1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2020 by Delphix. All rights reserved. 24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2017, Intel Corporation. 26 * Copyright (c) 2019, Klara Inc. 27 * Copyright (c) 2019, Allan Jude 28 */ 29 30 #include <sys/sysmacros.h> 31 #include <sys/zfs_context.h> 32 #include <sys/fm/fs/zfs.h> 33 #include <sys/spa.h> 34 #include <sys/txg.h> 35 #include <sys/spa_impl.h> 36 #include <sys/vdev_impl.h> 37 #include <sys/vdev_trim.h> 38 #include <sys/zio_impl.h> 39 #include <sys/zio_compress.h> 40 #include <sys/zio_checksum.h> 41 #include <sys/dmu_objset.h> 42 #include <sys/arc.h> 43 #include <sys/ddt.h> 44 #include <sys/blkptr.h> 45 #include <sys/zfeature.h> 46 #include <sys/dsl_scan.h> 47 #include <sys/metaslab_impl.h> 48 #include <sys/time.h> 49 #include <sys/trace_zfs.h> 50 #include <sys/abd.h> 51 #include <sys/dsl_crypt.h> 52 #include <cityhash.h> 53 54 /* 55 * ========================================================================== 56 * I/O type descriptions 57 * ========================================================================== 58 */ 59 const char *zio_type_name[ZIO_TYPES] = { 60 /* 61 * Note: Linux kernel thread name length is limited 62 * so these names will differ from upstream open zfs. 63 */ 64 "z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_ioctl", "z_trim" 65 }; 66 67 int zio_dva_throttle_enabled = B_TRUE; 68 int zio_deadman_log_all = B_FALSE; 69 70 /* 71 * ========================================================================== 72 * I/O kmem caches 73 * ========================================================================== 74 */ 75 kmem_cache_t *zio_cache; 76 kmem_cache_t *zio_link_cache; 77 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 78 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 79 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 80 uint64_t zio_buf_cache_allocs[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 81 uint64_t zio_buf_cache_frees[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 82 #endif 83 84 /* Mark IOs as "slow" if they take longer than 30 seconds */ 85 int zio_slow_io_ms = (30 * MILLISEC); 86 87 #define BP_SPANB(indblkshift, level) \ 88 (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT))) 89 #define COMPARE_META_LEVEL 0x80000000ul 90 /* 91 * The following actions directly effect the spa's sync-to-convergence logic. 92 * The values below define the sync pass when we start performing the action. 93 * Care should be taken when changing these values as they directly impact 94 * spa_sync() performance. Tuning these values may introduce subtle performance 95 * pathologies and should only be done in the context of performance analysis. 96 * These tunables will eventually be removed and replaced with #defines once 97 * enough analysis has been done to determine optimal values. 98 * 99 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that 100 * regular blocks are not deferred. 101 * 102 * Starting in sync pass 8 (zfs_sync_pass_dont_compress), we disable 103 * compression (including of metadata). In practice, we don't have this 104 * many sync passes, so this has no effect. 105 * 106 * The original intent was that disabling compression would help the sync 107 * passes to converge. However, in practice disabling compression increases 108 * the average number of sync passes, because when we turn compression off, a 109 * lot of block's size will change and thus we have to re-allocate (not 110 * overwrite) them. It also increases the number of 128KB allocations (e.g. 111 * for indirect blocks and spacemaps) because these will not be compressed. 112 * The 128K allocations are especially detrimental to performance on highly 113 * fragmented systems, which may have very few free segments of this size, 114 * and may need to load new metaslabs to satisfy 128K allocations. 115 */ 116 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */ 117 int zfs_sync_pass_dont_compress = 8; /* don't compress starting in this pass */ 118 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */ 119 120 /* 121 * An allocating zio is one that either currently has the DVA allocate 122 * stage set or will have it later in its lifetime. 123 */ 124 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE) 125 126 /* 127 * Enable smaller cores by excluding metadata 128 * allocations as well. 129 */ 130 int zio_exclude_metadata = 0; 131 int zio_requeue_io_start_cut_in_line = 1; 132 133 #ifdef ZFS_DEBUG 134 int zio_buf_debug_limit = 16384; 135 #else 136 int zio_buf_debug_limit = 0; 137 #endif 138 139 static inline void __zio_execute(zio_t *zio); 140 141 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t); 142 143 void 144 zio_init(void) 145 { 146 size_t c; 147 148 zio_cache = kmem_cache_create("zio_cache", 149 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 150 zio_link_cache = kmem_cache_create("zio_link_cache", 151 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 152 153 /* 154 * For small buffers, we want a cache for each multiple of 155 * SPA_MINBLOCKSIZE. For larger buffers, we want a cache 156 * for each quarter-power of 2. 157 */ 158 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 159 size_t size = (c + 1) << SPA_MINBLOCKSHIFT; 160 size_t p2 = size; 161 size_t align = 0; 162 size_t data_cflags, cflags; 163 164 data_cflags = KMC_NODEBUG; 165 cflags = (zio_exclude_metadata || size > zio_buf_debug_limit) ? 166 KMC_NODEBUG : 0; 167 168 #if defined(_ILP32) && defined(_KERNEL) 169 /* 170 * Cache size limited to 1M on 32-bit platforms until ARC 171 * buffers no longer require virtual address space. 172 */ 173 if (size > zfs_max_recordsize) 174 break; 175 #endif 176 177 while (!ISP2(p2)) 178 p2 &= p2 - 1; 179 180 #ifndef _KERNEL 181 /* 182 * If we are using watchpoints, put each buffer on its own page, 183 * to eliminate the performance overhead of trapping to the 184 * kernel when modifying a non-watched buffer that shares the 185 * page with a watched buffer. 186 */ 187 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE)) 188 continue; 189 /* 190 * Here's the problem - on 4K native devices in userland on 191 * Linux using O_DIRECT, buffers must be 4K aligned or I/O 192 * will fail with EINVAL, causing zdb (and others) to coredump. 193 * Since userland probably doesn't need optimized buffer caches, 194 * we just force 4K alignment on everything. 195 */ 196 align = 8 * SPA_MINBLOCKSIZE; 197 #else 198 if (size < PAGESIZE) { 199 align = SPA_MINBLOCKSIZE; 200 } else if (IS_P2ALIGNED(size, p2 >> 2)) { 201 align = PAGESIZE; 202 } 203 #endif 204 205 if (align != 0) { 206 char name[36]; 207 if (cflags == data_cflags) { 208 /* 209 * Resulting kmem caches would be identical. 210 * Save memory by creating only one. 211 */ 212 (void) snprintf(name, sizeof (name), 213 "zio_buf_comb_%lu", (ulong_t)size); 214 zio_buf_cache[c] = kmem_cache_create(name, 215 size, align, NULL, NULL, NULL, NULL, NULL, 216 cflags); 217 zio_data_buf_cache[c] = zio_buf_cache[c]; 218 continue; 219 } 220 (void) snprintf(name, sizeof (name), "zio_buf_%lu", 221 (ulong_t)size); 222 zio_buf_cache[c] = kmem_cache_create(name, size, 223 align, NULL, NULL, NULL, NULL, NULL, cflags); 224 225 (void) snprintf(name, sizeof (name), "zio_data_buf_%lu", 226 (ulong_t)size); 227 zio_data_buf_cache[c] = kmem_cache_create(name, size, 228 align, NULL, NULL, NULL, NULL, NULL, data_cflags); 229 } 230 } 231 232 while (--c != 0) { 233 ASSERT(zio_buf_cache[c] != NULL); 234 if (zio_buf_cache[c - 1] == NULL) 235 zio_buf_cache[c - 1] = zio_buf_cache[c]; 236 237 ASSERT(zio_data_buf_cache[c] != NULL); 238 if (zio_data_buf_cache[c - 1] == NULL) 239 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c]; 240 } 241 242 zio_inject_init(); 243 244 lz4_init(); 245 } 246 247 void 248 zio_fini(void) 249 { 250 size_t i, j, n; 251 kmem_cache_t *cache; 252 253 n = SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; 254 255 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 256 for (i = 0; i < n; i++) { 257 if (zio_buf_cache_allocs[i] != zio_buf_cache_frees[i]) 258 (void) printf("zio_fini: [%d] %llu != %llu\n", 259 (int)((i + 1) << SPA_MINBLOCKSHIFT), 260 (long long unsigned)zio_buf_cache_allocs[i], 261 (long long unsigned)zio_buf_cache_frees[i]); 262 } 263 #endif 264 265 /* 266 * The same kmem cache can show up multiple times in both zio_buf_cache 267 * and zio_data_buf_cache. Do a wasteful but trivially correct scan to 268 * sort it out. 269 */ 270 for (i = 0; i < n; i++) { 271 cache = zio_buf_cache[i]; 272 if (cache == NULL) 273 continue; 274 for (j = i; j < n; j++) { 275 if (cache == zio_buf_cache[j]) 276 zio_buf_cache[j] = NULL; 277 if (cache == zio_data_buf_cache[j]) 278 zio_data_buf_cache[j] = NULL; 279 } 280 kmem_cache_destroy(cache); 281 } 282 283 for (i = 0; i < n; i++) { 284 cache = zio_data_buf_cache[i]; 285 if (cache == NULL) 286 continue; 287 for (j = i; j < n; j++) { 288 if (cache == zio_data_buf_cache[j]) 289 zio_data_buf_cache[j] = NULL; 290 } 291 kmem_cache_destroy(cache); 292 } 293 294 for (i = 0; i < n; i++) { 295 if (zio_buf_cache[i] != NULL) 296 panic("zio_fini: zio_buf_cache[%d] != NULL", (int)i); 297 if (zio_data_buf_cache[i] != NULL) 298 panic("zio_fini: zio_data_buf_cache[%d] != NULL", (int)i); 299 } 300 301 kmem_cache_destroy(zio_link_cache); 302 kmem_cache_destroy(zio_cache); 303 304 zio_inject_fini(); 305 306 lz4_fini(); 307 } 308 309 /* 310 * ========================================================================== 311 * Allocate and free I/O buffers 312 * ========================================================================== 313 */ 314 315 /* 316 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a 317 * crashdump if the kernel panics, so use it judiciously. Obviously, it's 318 * useful to inspect ZFS metadata, but if possible, we should avoid keeping 319 * excess / transient data in-core during a crashdump. 320 */ 321 void * 322 zio_buf_alloc(size_t size) 323 { 324 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 325 326 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 327 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 328 atomic_add_64(&zio_buf_cache_allocs[c], 1); 329 #endif 330 331 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE)); 332 } 333 334 /* 335 * Use zio_data_buf_alloc to allocate data. The data will not appear in a 336 * crashdump if the kernel panics. This exists so that we will limit the amount 337 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount 338 * of kernel heap dumped to disk when the kernel panics) 339 */ 340 void * 341 zio_data_buf_alloc(size_t size) 342 { 343 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 344 345 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 346 347 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE)); 348 } 349 350 void 351 zio_buf_free(void *buf, size_t size) 352 { 353 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 354 355 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 356 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 357 atomic_add_64(&zio_buf_cache_frees[c], 1); 358 #endif 359 360 kmem_cache_free(zio_buf_cache[c], buf); 361 } 362 363 void 364 zio_data_buf_free(void *buf, size_t size) 365 { 366 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 367 368 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 369 370 kmem_cache_free(zio_data_buf_cache[c], buf); 371 } 372 373 static void 374 zio_abd_free(void *abd, size_t size) 375 { 376 abd_free((abd_t *)abd); 377 } 378 379 /* 380 * ========================================================================== 381 * Push and pop I/O transform buffers 382 * ========================================================================== 383 */ 384 void 385 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize, 386 zio_transform_func_t *transform) 387 { 388 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP); 389 390 zt->zt_orig_abd = zio->io_abd; 391 zt->zt_orig_size = zio->io_size; 392 zt->zt_bufsize = bufsize; 393 zt->zt_transform = transform; 394 395 zt->zt_next = zio->io_transform_stack; 396 zio->io_transform_stack = zt; 397 398 zio->io_abd = data; 399 zio->io_size = size; 400 } 401 402 void 403 zio_pop_transforms(zio_t *zio) 404 { 405 zio_transform_t *zt; 406 407 while ((zt = zio->io_transform_stack) != NULL) { 408 if (zt->zt_transform != NULL) 409 zt->zt_transform(zio, 410 zt->zt_orig_abd, zt->zt_orig_size); 411 412 if (zt->zt_bufsize != 0) 413 abd_free(zio->io_abd); 414 415 zio->io_abd = zt->zt_orig_abd; 416 zio->io_size = zt->zt_orig_size; 417 zio->io_transform_stack = zt->zt_next; 418 419 kmem_free(zt, sizeof (zio_transform_t)); 420 } 421 } 422 423 /* 424 * ========================================================================== 425 * I/O transform callbacks for subblocks, decompression, and decryption 426 * ========================================================================== 427 */ 428 static void 429 zio_subblock(zio_t *zio, abd_t *data, uint64_t size) 430 { 431 ASSERT(zio->io_size > size); 432 433 if (zio->io_type == ZIO_TYPE_READ) 434 abd_copy(data, zio->io_abd, size); 435 } 436 437 static void 438 zio_decompress(zio_t *zio, abd_t *data, uint64_t size) 439 { 440 if (zio->io_error == 0) { 441 void *tmp = abd_borrow_buf(data, size); 442 int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp), 443 zio->io_abd, tmp, zio->io_size, size, 444 &zio->io_prop.zp_complevel); 445 abd_return_buf_copy(data, tmp, size); 446 447 if (zio_injection_enabled && ret == 0) 448 ret = zio_handle_fault_injection(zio, EINVAL); 449 450 if (ret != 0) 451 zio->io_error = SET_ERROR(EIO); 452 } 453 } 454 455 static void 456 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size) 457 { 458 int ret; 459 void *tmp; 460 blkptr_t *bp = zio->io_bp; 461 spa_t *spa = zio->io_spa; 462 uint64_t dsobj = zio->io_bookmark.zb_objset; 463 uint64_t lsize = BP_GET_LSIZE(bp); 464 dmu_object_type_t ot = BP_GET_TYPE(bp); 465 uint8_t salt[ZIO_DATA_SALT_LEN]; 466 uint8_t iv[ZIO_DATA_IV_LEN]; 467 uint8_t mac[ZIO_DATA_MAC_LEN]; 468 boolean_t no_crypt = B_FALSE; 469 470 ASSERT(BP_USES_CRYPT(bp)); 471 ASSERT3U(size, !=, 0); 472 473 if (zio->io_error != 0) 474 return; 475 476 /* 477 * Verify the cksum of MACs stored in an indirect bp. It will always 478 * be possible to verify this since it does not require an encryption 479 * key. 480 */ 481 if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) { 482 zio_crypt_decode_mac_bp(bp, mac); 483 484 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) { 485 /* 486 * We haven't decompressed the data yet, but 487 * zio_crypt_do_indirect_mac_checksum() requires 488 * decompressed data to be able to parse out the MACs 489 * from the indirect block. We decompress it now and 490 * throw away the result after we are finished. 491 */ 492 tmp = zio_buf_alloc(lsize); 493 ret = zio_decompress_data(BP_GET_COMPRESS(bp), 494 zio->io_abd, tmp, zio->io_size, lsize, 495 &zio->io_prop.zp_complevel); 496 if (ret != 0) { 497 ret = SET_ERROR(EIO); 498 goto error; 499 } 500 ret = zio_crypt_do_indirect_mac_checksum(B_FALSE, 501 tmp, lsize, BP_SHOULD_BYTESWAP(bp), mac); 502 zio_buf_free(tmp, lsize); 503 } else { 504 ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE, 505 zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac); 506 } 507 abd_copy(data, zio->io_abd, size); 508 509 if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) { 510 ret = zio_handle_decrypt_injection(spa, 511 &zio->io_bookmark, ot, ECKSUM); 512 } 513 if (ret != 0) 514 goto error; 515 516 return; 517 } 518 519 /* 520 * If this is an authenticated block, just check the MAC. It would be 521 * nice to separate this out into its own flag, but for the moment 522 * enum zio_flag is out of bits. 523 */ 524 if (BP_IS_AUTHENTICATED(bp)) { 525 if (ot == DMU_OT_OBJSET) { 526 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, 527 dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp)); 528 } else { 529 zio_crypt_decode_mac_bp(bp, mac); 530 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, 531 zio->io_abd, size, mac); 532 if (zio_injection_enabled && ret == 0) { 533 ret = zio_handle_decrypt_injection(spa, 534 &zio->io_bookmark, ot, ECKSUM); 535 } 536 } 537 abd_copy(data, zio->io_abd, size); 538 539 if (ret != 0) 540 goto error; 541 542 return; 543 } 544 545 zio_crypt_decode_params_bp(bp, salt, iv); 546 547 if (ot == DMU_OT_INTENT_LOG) { 548 tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t)); 549 zio_crypt_decode_mac_zil(tmp, mac); 550 abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t)); 551 } else { 552 zio_crypt_decode_mac_bp(bp, mac); 553 } 554 555 ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp), 556 BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data, 557 zio->io_abd, &no_crypt); 558 if (no_crypt) 559 abd_copy(data, zio->io_abd, size); 560 561 if (ret != 0) 562 goto error; 563 564 return; 565 566 error: 567 /* assert that the key was found unless this was speculative */ 568 ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE)); 569 570 /* 571 * If there was a decryption / authentication error return EIO as 572 * the io_error. If this was not a speculative zio, create an ereport. 573 */ 574 if (ret == ECKSUM) { 575 zio->io_error = SET_ERROR(EIO); 576 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) { 577 spa_log_error(spa, &zio->io_bookmark); 578 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION, 579 spa, NULL, &zio->io_bookmark, zio, 0); 580 } 581 } else { 582 zio->io_error = ret; 583 } 584 } 585 586 /* 587 * ========================================================================== 588 * I/O parent/child relationships and pipeline interlocks 589 * ========================================================================== 590 */ 591 zio_t * 592 zio_walk_parents(zio_t *cio, zio_link_t **zl) 593 { 594 list_t *pl = &cio->io_parent_list; 595 596 *zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl); 597 if (*zl == NULL) 598 return (NULL); 599 600 ASSERT((*zl)->zl_child == cio); 601 return ((*zl)->zl_parent); 602 } 603 604 zio_t * 605 zio_walk_children(zio_t *pio, zio_link_t **zl) 606 { 607 list_t *cl = &pio->io_child_list; 608 609 ASSERT(MUTEX_HELD(&pio->io_lock)); 610 611 *zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl); 612 if (*zl == NULL) 613 return (NULL); 614 615 ASSERT((*zl)->zl_parent == pio); 616 return ((*zl)->zl_child); 617 } 618 619 zio_t * 620 zio_unique_parent(zio_t *cio) 621 { 622 zio_link_t *zl = NULL; 623 zio_t *pio = zio_walk_parents(cio, &zl); 624 625 VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL); 626 return (pio); 627 } 628 629 void 630 zio_add_child(zio_t *pio, zio_t *cio) 631 { 632 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP); 633 634 /* 635 * Logical I/Os can have logical, gang, or vdev children. 636 * Gang I/Os can have gang or vdev children. 637 * Vdev I/Os can only have vdev children. 638 * The following ASSERT captures all of these constraints. 639 */ 640 ASSERT3S(cio->io_child_type, <=, pio->io_child_type); 641 642 zl->zl_parent = pio; 643 zl->zl_child = cio; 644 645 mutex_enter(&pio->io_lock); 646 mutex_enter(&cio->io_lock); 647 648 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0); 649 650 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 651 pio->io_children[cio->io_child_type][w] += !cio->io_state[w]; 652 653 list_insert_head(&pio->io_child_list, zl); 654 list_insert_head(&cio->io_parent_list, zl); 655 656 pio->io_child_count++; 657 cio->io_parent_count++; 658 659 mutex_exit(&cio->io_lock); 660 mutex_exit(&pio->io_lock); 661 } 662 663 static void 664 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl) 665 { 666 ASSERT(zl->zl_parent == pio); 667 ASSERT(zl->zl_child == cio); 668 669 mutex_enter(&pio->io_lock); 670 mutex_enter(&cio->io_lock); 671 672 list_remove(&pio->io_child_list, zl); 673 list_remove(&cio->io_parent_list, zl); 674 675 pio->io_child_count--; 676 cio->io_parent_count--; 677 678 mutex_exit(&cio->io_lock); 679 mutex_exit(&pio->io_lock); 680 kmem_cache_free(zio_link_cache, zl); 681 } 682 683 static boolean_t 684 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait) 685 { 686 boolean_t waiting = B_FALSE; 687 688 mutex_enter(&zio->io_lock); 689 ASSERT(zio->io_stall == NULL); 690 for (int c = 0; c < ZIO_CHILD_TYPES; c++) { 691 if (!(ZIO_CHILD_BIT_IS_SET(childbits, c))) 692 continue; 693 694 uint64_t *countp = &zio->io_children[c][wait]; 695 if (*countp != 0) { 696 zio->io_stage >>= 1; 697 ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN); 698 zio->io_stall = countp; 699 waiting = B_TRUE; 700 break; 701 } 702 } 703 mutex_exit(&zio->io_lock); 704 return (waiting); 705 } 706 707 __attribute__((always_inline)) 708 static inline void 709 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait, 710 zio_t **next_to_executep) 711 { 712 uint64_t *countp = &pio->io_children[zio->io_child_type][wait]; 713 int *errorp = &pio->io_child_error[zio->io_child_type]; 714 715 mutex_enter(&pio->io_lock); 716 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 717 *errorp = zio_worst_error(*errorp, zio->io_error); 718 pio->io_reexecute |= zio->io_reexecute; 719 ASSERT3U(*countp, >, 0); 720 721 (*countp)--; 722 723 if (*countp == 0 && pio->io_stall == countp) { 724 zio_taskq_type_t type = 725 pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE : 726 ZIO_TASKQ_INTERRUPT; 727 pio->io_stall = NULL; 728 mutex_exit(&pio->io_lock); 729 730 /* 731 * If we can tell the caller to execute this parent next, do 732 * so. Otherwise dispatch the parent zio as its own task. 733 * 734 * Having the caller execute the parent when possible reduces 735 * locking on the zio taskq's, reduces context switch 736 * overhead, and has no recursion penalty. Note that one 737 * read from disk typically causes at least 3 zio's: a 738 * zio_null(), the logical zio_read(), and then a physical 739 * zio. When the physical ZIO completes, we are able to call 740 * zio_done() on all 3 of these zio's from one invocation of 741 * zio_execute() by returning the parent back to 742 * zio_execute(). Since the parent isn't executed until this 743 * thread returns back to zio_execute(), the caller should do 744 * so promptly. 745 * 746 * In other cases, dispatching the parent prevents 747 * overflowing the stack when we have deeply nested 748 * parent-child relationships, as we do with the "mega zio" 749 * of writes for spa_sync(), and the chain of ZIL blocks. 750 */ 751 if (next_to_executep != NULL && *next_to_executep == NULL) { 752 *next_to_executep = pio; 753 } else { 754 zio_taskq_dispatch(pio, type, B_FALSE); 755 } 756 } else { 757 mutex_exit(&pio->io_lock); 758 } 759 } 760 761 static void 762 zio_inherit_child_errors(zio_t *zio, enum zio_child c) 763 { 764 if (zio->io_child_error[c] != 0 && zio->io_error == 0) 765 zio->io_error = zio->io_child_error[c]; 766 } 767 768 int 769 zio_bookmark_compare(const void *x1, const void *x2) 770 { 771 const zio_t *z1 = x1; 772 const zio_t *z2 = x2; 773 774 if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset) 775 return (-1); 776 if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset) 777 return (1); 778 779 if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object) 780 return (-1); 781 if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object) 782 return (1); 783 784 if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level) 785 return (-1); 786 if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level) 787 return (1); 788 789 if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid) 790 return (-1); 791 if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid) 792 return (1); 793 794 if (z1 < z2) 795 return (-1); 796 if (z1 > z2) 797 return (1); 798 799 return (0); 800 } 801 802 /* 803 * ========================================================================== 804 * Create the various types of I/O (read, write, free, etc) 805 * ========================================================================== 806 */ 807 static zio_t * 808 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 809 abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done, 810 void *private, zio_type_t type, zio_priority_t priority, 811 enum zio_flag flags, vdev_t *vd, uint64_t offset, 812 const zbookmark_phys_t *zb, enum zio_stage stage, 813 enum zio_stage pipeline) 814 { 815 zio_t *zio; 816 817 IMPLY(type != ZIO_TYPE_TRIM, psize <= SPA_MAXBLOCKSIZE); 818 ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0); 819 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0); 820 821 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER)); 822 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER)); 823 ASSERT(vd || stage == ZIO_STAGE_OPEN); 824 825 IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0); 826 827 zio = kmem_cache_alloc(zio_cache, KM_SLEEP); 828 bzero(zio, sizeof (zio_t)); 829 830 mutex_init(&zio->io_lock, NULL, MUTEX_NOLOCKDEP, NULL); 831 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL); 832 833 list_create(&zio->io_parent_list, sizeof (zio_link_t), 834 offsetof(zio_link_t, zl_parent_node)); 835 list_create(&zio->io_child_list, sizeof (zio_link_t), 836 offsetof(zio_link_t, zl_child_node)); 837 metaslab_trace_init(&zio->io_alloc_list); 838 839 if (vd != NULL) 840 zio->io_child_type = ZIO_CHILD_VDEV; 841 else if (flags & ZIO_FLAG_GANG_CHILD) 842 zio->io_child_type = ZIO_CHILD_GANG; 843 else if (flags & ZIO_FLAG_DDT_CHILD) 844 zio->io_child_type = ZIO_CHILD_DDT; 845 else 846 zio->io_child_type = ZIO_CHILD_LOGICAL; 847 848 if (bp != NULL) { 849 zio->io_bp = (blkptr_t *)bp; 850 zio->io_bp_copy = *bp; 851 zio->io_bp_orig = *bp; 852 if (type != ZIO_TYPE_WRITE || 853 zio->io_child_type == ZIO_CHILD_DDT) 854 zio->io_bp = &zio->io_bp_copy; /* so caller can free */ 855 if (zio->io_child_type == ZIO_CHILD_LOGICAL) 856 zio->io_logical = zio; 857 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp)) 858 pipeline |= ZIO_GANG_STAGES; 859 } 860 861 zio->io_spa = spa; 862 zio->io_txg = txg; 863 zio->io_done = done; 864 zio->io_private = private; 865 zio->io_type = type; 866 zio->io_priority = priority; 867 zio->io_vd = vd; 868 zio->io_offset = offset; 869 zio->io_orig_abd = zio->io_abd = data; 870 zio->io_orig_size = zio->io_size = psize; 871 zio->io_lsize = lsize; 872 zio->io_orig_flags = zio->io_flags = flags; 873 zio->io_orig_stage = zio->io_stage = stage; 874 zio->io_orig_pipeline = zio->io_pipeline = pipeline; 875 zio->io_pipeline_trace = ZIO_STAGE_OPEN; 876 877 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY); 878 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE); 879 880 if (zb != NULL) 881 zio->io_bookmark = *zb; 882 883 if (pio != NULL) { 884 if (zio->io_metaslab_class == NULL) 885 zio->io_metaslab_class = pio->io_metaslab_class; 886 if (zio->io_logical == NULL) 887 zio->io_logical = pio->io_logical; 888 if (zio->io_child_type == ZIO_CHILD_GANG) 889 zio->io_gang_leader = pio->io_gang_leader; 890 zio_add_child(pio, zio); 891 } 892 893 taskq_init_ent(&zio->io_tqent); 894 895 return (zio); 896 } 897 898 static void 899 zio_destroy(zio_t *zio) 900 { 901 metaslab_trace_fini(&zio->io_alloc_list); 902 list_destroy(&zio->io_parent_list); 903 list_destroy(&zio->io_child_list); 904 mutex_destroy(&zio->io_lock); 905 cv_destroy(&zio->io_cv); 906 kmem_cache_free(zio_cache, zio); 907 } 908 909 zio_t * 910 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done, 911 void *private, enum zio_flag flags) 912 { 913 zio_t *zio; 914 915 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private, 916 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 917 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE); 918 919 return (zio); 920 } 921 922 zio_t * 923 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags) 924 { 925 return (zio_null(NULL, spa, NULL, done, private, flags)); 926 } 927 928 static int 929 zfs_blkptr_verify_log(spa_t *spa, const blkptr_t *bp, 930 enum blk_verify_flag blk_verify, const char *fmt, ...) 931 { 932 va_list adx; 933 char buf[256]; 934 935 va_start(adx, fmt); 936 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 937 va_end(adx); 938 939 switch (blk_verify) { 940 case BLK_VERIFY_HALT: 941 dprintf_bp(bp, "blkptr at %p dprintf_bp():", bp); 942 zfs_panic_recover("%s: %s", spa_name(spa), buf); 943 break; 944 case BLK_VERIFY_LOG: 945 zfs_dbgmsg("%s: %s", spa_name(spa), buf); 946 break; 947 case BLK_VERIFY_ONLY: 948 break; 949 } 950 951 return (1); 952 } 953 954 /* 955 * Verify the block pointer fields contain reasonable values. This means 956 * it only contains known object types, checksum/compression identifiers, 957 * block sizes within the maximum allowed limits, valid DVAs, etc. 958 * 959 * If everything checks out B_TRUE is returned. The zfs_blkptr_verify 960 * argument controls the behavior when an invalid field is detected. 961 * 962 * Modes for zfs_blkptr_verify: 963 * 1) BLK_VERIFY_ONLY (evaluate the block) 964 * 2) BLK_VERIFY_LOG (evaluate the block and log problems) 965 * 3) BLK_VERIFY_HALT (call zfs_panic_recover on error) 966 */ 967 boolean_t 968 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp, boolean_t config_held, 969 enum blk_verify_flag blk_verify) 970 { 971 int errors = 0; 972 973 if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) { 974 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 975 "blkptr at %p has invalid TYPE %llu", 976 bp, (longlong_t)BP_GET_TYPE(bp)); 977 } 978 if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS || 979 BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) { 980 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 981 "blkptr at %p has invalid CHECKSUM %llu", 982 bp, (longlong_t)BP_GET_CHECKSUM(bp)); 983 } 984 if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS || 985 BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) { 986 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 987 "blkptr at %p has invalid COMPRESS %llu", 988 bp, (longlong_t)BP_GET_COMPRESS(bp)); 989 } 990 if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) { 991 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 992 "blkptr at %p has invalid LSIZE %llu", 993 bp, (longlong_t)BP_GET_LSIZE(bp)); 994 } 995 if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) { 996 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 997 "blkptr at %p has invalid PSIZE %llu", 998 bp, (longlong_t)BP_GET_PSIZE(bp)); 999 } 1000 1001 if (BP_IS_EMBEDDED(bp)) { 1002 if (BPE_GET_ETYPE(bp) >= NUM_BP_EMBEDDED_TYPES) { 1003 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1004 "blkptr at %p has invalid ETYPE %llu", 1005 bp, (longlong_t)BPE_GET_ETYPE(bp)); 1006 } 1007 } 1008 1009 /* 1010 * Do not verify individual DVAs if the config is not trusted. This 1011 * will be done once the zio is executed in vdev_mirror_map_alloc. 1012 */ 1013 if (!spa->spa_trust_config) 1014 return (B_TRUE); 1015 1016 if (!config_held) 1017 spa_config_enter(spa, SCL_VDEV, bp, RW_READER); 1018 else 1019 ASSERT(spa_config_held(spa, SCL_VDEV, RW_WRITER)); 1020 /* 1021 * Pool-specific checks. 1022 * 1023 * Note: it would be nice to verify that the blk_birth and 1024 * BP_PHYSICAL_BIRTH() are not too large. However, spa_freeze() 1025 * allows the birth time of log blocks (and dmu_sync()-ed blocks 1026 * that are in the log) to be arbitrarily large. 1027 */ 1028 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 1029 uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]); 1030 1031 if (vdevid >= spa->spa_root_vdev->vdev_children) { 1032 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1033 "blkptr at %p DVA %u has invalid VDEV %llu", 1034 bp, i, (longlong_t)vdevid); 1035 continue; 1036 } 1037 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid]; 1038 if (vd == NULL) { 1039 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1040 "blkptr at %p DVA %u has invalid VDEV %llu", 1041 bp, i, (longlong_t)vdevid); 1042 continue; 1043 } 1044 if (vd->vdev_ops == &vdev_hole_ops) { 1045 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1046 "blkptr at %p DVA %u has hole VDEV %llu", 1047 bp, i, (longlong_t)vdevid); 1048 continue; 1049 } 1050 if (vd->vdev_ops == &vdev_missing_ops) { 1051 /* 1052 * "missing" vdevs are valid during import, but we 1053 * don't have their detailed info (e.g. asize), so 1054 * we can't perform any more checks on them. 1055 */ 1056 continue; 1057 } 1058 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]); 1059 uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]); 1060 if (BP_IS_GANG(bp)) 1061 asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); 1062 if (offset + asize > vd->vdev_asize) { 1063 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1064 "blkptr at %p DVA %u has invalid OFFSET %llu", 1065 bp, i, (longlong_t)offset); 1066 } 1067 } 1068 if (errors > 0) 1069 dprintf_bp(bp, "blkptr at %p dprintf_bp():", bp); 1070 if (!config_held) 1071 spa_config_exit(spa, SCL_VDEV, bp); 1072 1073 return (errors == 0); 1074 } 1075 1076 boolean_t 1077 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp) 1078 { 1079 uint64_t vdevid = DVA_GET_VDEV(dva); 1080 1081 if (vdevid >= spa->spa_root_vdev->vdev_children) 1082 return (B_FALSE); 1083 1084 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid]; 1085 if (vd == NULL) 1086 return (B_FALSE); 1087 1088 if (vd->vdev_ops == &vdev_hole_ops) 1089 return (B_FALSE); 1090 1091 if (vd->vdev_ops == &vdev_missing_ops) { 1092 return (B_FALSE); 1093 } 1094 1095 uint64_t offset = DVA_GET_OFFSET(dva); 1096 uint64_t asize = DVA_GET_ASIZE(dva); 1097 1098 if (BP_IS_GANG(bp)) 1099 asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); 1100 if (offset + asize > vd->vdev_asize) 1101 return (B_FALSE); 1102 1103 return (B_TRUE); 1104 } 1105 1106 zio_t * 1107 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, 1108 abd_t *data, uint64_t size, zio_done_func_t *done, void *private, 1109 zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb) 1110 { 1111 zio_t *zio; 1112 1113 (void) zfs_blkptr_verify(spa, bp, flags & ZIO_FLAG_CONFIG_WRITER, 1114 BLK_VERIFY_HALT); 1115 1116 zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp, 1117 data, size, size, done, private, 1118 ZIO_TYPE_READ, priority, flags, NULL, 0, zb, 1119 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 1120 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE); 1121 1122 return (zio); 1123 } 1124 1125 zio_t * 1126 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 1127 abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp, 1128 zio_done_func_t *ready, zio_done_func_t *children_ready, 1129 zio_done_func_t *physdone, zio_done_func_t *done, 1130 void *private, zio_priority_t priority, enum zio_flag flags, 1131 const zbookmark_phys_t *zb) 1132 { 1133 zio_t *zio; 1134 1135 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF && 1136 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS && 1137 zp->zp_compress >= ZIO_COMPRESS_OFF && 1138 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS && 1139 DMU_OT_IS_VALID(zp->zp_type) && 1140 zp->zp_level < 32 && 1141 zp->zp_copies > 0 && 1142 zp->zp_copies <= spa_max_replication(spa)); 1143 1144 zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private, 1145 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb, 1146 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 1147 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE); 1148 1149 zio->io_ready = ready; 1150 zio->io_children_ready = children_ready; 1151 zio->io_physdone = physdone; 1152 zio->io_prop = *zp; 1153 1154 /* 1155 * Data can be NULL if we are going to call zio_write_override() to 1156 * provide the already-allocated BP. But we may need the data to 1157 * verify a dedup hit (if requested). In this case, don't try to 1158 * dedup (just take the already-allocated BP verbatim). Encrypted 1159 * dedup blocks need data as well so we also disable dedup in this 1160 * case. 1161 */ 1162 if (data == NULL && 1163 (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) { 1164 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE; 1165 } 1166 1167 return (zio); 1168 } 1169 1170 zio_t * 1171 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data, 1172 uint64_t size, zio_done_func_t *done, void *private, 1173 zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb) 1174 { 1175 zio_t *zio; 1176 1177 zio = zio_create(pio, spa, txg, bp, data, size, size, done, private, 1178 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb, 1179 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE); 1180 1181 return (zio); 1182 } 1183 1184 void 1185 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite) 1186 { 1187 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 1188 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1189 ASSERT(zio->io_stage == ZIO_STAGE_OPEN); 1190 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa)); 1191 1192 /* 1193 * We must reset the io_prop to match the values that existed 1194 * when the bp was first written by dmu_sync() keeping in mind 1195 * that nopwrite and dedup are mutually exclusive. 1196 */ 1197 zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup; 1198 zio->io_prop.zp_nopwrite = nopwrite; 1199 zio->io_prop.zp_copies = copies; 1200 zio->io_bp_override = bp; 1201 } 1202 1203 void 1204 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp) 1205 { 1206 1207 (void) zfs_blkptr_verify(spa, bp, B_FALSE, BLK_VERIFY_HALT); 1208 1209 /* 1210 * The check for EMBEDDED is a performance optimization. We 1211 * process the free here (by ignoring it) rather than 1212 * putting it on the list and then processing it in zio_free_sync(). 1213 */ 1214 if (BP_IS_EMBEDDED(bp)) 1215 return; 1216 metaslab_check_free(spa, bp); 1217 1218 /* 1219 * Frees that are for the currently-syncing txg, are not going to be 1220 * deferred, and which will not need to do a read (i.e. not GANG or 1221 * DEDUP), can be processed immediately. Otherwise, put them on the 1222 * in-memory list for later processing. 1223 * 1224 * Note that we only defer frees after zfs_sync_pass_deferred_free 1225 * when the log space map feature is disabled. [see relevant comment 1226 * in spa_sync_iterate_to_convergence()] 1227 */ 1228 if (BP_IS_GANG(bp) || 1229 BP_GET_DEDUP(bp) || 1230 txg != spa->spa_syncing_txg || 1231 (spa_sync_pass(spa) >= zfs_sync_pass_deferred_free && 1232 !spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))) { 1233 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp); 1234 } else { 1235 VERIFY3P(zio_free_sync(NULL, spa, txg, bp, 0), ==, NULL); 1236 } 1237 } 1238 1239 /* 1240 * To improve performance, this function may return NULL if we were able 1241 * to do the free immediately. This avoids the cost of creating a zio 1242 * (and linking it to the parent, etc). 1243 */ 1244 zio_t * 1245 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 1246 enum zio_flag flags) 1247 { 1248 ASSERT(!BP_IS_HOLE(bp)); 1249 ASSERT(spa_syncing_txg(spa) == txg); 1250 1251 if (BP_IS_EMBEDDED(bp)) 1252 return (NULL); 1253 1254 metaslab_check_free(spa, bp); 1255 arc_freed(spa, bp); 1256 dsl_scan_freed(spa, bp); 1257 1258 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp)) { 1259 /* 1260 * GANG and DEDUP blocks can induce a read (for the gang block 1261 * header, or the DDT), so issue them asynchronously so that 1262 * this thread is not tied up. 1263 */ 1264 enum zio_stage stage = 1265 ZIO_FREE_PIPELINE | ZIO_STAGE_ISSUE_ASYNC; 1266 1267 return (zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 1268 BP_GET_PSIZE(bp), NULL, NULL, 1269 ZIO_TYPE_FREE, ZIO_PRIORITY_NOW, 1270 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage)); 1271 } else { 1272 metaslab_free(spa, bp, txg, B_FALSE); 1273 return (NULL); 1274 } 1275 } 1276 1277 zio_t * 1278 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 1279 zio_done_func_t *done, void *private, enum zio_flag flags) 1280 { 1281 zio_t *zio; 1282 1283 (void) zfs_blkptr_verify(spa, bp, flags & ZIO_FLAG_CONFIG_WRITER, 1284 BLK_VERIFY_HALT); 1285 1286 if (BP_IS_EMBEDDED(bp)) 1287 return (zio_null(pio, spa, NULL, NULL, NULL, 0)); 1288 1289 /* 1290 * A claim is an allocation of a specific block. Claims are needed 1291 * to support immediate writes in the intent log. The issue is that 1292 * immediate writes contain committed data, but in a txg that was 1293 * *not* committed. Upon opening the pool after an unclean shutdown, 1294 * the intent log claims all blocks that contain immediate write data 1295 * so that the SPA knows they're in use. 1296 * 1297 * All claims *must* be resolved in the first txg -- before the SPA 1298 * starts allocating blocks -- so that nothing is allocated twice. 1299 * If txg == 0 we just verify that the block is claimable. 1300 */ 1301 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, 1302 spa_min_claim_txg(spa)); 1303 ASSERT(txg == spa_min_claim_txg(spa) || txg == 0); 1304 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(8) */ 1305 1306 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 1307 BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, 1308 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE); 1309 ASSERT0(zio->io_queued_timestamp); 1310 1311 return (zio); 1312 } 1313 1314 zio_t * 1315 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, 1316 zio_done_func_t *done, void *private, enum zio_flag flags) 1317 { 1318 zio_t *zio; 1319 int c; 1320 1321 if (vd->vdev_children == 0) { 1322 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private, 1323 ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 1324 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE); 1325 1326 zio->io_cmd = cmd; 1327 } else { 1328 zio = zio_null(pio, spa, NULL, NULL, NULL, flags); 1329 1330 for (c = 0; c < vd->vdev_children; c++) 1331 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd, 1332 done, private, flags)); 1333 } 1334 1335 return (zio); 1336 } 1337 1338 zio_t * 1339 zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1340 zio_done_func_t *done, void *private, zio_priority_t priority, 1341 enum zio_flag flags, enum trim_flag trim_flags) 1342 { 1343 zio_t *zio; 1344 1345 ASSERT0(vd->vdev_children); 1346 ASSERT0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 1347 ASSERT0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 1348 ASSERT3U(size, !=, 0); 1349 1350 zio = zio_create(pio, vd->vdev_spa, 0, NULL, NULL, size, size, done, 1351 private, ZIO_TYPE_TRIM, priority, flags | ZIO_FLAG_PHYSICAL, 1352 vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_TRIM_PIPELINE); 1353 zio->io_trim_flags = trim_flags; 1354 1355 return (zio); 1356 } 1357 1358 zio_t * 1359 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1360 abd_t *data, int checksum, zio_done_func_t *done, void *private, 1361 zio_priority_t priority, enum zio_flag flags, boolean_t labels) 1362 { 1363 zio_t *zio; 1364 1365 ASSERT(vd->vdev_children == 0); 1366 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 1367 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 1368 ASSERT3U(offset + size, <=, vd->vdev_psize); 1369 1370 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, 1371 private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd, 1372 offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE); 1373 1374 zio->io_prop.zp_checksum = checksum; 1375 1376 return (zio); 1377 } 1378 1379 zio_t * 1380 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1381 abd_t *data, int checksum, zio_done_func_t *done, void *private, 1382 zio_priority_t priority, enum zio_flag flags, boolean_t labels) 1383 { 1384 zio_t *zio; 1385 1386 ASSERT(vd->vdev_children == 0); 1387 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 1388 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 1389 ASSERT3U(offset + size, <=, vd->vdev_psize); 1390 1391 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, 1392 private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd, 1393 offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE); 1394 1395 zio->io_prop.zp_checksum = checksum; 1396 1397 if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) { 1398 /* 1399 * zec checksums are necessarily destructive -- they modify 1400 * the end of the write buffer to hold the verifier/checksum. 1401 * Therefore, we must make a local copy in case the data is 1402 * being written to multiple places in parallel. 1403 */ 1404 abd_t *wbuf = abd_alloc_sametype(data, size); 1405 abd_copy(wbuf, data, size); 1406 1407 zio_push_transform(zio, wbuf, size, size, NULL); 1408 } 1409 1410 return (zio); 1411 } 1412 1413 /* 1414 * Create a child I/O to do some work for us. 1415 */ 1416 zio_t * 1417 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset, 1418 abd_t *data, uint64_t size, int type, zio_priority_t priority, 1419 enum zio_flag flags, zio_done_func_t *done, void *private) 1420 { 1421 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE; 1422 zio_t *zio; 1423 1424 /* 1425 * vdev child I/Os do not propagate their error to the parent. 1426 * Therefore, for correct operation the caller *must* check for 1427 * and handle the error in the child i/o's done callback. 1428 * The only exceptions are i/os that we don't care about 1429 * (OPTIONAL or REPAIR). 1430 */ 1431 ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) || 1432 done != NULL); 1433 1434 if (type == ZIO_TYPE_READ && bp != NULL) { 1435 /* 1436 * If we have the bp, then the child should perform the 1437 * checksum and the parent need not. This pushes error 1438 * detection as close to the leaves as possible and 1439 * eliminates redundant checksums in the interior nodes. 1440 */ 1441 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY; 1442 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 1443 } 1444 1445 if (vd->vdev_ops->vdev_op_leaf) { 1446 ASSERT0(vd->vdev_children); 1447 offset += VDEV_LABEL_START_SIZE; 1448 } 1449 1450 flags |= ZIO_VDEV_CHILD_FLAGS(pio); 1451 1452 /* 1453 * If we've decided to do a repair, the write is not speculative -- 1454 * even if the original read was. 1455 */ 1456 if (flags & ZIO_FLAG_IO_REPAIR) 1457 flags &= ~ZIO_FLAG_SPECULATIVE; 1458 1459 /* 1460 * If we're creating a child I/O that is not associated with a 1461 * top-level vdev, then the child zio is not an allocating I/O. 1462 * If this is a retried I/O then we ignore it since we will 1463 * have already processed the original allocating I/O. 1464 */ 1465 if (flags & ZIO_FLAG_IO_ALLOCATING && 1466 (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) { 1467 ASSERT(pio->io_metaslab_class != NULL); 1468 ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled); 1469 ASSERT(type == ZIO_TYPE_WRITE); 1470 ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE); 1471 ASSERT(!(flags & ZIO_FLAG_IO_REPAIR)); 1472 ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) || 1473 pio->io_child_type == ZIO_CHILD_GANG); 1474 1475 flags &= ~ZIO_FLAG_IO_ALLOCATING; 1476 } 1477 1478 1479 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size, 1480 done, private, type, priority, flags, vd, offset, &pio->io_bookmark, 1481 ZIO_STAGE_VDEV_IO_START >> 1, pipeline); 1482 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); 1483 1484 zio->io_physdone = pio->io_physdone; 1485 if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL) 1486 zio->io_logical->io_phys_children++; 1487 1488 return (zio); 1489 } 1490 1491 zio_t * 1492 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size, 1493 zio_type_t type, zio_priority_t priority, enum zio_flag flags, 1494 zio_done_func_t *done, void *private) 1495 { 1496 zio_t *zio; 1497 1498 ASSERT(vd->vdev_ops->vdev_op_leaf); 1499 1500 zio = zio_create(NULL, vd->vdev_spa, 0, NULL, 1501 data, size, size, done, private, type, priority, 1502 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED, 1503 vd, offset, NULL, 1504 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE); 1505 1506 return (zio); 1507 } 1508 1509 void 1510 zio_flush(zio_t *zio, vdev_t *vd) 1511 { 1512 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE, 1513 NULL, NULL, 1514 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY)); 1515 } 1516 1517 void 1518 zio_shrink(zio_t *zio, uint64_t size) 1519 { 1520 ASSERT3P(zio->io_executor, ==, NULL); 1521 ASSERT3U(zio->io_orig_size, ==, zio->io_size); 1522 ASSERT3U(size, <=, zio->io_size); 1523 1524 /* 1525 * We don't shrink for raidz because of problems with the 1526 * reconstruction when reading back less than the block size. 1527 * Note, BP_IS_RAIDZ() assumes no compression. 1528 */ 1529 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 1530 if (!BP_IS_RAIDZ(zio->io_bp)) { 1531 /* we are not doing a raw write */ 1532 ASSERT3U(zio->io_size, ==, zio->io_lsize); 1533 zio->io_orig_size = zio->io_size = zio->io_lsize = size; 1534 } 1535 } 1536 1537 /* 1538 * ========================================================================== 1539 * Prepare to read and write logical blocks 1540 * ========================================================================== 1541 */ 1542 1543 static zio_t * 1544 zio_read_bp_init(zio_t *zio) 1545 { 1546 blkptr_t *bp = zio->io_bp; 1547 uint64_t psize = 1548 BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp); 1549 1550 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 1551 1552 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF && 1553 zio->io_child_type == ZIO_CHILD_LOGICAL && 1554 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) { 1555 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize), 1556 psize, psize, zio_decompress); 1557 } 1558 1559 if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) || 1560 BP_HAS_INDIRECT_MAC_CKSUM(bp)) && 1561 zio->io_child_type == ZIO_CHILD_LOGICAL) { 1562 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize), 1563 psize, psize, zio_decrypt); 1564 } 1565 1566 if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) { 1567 int psize = BPE_GET_PSIZE(bp); 1568 void *data = abd_borrow_buf(zio->io_abd, psize); 1569 1570 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1571 decode_embedded_bp_compressed(bp, data); 1572 abd_return_buf_copy(zio->io_abd, data, psize); 1573 } else { 1574 ASSERT(!BP_IS_EMBEDDED(bp)); 1575 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 1576 } 1577 1578 if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0) 1579 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 1580 1581 if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP) 1582 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 1583 1584 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL) 1585 zio->io_pipeline = ZIO_DDT_READ_PIPELINE; 1586 1587 return (zio); 1588 } 1589 1590 static zio_t * 1591 zio_write_bp_init(zio_t *zio) 1592 { 1593 if (!IO_IS_ALLOCATING(zio)) 1594 return (zio); 1595 1596 ASSERT(zio->io_child_type != ZIO_CHILD_DDT); 1597 1598 if (zio->io_bp_override) { 1599 blkptr_t *bp = zio->io_bp; 1600 zio_prop_t *zp = &zio->io_prop; 1601 1602 ASSERT(bp->blk_birth != zio->io_txg); 1603 ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0); 1604 1605 *bp = *zio->io_bp_override; 1606 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1607 1608 if (BP_IS_EMBEDDED(bp)) 1609 return (zio); 1610 1611 /* 1612 * If we've been overridden and nopwrite is set then 1613 * set the flag accordingly to indicate that a nopwrite 1614 * has already occurred. 1615 */ 1616 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) { 1617 ASSERT(!zp->zp_dedup); 1618 ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum); 1619 zio->io_flags |= ZIO_FLAG_NOPWRITE; 1620 return (zio); 1621 } 1622 1623 ASSERT(!zp->zp_nopwrite); 1624 1625 if (BP_IS_HOLE(bp) || !zp->zp_dedup) 1626 return (zio); 1627 1628 ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags & 1629 ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify); 1630 1631 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum && 1632 !zp->zp_encrypt) { 1633 BP_SET_DEDUP(bp, 1); 1634 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE; 1635 return (zio); 1636 } 1637 1638 /* 1639 * We were unable to handle this as an override bp, treat 1640 * it as a regular write I/O. 1641 */ 1642 zio->io_bp_override = NULL; 1643 *bp = zio->io_bp_orig; 1644 zio->io_pipeline = zio->io_orig_pipeline; 1645 } 1646 1647 return (zio); 1648 } 1649 1650 static zio_t * 1651 zio_write_compress(zio_t *zio) 1652 { 1653 spa_t *spa = zio->io_spa; 1654 zio_prop_t *zp = &zio->io_prop; 1655 enum zio_compress compress = zp->zp_compress; 1656 blkptr_t *bp = zio->io_bp; 1657 uint64_t lsize = zio->io_lsize; 1658 uint64_t psize = zio->io_size; 1659 int pass = 1; 1660 1661 /* 1662 * If our children haven't all reached the ready stage, 1663 * wait for them and then repeat this pipeline stage. 1664 */ 1665 if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT | 1666 ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) { 1667 return (NULL); 1668 } 1669 1670 if (!IO_IS_ALLOCATING(zio)) 1671 return (zio); 1672 1673 if (zio->io_children_ready != NULL) { 1674 /* 1675 * Now that all our children are ready, run the callback 1676 * associated with this zio in case it wants to modify the 1677 * data to be written. 1678 */ 1679 ASSERT3U(zp->zp_level, >, 0); 1680 zio->io_children_ready(zio); 1681 } 1682 1683 ASSERT(zio->io_child_type != ZIO_CHILD_DDT); 1684 ASSERT(zio->io_bp_override == NULL); 1685 1686 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) { 1687 /* 1688 * We're rewriting an existing block, which means we're 1689 * working on behalf of spa_sync(). For spa_sync() to 1690 * converge, it must eventually be the case that we don't 1691 * have to allocate new blocks. But compression changes 1692 * the blocksize, which forces a reallocate, and makes 1693 * convergence take longer. Therefore, after the first 1694 * few passes, stop compressing to ensure convergence. 1695 */ 1696 pass = spa_sync_pass(spa); 1697 1698 ASSERT(zio->io_txg == spa_syncing_txg(spa)); 1699 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1700 ASSERT(!BP_GET_DEDUP(bp)); 1701 1702 if (pass >= zfs_sync_pass_dont_compress) 1703 compress = ZIO_COMPRESS_OFF; 1704 1705 /* Make sure someone doesn't change their mind on overwrites */ 1706 ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp), 1707 spa_max_replication(spa)) == BP_GET_NDVAS(bp)); 1708 } 1709 1710 /* If it's a compressed write that is not raw, compress the buffer. */ 1711 if (compress != ZIO_COMPRESS_OFF && 1712 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) { 1713 void *cbuf = zio_buf_alloc(lsize); 1714 psize = zio_compress_data(compress, zio->io_abd, cbuf, lsize, 1715 zp->zp_complevel); 1716 if (psize == 0 || psize >= lsize) { 1717 compress = ZIO_COMPRESS_OFF; 1718 zio_buf_free(cbuf, lsize); 1719 } else if (!zp->zp_dedup && !zp->zp_encrypt && 1720 psize <= BPE_PAYLOAD_SIZE && 1721 zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) && 1722 spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) { 1723 encode_embedded_bp_compressed(bp, 1724 cbuf, compress, lsize, psize); 1725 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA); 1726 BP_SET_TYPE(bp, zio->io_prop.zp_type); 1727 BP_SET_LEVEL(bp, zio->io_prop.zp_level); 1728 zio_buf_free(cbuf, lsize); 1729 bp->blk_birth = zio->io_txg; 1730 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1731 ASSERT(spa_feature_is_active(spa, 1732 SPA_FEATURE_EMBEDDED_DATA)); 1733 return (zio); 1734 } else { 1735 /* 1736 * Round compressed size up to the minimum allocation 1737 * size of the smallest-ashift device, and zero the 1738 * tail. This ensures that the compressed size of the 1739 * BP (and thus compressratio property) are correct, 1740 * in that we charge for the padding used to fill out 1741 * the last sector. 1742 */ 1743 ASSERT3U(spa->spa_min_alloc, >=, SPA_MINBLOCKSHIFT); 1744 size_t rounded = (size_t)roundup(psize, 1745 spa->spa_min_alloc); 1746 if (rounded >= lsize) { 1747 compress = ZIO_COMPRESS_OFF; 1748 zio_buf_free(cbuf, lsize); 1749 psize = lsize; 1750 } else { 1751 abd_t *cdata = abd_get_from_buf(cbuf, lsize); 1752 abd_take_ownership_of_buf(cdata, B_TRUE); 1753 abd_zero_off(cdata, psize, rounded - psize); 1754 psize = rounded; 1755 zio_push_transform(zio, cdata, 1756 psize, lsize, NULL); 1757 } 1758 } 1759 1760 /* 1761 * We were unable to handle this as an override bp, treat 1762 * it as a regular write I/O. 1763 */ 1764 zio->io_bp_override = NULL; 1765 *bp = zio->io_bp_orig; 1766 zio->io_pipeline = zio->io_orig_pipeline; 1767 1768 } else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 && 1769 zp->zp_type == DMU_OT_DNODE) { 1770 /* 1771 * The DMU actually relies on the zio layer's compression 1772 * to free metadnode blocks that have had all contained 1773 * dnodes freed. As a result, even when doing a raw 1774 * receive, we must check whether the block can be compressed 1775 * to a hole. 1776 */ 1777 psize = zio_compress_data(ZIO_COMPRESS_EMPTY, 1778 zio->io_abd, NULL, lsize, zp->zp_complevel); 1779 if (psize == 0 || psize >= lsize) 1780 compress = ZIO_COMPRESS_OFF; 1781 } else { 1782 ASSERT3U(psize, !=, 0); 1783 } 1784 1785 /* 1786 * The final pass of spa_sync() must be all rewrites, but the first 1787 * few passes offer a trade-off: allocating blocks defers convergence, 1788 * but newly allocated blocks are sequential, so they can be written 1789 * to disk faster. Therefore, we allow the first few passes of 1790 * spa_sync() to allocate new blocks, but force rewrites after that. 1791 * There should only be a handful of blocks after pass 1 in any case. 1792 */ 1793 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg && 1794 BP_GET_PSIZE(bp) == psize && 1795 pass >= zfs_sync_pass_rewrite) { 1796 VERIFY3U(psize, !=, 0); 1797 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES; 1798 1799 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages; 1800 zio->io_flags |= ZIO_FLAG_IO_REWRITE; 1801 } else { 1802 BP_ZERO(bp); 1803 zio->io_pipeline = ZIO_WRITE_PIPELINE; 1804 } 1805 1806 if (psize == 0) { 1807 if (zio->io_bp_orig.blk_birth != 0 && 1808 spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) { 1809 BP_SET_LSIZE(bp, lsize); 1810 BP_SET_TYPE(bp, zp->zp_type); 1811 BP_SET_LEVEL(bp, zp->zp_level); 1812 BP_SET_BIRTH(bp, zio->io_txg, 0); 1813 } 1814 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1815 } else { 1816 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER); 1817 BP_SET_LSIZE(bp, lsize); 1818 BP_SET_TYPE(bp, zp->zp_type); 1819 BP_SET_LEVEL(bp, zp->zp_level); 1820 BP_SET_PSIZE(bp, psize); 1821 BP_SET_COMPRESS(bp, compress); 1822 BP_SET_CHECKSUM(bp, zp->zp_checksum); 1823 BP_SET_DEDUP(bp, zp->zp_dedup); 1824 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 1825 if (zp->zp_dedup) { 1826 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1827 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1828 ASSERT(!zp->zp_encrypt || 1829 DMU_OT_IS_ENCRYPTED(zp->zp_type)); 1830 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE; 1831 } 1832 if (zp->zp_nopwrite) { 1833 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1834 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1835 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE; 1836 } 1837 } 1838 return (zio); 1839 } 1840 1841 static zio_t * 1842 zio_free_bp_init(zio_t *zio) 1843 { 1844 blkptr_t *bp = zio->io_bp; 1845 1846 if (zio->io_child_type == ZIO_CHILD_LOGICAL) { 1847 if (BP_GET_DEDUP(bp)) 1848 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE; 1849 } 1850 1851 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 1852 1853 return (zio); 1854 } 1855 1856 /* 1857 * ========================================================================== 1858 * Execute the I/O pipeline 1859 * ========================================================================== 1860 */ 1861 1862 static void 1863 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline) 1864 { 1865 spa_t *spa = zio->io_spa; 1866 zio_type_t t = zio->io_type; 1867 int flags = (cutinline ? TQ_FRONT : 0); 1868 1869 /* 1870 * If we're a config writer or a probe, the normal issue and 1871 * interrupt threads may all be blocked waiting for the config lock. 1872 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL. 1873 */ 1874 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE)) 1875 t = ZIO_TYPE_NULL; 1876 1877 /* 1878 * A similar issue exists for the L2ARC write thread until L2ARC 2.0. 1879 */ 1880 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux) 1881 t = ZIO_TYPE_NULL; 1882 1883 /* 1884 * If this is a high priority I/O, then use the high priority taskq if 1885 * available. 1886 */ 1887 if ((zio->io_priority == ZIO_PRIORITY_NOW || 1888 zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) && 1889 spa->spa_zio_taskq[t][q + 1].stqs_count != 0) 1890 q++; 1891 1892 ASSERT3U(q, <, ZIO_TASKQ_TYPES); 1893 1894 /* 1895 * NB: We are assuming that the zio can only be dispatched 1896 * to a single taskq at a time. It would be a grievous error 1897 * to dispatch the zio to another taskq at the same time. 1898 */ 1899 ASSERT(taskq_empty_ent(&zio->io_tqent)); 1900 spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio, 1901 flags, &zio->io_tqent); 1902 } 1903 1904 static boolean_t 1905 zio_taskq_member(zio_t *zio, zio_taskq_type_t q) 1906 { 1907 spa_t *spa = zio->io_spa; 1908 1909 taskq_t *tq = taskq_of_curthread(); 1910 1911 for (zio_type_t t = 0; t < ZIO_TYPES; t++) { 1912 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1913 uint_t i; 1914 for (i = 0; i < tqs->stqs_count; i++) { 1915 if (tqs->stqs_taskq[i] == tq) 1916 return (B_TRUE); 1917 } 1918 } 1919 1920 return (B_FALSE); 1921 } 1922 1923 static zio_t * 1924 zio_issue_async(zio_t *zio) 1925 { 1926 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 1927 1928 return (NULL); 1929 } 1930 1931 void 1932 zio_interrupt(zio_t *zio) 1933 { 1934 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE); 1935 } 1936 1937 void 1938 zio_delay_interrupt(zio_t *zio) 1939 { 1940 /* 1941 * The timeout_generic() function isn't defined in userspace, so 1942 * rather than trying to implement the function, the zio delay 1943 * functionality has been disabled for userspace builds. 1944 */ 1945 1946 #ifdef _KERNEL 1947 /* 1948 * If io_target_timestamp is zero, then no delay has been registered 1949 * for this IO, thus jump to the end of this function and "skip" the 1950 * delay; issuing it directly to the zio layer. 1951 */ 1952 if (zio->io_target_timestamp != 0) { 1953 hrtime_t now = gethrtime(); 1954 1955 if (now >= zio->io_target_timestamp) { 1956 /* 1957 * This IO has already taken longer than the target 1958 * delay to complete, so we don't want to delay it 1959 * any longer; we "miss" the delay and issue it 1960 * directly to the zio layer. This is likely due to 1961 * the target latency being set to a value less than 1962 * the underlying hardware can satisfy (e.g. delay 1963 * set to 1ms, but the disks take 10ms to complete an 1964 * IO request). 1965 */ 1966 1967 DTRACE_PROBE2(zio__delay__miss, zio_t *, zio, 1968 hrtime_t, now); 1969 1970 zio_interrupt(zio); 1971 } else { 1972 taskqid_t tid; 1973 hrtime_t diff = zio->io_target_timestamp - now; 1974 clock_t expire_at_tick = ddi_get_lbolt() + 1975 NSEC_TO_TICK(diff); 1976 1977 DTRACE_PROBE3(zio__delay__hit, zio_t *, zio, 1978 hrtime_t, now, hrtime_t, diff); 1979 1980 if (NSEC_TO_TICK(diff) == 0) { 1981 /* Our delay is less than a jiffy - just spin */ 1982 zfs_sleep_until(zio->io_target_timestamp); 1983 zio_interrupt(zio); 1984 } else { 1985 /* 1986 * Use taskq_dispatch_delay() in the place of 1987 * OpenZFS's timeout_generic(). 1988 */ 1989 tid = taskq_dispatch_delay(system_taskq, 1990 (task_func_t *)zio_interrupt, 1991 zio, TQ_NOSLEEP, expire_at_tick); 1992 if (tid == TASKQID_INVALID) { 1993 /* 1994 * Couldn't allocate a task. Just 1995 * finish the zio without a delay. 1996 */ 1997 zio_interrupt(zio); 1998 } 1999 } 2000 } 2001 return; 2002 } 2003 #endif 2004 DTRACE_PROBE1(zio__delay__skip, zio_t *, zio); 2005 zio_interrupt(zio); 2006 } 2007 2008 static void 2009 zio_deadman_impl(zio_t *pio, int ziodepth) 2010 { 2011 zio_t *cio, *cio_next; 2012 zio_link_t *zl = NULL; 2013 vdev_t *vd = pio->io_vd; 2014 2015 if (zio_deadman_log_all || (vd != NULL && vd->vdev_ops->vdev_op_leaf)) { 2016 vdev_queue_t *vq = vd ? &vd->vdev_queue : NULL; 2017 zbookmark_phys_t *zb = &pio->io_bookmark; 2018 uint64_t delta = gethrtime() - pio->io_timestamp; 2019 uint64_t failmode = spa_get_deadman_failmode(pio->io_spa); 2020 2021 zfs_dbgmsg("slow zio[%d]: zio=%px timestamp=%llu " 2022 "delta=%llu queued=%llu io=%llu " 2023 "path=%s last=%llu " 2024 "type=%d priority=%d flags=0x%x " 2025 "stage=0x%x pipeline=0x%x pipeline-trace=0x%x " 2026 "objset=%llu object=%llu level=%llu blkid=%llu " 2027 "offset=%llu size=%llu error=%d", 2028 ziodepth, pio, pio->io_timestamp, 2029 delta, pio->io_delta, pio->io_delay, 2030 vd ? vd->vdev_path : "NULL", vq ? vq->vq_io_complete_ts : 0, 2031 pio->io_type, pio->io_priority, pio->io_flags, 2032 pio->io_stage, pio->io_pipeline, pio->io_pipeline_trace, 2033 zb->zb_objset, zb->zb_object, zb->zb_level, zb->zb_blkid, 2034 pio->io_offset, pio->io_size, pio->io_error); 2035 (void) zfs_ereport_post(FM_EREPORT_ZFS_DEADMAN, 2036 pio->io_spa, vd, zb, pio, 0); 2037 2038 if (failmode == ZIO_FAILURE_MODE_CONTINUE && 2039 taskq_empty_ent(&pio->io_tqent)) { 2040 zio_interrupt(pio); 2041 } 2042 } 2043 2044 mutex_enter(&pio->io_lock); 2045 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 2046 cio_next = zio_walk_children(pio, &zl); 2047 zio_deadman_impl(cio, ziodepth + 1); 2048 } 2049 mutex_exit(&pio->io_lock); 2050 } 2051 2052 /* 2053 * Log the critical information describing this zio and all of its children 2054 * using the zfs_dbgmsg() interface then post deadman event for the ZED. 2055 */ 2056 void 2057 zio_deadman(zio_t *pio, char *tag) 2058 { 2059 spa_t *spa = pio->io_spa; 2060 char *name = spa_name(spa); 2061 2062 if (!zfs_deadman_enabled || spa_suspended(spa)) 2063 return; 2064 2065 zio_deadman_impl(pio, 0); 2066 2067 switch (spa_get_deadman_failmode(spa)) { 2068 case ZIO_FAILURE_MODE_WAIT: 2069 zfs_dbgmsg("%s waiting for hung I/O to pool '%s'", tag, name); 2070 break; 2071 2072 case ZIO_FAILURE_MODE_CONTINUE: 2073 zfs_dbgmsg("%s restarting hung I/O for pool '%s'", tag, name); 2074 break; 2075 2076 case ZIO_FAILURE_MODE_PANIC: 2077 fm_panic("%s determined I/O to pool '%s' is hung.", tag, name); 2078 break; 2079 } 2080 } 2081 2082 /* 2083 * Execute the I/O pipeline until one of the following occurs: 2084 * (1) the I/O completes; (2) the pipeline stalls waiting for 2085 * dependent child I/Os; (3) the I/O issues, so we're waiting 2086 * for an I/O completion interrupt; (4) the I/O is delegated by 2087 * vdev-level caching or aggregation; (5) the I/O is deferred 2088 * due to vdev-level queueing; (6) the I/O is handed off to 2089 * another thread. In all cases, the pipeline stops whenever 2090 * there's no CPU work; it never burns a thread in cv_wait_io(). 2091 * 2092 * There's no locking on io_stage because there's no legitimate way 2093 * for multiple threads to be attempting to process the same I/O. 2094 */ 2095 static zio_pipe_stage_t *zio_pipeline[]; 2096 2097 /* 2098 * zio_execute() is a wrapper around the static function 2099 * __zio_execute() so that we can force __zio_execute() to be 2100 * inlined. This reduces stack overhead which is important 2101 * because __zio_execute() is called recursively in several zio 2102 * code paths. zio_execute() itself cannot be inlined because 2103 * it is externally visible. 2104 */ 2105 void 2106 zio_execute(zio_t *zio) 2107 { 2108 fstrans_cookie_t cookie; 2109 2110 cookie = spl_fstrans_mark(); 2111 __zio_execute(zio); 2112 spl_fstrans_unmark(cookie); 2113 } 2114 2115 /* 2116 * Used to determine if in the current context the stack is sized large 2117 * enough to allow zio_execute() to be called recursively. A minimum 2118 * stack size of 16K is required to avoid needing to re-dispatch the zio. 2119 */ 2120 static boolean_t 2121 zio_execute_stack_check(zio_t *zio) 2122 { 2123 #if !defined(HAVE_LARGE_STACKS) 2124 dsl_pool_t *dp = spa_get_dsl(zio->io_spa); 2125 2126 /* Executing in txg_sync_thread() context. */ 2127 if (dp && curthread == dp->dp_tx.tx_sync_thread) 2128 return (B_TRUE); 2129 2130 /* Pool initialization outside of zio_taskq context. */ 2131 if (dp && spa_is_initializing(dp->dp_spa) && 2132 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE) && 2133 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE_HIGH)) 2134 return (B_TRUE); 2135 #endif /* HAVE_LARGE_STACKS */ 2136 2137 return (B_FALSE); 2138 } 2139 2140 __attribute__((always_inline)) 2141 static inline void 2142 __zio_execute(zio_t *zio) 2143 { 2144 ASSERT3U(zio->io_queued_timestamp, >, 0); 2145 2146 while (zio->io_stage < ZIO_STAGE_DONE) { 2147 enum zio_stage pipeline = zio->io_pipeline; 2148 enum zio_stage stage = zio->io_stage; 2149 2150 zio->io_executor = curthread; 2151 2152 ASSERT(!MUTEX_HELD(&zio->io_lock)); 2153 ASSERT(ISP2(stage)); 2154 ASSERT(zio->io_stall == NULL); 2155 2156 do { 2157 stage <<= 1; 2158 } while ((stage & pipeline) == 0); 2159 2160 ASSERT(stage <= ZIO_STAGE_DONE); 2161 2162 /* 2163 * If we are in interrupt context and this pipeline stage 2164 * will grab a config lock that is held across I/O, 2165 * or may wait for an I/O that needs an interrupt thread 2166 * to complete, issue async to avoid deadlock. 2167 * 2168 * For VDEV_IO_START, we cut in line so that the io will 2169 * be sent to disk promptly. 2170 */ 2171 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL && 2172 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) { 2173 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ? 2174 zio_requeue_io_start_cut_in_line : B_FALSE; 2175 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut); 2176 return; 2177 } 2178 2179 /* 2180 * If the current context doesn't have large enough stacks 2181 * the zio must be issued asynchronously to prevent overflow. 2182 */ 2183 if (zio_execute_stack_check(zio)) { 2184 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ? 2185 zio_requeue_io_start_cut_in_line : B_FALSE; 2186 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut); 2187 return; 2188 } 2189 2190 zio->io_stage = stage; 2191 zio->io_pipeline_trace |= zio->io_stage; 2192 2193 /* 2194 * The zio pipeline stage returns the next zio to execute 2195 * (typically the same as this one), or NULL if we should 2196 * stop. 2197 */ 2198 zio = zio_pipeline[highbit64(stage) - 1](zio); 2199 2200 if (zio == NULL) 2201 return; 2202 } 2203 } 2204 2205 2206 /* 2207 * ========================================================================== 2208 * Initiate I/O, either sync or async 2209 * ========================================================================== 2210 */ 2211 int 2212 zio_wait(zio_t *zio) 2213 { 2214 /* 2215 * Some routines, like zio_free_sync(), may return a NULL zio 2216 * to avoid the performance overhead of creating and then destroying 2217 * an unneeded zio. For the callers' simplicity, we accept a NULL 2218 * zio and ignore it. 2219 */ 2220 if (zio == NULL) 2221 return (0); 2222 2223 long timeout = MSEC_TO_TICK(zfs_deadman_ziotime_ms); 2224 int error; 2225 2226 ASSERT3S(zio->io_stage, ==, ZIO_STAGE_OPEN); 2227 ASSERT3P(zio->io_executor, ==, NULL); 2228 2229 zio->io_waiter = curthread; 2230 ASSERT0(zio->io_queued_timestamp); 2231 zio->io_queued_timestamp = gethrtime(); 2232 2233 __zio_execute(zio); 2234 2235 mutex_enter(&zio->io_lock); 2236 while (zio->io_executor != NULL) { 2237 error = cv_timedwait_io(&zio->io_cv, &zio->io_lock, 2238 ddi_get_lbolt() + timeout); 2239 2240 if (zfs_deadman_enabled && error == -1 && 2241 gethrtime() - zio->io_queued_timestamp > 2242 spa_deadman_ziotime(zio->io_spa)) { 2243 mutex_exit(&zio->io_lock); 2244 timeout = MSEC_TO_TICK(zfs_deadman_checktime_ms); 2245 zio_deadman(zio, FTAG); 2246 mutex_enter(&zio->io_lock); 2247 } 2248 } 2249 mutex_exit(&zio->io_lock); 2250 2251 error = zio->io_error; 2252 zio_destroy(zio); 2253 2254 return (error); 2255 } 2256 2257 void 2258 zio_nowait(zio_t *zio) 2259 { 2260 /* 2261 * See comment in zio_wait(). 2262 */ 2263 if (zio == NULL) 2264 return; 2265 2266 ASSERT3P(zio->io_executor, ==, NULL); 2267 2268 if (zio->io_child_type == ZIO_CHILD_LOGICAL && 2269 zio_unique_parent(zio) == NULL) { 2270 zio_t *pio; 2271 2272 /* 2273 * This is a logical async I/O with no parent to wait for it. 2274 * We add it to the spa_async_root_zio "Godfather" I/O which 2275 * will ensure they complete prior to unloading the pool. 2276 */ 2277 spa_t *spa = zio->io_spa; 2278 pio = spa->spa_async_zio_root[CPU_SEQID_UNSTABLE]; 2279 2280 zio_add_child(pio, zio); 2281 } 2282 2283 ASSERT0(zio->io_queued_timestamp); 2284 zio->io_queued_timestamp = gethrtime(); 2285 __zio_execute(zio); 2286 } 2287 2288 /* 2289 * ========================================================================== 2290 * Reexecute, cancel, or suspend/resume failed I/O 2291 * ========================================================================== 2292 */ 2293 2294 static void 2295 zio_reexecute(zio_t *pio) 2296 { 2297 zio_t *cio, *cio_next; 2298 2299 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL); 2300 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN); 2301 ASSERT(pio->io_gang_leader == NULL); 2302 ASSERT(pio->io_gang_tree == NULL); 2303 2304 pio->io_flags = pio->io_orig_flags; 2305 pio->io_stage = pio->io_orig_stage; 2306 pio->io_pipeline = pio->io_orig_pipeline; 2307 pio->io_reexecute = 0; 2308 pio->io_flags |= ZIO_FLAG_REEXECUTED; 2309 pio->io_pipeline_trace = 0; 2310 pio->io_error = 0; 2311 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 2312 pio->io_state[w] = 0; 2313 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 2314 pio->io_child_error[c] = 0; 2315 2316 if (IO_IS_ALLOCATING(pio)) 2317 BP_ZERO(pio->io_bp); 2318 2319 /* 2320 * As we reexecute pio's children, new children could be created. 2321 * New children go to the head of pio's io_child_list, however, 2322 * so we will (correctly) not reexecute them. The key is that 2323 * the remainder of pio's io_child_list, from 'cio_next' onward, 2324 * cannot be affected by any side effects of reexecuting 'cio'. 2325 */ 2326 zio_link_t *zl = NULL; 2327 mutex_enter(&pio->io_lock); 2328 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 2329 cio_next = zio_walk_children(pio, &zl); 2330 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 2331 pio->io_children[cio->io_child_type][w]++; 2332 mutex_exit(&pio->io_lock); 2333 zio_reexecute(cio); 2334 mutex_enter(&pio->io_lock); 2335 } 2336 mutex_exit(&pio->io_lock); 2337 2338 /* 2339 * Now that all children have been reexecuted, execute the parent. 2340 * We don't reexecute "The Godfather" I/O here as it's the 2341 * responsibility of the caller to wait on it. 2342 */ 2343 if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) { 2344 pio->io_queued_timestamp = gethrtime(); 2345 __zio_execute(pio); 2346 } 2347 } 2348 2349 void 2350 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason) 2351 { 2352 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC) 2353 fm_panic("Pool '%s' has encountered an uncorrectable I/O " 2354 "failure and the failure mode property for this pool " 2355 "is set to panic.", spa_name(spa)); 2356 2357 cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable I/O " 2358 "failure and has been suspended.\n", spa_name(spa)); 2359 2360 (void) zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, 2361 NULL, NULL, 0); 2362 2363 mutex_enter(&spa->spa_suspend_lock); 2364 2365 if (spa->spa_suspend_zio_root == NULL) 2366 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL, 2367 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 2368 ZIO_FLAG_GODFATHER); 2369 2370 spa->spa_suspended = reason; 2371 2372 if (zio != NULL) { 2373 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 2374 ASSERT(zio != spa->spa_suspend_zio_root); 2375 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2376 ASSERT(zio_unique_parent(zio) == NULL); 2377 ASSERT(zio->io_stage == ZIO_STAGE_DONE); 2378 zio_add_child(spa->spa_suspend_zio_root, zio); 2379 } 2380 2381 mutex_exit(&spa->spa_suspend_lock); 2382 } 2383 2384 int 2385 zio_resume(spa_t *spa) 2386 { 2387 zio_t *pio; 2388 2389 /* 2390 * Reexecute all previously suspended i/o. 2391 */ 2392 mutex_enter(&spa->spa_suspend_lock); 2393 spa->spa_suspended = ZIO_SUSPEND_NONE; 2394 cv_broadcast(&spa->spa_suspend_cv); 2395 pio = spa->spa_suspend_zio_root; 2396 spa->spa_suspend_zio_root = NULL; 2397 mutex_exit(&spa->spa_suspend_lock); 2398 2399 if (pio == NULL) 2400 return (0); 2401 2402 zio_reexecute(pio); 2403 return (zio_wait(pio)); 2404 } 2405 2406 void 2407 zio_resume_wait(spa_t *spa) 2408 { 2409 mutex_enter(&spa->spa_suspend_lock); 2410 while (spa_suspended(spa)) 2411 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock); 2412 mutex_exit(&spa->spa_suspend_lock); 2413 } 2414 2415 /* 2416 * ========================================================================== 2417 * Gang blocks. 2418 * 2419 * A gang block is a collection of small blocks that looks to the DMU 2420 * like one large block. When zio_dva_allocate() cannot find a block 2421 * of the requested size, due to either severe fragmentation or the pool 2422 * being nearly full, it calls zio_write_gang_block() to construct the 2423 * block from smaller fragments. 2424 * 2425 * A gang block consists of a gang header (zio_gbh_phys_t) and up to 2426 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like 2427 * an indirect block: it's an array of block pointers. It consumes 2428 * only one sector and hence is allocatable regardless of fragmentation. 2429 * The gang header's bps point to its gang members, which hold the data. 2430 * 2431 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg> 2432 * as the verifier to ensure uniqueness of the SHA256 checksum. 2433 * Critically, the gang block bp's blk_cksum is the checksum of the data, 2434 * not the gang header. This ensures that data block signatures (needed for 2435 * deduplication) are independent of how the block is physically stored. 2436 * 2437 * Gang blocks can be nested: a gang member may itself be a gang block. 2438 * Thus every gang block is a tree in which root and all interior nodes are 2439 * gang headers, and the leaves are normal blocks that contain user data. 2440 * The root of the gang tree is called the gang leader. 2441 * 2442 * To perform any operation (read, rewrite, free, claim) on a gang block, 2443 * zio_gang_assemble() first assembles the gang tree (minus data leaves) 2444 * in the io_gang_tree field of the original logical i/o by recursively 2445 * reading the gang leader and all gang headers below it. This yields 2446 * an in-core tree containing the contents of every gang header and the 2447 * bps for every constituent of the gang block. 2448 * 2449 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree 2450 * and invokes a callback on each bp. To free a gang block, zio_gang_issue() 2451 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp. 2452 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim(). 2453 * zio_read_gang() is a wrapper around zio_read() that omits reading gang 2454 * headers, since we already have those in io_gang_tree. zio_rewrite_gang() 2455 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite() 2456 * of the gang header plus zio_checksum_compute() of the data to update the 2457 * gang header's blk_cksum as described above. 2458 * 2459 * The two-phase assemble/issue model solves the problem of partial failure -- 2460 * what if you'd freed part of a gang block but then couldn't read the 2461 * gang header for another part? Assembling the entire gang tree first 2462 * ensures that all the necessary gang header I/O has succeeded before 2463 * starting the actual work of free, claim, or write. Once the gang tree 2464 * is assembled, free and claim are in-memory operations that cannot fail. 2465 * 2466 * In the event that a gang write fails, zio_dva_unallocate() walks the 2467 * gang tree to immediately free (i.e. insert back into the space map) 2468 * everything we've allocated. This ensures that we don't get ENOSPC 2469 * errors during repeated suspend/resume cycles due to a flaky device. 2470 * 2471 * Gang rewrites only happen during sync-to-convergence. If we can't assemble 2472 * the gang tree, we won't modify the block, so we can safely defer the free 2473 * (knowing that the block is still intact). If we *can* assemble the gang 2474 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free 2475 * each constituent bp and we can allocate a new block on the next sync pass. 2476 * 2477 * In all cases, the gang tree allows complete recovery from partial failure. 2478 * ========================================================================== 2479 */ 2480 2481 static void 2482 zio_gang_issue_func_done(zio_t *zio) 2483 { 2484 abd_free(zio->io_abd); 2485 } 2486 2487 static zio_t * 2488 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2489 uint64_t offset) 2490 { 2491 if (gn != NULL) 2492 return (pio); 2493 2494 return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset), 2495 BP_GET_PSIZE(bp), zio_gang_issue_func_done, 2496 NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 2497 &pio->io_bookmark)); 2498 } 2499 2500 static zio_t * 2501 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2502 uint64_t offset) 2503 { 2504 zio_t *zio; 2505 2506 if (gn != NULL) { 2507 abd_t *gbh_abd = 2508 abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2509 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 2510 gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL, 2511 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 2512 &pio->io_bookmark); 2513 /* 2514 * As we rewrite each gang header, the pipeline will compute 2515 * a new gang block header checksum for it; but no one will 2516 * compute a new data checksum, so we do that here. The one 2517 * exception is the gang leader: the pipeline already computed 2518 * its data checksum because that stage precedes gang assembly. 2519 * (Presently, nothing actually uses interior data checksums; 2520 * this is just good hygiene.) 2521 */ 2522 if (gn != pio->io_gang_leader->io_gang_tree) { 2523 abd_t *buf = abd_get_offset(data, offset); 2524 2525 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp), 2526 buf, BP_GET_PSIZE(bp)); 2527 2528 abd_free(buf); 2529 } 2530 /* 2531 * If we are here to damage data for testing purposes, 2532 * leave the GBH alone so that we can detect the damage. 2533 */ 2534 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE) 2535 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 2536 } else { 2537 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 2538 abd_get_offset(data, offset), BP_GET_PSIZE(bp), 2539 zio_gang_issue_func_done, NULL, pio->io_priority, 2540 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2541 } 2542 2543 return (zio); 2544 } 2545 2546 /* ARGSUSED */ 2547 static zio_t * 2548 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2549 uint64_t offset) 2550 { 2551 zio_t *zio = zio_free_sync(pio, pio->io_spa, pio->io_txg, bp, 2552 ZIO_GANG_CHILD_FLAGS(pio)); 2553 if (zio == NULL) { 2554 zio = zio_null(pio, pio->io_spa, 2555 NULL, NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)); 2556 } 2557 return (zio); 2558 } 2559 2560 /* ARGSUSED */ 2561 static zio_t * 2562 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2563 uint64_t offset) 2564 { 2565 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp, 2566 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio))); 2567 } 2568 2569 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = { 2570 NULL, 2571 zio_read_gang, 2572 zio_rewrite_gang, 2573 zio_free_gang, 2574 zio_claim_gang, 2575 NULL 2576 }; 2577 2578 static void zio_gang_tree_assemble_done(zio_t *zio); 2579 2580 static zio_gang_node_t * 2581 zio_gang_node_alloc(zio_gang_node_t **gnpp) 2582 { 2583 zio_gang_node_t *gn; 2584 2585 ASSERT(*gnpp == NULL); 2586 2587 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP); 2588 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE); 2589 *gnpp = gn; 2590 2591 return (gn); 2592 } 2593 2594 static void 2595 zio_gang_node_free(zio_gang_node_t **gnpp) 2596 { 2597 zio_gang_node_t *gn = *gnpp; 2598 2599 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 2600 ASSERT(gn->gn_child[g] == NULL); 2601 2602 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2603 kmem_free(gn, sizeof (*gn)); 2604 *gnpp = NULL; 2605 } 2606 2607 static void 2608 zio_gang_tree_free(zio_gang_node_t **gnpp) 2609 { 2610 zio_gang_node_t *gn = *gnpp; 2611 2612 if (gn == NULL) 2613 return; 2614 2615 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 2616 zio_gang_tree_free(&gn->gn_child[g]); 2617 2618 zio_gang_node_free(gnpp); 2619 } 2620 2621 static void 2622 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp) 2623 { 2624 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp); 2625 abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2626 2627 ASSERT(gio->io_gang_leader == gio); 2628 ASSERT(BP_IS_GANG(bp)); 2629 2630 zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE, 2631 zio_gang_tree_assemble_done, gn, gio->io_priority, 2632 ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark)); 2633 } 2634 2635 static void 2636 zio_gang_tree_assemble_done(zio_t *zio) 2637 { 2638 zio_t *gio = zio->io_gang_leader; 2639 zio_gang_node_t *gn = zio->io_private; 2640 blkptr_t *bp = zio->io_bp; 2641 2642 ASSERT(gio == zio_unique_parent(zio)); 2643 ASSERT(zio->io_child_count == 0); 2644 2645 if (zio->io_error) 2646 return; 2647 2648 /* this ABD was created from a linear buf in zio_gang_tree_assemble */ 2649 if (BP_SHOULD_BYTESWAP(bp)) 2650 byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size); 2651 2652 ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh); 2653 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE); 2654 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 2655 2656 abd_free(zio->io_abd); 2657 2658 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2659 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 2660 if (!BP_IS_GANG(gbp)) 2661 continue; 2662 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]); 2663 } 2664 } 2665 2666 static void 2667 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data, 2668 uint64_t offset) 2669 { 2670 zio_t *gio = pio->io_gang_leader; 2671 zio_t *zio; 2672 2673 ASSERT(BP_IS_GANG(bp) == !!gn); 2674 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp)); 2675 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree); 2676 2677 /* 2678 * If you're a gang header, your data is in gn->gn_gbh. 2679 * If you're a gang member, your data is in 'data' and gn == NULL. 2680 */ 2681 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset); 2682 2683 if (gn != NULL) { 2684 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 2685 2686 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2687 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 2688 if (BP_IS_HOLE(gbp)) 2689 continue; 2690 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data, 2691 offset); 2692 offset += BP_GET_PSIZE(gbp); 2693 } 2694 } 2695 2696 if (gn == gio->io_gang_tree) 2697 ASSERT3U(gio->io_size, ==, offset); 2698 2699 if (zio != pio) 2700 zio_nowait(zio); 2701 } 2702 2703 static zio_t * 2704 zio_gang_assemble(zio_t *zio) 2705 { 2706 blkptr_t *bp = zio->io_bp; 2707 2708 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL); 2709 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2710 2711 zio->io_gang_leader = zio; 2712 2713 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree); 2714 2715 return (zio); 2716 } 2717 2718 static zio_t * 2719 zio_gang_issue(zio_t *zio) 2720 { 2721 blkptr_t *bp = zio->io_bp; 2722 2723 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) { 2724 return (NULL); 2725 } 2726 2727 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio); 2728 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2729 2730 if (zio->io_child_error[ZIO_CHILD_GANG] == 0) 2731 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd, 2732 0); 2733 else 2734 zio_gang_tree_free(&zio->io_gang_tree); 2735 2736 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2737 2738 return (zio); 2739 } 2740 2741 static void 2742 zio_write_gang_member_ready(zio_t *zio) 2743 { 2744 zio_t *pio = zio_unique_parent(zio); 2745 dva_t *cdva = zio->io_bp->blk_dva; 2746 dva_t *pdva = pio->io_bp->blk_dva; 2747 uint64_t asize; 2748 zio_t *gio __maybe_unused = zio->io_gang_leader; 2749 2750 if (BP_IS_HOLE(zio->io_bp)) 2751 return; 2752 2753 ASSERT(BP_IS_HOLE(&zio->io_bp_orig)); 2754 2755 ASSERT(zio->io_child_type == ZIO_CHILD_GANG); 2756 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies); 2757 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp)); 2758 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp)); 2759 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp)); 2760 2761 mutex_enter(&pio->io_lock); 2762 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) { 2763 ASSERT(DVA_GET_GANG(&pdva[d])); 2764 asize = DVA_GET_ASIZE(&pdva[d]); 2765 asize += DVA_GET_ASIZE(&cdva[d]); 2766 DVA_SET_ASIZE(&pdva[d], asize); 2767 } 2768 mutex_exit(&pio->io_lock); 2769 } 2770 2771 static void 2772 zio_write_gang_done(zio_t *zio) 2773 { 2774 /* 2775 * The io_abd field will be NULL for a zio with no data. The io_flags 2776 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't 2777 * check for it here as it is cleared in zio_ready. 2778 */ 2779 if (zio->io_abd != NULL) 2780 abd_free(zio->io_abd); 2781 } 2782 2783 static zio_t * 2784 zio_write_gang_block(zio_t *pio, metaslab_class_t *mc) 2785 { 2786 spa_t *spa = pio->io_spa; 2787 blkptr_t *bp = pio->io_bp; 2788 zio_t *gio = pio->io_gang_leader; 2789 zio_t *zio; 2790 zio_gang_node_t *gn, **gnpp; 2791 zio_gbh_phys_t *gbh; 2792 abd_t *gbh_abd; 2793 uint64_t txg = pio->io_txg; 2794 uint64_t resid = pio->io_size; 2795 uint64_t lsize; 2796 int copies = gio->io_prop.zp_copies; 2797 int gbh_copies; 2798 zio_prop_t zp; 2799 int error; 2800 boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA); 2801 2802 /* 2803 * encrypted blocks need DVA[2] free so encrypted gang headers can't 2804 * have a third copy. 2805 */ 2806 gbh_copies = MIN(copies + 1, spa_max_replication(spa)); 2807 if (gio->io_prop.zp_encrypt && gbh_copies >= SPA_DVAS_PER_BP) 2808 gbh_copies = SPA_DVAS_PER_BP - 1; 2809 2810 int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER; 2811 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2812 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2813 ASSERT(has_data); 2814 2815 flags |= METASLAB_ASYNC_ALLOC; 2816 VERIFY(zfs_refcount_held(&mc->mc_allocator[pio->io_allocator]. 2817 mca_alloc_slots, pio)); 2818 2819 /* 2820 * The logical zio has already placed a reservation for 2821 * 'copies' allocation slots but gang blocks may require 2822 * additional copies. These additional copies 2823 * (i.e. gbh_copies - copies) are guaranteed to succeed 2824 * since metaslab_class_throttle_reserve() always allows 2825 * additional reservations for gang blocks. 2826 */ 2827 VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies, 2828 pio->io_allocator, pio, flags)); 2829 } 2830 2831 error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE, 2832 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags, 2833 &pio->io_alloc_list, pio, pio->io_allocator); 2834 if (error) { 2835 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2836 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2837 ASSERT(has_data); 2838 2839 /* 2840 * If we failed to allocate the gang block header then 2841 * we remove any additional allocation reservations that 2842 * we placed here. The original reservation will 2843 * be removed when the logical I/O goes to the ready 2844 * stage. 2845 */ 2846 metaslab_class_throttle_unreserve(mc, 2847 gbh_copies - copies, pio->io_allocator, pio); 2848 } 2849 2850 pio->io_error = error; 2851 return (pio); 2852 } 2853 2854 if (pio == gio) { 2855 gnpp = &gio->io_gang_tree; 2856 } else { 2857 gnpp = pio->io_private; 2858 ASSERT(pio->io_ready == zio_write_gang_member_ready); 2859 } 2860 2861 gn = zio_gang_node_alloc(gnpp); 2862 gbh = gn->gn_gbh; 2863 bzero(gbh, SPA_GANGBLOCKSIZE); 2864 gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE); 2865 2866 /* 2867 * Create the gang header. 2868 */ 2869 zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE, 2870 zio_write_gang_done, NULL, pio->io_priority, 2871 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2872 2873 /* 2874 * Create and nowait the gang children. 2875 */ 2876 for (int g = 0; resid != 0; resid -= lsize, g++) { 2877 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g), 2878 SPA_MINBLOCKSIZE); 2879 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid); 2880 2881 zp.zp_checksum = gio->io_prop.zp_checksum; 2882 zp.zp_compress = ZIO_COMPRESS_OFF; 2883 zp.zp_complevel = gio->io_prop.zp_complevel; 2884 zp.zp_type = DMU_OT_NONE; 2885 zp.zp_level = 0; 2886 zp.zp_copies = gio->io_prop.zp_copies; 2887 zp.zp_dedup = B_FALSE; 2888 zp.zp_dedup_verify = B_FALSE; 2889 zp.zp_nopwrite = B_FALSE; 2890 zp.zp_encrypt = gio->io_prop.zp_encrypt; 2891 zp.zp_byteorder = gio->io_prop.zp_byteorder; 2892 bzero(zp.zp_salt, ZIO_DATA_SALT_LEN); 2893 bzero(zp.zp_iv, ZIO_DATA_IV_LEN); 2894 bzero(zp.zp_mac, ZIO_DATA_MAC_LEN); 2895 2896 zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g], 2897 has_data ? abd_get_offset(pio->io_abd, pio->io_size - 2898 resid) : NULL, lsize, lsize, &zp, 2899 zio_write_gang_member_ready, NULL, NULL, 2900 zio_write_gang_done, &gn->gn_child[g], pio->io_priority, 2901 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2902 2903 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2904 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2905 ASSERT(has_data); 2906 2907 /* 2908 * Gang children won't throttle but we should 2909 * account for their work, so reserve an allocation 2910 * slot for them here. 2911 */ 2912 VERIFY(metaslab_class_throttle_reserve(mc, 2913 zp.zp_copies, cio->io_allocator, cio, flags)); 2914 } 2915 zio_nowait(cio); 2916 } 2917 2918 /* 2919 * Set pio's pipeline to just wait for zio to finish. 2920 */ 2921 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2922 2923 /* 2924 * We didn't allocate this bp, so make sure it doesn't get unmarked. 2925 */ 2926 pio->io_flags &= ~ZIO_FLAG_FASTWRITE; 2927 2928 zio_nowait(zio); 2929 2930 return (pio); 2931 } 2932 2933 /* 2934 * The zio_nop_write stage in the pipeline determines if allocating a 2935 * new bp is necessary. The nopwrite feature can handle writes in 2936 * either syncing or open context (i.e. zil writes) and as a result is 2937 * mutually exclusive with dedup. 2938 * 2939 * By leveraging a cryptographically secure checksum, such as SHA256, we 2940 * can compare the checksums of the new data and the old to determine if 2941 * allocating a new block is required. Note that our requirements for 2942 * cryptographic strength are fairly weak: there can't be any accidental 2943 * hash collisions, but we don't need to be secure against intentional 2944 * (malicious) collisions. To trigger a nopwrite, you have to be able 2945 * to write the file to begin with, and triggering an incorrect (hash 2946 * collision) nopwrite is no worse than simply writing to the file. 2947 * That said, there are no known attacks against the checksum algorithms 2948 * used for nopwrite, assuming that the salt and the checksums 2949 * themselves remain secret. 2950 */ 2951 static zio_t * 2952 zio_nop_write(zio_t *zio) 2953 { 2954 blkptr_t *bp = zio->io_bp; 2955 blkptr_t *bp_orig = &zio->io_bp_orig; 2956 zio_prop_t *zp = &zio->io_prop; 2957 2958 ASSERT(BP_GET_LEVEL(bp) == 0); 2959 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 2960 ASSERT(zp->zp_nopwrite); 2961 ASSERT(!zp->zp_dedup); 2962 ASSERT(zio->io_bp_override == NULL); 2963 ASSERT(IO_IS_ALLOCATING(zio)); 2964 2965 /* 2966 * Check to see if the original bp and the new bp have matching 2967 * characteristics (i.e. same checksum, compression algorithms, etc). 2968 * If they don't then just continue with the pipeline which will 2969 * allocate a new bp. 2970 */ 2971 if (BP_IS_HOLE(bp_orig) || 2972 !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags & 2973 ZCHECKSUM_FLAG_NOPWRITE) || 2974 BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) || 2975 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) || 2976 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) || 2977 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) || 2978 zp->zp_copies != BP_GET_NDVAS(bp_orig)) 2979 return (zio); 2980 2981 /* 2982 * If the checksums match then reset the pipeline so that we 2983 * avoid allocating a new bp and issuing any I/O. 2984 */ 2985 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) { 2986 ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags & 2987 ZCHECKSUM_FLAG_NOPWRITE); 2988 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig)); 2989 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig)); 2990 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF); 2991 ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop, 2992 sizeof (uint64_t)) == 0); 2993 2994 /* 2995 * If we're overwriting a block that is currently on an 2996 * indirect vdev, then ignore the nopwrite request and 2997 * allow a new block to be allocated on a concrete vdev. 2998 */ 2999 spa_config_enter(zio->io_spa, SCL_VDEV, FTAG, RW_READER); 3000 vdev_t *tvd = vdev_lookup_top(zio->io_spa, 3001 DVA_GET_VDEV(&bp->blk_dva[0])); 3002 if (tvd->vdev_ops == &vdev_indirect_ops) { 3003 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG); 3004 return (zio); 3005 } 3006 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG); 3007 3008 *bp = *bp_orig; 3009 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 3010 zio->io_flags |= ZIO_FLAG_NOPWRITE; 3011 } 3012 3013 return (zio); 3014 } 3015 3016 /* 3017 * ========================================================================== 3018 * Dedup 3019 * ========================================================================== 3020 */ 3021 static void 3022 zio_ddt_child_read_done(zio_t *zio) 3023 { 3024 blkptr_t *bp = zio->io_bp; 3025 ddt_entry_t *dde = zio->io_private; 3026 ddt_phys_t *ddp; 3027 zio_t *pio = zio_unique_parent(zio); 3028 3029 mutex_enter(&pio->io_lock); 3030 ddp = ddt_phys_select(dde, bp); 3031 if (zio->io_error == 0) 3032 ddt_phys_clear(ddp); /* this ddp doesn't need repair */ 3033 3034 if (zio->io_error == 0 && dde->dde_repair_abd == NULL) 3035 dde->dde_repair_abd = zio->io_abd; 3036 else 3037 abd_free(zio->io_abd); 3038 mutex_exit(&pio->io_lock); 3039 } 3040 3041 static zio_t * 3042 zio_ddt_read_start(zio_t *zio) 3043 { 3044 blkptr_t *bp = zio->io_bp; 3045 3046 ASSERT(BP_GET_DEDUP(bp)); 3047 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 3048 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3049 3050 if (zio->io_child_error[ZIO_CHILD_DDT]) { 3051 ddt_t *ddt = ddt_select(zio->io_spa, bp); 3052 ddt_entry_t *dde = ddt_repair_start(ddt, bp); 3053 ddt_phys_t *ddp = dde->dde_phys; 3054 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp); 3055 blkptr_t blk; 3056 3057 ASSERT(zio->io_vsd == NULL); 3058 zio->io_vsd = dde; 3059 3060 if (ddp_self == NULL) 3061 return (zio); 3062 3063 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 3064 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self) 3065 continue; 3066 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp, 3067 &blk); 3068 zio_nowait(zio_read(zio, zio->io_spa, &blk, 3069 abd_alloc_for_io(zio->io_size, B_TRUE), 3070 zio->io_size, zio_ddt_child_read_done, dde, 3071 zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) | 3072 ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark)); 3073 } 3074 return (zio); 3075 } 3076 3077 zio_nowait(zio_read(zio, zio->io_spa, bp, 3078 zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority, 3079 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark)); 3080 3081 return (zio); 3082 } 3083 3084 static zio_t * 3085 zio_ddt_read_done(zio_t *zio) 3086 { 3087 blkptr_t *bp = zio->io_bp; 3088 3089 if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) { 3090 return (NULL); 3091 } 3092 3093 ASSERT(BP_GET_DEDUP(bp)); 3094 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 3095 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3096 3097 if (zio->io_child_error[ZIO_CHILD_DDT]) { 3098 ddt_t *ddt = ddt_select(zio->io_spa, bp); 3099 ddt_entry_t *dde = zio->io_vsd; 3100 if (ddt == NULL) { 3101 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE); 3102 return (zio); 3103 } 3104 if (dde == NULL) { 3105 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1; 3106 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 3107 return (NULL); 3108 } 3109 if (dde->dde_repair_abd != NULL) { 3110 abd_copy(zio->io_abd, dde->dde_repair_abd, 3111 zio->io_size); 3112 zio->io_child_error[ZIO_CHILD_DDT] = 0; 3113 } 3114 ddt_repair_done(ddt, dde); 3115 zio->io_vsd = NULL; 3116 } 3117 3118 ASSERT(zio->io_vsd == NULL); 3119 3120 return (zio); 3121 } 3122 3123 static boolean_t 3124 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde) 3125 { 3126 spa_t *spa = zio->io_spa; 3127 boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW); 3128 3129 ASSERT(!(zio->io_bp_override && do_raw)); 3130 3131 /* 3132 * Note: we compare the original data, not the transformed data, 3133 * because when zio->io_bp is an override bp, we will not have 3134 * pushed the I/O transforms. That's an important optimization 3135 * because otherwise we'd compress/encrypt all dmu_sync() data twice. 3136 * However, we should never get a raw, override zio so in these 3137 * cases we can compare the io_abd directly. This is useful because 3138 * it allows us to do dedup verification even if we don't have access 3139 * to the original data (for instance, if the encryption keys aren't 3140 * loaded). 3141 */ 3142 3143 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 3144 zio_t *lio = dde->dde_lead_zio[p]; 3145 3146 if (lio != NULL && do_raw) { 3147 return (lio->io_size != zio->io_size || 3148 abd_cmp(zio->io_abd, lio->io_abd) != 0); 3149 } else if (lio != NULL) { 3150 return (lio->io_orig_size != zio->io_orig_size || 3151 abd_cmp(zio->io_orig_abd, lio->io_orig_abd) != 0); 3152 } 3153 } 3154 3155 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 3156 ddt_phys_t *ddp = &dde->dde_phys[p]; 3157 3158 if (ddp->ddp_phys_birth != 0 && do_raw) { 3159 blkptr_t blk = *zio->io_bp; 3160 uint64_t psize; 3161 abd_t *tmpabd; 3162 int error; 3163 3164 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth); 3165 psize = BP_GET_PSIZE(&blk); 3166 3167 if (psize != zio->io_size) 3168 return (B_TRUE); 3169 3170 ddt_exit(ddt); 3171 3172 tmpabd = abd_alloc_for_io(psize, B_TRUE); 3173 3174 error = zio_wait(zio_read(NULL, spa, &blk, tmpabd, 3175 psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ, 3176 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 3177 ZIO_FLAG_RAW, &zio->io_bookmark)); 3178 3179 if (error == 0) { 3180 if (abd_cmp(tmpabd, zio->io_abd) != 0) 3181 error = SET_ERROR(ENOENT); 3182 } 3183 3184 abd_free(tmpabd); 3185 ddt_enter(ddt); 3186 return (error != 0); 3187 } else if (ddp->ddp_phys_birth != 0) { 3188 arc_buf_t *abuf = NULL; 3189 arc_flags_t aflags = ARC_FLAG_WAIT; 3190 blkptr_t blk = *zio->io_bp; 3191 int error; 3192 3193 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth); 3194 3195 if (BP_GET_LSIZE(&blk) != zio->io_orig_size) 3196 return (B_TRUE); 3197 3198 ddt_exit(ddt); 3199 3200 error = arc_read(NULL, spa, &blk, 3201 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ, 3202 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 3203 &aflags, &zio->io_bookmark); 3204 3205 if (error == 0) { 3206 if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data, 3207 zio->io_orig_size) != 0) 3208 error = SET_ERROR(ENOENT); 3209 arc_buf_destroy(abuf, &abuf); 3210 } 3211 3212 ddt_enter(ddt); 3213 return (error != 0); 3214 } 3215 } 3216 3217 return (B_FALSE); 3218 } 3219 3220 static void 3221 zio_ddt_child_write_ready(zio_t *zio) 3222 { 3223 int p = zio->io_prop.zp_copies; 3224 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 3225 ddt_entry_t *dde = zio->io_private; 3226 ddt_phys_t *ddp = &dde->dde_phys[p]; 3227 zio_t *pio; 3228 3229 if (zio->io_error) 3230 return; 3231 3232 ddt_enter(ddt); 3233 3234 ASSERT(dde->dde_lead_zio[p] == zio); 3235 3236 ddt_phys_fill(ddp, zio->io_bp); 3237 3238 zio_link_t *zl = NULL; 3239 while ((pio = zio_walk_parents(zio, &zl)) != NULL) 3240 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg); 3241 3242 ddt_exit(ddt); 3243 } 3244 3245 static void 3246 zio_ddt_child_write_done(zio_t *zio) 3247 { 3248 int p = zio->io_prop.zp_copies; 3249 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 3250 ddt_entry_t *dde = zio->io_private; 3251 ddt_phys_t *ddp = &dde->dde_phys[p]; 3252 3253 ddt_enter(ddt); 3254 3255 ASSERT(ddp->ddp_refcnt == 0); 3256 ASSERT(dde->dde_lead_zio[p] == zio); 3257 dde->dde_lead_zio[p] = NULL; 3258 3259 if (zio->io_error == 0) { 3260 zio_link_t *zl = NULL; 3261 while (zio_walk_parents(zio, &zl) != NULL) 3262 ddt_phys_addref(ddp); 3263 } else { 3264 ddt_phys_clear(ddp); 3265 } 3266 3267 ddt_exit(ddt); 3268 } 3269 3270 static zio_t * 3271 zio_ddt_write(zio_t *zio) 3272 { 3273 spa_t *spa = zio->io_spa; 3274 blkptr_t *bp = zio->io_bp; 3275 uint64_t txg = zio->io_txg; 3276 zio_prop_t *zp = &zio->io_prop; 3277 int p = zp->zp_copies; 3278 zio_t *cio = NULL; 3279 ddt_t *ddt = ddt_select(spa, bp); 3280 ddt_entry_t *dde; 3281 ddt_phys_t *ddp; 3282 3283 ASSERT(BP_GET_DEDUP(bp)); 3284 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum); 3285 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override); 3286 ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW))); 3287 3288 ddt_enter(ddt); 3289 dde = ddt_lookup(ddt, bp, B_TRUE); 3290 ddp = &dde->dde_phys[p]; 3291 3292 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) { 3293 /* 3294 * If we're using a weak checksum, upgrade to a strong checksum 3295 * and try again. If we're already using a strong checksum, 3296 * we can't resolve it, so just convert to an ordinary write. 3297 * (And automatically e-mail a paper to Nature?) 3298 */ 3299 if (!(zio_checksum_table[zp->zp_checksum].ci_flags & 3300 ZCHECKSUM_FLAG_DEDUP)) { 3301 zp->zp_checksum = spa_dedup_checksum(spa); 3302 zio_pop_transforms(zio); 3303 zio->io_stage = ZIO_STAGE_OPEN; 3304 BP_ZERO(bp); 3305 } else { 3306 zp->zp_dedup = B_FALSE; 3307 BP_SET_DEDUP(bp, B_FALSE); 3308 } 3309 ASSERT(!BP_GET_DEDUP(bp)); 3310 zio->io_pipeline = ZIO_WRITE_PIPELINE; 3311 ddt_exit(ddt); 3312 return (zio); 3313 } 3314 3315 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) { 3316 if (ddp->ddp_phys_birth != 0) 3317 ddt_bp_fill(ddp, bp, txg); 3318 if (dde->dde_lead_zio[p] != NULL) 3319 zio_add_child(zio, dde->dde_lead_zio[p]); 3320 else 3321 ddt_phys_addref(ddp); 3322 } else if (zio->io_bp_override) { 3323 ASSERT(bp->blk_birth == txg); 3324 ASSERT(BP_EQUAL(bp, zio->io_bp_override)); 3325 ddt_phys_fill(ddp, bp); 3326 ddt_phys_addref(ddp); 3327 } else { 3328 cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd, 3329 zio->io_orig_size, zio->io_orig_size, zp, 3330 zio_ddt_child_write_ready, NULL, NULL, 3331 zio_ddt_child_write_done, dde, zio->io_priority, 3332 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark); 3333 3334 zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL); 3335 dde->dde_lead_zio[p] = cio; 3336 } 3337 3338 ddt_exit(ddt); 3339 3340 zio_nowait(cio); 3341 3342 return (zio); 3343 } 3344 3345 ddt_entry_t *freedde; /* for debugging */ 3346 3347 static zio_t * 3348 zio_ddt_free(zio_t *zio) 3349 { 3350 spa_t *spa = zio->io_spa; 3351 blkptr_t *bp = zio->io_bp; 3352 ddt_t *ddt = ddt_select(spa, bp); 3353 ddt_entry_t *dde; 3354 ddt_phys_t *ddp; 3355 3356 ASSERT(BP_GET_DEDUP(bp)); 3357 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3358 3359 ddt_enter(ddt); 3360 freedde = dde = ddt_lookup(ddt, bp, B_TRUE); 3361 if (dde) { 3362 ddp = ddt_phys_select(dde, bp); 3363 if (ddp) 3364 ddt_phys_decref(ddp); 3365 } 3366 ddt_exit(ddt); 3367 3368 return (zio); 3369 } 3370 3371 /* 3372 * ========================================================================== 3373 * Allocate and free blocks 3374 * ========================================================================== 3375 */ 3376 3377 static zio_t * 3378 zio_io_to_allocate(spa_t *spa, int allocator) 3379 { 3380 zio_t *zio; 3381 3382 ASSERT(MUTEX_HELD(&spa->spa_alloc_locks[allocator])); 3383 3384 zio = avl_first(&spa->spa_alloc_trees[allocator]); 3385 if (zio == NULL) 3386 return (NULL); 3387 3388 ASSERT(IO_IS_ALLOCATING(zio)); 3389 3390 /* 3391 * Try to place a reservation for this zio. If we're unable to 3392 * reserve then we throttle. 3393 */ 3394 ASSERT3U(zio->io_allocator, ==, allocator); 3395 if (!metaslab_class_throttle_reserve(zio->io_metaslab_class, 3396 zio->io_prop.zp_copies, zio->io_allocator, zio, 0)) { 3397 return (NULL); 3398 } 3399 3400 avl_remove(&spa->spa_alloc_trees[allocator], zio); 3401 ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE); 3402 3403 return (zio); 3404 } 3405 3406 static zio_t * 3407 zio_dva_throttle(zio_t *zio) 3408 { 3409 spa_t *spa = zio->io_spa; 3410 zio_t *nio; 3411 metaslab_class_t *mc; 3412 3413 /* locate an appropriate allocation class */ 3414 mc = spa_preferred_class(spa, zio->io_size, zio->io_prop.zp_type, 3415 zio->io_prop.zp_level, zio->io_prop.zp_zpl_smallblk); 3416 3417 if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE || 3418 !mc->mc_alloc_throttle_enabled || 3419 zio->io_child_type == ZIO_CHILD_GANG || 3420 zio->io_flags & ZIO_FLAG_NODATA) { 3421 return (zio); 3422 } 3423 3424 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 3425 3426 ASSERT3U(zio->io_queued_timestamp, >, 0); 3427 ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE); 3428 3429 zbookmark_phys_t *bm = &zio->io_bookmark; 3430 /* 3431 * We want to try to use as many allocators as possible to help improve 3432 * performance, but we also want logically adjacent IOs to be physically 3433 * adjacent to improve sequential read performance. We chunk each object 3434 * into 2^20 block regions, and then hash based on the objset, object, 3435 * level, and region to accomplish both of these goals. 3436 */ 3437 zio->io_allocator = cityhash4(bm->zb_objset, bm->zb_object, 3438 bm->zb_level, bm->zb_blkid >> 20) % spa->spa_alloc_count; 3439 mutex_enter(&spa->spa_alloc_locks[zio->io_allocator]); 3440 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 3441 zio->io_metaslab_class = mc; 3442 avl_add(&spa->spa_alloc_trees[zio->io_allocator], zio); 3443 nio = zio_io_to_allocate(spa, zio->io_allocator); 3444 mutex_exit(&spa->spa_alloc_locks[zio->io_allocator]); 3445 return (nio); 3446 } 3447 3448 static void 3449 zio_allocate_dispatch(spa_t *spa, int allocator) 3450 { 3451 zio_t *zio; 3452 3453 mutex_enter(&spa->spa_alloc_locks[allocator]); 3454 zio = zio_io_to_allocate(spa, allocator); 3455 mutex_exit(&spa->spa_alloc_locks[allocator]); 3456 if (zio == NULL) 3457 return; 3458 3459 ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE); 3460 ASSERT0(zio->io_error); 3461 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE); 3462 } 3463 3464 static zio_t * 3465 zio_dva_allocate(zio_t *zio) 3466 { 3467 spa_t *spa = zio->io_spa; 3468 metaslab_class_t *mc; 3469 blkptr_t *bp = zio->io_bp; 3470 int error; 3471 int flags = 0; 3472 3473 if (zio->io_gang_leader == NULL) { 3474 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 3475 zio->io_gang_leader = zio; 3476 } 3477 3478 ASSERT(BP_IS_HOLE(bp)); 3479 ASSERT0(BP_GET_NDVAS(bp)); 3480 ASSERT3U(zio->io_prop.zp_copies, >, 0); 3481 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa)); 3482 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp)); 3483 3484 flags |= (zio->io_flags & ZIO_FLAG_FASTWRITE) ? METASLAB_FASTWRITE : 0; 3485 if (zio->io_flags & ZIO_FLAG_NODATA) 3486 flags |= METASLAB_DONT_THROTTLE; 3487 if (zio->io_flags & ZIO_FLAG_GANG_CHILD) 3488 flags |= METASLAB_GANG_CHILD; 3489 if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE) 3490 flags |= METASLAB_ASYNC_ALLOC; 3491 3492 /* 3493 * if not already chosen, locate an appropriate allocation class 3494 */ 3495 mc = zio->io_metaslab_class; 3496 if (mc == NULL) { 3497 mc = spa_preferred_class(spa, zio->io_size, 3498 zio->io_prop.zp_type, zio->io_prop.zp_level, 3499 zio->io_prop.zp_zpl_smallblk); 3500 zio->io_metaslab_class = mc; 3501 } 3502 3503 /* 3504 * Try allocating the block in the usual metaslab class. 3505 * If that's full, allocate it in the normal class. 3506 * If that's full, allocate as a gang block, 3507 * and if all are full, the allocation fails (which shouldn't happen). 3508 * 3509 * Note that we do not fall back on embedded slog (ZIL) space, to 3510 * preserve unfragmented slog space, which is critical for decent 3511 * sync write performance. If a log allocation fails, we will fall 3512 * back to spa_sync() which is abysmal for performance. 3513 */ 3514 error = metaslab_alloc(spa, mc, zio->io_size, bp, 3515 zio->io_prop.zp_copies, zio->io_txg, NULL, flags, 3516 &zio->io_alloc_list, zio, zio->io_allocator); 3517 3518 /* 3519 * Fallback to normal class when an alloc class is full 3520 */ 3521 if (error == ENOSPC && mc != spa_normal_class(spa)) { 3522 /* 3523 * If throttling, transfer reservation over to normal class. 3524 * The io_allocator slot can remain the same even though we 3525 * are switching classes. 3526 */ 3527 if (mc->mc_alloc_throttle_enabled && 3528 (zio->io_flags & ZIO_FLAG_IO_ALLOCATING)) { 3529 metaslab_class_throttle_unreserve(mc, 3530 zio->io_prop.zp_copies, zio->io_allocator, zio); 3531 zio->io_flags &= ~ZIO_FLAG_IO_ALLOCATING; 3532 3533 VERIFY(metaslab_class_throttle_reserve( 3534 spa_normal_class(spa), 3535 zio->io_prop.zp_copies, zio->io_allocator, zio, 3536 flags | METASLAB_MUST_RESERVE)); 3537 } 3538 zio->io_metaslab_class = mc = spa_normal_class(spa); 3539 if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) { 3540 zfs_dbgmsg("%s: metaslab allocation failure, " 3541 "trying normal class: zio %px, size %llu, error %d", 3542 spa_name(spa), zio, zio->io_size, error); 3543 } 3544 3545 error = metaslab_alloc(spa, mc, zio->io_size, bp, 3546 zio->io_prop.zp_copies, zio->io_txg, NULL, flags, 3547 &zio->io_alloc_list, zio, zio->io_allocator); 3548 } 3549 3550 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) { 3551 if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) { 3552 zfs_dbgmsg("%s: metaslab allocation failure, " 3553 "trying ganging: zio %px, size %llu, error %d", 3554 spa_name(spa), zio, zio->io_size, error); 3555 } 3556 return (zio_write_gang_block(zio, mc)); 3557 } 3558 if (error != 0) { 3559 if (error != ENOSPC || 3560 (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC)) { 3561 zfs_dbgmsg("%s: metaslab allocation failure: zio %px, " 3562 "size %llu, error %d", 3563 spa_name(spa), zio, zio->io_size, error); 3564 } 3565 zio->io_error = error; 3566 } 3567 3568 return (zio); 3569 } 3570 3571 static zio_t * 3572 zio_dva_free(zio_t *zio) 3573 { 3574 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE); 3575 3576 return (zio); 3577 } 3578 3579 static zio_t * 3580 zio_dva_claim(zio_t *zio) 3581 { 3582 int error; 3583 3584 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg); 3585 if (error) 3586 zio->io_error = error; 3587 3588 return (zio); 3589 } 3590 3591 /* 3592 * Undo an allocation. This is used by zio_done() when an I/O fails 3593 * and we want to give back the block we just allocated. 3594 * This handles both normal blocks and gang blocks. 3595 */ 3596 static void 3597 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp) 3598 { 3599 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp)); 3600 ASSERT(zio->io_bp_override == NULL); 3601 3602 if (!BP_IS_HOLE(bp)) 3603 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE); 3604 3605 if (gn != NULL) { 3606 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 3607 zio_dva_unallocate(zio, gn->gn_child[g], 3608 &gn->gn_gbh->zg_blkptr[g]); 3609 } 3610 } 3611 } 3612 3613 /* 3614 * Try to allocate an intent log block. Return 0 on success, errno on failure. 3615 */ 3616 int 3617 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp, 3618 uint64_t size, boolean_t *slog) 3619 { 3620 int error = 1; 3621 zio_alloc_list_t io_alloc_list; 3622 3623 ASSERT(txg > spa_syncing_txg(spa)); 3624 3625 metaslab_trace_init(&io_alloc_list); 3626 3627 /* 3628 * Block pointer fields are useful to metaslabs for stats and debugging. 3629 * Fill in the obvious ones before calling into metaslab_alloc(). 3630 */ 3631 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 3632 BP_SET_PSIZE(new_bp, size); 3633 BP_SET_LEVEL(new_bp, 0); 3634 3635 /* 3636 * When allocating a zil block, we don't have information about 3637 * the final destination of the block except the objset it's part 3638 * of, so we just hash the objset ID to pick the allocator to get 3639 * some parallelism. 3640 */ 3641 int flags = METASLAB_FASTWRITE | METASLAB_ZIL; 3642 int allocator = cityhash4(0, 0, 0, os->os_dsl_dataset->ds_object) % 3643 spa->spa_alloc_count; 3644 error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1, 3645 txg, NULL, flags, &io_alloc_list, NULL, allocator); 3646 *slog = (error == 0); 3647 if (error != 0) { 3648 error = metaslab_alloc(spa, spa_embedded_log_class(spa), size, 3649 new_bp, 1, txg, NULL, flags, 3650 &io_alloc_list, NULL, allocator); 3651 } 3652 if (error != 0) { 3653 error = metaslab_alloc(spa, spa_normal_class(spa), size, 3654 new_bp, 1, txg, NULL, flags, 3655 &io_alloc_list, NULL, allocator); 3656 } 3657 metaslab_trace_fini(&io_alloc_list); 3658 3659 if (error == 0) { 3660 BP_SET_LSIZE(new_bp, size); 3661 BP_SET_PSIZE(new_bp, size); 3662 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF); 3663 BP_SET_CHECKSUM(new_bp, 3664 spa_version(spa) >= SPA_VERSION_SLIM_ZIL 3665 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG); 3666 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 3667 BP_SET_LEVEL(new_bp, 0); 3668 BP_SET_DEDUP(new_bp, 0); 3669 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER); 3670 3671 /* 3672 * encrypted blocks will require an IV and salt. We generate 3673 * these now since we will not be rewriting the bp at 3674 * rewrite time. 3675 */ 3676 if (os->os_encrypted) { 3677 uint8_t iv[ZIO_DATA_IV_LEN]; 3678 uint8_t salt[ZIO_DATA_SALT_LEN]; 3679 3680 BP_SET_CRYPT(new_bp, B_TRUE); 3681 VERIFY0(spa_crypt_get_salt(spa, 3682 dmu_objset_id(os), salt)); 3683 VERIFY0(zio_crypt_generate_iv(iv)); 3684 3685 zio_crypt_encode_params_bp(new_bp, salt, iv); 3686 } 3687 } else { 3688 zfs_dbgmsg("%s: zil block allocation failure: " 3689 "size %llu, error %d", spa_name(spa), size, error); 3690 } 3691 3692 return (error); 3693 } 3694 3695 /* 3696 * ========================================================================== 3697 * Read and write to physical devices 3698 * ========================================================================== 3699 */ 3700 3701 /* 3702 * Issue an I/O to the underlying vdev. Typically the issue pipeline 3703 * stops after this stage and will resume upon I/O completion. 3704 * However, there are instances where the vdev layer may need to 3705 * continue the pipeline when an I/O was not issued. Since the I/O 3706 * that was sent to the vdev layer might be different than the one 3707 * currently active in the pipeline (see vdev_queue_io()), we explicitly 3708 * force the underlying vdev layers to call either zio_execute() or 3709 * zio_interrupt() to ensure that the pipeline continues with the correct I/O. 3710 */ 3711 static zio_t * 3712 zio_vdev_io_start(zio_t *zio) 3713 { 3714 vdev_t *vd = zio->io_vd; 3715 uint64_t align; 3716 spa_t *spa = zio->io_spa; 3717 3718 zio->io_delay = 0; 3719 3720 ASSERT(zio->io_error == 0); 3721 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0); 3722 3723 if (vd == NULL) { 3724 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 3725 spa_config_enter(spa, SCL_ZIO, zio, RW_READER); 3726 3727 /* 3728 * The mirror_ops handle multiple DVAs in a single BP. 3729 */ 3730 vdev_mirror_ops.vdev_op_io_start(zio); 3731 return (NULL); 3732 } 3733 3734 ASSERT3P(zio->io_logical, !=, zio); 3735 if (zio->io_type == ZIO_TYPE_WRITE) { 3736 ASSERT(spa->spa_trust_config); 3737 3738 /* 3739 * Note: the code can handle other kinds of writes, 3740 * but we don't expect them. 3741 */ 3742 if (zio->io_vd->vdev_removing) { 3743 ASSERT(zio->io_flags & 3744 (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL | 3745 ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE)); 3746 } 3747 } 3748 3749 align = 1ULL << vd->vdev_top->vdev_ashift; 3750 3751 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) && 3752 P2PHASE(zio->io_size, align) != 0) { 3753 /* Transform logical writes to be a full physical block size. */ 3754 uint64_t asize = P2ROUNDUP(zio->io_size, align); 3755 abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize); 3756 ASSERT(vd == vd->vdev_top); 3757 if (zio->io_type == ZIO_TYPE_WRITE) { 3758 abd_copy(abuf, zio->io_abd, zio->io_size); 3759 abd_zero_off(abuf, zio->io_size, asize - zio->io_size); 3760 } 3761 zio_push_transform(zio, abuf, asize, asize, zio_subblock); 3762 } 3763 3764 /* 3765 * If this is not a physical io, make sure that it is properly aligned 3766 * before proceeding. 3767 */ 3768 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) { 3769 ASSERT0(P2PHASE(zio->io_offset, align)); 3770 ASSERT0(P2PHASE(zio->io_size, align)); 3771 } else { 3772 /* 3773 * For physical writes, we allow 512b aligned writes and assume 3774 * the device will perform a read-modify-write as necessary. 3775 */ 3776 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE)); 3777 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE)); 3778 } 3779 3780 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa)); 3781 3782 /* 3783 * If this is a repair I/O, and there's no self-healing involved -- 3784 * that is, we're just resilvering what we expect to resilver -- 3785 * then don't do the I/O unless zio's txg is actually in vd's DTL. 3786 * This prevents spurious resilvering. 3787 * 3788 * There are a few ways that we can end up creating these spurious 3789 * resilver i/os: 3790 * 3791 * 1. A resilver i/o will be issued if any DVA in the BP has a 3792 * dirty DTL. The mirror code will issue resilver writes to 3793 * each DVA, including the one(s) that are not on vdevs with dirty 3794 * DTLs. 3795 * 3796 * 2. With nested replication, which happens when we have a 3797 * "replacing" or "spare" vdev that's a child of a mirror or raidz. 3798 * For example, given mirror(replacing(A+B), C), it's likely that 3799 * only A is out of date (it's the new device). In this case, we'll 3800 * read from C, then use the data to resilver A+B -- but we don't 3801 * actually want to resilver B, just A. The top-level mirror has no 3802 * way to know this, so instead we just discard unnecessary repairs 3803 * as we work our way down the vdev tree. 3804 * 3805 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc. 3806 * The same logic applies to any form of nested replication: ditto 3807 * + mirror, RAID-Z + replacing, etc. 3808 * 3809 * However, indirect vdevs point off to other vdevs which may have 3810 * DTL's, so we never bypass them. The child i/os on concrete vdevs 3811 * will be properly bypassed instead. 3812 * 3813 * Leaf DTL_PARTIAL can be empty when a legitimate write comes from 3814 * a dRAID spare vdev. For example, when a dRAID spare is first 3815 * used, its spare blocks need to be written to but the leaf vdev's 3816 * of such blocks can have empty DTL_PARTIAL. 3817 * 3818 * There seemed no clean way to allow such writes while bypassing 3819 * spurious ones. At this point, just avoid all bypassing for dRAID 3820 * for correctness. 3821 */ 3822 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) && 3823 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) && 3824 zio->io_txg != 0 && /* not a delegated i/o */ 3825 vd->vdev_ops != &vdev_indirect_ops && 3826 vd->vdev_top->vdev_ops != &vdev_draid_ops && 3827 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) { 3828 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 3829 zio_vdev_io_bypass(zio); 3830 return (zio); 3831 } 3832 3833 /* 3834 * Select the next best leaf I/O to process. Distributed spares are 3835 * excluded since they dispatch the I/O directly to a leaf vdev after 3836 * applying the dRAID mapping. 3837 */ 3838 if (vd->vdev_ops->vdev_op_leaf && 3839 vd->vdev_ops != &vdev_draid_spare_ops && 3840 (zio->io_type == ZIO_TYPE_READ || 3841 zio->io_type == ZIO_TYPE_WRITE || 3842 zio->io_type == ZIO_TYPE_TRIM)) { 3843 3844 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio)) 3845 return (zio); 3846 3847 if ((zio = vdev_queue_io(zio)) == NULL) 3848 return (NULL); 3849 3850 if (!vdev_accessible(vd, zio)) { 3851 zio->io_error = SET_ERROR(ENXIO); 3852 zio_interrupt(zio); 3853 return (NULL); 3854 } 3855 zio->io_delay = gethrtime(); 3856 } 3857 3858 vd->vdev_ops->vdev_op_io_start(zio); 3859 return (NULL); 3860 } 3861 3862 static zio_t * 3863 zio_vdev_io_done(zio_t *zio) 3864 { 3865 vdev_t *vd = zio->io_vd; 3866 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops; 3867 boolean_t unexpected_error = B_FALSE; 3868 3869 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) { 3870 return (NULL); 3871 } 3872 3873 ASSERT(zio->io_type == ZIO_TYPE_READ || 3874 zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM); 3875 3876 if (zio->io_delay) 3877 zio->io_delay = gethrtime() - zio->io_delay; 3878 3879 if (vd != NULL && vd->vdev_ops->vdev_op_leaf && 3880 vd->vdev_ops != &vdev_draid_spare_ops) { 3881 vdev_queue_io_done(zio); 3882 3883 if (zio->io_type == ZIO_TYPE_WRITE) 3884 vdev_cache_write(zio); 3885 3886 if (zio_injection_enabled && zio->io_error == 0) 3887 zio->io_error = zio_handle_device_injections(vd, zio, 3888 EIO, EILSEQ); 3889 3890 if (zio_injection_enabled && zio->io_error == 0) 3891 zio->io_error = zio_handle_label_injection(zio, EIO); 3892 3893 if (zio->io_error && zio->io_type != ZIO_TYPE_TRIM) { 3894 if (!vdev_accessible(vd, zio)) { 3895 zio->io_error = SET_ERROR(ENXIO); 3896 } else { 3897 unexpected_error = B_TRUE; 3898 } 3899 } 3900 } 3901 3902 ops->vdev_op_io_done(zio); 3903 3904 if (unexpected_error) 3905 VERIFY(vdev_probe(vd, zio) == NULL); 3906 3907 return (zio); 3908 } 3909 3910 /* 3911 * This function is used to change the priority of an existing zio that is 3912 * currently in-flight. This is used by the arc to upgrade priority in the 3913 * event that a demand read is made for a block that is currently queued 3914 * as a scrub or async read IO. Otherwise, the high priority read request 3915 * would end up having to wait for the lower priority IO. 3916 */ 3917 void 3918 zio_change_priority(zio_t *pio, zio_priority_t priority) 3919 { 3920 zio_t *cio, *cio_next; 3921 zio_link_t *zl = NULL; 3922 3923 ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 3924 3925 if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) { 3926 vdev_queue_change_io_priority(pio, priority); 3927 } else { 3928 pio->io_priority = priority; 3929 } 3930 3931 mutex_enter(&pio->io_lock); 3932 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 3933 cio_next = zio_walk_children(pio, &zl); 3934 zio_change_priority(cio, priority); 3935 } 3936 mutex_exit(&pio->io_lock); 3937 } 3938 3939 /* 3940 * For non-raidz ZIOs, we can just copy aside the bad data read from the 3941 * disk, and use that to finish the checksum ereport later. 3942 */ 3943 static void 3944 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr, 3945 const abd_t *good_buf) 3946 { 3947 /* no processing needed */ 3948 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE); 3949 } 3950 3951 /*ARGSUSED*/ 3952 void 3953 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr) 3954 { 3955 void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size); 3956 3957 abd_copy(abd, zio->io_abd, zio->io_size); 3958 3959 zcr->zcr_cbinfo = zio->io_size; 3960 zcr->zcr_cbdata = abd; 3961 zcr->zcr_finish = zio_vsd_default_cksum_finish; 3962 zcr->zcr_free = zio_abd_free; 3963 } 3964 3965 static zio_t * 3966 zio_vdev_io_assess(zio_t *zio) 3967 { 3968 vdev_t *vd = zio->io_vd; 3969 3970 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) { 3971 return (NULL); 3972 } 3973 3974 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 3975 spa_config_exit(zio->io_spa, SCL_ZIO, zio); 3976 3977 if (zio->io_vsd != NULL) { 3978 zio->io_vsd_ops->vsd_free(zio); 3979 zio->io_vsd = NULL; 3980 } 3981 3982 if (zio_injection_enabled && zio->io_error == 0) 3983 zio->io_error = zio_handle_fault_injection(zio, EIO); 3984 3985 /* 3986 * If the I/O failed, determine whether we should attempt to retry it. 3987 * 3988 * On retry, we cut in line in the issue queue, since we don't want 3989 * compression/checksumming/etc. work to prevent our (cheap) IO reissue. 3990 */ 3991 if (zio->io_error && vd == NULL && 3992 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) { 3993 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */ 3994 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */ 3995 zio->io_error = 0; 3996 zio->io_flags |= ZIO_FLAG_IO_RETRY | 3997 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE; 3998 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1; 3999 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, 4000 zio_requeue_io_start_cut_in_line); 4001 return (NULL); 4002 } 4003 4004 /* 4005 * If we got an error on a leaf device, convert it to ENXIO 4006 * if the device is not accessible at all. 4007 */ 4008 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf && 4009 !vdev_accessible(vd, zio)) 4010 zio->io_error = SET_ERROR(ENXIO); 4011 4012 /* 4013 * If we can't write to an interior vdev (mirror or RAID-Z), 4014 * set vdev_cant_write so that we stop trying to allocate from it. 4015 */ 4016 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE && 4017 vd != NULL && !vd->vdev_ops->vdev_op_leaf) { 4018 vd->vdev_cant_write = B_TRUE; 4019 } 4020 4021 /* 4022 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future 4023 * attempts will ever succeed. In this case we set a persistent 4024 * boolean flag so that we don't bother with it in the future. 4025 */ 4026 if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) && 4027 zio->io_type == ZIO_TYPE_IOCTL && 4028 zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL) 4029 vd->vdev_nowritecache = B_TRUE; 4030 4031 if (zio->io_error) 4032 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 4033 4034 if (vd != NULL && vd->vdev_ops->vdev_op_leaf && 4035 zio->io_physdone != NULL) { 4036 ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED)); 4037 ASSERT(zio->io_child_type == ZIO_CHILD_VDEV); 4038 zio->io_physdone(zio->io_logical); 4039 } 4040 4041 return (zio); 4042 } 4043 4044 void 4045 zio_vdev_io_reissue(zio_t *zio) 4046 { 4047 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 4048 ASSERT(zio->io_error == 0); 4049 4050 zio->io_stage >>= 1; 4051 } 4052 4053 void 4054 zio_vdev_io_redone(zio_t *zio) 4055 { 4056 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE); 4057 4058 zio->io_stage >>= 1; 4059 } 4060 4061 void 4062 zio_vdev_io_bypass(zio_t *zio) 4063 { 4064 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 4065 ASSERT(zio->io_error == 0); 4066 4067 zio->io_flags |= ZIO_FLAG_IO_BYPASS; 4068 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1; 4069 } 4070 4071 /* 4072 * ========================================================================== 4073 * Encrypt and store encryption parameters 4074 * ========================================================================== 4075 */ 4076 4077 4078 /* 4079 * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for 4080 * managing the storage of encryption parameters and passing them to the 4081 * lower-level encryption functions. 4082 */ 4083 static zio_t * 4084 zio_encrypt(zio_t *zio) 4085 { 4086 zio_prop_t *zp = &zio->io_prop; 4087 spa_t *spa = zio->io_spa; 4088 blkptr_t *bp = zio->io_bp; 4089 uint64_t psize = BP_GET_PSIZE(bp); 4090 uint64_t dsobj = zio->io_bookmark.zb_objset; 4091 dmu_object_type_t ot = BP_GET_TYPE(bp); 4092 void *enc_buf = NULL; 4093 abd_t *eabd = NULL; 4094 uint8_t salt[ZIO_DATA_SALT_LEN]; 4095 uint8_t iv[ZIO_DATA_IV_LEN]; 4096 uint8_t mac[ZIO_DATA_MAC_LEN]; 4097 boolean_t no_crypt = B_FALSE; 4098 4099 /* the root zio already encrypted the data */ 4100 if (zio->io_child_type == ZIO_CHILD_GANG) 4101 return (zio); 4102 4103 /* only ZIL blocks are re-encrypted on rewrite */ 4104 if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG) 4105 return (zio); 4106 4107 if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) { 4108 BP_SET_CRYPT(bp, B_FALSE); 4109 return (zio); 4110 } 4111 4112 /* if we are doing raw encryption set the provided encryption params */ 4113 if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) { 4114 ASSERT0(BP_GET_LEVEL(bp)); 4115 BP_SET_CRYPT(bp, B_TRUE); 4116 BP_SET_BYTEORDER(bp, zp->zp_byteorder); 4117 if (ot != DMU_OT_OBJSET) 4118 zio_crypt_encode_mac_bp(bp, zp->zp_mac); 4119 4120 /* dnode blocks must be written out in the provided byteorder */ 4121 if (zp->zp_byteorder != ZFS_HOST_BYTEORDER && 4122 ot == DMU_OT_DNODE) { 4123 void *bswap_buf = zio_buf_alloc(psize); 4124 abd_t *babd = abd_get_from_buf(bswap_buf, psize); 4125 4126 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 4127 abd_copy_to_buf(bswap_buf, zio->io_abd, psize); 4128 dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf, 4129 psize); 4130 4131 abd_take_ownership_of_buf(babd, B_TRUE); 4132 zio_push_transform(zio, babd, psize, psize, NULL); 4133 } 4134 4135 if (DMU_OT_IS_ENCRYPTED(ot)) 4136 zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv); 4137 return (zio); 4138 } 4139 4140 /* indirect blocks only maintain a cksum of the lower level MACs */ 4141 if (BP_GET_LEVEL(bp) > 0) { 4142 BP_SET_CRYPT(bp, B_TRUE); 4143 VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE, 4144 zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp), 4145 mac)); 4146 zio_crypt_encode_mac_bp(bp, mac); 4147 return (zio); 4148 } 4149 4150 /* 4151 * Objset blocks are a special case since they have 2 256-bit MACs 4152 * embedded within them. 4153 */ 4154 if (ot == DMU_OT_OBJSET) { 4155 ASSERT0(DMU_OT_IS_ENCRYPTED(ot)); 4156 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 4157 BP_SET_CRYPT(bp, B_TRUE); 4158 VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj, 4159 zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp))); 4160 return (zio); 4161 } 4162 4163 /* unencrypted object types are only authenticated with a MAC */ 4164 if (!DMU_OT_IS_ENCRYPTED(ot)) { 4165 BP_SET_CRYPT(bp, B_TRUE); 4166 VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj, 4167 zio->io_abd, psize, mac)); 4168 zio_crypt_encode_mac_bp(bp, mac); 4169 return (zio); 4170 } 4171 4172 /* 4173 * Later passes of sync-to-convergence may decide to rewrite data 4174 * in place to avoid more disk reallocations. This presents a problem 4175 * for encryption because this constitutes rewriting the new data with 4176 * the same encryption key and IV. However, this only applies to blocks 4177 * in the MOS (particularly the spacemaps) and we do not encrypt the 4178 * MOS. We assert that the zio is allocating or an intent log write 4179 * to enforce this. 4180 */ 4181 ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG); 4182 ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG); 4183 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION)); 4184 ASSERT3U(psize, !=, 0); 4185 4186 enc_buf = zio_buf_alloc(psize); 4187 eabd = abd_get_from_buf(enc_buf, psize); 4188 abd_take_ownership_of_buf(eabd, B_TRUE); 4189 4190 /* 4191 * For an explanation of what encryption parameters are stored 4192 * where, see the block comment in zio_crypt.c. 4193 */ 4194 if (ot == DMU_OT_INTENT_LOG) { 4195 zio_crypt_decode_params_bp(bp, salt, iv); 4196 } else { 4197 BP_SET_CRYPT(bp, B_TRUE); 4198 } 4199 4200 /* Perform the encryption. This should not fail */ 4201 VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark, 4202 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), 4203 salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt)); 4204 4205 /* encode encryption metadata into the bp */ 4206 if (ot == DMU_OT_INTENT_LOG) { 4207 /* 4208 * ZIL blocks store the MAC in the embedded checksum, so the 4209 * transform must always be applied. 4210 */ 4211 zio_crypt_encode_mac_zil(enc_buf, mac); 4212 zio_push_transform(zio, eabd, psize, psize, NULL); 4213 } else { 4214 BP_SET_CRYPT(bp, B_TRUE); 4215 zio_crypt_encode_params_bp(bp, salt, iv); 4216 zio_crypt_encode_mac_bp(bp, mac); 4217 4218 if (no_crypt) { 4219 ASSERT3U(ot, ==, DMU_OT_DNODE); 4220 abd_free(eabd); 4221 } else { 4222 zio_push_transform(zio, eabd, psize, psize, NULL); 4223 } 4224 } 4225 4226 return (zio); 4227 } 4228 4229 /* 4230 * ========================================================================== 4231 * Generate and verify checksums 4232 * ========================================================================== 4233 */ 4234 static zio_t * 4235 zio_checksum_generate(zio_t *zio) 4236 { 4237 blkptr_t *bp = zio->io_bp; 4238 enum zio_checksum checksum; 4239 4240 if (bp == NULL) { 4241 /* 4242 * This is zio_write_phys(). 4243 * We're either generating a label checksum, or none at all. 4244 */ 4245 checksum = zio->io_prop.zp_checksum; 4246 4247 if (checksum == ZIO_CHECKSUM_OFF) 4248 return (zio); 4249 4250 ASSERT(checksum == ZIO_CHECKSUM_LABEL); 4251 } else { 4252 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) { 4253 ASSERT(!IO_IS_ALLOCATING(zio)); 4254 checksum = ZIO_CHECKSUM_GANG_HEADER; 4255 } else { 4256 checksum = BP_GET_CHECKSUM(bp); 4257 } 4258 } 4259 4260 zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size); 4261 4262 return (zio); 4263 } 4264 4265 static zio_t * 4266 zio_checksum_verify(zio_t *zio) 4267 { 4268 zio_bad_cksum_t info; 4269 blkptr_t *bp = zio->io_bp; 4270 int error; 4271 4272 ASSERT(zio->io_vd != NULL); 4273 4274 if (bp == NULL) { 4275 /* 4276 * This is zio_read_phys(). 4277 * We're either verifying a label checksum, or nothing at all. 4278 */ 4279 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF) 4280 return (zio); 4281 4282 ASSERT3U(zio->io_prop.zp_checksum, ==, ZIO_CHECKSUM_LABEL); 4283 } 4284 4285 if ((error = zio_checksum_error(zio, &info)) != 0) { 4286 zio->io_error = error; 4287 if (error == ECKSUM && 4288 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 4289 (void) zfs_ereport_start_checksum(zio->io_spa, 4290 zio->io_vd, &zio->io_bookmark, zio, 4291 zio->io_offset, zio->io_size, &info); 4292 mutex_enter(&zio->io_vd->vdev_stat_lock); 4293 zio->io_vd->vdev_stat.vs_checksum_errors++; 4294 mutex_exit(&zio->io_vd->vdev_stat_lock); 4295 } 4296 } 4297 4298 return (zio); 4299 } 4300 4301 /* 4302 * Called by RAID-Z to ensure we don't compute the checksum twice. 4303 */ 4304 void 4305 zio_checksum_verified(zio_t *zio) 4306 { 4307 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 4308 } 4309 4310 /* 4311 * ========================================================================== 4312 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other. 4313 * An error of 0 indicates success. ENXIO indicates whole-device failure, 4314 * which may be transient (e.g. unplugged) or permanent. ECKSUM and EIO 4315 * indicate errors that are specific to one I/O, and most likely permanent. 4316 * Any other error is presumed to be worse because we weren't expecting it. 4317 * ========================================================================== 4318 */ 4319 int 4320 zio_worst_error(int e1, int e2) 4321 { 4322 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO }; 4323 int r1, r2; 4324 4325 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++) 4326 if (e1 == zio_error_rank[r1]) 4327 break; 4328 4329 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++) 4330 if (e2 == zio_error_rank[r2]) 4331 break; 4332 4333 return (r1 > r2 ? e1 : e2); 4334 } 4335 4336 /* 4337 * ========================================================================== 4338 * I/O completion 4339 * ========================================================================== 4340 */ 4341 static zio_t * 4342 zio_ready(zio_t *zio) 4343 { 4344 blkptr_t *bp = zio->io_bp; 4345 zio_t *pio, *pio_next; 4346 zio_link_t *zl = NULL; 4347 4348 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT, 4349 ZIO_WAIT_READY)) { 4350 return (NULL); 4351 } 4352 4353 if (zio->io_ready) { 4354 ASSERT(IO_IS_ALLOCATING(zio)); 4355 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) || 4356 (zio->io_flags & ZIO_FLAG_NOPWRITE)); 4357 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0); 4358 4359 zio->io_ready(zio); 4360 } 4361 4362 if (bp != NULL && bp != &zio->io_bp_copy) 4363 zio->io_bp_copy = *bp; 4364 4365 if (zio->io_error != 0) { 4366 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 4367 4368 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 4369 ASSERT(IO_IS_ALLOCATING(zio)); 4370 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 4371 ASSERT(zio->io_metaslab_class != NULL); 4372 4373 /* 4374 * We were unable to allocate anything, unreserve and 4375 * issue the next I/O to allocate. 4376 */ 4377 metaslab_class_throttle_unreserve( 4378 zio->io_metaslab_class, zio->io_prop.zp_copies, 4379 zio->io_allocator, zio); 4380 zio_allocate_dispatch(zio->io_spa, zio->io_allocator); 4381 } 4382 } 4383 4384 mutex_enter(&zio->io_lock); 4385 zio->io_state[ZIO_WAIT_READY] = 1; 4386 pio = zio_walk_parents(zio, &zl); 4387 mutex_exit(&zio->io_lock); 4388 4389 /* 4390 * As we notify zio's parents, new parents could be added. 4391 * New parents go to the head of zio's io_parent_list, however, 4392 * so we will (correctly) not notify them. The remainder of zio's 4393 * io_parent_list, from 'pio_next' onward, cannot change because 4394 * all parents must wait for us to be done before they can be done. 4395 */ 4396 for (; pio != NULL; pio = pio_next) { 4397 pio_next = zio_walk_parents(zio, &zl); 4398 zio_notify_parent(pio, zio, ZIO_WAIT_READY, NULL); 4399 } 4400 4401 if (zio->io_flags & ZIO_FLAG_NODATA) { 4402 if (BP_IS_GANG(bp)) { 4403 zio->io_flags &= ~ZIO_FLAG_NODATA; 4404 } else { 4405 ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE); 4406 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 4407 } 4408 } 4409 4410 if (zio_injection_enabled && 4411 zio->io_spa->spa_syncing_txg == zio->io_txg) 4412 zio_handle_ignored_writes(zio); 4413 4414 return (zio); 4415 } 4416 4417 /* 4418 * Update the allocation throttle accounting. 4419 */ 4420 static void 4421 zio_dva_throttle_done(zio_t *zio) 4422 { 4423 zio_t *lio __maybe_unused = zio->io_logical; 4424 zio_t *pio = zio_unique_parent(zio); 4425 vdev_t *vd = zio->io_vd; 4426 int flags = METASLAB_ASYNC_ALLOC; 4427 4428 ASSERT3P(zio->io_bp, !=, NULL); 4429 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE); 4430 ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE); 4431 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); 4432 ASSERT(vd != NULL); 4433 ASSERT3P(vd, ==, vd->vdev_top); 4434 ASSERT(zio_injection_enabled || !(zio->io_flags & ZIO_FLAG_IO_RETRY)); 4435 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR)); 4436 ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING); 4437 ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE)); 4438 ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA)); 4439 4440 /* 4441 * Parents of gang children can have two flavors -- ones that 4442 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set) 4443 * and ones that allocated the constituent blocks. The allocation 4444 * throttle needs to know the allocating parent zio so we must find 4445 * it here. 4446 */ 4447 if (pio->io_child_type == ZIO_CHILD_GANG) { 4448 /* 4449 * If our parent is a rewrite gang child then our grandparent 4450 * would have been the one that performed the allocation. 4451 */ 4452 if (pio->io_flags & ZIO_FLAG_IO_REWRITE) 4453 pio = zio_unique_parent(pio); 4454 flags |= METASLAB_GANG_CHILD; 4455 } 4456 4457 ASSERT(IO_IS_ALLOCATING(pio)); 4458 ASSERT3P(zio, !=, zio->io_logical); 4459 ASSERT(zio->io_logical != NULL); 4460 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR)); 4461 ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE); 4462 ASSERT(zio->io_metaslab_class != NULL); 4463 4464 mutex_enter(&pio->io_lock); 4465 metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags, 4466 pio->io_allocator, B_TRUE); 4467 mutex_exit(&pio->io_lock); 4468 4469 metaslab_class_throttle_unreserve(zio->io_metaslab_class, 1, 4470 pio->io_allocator, pio); 4471 4472 /* 4473 * Call into the pipeline to see if there is more work that 4474 * needs to be done. If there is work to be done it will be 4475 * dispatched to another taskq thread. 4476 */ 4477 zio_allocate_dispatch(zio->io_spa, pio->io_allocator); 4478 } 4479 4480 static zio_t * 4481 zio_done(zio_t *zio) 4482 { 4483 /* 4484 * Always attempt to keep stack usage minimal here since 4485 * we can be called recursively up to 19 levels deep. 4486 */ 4487 const uint64_t psize = zio->io_size; 4488 zio_t *pio, *pio_next; 4489 zio_link_t *zl = NULL; 4490 4491 /* 4492 * If our children haven't all completed, 4493 * wait for them and then repeat this pipeline stage. 4494 */ 4495 if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) { 4496 return (NULL); 4497 } 4498 4499 /* 4500 * If the allocation throttle is enabled, then update the accounting. 4501 * We only track child I/Os that are part of an allocating async 4502 * write. We must do this since the allocation is performed 4503 * by the logical I/O but the actual write is done by child I/Os. 4504 */ 4505 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING && 4506 zio->io_child_type == ZIO_CHILD_VDEV) { 4507 ASSERT(zio->io_metaslab_class != NULL); 4508 ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled); 4509 zio_dva_throttle_done(zio); 4510 } 4511 4512 /* 4513 * If the allocation throttle is enabled, verify that 4514 * we have decremented the refcounts for every I/O that was throttled. 4515 */ 4516 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 4517 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 4518 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 4519 ASSERT(zio->io_bp != NULL); 4520 4521 metaslab_group_alloc_verify(zio->io_spa, zio->io_bp, zio, 4522 zio->io_allocator); 4523 VERIFY(zfs_refcount_not_held(&zio->io_metaslab_class-> 4524 mc_allocator[zio->io_allocator].mca_alloc_slots, zio)); 4525 } 4526 4527 4528 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 4529 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 4530 ASSERT(zio->io_children[c][w] == 0); 4531 4532 if (zio->io_bp != NULL && !BP_IS_EMBEDDED(zio->io_bp)) { 4533 ASSERT(zio->io_bp->blk_pad[0] == 0); 4534 ASSERT(zio->io_bp->blk_pad[1] == 0); 4535 ASSERT(bcmp(zio->io_bp, &zio->io_bp_copy, 4536 sizeof (blkptr_t)) == 0 || 4537 (zio->io_bp == zio_unique_parent(zio)->io_bp)); 4538 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) && 4539 zio->io_bp_override == NULL && 4540 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) { 4541 ASSERT3U(zio->io_prop.zp_copies, <=, 4542 BP_GET_NDVAS(zio->io_bp)); 4543 ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 || 4544 (BP_COUNT_GANG(zio->io_bp) == 4545 BP_GET_NDVAS(zio->io_bp))); 4546 } 4547 if (zio->io_flags & ZIO_FLAG_NOPWRITE) 4548 VERIFY(BP_EQUAL(zio->io_bp, &zio->io_bp_orig)); 4549 } 4550 4551 /* 4552 * If there were child vdev/gang/ddt errors, they apply to us now. 4553 */ 4554 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV); 4555 zio_inherit_child_errors(zio, ZIO_CHILD_GANG); 4556 zio_inherit_child_errors(zio, ZIO_CHILD_DDT); 4557 4558 /* 4559 * If the I/O on the transformed data was successful, generate any 4560 * checksum reports now while we still have the transformed data. 4561 */ 4562 if (zio->io_error == 0) { 4563 while (zio->io_cksum_report != NULL) { 4564 zio_cksum_report_t *zcr = zio->io_cksum_report; 4565 uint64_t align = zcr->zcr_align; 4566 uint64_t asize = P2ROUNDUP(psize, align); 4567 abd_t *adata = zio->io_abd; 4568 4569 if (asize != psize) { 4570 adata = abd_alloc(asize, B_TRUE); 4571 abd_copy(adata, zio->io_abd, psize); 4572 abd_zero_off(adata, psize, asize - psize); 4573 } 4574 4575 zio->io_cksum_report = zcr->zcr_next; 4576 zcr->zcr_next = NULL; 4577 zcr->zcr_finish(zcr, adata); 4578 zfs_ereport_free_checksum(zcr); 4579 4580 if (asize != psize) 4581 abd_free(adata); 4582 } 4583 } 4584 4585 zio_pop_transforms(zio); /* note: may set zio->io_error */ 4586 4587 vdev_stat_update(zio, psize); 4588 4589 /* 4590 * If this I/O is attached to a particular vdev is slow, exceeding 4591 * 30 seconds to complete, post an error described the I/O delay. 4592 * We ignore these errors if the device is currently unavailable. 4593 */ 4594 if (zio->io_delay >= MSEC2NSEC(zio_slow_io_ms)) { 4595 if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) { 4596 /* 4597 * We want to only increment our slow IO counters if 4598 * the IO is valid (i.e. not if the drive is removed). 4599 * 4600 * zfs_ereport_post() will also do these checks, but 4601 * it can also ratelimit and have other failures, so we 4602 * need to increment the slow_io counters independent 4603 * of it. 4604 */ 4605 if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY, 4606 zio->io_spa, zio->io_vd, zio)) { 4607 mutex_enter(&zio->io_vd->vdev_stat_lock); 4608 zio->io_vd->vdev_stat.vs_slow_ios++; 4609 mutex_exit(&zio->io_vd->vdev_stat_lock); 4610 4611 (void) zfs_ereport_post(FM_EREPORT_ZFS_DELAY, 4612 zio->io_spa, zio->io_vd, &zio->io_bookmark, 4613 zio, 0); 4614 } 4615 } 4616 } 4617 4618 if (zio->io_error) { 4619 /* 4620 * If this I/O is attached to a particular vdev, 4621 * generate an error message describing the I/O failure 4622 * at the block level. We ignore these errors if the 4623 * device is currently unavailable. 4624 */ 4625 if (zio->io_error != ECKSUM && zio->io_vd != NULL && 4626 !vdev_is_dead(zio->io_vd)) { 4627 int ret = zfs_ereport_post(FM_EREPORT_ZFS_IO, 4628 zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0); 4629 if (ret != EALREADY) { 4630 mutex_enter(&zio->io_vd->vdev_stat_lock); 4631 if (zio->io_type == ZIO_TYPE_READ) 4632 zio->io_vd->vdev_stat.vs_read_errors++; 4633 else if (zio->io_type == ZIO_TYPE_WRITE) 4634 zio->io_vd->vdev_stat.vs_write_errors++; 4635 mutex_exit(&zio->io_vd->vdev_stat_lock); 4636 } 4637 } 4638 4639 if ((zio->io_error == EIO || !(zio->io_flags & 4640 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) && 4641 zio == zio->io_logical) { 4642 /* 4643 * For logical I/O requests, tell the SPA to log the 4644 * error and generate a logical data ereport. 4645 */ 4646 spa_log_error(zio->io_spa, &zio->io_bookmark); 4647 (void) zfs_ereport_post(FM_EREPORT_ZFS_DATA, 4648 zio->io_spa, NULL, &zio->io_bookmark, zio, 0); 4649 } 4650 } 4651 4652 if (zio->io_error && zio == zio->io_logical) { 4653 /* 4654 * Determine whether zio should be reexecuted. This will 4655 * propagate all the way to the root via zio_notify_parent(). 4656 */ 4657 ASSERT(zio->io_vd == NULL && zio->io_bp != NULL); 4658 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 4659 4660 if (IO_IS_ALLOCATING(zio) && 4661 !(zio->io_flags & ZIO_FLAG_CANFAIL)) { 4662 if (zio->io_error != ENOSPC) 4663 zio->io_reexecute |= ZIO_REEXECUTE_NOW; 4664 else 4665 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 4666 } 4667 4668 if ((zio->io_type == ZIO_TYPE_READ || 4669 zio->io_type == ZIO_TYPE_FREE) && 4670 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && 4671 zio->io_error == ENXIO && 4672 spa_load_state(zio->io_spa) == SPA_LOAD_NONE && 4673 spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE) 4674 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 4675 4676 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute) 4677 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 4678 4679 /* 4680 * Here is a possibly good place to attempt to do 4681 * either combinatorial reconstruction or error correction 4682 * based on checksums. It also might be a good place 4683 * to send out preliminary ereports before we suspend 4684 * processing. 4685 */ 4686 } 4687 4688 /* 4689 * If there were logical child errors, they apply to us now. 4690 * We defer this until now to avoid conflating logical child 4691 * errors with errors that happened to the zio itself when 4692 * updating vdev stats and reporting FMA events above. 4693 */ 4694 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL); 4695 4696 if ((zio->io_error || zio->io_reexecute) && 4697 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio && 4698 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE))) 4699 zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp); 4700 4701 zio_gang_tree_free(&zio->io_gang_tree); 4702 4703 /* 4704 * Godfather I/Os should never suspend. 4705 */ 4706 if ((zio->io_flags & ZIO_FLAG_GODFATHER) && 4707 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) 4708 zio->io_reexecute &= ~ZIO_REEXECUTE_SUSPEND; 4709 4710 if (zio->io_reexecute) { 4711 /* 4712 * This is a logical I/O that wants to reexecute. 4713 * 4714 * Reexecute is top-down. When an i/o fails, if it's not 4715 * the root, it simply notifies its parent and sticks around. 4716 * The parent, seeing that it still has children in zio_done(), 4717 * does the same. This percolates all the way up to the root. 4718 * The root i/o will reexecute or suspend the entire tree. 4719 * 4720 * This approach ensures that zio_reexecute() honors 4721 * all the original i/o dependency relationships, e.g. 4722 * parents not executing until children are ready. 4723 */ 4724 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 4725 4726 zio->io_gang_leader = NULL; 4727 4728 mutex_enter(&zio->io_lock); 4729 zio->io_state[ZIO_WAIT_DONE] = 1; 4730 mutex_exit(&zio->io_lock); 4731 4732 /* 4733 * "The Godfather" I/O monitors its children but is 4734 * not a true parent to them. It will track them through 4735 * the pipeline but severs its ties whenever they get into 4736 * trouble (e.g. suspended). This allows "The Godfather" 4737 * I/O to return status without blocking. 4738 */ 4739 zl = NULL; 4740 for (pio = zio_walk_parents(zio, &zl); pio != NULL; 4741 pio = pio_next) { 4742 zio_link_t *remove_zl = zl; 4743 pio_next = zio_walk_parents(zio, &zl); 4744 4745 if ((pio->io_flags & ZIO_FLAG_GODFATHER) && 4746 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) { 4747 zio_remove_child(pio, zio, remove_zl); 4748 /* 4749 * This is a rare code path, so we don't 4750 * bother with "next_to_execute". 4751 */ 4752 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, 4753 NULL); 4754 } 4755 } 4756 4757 if ((pio = zio_unique_parent(zio)) != NULL) { 4758 /* 4759 * We're not a root i/o, so there's nothing to do 4760 * but notify our parent. Don't propagate errors 4761 * upward since we haven't permanently failed yet. 4762 */ 4763 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 4764 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE; 4765 /* 4766 * This is a rare code path, so we don't bother with 4767 * "next_to_execute". 4768 */ 4769 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, NULL); 4770 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) { 4771 /* 4772 * We'd fail again if we reexecuted now, so suspend 4773 * until conditions improve (e.g. device comes online). 4774 */ 4775 zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR); 4776 } else { 4777 /* 4778 * Reexecution is potentially a huge amount of work. 4779 * Hand it off to the otherwise-unused claim taskq. 4780 */ 4781 ASSERT(taskq_empty_ent(&zio->io_tqent)); 4782 spa_taskq_dispatch_ent(zio->io_spa, 4783 ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE, 4784 (task_func_t *)zio_reexecute, zio, 0, 4785 &zio->io_tqent); 4786 } 4787 return (NULL); 4788 } 4789 4790 ASSERT(zio->io_child_count == 0); 4791 ASSERT(zio->io_reexecute == 0); 4792 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL)); 4793 4794 /* 4795 * Report any checksum errors, since the I/O is complete. 4796 */ 4797 while (zio->io_cksum_report != NULL) { 4798 zio_cksum_report_t *zcr = zio->io_cksum_report; 4799 zio->io_cksum_report = zcr->zcr_next; 4800 zcr->zcr_next = NULL; 4801 zcr->zcr_finish(zcr, NULL); 4802 zfs_ereport_free_checksum(zcr); 4803 } 4804 4805 if (zio->io_flags & ZIO_FLAG_FASTWRITE && zio->io_bp && 4806 !BP_IS_HOLE(zio->io_bp) && !BP_IS_EMBEDDED(zio->io_bp) && 4807 !(zio->io_flags & ZIO_FLAG_NOPWRITE)) { 4808 metaslab_fastwrite_unmark(zio->io_spa, zio->io_bp); 4809 } 4810 4811 /* 4812 * It is the responsibility of the done callback to ensure that this 4813 * particular zio is no longer discoverable for adoption, and as 4814 * such, cannot acquire any new parents. 4815 */ 4816 if (zio->io_done) 4817 zio->io_done(zio); 4818 4819 mutex_enter(&zio->io_lock); 4820 zio->io_state[ZIO_WAIT_DONE] = 1; 4821 mutex_exit(&zio->io_lock); 4822 4823 /* 4824 * We are done executing this zio. We may want to execute a parent 4825 * next. See the comment in zio_notify_parent(). 4826 */ 4827 zio_t *next_to_execute = NULL; 4828 zl = NULL; 4829 for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) { 4830 zio_link_t *remove_zl = zl; 4831 pio_next = zio_walk_parents(zio, &zl); 4832 zio_remove_child(pio, zio, remove_zl); 4833 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, &next_to_execute); 4834 } 4835 4836 if (zio->io_waiter != NULL) { 4837 mutex_enter(&zio->io_lock); 4838 zio->io_executor = NULL; 4839 cv_broadcast(&zio->io_cv); 4840 mutex_exit(&zio->io_lock); 4841 } else { 4842 zio_destroy(zio); 4843 } 4844 4845 return (next_to_execute); 4846 } 4847 4848 /* 4849 * ========================================================================== 4850 * I/O pipeline definition 4851 * ========================================================================== 4852 */ 4853 static zio_pipe_stage_t *zio_pipeline[] = { 4854 NULL, 4855 zio_read_bp_init, 4856 zio_write_bp_init, 4857 zio_free_bp_init, 4858 zio_issue_async, 4859 zio_write_compress, 4860 zio_encrypt, 4861 zio_checksum_generate, 4862 zio_nop_write, 4863 zio_ddt_read_start, 4864 zio_ddt_read_done, 4865 zio_ddt_write, 4866 zio_ddt_free, 4867 zio_gang_assemble, 4868 zio_gang_issue, 4869 zio_dva_throttle, 4870 zio_dva_allocate, 4871 zio_dva_free, 4872 zio_dva_claim, 4873 zio_ready, 4874 zio_vdev_io_start, 4875 zio_vdev_io_done, 4876 zio_vdev_io_assess, 4877 zio_checksum_verify, 4878 zio_done 4879 }; 4880 4881 4882 4883 4884 /* 4885 * Compare two zbookmark_phys_t's to see which we would reach first in a 4886 * pre-order traversal of the object tree. 4887 * 4888 * This is simple in every case aside from the meta-dnode object. For all other 4889 * objects, we traverse them in order (object 1 before object 2, and so on). 4890 * However, all of these objects are traversed while traversing object 0, since 4891 * the data it points to is the list of objects. Thus, we need to convert to a 4892 * canonical representation so we can compare meta-dnode bookmarks to 4893 * non-meta-dnode bookmarks. 4894 * 4895 * We do this by calculating "equivalents" for each field of the zbookmark. 4896 * zbookmarks outside of the meta-dnode use their own object and level, and 4897 * calculate the level 0 equivalent (the first L0 blkid that is contained in the 4898 * blocks this bookmark refers to) by multiplying their blkid by their span 4899 * (the number of L0 blocks contained within one block at their level). 4900 * zbookmarks inside the meta-dnode calculate their object equivalent 4901 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use 4902 * level + 1<<31 (any value larger than a level could ever be) for their level. 4903 * This causes them to always compare before a bookmark in their object 4904 * equivalent, compare appropriately to bookmarks in other objects, and to 4905 * compare appropriately to other bookmarks in the meta-dnode. 4906 */ 4907 int 4908 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2, 4909 const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2) 4910 { 4911 /* 4912 * These variables represent the "equivalent" values for the zbookmark, 4913 * after converting zbookmarks inside the meta dnode to their 4914 * normal-object equivalents. 4915 */ 4916 uint64_t zb1obj, zb2obj; 4917 uint64_t zb1L0, zb2L0; 4918 uint64_t zb1level, zb2level; 4919 4920 if (zb1->zb_object == zb2->zb_object && 4921 zb1->zb_level == zb2->zb_level && 4922 zb1->zb_blkid == zb2->zb_blkid) 4923 return (0); 4924 4925 IMPLY(zb1->zb_level > 0, ibs1 >= SPA_MINBLOCKSHIFT); 4926 IMPLY(zb2->zb_level > 0, ibs2 >= SPA_MINBLOCKSHIFT); 4927 4928 /* 4929 * BP_SPANB calculates the span in blocks. 4930 */ 4931 zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level); 4932 zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level); 4933 4934 if (zb1->zb_object == DMU_META_DNODE_OBJECT) { 4935 zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 4936 zb1L0 = 0; 4937 zb1level = zb1->zb_level + COMPARE_META_LEVEL; 4938 } else { 4939 zb1obj = zb1->zb_object; 4940 zb1level = zb1->zb_level; 4941 } 4942 4943 if (zb2->zb_object == DMU_META_DNODE_OBJECT) { 4944 zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 4945 zb2L0 = 0; 4946 zb2level = zb2->zb_level + COMPARE_META_LEVEL; 4947 } else { 4948 zb2obj = zb2->zb_object; 4949 zb2level = zb2->zb_level; 4950 } 4951 4952 /* Now that we have a canonical representation, do the comparison. */ 4953 if (zb1obj != zb2obj) 4954 return (zb1obj < zb2obj ? -1 : 1); 4955 else if (zb1L0 != zb2L0) 4956 return (zb1L0 < zb2L0 ? -1 : 1); 4957 else if (zb1level != zb2level) 4958 return (zb1level > zb2level ? -1 : 1); 4959 /* 4960 * This can (theoretically) happen if the bookmarks have the same object 4961 * and level, but different blkids, if the block sizes are not the same. 4962 * There is presently no way to change the indirect block sizes 4963 */ 4964 return (0); 4965 } 4966 4967 /* 4968 * This function checks the following: given that last_block is the place that 4969 * our traversal stopped last time, does that guarantee that we've visited 4970 * every node under subtree_root? Therefore, we can't just use the raw output 4971 * of zbookmark_compare. We have to pass in a modified version of 4972 * subtree_root; by incrementing the block id, and then checking whether 4973 * last_block is before or equal to that, we can tell whether or not having 4974 * visited last_block implies that all of subtree_root's children have been 4975 * visited. 4976 */ 4977 boolean_t 4978 zbookmark_subtree_completed(const dnode_phys_t *dnp, 4979 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block) 4980 { 4981 zbookmark_phys_t mod_zb = *subtree_root; 4982 mod_zb.zb_blkid++; 4983 ASSERT(last_block->zb_level == 0); 4984 4985 /* The objset_phys_t isn't before anything. */ 4986 if (dnp == NULL) 4987 return (B_FALSE); 4988 4989 /* 4990 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the 4991 * data block size in sectors, because that variable is only used if 4992 * the bookmark refers to a block in the meta-dnode. Since we don't 4993 * know without examining it what object it refers to, and there's no 4994 * harm in passing in this value in other cases, we always pass it in. 4995 * 4996 * We pass in 0 for the indirect block size shift because zb2 must be 4997 * level 0. The indirect block size is only used to calculate the span 4998 * of the bookmark, but since the bookmark must be level 0, the span is 4999 * always 1, so the math works out. 5000 * 5001 * If you make changes to how the zbookmark_compare code works, be sure 5002 * to make sure that this code still works afterwards. 5003 */ 5004 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift, 5005 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb, 5006 last_block) <= 0); 5007 } 5008 5009 EXPORT_SYMBOL(zio_type_name); 5010 EXPORT_SYMBOL(zio_buf_alloc); 5011 EXPORT_SYMBOL(zio_data_buf_alloc); 5012 EXPORT_SYMBOL(zio_buf_free); 5013 EXPORT_SYMBOL(zio_data_buf_free); 5014 5015 /* BEGIN CSTYLED */ 5016 ZFS_MODULE_PARAM(zfs_zio, zio_, slow_io_ms, INT, ZMOD_RW, 5017 "Max I/O completion time (milliseconds) before marking it as slow"); 5018 5019 ZFS_MODULE_PARAM(zfs_zio, zio_, requeue_io_start_cut_in_line, INT, ZMOD_RW, 5020 "Prioritize requeued I/O"); 5021 5022 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_deferred_free, INT, ZMOD_RW, 5023 "Defer frees starting in this pass"); 5024 5025 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_dont_compress, INT, ZMOD_RW, 5026 "Don't compress starting in this pass"); 5027 5028 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_rewrite, INT, ZMOD_RW, 5029 "Rewrite new bps starting in this pass"); 5030 5031 ZFS_MODULE_PARAM(zfs_zio, zio_, dva_throttle_enabled, INT, ZMOD_RW, 5032 "Throttle block allocations in the ZIO pipeline"); 5033 5034 ZFS_MODULE_PARAM(zfs_zio, zio_, deadman_log_all, INT, ZMOD_RW, 5035 "Log all slow ZIOs, not just those with vdevs"); 5036 /* END CSTYLED */ 5037