xref: /freebsd/sys/contrib/openzfs/module/zfs/zio.c (revision 79ac3c12a714bcd3f2354c52d948aed9575c46d6)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
24  * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25  * Copyright (c) 2017, Intel Corporation.
26  * Copyright (c) 2019, Klara Inc.
27  * Copyright (c) 2019, Allan Jude
28  * Copyright (c) 2021, Datto, Inc.
29  */
30 
31 #include <sys/sysmacros.h>
32 #include <sys/zfs_context.h>
33 #include <sys/fm/fs/zfs.h>
34 #include <sys/spa.h>
35 #include <sys/txg.h>
36 #include <sys/spa_impl.h>
37 #include <sys/vdev_impl.h>
38 #include <sys/vdev_trim.h>
39 #include <sys/zio_impl.h>
40 #include <sys/zio_compress.h>
41 #include <sys/zio_checksum.h>
42 #include <sys/dmu_objset.h>
43 #include <sys/arc.h>
44 #include <sys/ddt.h>
45 #include <sys/blkptr.h>
46 #include <sys/zfeature.h>
47 #include <sys/dsl_scan.h>
48 #include <sys/metaslab_impl.h>
49 #include <sys/time.h>
50 #include <sys/trace_zfs.h>
51 #include <sys/abd.h>
52 #include <sys/dsl_crypt.h>
53 #include <cityhash.h>
54 
55 /*
56  * ==========================================================================
57  * I/O type descriptions
58  * ==========================================================================
59  */
60 const char *zio_type_name[ZIO_TYPES] = {
61 	/*
62 	 * Note: Linux kernel thread name length is limited
63 	 * so these names will differ from upstream open zfs.
64 	 */
65 	"z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_ioctl", "z_trim"
66 };
67 
68 int zio_dva_throttle_enabled = B_TRUE;
69 int zio_deadman_log_all = B_FALSE;
70 
71 /*
72  * ==========================================================================
73  * I/O kmem caches
74  * ==========================================================================
75  */
76 kmem_cache_t *zio_cache;
77 kmem_cache_t *zio_link_cache;
78 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
79 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
80 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
81 uint64_t zio_buf_cache_allocs[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
82 uint64_t zio_buf_cache_frees[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
83 #endif
84 
85 /* Mark IOs as "slow" if they take longer than 30 seconds */
86 int zio_slow_io_ms = (30 * MILLISEC);
87 
88 #define	BP_SPANB(indblkshift, level) \
89 	(((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
90 #define	COMPARE_META_LEVEL	0x80000000ul
91 /*
92  * The following actions directly effect the spa's sync-to-convergence logic.
93  * The values below define the sync pass when we start performing the action.
94  * Care should be taken when changing these values as they directly impact
95  * spa_sync() performance. Tuning these values may introduce subtle performance
96  * pathologies and should only be done in the context of performance analysis.
97  * These tunables will eventually be removed and replaced with #defines once
98  * enough analysis has been done to determine optimal values.
99  *
100  * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
101  * regular blocks are not deferred.
102  *
103  * Starting in sync pass 8 (zfs_sync_pass_dont_compress), we disable
104  * compression (including of metadata).  In practice, we don't have this
105  * many sync passes, so this has no effect.
106  *
107  * The original intent was that disabling compression would help the sync
108  * passes to converge. However, in practice disabling compression increases
109  * the average number of sync passes, because when we turn compression off, a
110  * lot of block's size will change and thus we have to re-allocate (not
111  * overwrite) them. It also increases the number of 128KB allocations (e.g.
112  * for indirect blocks and spacemaps) because these will not be compressed.
113  * The 128K allocations are especially detrimental to performance on highly
114  * fragmented systems, which may have very few free segments of this size,
115  * and may need to load new metaslabs to satisfy 128K allocations.
116  */
117 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
118 int zfs_sync_pass_dont_compress = 8; /* don't compress starting in this pass */
119 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
120 
121 /*
122  * An allocating zio is one that either currently has the DVA allocate
123  * stage set or will have it later in its lifetime.
124  */
125 #define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
126 
127 /*
128  * Enable smaller cores by excluding metadata
129  * allocations as well.
130  */
131 int zio_exclude_metadata = 0;
132 int zio_requeue_io_start_cut_in_line = 1;
133 
134 #ifdef ZFS_DEBUG
135 int zio_buf_debug_limit = 16384;
136 #else
137 int zio_buf_debug_limit = 0;
138 #endif
139 
140 static inline void __zio_execute(zio_t *zio);
141 
142 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t);
143 
144 void
145 zio_init(void)
146 {
147 	size_t c;
148 
149 	zio_cache = kmem_cache_create("zio_cache",
150 	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
151 	zio_link_cache = kmem_cache_create("zio_link_cache",
152 	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
153 
154 	/*
155 	 * For small buffers, we want a cache for each multiple of
156 	 * SPA_MINBLOCKSIZE.  For larger buffers, we want a cache
157 	 * for each quarter-power of 2.
158 	 */
159 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
160 		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
161 		size_t p2 = size;
162 		size_t align = 0;
163 		size_t data_cflags, cflags;
164 
165 		data_cflags = KMC_NODEBUG;
166 		cflags = (zio_exclude_metadata || size > zio_buf_debug_limit) ?
167 		    KMC_NODEBUG : 0;
168 
169 #if defined(_ILP32) && defined(_KERNEL)
170 		/*
171 		 * Cache size limited to 1M on 32-bit platforms until ARC
172 		 * buffers no longer require virtual address space.
173 		 */
174 		if (size > zfs_max_recordsize)
175 			break;
176 #endif
177 
178 		while (!ISP2(p2))
179 			p2 &= p2 - 1;
180 
181 #ifndef _KERNEL
182 		/*
183 		 * If we are using watchpoints, put each buffer on its own page,
184 		 * to eliminate the performance overhead of trapping to the
185 		 * kernel when modifying a non-watched buffer that shares the
186 		 * page with a watched buffer.
187 		 */
188 		if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
189 			continue;
190 		/*
191 		 * Here's the problem - on 4K native devices in userland on
192 		 * Linux using O_DIRECT, buffers must be 4K aligned or I/O
193 		 * will fail with EINVAL, causing zdb (and others) to coredump.
194 		 * Since userland probably doesn't need optimized buffer caches,
195 		 * we just force 4K alignment on everything.
196 		 */
197 		align = 8 * SPA_MINBLOCKSIZE;
198 #else
199 		if (size < PAGESIZE) {
200 			align = SPA_MINBLOCKSIZE;
201 		} else if (IS_P2ALIGNED(size, p2 >> 2)) {
202 			align = PAGESIZE;
203 		}
204 #endif
205 
206 		if (align != 0) {
207 			char name[36];
208 			if (cflags == data_cflags) {
209 				/*
210 				 * Resulting kmem caches would be identical.
211 				 * Save memory by creating only one.
212 				 */
213 				(void) snprintf(name, sizeof (name),
214 				    "zio_buf_comb_%lu", (ulong_t)size);
215 				zio_buf_cache[c] = kmem_cache_create(name,
216 				    size, align, NULL, NULL, NULL, NULL, NULL,
217 				    cflags);
218 				zio_data_buf_cache[c] = zio_buf_cache[c];
219 				continue;
220 			}
221 			(void) snprintf(name, sizeof (name), "zio_buf_%lu",
222 			    (ulong_t)size);
223 			zio_buf_cache[c] = kmem_cache_create(name, size,
224 			    align, NULL, NULL, NULL, NULL, NULL, cflags);
225 
226 			(void) snprintf(name, sizeof (name), "zio_data_buf_%lu",
227 			    (ulong_t)size);
228 			zio_data_buf_cache[c] = kmem_cache_create(name, size,
229 			    align, NULL, NULL, NULL, NULL, NULL, data_cflags);
230 		}
231 	}
232 
233 	while (--c != 0) {
234 		ASSERT(zio_buf_cache[c] != NULL);
235 		if (zio_buf_cache[c - 1] == NULL)
236 			zio_buf_cache[c - 1] = zio_buf_cache[c];
237 
238 		ASSERT(zio_data_buf_cache[c] != NULL);
239 		if (zio_data_buf_cache[c - 1] == NULL)
240 			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
241 	}
242 
243 	zio_inject_init();
244 
245 	lz4_init();
246 }
247 
248 void
249 zio_fini(void)
250 {
251 	size_t n = SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT;
252 
253 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
254 	for (size_t i = 0; i < n; i++) {
255 		if (zio_buf_cache_allocs[i] != zio_buf_cache_frees[i])
256 			(void) printf("zio_fini: [%d] %llu != %llu\n",
257 			    (int)((i + 1) << SPA_MINBLOCKSHIFT),
258 			    (long long unsigned)zio_buf_cache_allocs[i],
259 			    (long long unsigned)zio_buf_cache_frees[i]);
260 	}
261 #endif
262 
263 	/*
264 	 * The same kmem cache can show up multiple times in both zio_buf_cache
265 	 * and zio_data_buf_cache. Do a wasteful but trivially correct scan to
266 	 * sort it out.
267 	 */
268 	for (size_t i = 0; i < n; i++) {
269 		kmem_cache_t *cache = zio_buf_cache[i];
270 		if (cache == NULL)
271 			continue;
272 		for (size_t j = i; j < n; j++) {
273 			if (cache == zio_buf_cache[j])
274 				zio_buf_cache[j] = NULL;
275 			if (cache == zio_data_buf_cache[j])
276 				zio_data_buf_cache[j] = NULL;
277 		}
278 		kmem_cache_destroy(cache);
279 	}
280 
281 	for (size_t i = 0; i < n; i++) {
282 		kmem_cache_t *cache = zio_data_buf_cache[i];
283 		if (cache == NULL)
284 			continue;
285 		for (size_t j = i; j < n; j++) {
286 			if (cache == zio_data_buf_cache[j])
287 				zio_data_buf_cache[j] = NULL;
288 		}
289 		kmem_cache_destroy(cache);
290 	}
291 
292 	for (size_t i = 0; i < n; i++) {
293 		VERIFY3P(zio_buf_cache[i], ==, NULL);
294 		VERIFY3P(zio_data_buf_cache[i], ==, NULL);
295 	}
296 
297 	kmem_cache_destroy(zio_link_cache);
298 	kmem_cache_destroy(zio_cache);
299 
300 	zio_inject_fini();
301 
302 	lz4_fini();
303 }
304 
305 /*
306  * ==========================================================================
307  * Allocate and free I/O buffers
308  * ==========================================================================
309  */
310 
311 /*
312  * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
313  * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
314  * useful to inspect ZFS metadata, but if possible, we should avoid keeping
315  * excess / transient data in-core during a crashdump.
316  */
317 void *
318 zio_buf_alloc(size_t size)
319 {
320 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
321 
322 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
323 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
324 	atomic_add_64(&zio_buf_cache_allocs[c], 1);
325 #endif
326 
327 	return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
328 }
329 
330 /*
331  * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
332  * crashdump if the kernel panics.  This exists so that we will limit the amount
333  * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
334  * of kernel heap dumped to disk when the kernel panics)
335  */
336 void *
337 zio_data_buf_alloc(size_t size)
338 {
339 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
340 
341 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
342 
343 	return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
344 }
345 
346 void
347 zio_buf_free(void *buf, size_t size)
348 {
349 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
350 
351 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
352 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
353 	atomic_add_64(&zio_buf_cache_frees[c], 1);
354 #endif
355 
356 	kmem_cache_free(zio_buf_cache[c], buf);
357 }
358 
359 void
360 zio_data_buf_free(void *buf, size_t size)
361 {
362 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
363 
364 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
365 
366 	kmem_cache_free(zio_data_buf_cache[c], buf);
367 }
368 
369 static void
370 zio_abd_free(void *abd, size_t size)
371 {
372 	abd_free((abd_t *)abd);
373 }
374 
375 /*
376  * ==========================================================================
377  * Push and pop I/O transform buffers
378  * ==========================================================================
379  */
380 void
381 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize,
382     zio_transform_func_t *transform)
383 {
384 	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
385 
386 	zt->zt_orig_abd = zio->io_abd;
387 	zt->zt_orig_size = zio->io_size;
388 	zt->zt_bufsize = bufsize;
389 	zt->zt_transform = transform;
390 
391 	zt->zt_next = zio->io_transform_stack;
392 	zio->io_transform_stack = zt;
393 
394 	zio->io_abd = data;
395 	zio->io_size = size;
396 }
397 
398 void
399 zio_pop_transforms(zio_t *zio)
400 {
401 	zio_transform_t *zt;
402 
403 	while ((zt = zio->io_transform_stack) != NULL) {
404 		if (zt->zt_transform != NULL)
405 			zt->zt_transform(zio,
406 			    zt->zt_orig_abd, zt->zt_orig_size);
407 
408 		if (zt->zt_bufsize != 0)
409 			abd_free(zio->io_abd);
410 
411 		zio->io_abd = zt->zt_orig_abd;
412 		zio->io_size = zt->zt_orig_size;
413 		zio->io_transform_stack = zt->zt_next;
414 
415 		kmem_free(zt, sizeof (zio_transform_t));
416 	}
417 }
418 
419 /*
420  * ==========================================================================
421  * I/O transform callbacks for subblocks, decompression, and decryption
422  * ==========================================================================
423  */
424 static void
425 zio_subblock(zio_t *zio, abd_t *data, uint64_t size)
426 {
427 	ASSERT(zio->io_size > size);
428 
429 	if (zio->io_type == ZIO_TYPE_READ)
430 		abd_copy(data, zio->io_abd, size);
431 }
432 
433 static void
434 zio_decompress(zio_t *zio, abd_t *data, uint64_t size)
435 {
436 	if (zio->io_error == 0) {
437 		void *tmp = abd_borrow_buf(data, size);
438 		int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
439 		    zio->io_abd, tmp, zio->io_size, size,
440 		    &zio->io_prop.zp_complevel);
441 		abd_return_buf_copy(data, tmp, size);
442 
443 		if (zio_injection_enabled && ret == 0)
444 			ret = zio_handle_fault_injection(zio, EINVAL);
445 
446 		if (ret != 0)
447 			zio->io_error = SET_ERROR(EIO);
448 	}
449 }
450 
451 static void
452 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size)
453 {
454 	int ret;
455 	void *tmp;
456 	blkptr_t *bp = zio->io_bp;
457 	spa_t *spa = zio->io_spa;
458 	uint64_t dsobj = zio->io_bookmark.zb_objset;
459 	uint64_t lsize = BP_GET_LSIZE(bp);
460 	dmu_object_type_t ot = BP_GET_TYPE(bp);
461 	uint8_t salt[ZIO_DATA_SALT_LEN];
462 	uint8_t iv[ZIO_DATA_IV_LEN];
463 	uint8_t mac[ZIO_DATA_MAC_LEN];
464 	boolean_t no_crypt = B_FALSE;
465 
466 	ASSERT(BP_USES_CRYPT(bp));
467 	ASSERT3U(size, !=, 0);
468 
469 	if (zio->io_error != 0)
470 		return;
471 
472 	/*
473 	 * Verify the cksum of MACs stored in an indirect bp. It will always
474 	 * be possible to verify this since it does not require an encryption
475 	 * key.
476 	 */
477 	if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) {
478 		zio_crypt_decode_mac_bp(bp, mac);
479 
480 		if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) {
481 			/*
482 			 * We haven't decompressed the data yet, but
483 			 * zio_crypt_do_indirect_mac_checksum() requires
484 			 * decompressed data to be able to parse out the MACs
485 			 * from the indirect block. We decompress it now and
486 			 * throw away the result after we are finished.
487 			 */
488 			tmp = zio_buf_alloc(lsize);
489 			ret = zio_decompress_data(BP_GET_COMPRESS(bp),
490 			    zio->io_abd, tmp, zio->io_size, lsize,
491 			    &zio->io_prop.zp_complevel);
492 			if (ret != 0) {
493 				ret = SET_ERROR(EIO);
494 				goto error;
495 			}
496 			ret = zio_crypt_do_indirect_mac_checksum(B_FALSE,
497 			    tmp, lsize, BP_SHOULD_BYTESWAP(bp), mac);
498 			zio_buf_free(tmp, lsize);
499 		} else {
500 			ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE,
501 			    zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac);
502 		}
503 		abd_copy(data, zio->io_abd, size);
504 
505 		if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) {
506 			ret = zio_handle_decrypt_injection(spa,
507 			    &zio->io_bookmark, ot, ECKSUM);
508 		}
509 		if (ret != 0)
510 			goto error;
511 
512 		return;
513 	}
514 
515 	/*
516 	 * If this is an authenticated block, just check the MAC. It would be
517 	 * nice to separate this out into its own flag, but for the moment
518 	 * enum zio_flag is out of bits.
519 	 */
520 	if (BP_IS_AUTHENTICATED(bp)) {
521 		if (ot == DMU_OT_OBJSET) {
522 			ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa,
523 			    dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp));
524 		} else {
525 			zio_crypt_decode_mac_bp(bp, mac);
526 			ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj,
527 			    zio->io_abd, size, mac);
528 			if (zio_injection_enabled && ret == 0) {
529 				ret = zio_handle_decrypt_injection(spa,
530 				    &zio->io_bookmark, ot, ECKSUM);
531 			}
532 		}
533 		abd_copy(data, zio->io_abd, size);
534 
535 		if (ret != 0)
536 			goto error;
537 
538 		return;
539 	}
540 
541 	zio_crypt_decode_params_bp(bp, salt, iv);
542 
543 	if (ot == DMU_OT_INTENT_LOG) {
544 		tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t));
545 		zio_crypt_decode_mac_zil(tmp, mac);
546 		abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t));
547 	} else {
548 		zio_crypt_decode_mac_bp(bp, mac);
549 	}
550 
551 	ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp),
552 	    BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data,
553 	    zio->io_abd, &no_crypt);
554 	if (no_crypt)
555 		abd_copy(data, zio->io_abd, size);
556 
557 	if (ret != 0)
558 		goto error;
559 
560 	return;
561 
562 error:
563 	/* assert that the key was found unless this was speculative */
564 	ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE));
565 
566 	/*
567 	 * If there was a decryption / authentication error return EIO as
568 	 * the io_error. If this was not a speculative zio, create an ereport.
569 	 */
570 	if (ret == ECKSUM) {
571 		zio->io_error = SET_ERROR(EIO);
572 		if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
573 			spa_log_error(spa, &zio->io_bookmark);
574 			(void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
575 			    spa, NULL, &zio->io_bookmark, zio, 0);
576 		}
577 	} else {
578 		zio->io_error = ret;
579 	}
580 }
581 
582 /*
583  * ==========================================================================
584  * I/O parent/child relationships and pipeline interlocks
585  * ==========================================================================
586  */
587 zio_t *
588 zio_walk_parents(zio_t *cio, zio_link_t **zl)
589 {
590 	list_t *pl = &cio->io_parent_list;
591 
592 	*zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl);
593 	if (*zl == NULL)
594 		return (NULL);
595 
596 	ASSERT((*zl)->zl_child == cio);
597 	return ((*zl)->zl_parent);
598 }
599 
600 zio_t *
601 zio_walk_children(zio_t *pio, zio_link_t **zl)
602 {
603 	list_t *cl = &pio->io_child_list;
604 
605 	ASSERT(MUTEX_HELD(&pio->io_lock));
606 
607 	*zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl);
608 	if (*zl == NULL)
609 		return (NULL);
610 
611 	ASSERT((*zl)->zl_parent == pio);
612 	return ((*zl)->zl_child);
613 }
614 
615 zio_t *
616 zio_unique_parent(zio_t *cio)
617 {
618 	zio_link_t *zl = NULL;
619 	zio_t *pio = zio_walk_parents(cio, &zl);
620 
621 	VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL);
622 	return (pio);
623 }
624 
625 void
626 zio_add_child(zio_t *pio, zio_t *cio)
627 {
628 	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
629 
630 	/*
631 	 * Logical I/Os can have logical, gang, or vdev children.
632 	 * Gang I/Os can have gang or vdev children.
633 	 * Vdev I/Os can only have vdev children.
634 	 * The following ASSERT captures all of these constraints.
635 	 */
636 	ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
637 
638 	zl->zl_parent = pio;
639 	zl->zl_child = cio;
640 
641 	mutex_enter(&pio->io_lock);
642 	mutex_enter(&cio->io_lock);
643 
644 	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
645 
646 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
647 		pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
648 
649 	list_insert_head(&pio->io_child_list, zl);
650 	list_insert_head(&cio->io_parent_list, zl);
651 
652 	pio->io_child_count++;
653 	cio->io_parent_count++;
654 
655 	mutex_exit(&cio->io_lock);
656 	mutex_exit(&pio->io_lock);
657 }
658 
659 static void
660 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
661 {
662 	ASSERT(zl->zl_parent == pio);
663 	ASSERT(zl->zl_child == cio);
664 
665 	mutex_enter(&pio->io_lock);
666 	mutex_enter(&cio->io_lock);
667 
668 	list_remove(&pio->io_child_list, zl);
669 	list_remove(&cio->io_parent_list, zl);
670 
671 	pio->io_child_count--;
672 	cio->io_parent_count--;
673 
674 	mutex_exit(&cio->io_lock);
675 	mutex_exit(&pio->io_lock);
676 	kmem_cache_free(zio_link_cache, zl);
677 }
678 
679 static boolean_t
680 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait)
681 {
682 	boolean_t waiting = B_FALSE;
683 
684 	mutex_enter(&zio->io_lock);
685 	ASSERT(zio->io_stall == NULL);
686 	for (int c = 0; c < ZIO_CHILD_TYPES; c++) {
687 		if (!(ZIO_CHILD_BIT_IS_SET(childbits, c)))
688 			continue;
689 
690 		uint64_t *countp = &zio->io_children[c][wait];
691 		if (*countp != 0) {
692 			zio->io_stage >>= 1;
693 			ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN);
694 			zio->io_stall = countp;
695 			waiting = B_TRUE;
696 			break;
697 		}
698 	}
699 	mutex_exit(&zio->io_lock);
700 	return (waiting);
701 }
702 
703 __attribute__((always_inline))
704 static inline void
705 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait,
706     zio_t **next_to_executep)
707 {
708 	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
709 	int *errorp = &pio->io_child_error[zio->io_child_type];
710 
711 	mutex_enter(&pio->io_lock);
712 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
713 		*errorp = zio_worst_error(*errorp, zio->io_error);
714 	pio->io_reexecute |= zio->io_reexecute;
715 	ASSERT3U(*countp, >, 0);
716 
717 	(*countp)--;
718 
719 	if (*countp == 0 && pio->io_stall == countp) {
720 		zio_taskq_type_t type =
721 		    pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE :
722 		    ZIO_TASKQ_INTERRUPT;
723 		pio->io_stall = NULL;
724 		mutex_exit(&pio->io_lock);
725 
726 		/*
727 		 * If we can tell the caller to execute this parent next, do
728 		 * so.  Otherwise dispatch the parent zio as its own task.
729 		 *
730 		 * Having the caller execute the parent when possible reduces
731 		 * locking on the zio taskq's, reduces context switch
732 		 * overhead, and has no recursion penalty.  Note that one
733 		 * read from disk typically causes at least 3 zio's: a
734 		 * zio_null(), the logical zio_read(), and then a physical
735 		 * zio.  When the physical ZIO completes, we are able to call
736 		 * zio_done() on all 3 of these zio's from one invocation of
737 		 * zio_execute() by returning the parent back to
738 		 * zio_execute().  Since the parent isn't executed until this
739 		 * thread returns back to zio_execute(), the caller should do
740 		 * so promptly.
741 		 *
742 		 * In other cases, dispatching the parent prevents
743 		 * overflowing the stack when we have deeply nested
744 		 * parent-child relationships, as we do with the "mega zio"
745 		 * of writes for spa_sync(), and the chain of ZIL blocks.
746 		 */
747 		if (next_to_executep != NULL && *next_to_executep == NULL) {
748 			*next_to_executep = pio;
749 		} else {
750 			zio_taskq_dispatch(pio, type, B_FALSE);
751 		}
752 	} else {
753 		mutex_exit(&pio->io_lock);
754 	}
755 }
756 
757 static void
758 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
759 {
760 	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
761 		zio->io_error = zio->io_child_error[c];
762 }
763 
764 int
765 zio_bookmark_compare(const void *x1, const void *x2)
766 {
767 	const zio_t *z1 = x1;
768 	const zio_t *z2 = x2;
769 
770 	if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset)
771 		return (-1);
772 	if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset)
773 		return (1);
774 
775 	if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object)
776 		return (-1);
777 	if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object)
778 		return (1);
779 
780 	if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level)
781 		return (-1);
782 	if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level)
783 		return (1);
784 
785 	if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid)
786 		return (-1);
787 	if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid)
788 		return (1);
789 
790 	if (z1 < z2)
791 		return (-1);
792 	if (z1 > z2)
793 		return (1);
794 
795 	return (0);
796 }
797 
798 /*
799  * ==========================================================================
800  * Create the various types of I/O (read, write, free, etc)
801  * ==========================================================================
802  */
803 static zio_t *
804 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
805     abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done,
806     void *private, zio_type_t type, zio_priority_t priority,
807     enum zio_flag flags, vdev_t *vd, uint64_t offset,
808     const zbookmark_phys_t *zb, enum zio_stage stage,
809     enum zio_stage pipeline)
810 {
811 	zio_t *zio;
812 
813 	IMPLY(type != ZIO_TYPE_TRIM, psize <= SPA_MAXBLOCKSIZE);
814 	ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0);
815 	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
816 
817 	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
818 	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
819 	ASSERT(vd || stage == ZIO_STAGE_OPEN);
820 
821 	IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0);
822 
823 	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
824 	bzero(zio, sizeof (zio_t));
825 
826 	mutex_init(&zio->io_lock, NULL, MUTEX_NOLOCKDEP, NULL);
827 	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
828 
829 	list_create(&zio->io_parent_list, sizeof (zio_link_t),
830 	    offsetof(zio_link_t, zl_parent_node));
831 	list_create(&zio->io_child_list, sizeof (zio_link_t),
832 	    offsetof(zio_link_t, zl_child_node));
833 	metaslab_trace_init(&zio->io_alloc_list);
834 
835 	if (vd != NULL)
836 		zio->io_child_type = ZIO_CHILD_VDEV;
837 	else if (flags & ZIO_FLAG_GANG_CHILD)
838 		zio->io_child_type = ZIO_CHILD_GANG;
839 	else if (flags & ZIO_FLAG_DDT_CHILD)
840 		zio->io_child_type = ZIO_CHILD_DDT;
841 	else
842 		zio->io_child_type = ZIO_CHILD_LOGICAL;
843 
844 	if (bp != NULL) {
845 		zio->io_bp = (blkptr_t *)bp;
846 		zio->io_bp_copy = *bp;
847 		zio->io_bp_orig = *bp;
848 		if (type != ZIO_TYPE_WRITE ||
849 		    zio->io_child_type == ZIO_CHILD_DDT)
850 			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
851 		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
852 			zio->io_logical = zio;
853 		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
854 			pipeline |= ZIO_GANG_STAGES;
855 	}
856 
857 	zio->io_spa = spa;
858 	zio->io_txg = txg;
859 	zio->io_done = done;
860 	zio->io_private = private;
861 	zio->io_type = type;
862 	zio->io_priority = priority;
863 	zio->io_vd = vd;
864 	zio->io_offset = offset;
865 	zio->io_orig_abd = zio->io_abd = data;
866 	zio->io_orig_size = zio->io_size = psize;
867 	zio->io_lsize = lsize;
868 	zio->io_orig_flags = zio->io_flags = flags;
869 	zio->io_orig_stage = zio->io_stage = stage;
870 	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
871 	zio->io_pipeline_trace = ZIO_STAGE_OPEN;
872 
873 	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
874 	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
875 
876 	if (zb != NULL)
877 		zio->io_bookmark = *zb;
878 
879 	if (pio != NULL) {
880 		if (zio->io_metaslab_class == NULL)
881 			zio->io_metaslab_class = pio->io_metaslab_class;
882 		if (zio->io_logical == NULL)
883 			zio->io_logical = pio->io_logical;
884 		if (zio->io_child_type == ZIO_CHILD_GANG)
885 			zio->io_gang_leader = pio->io_gang_leader;
886 		zio_add_child(pio, zio);
887 	}
888 
889 	taskq_init_ent(&zio->io_tqent);
890 
891 	return (zio);
892 }
893 
894 static void
895 zio_destroy(zio_t *zio)
896 {
897 	metaslab_trace_fini(&zio->io_alloc_list);
898 	list_destroy(&zio->io_parent_list);
899 	list_destroy(&zio->io_child_list);
900 	mutex_destroy(&zio->io_lock);
901 	cv_destroy(&zio->io_cv);
902 	kmem_cache_free(zio_cache, zio);
903 }
904 
905 zio_t *
906 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
907     void *private, enum zio_flag flags)
908 {
909 	zio_t *zio;
910 
911 	zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
912 	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
913 	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
914 
915 	return (zio);
916 }
917 
918 zio_t *
919 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
920 {
921 	return (zio_null(NULL, spa, NULL, done, private, flags));
922 }
923 
924 static int
925 zfs_blkptr_verify_log(spa_t *spa, const blkptr_t *bp,
926     enum blk_verify_flag blk_verify, const char *fmt, ...)
927 {
928 	va_list adx;
929 	char buf[256];
930 
931 	va_start(adx, fmt);
932 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
933 	va_end(adx);
934 
935 	switch (blk_verify) {
936 	case BLK_VERIFY_HALT:
937 		dprintf_bp(bp, "blkptr at %p dprintf_bp():", bp);
938 		zfs_panic_recover("%s: %s", spa_name(spa), buf);
939 		break;
940 	case BLK_VERIFY_LOG:
941 		zfs_dbgmsg("%s: %s", spa_name(spa), buf);
942 		break;
943 	case BLK_VERIFY_ONLY:
944 		break;
945 	}
946 
947 	return (1);
948 }
949 
950 /*
951  * Verify the block pointer fields contain reasonable values.  This means
952  * it only contains known object types, checksum/compression identifiers,
953  * block sizes within the maximum allowed limits, valid DVAs, etc.
954  *
955  * If everything checks out B_TRUE is returned.  The zfs_blkptr_verify
956  * argument controls the behavior when an invalid field is detected.
957  *
958  * Modes for zfs_blkptr_verify:
959  *   1) BLK_VERIFY_ONLY (evaluate the block)
960  *   2) BLK_VERIFY_LOG (evaluate the block and log problems)
961  *   3) BLK_VERIFY_HALT (call zfs_panic_recover on error)
962  */
963 boolean_t
964 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp, boolean_t config_held,
965     enum blk_verify_flag blk_verify)
966 {
967 	int errors = 0;
968 
969 	if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
970 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
971 		    "blkptr at %p has invalid TYPE %llu",
972 		    bp, (longlong_t)BP_GET_TYPE(bp));
973 	}
974 	if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS ||
975 	    BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) {
976 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
977 		    "blkptr at %p has invalid CHECKSUM %llu",
978 		    bp, (longlong_t)BP_GET_CHECKSUM(bp));
979 	}
980 	if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS ||
981 	    BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) {
982 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
983 		    "blkptr at %p has invalid COMPRESS %llu",
984 		    bp, (longlong_t)BP_GET_COMPRESS(bp));
985 	}
986 	if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
987 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
988 		    "blkptr at %p has invalid LSIZE %llu",
989 		    bp, (longlong_t)BP_GET_LSIZE(bp));
990 	}
991 	if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
992 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
993 		    "blkptr at %p has invalid PSIZE %llu",
994 		    bp, (longlong_t)BP_GET_PSIZE(bp));
995 	}
996 
997 	if (BP_IS_EMBEDDED(bp)) {
998 		if (BPE_GET_ETYPE(bp) >= NUM_BP_EMBEDDED_TYPES) {
999 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1000 			    "blkptr at %p has invalid ETYPE %llu",
1001 			    bp, (longlong_t)BPE_GET_ETYPE(bp));
1002 		}
1003 	}
1004 
1005 	/*
1006 	 * Do not verify individual DVAs if the config is not trusted. This
1007 	 * will be done once the zio is executed in vdev_mirror_map_alloc.
1008 	 */
1009 	if (!spa->spa_trust_config)
1010 		return (B_TRUE);
1011 
1012 	if (!config_held)
1013 		spa_config_enter(spa, SCL_VDEV, bp, RW_READER);
1014 	else
1015 		ASSERT(spa_config_held(spa, SCL_VDEV, RW_WRITER));
1016 	/*
1017 	 * Pool-specific checks.
1018 	 *
1019 	 * Note: it would be nice to verify that the blk_birth and
1020 	 * BP_PHYSICAL_BIRTH() are not too large.  However, spa_freeze()
1021 	 * allows the birth time of log blocks (and dmu_sync()-ed blocks
1022 	 * that are in the log) to be arbitrarily large.
1023 	 */
1024 	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
1025 		const dva_t *dva = &bp->blk_dva[i];
1026 		uint64_t vdevid = DVA_GET_VDEV(dva);
1027 
1028 		if (vdevid >= spa->spa_root_vdev->vdev_children) {
1029 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1030 			    "blkptr at %p DVA %u has invalid VDEV %llu",
1031 			    bp, i, (longlong_t)vdevid);
1032 			continue;
1033 		}
1034 		vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1035 		if (vd == NULL) {
1036 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1037 			    "blkptr at %p DVA %u has invalid VDEV %llu",
1038 			    bp, i, (longlong_t)vdevid);
1039 			continue;
1040 		}
1041 		if (vd->vdev_ops == &vdev_hole_ops) {
1042 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1043 			    "blkptr at %p DVA %u has hole VDEV %llu",
1044 			    bp, i, (longlong_t)vdevid);
1045 			continue;
1046 		}
1047 		if (vd->vdev_ops == &vdev_missing_ops) {
1048 			/*
1049 			 * "missing" vdevs are valid during import, but we
1050 			 * don't have their detailed info (e.g. asize), so
1051 			 * we can't perform any more checks on them.
1052 			 */
1053 			continue;
1054 		}
1055 		uint64_t offset = DVA_GET_OFFSET(dva);
1056 		uint64_t asize = DVA_GET_ASIZE(dva);
1057 		if (DVA_GET_GANG(dva))
1058 			asize = vdev_gang_header_asize(vd);
1059 		if (offset + asize > vd->vdev_asize) {
1060 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1061 			    "blkptr at %p DVA %u has invalid OFFSET %llu",
1062 			    bp, i, (longlong_t)offset);
1063 		}
1064 	}
1065 	if (errors > 0)
1066 		dprintf_bp(bp, "blkptr at %p dprintf_bp():", bp);
1067 	if (!config_held)
1068 		spa_config_exit(spa, SCL_VDEV, bp);
1069 
1070 	return (errors == 0);
1071 }
1072 
1073 boolean_t
1074 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp)
1075 {
1076 	uint64_t vdevid = DVA_GET_VDEV(dva);
1077 
1078 	if (vdevid >= spa->spa_root_vdev->vdev_children)
1079 		return (B_FALSE);
1080 
1081 	vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1082 	if (vd == NULL)
1083 		return (B_FALSE);
1084 
1085 	if (vd->vdev_ops == &vdev_hole_ops)
1086 		return (B_FALSE);
1087 
1088 	if (vd->vdev_ops == &vdev_missing_ops) {
1089 		return (B_FALSE);
1090 	}
1091 
1092 	uint64_t offset = DVA_GET_OFFSET(dva);
1093 	uint64_t asize = DVA_GET_ASIZE(dva);
1094 
1095 	if (DVA_GET_GANG(dva))
1096 		asize = vdev_gang_header_asize(vd);
1097 	if (offset + asize > vd->vdev_asize)
1098 		return (B_FALSE);
1099 
1100 	return (B_TRUE);
1101 }
1102 
1103 zio_t *
1104 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
1105     abd_t *data, uint64_t size, zio_done_func_t *done, void *private,
1106     zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
1107 {
1108 	zio_t *zio;
1109 
1110 	(void) zfs_blkptr_verify(spa, bp, flags & ZIO_FLAG_CONFIG_WRITER,
1111 	    BLK_VERIFY_HALT);
1112 
1113 	zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
1114 	    data, size, size, done, private,
1115 	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
1116 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1117 	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
1118 
1119 	return (zio);
1120 }
1121 
1122 zio_t *
1123 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
1124     abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp,
1125     zio_done_func_t *ready, zio_done_func_t *children_ready,
1126     zio_done_func_t *physdone, zio_done_func_t *done,
1127     void *private, zio_priority_t priority, enum zio_flag flags,
1128     const zbookmark_phys_t *zb)
1129 {
1130 	zio_t *zio;
1131 
1132 	ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
1133 	    zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
1134 	    zp->zp_compress >= ZIO_COMPRESS_OFF &&
1135 	    zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
1136 	    DMU_OT_IS_VALID(zp->zp_type) &&
1137 	    zp->zp_level < 32 &&
1138 	    zp->zp_copies > 0 &&
1139 	    zp->zp_copies <= spa_max_replication(spa));
1140 
1141 	zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private,
1142 	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
1143 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1144 	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
1145 
1146 	zio->io_ready = ready;
1147 	zio->io_children_ready = children_ready;
1148 	zio->io_physdone = physdone;
1149 	zio->io_prop = *zp;
1150 
1151 	/*
1152 	 * Data can be NULL if we are going to call zio_write_override() to
1153 	 * provide the already-allocated BP.  But we may need the data to
1154 	 * verify a dedup hit (if requested).  In this case, don't try to
1155 	 * dedup (just take the already-allocated BP verbatim). Encrypted
1156 	 * dedup blocks need data as well so we also disable dedup in this
1157 	 * case.
1158 	 */
1159 	if (data == NULL &&
1160 	    (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) {
1161 		zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
1162 	}
1163 
1164 	return (zio);
1165 }
1166 
1167 zio_t *
1168 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data,
1169     uint64_t size, zio_done_func_t *done, void *private,
1170     zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb)
1171 {
1172 	zio_t *zio;
1173 
1174 	zio = zio_create(pio, spa, txg, bp, data, size, size, done, private,
1175 	    ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb,
1176 	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
1177 
1178 	return (zio);
1179 }
1180 
1181 void
1182 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
1183 {
1184 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
1185 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1186 	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1187 	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
1188 
1189 	/*
1190 	 * We must reset the io_prop to match the values that existed
1191 	 * when the bp was first written by dmu_sync() keeping in mind
1192 	 * that nopwrite and dedup are mutually exclusive.
1193 	 */
1194 	zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
1195 	zio->io_prop.zp_nopwrite = nopwrite;
1196 	zio->io_prop.zp_copies = copies;
1197 	zio->io_bp_override = bp;
1198 }
1199 
1200 void
1201 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
1202 {
1203 
1204 	(void) zfs_blkptr_verify(spa, bp, B_FALSE, BLK_VERIFY_HALT);
1205 
1206 	/*
1207 	 * The check for EMBEDDED is a performance optimization.  We
1208 	 * process the free here (by ignoring it) rather than
1209 	 * putting it on the list and then processing it in zio_free_sync().
1210 	 */
1211 	if (BP_IS_EMBEDDED(bp))
1212 		return;
1213 	metaslab_check_free(spa, bp);
1214 
1215 	/*
1216 	 * Frees that are for the currently-syncing txg, are not going to be
1217 	 * deferred, and which will not need to do a read (i.e. not GANG or
1218 	 * DEDUP), can be processed immediately.  Otherwise, put them on the
1219 	 * in-memory list for later processing.
1220 	 *
1221 	 * Note that we only defer frees after zfs_sync_pass_deferred_free
1222 	 * when the log space map feature is disabled. [see relevant comment
1223 	 * in spa_sync_iterate_to_convergence()]
1224 	 */
1225 	if (BP_IS_GANG(bp) ||
1226 	    BP_GET_DEDUP(bp) ||
1227 	    txg != spa->spa_syncing_txg ||
1228 	    (spa_sync_pass(spa) >= zfs_sync_pass_deferred_free &&
1229 	    !spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))) {
1230 		bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
1231 	} else {
1232 		VERIFY3P(zio_free_sync(NULL, spa, txg, bp, 0), ==, NULL);
1233 	}
1234 }
1235 
1236 /*
1237  * To improve performance, this function may return NULL if we were able
1238  * to do the free immediately.  This avoids the cost of creating a zio
1239  * (and linking it to the parent, etc).
1240  */
1241 zio_t *
1242 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1243     enum zio_flag flags)
1244 {
1245 	ASSERT(!BP_IS_HOLE(bp));
1246 	ASSERT(spa_syncing_txg(spa) == txg);
1247 
1248 	if (BP_IS_EMBEDDED(bp))
1249 		return (NULL);
1250 
1251 	metaslab_check_free(spa, bp);
1252 	arc_freed(spa, bp);
1253 	dsl_scan_freed(spa, bp);
1254 
1255 	if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp)) {
1256 		/*
1257 		 * GANG and DEDUP blocks can induce a read (for the gang block
1258 		 * header, or the DDT), so issue them asynchronously so that
1259 		 * this thread is not tied up.
1260 		 */
1261 		enum zio_stage stage =
1262 		    ZIO_FREE_PIPELINE | ZIO_STAGE_ISSUE_ASYNC;
1263 
1264 		return (zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1265 		    BP_GET_PSIZE(bp), NULL, NULL,
1266 		    ZIO_TYPE_FREE, ZIO_PRIORITY_NOW,
1267 		    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage));
1268 	} else {
1269 		metaslab_free(spa, bp, txg, B_FALSE);
1270 		return (NULL);
1271 	}
1272 }
1273 
1274 zio_t *
1275 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1276     zio_done_func_t *done, void *private, enum zio_flag flags)
1277 {
1278 	zio_t *zio;
1279 
1280 	(void) zfs_blkptr_verify(spa, bp, flags & ZIO_FLAG_CONFIG_WRITER,
1281 	    BLK_VERIFY_HALT);
1282 
1283 	if (BP_IS_EMBEDDED(bp))
1284 		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
1285 
1286 	/*
1287 	 * A claim is an allocation of a specific block.  Claims are needed
1288 	 * to support immediate writes in the intent log.  The issue is that
1289 	 * immediate writes contain committed data, but in a txg that was
1290 	 * *not* committed.  Upon opening the pool after an unclean shutdown,
1291 	 * the intent log claims all blocks that contain immediate write data
1292 	 * so that the SPA knows they're in use.
1293 	 *
1294 	 * All claims *must* be resolved in the first txg -- before the SPA
1295 	 * starts allocating blocks -- so that nothing is allocated twice.
1296 	 * If txg == 0 we just verify that the block is claimable.
1297 	 */
1298 	ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <,
1299 	    spa_min_claim_txg(spa));
1300 	ASSERT(txg == spa_min_claim_txg(spa) || txg == 0);
1301 	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(8) */
1302 
1303 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1304 	    BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW,
1305 	    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
1306 	ASSERT0(zio->io_queued_timestamp);
1307 
1308 	return (zio);
1309 }
1310 
1311 zio_t *
1312 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
1313     zio_done_func_t *done, void *private, enum zio_flag flags)
1314 {
1315 	zio_t *zio;
1316 	int c;
1317 
1318 	if (vd->vdev_children == 0) {
1319 		zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
1320 		    ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
1321 		    ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
1322 
1323 		zio->io_cmd = cmd;
1324 	} else {
1325 		zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
1326 
1327 		for (c = 0; c < vd->vdev_children; c++)
1328 			zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
1329 			    done, private, flags));
1330 	}
1331 
1332 	return (zio);
1333 }
1334 
1335 zio_t *
1336 zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1337     zio_done_func_t *done, void *private, zio_priority_t priority,
1338     enum zio_flag flags, enum trim_flag trim_flags)
1339 {
1340 	zio_t *zio;
1341 
1342 	ASSERT0(vd->vdev_children);
1343 	ASSERT0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
1344 	ASSERT0(P2PHASE(size, 1ULL << vd->vdev_ashift));
1345 	ASSERT3U(size, !=, 0);
1346 
1347 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, NULL, size, size, done,
1348 	    private, ZIO_TYPE_TRIM, priority, flags | ZIO_FLAG_PHYSICAL,
1349 	    vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_TRIM_PIPELINE);
1350 	zio->io_trim_flags = trim_flags;
1351 
1352 	return (zio);
1353 }
1354 
1355 zio_t *
1356 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1357     abd_t *data, int checksum, zio_done_func_t *done, void *private,
1358     zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1359 {
1360 	zio_t *zio;
1361 
1362 	ASSERT(vd->vdev_children == 0);
1363 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1364 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1365 	ASSERT3U(offset + size, <=, vd->vdev_psize);
1366 
1367 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1368 	    private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1369 	    offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
1370 
1371 	zio->io_prop.zp_checksum = checksum;
1372 
1373 	return (zio);
1374 }
1375 
1376 zio_t *
1377 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1378     abd_t *data, int checksum, zio_done_func_t *done, void *private,
1379     zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1380 {
1381 	zio_t *zio;
1382 
1383 	ASSERT(vd->vdev_children == 0);
1384 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1385 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1386 	ASSERT3U(offset + size, <=, vd->vdev_psize);
1387 
1388 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1389 	    private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1390 	    offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
1391 
1392 	zio->io_prop.zp_checksum = checksum;
1393 
1394 	if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
1395 		/*
1396 		 * zec checksums are necessarily destructive -- they modify
1397 		 * the end of the write buffer to hold the verifier/checksum.
1398 		 * Therefore, we must make a local copy in case the data is
1399 		 * being written to multiple places in parallel.
1400 		 */
1401 		abd_t *wbuf = abd_alloc_sametype(data, size);
1402 		abd_copy(wbuf, data, size);
1403 
1404 		zio_push_transform(zio, wbuf, size, size, NULL);
1405 	}
1406 
1407 	return (zio);
1408 }
1409 
1410 /*
1411  * Create a child I/O to do some work for us.
1412  */
1413 zio_t *
1414 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1415     abd_t *data, uint64_t size, int type, zio_priority_t priority,
1416     enum zio_flag flags, zio_done_func_t *done, void *private)
1417 {
1418 	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1419 	zio_t *zio;
1420 
1421 	/*
1422 	 * vdev child I/Os do not propagate their error to the parent.
1423 	 * Therefore, for correct operation the caller *must* check for
1424 	 * and handle the error in the child i/o's done callback.
1425 	 * The only exceptions are i/os that we don't care about
1426 	 * (OPTIONAL or REPAIR).
1427 	 */
1428 	ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) ||
1429 	    done != NULL);
1430 
1431 	if (type == ZIO_TYPE_READ && bp != NULL) {
1432 		/*
1433 		 * If we have the bp, then the child should perform the
1434 		 * checksum and the parent need not.  This pushes error
1435 		 * detection as close to the leaves as possible and
1436 		 * eliminates redundant checksums in the interior nodes.
1437 		 */
1438 		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1439 		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1440 	}
1441 
1442 	if (vd->vdev_ops->vdev_op_leaf) {
1443 		ASSERT0(vd->vdev_children);
1444 		offset += VDEV_LABEL_START_SIZE;
1445 	}
1446 
1447 	flags |= ZIO_VDEV_CHILD_FLAGS(pio);
1448 
1449 	/*
1450 	 * If we've decided to do a repair, the write is not speculative --
1451 	 * even if the original read was.
1452 	 */
1453 	if (flags & ZIO_FLAG_IO_REPAIR)
1454 		flags &= ~ZIO_FLAG_SPECULATIVE;
1455 
1456 	/*
1457 	 * If we're creating a child I/O that is not associated with a
1458 	 * top-level vdev, then the child zio is not an allocating I/O.
1459 	 * If this is a retried I/O then we ignore it since we will
1460 	 * have already processed the original allocating I/O.
1461 	 */
1462 	if (flags & ZIO_FLAG_IO_ALLOCATING &&
1463 	    (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) {
1464 		ASSERT(pio->io_metaslab_class != NULL);
1465 		ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled);
1466 		ASSERT(type == ZIO_TYPE_WRITE);
1467 		ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE);
1468 		ASSERT(!(flags & ZIO_FLAG_IO_REPAIR));
1469 		ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) ||
1470 		    pio->io_child_type == ZIO_CHILD_GANG);
1471 
1472 		flags &= ~ZIO_FLAG_IO_ALLOCATING;
1473 	}
1474 
1475 
1476 	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size,
1477 	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1478 	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1479 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
1480 
1481 	zio->io_physdone = pio->io_physdone;
1482 	if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
1483 		zio->io_logical->io_phys_children++;
1484 
1485 	return (zio);
1486 }
1487 
1488 zio_t *
1489 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size,
1490     zio_type_t type, zio_priority_t priority, enum zio_flag flags,
1491     zio_done_func_t *done, void *private)
1492 {
1493 	zio_t *zio;
1494 
1495 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1496 
1497 	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1498 	    data, size, size, done, private, type, priority,
1499 	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1500 	    vd, offset, NULL,
1501 	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1502 
1503 	return (zio);
1504 }
1505 
1506 void
1507 zio_flush(zio_t *zio, vdev_t *vd)
1508 {
1509 	zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
1510 	    NULL, NULL,
1511 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1512 }
1513 
1514 void
1515 zio_shrink(zio_t *zio, uint64_t size)
1516 {
1517 	ASSERT3P(zio->io_executor, ==, NULL);
1518 	ASSERT3U(zio->io_orig_size, ==, zio->io_size);
1519 	ASSERT3U(size, <=, zio->io_size);
1520 
1521 	/*
1522 	 * We don't shrink for raidz because of problems with the
1523 	 * reconstruction when reading back less than the block size.
1524 	 * Note, BP_IS_RAIDZ() assumes no compression.
1525 	 */
1526 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1527 	if (!BP_IS_RAIDZ(zio->io_bp)) {
1528 		/* we are not doing a raw write */
1529 		ASSERT3U(zio->io_size, ==, zio->io_lsize);
1530 		zio->io_orig_size = zio->io_size = zio->io_lsize = size;
1531 	}
1532 }
1533 
1534 /*
1535  * ==========================================================================
1536  * Prepare to read and write logical blocks
1537  * ==========================================================================
1538  */
1539 
1540 static zio_t *
1541 zio_read_bp_init(zio_t *zio)
1542 {
1543 	blkptr_t *bp = zio->io_bp;
1544 	uint64_t psize =
1545 	    BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1546 
1547 	ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1548 
1549 	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1550 	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
1551 	    !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1552 		zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1553 		    psize, psize, zio_decompress);
1554 	}
1555 
1556 	if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) ||
1557 	    BP_HAS_INDIRECT_MAC_CKSUM(bp)) &&
1558 	    zio->io_child_type == ZIO_CHILD_LOGICAL) {
1559 		zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1560 		    psize, psize, zio_decrypt);
1561 	}
1562 
1563 	if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1564 		int psize = BPE_GET_PSIZE(bp);
1565 		void *data = abd_borrow_buf(zio->io_abd, psize);
1566 
1567 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1568 		decode_embedded_bp_compressed(bp, data);
1569 		abd_return_buf_copy(zio->io_abd, data, psize);
1570 	} else {
1571 		ASSERT(!BP_IS_EMBEDDED(bp));
1572 		ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1573 	}
1574 
1575 	if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1576 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1577 
1578 	if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1579 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1580 
1581 	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1582 		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1583 
1584 	return (zio);
1585 }
1586 
1587 static zio_t *
1588 zio_write_bp_init(zio_t *zio)
1589 {
1590 	if (!IO_IS_ALLOCATING(zio))
1591 		return (zio);
1592 
1593 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1594 
1595 	if (zio->io_bp_override) {
1596 		blkptr_t *bp = zio->io_bp;
1597 		zio_prop_t *zp = &zio->io_prop;
1598 
1599 		ASSERT(bp->blk_birth != zio->io_txg);
1600 		ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1601 
1602 		*bp = *zio->io_bp_override;
1603 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1604 
1605 		if (BP_IS_EMBEDDED(bp))
1606 			return (zio);
1607 
1608 		/*
1609 		 * If we've been overridden and nopwrite is set then
1610 		 * set the flag accordingly to indicate that a nopwrite
1611 		 * has already occurred.
1612 		 */
1613 		if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1614 			ASSERT(!zp->zp_dedup);
1615 			ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum);
1616 			zio->io_flags |= ZIO_FLAG_NOPWRITE;
1617 			return (zio);
1618 		}
1619 
1620 		ASSERT(!zp->zp_nopwrite);
1621 
1622 		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1623 			return (zio);
1624 
1625 		ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1626 		    ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1627 
1628 		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum &&
1629 		    !zp->zp_encrypt) {
1630 			BP_SET_DEDUP(bp, 1);
1631 			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1632 			return (zio);
1633 		}
1634 
1635 		/*
1636 		 * We were unable to handle this as an override bp, treat
1637 		 * it as a regular write I/O.
1638 		 */
1639 		zio->io_bp_override = NULL;
1640 		*bp = zio->io_bp_orig;
1641 		zio->io_pipeline = zio->io_orig_pipeline;
1642 	}
1643 
1644 	return (zio);
1645 }
1646 
1647 static zio_t *
1648 zio_write_compress(zio_t *zio)
1649 {
1650 	spa_t *spa = zio->io_spa;
1651 	zio_prop_t *zp = &zio->io_prop;
1652 	enum zio_compress compress = zp->zp_compress;
1653 	blkptr_t *bp = zio->io_bp;
1654 	uint64_t lsize = zio->io_lsize;
1655 	uint64_t psize = zio->io_size;
1656 	int pass = 1;
1657 
1658 	/*
1659 	 * If our children haven't all reached the ready stage,
1660 	 * wait for them and then repeat this pipeline stage.
1661 	 */
1662 	if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
1663 	    ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) {
1664 		return (NULL);
1665 	}
1666 
1667 	if (!IO_IS_ALLOCATING(zio))
1668 		return (zio);
1669 
1670 	if (zio->io_children_ready != NULL) {
1671 		/*
1672 		 * Now that all our children are ready, run the callback
1673 		 * associated with this zio in case it wants to modify the
1674 		 * data to be written.
1675 		 */
1676 		ASSERT3U(zp->zp_level, >, 0);
1677 		zio->io_children_ready(zio);
1678 	}
1679 
1680 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1681 	ASSERT(zio->io_bp_override == NULL);
1682 
1683 	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1684 		/*
1685 		 * We're rewriting an existing block, which means we're
1686 		 * working on behalf of spa_sync().  For spa_sync() to
1687 		 * converge, it must eventually be the case that we don't
1688 		 * have to allocate new blocks.  But compression changes
1689 		 * the blocksize, which forces a reallocate, and makes
1690 		 * convergence take longer.  Therefore, after the first
1691 		 * few passes, stop compressing to ensure convergence.
1692 		 */
1693 		pass = spa_sync_pass(spa);
1694 
1695 		ASSERT(zio->io_txg == spa_syncing_txg(spa));
1696 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1697 		ASSERT(!BP_GET_DEDUP(bp));
1698 
1699 		if (pass >= zfs_sync_pass_dont_compress)
1700 			compress = ZIO_COMPRESS_OFF;
1701 
1702 		/* Make sure someone doesn't change their mind on overwrites */
1703 		ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1704 		    spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1705 	}
1706 
1707 	/* If it's a compressed write that is not raw, compress the buffer. */
1708 	if (compress != ZIO_COMPRESS_OFF &&
1709 	    !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1710 		void *cbuf = zio_buf_alloc(lsize);
1711 		psize = zio_compress_data(compress, zio->io_abd, cbuf, lsize,
1712 		    zp->zp_complevel);
1713 		if (psize == 0 || psize >= lsize) {
1714 			compress = ZIO_COMPRESS_OFF;
1715 			zio_buf_free(cbuf, lsize);
1716 		} else if (!zp->zp_dedup && !zp->zp_encrypt &&
1717 		    psize <= BPE_PAYLOAD_SIZE &&
1718 		    zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1719 		    spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1720 			encode_embedded_bp_compressed(bp,
1721 			    cbuf, compress, lsize, psize);
1722 			BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1723 			BP_SET_TYPE(bp, zio->io_prop.zp_type);
1724 			BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1725 			zio_buf_free(cbuf, lsize);
1726 			bp->blk_birth = zio->io_txg;
1727 			zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1728 			ASSERT(spa_feature_is_active(spa,
1729 			    SPA_FEATURE_EMBEDDED_DATA));
1730 			return (zio);
1731 		} else {
1732 			/*
1733 			 * Round compressed size up to the minimum allocation
1734 			 * size of the smallest-ashift device, and zero the
1735 			 * tail. This ensures that the compressed size of the
1736 			 * BP (and thus compressratio property) are correct,
1737 			 * in that we charge for the padding used to fill out
1738 			 * the last sector.
1739 			 */
1740 			ASSERT3U(spa->spa_min_alloc, >=, SPA_MINBLOCKSHIFT);
1741 			size_t rounded = (size_t)roundup(psize,
1742 			    spa->spa_min_alloc);
1743 			if (rounded >= lsize) {
1744 				compress = ZIO_COMPRESS_OFF;
1745 				zio_buf_free(cbuf, lsize);
1746 				psize = lsize;
1747 			} else {
1748 				abd_t *cdata = abd_get_from_buf(cbuf, lsize);
1749 				abd_take_ownership_of_buf(cdata, B_TRUE);
1750 				abd_zero_off(cdata, psize, rounded - psize);
1751 				psize = rounded;
1752 				zio_push_transform(zio, cdata,
1753 				    psize, lsize, NULL);
1754 			}
1755 		}
1756 
1757 		/*
1758 		 * We were unable to handle this as an override bp, treat
1759 		 * it as a regular write I/O.
1760 		 */
1761 		zio->io_bp_override = NULL;
1762 		*bp = zio->io_bp_orig;
1763 		zio->io_pipeline = zio->io_orig_pipeline;
1764 
1765 	} else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 &&
1766 	    zp->zp_type == DMU_OT_DNODE) {
1767 		/*
1768 		 * The DMU actually relies on the zio layer's compression
1769 		 * to free metadnode blocks that have had all contained
1770 		 * dnodes freed. As a result, even when doing a raw
1771 		 * receive, we must check whether the block can be compressed
1772 		 * to a hole.
1773 		 */
1774 		psize = zio_compress_data(ZIO_COMPRESS_EMPTY,
1775 		    zio->io_abd, NULL, lsize, zp->zp_complevel);
1776 		if (psize == 0 || psize >= lsize)
1777 			compress = ZIO_COMPRESS_OFF;
1778 	} else {
1779 		ASSERT3U(psize, !=, 0);
1780 	}
1781 
1782 	/*
1783 	 * The final pass of spa_sync() must be all rewrites, but the first
1784 	 * few passes offer a trade-off: allocating blocks defers convergence,
1785 	 * but newly allocated blocks are sequential, so they can be written
1786 	 * to disk faster.  Therefore, we allow the first few passes of
1787 	 * spa_sync() to allocate new blocks, but force rewrites after that.
1788 	 * There should only be a handful of blocks after pass 1 in any case.
1789 	 */
1790 	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1791 	    BP_GET_PSIZE(bp) == psize &&
1792 	    pass >= zfs_sync_pass_rewrite) {
1793 		VERIFY3U(psize, !=, 0);
1794 		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1795 
1796 		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1797 		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1798 	} else {
1799 		BP_ZERO(bp);
1800 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
1801 	}
1802 
1803 	if (psize == 0) {
1804 		if (zio->io_bp_orig.blk_birth != 0 &&
1805 		    spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1806 			BP_SET_LSIZE(bp, lsize);
1807 			BP_SET_TYPE(bp, zp->zp_type);
1808 			BP_SET_LEVEL(bp, zp->zp_level);
1809 			BP_SET_BIRTH(bp, zio->io_txg, 0);
1810 		}
1811 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1812 	} else {
1813 		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1814 		BP_SET_LSIZE(bp, lsize);
1815 		BP_SET_TYPE(bp, zp->zp_type);
1816 		BP_SET_LEVEL(bp, zp->zp_level);
1817 		BP_SET_PSIZE(bp, psize);
1818 		BP_SET_COMPRESS(bp, compress);
1819 		BP_SET_CHECKSUM(bp, zp->zp_checksum);
1820 		BP_SET_DEDUP(bp, zp->zp_dedup);
1821 		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1822 		if (zp->zp_dedup) {
1823 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1824 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1825 			ASSERT(!zp->zp_encrypt ||
1826 			    DMU_OT_IS_ENCRYPTED(zp->zp_type));
1827 			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1828 		}
1829 		if (zp->zp_nopwrite) {
1830 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1831 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1832 			zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1833 		}
1834 	}
1835 	return (zio);
1836 }
1837 
1838 static zio_t *
1839 zio_free_bp_init(zio_t *zio)
1840 {
1841 	blkptr_t *bp = zio->io_bp;
1842 
1843 	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1844 		if (BP_GET_DEDUP(bp))
1845 			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1846 	}
1847 
1848 	ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1849 
1850 	return (zio);
1851 }
1852 
1853 /*
1854  * ==========================================================================
1855  * Execute the I/O pipeline
1856  * ==========================================================================
1857  */
1858 
1859 static void
1860 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1861 {
1862 	spa_t *spa = zio->io_spa;
1863 	zio_type_t t = zio->io_type;
1864 	int flags = (cutinline ? TQ_FRONT : 0);
1865 
1866 	/*
1867 	 * If we're a config writer or a probe, the normal issue and
1868 	 * interrupt threads may all be blocked waiting for the config lock.
1869 	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1870 	 */
1871 	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1872 		t = ZIO_TYPE_NULL;
1873 
1874 	/*
1875 	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1876 	 */
1877 	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1878 		t = ZIO_TYPE_NULL;
1879 
1880 	/*
1881 	 * If this is a high priority I/O, then use the high priority taskq if
1882 	 * available.
1883 	 */
1884 	if ((zio->io_priority == ZIO_PRIORITY_NOW ||
1885 	    zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) &&
1886 	    spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1887 		q++;
1888 
1889 	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1890 
1891 	/*
1892 	 * NB: We are assuming that the zio can only be dispatched
1893 	 * to a single taskq at a time.  It would be a grievous error
1894 	 * to dispatch the zio to another taskq at the same time.
1895 	 */
1896 	ASSERT(taskq_empty_ent(&zio->io_tqent));
1897 	spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1898 	    flags, &zio->io_tqent);
1899 }
1900 
1901 static boolean_t
1902 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1903 {
1904 	spa_t *spa = zio->io_spa;
1905 
1906 	taskq_t *tq = taskq_of_curthread();
1907 
1908 	for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1909 		spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1910 		uint_t i;
1911 		for (i = 0; i < tqs->stqs_count; i++) {
1912 			if (tqs->stqs_taskq[i] == tq)
1913 				return (B_TRUE);
1914 		}
1915 	}
1916 
1917 	return (B_FALSE);
1918 }
1919 
1920 static zio_t *
1921 zio_issue_async(zio_t *zio)
1922 {
1923 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1924 
1925 	return (NULL);
1926 }
1927 
1928 void
1929 zio_interrupt(zio_t *zio)
1930 {
1931 	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1932 }
1933 
1934 void
1935 zio_delay_interrupt(zio_t *zio)
1936 {
1937 	/*
1938 	 * The timeout_generic() function isn't defined in userspace, so
1939 	 * rather than trying to implement the function, the zio delay
1940 	 * functionality has been disabled for userspace builds.
1941 	 */
1942 
1943 #ifdef _KERNEL
1944 	/*
1945 	 * If io_target_timestamp is zero, then no delay has been registered
1946 	 * for this IO, thus jump to the end of this function and "skip" the
1947 	 * delay; issuing it directly to the zio layer.
1948 	 */
1949 	if (zio->io_target_timestamp != 0) {
1950 		hrtime_t now = gethrtime();
1951 
1952 		if (now >= zio->io_target_timestamp) {
1953 			/*
1954 			 * This IO has already taken longer than the target
1955 			 * delay to complete, so we don't want to delay it
1956 			 * any longer; we "miss" the delay and issue it
1957 			 * directly to the zio layer. This is likely due to
1958 			 * the target latency being set to a value less than
1959 			 * the underlying hardware can satisfy (e.g. delay
1960 			 * set to 1ms, but the disks take 10ms to complete an
1961 			 * IO request).
1962 			 */
1963 
1964 			DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
1965 			    hrtime_t, now);
1966 
1967 			zio_interrupt(zio);
1968 		} else {
1969 			taskqid_t tid;
1970 			hrtime_t diff = zio->io_target_timestamp - now;
1971 			clock_t expire_at_tick = ddi_get_lbolt() +
1972 			    NSEC_TO_TICK(diff);
1973 
1974 			DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
1975 			    hrtime_t, now, hrtime_t, diff);
1976 
1977 			if (NSEC_TO_TICK(diff) == 0) {
1978 				/* Our delay is less than a jiffy - just spin */
1979 				zfs_sleep_until(zio->io_target_timestamp);
1980 				zio_interrupt(zio);
1981 			} else {
1982 				/*
1983 				 * Use taskq_dispatch_delay() in the place of
1984 				 * OpenZFS's timeout_generic().
1985 				 */
1986 				tid = taskq_dispatch_delay(system_taskq,
1987 				    (task_func_t *)zio_interrupt,
1988 				    zio, TQ_NOSLEEP, expire_at_tick);
1989 				if (tid == TASKQID_INVALID) {
1990 					/*
1991 					 * Couldn't allocate a task.  Just
1992 					 * finish the zio without a delay.
1993 					 */
1994 					zio_interrupt(zio);
1995 				}
1996 			}
1997 		}
1998 		return;
1999 	}
2000 #endif
2001 	DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
2002 	zio_interrupt(zio);
2003 }
2004 
2005 static void
2006 zio_deadman_impl(zio_t *pio, int ziodepth)
2007 {
2008 	zio_t *cio, *cio_next;
2009 	zio_link_t *zl = NULL;
2010 	vdev_t *vd = pio->io_vd;
2011 
2012 	if (zio_deadman_log_all || (vd != NULL && vd->vdev_ops->vdev_op_leaf)) {
2013 		vdev_queue_t *vq = vd ? &vd->vdev_queue : NULL;
2014 		zbookmark_phys_t *zb = &pio->io_bookmark;
2015 		uint64_t delta = gethrtime() - pio->io_timestamp;
2016 		uint64_t failmode = spa_get_deadman_failmode(pio->io_spa);
2017 
2018 		zfs_dbgmsg("slow zio[%d]: zio=%px timestamp=%llu "
2019 		    "delta=%llu queued=%llu io=%llu "
2020 		    "path=%s last=%llu "
2021 		    "type=%d priority=%d flags=0x%x "
2022 		    "stage=0x%x pipeline=0x%x pipeline-trace=0x%x "
2023 		    "objset=%llu object=%llu level=%llu blkid=%llu "
2024 		    "offset=%llu size=%llu error=%d",
2025 		    ziodepth, pio, pio->io_timestamp,
2026 		    delta, pio->io_delta, pio->io_delay,
2027 		    vd ? vd->vdev_path : "NULL", vq ? vq->vq_io_complete_ts : 0,
2028 		    pio->io_type, pio->io_priority, pio->io_flags,
2029 		    pio->io_stage, pio->io_pipeline, pio->io_pipeline_trace,
2030 		    zb->zb_objset, zb->zb_object, zb->zb_level, zb->zb_blkid,
2031 		    pio->io_offset, pio->io_size, pio->io_error);
2032 		(void) zfs_ereport_post(FM_EREPORT_ZFS_DEADMAN,
2033 		    pio->io_spa, vd, zb, pio, 0);
2034 
2035 		if (failmode == ZIO_FAILURE_MODE_CONTINUE &&
2036 		    taskq_empty_ent(&pio->io_tqent)) {
2037 			zio_interrupt(pio);
2038 		}
2039 	}
2040 
2041 	mutex_enter(&pio->io_lock);
2042 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2043 		cio_next = zio_walk_children(pio, &zl);
2044 		zio_deadman_impl(cio, ziodepth + 1);
2045 	}
2046 	mutex_exit(&pio->io_lock);
2047 }
2048 
2049 /*
2050  * Log the critical information describing this zio and all of its children
2051  * using the zfs_dbgmsg() interface then post deadman event for the ZED.
2052  */
2053 void
2054 zio_deadman(zio_t *pio, char *tag)
2055 {
2056 	spa_t *spa = pio->io_spa;
2057 	char *name = spa_name(spa);
2058 
2059 	if (!zfs_deadman_enabled || spa_suspended(spa))
2060 		return;
2061 
2062 	zio_deadman_impl(pio, 0);
2063 
2064 	switch (spa_get_deadman_failmode(spa)) {
2065 	case ZIO_FAILURE_MODE_WAIT:
2066 		zfs_dbgmsg("%s waiting for hung I/O to pool '%s'", tag, name);
2067 		break;
2068 
2069 	case ZIO_FAILURE_MODE_CONTINUE:
2070 		zfs_dbgmsg("%s restarting hung I/O for pool '%s'", tag, name);
2071 		break;
2072 
2073 	case ZIO_FAILURE_MODE_PANIC:
2074 		fm_panic("%s determined I/O to pool '%s' is hung.", tag, name);
2075 		break;
2076 	}
2077 }
2078 
2079 /*
2080  * Execute the I/O pipeline until one of the following occurs:
2081  * (1) the I/O completes; (2) the pipeline stalls waiting for
2082  * dependent child I/Os; (3) the I/O issues, so we're waiting
2083  * for an I/O completion interrupt; (4) the I/O is delegated by
2084  * vdev-level caching or aggregation; (5) the I/O is deferred
2085  * due to vdev-level queueing; (6) the I/O is handed off to
2086  * another thread.  In all cases, the pipeline stops whenever
2087  * there's no CPU work; it never burns a thread in cv_wait_io().
2088  *
2089  * There's no locking on io_stage because there's no legitimate way
2090  * for multiple threads to be attempting to process the same I/O.
2091  */
2092 static zio_pipe_stage_t *zio_pipeline[];
2093 
2094 /*
2095  * zio_execute() is a wrapper around the static function
2096  * __zio_execute() so that we can force  __zio_execute() to be
2097  * inlined.  This reduces stack overhead which is important
2098  * because __zio_execute() is called recursively in several zio
2099  * code paths.  zio_execute() itself cannot be inlined because
2100  * it is externally visible.
2101  */
2102 void
2103 zio_execute(zio_t *zio)
2104 {
2105 	fstrans_cookie_t cookie;
2106 
2107 	cookie = spl_fstrans_mark();
2108 	__zio_execute(zio);
2109 	spl_fstrans_unmark(cookie);
2110 }
2111 
2112 /*
2113  * Used to determine if in the current context the stack is sized large
2114  * enough to allow zio_execute() to be called recursively.  A minimum
2115  * stack size of 16K is required to avoid needing to re-dispatch the zio.
2116  */
2117 static boolean_t
2118 zio_execute_stack_check(zio_t *zio)
2119 {
2120 #if !defined(HAVE_LARGE_STACKS)
2121 	dsl_pool_t *dp = spa_get_dsl(zio->io_spa);
2122 
2123 	/* Executing in txg_sync_thread() context. */
2124 	if (dp && curthread == dp->dp_tx.tx_sync_thread)
2125 		return (B_TRUE);
2126 
2127 	/* Pool initialization outside of zio_taskq context. */
2128 	if (dp && spa_is_initializing(dp->dp_spa) &&
2129 	    !zio_taskq_member(zio, ZIO_TASKQ_ISSUE) &&
2130 	    !zio_taskq_member(zio, ZIO_TASKQ_ISSUE_HIGH))
2131 		return (B_TRUE);
2132 #endif /* HAVE_LARGE_STACKS */
2133 
2134 	return (B_FALSE);
2135 }
2136 
2137 __attribute__((always_inline))
2138 static inline void
2139 __zio_execute(zio_t *zio)
2140 {
2141 	ASSERT3U(zio->io_queued_timestamp, >, 0);
2142 
2143 	while (zio->io_stage < ZIO_STAGE_DONE) {
2144 		enum zio_stage pipeline = zio->io_pipeline;
2145 		enum zio_stage stage = zio->io_stage;
2146 
2147 		zio->io_executor = curthread;
2148 
2149 		ASSERT(!MUTEX_HELD(&zio->io_lock));
2150 		ASSERT(ISP2(stage));
2151 		ASSERT(zio->io_stall == NULL);
2152 
2153 		do {
2154 			stage <<= 1;
2155 		} while ((stage & pipeline) == 0);
2156 
2157 		ASSERT(stage <= ZIO_STAGE_DONE);
2158 
2159 		/*
2160 		 * If we are in interrupt context and this pipeline stage
2161 		 * will grab a config lock that is held across I/O,
2162 		 * or may wait for an I/O that needs an interrupt thread
2163 		 * to complete, issue async to avoid deadlock.
2164 		 *
2165 		 * For VDEV_IO_START, we cut in line so that the io will
2166 		 * be sent to disk promptly.
2167 		 */
2168 		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
2169 		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
2170 			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2171 			    zio_requeue_io_start_cut_in_line : B_FALSE;
2172 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2173 			return;
2174 		}
2175 
2176 		/*
2177 		 * If the current context doesn't have large enough stacks
2178 		 * the zio must be issued asynchronously to prevent overflow.
2179 		 */
2180 		if (zio_execute_stack_check(zio)) {
2181 			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2182 			    zio_requeue_io_start_cut_in_line : B_FALSE;
2183 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2184 			return;
2185 		}
2186 
2187 		zio->io_stage = stage;
2188 		zio->io_pipeline_trace |= zio->io_stage;
2189 
2190 		/*
2191 		 * The zio pipeline stage returns the next zio to execute
2192 		 * (typically the same as this one), or NULL if we should
2193 		 * stop.
2194 		 */
2195 		zio = zio_pipeline[highbit64(stage) - 1](zio);
2196 
2197 		if (zio == NULL)
2198 			return;
2199 	}
2200 }
2201 
2202 
2203 /*
2204  * ==========================================================================
2205  * Initiate I/O, either sync or async
2206  * ==========================================================================
2207  */
2208 int
2209 zio_wait(zio_t *zio)
2210 {
2211 	/*
2212 	 * Some routines, like zio_free_sync(), may return a NULL zio
2213 	 * to avoid the performance overhead of creating and then destroying
2214 	 * an unneeded zio.  For the callers' simplicity, we accept a NULL
2215 	 * zio and ignore it.
2216 	 */
2217 	if (zio == NULL)
2218 		return (0);
2219 
2220 	long timeout = MSEC_TO_TICK(zfs_deadman_ziotime_ms);
2221 	int error;
2222 
2223 	ASSERT3S(zio->io_stage, ==, ZIO_STAGE_OPEN);
2224 	ASSERT3P(zio->io_executor, ==, NULL);
2225 
2226 	zio->io_waiter = curthread;
2227 	ASSERT0(zio->io_queued_timestamp);
2228 	zio->io_queued_timestamp = gethrtime();
2229 
2230 	__zio_execute(zio);
2231 
2232 	mutex_enter(&zio->io_lock);
2233 	while (zio->io_executor != NULL) {
2234 		error = cv_timedwait_io(&zio->io_cv, &zio->io_lock,
2235 		    ddi_get_lbolt() + timeout);
2236 
2237 		if (zfs_deadman_enabled && error == -1 &&
2238 		    gethrtime() - zio->io_queued_timestamp >
2239 		    spa_deadman_ziotime(zio->io_spa)) {
2240 			mutex_exit(&zio->io_lock);
2241 			timeout = MSEC_TO_TICK(zfs_deadman_checktime_ms);
2242 			zio_deadman(zio, FTAG);
2243 			mutex_enter(&zio->io_lock);
2244 		}
2245 	}
2246 	mutex_exit(&zio->io_lock);
2247 
2248 	error = zio->io_error;
2249 	zio_destroy(zio);
2250 
2251 	return (error);
2252 }
2253 
2254 void
2255 zio_nowait(zio_t *zio)
2256 {
2257 	/*
2258 	 * See comment in zio_wait().
2259 	 */
2260 	if (zio == NULL)
2261 		return;
2262 
2263 	ASSERT3P(zio->io_executor, ==, NULL);
2264 
2265 	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
2266 	    zio_unique_parent(zio) == NULL) {
2267 		zio_t *pio;
2268 
2269 		/*
2270 		 * This is a logical async I/O with no parent to wait for it.
2271 		 * We add it to the spa_async_root_zio "Godfather" I/O which
2272 		 * will ensure they complete prior to unloading the pool.
2273 		 */
2274 		spa_t *spa = zio->io_spa;
2275 		pio = spa->spa_async_zio_root[CPU_SEQID_UNSTABLE];
2276 
2277 		zio_add_child(pio, zio);
2278 	}
2279 
2280 	ASSERT0(zio->io_queued_timestamp);
2281 	zio->io_queued_timestamp = gethrtime();
2282 	__zio_execute(zio);
2283 }
2284 
2285 /*
2286  * ==========================================================================
2287  * Reexecute, cancel, or suspend/resume failed I/O
2288  * ==========================================================================
2289  */
2290 
2291 static void
2292 zio_reexecute(zio_t *pio)
2293 {
2294 	zio_t *cio, *cio_next;
2295 
2296 	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
2297 	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
2298 	ASSERT(pio->io_gang_leader == NULL);
2299 	ASSERT(pio->io_gang_tree == NULL);
2300 
2301 	pio->io_flags = pio->io_orig_flags;
2302 	pio->io_stage = pio->io_orig_stage;
2303 	pio->io_pipeline = pio->io_orig_pipeline;
2304 	pio->io_reexecute = 0;
2305 	pio->io_flags |= ZIO_FLAG_REEXECUTED;
2306 	pio->io_pipeline_trace = 0;
2307 	pio->io_error = 0;
2308 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2309 		pio->io_state[w] = 0;
2310 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2311 		pio->io_child_error[c] = 0;
2312 
2313 	if (IO_IS_ALLOCATING(pio))
2314 		BP_ZERO(pio->io_bp);
2315 
2316 	/*
2317 	 * As we reexecute pio's children, new children could be created.
2318 	 * New children go to the head of pio's io_child_list, however,
2319 	 * so we will (correctly) not reexecute them.  The key is that
2320 	 * the remainder of pio's io_child_list, from 'cio_next' onward,
2321 	 * cannot be affected by any side effects of reexecuting 'cio'.
2322 	 */
2323 	zio_link_t *zl = NULL;
2324 	mutex_enter(&pio->io_lock);
2325 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2326 		cio_next = zio_walk_children(pio, &zl);
2327 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2328 			pio->io_children[cio->io_child_type][w]++;
2329 		mutex_exit(&pio->io_lock);
2330 		zio_reexecute(cio);
2331 		mutex_enter(&pio->io_lock);
2332 	}
2333 	mutex_exit(&pio->io_lock);
2334 
2335 	/*
2336 	 * Now that all children have been reexecuted, execute the parent.
2337 	 * We don't reexecute "The Godfather" I/O here as it's the
2338 	 * responsibility of the caller to wait on it.
2339 	 */
2340 	if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) {
2341 		pio->io_queued_timestamp = gethrtime();
2342 		__zio_execute(pio);
2343 	}
2344 }
2345 
2346 void
2347 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason)
2348 {
2349 	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
2350 		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
2351 		    "failure and the failure mode property for this pool "
2352 		    "is set to panic.", spa_name(spa));
2353 
2354 	cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable I/O "
2355 	    "failure and has been suspended.\n", spa_name(spa));
2356 
2357 	(void) zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL,
2358 	    NULL, NULL, 0);
2359 
2360 	mutex_enter(&spa->spa_suspend_lock);
2361 
2362 	if (spa->spa_suspend_zio_root == NULL)
2363 		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
2364 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2365 		    ZIO_FLAG_GODFATHER);
2366 
2367 	spa->spa_suspended = reason;
2368 
2369 	if (zio != NULL) {
2370 		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
2371 		ASSERT(zio != spa->spa_suspend_zio_root);
2372 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2373 		ASSERT(zio_unique_parent(zio) == NULL);
2374 		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
2375 		zio_add_child(spa->spa_suspend_zio_root, zio);
2376 	}
2377 
2378 	mutex_exit(&spa->spa_suspend_lock);
2379 }
2380 
2381 int
2382 zio_resume(spa_t *spa)
2383 {
2384 	zio_t *pio;
2385 
2386 	/*
2387 	 * Reexecute all previously suspended i/o.
2388 	 */
2389 	mutex_enter(&spa->spa_suspend_lock);
2390 	spa->spa_suspended = ZIO_SUSPEND_NONE;
2391 	cv_broadcast(&spa->spa_suspend_cv);
2392 	pio = spa->spa_suspend_zio_root;
2393 	spa->spa_suspend_zio_root = NULL;
2394 	mutex_exit(&spa->spa_suspend_lock);
2395 
2396 	if (pio == NULL)
2397 		return (0);
2398 
2399 	zio_reexecute(pio);
2400 	return (zio_wait(pio));
2401 }
2402 
2403 void
2404 zio_resume_wait(spa_t *spa)
2405 {
2406 	mutex_enter(&spa->spa_suspend_lock);
2407 	while (spa_suspended(spa))
2408 		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
2409 	mutex_exit(&spa->spa_suspend_lock);
2410 }
2411 
2412 /*
2413  * ==========================================================================
2414  * Gang blocks.
2415  *
2416  * A gang block is a collection of small blocks that looks to the DMU
2417  * like one large block.  When zio_dva_allocate() cannot find a block
2418  * of the requested size, due to either severe fragmentation or the pool
2419  * being nearly full, it calls zio_write_gang_block() to construct the
2420  * block from smaller fragments.
2421  *
2422  * A gang block consists of a gang header (zio_gbh_phys_t) and up to
2423  * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
2424  * an indirect block: it's an array of block pointers.  It consumes
2425  * only one sector and hence is allocatable regardless of fragmentation.
2426  * The gang header's bps point to its gang members, which hold the data.
2427  *
2428  * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
2429  * as the verifier to ensure uniqueness of the SHA256 checksum.
2430  * Critically, the gang block bp's blk_cksum is the checksum of the data,
2431  * not the gang header.  This ensures that data block signatures (needed for
2432  * deduplication) are independent of how the block is physically stored.
2433  *
2434  * Gang blocks can be nested: a gang member may itself be a gang block.
2435  * Thus every gang block is a tree in which root and all interior nodes are
2436  * gang headers, and the leaves are normal blocks that contain user data.
2437  * The root of the gang tree is called the gang leader.
2438  *
2439  * To perform any operation (read, rewrite, free, claim) on a gang block,
2440  * zio_gang_assemble() first assembles the gang tree (minus data leaves)
2441  * in the io_gang_tree field of the original logical i/o by recursively
2442  * reading the gang leader and all gang headers below it.  This yields
2443  * an in-core tree containing the contents of every gang header and the
2444  * bps for every constituent of the gang block.
2445  *
2446  * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
2447  * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
2448  * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
2449  * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
2450  * zio_read_gang() is a wrapper around zio_read() that omits reading gang
2451  * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
2452  * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
2453  * of the gang header plus zio_checksum_compute() of the data to update the
2454  * gang header's blk_cksum as described above.
2455  *
2456  * The two-phase assemble/issue model solves the problem of partial failure --
2457  * what if you'd freed part of a gang block but then couldn't read the
2458  * gang header for another part?  Assembling the entire gang tree first
2459  * ensures that all the necessary gang header I/O has succeeded before
2460  * starting the actual work of free, claim, or write.  Once the gang tree
2461  * is assembled, free and claim are in-memory operations that cannot fail.
2462  *
2463  * In the event that a gang write fails, zio_dva_unallocate() walks the
2464  * gang tree to immediately free (i.e. insert back into the space map)
2465  * everything we've allocated.  This ensures that we don't get ENOSPC
2466  * errors during repeated suspend/resume cycles due to a flaky device.
2467  *
2468  * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
2469  * the gang tree, we won't modify the block, so we can safely defer the free
2470  * (knowing that the block is still intact).  If we *can* assemble the gang
2471  * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
2472  * each constituent bp and we can allocate a new block on the next sync pass.
2473  *
2474  * In all cases, the gang tree allows complete recovery from partial failure.
2475  * ==========================================================================
2476  */
2477 
2478 static void
2479 zio_gang_issue_func_done(zio_t *zio)
2480 {
2481 	abd_free(zio->io_abd);
2482 }
2483 
2484 static zio_t *
2485 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2486     uint64_t offset)
2487 {
2488 	if (gn != NULL)
2489 		return (pio);
2490 
2491 	return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset),
2492 	    BP_GET_PSIZE(bp), zio_gang_issue_func_done,
2493 	    NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2494 	    &pio->io_bookmark));
2495 }
2496 
2497 static zio_t *
2498 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2499     uint64_t offset)
2500 {
2501 	zio_t *zio;
2502 
2503 	if (gn != NULL) {
2504 		abd_t *gbh_abd =
2505 		    abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2506 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2507 		    gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL,
2508 		    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2509 		    &pio->io_bookmark);
2510 		/*
2511 		 * As we rewrite each gang header, the pipeline will compute
2512 		 * a new gang block header checksum for it; but no one will
2513 		 * compute a new data checksum, so we do that here.  The one
2514 		 * exception is the gang leader: the pipeline already computed
2515 		 * its data checksum because that stage precedes gang assembly.
2516 		 * (Presently, nothing actually uses interior data checksums;
2517 		 * this is just good hygiene.)
2518 		 */
2519 		if (gn != pio->io_gang_leader->io_gang_tree) {
2520 			abd_t *buf = abd_get_offset(data, offset);
2521 
2522 			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
2523 			    buf, BP_GET_PSIZE(bp));
2524 
2525 			abd_free(buf);
2526 		}
2527 		/*
2528 		 * If we are here to damage data for testing purposes,
2529 		 * leave the GBH alone so that we can detect the damage.
2530 		 */
2531 		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
2532 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2533 	} else {
2534 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2535 		    abd_get_offset(data, offset), BP_GET_PSIZE(bp),
2536 		    zio_gang_issue_func_done, NULL, pio->io_priority,
2537 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2538 	}
2539 
2540 	return (zio);
2541 }
2542 
2543 /* ARGSUSED */
2544 static zio_t *
2545 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2546     uint64_t offset)
2547 {
2548 	zio_t *zio = zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
2549 	    ZIO_GANG_CHILD_FLAGS(pio));
2550 	if (zio == NULL) {
2551 		zio = zio_null(pio, pio->io_spa,
2552 		    NULL, NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio));
2553 	}
2554 	return (zio);
2555 }
2556 
2557 /* ARGSUSED */
2558 static zio_t *
2559 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2560     uint64_t offset)
2561 {
2562 	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
2563 	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
2564 }
2565 
2566 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
2567 	NULL,
2568 	zio_read_gang,
2569 	zio_rewrite_gang,
2570 	zio_free_gang,
2571 	zio_claim_gang,
2572 	NULL
2573 };
2574 
2575 static void zio_gang_tree_assemble_done(zio_t *zio);
2576 
2577 static zio_gang_node_t *
2578 zio_gang_node_alloc(zio_gang_node_t **gnpp)
2579 {
2580 	zio_gang_node_t *gn;
2581 
2582 	ASSERT(*gnpp == NULL);
2583 
2584 	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
2585 	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
2586 	*gnpp = gn;
2587 
2588 	return (gn);
2589 }
2590 
2591 static void
2592 zio_gang_node_free(zio_gang_node_t **gnpp)
2593 {
2594 	zio_gang_node_t *gn = *gnpp;
2595 
2596 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2597 		ASSERT(gn->gn_child[g] == NULL);
2598 
2599 	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2600 	kmem_free(gn, sizeof (*gn));
2601 	*gnpp = NULL;
2602 }
2603 
2604 static void
2605 zio_gang_tree_free(zio_gang_node_t **gnpp)
2606 {
2607 	zio_gang_node_t *gn = *gnpp;
2608 
2609 	if (gn == NULL)
2610 		return;
2611 
2612 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2613 		zio_gang_tree_free(&gn->gn_child[g]);
2614 
2615 	zio_gang_node_free(gnpp);
2616 }
2617 
2618 static void
2619 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
2620 {
2621 	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
2622 	abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2623 
2624 	ASSERT(gio->io_gang_leader == gio);
2625 	ASSERT(BP_IS_GANG(bp));
2626 
2627 	zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2628 	    zio_gang_tree_assemble_done, gn, gio->io_priority,
2629 	    ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
2630 }
2631 
2632 static void
2633 zio_gang_tree_assemble_done(zio_t *zio)
2634 {
2635 	zio_t *gio = zio->io_gang_leader;
2636 	zio_gang_node_t *gn = zio->io_private;
2637 	blkptr_t *bp = zio->io_bp;
2638 
2639 	ASSERT(gio == zio_unique_parent(zio));
2640 	ASSERT(zio->io_child_count == 0);
2641 
2642 	if (zio->io_error)
2643 		return;
2644 
2645 	/* this ABD was created from a linear buf in zio_gang_tree_assemble */
2646 	if (BP_SHOULD_BYTESWAP(bp))
2647 		byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size);
2648 
2649 	ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh);
2650 	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
2651 	ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2652 
2653 	abd_free(zio->io_abd);
2654 
2655 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2656 		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2657 		if (!BP_IS_GANG(gbp))
2658 			continue;
2659 		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
2660 	}
2661 }
2662 
2663 static void
2664 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data,
2665     uint64_t offset)
2666 {
2667 	zio_t *gio = pio->io_gang_leader;
2668 	zio_t *zio;
2669 
2670 	ASSERT(BP_IS_GANG(bp) == !!gn);
2671 	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
2672 	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
2673 
2674 	/*
2675 	 * If you're a gang header, your data is in gn->gn_gbh.
2676 	 * If you're a gang member, your data is in 'data' and gn == NULL.
2677 	 */
2678 	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset);
2679 
2680 	if (gn != NULL) {
2681 		ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2682 
2683 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2684 			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2685 			if (BP_IS_HOLE(gbp))
2686 				continue;
2687 			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data,
2688 			    offset);
2689 			offset += BP_GET_PSIZE(gbp);
2690 		}
2691 	}
2692 
2693 	if (gn == gio->io_gang_tree)
2694 		ASSERT3U(gio->io_size, ==, offset);
2695 
2696 	if (zio != pio)
2697 		zio_nowait(zio);
2698 }
2699 
2700 static zio_t *
2701 zio_gang_assemble(zio_t *zio)
2702 {
2703 	blkptr_t *bp = zio->io_bp;
2704 
2705 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
2706 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2707 
2708 	zio->io_gang_leader = zio;
2709 
2710 	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
2711 
2712 	return (zio);
2713 }
2714 
2715 static zio_t *
2716 zio_gang_issue(zio_t *zio)
2717 {
2718 	blkptr_t *bp = zio->io_bp;
2719 
2720 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) {
2721 		return (NULL);
2722 	}
2723 
2724 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
2725 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2726 
2727 	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
2728 		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd,
2729 		    0);
2730 	else
2731 		zio_gang_tree_free(&zio->io_gang_tree);
2732 
2733 	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2734 
2735 	return (zio);
2736 }
2737 
2738 static void
2739 zio_write_gang_member_ready(zio_t *zio)
2740 {
2741 	zio_t *pio = zio_unique_parent(zio);
2742 	dva_t *cdva = zio->io_bp->blk_dva;
2743 	dva_t *pdva = pio->io_bp->blk_dva;
2744 	uint64_t asize;
2745 	zio_t *gio __maybe_unused = zio->io_gang_leader;
2746 
2747 	if (BP_IS_HOLE(zio->io_bp))
2748 		return;
2749 
2750 	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
2751 
2752 	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
2753 	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
2754 	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
2755 	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
2756 	ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
2757 
2758 	mutex_enter(&pio->io_lock);
2759 	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
2760 		ASSERT(DVA_GET_GANG(&pdva[d]));
2761 		asize = DVA_GET_ASIZE(&pdva[d]);
2762 		asize += DVA_GET_ASIZE(&cdva[d]);
2763 		DVA_SET_ASIZE(&pdva[d], asize);
2764 	}
2765 	mutex_exit(&pio->io_lock);
2766 }
2767 
2768 static void
2769 zio_write_gang_done(zio_t *zio)
2770 {
2771 	/*
2772 	 * The io_abd field will be NULL for a zio with no data.  The io_flags
2773 	 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't
2774 	 * check for it here as it is cleared in zio_ready.
2775 	 */
2776 	if (zio->io_abd != NULL)
2777 		abd_free(zio->io_abd);
2778 }
2779 
2780 static zio_t *
2781 zio_write_gang_block(zio_t *pio, metaslab_class_t *mc)
2782 {
2783 	spa_t *spa = pio->io_spa;
2784 	blkptr_t *bp = pio->io_bp;
2785 	zio_t *gio = pio->io_gang_leader;
2786 	zio_t *zio;
2787 	zio_gang_node_t *gn, **gnpp;
2788 	zio_gbh_phys_t *gbh;
2789 	abd_t *gbh_abd;
2790 	uint64_t txg = pio->io_txg;
2791 	uint64_t resid = pio->io_size;
2792 	uint64_t lsize;
2793 	int copies = gio->io_prop.zp_copies;
2794 	int gbh_copies;
2795 	zio_prop_t zp;
2796 	int error;
2797 	boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA);
2798 
2799 	/*
2800 	 * encrypted blocks need DVA[2] free so encrypted gang headers can't
2801 	 * have a third copy.
2802 	 */
2803 	gbh_copies = MIN(copies + 1, spa_max_replication(spa));
2804 	if (gio->io_prop.zp_encrypt && gbh_copies >= SPA_DVAS_PER_BP)
2805 		gbh_copies = SPA_DVAS_PER_BP - 1;
2806 
2807 	int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER;
2808 	if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2809 		ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2810 		ASSERT(has_data);
2811 
2812 		flags |= METASLAB_ASYNC_ALLOC;
2813 		VERIFY(zfs_refcount_held(&mc->mc_allocator[pio->io_allocator].
2814 		    mca_alloc_slots, pio));
2815 
2816 		/*
2817 		 * The logical zio has already placed a reservation for
2818 		 * 'copies' allocation slots but gang blocks may require
2819 		 * additional copies. These additional copies
2820 		 * (i.e. gbh_copies - copies) are guaranteed to succeed
2821 		 * since metaslab_class_throttle_reserve() always allows
2822 		 * additional reservations for gang blocks.
2823 		 */
2824 		VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies,
2825 		    pio->io_allocator, pio, flags));
2826 	}
2827 
2828 	error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE,
2829 	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags,
2830 	    &pio->io_alloc_list, pio, pio->io_allocator);
2831 	if (error) {
2832 		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2833 			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2834 			ASSERT(has_data);
2835 
2836 			/*
2837 			 * If we failed to allocate the gang block header then
2838 			 * we remove any additional allocation reservations that
2839 			 * we placed here. The original reservation will
2840 			 * be removed when the logical I/O goes to the ready
2841 			 * stage.
2842 			 */
2843 			metaslab_class_throttle_unreserve(mc,
2844 			    gbh_copies - copies, pio->io_allocator, pio);
2845 		}
2846 
2847 		pio->io_error = error;
2848 		return (pio);
2849 	}
2850 
2851 	if (pio == gio) {
2852 		gnpp = &gio->io_gang_tree;
2853 	} else {
2854 		gnpp = pio->io_private;
2855 		ASSERT(pio->io_ready == zio_write_gang_member_ready);
2856 	}
2857 
2858 	gn = zio_gang_node_alloc(gnpp);
2859 	gbh = gn->gn_gbh;
2860 	bzero(gbh, SPA_GANGBLOCKSIZE);
2861 	gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE);
2862 
2863 	/*
2864 	 * Create the gang header.
2865 	 */
2866 	zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2867 	    zio_write_gang_done, NULL, pio->io_priority,
2868 	    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2869 
2870 	/*
2871 	 * Create and nowait the gang children.
2872 	 */
2873 	for (int g = 0; resid != 0; resid -= lsize, g++) {
2874 		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
2875 		    SPA_MINBLOCKSIZE);
2876 		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
2877 
2878 		zp.zp_checksum = gio->io_prop.zp_checksum;
2879 		zp.zp_compress = ZIO_COMPRESS_OFF;
2880 		zp.zp_complevel = gio->io_prop.zp_complevel;
2881 		zp.zp_type = DMU_OT_NONE;
2882 		zp.zp_level = 0;
2883 		zp.zp_copies = gio->io_prop.zp_copies;
2884 		zp.zp_dedup = B_FALSE;
2885 		zp.zp_dedup_verify = B_FALSE;
2886 		zp.zp_nopwrite = B_FALSE;
2887 		zp.zp_encrypt = gio->io_prop.zp_encrypt;
2888 		zp.zp_byteorder = gio->io_prop.zp_byteorder;
2889 		bzero(zp.zp_salt, ZIO_DATA_SALT_LEN);
2890 		bzero(zp.zp_iv, ZIO_DATA_IV_LEN);
2891 		bzero(zp.zp_mac, ZIO_DATA_MAC_LEN);
2892 
2893 		zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
2894 		    has_data ? abd_get_offset(pio->io_abd, pio->io_size -
2895 		    resid) : NULL, lsize, lsize, &zp,
2896 		    zio_write_gang_member_ready, NULL, NULL,
2897 		    zio_write_gang_done, &gn->gn_child[g], pio->io_priority,
2898 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2899 
2900 		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2901 			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2902 			ASSERT(has_data);
2903 
2904 			/*
2905 			 * Gang children won't throttle but we should
2906 			 * account for their work, so reserve an allocation
2907 			 * slot for them here.
2908 			 */
2909 			VERIFY(metaslab_class_throttle_reserve(mc,
2910 			    zp.zp_copies, cio->io_allocator, cio, flags));
2911 		}
2912 		zio_nowait(cio);
2913 	}
2914 
2915 	/*
2916 	 * Set pio's pipeline to just wait for zio to finish.
2917 	 */
2918 	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2919 
2920 	/*
2921 	 * We didn't allocate this bp, so make sure it doesn't get unmarked.
2922 	 */
2923 	pio->io_flags &= ~ZIO_FLAG_FASTWRITE;
2924 
2925 	zio_nowait(zio);
2926 
2927 	return (pio);
2928 }
2929 
2930 /*
2931  * The zio_nop_write stage in the pipeline determines if allocating a
2932  * new bp is necessary.  The nopwrite feature can handle writes in
2933  * either syncing or open context (i.e. zil writes) and as a result is
2934  * mutually exclusive with dedup.
2935  *
2936  * By leveraging a cryptographically secure checksum, such as SHA256, we
2937  * can compare the checksums of the new data and the old to determine if
2938  * allocating a new block is required.  Note that our requirements for
2939  * cryptographic strength are fairly weak: there can't be any accidental
2940  * hash collisions, but we don't need to be secure against intentional
2941  * (malicious) collisions.  To trigger a nopwrite, you have to be able
2942  * to write the file to begin with, and triggering an incorrect (hash
2943  * collision) nopwrite is no worse than simply writing to the file.
2944  * That said, there are no known attacks against the checksum algorithms
2945  * used for nopwrite, assuming that the salt and the checksums
2946  * themselves remain secret.
2947  */
2948 static zio_t *
2949 zio_nop_write(zio_t *zio)
2950 {
2951 	blkptr_t *bp = zio->io_bp;
2952 	blkptr_t *bp_orig = &zio->io_bp_orig;
2953 	zio_prop_t *zp = &zio->io_prop;
2954 
2955 	ASSERT(BP_GET_LEVEL(bp) == 0);
2956 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2957 	ASSERT(zp->zp_nopwrite);
2958 	ASSERT(!zp->zp_dedup);
2959 	ASSERT(zio->io_bp_override == NULL);
2960 	ASSERT(IO_IS_ALLOCATING(zio));
2961 
2962 	/*
2963 	 * Check to see if the original bp and the new bp have matching
2964 	 * characteristics (i.e. same checksum, compression algorithms, etc).
2965 	 * If they don't then just continue with the pipeline which will
2966 	 * allocate a new bp.
2967 	 */
2968 	if (BP_IS_HOLE(bp_orig) ||
2969 	    !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
2970 	    ZCHECKSUM_FLAG_NOPWRITE) ||
2971 	    BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) ||
2972 	    BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
2973 	    BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
2974 	    BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
2975 	    zp->zp_copies != BP_GET_NDVAS(bp_orig))
2976 		return (zio);
2977 
2978 	/*
2979 	 * If the checksums match then reset the pipeline so that we
2980 	 * avoid allocating a new bp and issuing any I/O.
2981 	 */
2982 	if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
2983 		ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
2984 		    ZCHECKSUM_FLAG_NOPWRITE);
2985 		ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
2986 		ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
2987 		ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
2988 		ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
2989 		    sizeof (uint64_t)) == 0);
2990 
2991 		/*
2992 		 * If we're overwriting a block that is currently on an
2993 		 * indirect vdev, then ignore the nopwrite request and
2994 		 * allow a new block to be allocated on a concrete vdev.
2995 		 */
2996 		spa_config_enter(zio->io_spa, SCL_VDEV, FTAG, RW_READER);
2997 		vdev_t *tvd = vdev_lookup_top(zio->io_spa,
2998 		    DVA_GET_VDEV(&bp->blk_dva[0]));
2999 		if (tvd->vdev_ops == &vdev_indirect_ops) {
3000 			spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
3001 			return (zio);
3002 		}
3003 		spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
3004 
3005 		*bp = *bp_orig;
3006 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3007 		zio->io_flags |= ZIO_FLAG_NOPWRITE;
3008 	}
3009 
3010 	return (zio);
3011 }
3012 
3013 /*
3014  * ==========================================================================
3015  * Dedup
3016  * ==========================================================================
3017  */
3018 static void
3019 zio_ddt_child_read_done(zio_t *zio)
3020 {
3021 	blkptr_t *bp = zio->io_bp;
3022 	ddt_entry_t *dde = zio->io_private;
3023 	ddt_phys_t *ddp;
3024 	zio_t *pio = zio_unique_parent(zio);
3025 
3026 	mutex_enter(&pio->io_lock);
3027 	ddp = ddt_phys_select(dde, bp);
3028 	if (zio->io_error == 0)
3029 		ddt_phys_clear(ddp);	/* this ddp doesn't need repair */
3030 
3031 	if (zio->io_error == 0 && dde->dde_repair_abd == NULL)
3032 		dde->dde_repair_abd = zio->io_abd;
3033 	else
3034 		abd_free(zio->io_abd);
3035 	mutex_exit(&pio->io_lock);
3036 }
3037 
3038 static zio_t *
3039 zio_ddt_read_start(zio_t *zio)
3040 {
3041 	blkptr_t *bp = zio->io_bp;
3042 
3043 	ASSERT(BP_GET_DEDUP(bp));
3044 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3045 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3046 
3047 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
3048 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
3049 		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
3050 		ddt_phys_t *ddp = dde->dde_phys;
3051 		ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
3052 		blkptr_t blk;
3053 
3054 		ASSERT(zio->io_vsd == NULL);
3055 		zio->io_vsd = dde;
3056 
3057 		if (ddp_self == NULL)
3058 			return (zio);
3059 
3060 		for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
3061 			if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
3062 				continue;
3063 			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
3064 			    &blk);
3065 			zio_nowait(zio_read(zio, zio->io_spa, &blk,
3066 			    abd_alloc_for_io(zio->io_size, B_TRUE),
3067 			    zio->io_size, zio_ddt_child_read_done, dde,
3068 			    zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) |
3069 			    ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark));
3070 		}
3071 		return (zio);
3072 	}
3073 
3074 	zio_nowait(zio_read(zio, zio->io_spa, bp,
3075 	    zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority,
3076 	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
3077 
3078 	return (zio);
3079 }
3080 
3081 static zio_t *
3082 zio_ddt_read_done(zio_t *zio)
3083 {
3084 	blkptr_t *bp = zio->io_bp;
3085 
3086 	if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) {
3087 		return (NULL);
3088 	}
3089 
3090 	ASSERT(BP_GET_DEDUP(bp));
3091 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3092 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3093 
3094 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
3095 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
3096 		ddt_entry_t *dde = zio->io_vsd;
3097 		if (ddt == NULL) {
3098 			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
3099 			return (zio);
3100 		}
3101 		if (dde == NULL) {
3102 			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
3103 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
3104 			return (NULL);
3105 		}
3106 		if (dde->dde_repair_abd != NULL) {
3107 			abd_copy(zio->io_abd, dde->dde_repair_abd,
3108 			    zio->io_size);
3109 			zio->io_child_error[ZIO_CHILD_DDT] = 0;
3110 		}
3111 		ddt_repair_done(ddt, dde);
3112 		zio->io_vsd = NULL;
3113 	}
3114 
3115 	ASSERT(zio->io_vsd == NULL);
3116 
3117 	return (zio);
3118 }
3119 
3120 static boolean_t
3121 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
3122 {
3123 	spa_t *spa = zio->io_spa;
3124 	boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW);
3125 
3126 	ASSERT(!(zio->io_bp_override && do_raw));
3127 
3128 	/*
3129 	 * Note: we compare the original data, not the transformed data,
3130 	 * because when zio->io_bp is an override bp, we will not have
3131 	 * pushed the I/O transforms.  That's an important optimization
3132 	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
3133 	 * However, we should never get a raw, override zio so in these
3134 	 * cases we can compare the io_abd directly. This is useful because
3135 	 * it allows us to do dedup verification even if we don't have access
3136 	 * to the original data (for instance, if the encryption keys aren't
3137 	 * loaded).
3138 	 */
3139 
3140 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
3141 		zio_t *lio = dde->dde_lead_zio[p];
3142 
3143 		if (lio != NULL && do_raw) {
3144 			return (lio->io_size != zio->io_size ||
3145 			    abd_cmp(zio->io_abd, lio->io_abd) != 0);
3146 		} else if (lio != NULL) {
3147 			return (lio->io_orig_size != zio->io_orig_size ||
3148 			    abd_cmp(zio->io_orig_abd, lio->io_orig_abd) != 0);
3149 		}
3150 	}
3151 
3152 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
3153 		ddt_phys_t *ddp = &dde->dde_phys[p];
3154 
3155 		if (ddp->ddp_phys_birth != 0 && do_raw) {
3156 			blkptr_t blk = *zio->io_bp;
3157 			uint64_t psize;
3158 			abd_t *tmpabd;
3159 			int error;
3160 
3161 			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
3162 			psize = BP_GET_PSIZE(&blk);
3163 
3164 			if (psize != zio->io_size)
3165 				return (B_TRUE);
3166 
3167 			ddt_exit(ddt);
3168 
3169 			tmpabd = abd_alloc_for_io(psize, B_TRUE);
3170 
3171 			error = zio_wait(zio_read(NULL, spa, &blk, tmpabd,
3172 			    psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
3173 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3174 			    ZIO_FLAG_RAW, &zio->io_bookmark));
3175 
3176 			if (error == 0) {
3177 				if (abd_cmp(tmpabd, zio->io_abd) != 0)
3178 					error = SET_ERROR(ENOENT);
3179 			}
3180 
3181 			abd_free(tmpabd);
3182 			ddt_enter(ddt);
3183 			return (error != 0);
3184 		} else if (ddp->ddp_phys_birth != 0) {
3185 			arc_buf_t *abuf = NULL;
3186 			arc_flags_t aflags = ARC_FLAG_WAIT;
3187 			blkptr_t blk = *zio->io_bp;
3188 			int error;
3189 
3190 			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
3191 
3192 			if (BP_GET_LSIZE(&blk) != zio->io_orig_size)
3193 				return (B_TRUE);
3194 
3195 			ddt_exit(ddt);
3196 
3197 			error = arc_read(NULL, spa, &blk,
3198 			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
3199 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3200 			    &aflags, &zio->io_bookmark);
3201 
3202 			if (error == 0) {
3203 				if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data,
3204 				    zio->io_orig_size) != 0)
3205 					error = SET_ERROR(ENOENT);
3206 				arc_buf_destroy(abuf, &abuf);
3207 			}
3208 
3209 			ddt_enter(ddt);
3210 			return (error != 0);
3211 		}
3212 	}
3213 
3214 	return (B_FALSE);
3215 }
3216 
3217 static void
3218 zio_ddt_child_write_ready(zio_t *zio)
3219 {
3220 	int p = zio->io_prop.zp_copies;
3221 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3222 	ddt_entry_t *dde = zio->io_private;
3223 	ddt_phys_t *ddp = &dde->dde_phys[p];
3224 	zio_t *pio;
3225 
3226 	if (zio->io_error)
3227 		return;
3228 
3229 	ddt_enter(ddt);
3230 
3231 	ASSERT(dde->dde_lead_zio[p] == zio);
3232 
3233 	ddt_phys_fill(ddp, zio->io_bp);
3234 
3235 	zio_link_t *zl = NULL;
3236 	while ((pio = zio_walk_parents(zio, &zl)) != NULL)
3237 		ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
3238 
3239 	ddt_exit(ddt);
3240 }
3241 
3242 static void
3243 zio_ddt_child_write_done(zio_t *zio)
3244 {
3245 	int p = zio->io_prop.zp_copies;
3246 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3247 	ddt_entry_t *dde = zio->io_private;
3248 	ddt_phys_t *ddp = &dde->dde_phys[p];
3249 
3250 	ddt_enter(ddt);
3251 
3252 	ASSERT(ddp->ddp_refcnt == 0);
3253 	ASSERT(dde->dde_lead_zio[p] == zio);
3254 	dde->dde_lead_zio[p] = NULL;
3255 
3256 	if (zio->io_error == 0) {
3257 		zio_link_t *zl = NULL;
3258 		while (zio_walk_parents(zio, &zl) != NULL)
3259 			ddt_phys_addref(ddp);
3260 	} else {
3261 		ddt_phys_clear(ddp);
3262 	}
3263 
3264 	ddt_exit(ddt);
3265 }
3266 
3267 static zio_t *
3268 zio_ddt_write(zio_t *zio)
3269 {
3270 	spa_t *spa = zio->io_spa;
3271 	blkptr_t *bp = zio->io_bp;
3272 	uint64_t txg = zio->io_txg;
3273 	zio_prop_t *zp = &zio->io_prop;
3274 	int p = zp->zp_copies;
3275 	zio_t *cio = NULL;
3276 	ddt_t *ddt = ddt_select(spa, bp);
3277 	ddt_entry_t *dde;
3278 	ddt_phys_t *ddp;
3279 
3280 	ASSERT(BP_GET_DEDUP(bp));
3281 	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
3282 	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
3283 	ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW)));
3284 
3285 	ddt_enter(ddt);
3286 	dde = ddt_lookup(ddt, bp, B_TRUE);
3287 	ddp = &dde->dde_phys[p];
3288 
3289 	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
3290 		/*
3291 		 * If we're using a weak checksum, upgrade to a strong checksum
3292 		 * and try again.  If we're already using a strong checksum,
3293 		 * we can't resolve it, so just convert to an ordinary write.
3294 		 * (And automatically e-mail a paper to Nature?)
3295 		 */
3296 		if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
3297 		    ZCHECKSUM_FLAG_DEDUP)) {
3298 			zp->zp_checksum = spa_dedup_checksum(spa);
3299 			zio_pop_transforms(zio);
3300 			zio->io_stage = ZIO_STAGE_OPEN;
3301 			BP_ZERO(bp);
3302 		} else {
3303 			zp->zp_dedup = B_FALSE;
3304 			BP_SET_DEDUP(bp, B_FALSE);
3305 		}
3306 		ASSERT(!BP_GET_DEDUP(bp));
3307 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
3308 		ddt_exit(ddt);
3309 		return (zio);
3310 	}
3311 
3312 	if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
3313 		if (ddp->ddp_phys_birth != 0)
3314 			ddt_bp_fill(ddp, bp, txg);
3315 		if (dde->dde_lead_zio[p] != NULL)
3316 			zio_add_child(zio, dde->dde_lead_zio[p]);
3317 		else
3318 			ddt_phys_addref(ddp);
3319 	} else if (zio->io_bp_override) {
3320 		ASSERT(bp->blk_birth == txg);
3321 		ASSERT(BP_EQUAL(bp, zio->io_bp_override));
3322 		ddt_phys_fill(ddp, bp);
3323 		ddt_phys_addref(ddp);
3324 	} else {
3325 		cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
3326 		    zio->io_orig_size, zio->io_orig_size, zp,
3327 		    zio_ddt_child_write_ready, NULL, NULL,
3328 		    zio_ddt_child_write_done, dde, zio->io_priority,
3329 		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
3330 
3331 		zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL);
3332 		dde->dde_lead_zio[p] = cio;
3333 	}
3334 
3335 	ddt_exit(ddt);
3336 
3337 	zio_nowait(cio);
3338 
3339 	return (zio);
3340 }
3341 
3342 ddt_entry_t *freedde; /* for debugging */
3343 
3344 static zio_t *
3345 zio_ddt_free(zio_t *zio)
3346 {
3347 	spa_t *spa = zio->io_spa;
3348 	blkptr_t *bp = zio->io_bp;
3349 	ddt_t *ddt = ddt_select(spa, bp);
3350 	ddt_entry_t *dde;
3351 	ddt_phys_t *ddp;
3352 
3353 	ASSERT(BP_GET_DEDUP(bp));
3354 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3355 
3356 	ddt_enter(ddt);
3357 	freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
3358 	if (dde) {
3359 		ddp = ddt_phys_select(dde, bp);
3360 		if (ddp)
3361 			ddt_phys_decref(ddp);
3362 	}
3363 	ddt_exit(ddt);
3364 
3365 	return (zio);
3366 }
3367 
3368 /*
3369  * ==========================================================================
3370  * Allocate and free blocks
3371  * ==========================================================================
3372  */
3373 
3374 static zio_t *
3375 zio_io_to_allocate(spa_t *spa, int allocator)
3376 {
3377 	zio_t *zio;
3378 
3379 	ASSERT(MUTEX_HELD(&spa->spa_alloc_locks[allocator]));
3380 
3381 	zio = avl_first(&spa->spa_alloc_trees[allocator]);
3382 	if (zio == NULL)
3383 		return (NULL);
3384 
3385 	ASSERT(IO_IS_ALLOCATING(zio));
3386 
3387 	/*
3388 	 * Try to place a reservation for this zio. If we're unable to
3389 	 * reserve then we throttle.
3390 	 */
3391 	ASSERT3U(zio->io_allocator, ==, allocator);
3392 	if (!metaslab_class_throttle_reserve(zio->io_metaslab_class,
3393 	    zio->io_prop.zp_copies, zio->io_allocator, zio, 0)) {
3394 		return (NULL);
3395 	}
3396 
3397 	avl_remove(&spa->spa_alloc_trees[allocator], zio);
3398 	ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE);
3399 
3400 	return (zio);
3401 }
3402 
3403 static zio_t *
3404 zio_dva_throttle(zio_t *zio)
3405 {
3406 	spa_t *spa = zio->io_spa;
3407 	zio_t *nio;
3408 	metaslab_class_t *mc;
3409 
3410 	/* locate an appropriate allocation class */
3411 	mc = spa_preferred_class(spa, zio->io_size, zio->io_prop.zp_type,
3412 	    zio->io_prop.zp_level, zio->io_prop.zp_zpl_smallblk);
3413 
3414 	if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE ||
3415 	    !mc->mc_alloc_throttle_enabled ||
3416 	    zio->io_child_type == ZIO_CHILD_GANG ||
3417 	    zio->io_flags & ZIO_FLAG_NODATA) {
3418 		return (zio);
3419 	}
3420 
3421 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3422 
3423 	ASSERT3U(zio->io_queued_timestamp, >, 0);
3424 	ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE);
3425 
3426 	zbookmark_phys_t *bm = &zio->io_bookmark;
3427 	/*
3428 	 * We want to try to use as many allocators as possible to help improve
3429 	 * performance, but we also want logically adjacent IOs to be physically
3430 	 * adjacent to improve sequential read performance. We chunk each object
3431 	 * into 2^20 block regions, and then hash based on the objset, object,
3432 	 * level, and region to accomplish both of these goals.
3433 	 */
3434 	zio->io_allocator = cityhash4(bm->zb_objset, bm->zb_object,
3435 	    bm->zb_level, bm->zb_blkid >> 20) % spa->spa_alloc_count;
3436 	mutex_enter(&spa->spa_alloc_locks[zio->io_allocator]);
3437 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3438 	zio->io_metaslab_class = mc;
3439 	avl_add(&spa->spa_alloc_trees[zio->io_allocator], zio);
3440 	nio = zio_io_to_allocate(spa, zio->io_allocator);
3441 	mutex_exit(&spa->spa_alloc_locks[zio->io_allocator]);
3442 	return (nio);
3443 }
3444 
3445 static void
3446 zio_allocate_dispatch(spa_t *spa, int allocator)
3447 {
3448 	zio_t *zio;
3449 
3450 	mutex_enter(&spa->spa_alloc_locks[allocator]);
3451 	zio = zio_io_to_allocate(spa, allocator);
3452 	mutex_exit(&spa->spa_alloc_locks[allocator]);
3453 	if (zio == NULL)
3454 		return;
3455 
3456 	ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE);
3457 	ASSERT0(zio->io_error);
3458 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE);
3459 }
3460 
3461 static zio_t *
3462 zio_dva_allocate(zio_t *zio)
3463 {
3464 	spa_t *spa = zio->io_spa;
3465 	metaslab_class_t *mc;
3466 	blkptr_t *bp = zio->io_bp;
3467 	int error;
3468 	int flags = 0;
3469 
3470 	if (zio->io_gang_leader == NULL) {
3471 		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3472 		zio->io_gang_leader = zio;
3473 	}
3474 
3475 	ASSERT(BP_IS_HOLE(bp));
3476 	ASSERT0(BP_GET_NDVAS(bp));
3477 	ASSERT3U(zio->io_prop.zp_copies, >, 0);
3478 	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
3479 	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
3480 
3481 	flags |= (zio->io_flags & ZIO_FLAG_FASTWRITE) ? METASLAB_FASTWRITE : 0;
3482 	if (zio->io_flags & ZIO_FLAG_NODATA)
3483 		flags |= METASLAB_DONT_THROTTLE;
3484 	if (zio->io_flags & ZIO_FLAG_GANG_CHILD)
3485 		flags |= METASLAB_GANG_CHILD;
3486 	if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE)
3487 		flags |= METASLAB_ASYNC_ALLOC;
3488 
3489 	/*
3490 	 * if not already chosen, locate an appropriate allocation class
3491 	 */
3492 	mc = zio->io_metaslab_class;
3493 	if (mc == NULL) {
3494 		mc = spa_preferred_class(spa, zio->io_size,
3495 		    zio->io_prop.zp_type, zio->io_prop.zp_level,
3496 		    zio->io_prop.zp_zpl_smallblk);
3497 		zio->io_metaslab_class = mc;
3498 	}
3499 
3500 	/*
3501 	 * Try allocating the block in the usual metaslab class.
3502 	 * If that's full, allocate it in the normal class.
3503 	 * If that's full, allocate as a gang block,
3504 	 * and if all are full, the allocation fails (which shouldn't happen).
3505 	 *
3506 	 * Note that we do not fall back on embedded slog (ZIL) space, to
3507 	 * preserve unfragmented slog space, which is critical for decent
3508 	 * sync write performance.  If a log allocation fails, we will fall
3509 	 * back to spa_sync() which is abysmal for performance.
3510 	 */
3511 	error = metaslab_alloc(spa, mc, zio->io_size, bp,
3512 	    zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3513 	    &zio->io_alloc_list, zio, zio->io_allocator);
3514 
3515 	/*
3516 	 * Fallback to normal class when an alloc class is full
3517 	 */
3518 	if (error == ENOSPC && mc != spa_normal_class(spa)) {
3519 		/*
3520 		 * If throttling, transfer reservation over to normal class.
3521 		 * The io_allocator slot can remain the same even though we
3522 		 * are switching classes.
3523 		 */
3524 		if (mc->mc_alloc_throttle_enabled &&
3525 		    (zio->io_flags & ZIO_FLAG_IO_ALLOCATING)) {
3526 			metaslab_class_throttle_unreserve(mc,
3527 			    zio->io_prop.zp_copies, zio->io_allocator, zio);
3528 			zio->io_flags &= ~ZIO_FLAG_IO_ALLOCATING;
3529 
3530 			VERIFY(metaslab_class_throttle_reserve(
3531 			    spa_normal_class(spa),
3532 			    zio->io_prop.zp_copies, zio->io_allocator, zio,
3533 			    flags | METASLAB_MUST_RESERVE));
3534 		}
3535 		zio->io_metaslab_class = mc = spa_normal_class(spa);
3536 		if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) {
3537 			zfs_dbgmsg("%s: metaslab allocation failure, "
3538 			    "trying normal class: zio %px, size %llu, error %d",
3539 			    spa_name(spa), zio, zio->io_size, error);
3540 		}
3541 
3542 		error = metaslab_alloc(spa, mc, zio->io_size, bp,
3543 		    zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3544 		    &zio->io_alloc_list, zio, zio->io_allocator);
3545 	}
3546 
3547 	if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) {
3548 		if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) {
3549 			zfs_dbgmsg("%s: metaslab allocation failure, "
3550 			    "trying ganging: zio %px, size %llu, error %d",
3551 			    spa_name(spa), zio, zio->io_size, error);
3552 		}
3553 		return (zio_write_gang_block(zio, mc));
3554 	}
3555 	if (error != 0) {
3556 		if (error != ENOSPC ||
3557 		    (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC)) {
3558 			zfs_dbgmsg("%s: metaslab allocation failure: zio %px, "
3559 			    "size %llu, error %d",
3560 			    spa_name(spa), zio, zio->io_size, error);
3561 		}
3562 		zio->io_error = error;
3563 	}
3564 
3565 	return (zio);
3566 }
3567 
3568 static zio_t *
3569 zio_dva_free(zio_t *zio)
3570 {
3571 	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
3572 
3573 	return (zio);
3574 }
3575 
3576 static zio_t *
3577 zio_dva_claim(zio_t *zio)
3578 {
3579 	int error;
3580 
3581 	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
3582 	if (error)
3583 		zio->io_error = error;
3584 
3585 	return (zio);
3586 }
3587 
3588 /*
3589  * Undo an allocation.  This is used by zio_done() when an I/O fails
3590  * and we want to give back the block we just allocated.
3591  * This handles both normal blocks and gang blocks.
3592  */
3593 static void
3594 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
3595 {
3596 	ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
3597 	ASSERT(zio->io_bp_override == NULL);
3598 
3599 	if (!BP_IS_HOLE(bp))
3600 		metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
3601 
3602 	if (gn != NULL) {
3603 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
3604 			zio_dva_unallocate(zio, gn->gn_child[g],
3605 			    &gn->gn_gbh->zg_blkptr[g]);
3606 		}
3607 	}
3608 }
3609 
3610 /*
3611  * Try to allocate an intent log block.  Return 0 on success, errno on failure.
3612  */
3613 int
3614 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp,
3615     uint64_t size, boolean_t *slog)
3616 {
3617 	int error = 1;
3618 	zio_alloc_list_t io_alloc_list;
3619 
3620 	ASSERT(txg > spa_syncing_txg(spa));
3621 
3622 	metaslab_trace_init(&io_alloc_list);
3623 
3624 	/*
3625 	 * Block pointer fields are useful to metaslabs for stats and debugging.
3626 	 * Fill in the obvious ones before calling into metaslab_alloc().
3627 	 */
3628 	BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3629 	BP_SET_PSIZE(new_bp, size);
3630 	BP_SET_LEVEL(new_bp, 0);
3631 
3632 	/*
3633 	 * When allocating a zil block, we don't have information about
3634 	 * the final destination of the block except the objset it's part
3635 	 * of, so we just hash the objset ID to pick the allocator to get
3636 	 * some parallelism.
3637 	 */
3638 	int flags = METASLAB_FASTWRITE | METASLAB_ZIL;
3639 	int allocator = cityhash4(0, 0, 0, os->os_dsl_dataset->ds_object) %
3640 	    spa->spa_alloc_count;
3641 	error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1,
3642 	    txg, NULL, flags, &io_alloc_list, NULL, allocator);
3643 	*slog = (error == 0);
3644 	if (error != 0) {
3645 		error = metaslab_alloc(spa, spa_embedded_log_class(spa), size,
3646 		    new_bp, 1, txg, NULL, flags,
3647 		    &io_alloc_list, NULL, allocator);
3648 	}
3649 	if (error != 0) {
3650 		error = metaslab_alloc(spa, spa_normal_class(spa), size,
3651 		    new_bp, 1, txg, NULL, flags,
3652 		    &io_alloc_list, NULL, allocator);
3653 	}
3654 	metaslab_trace_fini(&io_alloc_list);
3655 
3656 	if (error == 0) {
3657 		BP_SET_LSIZE(new_bp, size);
3658 		BP_SET_PSIZE(new_bp, size);
3659 		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
3660 		BP_SET_CHECKSUM(new_bp,
3661 		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL
3662 		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
3663 		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3664 		BP_SET_LEVEL(new_bp, 0);
3665 		BP_SET_DEDUP(new_bp, 0);
3666 		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
3667 
3668 		/*
3669 		 * encrypted blocks will require an IV and salt. We generate
3670 		 * these now since we will not be rewriting the bp at
3671 		 * rewrite time.
3672 		 */
3673 		if (os->os_encrypted) {
3674 			uint8_t iv[ZIO_DATA_IV_LEN];
3675 			uint8_t salt[ZIO_DATA_SALT_LEN];
3676 
3677 			BP_SET_CRYPT(new_bp, B_TRUE);
3678 			VERIFY0(spa_crypt_get_salt(spa,
3679 			    dmu_objset_id(os), salt));
3680 			VERIFY0(zio_crypt_generate_iv(iv));
3681 
3682 			zio_crypt_encode_params_bp(new_bp, salt, iv);
3683 		}
3684 	} else {
3685 		zfs_dbgmsg("%s: zil block allocation failure: "
3686 		    "size %llu, error %d", spa_name(spa), size, error);
3687 	}
3688 
3689 	return (error);
3690 }
3691 
3692 /*
3693  * ==========================================================================
3694  * Read and write to physical devices
3695  * ==========================================================================
3696  */
3697 
3698 /*
3699  * Issue an I/O to the underlying vdev. Typically the issue pipeline
3700  * stops after this stage and will resume upon I/O completion.
3701  * However, there are instances where the vdev layer may need to
3702  * continue the pipeline when an I/O was not issued. Since the I/O
3703  * that was sent to the vdev layer might be different than the one
3704  * currently active in the pipeline (see vdev_queue_io()), we explicitly
3705  * force the underlying vdev layers to call either zio_execute() or
3706  * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
3707  */
3708 static zio_t *
3709 zio_vdev_io_start(zio_t *zio)
3710 {
3711 	vdev_t *vd = zio->io_vd;
3712 	uint64_t align;
3713 	spa_t *spa = zio->io_spa;
3714 
3715 	zio->io_delay = 0;
3716 
3717 	ASSERT(zio->io_error == 0);
3718 	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
3719 
3720 	if (vd == NULL) {
3721 		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3722 			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
3723 
3724 		/*
3725 		 * The mirror_ops handle multiple DVAs in a single BP.
3726 		 */
3727 		vdev_mirror_ops.vdev_op_io_start(zio);
3728 		return (NULL);
3729 	}
3730 
3731 	ASSERT3P(zio->io_logical, !=, zio);
3732 	if (zio->io_type == ZIO_TYPE_WRITE) {
3733 		ASSERT(spa->spa_trust_config);
3734 
3735 		/*
3736 		 * Note: the code can handle other kinds of writes,
3737 		 * but we don't expect them.
3738 		 */
3739 		if (zio->io_vd->vdev_removing) {
3740 			ASSERT(zio->io_flags &
3741 			    (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL |
3742 			    ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE));
3743 		}
3744 	}
3745 
3746 	align = 1ULL << vd->vdev_top->vdev_ashift;
3747 
3748 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
3749 	    P2PHASE(zio->io_size, align) != 0) {
3750 		/* Transform logical writes to be a full physical block size. */
3751 		uint64_t asize = P2ROUNDUP(zio->io_size, align);
3752 		abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize);
3753 		ASSERT(vd == vd->vdev_top);
3754 		if (zio->io_type == ZIO_TYPE_WRITE) {
3755 			abd_copy(abuf, zio->io_abd, zio->io_size);
3756 			abd_zero_off(abuf, zio->io_size, asize - zio->io_size);
3757 		}
3758 		zio_push_transform(zio, abuf, asize, asize, zio_subblock);
3759 	}
3760 
3761 	/*
3762 	 * If this is not a physical io, make sure that it is properly aligned
3763 	 * before proceeding.
3764 	 */
3765 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
3766 		ASSERT0(P2PHASE(zio->io_offset, align));
3767 		ASSERT0(P2PHASE(zio->io_size, align));
3768 	} else {
3769 		/*
3770 		 * For physical writes, we allow 512b aligned writes and assume
3771 		 * the device will perform a read-modify-write as necessary.
3772 		 */
3773 		ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
3774 		ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
3775 	}
3776 
3777 	VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
3778 
3779 	/*
3780 	 * If this is a repair I/O, and there's no self-healing involved --
3781 	 * that is, we're just resilvering what we expect to resilver --
3782 	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
3783 	 * This prevents spurious resilvering.
3784 	 *
3785 	 * There are a few ways that we can end up creating these spurious
3786 	 * resilver i/os:
3787 	 *
3788 	 * 1. A resilver i/o will be issued if any DVA in the BP has a
3789 	 * dirty DTL.  The mirror code will issue resilver writes to
3790 	 * each DVA, including the one(s) that are not on vdevs with dirty
3791 	 * DTLs.
3792 	 *
3793 	 * 2. With nested replication, which happens when we have a
3794 	 * "replacing" or "spare" vdev that's a child of a mirror or raidz.
3795 	 * For example, given mirror(replacing(A+B), C), it's likely that
3796 	 * only A is out of date (it's the new device). In this case, we'll
3797 	 * read from C, then use the data to resilver A+B -- but we don't
3798 	 * actually want to resilver B, just A. The top-level mirror has no
3799 	 * way to know this, so instead we just discard unnecessary repairs
3800 	 * as we work our way down the vdev tree.
3801 	 *
3802 	 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc.
3803 	 * The same logic applies to any form of nested replication: ditto
3804 	 * + mirror, RAID-Z + replacing, etc.
3805 	 *
3806 	 * However, indirect vdevs point off to other vdevs which may have
3807 	 * DTL's, so we never bypass them.  The child i/os on concrete vdevs
3808 	 * will be properly bypassed instead.
3809 	 *
3810 	 * Leaf DTL_PARTIAL can be empty when a legitimate write comes from
3811 	 * a dRAID spare vdev. For example, when a dRAID spare is first
3812 	 * used, its spare blocks need to be written to but the leaf vdev's
3813 	 * of such blocks can have empty DTL_PARTIAL.
3814 	 *
3815 	 * There seemed no clean way to allow such writes while bypassing
3816 	 * spurious ones. At this point, just avoid all bypassing for dRAID
3817 	 * for correctness.
3818 	 */
3819 	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
3820 	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
3821 	    zio->io_txg != 0 &&	/* not a delegated i/o */
3822 	    vd->vdev_ops != &vdev_indirect_ops &&
3823 	    vd->vdev_top->vdev_ops != &vdev_draid_ops &&
3824 	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
3825 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3826 		zio_vdev_io_bypass(zio);
3827 		return (zio);
3828 	}
3829 
3830 	/*
3831 	 * Select the next best leaf I/O to process.  Distributed spares are
3832 	 * excluded since they dispatch the I/O directly to a leaf vdev after
3833 	 * applying the dRAID mapping.
3834 	 */
3835 	if (vd->vdev_ops->vdev_op_leaf &&
3836 	    vd->vdev_ops != &vdev_draid_spare_ops &&
3837 	    (zio->io_type == ZIO_TYPE_READ ||
3838 	    zio->io_type == ZIO_TYPE_WRITE ||
3839 	    zio->io_type == ZIO_TYPE_TRIM)) {
3840 
3841 		if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio))
3842 			return (zio);
3843 
3844 		if ((zio = vdev_queue_io(zio)) == NULL)
3845 			return (NULL);
3846 
3847 		if (!vdev_accessible(vd, zio)) {
3848 			zio->io_error = SET_ERROR(ENXIO);
3849 			zio_interrupt(zio);
3850 			return (NULL);
3851 		}
3852 		zio->io_delay = gethrtime();
3853 	}
3854 
3855 	vd->vdev_ops->vdev_op_io_start(zio);
3856 	return (NULL);
3857 }
3858 
3859 static zio_t *
3860 zio_vdev_io_done(zio_t *zio)
3861 {
3862 	vdev_t *vd = zio->io_vd;
3863 	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
3864 	boolean_t unexpected_error = B_FALSE;
3865 
3866 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3867 		return (NULL);
3868 	}
3869 
3870 	ASSERT(zio->io_type == ZIO_TYPE_READ ||
3871 	    zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM);
3872 
3873 	if (zio->io_delay)
3874 		zio->io_delay = gethrtime() - zio->io_delay;
3875 
3876 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3877 	    vd->vdev_ops != &vdev_draid_spare_ops) {
3878 		vdev_queue_io_done(zio);
3879 
3880 		if (zio->io_type == ZIO_TYPE_WRITE)
3881 			vdev_cache_write(zio);
3882 
3883 		if (zio_injection_enabled && zio->io_error == 0)
3884 			zio->io_error = zio_handle_device_injections(vd, zio,
3885 			    EIO, EILSEQ);
3886 
3887 		if (zio_injection_enabled && zio->io_error == 0)
3888 			zio->io_error = zio_handle_label_injection(zio, EIO);
3889 
3890 		if (zio->io_error && zio->io_type != ZIO_TYPE_TRIM) {
3891 			if (!vdev_accessible(vd, zio)) {
3892 				zio->io_error = SET_ERROR(ENXIO);
3893 			} else {
3894 				unexpected_error = B_TRUE;
3895 			}
3896 		}
3897 	}
3898 
3899 	ops->vdev_op_io_done(zio);
3900 
3901 	if (unexpected_error)
3902 		VERIFY(vdev_probe(vd, zio) == NULL);
3903 
3904 	return (zio);
3905 }
3906 
3907 /*
3908  * This function is used to change the priority of an existing zio that is
3909  * currently in-flight. This is used by the arc to upgrade priority in the
3910  * event that a demand read is made for a block that is currently queued
3911  * as a scrub or async read IO. Otherwise, the high priority read request
3912  * would end up having to wait for the lower priority IO.
3913  */
3914 void
3915 zio_change_priority(zio_t *pio, zio_priority_t priority)
3916 {
3917 	zio_t *cio, *cio_next;
3918 	zio_link_t *zl = NULL;
3919 
3920 	ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
3921 
3922 	if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) {
3923 		vdev_queue_change_io_priority(pio, priority);
3924 	} else {
3925 		pio->io_priority = priority;
3926 	}
3927 
3928 	mutex_enter(&pio->io_lock);
3929 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
3930 		cio_next = zio_walk_children(pio, &zl);
3931 		zio_change_priority(cio, priority);
3932 	}
3933 	mutex_exit(&pio->io_lock);
3934 }
3935 
3936 /*
3937  * For non-raidz ZIOs, we can just copy aside the bad data read from the
3938  * disk, and use that to finish the checksum ereport later.
3939  */
3940 static void
3941 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
3942     const abd_t *good_buf)
3943 {
3944 	/* no processing needed */
3945 	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
3946 }
3947 
3948 /*ARGSUSED*/
3949 void
3950 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr)
3951 {
3952 	void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size);
3953 
3954 	abd_copy(abd, zio->io_abd, zio->io_size);
3955 
3956 	zcr->zcr_cbinfo = zio->io_size;
3957 	zcr->zcr_cbdata = abd;
3958 	zcr->zcr_finish = zio_vsd_default_cksum_finish;
3959 	zcr->zcr_free = zio_abd_free;
3960 }
3961 
3962 static zio_t *
3963 zio_vdev_io_assess(zio_t *zio)
3964 {
3965 	vdev_t *vd = zio->io_vd;
3966 
3967 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3968 		return (NULL);
3969 	}
3970 
3971 	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3972 		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
3973 
3974 	if (zio->io_vsd != NULL) {
3975 		zio->io_vsd_ops->vsd_free(zio);
3976 		zio->io_vsd = NULL;
3977 	}
3978 
3979 	if (zio_injection_enabled && zio->io_error == 0)
3980 		zio->io_error = zio_handle_fault_injection(zio, EIO);
3981 
3982 	/*
3983 	 * If the I/O failed, determine whether we should attempt to retry it.
3984 	 *
3985 	 * On retry, we cut in line in the issue queue, since we don't want
3986 	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
3987 	 */
3988 	if (zio->io_error && vd == NULL &&
3989 	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
3990 		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
3991 		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
3992 		zio->io_error = 0;
3993 		zio->io_flags |= ZIO_FLAG_IO_RETRY |
3994 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
3995 		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
3996 		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
3997 		    zio_requeue_io_start_cut_in_line);
3998 		return (NULL);
3999 	}
4000 
4001 	/*
4002 	 * If we got an error on a leaf device, convert it to ENXIO
4003 	 * if the device is not accessible at all.
4004 	 */
4005 	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
4006 	    !vdev_accessible(vd, zio))
4007 		zio->io_error = SET_ERROR(ENXIO);
4008 
4009 	/*
4010 	 * If we can't write to an interior vdev (mirror or RAID-Z),
4011 	 * set vdev_cant_write so that we stop trying to allocate from it.
4012 	 */
4013 	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
4014 	    vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
4015 		vdev_dbgmsg(vd, "zio_vdev_io_assess(zio=%px) setting "
4016 		    "cant_write=TRUE due to write failure with ENXIO",
4017 		    zio);
4018 		vd->vdev_cant_write = B_TRUE;
4019 	}
4020 
4021 	/*
4022 	 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future
4023 	 * attempts will ever succeed. In this case we set a persistent
4024 	 * boolean flag so that we don't bother with it in the future.
4025 	 */
4026 	if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) &&
4027 	    zio->io_type == ZIO_TYPE_IOCTL &&
4028 	    zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL)
4029 		vd->vdev_nowritecache = B_TRUE;
4030 
4031 	if (zio->io_error)
4032 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4033 
4034 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
4035 	    zio->io_physdone != NULL) {
4036 		ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
4037 		ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
4038 		zio->io_physdone(zio->io_logical);
4039 	}
4040 
4041 	return (zio);
4042 }
4043 
4044 void
4045 zio_vdev_io_reissue(zio_t *zio)
4046 {
4047 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
4048 	ASSERT(zio->io_error == 0);
4049 
4050 	zio->io_stage >>= 1;
4051 }
4052 
4053 void
4054 zio_vdev_io_redone(zio_t *zio)
4055 {
4056 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
4057 
4058 	zio->io_stage >>= 1;
4059 }
4060 
4061 void
4062 zio_vdev_io_bypass(zio_t *zio)
4063 {
4064 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
4065 	ASSERT(zio->io_error == 0);
4066 
4067 	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
4068 	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
4069 }
4070 
4071 /*
4072  * ==========================================================================
4073  * Encrypt and store encryption parameters
4074  * ==========================================================================
4075  */
4076 
4077 
4078 /*
4079  * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for
4080  * managing the storage of encryption parameters and passing them to the
4081  * lower-level encryption functions.
4082  */
4083 static zio_t *
4084 zio_encrypt(zio_t *zio)
4085 {
4086 	zio_prop_t *zp = &zio->io_prop;
4087 	spa_t *spa = zio->io_spa;
4088 	blkptr_t *bp = zio->io_bp;
4089 	uint64_t psize = BP_GET_PSIZE(bp);
4090 	uint64_t dsobj = zio->io_bookmark.zb_objset;
4091 	dmu_object_type_t ot = BP_GET_TYPE(bp);
4092 	void *enc_buf = NULL;
4093 	abd_t *eabd = NULL;
4094 	uint8_t salt[ZIO_DATA_SALT_LEN];
4095 	uint8_t iv[ZIO_DATA_IV_LEN];
4096 	uint8_t mac[ZIO_DATA_MAC_LEN];
4097 	boolean_t no_crypt = B_FALSE;
4098 
4099 	/* the root zio already encrypted the data */
4100 	if (zio->io_child_type == ZIO_CHILD_GANG)
4101 		return (zio);
4102 
4103 	/* only ZIL blocks are re-encrypted on rewrite */
4104 	if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG)
4105 		return (zio);
4106 
4107 	if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) {
4108 		BP_SET_CRYPT(bp, B_FALSE);
4109 		return (zio);
4110 	}
4111 
4112 	/* if we are doing raw encryption set the provided encryption params */
4113 	if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) {
4114 		ASSERT0(BP_GET_LEVEL(bp));
4115 		BP_SET_CRYPT(bp, B_TRUE);
4116 		BP_SET_BYTEORDER(bp, zp->zp_byteorder);
4117 		if (ot != DMU_OT_OBJSET)
4118 			zio_crypt_encode_mac_bp(bp, zp->zp_mac);
4119 
4120 		/* dnode blocks must be written out in the provided byteorder */
4121 		if (zp->zp_byteorder != ZFS_HOST_BYTEORDER &&
4122 		    ot == DMU_OT_DNODE) {
4123 			void *bswap_buf = zio_buf_alloc(psize);
4124 			abd_t *babd = abd_get_from_buf(bswap_buf, psize);
4125 
4126 			ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4127 			abd_copy_to_buf(bswap_buf, zio->io_abd, psize);
4128 			dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf,
4129 			    psize);
4130 
4131 			abd_take_ownership_of_buf(babd, B_TRUE);
4132 			zio_push_transform(zio, babd, psize, psize, NULL);
4133 		}
4134 
4135 		if (DMU_OT_IS_ENCRYPTED(ot))
4136 			zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv);
4137 		return (zio);
4138 	}
4139 
4140 	/* indirect blocks only maintain a cksum of the lower level MACs */
4141 	if (BP_GET_LEVEL(bp) > 0) {
4142 		BP_SET_CRYPT(bp, B_TRUE);
4143 		VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE,
4144 		    zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp),
4145 		    mac));
4146 		zio_crypt_encode_mac_bp(bp, mac);
4147 		return (zio);
4148 	}
4149 
4150 	/*
4151 	 * Objset blocks are a special case since they have 2 256-bit MACs
4152 	 * embedded within them.
4153 	 */
4154 	if (ot == DMU_OT_OBJSET) {
4155 		ASSERT0(DMU_OT_IS_ENCRYPTED(ot));
4156 		ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4157 		BP_SET_CRYPT(bp, B_TRUE);
4158 		VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj,
4159 		    zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp)));
4160 		return (zio);
4161 	}
4162 
4163 	/* unencrypted object types are only authenticated with a MAC */
4164 	if (!DMU_OT_IS_ENCRYPTED(ot)) {
4165 		BP_SET_CRYPT(bp, B_TRUE);
4166 		VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj,
4167 		    zio->io_abd, psize, mac));
4168 		zio_crypt_encode_mac_bp(bp, mac);
4169 		return (zio);
4170 	}
4171 
4172 	/*
4173 	 * Later passes of sync-to-convergence may decide to rewrite data
4174 	 * in place to avoid more disk reallocations. This presents a problem
4175 	 * for encryption because this constitutes rewriting the new data with
4176 	 * the same encryption key and IV. However, this only applies to blocks
4177 	 * in the MOS (particularly the spacemaps) and we do not encrypt the
4178 	 * MOS. We assert that the zio is allocating or an intent log write
4179 	 * to enforce this.
4180 	 */
4181 	ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG);
4182 	ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG);
4183 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION));
4184 	ASSERT3U(psize, !=, 0);
4185 
4186 	enc_buf = zio_buf_alloc(psize);
4187 	eabd = abd_get_from_buf(enc_buf, psize);
4188 	abd_take_ownership_of_buf(eabd, B_TRUE);
4189 
4190 	/*
4191 	 * For an explanation of what encryption parameters are stored
4192 	 * where, see the block comment in zio_crypt.c.
4193 	 */
4194 	if (ot == DMU_OT_INTENT_LOG) {
4195 		zio_crypt_decode_params_bp(bp, salt, iv);
4196 	} else {
4197 		BP_SET_CRYPT(bp, B_TRUE);
4198 	}
4199 
4200 	/* Perform the encryption. This should not fail */
4201 	VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark,
4202 	    BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
4203 	    salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt));
4204 
4205 	/* encode encryption metadata into the bp */
4206 	if (ot == DMU_OT_INTENT_LOG) {
4207 		/*
4208 		 * ZIL blocks store the MAC in the embedded checksum, so the
4209 		 * transform must always be applied.
4210 		 */
4211 		zio_crypt_encode_mac_zil(enc_buf, mac);
4212 		zio_push_transform(zio, eabd, psize, psize, NULL);
4213 	} else {
4214 		BP_SET_CRYPT(bp, B_TRUE);
4215 		zio_crypt_encode_params_bp(bp, salt, iv);
4216 		zio_crypt_encode_mac_bp(bp, mac);
4217 
4218 		if (no_crypt) {
4219 			ASSERT3U(ot, ==, DMU_OT_DNODE);
4220 			abd_free(eabd);
4221 		} else {
4222 			zio_push_transform(zio, eabd, psize, psize, NULL);
4223 		}
4224 	}
4225 
4226 	return (zio);
4227 }
4228 
4229 /*
4230  * ==========================================================================
4231  * Generate and verify checksums
4232  * ==========================================================================
4233  */
4234 static zio_t *
4235 zio_checksum_generate(zio_t *zio)
4236 {
4237 	blkptr_t *bp = zio->io_bp;
4238 	enum zio_checksum checksum;
4239 
4240 	if (bp == NULL) {
4241 		/*
4242 		 * This is zio_write_phys().
4243 		 * We're either generating a label checksum, or none at all.
4244 		 */
4245 		checksum = zio->io_prop.zp_checksum;
4246 
4247 		if (checksum == ZIO_CHECKSUM_OFF)
4248 			return (zio);
4249 
4250 		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
4251 	} else {
4252 		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
4253 			ASSERT(!IO_IS_ALLOCATING(zio));
4254 			checksum = ZIO_CHECKSUM_GANG_HEADER;
4255 		} else {
4256 			checksum = BP_GET_CHECKSUM(bp);
4257 		}
4258 	}
4259 
4260 	zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size);
4261 
4262 	return (zio);
4263 }
4264 
4265 static zio_t *
4266 zio_checksum_verify(zio_t *zio)
4267 {
4268 	zio_bad_cksum_t info;
4269 	blkptr_t *bp = zio->io_bp;
4270 	int error;
4271 
4272 	ASSERT(zio->io_vd != NULL);
4273 
4274 	if (bp == NULL) {
4275 		/*
4276 		 * This is zio_read_phys().
4277 		 * We're either verifying a label checksum, or nothing at all.
4278 		 */
4279 		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
4280 			return (zio);
4281 
4282 		ASSERT3U(zio->io_prop.zp_checksum, ==, ZIO_CHECKSUM_LABEL);
4283 	}
4284 
4285 	if ((error = zio_checksum_error(zio, &info)) != 0) {
4286 		zio->io_error = error;
4287 		if (error == ECKSUM &&
4288 		    !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
4289 			(void) zfs_ereport_start_checksum(zio->io_spa,
4290 			    zio->io_vd, &zio->io_bookmark, zio,
4291 			    zio->io_offset, zio->io_size, &info);
4292 			mutex_enter(&zio->io_vd->vdev_stat_lock);
4293 			zio->io_vd->vdev_stat.vs_checksum_errors++;
4294 			mutex_exit(&zio->io_vd->vdev_stat_lock);
4295 		}
4296 	}
4297 
4298 	return (zio);
4299 }
4300 
4301 /*
4302  * Called by RAID-Z to ensure we don't compute the checksum twice.
4303  */
4304 void
4305 zio_checksum_verified(zio_t *zio)
4306 {
4307 	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
4308 }
4309 
4310 /*
4311  * ==========================================================================
4312  * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
4313  * An error of 0 indicates success.  ENXIO indicates whole-device failure,
4314  * which may be transient (e.g. unplugged) or permanent.  ECKSUM and EIO
4315  * indicate errors that are specific to one I/O, and most likely permanent.
4316  * Any other error is presumed to be worse because we weren't expecting it.
4317  * ==========================================================================
4318  */
4319 int
4320 zio_worst_error(int e1, int e2)
4321 {
4322 	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
4323 	int r1, r2;
4324 
4325 	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
4326 		if (e1 == zio_error_rank[r1])
4327 			break;
4328 
4329 	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
4330 		if (e2 == zio_error_rank[r2])
4331 			break;
4332 
4333 	return (r1 > r2 ? e1 : e2);
4334 }
4335 
4336 /*
4337  * ==========================================================================
4338  * I/O completion
4339  * ==========================================================================
4340  */
4341 static zio_t *
4342 zio_ready(zio_t *zio)
4343 {
4344 	blkptr_t *bp = zio->io_bp;
4345 	zio_t *pio, *pio_next;
4346 	zio_link_t *zl = NULL;
4347 
4348 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT,
4349 	    ZIO_WAIT_READY)) {
4350 		return (NULL);
4351 	}
4352 
4353 	if (zio->io_ready) {
4354 		ASSERT(IO_IS_ALLOCATING(zio));
4355 		ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
4356 		    (zio->io_flags & ZIO_FLAG_NOPWRITE));
4357 		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
4358 
4359 		zio->io_ready(zio);
4360 	}
4361 
4362 	if (bp != NULL && bp != &zio->io_bp_copy)
4363 		zio->io_bp_copy = *bp;
4364 
4365 	if (zio->io_error != 0) {
4366 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4367 
4368 		if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4369 			ASSERT(IO_IS_ALLOCATING(zio));
4370 			ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4371 			ASSERT(zio->io_metaslab_class != NULL);
4372 
4373 			/*
4374 			 * We were unable to allocate anything, unreserve and
4375 			 * issue the next I/O to allocate.
4376 			 */
4377 			metaslab_class_throttle_unreserve(
4378 			    zio->io_metaslab_class, zio->io_prop.zp_copies,
4379 			    zio->io_allocator, zio);
4380 			zio_allocate_dispatch(zio->io_spa, zio->io_allocator);
4381 		}
4382 	}
4383 
4384 	mutex_enter(&zio->io_lock);
4385 	zio->io_state[ZIO_WAIT_READY] = 1;
4386 	pio = zio_walk_parents(zio, &zl);
4387 	mutex_exit(&zio->io_lock);
4388 
4389 	/*
4390 	 * As we notify zio's parents, new parents could be added.
4391 	 * New parents go to the head of zio's io_parent_list, however,
4392 	 * so we will (correctly) not notify them.  The remainder of zio's
4393 	 * io_parent_list, from 'pio_next' onward, cannot change because
4394 	 * all parents must wait for us to be done before they can be done.
4395 	 */
4396 	for (; pio != NULL; pio = pio_next) {
4397 		pio_next = zio_walk_parents(zio, &zl);
4398 		zio_notify_parent(pio, zio, ZIO_WAIT_READY, NULL);
4399 	}
4400 
4401 	if (zio->io_flags & ZIO_FLAG_NODATA) {
4402 		if (BP_IS_GANG(bp)) {
4403 			zio->io_flags &= ~ZIO_FLAG_NODATA;
4404 		} else {
4405 			ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE);
4406 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
4407 		}
4408 	}
4409 
4410 	if (zio_injection_enabled &&
4411 	    zio->io_spa->spa_syncing_txg == zio->io_txg)
4412 		zio_handle_ignored_writes(zio);
4413 
4414 	return (zio);
4415 }
4416 
4417 /*
4418  * Update the allocation throttle accounting.
4419  */
4420 static void
4421 zio_dva_throttle_done(zio_t *zio)
4422 {
4423 	zio_t *lio __maybe_unused = zio->io_logical;
4424 	zio_t *pio = zio_unique_parent(zio);
4425 	vdev_t *vd = zio->io_vd;
4426 	int flags = METASLAB_ASYNC_ALLOC;
4427 
4428 	ASSERT3P(zio->io_bp, !=, NULL);
4429 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
4430 	ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE);
4431 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
4432 	ASSERT(vd != NULL);
4433 	ASSERT3P(vd, ==, vd->vdev_top);
4434 	ASSERT(zio_injection_enabled || !(zio->io_flags & ZIO_FLAG_IO_RETRY));
4435 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4436 	ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING);
4437 	ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE));
4438 	ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA));
4439 
4440 	/*
4441 	 * Parents of gang children can have two flavors -- ones that
4442 	 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set)
4443 	 * and ones that allocated the constituent blocks. The allocation
4444 	 * throttle needs to know the allocating parent zio so we must find
4445 	 * it here.
4446 	 */
4447 	if (pio->io_child_type == ZIO_CHILD_GANG) {
4448 		/*
4449 		 * If our parent is a rewrite gang child then our grandparent
4450 		 * would have been the one that performed the allocation.
4451 		 */
4452 		if (pio->io_flags & ZIO_FLAG_IO_REWRITE)
4453 			pio = zio_unique_parent(pio);
4454 		flags |= METASLAB_GANG_CHILD;
4455 	}
4456 
4457 	ASSERT(IO_IS_ALLOCATING(pio));
4458 	ASSERT3P(zio, !=, zio->io_logical);
4459 	ASSERT(zio->io_logical != NULL);
4460 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4461 	ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE);
4462 	ASSERT(zio->io_metaslab_class != NULL);
4463 
4464 	mutex_enter(&pio->io_lock);
4465 	metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags,
4466 	    pio->io_allocator, B_TRUE);
4467 	mutex_exit(&pio->io_lock);
4468 
4469 	metaslab_class_throttle_unreserve(zio->io_metaslab_class, 1,
4470 	    pio->io_allocator, pio);
4471 
4472 	/*
4473 	 * Call into the pipeline to see if there is more work that
4474 	 * needs to be done. If there is work to be done it will be
4475 	 * dispatched to another taskq thread.
4476 	 */
4477 	zio_allocate_dispatch(zio->io_spa, pio->io_allocator);
4478 }
4479 
4480 static zio_t *
4481 zio_done(zio_t *zio)
4482 {
4483 	/*
4484 	 * Always attempt to keep stack usage minimal here since
4485 	 * we can be called recursively up to 19 levels deep.
4486 	 */
4487 	const uint64_t psize = zio->io_size;
4488 	zio_t *pio, *pio_next;
4489 	zio_link_t *zl = NULL;
4490 
4491 	/*
4492 	 * If our children haven't all completed,
4493 	 * wait for them and then repeat this pipeline stage.
4494 	 */
4495 	if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) {
4496 		return (NULL);
4497 	}
4498 
4499 	/*
4500 	 * If the allocation throttle is enabled, then update the accounting.
4501 	 * We only track child I/Os that are part of an allocating async
4502 	 * write. We must do this since the allocation is performed
4503 	 * by the logical I/O but the actual write is done by child I/Os.
4504 	 */
4505 	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING &&
4506 	    zio->io_child_type == ZIO_CHILD_VDEV) {
4507 		ASSERT(zio->io_metaslab_class != NULL);
4508 		ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled);
4509 		zio_dva_throttle_done(zio);
4510 	}
4511 
4512 	/*
4513 	 * If the allocation throttle is enabled, verify that
4514 	 * we have decremented the refcounts for every I/O that was throttled.
4515 	 */
4516 	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4517 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
4518 		ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4519 		ASSERT(zio->io_bp != NULL);
4520 
4521 		metaslab_group_alloc_verify(zio->io_spa, zio->io_bp, zio,
4522 		    zio->io_allocator);
4523 		VERIFY(zfs_refcount_not_held(&zio->io_metaslab_class->
4524 		    mc_allocator[zio->io_allocator].mca_alloc_slots, zio));
4525 	}
4526 
4527 
4528 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
4529 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
4530 			ASSERT(zio->io_children[c][w] == 0);
4531 
4532 	if (zio->io_bp != NULL && !BP_IS_EMBEDDED(zio->io_bp)) {
4533 		ASSERT(zio->io_bp->blk_pad[0] == 0);
4534 		ASSERT(zio->io_bp->blk_pad[1] == 0);
4535 		ASSERT(bcmp(zio->io_bp, &zio->io_bp_copy,
4536 		    sizeof (blkptr_t)) == 0 ||
4537 		    (zio->io_bp == zio_unique_parent(zio)->io_bp));
4538 		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) &&
4539 		    zio->io_bp_override == NULL &&
4540 		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
4541 			ASSERT3U(zio->io_prop.zp_copies, <=,
4542 			    BP_GET_NDVAS(zio->io_bp));
4543 			ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 ||
4544 			    (BP_COUNT_GANG(zio->io_bp) ==
4545 			    BP_GET_NDVAS(zio->io_bp)));
4546 		}
4547 		if (zio->io_flags & ZIO_FLAG_NOPWRITE)
4548 			VERIFY(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
4549 	}
4550 
4551 	/*
4552 	 * If there were child vdev/gang/ddt errors, they apply to us now.
4553 	 */
4554 	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
4555 	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
4556 	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
4557 
4558 	/*
4559 	 * If the I/O on the transformed data was successful, generate any
4560 	 * checksum reports now while we still have the transformed data.
4561 	 */
4562 	if (zio->io_error == 0) {
4563 		while (zio->io_cksum_report != NULL) {
4564 			zio_cksum_report_t *zcr = zio->io_cksum_report;
4565 			uint64_t align = zcr->zcr_align;
4566 			uint64_t asize = P2ROUNDUP(psize, align);
4567 			abd_t *adata = zio->io_abd;
4568 
4569 			if (adata != NULL && asize != psize) {
4570 				adata = abd_alloc(asize, B_TRUE);
4571 				abd_copy(adata, zio->io_abd, psize);
4572 				abd_zero_off(adata, psize, asize - psize);
4573 			}
4574 
4575 			zio->io_cksum_report = zcr->zcr_next;
4576 			zcr->zcr_next = NULL;
4577 			zcr->zcr_finish(zcr, adata);
4578 			zfs_ereport_free_checksum(zcr);
4579 
4580 			if (adata != NULL && asize != psize)
4581 				abd_free(adata);
4582 		}
4583 	}
4584 
4585 	zio_pop_transforms(zio);	/* note: may set zio->io_error */
4586 
4587 	vdev_stat_update(zio, psize);
4588 
4589 	/*
4590 	 * If this I/O is attached to a particular vdev is slow, exceeding
4591 	 * 30 seconds to complete, post an error described the I/O delay.
4592 	 * We ignore these errors if the device is currently unavailable.
4593 	 */
4594 	if (zio->io_delay >= MSEC2NSEC(zio_slow_io_ms)) {
4595 		if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) {
4596 			/*
4597 			 * We want to only increment our slow IO counters if
4598 			 * the IO is valid (i.e. not if the drive is removed).
4599 			 *
4600 			 * zfs_ereport_post() will also do these checks, but
4601 			 * it can also ratelimit and have other failures, so we
4602 			 * need to increment the slow_io counters independent
4603 			 * of it.
4604 			 */
4605 			if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY,
4606 			    zio->io_spa, zio->io_vd, zio)) {
4607 				mutex_enter(&zio->io_vd->vdev_stat_lock);
4608 				zio->io_vd->vdev_stat.vs_slow_ios++;
4609 				mutex_exit(&zio->io_vd->vdev_stat_lock);
4610 
4611 				(void) zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
4612 				    zio->io_spa, zio->io_vd, &zio->io_bookmark,
4613 				    zio, 0);
4614 			}
4615 		}
4616 	}
4617 
4618 	if (zio->io_error) {
4619 		/*
4620 		 * If this I/O is attached to a particular vdev,
4621 		 * generate an error message describing the I/O failure
4622 		 * at the block level.  We ignore these errors if the
4623 		 * device is currently unavailable.
4624 		 */
4625 		if (zio->io_error != ECKSUM && zio->io_vd != NULL &&
4626 		    !vdev_is_dead(zio->io_vd)) {
4627 			int ret = zfs_ereport_post(FM_EREPORT_ZFS_IO,
4628 			    zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0);
4629 			if (ret != EALREADY) {
4630 				mutex_enter(&zio->io_vd->vdev_stat_lock);
4631 				if (zio->io_type == ZIO_TYPE_READ)
4632 					zio->io_vd->vdev_stat.vs_read_errors++;
4633 				else if (zio->io_type == ZIO_TYPE_WRITE)
4634 					zio->io_vd->vdev_stat.vs_write_errors++;
4635 				mutex_exit(&zio->io_vd->vdev_stat_lock);
4636 			}
4637 		}
4638 
4639 		if ((zio->io_error == EIO || !(zio->io_flags &
4640 		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
4641 		    zio == zio->io_logical) {
4642 			/*
4643 			 * For logical I/O requests, tell the SPA to log the
4644 			 * error and generate a logical data ereport.
4645 			 */
4646 			spa_log_error(zio->io_spa, &zio->io_bookmark);
4647 			(void) zfs_ereport_post(FM_EREPORT_ZFS_DATA,
4648 			    zio->io_spa, NULL, &zio->io_bookmark, zio, 0);
4649 		}
4650 	}
4651 
4652 	if (zio->io_error && zio == zio->io_logical) {
4653 		/*
4654 		 * Determine whether zio should be reexecuted.  This will
4655 		 * propagate all the way to the root via zio_notify_parent().
4656 		 */
4657 		ASSERT(zio->io_vd == NULL && zio->io_bp != NULL);
4658 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4659 
4660 		if (IO_IS_ALLOCATING(zio) &&
4661 		    !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
4662 			if (zio->io_error != ENOSPC)
4663 				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
4664 			else
4665 				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4666 		}
4667 
4668 		if ((zio->io_type == ZIO_TYPE_READ ||
4669 		    zio->io_type == ZIO_TYPE_FREE) &&
4670 		    !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
4671 		    zio->io_error == ENXIO &&
4672 		    spa_load_state(zio->io_spa) == SPA_LOAD_NONE &&
4673 		    spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE)
4674 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4675 
4676 		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
4677 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4678 
4679 		/*
4680 		 * Here is a possibly good place to attempt to do
4681 		 * either combinatorial reconstruction or error correction
4682 		 * based on checksums.  It also might be a good place
4683 		 * to send out preliminary ereports before we suspend
4684 		 * processing.
4685 		 */
4686 	}
4687 
4688 	/*
4689 	 * If there were logical child errors, they apply to us now.
4690 	 * We defer this until now to avoid conflating logical child
4691 	 * errors with errors that happened to the zio itself when
4692 	 * updating vdev stats and reporting FMA events above.
4693 	 */
4694 	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
4695 
4696 	if ((zio->io_error || zio->io_reexecute) &&
4697 	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
4698 	    !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
4699 		zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp);
4700 
4701 	zio_gang_tree_free(&zio->io_gang_tree);
4702 
4703 	/*
4704 	 * Godfather I/Os should never suspend.
4705 	 */
4706 	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
4707 	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
4708 		zio->io_reexecute &= ~ZIO_REEXECUTE_SUSPEND;
4709 
4710 	if (zio->io_reexecute) {
4711 		/*
4712 		 * This is a logical I/O that wants to reexecute.
4713 		 *
4714 		 * Reexecute is top-down.  When an i/o fails, if it's not
4715 		 * the root, it simply notifies its parent and sticks around.
4716 		 * The parent, seeing that it still has children in zio_done(),
4717 		 * does the same.  This percolates all the way up to the root.
4718 		 * The root i/o will reexecute or suspend the entire tree.
4719 		 *
4720 		 * This approach ensures that zio_reexecute() honors
4721 		 * all the original i/o dependency relationships, e.g.
4722 		 * parents not executing until children are ready.
4723 		 */
4724 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4725 
4726 		zio->io_gang_leader = NULL;
4727 
4728 		mutex_enter(&zio->io_lock);
4729 		zio->io_state[ZIO_WAIT_DONE] = 1;
4730 		mutex_exit(&zio->io_lock);
4731 
4732 		/*
4733 		 * "The Godfather" I/O monitors its children but is
4734 		 * not a true parent to them. It will track them through
4735 		 * the pipeline but severs its ties whenever they get into
4736 		 * trouble (e.g. suspended). This allows "The Godfather"
4737 		 * I/O to return status without blocking.
4738 		 */
4739 		zl = NULL;
4740 		for (pio = zio_walk_parents(zio, &zl); pio != NULL;
4741 		    pio = pio_next) {
4742 			zio_link_t *remove_zl = zl;
4743 			pio_next = zio_walk_parents(zio, &zl);
4744 
4745 			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
4746 			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
4747 				zio_remove_child(pio, zio, remove_zl);
4748 				/*
4749 				 * This is a rare code path, so we don't
4750 				 * bother with "next_to_execute".
4751 				 */
4752 				zio_notify_parent(pio, zio, ZIO_WAIT_DONE,
4753 				    NULL);
4754 			}
4755 		}
4756 
4757 		if ((pio = zio_unique_parent(zio)) != NULL) {
4758 			/*
4759 			 * We're not a root i/o, so there's nothing to do
4760 			 * but notify our parent.  Don't propagate errors
4761 			 * upward since we haven't permanently failed yet.
4762 			 */
4763 			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
4764 			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
4765 			/*
4766 			 * This is a rare code path, so we don't bother with
4767 			 * "next_to_execute".
4768 			 */
4769 			zio_notify_parent(pio, zio, ZIO_WAIT_DONE, NULL);
4770 		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
4771 			/*
4772 			 * We'd fail again if we reexecuted now, so suspend
4773 			 * until conditions improve (e.g. device comes online).
4774 			 */
4775 			zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR);
4776 		} else {
4777 			/*
4778 			 * Reexecution is potentially a huge amount of work.
4779 			 * Hand it off to the otherwise-unused claim taskq.
4780 			 */
4781 			ASSERT(taskq_empty_ent(&zio->io_tqent));
4782 			spa_taskq_dispatch_ent(zio->io_spa,
4783 			    ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE,
4784 			    (task_func_t *)zio_reexecute, zio, 0,
4785 			    &zio->io_tqent);
4786 		}
4787 		return (NULL);
4788 	}
4789 
4790 	ASSERT(zio->io_child_count == 0);
4791 	ASSERT(zio->io_reexecute == 0);
4792 	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
4793 
4794 	/*
4795 	 * Report any checksum errors, since the I/O is complete.
4796 	 */
4797 	while (zio->io_cksum_report != NULL) {
4798 		zio_cksum_report_t *zcr = zio->io_cksum_report;
4799 		zio->io_cksum_report = zcr->zcr_next;
4800 		zcr->zcr_next = NULL;
4801 		zcr->zcr_finish(zcr, NULL);
4802 		zfs_ereport_free_checksum(zcr);
4803 	}
4804 
4805 	if (zio->io_flags & ZIO_FLAG_FASTWRITE && zio->io_bp &&
4806 	    !BP_IS_HOLE(zio->io_bp) && !BP_IS_EMBEDDED(zio->io_bp) &&
4807 	    !(zio->io_flags & ZIO_FLAG_NOPWRITE)) {
4808 		metaslab_fastwrite_unmark(zio->io_spa, zio->io_bp);
4809 	}
4810 
4811 	/*
4812 	 * It is the responsibility of the done callback to ensure that this
4813 	 * particular zio is no longer discoverable for adoption, and as
4814 	 * such, cannot acquire any new parents.
4815 	 */
4816 	if (zio->io_done)
4817 		zio->io_done(zio);
4818 
4819 	mutex_enter(&zio->io_lock);
4820 	zio->io_state[ZIO_WAIT_DONE] = 1;
4821 	mutex_exit(&zio->io_lock);
4822 
4823 	/*
4824 	 * We are done executing this zio.  We may want to execute a parent
4825 	 * next.  See the comment in zio_notify_parent().
4826 	 */
4827 	zio_t *next_to_execute = NULL;
4828 	zl = NULL;
4829 	for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) {
4830 		zio_link_t *remove_zl = zl;
4831 		pio_next = zio_walk_parents(zio, &zl);
4832 		zio_remove_child(pio, zio, remove_zl);
4833 		zio_notify_parent(pio, zio, ZIO_WAIT_DONE, &next_to_execute);
4834 	}
4835 
4836 	if (zio->io_waiter != NULL) {
4837 		mutex_enter(&zio->io_lock);
4838 		zio->io_executor = NULL;
4839 		cv_broadcast(&zio->io_cv);
4840 		mutex_exit(&zio->io_lock);
4841 	} else {
4842 		zio_destroy(zio);
4843 	}
4844 
4845 	return (next_to_execute);
4846 }
4847 
4848 /*
4849  * ==========================================================================
4850  * I/O pipeline definition
4851  * ==========================================================================
4852  */
4853 static zio_pipe_stage_t *zio_pipeline[] = {
4854 	NULL,
4855 	zio_read_bp_init,
4856 	zio_write_bp_init,
4857 	zio_free_bp_init,
4858 	zio_issue_async,
4859 	zio_write_compress,
4860 	zio_encrypt,
4861 	zio_checksum_generate,
4862 	zio_nop_write,
4863 	zio_ddt_read_start,
4864 	zio_ddt_read_done,
4865 	zio_ddt_write,
4866 	zio_ddt_free,
4867 	zio_gang_assemble,
4868 	zio_gang_issue,
4869 	zio_dva_throttle,
4870 	zio_dva_allocate,
4871 	zio_dva_free,
4872 	zio_dva_claim,
4873 	zio_ready,
4874 	zio_vdev_io_start,
4875 	zio_vdev_io_done,
4876 	zio_vdev_io_assess,
4877 	zio_checksum_verify,
4878 	zio_done
4879 };
4880 
4881 
4882 
4883 
4884 /*
4885  * Compare two zbookmark_phys_t's to see which we would reach first in a
4886  * pre-order traversal of the object tree.
4887  *
4888  * This is simple in every case aside from the meta-dnode object. For all other
4889  * objects, we traverse them in order (object 1 before object 2, and so on).
4890  * However, all of these objects are traversed while traversing object 0, since
4891  * the data it points to is the list of objects.  Thus, we need to convert to a
4892  * canonical representation so we can compare meta-dnode bookmarks to
4893  * non-meta-dnode bookmarks.
4894  *
4895  * We do this by calculating "equivalents" for each field of the zbookmark.
4896  * zbookmarks outside of the meta-dnode use their own object and level, and
4897  * calculate the level 0 equivalent (the first L0 blkid that is contained in the
4898  * blocks this bookmark refers to) by multiplying their blkid by their span
4899  * (the number of L0 blocks contained within one block at their level).
4900  * zbookmarks inside the meta-dnode calculate their object equivalent
4901  * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
4902  * level + 1<<31 (any value larger than a level could ever be) for their level.
4903  * This causes them to always compare before a bookmark in their object
4904  * equivalent, compare appropriately to bookmarks in other objects, and to
4905  * compare appropriately to other bookmarks in the meta-dnode.
4906  */
4907 int
4908 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
4909     const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
4910 {
4911 	/*
4912 	 * These variables represent the "equivalent" values for the zbookmark,
4913 	 * after converting zbookmarks inside the meta dnode to their
4914 	 * normal-object equivalents.
4915 	 */
4916 	uint64_t zb1obj, zb2obj;
4917 	uint64_t zb1L0, zb2L0;
4918 	uint64_t zb1level, zb2level;
4919 
4920 	if (zb1->zb_object == zb2->zb_object &&
4921 	    zb1->zb_level == zb2->zb_level &&
4922 	    zb1->zb_blkid == zb2->zb_blkid)
4923 		return (0);
4924 
4925 	IMPLY(zb1->zb_level > 0, ibs1 >= SPA_MINBLOCKSHIFT);
4926 	IMPLY(zb2->zb_level > 0, ibs2 >= SPA_MINBLOCKSHIFT);
4927 
4928 	/*
4929 	 * BP_SPANB calculates the span in blocks.
4930 	 */
4931 	zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
4932 	zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
4933 
4934 	if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
4935 		zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4936 		zb1L0 = 0;
4937 		zb1level = zb1->zb_level + COMPARE_META_LEVEL;
4938 	} else {
4939 		zb1obj = zb1->zb_object;
4940 		zb1level = zb1->zb_level;
4941 	}
4942 
4943 	if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
4944 		zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4945 		zb2L0 = 0;
4946 		zb2level = zb2->zb_level + COMPARE_META_LEVEL;
4947 	} else {
4948 		zb2obj = zb2->zb_object;
4949 		zb2level = zb2->zb_level;
4950 	}
4951 
4952 	/* Now that we have a canonical representation, do the comparison. */
4953 	if (zb1obj != zb2obj)
4954 		return (zb1obj < zb2obj ? -1 : 1);
4955 	else if (zb1L0 != zb2L0)
4956 		return (zb1L0 < zb2L0 ? -1 : 1);
4957 	else if (zb1level != zb2level)
4958 		return (zb1level > zb2level ? -1 : 1);
4959 	/*
4960 	 * This can (theoretically) happen if the bookmarks have the same object
4961 	 * and level, but different blkids, if the block sizes are not the same.
4962 	 * There is presently no way to change the indirect block sizes
4963 	 */
4964 	return (0);
4965 }
4966 
4967 /*
4968  *  This function checks the following: given that last_block is the place that
4969  *  our traversal stopped last time, does that guarantee that we've visited
4970  *  every node under subtree_root?  Therefore, we can't just use the raw output
4971  *  of zbookmark_compare.  We have to pass in a modified version of
4972  *  subtree_root; by incrementing the block id, and then checking whether
4973  *  last_block is before or equal to that, we can tell whether or not having
4974  *  visited last_block implies that all of subtree_root's children have been
4975  *  visited.
4976  */
4977 boolean_t
4978 zbookmark_subtree_completed(const dnode_phys_t *dnp,
4979     const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
4980 {
4981 	zbookmark_phys_t mod_zb = *subtree_root;
4982 	mod_zb.zb_blkid++;
4983 	ASSERT(last_block->zb_level == 0);
4984 
4985 	/* The objset_phys_t isn't before anything. */
4986 	if (dnp == NULL)
4987 		return (B_FALSE);
4988 
4989 	/*
4990 	 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
4991 	 * data block size in sectors, because that variable is only used if
4992 	 * the bookmark refers to a block in the meta-dnode.  Since we don't
4993 	 * know without examining it what object it refers to, and there's no
4994 	 * harm in passing in this value in other cases, we always pass it in.
4995 	 *
4996 	 * We pass in 0 for the indirect block size shift because zb2 must be
4997 	 * level 0.  The indirect block size is only used to calculate the span
4998 	 * of the bookmark, but since the bookmark must be level 0, the span is
4999 	 * always 1, so the math works out.
5000 	 *
5001 	 * If you make changes to how the zbookmark_compare code works, be sure
5002 	 * to make sure that this code still works afterwards.
5003 	 */
5004 	return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
5005 	    1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
5006 	    last_block) <= 0);
5007 }
5008 
5009 EXPORT_SYMBOL(zio_type_name);
5010 EXPORT_SYMBOL(zio_buf_alloc);
5011 EXPORT_SYMBOL(zio_data_buf_alloc);
5012 EXPORT_SYMBOL(zio_buf_free);
5013 EXPORT_SYMBOL(zio_data_buf_free);
5014 
5015 /* BEGIN CSTYLED */
5016 ZFS_MODULE_PARAM(zfs_zio, zio_, slow_io_ms, INT, ZMOD_RW,
5017 	"Max I/O completion time (milliseconds) before marking it as slow");
5018 
5019 ZFS_MODULE_PARAM(zfs_zio, zio_, requeue_io_start_cut_in_line, INT, ZMOD_RW,
5020 	"Prioritize requeued I/O");
5021 
5022 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_deferred_free,  INT, ZMOD_RW,
5023 	"Defer frees starting in this pass");
5024 
5025 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_dont_compress, INT, ZMOD_RW,
5026 	"Don't compress starting in this pass");
5027 
5028 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_rewrite, INT, ZMOD_RW,
5029 	"Rewrite new bps starting in this pass");
5030 
5031 ZFS_MODULE_PARAM(zfs_zio, zio_, dva_throttle_enabled, INT, ZMOD_RW,
5032 	"Throttle block allocations in the ZIO pipeline");
5033 
5034 ZFS_MODULE_PARAM(zfs_zio, zio_, deadman_log_all, INT, ZMOD_RW,
5035 	"Log all slow ZIOs, not just those with vdevs");
5036 /* END CSTYLED */
5037