a physical 735 * zio. When the physical ZIO completes, we are able to call 736 * zio_done() on all 3 of these zio's from one invocation of 737 * zio_execute() by returning the parent back to 738 * zio_execute(). Since the parent isn't executed until this 739 * thread returns back to zio_execute(), the caller should do 740 * so promptly. 741 * 742 * In other cases, dispatching the parent prevents 743 * overflowing the stack when we have deeply nested 744 * parent-child relationships, as we do with the "mega zio" 745 * of writes for spa_sync(), and the chain of ZIL blocks. 746 */ 747 if (next_to_executep != NULL && *next_to_executep == NULL) { 748 *next_to_executep = pio; 749 } else { 750 zio_taskq_dispatch(pio, type, B_FALSE); 751 } 752 } else { 753 mutex_exit(&pio->io_lock); 754 } 755 } 756 757 static void 758 zio_inherit_child_errors(zio_t *zio, enum zio_child c) 759 { 760 if (zio->io_child_error[c] != 0 && zio->io_error == 0) 761 zio->io_error = zio->io_child_error[c]; 762 } 763 764 int 765 zio_bookmark_compare(const void *x1, const void *x2) 766 { 767 const zio_t *z1 = x1; 768 const zio_t *z2 = x2; 769 770 if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset) 771 return (-1); 772 if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset) 773 return (1); 774 775 if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object) 776 return (-1); 777 if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object) 778 return (1); 779 780 if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level) 781 return (-1); 782 if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level) 783 return (1); 784 785 if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid) 786 return (-1); 787 if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid) 788 return (1); 789 790 if (z1 < z2) 791 return (-1); 792 if (z1 > z2) 793 return (1); 794 795 return (0); 796 } 797 798 /* 799 * ========================================================================== 800 * Create the various types of I/O (read, write, free, etc) 801 * ========================================================================== 802 */ 803 static zio_t * 804 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 805 abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done, 806 void *private, zio_type_t type, zio_priority_t priority, 807 enum zio_flag flags, vdev_t *vd, uint64_t offset, 808 const zbookmark_phys_t *zb, enum zio_stage stage, 809 enum zio_stage pipeline) 810 { 811 zio_t *zio; 812 813 IMPLY(type != ZIO_TYPE_TRIM, psize <= SPA_MAXBLOCKSIZE); 814 ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0); 815 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0); 816 817 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER)); 818 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER)); 819 ASSERT(vd || stage == ZIO_STAGE_OPEN); 820 821 IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0); 822 823 zio = kmem_cache_alloc(zio_cache, KM_SLEEP); 824 bzero(zio, sizeof (zio_t)); 825 826 mutex_init(&zio->io_lock, NULL, MUTEX_NOLOCKDEP, NULL); 827 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL); 828 829 list_create(&zio->io_parent_list, sizeof (zio_link_t), 830 offsetof(zio_link_t, zl_parent_node)); 831 list_create(&zio->io_child_list, sizeof (zio_link_t), 832 offsetof(zio_link_t, zl_child_node)); 833 metaslab_trace_init(&zio->io_alloc_list); 834 835 if (vd != NULL) 836 zio->io_child_type = ZIO_CHILD_VDEV; 837 else if (flags & ZIO_FLAG_GANG_CHILD) 838 zio->io_child_type = ZIO_CHILD_GANG; 839 else if (flags & ZIO_FLAG_DDT_CHILD) 840 zio->io_child_type = ZIO_CHILD_DDT; 841 else 842 zio->io_child_type = ZIO_CHILD_LOGICAL; 843 844 if (bp != NULL) { 845 zio->io_bp = (blkptr_t *)bp; 846 zio->io_bp_copy = *bp; 847 zio->io_bp_orig = *bp; 848 if (type != ZIO_TYPE_WRITE || 849 zio->io_child_type == ZIO_CHILD_DDT) 850 zio->io_bp = &zio->io_bp_copy; /* so caller can free */ 851 if (zio->io_child_type == ZIO_CHILD_LOGICAL) 852 zio->io_logical = zio; 853 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp)) 854 pipeline |= ZIO_GANG_STAGES; 855 } 856 857 zio->io_spa = spa; 858 zio->io_txg = txg; 859 zio->io_done = done; 860 zio->io_private = private; 861 zio->io_type = type; 862 zio->io_priority = priority; 863 zio->io_vd = vd; 864 zio->io_offset = offset; 865 zio->io_orig_abd = zio->io_abd = data; 866 zio->io_orig_size = zio->io_size = psize; 867 zio->io_lsize = lsize; 868 zio->io_orig_flags = zio->io_flags = flags; 869 zio->io_orig_stage = zio->io_stage = stage; 870 zio->io_orig_pipeline = zio->io_pipeline = pipeline; 871 zio->io_pipeline_trace = ZIO_STAGE_OPEN; 872 873 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY); 874 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE); 875 876 if (zb != NULL) 877 zio->io_bookmark = *zb; 878 879 if (pio != NULL) { 880 if (zio->io_metaslab_class == NULL) 881 zio->io_metaslab_class = pio->io_metaslab_class; 882 if (zio->io_logical == NULL) 883 zio->io_logical = pio->io_logical; 884 if (zio->io_child_type == ZIO_CHILD_GANG) 885 zio->io_gang_leader = pio->io_gang_leader; 886 zio_add_child(pio, zio); 887 } 888 889 taskq_init_ent(&zio->io_tqent); 890 891 return (zio); 892 } 893 894 static void 895 zio_destroy(zio_t *zio) 896 { 897 metaslab_trace_fini(&zio->io_alloc_list); 898 list_destroy(&zio->io_parent_list); 899 list_destroy(&zio->io_child_list); 900 mutex_destroy(&zio->io_lock); 901 cv_destroy(&zio->io_cv); 902 kmem_cache_free(zio_cache, zio); 903 } 904 905 zio_t * 906 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done, 907 void *private, enum zio_flag flags) 908 { 909 zio_t *zio; 910 911 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private, 912 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 913 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE); 914 915 return (zio); 916 } 917 918 zio_t * 919 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags) 920 { 921 return (zio_null(NULL, spa, NULL, done, private, flags)); 922 } 923 924 static int 925 zfs_blkptr_verify_log(spa_t *spa, const blkptr_t *bp, 926 enum blk_verify_flag blk_verify, const char *fmt, ...) 927 { 928 va_list adx; 929 char buf[256]; 930 931 va_start(adx, fmt); 932 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 933 va_end(adx); 934 935 switch (blk_verify) { 936 case BLK_VERIFY_HALT: 937 dprintf_bp(bp, "blkptr at %p dprintf_bp():", bp); 938 zfs_panic_recover("%s: %s", spa_name(spa), buf); 939 break; 940 case BLK_VERIFY_LOG: 941 zfs_dbgmsg("%s: %s", spa_name(spa), buf); 942 break; 943 case BLK_VERIFY_ONLY: 944 break; 945 } 946 947 return (1); 948 } 949 950 /* 951 * Verify the block pointer fields contain reasonable values. This means 952 * it only contains known object types, checksum/compression identifiers, 953 * block sizes within the maximum allowed limits, valid DVAs, etc. 954 * 955 * If everything checks out B_TRUE is returned. The zfs_blkptr_verify 956 * argument controls the behavior when an invalid field is detected. 957 * 958 * Modes for zfs_blkptr_verify: 959 * 1) BLK_VERIFY_ONLY (evaluate the block) 960 * 2) BLK_VERIFY_LOG (evaluate the block and log problems) 961 * 3) BLK_VERIFY_HALT (call zfs_panic_recover on error) 962 */ 963 boolean_t 964 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp, boolean_t config_held, 965 enum blk_verify_flag blk_verify) 966 { 967 int errors = 0; 968 969 if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) { 970 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 971 "blkptr at %p has invalid TYPE %llu", 972 bp, (longlong_t)BP_GET_TYPE(bp)); 973 } 974 if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS || 975 BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) { 976 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 977 "blkptr at %p has invalid CHECKSUM %llu", 978 bp, (longlong_t)BP_GET_CHECKSUM(bp)); 979 } 980 if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS || 981 BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) { 982 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 983 "blkptr at %p has invalid COMPRESS %llu", 984 bp, (longlong_t)BP_GET_COMPRESS(bp)); 985 } 986 if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) { 987 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 988 "blkptr at %p has invalid LSIZE %llu", 989 bp, (longlong_t)BP_GET_LSIZE(bp)); 990 } 991 if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) { 992 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 993 "blkptr at %p has invalid PSIZE %llu", 994 bp, (longlong_t)BP_GET_PSIZE(bp)); 995 } 996 997 if (BP_IS_EMBEDDED(bp)) { 998 if (BPE_GET_ETYPE(bp) >= NUM_BP_EMBEDDED_TYPES) { 999 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1000 "blkptr at %p has invalid ETYPE %llu", 1001 bp, (longlong_t)BPE_GET_ETYPE(bp)); 1002 } 1003 } 1004 1005 /* 1006 * Do not verify individual DVAs if the config is not trusted. This 1007 * will be done once the zio is executed in vdev_mirror_map_alloc. 1008 */ 1009 if (!spa->spa_trust_config) 1010 return (B_TRUE); 1011 1012 if (!config_held) 1013 spa_config_enter(spa, SCL_VDEV, bp, RW_READER); 1014 else 1015 ASSERT(spa_config_held(spa, SCL_VDEV, RW_WRITER)); 1016 /* 1017 * Pool-specific checks. 1018 * 1019 * Note: it would be nice to verify that the blk_birth and 1020 * BP_PHYSICAL_BIRTH() are not too large. However, spa_freeze() 1021 * allows the birth time of log blocks (and dmu_sync()-ed blocks 1022 * that are in the log) to be arbitrarily large. 1023 */ 1024 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 1025 const dva_t *dva = &bp->blk_dva[i]; 1026 uint64_t vdevid = DVA_GET_VDEV(dva); 1027 1028 if (vdevid >= spa->spa_root_vdev->vdev_children) { 1029 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1030 "blkptr at %p DVA %u has invalid VDEV %llu", 1031 bp, i, (longlong_t)vdevid); 1032 continue; 1033 } 1034 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid]; 1035 if (vd == NULL) { 1036 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1037 "blkptr at %p DVA %u has invalid VDEV %llu", 1038 bp, i, (longlong_t)vdevid); 1039 continue; 1040 } 1041 if (vd->vdev_ops == &vdev_hole_ops) { 1042 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1043 "blkptr at %p DVA %u has hole VDEV %llu", 1044 bp, i, (longlong_t)vdevid); 1045 continue; 1046 } 1047 if (vd->vdev_ops == &vdev_missing_ops) { 1048 /* 1049 * "missing" vdevs are valid during import, but we 1050 * don't have their detailed info (e.g. asize), so 1051 * we can't perform any more checks on them. 1052 */ 1053 continue; 1054 } 1055 uint64_t offset = DVA_GET_OFFSET(dva); 1056 uint64_t asize = DVA_GET_ASIZE(dva); 1057 if (DVA_GET_GANG(dva)) 1058 asize = vdev_gang_header_asize(vd); 1059 if (offset + asize > vd->vdev_asize) { 1060 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1061 "blkptr at %p DVA %u has invalid OFFSET %llu", 1062 bp, i, (longlong_t)offset); 1063 } 1064 } 1065 if (errors > 0) 1066 dprintf_bp(bp, "blkptr at %p dprintf_bp():", bp); 1067 if (!config_held) 1068 spa_config_exit(spa, SCL_VDEV, bp); 1069 1070 return (errors == 0); 1071 } 1072 1073 boolean_t 1074 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp) 1075 { 1076 uint64_t vdevid = DVA_GET_VDEV(dva); 1077 1078 if (vdevid >= spa->spa_root_vdev->vdev_children) 1079 return (B_FALSE); 1080 1081 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid]; 1082 if (vd == NULL) 1083 return (B_FALSE); 1084 1085 if (vd->vdev_ops == &vdev_hole_ops) 1086 return (B_FALSE); 1087 1088 if (vd->vdev_ops == &vdev_missing_ops) { 1089 return (B_FALSE); 1090 } 1091 1092 uint64_t offset = DVA_GET_OFFSET(dva); 1093 uint64_t asize = DVA_GET_ASIZE(dva); 1094 1095 if (DVA_GET_GANG(dva)) 1096 asize = vdev_gang_header_asize(vd); 1097 if (offset + asize > vd->vdev_asize) 1098 return (B_FALSE); 1099 1100 return (B_TRUE); 1101 } 1102 1103 zio_t * 1104 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, 1105 abd_t *data, uint64_t size, zio_done_func_t *done, void *private, 1106 zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb) 1107 { 1108 zio_t *zio; 1109 1110 (void) zfs_blkptr_verify(spa, bp, flags & ZIO_FLAG_CONFIG_WRITER, 1111 BLK_VERIFY_HALT); 1112 1113 zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp, 1114 data, size, size, done, private, 1115 ZIO_TYPE_READ, priority, flags, NULL, 0, zb, 1116 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 1117 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE); 1118 1119 return (zio); 1120 } 1121 1122 zio_t * 1123 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 1124 abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp, 1125 zio_done_func_t *ready, zio_done_func_t *children_ready, 1126 zio_done_func_t *physdone, zio_done_func_t *done, 1127 void *private, zio_priority_t priority, enum zio_flag flags, 1128 const zbookmark_phys_t *zb) 1129 { 1130 zio_t *zio; 1131 1132 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF && 1133 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS && 1134 zp->zp_compress >= ZIO_COMPRESS_OFF && 1135 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS && 1136 DMU_OT_IS_VALID(zp->zp_type) && 1137 zp->zp_level < 32 && 1138 zp->zp_copies > 0 && 1139 zp->zp_copies <= spa_max_replication(spa)); 1140 1141 zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private, 1142 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb, 1143 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 1144 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE); 1145 1146 zio->io_ready = ready; 1147 zio->io_children_ready = children_ready; 1148 zio->io_physdone = physdone; 1149 zio->io_prop = *zp; 1150 1151 /* 1152 * Data can be NULL if we are going to call zio_write_override() to 1153 * provide the already-allocated BP. But we may need the data to 1154 * verify a dedup hit (if requested). In this case, don't try to 1155 * dedup (just take the already-allocated BP verbatim). Encrypted 1156 * dedup blocks need data as well so we also disable dedup in this 1157 * case. 1158 */ 1159 if (data == NULL && 1160 (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) { 1161 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE; 1162 } 1163 1164 return (zio); 1165 } 1166 1167 zio_t * 1168 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data, 1169 uint64_t size, zio_done_func_t *done, void *private, 1170 zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb) 1171 { 1172 zio_t *zio; 1173 1174 zio = zio_create(pio, spa, txg, bp, data, size, size, done, private, 1175 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb, 1176 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE); 1177 1178 return (zio); 1179 } 1180 1181 void 1182 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite) 1183 { 1184 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 1185 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1186 ASSERT(zio->io_stage == ZIO_STAGE_OPEN); 1187 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa)); 1188 1189 /* 1190 * We must reset the io_prop to match the values that existed 1191 * when the bp was first written by dmu_sync() keeping in mind 1192 * that nopwrite and dedup are mutually exclusive. 1193 */ 1194 zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup; 1195 zio->io_prop.zp_nopwrite = nopwrite; 1196 zio->io_prop.zp_copies = copies; 1197 zio->io_bp_override = bp; 1198 } 1199 1200 void 1201 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp) 1202 { 1203 1204 (void) zfs_blkptr_verify(spa, bp, B_FALSE, BLK_VERIFY_HALT); 1205 1206 /* 1207 * The check for EMBEDDED is a performance optimization. We 1208 * process the free here (by ignoring it) rather than 1209 * putting it on the list and then processing it in zio_free_sync(). 1210 */ 1211 if (BP_IS_EMBEDDED(bp)) 1212 return; 1213 metaslab_check_free(spa, bp); 1214 1215 /* 1216 * Frees that are for the currently-syncing txg, are not going to be 1217 * deferred, and which will not need to do a read (i.e. not GANG or 1218 * DEDUP), can be processed immediately. Otherwise, put them on the 1219 * in-memory list for later processing. 1220 * 1221 * Note that we only defer frees after zfs_sync_pass_deferred_free 1222 * when the log space map feature is disabled. [see relevant comment 1223 * in spa_sync_iterate_to_convergence()] 1224 */ 1225 if (BP_IS_GANG(bp) || 1226 BP_GET_DEDUP(bp) || 1227 txg != spa->spa_syncing_txg || 1228 (spa_sync_pass(spa) >= zfs_sync_pass_deferred_free && 1229 !spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))) { 1230 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp); 1231 } else { 1232 VERIFY3P(zio_free_sync(NULL, spa, txg, bp, 0), ==, NULL); 1233 } 1234 } 1235 1236 /* 1237 * To improve performance, this function may return NULL if we were able 1238 * to do the free immediately. This avoids the cost of creating a zio 1239 * (and linking it to the parent, etc). 1240 */ 1241 zio_t * 1242 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 1243 enum zio_flag flags) 1244 { 1245 ASSERT(!BP_IS_HOLE(bp)); 1246 ASSERT(spa_syncing_txg(spa) == txg); 1247 1248 if (BP_IS_EMBEDDED(bp)) 1249 return (NULL); 1250 1251 metaslab_check_free(spa, bp); 1252 arc_freed(spa, bp); 1253 dsl_scan_freed(spa, bp); 1254 1255 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp)) { 1256 /* 1257 * GANG and DEDUP blocks can induce a read (for the gang block 1258 * header, or the DDT), so issue them asynchronously so that 1259 * this thread is not tied up. 1260 */ 1261 enum zio_stage stage = 1262 ZIO_FREE_PIPELINE | ZIO_STAGE_ISSUE_ASYNC; 1263 1264 return (zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 1265 BP_GET_PSIZE(bp), NULL, NULL, 1266 ZIO_TYPE_FREE, ZIO_PRIORITY_NOW, 1267 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage)); 1268 } else { 1269 metaslab_free(spa, bp, txg, B_FALSE); 1270 return (NULL); 1271 } 1272 } 1273 1274 zio_t * 1275 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 1276 zio_done_func_t *done, void *private, enum zio_flag flags) 1277 { 1278 zio_t *zio; 1279 1280 (void) zfs_blkptr_verify(spa, bp, flags & ZIO_FLAG_CONFIG_WRITER, 1281 BLK_VERIFY_HALT); 1282 1283 if (BP_IS_EMBEDDED(bp)) 1284 return (zio_null(pio, spa, NULL, NULL, NULL, 0)); 1285 1286 /* 1287 * A claim is an allocation of a specific block. Claims are needed 1288 * to support immediate writes in the intent log. The issue is that 1289 * immediate writes contain committed data, but in a txg that was 1290 * *not* committed. Upon opening the pool after an unclean shutdown, 1291 * the intent log claims all blocks that contain immediate write data 1292 * so that the SPA knows they're in use. 1293 * 1294 * All claims *must* be resolved in the first txg -- before the SPA 1295 * starts allocating blocks -- so that nothing is allocated twice. 1296 * If txg == 0 we just verify that the block is claimable. 1297 */ 1298 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, 1299 spa_min_claim_txg(spa)); 1300 ASSERT(txg == spa_min_claim_txg(spa) || txg == 0); 1301 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(8) */ 1302 1303 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 1304 BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, 1305 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE); 1306 ASSERT0(zio->io_queued_timestamp); 1307 1308 return (zio); 1309 } 1310 1311 zio_t * 1312 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, 1313 zio_done_func_t *done, void *private, enum zio_flag flags) 1314 { 1315 zio_t *zio; 1316 int c; 1317 1318 if (vd->vdev_children == 0) { 1319 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private, 1320 ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 1321 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE); 1322 1323 zio->io_cmd = cmd; 1324 } else { 1325 zio = zio_null(pio, spa, NULL, NULL, NULL, flags); 1326 1327 for (c = 0; c < vd->vdev_children; c++) 1328 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd, 1329 done, private, flags)); 1330 } 1331 1332 return (zio); 1333 } 1334 1335 zio_t * 1336 zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1337 zio_done_func_t *done, void *private, zio_priority_t priority, 1338 enum zio_flag flags, enum trim_flag trim_flags) 1339 { 1340 zio_t *zio; 1341 1342 ASSERT0(vd->vdev_children); 1343 ASSERT0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 1344 ASSERT0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 1345 ASSERT3U(size, !=, 0); 1346 1347 zio = zio_create(pio, vd->vdev_spa, 0, NULL, NULL, size, size, done, 1348 private, ZIO_TYPE_TRIM, priority, flags | ZIO_FLAG_PHYSICAL, 1349 vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_TRIM_PIPELINE); 1350 zio->io_trim_flags = trim_flags; 1351 1352 return (zio); 1353 } 1354 1355 zio_t * 1356 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1357 abd_t *data, int checksum, zio_done_func_t *done, void *private, 1358 zio_priority_t priority, enum zio_flag flags, boolean_t labels) 1359 { 1360 zio_t *zio; 1361 1362 ASSERT(vd->vdev_children == 0); 1363 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 1364 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 1365 ASSERT3U(offset + size, <=, vd->vdev_psize); 1366 1367 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, 1368 private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd, 1369 offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE); 1370 1371 zio->io_prop.zp_checksum = checksum; 1372 1373 return (zio); 1374 } 1375 1376 zio_t * 1377 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1378 abd_t *data, int checksum, zio_done_func_t *done, void *private, 1379 zio_priority_t priority, enum zio_flag flags, boolean_t labels) 1380 { 1381 zio_t *zio; 1382 1383 ASSERT(vd->vdev_children == 0); 1384 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 1385 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 1386 ASSERT3U(offset + size, <=, vd->vdev_psize); 1387 1388 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, 1389 private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd, 1390 offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE); 1391 1392 zio->io_prop.zp_checksum = checksum; 1393 1394 if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) { 1395 /* 1396 * zec checksums are necessarily destructive -- they modify 1397 * the end of the write buffer to hold the verifier/checksum. 1398 * Therefore, we must make a local copy in case the data is 1399 * being written to multiple places in parallel. 1400 */ 1401 abd_t *wbuf = abd_alloc_sametype(data, size); 1402 abd_copy(wbuf, data, size); 1403 1404 zio_push_transform(zio, wbuf, size, size, NULL); 1405 } 1406 1407 return (zio); 1408 } 1409 1410 /* 1411 * Create a child I/O to do some work for us. 1412 */ 1413 zio_t * 1414 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset, 1415 abd_t *data, uint64_t size, int type, zio_priority_t priority, 1416 enum zio_flag flags, zio_done_func_t *done, void *private) 1417 { 1418 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE; 1419 zio_t *zio; 1420 1421 /* 1422 * vdev child I/Os do not propagate their error to the parent. 1423 * Therefore, for correct operation the caller *must* check for 1424 * and handle the error in the child i/o's done callback. 1425 * The only exceptions are i/os that we don't care about 1426 * (OPTIONAL or REPAIR). 1427 */ 1428 ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) || 1429 done != NULL); 1430 1431 if (type == ZIO_TYPE_READ && bp != NULL) { 1432 /* 1433 * If we have the bp, then the child should perform the 1434 * checksum and the parent need not. This pushes error 1435 * detection as close to the leaves as possible and 1436 * eliminates redundant checksums in the interior nodes. 1437 */ 1438 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY; 1439 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 1440 } 1441 1442 if (vd->vdev_ops->vdev_op_leaf) { 1443 ASSERT0(vd->vdev_children); 1444 offset += VDEV_LABEL_START_SIZE; 1445 } 1446 1447 flags |= ZIO_VDEV_CHILD_FLAGS(pio); 1448 1449 /* 1450 * If we've decided to do a repair, the write is not speculative -- 1451 * even if the original read was. 1452 */ 1453 if (flags & ZIO_FLAG_IO_REPAIR) 1454 flags &= ~ZIO_FLAG_SPECULATIVE; 1455 1456 /* 1457 * If we're creating a child I/O that is not associated with a 1458 * top-level vdev, then the child zio is not an allocating I/O. 1459 * If this is a retried I/O then we ignore it since we will 1460 * have already processed the original allocating I/O. 1461 */ 1462 if (flags & ZIO_FLAG_IO_ALLOCATING && 1463 (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) { 1464 ASSERT(pio->io_metaslab_class != NULL); 1465 ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled); 1466 ASSERT(type == ZIO_TYPE_WRITE); 1467 ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE); 1468 ASSERT(!(flags & ZIO_FLAG_IO_REPAIR)); 1469 ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) || 1470 pio->io_child_type == ZIO_CHILD_GANG); 1471 1472 flags &= ~ZIO_FLAG_IO_ALLOCATING; 1473 } 1474 1475 1476 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size, 1477 done, private, type, priority, flags, vd, offset, &pio->io_bookmark, 1478 ZIO_STAGE_VDEV_IO_START >> 1, pipeline); 1479 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); 1480 1481 zio->io_physdone = pio->io_physdone; 1482 if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL) 1483 zio->io_logical->io_phys_children++; 1484 1485 return (zio); 1486 } 1487 1488 zio_t * 1489 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size, 1490 zio_type_t type, zio_priority_t priority, enum zio_flag flags, 1491 zio_done_func_t *done, void *private) 1492 { 1493 zio_t *zio; 1494 1495 ASSERT(vd->vdev_ops->vdev_op_leaf); 1496 1497 zio = zio_create(NULL, vd->vdev_spa, 0, NULL, 1498 data, size, size, done, private, type, priority, 1499 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED, 1500 vd, offset, NULL, 1501 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE); 1502 1503 return (zio); 1504 } 1505 1506 void 1507 zio_flush(zio_t *zio, vdev_t *vd) 1508 { 1509 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE, 1510 NULL, NULL, 1511 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY)); 1512 } 1513 1514 void 1515 zio_shrink(zio_t *zio, uint64_t size) 1516 { 1517 ASSERT3P(zio->io_executor, ==, NULL); 1518 ASSERT3U(zio->io_orig_size, ==, zio->io_size); 1519 ASSERT3U(size, <=, zio->io_size); 1520 1521 /* 1522 * We don't shrink for raidz because of problems with the 1523 * reconstruction when reading back less than the block size. 1524 * Note, BP_IS_RAIDZ() assumes no compression. 1525 */ 1526 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 1527 if (!BP_IS_RAIDZ(zio->io_bp)) { 1528 /* we are not doing a raw write */ 1529 ASSERT3U(zio->io_size, ==, zio->io_lsize); 1530 zio->io_orig_size = zio->io_size = zio->io_lsize = size; 1531 } 1532 } 1533 1534 /* 1535 * ========================================================================== 1536 * Prepare to read and write logical blocks 1537 * ========================================================================== 1538 */ 1539 1540 static zio_t * 1541 zio_read_bp_init(zio_t *zio) 1542 { 1543 blkptr_t *bp = zio->io_bp; 1544 uint64_t psize = 1545 BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp); 1546 1547 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 1548 1549 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF && 1550 zio->io_child_type == ZIO_CHILD_LOGICAL && 1551 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) { 1552 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize), 1553 psize, psize, zio_decompress); 1554 } 1555 1556 if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) || 1557 BP_HAS_INDIRECT_MAC_CKSUM(bp)) && 1558 zio->io_child_type == ZIO_CHILD_LOGICAL) { 1559 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize), 1560 psize, psize, zio_decrypt); 1561 } 1562 1563 if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) { 1564 int psize = BPE_GET_PSIZE(bp); 1565 void *data = abd_borrow_buf(zio->io_abd, psize); 1566 1567 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1568 decode_embedded_bp_compressed(bp, data); 1569 abd_return_buf_copy(zio->io_abd, data, psize); 1570 } else { 1571 ASSERT(!BP_IS_EMBEDDED(bp)); 1572 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 1573 } 1574 1575 if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0) 1576 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 1577 1578 if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP) 1579 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 1580 1581 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL) 1582 zio->io_pipeline = ZIO_DDT_READ_PIPELINE; 1583 1584 return (zio); 1585 } 1586 1587 static zio_t * 1588 zio_write_bp_init(zio_t *zio) 1589 { 1590 if (!IO_IS_ALLOCATING(zio)) 1591 return (zio); 1592 1593 ASSERT(zio->io_child_type != ZIO_CHILD_DDT); 1594 1595 if (zio->io_bp_override) { 1596 blkptr_t *bp = zio->io_bp; 1597 zio_prop_t *zp = &zio->io_prop; 1598 1599 ASSERT(bp->blk_birth != zio->io_txg); 1600 ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0); 1601 1602 *bp = *zio->io_bp_override; 1603 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1604 1605 if (BP_IS_EMBEDDED(bp)) 1606 return (zio); 1607 1608 /* 1609 * If we've been overridden and nopwrite is set then 1610 * set the flag accordingly to indicate that a nopwrite 1611 * has already occurred. 1612 */ 1613 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) { 1614 ASSERT(!zp->zp_dedup); 1615 ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum); 1616 zio->io_flags |= ZIO_FLAG_NOPWRITE; 1617 return (zio); 1618 } 1619 1620 ASSERT(!zp->zp_nopwrite); 1621 1622 if (BP_IS_HOLE(bp) || !zp->zp_dedup) 1623 return (zio); 1624 1625 ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags & 1626 ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify); 1627 1628 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum && 1629 !zp->zp_encrypt) { 1630 BP_SET_DEDUP(bp, 1); 1631 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE; 1632 return (zio); 1633 } 1634 1635 /* 1636 * We were unable to handle this as an override bp, treat 1637 * it as a regular write I/O. 1638 */ 1639 zio->io_bp_override = NULL; 1640 *bp = zio->io_bp_orig; 1641 zio->io_pipeline = zio->io_orig_pipeline; 1642 } 1643 1644 return (zio); 1645 } 1646 1647 static zio_t * 1648 zio_write_compress(zio_t *zio) 1649 { 1650 spa_t *spa = zio->io_spa; 1651 zio_prop_t *zp = &zio->io_prop; 1652 enum zio_compress compress = zp->zp_compress; 1653 blkptr_t *bp = zio->io_bp; 1654 uint64_t lsize = zio->io_lsize; 1655 uint64_t psize = zio->io_size; 1656 int pass = 1; 1657 1658 /* 1659 * If our children haven't all reached the ready stage, 1660 * wait for them and then repeat this pipeline stage. 1661 */ 1662 if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT | 1663 ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) { 1664 return (NULL); 1665 } 1666 1667 if (!IO_IS_ALLOCATING(zio)) 1668 return (zio); 1669 1670 if (zio->io_children_ready != NULL) { 1671 /* 1672 * Now that all our children are ready, run the callback 1673 * associated with this zio in case it wants to modify the 1674 * data to be written. 1675 */ 1676 ASSERT3U(zp->zp_level, >, 0); 1677 zio->io_children_ready(zio); 1678 } 1679 1680 ASSERT(zio->io_child_type != ZIO_CHILD_DDT); 1681 ASSERT(zio->io_bp_override == NULL); 1682 1683 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) { 1684 /* 1685 * We're rewriting an existing block, which means we're 1686 * working on behalf of spa_sync(). For spa_sync() to 1687 * converge, it must eventually be the case that we don't 1688 * have to allocate new blocks. But compression changes 1689 * the blocksize, which forces a reallocate, and makes 1690 * convergence take longer. Therefore, after the first 1691 * few passes, stop compressing to ensure convergence. 1692 */ 1693 pass = spa_sync_pass(spa); 1694 1695 ASSERT(zio->io_txg == spa_syncing_txg(spa)); 1696 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1697 ASSERT(!BP_GET_DEDUP(bp)); 1698 1699 if (pass >= zfs_sync_pass_dont_compress) 1700 compress = ZIO_COMPRESS_OFF; 1701 1702 /* Make sure someone doesn't change their mind on overwrites */ 1703 ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp), 1704 spa_max_replication(spa)) == BP_GET_NDVAS(bp)); 1705 } 1706 1707 /* If it's a compressed write that is not raw, compress the buffer. */ 1708 if (compress != ZIO_COMPRESS_OFF && 1709 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) { 1710 void *cbuf = zio_buf_alloc(lsize); 1711 psize = zio_compress_data(compress, zio->io_abd, cbuf, lsize, 1712 zp->zp_complevel); 1713 if (psize == 0 || psize >= lsize) { 1714 compress = ZIO_COMPRESS_OFF; 1715 zio_buf_free(cbuf, lsize); 1716 } else if (!zp->zp_dedup && !zp->zp_encrypt && 1717 psize <= BPE_PAYLOAD_SIZE && 1718 zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) && 1719 spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) { 1720 encode_embedded_bp_compressed(bp, 1721 cbuf, compress, lsize, psize); 1722 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA); 1723 BP_SET_TYPE(bp, zio->io_prop.zp_type); 1724 BP_SET_LEVEL(bp, zio->io_prop.zp_level); 1725 zio_buf_free(cbuf, lsize); 1726 bp->blk_birth = zio->io_txg; 1727 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1728 ASSERT(spa_feature_is_active(spa, 1729 SPA_FEATURE_EMBEDDED_DATA)); 1730 return (zio); 1731 } else { 1732 /* 1733 * Round compressed size up to the minimum allocation 1734 * size of the smallest-ashift device, and zero the 1735 * tail. This ensures that the compressed size of the 1736 * BP (and thus compressratio property) are correct, 1737 * in that we charge for the padding used to fill out 1738 * the last sector. 1739 */ 1740 ASSERT3U(spa->spa_min_alloc, >=, SPA_MINBLOCKSHIFT); 1741 size_t rounded = (size_t)roundup(psize, 1742 spa->spa_min_alloc); 1743 if (rounded >= lsize) { 1744 compress = ZIO_COMPRESS_OFF; 1745 zio_buf_free(cbuf, lsize); 1746 psize = lsize; 1747 } else { 1748 abd_t *cdata = abd_get_from_buf(cbuf, lsize); 1749 abd_take_ownership_of_buf(cdata, B_TRUE); 1750 abd_zero_off(cdata, psize, rounded - psize); 1751 psize = rounded; 1752 zio_push_transform(zio, cdata, 1753 psize, lsize, NULL); 1754 } 1755 } 1756 1757 /* 1758 * We were unable to handle this as an override bp, treat 1759 * it as a regular write I/O. 1760 */ 1761 zio->io_bp_override = NULL; 1762 *bp = zio->io_bp_orig; 1763 zio->io_pipeline = zio->io_orig_pipeline; 1764 1765 } else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 && 1766 zp->zp_type == DMU_OT_DNODE) { 1767 /* 1768 * The DMU actually relies on the zio layer's compression 1769 * to free metadnode blocks that have had all contained 1770 * dnodes freed. As a result, even when doing a raw 1771 * receive, we must check whether the block can be compressed 1772 * to a hole. 1773 */ 1774 psize = zio_compress_data(ZIO_COMPRESS_EMPTY, 1775 zio->io_abd, NULL, lsize, zp->zp_complevel); 1776 if (psize == 0 || psize >= lsize) 1777 compress = ZIO_COMPRESS_OFF; 1778 } else { 1779 ASSERT3U(psize, !=, 0); 1780 } 1781 1782 /* 1783 * The final pass of spa_sync() must be all rewrites, but the first 1784 * few passes offer a trade-off: allocating blocks defers convergence, 1785 * but newly allocated blocks are sequential, so they can be written 1786 * to disk faster. Therefore, we allow the first few passes of 1787 * spa_sync() to allocate new blocks, but force rewrites after that. 1788 * There should only be a handful of blocks after pass 1 in any case. 1789 */ 1790 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg && 1791 BP_GET_PSIZE(bp) == psize && 1792 pass >= zfs_sync_pass_rewrite) { 1793 VERIFY3U(psize, !=, 0); 1794 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES; 1795 1796 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages; 1797 zio->io_flags |= ZIO_FLAG_IO_REWRITE; 1798 } else { 1799 BP_ZERO(bp); 1800 zio->io_pipeline = ZIO_WRITE_PIPELINE; 1801 } 1802 1803 if (psize == 0) { 1804 if (zio->io_bp_orig.blk_birth != 0 && 1805 spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) { 1806 BP_SET_LSIZE(bp, lsize); 1807 BP_SET_TYPE(bp, zp->zp_type); 1808 BP_SET_LEVEL(bp, zp->zp_level); 1809 BP_SET_BIRTH(bp, zio->io_txg, 0); 1810 } 1811 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1812 } else { 1813 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER); 1814 BP_SET_LSIZE(bp, lsize); 1815 BP_SET_TYPE(bp, zp->zp_type); 1816 BP_SET_LEVEL(bp, zp->zp_level); 1817 BP_SET_PSIZE(bp, psize); 1818 BP_SET_COMPRESS(bp, compress); 1819 BP_SET_CHECKSUM(bp, zp->zp_checksum); 1820 BP_SET_DEDUP(bp, zp->zp_dedup); 1821 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 1822 if (zp->zp_dedup) { 1823 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1824 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1825 ASSERT(!zp->zp_encrypt || 1826 DMU_OT_IS_ENCRYPTED(zp->zp_type)); 1827 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE; 1828 } 1829 if (zp->zp_nopwrite) { 1830 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1831 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1832 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE; 1833 } 1834 } 1835 return (zio); 1836 } 1837 1838 static zio_t * 1839 zio_free_bp_init(zio_t *zio) 1840 { 1841 blkptr_t *bp = zio->io_bp; 1842 1843 if (zio->io_child_type == ZIO_CHILD_LOGICAL) { 1844 if (BP_GET_DEDUP(bp)) 1845 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE; 1846 } 1847 1848 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 1849 1850 return (zio); 1851 } 1852 1853 /* 1854 * ========================================================================== 1855 * Execute the I/O pipeline 1856 * ========================================================================== 1857 */ 1858 1859 static void 1860 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline) 1861 { 1862 spa_t *spa = zio->io_spa; 1863 zio_type_t t = zio->io_type; 1864 int flags = (cutinline ? TQ_FRONT : 0); 1865 1866 /* 1867 * If we're a config writer or a probe, the normal issue and 1868 * interrupt threads may all be blocked waiting for the config lock. 1869 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL. 1870 */ 1871 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE)) 1872 t = ZIO_TYPE_NULL; 1873 1874 /* 1875 * A similar issue exists for the L2ARC write thread until L2ARC 2.0. 1876 */ 1877 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux) 1878 t = ZIO_TYPE_NULL; 1879 1880 /* 1881 * If this is a high priority I/O, then use the high priority taskq if 1882 * available. 1883 */ 1884 if ((zio->io_priority == ZIO_PRIORITY_NOW || 1885 zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) && 1886 spa->spa_zio_taskq[t][q + 1].stqs_count != 0) 1887 q++; 1888 1889 ASSERT3U(q, <, ZIO_TASKQ_TYPES); 1890 1891 /* 1892 * NB: We are assuming that the zio can only be dispatched 1893 * to a single taskq at a time. It would be a grievous error 1894 * to dispatch the zio to another taskq at the same time. 1895 */ 1896 ASSERT(taskq_empty_ent(&zio->io_tqent)); 1897 spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio, 1898 flags, &zio->io_tqent); 1899 } 1900 1901 static boolean_t 1902 zio_taskq_member(zio_t *zio, zio_taskq_type_t q) 1903 { 1904 spa_t *spa = zio->io_spa; 1905 1906 taskq_t *tq = taskq_of_curthread(); 1907 1908 for (zio_type_t t = 0; t < ZIO_TYPES; t++) { 1909 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1910 uint_t i; 1911 for (i = 0; i < tqs->stqs_count; i++) { 1912 if (tqs->stqs_taskq[i] == tq) 1913 return (B_TRUE); 1914 } 1915 } 1916 1917 return (B_FALSE); 1918 } 1919 1920 static zio_t * 1921 zio_issue_async(zio_t *zio) 1922 { 1923 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 1924 1925 return (NULL); 1926 } 1927 1928 void 1929 zio_interrupt(zio_t *zio) 1930 { 1931 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE); 1932 } 1933 1934 void 1935 zio_delay_interrupt(zio_t *zio) 1936 { 1937 /* 1938 * The timeout_generic() function isn't defined in userspace, so 1939 * rather than trying to implement the function, the zio delay 1940 * functionality has been disabled for userspace builds. 1941 */ 1942 1943 #ifdef _KERNEL 1944 /* 1945 * If io_target_timestamp is zero, then no delay has been registered 1946 * for this IO, thus jump to the end of this function and "skip" the 1947 * delay; issuing it directly to the zio layer. 1948 */ 1949 if (zio->io_target_timestamp != 0) { 1950 hrtime_t now = gethrtime(); 1951 1952 if (now >= zio->io_target_timestamp) { 1953 /* 1954 * This IO has already taken longer than the target 1955 * delay to complete, so we don't want to delay it 1956 * any longer; we "miss" the delay and issue it 1957 * directly to the zio layer. This is likely due to 1958 * the target latency being set to a value less than 1959 * the underlying hardware can satisfy (e.g. delay 1960 * set to 1ms, but the disks take 10ms to complete an 1961 * IO request). 1962 */ 1963 1964 DTRACE_PROBE2(zio__delay__miss, zio_t *, zio, 1965 hrtime_t, now); 1966 1967 zio_interrupt(zio); 1968 } else { 1969 taskqid_t tid; 1970 hrtime_t diff = zio->io_target_timestamp - now; 1971 clock_t expire_at_tick = ddi_get_lbolt() + 1972 NSEC_TO_TICK(diff); 1973 1974 DTRACE_PROBE3(zio__delay__hit, zio_t *, zio, 1975 hrtime_t, now, hrtime_t, diff); 1976 1977 if (NSEC_TO_TICK(diff) == 0) { 1978 /* Our delay is less than a jiffy - just spin */ 1979 zfs_sleep_until(zio->io_target_timestamp); 1980 zio_interrupt(zio); 1981 } else { 1982 /* 1983 * Use taskq_dispatch_delay() in the place of 1984 * OpenZFS's timeout_generic(). 1985 */ 1986 tid = taskq_dispatch_delay(system_taskq, 1987 (task_func_t *)zio_interrupt, 1988 zio, TQ_NOSLEEP, expire_at_tick); 1989 if (tid == TASKQID_INVALID) { 1990 /* 1991 * Couldn't allocate a task. Just 1992 * finish the zio without a delay. 1993 */ 1994 zio_interrupt(zio); 1995 } 1996 } 1997 } 1998 return; 1999 } 2000 #endif 2001 DTRACE_PROBE1(zio__delay__skip, zio_t *, zio); 2002 zio_interrupt(zio); 2003 } 2004 2005 static void 2006 zio_deadman_impl(zio_t *pio, int ziodepth) 2007 { 2008 zio_t *cio, *cio_next; 2009 zio_link_t *zl = NULL; 2010 vdev_t *vd = pio->io_vd; 2011 2012 if (zio_deadman_log_all || (vd != NULL && vd->vdev_ops->vdev_op_leaf)) { 2013 vdev_queue_t *vq = vd ? &vd->vdev_queue : NULL; 2014 zbookmark_phys_t *zb = &pio->io_bookmark; 2015 uint64_t delta = gethrtime() - pio->io_timestamp; 2016 uint64_t failmode = spa_get_deadman_failmode(pio->io_spa); 2017 2018 zfs_dbgmsg("slow zio[%d]: zio=%px timestamp=%llu " 2019 "delta=%llu queued=%llu io=%llu " 2020 "path=%s last=%llu " 2021 "type=%d priority=%d flags=0x%x " 2022 "stage=0x%x pipeline=0x%x pipeline-trace=0x%x " 2023 "objset=%llu object=%llu level=%llu blkid=%llu " 2024 "offset=%llu size=%llu error=%d", 2025 ziodepth, pio, pio->io_timestamp, 2026 delta, pio->io_delta, pio->io_delay, 2027 vd ? vd->vdev_path : "NULL", vq ? vq->vq_io_complete_ts : 0, 2028 pio->io_type, pio->io_priority, pio->io_flags, 2029 pio->io_stage, pio->io_pipeline, pio->io_pipeline_trace, 2030 zb->zb_objset, zb->zb_object, zb->zb_level, zb->zb_blkid, 2031 pio->io_offset, pio->io_size, pio->io_error); 2032 (void) zfs_ereport_post(FM_EREPORT_ZFS_DEADMAN, 2033 pio->io_spa, vd, zb, pio, 0); 2034 2035 if (failmode == ZIO_FAILURE_MODE_CONTINUE && 2036 taskq_empty_ent(&pio->io_tqent)) { 2037 zio_interrupt(pio); 2038 } 2039 } 2040 2041 mutex_enter(&pio->io_lock); 2042 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 2043 cio_next = zio_walk_children(pio, &zl); 2044 zio_deadman_impl(cio, ziodepth + 1); 2045 } 2046 mutex_exit(&pio->io_lock); 2047 } 2048 2049 /* 2050 * Log the critical information describing this zio and all of its children 2051 * using the zfs_dbgmsg() interface then post deadman event for the ZED. 2052 */ 2053 void 2054 zio_deadman(zio_t *pio, char *tag) 2055 { 2056 spa_t *spa = pio->io_spa; 2057 char *name = spa_name(spa); 2058 2059 if (!zfs_deadman_enabled || spa_suspended(spa)) 2060 return; 2061 2062 zio_deadman_impl(pio, 0); 2063 2064 switch (spa_get_deadman_failmode(spa)) { 2065 case ZIO_FAILURE_MODE_WAIT: 2066 zfs_dbgmsg("%s waiting for hung I/O to pool '%s'", tag, name); 2067 break; 2068 2069 case ZIO_FAILURE_MODE_CONTINUE: 2070 zfs_dbgmsg("%s restarting hung I/O for pool '%s'", tag, name); 2071 break; 2072 2073 case ZIO_FAILURE_MODE_PANIC: 2074 fm_panic("%s determined I/O to pool '%s' is hung.", tag, name); 2075 break; 2076 } 2077 } 2078 2079 /* 2080 * Execute the I/O pipeline until one of the following occurs: 2081 * (1) the I/O completes; (2) the pipeline stalls waiting for 2082 * dependent child I/Os; (3) the I/O issues, so we're waiting 2083 * for an I/O completion interrupt; (4) the I/O is delegated by 2084 * vdev-level caching or aggregation; (5) the I/O is deferred 2085 * due to vdev-level queueing; (6) the I/O is handed off to 2086 * another thread. In all cases, the pipeline stops whenever 2087 * there's no CPU work; it never burns a thread in cv_wait_io(). 2088 * 2089 * There's no locking on io_stage because there's no legitimate way 2090 * for multiple threads to be attempting to process the same I/O. 2091 */ 2092 static zio_pipe_stage_t *zio_pipeline[]; 2093 2094 /* 2095 * zio_execute() is a wrapper around the static function 2096 * __zio_execute() so that we can force __zio_execute() to be 2097 * inlined. This reduces stack overhead which is important 2098 * because __zio_execute() is called recursively in several zio 2099 * code paths. zio_execute() itself cannot be inlined because 2100 * it is externally visible. 2101 */ 2102 void 2103 zio_execute(zio_t *zio) 2104 { 2105 fstrans_cookie_t cookie; 2106 2107 cookie = spl_fstrans_mark(); 2108 __zio_execute(zio); 2109 spl_fstrans_unmark(cookie); 2110 } 2111 2112 /* 2113 * Used to determine if in the current context the stack is sized large 2114 * enough to allow zio_execute() to be called recursively. A minimum 2115 * stack size of 16K is required to avoid needing to re-dispatch the zio. 2116 */ 2117 static boolean_t 2118 zio_execute_stack_check(zio_t *zio) 2119 { 2120 #if !defined(HAVE_LARGE_STACKS) 2121 dsl_pool_t *dp = spa_get_dsl(zio->io_spa); 2122 2123 /* Executing in txg_sync_thread() context. */ 2124 if (dp && curthread == dp->dp_tx.tx_sync_thread) 2125 return (B_TRUE); 2126 2127 /* Pool initialization outside of zio_taskq context. */ 2128 if (dp && spa_is_initializing(dp->dp_spa) && 2129 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE) && 2130 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE_HIGH)) 2131 return (B_TRUE); 2132 #endif /* HAVE_LARGE_STACKS */ 2133 2134 return (B_FALSE); 2135 } 2136 2137 __attribute__((always_inline)) 2138 static inline void 2139 __zio_execute(zio_t *zio) 2140 { 2141 ASSERT3U(zio->io_queued_timestamp, >, 0); 2142 2143 while (zio->io_stage < ZIO_STAGE_DONE) { 2144 enum zio_stage pipeline = zio->io_pipeline; 2145 enum zio_stage stage = zio->io_stage; 2146 2147 zio->io_executor = curthread; 2148 2149 ASSERT(!MUTEX_HELD(&zio->io_lock)); 2150 ASSERT(ISP2(stage)); 2151 ASSERT(zio->io_stall == NULL); 2152 2153 do { 2154 stage <<= 1; 2155 } while ((stage & pipeline) == 0); 2156 2157 ASSERT(stage <= ZIO_STAGE_DONE); 2158 2159 /* 2160 * If we are in interrupt context and this pipeline stage 2161 * will grab a config lock that is held across I/O, 2162 * or may wait for an I/O that needs an interrupt thread 2163 * to complete, issue async to avoid deadlock. 2164 * 2165 * For VDEV_IO_START, we cut in line so that the io will 2166 * be sent to disk promptly. 2167 */ 2168 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL && 2169 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) { 2170 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ? 2171 zio_requeue_io_start_cut_in_line : B_FALSE; 2172 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut); 2173 return; 2174 } 2175 2176 /* 2177 * If the current context doesn't have large enough stacks 2178 * the zio must be issued asynchronously to prevent overflow. 2179 */ 2180 if (zio_execute_stack_check(zio)) { 2181 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ? 2182 zio_requeue_io_start_cut_in_line : B_FALSE; 2183 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut); 2184 return; 2185 } 2186 2187 zio->io_stage = stage; 2188 zio->io_pipeline_trace |= zio->io_stage; 2189 2190 /* 2191 * The zio pipeline stage returns the next zio to execute 2192 * (typically the same as this one), or NULL if we should 2193 * stop. 2194 */ 2195 zio = zio_pipeline[highbit64(stage) - 1](zio); 2196 2197 if (zio == NULL) 2198 return; 2199 } 2200 } 2201 2202 2203 /* 2204 * ========================================================================== 2205 * Initiate I/O, either sync or async 2206 * ========================================================================== 2207 */ 2208 int 2209 zio_wait(zio_t *zio) 2210 { 2211 /* 2212 * Some routines, like zio_free_sync(), may return a NULL zio 2213 * to avoid the performance overhead of creating and then destroying 2214 * an unneeded zio. For the callers' simplicity, we accept a NULL 2215 * zio and ignore it. 2216 */ 2217 if (zio == NULL) 2218 return (0); 2219 2220 long timeout = MSEC_TO_TICK(zfs_deadman_ziotime_ms); 2221 int error; 2222 2223 ASSERT3S(zio->io_stage, ==, ZIO_STAGE_OPEN); 2224 ASSERT3P(zio->io_executor, ==, NULL); 2225 2226 zio->io_waiter = curthread; 2227 ASSERT0(zio->io_queued_timestamp); 2228 zio->io_queued_timestamp = gethrtime(); 2229 2230 __zio_execute(zio); 2231 2232 mutex_enter(&zio->io_lock); 2233 while (zio->io_executor != NULL) { 2234 error = cv_timedwait_io(&zio->io_cv, &zio->io_lock, 2235 ddi_get_lbolt() + timeout); 2236 2237 if (zfs_deadman_enabled && error == -1 && 2238 gethrtime() - zio->io_queued_timestamp > 2239 spa_deadman_ziotime(zio->io_spa)) { 2240 mutex_exit(&zio->io_lock); 2241 timeout = MSEC_TO_TICK(zfs_deadman_checktime_ms); 2242 zio_deadman(zio, FTAG); 2243 mutex_enter(&zio->io_lock); 2244 } 2245 } 2246 mutex_exit(&zio->io_lock); 2247 2248 error = zio->io_error; 2249 zio_destroy(zio); 2250 2251 return (error); 2252 } 2253 2254 void 2255 zio_nowait(zio_t *zio) 2256 { 2257 /* 2258 * See comment in zio_wait(). 2259 */ 2260 if (zio == NULL) 2261 return; 2262 2263 ASSERT3P(zio->io_executor, ==, NULL); 2264 2265 if (zio->io_child_type == ZIO_CHILD_LOGICAL && 2266 zio_unique_parent(zio) == NULL) { 2267 zio_t *pio; 2268 2269 /* 2270 * This is a logical async I/O with no parent to wait for it. 2271 * We add it to the spa_async_root_zio "Godfather" I/O which 2272 * will ensure they complete prior to unloading the pool. 2273 */ 2274 spa_t *spa = zio->io_spa; 2275 pio = spa->spa_async_zio_root[CPU_SEQID_UNSTABLE]; 2276 2277 zio_add_child(pio, zio); 2278 } 2279 2280 ASSERT0(zio->io_queued_timestamp); 2281 zio->io_queued_timestamp = gethrtime(); 2282 __zio_execute(zio); 2283 } 2284 2285 /* 2286 * ========================================================================== 2287 * Reexecute, cancel, or suspend/resume failed I/O 2288 * ========================================================================== 2289 */ 2290 2291 static void 2292 zio_reexecute(zio_t *pio) 2293 { 2294 zio_t *cio, *cio_next; 2295 2296 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL); 2297 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN); 2298 ASSERT(pio->io_gang_leader == NULL); 2299 ASSERT(pio->io_gang_tree == NULL); 2300 2301 pio->io_flags = pio->io_orig_flags; 2302 pio->io_stage = pio->io_orig_stage; 2303 pio->io_pipeline = pio->io_orig_pipeline; 2304 pio->io_reexecute = 0; 2305 pio->io_flags |= ZIO_FLAG_REEXECUTED; 2306 pio->io_pipeline_trace = 0; 2307 pio->io_error = 0; 2308 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 2309 pio->io_state[w] = 0; 2310 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 2311 pio->io_child_error[c] = 0; 2312 2313 if (IO_IS_ALLOCATING(pio)) 2314 BP_ZERO(pio->io_bp); 2315 2316 /* 2317 * As we reexecute pio's children, new children could be created. 2318 * New children go to the head of pio's io_child_list, however, 2319 * so we will (correctly) not reexecute them. The key is that 2320 * the remainder of pio's io_child_list, from 'cio_next' onward, 2321 * cannot be affected by any side effects of reexecuting 'cio'. 2322 */ 2323 zio_link_t *zl = NULL; 2324 mutex_enter(&pio->io_lock); 2325 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 2326 cio_next = zio_walk_children(pio, &zl); 2327 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 2328 pio->io_children[cio->io_child_type][w]++; 2329 mutex_exit(&pio->io_lock); 2330 zio_reexecute(cio); 2331 mutex_enter(&pio->io_lock); 2332 } 2333 mutex_exit(&pio->io_lock); 2334 2335 /* 2336 * Now that all children have been reexecuted, execute the parent. 2337 * We don't reexecute "The Godfather" I/O here as it's the 2338 * responsibility of the caller to wait on it. 2339 */ 2340 if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) { 2341 pio->io_queued_timestamp = gethrtime(); 2342 __zio_execute(pio); 2343 } 2344 } 2345 2346 void 2347 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason) 2348 { 2349 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC) 2350 fm_panic("Pool '%s' has encountered an uncorrectable I/O " 2351 "failure and the failure mode property for this pool " 2352 "is set to panic.", spa_name(spa)); 2353 2354 cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable I/O " 2355 "failure and has been suspended.\n", spa_name(spa)); 2356 2357 (void) zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, 2358 NULL, NULL, 0); 2359 2360 mutex_enter(&spa->spa_suspend_lock); 2361 2362 if (spa->spa_suspend_zio_root == NULL) 2363 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL, 2364 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 2365 ZIO_FLAG_GODFATHER); 2366 2367 spa->spa_suspended = reason; 2368 2369 if (zio != NULL) { 2370 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 2371 ASSERT(zio != spa->spa_suspend_zio_root); 2372 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2373 ASSERT(zio_unique_parent(zio) == NULL); 2374 ASSERT(zio->io_stage == ZIO_STAGE_DONE); 2375 zio_add_child(spa->spa_suspend_zio_root, zio); 2376 } 2377 2378 mutex_exit(&spa->spa_suspend_lock); 2379 } 2380 2381 int 2382 zio_resume(spa_t *spa) 2383 { 2384 zio_t *pio; 2385 2386 /* 2387 * Reexecute all previously suspended i/o. 2388 */ 2389 mutex_enter(&spa->spa_suspend_lock); 2390 spa->spa_suspended = ZIO_SUSPEND_NONE; 2391 cv_broadcast(&spa->spa_suspend_cv); 2392 pio = spa->spa_suspend_zio_root; 2393 spa->spa_suspend_zio_root = NULL; 2394 mutex_exit(&spa->spa_suspend_lock); 2395 2396 if (pio == NULL) 2397 return (0); 2398 2399 zio_reexecute(pio); 2400 return (zio_wait(pio)); 2401 } 2402 2403 void 2404 zio_resume_wait(spa_t *spa) 2405 { 2406 mutex_enter(&spa->spa_suspend_lock); 2407 while (spa_suspended(spa)) 2408 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock); 2409 mutex_exit(&spa->spa_suspend_lock); 2410 } 2411 2412 /* 2413 * ========================================================================== 2414 * Gang blocks. 2415 * 2416 * A gang block is a collection of small blocks that looks to the DMU 2417 * like one large block. When zio_dva_allocate() cannot find a block 2418 * of the requested size, due to either severe fragmentation or the pool 2419 * being nearly full, it calls zio_write_gang_block() to construct the 2420 * block from smaller fragments. 2421 * 2422 * A gang block consists of a gang header (zio_gbh_phys_t) and up to 2423 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like 2424 * an indirect block: it's an array of block pointers. It consumes 2425 * only one sector and hence is allocatable regardless of fragmentation. 2426 * The gang header's bps point to its gang members, which hold the data. 2427 * 2428 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg> 2429 * as the verifier to ensure uniqueness of the SHA256 checksum. 2430 * Critically, the gang block bp's blk_cksum is the checksum of the data, 2431 * not the gang header. This ensures that data block signatures (needed for 2432 * deduplication) are independent of how the block is physically stored. 2433 * 2434 * Gang blocks can be nested: a gang member may itself be a gang block. 2435 * Thus every gang block is a tree in which root and all interior nodes are 2436 * gang headers, and the leaves are normal blocks that contain user data. 2437 * The root of the gang tree is called the gang leader. 2438 * 2439 * To perform any operation (read, rewrite, free, claim) on a gang block, 2440 * zio_gang_assemble() first assembles the gang tree (minus data leaves) 2441 * in the io_gang_tree field of the original logical i/o by recursively 2442 * reading the gang leader and all gang headers below it. This yields 2443 * an in-core tree containing the contents of every gang header and the 2444 * bps for every constituent of the gang block. 2445 * 2446 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree 2447 * and invokes a callback on each bp. To free a gang block, zio_gang_issue() 2448 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp. 2449 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim(). 2450 * zio_read_gang() is a wrapper around zio_read() that omits reading gang 2451 * headers, since we already have those in io_gang_tree. zio_rewrite_gang() 2452 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite() 2453 * of the gang header plus zio_checksum_compute() of the data to update the 2454 * gang header's blk_cksum as described above. 2455 * 2456 * The two-phase assemble/issue model solves the problem of partial failure -- 2457 * what if you'd freed part of a gang block but then couldn't read the 2458 * gang header for another part? Assembling the entire gang tree first 2459 * ensures that all the necessary gang header I/O has succeeded before 2460 * starting the actual work of free, claim, or write. Once the gang tree 2461 * is assembled, free and claim are in-memory operations that cannot fail. 2462 * 2463 * In the event that a gang write fails, zio_dva_unallocate() walks the 2464 * gang tree to immediately free (i.e. insert back into the space map) 2465 * everything we've allocated. This ensures that we don't get ENOSPC 2466 * errors during repeated suspend/resume cycles due to a flaky device. 2467 * 2468 * Gang rewrites only happen during sync-to-convergence. If we can't assemble 2469 * the gang tree, we won't modify the block, so we can safely defer the free 2470 * (knowing that the block is still intact). If we *can* assemble the gang 2471 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free 2472 * each constituent bp and we can allocate a new block on the next sync pass. 2473 * 2474 * In all cases, the gang tree allows complete recovery from partial failure. 2475 * ========================================================================== 2476 */ 2477 2478 static void 2479 zio_gang_issue_func_done(zio_t *zio) 2480 { 2481 abd_free(zio->io_abd); 2482 } 2483 2484 static zio_t * 2485 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2486 uint64_t offset) 2487 { 2488 if (gn != NULL) 2489 return (pio); 2490 2491 return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset), 2492 BP_GET_PSIZE(bp), zio_gang_issue_func_done, 2493 NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 2494 &pio->io_bookmark)); 2495 } 2496 2497 static zio_t * 2498 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2499 uint64_t offset) 2500 { 2501 zio_t *zio; 2502 2503 if (gn != NULL) { 2504 abd_t *gbh_abd = 2505 abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2506 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 2507 gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL, 2508 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 2509 &pio->io_bookmark); 2510 /* 2511 * As we rewrite each gang header, the pipeline will compute 2512 * a new gang block header checksum for it; but no one will 2513 * compute a new data checksum, so we do that here. The one 2514 * exception is the gang leader: the pipeline already computed 2515 * its data checksum because that stage precedes gang assembly. 2516 * (Presently, nothing actually uses interior data checksums; 2517 * this is just good hygiene.) 2518 */ 2519 if (gn != pio->io_gang_leader->io_gang_tree) { 2520 abd_t *buf = abd_get_offset(data, offset); 2521 2522 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp), 2523 buf, BP_GET_PSIZE(bp)); 2524 2525 abd_free(buf); 2526 } 2527 /* 2528 * If we are here to damage data for testing purposes, 2529 * leave the GBH alone so that we can detect the damage. 2530 */ 2531 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE) 2532 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 2533 } else { 2534 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 2535 abd_get_offset(data, offset), BP_GET_PSIZE(bp), 2536 zio_gang_issue_func_done, NULL, pio->io_priority, 2537 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2538 } 2539 2540 return (zio); 2541 } 2542 2543 /* ARGSUSED */ 2544 static zio_t * 2545 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2546 uint64_t offset) 2547 { 2548 zio_t *zio = zio_free_sync(pio, pio->io_spa, pio->io_txg, bp, 2549 ZIO_GANG_CHILD_FLAGS(pio)); 2550 if (zio == NULL) { 2551 zio = zio_null(pio, pio->io_spa, 2552 NULL, NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)); 2553 } 2554 return (zio); 2555 } 2556 2557 /* ARGSUSED */ 2558 static zio_t * 2559 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2560 uint64_t offset) 2561 { 2562 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp, 2563 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio))); 2564 } 2565 2566 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = { 2567 NULL, 2568 zio_read_gang, 2569 zio_rewrite_gang, 2570 zio_free_gang, 2571 zio_claim_gang, 2572 NULL 2573 }; 2574 2575 static void zio_gang_tree_assemble_done(zio_t *zio); 2576 2577 static zio_gang_node_t * 2578 zio_gang_node_alloc(zio_gang_node_t **gnpp) 2579 { 2580 zio_gang_node_t *gn; 2581 2582 ASSERT(*gnpp == NULL); 2583 2584 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP); 2585 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE); 2586 *gnpp = gn; 2587 2588 return (gn); 2589 } 2590 2591 static void 2592 zio_gang_node_free(zio_gang_node_t **gnpp) 2593 { 2594 zio_gang_node_t *gn = *gnpp; 2595 2596 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 2597 ASSERT(gn->gn_child[g] == NULL); 2598 2599 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2600 kmem_free(gn, sizeof (*gn)); 2601 *gnpp = NULL; 2602 } 2603 2604 static void 2605 zio_gang_tree_free(zio_gang_node_t **gnpp) 2606 { 2607 zio_gang_node_t *gn = *gnpp; 2608 2609 if (gn == NULL) 2610 return; 2611 2612 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 2613 zio_gang_tree_free(&gn->gn_child[g]); 2614 2615 zio_gang_node_free(gnpp); 2616 } 2617 2618 static void 2619 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp) 2620 { 2621 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp); 2622 abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2623 2624 ASSERT(gio->io_gang_leader == gio); 2625 ASSERT(BP_IS_GANG(bp)); 2626 2627 zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE, 2628 zio_gang_tree_assemble_done, gn, gio->io_priority, 2629 ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark)); 2630 } 2631 2632 static void 2633 zio_gang_tree_assemble_done(zio_t *zio) 2634 { 2635 zio_t *gio = zio->io_gang_leader; 2636 zio_gang_node_t *gn = zio->io_private; 2637 blkptr_t *bp = zio->io_bp; 2638 2639 ASSERT(gio == zio_unique_parent(zio)); 2640 ASSERT(zio->io_child_count == 0); 2641 2642 if (zio->io_error) 2643 return; 2644 2645 /* this ABD was created from a linear buf in zio_gang_tree_assemble */ 2646 if (BP_SHOULD_BYTESWAP(bp)) 2647 byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size); 2648 2649 ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh); 2650 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE); 2651 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 2652 2653 abd_free(zio->io_abd); 2654 2655 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2656 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 2657 if (!BP_IS_GANG(gbp)) 2658 continue; 2659 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]); 2660 } 2661 } 2662 2663 static void 2664 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data, 2665 uint64_t offset) 2666 { 2667 zio_t *gio = pio->io_gang_leader; 2668 zio_t *zio; 2669 2670 ASSERT(BP_IS_GANG(bp) == !!gn); 2671 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp)); 2672 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree); 2673 2674 /* 2675 * If you're a gang header, your data is in gn->gn_gbh. 2676 * If you're a gang member, your data is in 'data' and gn == NULL. 2677 */ 2678 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset); 2679 2680 if (gn != NULL) { 2681 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 2682 2683 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2684 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 2685 if (BP_IS_HOLE(gbp)) 2686 continue; 2687 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data, 2688 offset); 2689 offset += BP_GET_PSIZE(gbp); 2690 } 2691 } 2692 2693 if (gn == gio->io_gang_tree) 2694 ASSERT3U(gio->io_size, ==, offset); 2695 2696 if (zio != pio) 2697 zio_nowait(zio); 2698 } 2699 2700 static zio_t * 2701 zio_gang_assemble(zio_t *zio) 2702 { 2703 blkptr_t *bp = zio->io_bp; 2704 2705 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL); 2706 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2707 2708 zio->io_gang_leader = zio; 2709 2710 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree); 2711 2712 return (zio); 2713 } 2714 2715 static zio_t * 2716 zio_gang_issue(zio_t *zio) 2717 { 2718 blkptr_t *bp = zio->io_bp; 2719 2720 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) { 2721 return (NULL); 2722 } 2723 2724 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio); 2725 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2726 2727 if (zio->io_child_error[ZIO_CHILD_GANG] == 0) 2728 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd, 2729 0); 2730 else 2731 zio_gang_tree_free(&zio->io_gang_tree); 2732 2733 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2734 2735 return (zio); 2736 } 2737 2738 static void 2739 zio_write_gang_member_ready(zio_t *zio) 2740 { 2741 zio_t *pio = zio_unique_parent(zio); 2742 dva_t *cdva = zio->io_bp->blk_dva; 2743 dva_t *pdva = pio->io_bp->blk_dva; 2744 uint64_t asize; 2745 zio_t *gio __maybe_unused = zio->io_gang_leader; 2746 2747 if (BP_IS_HOLE(zio->io_bp)) 2748 return; 2749 2750 ASSERT(BP_IS_HOLE(&zio->io_bp_orig)); 2751 2752 ASSERT(zio->io_child_type == ZIO_CHILD_GANG); 2753 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies); 2754 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp)); 2755 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp)); 2756 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp)); 2757 2758 mutex_enter(&pio->io_lock); 2759 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) { 2760 ASSERT(DVA_GET_GANG(&pdva[d])); 2761 asize = DVA_GET_ASIZE(&pdva[d]); 2762 asize += DVA_GET_ASIZE(&cdva[d]); 2763 DVA_SET_ASIZE(&pdva[d], asize); 2764 } 2765 mutex_exit(&pio->io_lock); 2766 } 2767 2768 static void 2769 zio_write_gang_done(zio_t *zio) 2770 { 2771 /* 2772 * The io_abd field will be NULL for a zio with no data. The io_flags 2773 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't 2774 * check for it here as it is cleared in zio_ready. 2775 */ 2776 if (zio->io_abd != NULL) 2777 abd_free(zio->io_abd); 2778 } 2779 2780 static zio_t * 2781 zio_write_gang_block(zio_t *pio, metaslab_class_t *mc) 2782 { 2783 spa_t *spa = pio->io_spa; 2784 blkptr_t *bp = pio->io_bp; 2785 zio_t *gio = pio->io_gang_leader; 2786 zio_t *zio; 2787 zio_gang_node_t *gn, **gnpp; 2788 zio_gbh_phys_t *gbh; 2789 abd_t *gbh_abd; 2790 uint64_t txg = pio->io_txg; 2791 uint64_t resid = pio->io_size; 2792 uint64_t lsize; 2793 int copies = gio->io_prop.zp_copies; 2794 int gbh_copies; 2795 zio_prop_t zp; 2796 int error; 2797 boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA); 2798 2799 /* 2800 * encrypted blocks need DVA[2] free so encrypted gang headers can't 2801 * have a third copy. 2802 */ 2803 gbh_copies = MIN(copies + 1, spa_max_replication(spa)); 2804 if (gio->io_prop.zp_encrypt && gbh_copies >= SPA_DVAS_PER_BP) 2805 gbh_copies = SPA_DVAS_PER_BP - 1; 2806 2807 int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER; 2808 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2809 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2810 ASSERT(has_data); 2811 2812 flags |= METASLAB_ASYNC_ALLOC; 2813 VERIFY(zfs_refcount_held(&mc->mc_allocator[pio->io_allocator]. 2814 mca_alloc_slots, pio)); 2815 2816 /* 2817 * The logical zio has already placed a reservation for 2818 * 'copies' allocation slots but gang blocks may require 2819 * additional copies. These additional copies 2820 * (i.e. gbh_copies - copies) are guaranteed to succeed 2821 * since metaslab_class_throttle_reserve() always allows 2822 * additional reservations for gang blocks. 2823 */ 2824 VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies, 2825 pio->io_allocator, pio, flags)); 2826 } 2827 2828 error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE, 2829 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags, 2830 &pio->io_alloc_list, pio, pio->io_allocator); 2831 if (error) { 2832 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2833 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2834 ASSERT(has_data); 2835 2836 /* 2837 * If we failed to allocate the gang block header then 2838 * we remove any additional allocation reservations that 2839 * we placed here. The original reservation will 2840 * be removed when the logical I/O goes to the ready 2841 * stage. 2842 */ 2843 metaslab_class_throttle_unreserve(mc, 2844 gbh_copies - copies, pio->io_allocator, pio); 2845 } 2846 2847 pio->io_error = error; 2848 return (pio); 2849 } 2850 2851 if (pio == gio) { 2852 gnpp = &gio->io_gang_tree; 2853 } else { 2854 gnpp = pio->io_private; 2855 ASSERT(pio->io_ready == zio_write_gang_member_ready); 2856 } 2857 2858 gn = zio_gang_node_alloc(gnpp); 2859 gbh = gn->gn_gbh; 2860 bzero(gbh, SPA_GANGBLOCKSIZE); 2861 gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE); 2862 2863 /* 2864 * Create the gang header. 2865 */ 2866 zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE, 2867 zio_write_gang_done, NULL, pio->io_priority, 2868 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2869 2870 /* 2871 * Create and nowait the gang children. 2872 */ 2873 for (int g = 0; resid != 0; resid -= lsize, g++) { 2874 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g), 2875 SPA_MINBLOCKSIZE); 2876 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid); 2877 2878 zp.zp_checksum = gio->io_prop.zp_checksum; 2879 zp.zp_compress = ZIO_COMPRESS_OFF; 2880 zp.zp_complevel = gio->io_prop.zp_complevel; 2881 zp.zp_type = DMU_OT_NONE; 2882 zp.zp_level = 0; 2883 zp.zp_copies = gio->io_prop.zp_copies; 2884 zp.zp_dedup = B_FALSE; 2885 zp.zp_dedup_verify = B_FALSE; 2886 zp.zp_nopwrite = B_FALSE; 2887 zp.zp_encrypt = gio->io_prop.zp_encrypt; 2888 zp.zp_byteorder = gio->io_prop.zp_byteorder; 2889 bzero(zp.zp_salt, ZIO_DATA_SALT_LEN); 2890 bzero(zp.zp_iv, ZIO_DATA_IV_LEN); 2891 bzero(zp.zp_mac, ZIO_DATA_MAC_LEN); 2892 2893 zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g], 2894 has_data ? abd_get_offset(pio->io_abd, pio->io_size - 2895 resid) : NULL, lsize, lsize, &zp, 2896 zio_write_gang_member_ready, NULL, NULL, 2897 zio_write_gang_done, &gn->gn_child[g], pio->io_priority, 2898 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2899 2900 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2901 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2902 ASSERT(has_data); 2903 2904 /* 2905 * Gang children won't throttle but we should 2906 * account for their work, so reserve an allocation 2907 * slot for them here. 2908 */ 2909 VERIFY(metaslab_class_throttle_reserve(mc, 2910 zp.zp_copies, cio->io_allocator, cio, flags)); 2911 } 2912 zio_nowait(cio); 2913 } 2914 2915 /* 2916 * Set pio's pipeline to just wait for zio to finish. 2917 */ 2918 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2919 2920 /* 2921 * We didn't allocate this bp, so make sure it doesn't get unmarked. 2922 */ 2923 pio->io_flags &= ~ZIO_FLAG_FASTWRITE; 2924 2925 zio_nowait(zio); 2926 2927 return (pio); 2928 } 2929 2930 /* 2931 * The zio_nop_write stage in the pipeline determines if allocating a 2932 * new bp is necessary. The nopwrite feature can handle writes in 2933 * either syncing or open context (i.e. zil writes) and as a result is 2934 * mutually exclusive with dedup. 2935 * 2936 * By leveraging a cryptographically secure checksum, such as SHA256, we 2937 * can compare the checksums of the new data and the old to determine if 2938 * allocating a new block is required. Note that our requirements for 2939 * cryptographic strength are fairly weak: there can't be any accidental 2940 * hash collisions, but we don't need to be secure against intentional 2941 * (malicious) collisions. To trigger a nopwrite, you have to be able 2942 * to write the file to begin with, and triggering an incorrect (hash 2943 * collision) nopwrite is no worse than simply writing to the file. 2944 * That said, there are no known attacks against the checksum algorithms 2945 * used for nopwrite, assuming that the salt and the checksums 2946 * themselves remain secret. 2947 */ 2948 static zio_t * 2949 zio_nop_write(zio_t *zio) 2950 { 2951 blkptr_t *bp = zio->io_bp; 2952 blkptr_t *bp_orig = &zio->io_bp_orig; 2953 zio_prop_t *zp = &zio->io_prop; 2954 2955 ASSERT(BP_GET_LEVEL(bp) == 0); 2956 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 2957 ASSERT(zp->zp_nopwrite); 2958 ASSERT(!zp->zp_dedup); 2959 ASSERT(zio->io_bp_override == NULL); 2960 ASSERT(IO_IS_ALLOCATING(zio)); 2961 2962 /* 2963 * Check to see if the original bp and the new bp have matching 2964 * characteristics (i.e. same checksum, compression algorithms, etc). 2965 * If they don't then just continue with the pipeline which will 2966 * allocate a new bp. 2967 */ 2968 if (BP_IS_HOLE(bp_orig) || 2969 !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags & 2970 ZCHECKSUM_FLAG_NOPWRITE) || 2971 BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) || 2972 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) || 2973 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) || 2974 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) || 2975 zp->zp_copies != BP_GET_NDVAS(bp_orig)) 2976 return (zio); 2977 2978 /* 2979 * If the checksums match then reset the pipeline so that we 2980 * avoid allocating a new bp and issuing any I/O. 2981 */ 2982 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) { 2983 ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags & 2984 ZCHECKSUM_FLAG_NOPWRITE); 2985 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig)); 2986 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig)); 2987 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF); 2988 ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop, 2989 sizeof (uint64_t)) == 0); 2990 2991 /* 2992 * If we're overwriting a block that is currently on an 2993 * indirect vdev, then ignore the nopwrite request and 2994 * allow a new block to be allocated on a concrete vdev. 2995 */ 2996 spa_config_enter(zio->io_spa, SCL_VDEV, FTAG, RW_READER); 2997 vdev_t *tvd = vdev_lookup_top(zio->io_spa, 2998 DVA_GET_VDEV(&bp->blk_dva[0])); 2999 if (tvd->vdev_ops == &vdev_indirect_ops) { 3000 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG); 3001 return (zio); 3002 } 3003 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG); 3004 3005 *bp = *bp_orig; 3006 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 3007 zio->io_flags |= ZIO_FLAG_NOPWRITE; 3008 } 3009 3010 return (zio); 3011 } 3012 3013 /* 3014 * ========================================================================== 3015 * Dedup 3016 * ========================================================================== 3017 */ 3018 static void 3019 zio_ddt_child_read_done(zio_t *zio) 3020 { 3021 blkptr_t *bp = zio->io_bp; 3022 ddt_entry_t *dde = zio->io_private; 3023 ddt_phys_t *ddp; 3024 zio_t *pio = zio_unique_parent(zio); 3025 3026 mutex_enter(&pio->io_lock); 3027 ddp = ddt_phys_select(dde, bp); 3028 if (zio->io_error == 0) 3029 ddt_phys_clear(ddp); /* this ddp doesn't need repair */ 3030 3031 if (zio->io_error == 0 && dde->dde_repair_abd == NULL) 3032 dde->dde_repair_abd = zio->io_abd; 3033 else 3034 abd_free(zio->io_abd); 3035 mutex_exit(&pio->io_lock); 3036 } 3037 3038 static zio_t * 3039 zio_ddt_read_start(zio_t *zio) 3040 { 3041 blkptr_t *bp = zio->io_bp; 3042 3043 ASSERT(BP_GET_DEDUP(bp)); 3044 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 3045 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3046 3047 if (zio->io_child_error[ZIO_CHILD_DDT]) { 3048 ddt_t *ddt = ddt_select(zio->io_spa, bp); 3049 ddt_entry_t *dde = ddt_repair_start(ddt, bp); 3050 ddt_phys_t *ddp = dde->dde_phys; 3051 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp); 3052 blkptr_t blk; 3053 3054 ASSERT(zio->io_vsd == NULL); 3055 zio->io_vsd = dde; 3056 3057 if (ddp_self == NULL) 3058 return (zio); 3059 3060 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 3061 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self) 3062 continue; 3063 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp, 3064 &blk); 3065 zio_nowait(zio_read(zio, zio->io_spa, &blk, 3066 abd_alloc_for_io(zio->io_size, B_TRUE), 3067 zio->io_size, zio_ddt_child_read_done, dde, 3068 zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) | 3069 ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark)); 3070 } 3071 return (zio); 3072 } 3073 3074 zio_nowait(zio_read(zio, zio->io_spa, bp, 3075 zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority, 3076 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark)); 3077 3078 return (zio); 3079 } 3080 3081 static zio_t * 3082 zio_ddt_read_done(zio_t *zio) 3083 { 3084 blkptr_t *bp = zio->io_bp; 3085 3086 if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) { 3087 return (NULL); 3088 } 3089 3090 ASSERT(BP_GET_DEDUP(bp)); 3091 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 3092 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3093 3094 if (zio->io_child_error[ZIO_CHILD_DDT]) { 3095 ddt_t *ddt = ddt_select(zio->io_spa, bp); 3096 ddt_entry_t *dde = zio->io_vsd; 3097 if (ddt == NULL) { 3098 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE); 3099 return (zio); 3100 } 3101 if (dde == NULL) { 3102 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1; 3103 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 3104 return (NULL); 3105 } 3106 if (dde->dde_repair_abd != NULL) { 3107 abd_copy(zio->io_abd, dde->dde_repair_abd, 3108 zio->io_size); 3109 zio->io_child_error[ZIO_CHILD_DDT] = 0; 3110 } 3111 ddt_repair_done(ddt, dde); 3112 zio->io_vsd = NULL; 3113 } 3114 3115 ASSERT(zio->io_vsd == NULL); 3116 3117 return (zio); 3118 } 3119 3120 static boolean_t 3121 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde) 3122 { 3123 spa_t *spa = zio->io_spa; 3124 boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW); 3125 3126 ASSERT(!(zio->io_bp_override && do_raw)); 3127 3128 /* 3129 * Note: we compare the original data, not the transformed data, 3130 * because when zio->io_bp is an override bp, we will not have 3131 * pushed the I/O transforms. That's an important optimization 3132 * because otherwise we'd compress/encrypt all dmu_sync() data twice. 3133 * However, we should never get a raw, override zio so in these 3134 * cases we can compare the io_abd directly. This is useful because 3135 * it allows us to do dedup verification even if we don't have access 3136 * to the original data (for instance, if the encryption keys aren't 3137 * loaded). 3138 */ 3139 3140 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 3141 zio_t *lio = dde->dde_lead_zio[p]; 3142 3143 if (lio != NULL && do_raw) { 3144 return (lio->io_size != zio->io_size || 3145 abd_cmp(zio->io_abd, lio->io_abd) != 0); 3146 } else if (lio != NULL) { 3147 return (lio->io_orig_size != zio->io_orig_size || 3148 abd_cmp(zio->io_orig_abd, lio->io_orig_abd) != 0); 3149 } 3150 } 3151 3152 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 3153 ddt_phys_t *ddp = &dde->dde_phys[p]; 3154 3155 if (ddp->ddp_phys_birth != 0 && do_raw) { 3156 blkptr_t blk = *zio->io_bp; 3157 uint64_t psize; 3158 abd_t *tmpabd; 3159 int error; 3160 3161 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth); 3162 psize = BP_GET_PSIZE(&blk); 3163 3164 if (psize != zio->io_size) 3165 return (B_TRUE); 3166 3167 ddt_exit(ddt); 3168 3169 tmpabd = abd_alloc_for_io(psize, B_TRUE); 3170 3171 error = zio_wait(zio_read(NULL, spa, &blk, tmpabd, 3172 psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ, 3173 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 3174 ZIO_FLAG_RAW, &zio->io_bookmark)); 3175 3176 if (error == 0) { 3177 if (abd_cmp(tmpabd, zio->io_abd) != 0) 3178 error = SET_ERROR(ENOENT); 3179 } 3180 3181 abd_free(tmpabd); 3182 ddt_enter(ddt); 3183 return (error != 0); 3184 } else if (ddp->ddp_phys_birth != 0) { 3185 arc_buf_t *abuf = NULL; 3186 arc_flags_t aflags = ARC_FLAG_WAIT; 3187 blkptr_t blk = *zio->io_bp; 3188 int error; 3189 3190 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth); 3191 3192 if (BP_GET_LSIZE(&blk) != zio->io_orig_size) 3193 return (B_TRUE); 3194 3195 ddt_exit(ddt); 3196 3197 error = arc_read(NULL, spa, &blk, 3198 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ, 3199 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 3200 &aflags, &zio->io_bookmark); 3201 3202 if (error == 0) { 3203 if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data, 3204 zio->io_orig_size) != 0) 3205 error = SET_ERROR(ENOENT); 3206 arc_buf_destroy(abuf, &abuf); 3207 } 3208 3209 ddt_enter(ddt); 3210 return (error != 0); 3211 } 3212 } 3213 3214 return (B_FALSE); 3215 } 3216 3217 static void 3218 zio_ddt_child_write_ready(zio_t *zio) 3219 { 3220 int p = zio->io_prop.zp_copies; 3221 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 3222 ddt_entry_t *dde = zio->io_private; 3223 ddt_phys_t *ddp = &dde->dde_phys[p]; 3224 zio_t *pio; 3225 3226 if (zio->io_error) 3227 return; 3228 3229 ddt_enter(ddt); 3230 3231 ASSERT(dde->dde_lead_zio[p] == zio); 3232 3233 ddt_phys_fill(ddp, zio->io_bp); 3234 3235 zio_link_t *zl = NULL; 3236 while ((pio = zio_walk_parents(zio, &zl)) != NULL) 3237 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg); 3238 3239 ddt_exit(ddt); 3240 } 3241 3242 static void 3243 zio_ddt_child_write_done(zio_t *zio) 3244 { 3245 int p = zio->io_prop.zp_copies; 3246 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 3247 ddt_entry_t *dde = zio->io_private; 3248 ddt_phys_t *ddp = &dde->dde_phys[p]; 3249 3250 ddt_enter(ddt); 3251 3252 ASSERT(ddp->ddp_refcnt == 0); 3253 ASSERT(dde->dde_lead_zio[p] == zio); 3254 dde->dde_lead_zio[p] = NULL; 3255 3256 if (zio->io_error == 0) { 3257 zio_link_t *zl = NULL; 3258 while (zio_walk_parents(zio, &zl) != NULL) 3259 ddt_phys_addref(ddp); 3260 } else { 3261 ddt_phys_clear(ddp); 3262 } 3263 3264 ddt_exit(ddt); 3265 } 3266 3267 static zio_t * 3268 zio_ddt_write(zio_t *zio) 3269 { 3270 spa_t *spa = zio->io_spa; 3271 blkptr_t *bp = zio->io_bp; 3272 uint64_t txg = zio->io_txg; 3273 zio_prop_t *zp = &zio->io_prop; 3274 int p = zp->zp_copies; 3275 zio_t *cio = NULL; 3276 ddt_t *ddt = ddt_select(spa, bp); 3277 ddt_entry_t *dde; 3278 ddt_phys_t *ddp; 3279 3280 ASSERT(BP_GET_DEDUP(bp)); 3281 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum); 3282 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override); 3283 ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW))); 3284 3285 ddt_enter(ddt); 3286 dde = ddt_lookup(ddt, bp, B_TRUE); 3287 ddp = &dde->dde_phys[p]; 3288 3289 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) { 3290 /* 3291 * If we're using a weak checksum, upgrade to a strong checksum 3292 * and try again. If we're already using a strong checksum, 3293 * we can't resolve it, so just convert to an ordinary write. 3294 * (And automatically e-mail a paper to Nature?) 3295 */ 3296 if (!(zio_checksum_table[zp->zp_checksum].ci_flags & 3297 ZCHECKSUM_FLAG_DEDUP)) { 3298 zp->zp_checksum = spa_dedup_checksum(spa); 3299 zio_pop_transforms(zio); 3300 zio->io_stage = ZIO_STAGE_OPEN; 3301 BP_ZERO(bp); 3302 } else { 3303 zp->zp_dedup = B_FALSE; 3304 BP_SET_DEDUP(bp, B_FALSE); 3305 } 3306 ASSERT(!BP_GET_DEDUP(bp)); 3307 zio->io_pipeline = ZIO_WRITE_PIPELINE; 3308 ddt_exit(ddt); 3309 return (zio); 3310 } 3311 3312 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) { 3313 if (ddp->ddp_phys_birth != 0) 3314 ddt_bp_fill(ddp, bp, txg); 3315 if (dde->dde_lead_zio[p] != NULL) 3316 zio_add_child(zio, dde->dde_lead_zio[p]); 3317 else 3318 ddt_phys_addref(ddp); 3319 } else if (zio->io_bp_override) { 3320 ASSERT(bp->blk_birth == txg); 3321 ASSERT(BP_EQUAL(bp, zio->io_bp_override)); 3322 ddt_phys_fill(ddp, bp); 3323 ddt_phys_addref(ddp); 3324 } else { 3325 cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd, 3326 zio->io_orig_size, zio->io_orig_size, zp, 3327 zio_ddt_child_write_ready, NULL, NULL, 3328 zio_ddt_child_write_done, dde, zio->io_priority, 3329 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark); 3330 3331 zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL); 3332 dde->dde_lead_zio[p] = cio; 3333 } 3334 3335 ddt_exit(ddt); 3336 3337 zio_nowait(cio); 3338 3339 return (zio); 3340 } 3341 3342 ddt_entry_t *freedde; /* for debugging */ 3343 3344 static zio_t * 3345 zio_ddt_free(zio_t *zio) 3346 { 3347 spa_t *spa = zio->io_spa; 3348 blkptr_t *bp = zio->io_bp; 3349 ddt_t *ddt = ddt_select(spa, bp); 3350 ddt_entry_t *dde; 3351 ddt_phys_t *ddp; 3352 3353 ASSERT(BP_GET_DEDUP(bp)); 3354 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3355 3356 ddt_enter(ddt); 3357 freedde = dde = ddt_lookup(ddt, bp, B_TRUE); 3358 if (dde) { 3359 ddp = ddt_phys_select(dde, bp); 3360 if (ddp) 3361 ddt_phys_decref(ddp); 3362 } 3363 ddt_exit(ddt); 3364 3365 return (zio); 3366 } 3367 3368 /* 3369 * ========================================================================== 3370 * Allocate and free blocks 3371 * ========================================================================== 3372 */ 3373 3374 static zio_t * 3375 zio_io_to_allocate(spa_t *spa, int allocator) 3376 { 3377 zio_t *zio; 3378 3379 ASSERT(MUTEX_HELD(&spa->spa_alloc_locks[allocator])); 3380 3381 zio = avl_first(&spa->spa_alloc_trees[allocator]); 3382 if (zio == NULL) 3383 return (NULL); 3384 3385 ASSERT(IO_IS_ALLOCATING(zio)); 3386 3387 /* 3388 * Try to place a reservation for this zio. If we're unable to 3389 * reserve then we throttle. 3390 */ 3391 ASSERT3U(zio->io_allocator, ==, allocator); 3392 if (!metaslab_class_throttle_reserve(zio->io_metaslab_class, 3393 zio->io_prop.zp_copies, zio->io_allocator, zio, 0)) { 3394 return (NULL); 3395 } 3396 3397 avl_remove(&spa->spa_alloc_trees[allocator], zio); 3398 ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE); 3399 3400 return (zio); 3401 } 3402 3403 static zio_t * 3404 zio_dva_throttle(zio_t *zio) 3405 { 3406 spa_t *spa = zio->io_spa; 3407 zio_t *nio; 3408 metaslab_class_t *mc; 3409 3410 /* locate an appropriate allocation class */ 3411 mc = spa_preferred_class(spa, zio->io_size, zio->io_prop.zp_type, 3412 zio->io_prop.zp_level, zio->io_prop.zp_zpl_smallblk); 3413 3414 if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE || 3415 !mc->mc_alloc_throttle_enabled || 3416 zio->io_child_type == ZIO_CHILD_GANG || 3417 zio->io_flags & ZIO_FLAG_NODATA) { 3418 return (zio); 3419 } 3420 3421 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 3422 3423 ASSERT3U(zio->io_queued_timestamp, >, 0); 3424 ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE); 3425 3426 zbookmark_phys_t *bm = &zio->io_bookmark; 3427 /* 3428 * We want to try to use as many allocators as possible to help improve 3429 * performance, but we also want logically adjacent IOs to be physically 3430 * adjacent to improve sequential read performance. We chunk each object 3431 * into 2^20 block regions, and then hash based on the objset, object, 3432 * level, and region to accomplish both of these goals. 3433 */ 3434 zio->io_allocator = cityhash4(bm->zb_objset, bm->zb_object, 3435 bm->zb_level, bm->zb_blkid >> 20) % spa->spa_alloc_count; 3436 mutex_enter(&spa->spa_alloc_locks[zio->io_allocator]); 3437 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 3438 zio->io_metaslab_class = mc; 3439 avl_add(&spa->spa_alloc_trees[zio->io_allocator], zio); 3440 nio = zio_io_to_allocate(spa, zio->io_allocator); 3441 mutex_exit(&spa->spa_alloc_locks[zio->io_allocator]); 3442 return (nio); 3443 } 3444 3445 static void 3446 zio_allocate_dispatch(spa_t *spa, int allocator) 3447 { 3448 zio_t *zio; 3449 3450 mutex_enter(&spa->spa_alloc_locks[allocator]); 3451 zio = zio_io_to_allocate(spa, allocator); 3452 mutex_exit(&spa->spa_alloc_locks[allocator]); 3453 if (zio == NULL) 3454 return; 3455 3456 ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE); 3457 ASSERT0(zio->io_error); 3458 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE); 3459 } 3460 3461 static zio_t * 3462 zio_dva_allocate(zio_t *zio) 3463 { 3464 spa_t *spa = zio->io_spa; 3465 metaslab_class_t *mc; 3466 blkptr_t *bp = zio->io_bp; 3467 int error; 3468 int flags = 0; 3469 3470 if (zio->io_gang_leader == NULL) { 3471 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 3472 zio->io_gang_leader = zio; 3473 } 3474 3475 ASSERT(BP_IS_HOLE(bp)); 3476 ASSERT0(BP_GET_NDVAS(bp)); 3477 ASSERT3U(zio->io_prop.zp_copies, >, 0); 3478 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa)); 3479 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp)); 3480 3481 flags |= (zio->io_flags & ZIO_FLAG_FASTWRITE) ? METASLAB_FASTWRITE : 0; 3482 if (zio->io_flags & ZIO_FLAG_NODATA) 3483 flags |= METASLAB_DONT_THROTTLE; 3484 if (zio->io_flags & ZIO_FLAG_GANG_CHILD) 3485 flags |= METASLAB_GANG_CHILD; 3486 if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE) 3487 flags |= METASLAB_ASYNC_ALLOC; 3488 3489 /* 3490 * if not already chosen, locate an appropriate allocation class 3491 */ 3492 mc = zio->io_metaslab_class; 3493 if (mc == NULL) { 3494 mc = spa_preferred_class(spa, zio->io_size, 3495 zio->io_prop.zp_type, zio->io_prop.zp_level, 3496 zio->io_prop.zp_zpl_smallblk); 3497 zio->io_metaslab_class = mc; 3498 } 3499 3500 /* 3501 * Try allocating the block in the usual metaslab class. 3502 * If that's full, allocate it in the normal class. 3503 * If that's full, allocate as a gang block, 3504 * and if all are full, the allocation fails (which shouldn't happen). 3505 * 3506 * Note that we do not fall back on embedded slog (ZIL) space, to 3507 * preserve unfragmented slog space, which is critical for decent 3508 * sync write performance. If a log allocation fails, we will fall 3509 * back to spa_sync() which is abysmal for performance. 3510 */ 3511 error = metaslab_alloc(spa, mc, zio->io_size, bp, 3512 zio->io_prop.zp_copies, zio->io_txg, NULL, flags, 3513 &zio->io_alloc_list, zio, zio->io_allocator); 3514 3515 /* 3516 * Fallback to normal class when an alloc class is full 3517 */ 3518 if (error == ENOSPC && mc != spa_normal_class(spa)) { 3519 /* 3520 * If throttling, transfer reservation over to normal class. 3521 * The io_allocator slot can remain the same even though we 3522 * are switching classes. 3523 */ 3524 if (mc->mc_alloc_throttle_enabled && 3525 (zio->io_flags & ZIO_FLAG_IO_ALLOCATING)) { 3526 metaslab_class_throttle_unreserve(mc, 3527 zio->io_prop.zp_copies, zio->io_allocator, zio); 3528 zio->io_flags &= ~ZIO_FLAG_IO_ALLOCATING; 3529 3530 VERIFY(metaslab_class_throttle_reserve( 3531 spa_normal_class(spa), 3532 zio->io_prop.zp_copies, zio->io_allocator, zio, 3533 flags | METASLAB_MUST_RESERVE)); 3534 } 3535 zio->io_metaslab_class = mc = spa_normal_class(spa); 3536 if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) { 3537 zfs_dbgmsg("%s: metaslab allocation failure, " 3538 "trying normal class: zio %px, size %llu, error %d", 3539 spa_name(spa), zio, zio->io_size, error); 3540 } 3541 3542 error = metaslab_alloc(spa, mc, zio->io_size, bp, 3543 zio->io_prop.zp_copies, zio->io_txg, NULL, flags, 3544 &zio->io_alloc_list, zio, zio->io_allocator); 3545 } 3546 3547 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) { 3548 if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) { 3549 zfs_dbgmsg("%s: metaslab allocation failure, " 3550 "trying ganging: zio %px, size %llu, error %d", 3551 spa_name(spa), zio, zio->io_size, error); 3552 } 3553 return (zio_write_gang_block(zio, mc)); 3554 } 3555 if (error != 0) { 3556 if (error != ENOSPC || 3557 (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC)) { 3558 zfs_dbgmsg("%s: metaslab allocation failure: zio %px, " 3559 "size %llu, error %d", 3560 spa_name(spa), zio, zio->io_size, error); 3561 } 3562 zio->io_error = error; 3563 } 3564 3565 return (zio); 3566 } 3567 3568 static zio_t * 3569 zio_dva_free(zio_t *zio) 3570 { 3571 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE); 3572 3573 return (zio); 3574 } 3575 3576 static zio_t * 3577 zio_dva_claim(zio_t *zio) 3578 { 3579 int error; 3580 3581 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg); 3582 if (error) 3583 zio->io_error = error; 3584 3585 return (zio); 3586 } 3587 3588 /* 3589 * Undo an allocation. This is used by zio_done() when an I/O fails 3590 * and we want to give back the block we just allocated. 3591 * This handles both normal blocks and gang blocks. 3592 */ 3593 static void 3594 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp) 3595 { 3596 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp)); 3597 ASSERT(zio->io_bp_override == NULL); 3598 3599 if (!BP_IS_HOLE(bp)) 3600 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE); 3601 3602 if (gn != NULL) { 3603 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 3604 zio_dva_unallocate(zio, gn->gn_child[g], 3605 &gn->gn_gbh->zg_blkptr[g]); 3606 } 3607 } 3608 } 3609 3610 /* 3611 * Try to allocate an intent log block. Return 0 on success, errno on failure. 3612 */ 3613 int 3614 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp, 3615 uint64_t size, boolean_t *slog) 3616 { 3617 int error = 1; 3618 zio_alloc_list_t io_alloc_list; 3619 3620 ASSERT(txg > spa_syncing_txg(spa)); 3621 3622 metaslab_trace_init(&io_alloc_list); 3623 3624 /* 3625 * Block pointer fields are useful to metaslabs for stats and debugging. 3626 * Fill in the obvious ones before calling into metaslab_alloc(). 3627 */ 3628 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 3629 BP_SET_PSIZE(new_bp, size); 3630 BP_SET_LEVEL(new_bp, 0); 3631 3632 /* 3633 * When allocating a zil block, we don't have information about 3634 * the final destination of the block except the objset it's part 3635 * of, so we just hash the objset ID to pick the allocator to get 3636 * some parallelism. 3637 */ 3638 int flags = METASLAB_FASTWRITE | METASLAB_ZIL; 3639 int allocator = cityhash4(0, 0, 0, os->os_dsl_dataset->ds_object) % 3640 spa->spa_alloc_count; 3641 error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1, 3642 txg, NULL, flags, &io_alloc_list, NULL, allocator); 3643 *slog = (error == 0); 3644 if (error != 0) { 3645 error = metaslab_alloc(spa, spa_embedded_log_class(spa), size, 3646 new_bp, 1, txg, NULL, flags, 3647 &io_alloc_list, NULL, allocator); 3648 } 3649 if (error != 0) { 3650 error = metaslab_alloc(spa, spa_normal_class(spa), size, 3651 new_bp, 1, txg, NULL, flags, 3652 &io_alloc_list, NULL, allocator); 3653 } 3654 metaslab_trace_fini(&io_alloc_list); 3655 3656 if (error == 0) { 3657 BP_SET_LSIZE(new_bp, size); 3658 BP_SET_PSIZE(new_bp, size); 3659 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF); 3660 BP_SET_CHECKSUM(new_bp, 3661 spa_version(spa) >= SPA_VERSION_SLIM_ZIL 3662 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG); 3663 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 3664 BP_SET_LEVEL(new_bp, 0); 3665 BP_SET_DEDUP(new_bp, 0); 3666 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER); 3667 3668 /* 3669 * encrypted blocks will require an IV and salt. We generate 3670 * these now since we will not be rewriting the bp at 3671 * rewrite time. 3672 */ 3673 if (os->os_encrypted) { 3674 uint8_t iv[ZIO_DATA_IV_LEN]; 3675 uint8_t salt[ZIO_DATA_SALT_LEN]; 3676 3677 BP_SET_CRYPT(new_bp, B_TRUE); 3678 VERIFY0(spa_crypt_get_salt(spa, 3679 dmu_objset_id(os), salt)); 3680 VERIFY0(zio_crypt_generate_iv(iv)); 3681 3682 zio_crypt_encode_params_bp(new_bp, salt, iv); 3683 } 3684 } else { 3685 zfs_dbgmsg("%s: zil block allocation failure: " 3686 "size %llu, error %d", spa_name(spa), size, error); 3687 } 3688 3689 return (error); 3690 } 3691 3692 /* 3693 * ========================================================================== 3694 * Read and write to physical devices 3695 * ========================================================================== 3696 */ 3697 3698 /* 3699 * Issue an I/O to the underlying vdev. Typically the issue pipeline 3700 * stops after this stage and will resume upon I/O completion. 3701 * However, there are instances where the vdev layer may need to 3702 * continue the pipeline when an I/O was not issued. Since the I/O 3703 * that was sent to the vdev layer might be different than the one 3704 * currently active in the pipeline (see vdev_queue_io()), we explicitly 3705 * force the underlying vdev layers to call either zio_execute() or 3706 * zio_interrupt() to ensure that the pipeline continues with the correct I/O. 3707 */ 3708 static zio_t * 3709 zio_vdev_io_start(zio_t *zio) 3710 { 3711 vdev_t *vd = zio->io_vd; 3712 uint64_t align; 3713 spa_t *spa = zio->io_spa; 3714 3715 zio->io_delay = 0; 3716 3717 ASSERT(zio->io_error == 0); 3718 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0); 3719 3720 if (vd == NULL) { 3721 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 3722 spa_config_enter(spa, SCL_ZIO, zio, RW_READER); 3723 3724 /* 3725 * The mirror_ops handle multiple DVAs in a single BP. 3726 */ 3727 vdev_mirror_ops.vdev_op_io_start(zio); 3728 return (NULL); 3729 } 3730 3731 ASSERT3P(zio->io_logical, !=, zio); 3732 if (zio->io_type == ZIO_TYPE_WRITE) { 3733 ASSERT(spa->spa_trust_config); 3734 3735 /* 3736 * Note: the code can handle other kinds of writes, 3737 * but we don't expect them. 3738 */ 3739 if (zio->io_vd->vdev_removing) { 3740 ASSERT(zio->io_flags & 3741 (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL | 3742 ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE)); 3743 } 3744 } 3745 3746 align = 1ULL << vd->vdev_top->vdev_ashift; 3747 3748 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) && 3749 P2PHASE(zio->io_size, align) != 0) { 3750 /* Transform logical writes to be a full physical block size. */ 3751 uint64_t asize = P2ROUNDUP(zio->io_size, align); 3752 abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize); 3753 ASSERT(vd == vd->vdev_top); 3754 if (zio->io_type == ZIO_TYPE_WRITE) { 3755 abd_copy(abuf, zio->io_abd, zio->io_size); 3756 abd_zero_off(abuf, zio->io_size, asize - zio->io_size); 3757 } 3758 zio_push_transform(zio, abuf, asize, asize, zio_subblock); 3759 } 3760 3761 /* 3762 * If this is not a physical io, make sure that it is properly aligned 3763 * before proceeding. 3764 */ 3765 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) { 3766 ASSERT0(P2PHASE(zio->io_offset, align)); 3767 ASSERT0(P2PHASE(zio->io_size, align)); 3768 } else { 3769 /* 3770 * For physical writes, we allow 512b aligned writes and assume 3771 * the device will perform a read-modify-write as necessary. 3772 */ 3773 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE)); 3774 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE)); 3775 } 3776 3777 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa)); 3778 3779 /* 3780 * If this is a repair I/O, and there's no self-healing involved -- 3781 * that is, we're just resilvering what we expect to resilver -- 3782 * then don't do the I/O unless zio's txg is actually in vd's DTL. 3783 * This prevents spurious resilvering. 3784 * 3785 * There are a few ways that we can end up creating these spurious 3786 * resilver i/os: 3787 * 3788 * 1. A resilver i/o will be issued if any DVA in the BP has a 3789 * dirty DTL. The mirror code will issue resilver writes to 3790 * each DVA, including the one(s) that are not on vdevs with dirty 3791 * DTLs. 3792 * 3793 * 2. With nested replication, which happens when we have a 3794 * "replacing" or "spare" vdev that's a child of a mirror or raidz. 3795 * For example, given mirror(replacing(A+B), C), it's likely that 3796 * only A is out of date (it's the new device). In this case, we'll 3797 * read from C, then use the data to resilver A+B -- but we don't 3798 * actually want to resilver B, just A. The top-level mirror has no 3799 * way to know this, so instead we just discard unnecessary repairs 3800 * as we work our way down the vdev tree. 3801 * 3802 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc. 3803 * The same logic applies to any form of nested replication: ditto 3804 * + mirror, RAID-Z + replacing, etc. 3805 * 3806 * However, indirect vdevs point off to other vdevs which may have 3807 * DTL's, so we never bypass them. The child i/os on concrete vdevs 3808 * will be properly bypassed instead. 3809 * 3810 * Leaf DTL_PARTIAL can be empty when a legitimate write comes from 3811 * a dRAID spare vdev. For example, when a dRAID spare is first 3812 * used, its spare blocks need to be written to but the leaf vdev's 3813 * of such blocks can have empty DTL_PARTIAL. 3814 * 3815 * There seemed no clean way to allow such writes while bypassing 3816 * spurious ones. At this point, just avoid all bypassing for dRAID 3817 * for correctness. 3818 */ 3819 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) && 3820 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) && 3821 zio->io_txg != 0 && /* not a delegated i/o */ 3822 vd->vdev_ops != &vdev_indirect_ops && 3823 vd->vdev_top->vdev_ops != &vdev_draid_ops && 3824 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) { 3825 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 3826 zio_vdev_io_bypass(zio); 3827 return (zio); 3828 } 3829 3830 /* 3831 * Select the next best leaf I/O to process. Distributed spares are 3832 * excluded since they dispatch the I/O directly to a leaf vdev after 3833 * applying the dRAID mapping. 3834 */ 3835 if (vd->vdev_ops->vdev_op_leaf && 3836 vd->vdev_ops != &vdev_draid_spare_ops && 3837 (zio->io_type == ZIO_TYPE_READ || 3838 zio->io_type == ZIO_TYPE_WRITE || 3839 zio->io_type == ZIO_TYPE_TRIM)) { 3840 3841 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio)) 3842 return (zio); 3843 3844 if ((zio = vdev_queue_io(zio)) == NULL) 3845 return (NULL); 3846 3847 if (!vdev_accessible(vd, zio)) { 3848 zio->io_error = SET_ERROR(ENXIO); 3849 zio_interrupt(zio); 3850 return (NULL); 3851 } 3852 zio->io_delay = gethrtime(); 3853 } 3854 3855 vd->vdev_ops->vdev_op_io_start(zio); 3856 return (NULL); 3857 } 3858 3859 static zio_t * 3860 zio_vdev_io_done(zio_t *zio) 3861 { 3862 vdev_t *vd = zio->io_vd; 3863 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops; 3864 boolean_t unexpected_error = B_FALSE; 3865 3866 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) { 3867 return (NULL); 3868 } 3869 3870 ASSERT(zio->io_type == ZIO_TYPE_READ || 3871 zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM); 3872 3873 if (zio->io_delay) 3874 zio->io_delay = gethrtime() - zio->io_delay; 3875 3876 if (vd != NULL && vd->vdev_ops->vdev_op_leaf && 3877 vd->vdev_ops != &vdev_draid_spare_ops) { 3878 vdev_queue_io_done(zio); 3879 3880 if (zio->io_type == ZIO_TYPE_WRITE) 3881 vdev_cache_write(zio); 3882 3883 if (zio_injection_enabled && zio->io_error == 0) 3884 zio->io_error = zio_handle_device_injections(vd, zio, 3885 EIO, EILSEQ); 3886 3887 if (zio_injection_enabled && zio->io_error == 0) 3888 zio->io_error = zio_handle_label_injection(zio, EIO); 3889 3890 if (zio->io_error && zio->io_type != ZIO_TYPE_TRIM) { 3891 if (!vdev_accessible(vd, zio)) { 3892 zio->io_error = SET_ERROR(ENXIO); 3893 } else { 3894 unexpected_error = B_TRUE; 3895 } 3896 } 3897 } 3898 3899 ops->vdev_op_io_done(zio); 3900 3901 if (unexpected_error) 3902 VERIFY(vdev_probe(vd, zio) == NULL); 3903 3904 return (zio); 3905 } 3906 3907 /* 3908 * This function is used to change the priority of an existing zio that is 3909 * currently in-flight. This is used by the arc to upgrade priority in the 3910 * event that a demand read is made for a block that is currently queued 3911 * as a scrub or async read IO. Otherwise, the high priority read request 3912 * would end up having to wait for the lower priority IO. 3913 */ 3914 void 3915 zio_change_priority(zio_t *pio, zio_priority_t priority) 3916 { 3917 zio_t *cio, *cio_next; 3918 zio_link_t *zl = NULL; 3919 3920 ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 3921 3922 if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) { 3923 vdev_queue_change_io_priority(pio, priority); 3924 } else { 3925 pio->io_priority = priority; 3926 } 3927 3928 mutex_enter(&pio->io_lock); 3929 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 3930 cio_next = zio_walk_children(pio, &zl); 3931 zio_change_priority(cio, priority); 3932 } 3933 mutex_exit(&pio->io_lock); 3934 } 3935 3936 /* 3937 * For non-raidz ZIOs, we can just copy aside the bad data read from the 3938 * disk, and use that to finish the checksum ereport later. 3939 */ 3940 static void 3941 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr, 3942 const abd_t *good_buf) 3943 { 3944 /* no processing needed */ 3945 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE); 3946 } 3947 3948 /*ARGSUSED*/ 3949 void 3950 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr) 3951 { 3952 void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size); 3953 3954 abd_copy(abd, zio->io_abd, zio->io_size); 3955 3956 zcr->zcr_cbinfo = zio->io_size; 3957 zcr->zcr_cbdata = abd; 3958 zcr->zcr_finish = zio_vsd_default_cksum_finish; 3959 zcr->zcr_free = zio_abd_free; 3960 } 3961 3962 static zio_t * 3963 zio_vdev_io_assess(zio_t *zio) 3964 { 3965 vdev_t *vd = zio->io_vd; 3966 3967 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) { 3968 return (NULL); 3969 } 3970 3971 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 3972 spa_config_exit(zio->io_spa, SCL_ZIO, zio); 3973 3974 if (zio->io_vsd != NULL) { 3975 zio->io_vsd_ops->vsd_free(zio); 3976 zio->io_vsd = NULL; 3977 } 3978 3979 if (zio_injection_enabled && zio->io_error == 0) 3980 zio->io_error = zio_handle_fault_injection(zio, EIO); 3981 3982 /* 3983 * If the I/O failed, determine whether we should attempt to retry it. 3984 * 3985 * On retry, we cut in line in the issue queue, since we don't want 3986 * compression/checksumming/etc. work to prevent our (cheap) IO reissue. 3987 */ 3988 if (zio->io_error && vd == NULL && 3989 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) { 3990 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */ 3991 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */ 3992 zio->io_error = 0; 3993 zio->io_flags |= ZIO_FLAG_IO_RETRY | 3994 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE; 3995 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1; 3996 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, 3997 zio_requeue_io_start_cut_in_line); 3998 return (NULL); 3999 } 4000 4001 /* 4002 * If we got an error on a leaf device, convert it to ENXIO 4003 * if the device is not accessible at all. 4004 */ 4005 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf && 4006 !vdev_accessible(vd, zio)) 4007 zio->io_error = SET_ERROR(ENXIO); 4008 4009 /* 4010 * If we can't write to an interior vdev (mirror or RAID-Z), 4011 * set vdev_cant_write so that we stop trying to allocate from it. 4012 */ 4013 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE && 4014 vd != NULL && !vd->vdev_ops->vdev_op_leaf) { 4015 vdev_dbgmsg(vd, "zio_vdev_io_assess(zio=%px) setting " 4016 "cant_write=TRUE due to write failure with ENXIO", 4017 zio); 4018 vd->vdev_cant_write = B_TRUE; 4019 } 4020 4021 /* 4022 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future 4023 * attempts will ever succeed. In this case we set a persistent 4024 * boolean flag so that we don't bother with it in the future. 4025 */ 4026 if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) && 4027 zio->io_type == ZIO_TYPE_IOCTL && 4028 zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL) 4029 vd->vdev_nowritecache = B_TRUE; 4030 4031 if (zio->io_error) 4032 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 4033 4034 if (vd != NULL && vd->vdev_ops->vdev_op_leaf && 4035 zio->io_physdone != NULL) { 4036 ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED)); 4037 ASSERT(zio->io_child_type == ZIO_CHILD_VDEV); 4038 zio->io_physdone(zio->io_logical); 4039 } 4040 4041 return (zio); 4042 } 4043 4044 void 4045 zio_vdev_io_reissue(zio_t *zio) 4046 { 4047 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 4048 ASSERT(zio->io_error == 0); 4049 4050 zio->io_stage >>= 1; 4051 } 4052 4053 void 4054 zio_vdev_io_redone(zio_t *zio) 4055 { 4056 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE); 4057 4058 zio->io_stage >>= 1; 4059 } 4060 4061 void 4062 zio_vdev_io_bypass(zio_t *zio) 4063 { 4064 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 4065 ASSERT(zio->io_error == 0); 4066 4067 zio->io_flags |= ZIO_FLAG_IO_BYPASS; 4068 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1; 4069 } 4070 4071 /* 4072 * ========================================================================== 4073 * Encrypt and store encryption parameters 4074 * ========================================================================== 4075 */ 4076 4077 4078 /* 4079 * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for 4080 * managing the storage of encryption parameters and passing them to the 4081 * lower-level encryption functions. 4082 */ 4083 static zio_t * 4084 zio_encrypt(zio_t *zio) 4085 { 4086 zio_prop_t *zp = &zio->io_prop; 4087 spa_t *spa = zio->io_spa; 4088 blkptr_t *bp = zio->io_bp; 4089 uint64_t psize = BP_GET_PSIZE(bp); 4090 uint64_t dsobj = zio->io_bookmark.zb_objset; 4091 dmu_object_type_t ot = BP_GET_TYPE(bp); 4092 void *enc_buf = NULL; 4093 abd_t *eabd = NULL; 4094 uint8_t salt[ZIO_DATA_SALT_LEN]; 4095 uint8_t iv[ZIO_DATA_IV_LEN]; 4096 uint8_t mac[ZIO_DATA_MAC_LEN]; 4097 boolean_t no_crypt = B_FALSE; 4098 4099 /* the root zio already encrypted the data */ 4100 if (zio->io_child_type == ZIO_CHILD_GANG) 4101 return (zio); 4102 4103 /* only ZIL blocks are re-encrypted on rewrite */ 4104 if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG) 4105 return (zio); 4106 4107 if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) { 4108 BP_SET_CRYPT(bp, B_FALSE); 4109 return (zio); 4110 } 4111 4112 /* if we are doing raw encryption set the provided encryption params */ 4113 if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) { 4114 ASSERT0(BP_GET_LEVEL(bp)); 4115 BP_SET_CRYPT(bp, B_TRUE); 4116 BP_SET_BYTEORDER(bp, zp->zp_byteorder); 4117 if (ot != DMU_OT_OBJSET) 4118 zio_crypt_encode_mac_bp(bp, zp->zp_mac); 4119 4120 /* dnode blocks must be written out in the provided byteorder */ 4121 if (zp->zp_byteorder != ZFS_HOST_BYTEORDER && 4122 ot == DMU_OT_DNODE) { 4123 void *bswap_buf = zio_buf_alloc(psize); 4124 abd_t *babd = abd_get_from_buf(bswap_buf, psize); 4125 4126 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 4127 abd_copy_to_buf(bswap_buf, zio->io_abd, psize); 4128 dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf, 4129 psize); 4130 4131 abd_take_ownership_of_buf(babd, B_TRUE); 4132 zio_push_transform(zio, babd, psize, psize, NULL); 4133 } 4134 4135 if (DMU_OT_IS_ENCRYPTED(ot)) 4136 zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv); 4137 return (zio); 4138 } 4139 4140 /* indirect blocks only maintain a cksum of the lower level MACs */ 4141 if (BP_GET_LEVEL(bp) > 0) { 4142 BP_SET_CRYPT(bp, B_TRUE); 4143 VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE, 4144 zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp), 4145 mac)); 4146 zio_crypt_encode_mac_bp(bp, mac); 4147 return (zio); 4148 } 4149 4150 /* 4151 * Objset blocks are a special case since they have 2 256-bit MACs 4152 * embedded within them. 4153 */ 4154 if (ot == DMU_OT_OBJSET) { 4155 ASSERT0(DMU_OT_IS_ENCRYPTED(ot)); 4156 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 4157 BP_SET_CRYPT(bp, B_TRUE); 4158 VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj, 4159 zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp))); 4160 return (zio); 4161 } 4162 4163 /* unencrypted object types are only authenticated with a MAC */ 4164 if (!DMU_OT_IS_ENCRYPTED(ot)) { 4165 BP_SET_CRYPT(bp, B_TRUE); 4166 VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj, 4167 zio->io_abd, psize, mac)); 4168 zio_crypt_encode_mac_bp(bp, mac); 4169 return (zio); 4170 } 4171 4172 /* 4173 * Later passes of sync-to-convergence may decide to rewrite data 4174 * in place to avoid more disk reallocations. This presents a problem 4175 * for encryption because this constitutes rewriting the new data with 4176 * the same encryption key and IV. However, this only applies to blocks 4177 * in the MOS (particularly the spacemaps) and we do not encrypt the 4178 * MOS. We assert that the zio is allocating or an intent log write 4179 * to enforce this. 4180 */ 4181 ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG); 4182 ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG); 4183 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION)); 4184 ASSERT3U(psize, !=, 0); 4185 4186 enc_buf = zio_buf_alloc(psize); 4187 eabd = abd_get_from_buf(enc_buf, psize); 4188 abd_take_ownership_of_buf(eabd, B_TRUE); 4189 4190 /* 4191 * For an explanation of what encryption parameters are stored 4192 * where, see the block comment in zio_crypt.c. 4193 */ 4194 if (ot == DMU_OT_INTENT_LOG) { 4195 zio_crypt_decode_params_bp(bp, salt, iv); 4196 } else { 4197 BP_SET_CRYPT(bp, B_TRUE); 4198 } 4199 4200 /* Perform the encryption. This should not fail */ 4201 VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark, 4202 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), 4203 salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt)); 4204 4205 /* encode encryption metadata into the bp */ 4206 if (ot == DMU_OT_INTENT_LOG) { 4207 /* 4208 * ZIL blocks store the MAC in the embedded checksum, so the 4209 * transform must always be applied. 4210 */ 4211 zio_crypt_encode_mac_zil(enc_buf, mac); 4212 zio_push_transform(zio, eabd, psize, psize, NULL); 4213 } else { 4214 BP_SET_CRYPT(bp, B_TRUE); 4215 zio_crypt_encode_params_bp(bp, salt, iv); 4216 zio_crypt_encode_mac_bp(bp, mac); 4217 4218 if (no_crypt) { 4219 ASSERT3U(ot, ==, DMU_OT_DNODE); 4220 abd_free(eabd); 4221 } else { 4222 zio_push_transform(zio, eabd, psize, psize, NULL); 4223 } 4224 } 4225 4226 return (zio); 4227 } 4228 4229 /* 4230 * ========================================================================== 4231 * Generate and verify checksums 4232 * ========================================================================== 4233 */ 4234 static zio_t * 4235 zio_checksum_generate(zio_t *zio) 4236 { 4237 blkptr_t *bp = zio->io_bp; 4238 enum zio_checksum checksum; 4239 4240 if (bp == NULL) { 4241 /* 4242 * This is zio_write_phys(). 4243 * We're either generating a label checksum, or none at all. 4244 */ 4245 checksum = zio->io_prop.zp_checksum; 4246 4247 if (checksum == ZIO_CHECKSUM_OFF) 4248 return (zio); 4249 4250 ASSERT(checksum == ZIO_CHECKSUM_LABEL); 4251 } else { 4252 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) { 4253 ASSERT(!IO_IS_ALLOCATING(zio)); 4254 checksum = ZIO_CHECKSUM_GANG_HEADER; 4255 } else { 4256 checksum = BP_GET_CHECKSUM(bp); 4257 } 4258 } 4259 4260 zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size); 4261 4262 return (zio); 4263 } 4264 4265 static zio_t * 4266 zio_checksum_verify(zio_t *zio) 4267 { 4268 zio_bad_cksum_t info; 4269 blkptr_t *bp = zio->io_bp; 4270 int error; 4271 4272 ASSERT(zio->io_vd != NULL); 4273 4274 if (bp == NULL) { 4275 /* 4276 * This is zio_read_phys(). 4277 * We're either verifying a label checksum, or nothing at all. 4278 */ 4279 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF) 4280 return (zio); 4281 4282 ASSERT3U(zio->io_prop.zp_checksum, ==, ZIO_CHECKSUM_LABEL); 4283 } 4284 4285 if ((error = zio_checksum_error(zio, &info)) != 0) { 4286 zio->io_error = error; 4287 if (error == ECKSUM && 4288 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 4289 (void) zfs_ereport_start_checksum(zio->io_spa, 4290 zio->io_vd, &zio->io_bookmark, zio, 4291 zio->io_offset, zio->io_size, &info); 4292 mutex_enter(&zio->io_vd->vdev_stat_lock); 4293 zio->io_vd->vdev_stat.vs_checksum_errors++; 4294 mutex_exit(&zio->io_vd->vdev_stat_lock); 4295 } 4296 } 4297 4298 return (zio); 4299 } 4300 4301 /* 4302 * Called by RAID-Z to ensure we don't compute the checksum twice. 4303 */ 4304 void 4305 zio_checksum_verified(zio_t *zio) 4306 { 4307 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 4308 } 4309 4310 /* 4311 * ========================================================================== 4312 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other. 4313 * An error of 0 indicates success. ENXIO indicates whole-device failure, 4314 * which may be transient (e.g. unplugged) or permanent. ECKSUM and EIO 4315 * indicate errors that are specific to one I/O, and most likely permanent. 4316 * Any other error is presumed to be worse because we weren't expecting it. 4317 * ========================================================================== 4318 */ 4319 int 4320 zio_worst_error(int e1, int e2) 4321 { 4322 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO }; 4323 int r1, r2; 4324 4325 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++) 4326 if (e1 == zio_error_rank[r1]) 4327 break; 4328 4329 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++) 4330 if (e2 == zio_error_rank[r2]) 4331 break; 4332 4333 return (r1 > r2 ? e1 : e2); 4334 } 4335 4336 /* 4337 * ========================================================================== 4338 * I/O completion 4339 * ========================================================================== 4340 */ 4341 static zio_t * 4342 zio_ready(zio_t *zio) 4343 { 4344 blkptr_t *bp = zio->io_bp; 4345 zio_t *pio, *pio_next; 4346 zio_link_t *zl = NULL; 4347 4348 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT, 4349 ZIO_WAIT_READY)) { 4350 return (NULL); 4351 } 4352 4353 if (zio->io_ready) { 4354 ASSERT(IO_IS_ALLOCATING(zio)); 4355 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) || 4356 (zio->io_flags & ZIO_FLAG_NOPWRITE)); 4357 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0); 4358 4359 zio->io_ready(zio); 4360 } 4361 4362 if (bp != NULL && bp != &zio->io_bp_copy) 4363 zio->io_bp_copy = *bp; 4364 4365 if (zio->io_error != 0) { 4366 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 4367 4368 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 4369 ASSERT(IO_IS_ALLOCATING(zio)); 4370 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 4371 ASSERT(zio->io_metaslab_class != NULL); 4372 4373 /* 4374 * We were unable to allocate anything, unreserve and 4375 * issue the next I/O to allocate. 4376 */ 4377 metaslab_class_throttle_unreserve( 4378 zio->io_metaslab_class, zio->io_prop.zp_copies, 4379 zio->io_allocator, zio); 4380 zio_allocate_dispatch(zio->io_spa, zio->io_allocator); 4381 } 4382 } 4383 4384 mutex_enter(&zio->io_lock); 4385 zio->io_state[ZIO_WAIT_READY] = 1; 4386 pio = zio_walk_parents(zio, &zl); 4387 mutex_exit(&zio->io_lock); 4388 4389 /* 4390 * As we notify zio's parents, new parents could be added. 4391 * New parents go to the head of zio's io_parent_list, however, 4392 * so we will (correctly) not notify them. The remainder of zio's 4393 * io_parent_list, from 'pio_next' onward, cannot change because 4394 * all parents must wait for us to be done before they can be done. 4395 */ 4396 for (; pio != NULL; pio = pio_next) { 4397 pio_next = zio_walk_parents(zio, &zl); 4398 zio_notify_parent(pio, zio, ZIO_WAIT_READY, NULL); 4399 } 4400 4401 if (zio->io_flags & ZIO_FLAG_NODATA) { 4402 if (BP_IS_GANG(bp)) { 4403 zio->io_flags &= ~ZIO_FLAG_NODATA; 4404 } else { 4405 ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE); 4406 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 4407 } 4408 } 4409 4410 if (zio_injection_enabled && 4411 zio->io_spa->spa_syncing_txg == zio->io_txg) 4412 zio_handle_ignored_writes(zio); 4413 4414 return (zio); 4415 } 4416 4417 /* 4418 * Update the allocation throttle accounting. 4419 */ 4420 static void 4421 zio_dva_throttle_done(zio_t *zio) 4422 { 4423 zio_t *lio __maybe_unused = zio->io_logical; 4424 zio_t *pio = zio_unique_parent(zio); 4425 vdev_t *vd = zio->io_vd; 4426 int flags = METASLAB_ASYNC_ALLOC; 4427 4428 ASSERT3P(zio->io_bp, !=, NULL); 4429 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE); 4430 ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE); 4431 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); 4432 ASSERT(vd != NULL); 4433 ASSERT3P(vd, ==, vd->vdev_top); 4434 ASSERT(zio_injection_enabled || !(zio->io_flags & ZIO_FLAG_IO_RETRY)); 4435 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR)); 4436 ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING); 4437 ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE)); 4438 ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA)); 4439 4440 /* 4441 * Parents of gang children can have two flavors -- ones that 4442 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set) 4443 * and ones that allocated the constituent blocks. The allocation 4444 * throttle needs to know the allocating parent zio so we must find 4445 * it here. 4446 */ 4447 if (pio->io_child_type == ZIO_CHILD_GANG) { 4448 /* 4449 * If our parent is a rewrite gang child then our grandparent 4450 * would have been the one that performed the allocation. 4451 */ 4452 if (pio->io_flags & ZIO_FLAG_IO_REWRITE) 4453 pio = zio_unique_parent(pio); 4454 flags |= METASLAB_GANG_CHILD; 4455 } 4456 4457 ASSERT(IO_IS_ALLOCATING(pio)); 4458 ASSERT3P(zio, !=, zio->io_logical); 4459 ASSERT(zio->io_logical != NULL); 4460 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR)); 4461 ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE); 4462 ASSERT(zio->io_metaslab_class != NULL); 4463 4464 mutex_enter(&pio->io_lock); 4465 metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags, 4466 pio->io_allocator, B_TRUE); 4467 mutex_exit(&pio->io_lock); 4468 4469 metaslab_class_throttle_unreserve(zio->io_metaslab_class, 1, 4470 pio->io_allocator, pio); 4471 4472 /* 4473 * Call into the pipeline to see if there is more work that 4474 * needs to be done. If there is work to be done it will be 4475 * dispatched to another taskq thread. 4476 */ 4477 zio_allocate_dispatch(zio->io_spa, pio->io_allocator); 4478 } 4479 4480 static zio_t * 4481 zio_done(zio_t *zio) 4482 { 4483 /* 4484 * Always attempt to keep stack usage minimal here since 4485 * we can be called recursively up to 19 levels deep. 4486 */ 4487 const uint64_t psize = zio->io_size; 4488 zio_t *pio, *pio_next; 4489 zio_link_t *zl = NULL; 4490 4491 /* 4492 * If our children haven't all completed, 4493 * wait for them and then repeat this pipeline stage. 4494 */ 4495 if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) { 4496 return (NULL); 4497 } 4498 4499 /* 4500 * If the allocation throttle is enabled, then update the accounting. 4501 * We only track child I/Os that are part of an allocating async 4502 * write. We must do this since the allocation is performed 4503 * by the logical I/O but the actual write is done by child I/Os. 4504 */ 4505 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING && 4506 zio->io_child_type == ZIO_CHILD_VDEV) { 4507 ASSERT(zio->io_metaslab_class != NULL); 4508 ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled); 4509 zio_dva_throttle_done(zio); 4510 } 4511 4512 /* 4513 * If the allocation throttle is enabled, verify that 4514 * we have decremented the refcounts for every I/O that was throttled. 4515 */ 4516 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 4517 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 4518 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 4519 ASSERT(zio->io_bp != NULL); 4520 4521 metaslab_group_alloc_verify(zio->io_spa, zio->io_bp, zio, 4522 zio->io_allocator); 4523 VERIFY(zfs_refcount_not_held(&zio->io_metaslab_class-> 4524 mc_allocator[zio->io_allocator].mca_alloc_slots, zio)); 4525 } 4526 4527 4528 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 4529 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 4530 ASSERT(zio->io_children[c][w] == 0); 4531 4532 if (zio->io_bp != NULL && !BP_IS_EMBEDDED(zio->io_bp)) { 4533 ASSERT(zio->io_bp->blk_pad[0] == 0); 4534 ASSERT(zio->io_bp->blk_pad[1] == 0); 4535 ASSERT(bcmp(zio->io_bp, &zio->io_bp_copy, 4536 sizeof (blkptr_t)) == 0 || 4537 (zio->io_bp == zio_unique_parent(zio)->io_bp)); 4538 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) && 4539 zio->io_bp_override == NULL && 4540 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) { 4541 ASSERT3U(zio->io_prop.zp_copies, <=, 4542 BP_GET_NDVAS(zio->io_bp)); 4543 ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 || 4544 (BP_COUNT_GANG(zio->io_bp) == 4545 BP_GET_NDVAS(zio->io_bp))); 4546 } 4547 if (zio->io_flags & ZIO_FLAG_NOPWRITE) 4548 VERIFY(BP_EQUAL(zio->io_bp, &zio->io_bp_orig)); 4549 } 4550 4551 /* 4552 * If there were child vdev/gang/ddt errors, they apply to us now. 4553 */ 4554 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV); 4555 zio_inherit_child_errors(zio, ZIO_CHILD_GANG); 4556 zio_inherit_child_errors(zio, ZIO_CHILD_DDT); 4557 4558 /* 4559 * If the I/O on the transformed data was successful, generate any 4560 * checksum reports now while we still have the transformed data. 4561 */ 4562 if (zio->io_error == 0) { 4563 while (zio->io_cksum_report != NULL) { 4564 zio_cksum_report_t *zcr = zio->io_cksum_report; 4565 uint64_t align = zcr->zcr_align; 4566 uint64_t asize = P2ROUNDUP(psize, align); 4567 abd_t *adata = zio->io_abd; 4568 4569 if (adata != NULL && asize != psize) { 4570 adata = abd_alloc(asize, B_TRUE); 4571 abd_copy(adata, zio->io_abd, psize); 4572 abd_zero_off(adata, psize, asize - psize); 4573 } 4574 4575 zio->io_cksum_report = zcr->zcr_next; 4576 zcr->zcr_next = NULL; 4577 zcr->zcr_finish(zcr, adata); 4578 zfs_ereport_free_checksum(zcr); 4579 4580 if (adata != NULL && asize != psize) 4581 abd_free(adata); 4582 } 4583 } 4584 4585 zio_pop_transforms(zio); /* note: may set zio->io_error */ 4586 4587 vdev_stat_update(zio, psize); 4588 4589 /* 4590 * If this I/O is attached to a particular vdev is slow, exceeding 4591 * 30 seconds to complete, post an error described the I/O delay. 4592 * We ignore these errors if the device is currently unavailable. 4593 */ 4594 if (zio->io_delay >= MSEC2NSEC(zio_slow_io_ms)) { 4595 if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) { 4596 /* 4597 * We want to only increment our slow IO counters if 4598 * the IO is valid (i.e. not if the drive is removed). 4599 * 4600 * zfs_ereport_post() will also do these checks, but 4601 * it can also ratelimit and have other failures, so we 4602 * need to increment the slow_io counters independent 4603 * of it. 4604 */ 4605 if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY, 4606 zio->io_spa, zio->io_vd, zio)) { 4607 mutex_enter(&zio->io_vd->vdev_stat_lock); 4608 zio->io_vd->vdev_stat.vs_slow_ios++; 4609 mutex_exit(&zio->io_vd->vdev_stat_lock); 4610 4611 (void) zfs_ereport_post(FM_EREPORT_ZFS_DELAY, 4612 zio->io_spa, zio->io_vd, &zio->io_bookmark, 4613 zio, 0); 4614 } 4615 } 4616 } 4617 4618 if (zio->io_error) { 4619 /* 4620 * If this I/O is attached to a particular vdev, 4621 * generate an error message describing the I/O failure 4622 * at the block level. We ignore these errors if the 4623 * device is currently unavailable. 4624 */ 4625 if (zio->io_error != ECKSUM && zio->io_vd != NULL && 4626 !vdev_is_dead(zio->io_vd)) { 4627 int ret = zfs_ereport_post(FM_EREPORT_ZFS_IO, 4628 zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0); 4629 if (ret != EALREADY) { 4630 mutex_enter(&zio->io_vd->vdev_stat_lock); 4631 if (zio->io_type == ZIO_TYPE_READ) 4632 zio->io_vd->vdev_stat.vs_read_errors++; 4633 else if (zio->io_type == ZIO_TYPE_WRITE) 4634 zio->io_vd->vdev_stat.vs_write_errors++; 4635 mutex_exit(&zio->io_vd->vdev_stat_lock); 4636 } 4637 } 4638 4639 if ((zio->io_error == EIO || !(zio->io_flags & 4640 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) && 4641 zio == zio->io_logical) { 4642 /* 4643 * For logical I/O requests, tell the SPA to log the 4644 * error and generate a logical data ereport. 4645 */ 4646 spa_log_error(zio->io_spa, &zio->io_bookmark); 4647 (void) zfs_ereport_post(FM_EREPORT_ZFS_DATA, 4648 zio->io_spa, NULL, &zio->io_bookmark, zio, 0); 4649 } 4650 } 4651 4652 if (zio->io_error && zio == zio->io_logical) { 4653 /* 4654 * Determine whether zio should be reexecuted. This will 4655 * propagate all the way to the root via zio_notify_parent(). 4656 */ 4657 ASSERT(zio->io_vd == NULL && zio->io_bp != NULL); 4658 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 4659 4660 if (IO_IS_ALLOCATING(zio) && 4661 !(zio->io_flags & ZIO_FLAG_CANFAIL)) { 4662 if (zio->io_error != ENOSPC) 4663 zio->io_reexecute |= ZIO_REEXECUTE_NOW; 4664 else 4665 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 4666 } 4667 4668 if ((zio->io_type == ZIO_TYPE_READ || 4669 zio->io_type == ZIO_TYPE_FREE) && 4670 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && 4671 zio->io_error == ENXIO && 4672 spa_load_state(zio->io_spa) == SPA_LOAD_NONE && 4673 spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE) 4674 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 4675 4676 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute) 4677 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 4678 4679 /* 4680 * Here is a possibly good place to attempt to do 4681 * either combinatorial reconstruction or error correction 4682 * based on checksums. It also might be a good place 4683 * to send out preliminary ereports before we suspend 4684 * processing. 4685 */ 4686 } 4687 4688 /* 4689 * If there were logical child errors, they apply to us now. 4690 * We defer this until now to avoid conflating logical child 4691 * errors with errors that happened to the zio itself when 4692 * updating vdev stats and reporting FMA events above. 4693 */ 4694 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL); 4695 4696 if ((zio->io_error || zio->io_reexecute) && 4697 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio && 4698 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE))) 4699 zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp); 4700 4701 zio_gang_tree_free(&zio->io_gang_tree); 4702 4703 /* 4704 * Godfather I/Os should never suspend. 4705 */ 4706 if ((zio->io_flags & ZIO_FLAG_GODFATHER) && 4707 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) 4708 zio->io_reexecute &= ~ZIO_REEXECUTE_SUSPEND; 4709 4710 if (zio->io_reexecute) { 4711 /* 4712 * This is a logical I/O that wants to reexecute. 4713 * 4714 * Reexecute is top-down. When an i/o fails, if it's not 4715 * the root, it simply notifies its parent and sticks around. 4716 * The parent, seeing that it still has children in zio_done(), 4717 * does the same. This percolates all the way up to the root. 4718 * The root i/o will reexecute or suspend the entire tree. 4719 * 4720 * This approach ensures that zio_reexecute() honors 4721 * all the original i/o dependency relationships, e.g. 4722 * parents not executing until children are ready. 4723 */ 4724 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 4725 4726 zio->io_gang_leader = NULL; 4727 4728 mutex_enter(&zio->io_lock); 4729 zio->io_state[ZIO_WAIT_DONE] = 1; 4730 mutex_exit(&zio->io_lock); 4731 4732 /* 4733 * "The Godfather" I/O monitors its children but is 4734 * not a true parent to them. It will track them through 4735 * the pipeline but severs its ties whenever they get into 4736 * trouble (e.g. suspended). This allows "The Godfather" 4737 * I/O to return status without blocking. 4738 */ 4739 zl = NULL; 4740 for (pio = zio_walk_parents(zio, &zl); pio != NULL; 4741 pio = pio_next) { 4742 zio_link_t *remove_zl = zl; 4743 pio_next = zio_walk_parents(zio, &zl); 4744 4745 if ((pio->io_flags & ZIO_FLAG_GODFATHER) && 4746 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) { 4747 zio_remove_child(pio, zio, remove_zl); 4748 /* 4749 * This is a rare code path, so we don't 4750 * bother with "next_to_execute". 4751 */ 4752 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, 4753 NULL); 4754 } 4755 } 4756 4757 if ((pio = zio_unique_parent(zio)) != NULL) { 4758 /* 4759 * We're not a root i/o, so there's nothing to do 4760 * but notify our parent. Don't propagate errors 4761 * upward since we haven't permanently failed yet. 4762 */ 4763 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 4764 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE; 4765 /* 4766 * This is a rare code path, so we don't bother with 4767 * "next_to_execute". 4768 */ 4769 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, NULL); 4770 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) { 4771 /* 4772 * We'd fail again if we reexecuted now, so suspend 4773 * until conditions improve (e.g. device comes online). 4774 */ 4775 zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR); 4776 } else { 4777 /* 4778 * Reexecution is potentially a huge amount of work. 4779 * Hand it off to the otherwise-unused claim taskq. 4780 */ 4781 ASSERT(taskq_empty_ent(&zio->io_tqent)); 4782 spa_taskq_dispatch_ent(zio->io_spa, 4783 ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE, 4784 (task_func_t *)zio_reexecute, zio, 0, 4785 &zio->io_tqent); 4786 } 4787 return (NULL); 4788 } 4789 4790 ASSERT(zio->io_child_count == 0); 4791 ASSERT(zio->io_reexecute == 0); 4792 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL)); 4793 4794 /* 4795 * Report any checksum errors, since the I/O is complete. 4796 */ 4797 while (zio->io_cksum_report != NULL) { 4798 zio_cksum_report_t *zcr = zio->io_cksum_report; 4799 zio->io_cksum_report = zcr->zcr_next; 4800 zcr->zcr_next = NULL; 4801 zcr->zcr_finish(zcr, NULL); 4802 zfs_ereport_free_checksum(zcr); 4803 } 4804 4805 if (zio->io_flags & ZIO_FLAG_FASTWRITE && zio->io_bp && 4806 !BP_IS_HOLE(zio->io_bp) && !BP_IS_EMBEDDED(zio->io_bp) && 4807 !(zio->io_flags & ZIO_FLAG_NOPWRITE)) { 4808 metaslab_fastwrite_unmark(zio->io_spa, zio->io_bp); 4809 } 4810 4811 /* 4812 * It is the responsibility of the done callback to ensure that this 4813 * particular zio is no longer discoverable for adoption, and as 4814 * such, cannot acquire any new parents. 4815 */ 4816 if (zio->io_done) 4817 zio->io_done(zio); 4818 4819 mutex_enter(&zio->io_lock); 4820 zio->io_state[ZIO_WAIT_DONE] = 1; 4821 mutex_exit(&zio->io_lock); 4822 4823 /* 4824 * We are done executing this zio. We may want to execute a parent 4825 * next. See the comment in zio_notify_parent(). 4826 */ 4827 zio_t *next_to_execute = NULL; 4828 zl = NULL; 4829 for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) { 4830 zio_link_t *remove_zl = zl; 4831 pio_next = zio_walk_parents(zio, &zl); 4832 zio_remove_child(pio, zio, remove_zl); 4833 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, &next_to_execute); 4834 } 4835 4836 if (zio->io_waiter != NULL) { 4837 mutex_enter(&zio->io_lock); 4838 zio->io_executor = NULL; 4839 cv_broadcast(&zio->io_cv); 4840 mutex_exit(&zio->io_lock); 4841 } else { 4842 zio_destroy(zio); 4843 } 4844 4845 return (next_to_execute); 4846 } 4847 4848 /* 4849 * ========================================================================== 4850 * I/O pipeline definition 4851 * ========================================================================== 4852 */ 4853 static zio_pipe_stage_t *zio_pipeline[] = { 4854 NULL, 4855 zio_read_bp_init, 4856 zio_write_bp_init, 4857 zio_free_bp_init, 4858 zio_issue_async, 4859 zio_write_compress, 4860 zio_encrypt, 4861 zio_checksum_generate, 4862 zio_nop_write, 4863 zio_ddt_read_start, 4864 zio_ddt_read_done, 4865 zio_ddt_write, 4866 zio_ddt_free, 4867 zio_gang_assemble, 4868 zio_gang_issue, 4869 zio_dva_throttle, 4870 zio_dva_allocate, 4871 zio_dva_free, 4872 zio_dva_claim, 4873 zio_ready, 4874 zio_vdev_io_start, 4875 zio_vdev_io_done, 4876 zio_vdev_io_assess, 4877 zio_checksum_verify, 4878 zio_done 4879 }; 4880 4881 4882 4883 4884 /* 4885 * Compare two zbookmark_phys_t's to see which we would reach first in a 4886 * pre-order traversal of the object tree. 4887 * 4888 * This is simple in every case aside from the meta-dnode object. For all other 4889 * objects, we traverse them in order (object 1 before object 2, and so on). 4890 * However, all of these objects are traversed while traversing object 0, since 4891 * the data it points to is the list of objects. Thus, we need to convert to a 4892 * canonical representation so we can compare meta-dnode bookmarks to 4893 * non-meta-dnode bookmarks. 4894 * 4895 * We do this by calculating "equivalents" for each field of the zbookmark. 4896 * zbookmarks outside of the meta-dnode use their own object and level, and 4897 * calculate the level 0 equivalent (the first L0 blkid that is contained in the 4898 * blocks this bookmark refers to) by multiplying their blkid by their span 4899 * (the number of L0 blocks contained within one block at their level). 4900 * zbookmarks inside the meta-dnode calculate their object equivalent 4901 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use 4902 * level + 1<<31 (any value larger than a level could ever be) for their level. 4903 * This causes them to always compare before a bookmark in their object 4904 * equivalent, compare appropriately to bookmarks in other objects, and to 4905 * compare appropriately to other bookmarks in the meta-dnode. 4906 */ 4907 int 4908 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2, 4909 const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2) 4910 { 4911 /* 4912 * These variables represent the "equivalent" values for the zbookmark, 4913 * after converting zbookmarks inside the meta dnode to their 4914 * normal-object equivalents. 4915 */ 4916 uint64_t zb1obj, zb2obj; 4917 uint64_t zb1L0, zb2L0; 4918 uint64_t zb1level, zb2level; 4919 4920 if (zb1->zb_object == zb2->zb_object && 4921 zb1->zb_level == zb2->zb_level && 4922 zb1->zb_blkid == zb2->zb_blkid) 4923 return (0); 4924 4925 IMPLY(zb1->zb_level > 0, ibs1 >= SPA_MINBLOCKSHIFT); 4926 IMPLY(zb2->zb_level > 0, ibs2 >= SPA_MINBLOCKSHIFT); 4927 4928 /* 4929 * BP_SPANB calculates the span in blocks. 4930 */ 4931 zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level); 4932 zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level); 4933 4934 if (zb1->zb_object == DMU_META_DNODE_OBJECT) { 4935 zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 4936 zb1L0 = 0; 4937 zb1level = zb1->zb_level + COMPARE_META_LEVEL; 4938 } else { 4939 zb1obj = zb1->zb_object; 4940 zb1level = zb1->zb_level; 4941 } 4942 4943 if (zb2->zb_object == DMU_META_DNODE_OBJECT) { 4944 zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 4945 zb2L0 = 0; 4946 zb2level = zb2->zb_level + COMPARE_META_LEVEL; 4947 } else { 4948 zb2obj = zb2->zb_object; 4949 zb2level = zb2->zb_level; 4950 } 4951 4952 /* Now that we have a canonical representation, do the comparison. */ 4953 if (zb1obj != zb2obj) 4954 return (zb1obj < zb2obj ? -1 : 1); 4955 else if (zb1L0 != zb2L0) 4956 return (zb1L0 < zb2L0 ? -1 : 1); 4957 else if (zb1level != zb2level) 4958 return (zb1level > zb2level ? -1 : 1); 4959 /* 4960 * This can (theoretically) happen if the bookmarks have the same object 4961 * and level, but different blkids, if the block sizes are not the same. 4962 * There is presently no way to change the indirect block sizes 4963 */ 4964 return (0); 4965 } 4966 4967 /* 4968 * This function checks the following: given that last_block is the place that 4969 * our traversal stopped last time, does that guarantee that we've visited 4970 * every node under subtree_root? Therefore, we can't just use the raw output 4971 * of zbookmark_compare. We have to pass in a modified version of 4972 * subtree_root; by incrementing the block id, and then checking whether 4973 * last_block is before or equal to that, we can tell whether or not having 4974 * visited last_block implies that all of subtree_root's children have been 4975 * visited. 4976 */ 4977 boolean_t 4978 zbookmark_subtree_completed(const dnode_phys_t *dnp, 4979 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block) 4980 { 4981 zbookmark_phys_t mod_zb = *subtree_root; 4982 mod_zb.zb_blkid++; 4983 ASSERT(last_block->zb_level == 0); 4984 4985 /* The objset_phys_t isn't before anything. */ 4986 if (dnp == NULL) 4987 return (B_FALSE); 4988 4989 /* 4990 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the 4991 * data block size in sectors, because that variable is only used if 4992 * the bookmark refers to a block in the meta-dnode. Since we don't 4993 * know without examining it what object it refers to, and there's no 4994 * harm in passing in this value in other cases, we always pass it in. 4995 * 4996 * We pass in 0 for the indirect block size shift because zb2 must be 4997 * level 0. The indirect block size is only used to calculate the span 4998 * of the bookmark, but since the bookmark must be level 0, the span is 4999 * always 1, so the math works out. 5000 * 5001 * If you make changes to how the zbookmark_compare code works, be sure 5002 * to make sure that this code still works afterwards. 5003 */ 5004 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift, 5005 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb, 5006 last_block) <= 0); 5007 } 5008 5009 EXPORT_SYMBOL(zio_type_name); 5010 EXPORT_SYMBOL(zio_buf_alloc); 5011 EXPORT_SYMBOL(zio_data_buf_alloc); 5012 EXPORT_SYMBOL(zio_buf_free); 5013 EXPORT_SYMBOL(zio_data_buf_free); 5014 5015 /* BEGIN CSTYLED */ 5016 ZFS_MODULE_PARAM(zfs_zio, zio_, slow_io_ms, INT, ZMOD_RW, 5017 "Max I/O completion time (milliseconds) before marking it as slow"); 5018 5019 ZFS_MODULE_PARAM(zfs_zio, zio_, requeue_io_start_cut_in_line, INT, ZMOD_RW, 5020 "Prioritize requeued I/O"); 5021 5022 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_deferred_free, INT, ZMOD_RW, 5023 "Defer frees starting in this pass"); 5024 5025 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_dont_compress, INT, ZMOD_RW, 5026 "Don't compress starting in this pass"); 5027 5028 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_rewrite, INT, ZMOD_RW, 5029 "Rewrite new bps starting in this pass"); 5030 5031 ZFS_MODULE_PARAM(zfs_zio, zio_, dva_throttle_enabled, INT, ZMOD_RW, 5032 "Throttle block allocations in the ZIO pipeline"); 5033 5034 ZFS_MODULE_PARAM(zfs_zio, zio_, deadman_log_all, INT, ZMOD_RW, 5035 "Log all slow ZIOs, not just those with vdevs"); 5036 /* END CSTYLED */ 5037