xref: /freebsd/sys/contrib/openzfs/module/zfs/zio.c (revision 62ff619dcc3540659a319be71c9a489f1659e14a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
24  * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25  * Copyright (c) 2017, Intel Corporation.
26  * Copyright (c) 2019, Klara Inc.
27  * Copyright (c) 2019, Allan Jude
28  * Copyright (c) 2021, Datto, Inc.
29  */
30 
31 #include <sys/sysmacros.h>
32 #include <sys/zfs_context.h>
33 #include <sys/fm/fs/zfs.h>
34 #include <sys/spa.h>
35 #include <sys/txg.h>
36 #include <sys/spa_impl.h>
37 #include <sys/vdev_impl.h>
38 #include <sys/vdev_trim.h>
39 #include <sys/zio_impl.h>
40 #include <sys/zio_compress.h>
41 #include <sys/zio_checksum.h>
42 #include <sys/dmu_objset.h>
43 #include <sys/arc.h>
44 #include <sys/ddt.h>
45 #include <sys/blkptr.h>
46 #include <sys/zfeature.h>
47 #include <sys/dsl_scan.h>
48 #include <sys/metaslab_impl.h>
49 #include <sys/time.h>
50 #include <sys/trace_zfs.h>
51 #include <sys/abd.h>
52 #include <sys/dsl_crypt.h>
53 #include <cityhash.h>
54 
55 /*
56  * ==========================================================================
57  * I/O type descriptions
58  * ==========================================================================
59  */
60 const char *const zio_type_name[ZIO_TYPES] = {
61 	/*
62 	 * Note: Linux kernel thread name length is limited
63 	 * so these names will differ from upstream open zfs.
64 	 */
65 	"z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_ioctl", "z_trim"
66 };
67 
68 int zio_dva_throttle_enabled = B_TRUE;
69 static int zio_deadman_log_all = B_FALSE;
70 
71 /*
72  * ==========================================================================
73  * I/O kmem caches
74  * ==========================================================================
75  */
76 static kmem_cache_t *zio_cache;
77 static kmem_cache_t *zio_link_cache;
78 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
79 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
80 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
81 static uint64_t zio_buf_cache_allocs[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
82 static uint64_t zio_buf_cache_frees[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
83 #endif
84 
85 /* Mark IOs as "slow" if they take longer than 30 seconds */
86 static int zio_slow_io_ms = (30 * MILLISEC);
87 
88 #define	BP_SPANB(indblkshift, level) \
89 	(((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
90 #define	COMPARE_META_LEVEL	0x80000000ul
91 /*
92  * The following actions directly effect the spa's sync-to-convergence logic.
93  * The values below define the sync pass when we start performing the action.
94  * Care should be taken when changing these values as they directly impact
95  * spa_sync() performance. Tuning these values may introduce subtle performance
96  * pathologies and should only be done in the context of performance analysis.
97  * These tunables will eventually be removed and replaced with #defines once
98  * enough analysis has been done to determine optimal values.
99  *
100  * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
101  * regular blocks are not deferred.
102  *
103  * Starting in sync pass 8 (zfs_sync_pass_dont_compress), we disable
104  * compression (including of metadata).  In practice, we don't have this
105  * many sync passes, so this has no effect.
106  *
107  * The original intent was that disabling compression would help the sync
108  * passes to converge. However, in practice disabling compression increases
109  * the average number of sync passes, because when we turn compression off, a
110  * lot of block's size will change and thus we have to re-allocate (not
111  * overwrite) them. It also increases the number of 128KB allocations (e.g.
112  * for indirect blocks and spacemaps) because these will not be compressed.
113  * The 128K allocations are especially detrimental to performance on highly
114  * fragmented systems, which may have very few free segments of this size,
115  * and may need to load new metaslabs to satisfy 128K allocations.
116  */
117 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
118 static int zfs_sync_pass_dont_compress = 8; /* don't compress s. i. t. p. */
119 static int zfs_sync_pass_rewrite = 2; /* rewrite new bps s. i. t. p. */
120 
121 /*
122  * An allocating zio is one that either currently has the DVA allocate
123  * stage set or will have it later in its lifetime.
124  */
125 #define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
126 
127 /*
128  * Enable smaller cores by excluding metadata
129  * allocations as well.
130  */
131 int zio_exclude_metadata = 0;
132 static int zio_requeue_io_start_cut_in_line = 1;
133 
134 #ifdef ZFS_DEBUG
135 static const int zio_buf_debug_limit = 16384;
136 #else
137 static const int zio_buf_debug_limit = 0;
138 #endif
139 
140 static inline void __zio_execute(zio_t *zio);
141 
142 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t);
143 
144 void
145 zio_init(void)
146 {
147 	size_t c;
148 
149 	zio_cache = kmem_cache_create("zio_cache",
150 	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
151 	zio_link_cache = kmem_cache_create("zio_link_cache",
152 	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
153 
154 	/*
155 	 * For small buffers, we want a cache for each multiple of
156 	 * SPA_MINBLOCKSIZE.  For larger buffers, we want a cache
157 	 * for each quarter-power of 2.
158 	 */
159 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
160 		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
161 		size_t p2 = size;
162 		size_t align = 0;
163 		size_t data_cflags, cflags;
164 
165 		data_cflags = KMC_NODEBUG;
166 		cflags = (zio_exclude_metadata || size > zio_buf_debug_limit) ?
167 		    KMC_NODEBUG : 0;
168 
169 		while (!ISP2(p2))
170 			p2 &= p2 - 1;
171 
172 #ifndef _KERNEL
173 		/*
174 		 * If we are using watchpoints, put each buffer on its own page,
175 		 * to eliminate the performance overhead of trapping to the
176 		 * kernel when modifying a non-watched buffer that shares the
177 		 * page with a watched buffer.
178 		 */
179 		if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
180 			continue;
181 		/*
182 		 * Here's the problem - on 4K native devices in userland on
183 		 * Linux using O_DIRECT, buffers must be 4K aligned or I/O
184 		 * will fail with EINVAL, causing zdb (and others) to coredump.
185 		 * Since userland probably doesn't need optimized buffer caches,
186 		 * we just force 4K alignment on everything.
187 		 */
188 		align = 8 * SPA_MINBLOCKSIZE;
189 #else
190 		if (size < PAGESIZE) {
191 			align = SPA_MINBLOCKSIZE;
192 		} else if (IS_P2ALIGNED(size, p2 >> 2)) {
193 			align = PAGESIZE;
194 		}
195 #endif
196 
197 		if (align != 0) {
198 			char name[36];
199 			if (cflags == data_cflags) {
200 				/*
201 				 * Resulting kmem caches would be identical.
202 				 * Save memory by creating only one.
203 				 */
204 				(void) snprintf(name, sizeof (name),
205 				    "zio_buf_comb_%lu", (ulong_t)size);
206 				zio_buf_cache[c] = kmem_cache_create(name,
207 				    size, align, NULL, NULL, NULL, NULL, NULL,
208 				    cflags);
209 				zio_data_buf_cache[c] = zio_buf_cache[c];
210 				continue;
211 			}
212 			(void) snprintf(name, sizeof (name), "zio_buf_%lu",
213 			    (ulong_t)size);
214 			zio_buf_cache[c] = kmem_cache_create(name, size,
215 			    align, NULL, NULL, NULL, NULL, NULL, cflags);
216 
217 			(void) snprintf(name, sizeof (name), "zio_data_buf_%lu",
218 			    (ulong_t)size);
219 			zio_data_buf_cache[c] = kmem_cache_create(name, size,
220 			    align, NULL, NULL, NULL, NULL, NULL, data_cflags);
221 		}
222 	}
223 
224 	while (--c != 0) {
225 		ASSERT(zio_buf_cache[c] != NULL);
226 		if (zio_buf_cache[c - 1] == NULL)
227 			zio_buf_cache[c - 1] = zio_buf_cache[c];
228 
229 		ASSERT(zio_data_buf_cache[c] != NULL);
230 		if (zio_data_buf_cache[c - 1] == NULL)
231 			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
232 	}
233 
234 	zio_inject_init();
235 
236 	lz4_init();
237 }
238 
239 void
240 zio_fini(void)
241 {
242 	size_t n = SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT;
243 
244 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
245 	for (size_t i = 0; i < n; i++) {
246 		if (zio_buf_cache_allocs[i] != zio_buf_cache_frees[i])
247 			(void) printf("zio_fini: [%d] %llu != %llu\n",
248 			    (int)((i + 1) << SPA_MINBLOCKSHIFT),
249 			    (long long unsigned)zio_buf_cache_allocs[i],
250 			    (long long unsigned)zio_buf_cache_frees[i]);
251 	}
252 #endif
253 
254 	/*
255 	 * The same kmem cache can show up multiple times in both zio_buf_cache
256 	 * and zio_data_buf_cache. Do a wasteful but trivially correct scan to
257 	 * sort it out.
258 	 */
259 	for (size_t i = 0; i < n; i++) {
260 		kmem_cache_t *cache = zio_buf_cache[i];
261 		if (cache == NULL)
262 			continue;
263 		for (size_t j = i; j < n; j++) {
264 			if (cache == zio_buf_cache[j])
265 				zio_buf_cache[j] = NULL;
266 			if (cache == zio_data_buf_cache[j])
267 				zio_data_buf_cache[j] = NULL;
268 		}
269 		kmem_cache_destroy(cache);
270 	}
271 
272 	for (size_t i = 0; i < n; i++) {
273 		kmem_cache_t *cache = zio_data_buf_cache[i];
274 		if (cache == NULL)
275 			continue;
276 		for (size_t j = i; j < n; j++) {
277 			if (cache == zio_data_buf_cache[j])
278 				zio_data_buf_cache[j] = NULL;
279 		}
280 		kmem_cache_destroy(cache);
281 	}
282 
283 	for (size_t i = 0; i < n; i++) {
284 		VERIFY3P(zio_buf_cache[i], ==, NULL);
285 		VERIFY3P(zio_data_buf_cache[i], ==, NULL);
286 	}
287 
288 	kmem_cache_destroy(zio_link_cache);
289 	kmem_cache_destroy(zio_cache);
290 
291 	zio_inject_fini();
292 
293 	lz4_fini();
294 }
295 
296 /*
297  * ==========================================================================
298  * Allocate and free I/O buffers
299  * ==========================================================================
300  */
301 
302 /*
303  * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
304  * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
305  * useful to inspect ZFS metadata, but if possible, we should avoid keeping
306  * excess / transient data in-core during a crashdump.
307  */
308 void *
309 zio_buf_alloc(size_t size)
310 {
311 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
312 
313 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
314 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
315 	atomic_add_64(&zio_buf_cache_allocs[c], 1);
316 #endif
317 
318 	return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
319 }
320 
321 /*
322  * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
323  * crashdump if the kernel panics.  This exists so that we will limit the amount
324  * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
325  * of kernel heap dumped to disk when the kernel panics)
326  */
327 void *
328 zio_data_buf_alloc(size_t size)
329 {
330 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
331 
332 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
333 
334 	return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
335 }
336 
337 void
338 zio_buf_free(void *buf, size_t size)
339 {
340 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
341 
342 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
343 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
344 	atomic_add_64(&zio_buf_cache_frees[c], 1);
345 #endif
346 
347 	kmem_cache_free(zio_buf_cache[c], buf);
348 }
349 
350 void
351 zio_data_buf_free(void *buf, size_t size)
352 {
353 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
354 
355 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
356 
357 	kmem_cache_free(zio_data_buf_cache[c], buf);
358 }
359 
360 static void
361 zio_abd_free(void *abd, size_t size)
362 {
363 	(void) size;
364 	abd_free((abd_t *)abd);
365 }
366 
367 /*
368  * ==========================================================================
369  * Push and pop I/O transform buffers
370  * ==========================================================================
371  */
372 void
373 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize,
374     zio_transform_func_t *transform)
375 {
376 	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
377 
378 	zt->zt_orig_abd = zio->io_abd;
379 	zt->zt_orig_size = zio->io_size;
380 	zt->zt_bufsize = bufsize;
381 	zt->zt_transform = transform;
382 
383 	zt->zt_next = zio->io_transform_stack;
384 	zio->io_transform_stack = zt;
385 
386 	zio->io_abd = data;
387 	zio->io_size = size;
388 }
389 
390 void
391 zio_pop_transforms(zio_t *zio)
392 {
393 	zio_transform_t *zt;
394 
395 	while ((zt = zio->io_transform_stack) != NULL) {
396 		if (zt->zt_transform != NULL)
397 			zt->zt_transform(zio,
398 			    zt->zt_orig_abd, zt->zt_orig_size);
399 
400 		if (zt->zt_bufsize != 0)
401 			abd_free(zio->io_abd);
402 
403 		zio->io_abd = zt->zt_orig_abd;
404 		zio->io_size = zt->zt_orig_size;
405 		zio->io_transform_stack = zt->zt_next;
406 
407 		kmem_free(zt, sizeof (zio_transform_t));
408 	}
409 }
410 
411 /*
412  * ==========================================================================
413  * I/O transform callbacks for subblocks, decompression, and decryption
414  * ==========================================================================
415  */
416 static void
417 zio_subblock(zio_t *zio, abd_t *data, uint64_t size)
418 {
419 	ASSERT(zio->io_size > size);
420 
421 	if (zio->io_type == ZIO_TYPE_READ)
422 		abd_copy(data, zio->io_abd, size);
423 }
424 
425 static void
426 zio_decompress(zio_t *zio, abd_t *data, uint64_t size)
427 {
428 	if (zio->io_error == 0) {
429 		void *tmp = abd_borrow_buf(data, size);
430 		int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
431 		    zio->io_abd, tmp, zio->io_size, size,
432 		    &zio->io_prop.zp_complevel);
433 		abd_return_buf_copy(data, tmp, size);
434 
435 		if (zio_injection_enabled && ret == 0)
436 			ret = zio_handle_fault_injection(zio, EINVAL);
437 
438 		if (ret != 0)
439 			zio->io_error = SET_ERROR(EIO);
440 	}
441 }
442 
443 static void
444 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size)
445 {
446 	int ret;
447 	void *tmp;
448 	blkptr_t *bp = zio->io_bp;
449 	spa_t *spa = zio->io_spa;
450 	uint64_t dsobj = zio->io_bookmark.zb_objset;
451 	uint64_t lsize = BP_GET_LSIZE(bp);
452 	dmu_object_type_t ot = BP_GET_TYPE(bp);
453 	uint8_t salt[ZIO_DATA_SALT_LEN];
454 	uint8_t iv[ZIO_DATA_IV_LEN];
455 	uint8_t mac[ZIO_DATA_MAC_LEN];
456 	boolean_t no_crypt = B_FALSE;
457 
458 	ASSERT(BP_USES_CRYPT(bp));
459 	ASSERT3U(size, !=, 0);
460 
461 	if (zio->io_error != 0)
462 		return;
463 
464 	/*
465 	 * Verify the cksum of MACs stored in an indirect bp. It will always
466 	 * be possible to verify this since it does not require an encryption
467 	 * key.
468 	 */
469 	if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) {
470 		zio_crypt_decode_mac_bp(bp, mac);
471 
472 		if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) {
473 			/*
474 			 * We haven't decompressed the data yet, but
475 			 * zio_crypt_do_indirect_mac_checksum() requires
476 			 * decompressed data to be able to parse out the MACs
477 			 * from the indirect block. We decompress it now and
478 			 * throw away the result after we are finished.
479 			 */
480 			tmp = zio_buf_alloc(lsize);
481 			ret = zio_decompress_data(BP_GET_COMPRESS(bp),
482 			    zio->io_abd, tmp, zio->io_size, lsize,
483 			    &zio->io_prop.zp_complevel);
484 			if (ret != 0) {
485 				ret = SET_ERROR(EIO);
486 				goto error;
487 			}
488 			ret = zio_crypt_do_indirect_mac_checksum(B_FALSE,
489 			    tmp, lsize, BP_SHOULD_BYTESWAP(bp), mac);
490 			zio_buf_free(tmp, lsize);
491 		} else {
492 			ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE,
493 			    zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac);
494 		}
495 		abd_copy(data, zio->io_abd, size);
496 
497 		if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) {
498 			ret = zio_handle_decrypt_injection(spa,
499 			    &zio->io_bookmark, ot, ECKSUM);
500 		}
501 		if (ret != 0)
502 			goto error;
503 
504 		return;
505 	}
506 
507 	/*
508 	 * If this is an authenticated block, just check the MAC. It would be
509 	 * nice to separate this out into its own flag, but for the moment
510 	 * enum zio_flag is out of bits.
511 	 */
512 	if (BP_IS_AUTHENTICATED(bp)) {
513 		if (ot == DMU_OT_OBJSET) {
514 			ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa,
515 			    dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp));
516 		} else {
517 			zio_crypt_decode_mac_bp(bp, mac);
518 			ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj,
519 			    zio->io_abd, size, mac);
520 			if (zio_injection_enabled && ret == 0) {
521 				ret = zio_handle_decrypt_injection(spa,
522 				    &zio->io_bookmark, ot, ECKSUM);
523 			}
524 		}
525 		abd_copy(data, zio->io_abd, size);
526 
527 		if (ret != 0)
528 			goto error;
529 
530 		return;
531 	}
532 
533 	zio_crypt_decode_params_bp(bp, salt, iv);
534 
535 	if (ot == DMU_OT_INTENT_LOG) {
536 		tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t));
537 		zio_crypt_decode_mac_zil(tmp, mac);
538 		abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t));
539 	} else {
540 		zio_crypt_decode_mac_bp(bp, mac);
541 	}
542 
543 	ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp),
544 	    BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data,
545 	    zio->io_abd, &no_crypt);
546 	if (no_crypt)
547 		abd_copy(data, zio->io_abd, size);
548 
549 	if (ret != 0)
550 		goto error;
551 
552 	return;
553 
554 error:
555 	/* assert that the key was found unless this was speculative */
556 	ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE));
557 
558 	/*
559 	 * If there was a decryption / authentication error return EIO as
560 	 * the io_error. If this was not a speculative zio, create an ereport.
561 	 */
562 	if (ret == ECKSUM) {
563 		zio->io_error = SET_ERROR(EIO);
564 		if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
565 			spa_log_error(spa, &zio->io_bookmark);
566 			(void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
567 			    spa, NULL, &zio->io_bookmark, zio, 0);
568 		}
569 	} else {
570 		zio->io_error = ret;
571 	}
572 }
573 
574 /*
575  * ==========================================================================
576  * I/O parent/child relationships and pipeline interlocks
577  * ==========================================================================
578  */
579 zio_t *
580 zio_walk_parents(zio_t *cio, zio_link_t **zl)
581 {
582 	list_t *pl = &cio->io_parent_list;
583 
584 	*zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl);
585 	if (*zl == NULL)
586 		return (NULL);
587 
588 	ASSERT((*zl)->zl_child == cio);
589 	return ((*zl)->zl_parent);
590 }
591 
592 zio_t *
593 zio_walk_children(zio_t *pio, zio_link_t **zl)
594 {
595 	list_t *cl = &pio->io_child_list;
596 
597 	ASSERT(MUTEX_HELD(&pio->io_lock));
598 
599 	*zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl);
600 	if (*zl == NULL)
601 		return (NULL);
602 
603 	ASSERT((*zl)->zl_parent == pio);
604 	return ((*zl)->zl_child);
605 }
606 
607 zio_t *
608 zio_unique_parent(zio_t *cio)
609 {
610 	zio_link_t *zl = NULL;
611 	zio_t *pio = zio_walk_parents(cio, &zl);
612 
613 	VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL);
614 	return (pio);
615 }
616 
617 void
618 zio_add_child(zio_t *pio, zio_t *cio)
619 {
620 	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
621 
622 	/*
623 	 * Logical I/Os can have logical, gang, or vdev children.
624 	 * Gang I/Os can have gang or vdev children.
625 	 * Vdev I/Os can only have vdev children.
626 	 * The following ASSERT captures all of these constraints.
627 	 */
628 	ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
629 
630 	zl->zl_parent = pio;
631 	zl->zl_child = cio;
632 
633 	mutex_enter(&pio->io_lock);
634 	mutex_enter(&cio->io_lock);
635 
636 	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
637 
638 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
639 		pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
640 
641 	list_insert_head(&pio->io_child_list, zl);
642 	list_insert_head(&cio->io_parent_list, zl);
643 
644 	pio->io_child_count++;
645 	cio->io_parent_count++;
646 
647 	mutex_exit(&cio->io_lock);
648 	mutex_exit(&pio->io_lock);
649 }
650 
651 static void
652 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
653 {
654 	ASSERT(zl->zl_parent == pio);
655 	ASSERT(zl->zl_child == cio);
656 
657 	mutex_enter(&pio->io_lock);
658 	mutex_enter(&cio->io_lock);
659 
660 	list_remove(&pio->io_child_list, zl);
661 	list_remove(&cio->io_parent_list, zl);
662 
663 	pio->io_child_count--;
664 	cio->io_parent_count--;
665 
666 	mutex_exit(&cio->io_lock);
667 	mutex_exit(&pio->io_lock);
668 	kmem_cache_free(zio_link_cache, zl);
669 }
670 
671 static boolean_t
672 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait)
673 {
674 	boolean_t waiting = B_FALSE;
675 
676 	mutex_enter(&zio->io_lock);
677 	ASSERT(zio->io_stall == NULL);
678 	for (int c = 0; c < ZIO_CHILD_TYPES; c++) {
679 		if (!(ZIO_CHILD_BIT_IS_SET(childbits, c)))
680 			continue;
681 
682 		uint64_t *countp = &zio->io_children[c][wait];
683 		if (*countp != 0) {
684 			zio->io_stage >>= 1;
685 			ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN);
686 			zio->io_stall = countp;
687 			waiting = B_TRUE;
688 			break;
689 		}
690 	}
691 	mutex_exit(&zio->io_lock);
692 	return (waiting);
693 }
694 
695 __attribute__((always_inline))
696 static inline void
697 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait,
698     zio_t **next_to_executep)
699 {
700 	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
701 	int *errorp = &pio->io_child_error[zio->io_child_type];
702 
703 	mutex_enter(&pio->io_lock);
704 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
705 		*errorp = zio_worst_error(*errorp, zio->io_error);
706 	pio->io_reexecute |= zio->io_reexecute;
707 	ASSERT3U(*countp, >, 0);
708 
709 	(*countp)--;
710 
711 	if (*countp == 0 && pio->io_stall == countp) {
712 		zio_taskq_type_t type =
713 		    pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE :
714 		    ZIO_TASKQ_INTERRUPT;
715 		pio->io_stall = NULL;
716 		mutex_exit(&pio->io_lock);
717 
718 		/*
719 		 * If we can tell the caller to execute this parent next, do
720 		 * so.  Otherwise dispatch the parent zio as its own task.
721 		 *
722 		 * Having the caller execute the parent when possible reduces
723 		 * locking on the zio taskq's, reduces context switch
724 		 * overhead, and has no recursion penalty.  Note that one
725 		 * read from disk typically causes at least 3 zio's: a
726 		 * zio_null(), the logical zio_read(), and then a physical
727 		 * zio.  When the physical ZIO completes, we are able to call
728 		 * zio_done() on all 3 of these zio's from one invocation of
729 		 * zio_execute() by returning the parent back to
730 		 * zio_execute().  Since the parent isn't executed until this
731 		 * thread returns back to zio_execute(), the caller should do
732 		 * so promptly.
733 		 *
734 		 * In other cases, dispatching the parent prevents
735 		 * overflowing the stack when we have deeply nested
736 		 * parent-child relationships, as we do with the "mega zio"
737 		 * of writes for spa_sync(), and the chain of ZIL blocks.
738 		 */
739 		if (next_to_executep != NULL && *next_to_executep == NULL) {
740 			*next_to_executep = pio;
741 		} else {
742 			zio_taskq_dispatch(pio, type, B_FALSE);
743 		}
744 	} else {
745 		mutex_exit(&pio->io_lock);
746 	}
747 }
748 
749 static void
750 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
751 {
752 	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
753 		zio->io_error = zio->io_child_error[c];
754 }
755 
756 int
757 zio_bookmark_compare(const void *x1, const void *x2)
758 {
759 	const zio_t *z1 = x1;
760 	const zio_t *z2 = x2;
761 
762 	if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset)
763 		return (-1);
764 	if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset)
765 		return (1);
766 
767 	if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object)
768 		return (-1);
769 	if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object)
770 		return (1);
771 
772 	if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level)
773 		return (-1);
774 	if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level)
775 		return (1);
776 
777 	if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid)
778 		return (-1);
779 	if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid)
780 		return (1);
781 
782 	if (z1 < z2)
783 		return (-1);
784 	if (z1 > z2)
785 		return (1);
786 
787 	return (0);
788 }
789 
790 /*
791  * ==========================================================================
792  * Create the various types of I/O (read, write, free, etc)
793  * ==========================================================================
794  */
795 static zio_t *
796 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
797     abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done,
798     void *private, zio_type_t type, zio_priority_t priority,
799     enum zio_flag flags, vdev_t *vd, uint64_t offset,
800     const zbookmark_phys_t *zb, enum zio_stage stage,
801     enum zio_stage pipeline)
802 {
803 	zio_t *zio;
804 
805 	IMPLY(type != ZIO_TYPE_TRIM, psize <= SPA_MAXBLOCKSIZE);
806 	ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0);
807 	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
808 
809 	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
810 	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
811 	ASSERT(vd || stage == ZIO_STAGE_OPEN);
812 
813 	IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0);
814 
815 	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
816 	memset(zio, 0, sizeof (zio_t));
817 
818 	mutex_init(&zio->io_lock, NULL, MUTEX_NOLOCKDEP, NULL);
819 	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
820 
821 	list_create(&zio->io_parent_list, sizeof (zio_link_t),
822 	    offsetof(zio_link_t, zl_parent_node));
823 	list_create(&zio->io_child_list, sizeof (zio_link_t),
824 	    offsetof(zio_link_t, zl_child_node));
825 	metaslab_trace_init(&zio->io_alloc_list);
826 
827 	if (vd != NULL)
828 		zio->io_child_type = ZIO_CHILD_VDEV;
829 	else if (flags & ZIO_FLAG_GANG_CHILD)
830 		zio->io_child_type = ZIO_CHILD_GANG;
831 	else if (flags & ZIO_FLAG_DDT_CHILD)
832 		zio->io_child_type = ZIO_CHILD_DDT;
833 	else
834 		zio->io_child_type = ZIO_CHILD_LOGICAL;
835 
836 	if (bp != NULL) {
837 		zio->io_bp = (blkptr_t *)bp;
838 		zio->io_bp_copy = *bp;
839 		zio->io_bp_orig = *bp;
840 		if (type != ZIO_TYPE_WRITE ||
841 		    zio->io_child_type == ZIO_CHILD_DDT)
842 			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
843 		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
844 			zio->io_logical = zio;
845 		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
846 			pipeline |= ZIO_GANG_STAGES;
847 	}
848 
849 	zio->io_spa = spa;
850 	zio->io_txg = txg;
851 	zio->io_done = done;
852 	zio->io_private = private;
853 	zio->io_type = type;
854 	zio->io_priority = priority;
855 	zio->io_vd = vd;
856 	zio->io_offset = offset;
857 	zio->io_orig_abd = zio->io_abd = data;
858 	zio->io_orig_size = zio->io_size = psize;
859 	zio->io_lsize = lsize;
860 	zio->io_orig_flags = zio->io_flags = flags;
861 	zio->io_orig_stage = zio->io_stage = stage;
862 	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
863 	zio->io_pipeline_trace = ZIO_STAGE_OPEN;
864 
865 	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
866 	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
867 
868 	if (zb != NULL)
869 		zio->io_bookmark = *zb;
870 
871 	if (pio != NULL) {
872 		zio->io_metaslab_class = pio->io_metaslab_class;
873 		if (zio->io_logical == NULL)
874 			zio->io_logical = pio->io_logical;
875 		if (zio->io_child_type == ZIO_CHILD_GANG)
876 			zio->io_gang_leader = pio->io_gang_leader;
877 		zio_add_child(pio, zio);
878 	}
879 
880 	taskq_init_ent(&zio->io_tqent);
881 
882 	return (zio);
883 }
884 
885 static void
886 zio_destroy(zio_t *zio)
887 {
888 	metaslab_trace_fini(&zio->io_alloc_list);
889 	list_destroy(&zio->io_parent_list);
890 	list_destroy(&zio->io_child_list);
891 	mutex_destroy(&zio->io_lock);
892 	cv_destroy(&zio->io_cv);
893 	kmem_cache_free(zio_cache, zio);
894 }
895 
896 zio_t *
897 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
898     void *private, enum zio_flag flags)
899 {
900 	zio_t *zio;
901 
902 	zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
903 	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
904 	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
905 
906 	return (zio);
907 }
908 
909 zio_t *
910 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
911 {
912 	return (zio_null(NULL, spa, NULL, done, private, flags));
913 }
914 
915 static int
916 zfs_blkptr_verify_log(spa_t *spa, const blkptr_t *bp,
917     enum blk_verify_flag blk_verify, const char *fmt, ...)
918 {
919 	va_list adx;
920 	char buf[256];
921 
922 	va_start(adx, fmt);
923 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
924 	va_end(adx);
925 
926 	switch (blk_verify) {
927 	case BLK_VERIFY_HALT:
928 		dprintf_bp(bp, "blkptr at %p dprintf_bp():", bp);
929 		zfs_panic_recover("%s: %s", spa_name(spa), buf);
930 		break;
931 	case BLK_VERIFY_LOG:
932 		zfs_dbgmsg("%s: %s", spa_name(spa), buf);
933 		break;
934 	case BLK_VERIFY_ONLY:
935 		break;
936 	}
937 
938 	return (1);
939 }
940 
941 /*
942  * Verify the block pointer fields contain reasonable values.  This means
943  * it only contains known object types, checksum/compression identifiers,
944  * block sizes within the maximum allowed limits, valid DVAs, etc.
945  *
946  * If everything checks out B_TRUE is returned.  The zfs_blkptr_verify
947  * argument controls the behavior when an invalid field is detected.
948  *
949  * Modes for zfs_blkptr_verify:
950  *   1) BLK_VERIFY_ONLY (evaluate the block)
951  *   2) BLK_VERIFY_LOG (evaluate the block and log problems)
952  *   3) BLK_VERIFY_HALT (call zfs_panic_recover on error)
953  */
954 boolean_t
955 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp, boolean_t config_held,
956     enum blk_verify_flag blk_verify)
957 {
958 	int errors = 0;
959 
960 	if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
961 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
962 		    "blkptr at %p has invalid TYPE %llu",
963 		    bp, (longlong_t)BP_GET_TYPE(bp));
964 	}
965 	if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS ||
966 	    BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) {
967 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
968 		    "blkptr at %p has invalid CHECKSUM %llu",
969 		    bp, (longlong_t)BP_GET_CHECKSUM(bp));
970 	}
971 	if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS ||
972 	    BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) {
973 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
974 		    "blkptr at %p has invalid COMPRESS %llu",
975 		    bp, (longlong_t)BP_GET_COMPRESS(bp));
976 	}
977 	if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
978 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
979 		    "blkptr at %p has invalid LSIZE %llu",
980 		    bp, (longlong_t)BP_GET_LSIZE(bp));
981 	}
982 	if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
983 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
984 		    "blkptr at %p has invalid PSIZE %llu",
985 		    bp, (longlong_t)BP_GET_PSIZE(bp));
986 	}
987 
988 	if (BP_IS_EMBEDDED(bp)) {
989 		if (BPE_GET_ETYPE(bp) >= NUM_BP_EMBEDDED_TYPES) {
990 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
991 			    "blkptr at %p has invalid ETYPE %llu",
992 			    bp, (longlong_t)BPE_GET_ETYPE(bp));
993 		}
994 	}
995 
996 	/*
997 	 * Do not verify individual DVAs if the config is not trusted. This
998 	 * will be done once the zio is executed in vdev_mirror_map_alloc.
999 	 */
1000 	if (!spa->spa_trust_config)
1001 		return (errors == 0);
1002 
1003 	if (!config_held)
1004 		spa_config_enter(spa, SCL_VDEV, bp, RW_READER);
1005 	else
1006 		ASSERT(spa_config_held(spa, SCL_VDEV, RW_WRITER));
1007 	/*
1008 	 * Pool-specific checks.
1009 	 *
1010 	 * Note: it would be nice to verify that the blk_birth and
1011 	 * BP_PHYSICAL_BIRTH() are not too large.  However, spa_freeze()
1012 	 * allows the birth time of log blocks (and dmu_sync()-ed blocks
1013 	 * that are in the log) to be arbitrarily large.
1014 	 */
1015 	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
1016 		const dva_t *dva = &bp->blk_dva[i];
1017 		uint64_t vdevid = DVA_GET_VDEV(dva);
1018 
1019 		if (vdevid >= spa->spa_root_vdev->vdev_children) {
1020 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1021 			    "blkptr at %p DVA %u has invalid VDEV %llu",
1022 			    bp, i, (longlong_t)vdevid);
1023 			continue;
1024 		}
1025 		vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1026 		if (vd == NULL) {
1027 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1028 			    "blkptr at %p DVA %u has invalid VDEV %llu",
1029 			    bp, i, (longlong_t)vdevid);
1030 			continue;
1031 		}
1032 		if (vd->vdev_ops == &vdev_hole_ops) {
1033 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1034 			    "blkptr at %p DVA %u has hole VDEV %llu",
1035 			    bp, i, (longlong_t)vdevid);
1036 			continue;
1037 		}
1038 		if (vd->vdev_ops == &vdev_missing_ops) {
1039 			/*
1040 			 * "missing" vdevs are valid during import, but we
1041 			 * don't have their detailed info (e.g. asize), so
1042 			 * we can't perform any more checks on them.
1043 			 */
1044 			continue;
1045 		}
1046 		uint64_t offset = DVA_GET_OFFSET(dva);
1047 		uint64_t asize = DVA_GET_ASIZE(dva);
1048 		if (DVA_GET_GANG(dva))
1049 			asize = vdev_gang_header_asize(vd);
1050 		if (offset + asize > vd->vdev_asize) {
1051 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1052 			    "blkptr at %p DVA %u has invalid OFFSET %llu",
1053 			    bp, i, (longlong_t)offset);
1054 		}
1055 	}
1056 	if (errors > 0)
1057 		dprintf_bp(bp, "blkptr at %p dprintf_bp():", bp);
1058 	if (!config_held)
1059 		spa_config_exit(spa, SCL_VDEV, bp);
1060 
1061 	return (errors == 0);
1062 }
1063 
1064 boolean_t
1065 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp)
1066 {
1067 	(void) bp;
1068 	uint64_t vdevid = DVA_GET_VDEV(dva);
1069 
1070 	if (vdevid >= spa->spa_root_vdev->vdev_children)
1071 		return (B_FALSE);
1072 
1073 	vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1074 	if (vd == NULL)
1075 		return (B_FALSE);
1076 
1077 	if (vd->vdev_ops == &vdev_hole_ops)
1078 		return (B_FALSE);
1079 
1080 	if (vd->vdev_ops == &vdev_missing_ops) {
1081 		return (B_FALSE);
1082 	}
1083 
1084 	uint64_t offset = DVA_GET_OFFSET(dva);
1085 	uint64_t asize = DVA_GET_ASIZE(dva);
1086 
1087 	if (DVA_GET_GANG(dva))
1088 		asize = vdev_gang_header_asize(vd);
1089 	if (offset + asize > vd->vdev_asize)
1090 		return (B_FALSE);
1091 
1092 	return (B_TRUE);
1093 }
1094 
1095 zio_t *
1096 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
1097     abd_t *data, uint64_t size, zio_done_func_t *done, void *private,
1098     zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
1099 {
1100 	zio_t *zio;
1101 
1102 	zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
1103 	    data, size, size, done, private,
1104 	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
1105 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1106 	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
1107 
1108 	return (zio);
1109 }
1110 
1111 zio_t *
1112 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
1113     abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp,
1114     zio_done_func_t *ready, zio_done_func_t *children_ready,
1115     zio_done_func_t *physdone, zio_done_func_t *done,
1116     void *private, zio_priority_t priority, enum zio_flag flags,
1117     const zbookmark_phys_t *zb)
1118 {
1119 	zio_t *zio;
1120 
1121 	ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
1122 	    zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
1123 	    zp->zp_compress >= ZIO_COMPRESS_OFF &&
1124 	    zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
1125 	    DMU_OT_IS_VALID(zp->zp_type) &&
1126 	    zp->zp_level < 32 &&
1127 	    zp->zp_copies > 0 &&
1128 	    zp->zp_copies <= spa_max_replication(spa));
1129 
1130 	zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private,
1131 	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
1132 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1133 	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
1134 
1135 	zio->io_ready = ready;
1136 	zio->io_children_ready = children_ready;
1137 	zio->io_physdone = physdone;
1138 	zio->io_prop = *zp;
1139 
1140 	/*
1141 	 * Data can be NULL if we are going to call zio_write_override() to
1142 	 * provide the already-allocated BP.  But we may need the data to
1143 	 * verify a dedup hit (if requested).  In this case, don't try to
1144 	 * dedup (just take the already-allocated BP verbatim). Encrypted
1145 	 * dedup blocks need data as well so we also disable dedup in this
1146 	 * case.
1147 	 */
1148 	if (data == NULL &&
1149 	    (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) {
1150 		zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
1151 	}
1152 
1153 	return (zio);
1154 }
1155 
1156 zio_t *
1157 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data,
1158     uint64_t size, zio_done_func_t *done, void *private,
1159     zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb)
1160 {
1161 	zio_t *zio;
1162 
1163 	zio = zio_create(pio, spa, txg, bp, data, size, size, done, private,
1164 	    ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb,
1165 	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
1166 
1167 	return (zio);
1168 }
1169 
1170 void
1171 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
1172 {
1173 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
1174 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1175 	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1176 	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
1177 
1178 	/*
1179 	 * We must reset the io_prop to match the values that existed
1180 	 * when the bp was first written by dmu_sync() keeping in mind
1181 	 * that nopwrite and dedup are mutually exclusive.
1182 	 */
1183 	zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
1184 	zio->io_prop.zp_nopwrite = nopwrite;
1185 	zio->io_prop.zp_copies = copies;
1186 	zio->io_bp_override = bp;
1187 }
1188 
1189 void
1190 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
1191 {
1192 
1193 	(void) zfs_blkptr_verify(spa, bp, B_FALSE, BLK_VERIFY_HALT);
1194 
1195 	/*
1196 	 * The check for EMBEDDED is a performance optimization.  We
1197 	 * process the free here (by ignoring it) rather than
1198 	 * putting it on the list and then processing it in zio_free_sync().
1199 	 */
1200 	if (BP_IS_EMBEDDED(bp))
1201 		return;
1202 	metaslab_check_free(spa, bp);
1203 
1204 	/*
1205 	 * Frees that are for the currently-syncing txg, are not going to be
1206 	 * deferred, and which will not need to do a read (i.e. not GANG or
1207 	 * DEDUP), can be processed immediately.  Otherwise, put them on the
1208 	 * in-memory list for later processing.
1209 	 *
1210 	 * Note that we only defer frees after zfs_sync_pass_deferred_free
1211 	 * when the log space map feature is disabled. [see relevant comment
1212 	 * in spa_sync_iterate_to_convergence()]
1213 	 */
1214 	if (BP_IS_GANG(bp) ||
1215 	    BP_GET_DEDUP(bp) ||
1216 	    txg != spa->spa_syncing_txg ||
1217 	    (spa_sync_pass(spa) >= zfs_sync_pass_deferred_free &&
1218 	    !spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))) {
1219 		bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
1220 	} else {
1221 		VERIFY3P(zio_free_sync(NULL, spa, txg, bp, 0), ==, NULL);
1222 	}
1223 }
1224 
1225 /*
1226  * To improve performance, this function may return NULL if we were able
1227  * to do the free immediately.  This avoids the cost of creating a zio
1228  * (and linking it to the parent, etc).
1229  */
1230 zio_t *
1231 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1232     enum zio_flag flags)
1233 {
1234 	ASSERT(!BP_IS_HOLE(bp));
1235 	ASSERT(spa_syncing_txg(spa) == txg);
1236 
1237 	if (BP_IS_EMBEDDED(bp))
1238 		return (NULL);
1239 
1240 	metaslab_check_free(spa, bp);
1241 	arc_freed(spa, bp);
1242 	dsl_scan_freed(spa, bp);
1243 
1244 	if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp)) {
1245 		/*
1246 		 * GANG and DEDUP blocks can induce a read (for the gang block
1247 		 * header, or the DDT), so issue them asynchronously so that
1248 		 * this thread is not tied up.
1249 		 */
1250 		enum zio_stage stage =
1251 		    ZIO_FREE_PIPELINE | ZIO_STAGE_ISSUE_ASYNC;
1252 
1253 		return (zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1254 		    BP_GET_PSIZE(bp), NULL, NULL,
1255 		    ZIO_TYPE_FREE, ZIO_PRIORITY_NOW,
1256 		    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage));
1257 	} else {
1258 		metaslab_free(spa, bp, txg, B_FALSE);
1259 		return (NULL);
1260 	}
1261 }
1262 
1263 zio_t *
1264 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1265     zio_done_func_t *done, void *private, enum zio_flag flags)
1266 {
1267 	zio_t *zio;
1268 
1269 	(void) zfs_blkptr_verify(spa, bp, flags & ZIO_FLAG_CONFIG_WRITER,
1270 	    BLK_VERIFY_HALT);
1271 
1272 	if (BP_IS_EMBEDDED(bp))
1273 		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
1274 
1275 	/*
1276 	 * A claim is an allocation of a specific block.  Claims are needed
1277 	 * to support immediate writes in the intent log.  The issue is that
1278 	 * immediate writes contain committed data, but in a txg that was
1279 	 * *not* committed.  Upon opening the pool after an unclean shutdown,
1280 	 * the intent log claims all blocks that contain immediate write data
1281 	 * so that the SPA knows they're in use.
1282 	 *
1283 	 * All claims *must* be resolved in the first txg -- before the SPA
1284 	 * starts allocating blocks -- so that nothing is allocated twice.
1285 	 * If txg == 0 we just verify that the block is claimable.
1286 	 */
1287 	ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <,
1288 	    spa_min_claim_txg(spa));
1289 	ASSERT(txg == spa_min_claim_txg(spa) || txg == 0);
1290 	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(8) */
1291 
1292 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1293 	    BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW,
1294 	    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
1295 	ASSERT0(zio->io_queued_timestamp);
1296 
1297 	return (zio);
1298 }
1299 
1300 zio_t *
1301 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
1302     zio_done_func_t *done, void *private, enum zio_flag flags)
1303 {
1304 	zio_t *zio;
1305 	int c;
1306 
1307 	if (vd->vdev_children == 0) {
1308 		zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
1309 		    ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
1310 		    ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
1311 
1312 		zio->io_cmd = cmd;
1313 	} else {
1314 		zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
1315 
1316 		for (c = 0; c < vd->vdev_children; c++)
1317 			zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
1318 			    done, private, flags));
1319 	}
1320 
1321 	return (zio);
1322 }
1323 
1324 zio_t *
1325 zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1326     zio_done_func_t *done, void *private, zio_priority_t priority,
1327     enum zio_flag flags, enum trim_flag trim_flags)
1328 {
1329 	zio_t *zio;
1330 
1331 	ASSERT0(vd->vdev_children);
1332 	ASSERT0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
1333 	ASSERT0(P2PHASE(size, 1ULL << vd->vdev_ashift));
1334 	ASSERT3U(size, !=, 0);
1335 
1336 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, NULL, size, size, done,
1337 	    private, ZIO_TYPE_TRIM, priority, flags | ZIO_FLAG_PHYSICAL,
1338 	    vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_TRIM_PIPELINE);
1339 	zio->io_trim_flags = trim_flags;
1340 
1341 	return (zio);
1342 }
1343 
1344 zio_t *
1345 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1346     abd_t *data, int checksum, zio_done_func_t *done, void *private,
1347     zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1348 {
1349 	zio_t *zio;
1350 
1351 	ASSERT(vd->vdev_children == 0);
1352 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1353 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1354 	ASSERT3U(offset + size, <=, vd->vdev_psize);
1355 
1356 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1357 	    private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1358 	    offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
1359 
1360 	zio->io_prop.zp_checksum = checksum;
1361 
1362 	return (zio);
1363 }
1364 
1365 zio_t *
1366 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1367     abd_t *data, int checksum, zio_done_func_t *done, void *private,
1368     zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1369 {
1370 	zio_t *zio;
1371 
1372 	ASSERT(vd->vdev_children == 0);
1373 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1374 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1375 	ASSERT3U(offset + size, <=, vd->vdev_psize);
1376 
1377 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1378 	    private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1379 	    offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
1380 
1381 	zio->io_prop.zp_checksum = checksum;
1382 
1383 	if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
1384 		/*
1385 		 * zec checksums are necessarily destructive -- they modify
1386 		 * the end of the write buffer to hold the verifier/checksum.
1387 		 * Therefore, we must make a local copy in case the data is
1388 		 * being written to multiple places in parallel.
1389 		 */
1390 		abd_t *wbuf = abd_alloc_sametype(data, size);
1391 		abd_copy(wbuf, data, size);
1392 
1393 		zio_push_transform(zio, wbuf, size, size, NULL);
1394 	}
1395 
1396 	return (zio);
1397 }
1398 
1399 /*
1400  * Create a child I/O to do some work for us.
1401  */
1402 zio_t *
1403 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1404     abd_t *data, uint64_t size, int type, zio_priority_t priority,
1405     enum zio_flag flags, zio_done_func_t *done, void *private)
1406 {
1407 	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1408 	zio_t *zio;
1409 
1410 	/*
1411 	 * vdev child I/Os do not propagate their error to the parent.
1412 	 * Therefore, for correct operation the caller *must* check for
1413 	 * and handle the error in the child i/o's done callback.
1414 	 * The only exceptions are i/os that we don't care about
1415 	 * (OPTIONAL or REPAIR).
1416 	 */
1417 	ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) ||
1418 	    done != NULL);
1419 
1420 	if (type == ZIO_TYPE_READ && bp != NULL) {
1421 		/*
1422 		 * If we have the bp, then the child should perform the
1423 		 * checksum and the parent need not.  This pushes error
1424 		 * detection as close to the leaves as possible and
1425 		 * eliminates redundant checksums in the interior nodes.
1426 		 */
1427 		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1428 		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1429 	}
1430 
1431 	if (vd->vdev_ops->vdev_op_leaf) {
1432 		ASSERT0(vd->vdev_children);
1433 		offset += VDEV_LABEL_START_SIZE;
1434 	}
1435 
1436 	flags |= ZIO_VDEV_CHILD_FLAGS(pio);
1437 
1438 	/*
1439 	 * If we've decided to do a repair, the write is not speculative --
1440 	 * even if the original read was.
1441 	 */
1442 	if (flags & ZIO_FLAG_IO_REPAIR)
1443 		flags &= ~ZIO_FLAG_SPECULATIVE;
1444 
1445 	/*
1446 	 * If we're creating a child I/O that is not associated with a
1447 	 * top-level vdev, then the child zio is not an allocating I/O.
1448 	 * If this is a retried I/O then we ignore it since we will
1449 	 * have already processed the original allocating I/O.
1450 	 */
1451 	if (flags & ZIO_FLAG_IO_ALLOCATING &&
1452 	    (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) {
1453 		ASSERT(pio->io_metaslab_class != NULL);
1454 		ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled);
1455 		ASSERT(type == ZIO_TYPE_WRITE);
1456 		ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE);
1457 		ASSERT(!(flags & ZIO_FLAG_IO_REPAIR));
1458 		ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) ||
1459 		    pio->io_child_type == ZIO_CHILD_GANG);
1460 
1461 		flags &= ~ZIO_FLAG_IO_ALLOCATING;
1462 	}
1463 
1464 
1465 	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size,
1466 	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1467 	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1468 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
1469 
1470 	zio->io_physdone = pio->io_physdone;
1471 	if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
1472 		zio->io_logical->io_phys_children++;
1473 
1474 	return (zio);
1475 }
1476 
1477 zio_t *
1478 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size,
1479     zio_type_t type, zio_priority_t priority, enum zio_flag flags,
1480     zio_done_func_t *done, void *private)
1481 {
1482 	zio_t *zio;
1483 
1484 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1485 
1486 	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1487 	    data, size, size, done, private, type, priority,
1488 	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1489 	    vd, offset, NULL,
1490 	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1491 
1492 	return (zio);
1493 }
1494 
1495 void
1496 zio_flush(zio_t *zio, vdev_t *vd)
1497 {
1498 	zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
1499 	    NULL, NULL,
1500 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1501 }
1502 
1503 void
1504 zio_shrink(zio_t *zio, uint64_t size)
1505 {
1506 	ASSERT3P(zio->io_executor, ==, NULL);
1507 	ASSERT3U(zio->io_orig_size, ==, zio->io_size);
1508 	ASSERT3U(size, <=, zio->io_size);
1509 
1510 	/*
1511 	 * We don't shrink for raidz because of problems with the
1512 	 * reconstruction when reading back less than the block size.
1513 	 * Note, BP_IS_RAIDZ() assumes no compression.
1514 	 */
1515 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1516 	if (!BP_IS_RAIDZ(zio->io_bp)) {
1517 		/* we are not doing a raw write */
1518 		ASSERT3U(zio->io_size, ==, zio->io_lsize);
1519 		zio->io_orig_size = zio->io_size = zio->io_lsize = size;
1520 	}
1521 }
1522 
1523 /*
1524  * ==========================================================================
1525  * Prepare to read and write logical blocks
1526  * ==========================================================================
1527  */
1528 
1529 static zio_t *
1530 zio_read_bp_init(zio_t *zio)
1531 {
1532 	blkptr_t *bp = zio->io_bp;
1533 	uint64_t psize =
1534 	    BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1535 
1536 	ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1537 
1538 	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1539 	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
1540 	    !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1541 		zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1542 		    psize, psize, zio_decompress);
1543 	}
1544 
1545 	if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) ||
1546 	    BP_HAS_INDIRECT_MAC_CKSUM(bp)) &&
1547 	    zio->io_child_type == ZIO_CHILD_LOGICAL) {
1548 		zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1549 		    psize, psize, zio_decrypt);
1550 	}
1551 
1552 	if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1553 		int psize = BPE_GET_PSIZE(bp);
1554 		void *data = abd_borrow_buf(zio->io_abd, psize);
1555 
1556 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1557 		decode_embedded_bp_compressed(bp, data);
1558 		abd_return_buf_copy(zio->io_abd, data, psize);
1559 	} else {
1560 		ASSERT(!BP_IS_EMBEDDED(bp));
1561 		ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1562 	}
1563 
1564 	if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1565 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1566 
1567 	if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1568 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1569 
1570 	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1571 		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1572 
1573 	return (zio);
1574 }
1575 
1576 static zio_t *
1577 zio_write_bp_init(zio_t *zio)
1578 {
1579 	if (!IO_IS_ALLOCATING(zio))
1580 		return (zio);
1581 
1582 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1583 
1584 	if (zio->io_bp_override) {
1585 		blkptr_t *bp = zio->io_bp;
1586 		zio_prop_t *zp = &zio->io_prop;
1587 
1588 		ASSERT(bp->blk_birth != zio->io_txg);
1589 		ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1590 
1591 		*bp = *zio->io_bp_override;
1592 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1593 
1594 		if (BP_IS_EMBEDDED(bp))
1595 			return (zio);
1596 
1597 		/*
1598 		 * If we've been overridden and nopwrite is set then
1599 		 * set the flag accordingly to indicate that a nopwrite
1600 		 * has already occurred.
1601 		 */
1602 		if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1603 			ASSERT(!zp->zp_dedup);
1604 			ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum);
1605 			zio->io_flags |= ZIO_FLAG_NOPWRITE;
1606 			return (zio);
1607 		}
1608 
1609 		ASSERT(!zp->zp_nopwrite);
1610 
1611 		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1612 			return (zio);
1613 
1614 		ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1615 		    ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1616 
1617 		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum &&
1618 		    !zp->zp_encrypt) {
1619 			BP_SET_DEDUP(bp, 1);
1620 			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1621 			return (zio);
1622 		}
1623 
1624 		/*
1625 		 * We were unable to handle this as an override bp, treat
1626 		 * it as a regular write I/O.
1627 		 */
1628 		zio->io_bp_override = NULL;
1629 		*bp = zio->io_bp_orig;
1630 		zio->io_pipeline = zio->io_orig_pipeline;
1631 	}
1632 
1633 	return (zio);
1634 }
1635 
1636 static zio_t *
1637 zio_write_compress(zio_t *zio)
1638 {
1639 	spa_t *spa = zio->io_spa;
1640 	zio_prop_t *zp = &zio->io_prop;
1641 	enum zio_compress compress = zp->zp_compress;
1642 	blkptr_t *bp = zio->io_bp;
1643 	uint64_t lsize = zio->io_lsize;
1644 	uint64_t psize = zio->io_size;
1645 	int pass = 1;
1646 
1647 	/*
1648 	 * If our children haven't all reached the ready stage,
1649 	 * wait for them and then repeat this pipeline stage.
1650 	 */
1651 	if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
1652 	    ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) {
1653 		return (NULL);
1654 	}
1655 
1656 	if (!IO_IS_ALLOCATING(zio))
1657 		return (zio);
1658 
1659 	if (zio->io_children_ready != NULL) {
1660 		/*
1661 		 * Now that all our children are ready, run the callback
1662 		 * associated with this zio in case it wants to modify the
1663 		 * data to be written.
1664 		 */
1665 		ASSERT3U(zp->zp_level, >, 0);
1666 		zio->io_children_ready(zio);
1667 	}
1668 
1669 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1670 	ASSERT(zio->io_bp_override == NULL);
1671 
1672 	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1673 		/*
1674 		 * We're rewriting an existing block, which means we're
1675 		 * working on behalf of spa_sync().  For spa_sync() to
1676 		 * converge, it must eventually be the case that we don't
1677 		 * have to allocate new blocks.  But compression changes
1678 		 * the blocksize, which forces a reallocate, and makes
1679 		 * convergence take longer.  Therefore, after the first
1680 		 * few passes, stop compressing to ensure convergence.
1681 		 */
1682 		pass = spa_sync_pass(spa);
1683 
1684 		ASSERT(zio->io_txg == spa_syncing_txg(spa));
1685 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1686 		ASSERT(!BP_GET_DEDUP(bp));
1687 
1688 		if (pass >= zfs_sync_pass_dont_compress)
1689 			compress = ZIO_COMPRESS_OFF;
1690 
1691 		/* Make sure someone doesn't change their mind on overwrites */
1692 		ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1693 		    spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1694 	}
1695 
1696 	/* If it's a compressed write that is not raw, compress the buffer. */
1697 	if (compress != ZIO_COMPRESS_OFF &&
1698 	    !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1699 		void *cbuf = zio_buf_alloc(lsize);
1700 		psize = zio_compress_data(compress, zio->io_abd, cbuf, lsize,
1701 		    zp->zp_complevel);
1702 		if (psize == 0 || psize >= lsize) {
1703 			compress = ZIO_COMPRESS_OFF;
1704 			zio_buf_free(cbuf, lsize);
1705 		} else if (!zp->zp_dedup && !zp->zp_encrypt &&
1706 		    psize <= BPE_PAYLOAD_SIZE &&
1707 		    zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1708 		    spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1709 			encode_embedded_bp_compressed(bp,
1710 			    cbuf, compress, lsize, psize);
1711 			BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1712 			BP_SET_TYPE(bp, zio->io_prop.zp_type);
1713 			BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1714 			zio_buf_free(cbuf, lsize);
1715 			bp->blk_birth = zio->io_txg;
1716 			zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1717 			ASSERT(spa_feature_is_active(spa,
1718 			    SPA_FEATURE_EMBEDDED_DATA));
1719 			return (zio);
1720 		} else {
1721 			/*
1722 			 * Round compressed size up to the minimum allocation
1723 			 * size of the smallest-ashift device, and zero the
1724 			 * tail. This ensures that the compressed size of the
1725 			 * BP (and thus compressratio property) are correct,
1726 			 * in that we charge for the padding used to fill out
1727 			 * the last sector.
1728 			 */
1729 			ASSERT3U(spa->spa_min_alloc, >=, SPA_MINBLOCKSHIFT);
1730 			size_t rounded = (size_t)roundup(psize,
1731 			    spa->spa_min_alloc);
1732 			if (rounded >= lsize) {
1733 				compress = ZIO_COMPRESS_OFF;
1734 				zio_buf_free(cbuf, lsize);
1735 				psize = lsize;
1736 			} else {
1737 				abd_t *cdata = abd_get_from_buf(cbuf, lsize);
1738 				abd_take_ownership_of_buf(cdata, B_TRUE);
1739 				abd_zero_off(cdata, psize, rounded - psize);
1740 				psize = rounded;
1741 				zio_push_transform(zio, cdata,
1742 				    psize, lsize, NULL);
1743 			}
1744 		}
1745 
1746 		/*
1747 		 * We were unable to handle this as an override bp, treat
1748 		 * it as a regular write I/O.
1749 		 */
1750 		zio->io_bp_override = NULL;
1751 		*bp = zio->io_bp_orig;
1752 		zio->io_pipeline = zio->io_orig_pipeline;
1753 
1754 	} else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 &&
1755 	    zp->zp_type == DMU_OT_DNODE) {
1756 		/*
1757 		 * The DMU actually relies on the zio layer's compression
1758 		 * to free metadnode blocks that have had all contained
1759 		 * dnodes freed. As a result, even when doing a raw
1760 		 * receive, we must check whether the block can be compressed
1761 		 * to a hole.
1762 		 */
1763 		psize = zio_compress_data(ZIO_COMPRESS_EMPTY,
1764 		    zio->io_abd, NULL, lsize, zp->zp_complevel);
1765 		if (psize == 0 || psize >= lsize)
1766 			compress = ZIO_COMPRESS_OFF;
1767 	} else if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS &&
1768 	    !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) {
1769 		/*
1770 		 * If we are raw receiving an encrypted dataset we should not
1771 		 * take this codepath because it will change the on-disk block
1772 		 * and decryption will fail.
1773 		 */
1774 		size_t rounded = MIN((size_t)roundup(psize,
1775 		    spa->spa_min_alloc), lsize);
1776 
1777 		if (rounded != psize) {
1778 			abd_t *cdata = abd_alloc_linear(rounded, B_TRUE);
1779 			abd_zero_off(cdata, psize, rounded - psize);
1780 			abd_copy_off(cdata, zio->io_abd, 0, 0, psize);
1781 			psize = rounded;
1782 			zio_push_transform(zio, cdata,
1783 			    psize, rounded, NULL);
1784 		}
1785 	} else {
1786 		ASSERT3U(psize, !=, 0);
1787 	}
1788 
1789 	/*
1790 	 * The final pass of spa_sync() must be all rewrites, but the first
1791 	 * few passes offer a trade-off: allocating blocks defers convergence,
1792 	 * but newly allocated blocks are sequential, so they can be written
1793 	 * to disk faster.  Therefore, we allow the first few passes of
1794 	 * spa_sync() to allocate new blocks, but force rewrites after that.
1795 	 * There should only be a handful of blocks after pass 1 in any case.
1796 	 */
1797 	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1798 	    BP_GET_PSIZE(bp) == psize &&
1799 	    pass >= zfs_sync_pass_rewrite) {
1800 		VERIFY3U(psize, !=, 0);
1801 		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1802 
1803 		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1804 		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1805 	} else {
1806 		BP_ZERO(bp);
1807 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
1808 	}
1809 
1810 	if (psize == 0) {
1811 		if (zio->io_bp_orig.blk_birth != 0 &&
1812 		    spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1813 			BP_SET_LSIZE(bp, lsize);
1814 			BP_SET_TYPE(bp, zp->zp_type);
1815 			BP_SET_LEVEL(bp, zp->zp_level);
1816 			BP_SET_BIRTH(bp, zio->io_txg, 0);
1817 		}
1818 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1819 	} else {
1820 		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1821 		BP_SET_LSIZE(bp, lsize);
1822 		BP_SET_TYPE(bp, zp->zp_type);
1823 		BP_SET_LEVEL(bp, zp->zp_level);
1824 		BP_SET_PSIZE(bp, psize);
1825 		BP_SET_COMPRESS(bp, compress);
1826 		BP_SET_CHECKSUM(bp, zp->zp_checksum);
1827 		BP_SET_DEDUP(bp, zp->zp_dedup);
1828 		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1829 		if (zp->zp_dedup) {
1830 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1831 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1832 			ASSERT(!zp->zp_encrypt ||
1833 			    DMU_OT_IS_ENCRYPTED(zp->zp_type));
1834 			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1835 		}
1836 		if (zp->zp_nopwrite) {
1837 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1838 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1839 			zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1840 		}
1841 	}
1842 	return (zio);
1843 }
1844 
1845 static zio_t *
1846 zio_free_bp_init(zio_t *zio)
1847 {
1848 	blkptr_t *bp = zio->io_bp;
1849 
1850 	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1851 		if (BP_GET_DEDUP(bp))
1852 			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1853 	}
1854 
1855 	ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1856 
1857 	return (zio);
1858 }
1859 
1860 /*
1861  * ==========================================================================
1862  * Execute the I/O pipeline
1863  * ==========================================================================
1864  */
1865 
1866 static void
1867 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1868 {
1869 	spa_t *spa = zio->io_spa;
1870 	zio_type_t t = zio->io_type;
1871 	int flags = (cutinline ? TQ_FRONT : 0);
1872 
1873 	/*
1874 	 * If we're a config writer or a probe, the normal issue and
1875 	 * interrupt threads may all be blocked waiting for the config lock.
1876 	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1877 	 */
1878 	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1879 		t = ZIO_TYPE_NULL;
1880 
1881 	/*
1882 	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1883 	 */
1884 	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1885 		t = ZIO_TYPE_NULL;
1886 
1887 	/*
1888 	 * If this is a high priority I/O, then use the high priority taskq if
1889 	 * available.
1890 	 */
1891 	if ((zio->io_priority == ZIO_PRIORITY_NOW ||
1892 	    zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) &&
1893 	    spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1894 		q++;
1895 
1896 	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1897 
1898 	/*
1899 	 * NB: We are assuming that the zio can only be dispatched
1900 	 * to a single taskq at a time.  It would be a grievous error
1901 	 * to dispatch the zio to another taskq at the same time.
1902 	 */
1903 	ASSERT(taskq_empty_ent(&zio->io_tqent));
1904 	spa_taskq_dispatch_ent(spa, t, q, zio_execute, zio, flags,
1905 	    &zio->io_tqent);
1906 }
1907 
1908 static boolean_t
1909 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1910 {
1911 	spa_t *spa = zio->io_spa;
1912 
1913 	taskq_t *tq = taskq_of_curthread();
1914 
1915 	for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1916 		spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1917 		uint_t i;
1918 		for (i = 0; i < tqs->stqs_count; i++) {
1919 			if (tqs->stqs_taskq[i] == tq)
1920 				return (B_TRUE);
1921 		}
1922 	}
1923 
1924 	return (B_FALSE);
1925 }
1926 
1927 static zio_t *
1928 zio_issue_async(zio_t *zio)
1929 {
1930 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1931 
1932 	return (NULL);
1933 }
1934 
1935 void
1936 zio_interrupt(void *zio)
1937 {
1938 	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1939 }
1940 
1941 void
1942 zio_delay_interrupt(zio_t *zio)
1943 {
1944 	/*
1945 	 * The timeout_generic() function isn't defined in userspace, so
1946 	 * rather than trying to implement the function, the zio delay
1947 	 * functionality has been disabled for userspace builds.
1948 	 */
1949 
1950 #ifdef _KERNEL
1951 	/*
1952 	 * If io_target_timestamp is zero, then no delay has been registered
1953 	 * for this IO, thus jump to the end of this function and "skip" the
1954 	 * delay; issuing it directly to the zio layer.
1955 	 */
1956 	if (zio->io_target_timestamp != 0) {
1957 		hrtime_t now = gethrtime();
1958 
1959 		if (now >= zio->io_target_timestamp) {
1960 			/*
1961 			 * This IO has already taken longer than the target
1962 			 * delay to complete, so we don't want to delay it
1963 			 * any longer; we "miss" the delay and issue it
1964 			 * directly to the zio layer. This is likely due to
1965 			 * the target latency being set to a value less than
1966 			 * the underlying hardware can satisfy (e.g. delay
1967 			 * set to 1ms, but the disks take 10ms to complete an
1968 			 * IO request).
1969 			 */
1970 
1971 			DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
1972 			    hrtime_t, now);
1973 
1974 			zio_interrupt(zio);
1975 		} else {
1976 			taskqid_t tid;
1977 			hrtime_t diff = zio->io_target_timestamp - now;
1978 			clock_t expire_at_tick = ddi_get_lbolt() +
1979 			    NSEC_TO_TICK(diff);
1980 
1981 			DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
1982 			    hrtime_t, now, hrtime_t, diff);
1983 
1984 			if (NSEC_TO_TICK(diff) == 0) {
1985 				/* Our delay is less than a jiffy - just spin */
1986 				zfs_sleep_until(zio->io_target_timestamp);
1987 				zio_interrupt(zio);
1988 			} else {
1989 				/*
1990 				 * Use taskq_dispatch_delay() in the place of
1991 				 * OpenZFS's timeout_generic().
1992 				 */
1993 				tid = taskq_dispatch_delay(system_taskq,
1994 				    zio_interrupt, zio, TQ_NOSLEEP,
1995 				    expire_at_tick);
1996 				if (tid == TASKQID_INVALID) {
1997 					/*
1998 					 * Couldn't allocate a task.  Just
1999 					 * finish the zio without a delay.
2000 					 */
2001 					zio_interrupt(zio);
2002 				}
2003 			}
2004 		}
2005 		return;
2006 	}
2007 #endif
2008 	DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
2009 	zio_interrupt(zio);
2010 }
2011 
2012 static void
2013 zio_deadman_impl(zio_t *pio, int ziodepth)
2014 {
2015 	zio_t *cio, *cio_next;
2016 	zio_link_t *zl = NULL;
2017 	vdev_t *vd = pio->io_vd;
2018 
2019 	if (zio_deadman_log_all || (vd != NULL && vd->vdev_ops->vdev_op_leaf)) {
2020 		vdev_queue_t *vq = vd ? &vd->vdev_queue : NULL;
2021 		zbookmark_phys_t *zb = &pio->io_bookmark;
2022 		uint64_t delta = gethrtime() - pio->io_timestamp;
2023 		uint64_t failmode = spa_get_deadman_failmode(pio->io_spa);
2024 
2025 		zfs_dbgmsg("slow zio[%d]: zio=%px timestamp=%llu "
2026 		    "delta=%llu queued=%llu io=%llu "
2027 		    "path=%s "
2028 		    "last=%llu type=%d "
2029 		    "priority=%d flags=0x%x stage=0x%x "
2030 		    "pipeline=0x%x pipeline-trace=0x%x "
2031 		    "objset=%llu object=%llu "
2032 		    "level=%llu blkid=%llu "
2033 		    "offset=%llu size=%llu "
2034 		    "error=%d",
2035 		    ziodepth, pio, pio->io_timestamp,
2036 		    (u_longlong_t)delta, pio->io_delta, pio->io_delay,
2037 		    vd ? vd->vdev_path : "NULL",
2038 		    vq ? vq->vq_io_complete_ts : 0, pio->io_type,
2039 		    pio->io_priority, pio->io_flags, pio->io_stage,
2040 		    pio->io_pipeline, pio->io_pipeline_trace,
2041 		    (u_longlong_t)zb->zb_objset, (u_longlong_t)zb->zb_object,
2042 		    (u_longlong_t)zb->zb_level, (u_longlong_t)zb->zb_blkid,
2043 		    (u_longlong_t)pio->io_offset, (u_longlong_t)pio->io_size,
2044 		    pio->io_error);
2045 		(void) zfs_ereport_post(FM_EREPORT_ZFS_DEADMAN,
2046 		    pio->io_spa, vd, zb, pio, 0);
2047 
2048 		if (failmode == ZIO_FAILURE_MODE_CONTINUE &&
2049 		    taskq_empty_ent(&pio->io_tqent)) {
2050 			zio_interrupt(pio);
2051 		}
2052 	}
2053 
2054 	mutex_enter(&pio->io_lock);
2055 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2056 		cio_next = zio_walk_children(pio, &zl);
2057 		zio_deadman_impl(cio, ziodepth + 1);
2058 	}
2059 	mutex_exit(&pio->io_lock);
2060 }
2061 
2062 /*
2063  * Log the critical information describing this zio and all of its children
2064  * using the zfs_dbgmsg() interface then post deadman event for the ZED.
2065  */
2066 void
2067 zio_deadman(zio_t *pio, char *tag)
2068 {
2069 	spa_t *spa = pio->io_spa;
2070 	char *name = spa_name(spa);
2071 
2072 	if (!zfs_deadman_enabled || spa_suspended(spa))
2073 		return;
2074 
2075 	zio_deadman_impl(pio, 0);
2076 
2077 	switch (spa_get_deadman_failmode(spa)) {
2078 	case ZIO_FAILURE_MODE_WAIT:
2079 		zfs_dbgmsg("%s waiting for hung I/O to pool '%s'", tag, name);
2080 		break;
2081 
2082 	case ZIO_FAILURE_MODE_CONTINUE:
2083 		zfs_dbgmsg("%s restarting hung I/O for pool '%s'", tag, name);
2084 		break;
2085 
2086 	case ZIO_FAILURE_MODE_PANIC:
2087 		fm_panic("%s determined I/O to pool '%s' is hung.", tag, name);
2088 		break;
2089 	}
2090 }
2091 
2092 /*
2093  * Execute the I/O pipeline until one of the following occurs:
2094  * (1) the I/O completes; (2) the pipeline stalls waiting for
2095  * dependent child I/Os; (3) the I/O issues, so we're waiting
2096  * for an I/O completion interrupt; (4) the I/O is delegated by
2097  * vdev-level caching or aggregation; (5) the I/O is deferred
2098  * due to vdev-level queueing; (6) the I/O is handed off to
2099  * another thread.  In all cases, the pipeline stops whenever
2100  * there's no CPU work; it never burns a thread in cv_wait_io().
2101  *
2102  * There's no locking on io_stage because there's no legitimate way
2103  * for multiple threads to be attempting to process the same I/O.
2104  */
2105 static zio_pipe_stage_t *zio_pipeline[];
2106 
2107 /*
2108  * zio_execute() is a wrapper around the static function
2109  * __zio_execute() so that we can force  __zio_execute() to be
2110  * inlined.  This reduces stack overhead which is important
2111  * because __zio_execute() is called recursively in several zio
2112  * code paths.  zio_execute() itself cannot be inlined because
2113  * it is externally visible.
2114  */
2115 void
2116 zio_execute(void *zio)
2117 {
2118 	fstrans_cookie_t cookie;
2119 
2120 	cookie = spl_fstrans_mark();
2121 	__zio_execute(zio);
2122 	spl_fstrans_unmark(cookie);
2123 }
2124 
2125 /*
2126  * Used to determine if in the current context the stack is sized large
2127  * enough to allow zio_execute() to be called recursively.  A minimum
2128  * stack size of 16K is required to avoid needing to re-dispatch the zio.
2129  */
2130 static boolean_t
2131 zio_execute_stack_check(zio_t *zio)
2132 {
2133 #if !defined(HAVE_LARGE_STACKS)
2134 	dsl_pool_t *dp = spa_get_dsl(zio->io_spa);
2135 
2136 	/* Executing in txg_sync_thread() context. */
2137 	if (dp && curthread == dp->dp_tx.tx_sync_thread)
2138 		return (B_TRUE);
2139 
2140 	/* Pool initialization outside of zio_taskq context. */
2141 	if (dp && spa_is_initializing(dp->dp_spa) &&
2142 	    !zio_taskq_member(zio, ZIO_TASKQ_ISSUE) &&
2143 	    !zio_taskq_member(zio, ZIO_TASKQ_ISSUE_HIGH))
2144 		return (B_TRUE);
2145 #else
2146 	(void) zio;
2147 #endif /* HAVE_LARGE_STACKS */
2148 
2149 	return (B_FALSE);
2150 }
2151 
2152 __attribute__((always_inline))
2153 static inline void
2154 __zio_execute(zio_t *zio)
2155 {
2156 	ASSERT3U(zio->io_queued_timestamp, >, 0);
2157 
2158 	while (zio->io_stage < ZIO_STAGE_DONE) {
2159 		enum zio_stage pipeline = zio->io_pipeline;
2160 		enum zio_stage stage = zio->io_stage;
2161 
2162 		zio->io_executor = curthread;
2163 
2164 		ASSERT(!MUTEX_HELD(&zio->io_lock));
2165 		ASSERT(ISP2(stage));
2166 		ASSERT(zio->io_stall == NULL);
2167 
2168 		do {
2169 			stage <<= 1;
2170 		} while ((stage & pipeline) == 0);
2171 
2172 		ASSERT(stage <= ZIO_STAGE_DONE);
2173 
2174 		/*
2175 		 * If we are in interrupt context and this pipeline stage
2176 		 * will grab a config lock that is held across I/O,
2177 		 * or may wait for an I/O that needs an interrupt thread
2178 		 * to complete, issue async to avoid deadlock.
2179 		 *
2180 		 * For VDEV_IO_START, we cut in line so that the io will
2181 		 * be sent to disk promptly.
2182 		 */
2183 		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
2184 		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
2185 			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2186 			    zio_requeue_io_start_cut_in_line : B_FALSE;
2187 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2188 			return;
2189 		}
2190 
2191 		/*
2192 		 * If the current context doesn't have large enough stacks
2193 		 * the zio must be issued asynchronously to prevent overflow.
2194 		 */
2195 		if (zio_execute_stack_check(zio)) {
2196 			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2197 			    zio_requeue_io_start_cut_in_line : B_FALSE;
2198 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2199 			return;
2200 		}
2201 
2202 		zio->io_stage = stage;
2203 		zio->io_pipeline_trace |= zio->io_stage;
2204 
2205 		/*
2206 		 * The zio pipeline stage returns the next zio to execute
2207 		 * (typically the same as this one), or NULL if we should
2208 		 * stop.
2209 		 */
2210 		zio = zio_pipeline[highbit64(stage) - 1](zio);
2211 
2212 		if (zio == NULL)
2213 			return;
2214 	}
2215 }
2216 
2217 
2218 /*
2219  * ==========================================================================
2220  * Initiate I/O, either sync or async
2221  * ==========================================================================
2222  */
2223 int
2224 zio_wait(zio_t *zio)
2225 {
2226 	/*
2227 	 * Some routines, like zio_free_sync(), may return a NULL zio
2228 	 * to avoid the performance overhead of creating and then destroying
2229 	 * an unneeded zio.  For the callers' simplicity, we accept a NULL
2230 	 * zio and ignore it.
2231 	 */
2232 	if (zio == NULL)
2233 		return (0);
2234 
2235 	long timeout = MSEC_TO_TICK(zfs_deadman_ziotime_ms);
2236 	int error;
2237 
2238 	ASSERT3S(zio->io_stage, ==, ZIO_STAGE_OPEN);
2239 	ASSERT3P(zio->io_executor, ==, NULL);
2240 
2241 	zio->io_waiter = curthread;
2242 	ASSERT0(zio->io_queued_timestamp);
2243 	zio->io_queued_timestamp = gethrtime();
2244 
2245 	__zio_execute(zio);
2246 
2247 	mutex_enter(&zio->io_lock);
2248 	while (zio->io_executor != NULL) {
2249 		error = cv_timedwait_io(&zio->io_cv, &zio->io_lock,
2250 		    ddi_get_lbolt() + timeout);
2251 
2252 		if (zfs_deadman_enabled && error == -1 &&
2253 		    gethrtime() - zio->io_queued_timestamp >
2254 		    spa_deadman_ziotime(zio->io_spa)) {
2255 			mutex_exit(&zio->io_lock);
2256 			timeout = MSEC_TO_TICK(zfs_deadman_checktime_ms);
2257 			zio_deadman(zio, FTAG);
2258 			mutex_enter(&zio->io_lock);
2259 		}
2260 	}
2261 	mutex_exit(&zio->io_lock);
2262 
2263 	error = zio->io_error;
2264 	zio_destroy(zio);
2265 
2266 	return (error);
2267 }
2268 
2269 void
2270 zio_nowait(zio_t *zio)
2271 {
2272 	/*
2273 	 * See comment in zio_wait().
2274 	 */
2275 	if (zio == NULL)
2276 		return;
2277 
2278 	ASSERT3P(zio->io_executor, ==, NULL);
2279 
2280 	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
2281 	    zio_unique_parent(zio) == NULL) {
2282 		zio_t *pio;
2283 
2284 		/*
2285 		 * This is a logical async I/O with no parent to wait for it.
2286 		 * We add it to the spa_async_root_zio "Godfather" I/O which
2287 		 * will ensure they complete prior to unloading the pool.
2288 		 */
2289 		spa_t *spa = zio->io_spa;
2290 		pio = spa->spa_async_zio_root[CPU_SEQID_UNSTABLE];
2291 
2292 		zio_add_child(pio, zio);
2293 	}
2294 
2295 	ASSERT0(zio->io_queued_timestamp);
2296 	zio->io_queued_timestamp = gethrtime();
2297 	__zio_execute(zio);
2298 }
2299 
2300 /*
2301  * ==========================================================================
2302  * Reexecute, cancel, or suspend/resume failed I/O
2303  * ==========================================================================
2304  */
2305 
2306 static void
2307 zio_reexecute(void *arg)
2308 {
2309 	zio_t *pio = arg;
2310 	zio_t *cio, *cio_next;
2311 
2312 	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
2313 	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
2314 	ASSERT(pio->io_gang_leader == NULL);
2315 	ASSERT(pio->io_gang_tree == NULL);
2316 
2317 	pio->io_flags = pio->io_orig_flags;
2318 	pio->io_stage = pio->io_orig_stage;
2319 	pio->io_pipeline = pio->io_orig_pipeline;
2320 	pio->io_reexecute = 0;
2321 	pio->io_flags |= ZIO_FLAG_REEXECUTED;
2322 	pio->io_pipeline_trace = 0;
2323 	pio->io_error = 0;
2324 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2325 		pio->io_state[w] = 0;
2326 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2327 		pio->io_child_error[c] = 0;
2328 
2329 	if (IO_IS_ALLOCATING(pio))
2330 		BP_ZERO(pio->io_bp);
2331 
2332 	/*
2333 	 * As we reexecute pio's children, new children could be created.
2334 	 * New children go to the head of pio's io_child_list, however,
2335 	 * so we will (correctly) not reexecute them.  The key is that
2336 	 * the remainder of pio's io_child_list, from 'cio_next' onward,
2337 	 * cannot be affected by any side effects of reexecuting 'cio'.
2338 	 */
2339 	zio_link_t *zl = NULL;
2340 	mutex_enter(&pio->io_lock);
2341 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2342 		cio_next = zio_walk_children(pio, &zl);
2343 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2344 			pio->io_children[cio->io_child_type][w]++;
2345 		mutex_exit(&pio->io_lock);
2346 		zio_reexecute(cio);
2347 		mutex_enter(&pio->io_lock);
2348 	}
2349 	mutex_exit(&pio->io_lock);
2350 
2351 	/*
2352 	 * Now that all children have been reexecuted, execute the parent.
2353 	 * We don't reexecute "The Godfather" I/O here as it's the
2354 	 * responsibility of the caller to wait on it.
2355 	 */
2356 	if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) {
2357 		pio->io_queued_timestamp = gethrtime();
2358 		__zio_execute(pio);
2359 	}
2360 }
2361 
2362 void
2363 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason)
2364 {
2365 	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
2366 		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
2367 		    "failure and the failure mode property for this pool "
2368 		    "is set to panic.", spa_name(spa));
2369 
2370 	cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable I/O "
2371 	    "failure and has been suspended.\n", spa_name(spa));
2372 
2373 	(void) zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL,
2374 	    NULL, NULL, 0);
2375 
2376 	mutex_enter(&spa->spa_suspend_lock);
2377 
2378 	if (spa->spa_suspend_zio_root == NULL)
2379 		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
2380 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2381 		    ZIO_FLAG_GODFATHER);
2382 
2383 	spa->spa_suspended = reason;
2384 
2385 	if (zio != NULL) {
2386 		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
2387 		ASSERT(zio != spa->spa_suspend_zio_root);
2388 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2389 		ASSERT(zio_unique_parent(zio) == NULL);
2390 		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
2391 		zio_add_child(spa->spa_suspend_zio_root, zio);
2392 	}
2393 
2394 	mutex_exit(&spa->spa_suspend_lock);
2395 }
2396 
2397 int
2398 zio_resume(spa_t *spa)
2399 {
2400 	zio_t *pio;
2401 
2402 	/*
2403 	 * Reexecute all previously suspended i/o.
2404 	 */
2405 	mutex_enter(&spa->spa_suspend_lock);
2406 	spa->spa_suspended = ZIO_SUSPEND_NONE;
2407 	cv_broadcast(&spa->spa_suspend_cv);
2408 	pio = spa->spa_suspend_zio_root;
2409 	spa->spa_suspend_zio_root = NULL;
2410 	mutex_exit(&spa->spa_suspend_lock);
2411 
2412 	if (pio == NULL)
2413 		return (0);
2414 
2415 	zio_reexecute(pio);
2416 	return (zio_wait(pio));
2417 }
2418 
2419 void
2420 zio_resume_wait(spa_t *spa)
2421 {
2422 	mutex_enter(&spa->spa_suspend_lock);
2423 	while (spa_suspended(spa))
2424 		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
2425 	mutex_exit(&spa->spa_suspend_lock);
2426 }
2427 
2428 /*
2429  * ==========================================================================
2430  * Gang blocks.
2431  *
2432  * A gang block is a collection of small blocks that looks to the DMU
2433  * like one large block.  When zio_dva_allocate() cannot find a block
2434  * of the requested size, due to either severe fragmentation or the pool
2435  * being nearly full, it calls zio_write_gang_block() to construct the
2436  * block from smaller fragments.
2437  *
2438  * A gang block consists of a gang header (zio_gbh_phys_t) and up to
2439  * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
2440  * an indirect block: it's an array of block pointers.  It consumes
2441  * only one sector and hence is allocatable regardless of fragmentation.
2442  * The gang header's bps point to its gang members, which hold the data.
2443  *
2444  * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
2445  * as the verifier to ensure uniqueness of the SHA256 checksum.
2446  * Critically, the gang block bp's blk_cksum is the checksum of the data,
2447  * not the gang header.  This ensures that data block signatures (needed for
2448  * deduplication) are independent of how the block is physically stored.
2449  *
2450  * Gang blocks can be nested: a gang member may itself be a gang block.
2451  * Thus every gang block is a tree in which root and all interior nodes are
2452  * gang headers, and the leaves are normal blocks that contain user data.
2453  * The root of the gang tree is called the gang leader.
2454  *
2455  * To perform any operation (read, rewrite, free, claim) on a gang block,
2456  * zio_gang_assemble() first assembles the gang tree (minus data leaves)
2457  * in the io_gang_tree field of the original logical i/o by recursively
2458  * reading the gang leader and all gang headers below it.  This yields
2459  * an in-core tree containing the contents of every gang header and the
2460  * bps for every constituent of the gang block.
2461  *
2462  * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
2463  * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
2464  * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
2465  * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
2466  * zio_read_gang() is a wrapper around zio_read() that omits reading gang
2467  * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
2468  * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
2469  * of the gang header plus zio_checksum_compute() of the data to update the
2470  * gang header's blk_cksum as described above.
2471  *
2472  * The two-phase assemble/issue model solves the problem of partial failure --
2473  * what if you'd freed part of a gang block but then couldn't read the
2474  * gang header for another part?  Assembling the entire gang tree first
2475  * ensures that all the necessary gang header I/O has succeeded before
2476  * starting the actual work of free, claim, or write.  Once the gang tree
2477  * is assembled, free and claim are in-memory operations that cannot fail.
2478  *
2479  * In the event that a gang write fails, zio_dva_unallocate() walks the
2480  * gang tree to immediately free (i.e. insert back into the space map)
2481  * everything we've allocated.  This ensures that we don't get ENOSPC
2482  * errors during repeated suspend/resume cycles due to a flaky device.
2483  *
2484  * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
2485  * the gang tree, we won't modify the block, so we can safely defer the free
2486  * (knowing that the block is still intact).  If we *can* assemble the gang
2487  * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
2488  * each constituent bp and we can allocate a new block on the next sync pass.
2489  *
2490  * In all cases, the gang tree allows complete recovery from partial failure.
2491  * ==========================================================================
2492  */
2493 
2494 static void
2495 zio_gang_issue_func_done(zio_t *zio)
2496 {
2497 	abd_free(zio->io_abd);
2498 }
2499 
2500 static zio_t *
2501 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2502     uint64_t offset)
2503 {
2504 	if (gn != NULL)
2505 		return (pio);
2506 
2507 	return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset),
2508 	    BP_GET_PSIZE(bp), zio_gang_issue_func_done,
2509 	    NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2510 	    &pio->io_bookmark));
2511 }
2512 
2513 static zio_t *
2514 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2515     uint64_t offset)
2516 {
2517 	zio_t *zio;
2518 
2519 	if (gn != NULL) {
2520 		abd_t *gbh_abd =
2521 		    abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2522 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2523 		    gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL,
2524 		    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2525 		    &pio->io_bookmark);
2526 		/*
2527 		 * As we rewrite each gang header, the pipeline will compute
2528 		 * a new gang block header checksum for it; but no one will
2529 		 * compute a new data checksum, so we do that here.  The one
2530 		 * exception is the gang leader: the pipeline already computed
2531 		 * its data checksum because that stage precedes gang assembly.
2532 		 * (Presently, nothing actually uses interior data checksums;
2533 		 * this is just good hygiene.)
2534 		 */
2535 		if (gn != pio->io_gang_leader->io_gang_tree) {
2536 			abd_t *buf = abd_get_offset(data, offset);
2537 
2538 			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
2539 			    buf, BP_GET_PSIZE(bp));
2540 
2541 			abd_free(buf);
2542 		}
2543 		/*
2544 		 * If we are here to damage data for testing purposes,
2545 		 * leave the GBH alone so that we can detect the damage.
2546 		 */
2547 		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
2548 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2549 	} else {
2550 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2551 		    abd_get_offset(data, offset), BP_GET_PSIZE(bp),
2552 		    zio_gang_issue_func_done, NULL, pio->io_priority,
2553 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2554 	}
2555 
2556 	return (zio);
2557 }
2558 
2559 static zio_t *
2560 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2561     uint64_t offset)
2562 {
2563 	(void) gn, (void) data, (void) offset;
2564 
2565 	zio_t *zio = zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
2566 	    ZIO_GANG_CHILD_FLAGS(pio));
2567 	if (zio == NULL) {
2568 		zio = zio_null(pio, pio->io_spa,
2569 		    NULL, NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio));
2570 	}
2571 	return (zio);
2572 }
2573 
2574 static zio_t *
2575 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2576     uint64_t offset)
2577 {
2578 	(void) gn, (void) data, (void) offset;
2579 	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
2580 	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
2581 }
2582 
2583 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
2584 	NULL,
2585 	zio_read_gang,
2586 	zio_rewrite_gang,
2587 	zio_free_gang,
2588 	zio_claim_gang,
2589 	NULL
2590 };
2591 
2592 static void zio_gang_tree_assemble_done(zio_t *zio);
2593 
2594 static zio_gang_node_t *
2595 zio_gang_node_alloc(zio_gang_node_t **gnpp)
2596 {
2597 	zio_gang_node_t *gn;
2598 
2599 	ASSERT(*gnpp == NULL);
2600 
2601 	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
2602 	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
2603 	*gnpp = gn;
2604 
2605 	return (gn);
2606 }
2607 
2608 static void
2609 zio_gang_node_free(zio_gang_node_t **gnpp)
2610 {
2611 	zio_gang_node_t *gn = *gnpp;
2612 
2613 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2614 		ASSERT(gn->gn_child[g] == NULL);
2615 
2616 	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2617 	kmem_free(gn, sizeof (*gn));
2618 	*gnpp = NULL;
2619 }
2620 
2621 static void
2622 zio_gang_tree_free(zio_gang_node_t **gnpp)
2623 {
2624 	zio_gang_node_t *gn = *gnpp;
2625 
2626 	if (gn == NULL)
2627 		return;
2628 
2629 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2630 		zio_gang_tree_free(&gn->gn_child[g]);
2631 
2632 	zio_gang_node_free(gnpp);
2633 }
2634 
2635 static void
2636 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
2637 {
2638 	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
2639 	abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2640 
2641 	ASSERT(gio->io_gang_leader == gio);
2642 	ASSERT(BP_IS_GANG(bp));
2643 
2644 	zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2645 	    zio_gang_tree_assemble_done, gn, gio->io_priority,
2646 	    ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
2647 }
2648 
2649 static void
2650 zio_gang_tree_assemble_done(zio_t *zio)
2651 {
2652 	zio_t *gio = zio->io_gang_leader;
2653 	zio_gang_node_t *gn = zio->io_private;
2654 	blkptr_t *bp = zio->io_bp;
2655 
2656 	ASSERT(gio == zio_unique_parent(zio));
2657 	ASSERT(zio->io_child_count == 0);
2658 
2659 	if (zio->io_error)
2660 		return;
2661 
2662 	/* this ABD was created from a linear buf in zio_gang_tree_assemble */
2663 	if (BP_SHOULD_BYTESWAP(bp))
2664 		byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size);
2665 
2666 	ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh);
2667 	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
2668 	ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2669 
2670 	abd_free(zio->io_abd);
2671 
2672 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2673 		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2674 		if (!BP_IS_GANG(gbp))
2675 			continue;
2676 		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
2677 	}
2678 }
2679 
2680 static void
2681 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data,
2682     uint64_t offset)
2683 {
2684 	zio_t *gio = pio->io_gang_leader;
2685 	zio_t *zio;
2686 
2687 	ASSERT(BP_IS_GANG(bp) == !!gn);
2688 	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
2689 	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
2690 
2691 	/*
2692 	 * If you're a gang header, your data is in gn->gn_gbh.
2693 	 * If you're a gang member, your data is in 'data' and gn == NULL.
2694 	 */
2695 	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset);
2696 
2697 	if (gn != NULL) {
2698 		ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2699 
2700 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2701 			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2702 			if (BP_IS_HOLE(gbp))
2703 				continue;
2704 			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data,
2705 			    offset);
2706 			offset += BP_GET_PSIZE(gbp);
2707 		}
2708 	}
2709 
2710 	if (gn == gio->io_gang_tree)
2711 		ASSERT3U(gio->io_size, ==, offset);
2712 
2713 	if (zio != pio)
2714 		zio_nowait(zio);
2715 }
2716 
2717 static zio_t *
2718 zio_gang_assemble(zio_t *zio)
2719 {
2720 	blkptr_t *bp = zio->io_bp;
2721 
2722 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
2723 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2724 
2725 	zio->io_gang_leader = zio;
2726 
2727 	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
2728 
2729 	return (zio);
2730 }
2731 
2732 static zio_t *
2733 zio_gang_issue(zio_t *zio)
2734 {
2735 	blkptr_t *bp = zio->io_bp;
2736 
2737 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) {
2738 		return (NULL);
2739 	}
2740 
2741 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
2742 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2743 
2744 	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
2745 		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd,
2746 		    0);
2747 	else
2748 		zio_gang_tree_free(&zio->io_gang_tree);
2749 
2750 	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2751 
2752 	return (zio);
2753 }
2754 
2755 static void
2756 zio_write_gang_member_ready(zio_t *zio)
2757 {
2758 	zio_t *pio = zio_unique_parent(zio);
2759 	dva_t *cdva = zio->io_bp->blk_dva;
2760 	dva_t *pdva = pio->io_bp->blk_dva;
2761 	uint64_t asize;
2762 	zio_t *gio __maybe_unused = zio->io_gang_leader;
2763 
2764 	if (BP_IS_HOLE(zio->io_bp))
2765 		return;
2766 
2767 	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
2768 
2769 	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
2770 	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
2771 	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
2772 	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
2773 	ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
2774 
2775 	mutex_enter(&pio->io_lock);
2776 	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
2777 		ASSERT(DVA_GET_GANG(&pdva[d]));
2778 		asize = DVA_GET_ASIZE(&pdva[d]);
2779 		asize += DVA_GET_ASIZE(&cdva[d]);
2780 		DVA_SET_ASIZE(&pdva[d], asize);
2781 	}
2782 	mutex_exit(&pio->io_lock);
2783 }
2784 
2785 static void
2786 zio_write_gang_done(zio_t *zio)
2787 {
2788 	/*
2789 	 * The io_abd field will be NULL for a zio with no data.  The io_flags
2790 	 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't
2791 	 * check for it here as it is cleared in zio_ready.
2792 	 */
2793 	if (zio->io_abd != NULL)
2794 		abd_free(zio->io_abd);
2795 }
2796 
2797 static zio_t *
2798 zio_write_gang_block(zio_t *pio, metaslab_class_t *mc)
2799 {
2800 	spa_t *spa = pio->io_spa;
2801 	blkptr_t *bp = pio->io_bp;
2802 	zio_t *gio = pio->io_gang_leader;
2803 	zio_t *zio;
2804 	zio_gang_node_t *gn, **gnpp;
2805 	zio_gbh_phys_t *gbh;
2806 	abd_t *gbh_abd;
2807 	uint64_t txg = pio->io_txg;
2808 	uint64_t resid = pio->io_size;
2809 	uint64_t lsize;
2810 	int copies = gio->io_prop.zp_copies;
2811 	int gbh_copies;
2812 	zio_prop_t zp;
2813 	int error;
2814 	boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA);
2815 
2816 	/*
2817 	 * encrypted blocks need DVA[2] free so encrypted gang headers can't
2818 	 * have a third copy.
2819 	 */
2820 	gbh_copies = MIN(copies + 1, spa_max_replication(spa));
2821 	if (gio->io_prop.zp_encrypt && gbh_copies >= SPA_DVAS_PER_BP)
2822 		gbh_copies = SPA_DVAS_PER_BP - 1;
2823 
2824 	int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER;
2825 	if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2826 		ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2827 		ASSERT(has_data);
2828 
2829 		flags |= METASLAB_ASYNC_ALLOC;
2830 		VERIFY(zfs_refcount_held(&mc->mc_allocator[pio->io_allocator].
2831 		    mca_alloc_slots, pio));
2832 
2833 		/*
2834 		 * The logical zio has already placed a reservation for
2835 		 * 'copies' allocation slots but gang blocks may require
2836 		 * additional copies. These additional copies
2837 		 * (i.e. gbh_copies - copies) are guaranteed to succeed
2838 		 * since metaslab_class_throttle_reserve() always allows
2839 		 * additional reservations for gang blocks.
2840 		 */
2841 		VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies,
2842 		    pio->io_allocator, pio, flags));
2843 	}
2844 
2845 	error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE,
2846 	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags,
2847 	    &pio->io_alloc_list, pio, pio->io_allocator);
2848 	if (error) {
2849 		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2850 			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2851 			ASSERT(has_data);
2852 
2853 			/*
2854 			 * If we failed to allocate the gang block header then
2855 			 * we remove any additional allocation reservations that
2856 			 * we placed here. The original reservation will
2857 			 * be removed when the logical I/O goes to the ready
2858 			 * stage.
2859 			 */
2860 			metaslab_class_throttle_unreserve(mc,
2861 			    gbh_copies - copies, pio->io_allocator, pio);
2862 		}
2863 
2864 		pio->io_error = error;
2865 		return (pio);
2866 	}
2867 
2868 	if (pio == gio) {
2869 		gnpp = &gio->io_gang_tree;
2870 	} else {
2871 		gnpp = pio->io_private;
2872 		ASSERT(pio->io_ready == zio_write_gang_member_ready);
2873 	}
2874 
2875 	gn = zio_gang_node_alloc(gnpp);
2876 	gbh = gn->gn_gbh;
2877 	memset(gbh, 0, SPA_GANGBLOCKSIZE);
2878 	gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE);
2879 
2880 	/*
2881 	 * Create the gang header.
2882 	 */
2883 	zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2884 	    zio_write_gang_done, NULL, pio->io_priority,
2885 	    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2886 
2887 	/*
2888 	 * Create and nowait the gang children.
2889 	 */
2890 	for (int g = 0; resid != 0; resid -= lsize, g++) {
2891 		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
2892 		    SPA_MINBLOCKSIZE);
2893 		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
2894 
2895 		zp.zp_checksum = gio->io_prop.zp_checksum;
2896 		zp.zp_compress = ZIO_COMPRESS_OFF;
2897 		zp.zp_complevel = gio->io_prop.zp_complevel;
2898 		zp.zp_type = DMU_OT_NONE;
2899 		zp.zp_level = 0;
2900 		zp.zp_copies = gio->io_prop.zp_copies;
2901 		zp.zp_dedup = B_FALSE;
2902 		zp.zp_dedup_verify = B_FALSE;
2903 		zp.zp_nopwrite = B_FALSE;
2904 		zp.zp_encrypt = gio->io_prop.zp_encrypt;
2905 		zp.zp_byteorder = gio->io_prop.zp_byteorder;
2906 		memset(zp.zp_salt, 0, ZIO_DATA_SALT_LEN);
2907 		memset(zp.zp_iv, 0, ZIO_DATA_IV_LEN);
2908 		memset(zp.zp_mac, 0, ZIO_DATA_MAC_LEN);
2909 
2910 		zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
2911 		    has_data ? abd_get_offset(pio->io_abd, pio->io_size -
2912 		    resid) : NULL, lsize, lsize, &zp,
2913 		    zio_write_gang_member_ready, NULL, NULL,
2914 		    zio_write_gang_done, &gn->gn_child[g], pio->io_priority,
2915 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2916 
2917 		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2918 			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2919 			ASSERT(has_data);
2920 
2921 			/*
2922 			 * Gang children won't throttle but we should
2923 			 * account for their work, so reserve an allocation
2924 			 * slot for them here.
2925 			 */
2926 			VERIFY(metaslab_class_throttle_reserve(mc,
2927 			    zp.zp_copies, cio->io_allocator, cio, flags));
2928 		}
2929 		zio_nowait(cio);
2930 	}
2931 
2932 	/*
2933 	 * Set pio's pipeline to just wait for zio to finish.
2934 	 */
2935 	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2936 
2937 	/*
2938 	 * We didn't allocate this bp, so make sure it doesn't get unmarked.
2939 	 */
2940 	pio->io_flags &= ~ZIO_FLAG_FASTWRITE;
2941 
2942 	zio_nowait(zio);
2943 
2944 	return (pio);
2945 }
2946 
2947 /*
2948  * The zio_nop_write stage in the pipeline determines if allocating a
2949  * new bp is necessary.  The nopwrite feature can handle writes in
2950  * either syncing or open context (i.e. zil writes) and as a result is
2951  * mutually exclusive with dedup.
2952  *
2953  * By leveraging a cryptographically secure checksum, such as SHA256, we
2954  * can compare the checksums of the new data and the old to determine if
2955  * allocating a new block is required.  Note that our requirements for
2956  * cryptographic strength are fairly weak: there can't be any accidental
2957  * hash collisions, but we don't need to be secure against intentional
2958  * (malicious) collisions.  To trigger a nopwrite, you have to be able
2959  * to write the file to begin with, and triggering an incorrect (hash
2960  * collision) nopwrite is no worse than simply writing to the file.
2961  * That said, there are no known attacks against the checksum algorithms
2962  * used for nopwrite, assuming that the salt and the checksums
2963  * themselves remain secret.
2964  */
2965 static zio_t *
2966 zio_nop_write(zio_t *zio)
2967 {
2968 	blkptr_t *bp = zio->io_bp;
2969 	blkptr_t *bp_orig = &zio->io_bp_orig;
2970 	zio_prop_t *zp = &zio->io_prop;
2971 
2972 	ASSERT(BP_GET_LEVEL(bp) == 0);
2973 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2974 	ASSERT(zp->zp_nopwrite);
2975 	ASSERT(!zp->zp_dedup);
2976 	ASSERT(zio->io_bp_override == NULL);
2977 	ASSERT(IO_IS_ALLOCATING(zio));
2978 
2979 	/*
2980 	 * Check to see if the original bp and the new bp have matching
2981 	 * characteristics (i.e. same checksum, compression algorithms, etc).
2982 	 * If they don't then just continue with the pipeline which will
2983 	 * allocate a new bp.
2984 	 */
2985 	if (BP_IS_HOLE(bp_orig) ||
2986 	    !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
2987 	    ZCHECKSUM_FLAG_NOPWRITE) ||
2988 	    BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) ||
2989 	    BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
2990 	    BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
2991 	    BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
2992 	    zp->zp_copies != BP_GET_NDVAS(bp_orig))
2993 		return (zio);
2994 
2995 	/*
2996 	 * If the checksums match then reset the pipeline so that we
2997 	 * avoid allocating a new bp and issuing any I/O.
2998 	 */
2999 	if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
3000 		ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
3001 		    ZCHECKSUM_FLAG_NOPWRITE);
3002 		ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
3003 		ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
3004 		ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
3005 		ASSERT(memcmp(&bp->blk_prop, &bp_orig->blk_prop,
3006 		    sizeof (uint64_t)) == 0);
3007 
3008 		/*
3009 		 * If we're overwriting a block that is currently on an
3010 		 * indirect vdev, then ignore the nopwrite request and
3011 		 * allow a new block to be allocated on a concrete vdev.
3012 		 */
3013 		spa_config_enter(zio->io_spa, SCL_VDEV, FTAG, RW_READER);
3014 		vdev_t *tvd = vdev_lookup_top(zio->io_spa,
3015 		    DVA_GET_VDEV(&bp->blk_dva[0]));
3016 		if (tvd->vdev_ops == &vdev_indirect_ops) {
3017 			spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
3018 			return (zio);
3019 		}
3020 		spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
3021 
3022 		*bp = *bp_orig;
3023 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3024 		zio->io_flags |= ZIO_FLAG_NOPWRITE;
3025 	}
3026 
3027 	return (zio);
3028 }
3029 
3030 /*
3031  * ==========================================================================
3032  * Dedup
3033  * ==========================================================================
3034  */
3035 static void
3036 zio_ddt_child_read_done(zio_t *zio)
3037 {
3038 	blkptr_t *bp = zio->io_bp;
3039 	ddt_entry_t *dde = zio->io_private;
3040 	ddt_phys_t *ddp;
3041 	zio_t *pio = zio_unique_parent(zio);
3042 
3043 	mutex_enter(&pio->io_lock);
3044 	ddp = ddt_phys_select(dde, bp);
3045 	if (zio->io_error == 0)
3046 		ddt_phys_clear(ddp);	/* this ddp doesn't need repair */
3047 
3048 	if (zio->io_error == 0 && dde->dde_repair_abd == NULL)
3049 		dde->dde_repair_abd = zio->io_abd;
3050 	else
3051 		abd_free(zio->io_abd);
3052 	mutex_exit(&pio->io_lock);
3053 }
3054 
3055 static zio_t *
3056 zio_ddt_read_start(zio_t *zio)
3057 {
3058 	blkptr_t *bp = zio->io_bp;
3059 
3060 	ASSERT(BP_GET_DEDUP(bp));
3061 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3062 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3063 
3064 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
3065 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
3066 		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
3067 		ddt_phys_t *ddp = dde->dde_phys;
3068 		ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
3069 		blkptr_t blk;
3070 
3071 		ASSERT(zio->io_vsd == NULL);
3072 		zio->io_vsd = dde;
3073 
3074 		if (ddp_self == NULL)
3075 			return (zio);
3076 
3077 		for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
3078 			if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
3079 				continue;
3080 			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
3081 			    &blk);
3082 			zio_nowait(zio_read(zio, zio->io_spa, &blk,
3083 			    abd_alloc_for_io(zio->io_size, B_TRUE),
3084 			    zio->io_size, zio_ddt_child_read_done, dde,
3085 			    zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) |
3086 			    ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark));
3087 		}
3088 		return (zio);
3089 	}
3090 
3091 	zio_nowait(zio_read(zio, zio->io_spa, bp,
3092 	    zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority,
3093 	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
3094 
3095 	return (zio);
3096 }
3097 
3098 static zio_t *
3099 zio_ddt_read_done(zio_t *zio)
3100 {
3101 	blkptr_t *bp = zio->io_bp;
3102 
3103 	if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) {
3104 		return (NULL);
3105 	}
3106 
3107 	ASSERT(BP_GET_DEDUP(bp));
3108 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3109 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3110 
3111 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
3112 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
3113 		ddt_entry_t *dde = zio->io_vsd;
3114 		if (ddt == NULL) {
3115 			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
3116 			return (zio);
3117 		}
3118 		if (dde == NULL) {
3119 			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
3120 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
3121 			return (NULL);
3122 		}
3123 		if (dde->dde_repair_abd != NULL) {
3124 			abd_copy(zio->io_abd, dde->dde_repair_abd,
3125 			    zio->io_size);
3126 			zio->io_child_error[ZIO_CHILD_DDT] = 0;
3127 		}
3128 		ddt_repair_done(ddt, dde);
3129 		zio->io_vsd = NULL;
3130 	}
3131 
3132 	ASSERT(zio->io_vsd == NULL);
3133 
3134 	return (zio);
3135 }
3136 
3137 static boolean_t
3138 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
3139 {
3140 	spa_t *spa = zio->io_spa;
3141 	boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW);
3142 
3143 	ASSERT(!(zio->io_bp_override && do_raw));
3144 
3145 	/*
3146 	 * Note: we compare the original data, not the transformed data,
3147 	 * because when zio->io_bp is an override bp, we will not have
3148 	 * pushed the I/O transforms.  That's an important optimization
3149 	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
3150 	 * However, we should never get a raw, override zio so in these
3151 	 * cases we can compare the io_abd directly. This is useful because
3152 	 * it allows us to do dedup verification even if we don't have access
3153 	 * to the original data (for instance, if the encryption keys aren't
3154 	 * loaded).
3155 	 */
3156 
3157 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
3158 		zio_t *lio = dde->dde_lead_zio[p];
3159 
3160 		if (lio != NULL && do_raw) {
3161 			return (lio->io_size != zio->io_size ||
3162 			    abd_cmp(zio->io_abd, lio->io_abd) != 0);
3163 		} else if (lio != NULL) {
3164 			return (lio->io_orig_size != zio->io_orig_size ||
3165 			    abd_cmp(zio->io_orig_abd, lio->io_orig_abd) != 0);
3166 		}
3167 	}
3168 
3169 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
3170 		ddt_phys_t *ddp = &dde->dde_phys[p];
3171 
3172 		if (ddp->ddp_phys_birth != 0 && do_raw) {
3173 			blkptr_t blk = *zio->io_bp;
3174 			uint64_t psize;
3175 			abd_t *tmpabd;
3176 			int error;
3177 
3178 			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
3179 			psize = BP_GET_PSIZE(&blk);
3180 
3181 			if (psize != zio->io_size)
3182 				return (B_TRUE);
3183 
3184 			ddt_exit(ddt);
3185 
3186 			tmpabd = abd_alloc_for_io(psize, B_TRUE);
3187 
3188 			error = zio_wait(zio_read(NULL, spa, &blk, tmpabd,
3189 			    psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
3190 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3191 			    ZIO_FLAG_RAW, &zio->io_bookmark));
3192 
3193 			if (error == 0) {
3194 				if (abd_cmp(tmpabd, zio->io_abd) != 0)
3195 					error = SET_ERROR(ENOENT);
3196 			}
3197 
3198 			abd_free(tmpabd);
3199 			ddt_enter(ddt);
3200 			return (error != 0);
3201 		} else if (ddp->ddp_phys_birth != 0) {
3202 			arc_buf_t *abuf = NULL;
3203 			arc_flags_t aflags = ARC_FLAG_WAIT;
3204 			blkptr_t blk = *zio->io_bp;
3205 			int error;
3206 
3207 			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
3208 
3209 			if (BP_GET_LSIZE(&blk) != zio->io_orig_size)
3210 				return (B_TRUE);
3211 
3212 			ddt_exit(ddt);
3213 
3214 			error = arc_read(NULL, spa, &blk,
3215 			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
3216 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3217 			    &aflags, &zio->io_bookmark);
3218 
3219 			if (error == 0) {
3220 				if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data,
3221 				    zio->io_orig_size) != 0)
3222 					error = SET_ERROR(ENOENT);
3223 				arc_buf_destroy(abuf, &abuf);
3224 			}
3225 
3226 			ddt_enter(ddt);
3227 			return (error != 0);
3228 		}
3229 	}
3230 
3231 	return (B_FALSE);
3232 }
3233 
3234 static void
3235 zio_ddt_child_write_ready(zio_t *zio)
3236 {
3237 	int p = zio->io_prop.zp_copies;
3238 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3239 	ddt_entry_t *dde = zio->io_private;
3240 	ddt_phys_t *ddp = &dde->dde_phys[p];
3241 	zio_t *pio;
3242 
3243 	if (zio->io_error)
3244 		return;
3245 
3246 	ddt_enter(ddt);
3247 
3248 	ASSERT(dde->dde_lead_zio[p] == zio);
3249 
3250 	ddt_phys_fill(ddp, zio->io_bp);
3251 
3252 	zio_link_t *zl = NULL;
3253 	while ((pio = zio_walk_parents(zio, &zl)) != NULL)
3254 		ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
3255 
3256 	ddt_exit(ddt);
3257 }
3258 
3259 static void
3260 zio_ddt_child_write_done(zio_t *zio)
3261 {
3262 	int p = zio->io_prop.zp_copies;
3263 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3264 	ddt_entry_t *dde = zio->io_private;
3265 	ddt_phys_t *ddp = &dde->dde_phys[p];
3266 
3267 	ddt_enter(ddt);
3268 
3269 	ASSERT(ddp->ddp_refcnt == 0);
3270 	ASSERT(dde->dde_lead_zio[p] == zio);
3271 	dde->dde_lead_zio[p] = NULL;
3272 
3273 	if (zio->io_error == 0) {
3274 		zio_link_t *zl = NULL;
3275 		while (zio_walk_parents(zio, &zl) != NULL)
3276 			ddt_phys_addref(ddp);
3277 	} else {
3278 		ddt_phys_clear(ddp);
3279 	}
3280 
3281 	ddt_exit(ddt);
3282 }
3283 
3284 static zio_t *
3285 zio_ddt_write(zio_t *zio)
3286 {
3287 	spa_t *spa = zio->io_spa;
3288 	blkptr_t *bp = zio->io_bp;
3289 	uint64_t txg = zio->io_txg;
3290 	zio_prop_t *zp = &zio->io_prop;
3291 	int p = zp->zp_copies;
3292 	zio_t *cio = NULL;
3293 	ddt_t *ddt = ddt_select(spa, bp);
3294 	ddt_entry_t *dde;
3295 	ddt_phys_t *ddp;
3296 
3297 	ASSERT(BP_GET_DEDUP(bp));
3298 	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
3299 	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
3300 	ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW)));
3301 
3302 	ddt_enter(ddt);
3303 	dde = ddt_lookup(ddt, bp, B_TRUE);
3304 	ddp = &dde->dde_phys[p];
3305 
3306 	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
3307 		/*
3308 		 * If we're using a weak checksum, upgrade to a strong checksum
3309 		 * and try again.  If we're already using a strong checksum,
3310 		 * we can't resolve it, so just convert to an ordinary write.
3311 		 * (And automatically e-mail a paper to Nature?)
3312 		 */
3313 		if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
3314 		    ZCHECKSUM_FLAG_DEDUP)) {
3315 			zp->zp_checksum = spa_dedup_checksum(spa);
3316 			zio_pop_transforms(zio);
3317 			zio->io_stage = ZIO_STAGE_OPEN;
3318 			BP_ZERO(bp);
3319 		} else {
3320 			zp->zp_dedup = B_FALSE;
3321 			BP_SET_DEDUP(bp, B_FALSE);
3322 		}
3323 		ASSERT(!BP_GET_DEDUP(bp));
3324 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
3325 		ddt_exit(ddt);
3326 		return (zio);
3327 	}
3328 
3329 	if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
3330 		if (ddp->ddp_phys_birth != 0)
3331 			ddt_bp_fill(ddp, bp, txg);
3332 		if (dde->dde_lead_zio[p] != NULL)
3333 			zio_add_child(zio, dde->dde_lead_zio[p]);
3334 		else
3335 			ddt_phys_addref(ddp);
3336 	} else if (zio->io_bp_override) {
3337 		ASSERT(bp->blk_birth == txg);
3338 		ASSERT(BP_EQUAL(bp, zio->io_bp_override));
3339 		ddt_phys_fill(ddp, bp);
3340 		ddt_phys_addref(ddp);
3341 	} else {
3342 		cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
3343 		    zio->io_orig_size, zio->io_orig_size, zp,
3344 		    zio_ddt_child_write_ready, NULL, NULL,
3345 		    zio_ddt_child_write_done, dde, zio->io_priority,
3346 		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
3347 
3348 		zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL);
3349 		dde->dde_lead_zio[p] = cio;
3350 	}
3351 
3352 	ddt_exit(ddt);
3353 
3354 	zio_nowait(cio);
3355 
3356 	return (zio);
3357 }
3358 
3359 ddt_entry_t *freedde; /* for debugging */
3360 
3361 static zio_t *
3362 zio_ddt_free(zio_t *zio)
3363 {
3364 	spa_t *spa = zio->io_spa;
3365 	blkptr_t *bp = zio->io_bp;
3366 	ddt_t *ddt = ddt_select(spa, bp);
3367 	ddt_entry_t *dde;
3368 	ddt_phys_t *ddp;
3369 
3370 	ASSERT(BP_GET_DEDUP(bp));
3371 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3372 
3373 	ddt_enter(ddt);
3374 	freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
3375 	if (dde) {
3376 		ddp = ddt_phys_select(dde, bp);
3377 		if (ddp)
3378 			ddt_phys_decref(ddp);
3379 	}
3380 	ddt_exit(ddt);
3381 
3382 	return (zio);
3383 }
3384 
3385 /*
3386  * ==========================================================================
3387  * Allocate and free blocks
3388  * ==========================================================================
3389  */
3390 
3391 static zio_t *
3392 zio_io_to_allocate(spa_t *spa, int allocator)
3393 {
3394 	zio_t *zio;
3395 
3396 	ASSERT(MUTEX_HELD(&spa->spa_allocs[allocator].spaa_lock));
3397 
3398 	zio = avl_first(&spa->spa_allocs[allocator].spaa_tree);
3399 	if (zio == NULL)
3400 		return (NULL);
3401 
3402 	ASSERT(IO_IS_ALLOCATING(zio));
3403 
3404 	/*
3405 	 * Try to place a reservation for this zio. If we're unable to
3406 	 * reserve then we throttle.
3407 	 */
3408 	ASSERT3U(zio->io_allocator, ==, allocator);
3409 	if (!metaslab_class_throttle_reserve(zio->io_metaslab_class,
3410 	    zio->io_prop.zp_copies, allocator, zio, 0)) {
3411 		return (NULL);
3412 	}
3413 
3414 	avl_remove(&spa->spa_allocs[allocator].spaa_tree, zio);
3415 	ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE);
3416 
3417 	return (zio);
3418 }
3419 
3420 static zio_t *
3421 zio_dva_throttle(zio_t *zio)
3422 {
3423 	spa_t *spa = zio->io_spa;
3424 	zio_t *nio;
3425 	metaslab_class_t *mc;
3426 
3427 	/* locate an appropriate allocation class */
3428 	mc = spa_preferred_class(spa, zio->io_size, zio->io_prop.zp_type,
3429 	    zio->io_prop.zp_level, zio->io_prop.zp_zpl_smallblk);
3430 
3431 	if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE ||
3432 	    !mc->mc_alloc_throttle_enabled ||
3433 	    zio->io_child_type == ZIO_CHILD_GANG ||
3434 	    zio->io_flags & ZIO_FLAG_NODATA) {
3435 		return (zio);
3436 	}
3437 
3438 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3439 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3440 	ASSERT3U(zio->io_queued_timestamp, >, 0);
3441 	ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE);
3442 
3443 	zbookmark_phys_t *bm = &zio->io_bookmark;
3444 	/*
3445 	 * We want to try to use as many allocators as possible to help improve
3446 	 * performance, but we also want logically adjacent IOs to be physically
3447 	 * adjacent to improve sequential read performance. We chunk each object
3448 	 * into 2^20 block regions, and then hash based on the objset, object,
3449 	 * level, and region to accomplish both of these goals.
3450 	 */
3451 	int allocator = (uint_t)cityhash4(bm->zb_objset, bm->zb_object,
3452 	    bm->zb_level, bm->zb_blkid >> 20) % spa->spa_alloc_count;
3453 	zio->io_allocator = allocator;
3454 	zio->io_metaslab_class = mc;
3455 	mutex_enter(&spa->spa_allocs[allocator].spaa_lock);
3456 	avl_add(&spa->spa_allocs[allocator].spaa_tree, zio);
3457 	nio = zio_io_to_allocate(spa, allocator);
3458 	mutex_exit(&spa->spa_allocs[allocator].spaa_lock);
3459 	return (nio);
3460 }
3461 
3462 static void
3463 zio_allocate_dispatch(spa_t *spa, int allocator)
3464 {
3465 	zio_t *zio;
3466 
3467 	mutex_enter(&spa->spa_allocs[allocator].spaa_lock);
3468 	zio = zio_io_to_allocate(spa, allocator);
3469 	mutex_exit(&spa->spa_allocs[allocator].spaa_lock);
3470 	if (zio == NULL)
3471 		return;
3472 
3473 	ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE);
3474 	ASSERT0(zio->io_error);
3475 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE);
3476 }
3477 
3478 static zio_t *
3479 zio_dva_allocate(zio_t *zio)
3480 {
3481 	spa_t *spa = zio->io_spa;
3482 	metaslab_class_t *mc;
3483 	blkptr_t *bp = zio->io_bp;
3484 	int error;
3485 	int flags = 0;
3486 
3487 	if (zio->io_gang_leader == NULL) {
3488 		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3489 		zio->io_gang_leader = zio;
3490 	}
3491 
3492 	ASSERT(BP_IS_HOLE(bp));
3493 	ASSERT0(BP_GET_NDVAS(bp));
3494 	ASSERT3U(zio->io_prop.zp_copies, >, 0);
3495 	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
3496 	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
3497 
3498 	flags |= (zio->io_flags & ZIO_FLAG_FASTWRITE) ? METASLAB_FASTWRITE : 0;
3499 	if (zio->io_flags & ZIO_FLAG_NODATA)
3500 		flags |= METASLAB_DONT_THROTTLE;
3501 	if (zio->io_flags & ZIO_FLAG_GANG_CHILD)
3502 		flags |= METASLAB_GANG_CHILD;
3503 	if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE)
3504 		flags |= METASLAB_ASYNC_ALLOC;
3505 
3506 	/*
3507 	 * if not already chosen, locate an appropriate allocation class
3508 	 */
3509 	mc = zio->io_metaslab_class;
3510 	if (mc == NULL) {
3511 		mc = spa_preferred_class(spa, zio->io_size,
3512 		    zio->io_prop.zp_type, zio->io_prop.zp_level,
3513 		    zio->io_prop.zp_zpl_smallblk);
3514 		zio->io_metaslab_class = mc;
3515 	}
3516 
3517 	/*
3518 	 * Try allocating the block in the usual metaslab class.
3519 	 * If that's full, allocate it in the normal class.
3520 	 * If that's full, allocate as a gang block,
3521 	 * and if all are full, the allocation fails (which shouldn't happen).
3522 	 *
3523 	 * Note that we do not fall back on embedded slog (ZIL) space, to
3524 	 * preserve unfragmented slog space, which is critical for decent
3525 	 * sync write performance.  If a log allocation fails, we will fall
3526 	 * back to spa_sync() which is abysmal for performance.
3527 	 */
3528 	error = metaslab_alloc(spa, mc, zio->io_size, bp,
3529 	    zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3530 	    &zio->io_alloc_list, zio, zio->io_allocator);
3531 
3532 	/*
3533 	 * Fallback to normal class when an alloc class is full
3534 	 */
3535 	if (error == ENOSPC && mc != spa_normal_class(spa)) {
3536 		/*
3537 		 * If throttling, transfer reservation over to normal class.
3538 		 * The io_allocator slot can remain the same even though we
3539 		 * are switching classes.
3540 		 */
3541 		if (mc->mc_alloc_throttle_enabled &&
3542 		    (zio->io_flags & ZIO_FLAG_IO_ALLOCATING)) {
3543 			metaslab_class_throttle_unreserve(mc,
3544 			    zio->io_prop.zp_copies, zio->io_allocator, zio);
3545 			zio->io_flags &= ~ZIO_FLAG_IO_ALLOCATING;
3546 
3547 			VERIFY(metaslab_class_throttle_reserve(
3548 			    spa_normal_class(spa),
3549 			    zio->io_prop.zp_copies, zio->io_allocator, zio,
3550 			    flags | METASLAB_MUST_RESERVE));
3551 		}
3552 		zio->io_metaslab_class = mc = spa_normal_class(spa);
3553 		if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) {
3554 			zfs_dbgmsg("%s: metaslab allocation failure, "
3555 			    "trying normal class: zio %px, size %llu, error %d",
3556 			    spa_name(spa), zio, (u_longlong_t)zio->io_size,
3557 			    error);
3558 		}
3559 
3560 		error = metaslab_alloc(spa, mc, zio->io_size, bp,
3561 		    zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3562 		    &zio->io_alloc_list, zio, zio->io_allocator);
3563 	}
3564 
3565 	if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) {
3566 		if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) {
3567 			zfs_dbgmsg("%s: metaslab allocation failure, "
3568 			    "trying ganging: zio %px, size %llu, error %d",
3569 			    spa_name(spa), zio, (u_longlong_t)zio->io_size,
3570 			    error);
3571 		}
3572 		return (zio_write_gang_block(zio, mc));
3573 	}
3574 	if (error != 0) {
3575 		if (error != ENOSPC ||
3576 		    (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC)) {
3577 			zfs_dbgmsg("%s: metaslab allocation failure: zio %px, "
3578 			    "size %llu, error %d",
3579 			    spa_name(spa), zio, (u_longlong_t)zio->io_size,
3580 			    error);
3581 		}
3582 		zio->io_error = error;
3583 	}
3584 
3585 	return (zio);
3586 }
3587 
3588 static zio_t *
3589 zio_dva_free(zio_t *zio)
3590 {
3591 	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
3592 
3593 	return (zio);
3594 }
3595 
3596 static zio_t *
3597 zio_dva_claim(zio_t *zio)
3598 {
3599 	int error;
3600 
3601 	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
3602 	if (error)
3603 		zio->io_error = error;
3604 
3605 	return (zio);
3606 }
3607 
3608 /*
3609  * Undo an allocation.  This is used by zio_done() when an I/O fails
3610  * and we want to give back the block we just allocated.
3611  * This handles both normal blocks and gang blocks.
3612  */
3613 static void
3614 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
3615 {
3616 	ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
3617 	ASSERT(zio->io_bp_override == NULL);
3618 
3619 	if (!BP_IS_HOLE(bp))
3620 		metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
3621 
3622 	if (gn != NULL) {
3623 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
3624 			zio_dva_unallocate(zio, gn->gn_child[g],
3625 			    &gn->gn_gbh->zg_blkptr[g]);
3626 		}
3627 	}
3628 }
3629 
3630 /*
3631  * Try to allocate an intent log block.  Return 0 on success, errno on failure.
3632  */
3633 int
3634 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp,
3635     uint64_t size, boolean_t *slog)
3636 {
3637 	int error = 1;
3638 	zio_alloc_list_t io_alloc_list;
3639 
3640 	ASSERT(txg > spa_syncing_txg(spa));
3641 
3642 	metaslab_trace_init(&io_alloc_list);
3643 
3644 	/*
3645 	 * Block pointer fields are useful to metaslabs for stats and debugging.
3646 	 * Fill in the obvious ones before calling into metaslab_alloc().
3647 	 */
3648 	BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3649 	BP_SET_PSIZE(new_bp, size);
3650 	BP_SET_LEVEL(new_bp, 0);
3651 
3652 	/*
3653 	 * When allocating a zil block, we don't have information about
3654 	 * the final destination of the block except the objset it's part
3655 	 * of, so we just hash the objset ID to pick the allocator to get
3656 	 * some parallelism.
3657 	 */
3658 	int flags = METASLAB_FASTWRITE | METASLAB_ZIL;
3659 	int allocator = (uint_t)cityhash4(0, 0, 0,
3660 	    os->os_dsl_dataset->ds_object) % spa->spa_alloc_count;
3661 	error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1,
3662 	    txg, NULL, flags, &io_alloc_list, NULL, allocator);
3663 	*slog = (error == 0);
3664 	if (error != 0) {
3665 		error = metaslab_alloc(spa, spa_embedded_log_class(spa), size,
3666 		    new_bp, 1, txg, NULL, flags,
3667 		    &io_alloc_list, NULL, allocator);
3668 	}
3669 	if (error != 0) {
3670 		error = metaslab_alloc(spa, spa_normal_class(spa), size,
3671 		    new_bp, 1, txg, NULL, flags,
3672 		    &io_alloc_list, NULL, allocator);
3673 	}
3674 	metaslab_trace_fini(&io_alloc_list);
3675 
3676 	if (error == 0) {
3677 		BP_SET_LSIZE(new_bp, size);
3678 		BP_SET_PSIZE(new_bp, size);
3679 		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
3680 		BP_SET_CHECKSUM(new_bp,
3681 		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL
3682 		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
3683 		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3684 		BP_SET_LEVEL(new_bp, 0);
3685 		BP_SET_DEDUP(new_bp, 0);
3686 		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
3687 
3688 		/*
3689 		 * encrypted blocks will require an IV and salt. We generate
3690 		 * these now since we will not be rewriting the bp at
3691 		 * rewrite time.
3692 		 */
3693 		if (os->os_encrypted) {
3694 			uint8_t iv[ZIO_DATA_IV_LEN];
3695 			uint8_t salt[ZIO_DATA_SALT_LEN];
3696 
3697 			BP_SET_CRYPT(new_bp, B_TRUE);
3698 			VERIFY0(spa_crypt_get_salt(spa,
3699 			    dmu_objset_id(os), salt));
3700 			VERIFY0(zio_crypt_generate_iv(iv));
3701 
3702 			zio_crypt_encode_params_bp(new_bp, salt, iv);
3703 		}
3704 	} else {
3705 		zfs_dbgmsg("%s: zil block allocation failure: "
3706 		    "size %llu, error %d", spa_name(spa), (u_longlong_t)size,
3707 		    error);
3708 	}
3709 
3710 	return (error);
3711 }
3712 
3713 /*
3714  * ==========================================================================
3715  * Read and write to physical devices
3716  * ==========================================================================
3717  */
3718 
3719 /*
3720  * Issue an I/O to the underlying vdev. Typically the issue pipeline
3721  * stops after this stage and will resume upon I/O completion.
3722  * However, there are instances where the vdev layer may need to
3723  * continue the pipeline when an I/O was not issued. Since the I/O
3724  * that was sent to the vdev layer might be different than the one
3725  * currently active in the pipeline (see vdev_queue_io()), we explicitly
3726  * force the underlying vdev layers to call either zio_execute() or
3727  * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
3728  */
3729 static zio_t *
3730 zio_vdev_io_start(zio_t *zio)
3731 {
3732 	vdev_t *vd = zio->io_vd;
3733 	uint64_t align;
3734 	spa_t *spa = zio->io_spa;
3735 
3736 	zio->io_delay = 0;
3737 
3738 	ASSERT(zio->io_error == 0);
3739 	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
3740 
3741 	if (vd == NULL) {
3742 		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3743 			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
3744 
3745 		/*
3746 		 * The mirror_ops handle multiple DVAs in a single BP.
3747 		 */
3748 		vdev_mirror_ops.vdev_op_io_start(zio);
3749 		return (NULL);
3750 	}
3751 
3752 	ASSERT3P(zio->io_logical, !=, zio);
3753 	if (zio->io_type == ZIO_TYPE_WRITE) {
3754 		ASSERT(spa->spa_trust_config);
3755 
3756 		/*
3757 		 * Note: the code can handle other kinds of writes,
3758 		 * but we don't expect them.
3759 		 */
3760 		if (zio->io_vd->vdev_noalloc) {
3761 			ASSERT(zio->io_flags &
3762 			    (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL |
3763 			    ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE));
3764 		}
3765 	}
3766 
3767 	align = 1ULL << vd->vdev_top->vdev_ashift;
3768 
3769 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
3770 	    P2PHASE(zio->io_size, align) != 0) {
3771 		/* Transform logical writes to be a full physical block size. */
3772 		uint64_t asize = P2ROUNDUP(zio->io_size, align);
3773 		abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize);
3774 		ASSERT(vd == vd->vdev_top);
3775 		if (zio->io_type == ZIO_TYPE_WRITE) {
3776 			abd_copy(abuf, zio->io_abd, zio->io_size);
3777 			abd_zero_off(abuf, zio->io_size, asize - zio->io_size);
3778 		}
3779 		zio_push_transform(zio, abuf, asize, asize, zio_subblock);
3780 	}
3781 
3782 	/*
3783 	 * If this is not a physical io, make sure that it is properly aligned
3784 	 * before proceeding.
3785 	 */
3786 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
3787 		ASSERT0(P2PHASE(zio->io_offset, align));
3788 		ASSERT0(P2PHASE(zio->io_size, align));
3789 	} else {
3790 		/*
3791 		 * For physical writes, we allow 512b aligned writes and assume
3792 		 * the device will perform a read-modify-write as necessary.
3793 		 */
3794 		ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
3795 		ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
3796 	}
3797 
3798 	VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
3799 
3800 	/*
3801 	 * If this is a repair I/O, and there's no self-healing involved --
3802 	 * that is, we're just resilvering what we expect to resilver --
3803 	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
3804 	 * This prevents spurious resilvering.
3805 	 *
3806 	 * There are a few ways that we can end up creating these spurious
3807 	 * resilver i/os:
3808 	 *
3809 	 * 1. A resilver i/o will be issued if any DVA in the BP has a
3810 	 * dirty DTL.  The mirror code will issue resilver writes to
3811 	 * each DVA, including the one(s) that are not on vdevs with dirty
3812 	 * DTLs.
3813 	 *
3814 	 * 2. With nested replication, which happens when we have a
3815 	 * "replacing" or "spare" vdev that's a child of a mirror or raidz.
3816 	 * For example, given mirror(replacing(A+B), C), it's likely that
3817 	 * only A is out of date (it's the new device). In this case, we'll
3818 	 * read from C, then use the data to resilver A+B -- but we don't
3819 	 * actually want to resilver B, just A. The top-level mirror has no
3820 	 * way to know this, so instead we just discard unnecessary repairs
3821 	 * as we work our way down the vdev tree.
3822 	 *
3823 	 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc.
3824 	 * The same logic applies to any form of nested replication: ditto
3825 	 * + mirror, RAID-Z + replacing, etc.
3826 	 *
3827 	 * However, indirect vdevs point off to other vdevs which may have
3828 	 * DTL's, so we never bypass them.  The child i/os on concrete vdevs
3829 	 * will be properly bypassed instead.
3830 	 *
3831 	 * Leaf DTL_PARTIAL can be empty when a legitimate write comes from
3832 	 * a dRAID spare vdev. For example, when a dRAID spare is first
3833 	 * used, its spare blocks need to be written to but the leaf vdev's
3834 	 * of such blocks can have empty DTL_PARTIAL.
3835 	 *
3836 	 * There seemed no clean way to allow such writes while bypassing
3837 	 * spurious ones. At this point, just avoid all bypassing for dRAID
3838 	 * for correctness.
3839 	 */
3840 	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
3841 	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
3842 	    zio->io_txg != 0 &&	/* not a delegated i/o */
3843 	    vd->vdev_ops != &vdev_indirect_ops &&
3844 	    vd->vdev_top->vdev_ops != &vdev_draid_ops &&
3845 	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
3846 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3847 		zio_vdev_io_bypass(zio);
3848 		return (zio);
3849 	}
3850 
3851 	/*
3852 	 * Select the next best leaf I/O to process.  Distributed spares are
3853 	 * excluded since they dispatch the I/O directly to a leaf vdev after
3854 	 * applying the dRAID mapping.
3855 	 */
3856 	if (vd->vdev_ops->vdev_op_leaf &&
3857 	    vd->vdev_ops != &vdev_draid_spare_ops &&
3858 	    (zio->io_type == ZIO_TYPE_READ ||
3859 	    zio->io_type == ZIO_TYPE_WRITE ||
3860 	    zio->io_type == ZIO_TYPE_TRIM)) {
3861 
3862 		if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio))
3863 			return (zio);
3864 
3865 		if ((zio = vdev_queue_io(zio)) == NULL)
3866 			return (NULL);
3867 
3868 		if (!vdev_accessible(vd, zio)) {
3869 			zio->io_error = SET_ERROR(ENXIO);
3870 			zio_interrupt(zio);
3871 			return (NULL);
3872 		}
3873 		zio->io_delay = gethrtime();
3874 	}
3875 
3876 	vd->vdev_ops->vdev_op_io_start(zio);
3877 	return (NULL);
3878 }
3879 
3880 static zio_t *
3881 zio_vdev_io_done(zio_t *zio)
3882 {
3883 	vdev_t *vd = zio->io_vd;
3884 	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
3885 	boolean_t unexpected_error = B_FALSE;
3886 
3887 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3888 		return (NULL);
3889 	}
3890 
3891 	ASSERT(zio->io_type == ZIO_TYPE_READ ||
3892 	    zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM);
3893 
3894 	if (zio->io_delay)
3895 		zio->io_delay = gethrtime() - zio->io_delay;
3896 
3897 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3898 	    vd->vdev_ops != &vdev_draid_spare_ops) {
3899 		vdev_queue_io_done(zio);
3900 
3901 		if (zio->io_type == ZIO_TYPE_WRITE)
3902 			vdev_cache_write(zio);
3903 
3904 		if (zio_injection_enabled && zio->io_error == 0)
3905 			zio->io_error = zio_handle_device_injections(vd, zio,
3906 			    EIO, EILSEQ);
3907 
3908 		if (zio_injection_enabled && zio->io_error == 0)
3909 			zio->io_error = zio_handle_label_injection(zio, EIO);
3910 
3911 		if (zio->io_error && zio->io_type != ZIO_TYPE_TRIM) {
3912 			if (!vdev_accessible(vd, zio)) {
3913 				zio->io_error = SET_ERROR(ENXIO);
3914 			} else {
3915 				unexpected_error = B_TRUE;
3916 			}
3917 		}
3918 	}
3919 
3920 	ops->vdev_op_io_done(zio);
3921 
3922 	if (unexpected_error)
3923 		VERIFY(vdev_probe(vd, zio) == NULL);
3924 
3925 	return (zio);
3926 }
3927 
3928 /*
3929  * This function is used to change the priority of an existing zio that is
3930  * currently in-flight. This is used by the arc to upgrade priority in the
3931  * event that a demand read is made for a block that is currently queued
3932  * as a scrub or async read IO. Otherwise, the high priority read request
3933  * would end up having to wait for the lower priority IO.
3934  */
3935 void
3936 zio_change_priority(zio_t *pio, zio_priority_t priority)
3937 {
3938 	zio_t *cio, *cio_next;
3939 	zio_link_t *zl = NULL;
3940 
3941 	ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
3942 
3943 	if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) {
3944 		vdev_queue_change_io_priority(pio, priority);
3945 	} else {
3946 		pio->io_priority = priority;
3947 	}
3948 
3949 	mutex_enter(&pio->io_lock);
3950 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
3951 		cio_next = zio_walk_children(pio, &zl);
3952 		zio_change_priority(cio, priority);
3953 	}
3954 	mutex_exit(&pio->io_lock);
3955 }
3956 
3957 /*
3958  * For non-raidz ZIOs, we can just copy aside the bad data read from the
3959  * disk, and use that to finish the checksum ereport later.
3960  */
3961 static void
3962 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
3963     const abd_t *good_buf)
3964 {
3965 	/* no processing needed */
3966 	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
3967 }
3968 
3969 void
3970 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr)
3971 {
3972 	void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size);
3973 
3974 	abd_copy(abd, zio->io_abd, zio->io_size);
3975 
3976 	zcr->zcr_cbinfo = zio->io_size;
3977 	zcr->zcr_cbdata = abd;
3978 	zcr->zcr_finish = zio_vsd_default_cksum_finish;
3979 	zcr->zcr_free = zio_abd_free;
3980 }
3981 
3982 static zio_t *
3983 zio_vdev_io_assess(zio_t *zio)
3984 {
3985 	vdev_t *vd = zio->io_vd;
3986 
3987 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3988 		return (NULL);
3989 	}
3990 
3991 	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3992 		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
3993 
3994 	if (zio->io_vsd != NULL) {
3995 		zio->io_vsd_ops->vsd_free(zio);
3996 		zio->io_vsd = NULL;
3997 	}
3998 
3999 	if (zio_injection_enabled && zio->io_error == 0)
4000 		zio->io_error = zio_handle_fault_injection(zio, EIO);
4001 
4002 	/*
4003 	 * If the I/O failed, determine whether we should attempt to retry it.
4004 	 *
4005 	 * On retry, we cut in line in the issue queue, since we don't want
4006 	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
4007 	 */
4008 	if (zio->io_error && vd == NULL &&
4009 	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
4010 		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
4011 		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
4012 		zio->io_error = 0;
4013 		zio->io_flags |= ZIO_FLAG_IO_RETRY |
4014 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
4015 		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
4016 		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
4017 		    zio_requeue_io_start_cut_in_line);
4018 		return (NULL);
4019 	}
4020 
4021 	/*
4022 	 * If we got an error on a leaf device, convert it to ENXIO
4023 	 * if the device is not accessible at all.
4024 	 */
4025 	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
4026 	    !vdev_accessible(vd, zio))
4027 		zio->io_error = SET_ERROR(ENXIO);
4028 
4029 	/*
4030 	 * If we can't write to an interior vdev (mirror or RAID-Z),
4031 	 * set vdev_cant_write so that we stop trying to allocate from it.
4032 	 */
4033 	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
4034 	    vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
4035 		vdev_dbgmsg(vd, "zio_vdev_io_assess(zio=%px) setting "
4036 		    "cant_write=TRUE due to write failure with ENXIO",
4037 		    zio);
4038 		vd->vdev_cant_write = B_TRUE;
4039 	}
4040 
4041 	/*
4042 	 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future
4043 	 * attempts will ever succeed. In this case we set a persistent
4044 	 * boolean flag so that we don't bother with it in the future.
4045 	 */
4046 	if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) &&
4047 	    zio->io_type == ZIO_TYPE_IOCTL &&
4048 	    zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL)
4049 		vd->vdev_nowritecache = B_TRUE;
4050 
4051 	if (zio->io_error)
4052 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4053 
4054 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
4055 	    zio->io_physdone != NULL) {
4056 		ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
4057 		ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
4058 		zio->io_physdone(zio->io_logical);
4059 	}
4060 
4061 	return (zio);
4062 }
4063 
4064 void
4065 zio_vdev_io_reissue(zio_t *zio)
4066 {
4067 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
4068 	ASSERT(zio->io_error == 0);
4069 
4070 	zio->io_stage >>= 1;
4071 }
4072 
4073 void
4074 zio_vdev_io_redone(zio_t *zio)
4075 {
4076 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
4077 
4078 	zio->io_stage >>= 1;
4079 }
4080 
4081 void
4082 zio_vdev_io_bypass(zio_t *zio)
4083 {
4084 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
4085 	ASSERT(zio->io_error == 0);
4086 
4087 	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
4088 	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
4089 }
4090 
4091 /*
4092  * ==========================================================================
4093  * Encrypt and store encryption parameters
4094  * ==========================================================================
4095  */
4096 
4097 
4098 /*
4099  * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for
4100  * managing the storage of encryption parameters and passing them to the
4101  * lower-level encryption functions.
4102  */
4103 static zio_t *
4104 zio_encrypt(zio_t *zio)
4105 {
4106 	zio_prop_t *zp = &zio->io_prop;
4107 	spa_t *spa = zio->io_spa;
4108 	blkptr_t *bp = zio->io_bp;
4109 	uint64_t psize = BP_GET_PSIZE(bp);
4110 	uint64_t dsobj = zio->io_bookmark.zb_objset;
4111 	dmu_object_type_t ot = BP_GET_TYPE(bp);
4112 	void *enc_buf = NULL;
4113 	abd_t *eabd = NULL;
4114 	uint8_t salt[ZIO_DATA_SALT_LEN];
4115 	uint8_t iv[ZIO_DATA_IV_LEN];
4116 	uint8_t mac[ZIO_DATA_MAC_LEN];
4117 	boolean_t no_crypt = B_FALSE;
4118 
4119 	/* the root zio already encrypted the data */
4120 	if (zio->io_child_type == ZIO_CHILD_GANG)
4121 		return (zio);
4122 
4123 	/* only ZIL blocks are re-encrypted on rewrite */
4124 	if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG)
4125 		return (zio);
4126 
4127 	if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) {
4128 		BP_SET_CRYPT(bp, B_FALSE);
4129 		return (zio);
4130 	}
4131 
4132 	/* if we are doing raw encryption set the provided encryption params */
4133 	if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) {
4134 		ASSERT0(BP_GET_LEVEL(bp));
4135 		BP_SET_CRYPT(bp, B_TRUE);
4136 		BP_SET_BYTEORDER(bp, zp->zp_byteorder);
4137 		if (ot != DMU_OT_OBJSET)
4138 			zio_crypt_encode_mac_bp(bp, zp->zp_mac);
4139 
4140 		/* dnode blocks must be written out in the provided byteorder */
4141 		if (zp->zp_byteorder != ZFS_HOST_BYTEORDER &&
4142 		    ot == DMU_OT_DNODE) {
4143 			void *bswap_buf = zio_buf_alloc(psize);
4144 			abd_t *babd = abd_get_from_buf(bswap_buf, psize);
4145 
4146 			ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4147 			abd_copy_to_buf(bswap_buf, zio->io_abd, psize);
4148 			dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf,
4149 			    psize);
4150 
4151 			abd_take_ownership_of_buf(babd, B_TRUE);
4152 			zio_push_transform(zio, babd, psize, psize, NULL);
4153 		}
4154 
4155 		if (DMU_OT_IS_ENCRYPTED(ot))
4156 			zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv);
4157 		return (zio);
4158 	}
4159 
4160 	/* indirect blocks only maintain a cksum of the lower level MACs */
4161 	if (BP_GET_LEVEL(bp) > 0) {
4162 		BP_SET_CRYPT(bp, B_TRUE);
4163 		VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE,
4164 		    zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp),
4165 		    mac));
4166 		zio_crypt_encode_mac_bp(bp, mac);
4167 		return (zio);
4168 	}
4169 
4170 	/*
4171 	 * Objset blocks are a special case since they have 2 256-bit MACs
4172 	 * embedded within them.
4173 	 */
4174 	if (ot == DMU_OT_OBJSET) {
4175 		ASSERT0(DMU_OT_IS_ENCRYPTED(ot));
4176 		ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4177 		BP_SET_CRYPT(bp, B_TRUE);
4178 		VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj,
4179 		    zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp)));
4180 		return (zio);
4181 	}
4182 
4183 	/* unencrypted object types are only authenticated with a MAC */
4184 	if (!DMU_OT_IS_ENCRYPTED(ot)) {
4185 		BP_SET_CRYPT(bp, B_TRUE);
4186 		VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj,
4187 		    zio->io_abd, psize, mac));
4188 		zio_crypt_encode_mac_bp(bp, mac);
4189 		return (zio);
4190 	}
4191 
4192 	/*
4193 	 * Later passes of sync-to-convergence may decide to rewrite data
4194 	 * in place to avoid more disk reallocations. This presents a problem
4195 	 * for encryption because this constitutes rewriting the new data with
4196 	 * the same encryption key and IV. However, this only applies to blocks
4197 	 * in the MOS (particularly the spacemaps) and we do not encrypt the
4198 	 * MOS. We assert that the zio is allocating or an intent log write
4199 	 * to enforce this.
4200 	 */
4201 	ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG);
4202 	ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG);
4203 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION));
4204 	ASSERT3U(psize, !=, 0);
4205 
4206 	enc_buf = zio_buf_alloc(psize);
4207 	eabd = abd_get_from_buf(enc_buf, psize);
4208 	abd_take_ownership_of_buf(eabd, B_TRUE);
4209 
4210 	/*
4211 	 * For an explanation of what encryption parameters are stored
4212 	 * where, see the block comment in zio_crypt.c.
4213 	 */
4214 	if (ot == DMU_OT_INTENT_LOG) {
4215 		zio_crypt_decode_params_bp(bp, salt, iv);
4216 	} else {
4217 		BP_SET_CRYPT(bp, B_TRUE);
4218 	}
4219 
4220 	/* Perform the encryption. This should not fail */
4221 	VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark,
4222 	    BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
4223 	    salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt));
4224 
4225 	/* encode encryption metadata into the bp */
4226 	if (ot == DMU_OT_INTENT_LOG) {
4227 		/*
4228 		 * ZIL blocks store the MAC in the embedded checksum, so the
4229 		 * transform must always be applied.
4230 		 */
4231 		zio_crypt_encode_mac_zil(enc_buf, mac);
4232 		zio_push_transform(zio, eabd, psize, psize, NULL);
4233 	} else {
4234 		BP_SET_CRYPT(bp, B_TRUE);
4235 		zio_crypt_encode_params_bp(bp, salt, iv);
4236 		zio_crypt_encode_mac_bp(bp, mac);
4237 
4238 		if (no_crypt) {
4239 			ASSERT3U(ot, ==, DMU_OT_DNODE);
4240 			abd_free(eabd);
4241 		} else {
4242 			zio_push_transform(zio, eabd, psize, psize, NULL);
4243 		}
4244 	}
4245 
4246 	return (zio);
4247 }
4248 
4249 /*
4250  * ==========================================================================
4251  * Generate and verify checksums
4252  * ==========================================================================
4253  */
4254 static zio_t *
4255 zio_checksum_generate(zio_t *zio)
4256 {
4257 	blkptr_t *bp = zio->io_bp;
4258 	enum zio_checksum checksum;
4259 
4260 	if (bp == NULL) {
4261 		/*
4262 		 * This is zio_write_phys().
4263 		 * We're either generating a label checksum, or none at all.
4264 		 */
4265 		checksum = zio->io_prop.zp_checksum;
4266 
4267 		if (checksum == ZIO_CHECKSUM_OFF)
4268 			return (zio);
4269 
4270 		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
4271 	} else {
4272 		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
4273 			ASSERT(!IO_IS_ALLOCATING(zio));
4274 			checksum = ZIO_CHECKSUM_GANG_HEADER;
4275 		} else {
4276 			checksum = BP_GET_CHECKSUM(bp);
4277 		}
4278 	}
4279 
4280 	zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size);
4281 
4282 	return (zio);
4283 }
4284 
4285 static zio_t *
4286 zio_checksum_verify(zio_t *zio)
4287 {
4288 	zio_bad_cksum_t info;
4289 	blkptr_t *bp = zio->io_bp;
4290 	int error;
4291 
4292 	ASSERT(zio->io_vd != NULL);
4293 
4294 	if (bp == NULL) {
4295 		/*
4296 		 * This is zio_read_phys().
4297 		 * We're either verifying a label checksum, or nothing at all.
4298 		 */
4299 		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
4300 			return (zio);
4301 
4302 		ASSERT3U(zio->io_prop.zp_checksum, ==, ZIO_CHECKSUM_LABEL);
4303 	}
4304 
4305 	if ((error = zio_checksum_error(zio, &info)) != 0) {
4306 		zio->io_error = error;
4307 		if (error == ECKSUM &&
4308 		    !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
4309 			(void) zfs_ereport_start_checksum(zio->io_spa,
4310 			    zio->io_vd, &zio->io_bookmark, zio,
4311 			    zio->io_offset, zio->io_size, &info);
4312 			mutex_enter(&zio->io_vd->vdev_stat_lock);
4313 			zio->io_vd->vdev_stat.vs_checksum_errors++;
4314 			mutex_exit(&zio->io_vd->vdev_stat_lock);
4315 		}
4316 	}
4317 
4318 	return (zio);
4319 }
4320 
4321 /*
4322  * Called by RAID-Z to ensure we don't compute the checksum twice.
4323  */
4324 void
4325 zio_checksum_verified(zio_t *zio)
4326 {
4327 	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
4328 }
4329 
4330 /*
4331  * ==========================================================================
4332  * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
4333  * An error of 0 indicates success.  ENXIO indicates whole-device failure,
4334  * which may be transient (e.g. unplugged) or permanent.  ECKSUM and EIO
4335  * indicate errors that are specific to one I/O, and most likely permanent.
4336  * Any other error is presumed to be worse because we weren't expecting it.
4337  * ==========================================================================
4338  */
4339 int
4340 zio_worst_error(int e1, int e2)
4341 {
4342 	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
4343 	int r1, r2;
4344 
4345 	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
4346 		if (e1 == zio_error_rank[r1])
4347 			break;
4348 
4349 	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
4350 		if (e2 == zio_error_rank[r2])
4351 			break;
4352 
4353 	return (r1 > r2 ? e1 : e2);
4354 }
4355 
4356 /*
4357  * ==========================================================================
4358  * I/O completion
4359  * ==========================================================================
4360  */
4361 static zio_t *
4362 zio_ready(zio_t *zio)
4363 {
4364 	blkptr_t *bp = zio->io_bp;
4365 	zio_t *pio, *pio_next;
4366 	zio_link_t *zl = NULL;
4367 
4368 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT,
4369 	    ZIO_WAIT_READY)) {
4370 		return (NULL);
4371 	}
4372 
4373 	if (zio->io_ready) {
4374 		ASSERT(IO_IS_ALLOCATING(zio));
4375 		ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
4376 		    (zio->io_flags & ZIO_FLAG_NOPWRITE));
4377 		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
4378 
4379 		zio->io_ready(zio);
4380 	}
4381 
4382 	if (bp != NULL && bp != &zio->io_bp_copy)
4383 		zio->io_bp_copy = *bp;
4384 
4385 	if (zio->io_error != 0) {
4386 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4387 
4388 		if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4389 			ASSERT(IO_IS_ALLOCATING(zio));
4390 			ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4391 			ASSERT(zio->io_metaslab_class != NULL);
4392 
4393 			/*
4394 			 * We were unable to allocate anything, unreserve and
4395 			 * issue the next I/O to allocate.
4396 			 */
4397 			metaslab_class_throttle_unreserve(
4398 			    zio->io_metaslab_class, zio->io_prop.zp_copies,
4399 			    zio->io_allocator, zio);
4400 			zio_allocate_dispatch(zio->io_spa, zio->io_allocator);
4401 		}
4402 	}
4403 
4404 	mutex_enter(&zio->io_lock);
4405 	zio->io_state[ZIO_WAIT_READY] = 1;
4406 	pio = zio_walk_parents(zio, &zl);
4407 	mutex_exit(&zio->io_lock);
4408 
4409 	/*
4410 	 * As we notify zio's parents, new parents could be added.
4411 	 * New parents go to the head of zio's io_parent_list, however,
4412 	 * so we will (correctly) not notify them.  The remainder of zio's
4413 	 * io_parent_list, from 'pio_next' onward, cannot change because
4414 	 * all parents must wait for us to be done before they can be done.
4415 	 */
4416 	for (; pio != NULL; pio = pio_next) {
4417 		pio_next = zio_walk_parents(zio, &zl);
4418 		zio_notify_parent(pio, zio, ZIO_WAIT_READY, NULL);
4419 	}
4420 
4421 	if (zio->io_flags & ZIO_FLAG_NODATA) {
4422 		if (BP_IS_GANG(bp)) {
4423 			zio->io_flags &= ~ZIO_FLAG_NODATA;
4424 		} else {
4425 			ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE);
4426 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
4427 		}
4428 	}
4429 
4430 	if (zio_injection_enabled &&
4431 	    zio->io_spa->spa_syncing_txg == zio->io_txg)
4432 		zio_handle_ignored_writes(zio);
4433 
4434 	return (zio);
4435 }
4436 
4437 /*
4438  * Update the allocation throttle accounting.
4439  */
4440 static void
4441 zio_dva_throttle_done(zio_t *zio)
4442 {
4443 	zio_t *lio __maybe_unused = zio->io_logical;
4444 	zio_t *pio = zio_unique_parent(zio);
4445 	vdev_t *vd = zio->io_vd;
4446 	int flags = METASLAB_ASYNC_ALLOC;
4447 
4448 	ASSERT3P(zio->io_bp, !=, NULL);
4449 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
4450 	ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE);
4451 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
4452 	ASSERT(vd != NULL);
4453 	ASSERT3P(vd, ==, vd->vdev_top);
4454 	ASSERT(zio_injection_enabled || !(zio->io_flags & ZIO_FLAG_IO_RETRY));
4455 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4456 	ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING);
4457 	ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE));
4458 	ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA));
4459 
4460 	/*
4461 	 * Parents of gang children can have two flavors -- ones that
4462 	 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set)
4463 	 * and ones that allocated the constituent blocks. The allocation
4464 	 * throttle needs to know the allocating parent zio so we must find
4465 	 * it here.
4466 	 */
4467 	if (pio->io_child_type == ZIO_CHILD_GANG) {
4468 		/*
4469 		 * If our parent is a rewrite gang child then our grandparent
4470 		 * would have been the one that performed the allocation.
4471 		 */
4472 		if (pio->io_flags & ZIO_FLAG_IO_REWRITE)
4473 			pio = zio_unique_parent(pio);
4474 		flags |= METASLAB_GANG_CHILD;
4475 	}
4476 
4477 	ASSERT(IO_IS_ALLOCATING(pio));
4478 	ASSERT3P(zio, !=, zio->io_logical);
4479 	ASSERT(zio->io_logical != NULL);
4480 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4481 	ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE);
4482 	ASSERT(zio->io_metaslab_class != NULL);
4483 
4484 	mutex_enter(&pio->io_lock);
4485 	metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags,
4486 	    pio->io_allocator, B_TRUE);
4487 	mutex_exit(&pio->io_lock);
4488 
4489 	metaslab_class_throttle_unreserve(zio->io_metaslab_class, 1,
4490 	    pio->io_allocator, pio);
4491 
4492 	/*
4493 	 * Call into the pipeline to see if there is more work that
4494 	 * needs to be done. If there is work to be done it will be
4495 	 * dispatched to another taskq thread.
4496 	 */
4497 	zio_allocate_dispatch(zio->io_spa, pio->io_allocator);
4498 }
4499 
4500 static zio_t *
4501 zio_done(zio_t *zio)
4502 {
4503 	/*
4504 	 * Always attempt to keep stack usage minimal here since
4505 	 * we can be called recursively up to 19 levels deep.
4506 	 */
4507 	const uint64_t psize = zio->io_size;
4508 	zio_t *pio, *pio_next;
4509 	zio_link_t *zl = NULL;
4510 
4511 	/*
4512 	 * If our children haven't all completed,
4513 	 * wait for them and then repeat this pipeline stage.
4514 	 */
4515 	if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) {
4516 		return (NULL);
4517 	}
4518 
4519 	/*
4520 	 * If the allocation throttle is enabled, then update the accounting.
4521 	 * We only track child I/Os that are part of an allocating async
4522 	 * write. We must do this since the allocation is performed
4523 	 * by the logical I/O but the actual write is done by child I/Os.
4524 	 */
4525 	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING &&
4526 	    zio->io_child_type == ZIO_CHILD_VDEV) {
4527 		ASSERT(zio->io_metaslab_class != NULL);
4528 		ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled);
4529 		zio_dva_throttle_done(zio);
4530 	}
4531 
4532 	/*
4533 	 * If the allocation throttle is enabled, verify that
4534 	 * we have decremented the refcounts for every I/O that was throttled.
4535 	 */
4536 	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4537 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
4538 		ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4539 		ASSERT(zio->io_bp != NULL);
4540 
4541 		metaslab_group_alloc_verify(zio->io_spa, zio->io_bp, zio,
4542 		    zio->io_allocator);
4543 		VERIFY(zfs_refcount_not_held(&zio->io_metaslab_class->
4544 		    mc_allocator[zio->io_allocator].mca_alloc_slots, zio));
4545 	}
4546 
4547 
4548 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
4549 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
4550 			ASSERT(zio->io_children[c][w] == 0);
4551 
4552 	if (zio->io_bp != NULL && !BP_IS_EMBEDDED(zio->io_bp)) {
4553 		ASSERT(zio->io_bp->blk_pad[0] == 0);
4554 		ASSERT(zio->io_bp->blk_pad[1] == 0);
4555 		ASSERT(memcmp(zio->io_bp, &zio->io_bp_copy,
4556 		    sizeof (blkptr_t)) == 0 ||
4557 		    (zio->io_bp == zio_unique_parent(zio)->io_bp));
4558 		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) &&
4559 		    zio->io_bp_override == NULL &&
4560 		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
4561 			ASSERT3U(zio->io_prop.zp_copies, <=,
4562 			    BP_GET_NDVAS(zio->io_bp));
4563 			ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 ||
4564 			    (BP_COUNT_GANG(zio->io_bp) ==
4565 			    BP_GET_NDVAS(zio->io_bp)));
4566 		}
4567 		if (zio->io_flags & ZIO_FLAG_NOPWRITE)
4568 			VERIFY(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
4569 	}
4570 
4571 	/*
4572 	 * If there were child vdev/gang/ddt errors, they apply to us now.
4573 	 */
4574 	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
4575 	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
4576 	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
4577 
4578 	/*
4579 	 * If the I/O on the transformed data was successful, generate any
4580 	 * checksum reports now while we still have the transformed data.
4581 	 */
4582 	if (zio->io_error == 0) {
4583 		while (zio->io_cksum_report != NULL) {
4584 			zio_cksum_report_t *zcr = zio->io_cksum_report;
4585 			uint64_t align = zcr->zcr_align;
4586 			uint64_t asize = P2ROUNDUP(psize, align);
4587 			abd_t *adata = zio->io_abd;
4588 
4589 			if (adata != NULL && asize != psize) {
4590 				adata = abd_alloc(asize, B_TRUE);
4591 				abd_copy(adata, zio->io_abd, psize);
4592 				abd_zero_off(adata, psize, asize - psize);
4593 			}
4594 
4595 			zio->io_cksum_report = zcr->zcr_next;
4596 			zcr->zcr_next = NULL;
4597 			zcr->zcr_finish(zcr, adata);
4598 			zfs_ereport_free_checksum(zcr);
4599 
4600 			if (adata != NULL && asize != psize)
4601 				abd_free(adata);
4602 		}
4603 	}
4604 
4605 	zio_pop_transforms(zio);	/* note: may set zio->io_error */
4606 
4607 	vdev_stat_update(zio, psize);
4608 
4609 	/*
4610 	 * If this I/O is attached to a particular vdev is slow, exceeding
4611 	 * 30 seconds to complete, post an error described the I/O delay.
4612 	 * We ignore these errors if the device is currently unavailable.
4613 	 */
4614 	if (zio->io_delay >= MSEC2NSEC(zio_slow_io_ms)) {
4615 		if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) {
4616 			/*
4617 			 * We want to only increment our slow IO counters if
4618 			 * the IO is valid (i.e. not if the drive is removed).
4619 			 *
4620 			 * zfs_ereport_post() will also do these checks, but
4621 			 * it can also ratelimit and have other failures, so we
4622 			 * need to increment the slow_io counters independent
4623 			 * of it.
4624 			 */
4625 			if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY,
4626 			    zio->io_spa, zio->io_vd, zio)) {
4627 				mutex_enter(&zio->io_vd->vdev_stat_lock);
4628 				zio->io_vd->vdev_stat.vs_slow_ios++;
4629 				mutex_exit(&zio->io_vd->vdev_stat_lock);
4630 
4631 				(void) zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
4632 				    zio->io_spa, zio->io_vd, &zio->io_bookmark,
4633 				    zio, 0);
4634 			}
4635 		}
4636 	}
4637 
4638 	if (zio->io_error) {
4639 		/*
4640 		 * If this I/O is attached to a particular vdev,
4641 		 * generate an error message describing the I/O failure
4642 		 * at the block level.  We ignore these errors if the
4643 		 * device is currently unavailable.
4644 		 */
4645 		if (zio->io_error != ECKSUM && zio->io_vd != NULL &&
4646 		    !vdev_is_dead(zio->io_vd)) {
4647 			int ret = zfs_ereport_post(FM_EREPORT_ZFS_IO,
4648 			    zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0);
4649 			if (ret != EALREADY) {
4650 				mutex_enter(&zio->io_vd->vdev_stat_lock);
4651 				if (zio->io_type == ZIO_TYPE_READ)
4652 					zio->io_vd->vdev_stat.vs_read_errors++;
4653 				else if (zio->io_type == ZIO_TYPE_WRITE)
4654 					zio->io_vd->vdev_stat.vs_write_errors++;
4655 				mutex_exit(&zio->io_vd->vdev_stat_lock);
4656 			}
4657 		}
4658 
4659 		if ((zio->io_error == EIO || !(zio->io_flags &
4660 		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
4661 		    zio == zio->io_logical) {
4662 			/*
4663 			 * For logical I/O requests, tell the SPA to log the
4664 			 * error and generate a logical data ereport.
4665 			 */
4666 			spa_log_error(zio->io_spa, &zio->io_bookmark);
4667 			(void) zfs_ereport_post(FM_EREPORT_ZFS_DATA,
4668 			    zio->io_spa, NULL, &zio->io_bookmark, zio, 0);
4669 		}
4670 	}
4671 
4672 	if (zio->io_error && zio == zio->io_logical) {
4673 		/*
4674 		 * Determine whether zio should be reexecuted.  This will
4675 		 * propagate all the way to the root via zio_notify_parent().
4676 		 */
4677 		ASSERT(zio->io_vd == NULL && zio->io_bp != NULL);
4678 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4679 
4680 		if (IO_IS_ALLOCATING(zio) &&
4681 		    !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
4682 			if (zio->io_error != ENOSPC)
4683 				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
4684 			else
4685 				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4686 		}
4687 
4688 		if ((zio->io_type == ZIO_TYPE_READ ||
4689 		    zio->io_type == ZIO_TYPE_FREE) &&
4690 		    !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
4691 		    zio->io_error == ENXIO &&
4692 		    spa_load_state(zio->io_spa) == SPA_LOAD_NONE &&
4693 		    spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE)
4694 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4695 
4696 		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
4697 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4698 
4699 		/*
4700 		 * Here is a possibly good place to attempt to do
4701 		 * either combinatorial reconstruction or error correction
4702 		 * based on checksums.  It also might be a good place
4703 		 * to send out preliminary ereports before we suspend
4704 		 * processing.
4705 		 */
4706 	}
4707 
4708 	/*
4709 	 * If there were logical child errors, they apply to us now.
4710 	 * We defer this until now to avoid conflating logical child
4711 	 * errors with errors that happened to the zio itself when
4712 	 * updating vdev stats and reporting FMA events above.
4713 	 */
4714 	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
4715 
4716 	if ((zio->io_error || zio->io_reexecute) &&
4717 	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
4718 	    !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
4719 		zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp);
4720 
4721 	zio_gang_tree_free(&zio->io_gang_tree);
4722 
4723 	/*
4724 	 * Godfather I/Os should never suspend.
4725 	 */
4726 	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
4727 	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
4728 		zio->io_reexecute &= ~ZIO_REEXECUTE_SUSPEND;
4729 
4730 	if (zio->io_reexecute) {
4731 		/*
4732 		 * This is a logical I/O that wants to reexecute.
4733 		 *
4734 		 * Reexecute is top-down.  When an i/o fails, if it's not
4735 		 * the root, it simply notifies its parent and sticks around.
4736 		 * The parent, seeing that it still has children in zio_done(),
4737 		 * does the same.  This percolates all the way up to the root.
4738 		 * The root i/o will reexecute or suspend the entire tree.
4739 		 *
4740 		 * This approach ensures that zio_reexecute() honors
4741 		 * all the original i/o dependency relationships, e.g.
4742 		 * parents not executing until children are ready.
4743 		 */
4744 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4745 
4746 		zio->io_gang_leader = NULL;
4747 
4748 		mutex_enter(&zio->io_lock);
4749 		zio->io_state[ZIO_WAIT_DONE] = 1;
4750 		mutex_exit(&zio->io_lock);
4751 
4752 		/*
4753 		 * "The Godfather" I/O monitors its children but is
4754 		 * not a true parent to them. It will track them through
4755 		 * the pipeline but severs its ties whenever they get into
4756 		 * trouble (e.g. suspended). This allows "The Godfather"
4757 		 * I/O to return status without blocking.
4758 		 */
4759 		zl = NULL;
4760 		for (pio = zio_walk_parents(zio, &zl); pio != NULL;
4761 		    pio = pio_next) {
4762 			zio_link_t *remove_zl = zl;
4763 			pio_next = zio_walk_parents(zio, &zl);
4764 
4765 			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
4766 			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
4767 				zio_remove_child(pio, zio, remove_zl);
4768 				/*
4769 				 * This is a rare code path, so we don't
4770 				 * bother with "next_to_execute".
4771 				 */
4772 				zio_notify_parent(pio, zio, ZIO_WAIT_DONE,
4773 				    NULL);
4774 			}
4775 		}
4776 
4777 		if ((pio = zio_unique_parent(zio)) != NULL) {
4778 			/*
4779 			 * We're not a root i/o, so there's nothing to do
4780 			 * but notify our parent.  Don't propagate errors
4781 			 * upward since we haven't permanently failed yet.
4782 			 */
4783 			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
4784 			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
4785 			/*
4786 			 * This is a rare code path, so we don't bother with
4787 			 * "next_to_execute".
4788 			 */
4789 			zio_notify_parent(pio, zio, ZIO_WAIT_DONE, NULL);
4790 		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
4791 			/*
4792 			 * We'd fail again if we reexecuted now, so suspend
4793 			 * until conditions improve (e.g. device comes online).
4794 			 */
4795 			zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR);
4796 		} else {
4797 			/*
4798 			 * Reexecution is potentially a huge amount of work.
4799 			 * Hand it off to the otherwise-unused claim taskq.
4800 			 */
4801 			ASSERT(taskq_empty_ent(&zio->io_tqent));
4802 			spa_taskq_dispatch_ent(zio->io_spa,
4803 			    ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE,
4804 			    zio_reexecute, zio, 0, &zio->io_tqent);
4805 		}
4806 		return (NULL);
4807 	}
4808 
4809 	ASSERT(zio->io_child_count == 0);
4810 	ASSERT(zio->io_reexecute == 0);
4811 	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
4812 
4813 	/*
4814 	 * Report any checksum errors, since the I/O is complete.
4815 	 */
4816 	while (zio->io_cksum_report != NULL) {
4817 		zio_cksum_report_t *zcr = zio->io_cksum_report;
4818 		zio->io_cksum_report = zcr->zcr_next;
4819 		zcr->zcr_next = NULL;
4820 		zcr->zcr_finish(zcr, NULL);
4821 		zfs_ereport_free_checksum(zcr);
4822 	}
4823 
4824 	if (zio->io_flags & ZIO_FLAG_FASTWRITE && zio->io_bp &&
4825 	    !BP_IS_HOLE(zio->io_bp) && !BP_IS_EMBEDDED(zio->io_bp) &&
4826 	    !(zio->io_flags & ZIO_FLAG_NOPWRITE)) {
4827 		metaslab_fastwrite_unmark(zio->io_spa, zio->io_bp);
4828 	}
4829 
4830 	/*
4831 	 * It is the responsibility of the done callback to ensure that this
4832 	 * particular zio is no longer discoverable for adoption, and as
4833 	 * such, cannot acquire any new parents.
4834 	 */
4835 	if (zio->io_done)
4836 		zio->io_done(zio);
4837 
4838 	mutex_enter(&zio->io_lock);
4839 	zio->io_state[ZIO_WAIT_DONE] = 1;
4840 	mutex_exit(&zio->io_lock);
4841 
4842 	/*
4843 	 * We are done executing this zio.  We may want to execute a parent
4844 	 * next.  See the comment in zio_notify_parent().
4845 	 */
4846 	zio_t *next_to_execute = NULL;
4847 	zl = NULL;
4848 	for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) {
4849 		zio_link_t *remove_zl = zl;
4850 		pio_next = zio_walk_parents(zio, &zl);
4851 		zio_remove_child(pio, zio, remove_zl);
4852 		zio_notify_parent(pio, zio, ZIO_WAIT_DONE, &next_to_execute);
4853 	}
4854 
4855 	if (zio->io_waiter != NULL) {
4856 		mutex_enter(&zio->io_lock);
4857 		zio->io_executor = NULL;
4858 		cv_broadcast(&zio->io_cv);
4859 		mutex_exit(&zio->io_lock);
4860 	} else {
4861 		zio_destroy(zio);
4862 	}
4863 
4864 	return (next_to_execute);
4865 }
4866 
4867 /*
4868  * ==========================================================================
4869  * I/O pipeline definition
4870  * ==========================================================================
4871  */
4872 static zio_pipe_stage_t *zio_pipeline[] = {
4873 	NULL,
4874 	zio_read_bp_init,
4875 	zio_write_bp_init,
4876 	zio_free_bp_init,
4877 	zio_issue_async,
4878 	zio_write_compress,
4879 	zio_encrypt,
4880 	zio_checksum_generate,
4881 	zio_nop_write,
4882 	zio_ddt_read_start,
4883 	zio_ddt_read_done,
4884 	zio_ddt_write,
4885 	zio_ddt_free,
4886 	zio_gang_assemble,
4887 	zio_gang_issue,
4888 	zio_dva_throttle,
4889 	zio_dva_allocate,
4890 	zio_dva_free,
4891 	zio_dva_claim,
4892 	zio_ready,
4893 	zio_vdev_io_start,
4894 	zio_vdev_io_done,
4895 	zio_vdev_io_assess,
4896 	zio_checksum_verify,
4897 	zio_done
4898 };
4899 
4900 
4901 
4902 
4903 /*
4904  * Compare two zbookmark_phys_t's to see which we would reach first in a
4905  * pre-order traversal of the object tree.
4906  *
4907  * This is simple in every case aside from the meta-dnode object. For all other
4908  * objects, we traverse them in order (object 1 before object 2, and so on).
4909  * However, all of these objects are traversed while traversing object 0, since
4910  * the data it points to is the list of objects.  Thus, we need to convert to a
4911  * canonical representation so we can compare meta-dnode bookmarks to
4912  * non-meta-dnode bookmarks.
4913  *
4914  * We do this by calculating "equivalents" for each field of the zbookmark.
4915  * zbookmarks outside of the meta-dnode use their own object and level, and
4916  * calculate the level 0 equivalent (the first L0 blkid that is contained in the
4917  * blocks this bookmark refers to) by multiplying their blkid by their span
4918  * (the number of L0 blocks contained within one block at their level).
4919  * zbookmarks inside the meta-dnode calculate their object equivalent
4920  * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
4921  * level + 1<<31 (any value larger than a level could ever be) for their level.
4922  * This causes them to always compare before a bookmark in their object
4923  * equivalent, compare appropriately to bookmarks in other objects, and to
4924  * compare appropriately to other bookmarks in the meta-dnode.
4925  */
4926 int
4927 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
4928     const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
4929 {
4930 	/*
4931 	 * These variables represent the "equivalent" values for the zbookmark,
4932 	 * after converting zbookmarks inside the meta dnode to their
4933 	 * normal-object equivalents.
4934 	 */
4935 	uint64_t zb1obj, zb2obj;
4936 	uint64_t zb1L0, zb2L0;
4937 	uint64_t zb1level, zb2level;
4938 
4939 	if (zb1->zb_object == zb2->zb_object &&
4940 	    zb1->zb_level == zb2->zb_level &&
4941 	    zb1->zb_blkid == zb2->zb_blkid)
4942 		return (0);
4943 
4944 	IMPLY(zb1->zb_level > 0, ibs1 >= SPA_MINBLOCKSHIFT);
4945 	IMPLY(zb2->zb_level > 0, ibs2 >= SPA_MINBLOCKSHIFT);
4946 
4947 	/*
4948 	 * BP_SPANB calculates the span in blocks.
4949 	 */
4950 	zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
4951 	zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
4952 
4953 	if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
4954 		zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4955 		zb1L0 = 0;
4956 		zb1level = zb1->zb_level + COMPARE_META_LEVEL;
4957 	} else {
4958 		zb1obj = zb1->zb_object;
4959 		zb1level = zb1->zb_level;
4960 	}
4961 
4962 	if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
4963 		zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4964 		zb2L0 = 0;
4965 		zb2level = zb2->zb_level + COMPARE_META_LEVEL;
4966 	} else {
4967 		zb2obj = zb2->zb_object;
4968 		zb2level = zb2->zb_level;
4969 	}
4970 
4971 	/* Now that we have a canonical representation, do the comparison. */
4972 	if (zb1obj != zb2obj)
4973 		return (zb1obj < zb2obj ? -1 : 1);
4974 	else if (zb1L0 != zb2L0)
4975 		return (zb1L0 < zb2L0 ? -1 : 1);
4976 	else if (zb1level != zb2level)
4977 		return (zb1level > zb2level ? -1 : 1);
4978 	/*
4979 	 * This can (theoretically) happen if the bookmarks have the same object
4980 	 * and level, but different blkids, if the block sizes are not the same.
4981 	 * There is presently no way to change the indirect block sizes
4982 	 */
4983 	return (0);
4984 }
4985 
4986 /*
4987  *  This function checks the following: given that last_block is the place that
4988  *  our traversal stopped last time, does that guarantee that we've visited
4989  *  every node under subtree_root?  Therefore, we can't just use the raw output
4990  *  of zbookmark_compare.  We have to pass in a modified version of
4991  *  subtree_root; by incrementing the block id, and then checking whether
4992  *  last_block is before or equal to that, we can tell whether or not having
4993  *  visited last_block implies that all of subtree_root's children have been
4994  *  visited.
4995  */
4996 boolean_t
4997 zbookmark_subtree_completed(const dnode_phys_t *dnp,
4998     const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
4999 {
5000 	zbookmark_phys_t mod_zb = *subtree_root;
5001 	mod_zb.zb_blkid++;
5002 	ASSERT(last_block->zb_level == 0);
5003 
5004 	/* The objset_phys_t isn't before anything. */
5005 	if (dnp == NULL)
5006 		return (B_FALSE);
5007 
5008 	/*
5009 	 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
5010 	 * data block size in sectors, because that variable is only used if
5011 	 * the bookmark refers to a block in the meta-dnode.  Since we don't
5012 	 * know without examining it what object it refers to, and there's no
5013 	 * harm in passing in this value in other cases, we always pass it in.
5014 	 *
5015 	 * We pass in 0 for the indirect block size shift because zb2 must be
5016 	 * level 0.  The indirect block size is only used to calculate the span
5017 	 * of the bookmark, but since the bookmark must be level 0, the span is
5018 	 * always 1, so the math works out.
5019 	 *
5020 	 * If you make changes to how the zbookmark_compare code works, be sure
5021 	 * to make sure that this code still works afterwards.
5022 	 */
5023 	return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
5024 	    1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
5025 	    last_block) <= 0);
5026 }
5027 
5028 EXPORT_SYMBOL(zio_type_name);
5029 EXPORT_SYMBOL(zio_buf_alloc);
5030 EXPORT_SYMBOL(zio_data_buf_alloc);
5031 EXPORT_SYMBOL(zio_buf_free);
5032 EXPORT_SYMBOL(zio_data_buf_free);
5033 
5034 ZFS_MODULE_PARAM(zfs_zio, zio_, slow_io_ms, INT, ZMOD_RW,
5035 	"Max I/O completion time (milliseconds) before marking it as slow");
5036 
5037 ZFS_MODULE_PARAM(zfs_zio, zio_, requeue_io_start_cut_in_line, INT, ZMOD_RW,
5038 	"Prioritize requeued I/O");
5039 
5040 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_deferred_free,  INT, ZMOD_RW,
5041 	"Defer frees starting in this pass");
5042 
5043 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_dont_compress, INT, ZMOD_RW,
5044 	"Don't compress starting in this pass");
5045 
5046 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_rewrite, INT, ZMOD_RW,
5047 	"Rewrite new bps starting in this pass");
5048 
5049 ZFS_MODULE_PARAM(zfs_zio, zio_, dva_throttle_enabled, INT, ZMOD_RW,
5050 	"Throttle block allocations in the ZIO pipeline");
5051 
5052 ZFS_MODULE_PARAM(zfs_zio, zio_, deadman_log_all, INT, ZMOD_RW,
5053 	"Log all slow ZIOs, not just those with vdevs");
5054