xref: /freebsd/sys/contrib/openzfs/module/zfs/zio.c (revision 624f956bd91f118d12b2fef5ff01521ed7d8a935)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2022 by Delphix. All rights reserved.
24  * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25  * Copyright (c) 2017, Intel Corporation.
26  * Copyright (c) 2019, Klara Inc.
27  * Copyright (c) 2019, Allan Jude
28  * Copyright (c) 2021, Datto, Inc.
29  */
30 
31 #include <sys/sysmacros.h>
32 #include <sys/zfs_context.h>
33 #include <sys/fm/fs/zfs.h>
34 #include <sys/spa.h>
35 #include <sys/txg.h>
36 #include <sys/spa_impl.h>
37 #include <sys/vdev_impl.h>
38 #include <sys/vdev_trim.h>
39 #include <sys/zio_impl.h>
40 #include <sys/zio_compress.h>
41 #include <sys/zio_checksum.h>
42 #include <sys/dmu_objset.h>
43 #include <sys/arc.h>
44 #include <sys/brt.h>
45 #include <sys/ddt.h>
46 #include <sys/blkptr.h>
47 #include <sys/zfeature.h>
48 #include <sys/dsl_scan.h>
49 #include <sys/metaslab_impl.h>
50 #include <sys/time.h>
51 #include <sys/trace_zfs.h>
52 #include <sys/abd.h>
53 #include <sys/dsl_crypt.h>
54 #include <cityhash.h>
55 
56 /*
57  * ==========================================================================
58  * I/O type descriptions
59  * ==========================================================================
60  */
61 const char *const zio_type_name[ZIO_TYPES] = {
62 	/*
63 	 * Note: Linux kernel thread name length is limited
64 	 * so these names will differ from upstream open zfs.
65 	 */
66 	"z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_ioctl", "z_trim"
67 };
68 
69 int zio_dva_throttle_enabled = B_TRUE;
70 static int zio_deadman_log_all = B_FALSE;
71 
72 /*
73  * ==========================================================================
74  * I/O kmem caches
75  * ==========================================================================
76  */
77 static kmem_cache_t *zio_cache;
78 static kmem_cache_t *zio_link_cache;
79 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
80 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
81 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
82 static uint64_t zio_buf_cache_allocs[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
83 static uint64_t zio_buf_cache_frees[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
84 #endif
85 
86 /* Mark IOs as "slow" if they take longer than 30 seconds */
87 static uint_t zio_slow_io_ms = (30 * MILLISEC);
88 
89 #define	BP_SPANB(indblkshift, level) \
90 	(((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
91 #define	COMPARE_META_LEVEL	0x80000000ul
92 /*
93  * The following actions directly effect the spa's sync-to-convergence logic.
94  * The values below define the sync pass when we start performing the action.
95  * Care should be taken when changing these values as they directly impact
96  * spa_sync() performance. Tuning these values may introduce subtle performance
97  * pathologies and should only be done in the context of performance analysis.
98  * These tunables will eventually be removed and replaced with #defines once
99  * enough analysis has been done to determine optimal values.
100  *
101  * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
102  * regular blocks are not deferred.
103  *
104  * Starting in sync pass 8 (zfs_sync_pass_dont_compress), we disable
105  * compression (including of metadata).  In practice, we don't have this
106  * many sync passes, so this has no effect.
107  *
108  * The original intent was that disabling compression would help the sync
109  * passes to converge. However, in practice disabling compression increases
110  * the average number of sync passes, because when we turn compression off, a
111  * lot of block's size will change and thus we have to re-allocate (not
112  * overwrite) them. It also increases the number of 128KB allocations (e.g.
113  * for indirect blocks and spacemaps) because these will not be compressed.
114  * The 128K allocations are especially detrimental to performance on highly
115  * fragmented systems, which may have very few free segments of this size,
116  * and may need to load new metaslabs to satisfy 128K allocations.
117  */
118 
119 /* defer frees starting in this pass */
120 uint_t zfs_sync_pass_deferred_free = 2;
121 
122 /* don't compress starting in this pass */
123 static uint_t zfs_sync_pass_dont_compress = 8;
124 
125 /* rewrite new bps starting in this pass */
126 static uint_t zfs_sync_pass_rewrite = 2;
127 
128 /*
129  * An allocating zio is one that either currently has the DVA allocate
130  * stage set or will have it later in its lifetime.
131  */
132 #define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
133 
134 /*
135  * Enable smaller cores by excluding metadata
136  * allocations as well.
137  */
138 int zio_exclude_metadata = 0;
139 static int zio_requeue_io_start_cut_in_line = 1;
140 
141 #ifdef ZFS_DEBUG
142 static const int zio_buf_debug_limit = 16384;
143 #else
144 static const int zio_buf_debug_limit = 0;
145 #endif
146 
147 static inline void __zio_execute(zio_t *zio);
148 
149 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t);
150 
151 void
152 zio_init(void)
153 {
154 	size_t c;
155 
156 	zio_cache = kmem_cache_create("zio_cache",
157 	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
158 	zio_link_cache = kmem_cache_create("zio_link_cache",
159 	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
160 
161 	/*
162 	 * For small buffers, we want a cache for each multiple of
163 	 * SPA_MINBLOCKSIZE.  For larger buffers, we want a cache
164 	 * for each quarter-power of 2.
165 	 */
166 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
167 		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
168 		size_t p2 = size;
169 		size_t align = 0;
170 		size_t data_cflags, cflags;
171 
172 		data_cflags = KMC_NODEBUG;
173 		cflags = (zio_exclude_metadata || size > zio_buf_debug_limit) ?
174 		    KMC_NODEBUG : 0;
175 
176 		while (!ISP2(p2))
177 			p2 &= p2 - 1;
178 
179 #ifndef _KERNEL
180 		/*
181 		 * If we are using watchpoints, put each buffer on its own page,
182 		 * to eliminate the performance overhead of trapping to the
183 		 * kernel when modifying a non-watched buffer that shares the
184 		 * page with a watched buffer.
185 		 */
186 		if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
187 			continue;
188 		/*
189 		 * Here's the problem - on 4K native devices in userland on
190 		 * Linux using O_DIRECT, buffers must be 4K aligned or I/O
191 		 * will fail with EINVAL, causing zdb (and others) to coredump.
192 		 * Since userland probably doesn't need optimized buffer caches,
193 		 * we just force 4K alignment on everything.
194 		 */
195 		align = 8 * SPA_MINBLOCKSIZE;
196 #else
197 		if (size < PAGESIZE) {
198 			align = SPA_MINBLOCKSIZE;
199 		} else if (IS_P2ALIGNED(size, p2 >> 2)) {
200 			align = PAGESIZE;
201 		}
202 #endif
203 
204 		if (align != 0) {
205 			char name[36];
206 			if (cflags == data_cflags) {
207 				/*
208 				 * Resulting kmem caches would be identical.
209 				 * Save memory by creating only one.
210 				 */
211 				(void) snprintf(name, sizeof (name),
212 				    "zio_buf_comb_%lu", (ulong_t)size);
213 				zio_buf_cache[c] = kmem_cache_create(name,
214 				    size, align, NULL, NULL, NULL, NULL, NULL,
215 				    cflags);
216 				zio_data_buf_cache[c] = zio_buf_cache[c];
217 				continue;
218 			}
219 			(void) snprintf(name, sizeof (name), "zio_buf_%lu",
220 			    (ulong_t)size);
221 			zio_buf_cache[c] = kmem_cache_create(name, size,
222 			    align, NULL, NULL, NULL, NULL, NULL, cflags);
223 
224 			(void) snprintf(name, sizeof (name), "zio_data_buf_%lu",
225 			    (ulong_t)size);
226 			zio_data_buf_cache[c] = kmem_cache_create(name, size,
227 			    align, NULL, NULL, NULL, NULL, NULL, data_cflags);
228 		}
229 	}
230 
231 	while (--c != 0) {
232 		ASSERT(zio_buf_cache[c] != NULL);
233 		if (zio_buf_cache[c - 1] == NULL)
234 			zio_buf_cache[c - 1] = zio_buf_cache[c];
235 
236 		ASSERT(zio_data_buf_cache[c] != NULL);
237 		if (zio_data_buf_cache[c - 1] == NULL)
238 			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
239 	}
240 
241 	zio_inject_init();
242 
243 	lz4_init();
244 }
245 
246 void
247 zio_fini(void)
248 {
249 	size_t n = SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT;
250 
251 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
252 	for (size_t i = 0; i < n; i++) {
253 		if (zio_buf_cache_allocs[i] != zio_buf_cache_frees[i])
254 			(void) printf("zio_fini: [%d] %llu != %llu\n",
255 			    (int)((i + 1) << SPA_MINBLOCKSHIFT),
256 			    (long long unsigned)zio_buf_cache_allocs[i],
257 			    (long long unsigned)zio_buf_cache_frees[i]);
258 	}
259 #endif
260 
261 	/*
262 	 * The same kmem cache can show up multiple times in both zio_buf_cache
263 	 * and zio_data_buf_cache. Do a wasteful but trivially correct scan to
264 	 * sort it out.
265 	 */
266 	for (size_t i = 0; i < n; i++) {
267 		kmem_cache_t *cache = zio_buf_cache[i];
268 		if (cache == NULL)
269 			continue;
270 		for (size_t j = i; j < n; j++) {
271 			if (cache == zio_buf_cache[j])
272 				zio_buf_cache[j] = NULL;
273 			if (cache == zio_data_buf_cache[j])
274 				zio_data_buf_cache[j] = NULL;
275 		}
276 		kmem_cache_destroy(cache);
277 	}
278 
279 	for (size_t i = 0; i < n; i++) {
280 		kmem_cache_t *cache = zio_data_buf_cache[i];
281 		if (cache == NULL)
282 			continue;
283 		for (size_t j = i; j < n; j++) {
284 			if (cache == zio_data_buf_cache[j])
285 				zio_data_buf_cache[j] = NULL;
286 		}
287 		kmem_cache_destroy(cache);
288 	}
289 
290 	for (size_t i = 0; i < n; i++) {
291 		VERIFY3P(zio_buf_cache[i], ==, NULL);
292 		VERIFY3P(zio_data_buf_cache[i], ==, NULL);
293 	}
294 
295 	kmem_cache_destroy(zio_link_cache);
296 	kmem_cache_destroy(zio_cache);
297 
298 	zio_inject_fini();
299 
300 	lz4_fini();
301 }
302 
303 /*
304  * ==========================================================================
305  * Allocate and free I/O buffers
306  * ==========================================================================
307  */
308 
309 /*
310  * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
311  * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
312  * useful to inspect ZFS metadata, but if possible, we should avoid keeping
313  * excess / transient data in-core during a crashdump.
314  */
315 void *
316 zio_buf_alloc(size_t size)
317 {
318 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
319 
320 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
321 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
322 	atomic_add_64(&zio_buf_cache_allocs[c], 1);
323 #endif
324 
325 	return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
326 }
327 
328 /*
329  * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
330  * crashdump if the kernel panics.  This exists so that we will limit the amount
331  * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
332  * of kernel heap dumped to disk when the kernel panics)
333  */
334 void *
335 zio_data_buf_alloc(size_t size)
336 {
337 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
338 
339 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
340 
341 	return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
342 }
343 
344 void
345 zio_buf_free(void *buf, size_t size)
346 {
347 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
348 
349 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
350 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
351 	atomic_add_64(&zio_buf_cache_frees[c], 1);
352 #endif
353 
354 	kmem_cache_free(zio_buf_cache[c], buf);
355 }
356 
357 void
358 zio_data_buf_free(void *buf, size_t size)
359 {
360 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
361 
362 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
363 
364 	kmem_cache_free(zio_data_buf_cache[c], buf);
365 }
366 
367 static void
368 zio_abd_free(void *abd, size_t size)
369 {
370 	(void) size;
371 	abd_free((abd_t *)abd);
372 }
373 
374 /*
375  * ==========================================================================
376  * Push and pop I/O transform buffers
377  * ==========================================================================
378  */
379 void
380 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize,
381     zio_transform_func_t *transform)
382 {
383 	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
384 
385 	zt->zt_orig_abd = zio->io_abd;
386 	zt->zt_orig_size = zio->io_size;
387 	zt->zt_bufsize = bufsize;
388 	zt->zt_transform = transform;
389 
390 	zt->zt_next = zio->io_transform_stack;
391 	zio->io_transform_stack = zt;
392 
393 	zio->io_abd = data;
394 	zio->io_size = size;
395 }
396 
397 void
398 zio_pop_transforms(zio_t *zio)
399 {
400 	zio_transform_t *zt;
401 
402 	while ((zt = zio->io_transform_stack) != NULL) {
403 		if (zt->zt_transform != NULL)
404 			zt->zt_transform(zio,
405 			    zt->zt_orig_abd, zt->zt_orig_size);
406 
407 		if (zt->zt_bufsize != 0)
408 			abd_free(zio->io_abd);
409 
410 		zio->io_abd = zt->zt_orig_abd;
411 		zio->io_size = zt->zt_orig_size;
412 		zio->io_transform_stack = zt->zt_next;
413 
414 		kmem_free(zt, sizeof (zio_transform_t));
415 	}
416 }
417 
418 /*
419  * ==========================================================================
420  * I/O transform callbacks for subblocks, decompression, and decryption
421  * ==========================================================================
422  */
423 static void
424 zio_subblock(zio_t *zio, abd_t *data, uint64_t size)
425 {
426 	ASSERT(zio->io_size > size);
427 
428 	if (zio->io_type == ZIO_TYPE_READ)
429 		abd_copy(data, zio->io_abd, size);
430 }
431 
432 static void
433 zio_decompress(zio_t *zio, abd_t *data, uint64_t size)
434 {
435 	if (zio->io_error == 0) {
436 		void *tmp = abd_borrow_buf(data, size);
437 		int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
438 		    zio->io_abd, tmp, zio->io_size, size,
439 		    &zio->io_prop.zp_complevel);
440 		abd_return_buf_copy(data, tmp, size);
441 
442 		if (zio_injection_enabled && ret == 0)
443 			ret = zio_handle_fault_injection(zio, EINVAL);
444 
445 		if (ret != 0)
446 			zio->io_error = SET_ERROR(EIO);
447 	}
448 }
449 
450 static void
451 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size)
452 {
453 	int ret;
454 	void *tmp;
455 	blkptr_t *bp = zio->io_bp;
456 	spa_t *spa = zio->io_spa;
457 	uint64_t dsobj = zio->io_bookmark.zb_objset;
458 	uint64_t lsize = BP_GET_LSIZE(bp);
459 	dmu_object_type_t ot = BP_GET_TYPE(bp);
460 	uint8_t salt[ZIO_DATA_SALT_LEN];
461 	uint8_t iv[ZIO_DATA_IV_LEN];
462 	uint8_t mac[ZIO_DATA_MAC_LEN];
463 	boolean_t no_crypt = B_FALSE;
464 
465 	ASSERT(BP_USES_CRYPT(bp));
466 	ASSERT3U(size, !=, 0);
467 
468 	if (zio->io_error != 0)
469 		return;
470 
471 	/*
472 	 * Verify the cksum of MACs stored in an indirect bp. It will always
473 	 * be possible to verify this since it does not require an encryption
474 	 * key.
475 	 */
476 	if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) {
477 		zio_crypt_decode_mac_bp(bp, mac);
478 
479 		if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) {
480 			/*
481 			 * We haven't decompressed the data yet, but
482 			 * zio_crypt_do_indirect_mac_checksum() requires
483 			 * decompressed data to be able to parse out the MACs
484 			 * from the indirect block. We decompress it now and
485 			 * throw away the result after we are finished.
486 			 */
487 			tmp = zio_buf_alloc(lsize);
488 			ret = zio_decompress_data(BP_GET_COMPRESS(bp),
489 			    zio->io_abd, tmp, zio->io_size, lsize,
490 			    &zio->io_prop.zp_complevel);
491 			if (ret != 0) {
492 				ret = SET_ERROR(EIO);
493 				goto error;
494 			}
495 			ret = zio_crypt_do_indirect_mac_checksum(B_FALSE,
496 			    tmp, lsize, BP_SHOULD_BYTESWAP(bp), mac);
497 			zio_buf_free(tmp, lsize);
498 		} else {
499 			ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE,
500 			    zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac);
501 		}
502 		abd_copy(data, zio->io_abd, size);
503 
504 		if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) {
505 			ret = zio_handle_decrypt_injection(spa,
506 			    &zio->io_bookmark, ot, ECKSUM);
507 		}
508 		if (ret != 0)
509 			goto error;
510 
511 		return;
512 	}
513 
514 	/*
515 	 * If this is an authenticated block, just check the MAC. It would be
516 	 * nice to separate this out into its own flag, but when this was done,
517 	 * we had run out of bits in what is now zio_flag_t. Future cleanup
518 	 * could make this a flag bit.
519 	 */
520 	if (BP_IS_AUTHENTICATED(bp)) {
521 		if (ot == DMU_OT_OBJSET) {
522 			ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa,
523 			    dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp));
524 		} else {
525 			zio_crypt_decode_mac_bp(bp, mac);
526 			ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj,
527 			    zio->io_abd, size, mac);
528 			if (zio_injection_enabled && ret == 0) {
529 				ret = zio_handle_decrypt_injection(spa,
530 				    &zio->io_bookmark, ot, ECKSUM);
531 			}
532 		}
533 		abd_copy(data, zio->io_abd, size);
534 
535 		if (ret != 0)
536 			goto error;
537 
538 		return;
539 	}
540 
541 	zio_crypt_decode_params_bp(bp, salt, iv);
542 
543 	if (ot == DMU_OT_INTENT_LOG) {
544 		tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t));
545 		zio_crypt_decode_mac_zil(tmp, mac);
546 		abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t));
547 	} else {
548 		zio_crypt_decode_mac_bp(bp, mac);
549 	}
550 
551 	ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp),
552 	    BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data,
553 	    zio->io_abd, &no_crypt);
554 	if (no_crypt)
555 		abd_copy(data, zio->io_abd, size);
556 
557 	if (ret != 0)
558 		goto error;
559 
560 	return;
561 
562 error:
563 	/* assert that the key was found unless this was speculative */
564 	ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE));
565 
566 	/*
567 	 * If there was a decryption / authentication error return EIO as
568 	 * the io_error. If this was not a speculative zio, create an ereport.
569 	 */
570 	if (ret == ECKSUM) {
571 		zio->io_error = SET_ERROR(EIO);
572 		if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
573 			spa_log_error(spa, &zio->io_bookmark,
574 			    &zio->io_bp->blk_birth);
575 			(void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
576 			    spa, NULL, &zio->io_bookmark, zio, 0);
577 		}
578 	} else {
579 		zio->io_error = ret;
580 	}
581 }
582 
583 /*
584  * ==========================================================================
585  * I/O parent/child relationships and pipeline interlocks
586  * ==========================================================================
587  */
588 zio_t *
589 zio_walk_parents(zio_t *cio, zio_link_t **zl)
590 {
591 	list_t *pl = &cio->io_parent_list;
592 
593 	*zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl);
594 	if (*zl == NULL)
595 		return (NULL);
596 
597 	ASSERT((*zl)->zl_child == cio);
598 	return ((*zl)->zl_parent);
599 }
600 
601 zio_t *
602 zio_walk_children(zio_t *pio, zio_link_t **zl)
603 {
604 	list_t *cl = &pio->io_child_list;
605 
606 	ASSERT(MUTEX_HELD(&pio->io_lock));
607 
608 	*zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl);
609 	if (*zl == NULL)
610 		return (NULL);
611 
612 	ASSERT((*zl)->zl_parent == pio);
613 	return ((*zl)->zl_child);
614 }
615 
616 zio_t *
617 zio_unique_parent(zio_t *cio)
618 {
619 	zio_link_t *zl = NULL;
620 	zio_t *pio = zio_walk_parents(cio, &zl);
621 
622 	VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL);
623 	return (pio);
624 }
625 
626 void
627 zio_add_child(zio_t *pio, zio_t *cio)
628 {
629 	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
630 
631 	/*
632 	 * Logical I/Os can have logical, gang, or vdev children.
633 	 * Gang I/Os can have gang or vdev children.
634 	 * Vdev I/Os can only have vdev children.
635 	 * The following ASSERT captures all of these constraints.
636 	 */
637 	ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
638 
639 	zl->zl_parent = pio;
640 	zl->zl_child = cio;
641 
642 	mutex_enter(&pio->io_lock);
643 	mutex_enter(&cio->io_lock);
644 
645 	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
646 
647 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
648 		pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
649 
650 	list_insert_head(&pio->io_child_list, zl);
651 	list_insert_head(&cio->io_parent_list, zl);
652 
653 	pio->io_child_count++;
654 	cio->io_parent_count++;
655 
656 	mutex_exit(&cio->io_lock);
657 	mutex_exit(&pio->io_lock);
658 }
659 
660 static void
661 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
662 {
663 	ASSERT(zl->zl_parent == pio);
664 	ASSERT(zl->zl_child == cio);
665 
666 	mutex_enter(&pio->io_lock);
667 	mutex_enter(&cio->io_lock);
668 
669 	list_remove(&pio->io_child_list, zl);
670 	list_remove(&cio->io_parent_list, zl);
671 
672 	pio->io_child_count--;
673 	cio->io_parent_count--;
674 
675 	mutex_exit(&cio->io_lock);
676 	mutex_exit(&pio->io_lock);
677 	kmem_cache_free(zio_link_cache, zl);
678 }
679 
680 static boolean_t
681 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait)
682 {
683 	boolean_t waiting = B_FALSE;
684 
685 	mutex_enter(&zio->io_lock);
686 	ASSERT(zio->io_stall == NULL);
687 	for (int c = 0; c < ZIO_CHILD_TYPES; c++) {
688 		if (!(ZIO_CHILD_BIT_IS_SET(childbits, c)))
689 			continue;
690 
691 		uint64_t *countp = &zio->io_children[c][wait];
692 		if (*countp != 0) {
693 			zio->io_stage >>= 1;
694 			ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN);
695 			zio->io_stall = countp;
696 			waiting = B_TRUE;
697 			break;
698 		}
699 	}
700 	mutex_exit(&zio->io_lock);
701 	return (waiting);
702 }
703 
704 __attribute__((always_inline))
705 static inline void
706 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait,
707     zio_t **next_to_executep)
708 {
709 	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
710 	int *errorp = &pio->io_child_error[zio->io_child_type];
711 
712 	mutex_enter(&pio->io_lock);
713 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
714 		*errorp = zio_worst_error(*errorp, zio->io_error);
715 	pio->io_reexecute |= zio->io_reexecute;
716 	ASSERT3U(*countp, >, 0);
717 
718 	(*countp)--;
719 
720 	if (*countp == 0 && pio->io_stall == countp) {
721 		zio_taskq_type_t type =
722 		    pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE :
723 		    ZIO_TASKQ_INTERRUPT;
724 		pio->io_stall = NULL;
725 		mutex_exit(&pio->io_lock);
726 
727 		/*
728 		 * If we can tell the caller to execute this parent next, do
729 		 * so. We only do this if the parent's zio type matches the
730 		 * child's type. Otherwise dispatch the parent zio in its
731 		 * own taskq.
732 		 *
733 		 * Having the caller execute the parent when possible reduces
734 		 * locking on the zio taskq's, reduces context switch
735 		 * overhead, and has no recursion penalty.  Note that one
736 		 * read from disk typically causes at least 3 zio's: a
737 		 * zio_null(), the logical zio_read(), and then a physical
738 		 * zio.  When the physical ZIO completes, we are able to call
739 		 * zio_done() on all 3 of these zio's from one invocation of
740 		 * zio_execute() by returning the parent back to
741 		 * zio_execute().  Since the parent isn't executed until this
742 		 * thread returns back to zio_execute(), the caller should do
743 		 * so promptly.
744 		 *
745 		 * In other cases, dispatching the parent prevents
746 		 * overflowing the stack when we have deeply nested
747 		 * parent-child relationships, as we do with the "mega zio"
748 		 * of writes for spa_sync(), and the chain of ZIL blocks.
749 		 */
750 		if (next_to_executep != NULL && *next_to_executep == NULL &&
751 		    pio->io_type == zio->io_type) {
752 			*next_to_executep = pio;
753 		} else {
754 			zio_taskq_dispatch(pio, type, B_FALSE);
755 		}
756 	} else {
757 		mutex_exit(&pio->io_lock);
758 	}
759 }
760 
761 static void
762 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
763 {
764 	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
765 		zio->io_error = zio->io_child_error[c];
766 }
767 
768 int
769 zio_bookmark_compare(const void *x1, const void *x2)
770 {
771 	const zio_t *z1 = x1;
772 	const zio_t *z2 = x2;
773 
774 	if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset)
775 		return (-1);
776 	if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset)
777 		return (1);
778 
779 	if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object)
780 		return (-1);
781 	if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object)
782 		return (1);
783 
784 	if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level)
785 		return (-1);
786 	if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level)
787 		return (1);
788 
789 	if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid)
790 		return (-1);
791 	if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid)
792 		return (1);
793 
794 	if (z1 < z2)
795 		return (-1);
796 	if (z1 > z2)
797 		return (1);
798 
799 	return (0);
800 }
801 
802 /*
803  * ==========================================================================
804  * Create the various types of I/O (read, write, free, etc)
805  * ==========================================================================
806  */
807 static zio_t *
808 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
809     abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done,
810     void *private, zio_type_t type, zio_priority_t priority,
811     zio_flag_t flags, vdev_t *vd, uint64_t offset,
812     const zbookmark_phys_t *zb, enum zio_stage stage,
813     enum zio_stage pipeline)
814 {
815 	zio_t *zio;
816 
817 	IMPLY(type != ZIO_TYPE_TRIM, psize <= SPA_MAXBLOCKSIZE);
818 	ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0);
819 	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
820 
821 	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
822 	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
823 	ASSERT(vd || stage == ZIO_STAGE_OPEN);
824 
825 	IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0);
826 
827 	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
828 	memset(zio, 0, sizeof (zio_t));
829 
830 	mutex_init(&zio->io_lock, NULL, MUTEX_NOLOCKDEP, NULL);
831 	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
832 
833 	list_create(&zio->io_parent_list, sizeof (zio_link_t),
834 	    offsetof(zio_link_t, zl_parent_node));
835 	list_create(&zio->io_child_list, sizeof (zio_link_t),
836 	    offsetof(zio_link_t, zl_child_node));
837 	metaslab_trace_init(&zio->io_alloc_list);
838 
839 	if (vd != NULL)
840 		zio->io_child_type = ZIO_CHILD_VDEV;
841 	else if (flags & ZIO_FLAG_GANG_CHILD)
842 		zio->io_child_type = ZIO_CHILD_GANG;
843 	else if (flags & ZIO_FLAG_DDT_CHILD)
844 		zio->io_child_type = ZIO_CHILD_DDT;
845 	else
846 		zio->io_child_type = ZIO_CHILD_LOGICAL;
847 
848 	if (bp != NULL) {
849 		zio->io_bp = (blkptr_t *)bp;
850 		zio->io_bp_copy = *bp;
851 		zio->io_bp_orig = *bp;
852 		if (type != ZIO_TYPE_WRITE ||
853 		    zio->io_child_type == ZIO_CHILD_DDT)
854 			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
855 		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
856 			zio->io_logical = zio;
857 		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
858 			pipeline |= ZIO_GANG_STAGES;
859 	}
860 
861 	zio->io_spa = spa;
862 	zio->io_txg = txg;
863 	zio->io_done = done;
864 	zio->io_private = private;
865 	zio->io_type = type;
866 	zio->io_priority = priority;
867 	zio->io_vd = vd;
868 	zio->io_offset = offset;
869 	zio->io_orig_abd = zio->io_abd = data;
870 	zio->io_orig_size = zio->io_size = psize;
871 	zio->io_lsize = lsize;
872 	zio->io_orig_flags = zio->io_flags = flags;
873 	zio->io_orig_stage = zio->io_stage = stage;
874 	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
875 	zio->io_pipeline_trace = ZIO_STAGE_OPEN;
876 
877 	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
878 	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
879 
880 	if (zb != NULL)
881 		zio->io_bookmark = *zb;
882 
883 	if (pio != NULL) {
884 		zio->io_metaslab_class = pio->io_metaslab_class;
885 		if (zio->io_logical == NULL)
886 			zio->io_logical = pio->io_logical;
887 		if (zio->io_child_type == ZIO_CHILD_GANG)
888 			zio->io_gang_leader = pio->io_gang_leader;
889 		zio_add_child(pio, zio);
890 	}
891 
892 	taskq_init_ent(&zio->io_tqent);
893 
894 	return (zio);
895 }
896 
897 void
898 zio_destroy(zio_t *zio)
899 {
900 	metaslab_trace_fini(&zio->io_alloc_list);
901 	list_destroy(&zio->io_parent_list);
902 	list_destroy(&zio->io_child_list);
903 	mutex_destroy(&zio->io_lock);
904 	cv_destroy(&zio->io_cv);
905 	kmem_cache_free(zio_cache, zio);
906 }
907 
908 zio_t *
909 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
910     void *private, zio_flag_t flags)
911 {
912 	zio_t *zio;
913 
914 	zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
915 	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
916 	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
917 
918 	return (zio);
919 }
920 
921 zio_t *
922 zio_root(spa_t *spa, zio_done_func_t *done, void *private, zio_flag_t flags)
923 {
924 	return (zio_null(NULL, spa, NULL, done, private, flags));
925 }
926 
927 static int
928 zfs_blkptr_verify_log(spa_t *spa, const blkptr_t *bp,
929     enum blk_verify_flag blk_verify, const char *fmt, ...)
930 {
931 	va_list adx;
932 	char buf[256];
933 
934 	va_start(adx, fmt);
935 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
936 	va_end(adx);
937 
938 	zfs_dbgmsg("bad blkptr at %px: "
939 	    "DVA[0]=%#llx/%#llx "
940 	    "DVA[1]=%#llx/%#llx "
941 	    "DVA[2]=%#llx/%#llx "
942 	    "prop=%#llx "
943 	    "pad=%#llx,%#llx "
944 	    "phys_birth=%#llx "
945 	    "birth=%#llx "
946 	    "fill=%#llx "
947 	    "cksum=%#llx/%#llx/%#llx/%#llx",
948 	    bp,
949 	    (long long)bp->blk_dva[0].dva_word[0],
950 	    (long long)bp->blk_dva[0].dva_word[1],
951 	    (long long)bp->blk_dva[1].dva_word[0],
952 	    (long long)bp->blk_dva[1].dva_word[1],
953 	    (long long)bp->blk_dva[2].dva_word[0],
954 	    (long long)bp->blk_dva[2].dva_word[1],
955 	    (long long)bp->blk_prop,
956 	    (long long)bp->blk_pad[0],
957 	    (long long)bp->blk_pad[1],
958 	    (long long)bp->blk_phys_birth,
959 	    (long long)bp->blk_birth,
960 	    (long long)bp->blk_fill,
961 	    (long long)bp->blk_cksum.zc_word[0],
962 	    (long long)bp->blk_cksum.zc_word[1],
963 	    (long long)bp->blk_cksum.zc_word[2],
964 	    (long long)bp->blk_cksum.zc_word[3]);
965 	switch (blk_verify) {
966 	case BLK_VERIFY_HALT:
967 		zfs_panic_recover("%s: %s", spa_name(spa), buf);
968 		break;
969 	case BLK_VERIFY_LOG:
970 		zfs_dbgmsg("%s: %s", spa_name(spa), buf);
971 		break;
972 	case BLK_VERIFY_ONLY:
973 		break;
974 	}
975 
976 	return (1);
977 }
978 
979 /*
980  * Verify the block pointer fields contain reasonable values.  This means
981  * it only contains known object types, checksum/compression identifiers,
982  * block sizes within the maximum allowed limits, valid DVAs, etc.
983  *
984  * If everything checks out B_TRUE is returned.  The zfs_blkptr_verify
985  * argument controls the behavior when an invalid field is detected.
986  *
987  * Values for blk_verify_flag:
988  *   BLK_VERIFY_ONLY: evaluate the block
989  *   BLK_VERIFY_LOG: evaluate the block and log problems
990  *   BLK_VERIFY_HALT: call zfs_panic_recover on error
991  *
992  * Values for blk_config_flag:
993  *   BLK_CONFIG_HELD: caller holds SCL_VDEV for writer
994  *   BLK_CONFIG_NEEDED: caller holds no config lock, SCL_VDEV will be
995  *   obtained for reader
996  *   BLK_CONFIG_SKIP: skip checks which require SCL_VDEV, for better
997  *   performance
998  */
999 boolean_t
1000 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp,
1001     enum blk_config_flag blk_config, enum blk_verify_flag blk_verify)
1002 {
1003 	int errors = 0;
1004 
1005 	if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
1006 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1007 		    "blkptr at %px has invalid TYPE %llu",
1008 		    bp, (longlong_t)BP_GET_TYPE(bp));
1009 	}
1010 	if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS) {
1011 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1012 		    "blkptr at %px has invalid CHECKSUM %llu",
1013 		    bp, (longlong_t)BP_GET_CHECKSUM(bp));
1014 	}
1015 	if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS) {
1016 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1017 		    "blkptr at %px has invalid COMPRESS %llu",
1018 		    bp, (longlong_t)BP_GET_COMPRESS(bp));
1019 	}
1020 	if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
1021 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1022 		    "blkptr at %px has invalid LSIZE %llu",
1023 		    bp, (longlong_t)BP_GET_LSIZE(bp));
1024 	}
1025 	if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
1026 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1027 		    "blkptr at %px has invalid PSIZE %llu",
1028 		    bp, (longlong_t)BP_GET_PSIZE(bp));
1029 	}
1030 
1031 	if (BP_IS_EMBEDDED(bp)) {
1032 		if (BPE_GET_ETYPE(bp) >= NUM_BP_EMBEDDED_TYPES) {
1033 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1034 			    "blkptr at %px has invalid ETYPE %llu",
1035 			    bp, (longlong_t)BPE_GET_ETYPE(bp));
1036 		}
1037 	}
1038 
1039 	/*
1040 	 * Do not verify individual DVAs if the config is not trusted. This
1041 	 * will be done once the zio is executed in vdev_mirror_map_alloc.
1042 	 */
1043 	if (!spa->spa_trust_config)
1044 		return (errors == 0);
1045 
1046 	switch (blk_config) {
1047 	case BLK_CONFIG_HELD:
1048 		ASSERT(spa_config_held(spa, SCL_VDEV, RW_WRITER));
1049 		break;
1050 	case BLK_CONFIG_NEEDED:
1051 		spa_config_enter(spa, SCL_VDEV, bp, RW_READER);
1052 		break;
1053 	case BLK_CONFIG_SKIP:
1054 		return (errors == 0);
1055 	default:
1056 		panic("invalid blk_config %u", blk_config);
1057 	}
1058 
1059 	/*
1060 	 * Pool-specific checks.
1061 	 *
1062 	 * Note: it would be nice to verify that the blk_birth and
1063 	 * BP_PHYSICAL_BIRTH() are not too large.  However, spa_freeze()
1064 	 * allows the birth time of log blocks (and dmu_sync()-ed blocks
1065 	 * that are in the log) to be arbitrarily large.
1066 	 */
1067 	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
1068 		const dva_t *dva = &bp->blk_dva[i];
1069 		uint64_t vdevid = DVA_GET_VDEV(dva);
1070 
1071 		if (vdevid >= spa->spa_root_vdev->vdev_children) {
1072 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1073 			    "blkptr at %px DVA %u has invalid VDEV %llu",
1074 			    bp, i, (longlong_t)vdevid);
1075 			continue;
1076 		}
1077 		vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1078 		if (vd == NULL) {
1079 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1080 			    "blkptr at %px DVA %u has invalid VDEV %llu",
1081 			    bp, i, (longlong_t)vdevid);
1082 			continue;
1083 		}
1084 		if (vd->vdev_ops == &vdev_hole_ops) {
1085 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1086 			    "blkptr at %px DVA %u has hole VDEV %llu",
1087 			    bp, i, (longlong_t)vdevid);
1088 			continue;
1089 		}
1090 		if (vd->vdev_ops == &vdev_missing_ops) {
1091 			/*
1092 			 * "missing" vdevs are valid during import, but we
1093 			 * don't have their detailed info (e.g. asize), so
1094 			 * we can't perform any more checks on them.
1095 			 */
1096 			continue;
1097 		}
1098 		uint64_t offset = DVA_GET_OFFSET(dva);
1099 		uint64_t asize = DVA_GET_ASIZE(dva);
1100 		if (DVA_GET_GANG(dva))
1101 			asize = vdev_gang_header_asize(vd);
1102 		if (offset + asize > vd->vdev_asize) {
1103 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1104 			    "blkptr at %px DVA %u has invalid OFFSET %llu",
1105 			    bp, i, (longlong_t)offset);
1106 		}
1107 	}
1108 	if (blk_config == BLK_CONFIG_NEEDED)
1109 		spa_config_exit(spa, SCL_VDEV, bp);
1110 
1111 	return (errors == 0);
1112 }
1113 
1114 boolean_t
1115 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp)
1116 {
1117 	(void) bp;
1118 	uint64_t vdevid = DVA_GET_VDEV(dva);
1119 
1120 	if (vdevid >= spa->spa_root_vdev->vdev_children)
1121 		return (B_FALSE);
1122 
1123 	vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1124 	if (vd == NULL)
1125 		return (B_FALSE);
1126 
1127 	if (vd->vdev_ops == &vdev_hole_ops)
1128 		return (B_FALSE);
1129 
1130 	if (vd->vdev_ops == &vdev_missing_ops) {
1131 		return (B_FALSE);
1132 	}
1133 
1134 	uint64_t offset = DVA_GET_OFFSET(dva);
1135 	uint64_t asize = DVA_GET_ASIZE(dva);
1136 
1137 	if (DVA_GET_GANG(dva))
1138 		asize = vdev_gang_header_asize(vd);
1139 	if (offset + asize > vd->vdev_asize)
1140 		return (B_FALSE);
1141 
1142 	return (B_TRUE);
1143 }
1144 
1145 zio_t *
1146 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
1147     abd_t *data, uint64_t size, zio_done_func_t *done, void *private,
1148     zio_priority_t priority, zio_flag_t flags, const zbookmark_phys_t *zb)
1149 {
1150 	zio_t *zio;
1151 
1152 	zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
1153 	    data, size, size, done, private,
1154 	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
1155 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1156 	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
1157 
1158 	return (zio);
1159 }
1160 
1161 zio_t *
1162 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
1163     abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp,
1164     zio_done_func_t *ready, zio_done_func_t *children_ready,
1165     zio_done_func_t *physdone, zio_done_func_t *done,
1166     void *private, zio_priority_t priority, zio_flag_t flags,
1167     const zbookmark_phys_t *zb)
1168 {
1169 	zio_t *zio;
1170 
1171 	ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
1172 	    zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
1173 	    zp->zp_compress >= ZIO_COMPRESS_OFF &&
1174 	    zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
1175 	    DMU_OT_IS_VALID(zp->zp_type) &&
1176 	    zp->zp_level < 32 &&
1177 	    zp->zp_copies > 0 &&
1178 	    zp->zp_copies <= spa_max_replication(spa));
1179 
1180 	zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private,
1181 	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
1182 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1183 	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
1184 
1185 	zio->io_ready = ready;
1186 	zio->io_children_ready = children_ready;
1187 	zio->io_physdone = physdone;
1188 	zio->io_prop = *zp;
1189 
1190 	/*
1191 	 * Data can be NULL if we are going to call zio_write_override() to
1192 	 * provide the already-allocated BP.  But we may need the data to
1193 	 * verify a dedup hit (if requested).  In this case, don't try to
1194 	 * dedup (just take the already-allocated BP verbatim). Encrypted
1195 	 * dedup blocks need data as well so we also disable dedup in this
1196 	 * case.
1197 	 */
1198 	if (data == NULL &&
1199 	    (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) {
1200 		zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
1201 	}
1202 
1203 	return (zio);
1204 }
1205 
1206 zio_t *
1207 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data,
1208     uint64_t size, zio_done_func_t *done, void *private,
1209     zio_priority_t priority, zio_flag_t flags, zbookmark_phys_t *zb)
1210 {
1211 	zio_t *zio;
1212 
1213 	zio = zio_create(pio, spa, txg, bp, data, size, size, done, private,
1214 	    ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb,
1215 	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
1216 
1217 	return (zio);
1218 }
1219 
1220 void
1221 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite,
1222     boolean_t brtwrite)
1223 {
1224 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
1225 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1226 	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1227 	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
1228 	ASSERT(!brtwrite || !nopwrite);
1229 
1230 	/*
1231 	 * We must reset the io_prop to match the values that existed
1232 	 * when the bp was first written by dmu_sync() keeping in mind
1233 	 * that nopwrite and dedup are mutually exclusive.
1234 	 */
1235 	zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
1236 	zio->io_prop.zp_nopwrite = nopwrite;
1237 	zio->io_prop.zp_brtwrite = brtwrite;
1238 	zio->io_prop.zp_copies = copies;
1239 	zio->io_bp_override = bp;
1240 }
1241 
1242 void
1243 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
1244 {
1245 
1246 	(void) zfs_blkptr_verify(spa, bp, BLK_CONFIG_NEEDED, BLK_VERIFY_HALT);
1247 
1248 	/*
1249 	 * The check for EMBEDDED is a performance optimization.  We
1250 	 * process the free here (by ignoring it) rather than
1251 	 * putting it on the list and then processing it in zio_free_sync().
1252 	 */
1253 	if (BP_IS_EMBEDDED(bp))
1254 		return;
1255 
1256 	/*
1257 	 * Frees that are for the currently-syncing txg, are not going to be
1258 	 * deferred, and which will not need to do a read (i.e. not GANG or
1259 	 * DEDUP), can be processed immediately.  Otherwise, put them on the
1260 	 * in-memory list for later processing.
1261 	 *
1262 	 * Note that we only defer frees after zfs_sync_pass_deferred_free
1263 	 * when the log space map feature is disabled. [see relevant comment
1264 	 * in spa_sync_iterate_to_convergence()]
1265 	 */
1266 	if (BP_IS_GANG(bp) ||
1267 	    BP_GET_DEDUP(bp) ||
1268 	    txg != spa->spa_syncing_txg ||
1269 	    (spa_sync_pass(spa) >= zfs_sync_pass_deferred_free &&
1270 	    !spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) ||
1271 	    brt_maybe_exists(spa, bp)) {
1272 		metaslab_check_free(spa, bp);
1273 		bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
1274 	} else {
1275 		VERIFY3P(zio_free_sync(NULL, spa, txg, bp, 0), ==, NULL);
1276 	}
1277 }
1278 
1279 /*
1280  * To improve performance, this function may return NULL if we were able
1281  * to do the free immediately.  This avoids the cost of creating a zio
1282  * (and linking it to the parent, etc).
1283  */
1284 zio_t *
1285 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1286     zio_flag_t flags)
1287 {
1288 	ASSERT(!BP_IS_HOLE(bp));
1289 	ASSERT(spa_syncing_txg(spa) == txg);
1290 
1291 	if (BP_IS_EMBEDDED(bp))
1292 		return (NULL);
1293 
1294 	metaslab_check_free(spa, bp);
1295 	arc_freed(spa, bp);
1296 	dsl_scan_freed(spa, bp);
1297 
1298 	if (BP_IS_GANG(bp) ||
1299 	    BP_GET_DEDUP(bp) ||
1300 	    brt_maybe_exists(spa, bp)) {
1301 		/*
1302 		 * GANG, DEDUP and BRT blocks can induce a read (for the gang
1303 		 * block header, the DDT or the BRT), so issue them
1304 		 * asynchronously so that this thread is not tied up.
1305 		 */
1306 		enum zio_stage stage =
1307 		    ZIO_FREE_PIPELINE | ZIO_STAGE_ISSUE_ASYNC;
1308 
1309 		return (zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1310 		    BP_GET_PSIZE(bp), NULL, NULL,
1311 		    ZIO_TYPE_FREE, ZIO_PRIORITY_NOW,
1312 		    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage));
1313 	} else {
1314 		metaslab_free(spa, bp, txg, B_FALSE);
1315 		return (NULL);
1316 	}
1317 }
1318 
1319 zio_t *
1320 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1321     zio_done_func_t *done, void *private, zio_flag_t flags)
1322 {
1323 	zio_t *zio;
1324 
1325 	(void) zfs_blkptr_verify(spa, bp, (flags & ZIO_FLAG_CONFIG_WRITER) ?
1326 	    BLK_CONFIG_HELD : BLK_CONFIG_NEEDED, BLK_VERIFY_HALT);
1327 
1328 	if (BP_IS_EMBEDDED(bp))
1329 		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
1330 
1331 	/*
1332 	 * A claim is an allocation of a specific block.  Claims are needed
1333 	 * to support immediate writes in the intent log.  The issue is that
1334 	 * immediate writes contain committed data, but in a txg that was
1335 	 * *not* committed.  Upon opening the pool after an unclean shutdown,
1336 	 * the intent log claims all blocks that contain immediate write data
1337 	 * so that the SPA knows they're in use.
1338 	 *
1339 	 * All claims *must* be resolved in the first txg -- before the SPA
1340 	 * starts allocating blocks -- so that nothing is allocated twice.
1341 	 * If txg == 0 we just verify that the block is claimable.
1342 	 */
1343 	ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <,
1344 	    spa_min_claim_txg(spa));
1345 	ASSERT(txg == spa_min_claim_txg(spa) || txg == 0);
1346 	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(8) */
1347 
1348 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1349 	    BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW,
1350 	    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
1351 	ASSERT0(zio->io_queued_timestamp);
1352 
1353 	return (zio);
1354 }
1355 
1356 zio_t *
1357 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
1358     zio_done_func_t *done, void *private, zio_flag_t flags)
1359 {
1360 	zio_t *zio;
1361 	int c;
1362 
1363 	if (vd->vdev_children == 0) {
1364 		zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
1365 		    ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
1366 		    ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
1367 
1368 		zio->io_cmd = cmd;
1369 	} else {
1370 		zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
1371 
1372 		for (c = 0; c < vd->vdev_children; c++)
1373 			zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
1374 			    done, private, flags));
1375 	}
1376 
1377 	return (zio);
1378 }
1379 
1380 zio_t *
1381 zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1382     zio_done_func_t *done, void *private, zio_priority_t priority,
1383     zio_flag_t flags, enum trim_flag trim_flags)
1384 {
1385 	zio_t *zio;
1386 
1387 	ASSERT0(vd->vdev_children);
1388 	ASSERT0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
1389 	ASSERT0(P2PHASE(size, 1ULL << vd->vdev_ashift));
1390 	ASSERT3U(size, !=, 0);
1391 
1392 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, NULL, size, size, done,
1393 	    private, ZIO_TYPE_TRIM, priority, flags | ZIO_FLAG_PHYSICAL,
1394 	    vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_TRIM_PIPELINE);
1395 	zio->io_trim_flags = trim_flags;
1396 
1397 	return (zio);
1398 }
1399 
1400 zio_t *
1401 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1402     abd_t *data, int checksum, zio_done_func_t *done, void *private,
1403     zio_priority_t priority, zio_flag_t flags, boolean_t labels)
1404 {
1405 	zio_t *zio;
1406 
1407 	ASSERT(vd->vdev_children == 0);
1408 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1409 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1410 	ASSERT3U(offset + size, <=, vd->vdev_psize);
1411 
1412 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1413 	    private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1414 	    offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
1415 
1416 	zio->io_prop.zp_checksum = checksum;
1417 
1418 	return (zio);
1419 }
1420 
1421 zio_t *
1422 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1423     abd_t *data, int checksum, zio_done_func_t *done, void *private,
1424     zio_priority_t priority, zio_flag_t flags, boolean_t labels)
1425 {
1426 	zio_t *zio;
1427 
1428 	ASSERT(vd->vdev_children == 0);
1429 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1430 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1431 	ASSERT3U(offset + size, <=, vd->vdev_psize);
1432 
1433 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1434 	    private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1435 	    offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
1436 
1437 	zio->io_prop.zp_checksum = checksum;
1438 
1439 	if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
1440 		/*
1441 		 * zec checksums are necessarily destructive -- they modify
1442 		 * the end of the write buffer to hold the verifier/checksum.
1443 		 * Therefore, we must make a local copy in case the data is
1444 		 * being written to multiple places in parallel.
1445 		 */
1446 		abd_t *wbuf = abd_alloc_sametype(data, size);
1447 		abd_copy(wbuf, data, size);
1448 
1449 		zio_push_transform(zio, wbuf, size, size, NULL);
1450 	}
1451 
1452 	return (zio);
1453 }
1454 
1455 /*
1456  * Create a child I/O to do some work for us.
1457  */
1458 zio_t *
1459 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1460     abd_t *data, uint64_t size, int type, zio_priority_t priority,
1461     zio_flag_t flags, zio_done_func_t *done, void *private)
1462 {
1463 	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1464 	zio_t *zio;
1465 
1466 	/*
1467 	 * vdev child I/Os do not propagate their error to the parent.
1468 	 * Therefore, for correct operation the caller *must* check for
1469 	 * and handle the error in the child i/o's done callback.
1470 	 * The only exceptions are i/os that we don't care about
1471 	 * (OPTIONAL or REPAIR).
1472 	 */
1473 	ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) ||
1474 	    done != NULL);
1475 
1476 	if (type == ZIO_TYPE_READ && bp != NULL) {
1477 		/*
1478 		 * If we have the bp, then the child should perform the
1479 		 * checksum and the parent need not.  This pushes error
1480 		 * detection as close to the leaves as possible and
1481 		 * eliminates redundant checksums in the interior nodes.
1482 		 */
1483 		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1484 		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1485 	}
1486 
1487 	if (vd->vdev_ops->vdev_op_leaf) {
1488 		ASSERT0(vd->vdev_children);
1489 		offset += VDEV_LABEL_START_SIZE;
1490 	}
1491 
1492 	flags |= ZIO_VDEV_CHILD_FLAGS(pio);
1493 
1494 	/*
1495 	 * If we've decided to do a repair, the write is not speculative --
1496 	 * even if the original read was.
1497 	 */
1498 	if (flags & ZIO_FLAG_IO_REPAIR)
1499 		flags &= ~ZIO_FLAG_SPECULATIVE;
1500 
1501 	/*
1502 	 * If we're creating a child I/O that is not associated with a
1503 	 * top-level vdev, then the child zio is not an allocating I/O.
1504 	 * If this is a retried I/O then we ignore it since we will
1505 	 * have already processed the original allocating I/O.
1506 	 */
1507 	if (flags & ZIO_FLAG_IO_ALLOCATING &&
1508 	    (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) {
1509 		ASSERT(pio->io_metaslab_class != NULL);
1510 		ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled);
1511 		ASSERT(type == ZIO_TYPE_WRITE);
1512 		ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE);
1513 		ASSERT(!(flags & ZIO_FLAG_IO_REPAIR));
1514 		ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) ||
1515 		    pio->io_child_type == ZIO_CHILD_GANG);
1516 
1517 		flags &= ~ZIO_FLAG_IO_ALLOCATING;
1518 	}
1519 
1520 
1521 	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size,
1522 	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1523 	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1524 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
1525 
1526 	zio->io_physdone = pio->io_physdone;
1527 	if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
1528 		zio->io_logical->io_phys_children++;
1529 
1530 	return (zio);
1531 }
1532 
1533 zio_t *
1534 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size,
1535     zio_type_t type, zio_priority_t priority, zio_flag_t flags,
1536     zio_done_func_t *done, void *private)
1537 {
1538 	zio_t *zio;
1539 
1540 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1541 
1542 	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1543 	    data, size, size, done, private, type, priority,
1544 	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1545 	    vd, offset, NULL,
1546 	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1547 
1548 	return (zio);
1549 }
1550 
1551 void
1552 zio_flush(zio_t *zio, vdev_t *vd)
1553 {
1554 	zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
1555 	    NULL, NULL,
1556 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1557 }
1558 
1559 void
1560 zio_shrink(zio_t *zio, uint64_t size)
1561 {
1562 	ASSERT3P(zio->io_executor, ==, NULL);
1563 	ASSERT3U(zio->io_orig_size, ==, zio->io_size);
1564 	ASSERT3U(size, <=, zio->io_size);
1565 
1566 	/*
1567 	 * We don't shrink for raidz because of problems with the
1568 	 * reconstruction when reading back less than the block size.
1569 	 * Note, BP_IS_RAIDZ() assumes no compression.
1570 	 */
1571 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1572 	if (!BP_IS_RAIDZ(zio->io_bp)) {
1573 		/* we are not doing a raw write */
1574 		ASSERT3U(zio->io_size, ==, zio->io_lsize);
1575 		zio->io_orig_size = zio->io_size = zio->io_lsize = size;
1576 	}
1577 }
1578 
1579 /*
1580  * ==========================================================================
1581  * Prepare to read and write logical blocks
1582  * ==========================================================================
1583  */
1584 
1585 static zio_t *
1586 zio_read_bp_init(zio_t *zio)
1587 {
1588 	blkptr_t *bp = zio->io_bp;
1589 	uint64_t psize =
1590 	    BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1591 
1592 	ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1593 
1594 	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1595 	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
1596 	    !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1597 		zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1598 		    psize, psize, zio_decompress);
1599 	}
1600 
1601 	if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) ||
1602 	    BP_HAS_INDIRECT_MAC_CKSUM(bp)) &&
1603 	    zio->io_child_type == ZIO_CHILD_LOGICAL) {
1604 		zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1605 		    psize, psize, zio_decrypt);
1606 	}
1607 
1608 	if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1609 		int psize = BPE_GET_PSIZE(bp);
1610 		void *data = abd_borrow_buf(zio->io_abd, psize);
1611 
1612 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1613 		decode_embedded_bp_compressed(bp, data);
1614 		abd_return_buf_copy(zio->io_abd, data, psize);
1615 	} else {
1616 		ASSERT(!BP_IS_EMBEDDED(bp));
1617 		ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1618 	}
1619 
1620 	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1621 		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1622 
1623 	return (zio);
1624 }
1625 
1626 static zio_t *
1627 zio_write_bp_init(zio_t *zio)
1628 {
1629 	if (!IO_IS_ALLOCATING(zio))
1630 		return (zio);
1631 
1632 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1633 
1634 	if (zio->io_bp_override) {
1635 		blkptr_t *bp = zio->io_bp;
1636 		zio_prop_t *zp = &zio->io_prop;
1637 
1638 		ASSERT(bp->blk_birth != zio->io_txg);
1639 
1640 		*bp = *zio->io_bp_override;
1641 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1642 
1643 		if (zp->zp_brtwrite)
1644 			return (zio);
1645 
1646 		ASSERT(!BP_GET_DEDUP(zio->io_bp_override));
1647 
1648 		if (BP_IS_EMBEDDED(bp))
1649 			return (zio);
1650 
1651 		/*
1652 		 * If we've been overridden and nopwrite is set then
1653 		 * set the flag accordingly to indicate that a nopwrite
1654 		 * has already occurred.
1655 		 */
1656 		if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1657 			ASSERT(!zp->zp_dedup);
1658 			ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum);
1659 			zio->io_flags |= ZIO_FLAG_NOPWRITE;
1660 			return (zio);
1661 		}
1662 
1663 		ASSERT(!zp->zp_nopwrite);
1664 
1665 		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1666 			return (zio);
1667 
1668 		ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1669 		    ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1670 
1671 		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum &&
1672 		    !zp->zp_encrypt) {
1673 			BP_SET_DEDUP(bp, 1);
1674 			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1675 			return (zio);
1676 		}
1677 
1678 		/*
1679 		 * We were unable to handle this as an override bp, treat
1680 		 * it as a regular write I/O.
1681 		 */
1682 		zio->io_bp_override = NULL;
1683 		*bp = zio->io_bp_orig;
1684 		zio->io_pipeline = zio->io_orig_pipeline;
1685 	}
1686 
1687 	return (zio);
1688 }
1689 
1690 static zio_t *
1691 zio_write_compress(zio_t *zio)
1692 {
1693 	spa_t *spa = zio->io_spa;
1694 	zio_prop_t *zp = &zio->io_prop;
1695 	enum zio_compress compress = zp->zp_compress;
1696 	blkptr_t *bp = zio->io_bp;
1697 	uint64_t lsize = zio->io_lsize;
1698 	uint64_t psize = zio->io_size;
1699 	uint32_t pass = 1;
1700 
1701 	/*
1702 	 * If our children haven't all reached the ready stage,
1703 	 * wait for them and then repeat this pipeline stage.
1704 	 */
1705 	if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
1706 	    ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) {
1707 		return (NULL);
1708 	}
1709 
1710 	if (!IO_IS_ALLOCATING(zio))
1711 		return (zio);
1712 
1713 	if (zio->io_children_ready != NULL) {
1714 		/*
1715 		 * Now that all our children are ready, run the callback
1716 		 * associated with this zio in case it wants to modify the
1717 		 * data to be written.
1718 		 */
1719 		ASSERT3U(zp->zp_level, >, 0);
1720 		zio->io_children_ready(zio);
1721 	}
1722 
1723 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1724 	ASSERT(zio->io_bp_override == NULL);
1725 
1726 	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1727 		/*
1728 		 * We're rewriting an existing block, which means we're
1729 		 * working on behalf of spa_sync().  For spa_sync() to
1730 		 * converge, it must eventually be the case that we don't
1731 		 * have to allocate new blocks.  But compression changes
1732 		 * the blocksize, which forces a reallocate, and makes
1733 		 * convergence take longer.  Therefore, after the first
1734 		 * few passes, stop compressing to ensure convergence.
1735 		 */
1736 		pass = spa_sync_pass(spa);
1737 
1738 		ASSERT(zio->io_txg == spa_syncing_txg(spa));
1739 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1740 		ASSERT(!BP_GET_DEDUP(bp));
1741 
1742 		if (pass >= zfs_sync_pass_dont_compress)
1743 			compress = ZIO_COMPRESS_OFF;
1744 
1745 		/* Make sure someone doesn't change their mind on overwrites */
1746 		ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1747 		    spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1748 	}
1749 
1750 	/* If it's a compressed write that is not raw, compress the buffer. */
1751 	if (compress != ZIO_COMPRESS_OFF &&
1752 	    !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1753 		void *cbuf = NULL;
1754 		psize = zio_compress_data(compress, zio->io_abd, &cbuf, lsize,
1755 		    zp->zp_complevel);
1756 		if (psize == 0) {
1757 			compress = ZIO_COMPRESS_OFF;
1758 		} else if (psize >= lsize) {
1759 			compress = ZIO_COMPRESS_OFF;
1760 			if (cbuf != NULL)
1761 				zio_buf_free(cbuf, lsize);
1762 		} else if (!zp->zp_dedup && !zp->zp_encrypt &&
1763 		    psize <= BPE_PAYLOAD_SIZE &&
1764 		    zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1765 		    spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1766 			encode_embedded_bp_compressed(bp,
1767 			    cbuf, compress, lsize, psize);
1768 			BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1769 			BP_SET_TYPE(bp, zio->io_prop.zp_type);
1770 			BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1771 			zio_buf_free(cbuf, lsize);
1772 			bp->blk_birth = zio->io_txg;
1773 			zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1774 			ASSERT(spa_feature_is_active(spa,
1775 			    SPA_FEATURE_EMBEDDED_DATA));
1776 			return (zio);
1777 		} else {
1778 			/*
1779 			 * Round compressed size up to the minimum allocation
1780 			 * size of the smallest-ashift device, and zero the
1781 			 * tail. This ensures that the compressed size of the
1782 			 * BP (and thus compressratio property) are correct,
1783 			 * in that we charge for the padding used to fill out
1784 			 * the last sector.
1785 			 */
1786 			ASSERT3U(spa->spa_min_alloc, >=, SPA_MINBLOCKSHIFT);
1787 			size_t rounded = (size_t)roundup(psize,
1788 			    spa->spa_min_alloc);
1789 			if (rounded >= lsize) {
1790 				compress = ZIO_COMPRESS_OFF;
1791 				zio_buf_free(cbuf, lsize);
1792 				psize = lsize;
1793 			} else {
1794 				abd_t *cdata = abd_get_from_buf(cbuf, lsize);
1795 				abd_take_ownership_of_buf(cdata, B_TRUE);
1796 				abd_zero_off(cdata, psize, rounded - psize);
1797 				psize = rounded;
1798 				zio_push_transform(zio, cdata,
1799 				    psize, lsize, NULL);
1800 			}
1801 		}
1802 
1803 		/*
1804 		 * We were unable to handle this as an override bp, treat
1805 		 * it as a regular write I/O.
1806 		 */
1807 		zio->io_bp_override = NULL;
1808 		*bp = zio->io_bp_orig;
1809 		zio->io_pipeline = zio->io_orig_pipeline;
1810 
1811 	} else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 &&
1812 	    zp->zp_type == DMU_OT_DNODE) {
1813 		/*
1814 		 * The DMU actually relies on the zio layer's compression
1815 		 * to free metadnode blocks that have had all contained
1816 		 * dnodes freed. As a result, even when doing a raw
1817 		 * receive, we must check whether the block can be compressed
1818 		 * to a hole.
1819 		 */
1820 		psize = zio_compress_data(ZIO_COMPRESS_EMPTY,
1821 		    zio->io_abd, NULL, lsize, zp->zp_complevel);
1822 		if (psize == 0 || psize >= lsize)
1823 			compress = ZIO_COMPRESS_OFF;
1824 	} else if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS &&
1825 	    !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) {
1826 		/*
1827 		 * If we are raw receiving an encrypted dataset we should not
1828 		 * take this codepath because it will change the on-disk block
1829 		 * and decryption will fail.
1830 		 */
1831 		size_t rounded = MIN((size_t)roundup(psize,
1832 		    spa->spa_min_alloc), lsize);
1833 
1834 		if (rounded != psize) {
1835 			abd_t *cdata = abd_alloc_linear(rounded, B_TRUE);
1836 			abd_zero_off(cdata, psize, rounded - psize);
1837 			abd_copy_off(cdata, zio->io_abd, 0, 0, psize);
1838 			psize = rounded;
1839 			zio_push_transform(zio, cdata,
1840 			    psize, rounded, NULL);
1841 		}
1842 	} else {
1843 		ASSERT3U(psize, !=, 0);
1844 	}
1845 
1846 	/*
1847 	 * The final pass of spa_sync() must be all rewrites, but the first
1848 	 * few passes offer a trade-off: allocating blocks defers convergence,
1849 	 * but newly allocated blocks are sequential, so they can be written
1850 	 * to disk faster.  Therefore, we allow the first few passes of
1851 	 * spa_sync() to allocate new blocks, but force rewrites after that.
1852 	 * There should only be a handful of blocks after pass 1 in any case.
1853 	 */
1854 	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1855 	    BP_GET_PSIZE(bp) == psize &&
1856 	    pass >= zfs_sync_pass_rewrite) {
1857 		VERIFY3U(psize, !=, 0);
1858 		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1859 
1860 		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1861 		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1862 	} else {
1863 		BP_ZERO(bp);
1864 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
1865 	}
1866 
1867 	if (psize == 0) {
1868 		if (zio->io_bp_orig.blk_birth != 0 &&
1869 		    spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1870 			BP_SET_LSIZE(bp, lsize);
1871 			BP_SET_TYPE(bp, zp->zp_type);
1872 			BP_SET_LEVEL(bp, zp->zp_level);
1873 			BP_SET_BIRTH(bp, zio->io_txg, 0);
1874 		}
1875 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1876 	} else {
1877 		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1878 		BP_SET_LSIZE(bp, lsize);
1879 		BP_SET_TYPE(bp, zp->zp_type);
1880 		BP_SET_LEVEL(bp, zp->zp_level);
1881 		BP_SET_PSIZE(bp, psize);
1882 		BP_SET_COMPRESS(bp, compress);
1883 		BP_SET_CHECKSUM(bp, zp->zp_checksum);
1884 		BP_SET_DEDUP(bp, zp->zp_dedup);
1885 		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1886 		if (zp->zp_dedup) {
1887 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1888 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1889 			ASSERT(!zp->zp_encrypt ||
1890 			    DMU_OT_IS_ENCRYPTED(zp->zp_type));
1891 			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1892 		}
1893 		if (zp->zp_nopwrite) {
1894 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1895 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1896 			zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1897 		}
1898 	}
1899 	return (zio);
1900 }
1901 
1902 static zio_t *
1903 zio_free_bp_init(zio_t *zio)
1904 {
1905 	blkptr_t *bp = zio->io_bp;
1906 
1907 	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1908 		if (BP_GET_DEDUP(bp))
1909 			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1910 	}
1911 
1912 	ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1913 
1914 	return (zio);
1915 }
1916 
1917 /*
1918  * ==========================================================================
1919  * Execute the I/O pipeline
1920  * ==========================================================================
1921  */
1922 
1923 static void
1924 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1925 {
1926 	spa_t *spa = zio->io_spa;
1927 	zio_type_t t = zio->io_type;
1928 	int flags = (cutinline ? TQ_FRONT : 0);
1929 
1930 	/*
1931 	 * If we're a config writer or a probe, the normal issue and
1932 	 * interrupt threads may all be blocked waiting for the config lock.
1933 	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1934 	 */
1935 	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1936 		t = ZIO_TYPE_NULL;
1937 
1938 	/*
1939 	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1940 	 */
1941 	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1942 		t = ZIO_TYPE_NULL;
1943 
1944 	/*
1945 	 * If this is a high priority I/O, then use the high priority taskq if
1946 	 * available.
1947 	 */
1948 	if ((zio->io_priority == ZIO_PRIORITY_NOW ||
1949 	    zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) &&
1950 	    spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1951 		q++;
1952 
1953 	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1954 
1955 	/*
1956 	 * NB: We are assuming that the zio can only be dispatched
1957 	 * to a single taskq at a time.  It would be a grievous error
1958 	 * to dispatch the zio to another taskq at the same time.
1959 	 */
1960 	ASSERT(taskq_empty_ent(&zio->io_tqent));
1961 	spa_taskq_dispatch_ent(spa, t, q, zio_execute, zio, flags,
1962 	    &zio->io_tqent);
1963 }
1964 
1965 static boolean_t
1966 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1967 {
1968 	spa_t *spa = zio->io_spa;
1969 
1970 	taskq_t *tq = taskq_of_curthread();
1971 
1972 	for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1973 		spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1974 		uint_t i;
1975 		for (i = 0; i < tqs->stqs_count; i++) {
1976 			if (tqs->stqs_taskq[i] == tq)
1977 				return (B_TRUE);
1978 		}
1979 	}
1980 
1981 	return (B_FALSE);
1982 }
1983 
1984 static zio_t *
1985 zio_issue_async(zio_t *zio)
1986 {
1987 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1988 
1989 	return (NULL);
1990 }
1991 
1992 void
1993 zio_interrupt(void *zio)
1994 {
1995 	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1996 }
1997 
1998 void
1999 zio_delay_interrupt(zio_t *zio)
2000 {
2001 	/*
2002 	 * The timeout_generic() function isn't defined in userspace, so
2003 	 * rather than trying to implement the function, the zio delay
2004 	 * functionality has been disabled for userspace builds.
2005 	 */
2006 
2007 #ifdef _KERNEL
2008 	/*
2009 	 * If io_target_timestamp is zero, then no delay has been registered
2010 	 * for this IO, thus jump to the end of this function and "skip" the
2011 	 * delay; issuing it directly to the zio layer.
2012 	 */
2013 	if (zio->io_target_timestamp != 0) {
2014 		hrtime_t now = gethrtime();
2015 
2016 		if (now >= zio->io_target_timestamp) {
2017 			/*
2018 			 * This IO has already taken longer than the target
2019 			 * delay to complete, so we don't want to delay it
2020 			 * any longer; we "miss" the delay and issue it
2021 			 * directly to the zio layer. This is likely due to
2022 			 * the target latency being set to a value less than
2023 			 * the underlying hardware can satisfy (e.g. delay
2024 			 * set to 1ms, but the disks take 10ms to complete an
2025 			 * IO request).
2026 			 */
2027 
2028 			DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
2029 			    hrtime_t, now);
2030 
2031 			zio_interrupt(zio);
2032 		} else {
2033 			taskqid_t tid;
2034 			hrtime_t diff = zio->io_target_timestamp - now;
2035 			clock_t expire_at_tick = ddi_get_lbolt() +
2036 			    NSEC_TO_TICK(diff);
2037 
2038 			DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
2039 			    hrtime_t, now, hrtime_t, diff);
2040 
2041 			if (NSEC_TO_TICK(diff) == 0) {
2042 				/* Our delay is less than a jiffy - just spin */
2043 				zfs_sleep_until(zio->io_target_timestamp);
2044 				zio_interrupt(zio);
2045 			} else {
2046 				/*
2047 				 * Use taskq_dispatch_delay() in the place of
2048 				 * OpenZFS's timeout_generic().
2049 				 */
2050 				tid = taskq_dispatch_delay(system_taskq,
2051 				    zio_interrupt, zio, TQ_NOSLEEP,
2052 				    expire_at_tick);
2053 				if (tid == TASKQID_INVALID) {
2054 					/*
2055 					 * Couldn't allocate a task.  Just
2056 					 * finish the zio without a delay.
2057 					 */
2058 					zio_interrupt(zio);
2059 				}
2060 			}
2061 		}
2062 		return;
2063 	}
2064 #endif
2065 	DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
2066 	zio_interrupt(zio);
2067 }
2068 
2069 static void
2070 zio_deadman_impl(zio_t *pio, int ziodepth)
2071 {
2072 	zio_t *cio, *cio_next;
2073 	zio_link_t *zl = NULL;
2074 	vdev_t *vd = pio->io_vd;
2075 
2076 	if (zio_deadman_log_all || (vd != NULL && vd->vdev_ops->vdev_op_leaf)) {
2077 		vdev_queue_t *vq = vd ? &vd->vdev_queue : NULL;
2078 		zbookmark_phys_t *zb = &pio->io_bookmark;
2079 		uint64_t delta = gethrtime() - pio->io_timestamp;
2080 		uint64_t failmode = spa_get_deadman_failmode(pio->io_spa);
2081 
2082 		zfs_dbgmsg("slow zio[%d]: zio=%px timestamp=%llu "
2083 		    "delta=%llu queued=%llu io=%llu "
2084 		    "path=%s "
2085 		    "last=%llu type=%d "
2086 		    "priority=%d flags=0x%llx stage=0x%x "
2087 		    "pipeline=0x%x pipeline-trace=0x%x "
2088 		    "objset=%llu object=%llu "
2089 		    "level=%llu blkid=%llu "
2090 		    "offset=%llu size=%llu "
2091 		    "error=%d",
2092 		    ziodepth, pio, pio->io_timestamp,
2093 		    (u_longlong_t)delta, pio->io_delta, pio->io_delay,
2094 		    vd ? vd->vdev_path : "NULL",
2095 		    vq ? vq->vq_io_complete_ts : 0, pio->io_type,
2096 		    pio->io_priority, (u_longlong_t)pio->io_flags,
2097 		    pio->io_stage, pio->io_pipeline, pio->io_pipeline_trace,
2098 		    (u_longlong_t)zb->zb_objset, (u_longlong_t)zb->zb_object,
2099 		    (u_longlong_t)zb->zb_level, (u_longlong_t)zb->zb_blkid,
2100 		    (u_longlong_t)pio->io_offset, (u_longlong_t)pio->io_size,
2101 		    pio->io_error);
2102 		(void) zfs_ereport_post(FM_EREPORT_ZFS_DEADMAN,
2103 		    pio->io_spa, vd, zb, pio, 0);
2104 
2105 		if (failmode == ZIO_FAILURE_MODE_CONTINUE &&
2106 		    taskq_empty_ent(&pio->io_tqent)) {
2107 			zio_interrupt(pio);
2108 		}
2109 	}
2110 
2111 	mutex_enter(&pio->io_lock);
2112 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2113 		cio_next = zio_walk_children(pio, &zl);
2114 		zio_deadman_impl(cio, ziodepth + 1);
2115 	}
2116 	mutex_exit(&pio->io_lock);
2117 }
2118 
2119 /*
2120  * Log the critical information describing this zio and all of its children
2121  * using the zfs_dbgmsg() interface then post deadman event for the ZED.
2122  */
2123 void
2124 zio_deadman(zio_t *pio, const char *tag)
2125 {
2126 	spa_t *spa = pio->io_spa;
2127 	char *name = spa_name(spa);
2128 
2129 	if (!zfs_deadman_enabled || spa_suspended(spa))
2130 		return;
2131 
2132 	zio_deadman_impl(pio, 0);
2133 
2134 	switch (spa_get_deadman_failmode(spa)) {
2135 	case ZIO_FAILURE_MODE_WAIT:
2136 		zfs_dbgmsg("%s waiting for hung I/O to pool '%s'", tag, name);
2137 		break;
2138 
2139 	case ZIO_FAILURE_MODE_CONTINUE:
2140 		zfs_dbgmsg("%s restarting hung I/O for pool '%s'", tag, name);
2141 		break;
2142 
2143 	case ZIO_FAILURE_MODE_PANIC:
2144 		fm_panic("%s determined I/O to pool '%s' is hung.", tag, name);
2145 		break;
2146 	}
2147 }
2148 
2149 /*
2150  * Execute the I/O pipeline until one of the following occurs:
2151  * (1) the I/O completes; (2) the pipeline stalls waiting for
2152  * dependent child I/Os; (3) the I/O issues, so we're waiting
2153  * for an I/O completion interrupt; (4) the I/O is delegated by
2154  * vdev-level caching or aggregation; (5) the I/O is deferred
2155  * due to vdev-level queueing; (6) the I/O is handed off to
2156  * another thread.  In all cases, the pipeline stops whenever
2157  * there's no CPU work; it never burns a thread in cv_wait_io().
2158  *
2159  * There's no locking on io_stage because there's no legitimate way
2160  * for multiple threads to be attempting to process the same I/O.
2161  */
2162 static zio_pipe_stage_t *zio_pipeline[];
2163 
2164 /*
2165  * zio_execute() is a wrapper around the static function
2166  * __zio_execute() so that we can force  __zio_execute() to be
2167  * inlined.  This reduces stack overhead which is important
2168  * because __zio_execute() is called recursively in several zio
2169  * code paths.  zio_execute() itself cannot be inlined because
2170  * it is externally visible.
2171  */
2172 void
2173 zio_execute(void *zio)
2174 {
2175 	fstrans_cookie_t cookie;
2176 
2177 	cookie = spl_fstrans_mark();
2178 	__zio_execute(zio);
2179 	spl_fstrans_unmark(cookie);
2180 }
2181 
2182 /*
2183  * Used to determine if in the current context the stack is sized large
2184  * enough to allow zio_execute() to be called recursively.  A minimum
2185  * stack size of 16K is required to avoid needing to re-dispatch the zio.
2186  */
2187 static boolean_t
2188 zio_execute_stack_check(zio_t *zio)
2189 {
2190 #if !defined(HAVE_LARGE_STACKS)
2191 	dsl_pool_t *dp = spa_get_dsl(zio->io_spa);
2192 
2193 	/* Executing in txg_sync_thread() context. */
2194 	if (dp && curthread == dp->dp_tx.tx_sync_thread)
2195 		return (B_TRUE);
2196 
2197 	/* Pool initialization outside of zio_taskq context. */
2198 	if (dp && spa_is_initializing(dp->dp_spa) &&
2199 	    !zio_taskq_member(zio, ZIO_TASKQ_ISSUE) &&
2200 	    !zio_taskq_member(zio, ZIO_TASKQ_ISSUE_HIGH))
2201 		return (B_TRUE);
2202 #else
2203 	(void) zio;
2204 #endif /* HAVE_LARGE_STACKS */
2205 
2206 	return (B_FALSE);
2207 }
2208 
2209 __attribute__((always_inline))
2210 static inline void
2211 __zio_execute(zio_t *zio)
2212 {
2213 	ASSERT3U(zio->io_queued_timestamp, >, 0);
2214 
2215 	while (zio->io_stage < ZIO_STAGE_DONE) {
2216 		enum zio_stage pipeline = zio->io_pipeline;
2217 		enum zio_stage stage = zio->io_stage;
2218 
2219 		zio->io_executor = curthread;
2220 
2221 		ASSERT(!MUTEX_HELD(&zio->io_lock));
2222 		ASSERT(ISP2(stage));
2223 		ASSERT(zio->io_stall == NULL);
2224 
2225 		do {
2226 			stage <<= 1;
2227 		} while ((stage & pipeline) == 0);
2228 
2229 		ASSERT(stage <= ZIO_STAGE_DONE);
2230 
2231 		/*
2232 		 * If we are in interrupt context and this pipeline stage
2233 		 * will grab a config lock that is held across I/O,
2234 		 * or may wait for an I/O that needs an interrupt thread
2235 		 * to complete, issue async to avoid deadlock.
2236 		 *
2237 		 * For VDEV_IO_START, we cut in line so that the io will
2238 		 * be sent to disk promptly.
2239 		 */
2240 		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
2241 		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
2242 			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2243 			    zio_requeue_io_start_cut_in_line : B_FALSE;
2244 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2245 			return;
2246 		}
2247 
2248 		/*
2249 		 * If the current context doesn't have large enough stacks
2250 		 * the zio must be issued asynchronously to prevent overflow.
2251 		 */
2252 		if (zio_execute_stack_check(zio)) {
2253 			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2254 			    zio_requeue_io_start_cut_in_line : B_FALSE;
2255 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2256 			return;
2257 		}
2258 
2259 		zio->io_stage = stage;
2260 		zio->io_pipeline_trace |= zio->io_stage;
2261 
2262 		/*
2263 		 * The zio pipeline stage returns the next zio to execute
2264 		 * (typically the same as this one), or NULL if we should
2265 		 * stop.
2266 		 */
2267 		zio = zio_pipeline[highbit64(stage) - 1](zio);
2268 
2269 		if (zio == NULL)
2270 			return;
2271 	}
2272 }
2273 
2274 
2275 /*
2276  * ==========================================================================
2277  * Initiate I/O, either sync or async
2278  * ==========================================================================
2279  */
2280 int
2281 zio_wait(zio_t *zio)
2282 {
2283 	/*
2284 	 * Some routines, like zio_free_sync(), may return a NULL zio
2285 	 * to avoid the performance overhead of creating and then destroying
2286 	 * an unneeded zio.  For the callers' simplicity, we accept a NULL
2287 	 * zio and ignore it.
2288 	 */
2289 	if (zio == NULL)
2290 		return (0);
2291 
2292 	long timeout = MSEC_TO_TICK(zfs_deadman_ziotime_ms);
2293 	int error;
2294 
2295 	ASSERT3S(zio->io_stage, ==, ZIO_STAGE_OPEN);
2296 	ASSERT3P(zio->io_executor, ==, NULL);
2297 
2298 	zio->io_waiter = curthread;
2299 	ASSERT0(zio->io_queued_timestamp);
2300 	zio->io_queued_timestamp = gethrtime();
2301 
2302 	__zio_execute(zio);
2303 
2304 	mutex_enter(&zio->io_lock);
2305 	while (zio->io_executor != NULL) {
2306 		error = cv_timedwait_io(&zio->io_cv, &zio->io_lock,
2307 		    ddi_get_lbolt() + timeout);
2308 
2309 		if (zfs_deadman_enabled && error == -1 &&
2310 		    gethrtime() - zio->io_queued_timestamp >
2311 		    spa_deadman_ziotime(zio->io_spa)) {
2312 			mutex_exit(&zio->io_lock);
2313 			timeout = MSEC_TO_TICK(zfs_deadman_checktime_ms);
2314 			zio_deadman(zio, FTAG);
2315 			mutex_enter(&zio->io_lock);
2316 		}
2317 	}
2318 	mutex_exit(&zio->io_lock);
2319 
2320 	error = zio->io_error;
2321 	zio_destroy(zio);
2322 
2323 	return (error);
2324 }
2325 
2326 void
2327 zio_nowait(zio_t *zio)
2328 {
2329 	/*
2330 	 * See comment in zio_wait().
2331 	 */
2332 	if (zio == NULL)
2333 		return;
2334 
2335 	ASSERT3P(zio->io_executor, ==, NULL);
2336 
2337 	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
2338 	    list_is_empty(&zio->io_parent_list)) {
2339 		zio_t *pio;
2340 
2341 		/*
2342 		 * This is a logical async I/O with no parent to wait for it.
2343 		 * We add it to the spa_async_root_zio "Godfather" I/O which
2344 		 * will ensure they complete prior to unloading the pool.
2345 		 */
2346 		spa_t *spa = zio->io_spa;
2347 		pio = spa->spa_async_zio_root[CPU_SEQID_UNSTABLE];
2348 
2349 		zio_add_child(pio, zio);
2350 	}
2351 
2352 	ASSERT0(zio->io_queued_timestamp);
2353 	zio->io_queued_timestamp = gethrtime();
2354 	__zio_execute(zio);
2355 }
2356 
2357 /*
2358  * ==========================================================================
2359  * Reexecute, cancel, or suspend/resume failed I/O
2360  * ==========================================================================
2361  */
2362 
2363 static void
2364 zio_reexecute(void *arg)
2365 {
2366 	zio_t *pio = arg;
2367 	zio_t *cio, *cio_next;
2368 
2369 	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
2370 	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
2371 	ASSERT(pio->io_gang_leader == NULL);
2372 	ASSERT(pio->io_gang_tree == NULL);
2373 
2374 	pio->io_flags = pio->io_orig_flags;
2375 	pio->io_stage = pio->io_orig_stage;
2376 	pio->io_pipeline = pio->io_orig_pipeline;
2377 	pio->io_reexecute = 0;
2378 	pio->io_flags |= ZIO_FLAG_REEXECUTED;
2379 	pio->io_pipeline_trace = 0;
2380 	pio->io_error = 0;
2381 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2382 		pio->io_state[w] = 0;
2383 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2384 		pio->io_child_error[c] = 0;
2385 
2386 	if (IO_IS_ALLOCATING(pio))
2387 		BP_ZERO(pio->io_bp);
2388 
2389 	/*
2390 	 * As we reexecute pio's children, new children could be created.
2391 	 * New children go to the head of pio's io_child_list, however,
2392 	 * so we will (correctly) not reexecute them.  The key is that
2393 	 * the remainder of pio's io_child_list, from 'cio_next' onward,
2394 	 * cannot be affected by any side effects of reexecuting 'cio'.
2395 	 */
2396 	zio_link_t *zl = NULL;
2397 	mutex_enter(&pio->io_lock);
2398 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2399 		cio_next = zio_walk_children(pio, &zl);
2400 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2401 			pio->io_children[cio->io_child_type][w]++;
2402 		mutex_exit(&pio->io_lock);
2403 		zio_reexecute(cio);
2404 		mutex_enter(&pio->io_lock);
2405 	}
2406 	mutex_exit(&pio->io_lock);
2407 
2408 	/*
2409 	 * Now that all children have been reexecuted, execute the parent.
2410 	 * We don't reexecute "The Godfather" I/O here as it's the
2411 	 * responsibility of the caller to wait on it.
2412 	 */
2413 	if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) {
2414 		pio->io_queued_timestamp = gethrtime();
2415 		__zio_execute(pio);
2416 	}
2417 }
2418 
2419 void
2420 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason)
2421 {
2422 	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
2423 		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
2424 		    "failure and the failure mode property for this pool "
2425 		    "is set to panic.", spa_name(spa));
2426 
2427 	cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable I/O "
2428 	    "failure and has been suspended.\n", spa_name(spa));
2429 
2430 	(void) zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL,
2431 	    NULL, NULL, 0);
2432 
2433 	mutex_enter(&spa->spa_suspend_lock);
2434 
2435 	if (spa->spa_suspend_zio_root == NULL)
2436 		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
2437 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2438 		    ZIO_FLAG_GODFATHER);
2439 
2440 	spa->spa_suspended = reason;
2441 
2442 	if (zio != NULL) {
2443 		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
2444 		ASSERT(zio != spa->spa_suspend_zio_root);
2445 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2446 		ASSERT(zio_unique_parent(zio) == NULL);
2447 		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
2448 		zio_add_child(spa->spa_suspend_zio_root, zio);
2449 	}
2450 
2451 	mutex_exit(&spa->spa_suspend_lock);
2452 }
2453 
2454 int
2455 zio_resume(spa_t *spa)
2456 {
2457 	zio_t *pio;
2458 
2459 	/*
2460 	 * Reexecute all previously suspended i/o.
2461 	 */
2462 	mutex_enter(&spa->spa_suspend_lock);
2463 	spa->spa_suspended = ZIO_SUSPEND_NONE;
2464 	cv_broadcast(&spa->spa_suspend_cv);
2465 	pio = spa->spa_suspend_zio_root;
2466 	spa->spa_suspend_zio_root = NULL;
2467 	mutex_exit(&spa->spa_suspend_lock);
2468 
2469 	if (pio == NULL)
2470 		return (0);
2471 
2472 	zio_reexecute(pio);
2473 	return (zio_wait(pio));
2474 }
2475 
2476 void
2477 zio_resume_wait(spa_t *spa)
2478 {
2479 	mutex_enter(&spa->spa_suspend_lock);
2480 	while (spa_suspended(spa))
2481 		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
2482 	mutex_exit(&spa->spa_suspend_lock);
2483 }
2484 
2485 /*
2486  * ==========================================================================
2487  * Gang blocks.
2488  *
2489  * A gang block is a collection of small blocks that looks to the DMU
2490  * like one large block.  When zio_dva_allocate() cannot find a block
2491  * of the requested size, due to either severe fragmentation or the pool
2492  * being nearly full, it calls zio_write_gang_block() to construct the
2493  * block from smaller fragments.
2494  *
2495  * A gang block consists of a gang header (zio_gbh_phys_t) and up to
2496  * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
2497  * an indirect block: it's an array of block pointers.  It consumes
2498  * only one sector and hence is allocatable regardless of fragmentation.
2499  * The gang header's bps point to its gang members, which hold the data.
2500  *
2501  * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
2502  * as the verifier to ensure uniqueness of the SHA256 checksum.
2503  * Critically, the gang block bp's blk_cksum is the checksum of the data,
2504  * not the gang header.  This ensures that data block signatures (needed for
2505  * deduplication) are independent of how the block is physically stored.
2506  *
2507  * Gang blocks can be nested: a gang member may itself be a gang block.
2508  * Thus every gang block is a tree in which root and all interior nodes are
2509  * gang headers, and the leaves are normal blocks that contain user data.
2510  * The root of the gang tree is called the gang leader.
2511  *
2512  * To perform any operation (read, rewrite, free, claim) on a gang block,
2513  * zio_gang_assemble() first assembles the gang tree (minus data leaves)
2514  * in the io_gang_tree field of the original logical i/o by recursively
2515  * reading the gang leader and all gang headers below it.  This yields
2516  * an in-core tree containing the contents of every gang header and the
2517  * bps for every constituent of the gang block.
2518  *
2519  * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
2520  * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
2521  * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
2522  * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
2523  * zio_read_gang() is a wrapper around zio_read() that omits reading gang
2524  * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
2525  * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
2526  * of the gang header plus zio_checksum_compute() of the data to update the
2527  * gang header's blk_cksum as described above.
2528  *
2529  * The two-phase assemble/issue model solves the problem of partial failure --
2530  * what if you'd freed part of a gang block but then couldn't read the
2531  * gang header for another part?  Assembling the entire gang tree first
2532  * ensures that all the necessary gang header I/O has succeeded before
2533  * starting the actual work of free, claim, or write.  Once the gang tree
2534  * is assembled, free and claim are in-memory operations that cannot fail.
2535  *
2536  * In the event that a gang write fails, zio_dva_unallocate() walks the
2537  * gang tree to immediately free (i.e. insert back into the space map)
2538  * everything we've allocated.  This ensures that we don't get ENOSPC
2539  * errors during repeated suspend/resume cycles due to a flaky device.
2540  *
2541  * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
2542  * the gang tree, we won't modify the block, so we can safely defer the free
2543  * (knowing that the block is still intact).  If we *can* assemble the gang
2544  * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
2545  * each constituent bp and we can allocate a new block on the next sync pass.
2546  *
2547  * In all cases, the gang tree allows complete recovery from partial failure.
2548  * ==========================================================================
2549  */
2550 
2551 static void
2552 zio_gang_issue_func_done(zio_t *zio)
2553 {
2554 	abd_free(zio->io_abd);
2555 }
2556 
2557 static zio_t *
2558 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2559     uint64_t offset)
2560 {
2561 	if (gn != NULL)
2562 		return (pio);
2563 
2564 	return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset),
2565 	    BP_GET_PSIZE(bp), zio_gang_issue_func_done,
2566 	    NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2567 	    &pio->io_bookmark));
2568 }
2569 
2570 static zio_t *
2571 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2572     uint64_t offset)
2573 {
2574 	zio_t *zio;
2575 
2576 	if (gn != NULL) {
2577 		abd_t *gbh_abd =
2578 		    abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2579 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2580 		    gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL,
2581 		    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2582 		    &pio->io_bookmark);
2583 		/*
2584 		 * As we rewrite each gang header, the pipeline will compute
2585 		 * a new gang block header checksum for it; but no one will
2586 		 * compute a new data checksum, so we do that here.  The one
2587 		 * exception is the gang leader: the pipeline already computed
2588 		 * its data checksum because that stage precedes gang assembly.
2589 		 * (Presently, nothing actually uses interior data checksums;
2590 		 * this is just good hygiene.)
2591 		 */
2592 		if (gn != pio->io_gang_leader->io_gang_tree) {
2593 			abd_t *buf = abd_get_offset(data, offset);
2594 
2595 			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
2596 			    buf, BP_GET_PSIZE(bp));
2597 
2598 			abd_free(buf);
2599 		}
2600 		/*
2601 		 * If we are here to damage data for testing purposes,
2602 		 * leave the GBH alone so that we can detect the damage.
2603 		 */
2604 		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
2605 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2606 	} else {
2607 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2608 		    abd_get_offset(data, offset), BP_GET_PSIZE(bp),
2609 		    zio_gang_issue_func_done, NULL, pio->io_priority,
2610 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2611 	}
2612 
2613 	return (zio);
2614 }
2615 
2616 static zio_t *
2617 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2618     uint64_t offset)
2619 {
2620 	(void) gn, (void) data, (void) offset;
2621 
2622 	zio_t *zio = zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
2623 	    ZIO_GANG_CHILD_FLAGS(pio));
2624 	if (zio == NULL) {
2625 		zio = zio_null(pio, pio->io_spa,
2626 		    NULL, NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio));
2627 	}
2628 	return (zio);
2629 }
2630 
2631 static zio_t *
2632 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2633     uint64_t offset)
2634 {
2635 	(void) gn, (void) data, (void) offset;
2636 	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
2637 	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
2638 }
2639 
2640 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
2641 	NULL,
2642 	zio_read_gang,
2643 	zio_rewrite_gang,
2644 	zio_free_gang,
2645 	zio_claim_gang,
2646 	NULL
2647 };
2648 
2649 static void zio_gang_tree_assemble_done(zio_t *zio);
2650 
2651 static zio_gang_node_t *
2652 zio_gang_node_alloc(zio_gang_node_t **gnpp)
2653 {
2654 	zio_gang_node_t *gn;
2655 
2656 	ASSERT(*gnpp == NULL);
2657 
2658 	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
2659 	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
2660 	*gnpp = gn;
2661 
2662 	return (gn);
2663 }
2664 
2665 static void
2666 zio_gang_node_free(zio_gang_node_t **gnpp)
2667 {
2668 	zio_gang_node_t *gn = *gnpp;
2669 
2670 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2671 		ASSERT(gn->gn_child[g] == NULL);
2672 
2673 	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2674 	kmem_free(gn, sizeof (*gn));
2675 	*gnpp = NULL;
2676 }
2677 
2678 static void
2679 zio_gang_tree_free(zio_gang_node_t **gnpp)
2680 {
2681 	zio_gang_node_t *gn = *gnpp;
2682 
2683 	if (gn == NULL)
2684 		return;
2685 
2686 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2687 		zio_gang_tree_free(&gn->gn_child[g]);
2688 
2689 	zio_gang_node_free(gnpp);
2690 }
2691 
2692 static void
2693 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
2694 {
2695 	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
2696 	abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2697 
2698 	ASSERT(gio->io_gang_leader == gio);
2699 	ASSERT(BP_IS_GANG(bp));
2700 
2701 	zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2702 	    zio_gang_tree_assemble_done, gn, gio->io_priority,
2703 	    ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
2704 }
2705 
2706 static void
2707 zio_gang_tree_assemble_done(zio_t *zio)
2708 {
2709 	zio_t *gio = zio->io_gang_leader;
2710 	zio_gang_node_t *gn = zio->io_private;
2711 	blkptr_t *bp = zio->io_bp;
2712 
2713 	ASSERT(gio == zio_unique_parent(zio));
2714 	ASSERT(zio->io_child_count == 0);
2715 
2716 	if (zio->io_error)
2717 		return;
2718 
2719 	/* this ABD was created from a linear buf in zio_gang_tree_assemble */
2720 	if (BP_SHOULD_BYTESWAP(bp))
2721 		byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size);
2722 
2723 	ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh);
2724 	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
2725 	ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2726 
2727 	abd_free(zio->io_abd);
2728 
2729 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2730 		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2731 		if (!BP_IS_GANG(gbp))
2732 			continue;
2733 		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
2734 	}
2735 }
2736 
2737 static void
2738 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data,
2739     uint64_t offset)
2740 {
2741 	zio_t *gio = pio->io_gang_leader;
2742 	zio_t *zio;
2743 
2744 	ASSERT(BP_IS_GANG(bp) == !!gn);
2745 	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
2746 	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
2747 
2748 	/*
2749 	 * If you're a gang header, your data is in gn->gn_gbh.
2750 	 * If you're a gang member, your data is in 'data' and gn == NULL.
2751 	 */
2752 	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset);
2753 
2754 	if (gn != NULL) {
2755 		ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2756 
2757 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2758 			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2759 			if (BP_IS_HOLE(gbp))
2760 				continue;
2761 			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data,
2762 			    offset);
2763 			offset += BP_GET_PSIZE(gbp);
2764 		}
2765 	}
2766 
2767 	if (gn == gio->io_gang_tree)
2768 		ASSERT3U(gio->io_size, ==, offset);
2769 
2770 	if (zio != pio)
2771 		zio_nowait(zio);
2772 }
2773 
2774 static zio_t *
2775 zio_gang_assemble(zio_t *zio)
2776 {
2777 	blkptr_t *bp = zio->io_bp;
2778 
2779 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
2780 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2781 
2782 	zio->io_gang_leader = zio;
2783 
2784 	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
2785 
2786 	return (zio);
2787 }
2788 
2789 static zio_t *
2790 zio_gang_issue(zio_t *zio)
2791 {
2792 	blkptr_t *bp = zio->io_bp;
2793 
2794 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) {
2795 		return (NULL);
2796 	}
2797 
2798 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
2799 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2800 
2801 	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
2802 		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd,
2803 		    0);
2804 	else
2805 		zio_gang_tree_free(&zio->io_gang_tree);
2806 
2807 	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2808 
2809 	return (zio);
2810 }
2811 
2812 static void
2813 zio_write_gang_member_ready(zio_t *zio)
2814 {
2815 	zio_t *pio = zio_unique_parent(zio);
2816 	dva_t *cdva = zio->io_bp->blk_dva;
2817 	dva_t *pdva = pio->io_bp->blk_dva;
2818 	uint64_t asize;
2819 	zio_t *gio __maybe_unused = zio->io_gang_leader;
2820 
2821 	if (BP_IS_HOLE(zio->io_bp))
2822 		return;
2823 
2824 	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
2825 
2826 	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
2827 	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
2828 	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
2829 	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
2830 	VERIFY3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
2831 
2832 	mutex_enter(&pio->io_lock);
2833 	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
2834 		ASSERT(DVA_GET_GANG(&pdva[d]));
2835 		asize = DVA_GET_ASIZE(&pdva[d]);
2836 		asize += DVA_GET_ASIZE(&cdva[d]);
2837 		DVA_SET_ASIZE(&pdva[d], asize);
2838 	}
2839 	mutex_exit(&pio->io_lock);
2840 }
2841 
2842 static void
2843 zio_write_gang_done(zio_t *zio)
2844 {
2845 	/*
2846 	 * The io_abd field will be NULL for a zio with no data.  The io_flags
2847 	 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't
2848 	 * check for it here as it is cleared in zio_ready.
2849 	 */
2850 	if (zio->io_abd != NULL)
2851 		abd_free(zio->io_abd);
2852 }
2853 
2854 static zio_t *
2855 zio_write_gang_block(zio_t *pio, metaslab_class_t *mc)
2856 {
2857 	spa_t *spa = pio->io_spa;
2858 	blkptr_t *bp = pio->io_bp;
2859 	zio_t *gio = pio->io_gang_leader;
2860 	zio_t *zio;
2861 	zio_gang_node_t *gn, **gnpp;
2862 	zio_gbh_phys_t *gbh;
2863 	abd_t *gbh_abd;
2864 	uint64_t txg = pio->io_txg;
2865 	uint64_t resid = pio->io_size;
2866 	uint64_t lsize;
2867 	int copies = gio->io_prop.zp_copies;
2868 	zio_prop_t zp;
2869 	int error;
2870 	boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA);
2871 
2872 	/*
2873 	 * If one copy was requested, store 2 copies of the GBH, so that we
2874 	 * can still traverse all the data (e.g. to free or scrub) even if a
2875 	 * block is damaged.  Note that we can't store 3 copies of the GBH in
2876 	 * all cases, e.g. with encryption, which uses DVA[2] for the IV+salt.
2877 	 */
2878 	int gbh_copies = copies;
2879 	if (gbh_copies == 1) {
2880 		gbh_copies = MIN(2, spa_max_replication(spa));
2881 	}
2882 
2883 	int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER;
2884 	if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2885 		ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2886 		ASSERT(has_data);
2887 
2888 		flags |= METASLAB_ASYNC_ALLOC;
2889 		VERIFY(zfs_refcount_held(&mc->mc_allocator[pio->io_allocator].
2890 		    mca_alloc_slots, pio));
2891 
2892 		/*
2893 		 * The logical zio has already placed a reservation for
2894 		 * 'copies' allocation slots but gang blocks may require
2895 		 * additional copies. These additional copies
2896 		 * (i.e. gbh_copies - copies) are guaranteed to succeed
2897 		 * since metaslab_class_throttle_reserve() always allows
2898 		 * additional reservations for gang blocks.
2899 		 */
2900 		VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies,
2901 		    pio->io_allocator, pio, flags));
2902 	}
2903 
2904 	error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE,
2905 	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags,
2906 	    &pio->io_alloc_list, pio, pio->io_allocator);
2907 	if (error) {
2908 		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2909 			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2910 			ASSERT(has_data);
2911 
2912 			/*
2913 			 * If we failed to allocate the gang block header then
2914 			 * we remove any additional allocation reservations that
2915 			 * we placed here. The original reservation will
2916 			 * be removed when the logical I/O goes to the ready
2917 			 * stage.
2918 			 */
2919 			metaslab_class_throttle_unreserve(mc,
2920 			    gbh_copies - copies, pio->io_allocator, pio);
2921 		}
2922 
2923 		pio->io_error = error;
2924 		return (pio);
2925 	}
2926 
2927 	if (pio == gio) {
2928 		gnpp = &gio->io_gang_tree;
2929 	} else {
2930 		gnpp = pio->io_private;
2931 		ASSERT(pio->io_ready == zio_write_gang_member_ready);
2932 	}
2933 
2934 	gn = zio_gang_node_alloc(gnpp);
2935 	gbh = gn->gn_gbh;
2936 	memset(gbh, 0, SPA_GANGBLOCKSIZE);
2937 	gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE);
2938 
2939 	/*
2940 	 * Create the gang header.
2941 	 */
2942 	zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2943 	    zio_write_gang_done, NULL, pio->io_priority,
2944 	    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2945 
2946 	/*
2947 	 * Create and nowait the gang children.
2948 	 */
2949 	for (int g = 0; resid != 0; resid -= lsize, g++) {
2950 		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
2951 		    SPA_MINBLOCKSIZE);
2952 		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
2953 
2954 		zp.zp_checksum = gio->io_prop.zp_checksum;
2955 		zp.zp_compress = ZIO_COMPRESS_OFF;
2956 		zp.zp_complevel = gio->io_prop.zp_complevel;
2957 		zp.zp_type = DMU_OT_NONE;
2958 		zp.zp_level = 0;
2959 		zp.zp_copies = gio->io_prop.zp_copies;
2960 		zp.zp_dedup = B_FALSE;
2961 		zp.zp_dedup_verify = B_FALSE;
2962 		zp.zp_nopwrite = B_FALSE;
2963 		zp.zp_encrypt = gio->io_prop.zp_encrypt;
2964 		zp.zp_byteorder = gio->io_prop.zp_byteorder;
2965 		memset(zp.zp_salt, 0, ZIO_DATA_SALT_LEN);
2966 		memset(zp.zp_iv, 0, ZIO_DATA_IV_LEN);
2967 		memset(zp.zp_mac, 0, ZIO_DATA_MAC_LEN);
2968 
2969 		zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
2970 		    has_data ? abd_get_offset(pio->io_abd, pio->io_size -
2971 		    resid) : NULL, lsize, lsize, &zp,
2972 		    zio_write_gang_member_ready, NULL, NULL,
2973 		    zio_write_gang_done, &gn->gn_child[g], pio->io_priority,
2974 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2975 
2976 		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2977 			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2978 			ASSERT(has_data);
2979 
2980 			/*
2981 			 * Gang children won't throttle but we should
2982 			 * account for their work, so reserve an allocation
2983 			 * slot for them here.
2984 			 */
2985 			VERIFY(metaslab_class_throttle_reserve(mc,
2986 			    zp.zp_copies, cio->io_allocator, cio, flags));
2987 		}
2988 		zio_nowait(cio);
2989 	}
2990 
2991 	/*
2992 	 * Set pio's pipeline to just wait for zio to finish.
2993 	 */
2994 	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2995 
2996 	/*
2997 	 * We didn't allocate this bp, so make sure it doesn't get unmarked.
2998 	 */
2999 	pio->io_flags &= ~ZIO_FLAG_FASTWRITE;
3000 
3001 	zio_nowait(zio);
3002 
3003 	return (pio);
3004 }
3005 
3006 /*
3007  * The zio_nop_write stage in the pipeline determines if allocating a
3008  * new bp is necessary.  The nopwrite feature can handle writes in
3009  * either syncing or open context (i.e. zil writes) and as a result is
3010  * mutually exclusive with dedup.
3011  *
3012  * By leveraging a cryptographically secure checksum, such as SHA256, we
3013  * can compare the checksums of the new data and the old to determine if
3014  * allocating a new block is required.  Note that our requirements for
3015  * cryptographic strength are fairly weak: there can't be any accidental
3016  * hash collisions, but we don't need to be secure against intentional
3017  * (malicious) collisions.  To trigger a nopwrite, you have to be able
3018  * to write the file to begin with, and triggering an incorrect (hash
3019  * collision) nopwrite is no worse than simply writing to the file.
3020  * That said, there are no known attacks against the checksum algorithms
3021  * used for nopwrite, assuming that the salt and the checksums
3022  * themselves remain secret.
3023  */
3024 static zio_t *
3025 zio_nop_write(zio_t *zio)
3026 {
3027 	blkptr_t *bp = zio->io_bp;
3028 	blkptr_t *bp_orig = &zio->io_bp_orig;
3029 	zio_prop_t *zp = &zio->io_prop;
3030 
3031 	ASSERT(BP_IS_HOLE(bp));
3032 	ASSERT(BP_GET_LEVEL(bp) == 0);
3033 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
3034 	ASSERT(zp->zp_nopwrite);
3035 	ASSERT(!zp->zp_dedup);
3036 	ASSERT(zio->io_bp_override == NULL);
3037 	ASSERT(IO_IS_ALLOCATING(zio));
3038 
3039 	/*
3040 	 * Check to see if the original bp and the new bp have matching
3041 	 * characteristics (i.e. same checksum, compression algorithms, etc).
3042 	 * If they don't then just continue with the pipeline which will
3043 	 * allocate a new bp.
3044 	 */
3045 	if (BP_IS_HOLE(bp_orig) ||
3046 	    !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
3047 	    ZCHECKSUM_FLAG_NOPWRITE) ||
3048 	    BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) ||
3049 	    BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
3050 	    BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
3051 	    BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
3052 	    zp->zp_copies != BP_GET_NDVAS(bp_orig))
3053 		return (zio);
3054 
3055 	/*
3056 	 * If the checksums match then reset the pipeline so that we
3057 	 * avoid allocating a new bp and issuing any I/O.
3058 	 */
3059 	if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
3060 		ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
3061 		    ZCHECKSUM_FLAG_NOPWRITE);
3062 		ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
3063 		ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
3064 		ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
3065 		ASSERT3U(bp->blk_prop, ==, bp_orig->blk_prop);
3066 
3067 		/*
3068 		 * If we're overwriting a block that is currently on an
3069 		 * indirect vdev, then ignore the nopwrite request and
3070 		 * allow a new block to be allocated on a concrete vdev.
3071 		 */
3072 		spa_config_enter(zio->io_spa, SCL_VDEV, FTAG, RW_READER);
3073 		for (int d = 0; d < BP_GET_NDVAS(bp_orig); d++) {
3074 			vdev_t *tvd = vdev_lookup_top(zio->io_spa,
3075 			    DVA_GET_VDEV(&bp_orig->blk_dva[d]));
3076 			if (tvd->vdev_ops == &vdev_indirect_ops) {
3077 				spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
3078 				return (zio);
3079 			}
3080 		}
3081 		spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
3082 
3083 		*bp = *bp_orig;
3084 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3085 		zio->io_flags |= ZIO_FLAG_NOPWRITE;
3086 	}
3087 
3088 	return (zio);
3089 }
3090 
3091 /*
3092  * ==========================================================================
3093  * Block Reference Table
3094  * ==========================================================================
3095  */
3096 static zio_t *
3097 zio_brt_free(zio_t *zio)
3098 {
3099 	blkptr_t *bp;
3100 
3101 	bp = zio->io_bp;
3102 
3103 	if (BP_GET_LEVEL(bp) > 0 ||
3104 	    BP_IS_METADATA(bp) ||
3105 	    !brt_maybe_exists(zio->io_spa, bp)) {
3106 		return (zio);
3107 	}
3108 
3109 	if (!brt_entry_decref(zio->io_spa, bp)) {
3110 		/*
3111 		 * This isn't the last reference, so we cannot free
3112 		 * the data yet.
3113 		 */
3114 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3115 	}
3116 
3117 	return (zio);
3118 }
3119 
3120 /*
3121  * ==========================================================================
3122  * Dedup
3123  * ==========================================================================
3124  */
3125 static void
3126 zio_ddt_child_read_done(zio_t *zio)
3127 {
3128 	blkptr_t *bp = zio->io_bp;
3129 	ddt_entry_t *dde = zio->io_private;
3130 	ddt_phys_t *ddp;
3131 	zio_t *pio = zio_unique_parent(zio);
3132 
3133 	mutex_enter(&pio->io_lock);
3134 	ddp = ddt_phys_select(dde, bp);
3135 	if (zio->io_error == 0)
3136 		ddt_phys_clear(ddp);	/* this ddp doesn't need repair */
3137 
3138 	if (zio->io_error == 0 && dde->dde_repair_abd == NULL)
3139 		dde->dde_repair_abd = zio->io_abd;
3140 	else
3141 		abd_free(zio->io_abd);
3142 	mutex_exit(&pio->io_lock);
3143 }
3144 
3145 static zio_t *
3146 zio_ddt_read_start(zio_t *zio)
3147 {
3148 	blkptr_t *bp = zio->io_bp;
3149 
3150 	ASSERT(BP_GET_DEDUP(bp));
3151 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3152 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3153 
3154 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
3155 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
3156 		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
3157 		ddt_phys_t *ddp = dde->dde_phys;
3158 		ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
3159 		blkptr_t blk;
3160 
3161 		ASSERT(zio->io_vsd == NULL);
3162 		zio->io_vsd = dde;
3163 
3164 		if (ddp_self == NULL)
3165 			return (zio);
3166 
3167 		for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
3168 			if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
3169 				continue;
3170 			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
3171 			    &blk);
3172 			zio_nowait(zio_read(zio, zio->io_spa, &blk,
3173 			    abd_alloc_for_io(zio->io_size, B_TRUE),
3174 			    zio->io_size, zio_ddt_child_read_done, dde,
3175 			    zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) |
3176 			    ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark));
3177 		}
3178 		return (zio);
3179 	}
3180 
3181 	zio_nowait(zio_read(zio, zio->io_spa, bp,
3182 	    zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority,
3183 	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
3184 
3185 	return (zio);
3186 }
3187 
3188 static zio_t *
3189 zio_ddt_read_done(zio_t *zio)
3190 {
3191 	blkptr_t *bp = zio->io_bp;
3192 
3193 	if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) {
3194 		return (NULL);
3195 	}
3196 
3197 	ASSERT(BP_GET_DEDUP(bp));
3198 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3199 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3200 
3201 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
3202 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
3203 		ddt_entry_t *dde = zio->io_vsd;
3204 		if (ddt == NULL) {
3205 			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
3206 			return (zio);
3207 		}
3208 		if (dde == NULL) {
3209 			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
3210 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
3211 			return (NULL);
3212 		}
3213 		if (dde->dde_repair_abd != NULL) {
3214 			abd_copy(zio->io_abd, dde->dde_repair_abd,
3215 			    zio->io_size);
3216 			zio->io_child_error[ZIO_CHILD_DDT] = 0;
3217 		}
3218 		ddt_repair_done(ddt, dde);
3219 		zio->io_vsd = NULL;
3220 	}
3221 
3222 	ASSERT(zio->io_vsd == NULL);
3223 
3224 	return (zio);
3225 }
3226 
3227 static boolean_t
3228 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
3229 {
3230 	spa_t *spa = zio->io_spa;
3231 	boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW);
3232 
3233 	ASSERT(!(zio->io_bp_override && do_raw));
3234 
3235 	/*
3236 	 * Note: we compare the original data, not the transformed data,
3237 	 * because when zio->io_bp is an override bp, we will not have
3238 	 * pushed the I/O transforms.  That's an important optimization
3239 	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
3240 	 * However, we should never get a raw, override zio so in these
3241 	 * cases we can compare the io_abd directly. This is useful because
3242 	 * it allows us to do dedup verification even if we don't have access
3243 	 * to the original data (for instance, if the encryption keys aren't
3244 	 * loaded).
3245 	 */
3246 
3247 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
3248 		zio_t *lio = dde->dde_lead_zio[p];
3249 
3250 		if (lio != NULL && do_raw) {
3251 			return (lio->io_size != zio->io_size ||
3252 			    abd_cmp(zio->io_abd, lio->io_abd) != 0);
3253 		} else if (lio != NULL) {
3254 			return (lio->io_orig_size != zio->io_orig_size ||
3255 			    abd_cmp(zio->io_orig_abd, lio->io_orig_abd) != 0);
3256 		}
3257 	}
3258 
3259 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
3260 		ddt_phys_t *ddp = &dde->dde_phys[p];
3261 
3262 		if (ddp->ddp_phys_birth != 0 && do_raw) {
3263 			blkptr_t blk = *zio->io_bp;
3264 			uint64_t psize;
3265 			abd_t *tmpabd;
3266 			int error;
3267 
3268 			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
3269 			psize = BP_GET_PSIZE(&blk);
3270 
3271 			if (psize != zio->io_size)
3272 				return (B_TRUE);
3273 
3274 			ddt_exit(ddt);
3275 
3276 			tmpabd = abd_alloc_for_io(psize, B_TRUE);
3277 
3278 			error = zio_wait(zio_read(NULL, spa, &blk, tmpabd,
3279 			    psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
3280 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3281 			    ZIO_FLAG_RAW, &zio->io_bookmark));
3282 
3283 			if (error == 0) {
3284 				if (abd_cmp(tmpabd, zio->io_abd) != 0)
3285 					error = SET_ERROR(ENOENT);
3286 			}
3287 
3288 			abd_free(tmpabd);
3289 			ddt_enter(ddt);
3290 			return (error != 0);
3291 		} else if (ddp->ddp_phys_birth != 0) {
3292 			arc_buf_t *abuf = NULL;
3293 			arc_flags_t aflags = ARC_FLAG_WAIT;
3294 			blkptr_t blk = *zio->io_bp;
3295 			int error;
3296 
3297 			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
3298 
3299 			if (BP_GET_LSIZE(&blk) != zio->io_orig_size)
3300 				return (B_TRUE);
3301 
3302 			ddt_exit(ddt);
3303 
3304 			error = arc_read(NULL, spa, &blk,
3305 			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
3306 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3307 			    &aflags, &zio->io_bookmark);
3308 
3309 			if (error == 0) {
3310 				if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data,
3311 				    zio->io_orig_size) != 0)
3312 					error = SET_ERROR(ENOENT);
3313 				arc_buf_destroy(abuf, &abuf);
3314 			}
3315 
3316 			ddt_enter(ddt);
3317 			return (error != 0);
3318 		}
3319 	}
3320 
3321 	return (B_FALSE);
3322 }
3323 
3324 static void
3325 zio_ddt_child_write_ready(zio_t *zio)
3326 {
3327 	int p = zio->io_prop.zp_copies;
3328 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3329 	ddt_entry_t *dde = zio->io_private;
3330 	ddt_phys_t *ddp = &dde->dde_phys[p];
3331 	zio_t *pio;
3332 
3333 	if (zio->io_error)
3334 		return;
3335 
3336 	ddt_enter(ddt);
3337 
3338 	ASSERT(dde->dde_lead_zio[p] == zio);
3339 
3340 	ddt_phys_fill(ddp, zio->io_bp);
3341 
3342 	zio_link_t *zl = NULL;
3343 	while ((pio = zio_walk_parents(zio, &zl)) != NULL)
3344 		ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
3345 
3346 	ddt_exit(ddt);
3347 }
3348 
3349 static void
3350 zio_ddt_child_write_done(zio_t *zio)
3351 {
3352 	int p = zio->io_prop.zp_copies;
3353 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3354 	ddt_entry_t *dde = zio->io_private;
3355 	ddt_phys_t *ddp = &dde->dde_phys[p];
3356 
3357 	ddt_enter(ddt);
3358 
3359 	ASSERT(ddp->ddp_refcnt == 0);
3360 	ASSERT(dde->dde_lead_zio[p] == zio);
3361 	dde->dde_lead_zio[p] = NULL;
3362 
3363 	if (zio->io_error == 0) {
3364 		zio_link_t *zl = NULL;
3365 		while (zio_walk_parents(zio, &zl) != NULL)
3366 			ddt_phys_addref(ddp);
3367 	} else {
3368 		ddt_phys_clear(ddp);
3369 	}
3370 
3371 	ddt_exit(ddt);
3372 }
3373 
3374 static zio_t *
3375 zio_ddt_write(zio_t *zio)
3376 {
3377 	spa_t *spa = zio->io_spa;
3378 	blkptr_t *bp = zio->io_bp;
3379 	uint64_t txg = zio->io_txg;
3380 	zio_prop_t *zp = &zio->io_prop;
3381 	int p = zp->zp_copies;
3382 	zio_t *cio = NULL;
3383 	ddt_t *ddt = ddt_select(spa, bp);
3384 	ddt_entry_t *dde;
3385 	ddt_phys_t *ddp;
3386 
3387 	ASSERT(BP_GET_DEDUP(bp));
3388 	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
3389 	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
3390 	ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW)));
3391 
3392 	ddt_enter(ddt);
3393 	dde = ddt_lookup(ddt, bp, B_TRUE);
3394 	ddp = &dde->dde_phys[p];
3395 
3396 	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
3397 		/*
3398 		 * If we're using a weak checksum, upgrade to a strong checksum
3399 		 * and try again.  If we're already using a strong checksum,
3400 		 * we can't resolve it, so just convert to an ordinary write.
3401 		 * (And automatically e-mail a paper to Nature?)
3402 		 */
3403 		if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
3404 		    ZCHECKSUM_FLAG_DEDUP)) {
3405 			zp->zp_checksum = spa_dedup_checksum(spa);
3406 			zio_pop_transforms(zio);
3407 			zio->io_stage = ZIO_STAGE_OPEN;
3408 			BP_ZERO(bp);
3409 		} else {
3410 			zp->zp_dedup = B_FALSE;
3411 			BP_SET_DEDUP(bp, B_FALSE);
3412 		}
3413 		ASSERT(!BP_GET_DEDUP(bp));
3414 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
3415 		ddt_exit(ddt);
3416 		return (zio);
3417 	}
3418 
3419 	if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
3420 		if (ddp->ddp_phys_birth != 0)
3421 			ddt_bp_fill(ddp, bp, txg);
3422 		if (dde->dde_lead_zio[p] != NULL)
3423 			zio_add_child(zio, dde->dde_lead_zio[p]);
3424 		else
3425 			ddt_phys_addref(ddp);
3426 	} else if (zio->io_bp_override) {
3427 		ASSERT(bp->blk_birth == txg);
3428 		ASSERT(BP_EQUAL(bp, zio->io_bp_override));
3429 		ddt_phys_fill(ddp, bp);
3430 		ddt_phys_addref(ddp);
3431 	} else {
3432 		cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
3433 		    zio->io_orig_size, zio->io_orig_size, zp,
3434 		    zio_ddt_child_write_ready, NULL, NULL,
3435 		    zio_ddt_child_write_done, dde, zio->io_priority,
3436 		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
3437 
3438 		zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL);
3439 		dde->dde_lead_zio[p] = cio;
3440 	}
3441 
3442 	ddt_exit(ddt);
3443 
3444 	zio_nowait(cio);
3445 
3446 	return (zio);
3447 }
3448 
3449 static ddt_entry_t *freedde; /* for debugging */
3450 
3451 static zio_t *
3452 zio_ddt_free(zio_t *zio)
3453 {
3454 	spa_t *spa = zio->io_spa;
3455 	blkptr_t *bp = zio->io_bp;
3456 	ddt_t *ddt = ddt_select(spa, bp);
3457 	ddt_entry_t *dde;
3458 	ddt_phys_t *ddp;
3459 
3460 	ASSERT(BP_GET_DEDUP(bp));
3461 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3462 
3463 	ddt_enter(ddt);
3464 	freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
3465 	if (dde) {
3466 		ddp = ddt_phys_select(dde, bp);
3467 		if (ddp)
3468 			ddt_phys_decref(ddp);
3469 	}
3470 	ddt_exit(ddt);
3471 
3472 	return (zio);
3473 }
3474 
3475 /*
3476  * ==========================================================================
3477  * Allocate and free blocks
3478  * ==========================================================================
3479  */
3480 
3481 static zio_t *
3482 zio_io_to_allocate(spa_t *spa, int allocator)
3483 {
3484 	zio_t *zio;
3485 
3486 	ASSERT(MUTEX_HELD(&spa->spa_allocs[allocator].spaa_lock));
3487 
3488 	zio = avl_first(&spa->spa_allocs[allocator].spaa_tree);
3489 	if (zio == NULL)
3490 		return (NULL);
3491 
3492 	ASSERT(IO_IS_ALLOCATING(zio));
3493 
3494 	/*
3495 	 * Try to place a reservation for this zio. If we're unable to
3496 	 * reserve then we throttle.
3497 	 */
3498 	ASSERT3U(zio->io_allocator, ==, allocator);
3499 	if (!metaslab_class_throttle_reserve(zio->io_metaslab_class,
3500 	    zio->io_prop.zp_copies, allocator, zio, 0)) {
3501 		return (NULL);
3502 	}
3503 
3504 	avl_remove(&spa->spa_allocs[allocator].spaa_tree, zio);
3505 	ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE);
3506 
3507 	return (zio);
3508 }
3509 
3510 static zio_t *
3511 zio_dva_throttle(zio_t *zio)
3512 {
3513 	spa_t *spa = zio->io_spa;
3514 	zio_t *nio;
3515 	metaslab_class_t *mc;
3516 
3517 	/* locate an appropriate allocation class */
3518 	mc = spa_preferred_class(spa, zio->io_size, zio->io_prop.zp_type,
3519 	    zio->io_prop.zp_level, zio->io_prop.zp_zpl_smallblk);
3520 
3521 	if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE ||
3522 	    !mc->mc_alloc_throttle_enabled ||
3523 	    zio->io_child_type == ZIO_CHILD_GANG ||
3524 	    zio->io_flags & ZIO_FLAG_NODATA) {
3525 		return (zio);
3526 	}
3527 
3528 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3529 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3530 	ASSERT3U(zio->io_queued_timestamp, >, 0);
3531 	ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE);
3532 
3533 	zbookmark_phys_t *bm = &zio->io_bookmark;
3534 	/*
3535 	 * We want to try to use as many allocators as possible to help improve
3536 	 * performance, but we also want logically adjacent IOs to be physically
3537 	 * adjacent to improve sequential read performance. We chunk each object
3538 	 * into 2^20 block regions, and then hash based on the objset, object,
3539 	 * level, and region to accomplish both of these goals.
3540 	 */
3541 	int allocator = (uint_t)cityhash4(bm->zb_objset, bm->zb_object,
3542 	    bm->zb_level, bm->zb_blkid >> 20) % spa->spa_alloc_count;
3543 	zio->io_allocator = allocator;
3544 	zio->io_metaslab_class = mc;
3545 	mutex_enter(&spa->spa_allocs[allocator].spaa_lock);
3546 	avl_add(&spa->spa_allocs[allocator].spaa_tree, zio);
3547 	nio = zio_io_to_allocate(spa, allocator);
3548 	mutex_exit(&spa->spa_allocs[allocator].spaa_lock);
3549 	return (nio);
3550 }
3551 
3552 static void
3553 zio_allocate_dispatch(spa_t *spa, int allocator)
3554 {
3555 	zio_t *zio;
3556 
3557 	mutex_enter(&spa->spa_allocs[allocator].spaa_lock);
3558 	zio = zio_io_to_allocate(spa, allocator);
3559 	mutex_exit(&spa->spa_allocs[allocator].spaa_lock);
3560 	if (zio == NULL)
3561 		return;
3562 
3563 	ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE);
3564 	ASSERT0(zio->io_error);
3565 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE);
3566 }
3567 
3568 static zio_t *
3569 zio_dva_allocate(zio_t *zio)
3570 {
3571 	spa_t *spa = zio->io_spa;
3572 	metaslab_class_t *mc;
3573 	blkptr_t *bp = zio->io_bp;
3574 	int error;
3575 	int flags = 0;
3576 
3577 	if (zio->io_gang_leader == NULL) {
3578 		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3579 		zio->io_gang_leader = zio;
3580 	}
3581 
3582 	ASSERT(BP_IS_HOLE(bp));
3583 	ASSERT0(BP_GET_NDVAS(bp));
3584 	ASSERT3U(zio->io_prop.zp_copies, >, 0);
3585 	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
3586 	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
3587 
3588 	flags |= (zio->io_flags & ZIO_FLAG_FASTWRITE) ? METASLAB_FASTWRITE : 0;
3589 	if (zio->io_flags & ZIO_FLAG_NODATA)
3590 		flags |= METASLAB_DONT_THROTTLE;
3591 	if (zio->io_flags & ZIO_FLAG_GANG_CHILD)
3592 		flags |= METASLAB_GANG_CHILD;
3593 	if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE)
3594 		flags |= METASLAB_ASYNC_ALLOC;
3595 
3596 	/*
3597 	 * if not already chosen, locate an appropriate allocation class
3598 	 */
3599 	mc = zio->io_metaslab_class;
3600 	if (mc == NULL) {
3601 		mc = spa_preferred_class(spa, zio->io_size,
3602 		    zio->io_prop.zp_type, zio->io_prop.zp_level,
3603 		    zio->io_prop.zp_zpl_smallblk);
3604 		zio->io_metaslab_class = mc;
3605 	}
3606 
3607 	/*
3608 	 * Try allocating the block in the usual metaslab class.
3609 	 * If that's full, allocate it in the normal class.
3610 	 * If that's full, allocate as a gang block,
3611 	 * and if all are full, the allocation fails (which shouldn't happen).
3612 	 *
3613 	 * Note that we do not fall back on embedded slog (ZIL) space, to
3614 	 * preserve unfragmented slog space, which is critical for decent
3615 	 * sync write performance.  If a log allocation fails, we will fall
3616 	 * back to spa_sync() which is abysmal for performance.
3617 	 */
3618 	error = metaslab_alloc(spa, mc, zio->io_size, bp,
3619 	    zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3620 	    &zio->io_alloc_list, zio, zio->io_allocator);
3621 
3622 	/*
3623 	 * Fallback to normal class when an alloc class is full
3624 	 */
3625 	if (error == ENOSPC && mc != spa_normal_class(spa)) {
3626 		/*
3627 		 * If throttling, transfer reservation over to normal class.
3628 		 * The io_allocator slot can remain the same even though we
3629 		 * are switching classes.
3630 		 */
3631 		if (mc->mc_alloc_throttle_enabled &&
3632 		    (zio->io_flags & ZIO_FLAG_IO_ALLOCATING)) {
3633 			metaslab_class_throttle_unreserve(mc,
3634 			    zio->io_prop.zp_copies, zio->io_allocator, zio);
3635 			zio->io_flags &= ~ZIO_FLAG_IO_ALLOCATING;
3636 
3637 			VERIFY(metaslab_class_throttle_reserve(
3638 			    spa_normal_class(spa),
3639 			    zio->io_prop.zp_copies, zio->io_allocator, zio,
3640 			    flags | METASLAB_MUST_RESERVE));
3641 		}
3642 		zio->io_metaslab_class = mc = spa_normal_class(spa);
3643 		if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) {
3644 			zfs_dbgmsg("%s: metaslab allocation failure, "
3645 			    "trying normal class: zio %px, size %llu, error %d",
3646 			    spa_name(spa), zio, (u_longlong_t)zio->io_size,
3647 			    error);
3648 		}
3649 
3650 		error = metaslab_alloc(spa, mc, zio->io_size, bp,
3651 		    zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3652 		    &zio->io_alloc_list, zio, zio->io_allocator);
3653 	}
3654 
3655 	if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) {
3656 		if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) {
3657 			zfs_dbgmsg("%s: metaslab allocation failure, "
3658 			    "trying ganging: zio %px, size %llu, error %d",
3659 			    spa_name(spa), zio, (u_longlong_t)zio->io_size,
3660 			    error);
3661 		}
3662 		return (zio_write_gang_block(zio, mc));
3663 	}
3664 	if (error != 0) {
3665 		if (error != ENOSPC ||
3666 		    (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC)) {
3667 			zfs_dbgmsg("%s: metaslab allocation failure: zio %px, "
3668 			    "size %llu, error %d",
3669 			    spa_name(spa), zio, (u_longlong_t)zio->io_size,
3670 			    error);
3671 		}
3672 		zio->io_error = error;
3673 	}
3674 
3675 	return (zio);
3676 }
3677 
3678 static zio_t *
3679 zio_dva_free(zio_t *zio)
3680 {
3681 	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
3682 
3683 	return (zio);
3684 }
3685 
3686 static zio_t *
3687 zio_dva_claim(zio_t *zio)
3688 {
3689 	int error;
3690 
3691 	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
3692 	if (error)
3693 		zio->io_error = error;
3694 
3695 	return (zio);
3696 }
3697 
3698 /*
3699  * Undo an allocation.  This is used by zio_done() when an I/O fails
3700  * and we want to give back the block we just allocated.
3701  * This handles both normal blocks and gang blocks.
3702  */
3703 static void
3704 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
3705 {
3706 	ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
3707 	ASSERT(zio->io_bp_override == NULL);
3708 
3709 	if (!BP_IS_HOLE(bp))
3710 		metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
3711 
3712 	if (gn != NULL) {
3713 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
3714 			zio_dva_unallocate(zio, gn->gn_child[g],
3715 			    &gn->gn_gbh->zg_blkptr[g]);
3716 		}
3717 	}
3718 }
3719 
3720 /*
3721  * Try to allocate an intent log block.  Return 0 on success, errno on failure.
3722  */
3723 int
3724 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp,
3725     uint64_t size, boolean_t *slog)
3726 {
3727 	int error = 1;
3728 	zio_alloc_list_t io_alloc_list;
3729 
3730 	ASSERT(txg > spa_syncing_txg(spa));
3731 
3732 	metaslab_trace_init(&io_alloc_list);
3733 
3734 	/*
3735 	 * Block pointer fields are useful to metaslabs for stats and debugging.
3736 	 * Fill in the obvious ones before calling into metaslab_alloc().
3737 	 */
3738 	BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3739 	BP_SET_PSIZE(new_bp, size);
3740 	BP_SET_LEVEL(new_bp, 0);
3741 
3742 	/*
3743 	 * When allocating a zil block, we don't have information about
3744 	 * the final destination of the block except the objset it's part
3745 	 * of, so we just hash the objset ID to pick the allocator to get
3746 	 * some parallelism.
3747 	 */
3748 	int flags = METASLAB_FASTWRITE | METASLAB_ZIL;
3749 	int allocator = (uint_t)cityhash4(0, 0, 0,
3750 	    os->os_dsl_dataset->ds_object) % spa->spa_alloc_count;
3751 	error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1,
3752 	    txg, NULL, flags, &io_alloc_list, NULL, allocator);
3753 	*slog = (error == 0);
3754 	if (error != 0) {
3755 		error = metaslab_alloc(spa, spa_embedded_log_class(spa), size,
3756 		    new_bp, 1, txg, NULL, flags,
3757 		    &io_alloc_list, NULL, allocator);
3758 	}
3759 	if (error != 0) {
3760 		error = metaslab_alloc(spa, spa_normal_class(spa), size,
3761 		    new_bp, 1, txg, NULL, flags,
3762 		    &io_alloc_list, NULL, allocator);
3763 	}
3764 	metaslab_trace_fini(&io_alloc_list);
3765 
3766 	if (error == 0) {
3767 		BP_SET_LSIZE(new_bp, size);
3768 		BP_SET_PSIZE(new_bp, size);
3769 		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
3770 		BP_SET_CHECKSUM(new_bp,
3771 		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL
3772 		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
3773 		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3774 		BP_SET_LEVEL(new_bp, 0);
3775 		BP_SET_DEDUP(new_bp, 0);
3776 		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
3777 
3778 		/*
3779 		 * encrypted blocks will require an IV and salt. We generate
3780 		 * these now since we will not be rewriting the bp at
3781 		 * rewrite time.
3782 		 */
3783 		if (os->os_encrypted) {
3784 			uint8_t iv[ZIO_DATA_IV_LEN];
3785 			uint8_t salt[ZIO_DATA_SALT_LEN];
3786 
3787 			BP_SET_CRYPT(new_bp, B_TRUE);
3788 			VERIFY0(spa_crypt_get_salt(spa,
3789 			    dmu_objset_id(os), salt));
3790 			VERIFY0(zio_crypt_generate_iv(iv));
3791 
3792 			zio_crypt_encode_params_bp(new_bp, salt, iv);
3793 		}
3794 	} else {
3795 		zfs_dbgmsg("%s: zil block allocation failure: "
3796 		    "size %llu, error %d", spa_name(spa), (u_longlong_t)size,
3797 		    error);
3798 	}
3799 
3800 	return (error);
3801 }
3802 
3803 /*
3804  * ==========================================================================
3805  * Read and write to physical devices
3806  * ==========================================================================
3807  */
3808 
3809 /*
3810  * Issue an I/O to the underlying vdev. Typically the issue pipeline
3811  * stops after this stage and will resume upon I/O completion.
3812  * However, there are instances where the vdev layer may need to
3813  * continue the pipeline when an I/O was not issued. Since the I/O
3814  * that was sent to the vdev layer might be different than the one
3815  * currently active in the pipeline (see vdev_queue_io()), we explicitly
3816  * force the underlying vdev layers to call either zio_execute() or
3817  * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
3818  */
3819 static zio_t *
3820 zio_vdev_io_start(zio_t *zio)
3821 {
3822 	vdev_t *vd = zio->io_vd;
3823 	uint64_t align;
3824 	spa_t *spa = zio->io_spa;
3825 
3826 	zio->io_delay = 0;
3827 
3828 	ASSERT(zio->io_error == 0);
3829 	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
3830 
3831 	if (vd == NULL) {
3832 		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3833 			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
3834 
3835 		/*
3836 		 * The mirror_ops handle multiple DVAs in a single BP.
3837 		 */
3838 		vdev_mirror_ops.vdev_op_io_start(zio);
3839 		return (NULL);
3840 	}
3841 
3842 	ASSERT3P(zio->io_logical, !=, zio);
3843 	if (zio->io_type == ZIO_TYPE_WRITE) {
3844 		ASSERT(spa->spa_trust_config);
3845 
3846 		/*
3847 		 * Note: the code can handle other kinds of writes,
3848 		 * but we don't expect them.
3849 		 */
3850 		if (zio->io_vd->vdev_noalloc) {
3851 			ASSERT(zio->io_flags &
3852 			    (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL |
3853 			    ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE));
3854 		}
3855 	}
3856 
3857 	align = 1ULL << vd->vdev_top->vdev_ashift;
3858 
3859 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
3860 	    P2PHASE(zio->io_size, align) != 0) {
3861 		/* Transform logical writes to be a full physical block size. */
3862 		uint64_t asize = P2ROUNDUP(zio->io_size, align);
3863 		abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize);
3864 		ASSERT(vd == vd->vdev_top);
3865 		if (zio->io_type == ZIO_TYPE_WRITE) {
3866 			abd_copy(abuf, zio->io_abd, zio->io_size);
3867 			abd_zero_off(abuf, zio->io_size, asize - zio->io_size);
3868 		}
3869 		zio_push_transform(zio, abuf, asize, asize, zio_subblock);
3870 	}
3871 
3872 	/*
3873 	 * If this is not a physical io, make sure that it is properly aligned
3874 	 * before proceeding.
3875 	 */
3876 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
3877 		ASSERT0(P2PHASE(zio->io_offset, align));
3878 		ASSERT0(P2PHASE(zio->io_size, align));
3879 	} else {
3880 		/*
3881 		 * For physical writes, we allow 512b aligned writes and assume
3882 		 * the device will perform a read-modify-write as necessary.
3883 		 */
3884 		ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
3885 		ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
3886 	}
3887 
3888 	VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
3889 
3890 	/*
3891 	 * If this is a repair I/O, and there's no self-healing involved --
3892 	 * that is, we're just resilvering what we expect to resilver --
3893 	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
3894 	 * This prevents spurious resilvering.
3895 	 *
3896 	 * There are a few ways that we can end up creating these spurious
3897 	 * resilver i/os:
3898 	 *
3899 	 * 1. A resilver i/o will be issued if any DVA in the BP has a
3900 	 * dirty DTL.  The mirror code will issue resilver writes to
3901 	 * each DVA, including the one(s) that are not on vdevs with dirty
3902 	 * DTLs.
3903 	 *
3904 	 * 2. With nested replication, which happens when we have a
3905 	 * "replacing" or "spare" vdev that's a child of a mirror or raidz.
3906 	 * For example, given mirror(replacing(A+B), C), it's likely that
3907 	 * only A is out of date (it's the new device). In this case, we'll
3908 	 * read from C, then use the data to resilver A+B -- but we don't
3909 	 * actually want to resilver B, just A. The top-level mirror has no
3910 	 * way to know this, so instead we just discard unnecessary repairs
3911 	 * as we work our way down the vdev tree.
3912 	 *
3913 	 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc.
3914 	 * The same logic applies to any form of nested replication: ditto
3915 	 * + mirror, RAID-Z + replacing, etc.
3916 	 *
3917 	 * However, indirect vdevs point off to other vdevs which may have
3918 	 * DTL's, so we never bypass them.  The child i/os on concrete vdevs
3919 	 * will be properly bypassed instead.
3920 	 *
3921 	 * Leaf DTL_PARTIAL can be empty when a legitimate write comes from
3922 	 * a dRAID spare vdev. For example, when a dRAID spare is first
3923 	 * used, its spare blocks need to be written to but the leaf vdev's
3924 	 * of such blocks can have empty DTL_PARTIAL.
3925 	 *
3926 	 * There seemed no clean way to allow such writes while bypassing
3927 	 * spurious ones. At this point, just avoid all bypassing for dRAID
3928 	 * for correctness.
3929 	 */
3930 	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
3931 	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
3932 	    zio->io_txg != 0 &&	/* not a delegated i/o */
3933 	    vd->vdev_ops != &vdev_indirect_ops &&
3934 	    vd->vdev_top->vdev_ops != &vdev_draid_ops &&
3935 	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
3936 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3937 		zio_vdev_io_bypass(zio);
3938 		return (zio);
3939 	}
3940 
3941 	/*
3942 	 * Select the next best leaf I/O to process.  Distributed spares are
3943 	 * excluded since they dispatch the I/O directly to a leaf vdev after
3944 	 * applying the dRAID mapping.
3945 	 */
3946 	if (vd->vdev_ops->vdev_op_leaf &&
3947 	    vd->vdev_ops != &vdev_draid_spare_ops &&
3948 	    (zio->io_type == ZIO_TYPE_READ ||
3949 	    zio->io_type == ZIO_TYPE_WRITE ||
3950 	    zio->io_type == ZIO_TYPE_TRIM)) {
3951 
3952 		if ((zio = vdev_queue_io(zio)) == NULL)
3953 			return (NULL);
3954 
3955 		if (!vdev_accessible(vd, zio)) {
3956 			zio->io_error = SET_ERROR(ENXIO);
3957 			zio_interrupt(zio);
3958 			return (NULL);
3959 		}
3960 		zio->io_delay = gethrtime();
3961 	}
3962 
3963 	vd->vdev_ops->vdev_op_io_start(zio);
3964 	return (NULL);
3965 }
3966 
3967 static zio_t *
3968 zio_vdev_io_done(zio_t *zio)
3969 {
3970 	vdev_t *vd = zio->io_vd;
3971 	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
3972 	boolean_t unexpected_error = B_FALSE;
3973 
3974 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3975 		return (NULL);
3976 	}
3977 
3978 	ASSERT(zio->io_type == ZIO_TYPE_READ ||
3979 	    zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM);
3980 
3981 	if (zio->io_delay)
3982 		zio->io_delay = gethrtime() - zio->io_delay;
3983 
3984 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3985 	    vd->vdev_ops != &vdev_draid_spare_ops) {
3986 		vdev_queue_io_done(zio);
3987 
3988 		if (zio_injection_enabled && zio->io_error == 0)
3989 			zio->io_error = zio_handle_device_injections(vd, zio,
3990 			    EIO, EILSEQ);
3991 
3992 		if (zio_injection_enabled && zio->io_error == 0)
3993 			zio->io_error = zio_handle_label_injection(zio, EIO);
3994 
3995 		if (zio->io_error && zio->io_type != ZIO_TYPE_TRIM) {
3996 			if (!vdev_accessible(vd, zio)) {
3997 				zio->io_error = SET_ERROR(ENXIO);
3998 			} else {
3999 				unexpected_error = B_TRUE;
4000 			}
4001 		}
4002 	}
4003 
4004 	ops->vdev_op_io_done(zio);
4005 
4006 	if (unexpected_error && vd->vdev_remove_wanted == B_FALSE)
4007 		VERIFY(vdev_probe(vd, zio) == NULL);
4008 
4009 	return (zio);
4010 }
4011 
4012 /*
4013  * This function is used to change the priority of an existing zio that is
4014  * currently in-flight. This is used by the arc to upgrade priority in the
4015  * event that a demand read is made for a block that is currently queued
4016  * as a scrub or async read IO. Otherwise, the high priority read request
4017  * would end up having to wait for the lower priority IO.
4018  */
4019 void
4020 zio_change_priority(zio_t *pio, zio_priority_t priority)
4021 {
4022 	zio_t *cio, *cio_next;
4023 	zio_link_t *zl = NULL;
4024 
4025 	ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
4026 
4027 	if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) {
4028 		vdev_queue_change_io_priority(pio, priority);
4029 	} else {
4030 		pio->io_priority = priority;
4031 	}
4032 
4033 	mutex_enter(&pio->io_lock);
4034 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
4035 		cio_next = zio_walk_children(pio, &zl);
4036 		zio_change_priority(cio, priority);
4037 	}
4038 	mutex_exit(&pio->io_lock);
4039 }
4040 
4041 /*
4042  * For non-raidz ZIOs, we can just copy aside the bad data read from the
4043  * disk, and use that to finish the checksum ereport later.
4044  */
4045 static void
4046 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
4047     const abd_t *good_buf)
4048 {
4049 	/* no processing needed */
4050 	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
4051 }
4052 
4053 void
4054 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr)
4055 {
4056 	void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size);
4057 
4058 	abd_copy(abd, zio->io_abd, zio->io_size);
4059 
4060 	zcr->zcr_cbinfo = zio->io_size;
4061 	zcr->zcr_cbdata = abd;
4062 	zcr->zcr_finish = zio_vsd_default_cksum_finish;
4063 	zcr->zcr_free = zio_abd_free;
4064 }
4065 
4066 static zio_t *
4067 zio_vdev_io_assess(zio_t *zio)
4068 {
4069 	vdev_t *vd = zio->io_vd;
4070 
4071 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
4072 		return (NULL);
4073 	}
4074 
4075 	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
4076 		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
4077 
4078 	if (zio->io_vsd != NULL) {
4079 		zio->io_vsd_ops->vsd_free(zio);
4080 		zio->io_vsd = NULL;
4081 	}
4082 
4083 	if (zio_injection_enabled && zio->io_error == 0)
4084 		zio->io_error = zio_handle_fault_injection(zio, EIO);
4085 
4086 	/*
4087 	 * If the I/O failed, determine whether we should attempt to retry it.
4088 	 *
4089 	 * On retry, we cut in line in the issue queue, since we don't want
4090 	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
4091 	 */
4092 	if (zio->io_error && vd == NULL &&
4093 	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
4094 		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
4095 		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
4096 		zio->io_error = 0;
4097 		zio->io_flags |= ZIO_FLAG_IO_RETRY | ZIO_FLAG_DONT_AGGREGATE;
4098 		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
4099 		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
4100 		    zio_requeue_io_start_cut_in_line);
4101 		return (NULL);
4102 	}
4103 
4104 	/*
4105 	 * If we got an error on a leaf device, convert it to ENXIO
4106 	 * if the device is not accessible at all.
4107 	 */
4108 	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
4109 	    !vdev_accessible(vd, zio))
4110 		zio->io_error = SET_ERROR(ENXIO);
4111 
4112 	/*
4113 	 * If we can't write to an interior vdev (mirror or RAID-Z),
4114 	 * set vdev_cant_write so that we stop trying to allocate from it.
4115 	 */
4116 	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
4117 	    vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
4118 		vdev_dbgmsg(vd, "zio_vdev_io_assess(zio=%px) setting "
4119 		    "cant_write=TRUE due to write failure with ENXIO",
4120 		    zio);
4121 		vd->vdev_cant_write = B_TRUE;
4122 	}
4123 
4124 	/*
4125 	 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future
4126 	 * attempts will ever succeed. In this case we set a persistent
4127 	 * boolean flag so that we don't bother with it in the future.
4128 	 */
4129 	if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) &&
4130 	    zio->io_type == ZIO_TYPE_IOCTL &&
4131 	    zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL)
4132 		vd->vdev_nowritecache = B_TRUE;
4133 
4134 	if (zio->io_error)
4135 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4136 
4137 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
4138 	    zio->io_physdone != NULL) {
4139 		ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
4140 		ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
4141 		zio->io_physdone(zio->io_logical);
4142 	}
4143 
4144 	return (zio);
4145 }
4146 
4147 void
4148 zio_vdev_io_reissue(zio_t *zio)
4149 {
4150 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
4151 	ASSERT(zio->io_error == 0);
4152 
4153 	zio->io_stage >>= 1;
4154 }
4155 
4156 void
4157 zio_vdev_io_redone(zio_t *zio)
4158 {
4159 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
4160 
4161 	zio->io_stage >>= 1;
4162 }
4163 
4164 void
4165 zio_vdev_io_bypass(zio_t *zio)
4166 {
4167 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
4168 	ASSERT(zio->io_error == 0);
4169 
4170 	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
4171 	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
4172 }
4173 
4174 /*
4175  * ==========================================================================
4176  * Encrypt and store encryption parameters
4177  * ==========================================================================
4178  */
4179 
4180 
4181 /*
4182  * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for
4183  * managing the storage of encryption parameters and passing them to the
4184  * lower-level encryption functions.
4185  */
4186 static zio_t *
4187 zio_encrypt(zio_t *zio)
4188 {
4189 	zio_prop_t *zp = &zio->io_prop;
4190 	spa_t *spa = zio->io_spa;
4191 	blkptr_t *bp = zio->io_bp;
4192 	uint64_t psize = BP_GET_PSIZE(bp);
4193 	uint64_t dsobj = zio->io_bookmark.zb_objset;
4194 	dmu_object_type_t ot = BP_GET_TYPE(bp);
4195 	void *enc_buf = NULL;
4196 	abd_t *eabd = NULL;
4197 	uint8_t salt[ZIO_DATA_SALT_LEN];
4198 	uint8_t iv[ZIO_DATA_IV_LEN];
4199 	uint8_t mac[ZIO_DATA_MAC_LEN];
4200 	boolean_t no_crypt = B_FALSE;
4201 
4202 	/* the root zio already encrypted the data */
4203 	if (zio->io_child_type == ZIO_CHILD_GANG)
4204 		return (zio);
4205 
4206 	/* only ZIL blocks are re-encrypted on rewrite */
4207 	if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG)
4208 		return (zio);
4209 
4210 	if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) {
4211 		BP_SET_CRYPT(bp, B_FALSE);
4212 		return (zio);
4213 	}
4214 
4215 	/* if we are doing raw encryption set the provided encryption params */
4216 	if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) {
4217 		ASSERT0(BP_GET_LEVEL(bp));
4218 		BP_SET_CRYPT(bp, B_TRUE);
4219 		BP_SET_BYTEORDER(bp, zp->zp_byteorder);
4220 		if (ot != DMU_OT_OBJSET)
4221 			zio_crypt_encode_mac_bp(bp, zp->zp_mac);
4222 
4223 		/* dnode blocks must be written out in the provided byteorder */
4224 		if (zp->zp_byteorder != ZFS_HOST_BYTEORDER &&
4225 		    ot == DMU_OT_DNODE) {
4226 			void *bswap_buf = zio_buf_alloc(psize);
4227 			abd_t *babd = abd_get_from_buf(bswap_buf, psize);
4228 
4229 			ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4230 			abd_copy_to_buf(bswap_buf, zio->io_abd, psize);
4231 			dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf,
4232 			    psize);
4233 
4234 			abd_take_ownership_of_buf(babd, B_TRUE);
4235 			zio_push_transform(zio, babd, psize, psize, NULL);
4236 		}
4237 
4238 		if (DMU_OT_IS_ENCRYPTED(ot))
4239 			zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv);
4240 		return (zio);
4241 	}
4242 
4243 	/* indirect blocks only maintain a cksum of the lower level MACs */
4244 	if (BP_GET_LEVEL(bp) > 0) {
4245 		BP_SET_CRYPT(bp, B_TRUE);
4246 		VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE,
4247 		    zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp),
4248 		    mac));
4249 		zio_crypt_encode_mac_bp(bp, mac);
4250 		return (zio);
4251 	}
4252 
4253 	/*
4254 	 * Objset blocks are a special case since they have 2 256-bit MACs
4255 	 * embedded within them.
4256 	 */
4257 	if (ot == DMU_OT_OBJSET) {
4258 		ASSERT0(DMU_OT_IS_ENCRYPTED(ot));
4259 		ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4260 		BP_SET_CRYPT(bp, B_TRUE);
4261 		VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj,
4262 		    zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp)));
4263 		return (zio);
4264 	}
4265 
4266 	/* unencrypted object types are only authenticated with a MAC */
4267 	if (!DMU_OT_IS_ENCRYPTED(ot)) {
4268 		BP_SET_CRYPT(bp, B_TRUE);
4269 		VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj,
4270 		    zio->io_abd, psize, mac));
4271 		zio_crypt_encode_mac_bp(bp, mac);
4272 		return (zio);
4273 	}
4274 
4275 	/*
4276 	 * Later passes of sync-to-convergence may decide to rewrite data
4277 	 * in place to avoid more disk reallocations. This presents a problem
4278 	 * for encryption because this constitutes rewriting the new data with
4279 	 * the same encryption key and IV. However, this only applies to blocks
4280 	 * in the MOS (particularly the spacemaps) and we do not encrypt the
4281 	 * MOS. We assert that the zio is allocating or an intent log write
4282 	 * to enforce this.
4283 	 */
4284 	ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG);
4285 	ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG);
4286 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION));
4287 	ASSERT3U(psize, !=, 0);
4288 
4289 	enc_buf = zio_buf_alloc(psize);
4290 	eabd = abd_get_from_buf(enc_buf, psize);
4291 	abd_take_ownership_of_buf(eabd, B_TRUE);
4292 
4293 	/*
4294 	 * For an explanation of what encryption parameters are stored
4295 	 * where, see the block comment in zio_crypt.c.
4296 	 */
4297 	if (ot == DMU_OT_INTENT_LOG) {
4298 		zio_crypt_decode_params_bp(bp, salt, iv);
4299 	} else {
4300 		BP_SET_CRYPT(bp, B_TRUE);
4301 	}
4302 
4303 	/* Perform the encryption. This should not fail */
4304 	VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark,
4305 	    BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
4306 	    salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt));
4307 
4308 	/* encode encryption metadata into the bp */
4309 	if (ot == DMU_OT_INTENT_LOG) {
4310 		/*
4311 		 * ZIL blocks store the MAC in the embedded checksum, so the
4312 		 * transform must always be applied.
4313 		 */
4314 		zio_crypt_encode_mac_zil(enc_buf, mac);
4315 		zio_push_transform(zio, eabd, psize, psize, NULL);
4316 	} else {
4317 		BP_SET_CRYPT(bp, B_TRUE);
4318 		zio_crypt_encode_params_bp(bp, salt, iv);
4319 		zio_crypt_encode_mac_bp(bp, mac);
4320 
4321 		if (no_crypt) {
4322 			ASSERT3U(ot, ==, DMU_OT_DNODE);
4323 			abd_free(eabd);
4324 		} else {
4325 			zio_push_transform(zio, eabd, psize, psize, NULL);
4326 		}
4327 	}
4328 
4329 	return (zio);
4330 }
4331 
4332 /*
4333  * ==========================================================================
4334  * Generate and verify checksums
4335  * ==========================================================================
4336  */
4337 static zio_t *
4338 zio_checksum_generate(zio_t *zio)
4339 {
4340 	blkptr_t *bp = zio->io_bp;
4341 	enum zio_checksum checksum;
4342 
4343 	if (bp == NULL) {
4344 		/*
4345 		 * This is zio_write_phys().
4346 		 * We're either generating a label checksum, or none at all.
4347 		 */
4348 		checksum = zio->io_prop.zp_checksum;
4349 
4350 		if (checksum == ZIO_CHECKSUM_OFF)
4351 			return (zio);
4352 
4353 		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
4354 	} else {
4355 		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
4356 			ASSERT(!IO_IS_ALLOCATING(zio));
4357 			checksum = ZIO_CHECKSUM_GANG_HEADER;
4358 		} else {
4359 			checksum = BP_GET_CHECKSUM(bp);
4360 		}
4361 	}
4362 
4363 	zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size);
4364 
4365 	return (zio);
4366 }
4367 
4368 static zio_t *
4369 zio_checksum_verify(zio_t *zio)
4370 {
4371 	zio_bad_cksum_t info;
4372 	blkptr_t *bp = zio->io_bp;
4373 	int error;
4374 
4375 	ASSERT(zio->io_vd != NULL);
4376 
4377 	if (bp == NULL) {
4378 		/*
4379 		 * This is zio_read_phys().
4380 		 * We're either verifying a label checksum, or nothing at all.
4381 		 */
4382 		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
4383 			return (zio);
4384 
4385 		ASSERT3U(zio->io_prop.zp_checksum, ==, ZIO_CHECKSUM_LABEL);
4386 	}
4387 
4388 	if ((error = zio_checksum_error(zio, &info)) != 0) {
4389 		zio->io_error = error;
4390 		if (error == ECKSUM &&
4391 		    !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
4392 			mutex_enter(&zio->io_vd->vdev_stat_lock);
4393 			zio->io_vd->vdev_stat.vs_checksum_errors++;
4394 			mutex_exit(&zio->io_vd->vdev_stat_lock);
4395 			(void) zfs_ereport_start_checksum(zio->io_spa,
4396 			    zio->io_vd, &zio->io_bookmark, zio,
4397 			    zio->io_offset, zio->io_size, &info);
4398 		}
4399 	}
4400 
4401 	return (zio);
4402 }
4403 
4404 /*
4405  * Called by RAID-Z to ensure we don't compute the checksum twice.
4406  */
4407 void
4408 zio_checksum_verified(zio_t *zio)
4409 {
4410 	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
4411 }
4412 
4413 /*
4414  * ==========================================================================
4415  * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
4416  * An error of 0 indicates success.  ENXIO indicates whole-device failure,
4417  * which may be transient (e.g. unplugged) or permanent.  ECKSUM and EIO
4418  * indicate errors that are specific to one I/O, and most likely permanent.
4419  * Any other error is presumed to be worse because we weren't expecting it.
4420  * ==========================================================================
4421  */
4422 int
4423 zio_worst_error(int e1, int e2)
4424 {
4425 	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
4426 	int r1, r2;
4427 
4428 	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
4429 		if (e1 == zio_error_rank[r1])
4430 			break;
4431 
4432 	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
4433 		if (e2 == zio_error_rank[r2])
4434 			break;
4435 
4436 	return (r1 > r2 ? e1 : e2);
4437 }
4438 
4439 /*
4440  * ==========================================================================
4441  * I/O completion
4442  * ==========================================================================
4443  */
4444 static zio_t *
4445 zio_ready(zio_t *zio)
4446 {
4447 	blkptr_t *bp = zio->io_bp;
4448 	zio_t *pio, *pio_next;
4449 	zio_link_t *zl = NULL;
4450 
4451 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT,
4452 	    ZIO_WAIT_READY)) {
4453 		return (NULL);
4454 	}
4455 
4456 	if (zio->io_ready) {
4457 		ASSERT(IO_IS_ALLOCATING(zio));
4458 		ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
4459 		    (zio->io_flags & ZIO_FLAG_NOPWRITE));
4460 		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
4461 
4462 		zio->io_ready(zio);
4463 	}
4464 
4465 	if (bp != NULL && bp != &zio->io_bp_copy)
4466 		zio->io_bp_copy = *bp;
4467 
4468 	if (zio->io_error != 0) {
4469 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4470 
4471 		if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4472 			ASSERT(IO_IS_ALLOCATING(zio));
4473 			ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4474 			ASSERT(zio->io_metaslab_class != NULL);
4475 
4476 			/*
4477 			 * We were unable to allocate anything, unreserve and
4478 			 * issue the next I/O to allocate.
4479 			 */
4480 			metaslab_class_throttle_unreserve(
4481 			    zio->io_metaslab_class, zio->io_prop.zp_copies,
4482 			    zio->io_allocator, zio);
4483 			zio_allocate_dispatch(zio->io_spa, zio->io_allocator);
4484 		}
4485 	}
4486 
4487 	mutex_enter(&zio->io_lock);
4488 	zio->io_state[ZIO_WAIT_READY] = 1;
4489 	pio = zio_walk_parents(zio, &zl);
4490 	mutex_exit(&zio->io_lock);
4491 
4492 	/*
4493 	 * As we notify zio's parents, new parents could be added.
4494 	 * New parents go to the head of zio's io_parent_list, however,
4495 	 * so we will (correctly) not notify them.  The remainder of zio's
4496 	 * io_parent_list, from 'pio_next' onward, cannot change because
4497 	 * all parents must wait for us to be done before they can be done.
4498 	 */
4499 	for (; pio != NULL; pio = pio_next) {
4500 		pio_next = zio_walk_parents(zio, &zl);
4501 		zio_notify_parent(pio, zio, ZIO_WAIT_READY, NULL);
4502 	}
4503 
4504 	if (zio->io_flags & ZIO_FLAG_NODATA) {
4505 		if (bp != NULL && BP_IS_GANG(bp)) {
4506 			zio->io_flags &= ~ZIO_FLAG_NODATA;
4507 		} else {
4508 			ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE);
4509 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
4510 		}
4511 	}
4512 
4513 	if (zio_injection_enabled &&
4514 	    zio->io_spa->spa_syncing_txg == zio->io_txg)
4515 		zio_handle_ignored_writes(zio);
4516 
4517 	return (zio);
4518 }
4519 
4520 /*
4521  * Update the allocation throttle accounting.
4522  */
4523 static void
4524 zio_dva_throttle_done(zio_t *zio)
4525 {
4526 	zio_t *lio __maybe_unused = zio->io_logical;
4527 	zio_t *pio = zio_unique_parent(zio);
4528 	vdev_t *vd = zio->io_vd;
4529 	int flags = METASLAB_ASYNC_ALLOC;
4530 
4531 	ASSERT3P(zio->io_bp, !=, NULL);
4532 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
4533 	ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE);
4534 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
4535 	ASSERT(vd != NULL);
4536 	ASSERT3P(vd, ==, vd->vdev_top);
4537 	ASSERT(zio_injection_enabled || !(zio->io_flags & ZIO_FLAG_IO_RETRY));
4538 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4539 	ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING);
4540 	ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE));
4541 	ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA));
4542 
4543 	/*
4544 	 * Parents of gang children can have two flavors -- ones that
4545 	 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set)
4546 	 * and ones that allocated the constituent blocks. The allocation
4547 	 * throttle needs to know the allocating parent zio so we must find
4548 	 * it here.
4549 	 */
4550 	if (pio->io_child_type == ZIO_CHILD_GANG) {
4551 		/*
4552 		 * If our parent is a rewrite gang child then our grandparent
4553 		 * would have been the one that performed the allocation.
4554 		 */
4555 		if (pio->io_flags & ZIO_FLAG_IO_REWRITE)
4556 			pio = zio_unique_parent(pio);
4557 		flags |= METASLAB_GANG_CHILD;
4558 	}
4559 
4560 	ASSERT(IO_IS_ALLOCATING(pio));
4561 	ASSERT3P(zio, !=, zio->io_logical);
4562 	ASSERT(zio->io_logical != NULL);
4563 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4564 	ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE);
4565 	ASSERT(zio->io_metaslab_class != NULL);
4566 
4567 	mutex_enter(&pio->io_lock);
4568 	metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags,
4569 	    pio->io_allocator, B_TRUE);
4570 	mutex_exit(&pio->io_lock);
4571 
4572 	metaslab_class_throttle_unreserve(zio->io_metaslab_class, 1,
4573 	    pio->io_allocator, pio);
4574 
4575 	/*
4576 	 * Call into the pipeline to see if there is more work that
4577 	 * needs to be done. If there is work to be done it will be
4578 	 * dispatched to another taskq thread.
4579 	 */
4580 	zio_allocate_dispatch(zio->io_spa, pio->io_allocator);
4581 }
4582 
4583 static zio_t *
4584 zio_done(zio_t *zio)
4585 {
4586 	/*
4587 	 * Always attempt to keep stack usage minimal here since
4588 	 * we can be called recursively up to 19 levels deep.
4589 	 */
4590 	const uint64_t psize = zio->io_size;
4591 	zio_t *pio, *pio_next;
4592 	zio_link_t *zl = NULL;
4593 
4594 	/*
4595 	 * If our children haven't all completed,
4596 	 * wait for them and then repeat this pipeline stage.
4597 	 */
4598 	if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) {
4599 		return (NULL);
4600 	}
4601 
4602 	/*
4603 	 * If the allocation throttle is enabled, then update the accounting.
4604 	 * We only track child I/Os that are part of an allocating async
4605 	 * write. We must do this since the allocation is performed
4606 	 * by the logical I/O but the actual write is done by child I/Os.
4607 	 */
4608 	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING &&
4609 	    zio->io_child_type == ZIO_CHILD_VDEV) {
4610 		ASSERT(zio->io_metaslab_class != NULL);
4611 		ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled);
4612 		zio_dva_throttle_done(zio);
4613 	}
4614 
4615 	/*
4616 	 * If the allocation throttle is enabled, verify that
4617 	 * we have decremented the refcounts for every I/O that was throttled.
4618 	 */
4619 	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4620 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
4621 		ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4622 		ASSERT(zio->io_bp != NULL);
4623 
4624 		metaslab_group_alloc_verify(zio->io_spa, zio->io_bp, zio,
4625 		    zio->io_allocator);
4626 		VERIFY(zfs_refcount_not_held(&zio->io_metaslab_class->
4627 		    mc_allocator[zio->io_allocator].mca_alloc_slots, zio));
4628 	}
4629 
4630 
4631 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
4632 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
4633 			ASSERT(zio->io_children[c][w] == 0);
4634 
4635 	if (zio->io_bp != NULL && !BP_IS_EMBEDDED(zio->io_bp)) {
4636 		ASSERT(zio->io_bp->blk_pad[0] == 0);
4637 		ASSERT(zio->io_bp->blk_pad[1] == 0);
4638 		ASSERT(memcmp(zio->io_bp, &zio->io_bp_copy,
4639 		    sizeof (blkptr_t)) == 0 ||
4640 		    (zio->io_bp == zio_unique_parent(zio)->io_bp));
4641 		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) &&
4642 		    zio->io_bp_override == NULL &&
4643 		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
4644 			ASSERT3U(zio->io_prop.zp_copies, <=,
4645 			    BP_GET_NDVAS(zio->io_bp));
4646 			ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 ||
4647 			    (BP_COUNT_GANG(zio->io_bp) ==
4648 			    BP_GET_NDVAS(zio->io_bp)));
4649 		}
4650 		if (zio->io_flags & ZIO_FLAG_NOPWRITE)
4651 			VERIFY(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
4652 	}
4653 
4654 	/*
4655 	 * If there were child vdev/gang/ddt errors, they apply to us now.
4656 	 */
4657 	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
4658 	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
4659 	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
4660 
4661 	/*
4662 	 * If the I/O on the transformed data was successful, generate any
4663 	 * checksum reports now while we still have the transformed data.
4664 	 */
4665 	if (zio->io_error == 0) {
4666 		while (zio->io_cksum_report != NULL) {
4667 			zio_cksum_report_t *zcr = zio->io_cksum_report;
4668 			uint64_t align = zcr->zcr_align;
4669 			uint64_t asize = P2ROUNDUP(psize, align);
4670 			abd_t *adata = zio->io_abd;
4671 
4672 			if (adata != NULL && asize != psize) {
4673 				adata = abd_alloc(asize, B_TRUE);
4674 				abd_copy(adata, zio->io_abd, psize);
4675 				abd_zero_off(adata, psize, asize - psize);
4676 			}
4677 
4678 			zio->io_cksum_report = zcr->zcr_next;
4679 			zcr->zcr_next = NULL;
4680 			zcr->zcr_finish(zcr, adata);
4681 			zfs_ereport_free_checksum(zcr);
4682 
4683 			if (adata != NULL && asize != psize)
4684 				abd_free(adata);
4685 		}
4686 	}
4687 
4688 	zio_pop_transforms(zio);	/* note: may set zio->io_error */
4689 
4690 	vdev_stat_update(zio, psize);
4691 
4692 	/*
4693 	 * If this I/O is attached to a particular vdev is slow, exceeding
4694 	 * 30 seconds to complete, post an error described the I/O delay.
4695 	 * We ignore these errors if the device is currently unavailable.
4696 	 */
4697 	if (zio->io_delay >= MSEC2NSEC(zio_slow_io_ms)) {
4698 		if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) {
4699 			/*
4700 			 * We want to only increment our slow IO counters if
4701 			 * the IO is valid (i.e. not if the drive is removed).
4702 			 *
4703 			 * zfs_ereport_post() will also do these checks, but
4704 			 * it can also ratelimit and have other failures, so we
4705 			 * need to increment the slow_io counters independent
4706 			 * of it.
4707 			 */
4708 			if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY,
4709 			    zio->io_spa, zio->io_vd, zio)) {
4710 				mutex_enter(&zio->io_vd->vdev_stat_lock);
4711 				zio->io_vd->vdev_stat.vs_slow_ios++;
4712 				mutex_exit(&zio->io_vd->vdev_stat_lock);
4713 
4714 				(void) zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
4715 				    zio->io_spa, zio->io_vd, &zio->io_bookmark,
4716 				    zio, 0);
4717 			}
4718 		}
4719 	}
4720 
4721 	if (zio->io_error) {
4722 		/*
4723 		 * If this I/O is attached to a particular vdev,
4724 		 * generate an error message describing the I/O failure
4725 		 * at the block level.  We ignore these errors if the
4726 		 * device is currently unavailable.
4727 		 */
4728 		if (zio->io_error != ECKSUM && zio->io_vd != NULL &&
4729 		    !vdev_is_dead(zio->io_vd)) {
4730 			int ret = zfs_ereport_post(FM_EREPORT_ZFS_IO,
4731 			    zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0);
4732 			if (ret != EALREADY) {
4733 				mutex_enter(&zio->io_vd->vdev_stat_lock);
4734 				if (zio->io_type == ZIO_TYPE_READ)
4735 					zio->io_vd->vdev_stat.vs_read_errors++;
4736 				else if (zio->io_type == ZIO_TYPE_WRITE)
4737 					zio->io_vd->vdev_stat.vs_write_errors++;
4738 				mutex_exit(&zio->io_vd->vdev_stat_lock);
4739 			}
4740 		}
4741 
4742 		if ((zio->io_error == EIO || !(zio->io_flags &
4743 		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
4744 		    zio == zio->io_logical) {
4745 			/*
4746 			 * For logical I/O requests, tell the SPA to log the
4747 			 * error and generate a logical data ereport.
4748 			 */
4749 			spa_log_error(zio->io_spa, &zio->io_bookmark,
4750 			    &zio->io_bp->blk_birth);
4751 			(void) zfs_ereport_post(FM_EREPORT_ZFS_DATA,
4752 			    zio->io_spa, NULL, &zio->io_bookmark, zio, 0);
4753 		}
4754 	}
4755 
4756 	if (zio->io_error && zio == zio->io_logical) {
4757 		/*
4758 		 * Determine whether zio should be reexecuted.  This will
4759 		 * propagate all the way to the root via zio_notify_parent().
4760 		 */
4761 		ASSERT(zio->io_vd == NULL && zio->io_bp != NULL);
4762 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4763 
4764 		if (IO_IS_ALLOCATING(zio) &&
4765 		    !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
4766 			if (zio->io_error != ENOSPC)
4767 				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
4768 			else
4769 				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4770 		}
4771 
4772 		if ((zio->io_type == ZIO_TYPE_READ ||
4773 		    zio->io_type == ZIO_TYPE_FREE) &&
4774 		    !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
4775 		    zio->io_error == ENXIO &&
4776 		    spa_load_state(zio->io_spa) == SPA_LOAD_NONE &&
4777 		    spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE)
4778 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4779 
4780 		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
4781 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4782 
4783 		/*
4784 		 * Here is a possibly good place to attempt to do
4785 		 * either combinatorial reconstruction or error correction
4786 		 * based on checksums.  It also might be a good place
4787 		 * to send out preliminary ereports before we suspend
4788 		 * processing.
4789 		 */
4790 	}
4791 
4792 	/*
4793 	 * If there were logical child errors, they apply to us now.
4794 	 * We defer this until now to avoid conflating logical child
4795 	 * errors with errors that happened to the zio itself when
4796 	 * updating vdev stats and reporting FMA events above.
4797 	 */
4798 	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
4799 
4800 	if ((zio->io_error || zio->io_reexecute) &&
4801 	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
4802 	    !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
4803 		zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp);
4804 
4805 	zio_gang_tree_free(&zio->io_gang_tree);
4806 
4807 	/*
4808 	 * Godfather I/Os should never suspend.
4809 	 */
4810 	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
4811 	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
4812 		zio->io_reexecute &= ~ZIO_REEXECUTE_SUSPEND;
4813 
4814 	if (zio->io_reexecute) {
4815 		/*
4816 		 * This is a logical I/O that wants to reexecute.
4817 		 *
4818 		 * Reexecute is top-down.  When an i/o fails, if it's not
4819 		 * the root, it simply notifies its parent and sticks around.
4820 		 * The parent, seeing that it still has children in zio_done(),
4821 		 * does the same.  This percolates all the way up to the root.
4822 		 * The root i/o will reexecute or suspend the entire tree.
4823 		 *
4824 		 * This approach ensures that zio_reexecute() honors
4825 		 * all the original i/o dependency relationships, e.g.
4826 		 * parents not executing until children are ready.
4827 		 */
4828 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4829 
4830 		zio->io_gang_leader = NULL;
4831 
4832 		mutex_enter(&zio->io_lock);
4833 		zio->io_state[ZIO_WAIT_DONE] = 1;
4834 		mutex_exit(&zio->io_lock);
4835 
4836 		/*
4837 		 * "The Godfather" I/O monitors its children but is
4838 		 * not a true parent to them. It will track them through
4839 		 * the pipeline but severs its ties whenever they get into
4840 		 * trouble (e.g. suspended). This allows "The Godfather"
4841 		 * I/O to return status without blocking.
4842 		 */
4843 		zl = NULL;
4844 		for (pio = zio_walk_parents(zio, &zl); pio != NULL;
4845 		    pio = pio_next) {
4846 			zio_link_t *remove_zl = zl;
4847 			pio_next = zio_walk_parents(zio, &zl);
4848 
4849 			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
4850 			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
4851 				zio_remove_child(pio, zio, remove_zl);
4852 				/*
4853 				 * This is a rare code path, so we don't
4854 				 * bother with "next_to_execute".
4855 				 */
4856 				zio_notify_parent(pio, zio, ZIO_WAIT_DONE,
4857 				    NULL);
4858 			}
4859 		}
4860 
4861 		if ((pio = zio_unique_parent(zio)) != NULL) {
4862 			/*
4863 			 * We're not a root i/o, so there's nothing to do
4864 			 * but notify our parent.  Don't propagate errors
4865 			 * upward since we haven't permanently failed yet.
4866 			 */
4867 			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
4868 			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
4869 			/*
4870 			 * This is a rare code path, so we don't bother with
4871 			 * "next_to_execute".
4872 			 */
4873 			zio_notify_parent(pio, zio, ZIO_WAIT_DONE, NULL);
4874 		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
4875 			/*
4876 			 * We'd fail again if we reexecuted now, so suspend
4877 			 * until conditions improve (e.g. device comes online).
4878 			 */
4879 			zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR);
4880 		} else {
4881 			/*
4882 			 * Reexecution is potentially a huge amount of work.
4883 			 * Hand it off to the otherwise-unused claim taskq.
4884 			 */
4885 			ASSERT(taskq_empty_ent(&zio->io_tqent));
4886 			spa_taskq_dispatch_ent(zio->io_spa,
4887 			    ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE,
4888 			    zio_reexecute, zio, 0, &zio->io_tqent);
4889 		}
4890 		return (NULL);
4891 	}
4892 
4893 	ASSERT(zio->io_child_count == 0);
4894 	ASSERT(zio->io_reexecute == 0);
4895 	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
4896 
4897 	/*
4898 	 * Report any checksum errors, since the I/O is complete.
4899 	 */
4900 	while (zio->io_cksum_report != NULL) {
4901 		zio_cksum_report_t *zcr = zio->io_cksum_report;
4902 		zio->io_cksum_report = zcr->zcr_next;
4903 		zcr->zcr_next = NULL;
4904 		zcr->zcr_finish(zcr, NULL);
4905 		zfs_ereport_free_checksum(zcr);
4906 	}
4907 
4908 	if (zio->io_flags & ZIO_FLAG_FASTWRITE && zio->io_bp &&
4909 	    !BP_IS_HOLE(zio->io_bp) && !BP_IS_EMBEDDED(zio->io_bp) &&
4910 	    !(zio->io_flags & ZIO_FLAG_NOPWRITE)) {
4911 		metaslab_fastwrite_unmark(zio->io_spa, zio->io_bp);
4912 	}
4913 
4914 	/*
4915 	 * It is the responsibility of the done callback to ensure that this
4916 	 * particular zio is no longer discoverable for adoption, and as
4917 	 * such, cannot acquire any new parents.
4918 	 */
4919 	if (zio->io_done)
4920 		zio->io_done(zio);
4921 
4922 	mutex_enter(&zio->io_lock);
4923 	zio->io_state[ZIO_WAIT_DONE] = 1;
4924 	mutex_exit(&zio->io_lock);
4925 
4926 	/*
4927 	 * We are done executing this zio.  We may want to execute a parent
4928 	 * next.  See the comment in zio_notify_parent().
4929 	 */
4930 	zio_t *next_to_execute = NULL;
4931 	zl = NULL;
4932 	for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) {
4933 		zio_link_t *remove_zl = zl;
4934 		pio_next = zio_walk_parents(zio, &zl);
4935 		zio_remove_child(pio, zio, remove_zl);
4936 		zio_notify_parent(pio, zio, ZIO_WAIT_DONE, &next_to_execute);
4937 	}
4938 
4939 	if (zio->io_waiter != NULL) {
4940 		mutex_enter(&zio->io_lock);
4941 		zio->io_executor = NULL;
4942 		cv_broadcast(&zio->io_cv);
4943 		mutex_exit(&zio->io_lock);
4944 	} else {
4945 		zio_destroy(zio);
4946 	}
4947 
4948 	return (next_to_execute);
4949 }
4950 
4951 /*
4952  * ==========================================================================
4953  * I/O pipeline definition
4954  * ==========================================================================
4955  */
4956 static zio_pipe_stage_t *zio_pipeline[] = {
4957 	NULL,
4958 	zio_read_bp_init,
4959 	zio_write_bp_init,
4960 	zio_free_bp_init,
4961 	zio_issue_async,
4962 	zio_write_compress,
4963 	zio_encrypt,
4964 	zio_checksum_generate,
4965 	zio_nop_write,
4966 	zio_brt_free,
4967 	zio_ddt_read_start,
4968 	zio_ddt_read_done,
4969 	zio_ddt_write,
4970 	zio_ddt_free,
4971 	zio_gang_assemble,
4972 	zio_gang_issue,
4973 	zio_dva_throttle,
4974 	zio_dva_allocate,
4975 	zio_dva_free,
4976 	zio_dva_claim,
4977 	zio_ready,
4978 	zio_vdev_io_start,
4979 	zio_vdev_io_done,
4980 	zio_vdev_io_assess,
4981 	zio_checksum_verify,
4982 	zio_done
4983 };
4984 
4985 
4986 
4987 
4988 /*
4989  * Compare two zbookmark_phys_t's to see which we would reach first in a
4990  * pre-order traversal of the object tree.
4991  *
4992  * This is simple in every case aside from the meta-dnode object. For all other
4993  * objects, we traverse them in order (object 1 before object 2, and so on).
4994  * However, all of these objects are traversed while traversing object 0, since
4995  * the data it points to is the list of objects.  Thus, we need to convert to a
4996  * canonical representation so we can compare meta-dnode bookmarks to
4997  * non-meta-dnode bookmarks.
4998  *
4999  * We do this by calculating "equivalents" for each field of the zbookmark.
5000  * zbookmarks outside of the meta-dnode use their own object and level, and
5001  * calculate the level 0 equivalent (the first L0 blkid that is contained in the
5002  * blocks this bookmark refers to) by multiplying their blkid by their span
5003  * (the number of L0 blocks contained within one block at their level).
5004  * zbookmarks inside the meta-dnode calculate their object equivalent
5005  * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
5006  * level + 1<<31 (any value larger than a level could ever be) for their level.
5007  * This causes them to always compare before a bookmark in their object
5008  * equivalent, compare appropriately to bookmarks in other objects, and to
5009  * compare appropriately to other bookmarks in the meta-dnode.
5010  */
5011 int
5012 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
5013     const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
5014 {
5015 	/*
5016 	 * These variables represent the "equivalent" values for the zbookmark,
5017 	 * after converting zbookmarks inside the meta dnode to their
5018 	 * normal-object equivalents.
5019 	 */
5020 	uint64_t zb1obj, zb2obj;
5021 	uint64_t zb1L0, zb2L0;
5022 	uint64_t zb1level, zb2level;
5023 
5024 	if (zb1->zb_object == zb2->zb_object &&
5025 	    zb1->zb_level == zb2->zb_level &&
5026 	    zb1->zb_blkid == zb2->zb_blkid)
5027 		return (0);
5028 
5029 	IMPLY(zb1->zb_level > 0, ibs1 >= SPA_MINBLOCKSHIFT);
5030 	IMPLY(zb2->zb_level > 0, ibs2 >= SPA_MINBLOCKSHIFT);
5031 
5032 	/*
5033 	 * BP_SPANB calculates the span in blocks.
5034 	 */
5035 	zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
5036 	zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
5037 
5038 	if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
5039 		zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
5040 		zb1L0 = 0;
5041 		zb1level = zb1->zb_level + COMPARE_META_LEVEL;
5042 	} else {
5043 		zb1obj = zb1->zb_object;
5044 		zb1level = zb1->zb_level;
5045 	}
5046 
5047 	if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
5048 		zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
5049 		zb2L0 = 0;
5050 		zb2level = zb2->zb_level + COMPARE_META_LEVEL;
5051 	} else {
5052 		zb2obj = zb2->zb_object;
5053 		zb2level = zb2->zb_level;
5054 	}
5055 
5056 	/* Now that we have a canonical representation, do the comparison. */
5057 	if (zb1obj != zb2obj)
5058 		return (zb1obj < zb2obj ? -1 : 1);
5059 	else if (zb1L0 != zb2L0)
5060 		return (zb1L0 < zb2L0 ? -1 : 1);
5061 	else if (zb1level != zb2level)
5062 		return (zb1level > zb2level ? -1 : 1);
5063 	/*
5064 	 * This can (theoretically) happen if the bookmarks have the same object
5065 	 * and level, but different blkids, if the block sizes are not the same.
5066 	 * There is presently no way to change the indirect block sizes
5067 	 */
5068 	return (0);
5069 }
5070 
5071 /*
5072  *  This function checks the following: given that last_block is the place that
5073  *  our traversal stopped last time, does that guarantee that we've visited
5074  *  every node under subtree_root?  Therefore, we can't just use the raw output
5075  *  of zbookmark_compare.  We have to pass in a modified version of
5076  *  subtree_root; by incrementing the block id, and then checking whether
5077  *  last_block is before or equal to that, we can tell whether or not having
5078  *  visited last_block implies that all of subtree_root's children have been
5079  *  visited.
5080  */
5081 boolean_t
5082 zbookmark_subtree_completed(const dnode_phys_t *dnp,
5083     const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
5084 {
5085 	zbookmark_phys_t mod_zb = *subtree_root;
5086 	mod_zb.zb_blkid++;
5087 	ASSERT0(last_block->zb_level);
5088 
5089 	/* The objset_phys_t isn't before anything. */
5090 	if (dnp == NULL)
5091 		return (B_FALSE);
5092 
5093 	/*
5094 	 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
5095 	 * data block size in sectors, because that variable is only used if
5096 	 * the bookmark refers to a block in the meta-dnode.  Since we don't
5097 	 * know without examining it what object it refers to, and there's no
5098 	 * harm in passing in this value in other cases, we always pass it in.
5099 	 *
5100 	 * We pass in 0 for the indirect block size shift because zb2 must be
5101 	 * level 0.  The indirect block size is only used to calculate the span
5102 	 * of the bookmark, but since the bookmark must be level 0, the span is
5103 	 * always 1, so the math works out.
5104 	 *
5105 	 * If you make changes to how the zbookmark_compare code works, be sure
5106 	 * to make sure that this code still works afterwards.
5107 	 */
5108 	return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
5109 	    1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
5110 	    last_block) <= 0);
5111 }
5112 
5113 /*
5114  * This function is similar to zbookmark_subtree_completed(), but returns true
5115  * if subtree_root is equal or ahead of last_block, i.e. still to be done.
5116  */
5117 boolean_t
5118 zbookmark_subtree_tbd(const dnode_phys_t *dnp,
5119     const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
5120 {
5121 	ASSERT0(last_block->zb_level);
5122 	if (dnp == NULL)
5123 		return (B_FALSE);
5124 	return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
5125 	    1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, subtree_root,
5126 	    last_block) >= 0);
5127 }
5128 
5129 EXPORT_SYMBOL(zio_type_name);
5130 EXPORT_SYMBOL(zio_buf_alloc);
5131 EXPORT_SYMBOL(zio_data_buf_alloc);
5132 EXPORT_SYMBOL(zio_buf_free);
5133 EXPORT_SYMBOL(zio_data_buf_free);
5134 
5135 ZFS_MODULE_PARAM(zfs_zio, zio_, slow_io_ms, INT, ZMOD_RW,
5136 	"Max I/O completion time (milliseconds) before marking it as slow");
5137 
5138 ZFS_MODULE_PARAM(zfs_zio, zio_, requeue_io_start_cut_in_line, INT, ZMOD_RW,
5139 	"Prioritize requeued I/O");
5140 
5141 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_deferred_free,  UINT, ZMOD_RW,
5142 	"Defer frees starting in this pass");
5143 
5144 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_dont_compress, UINT, ZMOD_RW,
5145 	"Don't compress starting in this pass");
5146 
5147 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_rewrite, UINT, ZMOD_RW,
5148 	"Rewrite new bps starting in this pass");
5149 
5150 ZFS_MODULE_PARAM(zfs_zio, zio_, dva_throttle_enabled, INT, ZMOD_RW,
5151 	"Throttle block allocations in the ZIO pipeline");
5152 
5153 ZFS_MODULE_PARAM(zfs_zio, zio_, deadman_log_all, INT, ZMOD_RW,
5154 	"Log all slow ZIOs, not just those with vdevs");
5155