1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2022 by Delphix. All rights reserved. 24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2017, Intel Corporation. 26 * Copyright (c) 2019, Klara Inc. 27 * Copyright (c) 2019, Allan Jude 28 * Copyright (c) 2021, Datto, Inc. 29 */ 30 31 #include <sys/sysmacros.h> 32 #include <sys/zfs_context.h> 33 #include <sys/fm/fs/zfs.h> 34 #include <sys/spa.h> 35 #include <sys/txg.h> 36 #include <sys/spa_impl.h> 37 #include <sys/vdev_impl.h> 38 #include <sys/vdev_trim.h> 39 #include <sys/zio_impl.h> 40 #include <sys/zio_compress.h> 41 #include <sys/zio_checksum.h> 42 #include <sys/dmu_objset.h> 43 #include <sys/arc.h> 44 #include <sys/brt.h> 45 #include <sys/ddt.h> 46 #include <sys/blkptr.h> 47 #include <sys/zfeature.h> 48 #include <sys/dsl_scan.h> 49 #include <sys/metaslab_impl.h> 50 #include <sys/time.h> 51 #include <sys/trace_zfs.h> 52 #include <sys/abd.h> 53 #include <sys/dsl_crypt.h> 54 #include <cityhash.h> 55 56 /* 57 * ========================================================================== 58 * I/O type descriptions 59 * ========================================================================== 60 */ 61 const char *const zio_type_name[ZIO_TYPES] = { 62 /* 63 * Note: Linux kernel thread name length is limited 64 * so these names will differ from upstream open zfs. 65 */ 66 "z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_ioctl", "z_trim" 67 }; 68 69 int zio_dva_throttle_enabled = B_TRUE; 70 static int zio_deadman_log_all = B_FALSE; 71 72 /* 73 * ========================================================================== 74 * I/O kmem caches 75 * ========================================================================== 76 */ 77 static kmem_cache_t *zio_cache; 78 static kmem_cache_t *zio_link_cache; 79 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 80 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 81 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 82 static uint64_t zio_buf_cache_allocs[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 83 static uint64_t zio_buf_cache_frees[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 84 #endif 85 86 /* Mark IOs as "slow" if they take longer than 30 seconds */ 87 static uint_t zio_slow_io_ms = (30 * MILLISEC); 88 89 #define BP_SPANB(indblkshift, level) \ 90 (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT))) 91 #define COMPARE_META_LEVEL 0x80000000ul 92 /* 93 * The following actions directly effect the spa's sync-to-convergence logic. 94 * The values below define the sync pass when we start performing the action. 95 * Care should be taken when changing these values as they directly impact 96 * spa_sync() performance. Tuning these values may introduce subtle performance 97 * pathologies and should only be done in the context of performance analysis. 98 * These tunables will eventually be removed and replaced with #defines once 99 * enough analysis has been done to determine optimal values. 100 * 101 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that 102 * regular blocks are not deferred. 103 * 104 * Starting in sync pass 8 (zfs_sync_pass_dont_compress), we disable 105 * compression (including of metadata). In practice, we don't have this 106 * many sync passes, so this has no effect. 107 * 108 * The original intent was that disabling compression would help the sync 109 * passes to converge. However, in practice disabling compression increases 110 * the average number of sync passes, because when we turn compression off, a 111 * lot of block's size will change and thus we have to re-allocate (not 112 * overwrite) them. It also increases the number of 128KB allocations (e.g. 113 * for indirect blocks and spacemaps) because these will not be compressed. 114 * The 128K allocations are especially detrimental to performance on highly 115 * fragmented systems, which may have very few free segments of this size, 116 * and may need to load new metaslabs to satisfy 128K allocations. 117 */ 118 119 /* defer frees starting in this pass */ 120 uint_t zfs_sync_pass_deferred_free = 2; 121 122 /* don't compress starting in this pass */ 123 static uint_t zfs_sync_pass_dont_compress = 8; 124 125 /* rewrite new bps starting in this pass */ 126 static uint_t zfs_sync_pass_rewrite = 2; 127 128 /* 129 * An allocating zio is one that either currently has the DVA allocate 130 * stage set or will have it later in its lifetime. 131 */ 132 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE) 133 134 /* 135 * Enable smaller cores by excluding metadata 136 * allocations as well. 137 */ 138 int zio_exclude_metadata = 0; 139 static int zio_requeue_io_start_cut_in_line = 1; 140 141 #ifdef ZFS_DEBUG 142 static const int zio_buf_debug_limit = 16384; 143 #else 144 static const int zio_buf_debug_limit = 0; 145 #endif 146 147 static inline void __zio_execute(zio_t *zio); 148 149 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t); 150 151 void 152 zio_init(void) 153 { 154 size_t c; 155 156 zio_cache = kmem_cache_create("zio_cache", 157 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 158 zio_link_cache = kmem_cache_create("zio_link_cache", 159 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 160 161 /* 162 * For small buffers, we want a cache for each multiple of 163 * SPA_MINBLOCKSIZE. For larger buffers, we want a cache 164 * for each quarter-power of 2. 165 */ 166 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 167 size_t size = (c + 1) << SPA_MINBLOCKSHIFT; 168 size_t p2 = size; 169 size_t align = 0; 170 size_t data_cflags, cflags; 171 172 data_cflags = KMC_NODEBUG; 173 cflags = (zio_exclude_metadata || size > zio_buf_debug_limit) ? 174 KMC_NODEBUG : 0; 175 176 while (!ISP2(p2)) 177 p2 &= p2 - 1; 178 179 #ifndef _KERNEL 180 /* 181 * If we are using watchpoints, put each buffer on its own page, 182 * to eliminate the performance overhead of trapping to the 183 * kernel when modifying a non-watched buffer that shares the 184 * page with a watched buffer. 185 */ 186 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE)) 187 continue; 188 /* 189 * Here's the problem - on 4K native devices in userland on 190 * Linux using O_DIRECT, buffers must be 4K aligned or I/O 191 * will fail with EINVAL, causing zdb (and others) to coredump. 192 * Since userland probably doesn't need optimized buffer caches, 193 * we just force 4K alignment on everything. 194 */ 195 align = 8 * SPA_MINBLOCKSIZE; 196 #else 197 if (size < PAGESIZE) { 198 align = SPA_MINBLOCKSIZE; 199 } else if (IS_P2ALIGNED(size, p2 >> 2)) { 200 align = PAGESIZE; 201 } 202 #endif 203 204 if (align != 0) { 205 char name[36]; 206 if (cflags == data_cflags) { 207 /* 208 * Resulting kmem caches would be identical. 209 * Save memory by creating only one. 210 */ 211 (void) snprintf(name, sizeof (name), 212 "zio_buf_comb_%lu", (ulong_t)size); 213 zio_buf_cache[c] = kmem_cache_create(name, 214 size, align, NULL, NULL, NULL, NULL, NULL, 215 cflags); 216 zio_data_buf_cache[c] = zio_buf_cache[c]; 217 continue; 218 } 219 (void) snprintf(name, sizeof (name), "zio_buf_%lu", 220 (ulong_t)size); 221 zio_buf_cache[c] = kmem_cache_create(name, size, 222 align, NULL, NULL, NULL, NULL, NULL, cflags); 223 224 (void) snprintf(name, sizeof (name), "zio_data_buf_%lu", 225 (ulong_t)size); 226 zio_data_buf_cache[c] = kmem_cache_create(name, size, 227 align, NULL, NULL, NULL, NULL, NULL, data_cflags); 228 } 229 } 230 231 while (--c != 0) { 232 ASSERT(zio_buf_cache[c] != NULL); 233 if (zio_buf_cache[c - 1] == NULL) 234 zio_buf_cache[c - 1] = zio_buf_cache[c]; 235 236 ASSERT(zio_data_buf_cache[c] != NULL); 237 if (zio_data_buf_cache[c - 1] == NULL) 238 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c]; 239 } 240 241 zio_inject_init(); 242 243 lz4_init(); 244 } 245 246 void 247 zio_fini(void) 248 { 249 size_t n = SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; 250 251 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 252 for (size_t i = 0; i < n; i++) { 253 if (zio_buf_cache_allocs[i] != zio_buf_cache_frees[i]) 254 (void) printf("zio_fini: [%d] %llu != %llu\n", 255 (int)((i + 1) << SPA_MINBLOCKSHIFT), 256 (long long unsigned)zio_buf_cache_allocs[i], 257 (long long unsigned)zio_buf_cache_frees[i]); 258 } 259 #endif 260 261 /* 262 * The same kmem cache can show up multiple times in both zio_buf_cache 263 * and zio_data_buf_cache. Do a wasteful but trivially correct scan to 264 * sort it out. 265 */ 266 for (size_t i = 0; i < n; i++) { 267 kmem_cache_t *cache = zio_buf_cache[i]; 268 if (cache == NULL) 269 continue; 270 for (size_t j = i; j < n; j++) { 271 if (cache == zio_buf_cache[j]) 272 zio_buf_cache[j] = NULL; 273 if (cache == zio_data_buf_cache[j]) 274 zio_data_buf_cache[j] = NULL; 275 } 276 kmem_cache_destroy(cache); 277 } 278 279 for (size_t i = 0; i < n; i++) { 280 kmem_cache_t *cache = zio_data_buf_cache[i]; 281 if (cache == NULL) 282 continue; 283 for (size_t j = i; j < n; j++) { 284 if (cache == zio_data_buf_cache[j]) 285 zio_data_buf_cache[j] = NULL; 286 } 287 kmem_cache_destroy(cache); 288 } 289 290 for (size_t i = 0; i < n; i++) { 291 VERIFY3P(zio_buf_cache[i], ==, NULL); 292 VERIFY3P(zio_data_buf_cache[i], ==, NULL); 293 } 294 295 kmem_cache_destroy(zio_link_cache); 296 kmem_cache_destroy(zio_cache); 297 298 zio_inject_fini(); 299 300 lz4_fini(); 301 } 302 303 /* 304 * ========================================================================== 305 * Allocate and free I/O buffers 306 * ========================================================================== 307 */ 308 309 /* 310 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a 311 * crashdump if the kernel panics, so use it judiciously. Obviously, it's 312 * useful to inspect ZFS metadata, but if possible, we should avoid keeping 313 * excess / transient data in-core during a crashdump. 314 */ 315 void * 316 zio_buf_alloc(size_t size) 317 { 318 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 319 320 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 321 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 322 atomic_add_64(&zio_buf_cache_allocs[c], 1); 323 #endif 324 325 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE)); 326 } 327 328 /* 329 * Use zio_data_buf_alloc to allocate data. The data will not appear in a 330 * crashdump if the kernel panics. This exists so that we will limit the amount 331 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount 332 * of kernel heap dumped to disk when the kernel panics) 333 */ 334 void * 335 zio_data_buf_alloc(size_t size) 336 { 337 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 338 339 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 340 341 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE)); 342 } 343 344 void 345 zio_buf_free(void *buf, size_t size) 346 { 347 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 348 349 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 350 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 351 atomic_add_64(&zio_buf_cache_frees[c], 1); 352 #endif 353 354 kmem_cache_free(zio_buf_cache[c], buf); 355 } 356 357 void 358 zio_data_buf_free(void *buf, size_t size) 359 { 360 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 361 362 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 363 364 kmem_cache_free(zio_data_buf_cache[c], buf); 365 } 366 367 static void 368 zio_abd_free(void *abd, size_t size) 369 { 370 (void) size; 371 abd_free((abd_t *)abd); 372 } 373 374 /* 375 * ========================================================================== 376 * Push and pop I/O transform buffers 377 * ========================================================================== 378 */ 379 void 380 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize, 381 zio_transform_func_t *transform) 382 { 383 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP); 384 385 zt->zt_orig_abd = zio->io_abd; 386 zt->zt_orig_size = zio->io_size; 387 zt->zt_bufsize = bufsize; 388 zt->zt_transform = transform; 389 390 zt->zt_next = zio->io_transform_stack; 391 zio->io_transform_stack = zt; 392 393 zio->io_abd = data; 394 zio->io_size = size; 395 } 396 397 void 398 zio_pop_transforms(zio_t *zio) 399 { 400 zio_transform_t *zt; 401 402 while ((zt = zio->io_transform_stack) != NULL) { 403 if (zt->zt_transform != NULL) 404 zt->zt_transform(zio, 405 zt->zt_orig_abd, zt->zt_orig_size); 406 407 if (zt->zt_bufsize != 0) 408 abd_free(zio->io_abd); 409 410 zio->io_abd = zt->zt_orig_abd; 411 zio->io_size = zt->zt_orig_size; 412 zio->io_transform_stack = zt->zt_next; 413 414 kmem_free(zt, sizeof (zio_transform_t)); 415 } 416 } 417 418 /* 419 * ========================================================================== 420 * I/O transform callbacks for subblocks, decompression, and decryption 421 * ========================================================================== 422 */ 423 static void 424 zio_subblock(zio_t *zio, abd_t *data, uint64_t size) 425 { 426 ASSERT(zio->io_size > size); 427 428 if (zio->io_type == ZIO_TYPE_READ) 429 abd_copy(data, zio->io_abd, size); 430 } 431 432 static void 433 zio_decompress(zio_t *zio, abd_t *data, uint64_t size) 434 { 435 if (zio->io_error == 0) { 436 void *tmp = abd_borrow_buf(data, size); 437 int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp), 438 zio->io_abd, tmp, zio->io_size, size, 439 &zio->io_prop.zp_complevel); 440 abd_return_buf_copy(data, tmp, size); 441 442 if (zio_injection_enabled && ret == 0) 443 ret = zio_handle_fault_injection(zio, EINVAL); 444 445 if (ret != 0) 446 zio->io_error = SET_ERROR(EIO); 447 } 448 } 449 450 static void 451 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size) 452 { 453 int ret; 454 void *tmp; 455 blkptr_t *bp = zio->io_bp; 456 spa_t *spa = zio->io_spa; 457 uint64_t dsobj = zio->io_bookmark.zb_objset; 458 uint64_t lsize = BP_GET_LSIZE(bp); 459 dmu_object_type_t ot = BP_GET_TYPE(bp); 460 uint8_t salt[ZIO_DATA_SALT_LEN]; 461 uint8_t iv[ZIO_DATA_IV_LEN]; 462 uint8_t mac[ZIO_DATA_MAC_LEN]; 463 boolean_t no_crypt = B_FALSE; 464 465 ASSERT(BP_USES_CRYPT(bp)); 466 ASSERT3U(size, !=, 0); 467 468 if (zio->io_error != 0) 469 return; 470 471 /* 472 * Verify the cksum of MACs stored in an indirect bp. It will always 473 * be possible to verify this since it does not require an encryption 474 * key. 475 */ 476 if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) { 477 zio_crypt_decode_mac_bp(bp, mac); 478 479 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) { 480 /* 481 * We haven't decompressed the data yet, but 482 * zio_crypt_do_indirect_mac_checksum() requires 483 * decompressed data to be able to parse out the MACs 484 * from the indirect block. We decompress it now and 485 * throw away the result after we are finished. 486 */ 487 tmp = zio_buf_alloc(lsize); 488 ret = zio_decompress_data(BP_GET_COMPRESS(bp), 489 zio->io_abd, tmp, zio->io_size, lsize, 490 &zio->io_prop.zp_complevel); 491 if (ret != 0) { 492 ret = SET_ERROR(EIO); 493 goto error; 494 } 495 ret = zio_crypt_do_indirect_mac_checksum(B_FALSE, 496 tmp, lsize, BP_SHOULD_BYTESWAP(bp), mac); 497 zio_buf_free(tmp, lsize); 498 } else { 499 ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE, 500 zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac); 501 } 502 abd_copy(data, zio->io_abd, size); 503 504 if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) { 505 ret = zio_handle_decrypt_injection(spa, 506 &zio->io_bookmark, ot, ECKSUM); 507 } 508 if (ret != 0) 509 goto error; 510 511 return; 512 } 513 514 /* 515 * If this is an authenticated block, just check the MAC. It would be 516 * nice to separate this out into its own flag, but when this was done, 517 * we had run out of bits in what is now zio_flag_t. Future cleanup 518 * could make this a flag bit. 519 */ 520 if (BP_IS_AUTHENTICATED(bp)) { 521 if (ot == DMU_OT_OBJSET) { 522 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, 523 dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp)); 524 } else { 525 zio_crypt_decode_mac_bp(bp, mac); 526 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, 527 zio->io_abd, size, mac); 528 if (zio_injection_enabled && ret == 0) { 529 ret = zio_handle_decrypt_injection(spa, 530 &zio->io_bookmark, ot, ECKSUM); 531 } 532 } 533 abd_copy(data, zio->io_abd, size); 534 535 if (ret != 0) 536 goto error; 537 538 return; 539 } 540 541 zio_crypt_decode_params_bp(bp, salt, iv); 542 543 if (ot == DMU_OT_INTENT_LOG) { 544 tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t)); 545 zio_crypt_decode_mac_zil(tmp, mac); 546 abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t)); 547 } else { 548 zio_crypt_decode_mac_bp(bp, mac); 549 } 550 551 ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp), 552 BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data, 553 zio->io_abd, &no_crypt); 554 if (no_crypt) 555 abd_copy(data, zio->io_abd, size); 556 557 if (ret != 0) 558 goto error; 559 560 return; 561 562 error: 563 /* assert that the key was found unless this was speculative */ 564 ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE)); 565 566 /* 567 * If there was a decryption / authentication error return EIO as 568 * the io_error. If this was not a speculative zio, create an ereport. 569 */ 570 if (ret == ECKSUM) { 571 zio->io_error = SET_ERROR(EIO); 572 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) { 573 spa_log_error(spa, &zio->io_bookmark, 574 &zio->io_bp->blk_birth); 575 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION, 576 spa, NULL, &zio->io_bookmark, zio, 0); 577 } 578 } else { 579 zio->io_error = ret; 580 } 581 } 582 583 /* 584 * ========================================================================== 585 * I/O parent/child relationships and pipeline interlocks 586 * ========================================================================== 587 */ 588 zio_t * 589 zio_walk_parents(zio_t *cio, zio_link_t **zl) 590 { 591 list_t *pl = &cio->io_parent_list; 592 593 *zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl); 594 if (*zl == NULL) 595 return (NULL); 596 597 ASSERT((*zl)->zl_child == cio); 598 return ((*zl)->zl_parent); 599 } 600 601 zio_t * 602 zio_walk_children(zio_t *pio, zio_link_t **zl) 603 { 604 list_t *cl = &pio->io_child_list; 605 606 ASSERT(MUTEX_HELD(&pio->io_lock)); 607 608 *zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl); 609 if (*zl == NULL) 610 return (NULL); 611 612 ASSERT((*zl)->zl_parent == pio); 613 return ((*zl)->zl_child); 614 } 615 616 zio_t * 617 zio_unique_parent(zio_t *cio) 618 { 619 zio_link_t *zl = NULL; 620 zio_t *pio = zio_walk_parents(cio, &zl); 621 622 VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL); 623 return (pio); 624 } 625 626 void 627 zio_add_child(zio_t *pio, zio_t *cio) 628 { 629 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP); 630 631 /* 632 * Logical I/Os can have logical, gang, or vdev children. 633 * Gang I/Os can have gang or vdev children. 634 * Vdev I/Os can only have vdev children. 635 * The following ASSERT captures all of these constraints. 636 */ 637 ASSERT3S(cio->io_child_type, <=, pio->io_child_type); 638 639 zl->zl_parent = pio; 640 zl->zl_child = cio; 641 642 mutex_enter(&pio->io_lock); 643 mutex_enter(&cio->io_lock); 644 645 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0); 646 647 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 648 pio->io_children[cio->io_child_type][w] += !cio->io_state[w]; 649 650 list_insert_head(&pio->io_child_list, zl); 651 list_insert_head(&cio->io_parent_list, zl); 652 653 pio->io_child_count++; 654 cio->io_parent_count++; 655 656 mutex_exit(&cio->io_lock); 657 mutex_exit(&pio->io_lock); 658 } 659 660 static void 661 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl) 662 { 663 ASSERT(zl->zl_parent == pio); 664 ASSERT(zl->zl_child == cio); 665 666 mutex_enter(&pio->io_lock); 667 mutex_enter(&cio->io_lock); 668 669 list_remove(&pio->io_child_list, zl); 670 list_remove(&cio->io_parent_list, zl); 671 672 pio->io_child_count--; 673 cio->io_parent_count--; 674 675 mutex_exit(&cio->io_lock); 676 mutex_exit(&pio->io_lock); 677 kmem_cache_free(zio_link_cache, zl); 678 } 679 680 static boolean_t 681 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait) 682 { 683 boolean_t waiting = B_FALSE; 684 685 mutex_enter(&zio->io_lock); 686 ASSERT(zio->io_stall == NULL); 687 for (int c = 0; c < ZIO_CHILD_TYPES; c++) { 688 if (!(ZIO_CHILD_BIT_IS_SET(childbits, c))) 689 continue; 690 691 uint64_t *countp = &zio->io_children[c][wait]; 692 if (*countp != 0) { 693 zio->io_stage >>= 1; 694 ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN); 695 zio->io_stall = countp; 696 waiting = B_TRUE; 697 break; 698 } 699 } 700 mutex_exit(&zio->io_lock); 701 return (waiting); 702 } 703 704 __attribute__((always_inline)) 705 static inline void 706 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait, 707 zio_t **next_to_executep) 708 { 709 uint64_t *countp = &pio->io_children[zio->io_child_type][wait]; 710 int *errorp = &pio->io_child_error[zio->io_child_type]; 711 712 mutex_enter(&pio->io_lock); 713 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 714 *errorp = zio_worst_error(*errorp, zio->io_error); 715 pio->io_reexecute |= zio->io_reexecute; 716 ASSERT3U(*countp, >, 0); 717 718 (*countp)--; 719 720 if (*countp == 0 && pio->io_stall == countp) { 721 zio_taskq_type_t type = 722 pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE : 723 ZIO_TASKQ_INTERRUPT; 724 pio->io_stall = NULL; 725 mutex_exit(&pio->io_lock); 726 727 /* 728 * If we can tell the caller to execute this parent next, do 729 * so. We only do this if the parent's zio type matches the 730 * child's type. Otherwise dispatch the parent zio in its 731 * own taskq. 732 * 733 * Having the caller execute the parent when possible reduces 734 * locking on the zio taskq's, reduces context switch 735 * overhead, and has no recursion penalty. Note that one 736 * read from disk typically causes at least 3 zio's: a 737 * zio_null(), the logical zio_read(), and then a physical 738 * zio. When the physical ZIO completes, we are able to call 739 * zio_done() on all 3 of these zio's from one invocation of 740 * zio_execute() by returning the parent back to 741 * zio_execute(). Since the parent isn't executed until this 742 * thread returns back to zio_execute(), the caller should do 743 * so promptly. 744 * 745 * In other cases, dispatching the parent prevents 746 * overflowing the stack when we have deeply nested 747 * parent-child relationships, as we do with the "mega zio" 748 * of writes for spa_sync(), and the chain of ZIL blocks. 749 */ 750 if (next_to_executep != NULL && *next_to_executep == NULL && 751 pio->io_type == zio->io_type) { 752 *next_to_executep = pio; 753 } else { 754 zio_taskq_dispatch(pio, type, B_FALSE); 755 } 756 } else { 757 mutex_exit(&pio->io_lock); 758 } 759 } 760 761 static void 762 zio_inherit_child_errors(zio_t *zio, enum zio_child c) 763 { 764 if (zio->io_child_error[c] != 0 && zio->io_error == 0) 765 zio->io_error = zio->io_child_error[c]; 766 } 767 768 int 769 zio_bookmark_compare(const void *x1, const void *x2) 770 { 771 const zio_t *z1 = x1; 772 const zio_t *z2 = x2; 773 774 if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset) 775 return (-1); 776 if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset) 777 return (1); 778 779 if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object) 780 return (-1); 781 if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object) 782 return (1); 783 784 if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level) 785 return (-1); 786 if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level) 787 return (1); 788 789 if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid) 790 return (-1); 791 if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid) 792 return (1); 793 794 if (z1 < z2) 795 return (-1); 796 if (z1 > z2) 797 return (1); 798 799 return (0); 800 } 801 802 /* 803 * ========================================================================== 804 * Create the various types of I/O (read, write, free, etc) 805 * ========================================================================== 806 */ 807 static zio_t * 808 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 809 abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done, 810 void *private, zio_type_t type, zio_priority_t priority, 811 zio_flag_t flags, vdev_t *vd, uint64_t offset, 812 const zbookmark_phys_t *zb, enum zio_stage stage, 813 enum zio_stage pipeline) 814 { 815 zio_t *zio; 816 817 IMPLY(type != ZIO_TYPE_TRIM, psize <= SPA_MAXBLOCKSIZE); 818 ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0); 819 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0); 820 821 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER)); 822 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER)); 823 ASSERT(vd || stage == ZIO_STAGE_OPEN); 824 825 IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0); 826 827 zio = kmem_cache_alloc(zio_cache, KM_SLEEP); 828 memset(zio, 0, sizeof (zio_t)); 829 830 mutex_init(&zio->io_lock, NULL, MUTEX_NOLOCKDEP, NULL); 831 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL); 832 833 list_create(&zio->io_parent_list, sizeof (zio_link_t), 834 offsetof(zio_link_t, zl_parent_node)); 835 list_create(&zio->io_child_list, sizeof (zio_link_t), 836 offsetof(zio_link_t, zl_child_node)); 837 metaslab_trace_init(&zio->io_alloc_list); 838 839 if (vd != NULL) 840 zio->io_child_type = ZIO_CHILD_VDEV; 841 else if (flags & ZIO_FLAG_GANG_CHILD) 842 zio->io_child_type = ZIO_CHILD_GANG; 843 else if (flags & ZIO_FLAG_DDT_CHILD) 844 zio->io_child_type = ZIO_CHILD_DDT; 845 else 846 zio->io_child_type = ZIO_CHILD_LOGICAL; 847 848 if (bp != NULL) { 849 zio->io_bp = (blkptr_t *)bp; 850 zio->io_bp_copy = *bp; 851 zio->io_bp_orig = *bp; 852 if (type != ZIO_TYPE_WRITE || 853 zio->io_child_type == ZIO_CHILD_DDT) 854 zio->io_bp = &zio->io_bp_copy; /* so caller can free */ 855 if (zio->io_child_type == ZIO_CHILD_LOGICAL) 856 zio->io_logical = zio; 857 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp)) 858 pipeline |= ZIO_GANG_STAGES; 859 } 860 861 zio->io_spa = spa; 862 zio->io_txg = txg; 863 zio->io_done = done; 864 zio->io_private = private; 865 zio->io_type = type; 866 zio->io_priority = priority; 867 zio->io_vd = vd; 868 zio->io_offset = offset; 869 zio->io_orig_abd = zio->io_abd = data; 870 zio->io_orig_size = zio->io_size = psize; 871 zio->io_lsize = lsize; 872 zio->io_orig_flags = zio->io_flags = flags; 873 zio->io_orig_stage = zio->io_stage = stage; 874 zio->io_orig_pipeline = zio->io_pipeline = pipeline; 875 zio->io_pipeline_trace = ZIO_STAGE_OPEN; 876 877 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY); 878 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE); 879 880 if (zb != NULL) 881 zio->io_bookmark = *zb; 882 883 if (pio != NULL) { 884 zio->io_metaslab_class = pio->io_metaslab_class; 885 if (zio->io_logical == NULL) 886 zio->io_logical = pio->io_logical; 887 if (zio->io_child_type == ZIO_CHILD_GANG) 888 zio->io_gang_leader = pio->io_gang_leader; 889 zio_add_child(pio, zio); 890 } 891 892 taskq_init_ent(&zio->io_tqent); 893 894 return (zio); 895 } 896 897 void 898 zio_destroy(zio_t *zio) 899 { 900 metaslab_trace_fini(&zio->io_alloc_list); 901 list_destroy(&zio->io_parent_list); 902 list_destroy(&zio->io_child_list); 903 mutex_destroy(&zio->io_lock); 904 cv_destroy(&zio->io_cv); 905 kmem_cache_free(zio_cache, zio); 906 } 907 908 zio_t * 909 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done, 910 void *private, zio_flag_t flags) 911 { 912 zio_t *zio; 913 914 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private, 915 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 916 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE); 917 918 return (zio); 919 } 920 921 zio_t * 922 zio_root(spa_t *spa, zio_done_func_t *done, void *private, zio_flag_t flags) 923 { 924 return (zio_null(NULL, spa, NULL, done, private, flags)); 925 } 926 927 static int 928 zfs_blkptr_verify_log(spa_t *spa, const blkptr_t *bp, 929 enum blk_verify_flag blk_verify, const char *fmt, ...) 930 { 931 va_list adx; 932 char buf[256]; 933 934 va_start(adx, fmt); 935 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 936 va_end(adx); 937 938 zfs_dbgmsg("bad blkptr at %px: " 939 "DVA[0]=%#llx/%#llx " 940 "DVA[1]=%#llx/%#llx " 941 "DVA[2]=%#llx/%#llx " 942 "prop=%#llx " 943 "pad=%#llx,%#llx " 944 "phys_birth=%#llx " 945 "birth=%#llx " 946 "fill=%#llx " 947 "cksum=%#llx/%#llx/%#llx/%#llx", 948 bp, 949 (long long)bp->blk_dva[0].dva_word[0], 950 (long long)bp->blk_dva[0].dva_word[1], 951 (long long)bp->blk_dva[1].dva_word[0], 952 (long long)bp->blk_dva[1].dva_word[1], 953 (long long)bp->blk_dva[2].dva_word[0], 954 (long long)bp->blk_dva[2].dva_word[1], 955 (long long)bp->blk_prop, 956 (long long)bp->blk_pad[0], 957 (long long)bp->blk_pad[1], 958 (long long)bp->blk_phys_birth, 959 (long long)bp->blk_birth, 960 (long long)bp->blk_fill, 961 (long long)bp->blk_cksum.zc_word[0], 962 (long long)bp->blk_cksum.zc_word[1], 963 (long long)bp->blk_cksum.zc_word[2], 964 (long long)bp->blk_cksum.zc_word[3]); 965 switch (blk_verify) { 966 case BLK_VERIFY_HALT: 967 zfs_panic_recover("%s: %s", spa_name(spa), buf); 968 break; 969 case BLK_VERIFY_LOG: 970 zfs_dbgmsg("%s: %s", spa_name(spa), buf); 971 break; 972 case BLK_VERIFY_ONLY: 973 break; 974 } 975 976 return (1); 977 } 978 979 /* 980 * Verify the block pointer fields contain reasonable values. This means 981 * it only contains known object types, checksum/compression identifiers, 982 * block sizes within the maximum allowed limits, valid DVAs, etc. 983 * 984 * If everything checks out B_TRUE is returned. The zfs_blkptr_verify 985 * argument controls the behavior when an invalid field is detected. 986 * 987 * Values for blk_verify_flag: 988 * BLK_VERIFY_ONLY: evaluate the block 989 * BLK_VERIFY_LOG: evaluate the block and log problems 990 * BLK_VERIFY_HALT: call zfs_panic_recover on error 991 * 992 * Values for blk_config_flag: 993 * BLK_CONFIG_HELD: caller holds SCL_VDEV for writer 994 * BLK_CONFIG_NEEDED: caller holds no config lock, SCL_VDEV will be 995 * obtained for reader 996 * BLK_CONFIG_SKIP: skip checks which require SCL_VDEV, for better 997 * performance 998 */ 999 boolean_t 1000 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp, 1001 enum blk_config_flag blk_config, enum blk_verify_flag blk_verify) 1002 { 1003 int errors = 0; 1004 1005 if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) { 1006 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1007 "blkptr at %px has invalid TYPE %llu", 1008 bp, (longlong_t)BP_GET_TYPE(bp)); 1009 } 1010 if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS) { 1011 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1012 "blkptr at %px has invalid CHECKSUM %llu", 1013 bp, (longlong_t)BP_GET_CHECKSUM(bp)); 1014 } 1015 if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS) { 1016 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1017 "blkptr at %px has invalid COMPRESS %llu", 1018 bp, (longlong_t)BP_GET_COMPRESS(bp)); 1019 } 1020 if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) { 1021 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1022 "blkptr at %px has invalid LSIZE %llu", 1023 bp, (longlong_t)BP_GET_LSIZE(bp)); 1024 } 1025 if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) { 1026 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1027 "blkptr at %px has invalid PSIZE %llu", 1028 bp, (longlong_t)BP_GET_PSIZE(bp)); 1029 } 1030 1031 if (BP_IS_EMBEDDED(bp)) { 1032 if (BPE_GET_ETYPE(bp) >= NUM_BP_EMBEDDED_TYPES) { 1033 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1034 "blkptr at %px has invalid ETYPE %llu", 1035 bp, (longlong_t)BPE_GET_ETYPE(bp)); 1036 } 1037 } 1038 1039 /* 1040 * Do not verify individual DVAs if the config is not trusted. This 1041 * will be done once the zio is executed in vdev_mirror_map_alloc. 1042 */ 1043 if (!spa->spa_trust_config) 1044 return (errors == 0); 1045 1046 switch (blk_config) { 1047 case BLK_CONFIG_HELD: 1048 ASSERT(spa_config_held(spa, SCL_VDEV, RW_WRITER)); 1049 break; 1050 case BLK_CONFIG_NEEDED: 1051 spa_config_enter(spa, SCL_VDEV, bp, RW_READER); 1052 break; 1053 case BLK_CONFIG_SKIP: 1054 return (errors == 0); 1055 default: 1056 panic("invalid blk_config %u", blk_config); 1057 } 1058 1059 /* 1060 * Pool-specific checks. 1061 * 1062 * Note: it would be nice to verify that the blk_birth and 1063 * BP_PHYSICAL_BIRTH() are not too large. However, spa_freeze() 1064 * allows the birth time of log blocks (and dmu_sync()-ed blocks 1065 * that are in the log) to be arbitrarily large. 1066 */ 1067 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 1068 const dva_t *dva = &bp->blk_dva[i]; 1069 uint64_t vdevid = DVA_GET_VDEV(dva); 1070 1071 if (vdevid >= spa->spa_root_vdev->vdev_children) { 1072 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1073 "blkptr at %px DVA %u has invalid VDEV %llu", 1074 bp, i, (longlong_t)vdevid); 1075 continue; 1076 } 1077 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid]; 1078 if (vd == NULL) { 1079 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1080 "blkptr at %px DVA %u has invalid VDEV %llu", 1081 bp, i, (longlong_t)vdevid); 1082 continue; 1083 } 1084 if (vd->vdev_ops == &vdev_hole_ops) { 1085 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1086 "blkptr at %px DVA %u has hole VDEV %llu", 1087 bp, i, (longlong_t)vdevid); 1088 continue; 1089 } 1090 if (vd->vdev_ops == &vdev_missing_ops) { 1091 /* 1092 * "missing" vdevs are valid during import, but we 1093 * don't have their detailed info (e.g. asize), so 1094 * we can't perform any more checks on them. 1095 */ 1096 continue; 1097 } 1098 uint64_t offset = DVA_GET_OFFSET(dva); 1099 uint64_t asize = DVA_GET_ASIZE(dva); 1100 if (DVA_GET_GANG(dva)) 1101 asize = vdev_gang_header_asize(vd); 1102 if (offset + asize > vd->vdev_asize) { 1103 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1104 "blkptr at %px DVA %u has invalid OFFSET %llu", 1105 bp, i, (longlong_t)offset); 1106 } 1107 } 1108 if (blk_config == BLK_CONFIG_NEEDED) 1109 spa_config_exit(spa, SCL_VDEV, bp); 1110 1111 return (errors == 0); 1112 } 1113 1114 boolean_t 1115 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp) 1116 { 1117 (void) bp; 1118 uint64_t vdevid = DVA_GET_VDEV(dva); 1119 1120 if (vdevid >= spa->spa_root_vdev->vdev_children) 1121 return (B_FALSE); 1122 1123 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid]; 1124 if (vd == NULL) 1125 return (B_FALSE); 1126 1127 if (vd->vdev_ops == &vdev_hole_ops) 1128 return (B_FALSE); 1129 1130 if (vd->vdev_ops == &vdev_missing_ops) { 1131 return (B_FALSE); 1132 } 1133 1134 uint64_t offset = DVA_GET_OFFSET(dva); 1135 uint64_t asize = DVA_GET_ASIZE(dva); 1136 1137 if (DVA_GET_GANG(dva)) 1138 asize = vdev_gang_header_asize(vd); 1139 if (offset + asize > vd->vdev_asize) 1140 return (B_FALSE); 1141 1142 return (B_TRUE); 1143 } 1144 1145 zio_t * 1146 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, 1147 abd_t *data, uint64_t size, zio_done_func_t *done, void *private, 1148 zio_priority_t priority, zio_flag_t flags, const zbookmark_phys_t *zb) 1149 { 1150 zio_t *zio; 1151 1152 zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp, 1153 data, size, size, done, private, 1154 ZIO_TYPE_READ, priority, flags, NULL, 0, zb, 1155 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 1156 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE); 1157 1158 return (zio); 1159 } 1160 1161 zio_t * 1162 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 1163 abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp, 1164 zio_done_func_t *ready, zio_done_func_t *children_ready, 1165 zio_done_func_t *physdone, zio_done_func_t *done, 1166 void *private, zio_priority_t priority, zio_flag_t flags, 1167 const zbookmark_phys_t *zb) 1168 { 1169 zio_t *zio; 1170 1171 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF && 1172 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS && 1173 zp->zp_compress >= ZIO_COMPRESS_OFF && 1174 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS && 1175 DMU_OT_IS_VALID(zp->zp_type) && 1176 zp->zp_level < 32 && 1177 zp->zp_copies > 0 && 1178 zp->zp_copies <= spa_max_replication(spa)); 1179 1180 zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private, 1181 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb, 1182 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 1183 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE); 1184 1185 zio->io_ready = ready; 1186 zio->io_children_ready = children_ready; 1187 zio->io_physdone = physdone; 1188 zio->io_prop = *zp; 1189 1190 /* 1191 * Data can be NULL if we are going to call zio_write_override() to 1192 * provide the already-allocated BP. But we may need the data to 1193 * verify a dedup hit (if requested). In this case, don't try to 1194 * dedup (just take the already-allocated BP verbatim). Encrypted 1195 * dedup blocks need data as well so we also disable dedup in this 1196 * case. 1197 */ 1198 if (data == NULL && 1199 (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) { 1200 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE; 1201 } 1202 1203 return (zio); 1204 } 1205 1206 zio_t * 1207 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data, 1208 uint64_t size, zio_done_func_t *done, void *private, 1209 zio_priority_t priority, zio_flag_t flags, zbookmark_phys_t *zb) 1210 { 1211 zio_t *zio; 1212 1213 zio = zio_create(pio, spa, txg, bp, data, size, size, done, private, 1214 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb, 1215 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE); 1216 1217 return (zio); 1218 } 1219 1220 void 1221 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite, 1222 boolean_t brtwrite) 1223 { 1224 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 1225 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1226 ASSERT(zio->io_stage == ZIO_STAGE_OPEN); 1227 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa)); 1228 ASSERT(!brtwrite || !nopwrite); 1229 1230 /* 1231 * We must reset the io_prop to match the values that existed 1232 * when the bp was first written by dmu_sync() keeping in mind 1233 * that nopwrite and dedup are mutually exclusive. 1234 */ 1235 zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup; 1236 zio->io_prop.zp_nopwrite = nopwrite; 1237 zio->io_prop.zp_brtwrite = brtwrite; 1238 zio->io_prop.zp_copies = copies; 1239 zio->io_bp_override = bp; 1240 } 1241 1242 void 1243 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp) 1244 { 1245 1246 (void) zfs_blkptr_verify(spa, bp, BLK_CONFIG_NEEDED, BLK_VERIFY_HALT); 1247 1248 /* 1249 * The check for EMBEDDED is a performance optimization. We 1250 * process the free here (by ignoring it) rather than 1251 * putting it on the list and then processing it in zio_free_sync(). 1252 */ 1253 if (BP_IS_EMBEDDED(bp)) 1254 return; 1255 1256 /* 1257 * Frees that are for the currently-syncing txg, are not going to be 1258 * deferred, and which will not need to do a read (i.e. not GANG or 1259 * DEDUP), can be processed immediately. Otherwise, put them on the 1260 * in-memory list for later processing. 1261 * 1262 * Note that we only defer frees after zfs_sync_pass_deferred_free 1263 * when the log space map feature is disabled. [see relevant comment 1264 * in spa_sync_iterate_to_convergence()] 1265 */ 1266 if (BP_IS_GANG(bp) || 1267 BP_GET_DEDUP(bp) || 1268 txg != spa->spa_syncing_txg || 1269 (spa_sync_pass(spa) >= zfs_sync_pass_deferred_free && 1270 !spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) || 1271 brt_maybe_exists(spa, bp)) { 1272 metaslab_check_free(spa, bp); 1273 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp); 1274 } else { 1275 VERIFY3P(zio_free_sync(NULL, spa, txg, bp, 0), ==, NULL); 1276 } 1277 } 1278 1279 /* 1280 * To improve performance, this function may return NULL if we were able 1281 * to do the free immediately. This avoids the cost of creating a zio 1282 * (and linking it to the parent, etc). 1283 */ 1284 zio_t * 1285 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 1286 zio_flag_t flags) 1287 { 1288 ASSERT(!BP_IS_HOLE(bp)); 1289 ASSERT(spa_syncing_txg(spa) == txg); 1290 1291 if (BP_IS_EMBEDDED(bp)) 1292 return (NULL); 1293 1294 metaslab_check_free(spa, bp); 1295 arc_freed(spa, bp); 1296 dsl_scan_freed(spa, bp); 1297 1298 if (BP_IS_GANG(bp) || 1299 BP_GET_DEDUP(bp) || 1300 brt_maybe_exists(spa, bp)) { 1301 /* 1302 * GANG, DEDUP and BRT blocks can induce a read (for the gang 1303 * block header, the DDT or the BRT), so issue them 1304 * asynchronously so that this thread is not tied up. 1305 */ 1306 enum zio_stage stage = 1307 ZIO_FREE_PIPELINE | ZIO_STAGE_ISSUE_ASYNC; 1308 1309 return (zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 1310 BP_GET_PSIZE(bp), NULL, NULL, 1311 ZIO_TYPE_FREE, ZIO_PRIORITY_NOW, 1312 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage)); 1313 } else { 1314 metaslab_free(spa, bp, txg, B_FALSE); 1315 return (NULL); 1316 } 1317 } 1318 1319 zio_t * 1320 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 1321 zio_done_func_t *done, void *private, zio_flag_t flags) 1322 { 1323 zio_t *zio; 1324 1325 (void) zfs_blkptr_verify(spa, bp, (flags & ZIO_FLAG_CONFIG_WRITER) ? 1326 BLK_CONFIG_HELD : BLK_CONFIG_NEEDED, BLK_VERIFY_HALT); 1327 1328 if (BP_IS_EMBEDDED(bp)) 1329 return (zio_null(pio, spa, NULL, NULL, NULL, 0)); 1330 1331 /* 1332 * A claim is an allocation of a specific block. Claims are needed 1333 * to support immediate writes in the intent log. The issue is that 1334 * immediate writes contain committed data, but in a txg that was 1335 * *not* committed. Upon opening the pool after an unclean shutdown, 1336 * the intent log claims all blocks that contain immediate write data 1337 * so that the SPA knows they're in use. 1338 * 1339 * All claims *must* be resolved in the first txg -- before the SPA 1340 * starts allocating blocks -- so that nothing is allocated twice. 1341 * If txg == 0 we just verify that the block is claimable. 1342 */ 1343 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, 1344 spa_min_claim_txg(spa)); 1345 ASSERT(txg == spa_min_claim_txg(spa) || txg == 0); 1346 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(8) */ 1347 1348 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 1349 BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, 1350 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE); 1351 ASSERT0(zio->io_queued_timestamp); 1352 1353 return (zio); 1354 } 1355 1356 zio_t * 1357 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, 1358 zio_done_func_t *done, void *private, zio_flag_t flags) 1359 { 1360 zio_t *zio; 1361 int c; 1362 1363 if (vd->vdev_children == 0) { 1364 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private, 1365 ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 1366 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE); 1367 1368 zio->io_cmd = cmd; 1369 } else { 1370 zio = zio_null(pio, spa, NULL, NULL, NULL, flags); 1371 1372 for (c = 0; c < vd->vdev_children; c++) 1373 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd, 1374 done, private, flags)); 1375 } 1376 1377 return (zio); 1378 } 1379 1380 zio_t * 1381 zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1382 zio_done_func_t *done, void *private, zio_priority_t priority, 1383 zio_flag_t flags, enum trim_flag trim_flags) 1384 { 1385 zio_t *zio; 1386 1387 ASSERT0(vd->vdev_children); 1388 ASSERT0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 1389 ASSERT0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 1390 ASSERT3U(size, !=, 0); 1391 1392 zio = zio_create(pio, vd->vdev_spa, 0, NULL, NULL, size, size, done, 1393 private, ZIO_TYPE_TRIM, priority, flags | ZIO_FLAG_PHYSICAL, 1394 vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_TRIM_PIPELINE); 1395 zio->io_trim_flags = trim_flags; 1396 1397 return (zio); 1398 } 1399 1400 zio_t * 1401 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1402 abd_t *data, int checksum, zio_done_func_t *done, void *private, 1403 zio_priority_t priority, zio_flag_t flags, boolean_t labels) 1404 { 1405 zio_t *zio; 1406 1407 ASSERT(vd->vdev_children == 0); 1408 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 1409 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 1410 ASSERT3U(offset + size, <=, vd->vdev_psize); 1411 1412 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, 1413 private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd, 1414 offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE); 1415 1416 zio->io_prop.zp_checksum = checksum; 1417 1418 return (zio); 1419 } 1420 1421 zio_t * 1422 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1423 abd_t *data, int checksum, zio_done_func_t *done, void *private, 1424 zio_priority_t priority, zio_flag_t flags, boolean_t labels) 1425 { 1426 zio_t *zio; 1427 1428 ASSERT(vd->vdev_children == 0); 1429 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 1430 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 1431 ASSERT3U(offset + size, <=, vd->vdev_psize); 1432 1433 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, 1434 private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd, 1435 offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE); 1436 1437 zio->io_prop.zp_checksum = checksum; 1438 1439 if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) { 1440 /* 1441 * zec checksums are necessarily destructive -- they modify 1442 * the end of the write buffer to hold the verifier/checksum. 1443 * Therefore, we must make a local copy in case the data is 1444 * being written to multiple places in parallel. 1445 */ 1446 abd_t *wbuf = abd_alloc_sametype(data, size); 1447 abd_copy(wbuf, data, size); 1448 1449 zio_push_transform(zio, wbuf, size, size, NULL); 1450 } 1451 1452 return (zio); 1453 } 1454 1455 /* 1456 * Create a child I/O to do some work for us. 1457 */ 1458 zio_t * 1459 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset, 1460 abd_t *data, uint64_t size, int type, zio_priority_t priority, 1461 zio_flag_t flags, zio_done_func_t *done, void *private) 1462 { 1463 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE; 1464 zio_t *zio; 1465 1466 /* 1467 * vdev child I/Os do not propagate their error to the parent. 1468 * Therefore, for correct operation the caller *must* check for 1469 * and handle the error in the child i/o's done callback. 1470 * The only exceptions are i/os that we don't care about 1471 * (OPTIONAL or REPAIR). 1472 */ 1473 ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) || 1474 done != NULL); 1475 1476 if (type == ZIO_TYPE_READ && bp != NULL) { 1477 /* 1478 * If we have the bp, then the child should perform the 1479 * checksum and the parent need not. This pushes error 1480 * detection as close to the leaves as possible and 1481 * eliminates redundant checksums in the interior nodes. 1482 */ 1483 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY; 1484 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 1485 } 1486 1487 if (vd->vdev_ops->vdev_op_leaf) { 1488 ASSERT0(vd->vdev_children); 1489 offset += VDEV_LABEL_START_SIZE; 1490 } 1491 1492 flags |= ZIO_VDEV_CHILD_FLAGS(pio); 1493 1494 /* 1495 * If we've decided to do a repair, the write is not speculative -- 1496 * even if the original read was. 1497 */ 1498 if (flags & ZIO_FLAG_IO_REPAIR) 1499 flags &= ~ZIO_FLAG_SPECULATIVE; 1500 1501 /* 1502 * If we're creating a child I/O that is not associated with a 1503 * top-level vdev, then the child zio is not an allocating I/O. 1504 * If this is a retried I/O then we ignore it since we will 1505 * have already processed the original allocating I/O. 1506 */ 1507 if (flags & ZIO_FLAG_IO_ALLOCATING && 1508 (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) { 1509 ASSERT(pio->io_metaslab_class != NULL); 1510 ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled); 1511 ASSERT(type == ZIO_TYPE_WRITE); 1512 ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE); 1513 ASSERT(!(flags & ZIO_FLAG_IO_REPAIR)); 1514 ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) || 1515 pio->io_child_type == ZIO_CHILD_GANG); 1516 1517 flags &= ~ZIO_FLAG_IO_ALLOCATING; 1518 } 1519 1520 1521 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size, 1522 done, private, type, priority, flags, vd, offset, &pio->io_bookmark, 1523 ZIO_STAGE_VDEV_IO_START >> 1, pipeline); 1524 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); 1525 1526 zio->io_physdone = pio->io_physdone; 1527 if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL) 1528 zio->io_logical->io_phys_children++; 1529 1530 return (zio); 1531 } 1532 1533 zio_t * 1534 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size, 1535 zio_type_t type, zio_priority_t priority, zio_flag_t flags, 1536 zio_done_func_t *done, void *private) 1537 { 1538 zio_t *zio; 1539 1540 ASSERT(vd->vdev_ops->vdev_op_leaf); 1541 1542 zio = zio_create(NULL, vd->vdev_spa, 0, NULL, 1543 data, size, size, done, private, type, priority, 1544 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED, 1545 vd, offset, NULL, 1546 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE); 1547 1548 return (zio); 1549 } 1550 1551 void 1552 zio_flush(zio_t *zio, vdev_t *vd) 1553 { 1554 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE, 1555 NULL, NULL, 1556 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY)); 1557 } 1558 1559 void 1560 zio_shrink(zio_t *zio, uint64_t size) 1561 { 1562 ASSERT3P(zio->io_executor, ==, NULL); 1563 ASSERT3U(zio->io_orig_size, ==, zio->io_size); 1564 ASSERT3U(size, <=, zio->io_size); 1565 1566 /* 1567 * We don't shrink for raidz because of problems with the 1568 * reconstruction when reading back less than the block size. 1569 * Note, BP_IS_RAIDZ() assumes no compression. 1570 */ 1571 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 1572 if (!BP_IS_RAIDZ(zio->io_bp)) { 1573 /* we are not doing a raw write */ 1574 ASSERT3U(zio->io_size, ==, zio->io_lsize); 1575 zio->io_orig_size = zio->io_size = zio->io_lsize = size; 1576 } 1577 } 1578 1579 /* 1580 * ========================================================================== 1581 * Prepare to read and write logical blocks 1582 * ========================================================================== 1583 */ 1584 1585 static zio_t * 1586 zio_read_bp_init(zio_t *zio) 1587 { 1588 blkptr_t *bp = zio->io_bp; 1589 uint64_t psize = 1590 BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp); 1591 1592 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 1593 1594 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF && 1595 zio->io_child_type == ZIO_CHILD_LOGICAL && 1596 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) { 1597 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize), 1598 psize, psize, zio_decompress); 1599 } 1600 1601 if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) || 1602 BP_HAS_INDIRECT_MAC_CKSUM(bp)) && 1603 zio->io_child_type == ZIO_CHILD_LOGICAL) { 1604 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize), 1605 psize, psize, zio_decrypt); 1606 } 1607 1608 if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) { 1609 int psize = BPE_GET_PSIZE(bp); 1610 void *data = abd_borrow_buf(zio->io_abd, psize); 1611 1612 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1613 decode_embedded_bp_compressed(bp, data); 1614 abd_return_buf_copy(zio->io_abd, data, psize); 1615 } else { 1616 ASSERT(!BP_IS_EMBEDDED(bp)); 1617 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 1618 } 1619 1620 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL) 1621 zio->io_pipeline = ZIO_DDT_READ_PIPELINE; 1622 1623 return (zio); 1624 } 1625 1626 static zio_t * 1627 zio_write_bp_init(zio_t *zio) 1628 { 1629 if (!IO_IS_ALLOCATING(zio)) 1630 return (zio); 1631 1632 ASSERT(zio->io_child_type != ZIO_CHILD_DDT); 1633 1634 if (zio->io_bp_override) { 1635 blkptr_t *bp = zio->io_bp; 1636 zio_prop_t *zp = &zio->io_prop; 1637 1638 ASSERT(bp->blk_birth != zio->io_txg); 1639 1640 *bp = *zio->io_bp_override; 1641 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1642 1643 if (zp->zp_brtwrite) 1644 return (zio); 1645 1646 ASSERT(!BP_GET_DEDUP(zio->io_bp_override)); 1647 1648 if (BP_IS_EMBEDDED(bp)) 1649 return (zio); 1650 1651 /* 1652 * If we've been overridden and nopwrite is set then 1653 * set the flag accordingly to indicate that a nopwrite 1654 * has already occurred. 1655 */ 1656 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) { 1657 ASSERT(!zp->zp_dedup); 1658 ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum); 1659 zio->io_flags |= ZIO_FLAG_NOPWRITE; 1660 return (zio); 1661 } 1662 1663 ASSERT(!zp->zp_nopwrite); 1664 1665 if (BP_IS_HOLE(bp) || !zp->zp_dedup) 1666 return (zio); 1667 1668 ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags & 1669 ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify); 1670 1671 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum && 1672 !zp->zp_encrypt) { 1673 BP_SET_DEDUP(bp, 1); 1674 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE; 1675 return (zio); 1676 } 1677 1678 /* 1679 * We were unable to handle this as an override bp, treat 1680 * it as a regular write I/O. 1681 */ 1682 zio->io_bp_override = NULL; 1683 *bp = zio->io_bp_orig; 1684 zio->io_pipeline = zio->io_orig_pipeline; 1685 } 1686 1687 return (zio); 1688 } 1689 1690 static zio_t * 1691 zio_write_compress(zio_t *zio) 1692 { 1693 spa_t *spa = zio->io_spa; 1694 zio_prop_t *zp = &zio->io_prop; 1695 enum zio_compress compress = zp->zp_compress; 1696 blkptr_t *bp = zio->io_bp; 1697 uint64_t lsize = zio->io_lsize; 1698 uint64_t psize = zio->io_size; 1699 uint32_t pass = 1; 1700 1701 /* 1702 * If our children haven't all reached the ready stage, 1703 * wait for them and then repeat this pipeline stage. 1704 */ 1705 if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT | 1706 ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) { 1707 return (NULL); 1708 } 1709 1710 if (!IO_IS_ALLOCATING(zio)) 1711 return (zio); 1712 1713 if (zio->io_children_ready != NULL) { 1714 /* 1715 * Now that all our children are ready, run the callback 1716 * associated with this zio in case it wants to modify the 1717 * data to be written. 1718 */ 1719 ASSERT3U(zp->zp_level, >, 0); 1720 zio->io_children_ready(zio); 1721 } 1722 1723 ASSERT(zio->io_child_type != ZIO_CHILD_DDT); 1724 ASSERT(zio->io_bp_override == NULL); 1725 1726 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) { 1727 /* 1728 * We're rewriting an existing block, which means we're 1729 * working on behalf of spa_sync(). For spa_sync() to 1730 * converge, it must eventually be the case that we don't 1731 * have to allocate new blocks. But compression changes 1732 * the blocksize, which forces a reallocate, and makes 1733 * convergence take longer. Therefore, after the first 1734 * few passes, stop compressing to ensure convergence. 1735 */ 1736 pass = spa_sync_pass(spa); 1737 1738 ASSERT(zio->io_txg == spa_syncing_txg(spa)); 1739 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1740 ASSERT(!BP_GET_DEDUP(bp)); 1741 1742 if (pass >= zfs_sync_pass_dont_compress) 1743 compress = ZIO_COMPRESS_OFF; 1744 1745 /* Make sure someone doesn't change their mind on overwrites */ 1746 ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp), 1747 spa_max_replication(spa)) == BP_GET_NDVAS(bp)); 1748 } 1749 1750 /* If it's a compressed write that is not raw, compress the buffer. */ 1751 if (compress != ZIO_COMPRESS_OFF && 1752 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) { 1753 void *cbuf = NULL; 1754 psize = zio_compress_data(compress, zio->io_abd, &cbuf, lsize, 1755 zp->zp_complevel); 1756 if (psize == 0) { 1757 compress = ZIO_COMPRESS_OFF; 1758 } else if (psize >= lsize) { 1759 compress = ZIO_COMPRESS_OFF; 1760 if (cbuf != NULL) 1761 zio_buf_free(cbuf, lsize); 1762 } else if (!zp->zp_dedup && !zp->zp_encrypt && 1763 psize <= BPE_PAYLOAD_SIZE && 1764 zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) && 1765 spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) { 1766 encode_embedded_bp_compressed(bp, 1767 cbuf, compress, lsize, psize); 1768 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA); 1769 BP_SET_TYPE(bp, zio->io_prop.zp_type); 1770 BP_SET_LEVEL(bp, zio->io_prop.zp_level); 1771 zio_buf_free(cbuf, lsize); 1772 bp->blk_birth = zio->io_txg; 1773 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1774 ASSERT(spa_feature_is_active(spa, 1775 SPA_FEATURE_EMBEDDED_DATA)); 1776 return (zio); 1777 } else { 1778 /* 1779 * Round compressed size up to the minimum allocation 1780 * size of the smallest-ashift device, and zero the 1781 * tail. This ensures that the compressed size of the 1782 * BP (and thus compressratio property) are correct, 1783 * in that we charge for the padding used to fill out 1784 * the last sector. 1785 */ 1786 ASSERT3U(spa->spa_min_alloc, >=, SPA_MINBLOCKSHIFT); 1787 size_t rounded = (size_t)roundup(psize, 1788 spa->spa_min_alloc); 1789 if (rounded >= lsize) { 1790 compress = ZIO_COMPRESS_OFF; 1791 zio_buf_free(cbuf, lsize); 1792 psize = lsize; 1793 } else { 1794 abd_t *cdata = abd_get_from_buf(cbuf, lsize); 1795 abd_take_ownership_of_buf(cdata, B_TRUE); 1796 abd_zero_off(cdata, psize, rounded - psize); 1797 psize = rounded; 1798 zio_push_transform(zio, cdata, 1799 psize, lsize, NULL); 1800 } 1801 } 1802 1803 /* 1804 * We were unable to handle this as an override bp, treat 1805 * it as a regular write I/O. 1806 */ 1807 zio->io_bp_override = NULL; 1808 *bp = zio->io_bp_orig; 1809 zio->io_pipeline = zio->io_orig_pipeline; 1810 1811 } else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 && 1812 zp->zp_type == DMU_OT_DNODE) { 1813 /* 1814 * The DMU actually relies on the zio layer's compression 1815 * to free metadnode blocks that have had all contained 1816 * dnodes freed. As a result, even when doing a raw 1817 * receive, we must check whether the block can be compressed 1818 * to a hole. 1819 */ 1820 psize = zio_compress_data(ZIO_COMPRESS_EMPTY, 1821 zio->io_abd, NULL, lsize, zp->zp_complevel); 1822 if (psize == 0 || psize >= lsize) 1823 compress = ZIO_COMPRESS_OFF; 1824 } else if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS && 1825 !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) { 1826 /* 1827 * If we are raw receiving an encrypted dataset we should not 1828 * take this codepath because it will change the on-disk block 1829 * and decryption will fail. 1830 */ 1831 size_t rounded = MIN((size_t)roundup(psize, 1832 spa->spa_min_alloc), lsize); 1833 1834 if (rounded != psize) { 1835 abd_t *cdata = abd_alloc_linear(rounded, B_TRUE); 1836 abd_zero_off(cdata, psize, rounded - psize); 1837 abd_copy_off(cdata, zio->io_abd, 0, 0, psize); 1838 psize = rounded; 1839 zio_push_transform(zio, cdata, 1840 psize, rounded, NULL); 1841 } 1842 } else { 1843 ASSERT3U(psize, !=, 0); 1844 } 1845 1846 /* 1847 * The final pass of spa_sync() must be all rewrites, but the first 1848 * few passes offer a trade-off: allocating blocks defers convergence, 1849 * but newly allocated blocks are sequential, so they can be written 1850 * to disk faster. Therefore, we allow the first few passes of 1851 * spa_sync() to allocate new blocks, but force rewrites after that. 1852 * There should only be a handful of blocks after pass 1 in any case. 1853 */ 1854 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg && 1855 BP_GET_PSIZE(bp) == psize && 1856 pass >= zfs_sync_pass_rewrite) { 1857 VERIFY3U(psize, !=, 0); 1858 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES; 1859 1860 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages; 1861 zio->io_flags |= ZIO_FLAG_IO_REWRITE; 1862 } else { 1863 BP_ZERO(bp); 1864 zio->io_pipeline = ZIO_WRITE_PIPELINE; 1865 } 1866 1867 if (psize == 0) { 1868 if (zio->io_bp_orig.blk_birth != 0 && 1869 spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) { 1870 BP_SET_LSIZE(bp, lsize); 1871 BP_SET_TYPE(bp, zp->zp_type); 1872 BP_SET_LEVEL(bp, zp->zp_level); 1873 BP_SET_BIRTH(bp, zio->io_txg, 0); 1874 } 1875 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1876 } else { 1877 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER); 1878 BP_SET_LSIZE(bp, lsize); 1879 BP_SET_TYPE(bp, zp->zp_type); 1880 BP_SET_LEVEL(bp, zp->zp_level); 1881 BP_SET_PSIZE(bp, psize); 1882 BP_SET_COMPRESS(bp, compress); 1883 BP_SET_CHECKSUM(bp, zp->zp_checksum); 1884 BP_SET_DEDUP(bp, zp->zp_dedup); 1885 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 1886 if (zp->zp_dedup) { 1887 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1888 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1889 ASSERT(!zp->zp_encrypt || 1890 DMU_OT_IS_ENCRYPTED(zp->zp_type)); 1891 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE; 1892 } 1893 if (zp->zp_nopwrite) { 1894 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1895 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1896 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE; 1897 } 1898 } 1899 return (zio); 1900 } 1901 1902 static zio_t * 1903 zio_free_bp_init(zio_t *zio) 1904 { 1905 blkptr_t *bp = zio->io_bp; 1906 1907 if (zio->io_child_type == ZIO_CHILD_LOGICAL) { 1908 if (BP_GET_DEDUP(bp)) 1909 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE; 1910 } 1911 1912 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 1913 1914 return (zio); 1915 } 1916 1917 /* 1918 * ========================================================================== 1919 * Execute the I/O pipeline 1920 * ========================================================================== 1921 */ 1922 1923 static void 1924 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline) 1925 { 1926 spa_t *spa = zio->io_spa; 1927 zio_type_t t = zio->io_type; 1928 int flags = (cutinline ? TQ_FRONT : 0); 1929 1930 /* 1931 * If we're a config writer or a probe, the normal issue and 1932 * interrupt threads may all be blocked waiting for the config lock. 1933 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL. 1934 */ 1935 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE)) 1936 t = ZIO_TYPE_NULL; 1937 1938 /* 1939 * A similar issue exists for the L2ARC write thread until L2ARC 2.0. 1940 */ 1941 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux) 1942 t = ZIO_TYPE_NULL; 1943 1944 /* 1945 * If this is a high priority I/O, then use the high priority taskq if 1946 * available. 1947 */ 1948 if ((zio->io_priority == ZIO_PRIORITY_NOW || 1949 zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) && 1950 spa->spa_zio_taskq[t][q + 1].stqs_count != 0) 1951 q++; 1952 1953 ASSERT3U(q, <, ZIO_TASKQ_TYPES); 1954 1955 /* 1956 * NB: We are assuming that the zio can only be dispatched 1957 * to a single taskq at a time. It would be a grievous error 1958 * to dispatch the zio to another taskq at the same time. 1959 */ 1960 ASSERT(taskq_empty_ent(&zio->io_tqent)); 1961 spa_taskq_dispatch_ent(spa, t, q, zio_execute, zio, flags, 1962 &zio->io_tqent); 1963 } 1964 1965 static boolean_t 1966 zio_taskq_member(zio_t *zio, zio_taskq_type_t q) 1967 { 1968 spa_t *spa = zio->io_spa; 1969 1970 taskq_t *tq = taskq_of_curthread(); 1971 1972 for (zio_type_t t = 0; t < ZIO_TYPES; t++) { 1973 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1974 uint_t i; 1975 for (i = 0; i < tqs->stqs_count; i++) { 1976 if (tqs->stqs_taskq[i] == tq) 1977 return (B_TRUE); 1978 } 1979 } 1980 1981 return (B_FALSE); 1982 } 1983 1984 static zio_t * 1985 zio_issue_async(zio_t *zio) 1986 { 1987 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 1988 1989 return (NULL); 1990 } 1991 1992 void 1993 zio_interrupt(void *zio) 1994 { 1995 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE); 1996 } 1997 1998 void 1999 zio_delay_interrupt(zio_t *zio) 2000 { 2001 /* 2002 * The timeout_generic() function isn't defined in userspace, so 2003 * rather than trying to implement the function, the zio delay 2004 * functionality has been disabled for userspace builds. 2005 */ 2006 2007 #ifdef _KERNEL 2008 /* 2009 * If io_target_timestamp is zero, then no delay has been registered 2010 * for this IO, thus jump to the end of this function and "skip" the 2011 * delay; issuing it directly to the zio layer. 2012 */ 2013 if (zio->io_target_timestamp != 0) { 2014 hrtime_t now = gethrtime(); 2015 2016 if (now >= zio->io_target_timestamp) { 2017 /* 2018 * This IO has already taken longer than the target 2019 * delay to complete, so we don't want to delay it 2020 * any longer; we "miss" the delay and issue it 2021 * directly to the zio layer. This is likely due to 2022 * the target latency being set to a value less than 2023 * the underlying hardware can satisfy (e.g. delay 2024 * set to 1ms, but the disks take 10ms to complete an 2025 * IO request). 2026 */ 2027 2028 DTRACE_PROBE2(zio__delay__miss, zio_t *, zio, 2029 hrtime_t, now); 2030 2031 zio_interrupt(zio); 2032 } else { 2033 taskqid_t tid; 2034 hrtime_t diff = zio->io_target_timestamp - now; 2035 clock_t expire_at_tick = ddi_get_lbolt() + 2036 NSEC_TO_TICK(diff); 2037 2038 DTRACE_PROBE3(zio__delay__hit, zio_t *, zio, 2039 hrtime_t, now, hrtime_t, diff); 2040 2041 if (NSEC_TO_TICK(diff) == 0) { 2042 /* Our delay is less than a jiffy - just spin */ 2043 zfs_sleep_until(zio->io_target_timestamp); 2044 zio_interrupt(zio); 2045 } else { 2046 /* 2047 * Use taskq_dispatch_delay() in the place of 2048 * OpenZFS's timeout_generic(). 2049 */ 2050 tid = taskq_dispatch_delay(system_taskq, 2051 zio_interrupt, zio, TQ_NOSLEEP, 2052 expire_at_tick); 2053 if (tid == TASKQID_INVALID) { 2054 /* 2055 * Couldn't allocate a task. Just 2056 * finish the zio without a delay. 2057 */ 2058 zio_interrupt(zio); 2059 } 2060 } 2061 } 2062 return; 2063 } 2064 #endif 2065 DTRACE_PROBE1(zio__delay__skip, zio_t *, zio); 2066 zio_interrupt(zio); 2067 } 2068 2069 static void 2070 zio_deadman_impl(zio_t *pio, int ziodepth) 2071 { 2072 zio_t *cio, *cio_next; 2073 zio_link_t *zl = NULL; 2074 vdev_t *vd = pio->io_vd; 2075 2076 if (zio_deadman_log_all || (vd != NULL && vd->vdev_ops->vdev_op_leaf)) { 2077 vdev_queue_t *vq = vd ? &vd->vdev_queue : NULL; 2078 zbookmark_phys_t *zb = &pio->io_bookmark; 2079 uint64_t delta = gethrtime() - pio->io_timestamp; 2080 uint64_t failmode = spa_get_deadman_failmode(pio->io_spa); 2081 2082 zfs_dbgmsg("slow zio[%d]: zio=%px timestamp=%llu " 2083 "delta=%llu queued=%llu io=%llu " 2084 "path=%s " 2085 "last=%llu type=%d " 2086 "priority=%d flags=0x%llx stage=0x%x " 2087 "pipeline=0x%x pipeline-trace=0x%x " 2088 "objset=%llu object=%llu " 2089 "level=%llu blkid=%llu " 2090 "offset=%llu size=%llu " 2091 "error=%d", 2092 ziodepth, pio, pio->io_timestamp, 2093 (u_longlong_t)delta, pio->io_delta, pio->io_delay, 2094 vd ? vd->vdev_path : "NULL", 2095 vq ? vq->vq_io_complete_ts : 0, pio->io_type, 2096 pio->io_priority, (u_longlong_t)pio->io_flags, 2097 pio->io_stage, pio->io_pipeline, pio->io_pipeline_trace, 2098 (u_longlong_t)zb->zb_objset, (u_longlong_t)zb->zb_object, 2099 (u_longlong_t)zb->zb_level, (u_longlong_t)zb->zb_blkid, 2100 (u_longlong_t)pio->io_offset, (u_longlong_t)pio->io_size, 2101 pio->io_error); 2102 (void) zfs_ereport_post(FM_EREPORT_ZFS_DEADMAN, 2103 pio->io_spa, vd, zb, pio, 0); 2104 2105 if (failmode == ZIO_FAILURE_MODE_CONTINUE && 2106 taskq_empty_ent(&pio->io_tqent)) { 2107 zio_interrupt(pio); 2108 } 2109 } 2110 2111 mutex_enter(&pio->io_lock); 2112 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 2113 cio_next = zio_walk_children(pio, &zl); 2114 zio_deadman_impl(cio, ziodepth + 1); 2115 } 2116 mutex_exit(&pio->io_lock); 2117 } 2118 2119 /* 2120 * Log the critical information describing this zio and all of its children 2121 * using the zfs_dbgmsg() interface then post deadman event for the ZED. 2122 */ 2123 void 2124 zio_deadman(zio_t *pio, const char *tag) 2125 { 2126 spa_t *spa = pio->io_spa; 2127 char *name = spa_name(spa); 2128 2129 if (!zfs_deadman_enabled || spa_suspended(spa)) 2130 return; 2131 2132 zio_deadman_impl(pio, 0); 2133 2134 switch (spa_get_deadman_failmode(spa)) { 2135 case ZIO_FAILURE_MODE_WAIT: 2136 zfs_dbgmsg("%s waiting for hung I/O to pool '%s'", tag, name); 2137 break; 2138 2139 case ZIO_FAILURE_MODE_CONTINUE: 2140 zfs_dbgmsg("%s restarting hung I/O for pool '%s'", tag, name); 2141 break; 2142 2143 case ZIO_FAILURE_MODE_PANIC: 2144 fm_panic("%s determined I/O to pool '%s' is hung.", tag, name); 2145 break; 2146 } 2147 } 2148 2149 /* 2150 * Execute the I/O pipeline until one of the following occurs: 2151 * (1) the I/O completes; (2) the pipeline stalls waiting for 2152 * dependent child I/Os; (3) the I/O issues, so we're waiting 2153 * for an I/O completion interrupt; (4) the I/O is delegated by 2154 * vdev-level caching or aggregation; (5) the I/O is deferred 2155 * due to vdev-level queueing; (6) the I/O is handed off to 2156 * another thread. In all cases, the pipeline stops whenever 2157 * there's no CPU work; it never burns a thread in cv_wait_io(). 2158 * 2159 * There's no locking on io_stage because there's no legitimate way 2160 * for multiple threads to be attempting to process the same I/O. 2161 */ 2162 static zio_pipe_stage_t *zio_pipeline[]; 2163 2164 /* 2165 * zio_execute() is a wrapper around the static function 2166 * __zio_execute() so that we can force __zio_execute() to be 2167 * inlined. This reduces stack overhead which is important 2168 * because __zio_execute() is called recursively in several zio 2169 * code paths. zio_execute() itself cannot be inlined because 2170 * it is externally visible. 2171 */ 2172 void 2173 zio_execute(void *zio) 2174 { 2175 fstrans_cookie_t cookie; 2176 2177 cookie = spl_fstrans_mark(); 2178 __zio_execute(zio); 2179 spl_fstrans_unmark(cookie); 2180 } 2181 2182 /* 2183 * Used to determine if in the current context the stack is sized large 2184 * enough to allow zio_execute() to be called recursively. A minimum 2185 * stack size of 16K is required to avoid needing to re-dispatch the zio. 2186 */ 2187 static boolean_t 2188 zio_execute_stack_check(zio_t *zio) 2189 { 2190 #if !defined(HAVE_LARGE_STACKS) 2191 dsl_pool_t *dp = spa_get_dsl(zio->io_spa); 2192 2193 /* Executing in txg_sync_thread() context. */ 2194 if (dp && curthread == dp->dp_tx.tx_sync_thread) 2195 return (B_TRUE); 2196 2197 /* Pool initialization outside of zio_taskq context. */ 2198 if (dp && spa_is_initializing(dp->dp_spa) && 2199 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE) && 2200 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE_HIGH)) 2201 return (B_TRUE); 2202 #else 2203 (void) zio; 2204 #endif /* HAVE_LARGE_STACKS */ 2205 2206 return (B_FALSE); 2207 } 2208 2209 __attribute__((always_inline)) 2210 static inline void 2211 __zio_execute(zio_t *zio) 2212 { 2213 ASSERT3U(zio->io_queued_timestamp, >, 0); 2214 2215 while (zio->io_stage < ZIO_STAGE_DONE) { 2216 enum zio_stage pipeline = zio->io_pipeline; 2217 enum zio_stage stage = zio->io_stage; 2218 2219 zio->io_executor = curthread; 2220 2221 ASSERT(!MUTEX_HELD(&zio->io_lock)); 2222 ASSERT(ISP2(stage)); 2223 ASSERT(zio->io_stall == NULL); 2224 2225 do { 2226 stage <<= 1; 2227 } while ((stage & pipeline) == 0); 2228 2229 ASSERT(stage <= ZIO_STAGE_DONE); 2230 2231 /* 2232 * If we are in interrupt context and this pipeline stage 2233 * will grab a config lock that is held across I/O, 2234 * or may wait for an I/O that needs an interrupt thread 2235 * to complete, issue async to avoid deadlock. 2236 * 2237 * For VDEV_IO_START, we cut in line so that the io will 2238 * be sent to disk promptly. 2239 */ 2240 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL && 2241 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) { 2242 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ? 2243 zio_requeue_io_start_cut_in_line : B_FALSE; 2244 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut); 2245 return; 2246 } 2247 2248 /* 2249 * If the current context doesn't have large enough stacks 2250 * the zio must be issued asynchronously to prevent overflow. 2251 */ 2252 if (zio_execute_stack_check(zio)) { 2253 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ? 2254 zio_requeue_io_start_cut_in_line : B_FALSE; 2255 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut); 2256 return; 2257 } 2258 2259 zio->io_stage = stage; 2260 zio->io_pipeline_trace |= zio->io_stage; 2261 2262 /* 2263 * The zio pipeline stage returns the next zio to execute 2264 * (typically the same as this one), or NULL if we should 2265 * stop. 2266 */ 2267 zio = zio_pipeline[highbit64(stage) - 1](zio); 2268 2269 if (zio == NULL) 2270 return; 2271 } 2272 } 2273 2274 2275 /* 2276 * ========================================================================== 2277 * Initiate I/O, either sync or async 2278 * ========================================================================== 2279 */ 2280 int 2281 zio_wait(zio_t *zio) 2282 { 2283 /* 2284 * Some routines, like zio_free_sync(), may return a NULL zio 2285 * to avoid the performance overhead of creating and then destroying 2286 * an unneeded zio. For the callers' simplicity, we accept a NULL 2287 * zio and ignore it. 2288 */ 2289 if (zio == NULL) 2290 return (0); 2291 2292 long timeout = MSEC_TO_TICK(zfs_deadman_ziotime_ms); 2293 int error; 2294 2295 ASSERT3S(zio->io_stage, ==, ZIO_STAGE_OPEN); 2296 ASSERT3P(zio->io_executor, ==, NULL); 2297 2298 zio->io_waiter = curthread; 2299 ASSERT0(zio->io_queued_timestamp); 2300 zio->io_queued_timestamp = gethrtime(); 2301 2302 __zio_execute(zio); 2303 2304 mutex_enter(&zio->io_lock); 2305 while (zio->io_executor != NULL) { 2306 error = cv_timedwait_io(&zio->io_cv, &zio->io_lock, 2307 ddi_get_lbolt() + timeout); 2308 2309 if (zfs_deadman_enabled && error == -1 && 2310 gethrtime() - zio->io_queued_timestamp > 2311 spa_deadman_ziotime(zio->io_spa)) { 2312 mutex_exit(&zio->io_lock); 2313 timeout = MSEC_TO_TICK(zfs_deadman_checktime_ms); 2314 zio_deadman(zio, FTAG); 2315 mutex_enter(&zio->io_lock); 2316 } 2317 } 2318 mutex_exit(&zio->io_lock); 2319 2320 error = zio->io_error; 2321 zio_destroy(zio); 2322 2323 return (error); 2324 } 2325 2326 void 2327 zio_nowait(zio_t *zio) 2328 { 2329 /* 2330 * See comment in zio_wait(). 2331 */ 2332 if (zio == NULL) 2333 return; 2334 2335 ASSERT3P(zio->io_executor, ==, NULL); 2336 2337 if (zio->io_child_type == ZIO_CHILD_LOGICAL && 2338 list_is_empty(&zio->io_parent_list)) { 2339 zio_t *pio; 2340 2341 /* 2342 * This is a logical async I/O with no parent to wait for it. 2343 * We add it to the spa_async_root_zio "Godfather" I/O which 2344 * will ensure they complete prior to unloading the pool. 2345 */ 2346 spa_t *spa = zio->io_spa; 2347 pio = spa->spa_async_zio_root[CPU_SEQID_UNSTABLE]; 2348 2349 zio_add_child(pio, zio); 2350 } 2351 2352 ASSERT0(zio->io_queued_timestamp); 2353 zio->io_queued_timestamp = gethrtime(); 2354 __zio_execute(zio); 2355 } 2356 2357 /* 2358 * ========================================================================== 2359 * Reexecute, cancel, or suspend/resume failed I/O 2360 * ========================================================================== 2361 */ 2362 2363 static void 2364 zio_reexecute(void *arg) 2365 { 2366 zio_t *pio = arg; 2367 zio_t *cio, *cio_next; 2368 2369 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL); 2370 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN); 2371 ASSERT(pio->io_gang_leader == NULL); 2372 ASSERT(pio->io_gang_tree == NULL); 2373 2374 pio->io_flags = pio->io_orig_flags; 2375 pio->io_stage = pio->io_orig_stage; 2376 pio->io_pipeline = pio->io_orig_pipeline; 2377 pio->io_reexecute = 0; 2378 pio->io_flags |= ZIO_FLAG_REEXECUTED; 2379 pio->io_pipeline_trace = 0; 2380 pio->io_error = 0; 2381 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 2382 pio->io_state[w] = 0; 2383 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 2384 pio->io_child_error[c] = 0; 2385 2386 if (IO_IS_ALLOCATING(pio)) 2387 BP_ZERO(pio->io_bp); 2388 2389 /* 2390 * As we reexecute pio's children, new children could be created. 2391 * New children go to the head of pio's io_child_list, however, 2392 * so we will (correctly) not reexecute them. The key is that 2393 * the remainder of pio's io_child_list, from 'cio_next' onward, 2394 * cannot be affected by any side effects of reexecuting 'cio'. 2395 */ 2396 zio_link_t *zl = NULL; 2397 mutex_enter(&pio->io_lock); 2398 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 2399 cio_next = zio_walk_children(pio, &zl); 2400 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 2401 pio->io_children[cio->io_child_type][w]++; 2402 mutex_exit(&pio->io_lock); 2403 zio_reexecute(cio); 2404 mutex_enter(&pio->io_lock); 2405 } 2406 mutex_exit(&pio->io_lock); 2407 2408 /* 2409 * Now that all children have been reexecuted, execute the parent. 2410 * We don't reexecute "The Godfather" I/O here as it's the 2411 * responsibility of the caller to wait on it. 2412 */ 2413 if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) { 2414 pio->io_queued_timestamp = gethrtime(); 2415 __zio_execute(pio); 2416 } 2417 } 2418 2419 void 2420 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason) 2421 { 2422 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC) 2423 fm_panic("Pool '%s' has encountered an uncorrectable I/O " 2424 "failure and the failure mode property for this pool " 2425 "is set to panic.", spa_name(spa)); 2426 2427 cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable I/O " 2428 "failure and has been suspended.\n", spa_name(spa)); 2429 2430 (void) zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, 2431 NULL, NULL, 0); 2432 2433 mutex_enter(&spa->spa_suspend_lock); 2434 2435 if (spa->spa_suspend_zio_root == NULL) 2436 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL, 2437 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 2438 ZIO_FLAG_GODFATHER); 2439 2440 spa->spa_suspended = reason; 2441 2442 if (zio != NULL) { 2443 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 2444 ASSERT(zio != spa->spa_suspend_zio_root); 2445 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2446 ASSERT(zio_unique_parent(zio) == NULL); 2447 ASSERT(zio->io_stage == ZIO_STAGE_DONE); 2448 zio_add_child(spa->spa_suspend_zio_root, zio); 2449 } 2450 2451 mutex_exit(&spa->spa_suspend_lock); 2452 } 2453 2454 int 2455 zio_resume(spa_t *spa) 2456 { 2457 zio_t *pio; 2458 2459 /* 2460 * Reexecute all previously suspended i/o. 2461 */ 2462 mutex_enter(&spa->spa_suspend_lock); 2463 spa->spa_suspended = ZIO_SUSPEND_NONE; 2464 cv_broadcast(&spa->spa_suspend_cv); 2465 pio = spa->spa_suspend_zio_root; 2466 spa->spa_suspend_zio_root = NULL; 2467 mutex_exit(&spa->spa_suspend_lock); 2468 2469 if (pio == NULL) 2470 return (0); 2471 2472 zio_reexecute(pio); 2473 return (zio_wait(pio)); 2474 } 2475 2476 void 2477 zio_resume_wait(spa_t *spa) 2478 { 2479 mutex_enter(&spa->spa_suspend_lock); 2480 while (spa_suspended(spa)) 2481 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock); 2482 mutex_exit(&spa->spa_suspend_lock); 2483 } 2484 2485 /* 2486 * ========================================================================== 2487 * Gang blocks. 2488 * 2489 * A gang block is a collection of small blocks that looks to the DMU 2490 * like one large block. When zio_dva_allocate() cannot find a block 2491 * of the requested size, due to either severe fragmentation or the pool 2492 * being nearly full, it calls zio_write_gang_block() to construct the 2493 * block from smaller fragments. 2494 * 2495 * A gang block consists of a gang header (zio_gbh_phys_t) and up to 2496 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like 2497 * an indirect block: it's an array of block pointers. It consumes 2498 * only one sector and hence is allocatable regardless of fragmentation. 2499 * The gang header's bps point to its gang members, which hold the data. 2500 * 2501 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg> 2502 * as the verifier to ensure uniqueness of the SHA256 checksum. 2503 * Critically, the gang block bp's blk_cksum is the checksum of the data, 2504 * not the gang header. This ensures that data block signatures (needed for 2505 * deduplication) are independent of how the block is physically stored. 2506 * 2507 * Gang blocks can be nested: a gang member may itself be a gang block. 2508 * Thus every gang block is a tree in which root and all interior nodes are 2509 * gang headers, and the leaves are normal blocks that contain user data. 2510 * The root of the gang tree is called the gang leader. 2511 * 2512 * To perform any operation (read, rewrite, free, claim) on a gang block, 2513 * zio_gang_assemble() first assembles the gang tree (minus data leaves) 2514 * in the io_gang_tree field of the original logical i/o by recursively 2515 * reading the gang leader and all gang headers below it. This yields 2516 * an in-core tree containing the contents of every gang header and the 2517 * bps for every constituent of the gang block. 2518 * 2519 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree 2520 * and invokes a callback on each bp. To free a gang block, zio_gang_issue() 2521 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp. 2522 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim(). 2523 * zio_read_gang() is a wrapper around zio_read() that omits reading gang 2524 * headers, since we already have those in io_gang_tree. zio_rewrite_gang() 2525 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite() 2526 * of the gang header plus zio_checksum_compute() of the data to update the 2527 * gang header's blk_cksum as described above. 2528 * 2529 * The two-phase assemble/issue model solves the problem of partial failure -- 2530 * what if you'd freed part of a gang block but then couldn't read the 2531 * gang header for another part? Assembling the entire gang tree first 2532 * ensures that all the necessary gang header I/O has succeeded before 2533 * starting the actual work of free, claim, or write. Once the gang tree 2534 * is assembled, free and claim are in-memory operations that cannot fail. 2535 * 2536 * In the event that a gang write fails, zio_dva_unallocate() walks the 2537 * gang tree to immediately free (i.e. insert back into the space map) 2538 * everything we've allocated. This ensures that we don't get ENOSPC 2539 * errors during repeated suspend/resume cycles due to a flaky device. 2540 * 2541 * Gang rewrites only happen during sync-to-convergence. If we can't assemble 2542 * the gang tree, we won't modify the block, so we can safely defer the free 2543 * (knowing that the block is still intact). If we *can* assemble the gang 2544 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free 2545 * each constituent bp and we can allocate a new block on the next sync pass. 2546 * 2547 * In all cases, the gang tree allows complete recovery from partial failure. 2548 * ========================================================================== 2549 */ 2550 2551 static void 2552 zio_gang_issue_func_done(zio_t *zio) 2553 { 2554 abd_free(zio->io_abd); 2555 } 2556 2557 static zio_t * 2558 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2559 uint64_t offset) 2560 { 2561 if (gn != NULL) 2562 return (pio); 2563 2564 return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset), 2565 BP_GET_PSIZE(bp), zio_gang_issue_func_done, 2566 NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 2567 &pio->io_bookmark)); 2568 } 2569 2570 static zio_t * 2571 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2572 uint64_t offset) 2573 { 2574 zio_t *zio; 2575 2576 if (gn != NULL) { 2577 abd_t *gbh_abd = 2578 abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2579 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 2580 gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL, 2581 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 2582 &pio->io_bookmark); 2583 /* 2584 * As we rewrite each gang header, the pipeline will compute 2585 * a new gang block header checksum for it; but no one will 2586 * compute a new data checksum, so we do that here. The one 2587 * exception is the gang leader: the pipeline already computed 2588 * its data checksum because that stage precedes gang assembly. 2589 * (Presently, nothing actually uses interior data checksums; 2590 * this is just good hygiene.) 2591 */ 2592 if (gn != pio->io_gang_leader->io_gang_tree) { 2593 abd_t *buf = abd_get_offset(data, offset); 2594 2595 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp), 2596 buf, BP_GET_PSIZE(bp)); 2597 2598 abd_free(buf); 2599 } 2600 /* 2601 * If we are here to damage data for testing purposes, 2602 * leave the GBH alone so that we can detect the damage. 2603 */ 2604 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE) 2605 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 2606 } else { 2607 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 2608 abd_get_offset(data, offset), BP_GET_PSIZE(bp), 2609 zio_gang_issue_func_done, NULL, pio->io_priority, 2610 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2611 } 2612 2613 return (zio); 2614 } 2615 2616 static zio_t * 2617 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2618 uint64_t offset) 2619 { 2620 (void) gn, (void) data, (void) offset; 2621 2622 zio_t *zio = zio_free_sync(pio, pio->io_spa, pio->io_txg, bp, 2623 ZIO_GANG_CHILD_FLAGS(pio)); 2624 if (zio == NULL) { 2625 zio = zio_null(pio, pio->io_spa, 2626 NULL, NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)); 2627 } 2628 return (zio); 2629 } 2630 2631 static zio_t * 2632 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2633 uint64_t offset) 2634 { 2635 (void) gn, (void) data, (void) offset; 2636 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp, 2637 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio))); 2638 } 2639 2640 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = { 2641 NULL, 2642 zio_read_gang, 2643 zio_rewrite_gang, 2644 zio_free_gang, 2645 zio_claim_gang, 2646 NULL 2647 }; 2648 2649 static void zio_gang_tree_assemble_done(zio_t *zio); 2650 2651 static zio_gang_node_t * 2652 zio_gang_node_alloc(zio_gang_node_t **gnpp) 2653 { 2654 zio_gang_node_t *gn; 2655 2656 ASSERT(*gnpp == NULL); 2657 2658 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP); 2659 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE); 2660 *gnpp = gn; 2661 2662 return (gn); 2663 } 2664 2665 static void 2666 zio_gang_node_free(zio_gang_node_t **gnpp) 2667 { 2668 zio_gang_node_t *gn = *gnpp; 2669 2670 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 2671 ASSERT(gn->gn_child[g] == NULL); 2672 2673 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2674 kmem_free(gn, sizeof (*gn)); 2675 *gnpp = NULL; 2676 } 2677 2678 static void 2679 zio_gang_tree_free(zio_gang_node_t **gnpp) 2680 { 2681 zio_gang_node_t *gn = *gnpp; 2682 2683 if (gn == NULL) 2684 return; 2685 2686 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 2687 zio_gang_tree_free(&gn->gn_child[g]); 2688 2689 zio_gang_node_free(gnpp); 2690 } 2691 2692 static void 2693 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp) 2694 { 2695 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp); 2696 abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2697 2698 ASSERT(gio->io_gang_leader == gio); 2699 ASSERT(BP_IS_GANG(bp)); 2700 2701 zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE, 2702 zio_gang_tree_assemble_done, gn, gio->io_priority, 2703 ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark)); 2704 } 2705 2706 static void 2707 zio_gang_tree_assemble_done(zio_t *zio) 2708 { 2709 zio_t *gio = zio->io_gang_leader; 2710 zio_gang_node_t *gn = zio->io_private; 2711 blkptr_t *bp = zio->io_bp; 2712 2713 ASSERT(gio == zio_unique_parent(zio)); 2714 ASSERT(zio->io_child_count == 0); 2715 2716 if (zio->io_error) 2717 return; 2718 2719 /* this ABD was created from a linear buf in zio_gang_tree_assemble */ 2720 if (BP_SHOULD_BYTESWAP(bp)) 2721 byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size); 2722 2723 ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh); 2724 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE); 2725 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 2726 2727 abd_free(zio->io_abd); 2728 2729 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2730 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 2731 if (!BP_IS_GANG(gbp)) 2732 continue; 2733 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]); 2734 } 2735 } 2736 2737 static void 2738 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data, 2739 uint64_t offset) 2740 { 2741 zio_t *gio = pio->io_gang_leader; 2742 zio_t *zio; 2743 2744 ASSERT(BP_IS_GANG(bp) == !!gn); 2745 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp)); 2746 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree); 2747 2748 /* 2749 * If you're a gang header, your data is in gn->gn_gbh. 2750 * If you're a gang member, your data is in 'data' and gn == NULL. 2751 */ 2752 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset); 2753 2754 if (gn != NULL) { 2755 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 2756 2757 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2758 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 2759 if (BP_IS_HOLE(gbp)) 2760 continue; 2761 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data, 2762 offset); 2763 offset += BP_GET_PSIZE(gbp); 2764 } 2765 } 2766 2767 if (gn == gio->io_gang_tree) 2768 ASSERT3U(gio->io_size, ==, offset); 2769 2770 if (zio != pio) 2771 zio_nowait(zio); 2772 } 2773 2774 static zio_t * 2775 zio_gang_assemble(zio_t *zio) 2776 { 2777 blkptr_t *bp = zio->io_bp; 2778 2779 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL); 2780 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2781 2782 zio->io_gang_leader = zio; 2783 2784 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree); 2785 2786 return (zio); 2787 } 2788 2789 static zio_t * 2790 zio_gang_issue(zio_t *zio) 2791 { 2792 blkptr_t *bp = zio->io_bp; 2793 2794 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) { 2795 return (NULL); 2796 } 2797 2798 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio); 2799 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2800 2801 if (zio->io_child_error[ZIO_CHILD_GANG] == 0) 2802 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd, 2803 0); 2804 else 2805 zio_gang_tree_free(&zio->io_gang_tree); 2806 2807 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2808 2809 return (zio); 2810 } 2811 2812 static void 2813 zio_write_gang_member_ready(zio_t *zio) 2814 { 2815 zio_t *pio = zio_unique_parent(zio); 2816 dva_t *cdva = zio->io_bp->blk_dva; 2817 dva_t *pdva = pio->io_bp->blk_dva; 2818 uint64_t asize; 2819 zio_t *gio __maybe_unused = zio->io_gang_leader; 2820 2821 if (BP_IS_HOLE(zio->io_bp)) 2822 return; 2823 2824 ASSERT(BP_IS_HOLE(&zio->io_bp_orig)); 2825 2826 ASSERT(zio->io_child_type == ZIO_CHILD_GANG); 2827 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies); 2828 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp)); 2829 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp)); 2830 VERIFY3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp)); 2831 2832 mutex_enter(&pio->io_lock); 2833 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) { 2834 ASSERT(DVA_GET_GANG(&pdva[d])); 2835 asize = DVA_GET_ASIZE(&pdva[d]); 2836 asize += DVA_GET_ASIZE(&cdva[d]); 2837 DVA_SET_ASIZE(&pdva[d], asize); 2838 } 2839 mutex_exit(&pio->io_lock); 2840 } 2841 2842 static void 2843 zio_write_gang_done(zio_t *zio) 2844 { 2845 /* 2846 * The io_abd field will be NULL for a zio with no data. The io_flags 2847 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't 2848 * check for it here as it is cleared in zio_ready. 2849 */ 2850 if (zio->io_abd != NULL) 2851 abd_free(zio->io_abd); 2852 } 2853 2854 static zio_t * 2855 zio_write_gang_block(zio_t *pio, metaslab_class_t *mc) 2856 { 2857 spa_t *spa = pio->io_spa; 2858 blkptr_t *bp = pio->io_bp; 2859 zio_t *gio = pio->io_gang_leader; 2860 zio_t *zio; 2861 zio_gang_node_t *gn, **gnpp; 2862 zio_gbh_phys_t *gbh; 2863 abd_t *gbh_abd; 2864 uint64_t txg = pio->io_txg; 2865 uint64_t resid = pio->io_size; 2866 uint64_t lsize; 2867 int copies = gio->io_prop.zp_copies; 2868 zio_prop_t zp; 2869 int error; 2870 boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA); 2871 2872 /* 2873 * If one copy was requested, store 2 copies of the GBH, so that we 2874 * can still traverse all the data (e.g. to free or scrub) even if a 2875 * block is damaged. Note that we can't store 3 copies of the GBH in 2876 * all cases, e.g. with encryption, which uses DVA[2] for the IV+salt. 2877 */ 2878 int gbh_copies = copies; 2879 if (gbh_copies == 1) { 2880 gbh_copies = MIN(2, spa_max_replication(spa)); 2881 } 2882 2883 int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER; 2884 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2885 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2886 ASSERT(has_data); 2887 2888 flags |= METASLAB_ASYNC_ALLOC; 2889 VERIFY(zfs_refcount_held(&mc->mc_allocator[pio->io_allocator]. 2890 mca_alloc_slots, pio)); 2891 2892 /* 2893 * The logical zio has already placed a reservation for 2894 * 'copies' allocation slots but gang blocks may require 2895 * additional copies. These additional copies 2896 * (i.e. gbh_copies - copies) are guaranteed to succeed 2897 * since metaslab_class_throttle_reserve() always allows 2898 * additional reservations for gang blocks. 2899 */ 2900 VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies, 2901 pio->io_allocator, pio, flags)); 2902 } 2903 2904 error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE, 2905 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags, 2906 &pio->io_alloc_list, pio, pio->io_allocator); 2907 if (error) { 2908 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2909 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2910 ASSERT(has_data); 2911 2912 /* 2913 * If we failed to allocate the gang block header then 2914 * we remove any additional allocation reservations that 2915 * we placed here. The original reservation will 2916 * be removed when the logical I/O goes to the ready 2917 * stage. 2918 */ 2919 metaslab_class_throttle_unreserve(mc, 2920 gbh_copies - copies, pio->io_allocator, pio); 2921 } 2922 2923 pio->io_error = error; 2924 return (pio); 2925 } 2926 2927 if (pio == gio) { 2928 gnpp = &gio->io_gang_tree; 2929 } else { 2930 gnpp = pio->io_private; 2931 ASSERT(pio->io_ready == zio_write_gang_member_ready); 2932 } 2933 2934 gn = zio_gang_node_alloc(gnpp); 2935 gbh = gn->gn_gbh; 2936 memset(gbh, 0, SPA_GANGBLOCKSIZE); 2937 gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE); 2938 2939 /* 2940 * Create the gang header. 2941 */ 2942 zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE, 2943 zio_write_gang_done, NULL, pio->io_priority, 2944 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2945 2946 /* 2947 * Create and nowait the gang children. 2948 */ 2949 for (int g = 0; resid != 0; resid -= lsize, g++) { 2950 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g), 2951 SPA_MINBLOCKSIZE); 2952 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid); 2953 2954 zp.zp_checksum = gio->io_prop.zp_checksum; 2955 zp.zp_compress = ZIO_COMPRESS_OFF; 2956 zp.zp_complevel = gio->io_prop.zp_complevel; 2957 zp.zp_type = DMU_OT_NONE; 2958 zp.zp_level = 0; 2959 zp.zp_copies = gio->io_prop.zp_copies; 2960 zp.zp_dedup = B_FALSE; 2961 zp.zp_dedup_verify = B_FALSE; 2962 zp.zp_nopwrite = B_FALSE; 2963 zp.zp_encrypt = gio->io_prop.zp_encrypt; 2964 zp.zp_byteorder = gio->io_prop.zp_byteorder; 2965 memset(zp.zp_salt, 0, ZIO_DATA_SALT_LEN); 2966 memset(zp.zp_iv, 0, ZIO_DATA_IV_LEN); 2967 memset(zp.zp_mac, 0, ZIO_DATA_MAC_LEN); 2968 2969 zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g], 2970 has_data ? abd_get_offset(pio->io_abd, pio->io_size - 2971 resid) : NULL, lsize, lsize, &zp, 2972 zio_write_gang_member_ready, NULL, NULL, 2973 zio_write_gang_done, &gn->gn_child[g], pio->io_priority, 2974 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2975 2976 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2977 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2978 ASSERT(has_data); 2979 2980 /* 2981 * Gang children won't throttle but we should 2982 * account for their work, so reserve an allocation 2983 * slot for them here. 2984 */ 2985 VERIFY(metaslab_class_throttle_reserve(mc, 2986 zp.zp_copies, cio->io_allocator, cio, flags)); 2987 } 2988 zio_nowait(cio); 2989 } 2990 2991 /* 2992 * Set pio's pipeline to just wait for zio to finish. 2993 */ 2994 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2995 2996 /* 2997 * We didn't allocate this bp, so make sure it doesn't get unmarked. 2998 */ 2999 pio->io_flags &= ~ZIO_FLAG_FASTWRITE; 3000 3001 zio_nowait(zio); 3002 3003 return (pio); 3004 } 3005 3006 /* 3007 * The zio_nop_write stage in the pipeline determines if allocating a 3008 * new bp is necessary. The nopwrite feature can handle writes in 3009 * either syncing or open context (i.e. zil writes) and as a result is 3010 * mutually exclusive with dedup. 3011 * 3012 * By leveraging a cryptographically secure checksum, such as SHA256, we 3013 * can compare the checksums of the new data and the old to determine if 3014 * allocating a new block is required. Note that our requirements for 3015 * cryptographic strength are fairly weak: there can't be any accidental 3016 * hash collisions, but we don't need to be secure against intentional 3017 * (malicious) collisions. To trigger a nopwrite, you have to be able 3018 * to write the file to begin with, and triggering an incorrect (hash 3019 * collision) nopwrite is no worse than simply writing to the file. 3020 * That said, there are no known attacks against the checksum algorithms 3021 * used for nopwrite, assuming that the salt and the checksums 3022 * themselves remain secret. 3023 */ 3024 static zio_t * 3025 zio_nop_write(zio_t *zio) 3026 { 3027 blkptr_t *bp = zio->io_bp; 3028 blkptr_t *bp_orig = &zio->io_bp_orig; 3029 zio_prop_t *zp = &zio->io_prop; 3030 3031 ASSERT(BP_IS_HOLE(bp)); 3032 ASSERT(BP_GET_LEVEL(bp) == 0); 3033 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 3034 ASSERT(zp->zp_nopwrite); 3035 ASSERT(!zp->zp_dedup); 3036 ASSERT(zio->io_bp_override == NULL); 3037 ASSERT(IO_IS_ALLOCATING(zio)); 3038 3039 /* 3040 * Check to see if the original bp and the new bp have matching 3041 * characteristics (i.e. same checksum, compression algorithms, etc). 3042 * If they don't then just continue with the pipeline which will 3043 * allocate a new bp. 3044 */ 3045 if (BP_IS_HOLE(bp_orig) || 3046 !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags & 3047 ZCHECKSUM_FLAG_NOPWRITE) || 3048 BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) || 3049 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) || 3050 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) || 3051 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) || 3052 zp->zp_copies != BP_GET_NDVAS(bp_orig)) 3053 return (zio); 3054 3055 /* 3056 * If the checksums match then reset the pipeline so that we 3057 * avoid allocating a new bp and issuing any I/O. 3058 */ 3059 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) { 3060 ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags & 3061 ZCHECKSUM_FLAG_NOPWRITE); 3062 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig)); 3063 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig)); 3064 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF); 3065 ASSERT3U(bp->blk_prop, ==, bp_orig->blk_prop); 3066 3067 /* 3068 * If we're overwriting a block that is currently on an 3069 * indirect vdev, then ignore the nopwrite request and 3070 * allow a new block to be allocated on a concrete vdev. 3071 */ 3072 spa_config_enter(zio->io_spa, SCL_VDEV, FTAG, RW_READER); 3073 for (int d = 0; d < BP_GET_NDVAS(bp_orig); d++) { 3074 vdev_t *tvd = vdev_lookup_top(zio->io_spa, 3075 DVA_GET_VDEV(&bp_orig->blk_dva[d])); 3076 if (tvd->vdev_ops == &vdev_indirect_ops) { 3077 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG); 3078 return (zio); 3079 } 3080 } 3081 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG); 3082 3083 *bp = *bp_orig; 3084 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 3085 zio->io_flags |= ZIO_FLAG_NOPWRITE; 3086 } 3087 3088 return (zio); 3089 } 3090 3091 /* 3092 * ========================================================================== 3093 * Block Reference Table 3094 * ========================================================================== 3095 */ 3096 static zio_t * 3097 zio_brt_free(zio_t *zio) 3098 { 3099 blkptr_t *bp; 3100 3101 bp = zio->io_bp; 3102 3103 if (BP_GET_LEVEL(bp) > 0 || 3104 BP_IS_METADATA(bp) || 3105 !brt_maybe_exists(zio->io_spa, bp)) { 3106 return (zio); 3107 } 3108 3109 if (!brt_entry_decref(zio->io_spa, bp)) { 3110 /* 3111 * This isn't the last reference, so we cannot free 3112 * the data yet. 3113 */ 3114 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 3115 } 3116 3117 return (zio); 3118 } 3119 3120 /* 3121 * ========================================================================== 3122 * Dedup 3123 * ========================================================================== 3124 */ 3125 static void 3126 zio_ddt_child_read_done(zio_t *zio) 3127 { 3128 blkptr_t *bp = zio->io_bp; 3129 ddt_entry_t *dde = zio->io_private; 3130 ddt_phys_t *ddp; 3131 zio_t *pio = zio_unique_parent(zio); 3132 3133 mutex_enter(&pio->io_lock); 3134 ddp = ddt_phys_select(dde, bp); 3135 if (zio->io_error == 0) 3136 ddt_phys_clear(ddp); /* this ddp doesn't need repair */ 3137 3138 if (zio->io_error == 0 && dde->dde_repair_abd == NULL) 3139 dde->dde_repair_abd = zio->io_abd; 3140 else 3141 abd_free(zio->io_abd); 3142 mutex_exit(&pio->io_lock); 3143 } 3144 3145 static zio_t * 3146 zio_ddt_read_start(zio_t *zio) 3147 { 3148 blkptr_t *bp = zio->io_bp; 3149 3150 ASSERT(BP_GET_DEDUP(bp)); 3151 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 3152 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3153 3154 if (zio->io_child_error[ZIO_CHILD_DDT]) { 3155 ddt_t *ddt = ddt_select(zio->io_spa, bp); 3156 ddt_entry_t *dde = ddt_repair_start(ddt, bp); 3157 ddt_phys_t *ddp = dde->dde_phys; 3158 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp); 3159 blkptr_t blk; 3160 3161 ASSERT(zio->io_vsd == NULL); 3162 zio->io_vsd = dde; 3163 3164 if (ddp_self == NULL) 3165 return (zio); 3166 3167 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 3168 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self) 3169 continue; 3170 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp, 3171 &blk); 3172 zio_nowait(zio_read(zio, zio->io_spa, &blk, 3173 abd_alloc_for_io(zio->io_size, B_TRUE), 3174 zio->io_size, zio_ddt_child_read_done, dde, 3175 zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) | 3176 ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark)); 3177 } 3178 return (zio); 3179 } 3180 3181 zio_nowait(zio_read(zio, zio->io_spa, bp, 3182 zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority, 3183 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark)); 3184 3185 return (zio); 3186 } 3187 3188 static zio_t * 3189 zio_ddt_read_done(zio_t *zio) 3190 { 3191 blkptr_t *bp = zio->io_bp; 3192 3193 if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) { 3194 return (NULL); 3195 } 3196 3197 ASSERT(BP_GET_DEDUP(bp)); 3198 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 3199 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3200 3201 if (zio->io_child_error[ZIO_CHILD_DDT]) { 3202 ddt_t *ddt = ddt_select(zio->io_spa, bp); 3203 ddt_entry_t *dde = zio->io_vsd; 3204 if (ddt == NULL) { 3205 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE); 3206 return (zio); 3207 } 3208 if (dde == NULL) { 3209 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1; 3210 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 3211 return (NULL); 3212 } 3213 if (dde->dde_repair_abd != NULL) { 3214 abd_copy(zio->io_abd, dde->dde_repair_abd, 3215 zio->io_size); 3216 zio->io_child_error[ZIO_CHILD_DDT] = 0; 3217 } 3218 ddt_repair_done(ddt, dde); 3219 zio->io_vsd = NULL; 3220 } 3221 3222 ASSERT(zio->io_vsd == NULL); 3223 3224 return (zio); 3225 } 3226 3227 static boolean_t 3228 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde) 3229 { 3230 spa_t *spa = zio->io_spa; 3231 boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW); 3232 3233 ASSERT(!(zio->io_bp_override && do_raw)); 3234 3235 /* 3236 * Note: we compare the original data, not the transformed data, 3237 * because when zio->io_bp is an override bp, we will not have 3238 * pushed the I/O transforms. That's an important optimization 3239 * because otherwise we'd compress/encrypt all dmu_sync() data twice. 3240 * However, we should never get a raw, override zio so in these 3241 * cases we can compare the io_abd directly. This is useful because 3242 * it allows us to do dedup verification even if we don't have access 3243 * to the original data (for instance, if the encryption keys aren't 3244 * loaded). 3245 */ 3246 3247 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 3248 zio_t *lio = dde->dde_lead_zio[p]; 3249 3250 if (lio != NULL && do_raw) { 3251 return (lio->io_size != zio->io_size || 3252 abd_cmp(zio->io_abd, lio->io_abd) != 0); 3253 } else if (lio != NULL) { 3254 return (lio->io_orig_size != zio->io_orig_size || 3255 abd_cmp(zio->io_orig_abd, lio->io_orig_abd) != 0); 3256 } 3257 } 3258 3259 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 3260 ddt_phys_t *ddp = &dde->dde_phys[p]; 3261 3262 if (ddp->ddp_phys_birth != 0 && do_raw) { 3263 blkptr_t blk = *zio->io_bp; 3264 uint64_t psize; 3265 abd_t *tmpabd; 3266 int error; 3267 3268 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth); 3269 psize = BP_GET_PSIZE(&blk); 3270 3271 if (psize != zio->io_size) 3272 return (B_TRUE); 3273 3274 ddt_exit(ddt); 3275 3276 tmpabd = abd_alloc_for_io(psize, B_TRUE); 3277 3278 error = zio_wait(zio_read(NULL, spa, &blk, tmpabd, 3279 psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ, 3280 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 3281 ZIO_FLAG_RAW, &zio->io_bookmark)); 3282 3283 if (error == 0) { 3284 if (abd_cmp(tmpabd, zio->io_abd) != 0) 3285 error = SET_ERROR(ENOENT); 3286 } 3287 3288 abd_free(tmpabd); 3289 ddt_enter(ddt); 3290 return (error != 0); 3291 } else if (ddp->ddp_phys_birth != 0) { 3292 arc_buf_t *abuf = NULL; 3293 arc_flags_t aflags = ARC_FLAG_WAIT; 3294 blkptr_t blk = *zio->io_bp; 3295 int error; 3296 3297 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth); 3298 3299 if (BP_GET_LSIZE(&blk) != zio->io_orig_size) 3300 return (B_TRUE); 3301 3302 ddt_exit(ddt); 3303 3304 error = arc_read(NULL, spa, &blk, 3305 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ, 3306 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 3307 &aflags, &zio->io_bookmark); 3308 3309 if (error == 0) { 3310 if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data, 3311 zio->io_orig_size) != 0) 3312 error = SET_ERROR(ENOENT); 3313 arc_buf_destroy(abuf, &abuf); 3314 } 3315 3316 ddt_enter(ddt); 3317 return (error != 0); 3318 } 3319 } 3320 3321 return (B_FALSE); 3322 } 3323 3324 static void 3325 zio_ddt_child_write_ready(zio_t *zio) 3326 { 3327 int p = zio->io_prop.zp_copies; 3328 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 3329 ddt_entry_t *dde = zio->io_private; 3330 ddt_phys_t *ddp = &dde->dde_phys[p]; 3331 zio_t *pio; 3332 3333 if (zio->io_error) 3334 return; 3335 3336 ddt_enter(ddt); 3337 3338 ASSERT(dde->dde_lead_zio[p] == zio); 3339 3340 ddt_phys_fill(ddp, zio->io_bp); 3341 3342 zio_link_t *zl = NULL; 3343 while ((pio = zio_walk_parents(zio, &zl)) != NULL) 3344 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg); 3345 3346 ddt_exit(ddt); 3347 } 3348 3349 static void 3350 zio_ddt_child_write_done(zio_t *zio) 3351 { 3352 int p = zio->io_prop.zp_copies; 3353 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 3354 ddt_entry_t *dde = zio->io_private; 3355 ddt_phys_t *ddp = &dde->dde_phys[p]; 3356 3357 ddt_enter(ddt); 3358 3359 ASSERT(ddp->ddp_refcnt == 0); 3360 ASSERT(dde->dde_lead_zio[p] == zio); 3361 dde->dde_lead_zio[p] = NULL; 3362 3363 if (zio->io_error == 0) { 3364 zio_link_t *zl = NULL; 3365 while (zio_walk_parents(zio, &zl) != NULL) 3366 ddt_phys_addref(ddp); 3367 } else { 3368 ddt_phys_clear(ddp); 3369 } 3370 3371 ddt_exit(ddt); 3372 } 3373 3374 static zio_t * 3375 zio_ddt_write(zio_t *zio) 3376 { 3377 spa_t *spa = zio->io_spa; 3378 blkptr_t *bp = zio->io_bp; 3379 uint64_t txg = zio->io_txg; 3380 zio_prop_t *zp = &zio->io_prop; 3381 int p = zp->zp_copies; 3382 zio_t *cio = NULL; 3383 ddt_t *ddt = ddt_select(spa, bp); 3384 ddt_entry_t *dde; 3385 ddt_phys_t *ddp; 3386 3387 ASSERT(BP_GET_DEDUP(bp)); 3388 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum); 3389 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override); 3390 ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW))); 3391 3392 ddt_enter(ddt); 3393 dde = ddt_lookup(ddt, bp, B_TRUE); 3394 ddp = &dde->dde_phys[p]; 3395 3396 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) { 3397 /* 3398 * If we're using a weak checksum, upgrade to a strong checksum 3399 * and try again. If we're already using a strong checksum, 3400 * we can't resolve it, so just convert to an ordinary write. 3401 * (And automatically e-mail a paper to Nature?) 3402 */ 3403 if (!(zio_checksum_table[zp->zp_checksum].ci_flags & 3404 ZCHECKSUM_FLAG_DEDUP)) { 3405 zp->zp_checksum = spa_dedup_checksum(spa); 3406 zio_pop_transforms(zio); 3407 zio->io_stage = ZIO_STAGE_OPEN; 3408 BP_ZERO(bp); 3409 } else { 3410 zp->zp_dedup = B_FALSE; 3411 BP_SET_DEDUP(bp, B_FALSE); 3412 } 3413 ASSERT(!BP_GET_DEDUP(bp)); 3414 zio->io_pipeline = ZIO_WRITE_PIPELINE; 3415 ddt_exit(ddt); 3416 return (zio); 3417 } 3418 3419 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) { 3420 if (ddp->ddp_phys_birth != 0) 3421 ddt_bp_fill(ddp, bp, txg); 3422 if (dde->dde_lead_zio[p] != NULL) 3423 zio_add_child(zio, dde->dde_lead_zio[p]); 3424 else 3425 ddt_phys_addref(ddp); 3426 } else if (zio->io_bp_override) { 3427 ASSERT(bp->blk_birth == txg); 3428 ASSERT(BP_EQUAL(bp, zio->io_bp_override)); 3429 ddt_phys_fill(ddp, bp); 3430 ddt_phys_addref(ddp); 3431 } else { 3432 cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd, 3433 zio->io_orig_size, zio->io_orig_size, zp, 3434 zio_ddt_child_write_ready, NULL, NULL, 3435 zio_ddt_child_write_done, dde, zio->io_priority, 3436 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark); 3437 3438 zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL); 3439 dde->dde_lead_zio[p] = cio; 3440 } 3441 3442 ddt_exit(ddt); 3443 3444 zio_nowait(cio); 3445 3446 return (zio); 3447 } 3448 3449 static ddt_entry_t *freedde; /* for debugging */ 3450 3451 static zio_t * 3452 zio_ddt_free(zio_t *zio) 3453 { 3454 spa_t *spa = zio->io_spa; 3455 blkptr_t *bp = zio->io_bp; 3456 ddt_t *ddt = ddt_select(spa, bp); 3457 ddt_entry_t *dde; 3458 ddt_phys_t *ddp; 3459 3460 ASSERT(BP_GET_DEDUP(bp)); 3461 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3462 3463 ddt_enter(ddt); 3464 freedde = dde = ddt_lookup(ddt, bp, B_TRUE); 3465 if (dde) { 3466 ddp = ddt_phys_select(dde, bp); 3467 if (ddp) 3468 ddt_phys_decref(ddp); 3469 } 3470 ddt_exit(ddt); 3471 3472 return (zio); 3473 } 3474 3475 /* 3476 * ========================================================================== 3477 * Allocate and free blocks 3478 * ========================================================================== 3479 */ 3480 3481 static zio_t * 3482 zio_io_to_allocate(spa_t *spa, int allocator) 3483 { 3484 zio_t *zio; 3485 3486 ASSERT(MUTEX_HELD(&spa->spa_allocs[allocator].spaa_lock)); 3487 3488 zio = avl_first(&spa->spa_allocs[allocator].spaa_tree); 3489 if (zio == NULL) 3490 return (NULL); 3491 3492 ASSERT(IO_IS_ALLOCATING(zio)); 3493 3494 /* 3495 * Try to place a reservation for this zio. If we're unable to 3496 * reserve then we throttle. 3497 */ 3498 ASSERT3U(zio->io_allocator, ==, allocator); 3499 if (!metaslab_class_throttle_reserve(zio->io_metaslab_class, 3500 zio->io_prop.zp_copies, allocator, zio, 0)) { 3501 return (NULL); 3502 } 3503 3504 avl_remove(&spa->spa_allocs[allocator].spaa_tree, zio); 3505 ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE); 3506 3507 return (zio); 3508 } 3509 3510 static zio_t * 3511 zio_dva_throttle(zio_t *zio) 3512 { 3513 spa_t *spa = zio->io_spa; 3514 zio_t *nio; 3515 metaslab_class_t *mc; 3516 3517 /* locate an appropriate allocation class */ 3518 mc = spa_preferred_class(spa, zio->io_size, zio->io_prop.zp_type, 3519 zio->io_prop.zp_level, zio->io_prop.zp_zpl_smallblk); 3520 3521 if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE || 3522 !mc->mc_alloc_throttle_enabled || 3523 zio->io_child_type == ZIO_CHILD_GANG || 3524 zio->io_flags & ZIO_FLAG_NODATA) { 3525 return (zio); 3526 } 3527 3528 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 3529 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 3530 ASSERT3U(zio->io_queued_timestamp, >, 0); 3531 ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE); 3532 3533 zbookmark_phys_t *bm = &zio->io_bookmark; 3534 /* 3535 * We want to try to use as many allocators as possible to help improve 3536 * performance, but we also want logically adjacent IOs to be physically 3537 * adjacent to improve sequential read performance. We chunk each object 3538 * into 2^20 block regions, and then hash based on the objset, object, 3539 * level, and region to accomplish both of these goals. 3540 */ 3541 int allocator = (uint_t)cityhash4(bm->zb_objset, bm->zb_object, 3542 bm->zb_level, bm->zb_blkid >> 20) % spa->spa_alloc_count; 3543 zio->io_allocator = allocator; 3544 zio->io_metaslab_class = mc; 3545 mutex_enter(&spa->spa_allocs[allocator].spaa_lock); 3546 avl_add(&spa->spa_allocs[allocator].spaa_tree, zio); 3547 nio = zio_io_to_allocate(spa, allocator); 3548 mutex_exit(&spa->spa_allocs[allocator].spaa_lock); 3549 return (nio); 3550 } 3551 3552 static void 3553 zio_allocate_dispatch(spa_t *spa, int allocator) 3554 { 3555 zio_t *zio; 3556 3557 mutex_enter(&spa->spa_allocs[allocator].spaa_lock); 3558 zio = zio_io_to_allocate(spa, allocator); 3559 mutex_exit(&spa->spa_allocs[allocator].spaa_lock); 3560 if (zio == NULL) 3561 return; 3562 3563 ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE); 3564 ASSERT0(zio->io_error); 3565 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE); 3566 } 3567 3568 static zio_t * 3569 zio_dva_allocate(zio_t *zio) 3570 { 3571 spa_t *spa = zio->io_spa; 3572 metaslab_class_t *mc; 3573 blkptr_t *bp = zio->io_bp; 3574 int error; 3575 int flags = 0; 3576 3577 if (zio->io_gang_leader == NULL) { 3578 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 3579 zio->io_gang_leader = zio; 3580 } 3581 3582 ASSERT(BP_IS_HOLE(bp)); 3583 ASSERT0(BP_GET_NDVAS(bp)); 3584 ASSERT3U(zio->io_prop.zp_copies, >, 0); 3585 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa)); 3586 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp)); 3587 3588 flags |= (zio->io_flags & ZIO_FLAG_FASTWRITE) ? METASLAB_FASTWRITE : 0; 3589 if (zio->io_flags & ZIO_FLAG_NODATA) 3590 flags |= METASLAB_DONT_THROTTLE; 3591 if (zio->io_flags & ZIO_FLAG_GANG_CHILD) 3592 flags |= METASLAB_GANG_CHILD; 3593 if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE) 3594 flags |= METASLAB_ASYNC_ALLOC; 3595 3596 /* 3597 * if not already chosen, locate an appropriate allocation class 3598 */ 3599 mc = zio->io_metaslab_class; 3600 if (mc == NULL) { 3601 mc = spa_preferred_class(spa, zio->io_size, 3602 zio->io_prop.zp_type, zio->io_prop.zp_level, 3603 zio->io_prop.zp_zpl_smallblk); 3604 zio->io_metaslab_class = mc; 3605 } 3606 3607 /* 3608 * Try allocating the block in the usual metaslab class. 3609 * If that's full, allocate it in the normal class. 3610 * If that's full, allocate as a gang block, 3611 * and if all are full, the allocation fails (which shouldn't happen). 3612 * 3613 * Note that we do not fall back on embedded slog (ZIL) space, to 3614 * preserve unfragmented slog space, which is critical for decent 3615 * sync write performance. If a log allocation fails, we will fall 3616 * back to spa_sync() which is abysmal for performance. 3617 */ 3618 error = metaslab_alloc(spa, mc, zio->io_size, bp, 3619 zio->io_prop.zp_copies, zio->io_txg, NULL, flags, 3620 &zio->io_alloc_list, zio, zio->io_allocator); 3621 3622 /* 3623 * Fallback to normal class when an alloc class is full 3624 */ 3625 if (error == ENOSPC && mc != spa_normal_class(spa)) { 3626 /* 3627 * If throttling, transfer reservation over to normal class. 3628 * The io_allocator slot can remain the same even though we 3629 * are switching classes. 3630 */ 3631 if (mc->mc_alloc_throttle_enabled && 3632 (zio->io_flags & ZIO_FLAG_IO_ALLOCATING)) { 3633 metaslab_class_throttle_unreserve(mc, 3634 zio->io_prop.zp_copies, zio->io_allocator, zio); 3635 zio->io_flags &= ~ZIO_FLAG_IO_ALLOCATING; 3636 3637 VERIFY(metaslab_class_throttle_reserve( 3638 spa_normal_class(spa), 3639 zio->io_prop.zp_copies, zio->io_allocator, zio, 3640 flags | METASLAB_MUST_RESERVE)); 3641 } 3642 zio->io_metaslab_class = mc = spa_normal_class(spa); 3643 if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) { 3644 zfs_dbgmsg("%s: metaslab allocation failure, " 3645 "trying normal class: zio %px, size %llu, error %d", 3646 spa_name(spa), zio, (u_longlong_t)zio->io_size, 3647 error); 3648 } 3649 3650 error = metaslab_alloc(spa, mc, zio->io_size, bp, 3651 zio->io_prop.zp_copies, zio->io_txg, NULL, flags, 3652 &zio->io_alloc_list, zio, zio->io_allocator); 3653 } 3654 3655 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) { 3656 if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) { 3657 zfs_dbgmsg("%s: metaslab allocation failure, " 3658 "trying ganging: zio %px, size %llu, error %d", 3659 spa_name(spa), zio, (u_longlong_t)zio->io_size, 3660 error); 3661 } 3662 return (zio_write_gang_block(zio, mc)); 3663 } 3664 if (error != 0) { 3665 if (error != ENOSPC || 3666 (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC)) { 3667 zfs_dbgmsg("%s: metaslab allocation failure: zio %px, " 3668 "size %llu, error %d", 3669 spa_name(spa), zio, (u_longlong_t)zio->io_size, 3670 error); 3671 } 3672 zio->io_error = error; 3673 } 3674 3675 return (zio); 3676 } 3677 3678 static zio_t * 3679 zio_dva_free(zio_t *zio) 3680 { 3681 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE); 3682 3683 return (zio); 3684 } 3685 3686 static zio_t * 3687 zio_dva_claim(zio_t *zio) 3688 { 3689 int error; 3690 3691 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg); 3692 if (error) 3693 zio->io_error = error; 3694 3695 return (zio); 3696 } 3697 3698 /* 3699 * Undo an allocation. This is used by zio_done() when an I/O fails 3700 * and we want to give back the block we just allocated. 3701 * This handles both normal blocks and gang blocks. 3702 */ 3703 static void 3704 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp) 3705 { 3706 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp)); 3707 ASSERT(zio->io_bp_override == NULL); 3708 3709 if (!BP_IS_HOLE(bp)) 3710 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE); 3711 3712 if (gn != NULL) { 3713 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 3714 zio_dva_unallocate(zio, gn->gn_child[g], 3715 &gn->gn_gbh->zg_blkptr[g]); 3716 } 3717 } 3718 } 3719 3720 /* 3721 * Try to allocate an intent log block. Return 0 on success, errno on failure. 3722 */ 3723 int 3724 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp, 3725 uint64_t size, boolean_t *slog) 3726 { 3727 int error = 1; 3728 zio_alloc_list_t io_alloc_list; 3729 3730 ASSERT(txg > spa_syncing_txg(spa)); 3731 3732 metaslab_trace_init(&io_alloc_list); 3733 3734 /* 3735 * Block pointer fields are useful to metaslabs for stats and debugging. 3736 * Fill in the obvious ones before calling into metaslab_alloc(). 3737 */ 3738 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 3739 BP_SET_PSIZE(new_bp, size); 3740 BP_SET_LEVEL(new_bp, 0); 3741 3742 /* 3743 * When allocating a zil block, we don't have information about 3744 * the final destination of the block except the objset it's part 3745 * of, so we just hash the objset ID to pick the allocator to get 3746 * some parallelism. 3747 */ 3748 int flags = METASLAB_FASTWRITE | METASLAB_ZIL; 3749 int allocator = (uint_t)cityhash4(0, 0, 0, 3750 os->os_dsl_dataset->ds_object) % spa->spa_alloc_count; 3751 error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1, 3752 txg, NULL, flags, &io_alloc_list, NULL, allocator); 3753 *slog = (error == 0); 3754 if (error != 0) { 3755 error = metaslab_alloc(spa, spa_embedded_log_class(spa), size, 3756 new_bp, 1, txg, NULL, flags, 3757 &io_alloc_list, NULL, allocator); 3758 } 3759 if (error != 0) { 3760 error = metaslab_alloc(spa, spa_normal_class(spa), size, 3761 new_bp, 1, txg, NULL, flags, 3762 &io_alloc_list, NULL, allocator); 3763 } 3764 metaslab_trace_fini(&io_alloc_list); 3765 3766 if (error == 0) { 3767 BP_SET_LSIZE(new_bp, size); 3768 BP_SET_PSIZE(new_bp, size); 3769 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF); 3770 BP_SET_CHECKSUM(new_bp, 3771 spa_version(spa) >= SPA_VERSION_SLIM_ZIL 3772 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG); 3773 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 3774 BP_SET_LEVEL(new_bp, 0); 3775 BP_SET_DEDUP(new_bp, 0); 3776 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER); 3777 3778 /* 3779 * encrypted blocks will require an IV and salt. We generate 3780 * these now since we will not be rewriting the bp at 3781 * rewrite time. 3782 */ 3783 if (os->os_encrypted) { 3784 uint8_t iv[ZIO_DATA_IV_LEN]; 3785 uint8_t salt[ZIO_DATA_SALT_LEN]; 3786 3787 BP_SET_CRYPT(new_bp, B_TRUE); 3788 VERIFY0(spa_crypt_get_salt(spa, 3789 dmu_objset_id(os), salt)); 3790 VERIFY0(zio_crypt_generate_iv(iv)); 3791 3792 zio_crypt_encode_params_bp(new_bp, salt, iv); 3793 } 3794 } else { 3795 zfs_dbgmsg("%s: zil block allocation failure: " 3796 "size %llu, error %d", spa_name(spa), (u_longlong_t)size, 3797 error); 3798 } 3799 3800 return (error); 3801 } 3802 3803 /* 3804 * ========================================================================== 3805 * Read and write to physical devices 3806 * ========================================================================== 3807 */ 3808 3809 /* 3810 * Issue an I/O to the underlying vdev. Typically the issue pipeline 3811 * stops after this stage and will resume upon I/O completion. 3812 * However, there are instances where the vdev layer may need to 3813 * continue the pipeline when an I/O was not issued. Since the I/O 3814 * that was sent to the vdev layer might be different than the one 3815 * currently active in the pipeline (see vdev_queue_io()), we explicitly 3816 * force the underlying vdev layers to call either zio_execute() or 3817 * zio_interrupt() to ensure that the pipeline continues with the correct I/O. 3818 */ 3819 static zio_t * 3820 zio_vdev_io_start(zio_t *zio) 3821 { 3822 vdev_t *vd = zio->io_vd; 3823 uint64_t align; 3824 spa_t *spa = zio->io_spa; 3825 3826 zio->io_delay = 0; 3827 3828 ASSERT(zio->io_error == 0); 3829 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0); 3830 3831 if (vd == NULL) { 3832 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 3833 spa_config_enter(spa, SCL_ZIO, zio, RW_READER); 3834 3835 /* 3836 * The mirror_ops handle multiple DVAs in a single BP. 3837 */ 3838 vdev_mirror_ops.vdev_op_io_start(zio); 3839 return (NULL); 3840 } 3841 3842 ASSERT3P(zio->io_logical, !=, zio); 3843 if (zio->io_type == ZIO_TYPE_WRITE) { 3844 ASSERT(spa->spa_trust_config); 3845 3846 /* 3847 * Note: the code can handle other kinds of writes, 3848 * but we don't expect them. 3849 */ 3850 if (zio->io_vd->vdev_noalloc) { 3851 ASSERT(zio->io_flags & 3852 (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL | 3853 ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE)); 3854 } 3855 } 3856 3857 align = 1ULL << vd->vdev_top->vdev_ashift; 3858 3859 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) && 3860 P2PHASE(zio->io_size, align) != 0) { 3861 /* Transform logical writes to be a full physical block size. */ 3862 uint64_t asize = P2ROUNDUP(zio->io_size, align); 3863 abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize); 3864 ASSERT(vd == vd->vdev_top); 3865 if (zio->io_type == ZIO_TYPE_WRITE) { 3866 abd_copy(abuf, zio->io_abd, zio->io_size); 3867 abd_zero_off(abuf, zio->io_size, asize - zio->io_size); 3868 } 3869 zio_push_transform(zio, abuf, asize, asize, zio_subblock); 3870 } 3871 3872 /* 3873 * If this is not a physical io, make sure that it is properly aligned 3874 * before proceeding. 3875 */ 3876 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) { 3877 ASSERT0(P2PHASE(zio->io_offset, align)); 3878 ASSERT0(P2PHASE(zio->io_size, align)); 3879 } else { 3880 /* 3881 * For physical writes, we allow 512b aligned writes and assume 3882 * the device will perform a read-modify-write as necessary. 3883 */ 3884 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE)); 3885 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE)); 3886 } 3887 3888 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa)); 3889 3890 /* 3891 * If this is a repair I/O, and there's no self-healing involved -- 3892 * that is, we're just resilvering what we expect to resilver -- 3893 * then don't do the I/O unless zio's txg is actually in vd's DTL. 3894 * This prevents spurious resilvering. 3895 * 3896 * There are a few ways that we can end up creating these spurious 3897 * resilver i/os: 3898 * 3899 * 1. A resilver i/o will be issued if any DVA in the BP has a 3900 * dirty DTL. The mirror code will issue resilver writes to 3901 * each DVA, including the one(s) that are not on vdevs with dirty 3902 * DTLs. 3903 * 3904 * 2. With nested replication, which happens when we have a 3905 * "replacing" or "spare" vdev that's a child of a mirror or raidz. 3906 * For example, given mirror(replacing(A+B), C), it's likely that 3907 * only A is out of date (it's the new device). In this case, we'll 3908 * read from C, then use the data to resilver A+B -- but we don't 3909 * actually want to resilver B, just A. The top-level mirror has no 3910 * way to know this, so instead we just discard unnecessary repairs 3911 * as we work our way down the vdev tree. 3912 * 3913 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc. 3914 * The same logic applies to any form of nested replication: ditto 3915 * + mirror, RAID-Z + replacing, etc. 3916 * 3917 * However, indirect vdevs point off to other vdevs which may have 3918 * DTL's, so we never bypass them. The child i/os on concrete vdevs 3919 * will be properly bypassed instead. 3920 * 3921 * Leaf DTL_PARTIAL can be empty when a legitimate write comes from 3922 * a dRAID spare vdev. For example, when a dRAID spare is first 3923 * used, its spare blocks need to be written to but the leaf vdev's 3924 * of such blocks can have empty DTL_PARTIAL. 3925 * 3926 * There seemed no clean way to allow such writes while bypassing 3927 * spurious ones. At this point, just avoid all bypassing for dRAID 3928 * for correctness. 3929 */ 3930 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) && 3931 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) && 3932 zio->io_txg != 0 && /* not a delegated i/o */ 3933 vd->vdev_ops != &vdev_indirect_ops && 3934 vd->vdev_top->vdev_ops != &vdev_draid_ops && 3935 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) { 3936 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 3937 zio_vdev_io_bypass(zio); 3938 return (zio); 3939 } 3940 3941 /* 3942 * Select the next best leaf I/O to process. Distributed spares are 3943 * excluded since they dispatch the I/O directly to a leaf vdev after 3944 * applying the dRAID mapping. 3945 */ 3946 if (vd->vdev_ops->vdev_op_leaf && 3947 vd->vdev_ops != &vdev_draid_spare_ops && 3948 (zio->io_type == ZIO_TYPE_READ || 3949 zio->io_type == ZIO_TYPE_WRITE || 3950 zio->io_type == ZIO_TYPE_TRIM)) { 3951 3952 if ((zio = vdev_queue_io(zio)) == NULL) 3953 return (NULL); 3954 3955 if (!vdev_accessible(vd, zio)) { 3956 zio->io_error = SET_ERROR(ENXIO); 3957 zio_interrupt(zio); 3958 return (NULL); 3959 } 3960 zio->io_delay = gethrtime(); 3961 } 3962 3963 vd->vdev_ops->vdev_op_io_start(zio); 3964 return (NULL); 3965 } 3966 3967 static zio_t * 3968 zio_vdev_io_done(zio_t *zio) 3969 { 3970 vdev_t *vd = zio->io_vd; 3971 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops; 3972 boolean_t unexpected_error = B_FALSE; 3973 3974 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) { 3975 return (NULL); 3976 } 3977 3978 ASSERT(zio->io_type == ZIO_TYPE_READ || 3979 zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM); 3980 3981 if (zio->io_delay) 3982 zio->io_delay = gethrtime() - zio->io_delay; 3983 3984 if (vd != NULL && vd->vdev_ops->vdev_op_leaf && 3985 vd->vdev_ops != &vdev_draid_spare_ops) { 3986 vdev_queue_io_done(zio); 3987 3988 if (zio_injection_enabled && zio->io_error == 0) 3989 zio->io_error = zio_handle_device_injections(vd, zio, 3990 EIO, EILSEQ); 3991 3992 if (zio_injection_enabled && zio->io_error == 0) 3993 zio->io_error = zio_handle_label_injection(zio, EIO); 3994 3995 if (zio->io_error && zio->io_type != ZIO_TYPE_TRIM) { 3996 if (!vdev_accessible(vd, zio)) { 3997 zio->io_error = SET_ERROR(ENXIO); 3998 } else { 3999 unexpected_error = B_TRUE; 4000 } 4001 } 4002 } 4003 4004 ops->vdev_op_io_done(zio); 4005 4006 if (unexpected_error && vd->vdev_remove_wanted == B_FALSE) 4007 VERIFY(vdev_probe(vd, zio) == NULL); 4008 4009 return (zio); 4010 } 4011 4012 /* 4013 * This function is used to change the priority of an existing zio that is 4014 * currently in-flight. This is used by the arc to upgrade priority in the 4015 * event that a demand read is made for a block that is currently queued 4016 * as a scrub or async read IO. Otherwise, the high priority read request 4017 * would end up having to wait for the lower priority IO. 4018 */ 4019 void 4020 zio_change_priority(zio_t *pio, zio_priority_t priority) 4021 { 4022 zio_t *cio, *cio_next; 4023 zio_link_t *zl = NULL; 4024 4025 ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 4026 4027 if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) { 4028 vdev_queue_change_io_priority(pio, priority); 4029 } else { 4030 pio->io_priority = priority; 4031 } 4032 4033 mutex_enter(&pio->io_lock); 4034 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 4035 cio_next = zio_walk_children(pio, &zl); 4036 zio_change_priority(cio, priority); 4037 } 4038 mutex_exit(&pio->io_lock); 4039 } 4040 4041 /* 4042 * For non-raidz ZIOs, we can just copy aside the bad data read from the 4043 * disk, and use that to finish the checksum ereport later. 4044 */ 4045 static void 4046 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr, 4047 const abd_t *good_buf) 4048 { 4049 /* no processing needed */ 4050 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE); 4051 } 4052 4053 void 4054 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr) 4055 { 4056 void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size); 4057 4058 abd_copy(abd, zio->io_abd, zio->io_size); 4059 4060 zcr->zcr_cbinfo = zio->io_size; 4061 zcr->zcr_cbdata = abd; 4062 zcr->zcr_finish = zio_vsd_default_cksum_finish; 4063 zcr->zcr_free = zio_abd_free; 4064 } 4065 4066 static zio_t * 4067 zio_vdev_io_assess(zio_t *zio) 4068 { 4069 vdev_t *vd = zio->io_vd; 4070 4071 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) { 4072 return (NULL); 4073 } 4074 4075 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 4076 spa_config_exit(zio->io_spa, SCL_ZIO, zio); 4077 4078 if (zio->io_vsd != NULL) { 4079 zio->io_vsd_ops->vsd_free(zio); 4080 zio->io_vsd = NULL; 4081 } 4082 4083 if (zio_injection_enabled && zio->io_error == 0) 4084 zio->io_error = zio_handle_fault_injection(zio, EIO); 4085 4086 /* 4087 * If the I/O failed, determine whether we should attempt to retry it. 4088 * 4089 * On retry, we cut in line in the issue queue, since we don't want 4090 * compression/checksumming/etc. work to prevent our (cheap) IO reissue. 4091 */ 4092 if (zio->io_error && vd == NULL && 4093 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) { 4094 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */ 4095 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */ 4096 zio->io_error = 0; 4097 zio->io_flags |= ZIO_FLAG_IO_RETRY | ZIO_FLAG_DONT_AGGREGATE; 4098 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1; 4099 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, 4100 zio_requeue_io_start_cut_in_line); 4101 return (NULL); 4102 } 4103 4104 /* 4105 * If we got an error on a leaf device, convert it to ENXIO 4106 * if the device is not accessible at all. 4107 */ 4108 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf && 4109 !vdev_accessible(vd, zio)) 4110 zio->io_error = SET_ERROR(ENXIO); 4111 4112 /* 4113 * If we can't write to an interior vdev (mirror or RAID-Z), 4114 * set vdev_cant_write so that we stop trying to allocate from it. 4115 */ 4116 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE && 4117 vd != NULL && !vd->vdev_ops->vdev_op_leaf) { 4118 vdev_dbgmsg(vd, "zio_vdev_io_assess(zio=%px) setting " 4119 "cant_write=TRUE due to write failure with ENXIO", 4120 zio); 4121 vd->vdev_cant_write = B_TRUE; 4122 } 4123 4124 /* 4125 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future 4126 * attempts will ever succeed. In this case we set a persistent 4127 * boolean flag so that we don't bother with it in the future. 4128 */ 4129 if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) && 4130 zio->io_type == ZIO_TYPE_IOCTL && 4131 zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL) 4132 vd->vdev_nowritecache = B_TRUE; 4133 4134 if (zio->io_error) 4135 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 4136 4137 if (vd != NULL && vd->vdev_ops->vdev_op_leaf && 4138 zio->io_physdone != NULL) { 4139 ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED)); 4140 ASSERT(zio->io_child_type == ZIO_CHILD_VDEV); 4141 zio->io_physdone(zio->io_logical); 4142 } 4143 4144 return (zio); 4145 } 4146 4147 void 4148 zio_vdev_io_reissue(zio_t *zio) 4149 { 4150 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 4151 ASSERT(zio->io_error == 0); 4152 4153 zio->io_stage >>= 1; 4154 } 4155 4156 void 4157 zio_vdev_io_redone(zio_t *zio) 4158 { 4159 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE); 4160 4161 zio->io_stage >>= 1; 4162 } 4163 4164 void 4165 zio_vdev_io_bypass(zio_t *zio) 4166 { 4167 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 4168 ASSERT(zio->io_error == 0); 4169 4170 zio->io_flags |= ZIO_FLAG_IO_BYPASS; 4171 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1; 4172 } 4173 4174 /* 4175 * ========================================================================== 4176 * Encrypt and store encryption parameters 4177 * ========================================================================== 4178 */ 4179 4180 4181 /* 4182 * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for 4183 * managing the storage of encryption parameters and passing them to the 4184 * lower-level encryption functions. 4185 */ 4186 static zio_t * 4187 zio_encrypt(zio_t *zio) 4188 { 4189 zio_prop_t *zp = &zio->io_prop; 4190 spa_t *spa = zio->io_spa; 4191 blkptr_t *bp = zio->io_bp; 4192 uint64_t psize = BP_GET_PSIZE(bp); 4193 uint64_t dsobj = zio->io_bookmark.zb_objset; 4194 dmu_object_type_t ot = BP_GET_TYPE(bp); 4195 void *enc_buf = NULL; 4196 abd_t *eabd = NULL; 4197 uint8_t salt[ZIO_DATA_SALT_LEN]; 4198 uint8_t iv[ZIO_DATA_IV_LEN]; 4199 uint8_t mac[ZIO_DATA_MAC_LEN]; 4200 boolean_t no_crypt = B_FALSE; 4201 4202 /* the root zio already encrypted the data */ 4203 if (zio->io_child_type == ZIO_CHILD_GANG) 4204 return (zio); 4205 4206 /* only ZIL blocks are re-encrypted on rewrite */ 4207 if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG) 4208 return (zio); 4209 4210 if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) { 4211 BP_SET_CRYPT(bp, B_FALSE); 4212 return (zio); 4213 } 4214 4215 /* if we are doing raw encryption set the provided encryption params */ 4216 if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) { 4217 ASSERT0(BP_GET_LEVEL(bp)); 4218 BP_SET_CRYPT(bp, B_TRUE); 4219 BP_SET_BYTEORDER(bp, zp->zp_byteorder); 4220 if (ot != DMU_OT_OBJSET) 4221 zio_crypt_encode_mac_bp(bp, zp->zp_mac); 4222 4223 /* dnode blocks must be written out in the provided byteorder */ 4224 if (zp->zp_byteorder != ZFS_HOST_BYTEORDER && 4225 ot == DMU_OT_DNODE) { 4226 void *bswap_buf = zio_buf_alloc(psize); 4227 abd_t *babd = abd_get_from_buf(bswap_buf, psize); 4228 4229 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 4230 abd_copy_to_buf(bswap_buf, zio->io_abd, psize); 4231 dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf, 4232 psize); 4233 4234 abd_take_ownership_of_buf(babd, B_TRUE); 4235 zio_push_transform(zio, babd, psize, psize, NULL); 4236 } 4237 4238 if (DMU_OT_IS_ENCRYPTED(ot)) 4239 zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv); 4240 return (zio); 4241 } 4242 4243 /* indirect blocks only maintain a cksum of the lower level MACs */ 4244 if (BP_GET_LEVEL(bp) > 0) { 4245 BP_SET_CRYPT(bp, B_TRUE); 4246 VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE, 4247 zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp), 4248 mac)); 4249 zio_crypt_encode_mac_bp(bp, mac); 4250 return (zio); 4251 } 4252 4253 /* 4254 * Objset blocks are a special case since they have 2 256-bit MACs 4255 * embedded within them. 4256 */ 4257 if (ot == DMU_OT_OBJSET) { 4258 ASSERT0(DMU_OT_IS_ENCRYPTED(ot)); 4259 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 4260 BP_SET_CRYPT(bp, B_TRUE); 4261 VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj, 4262 zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp))); 4263 return (zio); 4264 } 4265 4266 /* unencrypted object types are only authenticated with a MAC */ 4267 if (!DMU_OT_IS_ENCRYPTED(ot)) { 4268 BP_SET_CRYPT(bp, B_TRUE); 4269 VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj, 4270 zio->io_abd, psize, mac)); 4271 zio_crypt_encode_mac_bp(bp, mac); 4272 return (zio); 4273 } 4274 4275 /* 4276 * Later passes of sync-to-convergence may decide to rewrite data 4277 * in place to avoid more disk reallocations. This presents a problem 4278 * for encryption because this constitutes rewriting the new data with 4279 * the same encryption key and IV. However, this only applies to blocks 4280 * in the MOS (particularly the spacemaps) and we do not encrypt the 4281 * MOS. We assert that the zio is allocating or an intent log write 4282 * to enforce this. 4283 */ 4284 ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG); 4285 ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG); 4286 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION)); 4287 ASSERT3U(psize, !=, 0); 4288 4289 enc_buf = zio_buf_alloc(psize); 4290 eabd = abd_get_from_buf(enc_buf, psize); 4291 abd_take_ownership_of_buf(eabd, B_TRUE); 4292 4293 /* 4294 * For an explanation of what encryption parameters are stored 4295 * where, see the block comment in zio_crypt.c. 4296 */ 4297 if (ot == DMU_OT_INTENT_LOG) { 4298 zio_crypt_decode_params_bp(bp, salt, iv); 4299 } else { 4300 BP_SET_CRYPT(bp, B_TRUE); 4301 } 4302 4303 /* Perform the encryption. This should not fail */ 4304 VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark, 4305 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), 4306 salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt)); 4307 4308 /* encode encryption metadata into the bp */ 4309 if (ot == DMU_OT_INTENT_LOG) { 4310 /* 4311 * ZIL blocks store the MAC in the embedded checksum, so the 4312 * transform must always be applied. 4313 */ 4314 zio_crypt_encode_mac_zil(enc_buf, mac); 4315 zio_push_transform(zio, eabd, psize, psize, NULL); 4316 } else { 4317 BP_SET_CRYPT(bp, B_TRUE); 4318 zio_crypt_encode_params_bp(bp, salt, iv); 4319 zio_crypt_encode_mac_bp(bp, mac); 4320 4321 if (no_crypt) { 4322 ASSERT3U(ot, ==, DMU_OT_DNODE); 4323 abd_free(eabd); 4324 } else { 4325 zio_push_transform(zio, eabd, psize, psize, NULL); 4326 } 4327 } 4328 4329 return (zio); 4330 } 4331 4332 /* 4333 * ========================================================================== 4334 * Generate and verify checksums 4335 * ========================================================================== 4336 */ 4337 static zio_t * 4338 zio_checksum_generate(zio_t *zio) 4339 { 4340 blkptr_t *bp = zio->io_bp; 4341 enum zio_checksum checksum; 4342 4343 if (bp == NULL) { 4344 /* 4345 * This is zio_write_phys(). 4346 * We're either generating a label checksum, or none at all. 4347 */ 4348 checksum = zio->io_prop.zp_checksum; 4349 4350 if (checksum == ZIO_CHECKSUM_OFF) 4351 return (zio); 4352 4353 ASSERT(checksum == ZIO_CHECKSUM_LABEL); 4354 } else { 4355 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) { 4356 ASSERT(!IO_IS_ALLOCATING(zio)); 4357 checksum = ZIO_CHECKSUM_GANG_HEADER; 4358 } else { 4359 checksum = BP_GET_CHECKSUM(bp); 4360 } 4361 } 4362 4363 zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size); 4364 4365 return (zio); 4366 } 4367 4368 static zio_t * 4369 zio_checksum_verify(zio_t *zio) 4370 { 4371 zio_bad_cksum_t info; 4372 blkptr_t *bp = zio->io_bp; 4373 int error; 4374 4375 ASSERT(zio->io_vd != NULL); 4376 4377 if (bp == NULL) { 4378 /* 4379 * This is zio_read_phys(). 4380 * We're either verifying a label checksum, or nothing at all. 4381 */ 4382 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF) 4383 return (zio); 4384 4385 ASSERT3U(zio->io_prop.zp_checksum, ==, ZIO_CHECKSUM_LABEL); 4386 } 4387 4388 if ((error = zio_checksum_error(zio, &info)) != 0) { 4389 zio->io_error = error; 4390 if (error == ECKSUM && 4391 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 4392 mutex_enter(&zio->io_vd->vdev_stat_lock); 4393 zio->io_vd->vdev_stat.vs_checksum_errors++; 4394 mutex_exit(&zio->io_vd->vdev_stat_lock); 4395 (void) zfs_ereport_start_checksum(zio->io_spa, 4396 zio->io_vd, &zio->io_bookmark, zio, 4397 zio->io_offset, zio->io_size, &info); 4398 } 4399 } 4400 4401 return (zio); 4402 } 4403 4404 /* 4405 * Called by RAID-Z to ensure we don't compute the checksum twice. 4406 */ 4407 void 4408 zio_checksum_verified(zio_t *zio) 4409 { 4410 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 4411 } 4412 4413 /* 4414 * ========================================================================== 4415 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other. 4416 * An error of 0 indicates success. ENXIO indicates whole-device failure, 4417 * which may be transient (e.g. unplugged) or permanent. ECKSUM and EIO 4418 * indicate errors that are specific to one I/O, and most likely permanent. 4419 * Any other error is presumed to be worse because we weren't expecting it. 4420 * ========================================================================== 4421 */ 4422 int 4423 zio_worst_error(int e1, int e2) 4424 { 4425 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO }; 4426 int r1, r2; 4427 4428 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++) 4429 if (e1 == zio_error_rank[r1]) 4430 break; 4431 4432 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++) 4433 if (e2 == zio_error_rank[r2]) 4434 break; 4435 4436 return (r1 > r2 ? e1 : e2); 4437 } 4438 4439 /* 4440 * ========================================================================== 4441 * I/O completion 4442 * ========================================================================== 4443 */ 4444 static zio_t * 4445 zio_ready(zio_t *zio) 4446 { 4447 blkptr_t *bp = zio->io_bp; 4448 zio_t *pio, *pio_next; 4449 zio_link_t *zl = NULL; 4450 4451 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT, 4452 ZIO_WAIT_READY)) { 4453 return (NULL); 4454 } 4455 4456 if (zio->io_ready) { 4457 ASSERT(IO_IS_ALLOCATING(zio)); 4458 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) || 4459 (zio->io_flags & ZIO_FLAG_NOPWRITE)); 4460 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0); 4461 4462 zio->io_ready(zio); 4463 } 4464 4465 if (bp != NULL && bp != &zio->io_bp_copy) 4466 zio->io_bp_copy = *bp; 4467 4468 if (zio->io_error != 0) { 4469 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 4470 4471 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 4472 ASSERT(IO_IS_ALLOCATING(zio)); 4473 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 4474 ASSERT(zio->io_metaslab_class != NULL); 4475 4476 /* 4477 * We were unable to allocate anything, unreserve and 4478 * issue the next I/O to allocate. 4479 */ 4480 metaslab_class_throttle_unreserve( 4481 zio->io_metaslab_class, zio->io_prop.zp_copies, 4482 zio->io_allocator, zio); 4483 zio_allocate_dispatch(zio->io_spa, zio->io_allocator); 4484 } 4485 } 4486 4487 mutex_enter(&zio->io_lock); 4488 zio->io_state[ZIO_WAIT_READY] = 1; 4489 pio = zio_walk_parents(zio, &zl); 4490 mutex_exit(&zio->io_lock); 4491 4492 /* 4493 * As we notify zio's parents, new parents could be added. 4494 * New parents go to the head of zio's io_parent_list, however, 4495 * so we will (correctly) not notify them. The remainder of zio's 4496 * io_parent_list, from 'pio_next' onward, cannot change because 4497 * all parents must wait for us to be done before they can be done. 4498 */ 4499 for (; pio != NULL; pio = pio_next) { 4500 pio_next = zio_walk_parents(zio, &zl); 4501 zio_notify_parent(pio, zio, ZIO_WAIT_READY, NULL); 4502 } 4503 4504 if (zio->io_flags & ZIO_FLAG_NODATA) { 4505 if (bp != NULL && BP_IS_GANG(bp)) { 4506 zio->io_flags &= ~ZIO_FLAG_NODATA; 4507 } else { 4508 ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE); 4509 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 4510 } 4511 } 4512 4513 if (zio_injection_enabled && 4514 zio->io_spa->spa_syncing_txg == zio->io_txg) 4515 zio_handle_ignored_writes(zio); 4516 4517 return (zio); 4518 } 4519 4520 /* 4521 * Update the allocation throttle accounting. 4522 */ 4523 static void 4524 zio_dva_throttle_done(zio_t *zio) 4525 { 4526 zio_t *lio __maybe_unused = zio->io_logical; 4527 zio_t *pio = zio_unique_parent(zio); 4528 vdev_t *vd = zio->io_vd; 4529 int flags = METASLAB_ASYNC_ALLOC; 4530 4531 ASSERT3P(zio->io_bp, !=, NULL); 4532 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE); 4533 ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE); 4534 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); 4535 ASSERT(vd != NULL); 4536 ASSERT3P(vd, ==, vd->vdev_top); 4537 ASSERT(zio_injection_enabled || !(zio->io_flags & ZIO_FLAG_IO_RETRY)); 4538 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR)); 4539 ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING); 4540 ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE)); 4541 ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA)); 4542 4543 /* 4544 * Parents of gang children can have two flavors -- ones that 4545 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set) 4546 * and ones that allocated the constituent blocks. The allocation 4547 * throttle needs to know the allocating parent zio so we must find 4548 * it here. 4549 */ 4550 if (pio->io_child_type == ZIO_CHILD_GANG) { 4551 /* 4552 * If our parent is a rewrite gang child then our grandparent 4553 * would have been the one that performed the allocation. 4554 */ 4555 if (pio->io_flags & ZIO_FLAG_IO_REWRITE) 4556 pio = zio_unique_parent(pio); 4557 flags |= METASLAB_GANG_CHILD; 4558 } 4559 4560 ASSERT(IO_IS_ALLOCATING(pio)); 4561 ASSERT3P(zio, !=, zio->io_logical); 4562 ASSERT(zio->io_logical != NULL); 4563 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR)); 4564 ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE); 4565 ASSERT(zio->io_metaslab_class != NULL); 4566 4567 mutex_enter(&pio->io_lock); 4568 metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags, 4569 pio->io_allocator, B_TRUE); 4570 mutex_exit(&pio->io_lock); 4571 4572 metaslab_class_throttle_unreserve(zio->io_metaslab_class, 1, 4573 pio->io_allocator, pio); 4574 4575 /* 4576 * Call into the pipeline to see if there is more work that 4577 * needs to be done. If there is work to be done it will be 4578 * dispatched to another taskq thread. 4579 */ 4580 zio_allocate_dispatch(zio->io_spa, pio->io_allocator); 4581 } 4582 4583 static zio_t * 4584 zio_done(zio_t *zio) 4585 { 4586 /* 4587 * Always attempt to keep stack usage minimal here since 4588 * we can be called recursively up to 19 levels deep. 4589 */ 4590 const uint64_t psize = zio->io_size; 4591 zio_t *pio, *pio_next; 4592 zio_link_t *zl = NULL; 4593 4594 /* 4595 * If our children haven't all completed, 4596 * wait for them and then repeat this pipeline stage. 4597 */ 4598 if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) { 4599 return (NULL); 4600 } 4601 4602 /* 4603 * If the allocation throttle is enabled, then update the accounting. 4604 * We only track child I/Os that are part of an allocating async 4605 * write. We must do this since the allocation is performed 4606 * by the logical I/O but the actual write is done by child I/Os. 4607 */ 4608 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING && 4609 zio->io_child_type == ZIO_CHILD_VDEV) { 4610 ASSERT(zio->io_metaslab_class != NULL); 4611 ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled); 4612 zio_dva_throttle_done(zio); 4613 } 4614 4615 /* 4616 * If the allocation throttle is enabled, verify that 4617 * we have decremented the refcounts for every I/O that was throttled. 4618 */ 4619 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 4620 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 4621 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 4622 ASSERT(zio->io_bp != NULL); 4623 4624 metaslab_group_alloc_verify(zio->io_spa, zio->io_bp, zio, 4625 zio->io_allocator); 4626 VERIFY(zfs_refcount_not_held(&zio->io_metaslab_class-> 4627 mc_allocator[zio->io_allocator].mca_alloc_slots, zio)); 4628 } 4629 4630 4631 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 4632 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 4633 ASSERT(zio->io_children[c][w] == 0); 4634 4635 if (zio->io_bp != NULL && !BP_IS_EMBEDDED(zio->io_bp)) { 4636 ASSERT(zio->io_bp->blk_pad[0] == 0); 4637 ASSERT(zio->io_bp->blk_pad[1] == 0); 4638 ASSERT(memcmp(zio->io_bp, &zio->io_bp_copy, 4639 sizeof (blkptr_t)) == 0 || 4640 (zio->io_bp == zio_unique_parent(zio)->io_bp)); 4641 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) && 4642 zio->io_bp_override == NULL && 4643 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) { 4644 ASSERT3U(zio->io_prop.zp_copies, <=, 4645 BP_GET_NDVAS(zio->io_bp)); 4646 ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 || 4647 (BP_COUNT_GANG(zio->io_bp) == 4648 BP_GET_NDVAS(zio->io_bp))); 4649 } 4650 if (zio->io_flags & ZIO_FLAG_NOPWRITE) 4651 VERIFY(BP_EQUAL(zio->io_bp, &zio->io_bp_orig)); 4652 } 4653 4654 /* 4655 * If there were child vdev/gang/ddt errors, they apply to us now. 4656 */ 4657 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV); 4658 zio_inherit_child_errors(zio, ZIO_CHILD_GANG); 4659 zio_inherit_child_errors(zio, ZIO_CHILD_DDT); 4660 4661 /* 4662 * If the I/O on the transformed data was successful, generate any 4663 * checksum reports now while we still have the transformed data. 4664 */ 4665 if (zio->io_error == 0) { 4666 while (zio->io_cksum_report != NULL) { 4667 zio_cksum_report_t *zcr = zio->io_cksum_report; 4668 uint64_t align = zcr->zcr_align; 4669 uint64_t asize = P2ROUNDUP(psize, align); 4670 abd_t *adata = zio->io_abd; 4671 4672 if (adata != NULL && asize != psize) { 4673 adata = abd_alloc(asize, B_TRUE); 4674 abd_copy(adata, zio->io_abd, psize); 4675 abd_zero_off(adata, psize, asize - psize); 4676 } 4677 4678 zio->io_cksum_report = zcr->zcr_next; 4679 zcr->zcr_next = NULL; 4680 zcr->zcr_finish(zcr, adata); 4681 zfs_ereport_free_checksum(zcr); 4682 4683 if (adata != NULL && asize != psize) 4684 abd_free(adata); 4685 } 4686 } 4687 4688 zio_pop_transforms(zio); /* note: may set zio->io_error */ 4689 4690 vdev_stat_update(zio, psize); 4691 4692 /* 4693 * If this I/O is attached to a particular vdev is slow, exceeding 4694 * 30 seconds to complete, post an error described the I/O delay. 4695 * We ignore these errors if the device is currently unavailable. 4696 */ 4697 if (zio->io_delay >= MSEC2NSEC(zio_slow_io_ms)) { 4698 if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) { 4699 /* 4700 * We want to only increment our slow IO counters if 4701 * the IO is valid (i.e. not if the drive is removed). 4702 * 4703 * zfs_ereport_post() will also do these checks, but 4704 * it can also ratelimit and have other failures, so we 4705 * need to increment the slow_io counters independent 4706 * of it. 4707 */ 4708 if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY, 4709 zio->io_spa, zio->io_vd, zio)) { 4710 mutex_enter(&zio->io_vd->vdev_stat_lock); 4711 zio->io_vd->vdev_stat.vs_slow_ios++; 4712 mutex_exit(&zio->io_vd->vdev_stat_lock); 4713 4714 (void) zfs_ereport_post(FM_EREPORT_ZFS_DELAY, 4715 zio->io_spa, zio->io_vd, &zio->io_bookmark, 4716 zio, 0); 4717 } 4718 } 4719 } 4720 4721 if (zio->io_error) { 4722 /* 4723 * If this I/O is attached to a particular vdev, 4724 * generate an error message describing the I/O failure 4725 * at the block level. We ignore these errors if the 4726 * device is currently unavailable. 4727 */ 4728 if (zio->io_error != ECKSUM && zio->io_vd != NULL && 4729 !vdev_is_dead(zio->io_vd)) { 4730 int ret = zfs_ereport_post(FM_EREPORT_ZFS_IO, 4731 zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0); 4732 if (ret != EALREADY) { 4733 mutex_enter(&zio->io_vd->vdev_stat_lock); 4734 if (zio->io_type == ZIO_TYPE_READ) 4735 zio->io_vd->vdev_stat.vs_read_errors++; 4736 else if (zio->io_type == ZIO_TYPE_WRITE) 4737 zio->io_vd->vdev_stat.vs_write_errors++; 4738 mutex_exit(&zio->io_vd->vdev_stat_lock); 4739 } 4740 } 4741 4742 if ((zio->io_error == EIO || !(zio->io_flags & 4743 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) && 4744 zio == zio->io_logical) { 4745 /* 4746 * For logical I/O requests, tell the SPA to log the 4747 * error and generate a logical data ereport. 4748 */ 4749 spa_log_error(zio->io_spa, &zio->io_bookmark, 4750 &zio->io_bp->blk_birth); 4751 (void) zfs_ereport_post(FM_EREPORT_ZFS_DATA, 4752 zio->io_spa, NULL, &zio->io_bookmark, zio, 0); 4753 } 4754 } 4755 4756 if (zio->io_error && zio == zio->io_logical) { 4757 /* 4758 * Determine whether zio should be reexecuted. This will 4759 * propagate all the way to the root via zio_notify_parent(). 4760 */ 4761 ASSERT(zio->io_vd == NULL && zio->io_bp != NULL); 4762 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 4763 4764 if (IO_IS_ALLOCATING(zio) && 4765 !(zio->io_flags & ZIO_FLAG_CANFAIL)) { 4766 if (zio->io_error != ENOSPC) 4767 zio->io_reexecute |= ZIO_REEXECUTE_NOW; 4768 else 4769 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 4770 } 4771 4772 if ((zio->io_type == ZIO_TYPE_READ || 4773 zio->io_type == ZIO_TYPE_FREE) && 4774 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && 4775 zio->io_error == ENXIO && 4776 spa_load_state(zio->io_spa) == SPA_LOAD_NONE && 4777 spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE) 4778 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 4779 4780 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute) 4781 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 4782 4783 /* 4784 * Here is a possibly good place to attempt to do 4785 * either combinatorial reconstruction or error correction 4786 * based on checksums. It also might be a good place 4787 * to send out preliminary ereports before we suspend 4788 * processing. 4789 */ 4790 } 4791 4792 /* 4793 * If there were logical child errors, they apply to us now. 4794 * We defer this until now to avoid conflating logical child 4795 * errors with errors that happened to the zio itself when 4796 * updating vdev stats and reporting FMA events above. 4797 */ 4798 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL); 4799 4800 if ((zio->io_error || zio->io_reexecute) && 4801 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio && 4802 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE))) 4803 zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp); 4804 4805 zio_gang_tree_free(&zio->io_gang_tree); 4806 4807 /* 4808 * Godfather I/Os should never suspend. 4809 */ 4810 if ((zio->io_flags & ZIO_FLAG_GODFATHER) && 4811 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) 4812 zio->io_reexecute &= ~ZIO_REEXECUTE_SUSPEND; 4813 4814 if (zio->io_reexecute) { 4815 /* 4816 * This is a logical I/O that wants to reexecute. 4817 * 4818 * Reexecute is top-down. When an i/o fails, if it's not 4819 * the root, it simply notifies its parent and sticks around. 4820 * The parent, seeing that it still has children in zio_done(), 4821 * does the same. This percolates all the way up to the root. 4822 * The root i/o will reexecute or suspend the entire tree. 4823 * 4824 * This approach ensures that zio_reexecute() honors 4825 * all the original i/o dependency relationships, e.g. 4826 * parents not executing until children are ready. 4827 */ 4828 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 4829 4830 zio->io_gang_leader = NULL; 4831 4832 mutex_enter(&zio->io_lock); 4833 zio->io_state[ZIO_WAIT_DONE] = 1; 4834 mutex_exit(&zio->io_lock); 4835 4836 /* 4837 * "The Godfather" I/O monitors its children but is 4838 * not a true parent to them. It will track them through 4839 * the pipeline but severs its ties whenever they get into 4840 * trouble (e.g. suspended). This allows "The Godfather" 4841 * I/O to return status without blocking. 4842 */ 4843 zl = NULL; 4844 for (pio = zio_walk_parents(zio, &zl); pio != NULL; 4845 pio = pio_next) { 4846 zio_link_t *remove_zl = zl; 4847 pio_next = zio_walk_parents(zio, &zl); 4848 4849 if ((pio->io_flags & ZIO_FLAG_GODFATHER) && 4850 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) { 4851 zio_remove_child(pio, zio, remove_zl); 4852 /* 4853 * This is a rare code path, so we don't 4854 * bother with "next_to_execute". 4855 */ 4856 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, 4857 NULL); 4858 } 4859 } 4860 4861 if ((pio = zio_unique_parent(zio)) != NULL) { 4862 /* 4863 * We're not a root i/o, so there's nothing to do 4864 * but notify our parent. Don't propagate errors 4865 * upward since we haven't permanently failed yet. 4866 */ 4867 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 4868 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE; 4869 /* 4870 * This is a rare code path, so we don't bother with 4871 * "next_to_execute". 4872 */ 4873 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, NULL); 4874 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) { 4875 /* 4876 * We'd fail again if we reexecuted now, so suspend 4877 * until conditions improve (e.g. device comes online). 4878 */ 4879 zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR); 4880 } else { 4881 /* 4882 * Reexecution is potentially a huge amount of work. 4883 * Hand it off to the otherwise-unused claim taskq. 4884 */ 4885 ASSERT(taskq_empty_ent(&zio->io_tqent)); 4886 spa_taskq_dispatch_ent(zio->io_spa, 4887 ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE, 4888 zio_reexecute, zio, 0, &zio->io_tqent); 4889 } 4890 return (NULL); 4891 } 4892 4893 ASSERT(zio->io_child_count == 0); 4894 ASSERT(zio->io_reexecute == 0); 4895 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL)); 4896 4897 /* 4898 * Report any checksum errors, since the I/O is complete. 4899 */ 4900 while (zio->io_cksum_report != NULL) { 4901 zio_cksum_report_t *zcr = zio->io_cksum_report; 4902 zio->io_cksum_report = zcr->zcr_next; 4903 zcr->zcr_next = NULL; 4904 zcr->zcr_finish(zcr, NULL); 4905 zfs_ereport_free_checksum(zcr); 4906 } 4907 4908 if (zio->io_flags & ZIO_FLAG_FASTWRITE && zio->io_bp && 4909 !BP_IS_HOLE(zio->io_bp) && !BP_IS_EMBEDDED(zio->io_bp) && 4910 !(zio->io_flags & ZIO_FLAG_NOPWRITE)) { 4911 metaslab_fastwrite_unmark(zio->io_spa, zio->io_bp); 4912 } 4913 4914 /* 4915 * It is the responsibility of the done callback to ensure that this 4916 * particular zio is no longer discoverable for adoption, and as 4917 * such, cannot acquire any new parents. 4918 */ 4919 if (zio->io_done) 4920 zio->io_done(zio); 4921 4922 mutex_enter(&zio->io_lock); 4923 zio->io_state[ZIO_WAIT_DONE] = 1; 4924 mutex_exit(&zio->io_lock); 4925 4926 /* 4927 * We are done executing this zio. We may want to execute a parent 4928 * next. See the comment in zio_notify_parent(). 4929 */ 4930 zio_t *next_to_execute = NULL; 4931 zl = NULL; 4932 for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) { 4933 zio_link_t *remove_zl = zl; 4934 pio_next = zio_walk_parents(zio, &zl); 4935 zio_remove_child(pio, zio, remove_zl); 4936 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, &next_to_execute); 4937 } 4938 4939 if (zio->io_waiter != NULL) { 4940 mutex_enter(&zio->io_lock); 4941 zio->io_executor = NULL; 4942 cv_broadcast(&zio->io_cv); 4943 mutex_exit(&zio->io_lock); 4944 } else { 4945 zio_destroy(zio); 4946 } 4947 4948 return (next_to_execute); 4949 } 4950 4951 /* 4952 * ========================================================================== 4953 * I/O pipeline definition 4954 * ========================================================================== 4955 */ 4956 static zio_pipe_stage_t *zio_pipeline[] = { 4957 NULL, 4958 zio_read_bp_init, 4959 zio_write_bp_init, 4960 zio_free_bp_init, 4961 zio_issue_async, 4962 zio_write_compress, 4963 zio_encrypt, 4964 zio_checksum_generate, 4965 zio_nop_write, 4966 zio_brt_free, 4967 zio_ddt_read_start, 4968 zio_ddt_read_done, 4969 zio_ddt_write, 4970 zio_ddt_free, 4971 zio_gang_assemble, 4972 zio_gang_issue, 4973 zio_dva_throttle, 4974 zio_dva_allocate, 4975 zio_dva_free, 4976 zio_dva_claim, 4977 zio_ready, 4978 zio_vdev_io_start, 4979 zio_vdev_io_done, 4980 zio_vdev_io_assess, 4981 zio_checksum_verify, 4982 zio_done 4983 }; 4984 4985 4986 4987 4988 /* 4989 * Compare two zbookmark_phys_t's to see which we would reach first in a 4990 * pre-order traversal of the object tree. 4991 * 4992 * This is simple in every case aside from the meta-dnode object. For all other 4993 * objects, we traverse them in order (object 1 before object 2, and so on). 4994 * However, all of these objects are traversed while traversing object 0, since 4995 * the data it points to is the list of objects. Thus, we need to convert to a 4996 * canonical representation so we can compare meta-dnode bookmarks to 4997 * non-meta-dnode bookmarks. 4998 * 4999 * We do this by calculating "equivalents" for each field of the zbookmark. 5000 * zbookmarks outside of the meta-dnode use their own object and level, and 5001 * calculate the level 0 equivalent (the first L0 blkid that is contained in the 5002 * blocks this bookmark refers to) by multiplying their blkid by their span 5003 * (the number of L0 blocks contained within one block at their level). 5004 * zbookmarks inside the meta-dnode calculate their object equivalent 5005 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use 5006 * level + 1<<31 (any value larger than a level could ever be) for their level. 5007 * This causes them to always compare before a bookmark in their object 5008 * equivalent, compare appropriately to bookmarks in other objects, and to 5009 * compare appropriately to other bookmarks in the meta-dnode. 5010 */ 5011 int 5012 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2, 5013 const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2) 5014 { 5015 /* 5016 * These variables represent the "equivalent" values for the zbookmark, 5017 * after converting zbookmarks inside the meta dnode to their 5018 * normal-object equivalents. 5019 */ 5020 uint64_t zb1obj, zb2obj; 5021 uint64_t zb1L0, zb2L0; 5022 uint64_t zb1level, zb2level; 5023 5024 if (zb1->zb_object == zb2->zb_object && 5025 zb1->zb_level == zb2->zb_level && 5026 zb1->zb_blkid == zb2->zb_blkid) 5027 return (0); 5028 5029 IMPLY(zb1->zb_level > 0, ibs1 >= SPA_MINBLOCKSHIFT); 5030 IMPLY(zb2->zb_level > 0, ibs2 >= SPA_MINBLOCKSHIFT); 5031 5032 /* 5033 * BP_SPANB calculates the span in blocks. 5034 */ 5035 zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level); 5036 zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level); 5037 5038 if (zb1->zb_object == DMU_META_DNODE_OBJECT) { 5039 zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 5040 zb1L0 = 0; 5041 zb1level = zb1->zb_level + COMPARE_META_LEVEL; 5042 } else { 5043 zb1obj = zb1->zb_object; 5044 zb1level = zb1->zb_level; 5045 } 5046 5047 if (zb2->zb_object == DMU_META_DNODE_OBJECT) { 5048 zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 5049 zb2L0 = 0; 5050 zb2level = zb2->zb_level + COMPARE_META_LEVEL; 5051 } else { 5052 zb2obj = zb2->zb_object; 5053 zb2level = zb2->zb_level; 5054 } 5055 5056 /* Now that we have a canonical representation, do the comparison. */ 5057 if (zb1obj != zb2obj) 5058 return (zb1obj < zb2obj ? -1 : 1); 5059 else if (zb1L0 != zb2L0) 5060 return (zb1L0 < zb2L0 ? -1 : 1); 5061 else if (zb1level != zb2level) 5062 return (zb1level > zb2level ? -1 : 1); 5063 /* 5064 * This can (theoretically) happen if the bookmarks have the same object 5065 * and level, but different blkids, if the block sizes are not the same. 5066 * There is presently no way to change the indirect block sizes 5067 */ 5068 return (0); 5069 } 5070 5071 /* 5072 * This function checks the following: given that last_block is the place that 5073 * our traversal stopped last time, does that guarantee that we've visited 5074 * every node under subtree_root? Therefore, we can't just use the raw output 5075 * of zbookmark_compare. We have to pass in a modified version of 5076 * subtree_root; by incrementing the block id, and then checking whether 5077 * last_block is before or equal to that, we can tell whether or not having 5078 * visited last_block implies that all of subtree_root's children have been 5079 * visited. 5080 */ 5081 boolean_t 5082 zbookmark_subtree_completed(const dnode_phys_t *dnp, 5083 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block) 5084 { 5085 zbookmark_phys_t mod_zb = *subtree_root; 5086 mod_zb.zb_blkid++; 5087 ASSERT0(last_block->zb_level); 5088 5089 /* The objset_phys_t isn't before anything. */ 5090 if (dnp == NULL) 5091 return (B_FALSE); 5092 5093 /* 5094 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the 5095 * data block size in sectors, because that variable is only used if 5096 * the bookmark refers to a block in the meta-dnode. Since we don't 5097 * know without examining it what object it refers to, and there's no 5098 * harm in passing in this value in other cases, we always pass it in. 5099 * 5100 * We pass in 0 for the indirect block size shift because zb2 must be 5101 * level 0. The indirect block size is only used to calculate the span 5102 * of the bookmark, but since the bookmark must be level 0, the span is 5103 * always 1, so the math works out. 5104 * 5105 * If you make changes to how the zbookmark_compare code works, be sure 5106 * to make sure that this code still works afterwards. 5107 */ 5108 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift, 5109 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb, 5110 last_block) <= 0); 5111 } 5112 5113 /* 5114 * This function is similar to zbookmark_subtree_completed(), but returns true 5115 * if subtree_root is equal or ahead of last_block, i.e. still to be done. 5116 */ 5117 boolean_t 5118 zbookmark_subtree_tbd(const dnode_phys_t *dnp, 5119 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block) 5120 { 5121 ASSERT0(last_block->zb_level); 5122 if (dnp == NULL) 5123 return (B_FALSE); 5124 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift, 5125 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, subtree_root, 5126 last_block) >= 0); 5127 } 5128 5129 EXPORT_SYMBOL(zio_type_name); 5130 EXPORT_SYMBOL(zio_buf_alloc); 5131 EXPORT_SYMBOL(zio_data_buf_alloc); 5132 EXPORT_SYMBOL(zio_buf_free); 5133 EXPORT_SYMBOL(zio_data_buf_free); 5134 5135 ZFS_MODULE_PARAM(zfs_zio, zio_, slow_io_ms, INT, ZMOD_RW, 5136 "Max I/O completion time (milliseconds) before marking it as slow"); 5137 5138 ZFS_MODULE_PARAM(zfs_zio, zio_, requeue_io_start_cut_in_line, INT, ZMOD_RW, 5139 "Prioritize requeued I/O"); 5140 5141 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_deferred_free, UINT, ZMOD_RW, 5142 "Defer frees starting in this pass"); 5143 5144 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_dont_compress, UINT, ZMOD_RW, 5145 "Don't compress starting in this pass"); 5146 5147 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_rewrite, UINT, ZMOD_RW, 5148 "Rewrite new bps starting in this pass"); 5149 5150 ZFS_MODULE_PARAM(zfs_zio, zio_, dva_throttle_enabled, INT, ZMOD_RW, 5151 "Throttle block allocations in the ZIO pipeline"); 5152 5153 ZFS_MODULE_PARAM(zfs_zio, zio_, deadman_log_all, INT, ZMOD_RW, 5154 "Log all slow ZIOs, not just those with vdevs"); 5155