xref: /freebsd/sys/contrib/openzfs/module/zfs/zio.c (revision 5def4c47d4bd90b209b9b4a4ba9faec15846d8fd)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
24  * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25  * Copyright (c) 2017, Intel Corporation.
26  * Copyright (c) 2019, Klara Inc.
27  * Copyright (c) 2019, Allan Jude
28  * Copyright (c) 2021, Datto, Inc.
29  */
30 
31 #include <sys/sysmacros.h>
32 #include <sys/zfs_context.h>
33 #include <sys/fm/fs/zfs.h>
34 #include <sys/spa.h>
35 #include <sys/txg.h>
36 #include <sys/spa_impl.h>
37 #include <sys/vdev_impl.h>
38 #include <sys/vdev_trim.h>
39 #include <sys/zio_impl.h>
40 #include <sys/zio_compress.h>
41 #include <sys/zio_checksum.h>
42 #include <sys/dmu_objset.h>
43 #include <sys/arc.h>
44 #include <sys/ddt.h>
45 #include <sys/blkptr.h>
46 #include <sys/zfeature.h>
47 #include <sys/dsl_scan.h>
48 #include <sys/metaslab_impl.h>
49 #include <sys/time.h>
50 #include <sys/trace_zfs.h>
51 #include <sys/abd.h>
52 #include <sys/dsl_crypt.h>
53 #include <cityhash.h>
54 
55 /*
56  * ==========================================================================
57  * I/O type descriptions
58  * ==========================================================================
59  */
60 const char *zio_type_name[ZIO_TYPES] = {
61 	/*
62 	 * Note: Linux kernel thread name length is limited
63 	 * so these names will differ from upstream open zfs.
64 	 */
65 	"z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_ioctl", "z_trim"
66 };
67 
68 int zio_dva_throttle_enabled = B_TRUE;
69 int zio_deadman_log_all = B_FALSE;
70 
71 /*
72  * ==========================================================================
73  * I/O kmem caches
74  * ==========================================================================
75  */
76 kmem_cache_t *zio_cache;
77 kmem_cache_t *zio_link_cache;
78 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
79 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
80 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
81 uint64_t zio_buf_cache_allocs[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
82 uint64_t zio_buf_cache_frees[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
83 #endif
84 
85 /* Mark IOs as "slow" if they take longer than 30 seconds */
86 int zio_slow_io_ms = (30 * MILLISEC);
87 
88 #define	BP_SPANB(indblkshift, level) \
89 	(((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
90 #define	COMPARE_META_LEVEL	0x80000000ul
91 /*
92  * The following actions directly effect the spa's sync-to-convergence logic.
93  * The values below define the sync pass when we start performing the action.
94  * Care should be taken when changing these values as they directly impact
95  * spa_sync() performance. Tuning these values may introduce subtle performance
96  * pathologies and should only be done in the context of performance analysis.
97  * These tunables will eventually be removed and replaced with #defines once
98  * enough analysis has been done to determine optimal values.
99  *
100  * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
101  * regular blocks are not deferred.
102  *
103  * Starting in sync pass 8 (zfs_sync_pass_dont_compress), we disable
104  * compression (including of metadata).  In practice, we don't have this
105  * many sync passes, so this has no effect.
106  *
107  * The original intent was that disabling compression would help the sync
108  * passes to converge. However, in practice disabling compression increases
109  * the average number of sync passes, because when we turn compression off, a
110  * lot of block's size will change and thus we have to re-allocate (not
111  * overwrite) them. It also increases the number of 128KB allocations (e.g.
112  * for indirect blocks and spacemaps) because these will not be compressed.
113  * The 128K allocations are especially detrimental to performance on highly
114  * fragmented systems, which may have very few free segments of this size,
115  * and may need to load new metaslabs to satisfy 128K allocations.
116  */
117 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
118 int zfs_sync_pass_dont_compress = 8; /* don't compress starting in this pass */
119 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
120 
121 /*
122  * An allocating zio is one that either currently has the DVA allocate
123  * stage set or will have it later in its lifetime.
124  */
125 #define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
126 
127 /*
128  * Enable smaller cores by excluding metadata
129  * allocations as well.
130  */
131 int zio_exclude_metadata = 0;
132 int zio_requeue_io_start_cut_in_line = 1;
133 
134 #ifdef ZFS_DEBUG
135 int zio_buf_debug_limit = 16384;
136 #else
137 int zio_buf_debug_limit = 0;
138 #endif
139 
140 static inline void __zio_execute(zio_t *zio);
141 
142 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t);
143 
144 void
145 zio_init(void)
146 {
147 	size_t c;
148 
149 	zio_cache = kmem_cache_create("zio_cache",
150 	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
151 	zio_link_cache = kmem_cache_create("zio_link_cache",
152 	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
153 
154 	/*
155 	 * For small buffers, we want a cache for each multiple of
156 	 * SPA_MINBLOCKSIZE.  For larger buffers, we want a cache
157 	 * for each quarter-power of 2.
158 	 */
159 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
160 		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
161 		size_t p2 = size;
162 		size_t align = 0;
163 		size_t data_cflags, cflags;
164 
165 		data_cflags = KMC_NODEBUG;
166 		cflags = (zio_exclude_metadata || size > zio_buf_debug_limit) ?
167 		    KMC_NODEBUG : 0;
168 
169 #if defined(_ILP32) && defined(_KERNEL)
170 		/*
171 		 * Cache size limited to 1M on 32-bit platforms until ARC
172 		 * buffers no longer require virtual address space.
173 		 */
174 		if (size > zfs_max_recordsize)
175 			break;
176 #endif
177 
178 		while (!ISP2(p2))
179 			p2 &= p2 - 1;
180 
181 #ifndef _KERNEL
182 		/*
183 		 * If we are using watchpoints, put each buffer on its own page,
184 		 * to eliminate the performance overhead of trapping to the
185 		 * kernel when modifying a non-watched buffer that shares the
186 		 * page with a watched buffer.
187 		 */
188 		if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
189 			continue;
190 		/*
191 		 * Here's the problem - on 4K native devices in userland on
192 		 * Linux using O_DIRECT, buffers must be 4K aligned or I/O
193 		 * will fail with EINVAL, causing zdb (and others) to coredump.
194 		 * Since userland probably doesn't need optimized buffer caches,
195 		 * we just force 4K alignment on everything.
196 		 */
197 		align = 8 * SPA_MINBLOCKSIZE;
198 #else
199 		if (size < PAGESIZE) {
200 			align = SPA_MINBLOCKSIZE;
201 		} else if (IS_P2ALIGNED(size, p2 >> 2)) {
202 			align = PAGESIZE;
203 		}
204 #endif
205 
206 		if (align != 0) {
207 			char name[36];
208 			if (cflags == data_cflags) {
209 				/*
210 				 * Resulting kmem caches would be identical.
211 				 * Save memory by creating only one.
212 				 */
213 				(void) snprintf(name, sizeof (name),
214 				    "zio_buf_comb_%lu", (ulong_t)size);
215 				zio_buf_cache[c] = kmem_cache_create(name,
216 				    size, align, NULL, NULL, NULL, NULL, NULL,
217 				    cflags);
218 				zio_data_buf_cache[c] = zio_buf_cache[c];
219 				continue;
220 			}
221 			(void) snprintf(name, sizeof (name), "zio_buf_%lu",
222 			    (ulong_t)size);
223 			zio_buf_cache[c] = kmem_cache_create(name, size,
224 			    align, NULL, NULL, NULL, NULL, NULL, cflags);
225 
226 			(void) snprintf(name, sizeof (name), "zio_data_buf_%lu",
227 			    (ulong_t)size);
228 			zio_data_buf_cache[c] = kmem_cache_create(name, size,
229 			    align, NULL, NULL, NULL, NULL, NULL, data_cflags);
230 		}
231 	}
232 
233 	while (--c != 0) {
234 		ASSERT(zio_buf_cache[c] != NULL);
235 		if (zio_buf_cache[c - 1] == NULL)
236 			zio_buf_cache[c - 1] = zio_buf_cache[c];
237 
238 		ASSERT(zio_data_buf_cache[c] != NULL);
239 		if (zio_data_buf_cache[c - 1] == NULL)
240 			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
241 	}
242 
243 	zio_inject_init();
244 
245 	lz4_init();
246 }
247 
248 void
249 zio_fini(void)
250 {
251 	size_t n = SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT;
252 
253 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
254 	for (size_t i = 0; i < n; i++) {
255 		if (zio_buf_cache_allocs[i] != zio_buf_cache_frees[i])
256 			(void) printf("zio_fini: [%d] %llu != %llu\n",
257 			    (int)((i + 1) << SPA_MINBLOCKSHIFT),
258 			    (long long unsigned)zio_buf_cache_allocs[i],
259 			    (long long unsigned)zio_buf_cache_frees[i]);
260 	}
261 #endif
262 
263 	/*
264 	 * The same kmem cache can show up multiple times in both zio_buf_cache
265 	 * and zio_data_buf_cache. Do a wasteful but trivially correct scan to
266 	 * sort it out.
267 	 */
268 	for (size_t i = 0; i < n; i++) {
269 		kmem_cache_t *cache = zio_buf_cache[i];
270 		if (cache == NULL)
271 			continue;
272 		for (size_t j = i; j < n; j++) {
273 			if (cache == zio_buf_cache[j])
274 				zio_buf_cache[j] = NULL;
275 			if (cache == zio_data_buf_cache[j])
276 				zio_data_buf_cache[j] = NULL;
277 		}
278 		kmem_cache_destroy(cache);
279 	}
280 
281 	for (size_t i = 0; i < n; i++) {
282 		kmem_cache_t *cache = zio_data_buf_cache[i];
283 		if (cache == NULL)
284 			continue;
285 		for (size_t j = i; j < n; j++) {
286 			if (cache == zio_data_buf_cache[j])
287 				zio_data_buf_cache[j] = NULL;
288 		}
289 		kmem_cache_destroy(cache);
290 	}
291 
292 	for (size_t i = 0; i < n; i++) {
293 		VERIFY3P(zio_buf_cache[i], ==, NULL);
294 		VERIFY3P(zio_data_buf_cache[i], ==, NULL);
295 	}
296 
297 	kmem_cache_destroy(zio_link_cache);
298 	kmem_cache_destroy(zio_cache);
299 
300 	zio_inject_fini();
301 
302 	lz4_fini();
303 }
304 
305 /*
306  * ==========================================================================
307  * Allocate and free I/O buffers
308  * ==========================================================================
309  */
310 
311 /*
312  * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
313  * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
314  * useful to inspect ZFS metadata, but if possible, we should avoid keeping
315  * excess / transient data in-core during a crashdump.
316  */
317 void *
318 zio_buf_alloc(size_t size)
319 {
320 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
321 
322 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
323 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
324 	atomic_add_64(&zio_buf_cache_allocs[c], 1);
325 #endif
326 
327 	return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
328 }
329 
330 /*
331  * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
332  * crashdump if the kernel panics.  This exists so that we will limit the amount
333  * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
334  * of kernel heap dumped to disk when the kernel panics)
335  */
336 void *
337 zio_data_buf_alloc(size_t size)
338 {
339 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
340 
341 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
342 
343 	return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
344 }
345 
346 void
347 zio_buf_free(void *buf, size_t size)
348 {
349 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
350 
351 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
352 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
353 	atomic_add_64(&zio_buf_cache_frees[c], 1);
354 #endif
355 
356 	kmem_cache_free(zio_buf_cache[c], buf);
357 }
358 
359 void
360 zio_data_buf_free(void *buf, size_t size)
361 {
362 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
363 
364 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
365 
366 	kmem_cache_free(zio_data_buf_cache[c], buf);
367 }
368 
369 static void
370 zio_abd_free(void *abd, size_t size)
371 {
372 	abd_free((abd_t *)abd);
373 }
374 
375 /*
376  * ==========================================================================
377  * Push and pop I/O transform buffers
378  * ==========================================================================
379  */
380 void
381 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize,
382     zio_transform_func_t *transform)
383 {
384 	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
385 
386 	zt->zt_orig_abd = zio->io_abd;
387 	zt->zt_orig_size = zio->io_size;
388 	zt->zt_bufsize = bufsize;
389 	zt->zt_transform = transform;
390 
391 	zt->zt_next = zio->io_transform_stack;
392 	zio->io_transform_stack = zt;
393 
394 	zio->io_abd = data;
395 	zio->io_size = size;
396 }
397 
398 void
399 zio_pop_transforms(zio_t *zio)
400 {
401 	zio_transform_t *zt;
402 
403 	while ((zt = zio->io_transform_stack) != NULL) {
404 		if (zt->zt_transform != NULL)
405 			zt->zt_transform(zio,
406 			    zt->zt_orig_abd, zt->zt_orig_size);
407 
408 		if (zt->zt_bufsize != 0)
409 			abd_free(zio->io_abd);
410 
411 		zio->io_abd = zt->zt_orig_abd;
412 		zio->io_size = zt->zt_orig_size;
413 		zio->io_transform_stack = zt->zt_next;
414 
415 		kmem_free(zt, sizeof (zio_transform_t));
416 	}
417 }
418 
419 /*
420  * ==========================================================================
421  * I/O transform callbacks for subblocks, decompression, and decryption
422  * ==========================================================================
423  */
424 static void
425 zio_subblock(zio_t *zio, abd_t *data, uint64_t size)
426 {
427 	ASSERT(zio->io_size > size);
428 
429 	if (zio->io_type == ZIO_TYPE_READ)
430 		abd_copy(data, zio->io_abd, size);
431 }
432 
433 static void
434 zio_decompress(zio_t *zio, abd_t *data, uint64_t size)
435 {
436 	if (zio->io_error == 0) {
437 		void *tmp = abd_borrow_buf(data, size);
438 		int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
439 		    zio->io_abd, tmp, zio->io_size, size,
440 		    &zio->io_prop.zp_complevel);
441 		abd_return_buf_copy(data, tmp, size);
442 
443 		if (zio_injection_enabled && ret == 0)
444 			ret = zio_handle_fault_injection(zio, EINVAL);
445 
446 		if (ret != 0)
447 			zio->io_error = SET_ERROR(EIO);
448 	}
449 }
450 
451 static void
452 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size)
453 {
454 	int ret;
455 	void *tmp;
456 	blkptr_t *bp = zio->io_bp;
457 	spa_t *spa = zio->io_spa;
458 	uint64_t dsobj = zio->io_bookmark.zb_objset;
459 	uint64_t lsize = BP_GET_LSIZE(bp);
460 	dmu_object_type_t ot = BP_GET_TYPE(bp);
461 	uint8_t salt[ZIO_DATA_SALT_LEN];
462 	uint8_t iv[ZIO_DATA_IV_LEN];
463 	uint8_t mac[ZIO_DATA_MAC_LEN];
464 	boolean_t no_crypt = B_FALSE;
465 
466 	ASSERT(BP_USES_CRYPT(bp));
467 	ASSERT3U(size, !=, 0);
468 
469 	if (zio->io_error != 0)
470 		return;
471 
472 	/*
473 	 * Verify the cksum of MACs stored in an indirect bp. It will always
474 	 * be possible to verify this since it does not require an encryption
475 	 * key.
476 	 */
477 	if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) {
478 		zio_crypt_decode_mac_bp(bp, mac);
479 
480 		if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) {
481 			/*
482 			 * We haven't decompressed the data yet, but
483 			 * zio_crypt_do_indirect_mac_checksum() requires
484 			 * decompressed data to be able to parse out the MACs
485 			 * from the indirect block. We decompress it now and
486 			 * throw away the result after we are finished.
487 			 */
488 			tmp = zio_buf_alloc(lsize);
489 			ret = zio_decompress_data(BP_GET_COMPRESS(bp),
490 			    zio->io_abd, tmp, zio->io_size, lsize,
491 			    &zio->io_prop.zp_complevel);
492 			if (ret != 0) {
493 				ret = SET_ERROR(EIO);
494 				goto error;
495 			}
496 			ret = zio_crypt_do_indirect_mac_checksum(B_FALSE,
497 			    tmp, lsize, BP_SHOULD_BYTESWAP(bp), mac);
498 			zio_buf_free(tmp, lsize);
499 		} else {
500 			ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE,
501 			    zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac);
502 		}
503 		abd_copy(data, zio->io_abd, size);
504 
505 		if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) {
506 			ret = zio_handle_decrypt_injection(spa,
507 			    &zio->io_bookmark, ot, ECKSUM);
508 		}
509 		if (ret != 0)
510 			goto error;
511 
512 		return;
513 	}
514 
515 	/*
516 	 * If this is an authenticated block, just check the MAC. It would be
517 	 * nice to separate this out into its own flag, but for the moment
518 	 * enum zio_flag is out of bits.
519 	 */
520 	if (BP_IS_AUTHENTICATED(bp)) {
521 		if (ot == DMU_OT_OBJSET) {
522 			ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa,
523 			    dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp));
524 		} else {
525 			zio_crypt_decode_mac_bp(bp, mac);
526 			ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj,
527 			    zio->io_abd, size, mac);
528 			if (zio_injection_enabled && ret == 0) {
529 				ret = zio_handle_decrypt_injection(spa,
530 				    &zio->io_bookmark, ot, ECKSUM);
531 			}
532 		}
533 		abd_copy(data, zio->io_abd, size);
534 
535 		if (ret != 0)
536 			goto error;
537 
538 		return;
539 	}
540 
541 	zio_crypt_decode_params_bp(bp, salt, iv);
542 
543 	if (ot == DMU_OT_INTENT_LOG) {
544 		tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t));
545 		zio_crypt_decode_mac_zil(tmp, mac);
546 		abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t));
547 	} else {
548 		zio_crypt_decode_mac_bp(bp, mac);
549 	}
550 
551 	ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp),
552 	    BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data,
553 	    zio->io_abd, &no_crypt);
554 	if (no_crypt)
555 		abd_copy(data, zio->io_abd, size);
556 
557 	if (ret != 0)
558 		goto error;
559 
560 	return;
561 
562 error:
563 	/* assert that the key was found unless this was speculative */
564 	ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE));
565 
566 	/*
567 	 * If there was a decryption / authentication error return EIO as
568 	 * the io_error. If this was not a speculative zio, create an ereport.
569 	 */
570 	if (ret == ECKSUM) {
571 		zio->io_error = SET_ERROR(EIO);
572 		if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
573 			spa_log_error(spa, &zio->io_bookmark);
574 			(void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
575 			    spa, NULL, &zio->io_bookmark, zio, 0);
576 		}
577 	} else {
578 		zio->io_error = ret;
579 	}
580 }
581 
582 /*
583  * ==========================================================================
584  * I/O parent/child relationships and pipeline interlocks
585  * ==========================================================================
586  */
587 zio_t *
588 zio_walk_parents(zio_t *cio, zio_link_t **zl)
589 {
590 	list_t *pl = &cio->io_parent_list;
591 
592 	*zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl);
593 	if (*zl == NULL)
594 		return (NULL);
595 
596 	ASSERT((*zl)->zl_child == cio);
597 	return ((*zl)->zl_parent);
598 }
599 
600 zio_t *
601 zio_walk_children(zio_t *pio, zio_link_t **zl)
602 {
603 	list_t *cl = &pio->io_child_list;
604 
605 	ASSERT(MUTEX_HELD(&pio->io_lock));
606 
607 	*zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl);
608 	if (*zl == NULL)
609 		return (NULL);
610 
611 	ASSERT((*zl)->zl_parent == pio);
612 	return ((*zl)->zl_child);
613 }
614 
615 zio_t *
616 zio_unique_parent(zio_t *cio)
617 {
618 	zio_link_t *zl = NULL;
619 	zio_t *pio = zio_walk_parents(cio, &zl);
620 
621 	VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL);
622 	return (pio);
623 }
624 
625 void
626 zio_add_child(zio_t *pio, zio_t *cio)
627 {
628 	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
629 
630 	/*
631 	 * Logical I/Os can have logical, gang, or vdev children.
632 	 * Gang I/Os can have gang or vdev children.
633 	 * Vdev I/Os can only have vdev children.
634 	 * The following ASSERT captures all of these constraints.
635 	 */
636 	ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
637 
638 	zl->zl_parent = pio;
639 	zl->zl_child = cio;
640 
641 	mutex_enter(&pio->io_lock);
642 	mutex_enter(&cio->io_lock);
643 
644 	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
645 
646 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
647 		pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
648 
649 	list_insert_head(&pio->io_child_list, zl);
650 	list_insert_head(&cio->io_parent_list, zl);
651 
652 	pio->io_child_count++;
653 	cio->io_parent_count++;
654 
655 	mutex_exit(&cio->io_lock);
656 	mutex_exit(&pio->io_lock);
657 }
658 
659 static void
660 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
661 {
662 	ASSERT(zl->zl_parent == pio);
663 	ASSERT(zl->zl_child == cio);
664 
665 	mutex_enter(&pio->io_lock);
666 	mutex_enter(&cio->io_lock);
667 
668 	list_remove(&pio->io_child_list, zl);
669 	list_remove(&cio->io_parent_list, zl);
670 
671 	pio->io_child_count--;
672 	cio->io_parent_count--;
673 
674 	mutex_exit(&cio->io_lock);
675 	mutex_exit(&pio->io_lock);
676 	kmem_cache_free(zio_link_cache, zl);
677 }
678 
679 static boolean_t
680 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait)
681 {
682 	boolean_t waiting = B_FALSE;
683 
684 	mutex_enter(&zio->io_lock);
685 	ASSERT(zio->io_stall == NULL);
686 	for (int c = 0; c < ZIO_CHILD_TYPES; c++) {
687 		if (!(ZIO_CHILD_BIT_IS_SET(childbits, c)))
688 			continue;
689 
690 		uint64_t *countp = &zio->io_children[c][wait];
691 		if (*countp != 0) {
692 			zio->io_stage >>= 1;
693 			ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN);
694 			zio->io_stall = countp;
695 			waiting = B_TRUE;
696 			break;
697 		}
698 	}
699 	mutex_exit(&zio->io_lock);
700 	return (waiting);
701 }
702 
703 __attribute__((always_inline))
704 static inline void
705 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait,
706     zio_t **next_to_executep)
707 {
708 	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
709 	int *errorp = &pio->io_child_error[zio->io_child_type];
710 
711 	mutex_enter(&pio->io_lock);
712 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
713 		*errorp = zio_worst_error(*errorp, zio->io_error);
714 	pio->io_reexecute |= zio->io_reexecute;
715 	ASSERT3U(*countp, >, 0);
716 
717 	(*countp)--;
718 
719 	if (*countp == 0 && pio->io_stall == countp) {
720 		zio_taskq_type_t type =
721 		    pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE :
722 		    ZIO_TASKQ_INTERRUPT;
723 		pio->io_stall = NULL;
724 		mutex_exit(&pio->io_lock);
725 
726 		/*
727 		 * If we can tell the caller to execute this parent next, do
728 		 * so.  Otherwise dispatch the parent zio as its own task.
729 		 *
730 		 * Having the caller execute the parent when possible reduces
731 		 * locking on the zio taskq's, reduces context switch
732 		 * overhead, and has no recursion penalty.  Note that one
733 		 * read from disk typically causes at least 3 zio's: a
734 		 * zio_null(), the logical zio_read(), and then a physical
735 		 * zio.  When the physical ZIO completes, we are able to call
736 		 * zio_done() on all 3 of these zio's from one invocation of
737 		 * zio_execute() by returning the parent back to
738 		 * zio_execute().  Since the parent isn't executed until this
739 		 * thread returns back to zio_execute(), the caller should do
740 		 * so promptly.
741 		 *
742 		 * In other cases, dispatching the parent prevents
743 		 * overflowing the stack when we have deeply nested
744 		 * parent-child relationships, as we do with the "mega zio"
745 		 * of writes for spa_sync(), and the chain of ZIL blocks.
746 		 */
747 		if (next_to_executep != NULL && *next_to_executep == NULL) {
748 			*next_to_executep = pio;
749 		} else {
750 			zio_taskq_dispatch(pio, type, B_FALSE);
751 		}
752 	} else {
753 		mutex_exit(&pio->io_lock);
754 	}
755 }
756 
757 static void
758 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
759 {
760 	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
761 		zio->io_error = zio->io_child_error[c];
762 }
763 
764 int
765 zio_bookmark_compare(const void *x1, const void *x2)
766 {
767 	const zio_t *z1 = x1;
768 	const zio_t *z2 = x2;
769 
770 	if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset)
771 		return (-1);
772 	if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset)
773 		return (1);
774 
775 	if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object)
776 		return (-1);
777 	if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object)
778 		return (1);
779 
780 	if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level)
781 		return (-1);
782 	if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level)
783 		return (1);
784 
785 	if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid)
786 		return (-1);
787 	if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid)
788 		return (1);
789 
790 	if (z1 < z2)
791 		return (-1);
792 	if (z1 > z2)
793 		return (1);
794 
795 	return (0);
796 }
797 
798 /*
799  * ==========================================================================
800  * Create the various types of I/O (read, write, free, etc)
801  * ==========================================================================
802  */
803 static zio_t *
804 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
805     abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done,
806     void *private, zio_type_t type, zio_priority_t priority,
807     enum zio_flag flags, vdev_t *vd, uint64_t offset,
808     const zbookmark_phys_t *zb, enum zio_stage stage,
809     enum zio_stage pipeline)
810 {
811 	zio_t *zio;
812 
813 	IMPLY(type != ZIO_TYPE_TRIM, psize <= SPA_MAXBLOCKSIZE);
814 	ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0);
815 	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
816 
817 	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
818 	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
819 	ASSERT(vd || stage == ZIO_STAGE_OPEN);
820 
821 	IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0);
822 
823 	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
824 	bzero(zio, sizeof (zio_t));
825 
826 	mutex_init(&zio->io_lock, NULL, MUTEX_NOLOCKDEP, NULL);
827 	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
828 
829 	list_create(&zio->io_parent_list, sizeof (zio_link_t),
830 	    offsetof(zio_link_t, zl_parent_node));
831 	list_create(&zio->io_child_list, sizeof (zio_link_t),
832 	    offsetof(zio_link_t, zl_child_node));
833 	metaslab_trace_init(&zio->io_alloc_list);
834 
835 	if (vd != NULL)
836 		zio->io_child_type = ZIO_CHILD_VDEV;
837 	else if (flags & ZIO_FLAG_GANG_CHILD)
838 		zio->io_child_type = ZIO_CHILD_GANG;
839 	else if (flags & ZIO_FLAG_DDT_CHILD)
840 		zio->io_child_type = ZIO_CHILD_DDT;
841 	else
842 		zio->io_child_type = ZIO_CHILD_LOGICAL;
843 
844 	if (bp != NULL) {
845 		zio->io_bp = (blkptr_t *)bp;
846 		zio->io_bp_copy = *bp;
847 		zio->io_bp_orig = *bp;
848 		if (type != ZIO_TYPE_WRITE ||
849 		    zio->io_child_type == ZIO_CHILD_DDT)
850 			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
851 		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
852 			zio->io_logical = zio;
853 		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
854 			pipeline |= ZIO_GANG_STAGES;
855 	}
856 
857 	zio->io_spa = spa;
858 	zio->io_txg = txg;
859 	zio->io_done = done;
860 	zio->io_private = private;
861 	zio->io_type = type;
862 	zio->io_priority = priority;
863 	zio->io_vd = vd;
864 	zio->io_offset = offset;
865 	zio->io_orig_abd = zio->io_abd = data;
866 	zio->io_orig_size = zio->io_size = psize;
867 	zio->io_lsize = lsize;
868 	zio->io_orig_flags = zio->io_flags = flags;
869 	zio->io_orig_stage = zio->io_stage = stage;
870 	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
871 	zio->io_pipeline_trace = ZIO_STAGE_OPEN;
872 
873 	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
874 	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
875 
876 	if (zb != NULL)
877 		zio->io_bookmark = *zb;
878 
879 	if (pio != NULL) {
880 		if (zio->io_metaslab_class == NULL)
881 			zio->io_metaslab_class = pio->io_metaslab_class;
882 		if (zio->io_logical == NULL)
883 			zio->io_logical = pio->io_logical;
884 		if (zio->io_child_type == ZIO_CHILD_GANG)
885 			zio->io_gang_leader = pio->io_gang_leader;
886 		zio_add_child(pio, zio);
887 	}
888 
889 	taskq_init_ent(&zio->io_tqent);
890 
891 	return (zio);
892 }
893 
894 static void
895 zio_destroy(zio_t *zio)
896 {
897 	metaslab_trace_fini(&zio->io_alloc_list);
898 	list_destroy(&zio->io_parent_list);
899 	list_destroy(&zio->io_child_list);
900 	mutex_destroy(&zio->io_lock);
901 	cv_destroy(&zio->io_cv);
902 	kmem_cache_free(zio_cache, zio);
903 }
904 
905 zio_t *
906 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
907     void *private, enum zio_flag flags)
908 {
909 	zio_t *zio;
910 
911 	zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
912 	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
913 	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
914 
915 	return (zio);
916 }
917 
918 zio_t *
919 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
920 {
921 	return (zio_null(NULL, spa, NULL, done, private, flags));
922 }
923 
924 static int
925 zfs_blkptr_verify_log(spa_t *spa, const blkptr_t *bp,
926     enum blk_verify_flag blk_verify, const char *fmt, ...)
927 {
928 	va_list adx;
929 	char buf[256];
930 
931 	va_start(adx, fmt);
932 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
933 	va_end(adx);
934 
935 	switch (blk_verify) {
936 	case BLK_VERIFY_HALT:
937 		dprintf_bp(bp, "blkptr at %p dprintf_bp():", bp);
938 		zfs_panic_recover("%s: %s", spa_name(spa), buf);
939 		break;
940 	case BLK_VERIFY_LOG:
941 		zfs_dbgmsg("%s: %s", spa_name(spa), buf);
942 		break;
943 	case BLK_VERIFY_ONLY:
944 		break;
945 	}
946 
947 	return (1);
948 }
949 
950 /*
951  * Verify the block pointer fields contain reasonable values.  This means
952  * it only contains known object types, checksum/compression identifiers,
953  * block sizes within the maximum allowed limits, valid DVAs, etc.
954  *
955  * If everything checks out B_TRUE is returned.  The zfs_blkptr_verify
956  * argument controls the behavior when an invalid field is detected.
957  *
958  * Modes for zfs_blkptr_verify:
959  *   1) BLK_VERIFY_ONLY (evaluate the block)
960  *   2) BLK_VERIFY_LOG (evaluate the block and log problems)
961  *   3) BLK_VERIFY_HALT (call zfs_panic_recover on error)
962  */
963 boolean_t
964 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp, boolean_t config_held,
965     enum blk_verify_flag blk_verify)
966 {
967 	int errors = 0;
968 
969 	if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
970 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
971 		    "blkptr at %p has invalid TYPE %llu",
972 		    bp, (longlong_t)BP_GET_TYPE(bp));
973 	}
974 	if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS ||
975 	    BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) {
976 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
977 		    "blkptr at %p has invalid CHECKSUM %llu",
978 		    bp, (longlong_t)BP_GET_CHECKSUM(bp));
979 	}
980 	if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS ||
981 	    BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) {
982 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
983 		    "blkptr at %p has invalid COMPRESS %llu",
984 		    bp, (longlong_t)BP_GET_COMPRESS(bp));
985 	}
986 	if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
987 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
988 		    "blkptr at %p has invalid LSIZE %llu",
989 		    bp, (longlong_t)BP_GET_LSIZE(bp));
990 	}
991 	if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
992 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
993 		    "blkptr at %p has invalid PSIZE %llu",
994 		    bp, (longlong_t)BP_GET_PSIZE(bp));
995 	}
996 
997 	if (BP_IS_EMBEDDED(bp)) {
998 		if (BPE_GET_ETYPE(bp) >= NUM_BP_EMBEDDED_TYPES) {
999 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1000 			    "blkptr at %p has invalid ETYPE %llu",
1001 			    bp, (longlong_t)BPE_GET_ETYPE(bp));
1002 		}
1003 	}
1004 
1005 	/*
1006 	 * Do not verify individual DVAs if the config is not trusted. This
1007 	 * will be done once the zio is executed in vdev_mirror_map_alloc.
1008 	 */
1009 	if (!spa->spa_trust_config)
1010 		return (B_TRUE);
1011 
1012 	if (!config_held)
1013 		spa_config_enter(spa, SCL_VDEV, bp, RW_READER);
1014 	else
1015 		ASSERT(spa_config_held(spa, SCL_VDEV, RW_WRITER));
1016 	/*
1017 	 * Pool-specific checks.
1018 	 *
1019 	 * Note: it would be nice to verify that the blk_birth and
1020 	 * BP_PHYSICAL_BIRTH() are not too large.  However, spa_freeze()
1021 	 * allows the birth time of log blocks (and dmu_sync()-ed blocks
1022 	 * that are in the log) to be arbitrarily large.
1023 	 */
1024 	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
1025 		const dva_t *dva = &bp->blk_dva[i];
1026 		uint64_t vdevid = DVA_GET_VDEV(dva);
1027 
1028 		if (vdevid >= spa->spa_root_vdev->vdev_children) {
1029 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1030 			    "blkptr at %p DVA %u has invalid VDEV %llu",
1031 			    bp, i, (longlong_t)vdevid);
1032 			continue;
1033 		}
1034 		vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1035 		if (vd == NULL) {
1036 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1037 			    "blkptr at %p DVA %u has invalid VDEV %llu",
1038 			    bp, i, (longlong_t)vdevid);
1039 			continue;
1040 		}
1041 		if (vd->vdev_ops == &vdev_hole_ops) {
1042 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1043 			    "blkptr at %p DVA %u has hole VDEV %llu",
1044 			    bp, i, (longlong_t)vdevid);
1045 			continue;
1046 		}
1047 		if (vd->vdev_ops == &vdev_missing_ops) {
1048 			/*
1049 			 * "missing" vdevs are valid during import, but we
1050 			 * don't have their detailed info (e.g. asize), so
1051 			 * we can't perform any more checks on them.
1052 			 */
1053 			continue;
1054 		}
1055 		uint64_t offset = DVA_GET_OFFSET(dva);
1056 		uint64_t asize = DVA_GET_ASIZE(dva);
1057 		if (DVA_GET_GANG(dva))
1058 			asize = vdev_gang_header_asize(vd);
1059 		if (offset + asize > vd->vdev_asize) {
1060 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1061 			    "blkptr at %p DVA %u has invalid OFFSET %llu",
1062 			    bp, i, (longlong_t)offset);
1063 		}
1064 	}
1065 	if (errors > 0)
1066 		dprintf_bp(bp, "blkptr at %p dprintf_bp():", bp);
1067 	if (!config_held)
1068 		spa_config_exit(spa, SCL_VDEV, bp);
1069 
1070 	return (errors == 0);
1071 }
1072 
1073 boolean_t
1074 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp)
1075 {
1076 	uint64_t vdevid = DVA_GET_VDEV(dva);
1077 
1078 	if (vdevid >= spa->spa_root_vdev->vdev_children)
1079 		return (B_FALSE);
1080 
1081 	vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1082 	if (vd == NULL)
1083 		return (B_FALSE);
1084 
1085 	if (vd->vdev_ops == &vdev_hole_ops)
1086 		return (B_FALSE);
1087 
1088 	if (vd->vdev_ops == &vdev_missing_ops) {
1089 		return (B_FALSE);
1090 	}
1091 
1092 	uint64_t offset = DVA_GET_OFFSET(dva);
1093 	uint64_t asize = DVA_GET_ASIZE(dva);
1094 
1095 	if (DVA_GET_GANG(dva))
1096 		asize = vdev_gang_header_asize(vd);
1097 	if (offset + asize > vd->vdev_asize)
1098 		return (B_FALSE);
1099 
1100 	return (B_TRUE);
1101 }
1102 
1103 zio_t *
1104 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
1105     abd_t *data, uint64_t size, zio_done_func_t *done, void *private,
1106     zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
1107 {
1108 	zio_t *zio;
1109 
1110 	zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
1111 	    data, size, size, done, private,
1112 	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
1113 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1114 	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
1115 
1116 	return (zio);
1117 }
1118 
1119 zio_t *
1120 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
1121     abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp,
1122     zio_done_func_t *ready, zio_done_func_t *children_ready,
1123     zio_done_func_t *physdone, zio_done_func_t *done,
1124     void *private, zio_priority_t priority, enum zio_flag flags,
1125     const zbookmark_phys_t *zb)
1126 {
1127 	zio_t *zio;
1128 
1129 	ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
1130 	    zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
1131 	    zp->zp_compress >= ZIO_COMPRESS_OFF &&
1132 	    zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
1133 	    DMU_OT_IS_VALID(zp->zp_type) &&
1134 	    zp->zp_level < 32 &&
1135 	    zp->zp_copies > 0 &&
1136 	    zp->zp_copies <= spa_max_replication(spa));
1137 
1138 	zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private,
1139 	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
1140 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1141 	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
1142 
1143 	zio->io_ready = ready;
1144 	zio->io_children_ready = children_ready;
1145 	zio->io_physdone = physdone;
1146 	zio->io_prop = *zp;
1147 
1148 	/*
1149 	 * Data can be NULL if we are going to call zio_write_override() to
1150 	 * provide the already-allocated BP.  But we may need the data to
1151 	 * verify a dedup hit (if requested).  In this case, don't try to
1152 	 * dedup (just take the already-allocated BP verbatim). Encrypted
1153 	 * dedup blocks need data as well so we also disable dedup in this
1154 	 * case.
1155 	 */
1156 	if (data == NULL &&
1157 	    (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) {
1158 		zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
1159 	}
1160 
1161 	return (zio);
1162 }
1163 
1164 zio_t *
1165 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data,
1166     uint64_t size, zio_done_func_t *done, void *private,
1167     zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb)
1168 {
1169 	zio_t *zio;
1170 
1171 	zio = zio_create(pio, spa, txg, bp, data, size, size, done, private,
1172 	    ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb,
1173 	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
1174 
1175 	return (zio);
1176 }
1177 
1178 void
1179 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
1180 {
1181 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
1182 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1183 	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1184 	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
1185 
1186 	/*
1187 	 * We must reset the io_prop to match the values that existed
1188 	 * when the bp was first written by dmu_sync() keeping in mind
1189 	 * that nopwrite and dedup are mutually exclusive.
1190 	 */
1191 	zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
1192 	zio->io_prop.zp_nopwrite = nopwrite;
1193 	zio->io_prop.zp_copies = copies;
1194 	zio->io_bp_override = bp;
1195 }
1196 
1197 void
1198 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
1199 {
1200 
1201 	(void) zfs_blkptr_verify(spa, bp, B_FALSE, BLK_VERIFY_HALT);
1202 
1203 	/*
1204 	 * The check for EMBEDDED is a performance optimization.  We
1205 	 * process the free here (by ignoring it) rather than
1206 	 * putting it on the list and then processing it in zio_free_sync().
1207 	 */
1208 	if (BP_IS_EMBEDDED(bp))
1209 		return;
1210 	metaslab_check_free(spa, bp);
1211 
1212 	/*
1213 	 * Frees that are for the currently-syncing txg, are not going to be
1214 	 * deferred, and which will not need to do a read (i.e. not GANG or
1215 	 * DEDUP), can be processed immediately.  Otherwise, put them on the
1216 	 * in-memory list for later processing.
1217 	 *
1218 	 * Note that we only defer frees after zfs_sync_pass_deferred_free
1219 	 * when the log space map feature is disabled. [see relevant comment
1220 	 * in spa_sync_iterate_to_convergence()]
1221 	 */
1222 	if (BP_IS_GANG(bp) ||
1223 	    BP_GET_DEDUP(bp) ||
1224 	    txg != spa->spa_syncing_txg ||
1225 	    (spa_sync_pass(spa) >= zfs_sync_pass_deferred_free &&
1226 	    !spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))) {
1227 		bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
1228 	} else {
1229 		VERIFY3P(zio_free_sync(NULL, spa, txg, bp, 0), ==, NULL);
1230 	}
1231 }
1232 
1233 /*
1234  * To improve performance, this function may return NULL if we were able
1235  * to do the free immediately.  This avoids the cost of creating a zio
1236  * (and linking it to the parent, etc).
1237  */
1238 zio_t *
1239 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1240     enum zio_flag flags)
1241 {
1242 	ASSERT(!BP_IS_HOLE(bp));
1243 	ASSERT(spa_syncing_txg(spa) == txg);
1244 
1245 	if (BP_IS_EMBEDDED(bp))
1246 		return (NULL);
1247 
1248 	metaslab_check_free(spa, bp);
1249 	arc_freed(spa, bp);
1250 	dsl_scan_freed(spa, bp);
1251 
1252 	if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp)) {
1253 		/*
1254 		 * GANG and DEDUP blocks can induce a read (for the gang block
1255 		 * header, or the DDT), so issue them asynchronously so that
1256 		 * this thread is not tied up.
1257 		 */
1258 		enum zio_stage stage =
1259 		    ZIO_FREE_PIPELINE | ZIO_STAGE_ISSUE_ASYNC;
1260 
1261 		return (zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1262 		    BP_GET_PSIZE(bp), NULL, NULL,
1263 		    ZIO_TYPE_FREE, ZIO_PRIORITY_NOW,
1264 		    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage));
1265 	} else {
1266 		metaslab_free(spa, bp, txg, B_FALSE);
1267 		return (NULL);
1268 	}
1269 }
1270 
1271 zio_t *
1272 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1273     zio_done_func_t *done, void *private, enum zio_flag flags)
1274 {
1275 	zio_t *zio;
1276 
1277 	(void) zfs_blkptr_verify(spa, bp, flags & ZIO_FLAG_CONFIG_WRITER,
1278 	    BLK_VERIFY_HALT);
1279 
1280 	if (BP_IS_EMBEDDED(bp))
1281 		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
1282 
1283 	/*
1284 	 * A claim is an allocation of a specific block.  Claims are needed
1285 	 * to support immediate writes in the intent log.  The issue is that
1286 	 * immediate writes contain committed data, but in a txg that was
1287 	 * *not* committed.  Upon opening the pool after an unclean shutdown,
1288 	 * the intent log claims all blocks that contain immediate write data
1289 	 * so that the SPA knows they're in use.
1290 	 *
1291 	 * All claims *must* be resolved in the first txg -- before the SPA
1292 	 * starts allocating blocks -- so that nothing is allocated twice.
1293 	 * If txg == 0 we just verify that the block is claimable.
1294 	 */
1295 	ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <,
1296 	    spa_min_claim_txg(spa));
1297 	ASSERT(txg == spa_min_claim_txg(spa) || txg == 0);
1298 	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(8) */
1299 
1300 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1301 	    BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW,
1302 	    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
1303 	ASSERT0(zio->io_queued_timestamp);
1304 
1305 	return (zio);
1306 }
1307 
1308 zio_t *
1309 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
1310     zio_done_func_t *done, void *private, enum zio_flag flags)
1311 {
1312 	zio_t *zio;
1313 	int c;
1314 
1315 	if (vd->vdev_children == 0) {
1316 		zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
1317 		    ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
1318 		    ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
1319 
1320 		zio->io_cmd = cmd;
1321 	} else {
1322 		zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
1323 
1324 		for (c = 0; c < vd->vdev_children; c++)
1325 			zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
1326 			    done, private, flags));
1327 	}
1328 
1329 	return (zio);
1330 }
1331 
1332 zio_t *
1333 zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1334     zio_done_func_t *done, void *private, zio_priority_t priority,
1335     enum zio_flag flags, enum trim_flag trim_flags)
1336 {
1337 	zio_t *zio;
1338 
1339 	ASSERT0(vd->vdev_children);
1340 	ASSERT0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
1341 	ASSERT0(P2PHASE(size, 1ULL << vd->vdev_ashift));
1342 	ASSERT3U(size, !=, 0);
1343 
1344 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, NULL, size, size, done,
1345 	    private, ZIO_TYPE_TRIM, priority, flags | ZIO_FLAG_PHYSICAL,
1346 	    vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_TRIM_PIPELINE);
1347 	zio->io_trim_flags = trim_flags;
1348 
1349 	return (zio);
1350 }
1351 
1352 zio_t *
1353 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1354     abd_t *data, int checksum, zio_done_func_t *done, void *private,
1355     zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1356 {
1357 	zio_t *zio;
1358 
1359 	ASSERT(vd->vdev_children == 0);
1360 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1361 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1362 	ASSERT3U(offset + size, <=, vd->vdev_psize);
1363 
1364 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1365 	    private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1366 	    offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
1367 
1368 	zio->io_prop.zp_checksum = checksum;
1369 
1370 	return (zio);
1371 }
1372 
1373 zio_t *
1374 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1375     abd_t *data, int checksum, zio_done_func_t *done, void *private,
1376     zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1377 {
1378 	zio_t *zio;
1379 
1380 	ASSERT(vd->vdev_children == 0);
1381 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1382 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1383 	ASSERT3U(offset + size, <=, vd->vdev_psize);
1384 
1385 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1386 	    private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1387 	    offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
1388 
1389 	zio->io_prop.zp_checksum = checksum;
1390 
1391 	if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
1392 		/*
1393 		 * zec checksums are necessarily destructive -- they modify
1394 		 * the end of the write buffer to hold the verifier/checksum.
1395 		 * Therefore, we must make a local copy in case the data is
1396 		 * being written to multiple places in parallel.
1397 		 */
1398 		abd_t *wbuf = abd_alloc_sametype(data, size);
1399 		abd_copy(wbuf, data, size);
1400 
1401 		zio_push_transform(zio, wbuf, size, size, NULL);
1402 	}
1403 
1404 	return (zio);
1405 }
1406 
1407 /*
1408  * Create a child I/O to do some work for us.
1409  */
1410 zio_t *
1411 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1412     abd_t *data, uint64_t size, int type, zio_priority_t priority,
1413     enum zio_flag flags, zio_done_func_t *done, void *private)
1414 {
1415 	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1416 	zio_t *zio;
1417 
1418 	/*
1419 	 * vdev child I/Os do not propagate their error to the parent.
1420 	 * Therefore, for correct operation the caller *must* check for
1421 	 * and handle the error in the child i/o's done callback.
1422 	 * The only exceptions are i/os that we don't care about
1423 	 * (OPTIONAL or REPAIR).
1424 	 */
1425 	ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) ||
1426 	    done != NULL);
1427 
1428 	if (type == ZIO_TYPE_READ && bp != NULL) {
1429 		/*
1430 		 * If we have the bp, then the child should perform the
1431 		 * checksum and the parent need not.  This pushes error
1432 		 * detection as close to the leaves as possible and
1433 		 * eliminates redundant checksums in the interior nodes.
1434 		 */
1435 		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1436 		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1437 	}
1438 
1439 	if (vd->vdev_ops->vdev_op_leaf) {
1440 		ASSERT0(vd->vdev_children);
1441 		offset += VDEV_LABEL_START_SIZE;
1442 	}
1443 
1444 	flags |= ZIO_VDEV_CHILD_FLAGS(pio);
1445 
1446 	/*
1447 	 * If we've decided to do a repair, the write is not speculative --
1448 	 * even if the original read was.
1449 	 */
1450 	if (flags & ZIO_FLAG_IO_REPAIR)
1451 		flags &= ~ZIO_FLAG_SPECULATIVE;
1452 
1453 	/*
1454 	 * If we're creating a child I/O that is not associated with a
1455 	 * top-level vdev, then the child zio is not an allocating I/O.
1456 	 * If this is a retried I/O then we ignore it since we will
1457 	 * have already processed the original allocating I/O.
1458 	 */
1459 	if (flags & ZIO_FLAG_IO_ALLOCATING &&
1460 	    (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) {
1461 		ASSERT(pio->io_metaslab_class != NULL);
1462 		ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled);
1463 		ASSERT(type == ZIO_TYPE_WRITE);
1464 		ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE);
1465 		ASSERT(!(flags & ZIO_FLAG_IO_REPAIR));
1466 		ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) ||
1467 		    pio->io_child_type == ZIO_CHILD_GANG);
1468 
1469 		flags &= ~ZIO_FLAG_IO_ALLOCATING;
1470 	}
1471 
1472 
1473 	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size,
1474 	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1475 	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1476 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
1477 
1478 	zio->io_physdone = pio->io_physdone;
1479 	if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
1480 		zio->io_logical->io_phys_children++;
1481 
1482 	return (zio);
1483 }
1484 
1485 zio_t *
1486 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size,
1487     zio_type_t type, zio_priority_t priority, enum zio_flag flags,
1488     zio_done_func_t *done, void *private)
1489 {
1490 	zio_t *zio;
1491 
1492 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1493 
1494 	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1495 	    data, size, size, done, private, type, priority,
1496 	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1497 	    vd, offset, NULL,
1498 	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1499 
1500 	return (zio);
1501 }
1502 
1503 void
1504 zio_flush(zio_t *zio, vdev_t *vd)
1505 {
1506 	zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
1507 	    NULL, NULL,
1508 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1509 }
1510 
1511 void
1512 zio_shrink(zio_t *zio, uint64_t size)
1513 {
1514 	ASSERT3P(zio->io_executor, ==, NULL);
1515 	ASSERT3U(zio->io_orig_size, ==, zio->io_size);
1516 	ASSERT3U(size, <=, zio->io_size);
1517 
1518 	/*
1519 	 * We don't shrink for raidz because of problems with the
1520 	 * reconstruction when reading back less than the block size.
1521 	 * Note, BP_IS_RAIDZ() assumes no compression.
1522 	 */
1523 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1524 	if (!BP_IS_RAIDZ(zio->io_bp)) {
1525 		/* we are not doing a raw write */
1526 		ASSERT3U(zio->io_size, ==, zio->io_lsize);
1527 		zio->io_orig_size = zio->io_size = zio->io_lsize = size;
1528 	}
1529 }
1530 
1531 /*
1532  * ==========================================================================
1533  * Prepare to read and write logical blocks
1534  * ==========================================================================
1535  */
1536 
1537 static zio_t *
1538 zio_read_bp_init(zio_t *zio)
1539 {
1540 	blkptr_t *bp = zio->io_bp;
1541 	uint64_t psize =
1542 	    BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1543 
1544 	ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1545 
1546 	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1547 	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
1548 	    !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1549 		zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1550 		    psize, psize, zio_decompress);
1551 	}
1552 
1553 	if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) ||
1554 	    BP_HAS_INDIRECT_MAC_CKSUM(bp)) &&
1555 	    zio->io_child_type == ZIO_CHILD_LOGICAL) {
1556 		zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1557 		    psize, psize, zio_decrypt);
1558 	}
1559 
1560 	if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1561 		int psize = BPE_GET_PSIZE(bp);
1562 		void *data = abd_borrow_buf(zio->io_abd, psize);
1563 
1564 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1565 		decode_embedded_bp_compressed(bp, data);
1566 		abd_return_buf_copy(zio->io_abd, data, psize);
1567 	} else {
1568 		ASSERT(!BP_IS_EMBEDDED(bp));
1569 		ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1570 	}
1571 
1572 	if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1573 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1574 
1575 	if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1576 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1577 
1578 	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1579 		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1580 
1581 	return (zio);
1582 }
1583 
1584 static zio_t *
1585 zio_write_bp_init(zio_t *zio)
1586 {
1587 	if (!IO_IS_ALLOCATING(zio))
1588 		return (zio);
1589 
1590 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1591 
1592 	if (zio->io_bp_override) {
1593 		blkptr_t *bp = zio->io_bp;
1594 		zio_prop_t *zp = &zio->io_prop;
1595 
1596 		ASSERT(bp->blk_birth != zio->io_txg);
1597 		ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1598 
1599 		*bp = *zio->io_bp_override;
1600 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1601 
1602 		if (BP_IS_EMBEDDED(bp))
1603 			return (zio);
1604 
1605 		/*
1606 		 * If we've been overridden and nopwrite is set then
1607 		 * set the flag accordingly to indicate that a nopwrite
1608 		 * has already occurred.
1609 		 */
1610 		if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1611 			ASSERT(!zp->zp_dedup);
1612 			ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum);
1613 			zio->io_flags |= ZIO_FLAG_NOPWRITE;
1614 			return (zio);
1615 		}
1616 
1617 		ASSERT(!zp->zp_nopwrite);
1618 
1619 		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1620 			return (zio);
1621 
1622 		ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1623 		    ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1624 
1625 		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum &&
1626 		    !zp->zp_encrypt) {
1627 			BP_SET_DEDUP(bp, 1);
1628 			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1629 			return (zio);
1630 		}
1631 
1632 		/*
1633 		 * We were unable to handle this as an override bp, treat
1634 		 * it as a regular write I/O.
1635 		 */
1636 		zio->io_bp_override = NULL;
1637 		*bp = zio->io_bp_orig;
1638 		zio->io_pipeline = zio->io_orig_pipeline;
1639 	}
1640 
1641 	return (zio);
1642 }
1643 
1644 static zio_t *
1645 zio_write_compress(zio_t *zio)
1646 {
1647 	spa_t *spa = zio->io_spa;
1648 	zio_prop_t *zp = &zio->io_prop;
1649 	enum zio_compress compress = zp->zp_compress;
1650 	blkptr_t *bp = zio->io_bp;
1651 	uint64_t lsize = zio->io_lsize;
1652 	uint64_t psize = zio->io_size;
1653 	int pass = 1;
1654 
1655 	/*
1656 	 * If our children haven't all reached the ready stage,
1657 	 * wait for them and then repeat this pipeline stage.
1658 	 */
1659 	if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
1660 	    ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) {
1661 		return (NULL);
1662 	}
1663 
1664 	if (!IO_IS_ALLOCATING(zio))
1665 		return (zio);
1666 
1667 	if (zio->io_children_ready != NULL) {
1668 		/*
1669 		 * Now that all our children are ready, run the callback
1670 		 * associated with this zio in case it wants to modify the
1671 		 * data to be written.
1672 		 */
1673 		ASSERT3U(zp->zp_level, >, 0);
1674 		zio->io_children_ready(zio);
1675 	}
1676 
1677 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1678 	ASSERT(zio->io_bp_override == NULL);
1679 
1680 	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1681 		/*
1682 		 * We're rewriting an existing block, which means we're
1683 		 * working on behalf of spa_sync().  For spa_sync() to
1684 		 * converge, it must eventually be the case that we don't
1685 		 * have to allocate new blocks.  But compression changes
1686 		 * the blocksize, which forces a reallocate, and makes
1687 		 * convergence take longer.  Therefore, after the first
1688 		 * few passes, stop compressing to ensure convergence.
1689 		 */
1690 		pass = spa_sync_pass(spa);
1691 
1692 		ASSERT(zio->io_txg == spa_syncing_txg(spa));
1693 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1694 		ASSERT(!BP_GET_DEDUP(bp));
1695 
1696 		if (pass >= zfs_sync_pass_dont_compress)
1697 			compress = ZIO_COMPRESS_OFF;
1698 
1699 		/* Make sure someone doesn't change their mind on overwrites */
1700 		ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1701 		    spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1702 	}
1703 
1704 	/* If it's a compressed write that is not raw, compress the buffer. */
1705 	if (compress != ZIO_COMPRESS_OFF &&
1706 	    !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1707 		void *cbuf = zio_buf_alloc(lsize);
1708 		psize = zio_compress_data(compress, zio->io_abd, cbuf, lsize,
1709 		    zp->zp_complevel);
1710 		if (psize == 0 || psize >= lsize) {
1711 			compress = ZIO_COMPRESS_OFF;
1712 			zio_buf_free(cbuf, lsize);
1713 		} else if (!zp->zp_dedup && !zp->zp_encrypt &&
1714 		    psize <= BPE_PAYLOAD_SIZE &&
1715 		    zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1716 		    spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1717 			encode_embedded_bp_compressed(bp,
1718 			    cbuf, compress, lsize, psize);
1719 			BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1720 			BP_SET_TYPE(bp, zio->io_prop.zp_type);
1721 			BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1722 			zio_buf_free(cbuf, lsize);
1723 			bp->blk_birth = zio->io_txg;
1724 			zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1725 			ASSERT(spa_feature_is_active(spa,
1726 			    SPA_FEATURE_EMBEDDED_DATA));
1727 			return (zio);
1728 		} else {
1729 			/*
1730 			 * Round compressed size up to the minimum allocation
1731 			 * size of the smallest-ashift device, and zero the
1732 			 * tail. This ensures that the compressed size of the
1733 			 * BP (and thus compressratio property) are correct,
1734 			 * in that we charge for the padding used to fill out
1735 			 * the last sector.
1736 			 */
1737 			ASSERT3U(spa->spa_min_alloc, >=, SPA_MINBLOCKSHIFT);
1738 			size_t rounded = (size_t)roundup(psize,
1739 			    spa->spa_min_alloc);
1740 			if (rounded >= lsize) {
1741 				compress = ZIO_COMPRESS_OFF;
1742 				zio_buf_free(cbuf, lsize);
1743 				psize = lsize;
1744 			} else {
1745 				abd_t *cdata = abd_get_from_buf(cbuf, lsize);
1746 				abd_take_ownership_of_buf(cdata, B_TRUE);
1747 				abd_zero_off(cdata, psize, rounded - psize);
1748 				psize = rounded;
1749 				zio_push_transform(zio, cdata,
1750 				    psize, lsize, NULL);
1751 			}
1752 		}
1753 
1754 		/*
1755 		 * We were unable to handle this as an override bp, treat
1756 		 * it as a regular write I/O.
1757 		 */
1758 		zio->io_bp_override = NULL;
1759 		*bp = zio->io_bp_orig;
1760 		zio->io_pipeline = zio->io_orig_pipeline;
1761 
1762 	} else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 &&
1763 	    zp->zp_type == DMU_OT_DNODE) {
1764 		/*
1765 		 * The DMU actually relies on the zio layer's compression
1766 		 * to free metadnode blocks that have had all contained
1767 		 * dnodes freed. As a result, even when doing a raw
1768 		 * receive, we must check whether the block can be compressed
1769 		 * to a hole.
1770 		 */
1771 		psize = zio_compress_data(ZIO_COMPRESS_EMPTY,
1772 		    zio->io_abd, NULL, lsize, zp->zp_complevel);
1773 		if (psize == 0 || psize >= lsize)
1774 			compress = ZIO_COMPRESS_OFF;
1775 	} else {
1776 		ASSERT3U(psize, !=, 0);
1777 	}
1778 
1779 	/*
1780 	 * The final pass of spa_sync() must be all rewrites, but the first
1781 	 * few passes offer a trade-off: allocating blocks defers convergence,
1782 	 * but newly allocated blocks are sequential, so they can be written
1783 	 * to disk faster.  Therefore, we allow the first few passes of
1784 	 * spa_sync() to allocate new blocks, but force rewrites after that.
1785 	 * There should only be a handful of blocks after pass 1 in any case.
1786 	 */
1787 	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1788 	    BP_GET_PSIZE(bp) == psize &&
1789 	    pass >= zfs_sync_pass_rewrite) {
1790 		VERIFY3U(psize, !=, 0);
1791 		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1792 
1793 		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1794 		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1795 	} else {
1796 		BP_ZERO(bp);
1797 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
1798 	}
1799 
1800 	if (psize == 0) {
1801 		if (zio->io_bp_orig.blk_birth != 0 &&
1802 		    spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1803 			BP_SET_LSIZE(bp, lsize);
1804 			BP_SET_TYPE(bp, zp->zp_type);
1805 			BP_SET_LEVEL(bp, zp->zp_level);
1806 			BP_SET_BIRTH(bp, zio->io_txg, 0);
1807 		}
1808 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1809 	} else {
1810 		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1811 		BP_SET_LSIZE(bp, lsize);
1812 		BP_SET_TYPE(bp, zp->zp_type);
1813 		BP_SET_LEVEL(bp, zp->zp_level);
1814 		BP_SET_PSIZE(bp, psize);
1815 		BP_SET_COMPRESS(bp, compress);
1816 		BP_SET_CHECKSUM(bp, zp->zp_checksum);
1817 		BP_SET_DEDUP(bp, zp->zp_dedup);
1818 		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1819 		if (zp->zp_dedup) {
1820 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1821 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1822 			ASSERT(!zp->zp_encrypt ||
1823 			    DMU_OT_IS_ENCRYPTED(zp->zp_type));
1824 			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1825 		}
1826 		if (zp->zp_nopwrite) {
1827 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1828 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1829 			zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1830 		}
1831 	}
1832 	return (zio);
1833 }
1834 
1835 static zio_t *
1836 zio_free_bp_init(zio_t *zio)
1837 {
1838 	blkptr_t *bp = zio->io_bp;
1839 
1840 	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1841 		if (BP_GET_DEDUP(bp))
1842 			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1843 	}
1844 
1845 	ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1846 
1847 	return (zio);
1848 }
1849 
1850 /*
1851  * ==========================================================================
1852  * Execute the I/O pipeline
1853  * ==========================================================================
1854  */
1855 
1856 static void
1857 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1858 {
1859 	spa_t *spa = zio->io_spa;
1860 	zio_type_t t = zio->io_type;
1861 	int flags = (cutinline ? TQ_FRONT : 0);
1862 
1863 	/*
1864 	 * If we're a config writer or a probe, the normal issue and
1865 	 * interrupt threads may all be blocked waiting for the config lock.
1866 	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1867 	 */
1868 	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1869 		t = ZIO_TYPE_NULL;
1870 
1871 	/*
1872 	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1873 	 */
1874 	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1875 		t = ZIO_TYPE_NULL;
1876 
1877 	/*
1878 	 * If this is a high priority I/O, then use the high priority taskq if
1879 	 * available.
1880 	 */
1881 	if ((zio->io_priority == ZIO_PRIORITY_NOW ||
1882 	    zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) &&
1883 	    spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1884 		q++;
1885 
1886 	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1887 
1888 	/*
1889 	 * NB: We are assuming that the zio can only be dispatched
1890 	 * to a single taskq at a time.  It would be a grievous error
1891 	 * to dispatch the zio to another taskq at the same time.
1892 	 */
1893 	ASSERT(taskq_empty_ent(&zio->io_tqent));
1894 	spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1895 	    flags, &zio->io_tqent);
1896 }
1897 
1898 static boolean_t
1899 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1900 {
1901 	spa_t *spa = zio->io_spa;
1902 
1903 	taskq_t *tq = taskq_of_curthread();
1904 
1905 	for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1906 		spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1907 		uint_t i;
1908 		for (i = 0; i < tqs->stqs_count; i++) {
1909 			if (tqs->stqs_taskq[i] == tq)
1910 				return (B_TRUE);
1911 		}
1912 	}
1913 
1914 	return (B_FALSE);
1915 }
1916 
1917 static zio_t *
1918 zio_issue_async(zio_t *zio)
1919 {
1920 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1921 
1922 	return (NULL);
1923 }
1924 
1925 void
1926 zio_interrupt(zio_t *zio)
1927 {
1928 	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1929 }
1930 
1931 void
1932 zio_delay_interrupt(zio_t *zio)
1933 {
1934 	/*
1935 	 * The timeout_generic() function isn't defined in userspace, so
1936 	 * rather than trying to implement the function, the zio delay
1937 	 * functionality has been disabled for userspace builds.
1938 	 */
1939 
1940 #ifdef _KERNEL
1941 	/*
1942 	 * If io_target_timestamp is zero, then no delay has been registered
1943 	 * for this IO, thus jump to the end of this function and "skip" the
1944 	 * delay; issuing it directly to the zio layer.
1945 	 */
1946 	if (zio->io_target_timestamp != 0) {
1947 		hrtime_t now = gethrtime();
1948 
1949 		if (now >= zio->io_target_timestamp) {
1950 			/*
1951 			 * This IO has already taken longer than the target
1952 			 * delay to complete, so we don't want to delay it
1953 			 * any longer; we "miss" the delay and issue it
1954 			 * directly to the zio layer. This is likely due to
1955 			 * the target latency being set to a value less than
1956 			 * the underlying hardware can satisfy (e.g. delay
1957 			 * set to 1ms, but the disks take 10ms to complete an
1958 			 * IO request).
1959 			 */
1960 
1961 			DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
1962 			    hrtime_t, now);
1963 
1964 			zio_interrupt(zio);
1965 		} else {
1966 			taskqid_t tid;
1967 			hrtime_t diff = zio->io_target_timestamp - now;
1968 			clock_t expire_at_tick = ddi_get_lbolt() +
1969 			    NSEC_TO_TICK(diff);
1970 
1971 			DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
1972 			    hrtime_t, now, hrtime_t, diff);
1973 
1974 			if (NSEC_TO_TICK(diff) == 0) {
1975 				/* Our delay is less than a jiffy - just spin */
1976 				zfs_sleep_until(zio->io_target_timestamp);
1977 				zio_interrupt(zio);
1978 			} else {
1979 				/*
1980 				 * Use taskq_dispatch_delay() in the place of
1981 				 * OpenZFS's timeout_generic().
1982 				 */
1983 				tid = taskq_dispatch_delay(system_taskq,
1984 				    (task_func_t *)zio_interrupt,
1985 				    zio, TQ_NOSLEEP, expire_at_tick);
1986 				if (tid == TASKQID_INVALID) {
1987 					/*
1988 					 * Couldn't allocate a task.  Just
1989 					 * finish the zio without a delay.
1990 					 */
1991 					zio_interrupt(zio);
1992 				}
1993 			}
1994 		}
1995 		return;
1996 	}
1997 #endif
1998 	DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
1999 	zio_interrupt(zio);
2000 }
2001 
2002 static void
2003 zio_deadman_impl(zio_t *pio, int ziodepth)
2004 {
2005 	zio_t *cio, *cio_next;
2006 	zio_link_t *zl = NULL;
2007 	vdev_t *vd = pio->io_vd;
2008 
2009 	if (zio_deadman_log_all || (vd != NULL && vd->vdev_ops->vdev_op_leaf)) {
2010 		vdev_queue_t *vq = vd ? &vd->vdev_queue : NULL;
2011 		zbookmark_phys_t *zb = &pio->io_bookmark;
2012 		uint64_t delta = gethrtime() - pio->io_timestamp;
2013 		uint64_t failmode = spa_get_deadman_failmode(pio->io_spa);
2014 
2015 		zfs_dbgmsg("slow zio[%d]: zio=%px timestamp=%llu "
2016 		    "delta=%llu queued=%llu io=%llu "
2017 		    "path=%s "
2018 		    "last=%llu type=%d "
2019 		    "priority=%d flags=0x%x stage=0x%x "
2020 		    "pipeline=0x%x pipeline-trace=0x%x "
2021 		    "objset=%llu object=%llu "
2022 		    "level=%llu blkid=%llu "
2023 		    "offset=%llu size=%llu "
2024 		    "error=%d",
2025 		    ziodepth, pio, pio->io_timestamp,
2026 		    (u_longlong_t)delta, pio->io_delta, pio->io_delay,
2027 		    vd ? vd->vdev_path : "NULL",
2028 		    vq ? vq->vq_io_complete_ts : 0, pio->io_type,
2029 		    pio->io_priority, pio->io_flags, pio->io_stage,
2030 		    pio->io_pipeline, pio->io_pipeline_trace,
2031 		    (u_longlong_t)zb->zb_objset, (u_longlong_t)zb->zb_object,
2032 		    (u_longlong_t)zb->zb_level, (u_longlong_t)zb->zb_blkid,
2033 		    (u_longlong_t)pio->io_offset, (u_longlong_t)pio->io_size,
2034 		    pio->io_error);
2035 		(void) zfs_ereport_post(FM_EREPORT_ZFS_DEADMAN,
2036 		    pio->io_spa, vd, zb, pio, 0);
2037 
2038 		if (failmode == ZIO_FAILURE_MODE_CONTINUE &&
2039 		    taskq_empty_ent(&pio->io_tqent)) {
2040 			zio_interrupt(pio);
2041 		}
2042 	}
2043 
2044 	mutex_enter(&pio->io_lock);
2045 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2046 		cio_next = zio_walk_children(pio, &zl);
2047 		zio_deadman_impl(cio, ziodepth + 1);
2048 	}
2049 	mutex_exit(&pio->io_lock);
2050 }
2051 
2052 /*
2053  * Log the critical information describing this zio and all of its children
2054  * using the zfs_dbgmsg() interface then post deadman event for the ZED.
2055  */
2056 void
2057 zio_deadman(zio_t *pio, char *tag)
2058 {
2059 	spa_t *spa = pio->io_spa;
2060 	char *name = spa_name(spa);
2061 
2062 	if (!zfs_deadman_enabled || spa_suspended(spa))
2063 		return;
2064 
2065 	zio_deadman_impl(pio, 0);
2066 
2067 	switch (spa_get_deadman_failmode(spa)) {
2068 	case ZIO_FAILURE_MODE_WAIT:
2069 		zfs_dbgmsg("%s waiting for hung I/O to pool '%s'", tag, name);
2070 		break;
2071 
2072 	case ZIO_FAILURE_MODE_CONTINUE:
2073 		zfs_dbgmsg("%s restarting hung I/O for pool '%s'", tag, name);
2074 		break;
2075 
2076 	case ZIO_FAILURE_MODE_PANIC:
2077 		fm_panic("%s determined I/O to pool '%s' is hung.", tag, name);
2078 		break;
2079 	}
2080 }
2081 
2082 /*
2083  * Execute the I/O pipeline until one of the following occurs:
2084  * (1) the I/O completes; (2) the pipeline stalls waiting for
2085  * dependent child I/Os; (3) the I/O issues, so we're waiting
2086  * for an I/O completion interrupt; (4) the I/O is delegated by
2087  * vdev-level caching or aggregation; (5) the I/O is deferred
2088  * due to vdev-level queueing; (6) the I/O is handed off to
2089  * another thread.  In all cases, the pipeline stops whenever
2090  * there's no CPU work; it never burns a thread in cv_wait_io().
2091  *
2092  * There's no locking on io_stage because there's no legitimate way
2093  * for multiple threads to be attempting to process the same I/O.
2094  */
2095 static zio_pipe_stage_t *zio_pipeline[];
2096 
2097 /*
2098  * zio_execute() is a wrapper around the static function
2099  * __zio_execute() so that we can force  __zio_execute() to be
2100  * inlined.  This reduces stack overhead which is important
2101  * because __zio_execute() is called recursively in several zio
2102  * code paths.  zio_execute() itself cannot be inlined because
2103  * it is externally visible.
2104  */
2105 void
2106 zio_execute(zio_t *zio)
2107 {
2108 	fstrans_cookie_t cookie;
2109 
2110 	cookie = spl_fstrans_mark();
2111 	__zio_execute(zio);
2112 	spl_fstrans_unmark(cookie);
2113 }
2114 
2115 /*
2116  * Used to determine if in the current context the stack is sized large
2117  * enough to allow zio_execute() to be called recursively.  A minimum
2118  * stack size of 16K is required to avoid needing to re-dispatch the zio.
2119  */
2120 static boolean_t
2121 zio_execute_stack_check(zio_t *zio)
2122 {
2123 #if !defined(HAVE_LARGE_STACKS)
2124 	dsl_pool_t *dp = spa_get_dsl(zio->io_spa);
2125 
2126 	/* Executing in txg_sync_thread() context. */
2127 	if (dp && curthread == dp->dp_tx.tx_sync_thread)
2128 		return (B_TRUE);
2129 
2130 	/* Pool initialization outside of zio_taskq context. */
2131 	if (dp && spa_is_initializing(dp->dp_spa) &&
2132 	    !zio_taskq_member(zio, ZIO_TASKQ_ISSUE) &&
2133 	    !zio_taskq_member(zio, ZIO_TASKQ_ISSUE_HIGH))
2134 		return (B_TRUE);
2135 #endif /* HAVE_LARGE_STACKS */
2136 
2137 	return (B_FALSE);
2138 }
2139 
2140 __attribute__((always_inline))
2141 static inline void
2142 __zio_execute(zio_t *zio)
2143 {
2144 	ASSERT3U(zio->io_queued_timestamp, >, 0);
2145 
2146 	while (zio->io_stage < ZIO_STAGE_DONE) {
2147 		enum zio_stage pipeline = zio->io_pipeline;
2148 		enum zio_stage stage = zio->io_stage;
2149 
2150 		zio->io_executor = curthread;
2151 
2152 		ASSERT(!MUTEX_HELD(&zio->io_lock));
2153 		ASSERT(ISP2(stage));
2154 		ASSERT(zio->io_stall == NULL);
2155 
2156 		do {
2157 			stage <<= 1;
2158 		} while ((stage & pipeline) == 0);
2159 
2160 		ASSERT(stage <= ZIO_STAGE_DONE);
2161 
2162 		/*
2163 		 * If we are in interrupt context and this pipeline stage
2164 		 * will grab a config lock that is held across I/O,
2165 		 * or may wait for an I/O that needs an interrupt thread
2166 		 * to complete, issue async to avoid deadlock.
2167 		 *
2168 		 * For VDEV_IO_START, we cut in line so that the io will
2169 		 * be sent to disk promptly.
2170 		 */
2171 		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
2172 		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
2173 			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2174 			    zio_requeue_io_start_cut_in_line : B_FALSE;
2175 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2176 			return;
2177 		}
2178 
2179 		/*
2180 		 * If the current context doesn't have large enough stacks
2181 		 * the zio must be issued asynchronously to prevent overflow.
2182 		 */
2183 		if (zio_execute_stack_check(zio)) {
2184 			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2185 			    zio_requeue_io_start_cut_in_line : B_FALSE;
2186 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2187 			return;
2188 		}
2189 
2190 		zio->io_stage = stage;
2191 		zio->io_pipeline_trace |= zio->io_stage;
2192 
2193 		/*
2194 		 * The zio pipeline stage returns the next zio to execute
2195 		 * (typically the same as this one), or NULL if we should
2196 		 * stop.
2197 		 */
2198 		zio = zio_pipeline[highbit64(stage) - 1](zio);
2199 
2200 		if (zio == NULL)
2201 			return;
2202 	}
2203 }
2204 
2205 
2206 /*
2207  * ==========================================================================
2208  * Initiate I/O, either sync or async
2209  * ==========================================================================
2210  */
2211 int
2212 zio_wait(zio_t *zio)
2213 {
2214 	/*
2215 	 * Some routines, like zio_free_sync(), may return a NULL zio
2216 	 * to avoid the performance overhead of creating and then destroying
2217 	 * an unneeded zio.  For the callers' simplicity, we accept a NULL
2218 	 * zio and ignore it.
2219 	 */
2220 	if (zio == NULL)
2221 		return (0);
2222 
2223 	long timeout = MSEC_TO_TICK(zfs_deadman_ziotime_ms);
2224 	int error;
2225 
2226 	ASSERT3S(zio->io_stage, ==, ZIO_STAGE_OPEN);
2227 	ASSERT3P(zio->io_executor, ==, NULL);
2228 
2229 	zio->io_waiter = curthread;
2230 	ASSERT0(zio->io_queued_timestamp);
2231 	zio->io_queued_timestamp = gethrtime();
2232 
2233 	__zio_execute(zio);
2234 
2235 	mutex_enter(&zio->io_lock);
2236 	while (zio->io_executor != NULL) {
2237 		error = cv_timedwait_io(&zio->io_cv, &zio->io_lock,
2238 		    ddi_get_lbolt() + timeout);
2239 
2240 		if (zfs_deadman_enabled && error == -1 &&
2241 		    gethrtime() - zio->io_queued_timestamp >
2242 		    spa_deadman_ziotime(zio->io_spa)) {
2243 			mutex_exit(&zio->io_lock);
2244 			timeout = MSEC_TO_TICK(zfs_deadman_checktime_ms);
2245 			zio_deadman(zio, FTAG);
2246 			mutex_enter(&zio->io_lock);
2247 		}
2248 	}
2249 	mutex_exit(&zio->io_lock);
2250 
2251 	error = zio->io_error;
2252 	zio_destroy(zio);
2253 
2254 	return (error);
2255 }
2256 
2257 void
2258 zio_nowait(zio_t *zio)
2259 {
2260 	/*
2261 	 * See comment in zio_wait().
2262 	 */
2263 	if (zio == NULL)
2264 		return;
2265 
2266 	ASSERT3P(zio->io_executor, ==, NULL);
2267 
2268 	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
2269 	    zio_unique_parent(zio) == NULL) {
2270 		zio_t *pio;
2271 
2272 		/*
2273 		 * This is a logical async I/O with no parent to wait for it.
2274 		 * We add it to the spa_async_root_zio "Godfather" I/O which
2275 		 * will ensure they complete prior to unloading the pool.
2276 		 */
2277 		spa_t *spa = zio->io_spa;
2278 		pio = spa->spa_async_zio_root[CPU_SEQID_UNSTABLE];
2279 
2280 		zio_add_child(pio, zio);
2281 	}
2282 
2283 	ASSERT0(zio->io_queued_timestamp);
2284 	zio->io_queued_timestamp = gethrtime();
2285 	__zio_execute(zio);
2286 }
2287 
2288 /*
2289  * ==========================================================================
2290  * Reexecute, cancel, or suspend/resume failed I/O
2291  * ==========================================================================
2292  */
2293 
2294 static void
2295 zio_reexecute(zio_t *pio)
2296 {
2297 	zio_t *cio, *cio_next;
2298 
2299 	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
2300 	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
2301 	ASSERT(pio->io_gang_leader == NULL);
2302 	ASSERT(pio->io_gang_tree == NULL);
2303 
2304 	pio->io_flags = pio->io_orig_flags;
2305 	pio->io_stage = pio->io_orig_stage;
2306 	pio->io_pipeline = pio->io_orig_pipeline;
2307 	pio->io_reexecute = 0;
2308 	pio->io_flags |= ZIO_FLAG_REEXECUTED;
2309 	pio->io_pipeline_trace = 0;
2310 	pio->io_error = 0;
2311 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2312 		pio->io_state[w] = 0;
2313 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2314 		pio->io_child_error[c] = 0;
2315 
2316 	if (IO_IS_ALLOCATING(pio))
2317 		BP_ZERO(pio->io_bp);
2318 
2319 	/*
2320 	 * As we reexecute pio's children, new children could be created.
2321 	 * New children go to the head of pio's io_child_list, however,
2322 	 * so we will (correctly) not reexecute them.  The key is that
2323 	 * the remainder of pio's io_child_list, from 'cio_next' onward,
2324 	 * cannot be affected by any side effects of reexecuting 'cio'.
2325 	 */
2326 	zio_link_t *zl = NULL;
2327 	mutex_enter(&pio->io_lock);
2328 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2329 		cio_next = zio_walk_children(pio, &zl);
2330 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2331 			pio->io_children[cio->io_child_type][w]++;
2332 		mutex_exit(&pio->io_lock);
2333 		zio_reexecute(cio);
2334 		mutex_enter(&pio->io_lock);
2335 	}
2336 	mutex_exit(&pio->io_lock);
2337 
2338 	/*
2339 	 * Now that all children have been reexecuted, execute the parent.
2340 	 * We don't reexecute "The Godfather" I/O here as it's the
2341 	 * responsibility of the caller to wait on it.
2342 	 */
2343 	if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) {
2344 		pio->io_queued_timestamp = gethrtime();
2345 		__zio_execute(pio);
2346 	}
2347 }
2348 
2349 void
2350 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason)
2351 {
2352 	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
2353 		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
2354 		    "failure and the failure mode property for this pool "
2355 		    "is set to panic.", spa_name(spa));
2356 
2357 	cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable I/O "
2358 	    "failure and has been suspended.\n", spa_name(spa));
2359 
2360 	(void) zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL,
2361 	    NULL, NULL, 0);
2362 
2363 	mutex_enter(&spa->spa_suspend_lock);
2364 
2365 	if (spa->spa_suspend_zio_root == NULL)
2366 		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
2367 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2368 		    ZIO_FLAG_GODFATHER);
2369 
2370 	spa->spa_suspended = reason;
2371 
2372 	if (zio != NULL) {
2373 		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
2374 		ASSERT(zio != spa->spa_suspend_zio_root);
2375 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2376 		ASSERT(zio_unique_parent(zio) == NULL);
2377 		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
2378 		zio_add_child(spa->spa_suspend_zio_root, zio);
2379 	}
2380 
2381 	mutex_exit(&spa->spa_suspend_lock);
2382 }
2383 
2384 int
2385 zio_resume(spa_t *spa)
2386 {
2387 	zio_t *pio;
2388 
2389 	/*
2390 	 * Reexecute all previously suspended i/o.
2391 	 */
2392 	mutex_enter(&spa->spa_suspend_lock);
2393 	spa->spa_suspended = ZIO_SUSPEND_NONE;
2394 	cv_broadcast(&spa->spa_suspend_cv);
2395 	pio = spa->spa_suspend_zio_root;
2396 	spa->spa_suspend_zio_root = NULL;
2397 	mutex_exit(&spa->spa_suspend_lock);
2398 
2399 	if (pio == NULL)
2400 		return (0);
2401 
2402 	zio_reexecute(pio);
2403 	return (zio_wait(pio));
2404 }
2405 
2406 void
2407 zio_resume_wait(spa_t *spa)
2408 {
2409 	mutex_enter(&spa->spa_suspend_lock);
2410 	while (spa_suspended(spa))
2411 		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
2412 	mutex_exit(&spa->spa_suspend_lock);
2413 }
2414 
2415 /*
2416  * ==========================================================================
2417  * Gang blocks.
2418  *
2419  * A gang block is a collection of small blocks that looks to the DMU
2420  * like one large block.  When zio_dva_allocate() cannot find a block
2421  * of the requested size, due to either severe fragmentation or the pool
2422  * being nearly full, it calls zio_write_gang_block() to construct the
2423  * block from smaller fragments.
2424  *
2425  * A gang block consists of a gang header (zio_gbh_phys_t) and up to
2426  * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
2427  * an indirect block: it's an array of block pointers.  It consumes
2428  * only one sector and hence is allocatable regardless of fragmentation.
2429  * The gang header's bps point to its gang members, which hold the data.
2430  *
2431  * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
2432  * as the verifier to ensure uniqueness of the SHA256 checksum.
2433  * Critically, the gang block bp's blk_cksum is the checksum of the data,
2434  * not the gang header.  This ensures that data block signatures (needed for
2435  * deduplication) are independent of how the block is physically stored.
2436  *
2437  * Gang blocks can be nested: a gang member may itself be a gang block.
2438  * Thus every gang block is a tree in which root and all interior nodes are
2439  * gang headers, and the leaves are normal blocks that contain user data.
2440  * The root of the gang tree is called the gang leader.
2441  *
2442  * To perform any operation (read, rewrite, free, claim) on a gang block,
2443  * zio_gang_assemble() first assembles the gang tree (minus data leaves)
2444  * in the io_gang_tree field of the original logical i/o by recursively
2445  * reading the gang leader and all gang headers below it.  This yields
2446  * an in-core tree containing the contents of every gang header and the
2447  * bps for every constituent of the gang block.
2448  *
2449  * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
2450  * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
2451  * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
2452  * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
2453  * zio_read_gang() is a wrapper around zio_read() that omits reading gang
2454  * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
2455  * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
2456  * of the gang header plus zio_checksum_compute() of the data to update the
2457  * gang header's blk_cksum as described above.
2458  *
2459  * The two-phase assemble/issue model solves the problem of partial failure --
2460  * what if you'd freed part of a gang block but then couldn't read the
2461  * gang header for another part?  Assembling the entire gang tree first
2462  * ensures that all the necessary gang header I/O has succeeded before
2463  * starting the actual work of free, claim, or write.  Once the gang tree
2464  * is assembled, free and claim are in-memory operations that cannot fail.
2465  *
2466  * In the event that a gang write fails, zio_dva_unallocate() walks the
2467  * gang tree to immediately free (i.e. insert back into the space map)
2468  * everything we've allocated.  This ensures that we don't get ENOSPC
2469  * errors during repeated suspend/resume cycles due to a flaky device.
2470  *
2471  * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
2472  * the gang tree, we won't modify the block, so we can safely defer the free
2473  * (knowing that the block is still intact).  If we *can* assemble the gang
2474  * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
2475  * each constituent bp and we can allocate a new block on the next sync pass.
2476  *
2477  * In all cases, the gang tree allows complete recovery from partial failure.
2478  * ==========================================================================
2479  */
2480 
2481 static void
2482 zio_gang_issue_func_done(zio_t *zio)
2483 {
2484 	abd_free(zio->io_abd);
2485 }
2486 
2487 static zio_t *
2488 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2489     uint64_t offset)
2490 {
2491 	if (gn != NULL)
2492 		return (pio);
2493 
2494 	return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset),
2495 	    BP_GET_PSIZE(bp), zio_gang_issue_func_done,
2496 	    NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2497 	    &pio->io_bookmark));
2498 }
2499 
2500 static zio_t *
2501 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2502     uint64_t offset)
2503 {
2504 	zio_t *zio;
2505 
2506 	if (gn != NULL) {
2507 		abd_t *gbh_abd =
2508 		    abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2509 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2510 		    gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL,
2511 		    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2512 		    &pio->io_bookmark);
2513 		/*
2514 		 * As we rewrite each gang header, the pipeline will compute
2515 		 * a new gang block header checksum for it; but no one will
2516 		 * compute a new data checksum, so we do that here.  The one
2517 		 * exception is the gang leader: the pipeline already computed
2518 		 * its data checksum because that stage precedes gang assembly.
2519 		 * (Presently, nothing actually uses interior data checksums;
2520 		 * this is just good hygiene.)
2521 		 */
2522 		if (gn != pio->io_gang_leader->io_gang_tree) {
2523 			abd_t *buf = abd_get_offset(data, offset);
2524 
2525 			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
2526 			    buf, BP_GET_PSIZE(bp));
2527 
2528 			abd_free(buf);
2529 		}
2530 		/*
2531 		 * If we are here to damage data for testing purposes,
2532 		 * leave the GBH alone so that we can detect the damage.
2533 		 */
2534 		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
2535 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2536 	} else {
2537 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2538 		    abd_get_offset(data, offset), BP_GET_PSIZE(bp),
2539 		    zio_gang_issue_func_done, NULL, pio->io_priority,
2540 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2541 	}
2542 
2543 	return (zio);
2544 }
2545 
2546 /* ARGSUSED */
2547 static zio_t *
2548 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2549     uint64_t offset)
2550 {
2551 	zio_t *zio = zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
2552 	    ZIO_GANG_CHILD_FLAGS(pio));
2553 	if (zio == NULL) {
2554 		zio = zio_null(pio, pio->io_spa,
2555 		    NULL, NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio));
2556 	}
2557 	return (zio);
2558 }
2559 
2560 /* ARGSUSED */
2561 static zio_t *
2562 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2563     uint64_t offset)
2564 {
2565 	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
2566 	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
2567 }
2568 
2569 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
2570 	NULL,
2571 	zio_read_gang,
2572 	zio_rewrite_gang,
2573 	zio_free_gang,
2574 	zio_claim_gang,
2575 	NULL
2576 };
2577 
2578 static void zio_gang_tree_assemble_done(zio_t *zio);
2579 
2580 static zio_gang_node_t *
2581 zio_gang_node_alloc(zio_gang_node_t **gnpp)
2582 {
2583 	zio_gang_node_t *gn;
2584 
2585 	ASSERT(*gnpp == NULL);
2586 
2587 	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
2588 	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
2589 	*gnpp = gn;
2590 
2591 	return (gn);
2592 }
2593 
2594 static void
2595 zio_gang_node_free(zio_gang_node_t **gnpp)
2596 {
2597 	zio_gang_node_t *gn = *gnpp;
2598 
2599 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2600 		ASSERT(gn->gn_child[g] == NULL);
2601 
2602 	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2603 	kmem_free(gn, sizeof (*gn));
2604 	*gnpp = NULL;
2605 }
2606 
2607 static void
2608 zio_gang_tree_free(zio_gang_node_t **gnpp)
2609 {
2610 	zio_gang_node_t *gn = *gnpp;
2611 
2612 	if (gn == NULL)
2613 		return;
2614 
2615 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2616 		zio_gang_tree_free(&gn->gn_child[g]);
2617 
2618 	zio_gang_node_free(gnpp);
2619 }
2620 
2621 static void
2622 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
2623 {
2624 	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
2625 	abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2626 
2627 	ASSERT(gio->io_gang_leader == gio);
2628 	ASSERT(BP_IS_GANG(bp));
2629 
2630 	zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2631 	    zio_gang_tree_assemble_done, gn, gio->io_priority,
2632 	    ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
2633 }
2634 
2635 static void
2636 zio_gang_tree_assemble_done(zio_t *zio)
2637 {
2638 	zio_t *gio = zio->io_gang_leader;
2639 	zio_gang_node_t *gn = zio->io_private;
2640 	blkptr_t *bp = zio->io_bp;
2641 
2642 	ASSERT(gio == zio_unique_parent(zio));
2643 	ASSERT(zio->io_child_count == 0);
2644 
2645 	if (zio->io_error)
2646 		return;
2647 
2648 	/* this ABD was created from a linear buf in zio_gang_tree_assemble */
2649 	if (BP_SHOULD_BYTESWAP(bp))
2650 		byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size);
2651 
2652 	ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh);
2653 	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
2654 	ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2655 
2656 	abd_free(zio->io_abd);
2657 
2658 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2659 		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2660 		if (!BP_IS_GANG(gbp))
2661 			continue;
2662 		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
2663 	}
2664 }
2665 
2666 static void
2667 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data,
2668     uint64_t offset)
2669 {
2670 	zio_t *gio = pio->io_gang_leader;
2671 	zio_t *zio;
2672 
2673 	ASSERT(BP_IS_GANG(bp) == !!gn);
2674 	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
2675 	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
2676 
2677 	/*
2678 	 * If you're a gang header, your data is in gn->gn_gbh.
2679 	 * If you're a gang member, your data is in 'data' and gn == NULL.
2680 	 */
2681 	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset);
2682 
2683 	if (gn != NULL) {
2684 		ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2685 
2686 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2687 			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2688 			if (BP_IS_HOLE(gbp))
2689 				continue;
2690 			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data,
2691 			    offset);
2692 			offset += BP_GET_PSIZE(gbp);
2693 		}
2694 	}
2695 
2696 	if (gn == gio->io_gang_tree)
2697 		ASSERT3U(gio->io_size, ==, offset);
2698 
2699 	if (zio != pio)
2700 		zio_nowait(zio);
2701 }
2702 
2703 static zio_t *
2704 zio_gang_assemble(zio_t *zio)
2705 {
2706 	blkptr_t *bp = zio->io_bp;
2707 
2708 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
2709 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2710 
2711 	zio->io_gang_leader = zio;
2712 
2713 	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
2714 
2715 	return (zio);
2716 }
2717 
2718 static zio_t *
2719 zio_gang_issue(zio_t *zio)
2720 {
2721 	blkptr_t *bp = zio->io_bp;
2722 
2723 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) {
2724 		return (NULL);
2725 	}
2726 
2727 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
2728 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2729 
2730 	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
2731 		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd,
2732 		    0);
2733 	else
2734 		zio_gang_tree_free(&zio->io_gang_tree);
2735 
2736 	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2737 
2738 	return (zio);
2739 }
2740 
2741 static void
2742 zio_write_gang_member_ready(zio_t *zio)
2743 {
2744 	zio_t *pio = zio_unique_parent(zio);
2745 	dva_t *cdva = zio->io_bp->blk_dva;
2746 	dva_t *pdva = pio->io_bp->blk_dva;
2747 	uint64_t asize;
2748 	zio_t *gio __maybe_unused = zio->io_gang_leader;
2749 
2750 	if (BP_IS_HOLE(zio->io_bp))
2751 		return;
2752 
2753 	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
2754 
2755 	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
2756 	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
2757 	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
2758 	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
2759 	ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
2760 
2761 	mutex_enter(&pio->io_lock);
2762 	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
2763 		ASSERT(DVA_GET_GANG(&pdva[d]));
2764 		asize = DVA_GET_ASIZE(&pdva[d]);
2765 		asize += DVA_GET_ASIZE(&cdva[d]);
2766 		DVA_SET_ASIZE(&pdva[d], asize);
2767 	}
2768 	mutex_exit(&pio->io_lock);
2769 }
2770 
2771 static void
2772 zio_write_gang_done(zio_t *zio)
2773 {
2774 	/*
2775 	 * The io_abd field will be NULL for a zio with no data.  The io_flags
2776 	 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't
2777 	 * check for it here as it is cleared in zio_ready.
2778 	 */
2779 	if (zio->io_abd != NULL)
2780 		abd_free(zio->io_abd);
2781 }
2782 
2783 static zio_t *
2784 zio_write_gang_block(zio_t *pio, metaslab_class_t *mc)
2785 {
2786 	spa_t *spa = pio->io_spa;
2787 	blkptr_t *bp = pio->io_bp;
2788 	zio_t *gio = pio->io_gang_leader;
2789 	zio_t *zio;
2790 	zio_gang_node_t *gn, **gnpp;
2791 	zio_gbh_phys_t *gbh;
2792 	abd_t *gbh_abd;
2793 	uint64_t txg = pio->io_txg;
2794 	uint64_t resid = pio->io_size;
2795 	uint64_t lsize;
2796 	int copies = gio->io_prop.zp_copies;
2797 	int gbh_copies;
2798 	zio_prop_t zp;
2799 	int error;
2800 	boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA);
2801 
2802 	/*
2803 	 * encrypted blocks need DVA[2] free so encrypted gang headers can't
2804 	 * have a third copy.
2805 	 */
2806 	gbh_copies = MIN(copies + 1, spa_max_replication(spa));
2807 	if (gio->io_prop.zp_encrypt && gbh_copies >= SPA_DVAS_PER_BP)
2808 		gbh_copies = SPA_DVAS_PER_BP - 1;
2809 
2810 	int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER;
2811 	if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2812 		ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2813 		ASSERT(has_data);
2814 
2815 		flags |= METASLAB_ASYNC_ALLOC;
2816 		VERIFY(zfs_refcount_held(&mc->mc_allocator[pio->io_allocator].
2817 		    mca_alloc_slots, pio));
2818 
2819 		/*
2820 		 * The logical zio has already placed a reservation for
2821 		 * 'copies' allocation slots but gang blocks may require
2822 		 * additional copies. These additional copies
2823 		 * (i.e. gbh_copies - copies) are guaranteed to succeed
2824 		 * since metaslab_class_throttle_reserve() always allows
2825 		 * additional reservations for gang blocks.
2826 		 */
2827 		VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies,
2828 		    pio->io_allocator, pio, flags));
2829 	}
2830 
2831 	error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE,
2832 	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags,
2833 	    &pio->io_alloc_list, pio, pio->io_allocator);
2834 	if (error) {
2835 		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2836 			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2837 			ASSERT(has_data);
2838 
2839 			/*
2840 			 * If we failed to allocate the gang block header then
2841 			 * we remove any additional allocation reservations that
2842 			 * we placed here. The original reservation will
2843 			 * be removed when the logical I/O goes to the ready
2844 			 * stage.
2845 			 */
2846 			metaslab_class_throttle_unreserve(mc,
2847 			    gbh_copies - copies, pio->io_allocator, pio);
2848 		}
2849 
2850 		pio->io_error = error;
2851 		return (pio);
2852 	}
2853 
2854 	if (pio == gio) {
2855 		gnpp = &gio->io_gang_tree;
2856 	} else {
2857 		gnpp = pio->io_private;
2858 		ASSERT(pio->io_ready == zio_write_gang_member_ready);
2859 	}
2860 
2861 	gn = zio_gang_node_alloc(gnpp);
2862 	gbh = gn->gn_gbh;
2863 	bzero(gbh, SPA_GANGBLOCKSIZE);
2864 	gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE);
2865 
2866 	/*
2867 	 * Create the gang header.
2868 	 */
2869 	zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2870 	    zio_write_gang_done, NULL, pio->io_priority,
2871 	    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2872 
2873 	/*
2874 	 * Create and nowait the gang children.
2875 	 */
2876 	for (int g = 0; resid != 0; resid -= lsize, g++) {
2877 		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
2878 		    SPA_MINBLOCKSIZE);
2879 		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
2880 
2881 		zp.zp_checksum = gio->io_prop.zp_checksum;
2882 		zp.zp_compress = ZIO_COMPRESS_OFF;
2883 		zp.zp_complevel = gio->io_prop.zp_complevel;
2884 		zp.zp_type = DMU_OT_NONE;
2885 		zp.zp_level = 0;
2886 		zp.zp_copies = gio->io_prop.zp_copies;
2887 		zp.zp_dedup = B_FALSE;
2888 		zp.zp_dedup_verify = B_FALSE;
2889 		zp.zp_nopwrite = B_FALSE;
2890 		zp.zp_encrypt = gio->io_prop.zp_encrypt;
2891 		zp.zp_byteorder = gio->io_prop.zp_byteorder;
2892 		bzero(zp.zp_salt, ZIO_DATA_SALT_LEN);
2893 		bzero(zp.zp_iv, ZIO_DATA_IV_LEN);
2894 		bzero(zp.zp_mac, ZIO_DATA_MAC_LEN);
2895 
2896 		zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
2897 		    has_data ? abd_get_offset(pio->io_abd, pio->io_size -
2898 		    resid) : NULL, lsize, lsize, &zp,
2899 		    zio_write_gang_member_ready, NULL, NULL,
2900 		    zio_write_gang_done, &gn->gn_child[g], pio->io_priority,
2901 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2902 
2903 		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2904 			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2905 			ASSERT(has_data);
2906 
2907 			/*
2908 			 * Gang children won't throttle but we should
2909 			 * account for their work, so reserve an allocation
2910 			 * slot for them here.
2911 			 */
2912 			VERIFY(metaslab_class_throttle_reserve(mc,
2913 			    zp.zp_copies, cio->io_allocator, cio, flags));
2914 		}
2915 		zio_nowait(cio);
2916 	}
2917 
2918 	/*
2919 	 * Set pio's pipeline to just wait for zio to finish.
2920 	 */
2921 	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2922 
2923 	/*
2924 	 * We didn't allocate this bp, so make sure it doesn't get unmarked.
2925 	 */
2926 	pio->io_flags &= ~ZIO_FLAG_FASTWRITE;
2927 
2928 	zio_nowait(zio);
2929 
2930 	return (pio);
2931 }
2932 
2933 /*
2934  * The zio_nop_write stage in the pipeline determines if allocating a
2935  * new bp is necessary.  The nopwrite feature can handle writes in
2936  * either syncing or open context (i.e. zil writes) and as a result is
2937  * mutually exclusive with dedup.
2938  *
2939  * By leveraging a cryptographically secure checksum, such as SHA256, we
2940  * can compare the checksums of the new data and the old to determine if
2941  * allocating a new block is required.  Note that our requirements for
2942  * cryptographic strength are fairly weak: there can't be any accidental
2943  * hash collisions, but we don't need to be secure against intentional
2944  * (malicious) collisions.  To trigger a nopwrite, you have to be able
2945  * to write the file to begin with, and triggering an incorrect (hash
2946  * collision) nopwrite is no worse than simply writing to the file.
2947  * That said, there are no known attacks against the checksum algorithms
2948  * used for nopwrite, assuming that the salt and the checksums
2949  * themselves remain secret.
2950  */
2951 static zio_t *
2952 zio_nop_write(zio_t *zio)
2953 {
2954 	blkptr_t *bp = zio->io_bp;
2955 	blkptr_t *bp_orig = &zio->io_bp_orig;
2956 	zio_prop_t *zp = &zio->io_prop;
2957 
2958 	ASSERT(BP_GET_LEVEL(bp) == 0);
2959 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2960 	ASSERT(zp->zp_nopwrite);
2961 	ASSERT(!zp->zp_dedup);
2962 	ASSERT(zio->io_bp_override == NULL);
2963 	ASSERT(IO_IS_ALLOCATING(zio));
2964 
2965 	/*
2966 	 * Check to see if the original bp and the new bp have matching
2967 	 * characteristics (i.e. same checksum, compression algorithms, etc).
2968 	 * If they don't then just continue with the pipeline which will
2969 	 * allocate a new bp.
2970 	 */
2971 	if (BP_IS_HOLE(bp_orig) ||
2972 	    !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
2973 	    ZCHECKSUM_FLAG_NOPWRITE) ||
2974 	    BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) ||
2975 	    BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
2976 	    BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
2977 	    BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
2978 	    zp->zp_copies != BP_GET_NDVAS(bp_orig))
2979 		return (zio);
2980 
2981 	/*
2982 	 * If the checksums match then reset the pipeline so that we
2983 	 * avoid allocating a new bp and issuing any I/O.
2984 	 */
2985 	if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
2986 		ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
2987 		    ZCHECKSUM_FLAG_NOPWRITE);
2988 		ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
2989 		ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
2990 		ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
2991 		ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
2992 		    sizeof (uint64_t)) == 0);
2993 
2994 		/*
2995 		 * If we're overwriting a block that is currently on an
2996 		 * indirect vdev, then ignore the nopwrite request and
2997 		 * allow a new block to be allocated on a concrete vdev.
2998 		 */
2999 		spa_config_enter(zio->io_spa, SCL_VDEV, FTAG, RW_READER);
3000 		vdev_t *tvd = vdev_lookup_top(zio->io_spa,
3001 		    DVA_GET_VDEV(&bp->blk_dva[0]));
3002 		if (tvd->vdev_ops == &vdev_indirect_ops) {
3003 			spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
3004 			return (zio);
3005 		}
3006 		spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
3007 
3008 		*bp = *bp_orig;
3009 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3010 		zio->io_flags |= ZIO_FLAG_NOPWRITE;
3011 	}
3012 
3013 	return (zio);
3014 }
3015 
3016 /*
3017  * ==========================================================================
3018  * Dedup
3019  * ==========================================================================
3020  */
3021 static void
3022 zio_ddt_child_read_done(zio_t *zio)
3023 {
3024 	blkptr_t *bp = zio->io_bp;
3025 	ddt_entry_t *dde = zio->io_private;
3026 	ddt_phys_t *ddp;
3027 	zio_t *pio = zio_unique_parent(zio);
3028 
3029 	mutex_enter(&pio->io_lock);
3030 	ddp = ddt_phys_select(dde, bp);
3031 	if (zio->io_error == 0)
3032 		ddt_phys_clear(ddp);	/* this ddp doesn't need repair */
3033 
3034 	if (zio->io_error == 0 && dde->dde_repair_abd == NULL)
3035 		dde->dde_repair_abd = zio->io_abd;
3036 	else
3037 		abd_free(zio->io_abd);
3038 	mutex_exit(&pio->io_lock);
3039 }
3040 
3041 static zio_t *
3042 zio_ddt_read_start(zio_t *zio)
3043 {
3044 	blkptr_t *bp = zio->io_bp;
3045 
3046 	ASSERT(BP_GET_DEDUP(bp));
3047 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3048 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3049 
3050 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
3051 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
3052 		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
3053 		ddt_phys_t *ddp = dde->dde_phys;
3054 		ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
3055 		blkptr_t blk;
3056 
3057 		ASSERT(zio->io_vsd == NULL);
3058 		zio->io_vsd = dde;
3059 
3060 		if (ddp_self == NULL)
3061 			return (zio);
3062 
3063 		for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
3064 			if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
3065 				continue;
3066 			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
3067 			    &blk);
3068 			zio_nowait(zio_read(zio, zio->io_spa, &blk,
3069 			    abd_alloc_for_io(zio->io_size, B_TRUE),
3070 			    zio->io_size, zio_ddt_child_read_done, dde,
3071 			    zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) |
3072 			    ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark));
3073 		}
3074 		return (zio);
3075 	}
3076 
3077 	zio_nowait(zio_read(zio, zio->io_spa, bp,
3078 	    zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority,
3079 	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
3080 
3081 	return (zio);
3082 }
3083 
3084 static zio_t *
3085 zio_ddt_read_done(zio_t *zio)
3086 {
3087 	blkptr_t *bp = zio->io_bp;
3088 
3089 	if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) {
3090 		return (NULL);
3091 	}
3092 
3093 	ASSERT(BP_GET_DEDUP(bp));
3094 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3095 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3096 
3097 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
3098 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
3099 		ddt_entry_t *dde = zio->io_vsd;
3100 		if (ddt == NULL) {
3101 			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
3102 			return (zio);
3103 		}
3104 		if (dde == NULL) {
3105 			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
3106 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
3107 			return (NULL);
3108 		}
3109 		if (dde->dde_repair_abd != NULL) {
3110 			abd_copy(zio->io_abd, dde->dde_repair_abd,
3111 			    zio->io_size);
3112 			zio->io_child_error[ZIO_CHILD_DDT] = 0;
3113 		}
3114 		ddt_repair_done(ddt, dde);
3115 		zio->io_vsd = NULL;
3116 	}
3117 
3118 	ASSERT(zio->io_vsd == NULL);
3119 
3120 	return (zio);
3121 }
3122 
3123 static boolean_t
3124 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
3125 {
3126 	spa_t *spa = zio->io_spa;
3127 	boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW);
3128 
3129 	ASSERT(!(zio->io_bp_override && do_raw));
3130 
3131 	/*
3132 	 * Note: we compare the original data, not the transformed data,
3133 	 * because when zio->io_bp is an override bp, we will not have
3134 	 * pushed the I/O transforms.  That's an important optimization
3135 	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
3136 	 * However, we should never get a raw, override zio so in these
3137 	 * cases we can compare the io_abd directly. This is useful because
3138 	 * it allows us to do dedup verification even if we don't have access
3139 	 * to the original data (for instance, if the encryption keys aren't
3140 	 * loaded).
3141 	 */
3142 
3143 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
3144 		zio_t *lio = dde->dde_lead_zio[p];
3145 
3146 		if (lio != NULL && do_raw) {
3147 			return (lio->io_size != zio->io_size ||
3148 			    abd_cmp(zio->io_abd, lio->io_abd) != 0);
3149 		} else if (lio != NULL) {
3150 			return (lio->io_orig_size != zio->io_orig_size ||
3151 			    abd_cmp(zio->io_orig_abd, lio->io_orig_abd) != 0);
3152 		}
3153 	}
3154 
3155 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
3156 		ddt_phys_t *ddp = &dde->dde_phys[p];
3157 
3158 		if (ddp->ddp_phys_birth != 0 && do_raw) {
3159 			blkptr_t blk = *zio->io_bp;
3160 			uint64_t psize;
3161 			abd_t *tmpabd;
3162 			int error;
3163 
3164 			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
3165 			psize = BP_GET_PSIZE(&blk);
3166 
3167 			if (psize != zio->io_size)
3168 				return (B_TRUE);
3169 
3170 			ddt_exit(ddt);
3171 
3172 			tmpabd = abd_alloc_for_io(psize, B_TRUE);
3173 
3174 			error = zio_wait(zio_read(NULL, spa, &blk, tmpabd,
3175 			    psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
3176 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3177 			    ZIO_FLAG_RAW, &zio->io_bookmark));
3178 
3179 			if (error == 0) {
3180 				if (abd_cmp(tmpabd, zio->io_abd) != 0)
3181 					error = SET_ERROR(ENOENT);
3182 			}
3183 
3184 			abd_free(tmpabd);
3185 			ddt_enter(ddt);
3186 			return (error != 0);
3187 		} else if (ddp->ddp_phys_birth != 0) {
3188 			arc_buf_t *abuf = NULL;
3189 			arc_flags_t aflags = ARC_FLAG_WAIT;
3190 			blkptr_t blk = *zio->io_bp;
3191 			int error;
3192 
3193 			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
3194 
3195 			if (BP_GET_LSIZE(&blk) != zio->io_orig_size)
3196 				return (B_TRUE);
3197 
3198 			ddt_exit(ddt);
3199 
3200 			error = arc_read(NULL, spa, &blk,
3201 			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
3202 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3203 			    &aflags, &zio->io_bookmark);
3204 
3205 			if (error == 0) {
3206 				if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data,
3207 				    zio->io_orig_size) != 0)
3208 					error = SET_ERROR(ENOENT);
3209 				arc_buf_destroy(abuf, &abuf);
3210 			}
3211 
3212 			ddt_enter(ddt);
3213 			return (error != 0);
3214 		}
3215 	}
3216 
3217 	return (B_FALSE);
3218 }
3219 
3220 static void
3221 zio_ddt_child_write_ready(zio_t *zio)
3222 {
3223 	int p = zio->io_prop.zp_copies;
3224 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3225 	ddt_entry_t *dde = zio->io_private;
3226 	ddt_phys_t *ddp = &dde->dde_phys[p];
3227 	zio_t *pio;
3228 
3229 	if (zio->io_error)
3230 		return;
3231 
3232 	ddt_enter(ddt);
3233 
3234 	ASSERT(dde->dde_lead_zio[p] == zio);
3235 
3236 	ddt_phys_fill(ddp, zio->io_bp);
3237 
3238 	zio_link_t *zl = NULL;
3239 	while ((pio = zio_walk_parents(zio, &zl)) != NULL)
3240 		ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
3241 
3242 	ddt_exit(ddt);
3243 }
3244 
3245 static void
3246 zio_ddt_child_write_done(zio_t *zio)
3247 {
3248 	int p = zio->io_prop.zp_copies;
3249 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3250 	ddt_entry_t *dde = zio->io_private;
3251 	ddt_phys_t *ddp = &dde->dde_phys[p];
3252 
3253 	ddt_enter(ddt);
3254 
3255 	ASSERT(ddp->ddp_refcnt == 0);
3256 	ASSERT(dde->dde_lead_zio[p] == zio);
3257 	dde->dde_lead_zio[p] = NULL;
3258 
3259 	if (zio->io_error == 0) {
3260 		zio_link_t *zl = NULL;
3261 		while (zio_walk_parents(zio, &zl) != NULL)
3262 			ddt_phys_addref(ddp);
3263 	} else {
3264 		ddt_phys_clear(ddp);
3265 	}
3266 
3267 	ddt_exit(ddt);
3268 }
3269 
3270 static zio_t *
3271 zio_ddt_write(zio_t *zio)
3272 {
3273 	spa_t *spa = zio->io_spa;
3274 	blkptr_t *bp = zio->io_bp;
3275 	uint64_t txg = zio->io_txg;
3276 	zio_prop_t *zp = &zio->io_prop;
3277 	int p = zp->zp_copies;
3278 	zio_t *cio = NULL;
3279 	ddt_t *ddt = ddt_select(spa, bp);
3280 	ddt_entry_t *dde;
3281 	ddt_phys_t *ddp;
3282 
3283 	ASSERT(BP_GET_DEDUP(bp));
3284 	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
3285 	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
3286 	ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW)));
3287 
3288 	ddt_enter(ddt);
3289 	dde = ddt_lookup(ddt, bp, B_TRUE);
3290 	ddp = &dde->dde_phys[p];
3291 
3292 	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
3293 		/*
3294 		 * If we're using a weak checksum, upgrade to a strong checksum
3295 		 * and try again.  If we're already using a strong checksum,
3296 		 * we can't resolve it, so just convert to an ordinary write.
3297 		 * (And automatically e-mail a paper to Nature?)
3298 		 */
3299 		if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
3300 		    ZCHECKSUM_FLAG_DEDUP)) {
3301 			zp->zp_checksum = spa_dedup_checksum(spa);
3302 			zio_pop_transforms(zio);
3303 			zio->io_stage = ZIO_STAGE_OPEN;
3304 			BP_ZERO(bp);
3305 		} else {
3306 			zp->zp_dedup = B_FALSE;
3307 			BP_SET_DEDUP(bp, B_FALSE);
3308 		}
3309 		ASSERT(!BP_GET_DEDUP(bp));
3310 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
3311 		ddt_exit(ddt);
3312 		return (zio);
3313 	}
3314 
3315 	if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
3316 		if (ddp->ddp_phys_birth != 0)
3317 			ddt_bp_fill(ddp, bp, txg);
3318 		if (dde->dde_lead_zio[p] != NULL)
3319 			zio_add_child(zio, dde->dde_lead_zio[p]);
3320 		else
3321 			ddt_phys_addref(ddp);
3322 	} else if (zio->io_bp_override) {
3323 		ASSERT(bp->blk_birth == txg);
3324 		ASSERT(BP_EQUAL(bp, zio->io_bp_override));
3325 		ddt_phys_fill(ddp, bp);
3326 		ddt_phys_addref(ddp);
3327 	} else {
3328 		cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
3329 		    zio->io_orig_size, zio->io_orig_size, zp,
3330 		    zio_ddt_child_write_ready, NULL, NULL,
3331 		    zio_ddt_child_write_done, dde, zio->io_priority,
3332 		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
3333 
3334 		zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL);
3335 		dde->dde_lead_zio[p] = cio;
3336 	}
3337 
3338 	ddt_exit(ddt);
3339 
3340 	zio_nowait(cio);
3341 
3342 	return (zio);
3343 }
3344 
3345 ddt_entry_t *freedde; /* for debugging */
3346 
3347 static zio_t *
3348 zio_ddt_free(zio_t *zio)
3349 {
3350 	spa_t *spa = zio->io_spa;
3351 	blkptr_t *bp = zio->io_bp;
3352 	ddt_t *ddt = ddt_select(spa, bp);
3353 	ddt_entry_t *dde;
3354 	ddt_phys_t *ddp;
3355 
3356 	ASSERT(BP_GET_DEDUP(bp));
3357 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3358 
3359 	ddt_enter(ddt);
3360 	freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
3361 	if (dde) {
3362 		ddp = ddt_phys_select(dde, bp);
3363 		if (ddp)
3364 			ddt_phys_decref(ddp);
3365 	}
3366 	ddt_exit(ddt);
3367 
3368 	return (zio);
3369 }
3370 
3371 /*
3372  * ==========================================================================
3373  * Allocate and free blocks
3374  * ==========================================================================
3375  */
3376 
3377 static zio_t *
3378 zio_io_to_allocate(spa_t *spa, int allocator)
3379 {
3380 	zio_t *zio;
3381 
3382 	ASSERT(MUTEX_HELD(&spa->spa_alloc_locks[allocator]));
3383 
3384 	zio = avl_first(&spa->spa_alloc_trees[allocator]);
3385 	if (zio == NULL)
3386 		return (NULL);
3387 
3388 	ASSERT(IO_IS_ALLOCATING(zio));
3389 
3390 	/*
3391 	 * Try to place a reservation for this zio. If we're unable to
3392 	 * reserve then we throttle.
3393 	 */
3394 	ASSERT3U(zio->io_allocator, ==, allocator);
3395 	if (!metaslab_class_throttle_reserve(zio->io_metaslab_class,
3396 	    zio->io_prop.zp_copies, zio->io_allocator, zio, 0)) {
3397 		return (NULL);
3398 	}
3399 
3400 	avl_remove(&spa->spa_alloc_trees[allocator], zio);
3401 	ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE);
3402 
3403 	return (zio);
3404 }
3405 
3406 static zio_t *
3407 zio_dva_throttle(zio_t *zio)
3408 {
3409 	spa_t *spa = zio->io_spa;
3410 	zio_t *nio;
3411 	metaslab_class_t *mc;
3412 
3413 	/* locate an appropriate allocation class */
3414 	mc = spa_preferred_class(spa, zio->io_size, zio->io_prop.zp_type,
3415 	    zio->io_prop.zp_level, zio->io_prop.zp_zpl_smallblk);
3416 
3417 	if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE ||
3418 	    !mc->mc_alloc_throttle_enabled ||
3419 	    zio->io_child_type == ZIO_CHILD_GANG ||
3420 	    zio->io_flags & ZIO_FLAG_NODATA) {
3421 		return (zio);
3422 	}
3423 
3424 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3425 
3426 	ASSERT3U(zio->io_queued_timestamp, >, 0);
3427 	ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE);
3428 
3429 	zbookmark_phys_t *bm = &zio->io_bookmark;
3430 	/*
3431 	 * We want to try to use as many allocators as possible to help improve
3432 	 * performance, but we also want logically adjacent IOs to be physically
3433 	 * adjacent to improve sequential read performance. We chunk each object
3434 	 * into 2^20 block regions, and then hash based on the objset, object,
3435 	 * level, and region to accomplish both of these goals.
3436 	 */
3437 	zio->io_allocator = cityhash4(bm->zb_objset, bm->zb_object,
3438 	    bm->zb_level, bm->zb_blkid >> 20) % spa->spa_alloc_count;
3439 	mutex_enter(&spa->spa_alloc_locks[zio->io_allocator]);
3440 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3441 	zio->io_metaslab_class = mc;
3442 	avl_add(&spa->spa_alloc_trees[zio->io_allocator], zio);
3443 	nio = zio_io_to_allocate(spa, zio->io_allocator);
3444 	mutex_exit(&spa->spa_alloc_locks[zio->io_allocator]);
3445 	return (nio);
3446 }
3447 
3448 static void
3449 zio_allocate_dispatch(spa_t *spa, int allocator)
3450 {
3451 	zio_t *zio;
3452 
3453 	mutex_enter(&spa->spa_alloc_locks[allocator]);
3454 	zio = zio_io_to_allocate(spa, allocator);
3455 	mutex_exit(&spa->spa_alloc_locks[allocator]);
3456 	if (zio == NULL)
3457 		return;
3458 
3459 	ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE);
3460 	ASSERT0(zio->io_error);
3461 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE);
3462 }
3463 
3464 static zio_t *
3465 zio_dva_allocate(zio_t *zio)
3466 {
3467 	spa_t *spa = zio->io_spa;
3468 	metaslab_class_t *mc;
3469 	blkptr_t *bp = zio->io_bp;
3470 	int error;
3471 	int flags = 0;
3472 
3473 	if (zio->io_gang_leader == NULL) {
3474 		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3475 		zio->io_gang_leader = zio;
3476 	}
3477 
3478 	ASSERT(BP_IS_HOLE(bp));
3479 	ASSERT0(BP_GET_NDVAS(bp));
3480 	ASSERT3U(zio->io_prop.zp_copies, >, 0);
3481 	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
3482 	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
3483 
3484 	flags |= (zio->io_flags & ZIO_FLAG_FASTWRITE) ? METASLAB_FASTWRITE : 0;
3485 	if (zio->io_flags & ZIO_FLAG_NODATA)
3486 		flags |= METASLAB_DONT_THROTTLE;
3487 	if (zio->io_flags & ZIO_FLAG_GANG_CHILD)
3488 		flags |= METASLAB_GANG_CHILD;
3489 	if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE)
3490 		flags |= METASLAB_ASYNC_ALLOC;
3491 
3492 	/*
3493 	 * if not already chosen, locate an appropriate allocation class
3494 	 */
3495 	mc = zio->io_metaslab_class;
3496 	if (mc == NULL) {
3497 		mc = spa_preferred_class(spa, zio->io_size,
3498 		    zio->io_prop.zp_type, zio->io_prop.zp_level,
3499 		    zio->io_prop.zp_zpl_smallblk);
3500 		zio->io_metaslab_class = mc;
3501 	}
3502 
3503 	/*
3504 	 * Try allocating the block in the usual metaslab class.
3505 	 * If that's full, allocate it in the normal class.
3506 	 * If that's full, allocate as a gang block,
3507 	 * and if all are full, the allocation fails (which shouldn't happen).
3508 	 *
3509 	 * Note that we do not fall back on embedded slog (ZIL) space, to
3510 	 * preserve unfragmented slog space, which is critical for decent
3511 	 * sync write performance.  If a log allocation fails, we will fall
3512 	 * back to spa_sync() which is abysmal for performance.
3513 	 */
3514 	error = metaslab_alloc(spa, mc, zio->io_size, bp,
3515 	    zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3516 	    &zio->io_alloc_list, zio, zio->io_allocator);
3517 
3518 	/*
3519 	 * Fallback to normal class when an alloc class is full
3520 	 */
3521 	if (error == ENOSPC && mc != spa_normal_class(spa)) {
3522 		/*
3523 		 * If throttling, transfer reservation over to normal class.
3524 		 * The io_allocator slot can remain the same even though we
3525 		 * are switching classes.
3526 		 */
3527 		if (mc->mc_alloc_throttle_enabled &&
3528 		    (zio->io_flags & ZIO_FLAG_IO_ALLOCATING)) {
3529 			metaslab_class_throttle_unreserve(mc,
3530 			    zio->io_prop.zp_copies, zio->io_allocator, zio);
3531 			zio->io_flags &= ~ZIO_FLAG_IO_ALLOCATING;
3532 
3533 			VERIFY(metaslab_class_throttle_reserve(
3534 			    spa_normal_class(spa),
3535 			    zio->io_prop.zp_copies, zio->io_allocator, zio,
3536 			    flags | METASLAB_MUST_RESERVE));
3537 		}
3538 		zio->io_metaslab_class = mc = spa_normal_class(spa);
3539 		if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) {
3540 			zfs_dbgmsg("%s: metaslab allocation failure, "
3541 			    "trying normal class: zio %px, size %llu, error %d",
3542 			    spa_name(spa), zio, (u_longlong_t)zio->io_size,
3543 			    error);
3544 		}
3545 
3546 		error = metaslab_alloc(spa, mc, zio->io_size, bp,
3547 		    zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3548 		    &zio->io_alloc_list, zio, zio->io_allocator);
3549 	}
3550 
3551 	if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) {
3552 		if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) {
3553 			zfs_dbgmsg("%s: metaslab allocation failure, "
3554 			    "trying ganging: zio %px, size %llu, error %d",
3555 			    spa_name(spa), zio, (u_longlong_t)zio->io_size,
3556 			    error);
3557 		}
3558 		return (zio_write_gang_block(zio, mc));
3559 	}
3560 	if (error != 0) {
3561 		if (error != ENOSPC ||
3562 		    (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC)) {
3563 			zfs_dbgmsg("%s: metaslab allocation failure: zio %px, "
3564 			    "size %llu, error %d",
3565 			    spa_name(spa), zio, (u_longlong_t)zio->io_size,
3566 			    error);
3567 		}
3568 		zio->io_error = error;
3569 	}
3570 
3571 	return (zio);
3572 }
3573 
3574 static zio_t *
3575 zio_dva_free(zio_t *zio)
3576 {
3577 	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
3578 
3579 	return (zio);
3580 }
3581 
3582 static zio_t *
3583 zio_dva_claim(zio_t *zio)
3584 {
3585 	int error;
3586 
3587 	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
3588 	if (error)
3589 		zio->io_error = error;
3590 
3591 	return (zio);
3592 }
3593 
3594 /*
3595  * Undo an allocation.  This is used by zio_done() when an I/O fails
3596  * and we want to give back the block we just allocated.
3597  * This handles both normal blocks and gang blocks.
3598  */
3599 static void
3600 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
3601 {
3602 	ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
3603 	ASSERT(zio->io_bp_override == NULL);
3604 
3605 	if (!BP_IS_HOLE(bp))
3606 		metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
3607 
3608 	if (gn != NULL) {
3609 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
3610 			zio_dva_unallocate(zio, gn->gn_child[g],
3611 			    &gn->gn_gbh->zg_blkptr[g]);
3612 		}
3613 	}
3614 }
3615 
3616 /*
3617  * Try to allocate an intent log block.  Return 0 on success, errno on failure.
3618  */
3619 int
3620 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp,
3621     uint64_t size, boolean_t *slog)
3622 {
3623 	int error = 1;
3624 	zio_alloc_list_t io_alloc_list;
3625 
3626 	ASSERT(txg > spa_syncing_txg(spa));
3627 
3628 	metaslab_trace_init(&io_alloc_list);
3629 
3630 	/*
3631 	 * Block pointer fields are useful to metaslabs for stats and debugging.
3632 	 * Fill in the obvious ones before calling into metaslab_alloc().
3633 	 */
3634 	BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3635 	BP_SET_PSIZE(new_bp, size);
3636 	BP_SET_LEVEL(new_bp, 0);
3637 
3638 	/*
3639 	 * When allocating a zil block, we don't have information about
3640 	 * the final destination of the block except the objset it's part
3641 	 * of, so we just hash the objset ID to pick the allocator to get
3642 	 * some parallelism.
3643 	 */
3644 	int flags = METASLAB_FASTWRITE | METASLAB_ZIL;
3645 	int allocator = cityhash4(0, 0, 0, os->os_dsl_dataset->ds_object) %
3646 	    spa->spa_alloc_count;
3647 	error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1,
3648 	    txg, NULL, flags, &io_alloc_list, NULL, allocator);
3649 	*slog = (error == 0);
3650 	if (error != 0) {
3651 		error = metaslab_alloc(spa, spa_embedded_log_class(spa), size,
3652 		    new_bp, 1, txg, NULL, flags,
3653 		    &io_alloc_list, NULL, allocator);
3654 	}
3655 	if (error != 0) {
3656 		error = metaslab_alloc(spa, spa_normal_class(spa), size,
3657 		    new_bp, 1, txg, NULL, flags,
3658 		    &io_alloc_list, NULL, allocator);
3659 	}
3660 	metaslab_trace_fini(&io_alloc_list);
3661 
3662 	if (error == 0) {
3663 		BP_SET_LSIZE(new_bp, size);
3664 		BP_SET_PSIZE(new_bp, size);
3665 		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
3666 		BP_SET_CHECKSUM(new_bp,
3667 		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL
3668 		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
3669 		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3670 		BP_SET_LEVEL(new_bp, 0);
3671 		BP_SET_DEDUP(new_bp, 0);
3672 		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
3673 
3674 		/*
3675 		 * encrypted blocks will require an IV and salt. We generate
3676 		 * these now since we will not be rewriting the bp at
3677 		 * rewrite time.
3678 		 */
3679 		if (os->os_encrypted) {
3680 			uint8_t iv[ZIO_DATA_IV_LEN];
3681 			uint8_t salt[ZIO_DATA_SALT_LEN];
3682 
3683 			BP_SET_CRYPT(new_bp, B_TRUE);
3684 			VERIFY0(spa_crypt_get_salt(spa,
3685 			    dmu_objset_id(os), salt));
3686 			VERIFY0(zio_crypt_generate_iv(iv));
3687 
3688 			zio_crypt_encode_params_bp(new_bp, salt, iv);
3689 		}
3690 	} else {
3691 		zfs_dbgmsg("%s: zil block allocation failure: "
3692 		    "size %llu, error %d", spa_name(spa), (u_longlong_t)size,
3693 		    error);
3694 	}
3695 
3696 	return (error);
3697 }
3698 
3699 /*
3700  * ==========================================================================
3701  * Read and write to physical devices
3702  * ==========================================================================
3703  */
3704 
3705 /*
3706  * Issue an I/O to the underlying vdev. Typically the issue pipeline
3707  * stops after this stage and will resume upon I/O completion.
3708  * However, there are instances where the vdev layer may need to
3709  * continue the pipeline when an I/O was not issued. Since the I/O
3710  * that was sent to the vdev layer might be different than the one
3711  * currently active in the pipeline (see vdev_queue_io()), we explicitly
3712  * force the underlying vdev layers to call either zio_execute() or
3713  * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
3714  */
3715 static zio_t *
3716 zio_vdev_io_start(zio_t *zio)
3717 {
3718 	vdev_t *vd = zio->io_vd;
3719 	uint64_t align;
3720 	spa_t *spa = zio->io_spa;
3721 
3722 	zio->io_delay = 0;
3723 
3724 	ASSERT(zio->io_error == 0);
3725 	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
3726 
3727 	if (vd == NULL) {
3728 		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3729 			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
3730 
3731 		/*
3732 		 * The mirror_ops handle multiple DVAs in a single BP.
3733 		 */
3734 		vdev_mirror_ops.vdev_op_io_start(zio);
3735 		return (NULL);
3736 	}
3737 
3738 	ASSERT3P(zio->io_logical, !=, zio);
3739 	if (zio->io_type == ZIO_TYPE_WRITE) {
3740 		ASSERT(spa->spa_trust_config);
3741 
3742 		/*
3743 		 * Note: the code can handle other kinds of writes,
3744 		 * but we don't expect them.
3745 		 */
3746 		if (zio->io_vd->vdev_removing) {
3747 			ASSERT(zio->io_flags &
3748 			    (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL |
3749 			    ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE));
3750 		}
3751 	}
3752 
3753 	align = 1ULL << vd->vdev_top->vdev_ashift;
3754 
3755 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
3756 	    P2PHASE(zio->io_size, align) != 0) {
3757 		/* Transform logical writes to be a full physical block size. */
3758 		uint64_t asize = P2ROUNDUP(zio->io_size, align);
3759 		abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize);
3760 		ASSERT(vd == vd->vdev_top);
3761 		if (zio->io_type == ZIO_TYPE_WRITE) {
3762 			abd_copy(abuf, zio->io_abd, zio->io_size);
3763 			abd_zero_off(abuf, zio->io_size, asize - zio->io_size);
3764 		}
3765 		zio_push_transform(zio, abuf, asize, asize, zio_subblock);
3766 	}
3767 
3768 	/*
3769 	 * If this is not a physical io, make sure that it is properly aligned
3770 	 * before proceeding.
3771 	 */
3772 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
3773 		ASSERT0(P2PHASE(zio->io_offset, align));
3774 		ASSERT0(P2PHASE(zio->io_size, align));
3775 	} else {
3776 		/*
3777 		 * For physical writes, we allow 512b aligned writes and assume
3778 		 * the device will perform a read-modify-write as necessary.
3779 		 */
3780 		ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
3781 		ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
3782 	}
3783 
3784 	VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
3785 
3786 	/*
3787 	 * If this is a repair I/O, and there's no self-healing involved --
3788 	 * that is, we're just resilvering what we expect to resilver --
3789 	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
3790 	 * This prevents spurious resilvering.
3791 	 *
3792 	 * There are a few ways that we can end up creating these spurious
3793 	 * resilver i/os:
3794 	 *
3795 	 * 1. A resilver i/o will be issued if any DVA in the BP has a
3796 	 * dirty DTL.  The mirror code will issue resilver writes to
3797 	 * each DVA, including the one(s) that are not on vdevs with dirty
3798 	 * DTLs.
3799 	 *
3800 	 * 2. With nested replication, which happens when we have a
3801 	 * "replacing" or "spare" vdev that's a child of a mirror or raidz.
3802 	 * For example, given mirror(replacing(A+B), C), it's likely that
3803 	 * only A is out of date (it's the new device). In this case, we'll
3804 	 * read from C, then use the data to resilver A+B -- but we don't
3805 	 * actually want to resilver B, just A. The top-level mirror has no
3806 	 * way to know this, so instead we just discard unnecessary repairs
3807 	 * as we work our way down the vdev tree.
3808 	 *
3809 	 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc.
3810 	 * The same logic applies to any form of nested replication: ditto
3811 	 * + mirror, RAID-Z + replacing, etc.
3812 	 *
3813 	 * However, indirect vdevs point off to other vdevs which may have
3814 	 * DTL's, so we never bypass them.  The child i/os on concrete vdevs
3815 	 * will be properly bypassed instead.
3816 	 *
3817 	 * Leaf DTL_PARTIAL can be empty when a legitimate write comes from
3818 	 * a dRAID spare vdev. For example, when a dRAID spare is first
3819 	 * used, its spare blocks need to be written to but the leaf vdev's
3820 	 * of such blocks can have empty DTL_PARTIAL.
3821 	 *
3822 	 * There seemed no clean way to allow such writes while bypassing
3823 	 * spurious ones. At this point, just avoid all bypassing for dRAID
3824 	 * for correctness.
3825 	 */
3826 	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
3827 	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
3828 	    zio->io_txg != 0 &&	/* not a delegated i/o */
3829 	    vd->vdev_ops != &vdev_indirect_ops &&
3830 	    vd->vdev_top->vdev_ops != &vdev_draid_ops &&
3831 	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
3832 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3833 		zio_vdev_io_bypass(zio);
3834 		return (zio);
3835 	}
3836 
3837 	/*
3838 	 * Select the next best leaf I/O to process.  Distributed spares are
3839 	 * excluded since they dispatch the I/O directly to a leaf vdev after
3840 	 * applying the dRAID mapping.
3841 	 */
3842 	if (vd->vdev_ops->vdev_op_leaf &&
3843 	    vd->vdev_ops != &vdev_draid_spare_ops &&
3844 	    (zio->io_type == ZIO_TYPE_READ ||
3845 	    zio->io_type == ZIO_TYPE_WRITE ||
3846 	    zio->io_type == ZIO_TYPE_TRIM)) {
3847 
3848 		if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio))
3849 			return (zio);
3850 
3851 		if ((zio = vdev_queue_io(zio)) == NULL)
3852 			return (NULL);
3853 
3854 		if (!vdev_accessible(vd, zio)) {
3855 			zio->io_error = SET_ERROR(ENXIO);
3856 			zio_interrupt(zio);
3857 			return (NULL);
3858 		}
3859 		zio->io_delay = gethrtime();
3860 	}
3861 
3862 	vd->vdev_ops->vdev_op_io_start(zio);
3863 	return (NULL);
3864 }
3865 
3866 static zio_t *
3867 zio_vdev_io_done(zio_t *zio)
3868 {
3869 	vdev_t *vd = zio->io_vd;
3870 	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
3871 	boolean_t unexpected_error = B_FALSE;
3872 
3873 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3874 		return (NULL);
3875 	}
3876 
3877 	ASSERT(zio->io_type == ZIO_TYPE_READ ||
3878 	    zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM);
3879 
3880 	if (zio->io_delay)
3881 		zio->io_delay = gethrtime() - zio->io_delay;
3882 
3883 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3884 	    vd->vdev_ops != &vdev_draid_spare_ops) {
3885 		vdev_queue_io_done(zio);
3886 
3887 		if (zio->io_type == ZIO_TYPE_WRITE)
3888 			vdev_cache_write(zio);
3889 
3890 		if (zio_injection_enabled && zio->io_error == 0)
3891 			zio->io_error = zio_handle_device_injections(vd, zio,
3892 			    EIO, EILSEQ);
3893 
3894 		if (zio_injection_enabled && zio->io_error == 0)
3895 			zio->io_error = zio_handle_label_injection(zio, EIO);
3896 
3897 		if (zio->io_error && zio->io_type != ZIO_TYPE_TRIM) {
3898 			if (!vdev_accessible(vd, zio)) {
3899 				zio->io_error = SET_ERROR(ENXIO);
3900 			} else {
3901 				unexpected_error = B_TRUE;
3902 			}
3903 		}
3904 	}
3905 
3906 	ops->vdev_op_io_done(zio);
3907 
3908 	if (unexpected_error)
3909 		VERIFY(vdev_probe(vd, zio) == NULL);
3910 
3911 	return (zio);
3912 }
3913 
3914 /*
3915  * This function is used to change the priority of an existing zio that is
3916  * currently in-flight. This is used by the arc to upgrade priority in the
3917  * event that a demand read is made for a block that is currently queued
3918  * as a scrub or async read IO. Otherwise, the high priority read request
3919  * would end up having to wait for the lower priority IO.
3920  */
3921 void
3922 zio_change_priority(zio_t *pio, zio_priority_t priority)
3923 {
3924 	zio_t *cio, *cio_next;
3925 	zio_link_t *zl = NULL;
3926 
3927 	ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
3928 
3929 	if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) {
3930 		vdev_queue_change_io_priority(pio, priority);
3931 	} else {
3932 		pio->io_priority = priority;
3933 	}
3934 
3935 	mutex_enter(&pio->io_lock);
3936 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
3937 		cio_next = zio_walk_children(pio, &zl);
3938 		zio_change_priority(cio, priority);
3939 	}
3940 	mutex_exit(&pio->io_lock);
3941 }
3942 
3943 /*
3944  * For non-raidz ZIOs, we can just copy aside the bad data read from the
3945  * disk, and use that to finish the checksum ereport later.
3946  */
3947 static void
3948 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
3949     const abd_t *good_buf)
3950 {
3951 	/* no processing needed */
3952 	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
3953 }
3954 
3955 /*ARGSUSED*/
3956 void
3957 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr)
3958 {
3959 	void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size);
3960 
3961 	abd_copy(abd, zio->io_abd, zio->io_size);
3962 
3963 	zcr->zcr_cbinfo = zio->io_size;
3964 	zcr->zcr_cbdata = abd;
3965 	zcr->zcr_finish = zio_vsd_default_cksum_finish;
3966 	zcr->zcr_free = zio_abd_free;
3967 }
3968 
3969 static zio_t *
3970 zio_vdev_io_assess(zio_t *zio)
3971 {
3972 	vdev_t *vd = zio->io_vd;
3973 
3974 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3975 		return (NULL);
3976 	}
3977 
3978 	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3979 		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
3980 
3981 	if (zio->io_vsd != NULL) {
3982 		zio->io_vsd_ops->vsd_free(zio);
3983 		zio->io_vsd = NULL;
3984 	}
3985 
3986 	if (zio_injection_enabled && zio->io_error == 0)
3987 		zio->io_error = zio_handle_fault_injection(zio, EIO);
3988 
3989 	/*
3990 	 * If the I/O failed, determine whether we should attempt to retry it.
3991 	 *
3992 	 * On retry, we cut in line in the issue queue, since we don't want
3993 	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
3994 	 */
3995 	if (zio->io_error && vd == NULL &&
3996 	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
3997 		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
3998 		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
3999 		zio->io_error = 0;
4000 		zio->io_flags |= ZIO_FLAG_IO_RETRY |
4001 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
4002 		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
4003 		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
4004 		    zio_requeue_io_start_cut_in_line);
4005 		return (NULL);
4006 	}
4007 
4008 	/*
4009 	 * If we got an error on a leaf device, convert it to ENXIO
4010 	 * if the device is not accessible at all.
4011 	 */
4012 	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
4013 	    !vdev_accessible(vd, zio))
4014 		zio->io_error = SET_ERROR(ENXIO);
4015 
4016 	/*
4017 	 * If we can't write to an interior vdev (mirror or RAID-Z),
4018 	 * set vdev_cant_write so that we stop trying to allocate from it.
4019 	 */
4020 	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
4021 	    vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
4022 		vdev_dbgmsg(vd, "zio_vdev_io_assess(zio=%px) setting "
4023 		    "cant_write=TRUE due to write failure with ENXIO",
4024 		    zio);
4025 		vd->vdev_cant_write = B_TRUE;
4026 	}
4027 
4028 	/*
4029 	 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future
4030 	 * attempts will ever succeed. In this case we set a persistent
4031 	 * boolean flag so that we don't bother with it in the future.
4032 	 */
4033 	if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) &&
4034 	    zio->io_type == ZIO_TYPE_IOCTL &&
4035 	    zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL)
4036 		vd->vdev_nowritecache = B_TRUE;
4037 
4038 	if (zio->io_error)
4039 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4040 
4041 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
4042 	    zio->io_physdone != NULL) {
4043 		ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
4044 		ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
4045 		zio->io_physdone(zio->io_logical);
4046 	}
4047 
4048 	return (zio);
4049 }
4050 
4051 void
4052 zio_vdev_io_reissue(zio_t *zio)
4053 {
4054 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
4055 	ASSERT(zio->io_error == 0);
4056 
4057 	zio->io_stage >>= 1;
4058 }
4059 
4060 void
4061 zio_vdev_io_redone(zio_t *zio)
4062 {
4063 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
4064 
4065 	zio->io_stage >>= 1;
4066 }
4067 
4068 void
4069 zio_vdev_io_bypass(zio_t *zio)
4070 {
4071 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
4072 	ASSERT(zio->io_error == 0);
4073 
4074 	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
4075 	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
4076 }
4077 
4078 /*
4079  * ==========================================================================
4080  * Encrypt and store encryption parameters
4081  * ==========================================================================
4082  */
4083 
4084 
4085 /*
4086  * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for
4087  * managing the storage of encryption parameters and passing them to the
4088  * lower-level encryption functions.
4089  */
4090 static zio_t *
4091 zio_encrypt(zio_t *zio)
4092 {
4093 	zio_prop_t *zp = &zio->io_prop;
4094 	spa_t *spa = zio->io_spa;
4095 	blkptr_t *bp = zio->io_bp;
4096 	uint64_t psize = BP_GET_PSIZE(bp);
4097 	uint64_t dsobj = zio->io_bookmark.zb_objset;
4098 	dmu_object_type_t ot = BP_GET_TYPE(bp);
4099 	void *enc_buf = NULL;
4100 	abd_t *eabd = NULL;
4101 	uint8_t salt[ZIO_DATA_SALT_LEN];
4102 	uint8_t iv[ZIO_DATA_IV_LEN];
4103 	uint8_t mac[ZIO_DATA_MAC_LEN];
4104 	boolean_t no_crypt = B_FALSE;
4105 
4106 	/* the root zio already encrypted the data */
4107 	if (zio->io_child_type == ZIO_CHILD_GANG)
4108 		return (zio);
4109 
4110 	/* only ZIL blocks are re-encrypted on rewrite */
4111 	if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG)
4112 		return (zio);
4113 
4114 	if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) {
4115 		BP_SET_CRYPT(bp, B_FALSE);
4116 		return (zio);
4117 	}
4118 
4119 	/* if we are doing raw encryption set the provided encryption params */
4120 	if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) {
4121 		ASSERT0(BP_GET_LEVEL(bp));
4122 		BP_SET_CRYPT(bp, B_TRUE);
4123 		BP_SET_BYTEORDER(bp, zp->zp_byteorder);
4124 		if (ot != DMU_OT_OBJSET)
4125 			zio_crypt_encode_mac_bp(bp, zp->zp_mac);
4126 
4127 		/* dnode blocks must be written out in the provided byteorder */
4128 		if (zp->zp_byteorder != ZFS_HOST_BYTEORDER &&
4129 		    ot == DMU_OT_DNODE) {
4130 			void *bswap_buf = zio_buf_alloc(psize);
4131 			abd_t *babd = abd_get_from_buf(bswap_buf, psize);
4132 
4133 			ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4134 			abd_copy_to_buf(bswap_buf, zio->io_abd, psize);
4135 			dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf,
4136 			    psize);
4137 
4138 			abd_take_ownership_of_buf(babd, B_TRUE);
4139 			zio_push_transform(zio, babd, psize, psize, NULL);
4140 		}
4141 
4142 		if (DMU_OT_IS_ENCRYPTED(ot))
4143 			zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv);
4144 		return (zio);
4145 	}
4146 
4147 	/* indirect blocks only maintain a cksum of the lower level MACs */
4148 	if (BP_GET_LEVEL(bp) > 0) {
4149 		BP_SET_CRYPT(bp, B_TRUE);
4150 		VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE,
4151 		    zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp),
4152 		    mac));
4153 		zio_crypt_encode_mac_bp(bp, mac);
4154 		return (zio);
4155 	}
4156 
4157 	/*
4158 	 * Objset blocks are a special case since they have 2 256-bit MACs
4159 	 * embedded within them.
4160 	 */
4161 	if (ot == DMU_OT_OBJSET) {
4162 		ASSERT0(DMU_OT_IS_ENCRYPTED(ot));
4163 		ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4164 		BP_SET_CRYPT(bp, B_TRUE);
4165 		VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj,
4166 		    zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp)));
4167 		return (zio);
4168 	}
4169 
4170 	/* unencrypted object types are only authenticated with a MAC */
4171 	if (!DMU_OT_IS_ENCRYPTED(ot)) {
4172 		BP_SET_CRYPT(bp, B_TRUE);
4173 		VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj,
4174 		    zio->io_abd, psize, mac));
4175 		zio_crypt_encode_mac_bp(bp, mac);
4176 		return (zio);
4177 	}
4178 
4179 	/*
4180 	 * Later passes of sync-to-convergence may decide to rewrite data
4181 	 * in place to avoid more disk reallocations. This presents a problem
4182 	 * for encryption because this constitutes rewriting the new data with
4183 	 * the same encryption key and IV. However, this only applies to blocks
4184 	 * in the MOS (particularly the spacemaps) and we do not encrypt the
4185 	 * MOS. We assert that the zio is allocating or an intent log write
4186 	 * to enforce this.
4187 	 */
4188 	ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG);
4189 	ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG);
4190 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION));
4191 	ASSERT3U(psize, !=, 0);
4192 
4193 	enc_buf = zio_buf_alloc(psize);
4194 	eabd = abd_get_from_buf(enc_buf, psize);
4195 	abd_take_ownership_of_buf(eabd, B_TRUE);
4196 
4197 	/*
4198 	 * For an explanation of what encryption parameters are stored
4199 	 * where, see the block comment in zio_crypt.c.
4200 	 */
4201 	if (ot == DMU_OT_INTENT_LOG) {
4202 		zio_crypt_decode_params_bp(bp, salt, iv);
4203 	} else {
4204 		BP_SET_CRYPT(bp, B_TRUE);
4205 	}
4206 
4207 	/* Perform the encryption. This should not fail */
4208 	VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark,
4209 	    BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
4210 	    salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt));
4211 
4212 	/* encode encryption metadata into the bp */
4213 	if (ot == DMU_OT_INTENT_LOG) {
4214 		/*
4215 		 * ZIL blocks store the MAC in the embedded checksum, so the
4216 		 * transform must always be applied.
4217 		 */
4218 		zio_crypt_encode_mac_zil(enc_buf, mac);
4219 		zio_push_transform(zio, eabd, psize, psize, NULL);
4220 	} else {
4221 		BP_SET_CRYPT(bp, B_TRUE);
4222 		zio_crypt_encode_params_bp(bp, salt, iv);
4223 		zio_crypt_encode_mac_bp(bp, mac);
4224 
4225 		if (no_crypt) {
4226 			ASSERT3U(ot, ==, DMU_OT_DNODE);
4227 			abd_free(eabd);
4228 		} else {
4229 			zio_push_transform(zio, eabd, psize, psize, NULL);
4230 		}
4231 	}
4232 
4233 	return (zio);
4234 }
4235 
4236 /*
4237  * ==========================================================================
4238  * Generate and verify checksums
4239  * ==========================================================================
4240  */
4241 static zio_t *
4242 zio_checksum_generate(zio_t *zio)
4243 {
4244 	blkptr_t *bp = zio->io_bp;
4245 	enum zio_checksum checksum;
4246 
4247 	if (bp == NULL) {
4248 		/*
4249 		 * This is zio_write_phys().
4250 		 * We're either generating a label checksum, or none at all.
4251 		 */
4252 		checksum = zio->io_prop.zp_checksum;
4253 
4254 		if (checksum == ZIO_CHECKSUM_OFF)
4255 			return (zio);
4256 
4257 		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
4258 	} else {
4259 		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
4260 			ASSERT(!IO_IS_ALLOCATING(zio));
4261 			checksum = ZIO_CHECKSUM_GANG_HEADER;
4262 		} else {
4263 			checksum = BP_GET_CHECKSUM(bp);
4264 		}
4265 	}
4266 
4267 	zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size);
4268 
4269 	return (zio);
4270 }
4271 
4272 static zio_t *
4273 zio_checksum_verify(zio_t *zio)
4274 {
4275 	zio_bad_cksum_t info;
4276 	blkptr_t *bp = zio->io_bp;
4277 	int error;
4278 
4279 	ASSERT(zio->io_vd != NULL);
4280 
4281 	if (bp == NULL) {
4282 		/*
4283 		 * This is zio_read_phys().
4284 		 * We're either verifying a label checksum, or nothing at all.
4285 		 */
4286 		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
4287 			return (zio);
4288 
4289 		ASSERT3U(zio->io_prop.zp_checksum, ==, ZIO_CHECKSUM_LABEL);
4290 	}
4291 
4292 	if ((error = zio_checksum_error(zio, &info)) != 0) {
4293 		zio->io_error = error;
4294 		if (error == ECKSUM &&
4295 		    !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
4296 			(void) zfs_ereport_start_checksum(zio->io_spa,
4297 			    zio->io_vd, &zio->io_bookmark, zio,
4298 			    zio->io_offset, zio->io_size, &info);
4299 			mutex_enter(&zio->io_vd->vdev_stat_lock);
4300 			zio->io_vd->vdev_stat.vs_checksum_errors++;
4301 			mutex_exit(&zio->io_vd->vdev_stat_lock);
4302 		}
4303 	}
4304 
4305 	return (zio);
4306 }
4307 
4308 /*
4309  * Called by RAID-Z to ensure we don't compute the checksum twice.
4310  */
4311 void
4312 zio_checksum_verified(zio_t *zio)
4313 {
4314 	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
4315 }
4316 
4317 /*
4318  * ==========================================================================
4319  * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
4320  * An error of 0 indicates success.  ENXIO indicates whole-device failure,
4321  * which may be transient (e.g. unplugged) or permanent.  ECKSUM and EIO
4322  * indicate errors that are specific to one I/O, and most likely permanent.
4323  * Any other error is presumed to be worse because we weren't expecting it.
4324  * ==========================================================================
4325  */
4326 int
4327 zio_worst_error(int e1, int e2)
4328 {
4329 	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
4330 	int r1, r2;
4331 
4332 	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
4333 		if (e1 == zio_error_rank[r1])
4334 			break;
4335 
4336 	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
4337 		if (e2 == zio_error_rank[r2])
4338 			break;
4339 
4340 	return (r1 > r2 ? e1 : e2);
4341 }
4342 
4343 /*
4344  * ==========================================================================
4345  * I/O completion
4346  * ==========================================================================
4347  */
4348 static zio_t *
4349 zio_ready(zio_t *zio)
4350 {
4351 	blkptr_t *bp = zio->io_bp;
4352 	zio_t *pio, *pio_next;
4353 	zio_link_t *zl = NULL;
4354 
4355 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT,
4356 	    ZIO_WAIT_READY)) {
4357 		return (NULL);
4358 	}
4359 
4360 	if (zio->io_ready) {
4361 		ASSERT(IO_IS_ALLOCATING(zio));
4362 		ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
4363 		    (zio->io_flags & ZIO_FLAG_NOPWRITE));
4364 		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
4365 
4366 		zio->io_ready(zio);
4367 	}
4368 
4369 	if (bp != NULL && bp != &zio->io_bp_copy)
4370 		zio->io_bp_copy = *bp;
4371 
4372 	if (zio->io_error != 0) {
4373 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4374 
4375 		if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4376 			ASSERT(IO_IS_ALLOCATING(zio));
4377 			ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4378 			ASSERT(zio->io_metaslab_class != NULL);
4379 
4380 			/*
4381 			 * We were unable to allocate anything, unreserve and
4382 			 * issue the next I/O to allocate.
4383 			 */
4384 			metaslab_class_throttle_unreserve(
4385 			    zio->io_metaslab_class, zio->io_prop.zp_copies,
4386 			    zio->io_allocator, zio);
4387 			zio_allocate_dispatch(zio->io_spa, zio->io_allocator);
4388 		}
4389 	}
4390 
4391 	mutex_enter(&zio->io_lock);
4392 	zio->io_state[ZIO_WAIT_READY] = 1;
4393 	pio = zio_walk_parents(zio, &zl);
4394 	mutex_exit(&zio->io_lock);
4395 
4396 	/*
4397 	 * As we notify zio's parents, new parents could be added.
4398 	 * New parents go to the head of zio's io_parent_list, however,
4399 	 * so we will (correctly) not notify them.  The remainder of zio's
4400 	 * io_parent_list, from 'pio_next' onward, cannot change because
4401 	 * all parents must wait for us to be done before they can be done.
4402 	 */
4403 	for (; pio != NULL; pio = pio_next) {
4404 		pio_next = zio_walk_parents(zio, &zl);
4405 		zio_notify_parent(pio, zio, ZIO_WAIT_READY, NULL);
4406 	}
4407 
4408 	if (zio->io_flags & ZIO_FLAG_NODATA) {
4409 		if (BP_IS_GANG(bp)) {
4410 			zio->io_flags &= ~ZIO_FLAG_NODATA;
4411 		} else {
4412 			ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE);
4413 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
4414 		}
4415 	}
4416 
4417 	if (zio_injection_enabled &&
4418 	    zio->io_spa->spa_syncing_txg == zio->io_txg)
4419 		zio_handle_ignored_writes(zio);
4420 
4421 	return (zio);
4422 }
4423 
4424 /*
4425  * Update the allocation throttle accounting.
4426  */
4427 static void
4428 zio_dva_throttle_done(zio_t *zio)
4429 {
4430 	zio_t *lio __maybe_unused = zio->io_logical;
4431 	zio_t *pio = zio_unique_parent(zio);
4432 	vdev_t *vd = zio->io_vd;
4433 	int flags = METASLAB_ASYNC_ALLOC;
4434 
4435 	ASSERT3P(zio->io_bp, !=, NULL);
4436 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
4437 	ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE);
4438 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
4439 	ASSERT(vd != NULL);
4440 	ASSERT3P(vd, ==, vd->vdev_top);
4441 	ASSERT(zio_injection_enabled || !(zio->io_flags & ZIO_FLAG_IO_RETRY));
4442 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4443 	ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING);
4444 	ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE));
4445 	ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA));
4446 
4447 	/*
4448 	 * Parents of gang children can have two flavors -- ones that
4449 	 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set)
4450 	 * and ones that allocated the constituent blocks. The allocation
4451 	 * throttle needs to know the allocating parent zio so we must find
4452 	 * it here.
4453 	 */
4454 	if (pio->io_child_type == ZIO_CHILD_GANG) {
4455 		/*
4456 		 * If our parent is a rewrite gang child then our grandparent
4457 		 * would have been the one that performed the allocation.
4458 		 */
4459 		if (pio->io_flags & ZIO_FLAG_IO_REWRITE)
4460 			pio = zio_unique_parent(pio);
4461 		flags |= METASLAB_GANG_CHILD;
4462 	}
4463 
4464 	ASSERT(IO_IS_ALLOCATING(pio));
4465 	ASSERT3P(zio, !=, zio->io_logical);
4466 	ASSERT(zio->io_logical != NULL);
4467 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4468 	ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE);
4469 	ASSERT(zio->io_metaslab_class != NULL);
4470 
4471 	mutex_enter(&pio->io_lock);
4472 	metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags,
4473 	    pio->io_allocator, B_TRUE);
4474 	mutex_exit(&pio->io_lock);
4475 
4476 	metaslab_class_throttle_unreserve(zio->io_metaslab_class, 1,
4477 	    pio->io_allocator, pio);
4478 
4479 	/*
4480 	 * Call into the pipeline to see if there is more work that
4481 	 * needs to be done. If there is work to be done it will be
4482 	 * dispatched to another taskq thread.
4483 	 */
4484 	zio_allocate_dispatch(zio->io_spa, pio->io_allocator);
4485 }
4486 
4487 static zio_t *
4488 zio_done(zio_t *zio)
4489 {
4490 	/*
4491 	 * Always attempt to keep stack usage minimal here since
4492 	 * we can be called recursively up to 19 levels deep.
4493 	 */
4494 	const uint64_t psize = zio->io_size;
4495 	zio_t *pio, *pio_next;
4496 	zio_link_t *zl = NULL;
4497 
4498 	/*
4499 	 * If our children haven't all completed,
4500 	 * wait for them and then repeat this pipeline stage.
4501 	 */
4502 	if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) {
4503 		return (NULL);
4504 	}
4505 
4506 	/*
4507 	 * If the allocation throttle is enabled, then update the accounting.
4508 	 * We only track child I/Os that are part of an allocating async
4509 	 * write. We must do this since the allocation is performed
4510 	 * by the logical I/O but the actual write is done by child I/Os.
4511 	 */
4512 	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING &&
4513 	    zio->io_child_type == ZIO_CHILD_VDEV) {
4514 		ASSERT(zio->io_metaslab_class != NULL);
4515 		ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled);
4516 		zio_dva_throttle_done(zio);
4517 	}
4518 
4519 	/*
4520 	 * If the allocation throttle is enabled, verify that
4521 	 * we have decremented the refcounts for every I/O that was throttled.
4522 	 */
4523 	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4524 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
4525 		ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4526 		ASSERT(zio->io_bp != NULL);
4527 
4528 		metaslab_group_alloc_verify(zio->io_spa, zio->io_bp, zio,
4529 		    zio->io_allocator);
4530 		VERIFY(zfs_refcount_not_held(&zio->io_metaslab_class->
4531 		    mc_allocator[zio->io_allocator].mca_alloc_slots, zio));
4532 	}
4533 
4534 
4535 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
4536 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
4537 			ASSERT(zio->io_children[c][w] == 0);
4538 
4539 	if (zio->io_bp != NULL && !BP_IS_EMBEDDED(zio->io_bp)) {
4540 		ASSERT(zio->io_bp->blk_pad[0] == 0);
4541 		ASSERT(zio->io_bp->blk_pad[1] == 0);
4542 		ASSERT(bcmp(zio->io_bp, &zio->io_bp_copy,
4543 		    sizeof (blkptr_t)) == 0 ||
4544 		    (zio->io_bp == zio_unique_parent(zio)->io_bp));
4545 		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) &&
4546 		    zio->io_bp_override == NULL &&
4547 		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
4548 			ASSERT3U(zio->io_prop.zp_copies, <=,
4549 			    BP_GET_NDVAS(zio->io_bp));
4550 			ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 ||
4551 			    (BP_COUNT_GANG(zio->io_bp) ==
4552 			    BP_GET_NDVAS(zio->io_bp)));
4553 		}
4554 		if (zio->io_flags & ZIO_FLAG_NOPWRITE)
4555 			VERIFY(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
4556 	}
4557 
4558 	/*
4559 	 * If there were child vdev/gang/ddt errors, they apply to us now.
4560 	 */
4561 	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
4562 	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
4563 	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
4564 
4565 	/*
4566 	 * If the I/O on the transformed data was successful, generate any
4567 	 * checksum reports now while we still have the transformed data.
4568 	 */
4569 	if (zio->io_error == 0) {
4570 		while (zio->io_cksum_report != NULL) {
4571 			zio_cksum_report_t *zcr = zio->io_cksum_report;
4572 			uint64_t align = zcr->zcr_align;
4573 			uint64_t asize = P2ROUNDUP(psize, align);
4574 			abd_t *adata = zio->io_abd;
4575 
4576 			if (adata != NULL && asize != psize) {
4577 				adata = abd_alloc(asize, B_TRUE);
4578 				abd_copy(adata, zio->io_abd, psize);
4579 				abd_zero_off(adata, psize, asize - psize);
4580 			}
4581 
4582 			zio->io_cksum_report = zcr->zcr_next;
4583 			zcr->zcr_next = NULL;
4584 			zcr->zcr_finish(zcr, adata);
4585 			zfs_ereport_free_checksum(zcr);
4586 
4587 			if (adata != NULL && asize != psize)
4588 				abd_free(adata);
4589 		}
4590 	}
4591 
4592 	zio_pop_transforms(zio);	/* note: may set zio->io_error */
4593 
4594 	vdev_stat_update(zio, psize);
4595 
4596 	/*
4597 	 * If this I/O is attached to a particular vdev is slow, exceeding
4598 	 * 30 seconds to complete, post an error described the I/O delay.
4599 	 * We ignore these errors if the device is currently unavailable.
4600 	 */
4601 	if (zio->io_delay >= MSEC2NSEC(zio_slow_io_ms)) {
4602 		if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) {
4603 			/*
4604 			 * We want to only increment our slow IO counters if
4605 			 * the IO is valid (i.e. not if the drive is removed).
4606 			 *
4607 			 * zfs_ereport_post() will also do these checks, but
4608 			 * it can also ratelimit and have other failures, so we
4609 			 * need to increment the slow_io counters independent
4610 			 * of it.
4611 			 */
4612 			if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY,
4613 			    zio->io_spa, zio->io_vd, zio)) {
4614 				mutex_enter(&zio->io_vd->vdev_stat_lock);
4615 				zio->io_vd->vdev_stat.vs_slow_ios++;
4616 				mutex_exit(&zio->io_vd->vdev_stat_lock);
4617 
4618 				(void) zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
4619 				    zio->io_spa, zio->io_vd, &zio->io_bookmark,
4620 				    zio, 0);
4621 			}
4622 		}
4623 	}
4624 
4625 	if (zio->io_error) {
4626 		/*
4627 		 * If this I/O is attached to a particular vdev,
4628 		 * generate an error message describing the I/O failure
4629 		 * at the block level.  We ignore these errors if the
4630 		 * device is currently unavailable.
4631 		 */
4632 		if (zio->io_error != ECKSUM && zio->io_vd != NULL &&
4633 		    !vdev_is_dead(zio->io_vd)) {
4634 			int ret = zfs_ereport_post(FM_EREPORT_ZFS_IO,
4635 			    zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0);
4636 			if (ret != EALREADY) {
4637 				mutex_enter(&zio->io_vd->vdev_stat_lock);
4638 				if (zio->io_type == ZIO_TYPE_READ)
4639 					zio->io_vd->vdev_stat.vs_read_errors++;
4640 				else if (zio->io_type == ZIO_TYPE_WRITE)
4641 					zio->io_vd->vdev_stat.vs_write_errors++;
4642 				mutex_exit(&zio->io_vd->vdev_stat_lock);
4643 			}
4644 		}
4645 
4646 		if ((zio->io_error == EIO || !(zio->io_flags &
4647 		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
4648 		    zio == zio->io_logical) {
4649 			/*
4650 			 * For logical I/O requests, tell the SPA to log the
4651 			 * error and generate a logical data ereport.
4652 			 */
4653 			spa_log_error(zio->io_spa, &zio->io_bookmark);
4654 			(void) zfs_ereport_post(FM_EREPORT_ZFS_DATA,
4655 			    zio->io_spa, NULL, &zio->io_bookmark, zio, 0);
4656 		}
4657 	}
4658 
4659 	if (zio->io_error && zio == zio->io_logical) {
4660 		/*
4661 		 * Determine whether zio should be reexecuted.  This will
4662 		 * propagate all the way to the root via zio_notify_parent().
4663 		 */
4664 		ASSERT(zio->io_vd == NULL && zio->io_bp != NULL);
4665 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4666 
4667 		if (IO_IS_ALLOCATING(zio) &&
4668 		    !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
4669 			if (zio->io_error != ENOSPC)
4670 				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
4671 			else
4672 				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4673 		}
4674 
4675 		if ((zio->io_type == ZIO_TYPE_READ ||
4676 		    zio->io_type == ZIO_TYPE_FREE) &&
4677 		    !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
4678 		    zio->io_error == ENXIO &&
4679 		    spa_load_state(zio->io_spa) == SPA_LOAD_NONE &&
4680 		    spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE)
4681 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4682 
4683 		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
4684 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4685 
4686 		/*
4687 		 * Here is a possibly good place to attempt to do
4688 		 * either combinatorial reconstruction or error correction
4689 		 * based on checksums.  It also might be a good place
4690 		 * to send out preliminary ereports before we suspend
4691 		 * processing.
4692 		 */
4693 	}
4694 
4695 	/*
4696 	 * If there were logical child errors, they apply to us now.
4697 	 * We defer this until now to avoid conflating logical child
4698 	 * errors with errors that happened to the zio itself when
4699 	 * updating vdev stats and reporting FMA events above.
4700 	 */
4701 	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
4702 
4703 	if ((zio->io_error || zio->io_reexecute) &&
4704 	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
4705 	    !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
4706 		zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp);
4707 
4708 	zio_gang_tree_free(&zio->io_gang_tree);
4709 
4710 	/*
4711 	 * Godfather I/Os should never suspend.
4712 	 */
4713 	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
4714 	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
4715 		zio->io_reexecute &= ~ZIO_REEXECUTE_SUSPEND;
4716 
4717 	if (zio->io_reexecute) {
4718 		/*
4719 		 * This is a logical I/O that wants to reexecute.
4720 		 *
4721 		 * Reexecute is top-down.  When an i/o fails, if it's not
4722 		 * the root, it simply notifies its parent and sticks around.
4723 		 * The parent, seeing that it still has children in zio_done(),
4724 		 * does the same.  This percolates all the way up to the root.
4725 		 * The root i/o will reexecute or suspend the entire tree.
4726 		 *
4727 		 * This approach ensures that zio_reexecute() honors
4728 		 * all the original i/o dependency relationships, e.g.
4729 		 * parents not executing until children are ready.
4730 		 */
4731 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4732 
4733 		zio->io_gang_leader = NULL;
4734 
4735 		mutex_enter(&zio->io_lock);
4736 		zio->io_state[ZIO_WAIT_DONE] = 1;
4737 		mutex_exit(&zio->io_lock);
4738 
4739 		/*
4740 		 * "The Godfather" I/O monitors its children but is
4741 		 * not a true parent to them. It will track them through
4742 		 * the pipeline but severs its ties whenever they get into
4743 		 * trouble (e.g. suspended). This allows "The Godfather"
4744 		 * I/O to return status without blocking.
4745 		 */
4746 		zl = NULL;
4747 		for (pio = zio_walk_parents(zio, &zl); pio != NULL;
4748 		    pio = pio_next) {
4749 			zio_link_t *remove_zl = zl;
4750 			pio_next = zio_walk_parents(zio, &zl);
4751 
4752 			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
4753 			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
4754 				zio_remove_child(pio, zio, remove_zl);
4755 				/*
4756 				 * This is a rare code path, so we don't
4757 				 * bother with "next_to_execute".
4758 				 */
4759 				zio_notify_parent(pio, zio, ZIO_WAIT_DONE,
4760 				    NULL);
4761 			}
4762 		}
4763 
4764 		if ((pio = zio_unique_parent(zio)) != NULL) {
4765 			/*
4766 			 * We're not a root i/o, so there's nothing to do
4767 			 * but notify our parent.  Don't propagate errors
4768 			 * upward since we haven't permanently failed yet.
4769 			 */
4770 			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
4771 			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
4772 			/*
4773 			 * This is a rare code path, so we don't bother with
4774 			 * "next_to_execute".
4775 			 */
4776 			zio_notify_parent(pio, zio, ZIO_WAIT_DONE, NULL);
4777 		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
4778 			/*
4779 			 * We'd fail again if we reexecuted now, so suspend
4780 			 * until conditions improve (e.g. device comes online).
4781 			 */
4782 			zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR);
4783 		} else {
4784 			/*
4785 			 * Reexecution is potentially a huge amount of work.
4786 			 * Hand it off to the otherwise-unused claim taskq.
4787 			 */
4788 			ASSERT(taskq_empty_ent(&zio->io_tqent));
4789 			spa_taskq_dispatch_ent(zio->io_spa,
4790 			    ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE,
4791 			    (task_func_t *)zio_reexecute, zio, 0,
4792 			    &zio->io_tqent);
4793 		}
4794 		return (NULL);
4795 	}
4796 
4797 	ASSERT(zio->io_child_count == 0);
4798 	ASSERT(zio->io_reexecute == 0);
4799 	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
4800 
4801 	/*
4802 	 * Report any checksum errors, since the I/O is complete.
4803 	 */
4804 	while (zio->io_cksum_report != NULL) {
4805 		zio_cksum_report_t *zcr = zio->io_cksum_report;
4806 		zio->io_cksum_report = zcr->zcr_next;
4807 		zcr->zcr_next = NULL;
4808 		zcr->zcr_finish(zcr, NULL);
4809 		zfs_ereport_free_checksum(zcr);
4810 	}
4811 
4812 	if (zio->io_flags & ZIO_FLAG_FASTWRITE && zio->io_bp &&
4813 	    !BP_IS_HOLE(zio->io_bp) && !BP_IS_EMBEDDED(zio->io_bp) &&
4814 	    !(zio->io_flags & ZIO_FLAG_NOPWRITE)) {
4815 		metaslab_fastwrite_unmark(zio->io_spa, zio->io_bp);
4816 	}
4817 
4818 	/*
4819 	 * It is the responsibility of the done callback to ensure that this
4820 	 * particular zio is no longer discoverable for adoption, and as
4821 	 * such, cannot acquire any new parents.
4822 	 */
4823 	if (zio->io_done)
4824 		zio->io_done(zio);
4825 
4826 	mutex_enter(&zio->io_lock);
4827 	zio->io_state[ZIO_WAIT_DONE] = 1;
4828 	mutex_exit(&zio->io_lock);
4829 
4830 	/*
4831 	 * We are done executing this zio.  We may want to execute a parent
4832 	 * next.  See the comment in zio_notify_parent().
4833 	 */
4834 	zio_t *next_to_execute = NULL;
4835 	zl = NULL;
4836 	for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) {
4837 		zio_link_t *remove_zl = zl;
4838 		pio_next = zio_walk_parents(zio, &zl);
4839 		zio_remove_child(pio, zio, remove_zl);
4840 		zio_notify_parent(pio, zio, ZIO_WAIT_DONE, &next_to_execute);
4841 	}
4842 
4843 	if (zio->io_waiter != NULL) {
4844 		mutex_enter(&zio->io_lock);
4845 		zio->io_executor = NULL;
4846 		cv_broadcast(&zio->io_cv);
4847 		mutex_exit(&zio->io_lock);
4848 	} else {
4849 		zio_destroy(zio);
4850 	}
4851 
4852 	return (next_to_execute);
4853 }
4854 
4855 /*
4856  * ==========================================================================
4857  * I/O pipeline definition
4858  * ==========================================================================
4859  */
4860 static zio_pipe_stage_t *zio_pipeline[] = {
4861 	NULL,
4862 	zio_read_bp_init,
4863 	zio_write_bp_init,
4864 	zio_free_bp_init,
4865 	zio_issue_async,
4866 	zio_write_compress,
4867 	zio_encrypt,
4868 	zio_checksum_generate,
4869 	zio_nop_write,
4870 	zio_ddt_read_start,
4871 	zio_ddt_read_done,
4872 	zio_ddt_write,
4873 	zio_ddt_free,
4874 	zio_gang_assemble,
4875 	zio_gang_issue,
4876 	zio_dva_throttle,
4877 	zio_dva_allocate,
4878 	zio_dva_free,
4879 	zio_dva_claim,
4880 	zio_ready,
4881 	zio_vdev_io_start,
4882 	zio_vdev_io_done,
4883 	zio_vdev_io_assess,
4884 	zio_checksum_verify,
4885 	zio_done
4886 };
4887 
4888 
4889 
4890 
4891 /*
4892  * Compare two zbookmark_phys_t's to see which we would reach first in a
4893  * pre-order traversal of the object tree.
4894  *
4895  * This is simple in every case aside from the meta-dnode object. For all other
4896  * objects, we traverse them in order (object 1 before object 2, and so on).
4897  * However, all of these objects are traversed while traversing object 0, since
4898  * the data it points to is the list of objects.  Thus, we need to convert to a
4899  * canonical representation so we can compare meta-dnode bookmarks to
4900  * non-meta-dnode bookmarks.
4901  *
4902  * We do this by calculating "equivalents" for each field of the zbookmark.
4903  * zbookmarks outside of the meta-dnode use their own object and level, and
4904  * calculate the level 0 equivalent (the first L0 blkid that is contained in the
4905  * blocks this bookmark refers to) by multiplying their blkid by their span
4906  * (the number of L0 blocks contained within one block at their level).
4907  * zbookmarks inside the meta-dnode calculate their object equivalent
4908  * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
4909  * level + 1<<31 (any value larger than a level could ever be) for their level.
4910  * This causes them to always compare before a bookmark in their object
4911  * equivalent, compare appropriately to bookmarks in other objects, and to
4912  * compare appropriately to other bookmarks in the meta-dnode.
4913  */
4914 int
4915 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
4916     const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
4917 {
4918 	/*
4919 	 * These variables represent the "equivalent" values for the zbookmark,
4920 	 * after converting zbookmarks inside the meta dnode to their
4921 	 * normal-object equivalents.
4922 	 */
4923 	uint64_t zb1obj, zb2obj;
4924 	uint64_t zb1L0, zb2L0;
4925 	uint64_t zb1level, zb2level;
4926 
4927 	if (zb1->zb_object == zb2->zb_object &&
4928 	    zb1->zb_level == zb2->zb_level &&
4929 	    zb1->zb_blkid == zb2->zb_blkid)
4930 		return (0);
4931 
4932 	IMPLY(zb1->zb_level > 0, ibs1 >= SPA_MINBLOCKSHIFT);
4933 	IMPLY(zb2->zb_level > 0, ibs2 >= SPA_MINBLOCKSHIFT);
4934 
4935 	/*
4936 	 * BP_SPANB calculates the span in blocks.
4937 	 */
4938 	zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
4939 	zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
4940 
4941 	if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
4942 		zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4943 		zb1L0 = 0;
4944 		zb1level = zb1->zb_level + COMPARE_META_LEVEL;
4945 	} else {
4946 		zb1obj = zb1->zb_object;
4947 		zb1level = zb1->zb_level;
4948 	}
4949 
4950 	if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
4951 		zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4952 		zb2L0 = 0;
4953 		zb2level = zb2->zb_level + COMPARE_META_LEVEL;
4954 	} else {
4955 		zb2obj = zb2->zb_object;
4956 		zb2level = zb2->zb_level;
4957 	}
4958 
4959 	/* Now that we have a canonical representation, do the comparison. */
4960 	if (zb1obj != zb2obj)
4961 		return (zb1obj < zb2obj ? -1 : 1);
4962 	else if (zb1L0 != zb2L0)
4963 		return (zb1L0 < zb2L0 ? -1 : 1);
4964 	else if (zb1level != zb2level)
4965 		return (zb1level > zb2level ? -1 : 1);
4966 	/*
4967 	 * This can (theoretically) happen if the bookmarks have the same object
4968 	 * and level, but different blkids, if the block sizes are not the same.
4969 	 * There is presently no way to change the indirect block sizes
4970 	 */
4971 	return (0);
4972 }
4973 
4974 /*
4975  *  This function checks the following: given that last_block is the place that
4976  *  our traversal stopped last time, does that guarantee that we've visited
4977  *  every node under subtree_root?  Therefore, we can't just use the raw output
4978  *  of zbookmark_compare.  We have to pass in a modified version of
4979  *  subtree_root; by incrementing the block id, and then checking whether
4980  *  last_block is before or equal to that, we can tell whether or not having
4981  *  visited last_block implies that all of subtree_root's children have been
4982  *  visited.
4983  */
4984 boolean_t
4985 zbookmark_subtree_completed(const dnode_phys_t *dnp,
4986     const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
4987 {
4988 	zbookmark_phys_t mod_zb = *subtree_root;
4989 	mod_zb.zb_blkid++;
4990 	ASSERT(last_block->zb_level == 0);
4991 
4992 	/* The objset_phys_t isn't before anything. */
4993 	if (dnp == NULL)
4994 		return (B_FALSE);
4995 
4996 	/*
4997 	 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
4998 	 * data block size in sectors, because that variable is only used if
4999 	 * the bookmark refers to a block in the meta-dnode.  Since we don't
5000 	 * know without examining it what object it refers to, and there's no
5001 	 * harm in passing in this value in other cases, we always pass it in.
5002 	 *
5003 	 * We pass in 0 for the indirect block size shift because zb2 must be
5004 	 * level 0.  The indirect block size is only used to calculate the span
5005 	 * of the bookmark, but since the bookmark must be level 0, the span is
5006 	 * always 1, so the math works out.
5007 	 *
5008 	 * If you make changes to how the zbookmark_compare code works, be sure
5009 	 * to make sure that this code still works afterwards.
5010 	 */
5011 	return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
5012 	    1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
5013 	    last_block) <= 0);
5014 }
5015 
5016 EXPORT_SYMBOL(zio_type_name);
5017 EXPORT_SYMBOL(zio_buf_alloc);
5018 EXPORT_SYMBOL(zio_data_buf_alloc);
5019 EXPORT_SYMBOL(zio_buf_free);
5020 EXPORT_SYMBOL(zio_data_buf_free);
5021 
5022 /* BEGIN CSTYLED */
5023 ZFS_MODULE_PARAM(zfs_zio, zio_, slow_io_ms, INT, ZMOD_RW,
5024 	"Max I/O completion time (milliseconds) before marking it as slow");
5025 
5026 ZFS_MODULE_PARAM(zfs_zio, zio_, requeue_io_start_cut_in_line, INT, ZMOD_RW,
5027 	"Prioritize requeued I/O");
5028 
5029 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_deferred_free,  INT, ZMOD_RW,
5030 	"Defer frees starting in this pass");
5031 
5032 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_dont_compress, INT, ZMOD_RW,
5033 	"Don't compress starting in this pass");
5034 
5035 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_rewrite, INT, ZMOD_RW,
5036 	"Rewrite new bps starting in this pass");
5037 
5038 ZFS_MODULE_PARAM(zfs_zio, zio_, dva_throttle_enabled, INT, ZMOD_RW,
5039 	"Throttle block allocations in the ZIO pipeline");
5040 
5041 ZFS_MODULE_PARAM(zfs_zio, zio_, deadman_log_all, INT, ZMOD_RW,
5042 	"Log all slow ZIOs, not just those with vdevs");
5043 /* END CSTYLED */
5044