xref: /freebsd/sys/contrib/openzfs/module/zfs/zio.c (revision 6be3386466ab79a84b48429ae66244f21526d3df)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
24  * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25  * Copyright (c) 2017, Intel Corporation.
26  * Copyright (c) 2019, Klara Inc.
27  * Copyright (c) 2019, Allan Jude
28  */
29 
30 #include <sys/sysmacros.h>
31 #include <sys/zfs_context.h>
32 #include <sys/fm/fs/zfs.h>
33 #include <sys/spa.h>
34 #include <sys/txg.h>
35 #include <sys/spa_impl.h>
36 #include <sys/vdev_impl.h>
37 #include <sys/vdev_trim.h>
38 #include <sys/zio_impl.h>
39 #include <sys/zio_compress.h>
40 #include <sys/zio_checksum.h>
41 #include <sys/dmu_objset.h>
42 #include <sys/arc.h>
43 #include <sys/ddt.h>
44 #include <sys/blkptr.h>
45 #include <sys/zfeature.h>
46 #include <sys/dsl_scan.h>
47 #include <sys/metaslab_impl.h>
48 #include <sys/time.h>
49 #include <sys/trace_zfs.h>
50 #include <sys/abd.h>
51 #include <sys/dsl_crypt.h>
52 #include <cityhash.h>
53 
54 /*
55  * ==========================================================================
56  * I/O type descriptions
57  * ==========================================================================
58  */
59 const char *zio_type_name[ZIO_TYPES] = {
60 	/*
61 	 * Note: Linux kernel thread name length is limited
62 	 * so these names will differ from upstream open zfs.
63 	 */
64 	"z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_ioctl", "z_trim"
65 };
66 
67 int zio_dva_throttle_enabled = B_TRUE;
68 int zio_deadman_log_all = B_FALSE;
69 
70 /*
71  * ==========================================================================
72  * I/O kmem caches
73  * ==========================================================================
74  */
75 kmem_cache_t *zio_cache;
76 kmem_cache_t *zio_link_cache;
77 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
78 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
79 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
80 uint64_t zio_buf_cache_allocs[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
81 uint64_t zio_buf_cache_frees[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
82 #endif
83 
84 /* Mark IOs as "slow" if they take longer than 30 seconds */
85 int zio_slow_io_ms = (30 * MILLISEC);
86 
87 #define	BP_SPANB(indblkshift, level) \
88 	(((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
89 #define	COMPARE_META_LEVEL	0x80000000ul
90 /*
91  * The following actions directly effect the spa's sync-to-convergence logic.
92  * The values below define the sync pass when we start performing the action.
93  * Care should be taken when changing these values as they directly impact
94  * spa_sync() performance. Tuning these values may introduce subtle performance
95  * pathologies and should only be done in the context of performance analysis.
96  * These tunables will eventually be removed and replaced with #defines once
97  * enough analysis has been done to determine optimal values.
98  *
99  * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
100  * regular blocks are not deferred.
101  *
102  * Starting in sync pass 8 (zfs_sync_pass_dont_compress), we disable
103  * compression (including of metadata).  In practice, we don't have this
104  * many sync passes, so this has no effect.
105  *
106  * The original intent was that disabling compression would help the sync
107  * passes to converge. However, in practice disabling compression increases
108  * the average number of sync passes, because when we turn compression off, a
109  * lot of block's size will change and thus we have to re-allocate (not
110  * overwrite) them. It also increases the number of 128KB allocations (e.g.
111  * for indirect blocks and spacemaps) because these will not be compressed.
112  * The 128K allocations are especially detrimental to performance on highly
113  * fragmented systems, which may have very few free segments of this size,
114  * and may need to load new metaslabs to satisfy 128K allocations.
115  */
116 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
117 int zfs_sync_pass_dont_compress = 8; /* don't compress starting in this pass */
118 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
119 
120 /*
121  * An allocating zio is one that either currently has the DVA allocate
122  * stage set or will have it later in its lifetime.
123  */
124 #define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
125 
126 /*
127  * Enable smaller cores by excluding metadata
128  * allocations as well.
129  */
130 int zio_exclude_metadata = 0;
131 int zio_requeue_io_start_cut_in_line = 1;
132 
133 #ifdef ZFS_DEBUG
134 int zio_buf_debug_limit = 16384;
135 #else
136 int zio_buf_debug_limit = 0;
137 #endif
138 
139 static inline void __zio_execute(zio_t *zio);
140 
141 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t);
142 
143 void
144 zio_init(void)
145 {
146 	size_t c;
147 
148 	zio_cache = kmem_cache_create("zio_cache",
149 	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
150 	zio_link_cache = kmem_cache_create("zio_link_cache",
151 	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
152 
153 	/*
154 	 * For small buffers, we want a cache for each multiple of
155 	 * SPA_MINBLOCKSIZE.  For larger buffers, we want a cache
156 	 * for each quarter-power of 2.
157 	 */
158 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
159 		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
160 		size_t p2 = size;
161 		size_t align = 0;
162 		size_t data_cflags, cflags;
163 
164 		data_cflags = KMC_NODEBUG;
165 		cflags = (zio_exclude_metadata || size > zio_buf_debug_limit) ?
166 		    KMC_NODEBUG : 0;
167 
168 #if defined(_ILP32) && defined(_KERNEL)
169 		/*
170 		 * Cache size limited to 1M on 32-bit platforms until ARC
171 		 * buffers no longer require virtual address space.
172 		 */
173 		if (size > zfs_max_recordsize)
174 			break;
175 #endif
176 
177 		while (!ISP2(p2))
178 			p2 &= p2 - 1;
179 
180 #ifndef _KERNEL
181 		/*
182 		 * If we are using watchpoints, put each buffer on its own page,
183 		 * to eliminate the performance overhead of trapping to the
184 		 * kernel when modifying a non-watched buffer that shares the
185 		 * page with a watched buffer.
186 		 */
187 		if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
188 			continue;
189 		/*
190 		 * Here's the problem - on 4K native devices in userland on
191 		 * Linux using O_DIRECT, buffers must be 4K aligned or I/O
192 		 * will fail with EINVAL, causing zdb (and others) to coredump.
193 		 * Since userland probably doesn't need optimized buffer caches,
194 		 * we just force 4K alignment on everything.
195 		 */
196 		align = 8 * SPA_MINBLOCKSIZE;
197 #else
198 		if (size < PAGESIZE) {
199 			align = SPA_MINBLOCKSIZE;
200 		} else if (IS_P2ALIGNED(size, p2 >> 2)) {
201 			align = PAGESIZE;
202 		}
203 #endif
204 
205 		if (align != 0) {
206 			char name[36];
207 			if (cflags == data_cflags) {
208 				/*
209 				 * Resulting kmem caches would be identical.
210 				 * Save memory by creating only one.
211 				 */
212 				(void) snprintf(name, sizeof (name),
213 				    "zio_buf_comb_%lu", (ulong_t)size);
214 				zio_buf_cache[c] = kmem_cache_create(name,
215 				    size, align, NULL, NULL, NULL, NULL, NULL,
216 				    cflags);
217 				zio_data_buf_cache[c] = zio_buf_cache[c];
218 				continue;
219 			}
220 			(void) snprintf(name, sizeof (name), "zio_buf_%lu",
221 			    (ulong_t)size);
222 			zio_buf_cache[c] = kmem_cache_create(name, size,
223 			    align, NULL, NULL, NULL, NULL, NULL, cflags);
224 
225 			(void) snprintf(name, sizeof (name), "zio_data_buf_%lu",
226 			    (ulong_t)size);
227 			zio_data_buf_cache[c] = kmem_cache_create(name, size,
228 			    align, NULL, NULL, NULL, NULL, NULL, data_cflags);
229 		}
230 	}
231 
232 	while (--c != 0) {
233 		ASSERT(zio_buf_cache[c] != NULL);
234 		if (zio_buf_cache[c - 1] == NULL)
235 			zio_buf_cache[c - 1] = zio_buf_cache[c];
236 
237 		ASSERT(zio_data_buf_cache[c] != NULL);
238 		if (zio_data_buf_cache[c - 1] == NULL)
239 			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
240 	}
241 
242 	zio_inject_init();
243 
244 	lz4_init();
245 }
246 
247 void
248 zio_fini(void)
249 {
250 	size_t i, j, n;
251 	kmem_cache_t *cache;
252 
253 	n = SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT;
254 
255 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
256 	for (i = 0; i < n; i++) {
257 		if (zio_buf_cache_allocs[i] != zio_buf_cache_frees[i])
258 			(void) printf("zio_fini: [%d] %llu != %llu\n",
259 			    (int)((i + 1) << SPA_MINBLOCKSHIFT),
260 			    (long long unsigned)zio_buf_cache_allocs[i],
261 			    (long long unsigned)zio_buf_cache_frees[i]);
262 	}
263 #endif
264 
265 	/*
266 	 * The same kmem cache can show up multiple times in both zio_buf_cache
267 	 * and zio_data_buf_cache. Do a wasteful but trivially correct scan to
268 	 * sort it out.
269 	 */
270 	for (i = 0; i < n; i++) {
271 		cache = zio_buf_cache[i];
272 		if (cache == NULL)
273 			continue;
274 		for (j = i; j < n; j++) {
275 			if (cache == zio_buf_cache[j])
276 				zio_buf_cache[j] = NULL;
277 			if (cache == zio_data_buf_cache[j])
278 				zio_data_buf_cache[j] = NULL;
279 		}
280 		kmem_cache_destroy(cache);
281 	}
282 
283 	for (i = 0; i < n; i++) {
284 		cache = zio_data_buf_cache[i];
285 		if (cache == NULL)
286 			continue;
287 		for (j = i; j < n; j++) {
288 			if (cache == zio_data_buf_cache[j])
289 				zio_data_buf_cache[j] = NULL;
290 		}
291 		kmem_cache_destroy(cache);
292 	}
293 
294 	for (i = 0; i < n; i++) {
295 		if (zio_buf_cache[i] != NULL)
296 			panic("zio_fini: zio_buf_cache[%d] != NULL", (int)i);
297 		if (zio_data_buf_cache[i] != NULL)
298 			panic("zio_fini: zio_data_buf_cache[%d] != NULL", (int)i);
299 	}
300 
301 	kmem_cache_destroy(zio_link_cache);
302 	kmem_cache_destroy(zio_cache);
303 
304 	zio_inject_fini();
305 
306 	lz4_fini();
307 }
308 
309 /*
310  * ==========================================================================
311  * Allocate and free I/O buffers
312  * ==========================================================================
313  */
314 
315 /*
316  * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
317  * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
318  * useful to inspect ZFS metadata, but if possible, we should avoid keeping
319  * excess / transient data in-core during a crashdump.
320  */
321 void *
322 zio_buf_alloc(size_t size)
323 {
324 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
325 
326 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
327 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
328 	atomic_add_64(&zio_buf_cache_allocs[c], 1);
329 #endif
330 
331 	return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
332 }
333 
334 /*
335  * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
336  * crashdump if the kernel panics.  This exists so that we will limit the amount
337  * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
338  * of kernel heap dumped to disk when the kernel panics)
339  */
340 void *
341 zio_data_buf_alloc(size_t size)
342 {
343 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
344 
345 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
346 
347 	return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
348 }
349 
350 void
351 zio_buf_free(void *buf, size_t size)
352 {
353 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
354 
355 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
356 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
357 	atomic_add_64(&zio_buf_cache_frees[c], 1);
358 #endif
359 
360 	kmem_cache_free(zio_buf_cache[c], buf);
361 }
362 
363 void
364 zio_data_buf_free(void *buf, size_t size)
365 {
366 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
367 
368 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
369 
370 	kmem_cache_free(zio_data_buf_cache[c], buf);
371 }
372 
373 static void
374 zio_abd_free(void *abd, size_t size)
375 {
376 	abd_free((abd_t *)abd);
377 }
378 
379 /*
380  * ==========================================================================
381  * Push and pop I/O transform buffers
382  * ==========================================================================
383  */
384 void
385 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize,
386     zio_transform_func_t *transform)
387 {
388 	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
389 
390 	zt->zt_orig_abd = zio->io_abd;
391 	zt->zt_orig_size = zio->io_size;
392 	zt->zt_bufsize = bufsize;
393 	zt->zt_transform = transform;
394 
395 	zt->zt_next = zio->io_transform_stack;
396 	zio->io_transform_stack = zt;
397 
398 	zio->io_abd = data;
399 	zio->io_size = size;
400 }
401 
402 void
403 zio_pop_transforms(zio_t *zio)
404 {
405 	zio_transform_t *zt;
406 
407 	while ((zt = zio->io_transform_stack) != NULL) {
408 		if (zt->zt_transform != NULL)
409 			zt->zt_transform(zio,
410 			    zt->zt_orig_abd, zt->zt_orig_size);
411 
412 		if (zt->zt_bufsize != 0)
413 			abd_free(zio->io_abd);
414 
415 		zio->io_abd = zt->zt_orig_abd;
416 		zio->io_size = zt->zt_orig_size;
417 		zio->io_transform_stack = zt->zt_next;
418 
419 		kmem_free(zt, sizeof (zio_transform_t));
420 	}
421 }
422 
423 /*
424  * ==========================================================================
425  * I/O transform callbacks for subblocks, decompression, and decryption
426  * ==========================================================================
427  */
428 static void
429 zio_subblock(zio_t *zio, abd_t *data, uint64_t size)
430 {
431 	ASSERT(zio->io_size > size);
432 
433 	if (zio->io_type == ZIO_TYPE_READ)
434 		abd_copy(data, zio->io_abd, size);
435 }
436 
437 static void
438 zio_decompress(zio_t *zio, abd_t *data, uint64_t size)
439 {
440 	if (zio->io_error == 0) {
441 		void *tmp = abd_borrow_buf(data, size);
442 		int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
443 		    zio->io_abd, tmp, zio->io_size, size,
444 		    &zio->io_prop.zp_complevel);
445 		abd_return_buf_copy(data, tmp, size);
446 
447 		if (zio_injection_enabled && ret == 0)
448 			ret = zio_handle_fault_injection(zio, EINVAL);
449 
450 		if (ret != 0)
451 			zio->io_error = SET_ERROR(EIO);
452 	}
453 }
454 
455 static void
456 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size)
457 {
458 	int ret;
459 	void *tmp;
460 	blkptr_t *bp = zio->io_bp;
461 	spa_t *spa = zio->io_spa;
462 	uint64_t dsobj = zio->io_bookmark.zb_objset;
463 	uint64_t lsize = BP_GET_LSIZE(bp);
464 	dmu_object_type_t ot = BP_GET_TYPE(bp);
465 	uint8_t salt[ZIO_DATA_SALT_LEN];
466 	uint8_t iv[ZIO_DATA_IV_LEN];
467 	uint8_t mac[ZIO_DATA_MAC_LEN];
468 	boolean_t no_crypt = B_FALSE;
469 
470 	ASSERT(BP_USES_CRYPT(bp));
471 	ASSERT3U(size, !=, 0);
472 
473 	if (zio->io_error != 0)
474 		return;
475 
476 	/*
477 	 * Verify the cksum of MACs stored in an indirect bp. It will always
478 	 * be possible to verify this since it does not require an encryption
479 	 * key.
480 	 */
481 	if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) {
482 		zio_crypt_decode_mac_bp(bp, mac);
483 
484 		if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) {
485 			/*
486 			 * We haven't decompressed the data yet, but
487 			 * zio_crypt_do_indirect_mac_checksum() requires
488 			 * decompressed data to be able to parse out the MACs
489 			 * from the indirect block. We decompress it now and
490 			 * throw away the result after we are finished.
491 			 */
492 			tmp = zio_buf_alloc(lsize);
493 			ret = zio_decompress_data(BP_GET_COMPRESS(bp),
494 			    zio->io_abd, tmp, zio->io_size, lsize,
495 			    &zio->io_prop.zp_complevel);
496 			if (ret != 0) {
497 				ret = SET_ERROR(EIO);
498 				goto error;
499 			}
500 			ret = zio_crypt_do_indirect_mac_checksum(B_FALSE,
501 			    tmp, lsize, BP_SHOULD_BYTESWAP(bp), mac);
502 			zio_buf_free(tmp, lsize);
503 		} else {
504 			ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE,
505 			    zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac);
506 		}
507 		abd_copy(data, zio->io_abd, size);
508 
509 		if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) {
510 			ret = zio_handle_decrypt_injection(spa,
511 			    &zio->io_bookmark, ot, ECKSUM);
512 		}
513 		if (ret != 0)
514 			goto error;
515 
516 		return;
517 	}
518 
519 	/*
520 	 * If this is an authenticated block, just check the MAC. It would be
521 	 * nice to separate this out into its own flag, but for the moment
522 	 * enum zio_flag is out of bits.
523 	 */
524 	if (BP_IS_AUTHENTICATED(bp)) {
525 		if (ot == DMU_OT_OBJSET) {
526 			ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa,
527 			    dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp));
528 		} else {
529 			zio_crypt_decode_mac_bp(bp, mac);
530 			ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj,
531 			    zio->io_abd, size, mac);
532 			if (zio_injection_enabled && ret == 0) {
533 				ret = zio_handle_decrypt_injection(spa,
534 				    &zio->io_bookmark, ot, ECKSUM);
535 			}
536 		}
537 		abd_copy(data, zio->io_abd, size);
538 
539 		if (ret != 0)
540 			goto error;
541 
542 		return;
543 	}
544 
545 	zio_crypt_decode_params_bp(bp, salt, iv);
546 
547 	if (ot == DMU_OT_INTENT_LOG) {
548 		tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t));
549 		zio_crypt_decode_mac_zil(tmp, mac);
550 		abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t));
551 	} else {
552 		zio_crypt_decode_mac_bp(bp, mac);
553 	}
554 
555 	ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp),
556 	    BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data,
557 	    zio->io_abd, &no_crypt);
558 	if (no_crypt)
559 		abd_copy(data, zio->io_abd, size);
560 
561 	if (ret != 0)
562 		goto error;
563 
564 	return;
565 
566 error:
567 	/* assert that the key was found unless this was speculative */
568 	ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE));
569 
570 	/*
571 	 * If there was a decryption / authentication error return EIO as
572 	 * the io_error. If this was not a speculative zio, create an ereport.
573 	 */
574 	if (ret == ECKSUM) {
575 		zio->io_error = SET_ERROR(EIO);
576 		if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
577 			spa_log_error(spa, &zio->io_bookmark);
578 			(void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
579 			    spa, NULL, &zio->io_bookmark, zio, 0);
580 		}
581 	} else {
582 		zio->io_error = ret;
583 	}
584 }
585 
586 /*
587  * ==========================================================================
588  * I/O parent/child relationships and pipeline interlocks
589  * ==========================================================================
590  */
591 zio_t *
592 zio_walk_parents(zio_t *cio, zio_link_t **zl)
593 {
594 	list_t *pl = &cio->io_parent_list;
595 
596 	*zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl);
597 	if (*zl == NULL)
598 		return (NULL);
599 
600 	ASSERT((*zl)->zl_child == cio);
601 	return ((*zl)->zl_parent);
602 }
603 
604 zio_t *
605 zio_walk_children(zio_t *pio, zio_link_t **zl)
606 {
607 	list_t *cl = &pio->io_child_list;
608 
609 	ASSERT(MUTEX_HELD(&pio->io_lock));
610 
611 	*zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl);
612 	if (*zl == NULL)
613 		return (NULL);
614 
615 	ASSERT((*zl)->zl_parent == pio);
616 	return ((*zl)->zl_child);
617 }
618 
619 zio_t *
620 zio_unique_parent(zio_t *cio)
621 {
622 	zio_link_t *zl = NULL;
623 	zio_t *pio = zio_walk_parents(cio, &zl);
624 
625 	VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL);
626 	return (pio);
627 }
628 
629 void
630 zio_add_child(zio_t *pio, zio_t *cio)
631 {
632 	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
633 
634 	/*
635 	 * Logical I/Os can have logical, gang, or vdev children.
636 	 * Gang I/Os can have gang or vdev children.
637 	 * Vdev I/Os can only have vdev children.
638 	 * The following ASSERT captures all of these constraints.
639 	 */
640 	ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
641 
642 	zl->zl_parent = pio;
643 	zl->zl_child = cio;
644 
645 	mutex_enter(&pio->io_lock);
646 	mutex_enter(&cio->io_lock);
647 
648 	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
649 
650 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
651 		pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
652 
653 	list_insert_head(&pio->io_child_list, zl);
654 	list_insert_head(&cio->io_parent_list, zl);
655 
656 	pio->io_child_count++;
657 	cio->io_parent_count++;
658 
659 	mutex_exit(&cio->io_lock);
660 	mutex_exit(&pio->io_lock);
661 }
662 
663 static void
664 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
665 {
666 	ASSERT(zl->zl_parent == pio);
667 	ASSERT(zl->zl_child == cio);
668 
669 	mutex_enter(&pio->io_lock);
670 	mutex_enter(&cio->io_lock);
671 
672 	list_remove(&pio->io_child_list, zl);
673 	list_remove(&cio->io_parent_list, zl);
674 
675 	pio->io_child_count--;
676 	cio->io_parent_count--;
677 
678 	mutex_exit(&cio->io_lock);
679 	mutex_exit(&pio->io_lock);
680 	kmem_cache_free(zio_link_cache, zl);
681 }
682 
683 static boolean_t
684 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait)
685 {
686 	boolean_t waiting = B_FALSE;
687 
688 	mutex_enter(&zio->io_lock);
689 	ASSERT(zio->io_stall == NULL);
690 	for (int c = 0; c < ZIO_CHILD_TYPES; c++) {
691 		if (!(ZIO_CHILD_BIT_IS_SET(childbits, c)))
692 			continue;
693 
694 		uint64_t *countp = &zio->io_children[c][wait];
695 		if (*countp != 0) {
696 			zio->io_stage >>= 1;
697 			ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN);
698 			zio->io_stall = countp;
699 			waiting = B_TRUE;
700 			break;
701 		}
702 	}
703 	mutex_exit(&zio->io_lock);
704 	return (waiting);
705 }
706 
707 __attribute__((always_inline))
708 static inline void
709 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait,
710     zio_t **next_to_executep)
711 {
712 	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
713 	int *errorp = &pio->io_child_error[zio->io_child_type];
714 
715 	mutex_enter(&pio->io_lock);
716 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
717 		*errorp = zio_worst_error(*errorp, zio->io_error);
718 	pio->io_reexecute |= zio->io_reexecute;
719 	ASSERT3U(*countp, >, 0);
720 
721 	(*countp)--;
722 
723 	if (*countp == 0 && pio->io_stall == countp) {
724 		zio_taskq_type_t type =
725 		    pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE :
726 		    ZIO_TASKQ_INTERRUPT;
727 		pio->io_stall = NULL;
728 		mutex_exit(&pio->io_lock);
729 
730 		/*
731 		 * If we can tell the caller to execute this parent next, do
732 		 * so.  Otherwise dispatch the parent zio as its own task.
733 		 *
734 		 * Having the caller execute the parent when possible reduces
735 		 * locking on the zio taskq's, reduces context switch
736 		 * overhead, and has no recursion penalty.  Note that one
737 		 * read from disk typically causes at least 3 zio's: a
738 		 * zio_null(), the logical zio_read(), and then a physical
739 		 * zio.  When the physical ZIO completes, we are able to call
740 		 * zio_done() on all 3 of these zio's from one invocation of
741 		 * zio_execute() by returning the parent back to
742 		 * zio_execute().  Since the parent isn't executed until this
743 		 * thread returns back to zio_execute(), the caller should do
744 		 * so promptly.
745 		 *
746 		 * In other cases, dispatching the parent prevents
747 		 * overflowing the stack when we have deeply nested
748 		 * parent-child relationships, as we do with the "mega zio"
749 		 * of writes for spa_sync(), and the chain of ZIL blocks.
750 		 */
751 		if (next_to_executep != NULL && *next_to_executep == NULL) {
752 			*next_to_executep = pio;
753 		} else {
754 			zio_taskq_dispatch(pio, type, B_FALSE);
755 		}
756 	} else {
757 		mutex_exit(&pio->io_lock);
758 	}
759 }
760 
761 static void
762 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
763 {
764 	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
765 		zio->io_error = zio->io_child_error[c];
766 }
767 
768 int
769 zio_bookmark_compare(const void *x1, const void *x2)
770 {
771 	const zio_t *z1 = x1;
772 	const zio_t *z2 = x2;
773 
774 	if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset)
775 		return (-1);
776 	if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset)
777 		return (1);
778 
779 	if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object)
780 		return (-1);
781 	if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object)
782 		return (1);
783 
784 	if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level)
785 		return (-1);
786 	if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level)
787 		return (1);
788 
789 	if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid)
790 		return (-1);
791 	if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid)
792 		return (1);
793 
794 	if (z1 < z2)
795 		return (-1);
796 	if (z1 > z2)
797 		return (1);
798 
799 	return (0);
800 }
801 
802 /*
803  * ==========================================================================
804  * Create the various types of I/O (read, write, free, etc)
805  * ==========================================================================
806  */
807 static zio_t *
808 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
809     abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done,
810     void *private, zio_type_t type, zio_priority_t priority,
811     enum zio_flag flags, vdev_t *vd, uint64_t offset,
812     const zbookmark_phys_t *zb, enum zio_stage stage,
813     enum zio_stage pipeline)
814 {
815 	zio_t *zio;
816 
817 	IMPLY(type != ZIO_TYPE_TRIM, psize <= SPA_MAXBLOCKSIZE);
818 	ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0);
819 	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
820 
821 	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
822 	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
823 	ASSERT(vd || stage == ZIO_STAGE_OPEN);
824 
825 	IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0);
826 
827 	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
828 	bzero(zio, sizeof (zio_t));
829 
830 	mutex_init(&zio->io_lock, NULL, MUTEX_NOLOCKDEP, NULL);
831 	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
832 
833 	list_create(&zio->io_parent_list, sizeof (zio_link_t),
834 	    offsetof(zio_link_t, zl_parent_node));
835 	list_create(&zio->io_child_list, sizeof (zio_link_t),
836 	    offsetof(zio_link_t, zl_child_node));
837 	metaslab_trace_init(&zio->io_alloc_list);
838 
839 	if (vd != NULL)
840 		zio->io_child_type = ZIO_CHILD_VDEV;
841 	else if (flags & ZIO_FLAG_GANG_CHILD)
842 		zio->io_child_type = ZIO_CHILD_GANG;
843 	else if (flags & ZIO_FLAG_DDT_CHILD)
844 		zio->io_child_type = ZIO_CHILD_DDT;
845 	else
846 		zio->io_child_type = ZIO_CHILD_LOGICAL;
847 
848 	if (bp != NULL) {
849 		zio->io_bp = (blkptr_t *)bp;
850 		zio->io_bp_copy = *bp;
851 		zio->io_bp_orig = *bp;
852 		if (type != ZIO_TYPE_WRITE ||
853 		    zio->io_child_type == ZIO_CHILD_DDT)
854 			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
855 		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
856 			zio->io_logical = zio;
857 		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
858 			pipeline |= ZIO_GANG_STAGES;
859 	}
860 
861 	zio->io_spa = spa;
862 	zio->io_txg = txg;
863 	zio->io_done = done;
864 	zio->io_private = private;
865 	zio->io_type = type;
866 	zio->io_priority = priority;
867 	zio->io_vd = vd;
868 	zio->io_offset = offset;
869 	zio->io_orig_abd = zio->io_abd = data;
870 	zio->io_orig_size = zio->io_size = psize;
871 	zio->io_lsize = lsize;
872 	zio->io_orig_flags = zio->io_flags = flags;
873 	zio->io_orig_stage = zio->io_stage = stage;
874 	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
875 	zio->io_pipeline_trace = ZIO_STAGE_OPEN;
876 
877 	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
878 	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
879 
880 	if (zb != NULL)
881 		zio->io_bookmark = *zb;
882 
883 	if (pio != NULL) {
884 		if (zio->io_metaslab_class == NULL)
885 			zio->io_metaslab_class = pio->io_metaslab_class;
886 		if (zio->io_logical == NULL)
887 			zio->io_logical = pio->io_logical;
888 		if (zio->io_child_type == ZIO_CHILD_GANG)
889 			zio->io_gang_leader = pio->io_gang_leader;
890 		zio_add_child(pio, zio);
891 	}
892 
893 	taskq_init_ent(&zio->io_tqent);
894 
895 	return (zio);
896 }
897 
898 static void
899 zio_destroy(zio_t *zio)
900 {
901 	metaslab_trace_fini(&zio->io_alloc_list);
902 	list_destroy(&zio->io_parent_list);
903 	list_destroy(&zio->io_child_list);
904 	mutex_destroy(&zio->io_lock);
905 	cv_destroy(&zio->io_cv);
906 	kmem_cache_free(zio_cache, zio);
907 }
908 
909 zio_t *
910 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
911     void *private, enum zio_flag flags)
912 {
913 	zio_t *zio;
914 
915 	zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
916 	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
917 	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
918 
919 	return (zio);
920 }
921 
922 zio_t *
923 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
924 {
925 	return (zio_null(NULL, spa, NULL, done, private, flags));
926 }
927 
928 static int
929 zfs_blkptr_verify_log(spa_t *spa, const blkptr_t *bp,
930     enum blk_verify_flag blk_verify, const char *fmt, ...)
931 {
932 	va_list adx;
933 	char buf[256];
934 
935 	va_start(adx, fmt);
936 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
937 	va_end(adx);
938 
939 	switch (blk_verify) {
940 	case BLK_VERIFY_HALT:
941 		dprintf_bp(bp, "blkptr at %p dprintf_bp():", bp);
942 		zfs_panic_recover("%s: %s", spa_name(spa), buf);
943 		break;
944 	case BLK_VERIFY_LOG:
945 		zfs_dbgmsg("%s: %s", spa_name(spa), buf);
946 		break;
947 	case BLK_VERIFY_ONLY:
948 		break;
949 	}
950 
951 	return (1);
952 }
953 
954 /*
955  * Verify the block pointer fields contain reasonable values.  This means
956  * it only contains known object types, checksum/compression identifiers,
957  * block sizes within the maximum allowed limits, valid DVAs, etc.
958  *
959  * If everything checks out B_TRUE is returned.  The zfs_blkptr_verify
960  * argument controls the behavior when an invalid field is detected.
961  *
962  * Modes for zfs_blkptr_verify:
963  *   1) BLK_VERIFY_ONLY (evaluate the block)
964  *   2) BLK_VERIFY_LOG (evaluate the block and log problems)
965  *   3) BLK_VERIFY_HALT (call zfs_panic_recover on error)
966  */
967 boolean_t
968 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp, boolean_t config_held,
969     enum blk_verify_flag blk_verify)
970 {
971 	int errors = 0;
972 
973 	if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
974 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
975 		    "blkptr at %p has invalid TYPE %llu",
976 		    bp, (longlong_t)BP_GET_TYPE(bp));
977 	}
978 	if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS ||
979 	    BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) {
980 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
981 		    "blkptr at %p has invalid CHECKSUM %llu",
982 		    bp, (longlong_t)BP_GET_CHECKSUM(bp));
983 	}
984 	if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS ||
985 	    BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) {
986 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
987 		    "blkptr at %p has invalid COMPRESS %llu",
988 		    bp, (longlong_t)BP_GET_COMPRESS(bp));
989 	}
990 	if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
991 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
992 		    "blkptr at %p has invalid LSIZE %llu",
993 		    bp, (longlong_t)BP_GET_LSIZE(bp));
994 	}
995 	if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
996 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
997 		    "blkptr at %p has invalid PSIZE %llu",
998 		    bp, (longlong_t)BP_GET_PSIZE(bp));
999 	}
1000 
1001 	if (BP_IS_EMBEDDED(bp)) {
1002 		if (BPE_GET_ETYPE(bp) >= NUM_BP_EMBEDDED_TYPES) {
1003 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1004 			    "blkptr at %p has invalid ETYPE %llu",
1005 			    bp, (longlong_t)BPE_GET_ETYPE(bp));
1006 		}
1007 	}
1008 
1009 	/*
1010 	 * Do not verify individual DVAs if the config is not trusted. This
1011 	 * will be done once the zio is executed in vdev_mirror_map_alloc.
1012 	 */
1013 	if (!spa->spa_trust_config)
1014 		return (B_TRUE);
1015 
1016 	if (!config_held)
1017 		spa_config_enter(spa, SCL_VDEV, bp, RW_READER);
1018 	else
1019 		ASSERT(spa_config_held(spa, SCL_VDEV, RW_WRITER));
1020 	/*
1021 	 * Pool-specific checks.
1022 	 *
1023 	 * Note: it would be nice to verify that the blk_birth and
1024 	 * BP_PHYSICAL_BIRTH() are not too large.  However, spa_freeze()
1025 	 * allows the birth time of log blocks (and dmu_sync()-ed blocks
1026 	 * that are in the log) to be arbitrarily large.
1027 	 */
1028 	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
1029 		uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]);
1030 
1031 		if (vdevid >= spa->spa_root_vdev->vdev_children) {
1032 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1033 			    "blkptr at %p DVA %u has invalid VDEV %llu",
1034 			    bp, i, (longlong_t)vdevid);
1035 			continue;
1036 		}
1037 		vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1038 		if (vd == NULL) {
1039 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1040 			    "blkptr at %p DVA %u has invalid VDEV %llu",
1041 			    bp, i, (longlong_t)vdevid);
1042 			continue;
1043 		}
1044 		if (vd->vdev_ops == &vdev_hole_ops) {
1045 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1046 			    "blkptr at %p DVA %u has hole VDEV %llu",
1047 			    bp, i, (longlong_t)vdevid);
1048 			continue;
1049 		}
1050 		if (vd->vdev_ops == &vdev_missing_ops) {
1051 			/*
1052 			 * "missing" vdevs are valid during import, but we
1053 			 * don't have their detailed info (e.g. asize), so
1054 			 * we can't perform any more checks on them.
1055 			 */
1056 			continue;
1057 		}
1058 		uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
1059 		uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]);
1060 		if (BP_IS_GANG(bp))
1061 			asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
1062 		if (offset + asize > vd->vdev_asize) {
1063 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1064 			    "blkptr at %p DVA %u has invalid OFFSET %llu",
1065 			    bp, i, (longlong_t)offset);
1066 		}
1067 	}
1068 	if (errors > 0)
1069 		dprintf_bp(bp, "blkptr at %p dprintf_bp():", bp);
1070 	if (!config_held)
1071 		spa_config_exit(spa, SCL_VDEV, bp);
1072 
1073 	return (errors == 0);
1074 }
1075 
1076 boolean_t
1077 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp)
1078 {
1079 	uint64_t vdevid = DVA_GET_VDEV(dva);
1080 
1081 	if (vdevid >= spa->spa_root_vdev->vdev_children)
1082 		return (B_FALSE);
1083 
1084 	vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1085 	if (vd == NULL)
1086 		return (B_FALSE);
1087 
1088 	if (vd->vdev_ops == &vdev_hole_ops)
1089 		return (B_FALSE);
1090 
1091 	if (vd->vdev_ops == &vdev_missing_ops) {
1092 		return (B_FALSE);
1093 	}
1094 
1095 	uint64_t offset = DVA_GET_OFFSET(dva);
1096 	uint64_t asize = DVA_GET_ASIZE(dva);
1097 
1098 	if (BP_IS_GANG(bp))
1099 		asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
1100 	if (offset + asize > vd->vdev_asize)
1101 		return (B_FALSE);
1102 
1103 	return (B_TRUE);
1104 }
1105 
1106 zio_t *
1107 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
1108     abd_t *data, uint64_t size, zio_done_func_t *done, void *private,
1109     zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
1110 {
1111 	zio_t *zio;
1112 
1113 	(void) zfs_blkptr_verify(spa, bp, flags & ZIO_FLAG_CONFIG_WRITER,
1114 	    BLK_VERIFY_HALT);
1115 
1116 	zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
1117 	    data, size, size, done, private,
1118 	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
1119 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1120 	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
1121 
1122 	return (zio);
1123 }
1124 
1125 zio_t *
1126 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
1127     abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp,
1128     zio_done_func_t *ready, zio_done_func_t *children_ready,
1129     zio_done_func_t *physdone, zio_done_func_t *done,
1130     void *private, zio_priority_t priority, enum zio_flag flags,
1131     const zbookmark_phys_t *zb)
1132 {
1133 	zio_t *zio;
1134 
1135 	ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
1136 	    zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
1137 	    zp->zp_compress >= ZIO_COMPRESS_OFF &&
1138 	    zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
1139 	    DMU_OT_IS_VALID(zp->zp_type) &&
1140 	    zp->zp_level < 32 &&
1141 	    zp->zp_copies > 0 &&
1142 	    zp->zp_copies <= spa_max_replication(spa));
1143 
1144 	zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private,
1145 	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
1146 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1147 	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
1148 
1149 	zio->io_ready = ready;
1150 	zio->io_children_ready = children_ready;
1151 	zio->io_physdone = physdone;
1152 	zio->io_prop = *zp;
1153 
1154 	/*
1155 	 * Data can be NULL if we are going to call zio_write_override() to
1156 	 * provide the already-allocated BP.  But we may need the data to
1157 	 * verify a dedup hit (if requested).  In this case, don't try to
1158 	 * dedup (just take the already-allocated BP verbatim). Encrypted
1159 	 * dedup blocks need data as well so we also disable dedup in this
1160 	 * case.
1161 	 */
1162 	if (data == NULL &&
1163 	    (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) {
1164 		zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
1165 	}
1166 
1167 	return (zio);
1168 }
1169 
1170 zio_t *
1171 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data,
1172     uint64_t size, zio_done_func_t *done, void *private,
1173     zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb)
1174 {
1175 	zio_t *zio;
1176 
1177 	zio = zio_create(pio, spa, txg, bp, data, size, size, done, private,
1178 	    ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb,
1179 	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
1180 
1181 	return (zio);
1182 }
1183 
1184 void
1185 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
1186 {
1187 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
1188 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1189 	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1190 	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
1191 
1192 	/*
1193 	 * We must reset the io_prop to match the values that existed
1194 	 * when the bp was first written by dmu_sync() keeping in mind
1195 	 * that nopwrite and dedup are mutually exclusive.
1196 	 */
1197 	zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
1198 	zio->io_prop.zp_nopwrite = nopwrite;
1199 	zio->io_prop.zp_copies = copies;
1200 	zio->io_bp_override = bp;
1201 }
1202 
1203 void
1204 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
1205 {
1206 
1207 	(void) zfs_blkptr_verify(spa, bp, B_FALSE, BLK_VERIFY_HALT);
1208 
1209 	/*
1210 	 * The check for EMBEDDED is a performance optimization.  We
1211 	 * process the free here (by ignoring it) rather than
1212 	 * putting it on the list and then processing it in zio_free_sync().
1213 	 */
1214 	if (BP_IS_EMBEDDED(bp))
1215 		return;
1216 	metaslab_check_free(spa, bp);
1217 
1218 	/*
1219 	 * Frees that are for the currently-syncing txg, are not going to be
1220 	 * deferred, and which will not need to do a read (i.e. not GANG or
1221 	 * DEDUP), can be processed immediately.  Otherwise, put them on the
1222 	 * in-memory list for later processing.
1223 	 *
1224 	 * Note that we only defer frees after zfs_sync_pass_deferred_free
1225 	 * when the log space map feature is disabled. [see relevant comment
1226 	 * in spa_sync_iterate_to_convergence()]
1227 	 */
1228 	if (BP_IS_GANG(bp) ||
1229 	    BP_GET_DEDUP(bp) ||
1230 	    txg != spa->spa_syncing_txg ||
1231 	    (spa_sync_pass(spa) >= zfs_sync_pass_deferred_free &&
1232 	    !spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))) {
1233 		bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
1234 	} else {
1235 		VERIFY3P(zio_free_sync(NULL, spa, txg, bp, 0), ==, NULL);
1236 	}
1237 }
1238 
1239 /*
1240  * To improve performance, this function may return NULL if we were able
1241  * to do the free immediately.  This avoids the cost of creating a zio
1242  * (and linking it to the parent, etc).
1243  */
1244 zio_t *
1245 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1246     enum zio_flag flags)
1247 {
1248 	ASSERT(!BP_IS_HOLE(bp));
1249 	ASSERT(spa_syncing_txg(spa) == txg);
1250 
1251 	if (BP_IS_EMBEDDED(bp))
1252 		return (NULL);
1253 
1254 	metaslab_check_free(spa, bp);
1255 	arc_freed(spa, bp);
1256 	dsl_scan_freed(spa, bp);
1257 
1258 	if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp)) {
1259 		/*
1260 		 * GANG and DEDUP blocks can induce a read (for the gang block
1261 		 * header, or the DDT), so issue them asynchronously so that
1262 		 * this thread is not tied up.
1263 		 */
1264 		enum zio_stage stage =
1265 		    ZIO_FREE_PIPELINE | ZIO_STAGE_ISSUE_ASYNC;
1266 
1267 		return (zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1268 		    BP_GET_PSIZE(bp), NULL, NULL,
1269 		    ZIO_TYPE_FREE, ZIO_PRIORITY_NOW,
1270 		    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage));
1271 	} else {
1272 		metaslab_free(spa, bp, txg, B_FALSE);
1273 		return (NULL);
1274 	}
1275 }
1276 
1277 zio_t *
1278 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1279     zio_done_func_t *done, void *private, enum zio_flag flags)
1280 {
1281 	zio_t *zio;
1282 
1283 	(void) zfs_blkptr_verify(spa, bp, flags & ZIO_FLAG_CONFIG_WRITER,
1284 	    BLK_VERIFY_HALT);
1285 
1286 	if (BP_IS_EMBEDDED(bp))
1287 		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
1288 
1289 	/*
1290 	 * A claim is an allocation of a specific block.  Claims are needed
1291 	 * to support immediate writes in the intent log.  The issue is that
1292 	 * immediate writes contain committed data, but in a txg that was
1293 	 * *not* committed.  Upon opening the pool after an unclean shutdown,
1294 	 * the intent log claims all blocks that contain immediate write data
1295 	 * so that the SPA knows they're in use.
1296 	 *
1297 	 * All claims *must* be resolved in the first txg -- before the SPA
1298 	 * starts allocating blocks -- so that nothing is allocated twice.
1299 	 * If txg == 0 we just verify that the block is claimable.
1300 	 */
1301 	ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <,
1302 	    spa_min_claim_txg(spa));
1303 	ASSERT(txg == spa_min_claim_txg(spa) || txg == 0);
1304 	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(8) */
1305 
1306 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1307 	    BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW,
1308 	    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
1309 	ASSERT0(zio->io_queued_timestamp);
1310 
1311 	return (zio);
1312 }
1313 
1314 zio_t *
1315 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
1316     zio_done_func_t *done, void *private, enum zio_flag flags)
1317 {
1318 	zio_t *zio;
1319 	int c;
1320 
1321 	if (vd->vdev_children == 0) {
1322 		zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
1323 		    ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
1324 		    ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
1325 
1326 		zio->io_cmd = cmd;
1327 	} else {
1328 		zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
1329 
1330 		for (c = 0; c < vd->vdev_children; c++)
1331 			zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
1332 			    done, private, flags));
1333 	}
1334 
1335 	return (zio);
1336 }
1337 
1338 zio_t *
1339 zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1340     zio_done_func_t *done, void *private, zio_priority_t priority,
1341     enum zio_flag flags, enum trim_flag trim_flags)
1342 {
1343 	zio_t *zio;
1344 
1345 	ASSERT0(vd->vdev_children);
1346 	ASSERT0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
1347 	ASSERT0(P2PHASE(size, 1ULL << vd->vdev_ashift));
1348 	ASSERT3U(size, !=, 0);
1349 
1350 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, NULL, size, size, done,
1351 	    private, ZIO_TYPE_TRIM, priority, flags | ZIO_FLAG_PHYSICAL,
1352 	    vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_TRIM_PIPELINE);
1353 	zio->io_trim_flags = trim_flags;
1354 
1355 	return (zio);
1356 }
1357 
1358 zio_t *
1359 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1360     abd_t *data, int checksum, zio_done_func_t *done, void *private,
1361     zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1362 {
1363 	zio_t *zio;
1364 
1365 	ASSERT(vd->vdev_children == 0);
1366 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1367 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1368 	ASSERT3U(offset + size, <=, vd->vdev_psize);
1369 
1370 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1371 	    private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1372 	    offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
1373 
1374 	zio->io_prop.zp_checksum = checksum;
1375 
1376 	return (zio);
1377 }
1378 
1379 zio_t *
1380 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1381     abd_t *data, int checksum, zio_done_func_t *done, void *private,
1382     zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1383 {
1384 	zio_t *zio;
1385 
1386 	ASSERT(vd->vdev_children == 0);
1387 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1388 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1389 	ASSERT3U(offset + size, <=, vd->vdev_psize);
1390 
1391 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1392 	    private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1393 	    offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
1394 
1395 	zio->io_prop.zp_checksum = checksum;
1396 
1397 	if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
1398 		/*
1399 		 * zec checksums are necessarily destructive -- they modify
1400 		 * the end of the write buffer to hold the verifier/checksum.
1401 		 * Therefore, we must make a local copy in case the data is
1402 		 * being written to multiple places in parallel.
1403 		 */
1404 		abd_t *wbuf = abd_alloc_sametype(data, size);
1405 		abd_copy(wbuf, data, size);
1406 
1407 		zio_push_transform(zio, wbuf, size, size, NULL);
1408 	}
1409 
1410 	return (zio);
1411 }
1412 
1413 /*
1414  * Create a child I/O to do some work for us.
1415  */
1416 zio_t *
1417 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1418     abd_t *data, uint64_t size, int type, zio_priority_t priority,
1419     enum zio_flag flags, zio_done_func_t *done, void *private)
1420 {
1421 	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1422 	zio_t *zio;
1423 
1424 	/*
1425 	 * vdev child I/Os do not propagate their error to the parent.
1426 	 * Therefore, for correct operation the caller *must* check for
1427 	 * and handle the error in the child i/o's done callback.
1428 	 * The only exceptions are i/os that we don't care about
1429 	 * (OPTIONAL or REPAIR).
1430 	 */
1431 	ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) ||
1432 	    done != NULL);
1433 
1434 	if (type == ZIO_TYPE_READ && bp != NULL) {
1435 		/*
1436 		 * If we have the bp, then the child should perform the
1437 		 * checksum and the parent need not.  This pushes error
1438 		 * detection as close to the leaves as possible and
1439 		 * eliminates redundant checksums in the interior nodes.
1440 		 */
1441 		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1442 		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1443 	}
1444 
1445 	if (vd->vdev_ops->vdev_op_leaf) {
1446 		ASSERT0(vd->vdev_children);
1447 		offset += VDEV_LABEL_START_SIZE;
1448 	}
1449 
1450 	flags |= ZIO_VDEV_CHILD_FLAGS(pio);
1451 
1452 	/*
1453 	 * If we've decided to do a repair, the write is not speculative --
1454 	 * even if the original read was.
1455 	 */
1456 	if (flags & ZIO_FLAG_IO_REPAIR)
1457 		flags &= ~ZIO_FLAG_SPECULATIVE;
1458 
1459 	/*
1460 	 * If we're creating a child I/O that is not associated with a
1461 	 * top-level vdev, then the child zio is not an allocating I/O.
1462 	 * If this is a retried I/O then we ignore it since we will
1463 	 * have already processed the original allocating I/O.
1464 	 */
1465 	if (flags & ZIO_FLAG_IO_ALLOCATING &&
1466 	    (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) {
1467 		ASSERT(pio->io_metaslab_class != NULL);
1468 		ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled);
1469 		ASSERT(type == ZIO_TYPE_WRITE);
1470 		ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE);
1471 		ASSERT(!(flags & ZIO_FLAG_IO_REPAIR));
1472 		ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) ||
1473 		    pio->io_child_type == ZIO_CHILD_GANG);
1474 
1475 		flags &= ~ZIO_FLAG_IO_ALLOCATING;
1476 	}
1477 
1478 
1479 	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size,
1480 	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1481 	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1482 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
1483 
1484 	zio->io_physdone = pio->io_physdone;
1485 	if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
1486 		zio->io_logical->io_phys_children++;
1487 
1488 	return (zio);
1489 }
1490 
1491 zio_t *
1492 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size,
1493     zio_type_t type, zio_priority_t priority, enum zio_flag flags,
1494     zio_done_func_t *done, void *private)
1495 {
1496 	zio_t *zio;
1497 
1498 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1499 
1500 	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1501 	    data, size, size, done, private, type, priority,
1502 	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1503 	    vd, offset, NULL,
1504 	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1505 
1506 	return (zio);
1507 }
1508 
1509 void
1510 zio_flush(zio_t *zio, vdev_t *vd)
1511 {
1512 	zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
1513 	    NULL, NULL,
1514 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1515 }
1516 
1517 void
1518 zio_shrink(zio_t *zio, uint64_t size)
1519 {
1520 	ASSERT3P(zio->io_executor, ==, NULL);
1521 	ASSERT3U(zio->io_orig_size, ==, zio->io_size);
1522 	ASSERT3U(size, <=, zio->io_size);
1523 
1524 	/*
1525 	 * We don't shrink for raidz because of problems with the
1526 	 * reconstruction when reading back less than the block size.
1527 	 * Note, BP_IS_RAIDZ() assumes no compression.
1528 	 */
1529 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1530 	if (!BP_IS_RAIDZ(zio->io_bp)) {
1531 		/* we are not doing a raw write */
1532 		ASSERT3U(zio->io_size, ==, zio->io_lsize);
1533 		zio->io_orig_size = zio->io_size = zio->io_lsize = size;
1534 	}
1535 }
1536 
1537 /*
1538  * ==========================================================================
1539  * Prepare to read and write logical blocks
1540  * ==========================================================================
1541  */
1542 
1543 static zio_t *
1544 zio_read_bp_init(zio_t *zio)
1545 {
1546 	blkptr_t *bp = zio->io_bp;
1547 	uint64_t psize =
1548 	    BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1549 
1550 	ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1551 
1552 	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1553 	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
1554 	    !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1555 		zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1556 		    psize, psize, zio_decompress);
1557 	}
1558 
1559 	if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) ||
1560 	    BP_HAS_INDIRECT_MAC_CKSUM(bp)) &&
1561 	    zio->io_child_type == ZIO_CHILD_LOGICAL) {
1562 		zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1563 		    psize, psize, zio_decrypt);
1564 	}
1565 
1566 	if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1567 		int psize = BPE_GET_PSIZE(bp);
1568 		void *data = abd_borrow_buf(zio->io_abd, psize);
1569 
1570 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1571 		decode_embedded_bp_compressed(bp, data);
1572 		abd_return_buf_copy(zio->io_abd, data, psize);
1573 	} else {
1574 		ASSERT(!BP_IS_EMBEDDED(bp));
1575 		ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1576 	}
1577 
1578 	if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1579 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1580 
1581 	if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1582 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1583 
1584 	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1585 		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1586 
1587 	return (zio);
1588 }
1589 
1590 static zio_t *
1591 zio_write_bp_init(zio_t *zio)
1592 {
1593 	if (!IO_IS_ALLOCATING(zio))
1594 		return (zio);
1595 
1596 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1597 
1598 	if (zio->io_bp_override) {
1599 		blkptr_t *bp = zio->io_bp;
1600 		zio_prop_t *zp = &zio->io_prop;
1601 
1602 		ASSERT(bp->blk_birth != zio->io_txg);
1603 		ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1604 
1605 		*bp = *zio->io_bp_override;
1606 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1607 
1608 		if (BP_IS_EMBEDDED(bp))
1609 			return (zio);
1610 
1611 		/*
1612 		 * If we've been overridden and nopwrite is set then
1613 		 * set the flag accordingly to indicate that a nopwrite
1614 		 * has already occurred.
1615 		 */
1616 		if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1617 			ASSERT(!zp->zp_dedup);
1618 			ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum);
1619 			zio->io_flags |= ZIO_FLAG_NOPWRITE;
1620 			return (zio);
1621 		}
1622 
1623 		ASSERT(!zp->zp_nopwrite);
1624 
1625 		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1626 			return (zio);
1627 
1628 		ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1629 		    ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1630 
1631 		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum &&
1632 		    !zp->zp_encrypt) {
1633 			BP_SET_DEDUP(bp, 1);
1634 			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1635 			return (zio);
1636 		}
1637 
1638 		/*
1639 		 * We were unable to handle this as an override bp, treat
1640 		 * it as a regular write I/O.
1641 		 */
1642 		zio->io_bp_override = NULL;
1643 		*bp = zio->io_bp_orig;
1644 		zio->io_pipeline = zio->io_orig_pipeline;
1645 	}
1646 
1647 	return (zio);
1648 }
1649 
1650 static zio_t *
1651 zio_write_compress(zio_t *zio)
1652 {
1653 	spa_t *spa = zio->io_spa;
1654 	zio_prop_t *zp = &zio->io_prop;
1655 	enum zio_compress compress = zp->zp_compress;
1656 	blkptr_t *bp = zio->io_bp;
1657 	uint64_t lsize = zio->io_lsize;
1658 	uint64_t psize = zio->io_size;
1659 	int pass = 1;
1660 
1661 	/*
1662 	 * If our children haven't all reached the ready stage,
1663 	 * wait for them and then repeat this pipeline stage.
1664 	 */
1665 	if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
1666 	    ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) {
1667 		return (NULL);
1668 	}
1669 
1670 	if (!IO_IS_ALLOCATING(zio))
1671 		return (zio);
1672 
1673 	if (zio->io_children_ready != NULL) {
1674 		/*
1675 		 * Now that all our children are ready, run the callback
1676 		 * associated with this zio in case it wants to modify the
1677 		 * data to be written.
1678 		 */
1679 		ASSERT3U(zp->zp_level, >, 0);
1680 		zio->io_children_ready(zio);
1681 	}
1682 
1683 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1684 	ASSERT(zio->io_bp_override == NULL);
1685 
1686 	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1687 		/*
1688 		 * We're rewriting an existing block, which means we're
1689 		 * working on behalf of spa_sync().  For spa_sync() to
1690 		 * converge, it must eventually be the case that we don't
1691 		 * have to allocate new blocks.  But compression changes
1692 		 * the blocksize, which forces a reallocate, and makes
1693 		 * convergence take longer.  Therefore, after the first
1694 		 * few passes, stop compressing to ensure convergence.
1695 		 */
1696 		pass = spa_sync_pass(spa);
1697 
1698 		ASSERT(zio->io_txg == spa_syncing_txg(spa));
1699 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1700 		ASSERT(!BP_GET_DEDUP(bp));
1701 
1702 		if (pass >= zfs_sync_pass_dont_compress)
1703 			compress = ZIO_COMPRESS_OFF;
1704 
1705 		/* Make sure someone doesn't change their mind on overwrites */
1706 		ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1707 		    spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1708 	}
1709 
1710 	/* If it's a compressed write that is not raw, compress the buffer. */
1711 	if (compress != ZIO_COMPRESS_OFF &&
1712 	    !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1713 		void *cbuf = zio_buf_alloc(lsize);
1714 		psize = zio_compress_data(compress, zio->io_abd, cbuf, lsize,
1715 		    zp->zp_complevel);
1716 		if (psize == 0 || psize >= lsize) {
1717 			compress = ZIO_COMPRESS_OFF;
1718 			zio_buf_free(cbuf, lsize);
1719 		} else if (!zp->zp_dedup && !zp->zp_encrypt &&
1720 		    psize <= BPE_PAYLOAD_SIZE &&
1721 		    zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1722 		    spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1723 			encode_embedded_bp_compressed(bp,
1724 			    cbuf, compress, lsize, psize);
1725 			BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1726 			BP_SET_TYPE(bp, zio->io_prop.zp_type);
1727 			BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1728 			zio_buf_free(cbuf, lsize);
1729 			bp->blk_birth = zio->io_txg;
1730 			zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1731 			ASSERT(spa_feature_is_active(spa,
1732 			    SPA_FEATURE_EMBEDDED_DATA));
1733 			return (zio);
1734 		} else {
1735 			/*
1736 			 * Round compressed size up to the minimum allocation
1737 			 * size of the smallest-ashift device, and zero the
1738 			 * tail. This ensures that the compressed size of the
1739 			 * BP (and thus compressratio property) are correct,
1740 			 * in that we charge for the padding used to fill out
1741 			 * the last sector.
1742 			 */
1743 			ASSERT3U(spa->spa_min_alloc, >=, SPA_MINBLOCKSHIFT);
1744 			size_t rounded = (size_t)roundup(psize,
1745 			    spa->spa_min_alloc);
1746 			if (rounded >= lsize) {
1747 				compress = ZIO_COMPRESS_OFF;
1748 				zio_buf_free(cbuf, lsize);
1749 				psize = lsize;
1750 			} else {
1751 				abd_t *cdata = abd_get_from_buf(cbuf, lsize);
1752 				abd_take_ownership_of_buf(cdata, B_TRUE);
1753 				abd_zero_off(cdata, psize, rounded - psize);
1754 				psize = rounded;
1755 				zio_push_transform(zio, cdata,
1756 				    psize, lsize, NULL);
1757 			}
1758 		}
1759 
1760 		/*
1761 		 * We were unable to handle this as an override bp, treat
1762 		 * it as a regular write I/O.
1763 		 */
1764 		zio->io_bp_override = NULL;
1765 		*bp = zio->io_bp_orig;
1766 		zio->io_pipeline = zio->io_orig_pipeline;
1767 
1768 	} else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 &&
1769 	    zp->zp_type == DMU_OT_DNODE) {
1770 		/*
1771 		 * The DMU actually relies on the zio layer's compression
1772 		 * to free metadnode blocks that have had all contained
1773 		 * dnodes freed. As a result, even when doing a raw
1774 		 * receive, we must check whether the block can be compressed
1775 		 * to a hole.
1776 		 */
1777 		psize = zio_compress_data(ZIO_COMPRESS_EMPTY,
1778 		    zio->io_abd, NULL, lsize, zp->zp_complevel);
1779 		if (psize == 0 || psize >= lsize)
1780 			compress = ZIO_COMPRESS_OFF;
1781 	} else {
1782 		ASSERT3U(psize, !=, 0);
1783 	}
1784 
1785 	/*
1786 	 * The final pass of spa_sync() must be all rewrites, but the first
1787 	 * few passes offer a trade-off: allocating blocks defers convergence,
1788 	 * but newly allocated blocks are sequential, so they can be written
1789 	 * to disk faster.  Therefore, we allow the first few passes of
1790 	 * spa_sync() to allocate new blocks, but force rewrites after that.
1791 	 * There should only be a handful of blocks after pass 1 in any case.
1792 	 */
1793 	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1794 	    BP_GET_PSIZE(bp) == psize &&
1795 	    pass >= zfs_sync_pass_rewrite) {
1796 		VERIFY3U(psize, !=, 0);
1797 		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1798 
1799 		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1800 		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1801 	} else {
1802 		BP_ZERO(bp);
1803 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
1804 	}
1805 
1806 	if (psize == 0) {
1807 		if (zio->io_bp_orig.blk_birth != 0 &&
1808 		    spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1809 			BP_SET_LSIZE(bp, lsize);
1810 			BP_SET_TYPE(bp, zp->zp_type);
1811 			BP_SET_LEVEL(bp, zp->zp_level);
1812 			BP_SET_BIRTH(bp, zio->io_txg, 0);
1813 		}
1814 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1815 	} else {
1816 		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1817 		BP_SET_LSIZE(bp, lsize);
1818 		BP_SET_TYPE(bp, zp->zp_type);
1819 		BP_SET_LEVEL(bp, zp->zp_level);
1820 		BP_SET_PSIZE(bp, psize);
1821 		BP_SET_COMPRESS(bp, compress);
1822 		BP_SET_CHECKSUM(bp, zp->zp_checksum);
1823 		BP_SET_DEDUP(bp, zp->zp_dedup);
1824 		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1825 		if (zp->zp_dedup) {
1826 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1827 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1828 			ASSERT(!zp->zp_encrypt ||
1829 			    DMU_OT_IS_ENCRYPTED(zp->zp_type));
1830 			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1831 		}
1832 		if (zp->zp_nopwrite) {
1833 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1834 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1835 			zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1836 		}
1837 	}
1838 	return (zio);
1839 }
1840 
1841 static zio_t *
1842 zio_free_bp_init(zio_t *zio)
1843 {
1844 	blkptr_t *bp = zio->io_bp;
1845 
1846 	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1847 		if (BP_GET_DEDUP(bp))
1848 			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1849 	}
1850 
1851 	ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1852 
1853 	return (zio);
1854 }
1855 
1856 /*
1857  * ==========================================================================
1858  * Execute the I/O pipeline
1859  * ==========================================================================
1860  */
1861 
1862 static void
1863 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1864 {
1865 	spa_t *spa = zio->io_spa;
1866 	zio_type_t t = zio->io_type;
1867 	int flags = (cutinline ? TQ_FRONT : 0);
1868 
1869 	/*
1870 	 * If we're a config writer or a probe, the normal issue and
1871 	 * interrupt threads may all be blocked waiting for the config lock.
1872 	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1873 	 */
1874 	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1875 		t = ZIO_TYPE_NULL;
1876 
1877 	/*
1878 	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1879 	 */
1880 	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1881 		t = ZIO_TYPE_NULL;
1882 
1883 	/*
1884 	 * If this is a high priority I/O, then use the high priority taskq if
1885 	 * available.
1886 	 */
1887 	if ((zio->io_priority == ZIO_PRIORITY_NOW ||
1888 	    zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) &&
1889 	    spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1890 		q++;
1891 
1892 	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1893 
1894 	/*
1895 	 * NB: We are assuming that the zio can only be dispatched
1896 	 * to a single taskq at a time.  It would be a grievous error
1897 	 * to dispatch the zio to another taskq at the same time.
1898 	 */
1899 	ASSERT(taskq_empty_ent(&zio->io_tqent));
1900 	spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1901 	    flags, &zio->io_tqent);
1902 }
1903 
1904 static boolean_t
1905 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1906 {
1907 	spa_t *spa = zio->io_spa;
1908 
1909 	taskq_t *tq = taskq_of_curthread();
1910 
1911 	for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1912 		spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1913 		uint_t i;
1914 		for (i = 0; i < tqs->stqs_count; i++) {
1915 			if (tqs->stqs_taskq[i] == tq)
1916 				return (B_TRUE);
1917 		}
1918 	}
1919 
1920 	return (B_FALSE);
1921 }
1922 
1923 static zio_t *
1924 zio_issue_async(zio_t *zio)
1925 {
1926 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1927 
1928 	return (NULL);
1929 }
1930 
1931 void
1932 zio_interrupt(zio_t *zio)
1933 {
1934 	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1935 }
1936 
1937 void
1938 zio_delay_interrupt(zio_t *zio)
1939 {
1940 	/*
1941 	 * The timeout_generic() function isn't defined in userspace, so
1942 	 * rather than trying to implement the function, the zio delay
1943 	 * functionality has been disabled for userspace builds.
1944 	 */
1945 
1946 #ifdef _KERNEL
1947 	/*
1948 	 * If io_target_timestamp is zero, then no delay has been registered
1949 	 * for this IO, thus jump to the end of this function and "skip" the
1950 	 * delay; issuing it directly to the zio layer.
1951 	 */
1952 	if (zio->io_target_timestamp != 0) {
1953 		hrtime_t now = gethrtime();
1954 
1955 		if (now >= zio->io_target_timestamp) {
1956 			/*
1957 			 * This IO has already taken longer than the target
1958 			 * delay to complete, so we don't want to delay it
1959 			 * any longer; we "miss" the delay and issue it
1960 			 * directly to the zio layer. This is likely due to
1961 			 * the target latency being set to a value less than
1962 			 * the underlying hardware can satisfy (e.g. delay
1963 			 * set to 1ms, but the disks take 10ms to complete an
1964 			 * IO request).
1965 			 */
1966 
1967 			DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
1968 			    hrtime_t, now);
1969 
1970 			zio_interrupt(zio);
1971 		} else {
1972 			taskqid_t tid;
1973 			hrtime_t diff = zio->io_target_timestamp - now;
1974 			clock_t expire_at_tick = ddi_get_lbolt() +
1975 			    NSEC_TO_TICK(diff);
1976 
1977 			DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
1978 			    hrtime_t, now, hrtime_t, diff);
1979 
1980 			if (NSEC_TO_TICK(diff) == 0) {
1981 				/* Our delay is less than a jiffy - just spin */
1982 				zfs_sleep_until(zio->io_target_timestamp);
1983 				zio_interrupt(zio);
1984 			} else {
1985 				/*
1986 				 * Use taskq_dispatch_delay() in the place of
1987 				 * OpenZFS's timeout_generic().
1988 				 */
1989 				tid = taskq_dispatch_delay(system_taskq,
1990 				    (task_func_t *)zio_interrupt,
1991 				    zio, TQ_NOSLEEP, expire_at_tick);
1992 				if (tid == TASKQID_INVALID) {
1993 					/*
1994 					 * Couldn't allocate a task.  Just
1995 					 * finish the zio without a delay.
1996 					 */
1997 					zio_interrupt(zio);
1998 				}
1999 			}
2000 		}
2001 		return;
2002 	}
2003 #endif
2004 	DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
2005 	zio_interrupt(zio);
2006 }
2007 
2008 static void
2009 zio_deadman_impl(zio_t *pio, int ziodepth)
2010 {
2011 	zio_t *cio, *cio_next;
2012 	zio_link_t *zl = NULL;
2013 	vdev_t *vd = pio->io_vd;
2014 
2015 	if (zio_deadman_log_all || (vd != NULL && vd->vdev_ops->vdev_op_leaf)) {
2016 		vdev_queue_t *vq = vd ? &vd->vdev_queue : NULL;
2017 		zbookmark_phys_t *zb = &pio->io_bookmark;
2018 		uint64_t delta = gethrtime() - pio->io_timestamp;
2019 		uint64_t failmode = spa_get_deadman_failmode(pio->io_spa);
2020 
2021 		zfs_dbgmsg("slow zio[%d]: zio=%px timestamp=%llu "
2022 		    "delta=%llu queued=%llu io=%llu "
2023 		    "path=%s last=%llu "
2024 		    "type=%d priority=%d flags=0x%x "
2025 		    "stage=0x%x pipeline=0x%x pipeline-trace=0x%x "
2026 		    "objset=%llu object=%llu level=%llu blkid=%llu "
2027 		    "offset=%llu size=%llu error=%d",
2028 		    ziodepth, pio, pio->io_timestamp,
2029 		    delta, pio->io_delta, pio->io_delay,
2030 		    vd ? vd->vdev_path : "NULL", vq ? vq->vq_io_complete_ts : 0,
2031 		    pio->io_type, pio->io_priority, pio->io_flags,
2032 		    pio->io_stage, pio->io_pipeline, pio->io_pipeline_trace,
2033 		    zb->zb_objset, zb->zb_object, zb->zb_level, zb->zb_blkid,
2034 		    pio->io_offset, pio->io_size, pio->io_error);
2035 		(void) zfs_ereport_post(FM_EREPORT_ZFS_DEADMAN,
2036 		    pio->io_spa, vd, zb, pio, 0);
2037 
2038 		if (failmode == ZIO_FAILURE_MODE_CONTINUE &&
2039 		    taskq_empty_ent(&pio->io_tqent)) {
2040 			zio_interrupt(pio);
2041 		}
2042 	}
2043 
2044 	mutex_enter(&pio->io_lock);
2045 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2046 		cio_next = zio_walk_children(pio, &zl);
2047 		zio_deadman_impl(cio, ziodepth + 1);
2048 	}
2049 	mutex_exit(&pio->io_lock);
2050 }
2051 
2052 /*
2053  * Log the critical information describing this zio and all of its children
2054  * using the zfs_dbgmsg() interface then post deadman event for the ZED.
2055  */
2056 void
2057 zio_deadman(zio_t *pio, char *tag)
2058 {
2059 	spa_t *spa = pio->io_spa;
2060 	char *name = spa_name(spa);
2061 
2062 	if (!zfs_deadman_enabled || spa_suspended(spa))
2063 		return;
2064 
2065 	zio_deadman_impl(pio, 0);
2066 
2067 	switch (spa_get_deadman_failmode(spa)) {
2068 	case ZIO_FAILURE_MODE_WAIT:
2069 		zfs_dbgmsg("%s waiting for hung I/O to pool '%s'", tag, name);
2070 		break;
2071 
2072 	case ZIO_FAILURE_MODE_CONTINUE:
2073 		zfs_dbgmsg("%s restarting hung I/O for pool '%s'", tag, name);
2074 		break;
2075 
2076 	case ZIO_FAILURE_MODE_PANIC:
2077 		fm_panic("%s determined I/O to pool '%s' is hung.", tag, name);
2078 		break;
2079 	}
2080 }
2081 
2082 /*
2083  * Execute the I/O pipeline until one of the following occurs:
2084  * (1) the I/O completes; (2) the pipeline stalls waiting for
2085  * dependent child I/Os; (3) the I/O issues, so we're waiting
2086  * for an I/O completion interrupt; (4) the I/O is delegated by
2087  * vdev-level caching or aggregation; (5) the I/O is deferred
2088  * due to vdev-level queueing; (6) the I/O is handed off to
2089  * another thread.  In all cases, the pipeline stops whenever
2090  * there's no CPU work; it never burns a thread in cv_wait_io().
2091  *
2092  * There's no locking on io_stage because there's no legitimate way
2093  * for multiple threads to be attempting to process the same I/O.
2094  */
2095 static zio_pipe_stage_t *zio_pipeline[];
2096 
2097 /*
2098  * zio_execute() is a wrapper around the static function
2099  * __zio_execute() so that we can force  __zio_execute() to be
2100  * inlined.  This reduces stack overhead which is important
2101  * because __zio_execute() is called recursively in several zio
2102  * code paths.  zio_execute() itself cannot be inlined because
2103  * it is externally visible.
2104  */
2105 void
2106 zio_execute(zio_t *zio)
2107 {
2108 	fstrans_cookie_t cookie;
2109 
2110 	cookie = spl_fstrans_mark();
2111 	__zio_execute(zio);
2112 	spl_fstrans_unmark(cookie);
2113 }
2114 
2115 /*
2116  * Used to determine if in the current context the stack is sized large
2117  * enough to allow zio_execute() to be called recursively.  A minimum
2118  * stack size of 16K is required to avoid needing to re-dispatch the zio.
2119  */
2120 static boolean_t
2121 zio_execute_stack_check(zio_t *zio)
2122 {
2123 #if !defined(HAVE_LARGE_STACKS)
2124 	dsl_pool_t *dp = spa_get_dsl(zio->io_spa);
2125 
2126 	/* Executing in txg_sync_thread() context. */
2127 	if (dp && curthread == dp->dp_tx.tx_sync_thread)
2128 		return (B_TRUE);
2129 
2130 	/* Pool initialization outside of zio_taskq context. */
2131 	if (dp && spa_is_initializing(dp->dp_spa) &&
2132 	    !zio_taskq_member(zio, ZIO_TASKQ_ISSUE) &&
2133 	    !zio_taskq_member(zio, ZIO_TASKQ_ISSUE_HIGH))
2134 		return (B_TRUE);
2135 #endif /* HAVE_LARGE_STACKS */
2136 
2137 	return (B_FALSE);
2138 }
2139 
2140 __attribute__((always_inline))
2141 static inline void
2142 __zio_execute(zio_t *zio)
2143 {
2144 	ASSERT3U(zio->io_queued_timestamp, >, 0);
2145 
2146 	while (zio->io_stage < ZIO_STAGE_DONE) {
2147 		enum zio_stage pipeline = zio->io_pipeline;
2148 		enum zio_stage stage = zio->io_stage;
2149 
2150 		zio->io_executor = curthread;
2151 
2152 		ASSERT(!MUTEX_HELD(&zio->io_lock));
2153 		ASSERT(ISP2(stage));
2154 		ASSERT(zio->io_stall == NULL);
2155 
2156 		do {
2157 			stage <<= 1;
2158 		} while ((stage & pipeline) == 0);
2159 
2160 		ASSERT(stage <= ZIO_STAGE_DONE);
2161 
2162 		/*
2163 		 * If we are in interrupt context and this pipeline stage
2164 		 * will grab a config lock that is held across I/O,
2165 		 * or may wait for an I/O that needs an interrupt thread
2166 		 * to complete, issue async to avoid deadlock.
2167 		 *
2168 		 * For VDEV_IO_START, we cut in line so that the io will
2169 		 * be sent to disk promptly.
2170 		 */
2171 		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
2172 		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
2173 			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2174 			    zio_requeue_io_start_cut_in_line : B_FALSE;
2175 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2176 			return;
2177 		}
2178 
2179 		/*
2180 		 * If the current context doesn't have large enough stacks
2181 		 * the zio must be issued asynchronously to prevent overflow.
2182 		 */
2183 		if (zio_execute_stack_check(zio)) {
2184 			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2185 			    zio_requeue_io_start_cut_in_line : B_FALSE;
2186 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2187 			return;
2188 		}
2189 
2190 		zio->io_stage = stage;
2191 		zio->io_pipeline_trace |= zio->io_stage;
2192 
2193 		/*
2194 		 * The zio pipeline stage returns the next zio to execute
2195 		 * (typically the same as this one), or NULL if we should
2196 		 * stop.
2197 		 */
2198 		zio = zio_pipeline[highbit64(stage) - 1](zio);
2199 
2200 		if (zio == NULL)
2201 			return;
2202 	}
2203 }
2204 
2205 
2206 /*
2207  * ==========================================================================
2208  * Initiate I/O, either sync or async
2209  * ==========================================================================
2210  */
2211 int
2212 zio_wait(zio_t *zio)
2213 {
2214 	/*
2215 	 * Some routines, like zio_free_sync(), may return a NULL zio
2216 	 * to avoid the performance overhead of creating and then destroying
2217 	 * an unneeded zio.  For the callers' simplicity, we accept a NULL
2218 	 * zio and ignore it.
2219 	 */
2220 	if (zio == NULL)
2221 		return (0);
2222 
2223 	long timeout = MSEC_TO_TICK(zfs_deadman_ziotime_ms);
2224 	int error;
2225 
2226 	ASSERT3S(zio->io_stage, ==, ZIO_STAGE_OPEN);
2227 	ASSERT3P(zio->io_executor, ==, NULL);
2228 
2229 	zio->io_waiter = curthread;
2230 	ASSERT0(zio->io_queued_timestamp);
2231 	zio->io_queued_timestamp = gethrtime();
2232 
2233 	__zio_execute(zio);
2234 
2235 	mutex_enter(&zio->io_lock);
2236 	while (zio->io_executor != NULL) {
2237 		error = cv_timedwait_io(&zio->io_cv, &zio->io_lock,
2238 		    ddi_get_lbolt() + timeout);
2239 
2240 		if (zfs_deadman_enabled && error == -1 &&
2241 		    gethrtime() - zio->io_queued_timestamp >
2242 		    spa_deadman_ziotime(zio->io_spa)) {
2243 			mutex_exit(&zio->io_lock);
2244 			timeout = MSEC_TO_TICK(zfs_deadman_checktime_ms);
2245 			zio_deadman(zio, FTAG);
2246 			mutex_enter(&zio->io_lock);
2247 		}
2248 	}
2249 	mutex_exit(&zio->io_lock);
2250 
2251 	error = zio->io_error;
2252 	zio_destroy(zio);
2253 
2254 	return (error);
2255 }
2256 
2257 void
2258 zio_nowait(zio_t *zio)
2259 {
2260 	/*
2261 	 * See comment in zio_wait().
2262 	 */
2263 	if (zio == NULL)
2264 		return;
2265 
2266 	ASSERT3P(zio->io_executor, ==, NULL);
2267 
2268 	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
2269 	    zio_unique_parent(zio) == NULL) {
2270 		zio_t *pio;
2271 
2272 		/*
2273 		 * This is a logical async I/O with no parent to wait for it.
2274 		 * We add it to the spa_async_root_zio "Godfather" I/O which
2275 		 * will ensure they complete prior to unloading the pool.
2276 		 */
2277 		spa_t *spa = zio->io_spa;
2278 		pio = spa->spa_async_zio_root[CPU_SEQID_UNSTABLE];
2279 
2280 		zio_add_child(pio, zio);
2281 	}
2282 
2283 	ASSERT0(zio->io_queued_timestamp);
2284 	zio->io_queued_timestamp = gethrtime();
2285 	__zio_execute(zio);
2286 }
2287 
2288 /*
2289  * ==========================================================================
2290  * Reexecute, cancel, or suspend/resume failed I/O
2291  * ==========================================================================
2292  */
2293 
2294 static void
2295 zio_reexecute(zio_t *pio)
2296 {
2297 	zio_t *cio, *cio_next;
2298 
2299 	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
2300 	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
2301 	ASSERT(pio->io_gang_leader == NULL);
2302 	ASSERT(pio->io_gang_tree == NULL);
2303 
2304 	pio->io_flags = pio->io_orig_flags;
2305 	pio->io_stage = pio->io_orig_stage;
2306 	pio->io_pipeline = pio->io_orig_pipeline;
2307 	pio->io_reexecute = 0;
2308 	pio->io_flags |= ZIO_FLAG_REEXECUTED;
2309 	pio->io_pipeline_trace = 0;
2310 	pio->io_error = 0;
2311 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2312 		pio->io_state[w] = 0;
2313 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2314 		pio->io_child_error[c] = 0;
2315 
2316 	if (IO_IS_ALLOCATING(pio))
2317 		BP_ZERO(pio->io_bp);
2318 
2319 	/*
2320 	 * As we reexecute pio's children, new children could be created.
2321 	 * New children go to the head of pio's io_child_list, however,
2322 	 * so we will (correctly) not reexecute them.  The key is that
2323 	 * the remainder of pio's io_child_list, from 'cio_next' onward,
2324 	 * cannot be affected by any side effects of reexecuting 'cio'.
2325 	 */
2326 	zio_link_t *zl = NULL;
2327 	mutex_enter(&pio->io_lock);
2328 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2329 		cio_next = zio_walk_children(pio, &zl);
2330 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2331 			pio->io_children[cio->io_child_type][w]++;
2332 		mutex_exit(&pio->io_lock);
2333 		zio_reexecute(cio);
2334 		mutex_enter(&pio->io_lock);
2335 	}
2336 	mutex_exit(&pio->io_lock);
2337 
2338 	/*
2339 	 * Now that all children have been reexecuted, execute the parent.
2340 	 * We don't reexecute "The Godfather" I/O here as it's the
2341 	 * responsibility of the caller to wait on it.
2342 	 */
2343 	if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) {
2344 		pio->io_queued_timestamp = gethrtime();
2345 		__zio_execute(pio);
2346 	}
2347 }
2348 
2349 void
2350 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason)
2351 {
2352 	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
2353 		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
2354 		    "failure and the failure mode property for this pool "
2355 		    "is set to panic.", spa_name(spa));
2356 
2357 	cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable I/O "
2358 	    "failure and has been suspended.\n", spa_name(spa));
2359 
2360 	(void) zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL,
2361 	    NULL, NULL, 0);
2362 
2363 	mutex_enter(&spa->spa_suspend_lock);
2364 
2365 	if (spa->spa_suspend_zio_root == NULL)
2366 		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
2367 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2368 		    ZIO_FLAG_GODFATHER);
2369 
2370 	spa->spa_suspended = reason;
2371 
2372 	if (zio != NULL) {
2373 		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
2374 		ASSERT(zio != spa->spa_suspend_zio_root);
2375 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2376 		ASSERT(zio_unique_parent(zio) == NULL);
2377 		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
2378 		zio_add_child(spa->spa_suspend_zio_root, zio);
2379 	}
2380 
2381 	mutex_exit(&spa->spa_suspend_lock);
2382 }
2383 
2384 int
2385 zio_resume(spa_t *spa)
2386 {
2387 	zio_t *pio;
2388 
2389 	/*
2390 	 * Reexecute all previously suspended i/o.
2391 	 */
2392 	mutex_enter(&spa->spa_suspend_lock);
2393 	spa->spa_suspended = ZIO_SUSPEND_NONE;
2394 	cv_broadcast(&spa->spa_suspend_cv);
2395 	pio = spa->spa_suspend_zio_root;
2396 	spa->spa_suspend_zio_root = NULL;
2397 	mutex_exit(&spa->spa_suspend_lock);
2398 
2399 	if (pio == NULL)
2400 		return (0);
2401 
2402 	zio_reexecute(pio);
2403 	return (zio_wait(pio));
2404 }
2405 
2406 void
2407 zio_resume_wait(spa_t *spa)
2408 {
2409 	mutex_enter(&spa->spa_suspend_lock);
2410 	while (spa_suspended(spa))
2411 		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
2412 	mutex_exit(&spa->spa_suspend_lock);
2413 }
2414 
2415 /*
2416  * ==========================================================================
2417  * Gang blocks.
2418  *
2419  * A gang block is a collection of small blocks that looks to the DMU
2420  * like one large block.  When zio_dva_allocate() cannot find a block
2421  * of the requested size, due to either severe fragmentation or the pool
2422  * being nearly full, it calls zio_write_gang_block() to construct the
2423  * block from smaller fragments.
2424  *
2425  * A gang block consists of a gang header (zio_gbh_phys_t) and up to
2426  * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
2427  * an indirect block: it's an array of block pointers.  It consumes
2428  * only one sector and hence is allocatable regardless of fragmentation.
2429  * The gang header's bps point to its gang members, which hold the data.
2430  *
2431  * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
2432  * as the verifier to ensure uniqueness of the SHA256 checksum.
2433  * Critically, the gang block bp's blk_cksum is the checksum of the data,
2434  * not the gang header.  This ensures that data block signatures (needed for
2435  * deduplication) are independent of how the block is physically stored.
2436  *
2437  * Gang blocks can be nested: a gang member may itself be a gang block.
2438  * Thus every gang block is a tree in which root and all interior nodes are
2439  * gang headers, and the leaves are normal blocks that contain user data.
2440  * The root of the gang tree is called the gang leader.
2441  *
2442  * To perform any operation (read, rewrite, free, claim) on a gang block,
2443  * zio_gang_assemble() first assembles the gang tree (minus data leaves)
2444  * in the io_gang_tree field of the original logical i/o by recursively
2445  * reading the gang leader and all gang headers below it.  This yields
2446  * an in-core tree containing the contents of every gang header and the
2447  * bps for every constituent of the gang block.
2448  *
2449  * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
2450  * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
2451  * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
2452  * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
2453  * zio_read_gang() is a wrapper around zio_read() that omits reading gang
2454  * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
2455  * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
2456  * of the gang header plus zio_checksum_compute() of the data to update the
2457  * gang header's blk_cksum as described above.
2458  *
2459  * The two-phase assemble/issue model solves the problem of partial failure --
2460  * what if you'd freed part of a gang block but then couldn't read the
2461  * gang header for another part?  Assembling the entire gang tree first
2462  * ensures that all the necessary gang header I/O has succeeded before
2463  * starting the actual work of free, claim, or write.  Once the gang tree
2464  * is assembled, free and claim are in-memory operations that cannot fail.
2465  *
2466  * In the event that a gang write fails, zio_dva_unallocate() walks the
2467  * gang tree to immediately free (i.e. insert back into the space map)
2468  * everything we've allocated.  This ensures that we don't get ENOSPC
2469  * errors during repeated suspend/resume cycles due to a flaky device.
2470  *
2471  * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
2472  * the gang tree, we won't modify the block, so we can safely defer the free
2473  * (knowing that the block is still intact).  If we *can* assemble the gang
2474  * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
2475  * each constituent bp and we can allocate a new block on the next sync pass.
2476  *
2477  * In all cases, the gang tree allows complete recovery from partial failure.
2478  * ==========================================================================
2479  */
2480 
2481 static void
2482 zio_gang_issue_func_done(zio_t *zio)
2483 {
2484 	abd_free(zio->io_abd);
2485 }
2486 
2487 static zio_t *
2488 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2489     uint64_t offset)
2490 {
2491 	if (gn != NULL)
2492 		return (pio);
2493 
2494 	return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset),
2495 	    BP_GET_PSIZE(bp), zio_gang_issue_func_done,
2496 	    NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2497 	    &pio->io_bookmark));
2498 }
2499 
2500 static zio_t *
2501 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2502     uint64_t offset)
2503 {
2504 	zio_t *zio;
2505 
2506 	if (gn != NULL) {
2507 		abd_t *gbh_abd =
2508 		    abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2509 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2510 		    gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL,
2511 		    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2512 		    &pio->io_bookmark);
2513 		/*
2514 		 * As we rewrite each gang header, the pipeline will compute
2515 		 * a new gang block header checksum for it; but no one will
2516 		 * compute a new data checksum, so we do that here.  The one
2517 		 * exception is the gang leader: the pipeline already computed
2518 		 * its data checksum because that stage precedes gang assembly.
2519 		 * (Presently, nothing actually uses interior data checksums;
2520 		 * this is just good hygiene.)
2521 		 */
2522 		if (gn != pio->io_gang_leader->io_gang_tree) {
2523 			abd_t *buf = abd_get_offset(data, offset);
2524 
2525 			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
2526 			    buf, BP_GET_PSIZE(bp));
2527 
2528 			abd_free(buf);
2529 		}
2530 		/*
2531 		 * If we are here to damage data for testing purposes,
2532 		 * leave the GBH alone so that we can detect the damage.
2533 		 */
2534 		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
2535 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2536 	} else {
2537 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2538 		    abd_get_offset(data, offset), BP_GET_PSIZE(bp),
2539 		    zio_gang_issue_func_done, NULL, pio->io_priority,
2540 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2541 	}
2542 
2543 	return (zio);
2544 }
2545 
2546 /* ARGSUSED */
2547 static zio_t *
2548 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2549     uint64_t offset)
2550 {
2551 	zio_t *zio = zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
2552 	    ZIO_GANG_CHILD_FLAGS(pio));
2553 	if (zio == NULL) {
2554 		zio = zio_null(pio, pio->io_spa,
2555 		    NULL, NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio));
2556 	}
2557 	return (zio);
2558 }
2559 
2560 /* ARGSUSED */
2561 static zio_t *
2562 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2563     uint64_t offset)
2564 {
2565 	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
2566 	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
2567 }
2568 
2569 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
2570 	NULL,
2571 	zio_read_gang,
2572 	zio_rewrite_gang,
2573 	zio_free_gang,
2574 	zio_claim_gang,
2575 	NULL
2576 };
2577 
2578 static void zio_gang_tree_assemble_done(zio_t *zio);
2579 
2580 static zio_gang_node_t *
2581 zio_gang_node_alloc(zio_gang_node_t **gnpp)
2582 {
2583 	zio_gang_node_t *gn;
2584 
2585 	ASSERT(*gnpp == NULL);
2586 
2587 	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
2588 	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
2589 	*gnpp = gn;
2590 
2591 	return (gn);
2592 }
2593 
2594 static void
2595 zio_gang_node_free(zio_gang_node_t **gnpp)
2596 {
2597 	zio_gang_node_t *gn = *gnpp;
2598 
2599 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2600 		ASSERT(gn->gn_child[g] == NULL);
2601 
2602 	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2603 	kmem_free(gn, sizeof (*gn));
2604 	*gnpp = NULL;
2605 }
2606 
2607 static void
2608 zio_gang_tree_free(zio_gang_node_t **gnpp)
2609 {
2610 	zio_gang_node_t *gn = *gnpp;
2611 
2612 	if (gn == NULL)
2613 		return;
2614 
2615 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2616 		zio_gang_tree_free(&gn->gn_child[g]);
2617 
2618 	zio_gang_node_free(gnpp);
2619 }
2620 
2621 static void
2622 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
2623 {
2624 	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
2625 	abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2626 
2627 	ASSERT(gio->io_gang_leader == gio);
2628 	ASSERT(BP_IS_GANG(bp));
2629 
2630 	zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2631 	    zio_gang_tree_assemble_done, gn, gio->io_priority,
2632 	    ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
2633 }
2634 
2635 static void
2636 zio_gang_tree_assemble_done(zio_t *zio)
2637 {
2638 	zio_t *gio = zio->io_gang_leader;
2639 	zio_gang_node_t *gn = zio->io_private;
2640 	blkptr_t *bp = zio->io_bp;
2641 
2642 	ASSERT(gio == zio_unique_parent(zio));
2643 	ASSERT(zio->io_child_count == 0);
2644 
2645 	if (zio->io_error)
2646 		return;
2647 
2648 	/* this ABD was created from a linear buf in zio_gang_tree_assemble */
2649 	if (BP_SHOULD_BYTESWAP(bp))
2650 		byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size);
2651 
2652 	ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh);
2653 	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
2654 	ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2655 
2656 	abd_free(zio->io_abd);
2657 
2658 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2659 		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2660 		if (!BP_IS_GANG(gbp))
2661 			continue;
2662 		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
2663 	}
2664 }
2665 
2666 static void
2667 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data,
2668     uint64_t offset)
2669 {
2670 	zio_t *gio = pio->io_gang_leader;
2671 	zio_t *zio;
2672 
2673 	ASSERT(BP_IS_GANG(bp) == !!gn);
2674 	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
2675 	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
2676 
2677 	/*
2678 	 * If you're a gang header, your data is in gn->gn_gbh.
2679 	 * If you're a gang member, your data is in 'data' and gn == NULL.
2680 	 */
2681 	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset);
2682 
2683 	if (gn != NULL) {
2684 		ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2685 
2686 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2687 			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2688 			if (BP_IS_HOLE(gbp))
2689 				continue;
2690 			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data,
2691 			    offset);
2692 			offset += BP_GET_PSIZE(gbp);
2693 		}
2694 	}
2695 
2696 	if (gn == gio->io_gang_tree)
2697 		ASSERT3U(gio->io_size, ==, offset);
2698 
2699 	if (zio != pio)
2700 		zio_nowait(zio);
2701 }
2702 
2703 static zio_t *
2704 zio_gang_assemble(zio_t *zio)
2705 {
2706 	blkptr_t *bp = zio->io_bp;
2707 
2708 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
2709 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2710 
2711 	zio->io_gang_leader = zio;
2712 
2713 	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
2714 
2715 	return (zio);
2716 }
2717 
2718 static zio_t *
2719 zio_gang_issue(zio_t *zio)
2720 {
2721 	blkptr_t *bp = zio->io_bp;
2722 
2723 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) {
2724 		return (NULL);
2725 	}
2726 
2727 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
2728 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2729 
2730 	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
2731 		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd,
2732 		    0);
2733 	else
2734 		zio_gang_tree_free(&zio->io_gang_tree);
2735 
2736 	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2737 
2738 	return (zio);
2739 }
2740 
2741 static void
2742 zio_write_gang_member_ready(zio_t *zio)
2743 {
2744 	zio_t *pio = zio_unique_parent(zio);
2745 	dva_t *cdva = zio->io_bp->blk_dva;
2746 	dva_t *pdva = pio->io_bp->blk_dva;
2747 	uint64_t asize;
2748 	zio_t *gio __maybe_unused = zio->io_gang_leader;
2749 
2750 	if (BP_IS_HOLE(zio->io_bp))
2751 		return;
2752 
2753 	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
2754 
2755 	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
2756 	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
2757 	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
2758 	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
2759 	ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
2760 
2761 	mutex_enter(&pio->io_lock);
2762 	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
2763 		ASSERT(DVA_GET_GANG(&pdva[d]));
2764 		asize = DVA_GET_ASIZE(&pdva[d]);
2765 		asize += DVA_GET_ASIZE(&cdva[d]);
2766 		DVA_SET_ASIZE(&pdva[d], asize);
2767 	}
2768 	mutex_exit(&pio->io_lock);
2769 }
2770 
2771 static void
2772 zio_write_gang_done(zio_t *zio)
2773 {
2774 	/*
2775 	 * The io_abd field will be NULL for a zio with no data.  The io_flags
2776 	 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't
2777 	 * check for it here as it is cleared in zio_ready.
2778 	 */
2779 	if (zio->io_abd != NULL)
2780 		abd_free(zio->io_abd);
2781 }
2782 
2783 static zio_t *
2784 zio_write_gang_block(zio_t *pio, metaslab_class_t *mc)
2785 {
2786 	spa_t *spa = pio->io_spa;
2787 	blkptr_t *bp = pio->io_bp;
2788 	zio_t *gio = pio->io_gang_leader;
2789 	zio_t *zio;
2790 	zio_gang_node_t *gn, **gnpp;
2791 	zio_gbh_phys_t *gbh;
2792 	abd_t *gbh_abd;
2793 	uint64_t txg = pio->io_txg;
2794 	uint64_t resid = pio->io_size;
2795 	uint64_t lsize;
2796 	int copies = gio->io_prop.zp_copies;
2797 	int gbh_copies;
2798 	zio_prop_t zp;
2799 	int error;
2800 	boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA);
2801 
2802 	/*
2803 	 * encrypted blocks need DVA[2] free so encrypted gang headers can't
2804 	 * have a third copy.
2805 	 */
2806 	gbh_copies = MIN(copies + 1, spa_max_replication(spa));
2807 	if (gio->io_prop.zp_encrypt && gbh_copies >= SPA_DVAS_PER_BP)
2808 		gbh_copies = SPA_DVAS_PER_BP - 1;
2809 
2810 	int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER;
2811 	if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2812 		ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2813 		ASSERT(has_data);
2814 
2815 		flags |= METASLAB_ASYNC_ALLOC;
2816 		VERIFY(zfs_refcount_held(&mc->mc_allocator[pio->io_allocator].
2817 		    mca_alloc_slots, pio));
2818 
2819 		/*
2820 		 * The logical zio has already placed a reservation for
2821 		 * 'copies' allocation slots but gang blocks may require
2822 		 * additional copies. These additional copies
2823 		 * (i.e. gbh_copies - copies) are guaranteed to succeed
2824 		 * since metaslab_class_throttle_reserve() always allows
2825 		 * additional reservations for gang blocks.
2826 		 */
2827 		VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies,
2828 		    pio->io_allocator, pio, flags));
2829 	}
2830 
2831 	error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE,
2832 	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags,
2833 	    &pio->io_alloc_list, pio, pio->io_allocator);
2834 	if (error) {
2835 		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2836 			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2837 			ASSERT(has_data);
2838 
2839 			/*
2840 			 * If we failed to allocate the gang block header then
2841 			 * we remove any additional allocation reservations that
2842 			 * we placed here. The original reservation will
2843 			 * be removed when the logical I/O goes to the ready
2844 			 * stage.
2845 			 */
2846 			metaslab_class_throttle_unreserve(mc,
2847 			    gbh_copies - copies, pio->io_allocator, pio);
2848 		}
2849 
2850 		pio->io_error = error;
2851 		return (pio);
2852 	}
2853 
2854 	if (pio == gio) {
2855 		gnpp = &gio->io_gang_tree;
2856 	} else {
2857 		gnpp = pio->io_private;
2858 		ASSERT(pio->io_ready == zio_write_gang_member_ready);
2859 	}
2860 
2861 	gn = zio_gang_node_alloc(gnpp);
2862 	gbh = gn->gn_gbh;
2863 	bzero(gbh, SPA_GANGBLOCKSIZE);
2864 	gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE);
2865 
2866 	/*
2867 	 * Create the gang header.
2868 	 */
2869 	zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2870 	    zio_write_gang_done, NULL, pio->io_priority,
2871 	    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2872 
2873 	/*
2874 	 * Create and nowait the gang children.
2875 	 */
2876 	for (int g = 0; resid != 0; resid -= lsize, g++) {
2877 		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
2878 		    SPA_MINBLOCKSIZE);
2879 		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
2880 
2881 		zp.zp_checksum = gio->io_prop.zp_checksum;
2882 		zp.zp_compress = ZIO_COMPRESS_OFF;
2883 		zp.zp_complevel = gio->io_prop.zp_complevel;
2884 		zp.zp_type = DMU_OT_NONE;
2885 		zp.zp_level = 0;
2886 		zp.zp_copies = gio->io_prop.zp_copies;
2887 		zp.zp_dedup = B_FALSE;
2888 		zp.zp_dedup_verify = B_FALSE;
2889 		zp.zp_nopwrite = B_FALSE;
2890 		zp.zp_encrypt = gio->io_prop.zp_encrypt;
2891 		zp.zp_byteorder = gio->io_prop.zp_byteorder;
2892 		bzero(zp.zp_salt, ZIO_DATA_SALT_LEN);
2893 		bzero(zp.zp_iv, ZIO_DATA_IV_LEN);
2894 		bzero(zp.zp_mac, ZIO_DATA_MAC_LEN);
2895 
2896 		zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
2897 		    has_data ? abd_get_offset(pio->io_abd, pio->io_size -
2898 		    resid) : NULL, lsize, lsize, &zp,
2899 		    zio_write_gang_member_ready, NULL, NULL,
2900 		    zio_write_gang_done, &gn->gn_child[g], pio->io_priority,
2901 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2902 
2903 		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2904 			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2905 			ASSERT(has_data);
2906 
2907 			/*
2908 			 * Gang children won't throttle but we should
2909 			 * account for their work, so reserve an allocation
2910 			 * slot for them here.
2911 			 */
2912 			VERIFY(metaslab_class_throttle_reserve(mc,
2913 			    zp.zp_copies, cio->io_allocator, cio, flags));
2914 		}
2915 		zio_nowait(cio);
2916 	}
2917 
2918 	/*
2919 	 * Set pio's pipeline to just wait for zio to finish.
2920 	 */
2921 	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2922 
2923 	/*
2924 	 * We didn't allocate this bp, so make sure it doesn't get unmarked.
2925 	 */
2926 	pio->io_flags &= ~ZIO_FLAG_FASTWRITE;
2927 
2928 	zio_nowait(zio);
2929 
2930 	return (pio);
2931 }
2932 
2933 /*
2934  * The zio_nop_write stage in the pipeline determines if allocating a
2935  * new bp is necessary.  The nopwrite feature can handle writes in
2936  * either syncing or open context (i.e. zil writes) and as a result is
2937  * mutually exclusive with dedup.
2938  *
2939  * By leveraging a cryptographically secure checksum, such as SHA256, we
2940  * can compare the checksums of the new data and the old to determine if
2941  * allocating a new block is required.  Note that our requirements for
2942  * cryptographic strength are fairly weak: there can't be any accidental
2943  * hash collisions, but we don't need to be secure against intentional
2944  * (malicious) collisions.  To trigger a nopwrite, you have to be able
2945  * to write the file to begin with, and triggering an incorrect (hash
2946  * collision) nopwrite is no worse than simply writing to the file.
2947  * That said, there are no known attacks against the checksum algorithms
2948  * used for nopwrite, assuming that the salt and the checksums
2949  * themselves remain secret.
2950  */
2951 static zio_t *
2952 zio_nop_write(zio_t *zio)
2953 {
2954 	blkptr_t *bp = zio->io_bp;
2955 	blkptr_t *bp_orig = &zio->io_bp_orig;
2956 	zio_prop_t *zp = &zio->io_prop;
2957 
2958 	ASSERT(BP_GET_LEVEL(bp) == 0);
2959 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2960 	ASSERT(zp->zp_nopwrite);
2961 	ASSERT(!zp->zp_dedup);
2962 	ASSERT(zio->io_bp_override == NULL);
2963 	ASSERT(IO_IS_ALLOCATING(zio));
2964 
2965 	/*
2966 	 * Check to see if the original bp and the new bp have matching
2967 	 * characteristics (i.e. same checksum, compression algorithms, etc).
2968 	 * If they don't then just continue with the pipeline which will
2969 	 * allocate a new bp.
2970 	 */
2971 	if (BP_IS_HOLE(bp_orig) ||
2972 	    !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
2973 	    ZCHECKSUM_FLAG_NOPWRITE) ||
2974 	    BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) ||
2975 	    BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
2976 	    BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
2977 	    BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
2978 	    zp->zp_copies != BP_GET_NDVAS(bp_orig))
2979 		return (zio);
2980 
2981 	/*
2982 	 * If the checksums match then reset the pipeline so that we
2983 	 * avoid allocating a new bp and issuing any I/O.
2984 	 */
2985 	if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
2986 		ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
2987 		    ZCHECKSUM_FLAG_NOPWRITE);
2988 		ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
2989 		ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
2990 		ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
2991 		ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
2992 		    sizeof (uint64_t)) == 0);
2993 
2994 		/*
2995 		 * If we're overwriting a block that is currently on an
2996 		 * indirect vdev, then ignore the nopwrite request and
2997 		 * allow a new block to be allocated on a concrete vdev.
2998 		 */
2999 		spa_config_enter(zio->io_spa, SCL_VDEV, FTAG, RW_READER);
3000 		vdev_t *tvd = vdev_lookup_top(zio->io_spa,
3001 		    DVA_GET_VDEV(&bp->blk_dva[0]));
3002 		if (tvd->vdev_ops == &vdev_indirect_ops) {
3003 			spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
3004 			return (zio);
3005 		}
3006 		spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
3007 
3008 		*bp = *bp_orig;
3009 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3010 		zio->io_flags |= ZIO_FLAG_NOPWRITE;
3011 	}
3012 
3013 	return (zio);
3014 }
3015 
3016 /*
3017  * ==========================================================================
3018  * Dedup
3019  * ==========================================================================
3020  */
3021 static void
3022 zio_ddt_child_read_done(zio_t *zio)
3023 {
3024 	blkptr_t *bp = zio->io_bp;
3025 	ddt_entry_t *dde = zio->io_private;
3026 	ddt_phys_t *ddp;
3027 	zio_t *pio = zio_unique_parent(zio);
3028 
3029 	mutex_enter(&pio->io_lock);
3030 	ddp = ddt_phys_select(dde, bp);
3031 	if (zio->io_error == 0)
3032 		ddt_phys_clear(ddp);	/* this ddp doesn't need repair */
3033 
3034 	if (zio->io_error == 0 && dde->dde_repair_abd == NULL)
3035 		dde->dde_repair_abd = zio->io_abd;
3036 	else
3037 		abd_free(zio->io_abd);
3038 	mutex_exit(&pio->io_lock);
3039 }
3040 
3041 static zio_t *
3042 zio_ddt_read_start(zio_t *zio)
3043 {
3044 	blkptr_t *bp = zio->io_bp;
3045 
3046 	ASSERT(BP_GET_DEDUP(bp));
3047 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3048 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3049 
3050 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
3051 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
3052 		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
3053 		ddt_phys_t *ddp = dde->dde_phys;
3054 		ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
3055 		blkptr_t blk;
3056 
3057 		ASSERT(zio->io_vsd == NULL);
3058 		zio->io_vsd = dde;
3059 
3060 		if (ddp_self == NULL)
3061 			return (zio);
3062 
3063 		for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
3064 			if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
3065 				continue;
3066 			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
3067 			    &blk);
3068 			zio_nowait(zio_read(zio, zio->io_spa, &blk,
3069 			    abd_alloc_for_io(zio->io_size, B_TRUE),
3070 			    zio->io_size, zio_ddt_child_read_done, dde,
3071 			    zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) |
3072 			    ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark));
3073 		}
3074 		return (zio);
3075 	}
3076 
3077 	zio_nowait(zio_read(zio, zio->io_spa, bp,
3078 	    zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority,
3079 	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
3080 
3081 	return (zio);
3082 }
3083 
3084 static zio_t *
3085 zio_ddt_read_done(zio_t *zio)
3086 {
3087 	blkptr_t *bp = zio->io_bp;
3088 
3089 	if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) {
3090 		return (NULL);
3091 	}
3092 
3093 	ASSERT(BP_GET_DEDUP(bp));
3094 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3095 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3096 
3097 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
3098 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
3099 		ddt_entry_t *dde = zio->io_vsd;
3100 		if (ddt == NULL) {
3101 			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
3102 			return (zio);
3103 		}
3104 		if (dde == NULL) {
3105 			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
3106 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
3107 			return (NULL);
3108 		}
3109 		if (dde->dde_repair_abd != NULL) {
3110 			abd_copy(zio->io_abd, dde->dde_repair_abd,
3111 			    zio->io_size);
3112 			zio->io_child_error[ZIO_CHILD_DDT] = 0;
3113 		}
3114 		ddt_repair_done(ddt, dde);
3115 		zio->io_vsd = NULL;
3116 	}
3117 
3118 	ASSERT(zio->io_vsd == NULL);
3119 
3120 	return (zio);
3121 }
3122 
3123 static boolean_t
3124 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
3125 {
3126 	spa_t *spa = zio->io_spa;
3127 	boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW);
3128 
3129 	ASSERT(!(zio->io_bp_override && do_raw));
3130 
3131 	/*
3132 	 * Note: we compare the original data, not the transformed data,
3133 	 * because when zio->io_bp is an override bp, we will not have
3134 	 * pushed the I/O transforms.  That's an important optimization
3135 	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
3136 	 * However, we should never get a raw, override zio so in these
3137 	 * cases we can compare the io_abd directly. This is useful because
3138 	 * it allows us to do dedup verification even if we don't have access
3139 	 * to the original data (for instance, if the encryption keys aren't
3140 	 * loaded).
3141 	 */
3142 
3143 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
3144 		zio_t *lio = dde->dde_lead_zio[p];
3145 
3146 		if (lio != NULL && do_raw) {
3147 			return (lio->io_size != zio->io_size ||
3148 			    abd_cmp(zio->io_abd, lio->io_abd) != 0);
3149 		} else if (lio != NULL) {
3150 			return (lio->io_orig_size != zio->io_orig_size ||
3151 			    abd_cmp(zio->io_orig_abd, lio->io_orig_abd) != 0);
3152 		}
3153 	}
3154 
3155 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
3156 		ddt_phys_t *ddp = &dde->dde_phys[p];
3157 
3158 		if (ddp->ddp_phys_birth != 0 && do_raw) {
3159 			blkptr_t blk = *zio->io_bp;
3160 			uint64_t psize;
3161 			abd_t *tmpabd;
3162 			int error;
3163 
3164 			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
3165 			psize = BP_GET_PSIZE(&blk);
3166 
3167 			if (psize != zio->io_size)
3168 				return (B_TRUE);
3169 
3170 			ddt_exit(ddt);
3171 
3172 			tmpabd = abd_alloc_for_io(psize, B_TRUE);
3173 
3174 			error = zio_wait(zio_read(NULL, spa, &blk, tmpabd,
3175 			    psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
3176 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3177 			    ZIO_FLAG_RAW, &zio->io_bookmark));
3178 
3179 			if (error == 0) {
3180 				if (abd_cmp(tmpabd, zio->io_abd) != 0)
3181 					error = SET_ERROR(ENOENT);
3182 			}
3183 
3184 			abd_free(tmpabd);
3185 			ddt_enter(ddt);
3186 			return (error != 0);
3187 		} else if (ddp->ddp_phys_birth != 0) {
3188 			arc_buf_t *abuf = NULL;
3189 			arc_flags_t aflags = ARC_FLAG_WAIT;
3190 			blkptr_t blk = *zio->io_bp;
3191 			int error;
3192 
3193 			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
3194 
3195 			if (BP_GET_LSIZE(&blk) != zio->io_orig_size)
3196 				return (B_TRUE);
3197 
3198 			ddt_exit(ddt);
3199 
3200 			error = arc_read(NULL, spa, &blk,
3201 			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
3202 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3203 			    &aflags, &zio->io_bookmark);
3204 
3205 			if (error == 0) {
3206 				if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data,
3207 				    zio->io_orig_size) != 0)
3208 					error = SET_ERROR(ENOENT);
3209 				arc_buf_destroy(abuf, &abuf);
3210 			}
3211 
3212 			ddt_enter(ddt);
3213 			return (error != 0);
3214 		}
3215 	}
3216 
3217 	return (B_FALSE);
3218 }
3219 
3220 static void
3221 zio_ddt_child_write_ready(zio_t *zio)
3222 {
3223 	int p = zio->io_prop.zp_copies;
3224 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3225 	ddt_entry_t *dde = zio->io_private;
3226 	ddt_phys_t *ddp = &dde->dde_phys[p];
3227 	zio_t *pio;
3228 
3229 	if (zio->io_error)
3230 		return;
3231 
3232 	ddt_enter(ddt);
3233 
3234 	ASSERT(dde->dde_lead_zio[p] == zio);
3235 
3236 	ddt_phys_fill(ddp, zio->io_bp);
3237 
3238 	zio_link_t *zl = NULL;
3239 	while ((pio = zio_walk_parents(zio, &zl)) != NULL)
3240 		ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
3241 
3242 	ddt_exit(ddt);
3243 }
3244 
3245 static void
3246 zio_ddt_child_write_done(zio_t *zio)
3247 {
3248 	int p = zio->io_prop.zp_copies;
3249 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3250 	ddt_entry_t *dde = zio->io_private;
3251 	ddt_phys_t *ddp = &dde->dde_phys[p];
3252 
3253 	ddt_enter(ddt);
3254 
3255 	ASSERT(ddp->ddp_refcnt == 0);
3256 	ASSERT(dde->dde_lead_zio[p] == zio);
3257 	dde->dde_lead_zio[p] = NULL;
3258 
3259 	if (zio->io_error == 0) {
3260 		zio_link_t *zl = NULL;
3261 		while (zio_walk_parents(zio, &zl) != NULL)
3262 			ddt_phys_addref(ddp);
3263 	} else {
3264 		ddt_phys_clear(ddp);
3265 	}
3266 
3267 	ddt_exit(ddt);
3268 }
3269 
3270 static zio_t *
3271 zio_ddt_write(zio_t *zio)
3272 {
3273 	spa_t *spa = zio->io_spa;
3274 	blkptr_t *bp = zio->io_bp;
3275 	uint64_t txg = zio->io_txg;
3276 	zio_prop_t *zp = &zio->io_prop;
3277 	int p = zp->zp_copies;
3278 	zio_t *cio = NULL;
3279 	ddt_t *ddt = ddt_select(spa, bp);
3280 	ddt_entry_t *dde;
3281 	ddt_phys_t *ddp;
3282 
3283 	ASSERT(BP_GET_DEDUP(bp));
3284 	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
3285 	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
3286 	ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW)));
3287 
3288 	ddt_enter(ddt);
3289 	dde = ddt_lookup(ddt, bp, B_TRUE);
3290 	ddp = &dde->dde_phys[p];
3291 
3292 	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
3293 		/*
3294 		 * If we're using a weak checksum, upgrade to a strong checksum
3295 		 * and try again.  If we're already using a strong checksum,
3296 		 * we can't resolve it, so just convert to an ordinary write.
3297 		 * (And automatically e-mail a paper to Nature?)
3298 		 */
3299 		if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
3300 		    ZCHECKSUM_FLAG_DEDUP)) {
3301 			zp->zp_checksum = spa_dedup_checksum(spa);
3302 			zio_pop_transforms(zio);
3303 			zio->io_stage = ZIO_STAGE_OPEN;
3304 			BP_ZERO(bp);
3305 		} else {
3306 			zp->zp_dedup = B_FALSE;
3307 			BP_SET_DEDUP(bp, B_FALSE);
3308 		}
3309 		ASSERT(!BP_GET_DEDUP(bp));
3310 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
3311 		ddt_exit(ddt);
3312 		return (zio);
3313 	}
3314 
3315 	if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
3316 		if (ddp->ddp_phys_birth != 0)
3317 			ddt_bp_fill(ddp, bp, txg);
3318 		if (dde->dde_lead_zio[p] != NULL)
3319 			zio_add_child(zio, dde->dde_lead_zio[p]);
3320 		else
3321 			ddt_phys_addref(ddp);
3322 	} else if (zio->io_bp_override) {
3323 		ASSERT(bp->blk_birth == txg);
3324 		ASSERT(BP_EQUAL(bp, zio->io_bp_override));
3325 		ddt_phys_fill(ddp, bp);
3326 		ddt_phys_addref(ddp);
3327 	} else {
3328 		cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
3329 		    zio->io_orig_size, zio->io_orig_size, zp,
3330 		    zio_ddt_child_write_ready, NULL, NULL,
3331 		    zio_ddt_child_write_done, dde, zio->io_priority,
3332 		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
3333 
3334 		zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL);
3335 		dde->dde_lead_zio[p] = cio;
3336 	}
3337 
3338 	ddt_exit(ddt);
3339 
3340 	zio_nowait(cio);
3341 
3342 	return (zio);
3343 }
3344 
3345 ddt_entry_t *freedde; /* for debugging */
3346 
3347 static zio_t *
3348 zio_ddt_free(zio_t *zio)
3349 {
3350 	spa_t *spa = zio->io_spa;
3351 	blkptr_t *bp = zio->io_bp;
3352 	ddt_t *ddt = ddt_select(spa, bp);
3353 	ddt_entry_t *dde;
3354 	ddt_phys_t *ddp;
3355 
3356 	ASSERT(BP_GET_DEDUP(bp));
3357 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3358 
3359 	ddt_enter(ddt);
3360 	freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
3361 	if (dde) {
3362 		ddp = ddt_phys_select(dde, bp);
3363 		if (ddp)
3364 			ddt_phys_decref(ddp);
3365 	}
3366 	ddt_exit(ddt);
3367 
3368 	return (zio);
3369 }
3370 
3371 /*
3372  * ==========================================================================
3373  * Allocate and free blocks
3374  * ==========================================================================
3375  */
3376 
3377 static zio_t *
3378 zio_io_to_allocate(spa_t *spa, int allocator)
3379 {
3380 	zio_t *zio;
3381 
3382 	ASSERT(MUTEX_HELD(&spa->spa_alloc_locks[allocator]));
3383 
3384 	zio = avl_first(&spa->spa_alloc_trees[allocator]);
3385 	if (zio == NULL)
3386 		return (NULL);
3387 
3388 	ASSERT(IO_IS_ALLOCATING(zio));
3389 
3390 	/*
3391 	 * Try to place a reservation for this zio. If we're unable to
3392 	 * reserve then we throttle.
3393 	 */
3394 	ASSERT3U(zio->io_allocator, ==, allocator);
3395 	if (!metaslab_class_throttle_reserve(zio->io_metaslab_class,
3396 	    zio->io_prop.zp_copies, zio->io_allocator, zio, 0)) {
3397 		return (NULL);
3398 	}
3399 
3400 	avl_remove(&spa->spa_alloc_trees[allocator], zio);
3401 	ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE);
3402 
3403 	return (zio);
3404 }
3405 
3406 static zio_t *
3407 zio_dva_throttle(zio_t *zio)
3408 {
3409 	spa_t *spa = zio->io_spa;
3410 	zio_t *nio;
3411 	metaslab_class_t *mc;
3412 
3413 	/* locate an appropriate allocation class */
3414 	mc = spa_preferred_class(spa, zio->io_size, zio->io_prop.zp_type,
3415 	    zio->io_prop.zp_level, zio->io_prop.zp_zpl_smallblk);
3416 
3417 	if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE ||
3418 	    !mc->mc_alloc_throttle_enabled ||
3419 	    zio->io_child_type == ZIO_CHILD_GANG ||
3420 	    zio->io_flags & ZIO_FLAG_NODATA) {
3421 		return (zio);
3422 	}
3423 
3424 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3425 
3426 	ASSERT3U(zio->io_queued_timestamp, >, 0);
3427 	ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE);
3428 
3429 	zbookmark_phys_t *bm = &zio->io_bookmark;
3430 	/*
3431 	 * We want to try to use as many allocators as possible to help improve
3432 	 * performance, but we also want logically adjacent IOs to be physically
3433 	 * adjacent to improve sequential read performance. We chunk each object
3434 	 * into 2^20 block regions, and then hash based on the objset, object,
3435 	 * level, and region to accomplish both of these goals.
3436 	 */
3437 	zio->io_allocator = cityhash4(bm->zb_objset, bm->zb_object,
3438 	    bm->zb_level, bm->zb_blkid >> 20) % spa->spa_alloc_count;
3439 	mutex_enter(&spa->spa_alloc_locks[zio->io_allocator]);
3440 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3441 	zio->io_metaslab_class = mc;
3442 	avl_add(&spa->spa_alloc_trees[zio->io_allocator], zio);
3443 	nio = zio_io_to_allocate(spa, zio->io_allocator);
3444 	mutex_exit(&spa->spa_alloc_locks[zio->io_allocator]);
3445 	return (nio);
3446 }
3447 
3448 static void
3449 zio_allocate_dispatch(spa_t *spa, int allocator)
3450 {
3451 	zio_t *zio;
3452 
3453 	mutex_enter(&spa->spa_alloc_locks[allocator]);
3454 	zio = zio_io_to_allocate(spa, allocator);
3455 	mutex_exit(&spa->spa_alloc_locks[allocator]);
3456 	if (zio == NULL)
3457 		return;
3458 
3459 	ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE);
3460 	ASSERT0(zio->io_error);
3461 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE);
3462 }
3463 
3464 static zio_t *
3465 zio_dva_allocate(zio_t *zio)
3466 {
3467 	spa_t *spa = zio->io_spa;
3468 	metaslab_class_t *mc;
3469 	blkptr_t *bp = zio->io_bp;
3470 	int error;
3471 	int flags = 0;
3472 
3473 	if (zio->io_gang_leader == NULL) {
3474 		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3475 		zio->io_gang_leader = zio;
3476 	}
3477 
3478 	ASSERT(BP_IS_HOLE(bp));
3479 	ASSERT0(BP_GET_NDVAS(bp));
3480 	ASSERT3U(zio->io_prop.zp_copies, >, 0);
3481 	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
3482 	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
3483 
3484 	flags |= (zio->io_flags & ZIO_FLAG_FASTWRITE) ? METASLAB_FASTWRITE : 0;
3485 	if (zio->io_flags & ZIO_FLAG_NODATA)
3486 		flags |= METASLAB_DONT_THROTTLE;
3487 	if (zio->io_flags & ZIO_FLAG_GANG_CHILD)
3488 		flags |= METASLAB_GANG_CHILD;
3489 	if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE)
3490 		flags |= METASLAB_ASYNC_ALLOC;
3491 
3492 	/*
3493 	 * if not already chosen, locate an appropriate allocation class
3494 	 */
3495 	mc = zio->io_metaslab_class;
3496 	if (mc == NULL) {
3497 		mc = spa_preferred_class(spa, zio->io_size,
3498 		    zio->io_prop.zp_type, zio->io_prop.zp_level,
3499 		    zio->io_prop.zp_zpl_smallblk);
3500 		zio->io_metaslab_class = mc;
3501 	}
3502 
3503 	/*
3504 	 * Try allocating the block in the usual metaslab class.
3505 	 * If that's full, allocate it in the normal class.
3506 	 * If that's full, allocate as a gang block,
3507 	 * and if all are full, the allocation fails (which shouldn't happen).
3508 	 *
3509 	 * Note that we do not fall back on embedded slog (ZIL) space, to
3510 	 * preserve unfragmented slog space, which is critical for decent
3511 	 * sync write performance.  If a log allocation fails, we will fall
3512 	 * back to spa_sync() which is abysmal for performance.
3513 	 */
3514 	error = metaslab_alloc(spa, mc, zio->io_size, bp,
3515 	    zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3516 	    &zio->io_alloc_list, zio, zio->io_allocator);
3517 
3518 	/*
3519 	 * Fallback to normal class when an alloc class is full
3520 	 */
3521 	if (error == ENOSPC && mc != spa_normal_class(spa)) {
3522 		/*
3523 		 * If throttling, transfer reservation over to normal class.
3524 		 * The io_allocator slot can remain the same even though we
3525 		 * are switching classes.
3526 		 */
3527 		if (mc->mc_alloc_throttle_enabled &&
3528 		    (zio->io_flags & ZIO_FLAG_IO_ALLOCATING)) {
3529 			metaslab_class_throttle_unreserve(mc,
3530 			    zio->io_prop.zp_copies, zio->io_allocator, zio);
3531 			zio->io_flags &= ~ZIO_FLAG_IO_ALLOCATING;
3532 
3533 			VERIFY(metaslab_class_throttle_reserve(
3534 			    spa_normal_class(spa),
3535 			    zio->io_prop.zp_copies, zio->io_allocator, zio,
3536 			    flags | METASLAB_MUST_RESERVE));
3537 		}
3538 		zio->io_metaslab_class = mc = spa_normal_class(spa);
3539 		if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) {
3540 			zfs_dbgmsg("%s: metaslab allocation failure, "
3541 			    "trying normal class: zio %px, size %llu, error %d",
3542 			    spa_name(spa), zio, zio->io_size, error);
3543 		}
3544 
3545 		error = metaslab_alloc(spa, mc, zio->io_size, bp,
3546 		    zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3547 		    &zio->io_alloc_list, zio, zio->io_allocator);
3548 	}
3549 
3550 	if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) {
3551 		if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) {
3552 			zfs_dbgmsg("%s: metaslab allocation failure, "
3553 			    "trying ganging: zio %px, size %llu, error %d",
3554 			    spa_name(spa), zio, zio->io_size, error);
3555 		}
3556 		return (zio_write_gang_block(zio, mc));
3557 	}
3558 	if (error != 0) {
3559 		if (error != ENOSPC ||
3560 		    (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC)) {
3561 			zfs_dbgmsg("%s: metaslab allocation failure: zio %px, "
3562 			    "size %llu, error %d",
3563 			    spa_name(spa), zio, zio->io_size, error);
3564 		}
3565 		zio->io_error = error;
3566 	}
3567 
3568 	return (zio);
3569 }
3570 
3571 static zio_t *
3572 zio_dva_free(zio_t *zio)
3573 {
3574 	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
3575 
3576 	return (zio);
3577 }
3578 
3579 static zio_t *
3580 zio_dva_claim(zio_t *zio)
3581 {
3582 	int error;
3583 
3584 	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
3585 	if (error)
3586 		zio->io_error = error;
3587 
3588 	return (zio);
3589 }
3590 
3591 /*
3592  * Undo an allocation.  This is used by zio_done() when an I/O fails
3593  * and we want to give back the block we just allocated.
3594  * This handles both normal blocks and gang blocks.
3595  */
3596 static void
3597 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
3598 {
3599 	ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
3600 	ASSERT(zio->io_bp_override == NULL);
3601 
3602 	if (!BP_IS_HOLE(bp))
3603 		metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
3604 
3605 	if (gn != NULL) {
3606 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
3607 			zio_dva_unallocate(zio, gn->gn_child[g],
3608 			    &gn->gn_gbh->zg_blkptr[g]);
3609 		}
3610 	}
3611 }
3612 
3613 /*
3614  * Try to allocate an intent log block.  Return 0 on success, errno on failure.
3615  */
3616 int
3617 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp,
3618     uint64_t size, boolean_t *slog)
3619 {
3620 	int error = 1;
3621 	zio_alloc_list_t io_alloc_list;
3622 
3623 	ASSERT(txg > spa_syncing_txg(spa));
3624 
3625 	metaslab_trace_init(&io_alloc_list);
3626 
3627 	/*
3628 	 * Block pointer fields are useful to metaslabs for stats and debugging.
3629 	 * Fill in the obvious ones before calling into metaslab_alloc().
3630 	 */
3631 	BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3632 	BP_SET_PSIZE(new_bp, size);
3633 	BP_SET_LEVEL(new_bp, 0);
3634 
3635 	/*
3636 	 * When allocating a zil block, we don't have information about
3637 	 * the final destination of the block except the objset it's part
3638 	 * of, so we just hash the objset ID to pick the allocator to get
3639 	 * some parallelism.
3640 	 */
3641 	int flags = METASLAB_FASTWRITE | METASLAB_ZIL;
3642 	int allocator = cityhash4(0, 0, 0, os->os_dsl_dataset->ds_object) %
3643 	    spa->spa_alloc_count;
3644 	error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1,
3645 	    txg, NULL, flags, &io_alloc_list, NULL, allocator);
3646 	*slog = (error == 0);
3647 	if (error != 0) {
3648 		error = metaslab_alloc(spa, spa_embedded_log_class(spa), size,
3649 		    new_bp, 1, txg, NULL, flags,
3650 		    &io_alloc_list, NULL, allocator);
3651 	}
3652 	if (error != 0) {
3653 		error = metaslab_alloc(spa, spa_normal_class(spa), size,
3654 		    new_bp, 1, txg, NULL, flags,
3655 		    &io_alloc_list, NULL, allocator);
3656 	}
3657 	metaslab_trace_fini(&io_alloc_list);
3658 
3659 	if (error == 0) {
3660 		BP_SET_LSIZE(new_bp, size);
3661 		BP_SET_PSIZE(new_bp, size);
3662 		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
3663 		BP_SET_CHECKSUM(new_bp,
3664 		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL
3665 		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
3666 		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3667 		BP_SET_LEVEL(new_bp, 0);
3668 		BP_SET_DEDUP(new_bp, 0);
3669 		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
3670 
3671 		/*
3672 		 * encrypted blocks will require an IV and salt. We generate
3673 		 * these now since we will not be rewriting the bp at
3674 		 * rewrite time.
3675 		 */
3676 		if (os->os_encrypted) {
3677 			uint8_t iv[ZIO_DATA_IV_LEN];
3678 			uint8_t salt[ZIO_DATA_SALT_LEN];
3679 
3680 			BP_SET_CRYPT(new_bp, B_TRUE);
3681 			VERIFY0(spa_crypt_get_salt(spa,
3682 			    dmu_objset_id(os), salt));
3683 			VERIFY0(zio_crypt_generate_iv(iv));
3684 
3685 			zio_crypt_encode_params_bp(new_bp, salt, iv);
3686 		}
3687 	} else {
3688 		zfs_dbgmsg("%s: zil block allocation failure: "
3689 		    "size %llu, error %d", spa_name(spa), size, error);
3690 	}
3691 
3692 	return (error);
3693 }
3694 
3695 /*
3696  * ==========================================================================
3697  * Read and write to physical devices
3698  * ==========================================================================
3699  */
3700 
3701 /*
3702  * Issue an I/O to the underlying vdev. Typically the issue pipeline
3703  * stops after this stage and will resume upon I/O completion.
3704  * However, there are instances where the vdev layer may need to
3705  * continue the pipeline when an I/O was not issued. Since the I/O
3706  * that was sent to the vdev layer might be different than the one
3707  * currently active in the pipeline (see vdev_queue_io()), we explicitly
3708  * force the underlying vdev layers to call either zio_execute() or
3709  * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
3710  */
3711 static zio_t *
3712 zio_vdev_io_start(zio_t *zio)
3713 {
3714 	vdev_t *vd = zio->io_vd;
3715 	uint64_t align;
3716 	spa_t *spa = zio->io_spa;
3717 
3718 	zio->io_delay = 0;
3719 
3720 	ASSERT(zio->io_error == 0);
3721 	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
3722 
3723 	if (vd == NULL) {
3724 		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3725 			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
3726 
3727 		/*
3728 		 * The mirror_ops handle multiple DVAs in a single BP.
3729 		 */
3730 		vdev_mirror_ops.vdev_op_io_start(zio);
3731 		return (NULL);
3732 	}
3733 
3734 	ASSERT3P(zio->io_logical, !=, zio);
3735 	if (zio->io_type == ZIO_TYPE_WRITE) {
3736 		ASSERT(spa->spa_trust_config);
3737 
3738 		/*
3739 		 * Note: the code can handle other kinds of writes,
3740 		 * but we don't expect them.
3741 		 */
3742 		if (zio->io_vd->vdev_removing) {
3743 			ASSERT(zio->io_flags &
3744 			    (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL |
3745 			    ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE));
3746 		}
3747 	}
3748 
3749 	align = 1ULL << vd->vdev_top->vdev_ashift;
3750 
3751 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
3752 	    P2PHASE(zio->io_size, align) != 0) {
3753 		/* Transform logical writes to be a full physical block size. */
3754 		uint64_t asize = P2ROUNDUP(zio->io_size, align);
3755 		abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize);
3756 		ASSERT(vd == vd->vdev_top);
3757 		if (zio->io_type == ZIO_TYPE_WRITE) {
3758 			abd_copy(abuf, zio->io_abd, zio->io_size);
3759 			abd_zero_off(abuf, zio->io_size, asize - zio->io_size);
3760 		}
3761 		zio_push_transform(zio, abuf, asize, asize, zio_subblock);
3762 	}
3763 
3764 	/*
3765 	 * If this is not a physical io, make sure that it is properly aligned
3766 	 * before proceeding.
3767 	 */
3768 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
3769 		ASSERT0(P2PHASE(zio->io_offset, align));
3770 		ASSERT0(P2PHASE(zio->io_size, align));
3771 	} else {
3772 		/*
3773 		 * For physical writes, we allow 512b aligned writes and assume
3774 		 * the device will perform a read-modify-write as necessary.
3775 		 */
3776 		ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
3777 		ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
3778 	}
3779 
3780 	VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
3781 
3782 	/*
3783 	 * If this is a repair I/O, and there's no self-healing involved --
3784 	 * that is, we're just resilvering what we expect to resilver --
3785 	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
3786 	 * This prevents spurious resilvering.
3787 	 *
3788 	 * There are a few ways that we can end up creating these spurious
3789 	 * resilver i/os:
3790 	 *
3791 	 * 1. A resilver i/o will be issued if any DVA in the BP has a
3792 	 * dirty DTL.  The mirror code will issue resilver writes to
3793 	 * each DVA, including the one(s) that are not on vdevs with dirty
3794 	 * DTLs.
3795 	 *
3796 	 * 2. With nested replication, which happens when we have a
3797 	 * "replacing" or "spare" vdev that's a child of a mirror or raidz.
3798 	 * For example, given mirror(replacing(A+B), C), it's likely that
3799 	 * only A is out of date (it's the new device). In this case, we'll
3800 	 * read from C, then use the data to resilver A+B -- but we don't
3801 	 * actually want to resilver B, just A. The top-level mirror has no
3802 	 * way to know this, so instead we just discard unnecessary repairs
3803 	 * as we work our way down the vdev tree.
3804 	 *
3805 	 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc.
3806 	 * The same logic applies to any form of nested replication: ditto
3807 	 * + mirror, RAID-Z + replacing, etc.
3808 	 *
3809 	 * However, indirect vdevs point off to other vdevs which may have
3810 	 * DTL's, so we never bypass them.  The child i/os on concrete vdevs
3811 	 * will be properly bypassed instead.
3812 	 *
3813 	 * Leaf DTL_PARTIAL can be empty when a legitimate write comes from
3814 	 * a dRAID spare vdev. For example, when a dRAID spare is first
3815 	 * used, its spare blocks need to be written to but the leaf vdev's
3816 	 * of such blocks can have empty DTL_PARTIAL.
3817 	 *
3818 	 * There seemed no clean way to allow such writes while bypassing
3819 	 * spurious ones. At this point, just avoid all bypassing for dRAID
3820 	 * for correctness.
3821 	 */
3822 	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
3823 	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
3824 	    zio->io_txg != 0 &&	/* not a delegated i/o */
3825 	    vd->vdev_ops != &vdev_indirect_ops &&
3826 	    vd->vdev_top->vdev_ops != &vdev_draid_ops &&
3827 	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
3828 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3829 		zio_vdev_io_bypass(zio);
3830 		return (zio);
3831 	}
3832 
3833 	/*
3834 	 * Select the next best leaf I/O to process.  Distributed spares are
3835 	 * excluded since they dispatch the I/O directly to a leaf vdev after
3836 	 * applying the dRAID mapping.
3837 	 */
3838 	if (vd->vdev_ops->vdev_op_leaf &&
3839 	    vd->vdev_ops != &vdev_draid_spare_ops &&
3840 	    (zio->io_type == ZIO_TYPE_READ ||
3841 	    zio->io_type == ZIO_TYPE_WRITE ||
3842 	    zio->io_type == ZIO_TYPE_TRIM)) {
3843 
3844 		if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio))
3845 			return (zio);
3846 
3847 		if ((zio = vdev_queue_io(zio)) == NULL)
3848 			return (NULL);
3849 
3850 		if (!vdev_accessible(vd, zio)) {
3851 			zio->io_error = SET_ERROR(ENXIO);
3852 			zio_interrupt(zio);
3853 			return (NULL);
3854 		}
3855 		zio->io_delay = gethrtime();
3856 	}
3857 
3858 	vd->vdev_ops->vdev_op_io_start(zio);
3859 	return (NULL);
3860 }
3861 
3862 static zio_t *
3863 zio_vdev_io_done(zio_t *zio)
3864 {
3865 	vdev_t *vd = zio->io_vd;
3866 	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
3867 	boolean_t unexpected_error = B_FALSE;
3868 
3869 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3870 		return (NULL);
3871 	}
3872 
3873 	ASSERT(zio->io_type == ZIO_TYPE_READ ||
3874 	    zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM);
3875 
3876 	if (zio->io_delay)
3877 		zio->io_delay = gethrtime() - zio->io_delay;
3878 
3879 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3880 	    vd->vdev_ops != &vdev_draid_spare_ops) {
3881 		vdev_queue_io_done(zio);
3882 
3883 		if (zio->io_type == ZIO_TYPE_WRITE)
3884 			vdev_cache_write(zio);
3885 
3886 		if (zio_injection_enabled && zio->io_error == 0)
3887 			zio->io_error = zio_handle_device_injections(vd, zio,
3888 			    EIO, EILSEQ);
3889 
3890 		if (zio_injection_enabled && zio->io_error == 0)
3891 			zio->io_error = zio_handle_label_injection(zio, EIO);
3892 
3893 		if (zio->io_error && zio->io_type != ZIO_TYPE_TRIM) {
3894 			if (!vdev_accessible(vd, zio)) {
3895 				zio->io_error = SET_ERROR(ENXIO);
3896 			} else {
3897 				unexpected_error = B_TRUE;
3898 			}
3899 		}
3900 	}
3901 
3902 	ops->vdev_op_io_done(zio);
3903 
3904 	if (unexpected_error)
3905 		VERIFY(vdev_probe(vd, zio) == NULL);
3906 
3907 	return (zio);
3908 }
3909 
3910 /*
3911  * This function is used to change the priority of an existing zio that is
3912  * currently in-flight. This is used by the arc to upgrade priority in the
3913  * event that a demand read is made for a block that is currently queued
3914  * as a scrub or async read IO. Otherwise, the high priority read request
3915  * would end up having to wait for the lower priority IO.
3916  */
3917 void
3918 zio_change_priority(zio_t *pio, zio_priority_t priority)
3919 {
3920 	zio_t *cio, *cio_next;
3921 	zio_link_t *zl = NULL;
3922 
3923 	ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
3924 
3925 	if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) {
3926 		vdev_queue_change_io_priority(pio, priority);
3927 	} else {
3928 		pio->io_priority = priority;
3929 	}
3930 
3931 	mutex_enter(&pio->io_lock);
3932 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
3933 		cio_next = zio_walk_children(pio, &zl);
3934 		zio_change_priority(cio, priority);
3935 	}
3936 	mutex_exit(&pio->io_lock);
3937 }
3938 
3939 /*
3940  * For non-raidz ZIOs, we can just copy aside the bad data read from the
3941  * disk, and use that to finish the checksum ereport later.
3942  */
3943 static void
3944 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
3945     const abd_t *good_buf)
3946 {
3947 	/* no processing needed */
3948 	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
3949 }
3950 
3951 /*ARGSUSED*/
3952 void
3953 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr)
3954 {
3955 	void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size);
3956 
3957 	abd_copy(abd, zio->io_abd, zio->io_size);
3958 
3959 	zcr->zcr_cbinfo = zio->io_size;
3960 	zcr->zcr_cbdata = abd;
3961 	zcr->zcr_finish = zio_vsd_default_cksum_finish;
3962 	zcr->zcr_free = zio_abd_free;
3963 }
3964 
3965 static zio_t *
3966 zio_vdev_io_assess(zio_t *zio)
3967 {
3968 	vdev_t *vd = zio->io_vd;
3969 
3970 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3971 		return (NULL);
3972 	}
3973 
3974 	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3975 		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
3976 
3977 	if (zio->io_vsd != NULL) {
3978 		zio->io_vsd_ops->vsd_free(zio);
3979 		zio->io_vsd = NULL;
3980 	}
3981 
3982 	if (zio_injection_enabled && zio->io_error == 0)
3983 		zio->io_error = zio_handle_fault_injection(zio, EIO);
3984 
3985 	/*
3986 	 * If the I/O failed, determine whether we should attempt to retry it.
3987 	 *
3988 	 * On retry, we cut in line in the issue queue, since we don't want
3989 	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
3990 	 */
3991 	if (zio->io_error && vd == NULL &&
3992 	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
3993 		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
3994 		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
3995 		zio->io_error = 0;
3996 		zio->io_flags |= ZIO_FLAG_IO_RETRY |
3997 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
3998 		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
3999 		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
4000 		    zio_requeue_io_start_cut_in_line);
4001 		return (NULL);
4002 	}
4003 
4004 	/*
4005 	 * If we got an error on a leaf device, convert it to ENXIO
4006 	 * if the device is not accessible at all.
4007 	 */
4008 	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
4009 	    !vdev_accessible(vd, zio))
4010 		zio->io_error = SET_ERROR(ENXIO);
4011 
4012 	/*
4013 	 * If we can't write to an interior vdev (mirror or RAID-Z),
4014 	 * set vdev_cant_write so that we stop trying to allocate from it.
4015 	 */
4016 	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
4017 	    vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
4018 		vd->vdev_cant_write = B_TRUE;
4019 	}
4020 
4021 	/*
4022 	 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future
4023 	 * attempts will ever succeed. In this case we set a persistent
4024 	 * boolean flag so that we don't bother with it in the future.
4025 	 */
4026 	if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) &&
4027 	    zio->io_type == ZIO_TYPE_IOCTL &&
4028 	    zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL)
4029 		vd->vdev_nowritecache = B_TRUE;
4030 
4031 	if (zio->io_error)
4032 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4033 
4034 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
4035 	    zio->io_physdone != NULL) {
4036 		ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
4037 		ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
4038 		zio->io_physdone(zio->io_logical);
4039 	}
4040 
4041 	return (zio);
4042 }
4043 
4044 void
4045 zio_vdev_io_reissue(zio_t *zio)
4046 {
4047 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
4048 	ASSERT(zio->io_error == 0);
4049 
4050 	zio->io_stage >>= 1;
4051 }
4052 
4053 void
4054 zio_vdev_io_redone(zio_t *zio)
4055 {
4056 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
4057 
4058 	zio->io_stage >>= 1;
4059 }
4060 
4061 void
4062 zio_vdev_io_bypass(zio_t *zio)
4063 {
4064 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
4065 	ASSERT(zio->io_error == 0);
4066 
4067 	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
4068 	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
4069 }
4070 
4071 /*
4072  * ==========================================================================
4073  * Encrypt and store encryption parameters
4074  * ==========================================================================
4075  */
4076 
4077 
4078 /*
4079  * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for
4080  * managing the storage of encryption parameters and passing them to the
4081  * lower-level encryption functions.
4082  */
4083 static zio_t *
4084 zio_encrypt(zio_t *zio)
4085 {
4086 	zio_prop_t *zp = &zio->io_prop;
4087 	spa_t *spa = zio->io_spa;
4088 	blkptr_t *bp = zio->io_bp;
4089 	uint64_t psize = BP_GET_PSIZE(bp);
4090 	uint64_t dsobj = zio->io_bookmark.zb_objset;
4091 	dmu_object_type_t ot = BP_GET_TYPE(bp);
4092 	void *enc_buf = NULL;
4093 	abd_t *eabd = NULL;
4094 	uint8_t salt[ZIO_DATA_SALT_LEN];
4095 	uint8_t iv[ZIO_DATA_IV_LEN];
4096 	uint8_t mac[ZIO_DATA_MAC_LEN];
4097 	boolean_t no_crypt = B_FALSE;
4098 
4099 	/* the root zio already encrypted the data */
4100 	if (zio->io_child_type == ZIO_CHILD_GANG)
4101 		return (zio);
4102 
4103 	/* only ZIL blocks are re-encrypted on rewrite */
4104 	if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG)
4105 		return (zio);
4106 
4107 	if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) {
4108 		BP_SET_CRYPT(bp, B_FALSE);
4109 		return (zio);
4110 	}
4111 
4112 	/* if we are doing raw encryption set the provided encryption params */
4113 	if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) {
4114 		ASSERT0(BP_GET_LEVEL(bp));
4115 		BP_SET_CRYPT(bp, B_TRUE);
4116 		BP_SET_BYTEORDER(bp, zp->zp_byteorder);
4117 		if (ot != DMU_OT_OBJSET)
4118 			zio_crypt_encode_mac_bp(bp, zp->zp_mac);
4119 
4120 		/* dnode blocks must be written out in the provided byteorder */
4121 		if (zp->zp_byteorder != ZFS_HOST_BYTEORDER &&
4122 		    ot == DMU_OT_DNODE) {
4123 			void *bswap_buf = zio_buf_alloc(psize);
4124 			abd_t *babd = abd_get_from_buf(bswap_buf, psize);
4125 
4126 			ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4127 			abd_copy_to_buf(bswap_buf, zio->io_abd, psize);
4128 			dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf,
4129 			    psize);
4130 
4131 			abd_take_ownership_of_buf(babd, B_TRUE);
4132 			zio_push_transform(zio, babd, psize, psize, NULL);
4133 		}
4134 
4135 		if (DMU_OT_IS_ENCRYPTED(ot))
4136 			zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv);
4137 		return (zio);
4138 	}
4139 
4140 	/* indirect blocks only maintain a cksum of the lower level MACs */
4141 	if (BP_GET_LEVEL(bp) > 0) {
4142 		BP_SET_CRYPT(bp, B_TRUE);
4143 		VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE,
4144 		    zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp),
4145 		    mac));
4146 		zio_crypt_encode_mac_bp(bp, mac);
4147 		return (zio);
4148 	}
4149 
4150 	/*
4151 	 * Objset blocks are a special case since they have 2 256-bit MACs
4152 	 * embedded within them.
4153 	 */
4154 	if (ot == DMU_OT_OBJSET) {
4155 		ASSERT0(DMU_OT_IS_ENCRYPTED(ot));
4156 		ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4157 		BP_SET_CRYPT(bp, B_TRUE);
4158 		VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj,
4159 		    zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp)));
4160 		return (zio);
4161 	}
4162 
4163 	/* unencrypted object types are only authenticated with a MAC */
4164 	if (!DMU_OT_IS_ENCRYPTED(ot)) {
4165 		BP_SET_CRYPT(bp, B_TRUE);
4166 		VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj,
4167 		    zio->io_abd, psize, mac));
4168 		zio_crypt_encode_mac_bp(bp, mac);
4169 		return (zio);
4170 	}
4171 
4172 	/*
4173 	 * Later passes of sync-to-convergence may decide to rewrite data
4174 	 * in place to avoid more disk reallocations. This presents a problem
4175 	 * for encryption because this constitutes rewriting the new data with
4176 	 * the same encryption key and IV. However, this only applies to blocks
4177 	 * in the MOS (particularly the spacemaps) and we do not encrypt the
4178 	 * MOS. We assert that the zio is allocating or an intent log write
4179 	 * to enforce this.
4180 	 */
4181 	ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG);
4182 	ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG);
4183 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION));
4184 	ASSERT3U(psize, !=, 0);
4185 
4186 	enc_buf = zio_buf_alloc(psize);
4187 	eabd = abd_get_from_buf(enc_buf, psize);
4188 	abd_take_ownership_of_buf(eabd, B_TRUE);
4189 
4190 	/*
4191 	 * For an explanation of what encryption parameters are stored
4192 	 * where, see the block comment in zio_crypt.c.
4193 	 */
4194 	if (ot == DMU_OT_INTENT_LOG) {
4195 		zio_crypt_decode_params_bp(bp, salt, iv);
4196 	} else {
4197 		BP_SET_CRYPT(bp, B_TRUE);
4198 	}
4199 
4200 	/* Perform the encryption. This should not fail */
4201 	VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark,
4202 	    BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
4203 	    salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt));
4204 
4205 	/* encode encryption metadata into the bp */
4206 	if (ot == DMU_OT_INTENT_LOG) {
4207 		/*
4208 		 * ZIL blocks store the MAC in the embedded checksum, so the
4209 		 * transform must always be applied.
4210 		 */
4211 		zio_crypt_encode_mac_zil(enc_buf, mac);
4212 		zio_push_transform(zio, eabd, psize, psize, NULL);
4213 	} else {
4214 		BP_SET_CRYPT(bp, B_TRUE);
4215 		zio_crypt_encode_params_bp(bp, salt, iv);
4216 		zio_crypt_encode_mac_bp(bp, mac);
4217 
4218 		if (no_crypt) {
4219 			ASSERT3U(ot, ==, DMU_OT_DNODE);
4220 			abd_free(eabd);
4221 		} else {
4222 			zio_push_transform(zio, eabd, psize, psize, NULL);
4223 		}
4224 	}
4225 
4226 	return (zio);
4227 }
4228 
4229 /*
4230  * ==========================================================================
4231  * Generate and verify checksums
4232  * ==========================================================================
4233  */
4234 static zio_t *
4235 zio_checksum_generate(zio_t *zio)
4236 {
4237 	blkptr_t *bp = zio->io_bp;
4238 	enum zio_checksum checksum;
4239 
4240 	if (bp == NULL) {
4241 		/*
4242 		 * This is zio_write_phys().
4243 		 * We're either generating a label checksum, or none at all.
4244 		 */
4245 		checksum = zio->io_prop.zp_checksum;
4246 
4247 		if (checksum == ZIO_CHECKSUM_OFF)
4248 			return (zio);
4249 
4250 		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
4251 	} else {
4252 		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
4253 			ASSERT(!IO_IS_ALLOCATING(zio));
4254 			checksum = ZIO_CHECKSUM_GANG_HEADER;
4255 		} else {
4256 			checksum = BP_GET_CHECKSUM(bp);
4257 		}
4258 	}
4259 
4260 	zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size);
4261 
4262 	return (zio);
4263 }
4264 
4265 static zio_t *
4266 zio_checksum_verify(zio_t *zio)
4267 {
4268 	zio_bad_cksum_t info;
4269 	blkptr_t *bp = zio->io_bp;
4270 	int error;
4271 
4272 	ASSERT(zio->io_vd != NULL);
4273 
4274 	if (bp == NULL) {
4275 		/*
4276 		 * This is zio_read_phys().
4277 		 * We're either verifying a label checksum, or nothing at all.
4278 		 */
4279 		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
4280 			return (zio);
4281 
4282 		ASSERT3U(zio->io_prop.zp_checksum, ==, ZIO_CHECKSUM_LABEL);
4283 	}
4284 
4285 	if ((error = zio_checksum_error(zio, &info)) != 0) {
4286 		zio->io_error = error;
4287 		if (error == ECKSUM &&
4288 		    !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
4289 			(void) zfs_ereport_start_checksum(zio->io_spa,
4290 			    zio->io_vd, &zio->io_bookmark, zio,
4291 			    zio->io_offset, zio->io_size, &info);
4292 			mutex_enter(&zio->io_vd->vdev_stat_lock);
4293 			zio->io_vd->vdev_stat.vs_checksum_errors++;
4294 			mutex_exit(&zio->io_vd->vdev_stat_lock);
4295 		}
4296 	}
4297 
4298 	return (zio);
4299 }
4300 
4301 /*
4302  * Called by RAID-Z to ensure we don't compute the checksum twice.
4303  */
4304 void
4305 zio_checksum_verified(zio_t *zio)
4306 {
4307 	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
4308 }
4309 
4310 /*
4311  * ==========================================================================
4312  * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
4313  * An error of 0 indicates success.  ENXIO indicates whole-device failure,
4314  * which may be transient (e.g. unplugged) or permanent.  ECKSUM and EIO
4315  * indicate errors that are specific to one I/O, and most likely permanent.
4316  * Any other error is presumed to be worse because we weren't expecting it.
4317  * ==========================================================================
4318  */
4319 int
4320 zio_worst_error(int e1, int e2)
4321 {
4322 	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
4323 	int r1, r2;
4324 
4325 	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
4326 		if (e1 == zio_error_rank[r1])
4327 			break;
4328 
4329 	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
4330 		if (e2 == zio_error_rank[r2])
4331 			break;
4332 
4333 	return (r1 > r2 ? e1 : e2);
4334 }
4335 
4336 /*
4337  * ==========================================================================
4338  * I/O completion
4339  * ==========================================================================
4340  */
4341 static zio_t *
4342 zio_ready(zio_t *zio)
4343 {
4344 	blkptr_t *bp = zio->io_bp;
4345 	zio_t *pio, *pio_next;
4346 	zio_link_t *zl = NULL;
4347 
4348 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT,
4349 	    ZIO_WAIT_READY)) {
4350 		return (NULL);
4351 	}
4352 
4353 	if (zio->io_ready) {
4354 		ASSERT(IO_IS_ALLOCATING(zio));
4355 		ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
4356 		    (zio->io_flags & ZIO_FLAG_NOPWRITE));
4357 		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
4358 
4359 		zio->io_ready(zio);
4360 	}
4361 
4362 	if (bp != NULL && bp != &zio->io_bp_copy)
4363 		zio->io_bp_copy = *bp;
4364 
4365 	if (zio->io_error != 0) {
4366 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4367 
4368 		if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4369 			ASSERT(IO_IS_ALLOCATING(zio));
4370 			ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4371 			ASSERT(zio->io_metaslab_class != NULL);
4372 
4373 			/*
4374 			 * We were unable to allocate anything, unreserve and
4375 			 * issue the next I/O to allocate.
4376 			 */
4377 			metaslab_class_throttle_unreserve(
4378 			    zio->io_metaslab_class, zio->io_prop.zp_copies,
4379 			    zio->io_allocator, zio);
4380 			zio_allocate_dispatch(zio->io_spa, zio->io_allocator);
4381 		}
4382 	}
4383 
4384 	mutex_enter(&zio->io_lock);
4385 	zio->io_state[ZIO_WAIT_READY] = 1;
4386 	pio = zio_walk_parents(zio, &zl);
4387 	mutex_exit(&zio->io_lock);
4388 
4389 	/*
4390 	 * As we notify zio's parents, new parents could be added.
4391 	 * New parents go to the head of zio's io_parent_list, however,
4392 	 * so we will (correctly) not notify them.  The remainder of zio's
4393 	 * io_parent_list, from 'pio_next' onward, cannot change because
4394 	 * all parents must wait for us to be done before they can be done.
4395 	 */
4396 	for (; pio != NULL; pio = pio_next) {
4397 		pio_next = zio_walk_parents(zio, &zl);
4398 		zio_notify_parent(pio, zio, ZIO_WAIT_READY, NULL);
4399 	}
4400 
4401 	if (zio->io_flags & ZIO_FLAG_NODATA) {
4402 		if (BP_IS_GANG(bp)) {
4403 			zio->io_flags &= ~ZIO_FLAG_NODATA;
4404 		} else {
4405 			ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE);
4406 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
4407 		}
4408 	}
4409 
4410 	if (zio_injection_enabled &&
4411 	    zio->io_spa->spa_syncing_txg == zio->io_txg)
4412 		zio_handle_ignored_writes(zio);
4413 
4414 	return (zio);
4415 }
4416 
4417 /*
4418  * Update the allocation throttle accounting.
4419  */
4420 static void
4421 zio_dva_throttle_done(zio_t *zio)
4422 {
4423 	zio_t *lio __maybe_unused = zio->io_logical;
4424 	zio_t *pio = zio_unique_parent(zio);
4425 	vdev_t *vd = zio->io_vd;
4426 	int flags = METASLAB_ASYNC_ALLOC;
4427 
4428 	ASSERT3P(zio->io_bp, !=, NULL);
4429 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
4430 	ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE);
4431 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
4432 	ASSERT(vd != NULL);
4433 	ASSERT3P(vd, ==, vd->vdev_top);
4434 	ASSERT(zio_injection_enabled || !(zio->io_flags & ZIO_FLAG_IO_RETRY));
4435 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4436 	ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING);
4437 	ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE));
4438 	ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA));
4439 
4440 	/*
4441 	 * Parents of gang children can have two flavors -- ones that
4442 	 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set)
4443 	 * and ones that allocated the constituent blocks. The allocation
4444 	 * throttle needs to know the allocating parent zio so we must find
4445 	 * it here.
4446 	 */
4447 	if (pio->io_child_type == ZIO_CHILD_GANG) {
4448 		/*
4449 		 * If our parent is a rewrite gang child then our grandparent
4450 		 * would have been the one that performed the allocation.
4451 		 */
4452 		if (pio->io_flags & ZIO_FLAG_IO_REWRITE)
4453 			pio = zio_unique_parent(pio);
4454 		flags |= METASLAB_GANG_CHILD;
4455 	}
4456 
4457 	ASSERT(IO_IS_ALLOCATING(pio));
4458 	ASSERT3P(zio, !=, zio->io_logical);
4459 	ASSERT(zio->io_logical != NULL);
4460 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4461 	ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE);
4462 	ASSERT(zio->io_metaslab_class != NULL);
4463 
4464 	mutex_enter(&pio->io_lock);
4465 	metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags,
4466 	    pio->io_allocator, B_TRUE);
4467 	mutex_exit(&pio->io_lock);
4468 
4469 	metaslab_class_throttle_unreserve(zio->io_metaslab_class, 1,
4470 	    pio->io_allocator, pio);
4471 
4472 	/*
4473 	 * Call into the pipeline to see if there is more work that
4474 	 * needs to be done. If there is work to be done it will be
4475 	 * dispatched to another taskq thread.
4476 	 */
4477 	zio_allocate_dispatch(zio->io_spa, pio->io_allocator);
4478 }
4479 
4480 static zio_t *
4481 zio_done(zio_t *zio)
4482 {
4483 	/*
4484 	 * Always attempt to keep stack usage minimal here since
4485 	 * we can be called recursively up to 19 levels deep.
4486 	 */
4487 	const uint64_t psize = zio->io_size;
4488 	zio_t *pio, *pio_next;
4489 	zio_link_t *zl = NULL;
4490 
4491 	/*
4492 	 * If our children haven't all completed,
4493 	 * wait for them and then repeat this pipeline stage.
4494 	 */
4495 	if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) {
4496 		return (NULL);
4497 	}
4498 
4499 	/*
4500 	 * If the allocation throttle is enabled, then update the accounting.
4501 	 * We only track child I/Os that are part of an allocating async
4502 	 * write. We must do this since the allocation is performed
4503 	 * by the logical I/O but the actual write is done by child I/Os.
4504 	 */
4505 	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING &&
4506 	    zio->io_child_type == ZIO_CHILD_VDEV) {
4507 		ASSERT(zio->io_metaslab_class != NULL);
4508 		ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled);
4509 		zio_dva_throttle_done(zio);
4510 	}
4511 
4512 	/*
4513 	 * If the allocation throttle is enabled, verify that
4514 	 * we have decremented the refcounts for every I/O that was throttled.
4515 	 */
4516 	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4517 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
4518 		ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4519 		ASSERT(zio->io_bp != NULL);
4520 
4521 		metaslab_group_alloc_verify(zio->io_spa, zio->io_bp, zio,
4522 		    zio->io_allocator);
4523 		VERIFY(zfs_refcount_not_held(&zio->io_metaslab_class->
4524 		    mc_allocator[zio->io_allocator].mca_alloc_slots, zio));
4525 	}
4526 
4527 
4528 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
4529 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
4530 			ASSERT(zio->io_children[c][w] == 0);
4531 
4532 	if (zio->io_bp != NULL && !BP_IS_EMBEDDED(zio->io_bp)) {
4533 		ASSERT(zio->io_bp->blk_pad[0] == 0);
4534 		ASSERT(zio->io_bp->blk_pad[1] == 0);
4535 		ASSERT(bcmp(zio->io_bp, &zio->io_bp_copy,
4536 		    sizeof (blkptr_t)) == 0 ||
4537 		    (zio->io_bp == zio_unique_parent(zio)->io_bp));
4538 		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) &&
4539 		    zio->io_bp_override == NULL &&
4540 		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
4541 			ASSERT3U(zio->io_prop.zp_copies, <=,
4542 			    BP_GET_NDVAS(zio->io_bp));
4543 			ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 ||
4544 			    (BP_COUNT_GANG(zio->io_bp) ==
4545 			    BP_GET_NDVAS(zio->io_bp)));
4546 		}
4547 		if (zio->io_flags & ZIO_FLAG_NOPWRITE)
4548 			VERIFY(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
4549 	}
4550 
4551 	/*
4552 	 * If there were child vdev/gang/ddt errors, they apply to us now.
4553 	 */
4554 	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
4555 	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
4556 	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
4557 
4558 	/*
4559 	 * If the I/O on the transformed data was successful, generate any
4560 	 * checksum reports now while we still have the transformed data.
4561 	 */
4562 	if (zio->io_error == 0) {
4563 		while (zio->io_cksum_report != NULL) {
4564 			zio_cksum_report_t *zcr = zio->io_cksum_report;
4565 			uint64_t align = zcr->zcr_align;
4566 			uint64_t asize = P2ROUNDUP(psize, align);
4567 			abd_t *adata = zio->io_abd;
4568 
4569 			if (asize != psize) {
4570 				adata = abd_alloc(asize, B_TRUE);
4571 				abd_copy(adata, zio->io_abd, psize);
4572 				abd_zero_off(adata, psize, asize - psize);
4573 			}
4574 
4575 			zio->io_cksum_report = zcr->zcr_next;
4576 			zcr->zcr_next = NULL;
4577 			zcr->zcr_finish(zcr, adata);
4578 			zfs_ereport_free_checksum(zcr);
4579 
4580 			if (asize != psize)
4581 				abd_free(adata);
4582 		}
4583 	}
4584 
4585 	zio_pop_transforms(zio);	/* note: may set zio->io_error */
4586 
4587 	vdev_stat_update(zio, psize);
4588 
4589 	/*
4590 	 * If this I/O is attached to a particular vdev is slow, exceeding
4591 	 * 30 seconds to complete, post an error described the I/O delay.
4592 	 * We ignore these errors if the device is currently unavailable.
4593 	 */
4594 	if (zio->io_delay >= MSEC2NSEC(zio_slow_io_ms)) {
4595 		if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) {
4596 			/*
4597 			 * We want to only increment our slow IO counters if
4598 			 * the IO is valid (i.e. not if the drive is removed).
4599 			 *
4600 			 * zfs_ereport_post() will also do these checks, but
4601 			 * it can also ratelimit and have other failures, so we
4602 			 * need to increment the slow_io counters independent
4603 			 * of it.
4604 			 */
4605 			if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY,
4606 			    zio->io_spa, zio->io_vd, zio)) {
4607 				mutex_enter(&zio->io_vd->vdev_stat_lock);
4608 				zio->io_vd->vdev_stat.vs_slow_ios++;
4609 				mutex_exit(&zio->io_vd->vdev_stat_lock);
4610 
4611 				(void) zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
4612 				    zio->io_spa, zio->io_vd, &zio->io_bookmark,
4613 				    zio, 0);
4614 			}
4615 		}
4616 	}
4617 
4618 	if (zio->io_error) {
4619 		/*
4620 		 * If this I/O is attached to a particular vdev,
4621 		 * generate an error message describing the I/O failure
4622 		 * at the block level.  We ignore these errors if the
4623 		 * device is currently unavailable.
4624 		 */
4625 		if (zio->io_error != ECKSUM && zio->io_vd != NULL &&
4626 		    !vdev_is_dead(zio->io_vd)) {
4627 			int ret = zfs_ereport_post(FM_EREPORT_ZFS_IO,
4628 			    zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0);
4629 			if (ret != EALREADY) {
4630 				mutex_enter(&zio->io_vd->vdev_stat_lock);
4631 				if (zio->io_type == ZIO_TYPE_READ)
4632 					zio->io_vd->vdev_stat.vs_read_errors++;
4633 				else if (zio->io_type == ZIO_TYPE_WRITE)
4634 					zio->io_vd->vdev_stat.vs_write_errors++;
4635 				mutex_exit(&zio->io_vd->vdev_stat_lock);
4636 			}
4637 		}
4638 
4639 		if ((zio->io_error == EIO || !(zio->io_flags &
4640 		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
4641 		    zio == zio->io_logical) {
4642 			/*
4643 			 * For logical I/O requests, tell the SPA to log the
4644 			 * error and generate a logical data ereport.
4645 			 */
4646 			spa_log_error(zio->io_spa, &zio->io_bookmark);
4647 			(void) zfs_ereport_post(FM_EREPORT_ZFS_DATA,
4648 			    zio->io_spa, NULL, &zio->io_bookmark, zio, 0);
4649 		}
4650 	}
4651 
4652 	if (zio->io_error && zio == zio->io_logical) {
4653 		/*
4654 		 * Determine whether zio should be reexecuted.  This will
4655 		 * propagate all the way to the root via zio_notify_parent().
4656 		 */
4657 		ASSERT(zio->io_vd == NULL && zio->io_bp != NULL);
4658 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4659 
4660 		if (IO_IS_ALLOCATING(zio) &&
4661 		    !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
4662 			if (zio->io_error != ENOSPC)
4663 				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
4664 			else
4665 				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4666 		}
4667 
4668 		if ((zio->io_type == ZIO_TYPE_READ ||
4669 		    zio->io_type == ZIO_TYPE_FREE) &&
4670 		    !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
4671 		    zio->io_error == ENXIO &&
4672 		    spa_load_state(zio->io_spa) == SPA_LOAD_NONE &&
4673 		    spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE)
4674 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4675 
4676 		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
4677 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4678 
4679 		/*
4680 		 * Here is a possibly good place to attempt to do
4681 		 * either combinatorial reconstruction or error correction
4682 		 * based on checksums.  It also might be a good place
4683 		 * to send out preliminary ereports before we suspend
4684 		 * processing.
4685 		 */
4686 	}
4687 
4688 	/*
4689 	 * If there were logical child errors, they apply to us now.
4690 	 * We defer this until now to avoid conflating logical child
4691 	 * errors with errors that happened to the zio itself when
4692 	 * updating vdev stats and reporting FMA events above.
4693 	 */
4694 	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
4695 
4696 	if ((zio->io_error || zio->io_reexecute) &&
4697 	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
4698 	    !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
4699 		zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp);
4700 
4701 	zio_gang_tree_free(&zio->io_gang_tree);
4702 
4703 	/*
4704 	 * Godfather I/Os should never suspend.
4705 	 */
4706 	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
4707 	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
4708 		zio->io_reexecute &= ~ZIO_REEXECUTE_SUSPEND;
4709 
4710 	if (zio->io_reexecute) {
4711 		/*
4712 		 * This is a logical I/O that wants to reexecute.
4713 		 *
4714 		 * Reexecute is top-down.  When an i/o fails, if it's not
4715 		 * the root, it simply notifies its parent and sticks around.
4716 		 * The parent, seeing that it still has children in zio_done(),
4717 		 * does the same.  This percolates all the way up to the root.
4718 		 * The root i/o will reexecute or suspend the entire tree.
4719 		 *
4720 		 * This approach ensures that zio_reexecute() honors
4721 		 * all the original i/o dependency relationships, e.g.
4722 		 * parents not executing until children are ready.
4723 		 */
4724 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4725 
4726 		zio->io_gang_leader = NULL;
4727 
4728 		mutex_enter(&zio->io_lock);
4729 		zio->io_state[ZIO_WAIT_DONE] = 1;
4730 		mutex_exit(&zio->io_lock);
4731 
4732 		/*
4733 		 * "The Godfather" I/O monitors its children but is
4734 		 * not a true parent to them. It will track them through
4735 		 * the pipeline but severs its ties whenever they get into
4736 		 * trouble (e.g. suspended). This allows "The Godfather"
4737 		 * I/O to return status without blocking.
4738 		 */
4739 		zl = NULL;
4740 		for (pio = zio_walk_parents(zio, &zl); pio != NULL;
4741 		    pio = pio_next) {
4742 			zio_link_t *remove_zl = zl;
4743 			pio_next = zio_walk_parents(zio, &zl);
4744 
4745 			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
4746 			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
4747 				zio_remove_child(pio, zio, remove_zl);
4748 				/*
4749 				 * This is a rare code path, so we don't
4750 				 * bother with "next_to_execute".
4751 				 */
4752 				zio_notify_parent(pio, zio, ZIO_WAIT_DONE,
4753 				    NULL);
4754 			}
4755 		}
4756 
4757 		if ((pio = zio_unique_parent(zio)) != NULL) {
4758 			/*
4759 			 * We're not a root i/o, so there's nothing to do
4760 			 * but notify our parent.  Don't propagate errors
4761 			 * upward since we haven't permanently failed yet.
4762 			 */
4763 			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
4764 			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
4765 			/*
4766 			 * This is a rare code path, so we don't bother with
4767 			 * "next_to_execute".
4768 			 */
4769 			zio_notify_parent(pio, zio, ZIO_WAIT_DONE, NULL);
4770 		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
4771 			/*
4772 			 * We'd fail again if we reexecuted now, so suspend
4773 			 * until conditions improve (e.g. device comes online).
4774 			 */
4775 			zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR);
4776 		} else {
4777 			/*
4778 			 * Reexecution is potentially a huge amount of work.
4779 			 * Hand it off to the otherwise-unused claim taskq.
4780 			 */
4781 			ASSERT(taskq_empty_ent(&zio->io_tqent));
4782 			spa_taskq_dispatch_ent(zio->io_spa,
4783 			    ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE,
4784 			    (task_func_t *)zio_reexecute, zio, 0,
4785 			    &zio->io_tqent);
4786 		}
4787 		return (NULL);
4788 	}
4789 
4790 	ASSERT(zio->io_child_count == 0);
4791 	ASSERT(zio->io_reexecute == 0);
4792 	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
4793 
4794 	/*
4795 	 * Report any checksum errors, since the I/O is complete.
4796 	 */
4797 	while (zio->io_cksum_report != NULL) {
4798 		zio_cksum_report_t *zcr = zio->io_cksum_report;
4799 		zio->io_cksum_report = zcr->zcr_next;
4800 		zcr->zcr_next = NULL;
4801 		zcr->zcr_finish(zcr, NULL);
4802 		zfs_ereport_free_checksum(zcr);
4803 	}
4804 
4805 	if (zio->io_flags & ZIO_FLAG_FASTWRITE && zio->io_bp &&
4806 	    !BP_IS_HOLE(zio->io_bp) && !BP_IS_EMBEDDED(zio->io_bp) &&
4807 	    !(zio->io_flags & ZIO_FLAG_NOPWRITE)) {
4808 		metaslab_fastwrite_unmark(zio->io_spa, zio->io_bp);
4809 	}
4810 
4811 	/*
4812 	 * It is the responsibility of the done callback to ensure that this
4813 	 * particular zio is no longer discoverable for adoption, and as
4814 	 * such, cannot acquire any new parents.
4815 	 */
4816 	if (zio->io_done)
4817 		zio->io_done(zio);
4818 
4819 	mutex_enter(&zio->io_lock);
4820 	zio->io_state[ZIO_WAIT_DONE] = 1;
4821 	mutex_exit(&zio->io_lock);
4822 
4823 	/*
4824 	 * We are done executing this zio.  We may want to execute a parent
4825 	 * next.  See the comment in zio_notify_parent().
4826 	 */
4827 	zio_t *next_to_execute = NULL;
4828 	zl = NULL;
4829 	for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) {
4830 		zio_link_t *remove_zl = zl;
4831 		pio_next = zio_walk_parents(zio, &zl);
4832 		zio_remove_child(pio, zio, remove_zl);
4833 		zio_notify_parent(pio, zio, ZIO_WAIT_DONE, &next_to_execute);
4834 	}
4835 
4836 	if (zio->io_waiter != NULL) {
4837 		mutex_enter(&zio->io_lock);
4838 		zio->io_executor = NULL;
4839 		cv_broadcast(&zio->io_cv);
4840 		mutex_exit(&zio->io_lock);
4841 	} else {
4842 		zio_destroy(zio);
4843 	}
4844 
4845 	return (next_to_execute);
4846 }
4847 
4848 /*
4849  * ==========================================================================
4850  * I/O pipeline definition
4851  * ==========================================================================
4852  */
4853 static zio_pipe_stage_t *zio_pipeline[] = {
4854 	NULL,
4855 	zio_read_bp_init,
4856 	zio_write_bp_init,
4857 	zio_free_bp_init,
4858 	zio_issue_async,
4859 	zio_write_compress,
4860 	zio_encrypt,
4861 	zio_checksum_generate,
4862 	zio_nop_write,
4863 	zio_ddt_read_start,
4864 	zio_ddt_read_done,
4865 	zio_ddt_write,
4866 	zio_ddt_free,
4867 	zio_gang_assemble,
4868 	zio_gang_issue,
4869 	zio_dva_throttle,
4870 	zio_dva_allocate,
4871 	zio_dva_free,
4872 	zio_dva_claim,
4873 	zio_ready,
4874 	zio_vdev_io_start,
4875 	zio_vdev_io_done,
4876 	zio_vdev_io_assess,
4877 	zio_checksum_verify,
4878 	zio_done
4879 };
4880 
4881 
4882 
4883 
4884 /*
4885  * Compare two zbookmark_phys_t's to see which we would reach first in a
4886  * pre-order traversal of the object tree.
4887  *
4888  * This is simple in every case aside from the meta-dnode object. For all other
4889  * objects, we traverse them in order (object 1 before object 2, and so on).
4890  * However, all of these objects are traversed while traversing object 0, since
4891  * the data it points to is the list of objects.  Thus, we need to convert to a
4892  * canonical representation so we can compare meta-dnode bookmarks to
4893  * non-meta-dnode bookmarks.
4894  *
4895  * We do this by calculating "equivalents" for each field of the zbookmark.
4896  * zbookmarks outside of the meta-dnode use their own object and level, and
4897  * calculate the level 0 equivalent (the first L0 blkid that is contained in the
4898  * blocks this bookmark refers to) by multiplying their blkid by their span
4899  * (the number of L0 blocks contained within one block at their level).
4900  * zbookmarks inside the meta-dnode calculate their object equivalent
4901  * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
4902  * level + 1<<31 (any value larger than a level could ever be) for their level.
4903  * This causes them to always compare before a bookmark in their object
4904  * equivalent, compare appropriately to bookmarks in other objects, and to
4905  * compare appropriately to other bookmarks in the meta-dnode.
4906  */
4907 int
4908 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
4909     const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
4910 {
4911 	/*
4912 	 * These variables represent the "equivalent" values for the zbookmark,
4913 	 * after converting zbookmarks inside the meta dnode to their
4914 	 * normal-object equivalents.
4915 	 */
4916 	uint64_t zb1obj, zb2obj;
4917 	uint64_t zb1L0, zb2L0;
4918 	uint64_t zb1level, zb2level;
4919 
4920 	if (zb1->zb_object == zb2->zb_object &&
4921 	    zb1->zb_level == zb2->zb_level &&
4922 	    zb1->zb_blkid == zb2->zb_blkid)
4923 		return (0);
4924 
4925 	IMPLY(zb1->zb_level > 0, ibs1 >= SPA_MINBLOCKSHIFT);
4926 	IMPLY(zb2->zb_level > 0, ibs2 >= SPA_MINBLOCKSHIFT);
4927 
4928 	/*
4929 	 * BP_SPANB calculates the span in blocks.
4930 	 */
4931 	zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
4932 	zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
4933 
4934 	if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
4935 		zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4936 		zb1L0 = 0;
4937 		zb1level = zb1->zb_level + COMPARE_META_LEVEL;
4938 	} else {
4939 		zb1obj = zb1->zb_object;
4940 		zb1level = zb1->zb_level;
4941 	}
4942 
4943 	if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
4944 		zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4945 		zb2L0 = 0;
4946 		zb2level = zb2->zb_level + COMPARE_META_LEVEL;
4947 	} else {
4948 		zb2obj = zb2->zb_object;
4949 		zb2level = zb2->zb_level;
4950 	}
4951 
4952 	/* Now that we have a canonical representation, do the comparison. */
4953 	if (zb1obj != zb2obj)
4954 		return (zb1obj < zb2obj ? -1 : 1);
4955 	else if (zb1L0 != zb2L0)
4956 		return (zb1L0 < zb2L0 ? -1 : 1);
4957 	else if (zb1level != zb2level)
4958 		return (zb1level > zb2level ? -1 : 1);
4959 	/*
4960 	 * This can (theoretically) happen if the bookmarks have the same object
4961 	 * and level, but different blkids, if the block sizes are not the same.
4962 	 * There is presently no way to change the indirect block sizes
4963 	 */
4964 	return (0);
4965 }
4966 
4967 /*
4968  *  This function checks the following: given that last_block is the place that
4969  *  our traversal stopped last time, does that guarantee that we've visited
4970  *  every node under subtree_root?  Therefore, we can't just use the raw output
4971  *  of zbookmark_compare.  We have to pass in a modified version of
4972  *  subtree_root; by incrementing the block id, and then checking whether
4973  *  last_block is before or equal to that, we can tell whether or not having
4974  *  visited last_block implies that all of subtree_root's children have been
4975  *  visited.
4976  */
4977 boolean_t
4978 zbookmark_subtree_completed(const dnode_phys_t *dnp,
4979     const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
4980 {
4981 	zbookmark_phys_t mod_zb = *subtree_root;
4982 	mod_zb.zb_blkid++;
4983 	ASSERT(last_block->zb_level == 0);
4984 
4985 	/* The objset_phys_t isn't before anything. */
4986 	if (dnp == NULL)
4987 		return (B_FALSE);
4988 
4989 	/*
4990 	 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
4991 	 * data block size in sectors, because that variable is only used if
4992 	 * the bookmark refers to a block in the meta-dnode.  Since we don't
4993 	 * know without examining it what object it refers to, and there's no
4994 	 * harm in passing in this value in other cases, we always pass it in.
4995 	 *
4996 	 * We pass in 0 for the indirect block size shift because zb2 must be
4997 	 * level 0.  The indirect block size is only used to calculate the span
4998 	 * of the bookmark, but since the bookmark must be level 0, the span is
4999 	 * always 1, so the math works out.
5000 	 *
5001 	 * If you make changes to how the zbookmark_compare code works, be sure
5002 	 * to make sure that this code still works afterwards.
5003 	 */
5004 	return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
5005 	    1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
5006 	    last_block) <= 0);
5007 }
5008 
5009 EXPORT_SYMBOL(zio_type_name);
5010 EXPORT_SYMBOL(zio_buf_alloc);
5011 EXPORT_SYMBOL(zio_data_buf_alloc);
5012 EXPORT_SYMBOL(zio_buf_free);
5013 EXPORT_SYMBOL(zio_data_buf_free);
5014 
5015 /* BEGIN CSTYLED */
5016 ZFS_MODULE_PARAM(zfs_zio, zio_, slow_io_ms, INT, ZMOD_RW,
5017 	"Max I/O completion time (milliseconds) before marking it as slow");
5018 
5019 ZFS_MODULE_PARAM(zfs_zio, zio_, requeue_io_start_cut_in_line, INT, ZMOD_RW,
5020 	"Prioritize requeued I/O");
5021 
5022 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_deferred_free,  INT, ZMOD_RW,
5023 	"Defer frees starting in this pass");
5024 
5025 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_dont_compress, INT, ZMOD_RW,
5026 	"Don't compress starting in this pass");
5027 
5028 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_rewrite, INT, ZMOD_RW,
5029 	"Rewrite new bps starting in this pass");
5030 
5031 ZFS_MODULE_PARAM(zfs_zio, zio_, dva_throttle_enabled, INT, ZMOD_RW,
5032 	"Throttle block allocations in the ZIO pipeline");
5033 
5034 ZFS_MODULE_PARAM(zfs_zio, zio_, deadman_log_all, INT, ZMOD_RW,
5035 	"Log all slow ZIOs, not just those with vdevs");
5036 /* END CSTYLED */
5037