xref: /freebsd/sys/contrib/openzfs/module/zfs/zio.c (revision 4fbb9c43aa44d9145151bb5f77d302ba01fb7551)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2022 by Delphix. All rights reserved.
24  * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25  * Copyright (c) 2017, Intel Corporation.
26  * Copyright (c) 2019, Klara Inc.
27  * Copyright (c) 2019, Allan Jude
28  * Copyright (c) 2021, Datto, Inc.
29  */
30 
31 #include <sys/sysmacros.h>
32 #include <sys/zfs_context.h>
33 #include <sys/fm/fs/zfs.h>
34 #include <sys/spa.h>
35 #include <sys/txg.h>
36 #include <sys/spa_impl.h>
37 #include <sys/vdev_impl.h>
38 #include <sys/vdev_trim.h>
39 #include <sys/zio_impl.h>
40 #include <sys/zio_compress.h>
41 #include <sys/zio_checksum.h>
42 #include <sys/dmu_objset.h>
43 #include <sys/arc.h>
44 #include <sys/brt.h>
45 #include <sys/ddt.h>
46 #include <sys/blkptr.h>
47 #include <sys/zfeature.h>
48 #include <sys/dsl_scan.h>
49 #include <sys/metaslab_impl.h>
50 #include <sys/time.h>
51 #include <sys/trace_zfs.h>
52 #include <sys/abd.h>
53 #include <sys/dsl_crypt.h>
54 #include <cityhash.h>
55 
56 /*
57  * ==========================================================================
58  * I/O type descriptions
59  * ==========================================================================
60  */
61 const char *const zio_type_name[ZIO_TYPES] = {
62 	/*
63 	 * Note: Linux kernel thread name length is limited
64 	 * so these names will differ from upstream open zfs.
65 	 */
66 	"z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_ioctl", "z_trim"
67 };
68 
69 int zio_dva_throttle_enabled = B_TRUE;
70 static int zio_deadman_log_all = B_FALSE;
71 
72 /*
73  * ==========================================================================
74  * I/O kmem caches
75  * ==========================================================================
76  */
77 static kmem_cache_t *zio_cache;
78 static kmem_cache_t *zio_link_cache;
79 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
80 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
81 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
82 static uint64_t zio_buf_cache_allocs[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
83 static uint64_t zio_buf_cache_frees[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
84 #endif
85 
86 /* Mark IOs as "slow" if they take longer than 30 seconds */
87 static uint_t zio_slow_io_ms = (30 * MILLISEC);
88 
89 #define	BP_SPANB(indblkshift, level) \
90 	(((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
91 #define	COMPARE_META_LEVEL	0x80000000ul
92 /*
93  * The following actions directly effect the spa's sync-to-convergence logic.
94  * The values below define the sync pass when we start performing the action.
95  * Care should be taken when changing these values as they directly impact
96  * spa_sync() performance. Tuning these values may introduce subtle performance
97  * pathologies and should only be done in the context of performance analysis.
98  * These tunables will eventually be removed and replaced with #defines once
99  * enough analysis has been done to determine optimal values.
100  *
101  * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
102  * regular blocks are not deferred.
103  *
104  * Starting in sync pass 8 (zfs_sync_pass_dont_compress), we disable
105  * compression (including of metadata).  In practice, we don't have this
106  * many sync passes, so this has no effect.
107  *
108  * The original intent was that disabling compression would help the sync
109  * passes to converge. However, in practice disabling compression increases
110  * the average number of sync passes, because when we turn compression off, a
111  * lot of block's size will change and thus we have to re-allocate (not
112  * overwrite) them. It also increases the number of 128KB allocations (e.g.
113  * for indirect blocks and spacemaps) because these will not be compressed.
114  * The 128K allocations are especially detrimental to performance on highly
115  * fragmented systems, which may have very few free segments of this size,
116  * and may need to load new metaslabs to satisfy 128K allocations.
117  */
118 
119 /* defer frees starting in this pass */
120 uint_t zfs_sync_pass_deferred_free = 2;
121 
122 /* don't compress starting in this pass */
123 static uint_t zfs_sync_pass_dont_compress = 8;
124 
125 /* rewrite new bps starting in this pass */
126 static uint_t zfs_sync_pass_rewrite = 2;
127 
128 /*
129  * An allocating zio is one that either currently has the DVA allocate
130  * stage set or will have it later in its lifetime.
131  */
132 #define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
133 
134 /*
135  * Enable smaller cores by excluding metadata
136  * allocations as well.
137  */
138 int zio_exclude_metadata = 0;
139 static int zio_requeue_io_start_cut_in_line = 1;
140 
141 #ifdef ZFS_DEBUG
142 static const int zio_buf_debug_limit = 16384;
143 #else
144 static const int zio_buf_debug_limit = 0;
145 #endif
146 
147 static inline void __zio_execute(zio_t *zio);
148 
149 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t);
150 
151 void
152 zio_init(void)
153 {
154 	size_t c;
155 
156 	zio_cache = kmem_cache_create("zio_cache",
157 	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
158 	zio_link_cache = kmem_cache_create("zio_link_cache",
159 	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
160 
161 	/*
162 	 * For small buffers, we want a cache for each multiple of
163 	 * SPA_MINBLOCKSIZE.  For larger buffers, we want a cache
164 	 * for each quarter-power of 2.
165 	 */
166 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
167 		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
168 		size_t p2 = size;
169 		size_t align = 0;
170 		size_t data_cflags, cflags;
171 
172 		data_cflags = KMC_NODEBUG;
173 		cflags = (zio_exclude_metadata || size > zio_buf_debug_limit) ?
174 		    KMC_NODEBUG : 0;
175 
176 		while (!ISP2(p2))
177 			p2 &= p2 - 1;
178 
179 #ifndef _KERNEL
180 		/*
181 		 * If we are using watchpoints, put each buffer on its own page,
182 		 * to eliminate the performance overhead of trapping to the
183 		 * kernel when modifying a non-watched buffer that shares the
184 		 * page with a watched buffer.
185 		 */
186 		if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
187 			continue;
188 		/*
189 		 * Here's the problem - on 4K native devices in userland on
190 		 * Linux using O_DIRECT, buffers must be 4K aligned or I/O
191 		 * will fail with EINVAL, causing zdb (and others) to coredump.
192 		 * Since userland probably doesn't need optimized buffer caches,
193 		 * we just force 4K alignment on everything.
194 		 */
195 		align = 8 * SPA_MINBLOCKSIZE;
196 #else
197 		if (size < PAGESIZE) {
198 			align = SPA_MINBLOCKSIZE;
199 		} else if (IS_P2ALIGNED(size, p2 >> 2)) {
200 			align = PAGESIZE;
201 		}
202 #endif
203 
204 		if (align != 0) {
205 			char name[36];
206 			if (cflags == data_cflags) {
207 				/*
208 				 * Resulting kmem caches would be identical.
209 				 * Save memory by creating only one.
210 				 */
211 				(void) snprintf(name, sizeof (name),
212 				    "zio_buf_comb_%lu", (ulong_t)size);
213 				zio_buf_cache[c] = kmem_cache_create(name,
214 				    size, align, NULL, NULL, NULL, NULL, NULL,
215 				    cflags);
216 				zio_data_buf_cache[c] = zio_buf_cache[c];
217 				continue;
218 			}
219 			(void) snprintf(name, sizeof (name), "zio_buf_%lu",
220 			    (ulong_t)size);
221 			zio_buf_cache[c] = kmem_cache_create(name, size,
222 			    align, NULL, NULL, NULL, NULL, NULL, cflags);
223 
224 			(void) snprintf(name, sizeof (name), "zio_data_buf_%lu",
225 			    (ulong_t)size);
226 			zio_data_buf_cache[c] = kmem_cache_create(name, size,
227 			    align, NULL, NULL, NULL, NULL, NULL, data_cflags);
228 		}
229 	}
230 
231 	while (--c != 0) {
232 		ASSERT(zio_buf_cache[c] != NULL);
233 		if (zio_buf_cache[c - 1] == NULL)
234 			zio_buf_cache[c - 1] = zio_buf_cache[c];
235 
236 		ASSERT(zio_data_buf_cache[c] != NULL);
237 		if (zio_data_buf_cache[c - 1] == NULL)
238 			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
239 	}
240 
241 	zio_inject_init();
242 
243 	lz4_init();
244 }
245 
246 void
247 zio_fini(void)
248 {
249 	size_t n = SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT;
250 
251 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
252 	for (size_t i = 0; i < n; i++) {
253 		if (zio_buf_cache_allocs[i] != zio_buf_cache_frees[i])
254 			(void) printf("zio_fini: [%d] %llu != %llu\n",
255 			    (int)((i + 1) << SPA_MINBLOCKSHIFT),
256 			    (long long unsigned)zio_buf_cache_allocs[i],
257 			    (long long unsigned)zio_buf_cache_frees[i]);
258 	}
259 #endif
260 
261 	/*
262 	 * The same kmem cache can show up multiple times in both zio_buf_cache
263 	 * and zio_data_buf_cache. Do a wasteful but trivially correct scan to
264 	 * sort it out.
265 	 */
266 	for (size_t i = 0; i < n; i++) {
267 		kmem_cache_t *cache = zio_buf_cache[i];
268 		if (cache == NULL)
269 			continue;
270 		for (size_t j = i; j < n; j++) {
271 			if (cache == zio_buf_cache[j])
272 				zio_buf_cache[j] = NULL;
273 			if (cache == zio_data_buf_cache[j])
274 				zio_data_buf_cache[j] = NULL;
275 		}
276 		kmem_cache_destroy(cache);
277 	}
278 
279 	for (size_t i = 0; i < n; i++) {
280 		kmem_cache_t *cache = zio_data_buf_cache[i];
281 		if (cache == NULL)
282 			continue;
283 		for (size_t j = i; j < n; j++) {
284 			if (cache == zio_data_buf_cache[j])
285 				zio_data_buf_cache[j] = NULL;
286 		}
287 		kmem_cache_destroy(cache);
288 	}
289 
290 	for (size_t i = 0; i < n; i++) {
291 		VERIFY3P(zio_buf_cache[i], ==, NULL);
292 		VERIFY3P(zio_data_buf_cache[i], ==, NULL);
293 	}
294 
295 	kmem_cache_destroy(zio_link_cache);
296 	kmem_cache_destroy(zio_cache);
297 
298 	zio_inject_fini();
299 
300 	lz4_fini();
301 }
302 
303 /*
304  * ==========================================================================
305  * Allocate and free I/O buffers
306  * ==========================================================================
307  */
308 
309 /*
310  * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
311  * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
312  * useful to inspect ZFS metadata, but if possible, we should avoid keeping
313  * excess / transient data in-core during a crashdump.
314  */
315 void *
316 zio_buf_alloc(size_t size)
317 {
318 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
319 
320 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
321 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
322 	atomic_add_64(&zio_buf_cache_allocs[c], 1);
323 #endif
324 
325 	return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
326 }
327 
328 /*
329  * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
330  * crashdump if the kernel panics.  This exists so that we will limit the amount
331  * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
332  * of kernel heap dumped to disk when the kernel panics)
333  */
334 void *
335 zio_data_buf_alloc(size_t size)
336 {
337 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
338 
339 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
340 
341 	return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
342 }
343 
344 void
345 zio_buf_free(void *buf, size_t size)
346 {
347 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
348 
349 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
350 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
351 	atomic_add_64(&zio_buf_cache_frees[c], 1);
352 #endif
353 
354 	kmem_cache_free(zio_buf_cache[c], buf);
355 }
356 
357 void
358 zio_data_buf_free(void *buf, size_t size)
359 {
360 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
361 
362 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
363 
364 	kmem_cache_free(zio_data_buf_cache[c], buf);
365 }
366 
367 static void
368 zio_abd_free(void *abd, size_t size)
369 {
370 	(void) size;
371 	abd_free((abd_t *)abd);
372 }
373 
374 /*
375  * ==========================================================================
376  * Push and pop I/O transform buffers
377  * ==========================================================================
378  */
379 void
380 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize,
381     zio_transform_func_t *transform)
382 {
383 	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
384 
385 	zt->zt_orig_abd = zio->io_abd;
386 	zt->zt_orig_size = zio->io_size;
387 	zt->zt_bufsize = bufsize;
388 	zt->zt_transform = transform;
389 
390 	zt->zt_next = zio->io_transform_stack;
391 	zio->io_transform_stack = zt;
392 
393 	zio->io_abd = data;
394 	zio->io_size = size;
395 }
396 
397 void
398 zio_pop_transforms(zio_t *zio)
399 {
400 	zio_transform_t *zt;
401 
402 	while ((zt = zio->io_transform_stack) != NULL) {
403 		if (zt->zt_transform != NULL)
404 			zt->zt_transform(zio,
405 			    zt->zt_orig_abd, zt->zt_orig_size);
406 
407 		if (zt->zt_bufsize != 0)
408 			abd_free(zio->io_abd);
409 
410 		zio->io_abd = zt->zt_orig_abd;
411 		zio->io_size = zt->zt_orig_size;
412 		zio->io_transform_stack = zt->zt_next;
413 
414 		kmem_free(zt, sizeof (zio_transform_t));
415 	}
416 }
417 
418 /*
419  * ==========================================================================
420  * I/O transform callbacks for subblocks, decompression, and decryption
421  * ==========================================================================
422  */
423 static void
424 zio_subblock(zio_t *zio, abd_t *data, uint64_t size)
425 {
426 	ASSERT(zio->io_size > size);
427 
428 	if (zio->io_type == ZIO_TYPE_READ)
429 		abd_copy(data, zio->io_abd, size);
430 }
431 
432 static void
433 zio_decompress(zio_t *zio, abd_t *data, uint64_t size)
434 {
435 	if (zio->io_error == 0) {
436 		void *tmp = abd_borrow_buf(data, size);
437 		int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
438 		    zio->io_abd, tmp, zio->io_size, size,
439 		    &zio->io_prop.zp_complevel);
440 		abd_return_buf_copy(data, tmp, size);
441 
442 		if (zio_injection_enabled && ret == 0)
443 			ret = zio_handle_fault_injection(zio, EINVAL);
444 
445 		if (ret != 0)
446 			zio->io_error = SET_ERROR(EIO);
447 	}
448 }
449 
450 static void
451 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size)
452 {
453 	int ret;
454 	void *tmp;
455 	blkptr_t *bp = zio->io_bp;
456 	spa_t *spa = zio->io_spa;
457 	uint64_t dsobj = zio->io_bookmark.zb_objset;
458 	uint64_t lsize = BP_GET_LSIZE(bp);
459 	dmu_object_type_t ot = BP_GET_TYPE(bp);
460 	uint8_t salt[ZIO_DATA_SALT_LEN];
461 	uint8_t iv[ZIO_DATA_IV_LEN];
462 	uint8_t mac[ZIO_DATA_MAC_LEN];
463 	boolean_t no_crypt = B_FALSE;
464 
465 	ASSERT(BP_USES_CRYPT(bp));
466 	ASSERT3U(size, !=, 0);
467 
468 	if (zio->io_error != 0)
469 		return;
470 
471 	/*
472 	 * Verify the cksum of MACs stored in an indirect bp. It will always
473 	 * be possible to verify this since it does not require an encryption
474 	 * key.
475 	 */
476 	if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) {
477 		zio_crypt_decode_mac_bp(bp, mac);
478 
479 		if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) {
480 			/*
481 			 * We haven't decompressed the data yet, but
482 			 * zio_crypt_do_indirect_mac_checksum() requires
483 			 * decompressed data to be able to parse out the MACs
484 			 * from the indirect block. We decompress it now and
485 			 * throw away the result after we are finished.
486 			 */
487 			tmp = zio_buf_alloc(lsize);
488 			ret = zio_decompress_data(BP_GET_COMPRESS(bp),
489 			    zio->io_abd, tmp, zio->io_size, lsize,
490 			    &zio->io_prop.zp_complevel);
491 			if (ret != 0) {
492 				ret = SET_ERROR(EIO);
493 				goto error;
494 			}
495 			ret = zio_crypt_do_indirect_mac_checksum(B_FALSE,
496 			    tmp, lsize, BP_SHOULD_BYTESWAP(bp), mac);
497 			zio_buf_free(tmp, lsize);
498 		} else {
499 			ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE,
500 			    zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac);
501 		}
502 		abd_copy(data, zio->io_abd, size);
503 
504 		if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) {
505 			ret = zio_handle_decrypt_injection(spa,
506 			    &zio->io_bookmark, ot, ECKSUM);
507 		}
508 		if (ret != 0)
509 			goto error;
510 
511 		return;
512 	}
513 
514 	/*
515 	 * If this is an authenticated block, just check the MAC. It would be
516 	 * nice to separate this out into its own flag, but when this was done,
517 	 * we had run out of bits in what is now zio_flag_t. Future cleanup
518 	 * could make this a flag bit.
519 	 */
520 	if (BP_IS_AUTHENTICATED(bp)) {
521 		if (ot == DMU_OT_OBJSET) {
522 			ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa,
523 			    dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp));
524 		} else {
525 			zio_crypt_decode_mac_bp(bp, mac);
526 			ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj,
527 			    zio->io_abd, size, mac);
528 			if (zio_injection_enabled && ret == 0) {
529 				ret = zio_handle_decrypt_injection(spa,
530 				    &zio->io_bookmark, ot, ECKSUM);
531 			}
532 		}
533 		abd_copy(data, zio->io_abd, size);
534 
535 		if (ret != 0)
536 			goto error;
537 
538 		return;
539 	}
540 
541 	zio_crypt_decode_params_bp(bp, salt, iv);
542 
543 	if (ot == DMU_OT_INTENT_LOG) {
544 		tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t));
545 		zio_crypt_decode_mac_zil(tmp, mac);
546 		abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t));
547 	} else {
548 		zio_crypt_decode_mac_bp(bp, mac);
549 	}
550 
551 	ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp),
552 	    BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data,
553 	    zio->io_abd, &no_crypt);
554 	if (no_crypt)
555 		abd_copy(data, zio->io_abd, size);
556 
557 	if (ret != 0)
558 		goto error;
559 
560 	return;
561 
562 error:
563 	/* assert that the key was found unless this was speculative */
564 	ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE));
565 
566 	/*
567 	 * If there was a decryption / authentication error return EIO as
568 	 * the io_error. If this was not a speculative zio, create an ereport.
569 	 */
570 	if (ret == ECKSUM) {
571 		zio->io_error = SET_ERROR(EIO);
572 		if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
573 			spa_log_error(spa, &zio->io_bookmark,
574 			    &zio->io_bp->blk_birth);
575 			(void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
576 			    spa, NULL, &zio->io_bookmark, zio, 0);
577 		}
578 	} else {
579 		zio->io_error = ret;
580 	}
581 }
582 
583 /*
584  * ==========================================================================
585  * I/O parent/child relationships and pipeline interlocks
586  * ==========================================================================
587  */
588 zio_t *
589 zio_walk_parents(zio_t *cio, zio_link_t **zl)
590 {
591 	list_t *pl = &cio->io_parent_list;
592 
593 	*zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl);
594 	if (*zl == NULL)
595 		return (NULL);
596 
597 	ASSERT((*zl)->zl_child == cio);
598 	return ((*zl)->zl_parent);
599 }
600 
601 zio_t *
602 zio_walk_children(zio_t *pio, zio_link_t **zl)
603 {
604 	list_t *cl = &pio->io_child_list;
605 
606 	ASSERT(MUTEX_HELD(&pio->io_lock));
607 
608 	*zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl);
609 	if (*zl == NULL)
610 		return (NULL);
611 
612 	ASSERT((*zl)->zl_parent == pio);
613 	return ((*zl)->zl_child);
614 }
615 
616 zio_t *
617 zio_unique_parent(zio_t *cio)
618 {
619 	zio_link_t *zl = NULL;
620 	zio_t *pio = zio_walk_parents(cio, &zl);
621 
622 	VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL);
623 	return (pio);
624 }
625 
626 void
627 zio_add_child(zio_t *pio, zio_t *cio)
628 {
629 	/*
630 	 * Logical I/Os can have logical, gang, or vdev children.
631 	 * Gang I/Os can have gang or vdev children.
632 	 * Vdev I/Os can only have vdev children.
633 	 * The following ASSERT captures all of these constraints.
634 	 */
635 	ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
636 
637 	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
638 	zl->zl_parent = pio;
639 	zl->zl_child = cio;
640 
641 	mutex_enter(&pio->io_lock);
642 	mutex_enter(&cio->io_lock);
643 
644 	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
645 
646 	uint64_t *countp = pio->io_children[cio->io_child_type];
647 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
648 		countp[w] += !cio->io_state[w];
649 
650 	list_insert_head(&pio->io_child_list, zl);
651 	list_insert_head(&cio->io_parent_list, zl);
652 
653 	mutex_exit(&cio->io_lock);
654 	mutex_exit(&pio->io_lock);
655 }
656 
657 void
658 zio_add_child_first(zio_t *pio, zio_t *cio)
659 {
660 	/*
661 	 * Logical I/Os can have logical, gang, or vdev children.
662 	 * Gang I/Os can have gang or vdev children.
663 	 * Vdev I/Os can only have vdev children.
664 	 * The following ASSERT captures all of these constraints.
665 	 */
666 	ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
667 
668 	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
669 	zl->zl_parent = pio;
670 	zl->zl_child = cio;
671 
672 	ASSERT(list_is_empty(&cio->io_parent_list));
673 	list_insert_head(&cio->io_parent_list, zl);
674 
675 	mutex_enter(&pio->io_lock);
676 
677 	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
678 
679 	uint64_t *countp = pio->io_children[cio->io_child_type];
680 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
681 		countp[w] += !cio->io_state[w];
682 
683 	list_insert_head(&pio->io_child_list, zl);
684 
685 	mutex_exit(&pio->io_lock);
686 }
687 
688 static void
689 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
690 {
691 	ASSERT(zl->zl_parent == pio);
692 	ASSERT(zl->zl_child == cio);
693 
694 	mutex_enter(&pio->io_lock);
695 	mutex_enter(&cio->io_lock);
696 
697 	list_remove(&pio->io_child_list, zl);
698 	list_remove(&cio->io_parent_list, zl);
699 
700 	mutex_exit(&cio->io_lock);
701 	mutex_exit(&pio->io_lock);
702 	kmem_cache_free(zio_link_cache, zl);
703 }
704 
705 static boolean_t
706 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait)
707 {
708 	boolean_t waiting = B_FALSE;
709 
710 	mutex_enter(&zio->io_lock);
711 	ASSERT(zio->io_stall == NULL);
712 	for (int c = 0; c < ZIO_CHILD_TYPES; c++) {
713 		if (!(ZIO_CHILD_BIT_IS_SET(childbits, c)))
714 			continue;
715 
716 		uint64_t *countp = &zio->io_children[c][wait];
717 		if (*countp != 0) {
718 			zio->io_stage >>= 1;
719 			ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN);
720 			zio->io_stall = countp;
721 			waiting = B_TRUE;
722 			break;
723 		}
724 	}
725 	mutex_exit(&zio->io_lock);
726 	return (waiting);
727 }
728 
729 __attribute__((always_inline))
730 static inline void
731 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait,
732     zio_t **next_to_executep)
733 {
734 	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
735 	int *errorp = &pio->io_child_error[zio->io_child_type];
736 
737 	mutex_enter(&pio->io_lock);
738 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
739 		*errorp = zio_worst_error(*errorp, zio->io_error);
740 	pio->io_reexecute |= zio->io_reexecute;
741 	ASSERT3U(*countp, >, 0);
742 
743 	(*countp)--;
744 
745 	if (*countp == 0 && pio->io_stall == countp) {
746 		zio_taskq_type_t type =
747 		    pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE :
748 		    ZIO_TASKQ_INTERRUPT;
749 		pio->io_stall = NULL;
750 		mutex_exit(&pio->io_lock);
751 
752 		/*
753 		 * If we can tell the caller to execute this parent next, do
754 		 * so. We only do this if the parent's zio type matches the
755 		 * child's type. Otherwise dispatch the parent zio in its
756 		 * own taskq.
757 		 *
758 		 * Having the caller execute the parent when possible reduces
759 		 * locking on the zio taskq's, reduces context switch
760 		 * overhead, and has no recursion penalty.  Note that one
761 		 * read from disk typically causes at least 3 zio's: a
762 		 * zio_null(), the logical zio_read(), and then a physical
763 		 * zio.  When the physical ZIO completes, we are able to call
764 		 * zio_done() on all 3 of these zio's from one invocation of
765 		 * zio_execute() by returning the parent back to
766 		 * zio_execute().  Since the parent isn't executed until this
767 		 * thread returns back to zio_execute(), the caller should do
768 		 * so promptly.
769 		 *
770 		 * In other cases, dispatching the parent prevents
771 		 * overflowing the stack when we have deeply nested
772 		 * parent-child relationships, as we do with the "mega zio"
773 		 * of writes for spa_sync(), and the chain of ZIL blocks.
774 		 */
775 		if (next_to_executep != NULL && *next_to_executep == NULL &&
776 		    pio->io_type == zio->io_type) {
777 			*next_to_executep = pio;
778 		} else {
779 			zio_taskq_dispatch(pio, type, B_FALSE);
780 		}
781 	} else {
782 		mutex_exit(&pio->io_lock);
783 	}
784 }
785 
786 static void
787 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
788 {
789 	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
790 		zio->io_error = zio->io_child_error[c];
791 }
792 
793 int
794 zio_bookmark_compare(const void *x1, const void *x2)
795 {
796 	const zio_t *z1 = x1;
797 	const zio_t *z2 = x2;
798 
799 	if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset)
800 		return (-1);
801 	if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset)
802 		return (1);
803 
804 	if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object)
805 		return (-1);
806 	if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object)
807 		return (1);
808 
809 	if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level)
810 		return (-1);
811 	if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level)
812 		return (1);
813 
814 	if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid)
815 		return (-1);
816 	if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid)
817 		return (1);
818 
819 	if (z1 < z2)
820 		return (-1);
821 	if (z1 > z2)
822 		return (1);
823 
824 	return (0);
825 }
826 
827 /*
828  * ==========================================================================
829  * Create the various types of I/O (read, write, free, etc)
830  * ==========================================================================
831  */
832 static zio_t *
833 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
834     abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done,
835     void *private, zio_type_t type, zio_priority_t priority,
836     zio_flag_t flags, vdev_t *vd, uint64_t offset,
837     const zbookmark_phys_t *zb, enum zio_stage stage,
838     enum zio_stage pipeline)
839 {
840 	zio_t *zio;
841 
842 	IMPLY(type != ZIO_TYPE_TRIM, psize <= SPA_MAXBLOCKSIZE);
843 	ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0);
844 	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
845 
846 	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
847 	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
848 	ASSERT(vd || stage == ZIO_STAGE_OPEN);
849 
850 	IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0);
851 
852 	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
853 	memset(zio, 0, sizeof (zio_t));
854 
855 	mutex_init(&zio->io_lock, NULL, MUTEX_NOLOCKDEP, NULL);
856 	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
857 
858 	list_create(&zio->io_parent_list, sizeof (zio_link_t),
859 	    offsetof(zio_link_t, zl_parent_node));
860 	list_create(&zio->io_child_list, sizeof (zio_link_t),
861 	    offsetof(zio_link_t, zl_child_node));
862 	metaslab_trace_init(&zio->io_alloc_list);
863 
864 	if (vd != NULL)
865 		zio->io_child_type = ZIO_CHILD_VDEV;
866 	else if (flags & ZIO_FLAG_GANG_CHILD)
867 		zio->io_child_type = ZIO_CHILD_GANG;
868 	else if (flags & ZIO_FLAG_DDT_CHILD)
869 		zio->io_child_type = ZIO_CHILD_DDT;
870 	else
871 		zio->io_child_type = ZIO_CHILD_LOGICAL;
872 
873 	if (bp != NULL) {
874 		if (type != ZIO_TYPE_WRITE ||
875 		    zio->io_child_type == ZIO_CHILD_DDT) {
876 			zio->io_bp_copy = *bp;
877 			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
878 		} else {
879 			zio->io_bp = (blkptr_t *)bp;
880 		}
881 		zio->io_bp_orig = *bp;
882 		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
883 			zio->io_logical = zio;
884 		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
885 			pipeline |= ZIO_GANG_STAGES;
886 	}
887 
888 	zio->io_spa = spa;
889 	zio->io_txg = txg;
890 	zio->io_done = done;
891 	zio->io_private = private;
892 	zio->io_type = type;
893 	zio->io_priority = priority;
894 	zio->io_vd = vd;
895 	zio->io_offset = offset;
896 	zio->io_orig_abd = zio->io_abd = data;
897 	zio->io_orig_size = zio->io_size = psize;
898 	zio->io_lsize = lsize;
899 	zio->io_orig_flags = zio->io_flags = flags;
900 	zio->io_orig_stage = zio->io_stage = stage;
901 	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
902 	zio->io_pipeline_trace = ZIO_STAGE_OPEN;
903 
904 	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
905 	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
906 
907 	if (zb != NULL)
908 		zio->io_bookmark = *zb;
909 
910 	if (pio != NULL) {
911 		zio->io_metaslab_class = pio->io_metaslab_class;
912 		if (zio->io_logical == NULL)
913 			zio->io_logical = pio->io_logical;
914 		if (zio->io_child_type == ZIO_CHILD_GANG)
915 			zio->io_gang_leader = pio->io_gang_leader;
916 		zio_add_child_first(pio, zio);
917 	}
918 
919 	taskq_init_ent(&zio->io_tqent);
920 
921 	return (zio);
922 }
923 
924 void
925 zio_destroy(zio_t *zio)
926 {
927 	metaslab_trace_fini(&zio->io_alloc_list);
928 	list_destroy(&zio->io_parent_list);
929 	list_destroy(&zio->io_child_list);
930 	mutex_destroy(&zio->io_lock);
931 	cv_destroy(&zio->io_cv);
932 	kmem_cache_free(zio_cache, zio);
933 }
934 
935 zio_t *
936 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
937     void *private, zio_flag_t flags)
938 {
939 	zio_t *zio;
940 
941 	zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
942 	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
943 	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
944 
945 	return (zio);
946 }
947 
948 zio_t *
949 zio_root(spa_t *spa, zio_done_func_t *done, void *private, zio_flag_t flags)
950 {
951 	return (zio_null(NULL, spa, NULL, done, private, flags));
952 }
953 
954 static int
955 zfs_blkptr_verify_log(spa_t *spa, const blkptr_t *bp,
956     enum blk_verify_flag blk_verify, const char *fmt, ...)
957 {
958 	va_list adx;
959 	char buf[256];
960 
961 	va_start(adx, fmt);
962 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
963 	va_end(adx);
964 
965 	zfs_dbgmsg("bad blkptr at %px: "
966 	    "DVA[0]=%#llx/%#llx "
967 	    "DVA[1]=%#llx/%#llx "
968 	    "DVA[2]=%#llx/%#llx "
969 	    "prop=%#llx "
970 	    "pad=%#llx,%#llx "
971 	    "phys_birth=%#llx "
972 	    "birth=%#llx "
973 	    "fill=%#llx "
974 	    "cksum=%#llx/%#llx/%#llx/%#llx",
975 	    bp,
976 	    (long long)bp->blk_dva[0].dva_word[0],
977 	    (long long)bp->blk_dva[0].dva_word[1],
978 	    (long long)bp->blk_dva[1].dva_word[0],
979 	    (long long)bp->blk_dva[1].dva_word[1],
980 	    (long long)bp->blk_dva[2].dva_word[0],
981 	    (long long)bp->blk_dva[2].dva_word[1],
982 	    (long long)bp->blk_prop,
983 	    (long long)bp->blk_pad[0],
984 	    (long long)bp->blk_pad[1],
985 	    (long long)bp->blk_phys_birth,
986 	    (long long)bp->blk_birth,
987 	    (long long)bp->blk_fill,
988 	    (long long)bp->blk_cksum.zc_word[0],
989 	    (long long)bp->blk_cksum.zc_word[1],
990 	    (long long)bp->blk_cksum.zc_word[2],
991 	    (long long)bp->blk_cksum.zc_word[3]);
992 	switch (blk_verify) {
993 	case BLK_VERIFY_HALT:
994 		zfs_panic_recover("%s: %s", spa_name(spa), buf);
995 		break;
996 	case BLK_VERIFY_LOG:
997 		zfs_dbgmsg("%s: %s", spa_name(spa), buf);
998 		break;
999 	case BLK_VERIFY_ONLY:
1000 		break;
1001 	}
1002 
1003 	return (1);
1004 }
1005 
1006 /*
1007  * Verify the block pointer fields contain reasonable values.  This means
1008  * it only contains known object types, checksum/compression identifiers,
1009  * block sizes within the maximum allowed limits, valid DVAs, etc.
1010  *
1011  * If everything checks out B_TRUE is returned.  The zfs_blkptr_verify
1012  * argument controls the behavior when an invalid field is detected.
1013  *
1014  * Values for blk_verify_flag:
1015  *   BLK_VERIFY_ONLY: evaluate the block
1016  *   BLK_VERIFY_LOG: evaluate the block and log problems
1017  *   BLK_VERIFY_HALT: call zfs_panic_recover on error
1018  *
1019  * Values for blk_config_flag:
1020  *   BLK_CONFIG_HELD: caller holds SCL_VDEV for writer
1021  *   BLK_CONFIG_NEEDED: caller holds no config lock, SCL_VDEV will be
1022  *   obtained for reader
1023  *   BLK_CONFIG_SKIP: skip checks which require SCL_VDEV, for better
1024  *   performance
1025  */
1026 boolean_t
1027 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp,
1028     enum blk_config_flag blk_config, enum blk_verify_flag blk_verify)
1029 {
1030 	int errors = 0;
1031 
1032 	if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
1033 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1034 		    "blkptr at %px has invalid TYPE %llu",
1035 		    bp, (longlong_t)BP_GET_TYPE(bp));
1036 	}
1037 	if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS) {
1038 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1039 		    "blkptr at %px has invalid CHECKSUM %llu",
1040 		    bp, (longlong_t)BP_GET_CHECKSUM(bp));
1041 	}
1042 	if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS) {
1043 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1044 		    "blkptr at %px has invalid COMPRESS %llu",
1045 		    bp, (longlong_t)BP_GET_COMPRESS(bp));
1046 	}
1047 	if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
1048 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1049 		    "blkptr at %px has invalid LSIZE %llu",
1050 		    bp, (longlong_t)BP_GET_LSIZE(bp));
1051 	}
1052 	if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
1053 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1054 		    "blkptr at %px has invalid PSIZE %llu",
1055 		    bp, (longlong_t)BP_GET_PSIZE(bp));
1056 	}
1057 
1058 	if (BP_IS_EMBEDDED(bp)) {
1059 		if (BPE_GET_ETYPE(bp) >= NUM_BP_EMBEDDED_TYPES) {
1060 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1061 			    "blkptr at %px has invalid ETYPE %llu",
1062 			    bp, (longlong_t)BPE_GET_ETYPE(bp));
1063 		}
1064 	}
1065 
1066 	/*
1067 	 * Do not verify individual DVAs if the config is not trusted. This
1068 	 * will be done once the zio is executed in vdev_mirror_map_alloc.
1069 	 */
1070 	if (!spa->spa_trust_config)
1071 		return (errors == 0);
1072 
1073 	switch (blk_config) {
1074 	case BLK_CONFIG_HELD:
1075 		ASSERT(spa_config_held(spa, SCL_VDEV, RW_WRITER));
1076 		break;
1077 	case BLK_CONFIG_NEEDED:
1078 		spa_config_enter(spa, SCL_VDEV, bp, RW_READER);
1079 		break;
1080 	case BLK_CONFIG_SKIP:
1081 		return (errors == 0);
1082 	default:
1083 		panic("invalid blk_config %u", blk_config);
1084 	}
1085 
1086 	/*
1087 	 * Pool-specific checks.
1088 	 *
1089 	 * Note: it would be nice to verify that the blk_birth and
1090 	 * BP_PHYSICAL_BIRTH() are not too large.  However, spa_freeze()
1091 	 * allows the birth time of log blocks (and dmu_sync()-ed blocks
1092 	 * that are in the log) to be arbitrarily large.
1093 	 */
1094 	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
1095 		const dva_t *dva = &bp->blk_dva[i];
1096 		uint64_t vdevid = DVA_GET_VDEV(dva);
1097 
1098 		if (vdevid >= spa->spa_root_vdev->vdev_children) {
1099 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1100 			    "blkptr at %px DVA %u has invalid VDEV %llu",
1101 			    bp, i, (longlong_t)vdevid);
1102 			continue;
1103 		}
1104 		vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1105 		if (vd == NULL) {
1106 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1107 			    "blkptr at %px DVA %u has invalid VDEV %llu",
1108 			    bp, i, (longlong_t)vdevid);
1109 			continue;
1110 		}
1111 		if (vd->vdev_ops == &vdev_hole_ops) {
1112 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1113 			    "blkptr at %px DVA %u has hole VDEV %llu",
1114 			    bp, i, (longlong_t)vdevid);
1115 			continue;
1116 		}
1117 		if (vd->vdev_ops == &vdev_missing_ops) {
1118 			/*
1119 			 * "missing" vdevs are valid during import, but we
1120 			 * don't have their detailed info (e.g. asize), so
1121 			 * we can't perform any more checks on them.
1122 			 */
1123 			continue;
1124 		}
1125 		uint64_t offset = DVA_GET_OFFSET(dva);
1126 		uint64_t asize = DVA_GET_ASIZE(dva);
1127 		if (DVA_GET_GANG(dva))
1128 			asize = vdev_gang_header_asize(vd);
1129 		if (offset + asize > vd->vdev_asize) {
1130 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1131 			    "blkptr at %px DVA %u has invalid OFFSET %llu",
1132 			    bp, i, (longlong_t)offset);
1133 		}
1134 	}
1135 	if (blk_config == BLK_CONFIG_NEEDED)
1136 		spa_config_exit(spa, SCL_VDEV, bp);
1137 
1138 	return (errors == 0);
1139 }
1140 
1141 boolean_t
1142 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp)
1143 {
1144 	(void) bp;
1145 	uint64_t vdevid = DVA_GET_VDEV(dva);
1146 
1147 	if (vdevid >= spa->spa_root_vdev->vdev_children)
1148 		return (B_FALSE);
1149 
1150 	vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1151 	if (vd == NULL)
1152 		return (B_FALSE);
1153 
1154 	if (vd->vdev_ops == &vdev_hole_ops)
1155 		return (B_FALSE);
1156 
1157 	if (vd->vdev_ops == &vdev_missing_ops) {
1158 		return (B_FALSE);
1159 	}
1160 
1161 	uint64_t offset = DVA_GET_OFFSET(dva);
1162 	uint64_t asize = DVA_GET_ASIZE(dva);
1163 
1164 	if (DVA_GET_GANG(dva))
1165 		asize = vdev_gang_header_asize(vd);
1166 	if (offset + asize > vd->vdev_asize)
1167 		return (B_FALSE);
1168 
1169 	return (B_TRUE);
1170 }
1171 
1172 zio_t *
1173 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
1174     abd_t *data, uint64_t size, zio_done_func_t *done, void *private,
1175     zio_priority_t priority, zio_flag_t flags, const zbookmark_phys_t *zb)
1176 {
1177 	zio_t *zio;
1178 
1179 	zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
1180 	    data, size, size, done, private,
1181 	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
1182 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1183 	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
1184 
1185 	return (zio);
1186 }
1187 
1188 zio_t *
1189 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
1190     abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp,
1191     zio_done_func_t *ready, zio_done_func_t *children_ready,
1192     zio_done_func_t *done, void *private, zio_priority_t priority,
1193     zio_flag_t flags, const zbookmark_phys_t *zb)
1194 {
1195 	zio_t *zio;
1196 
1197 	ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
1198 	    zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
1199 	    zp->zp_compress >= ZIO_COMPRESS_OFF &&
1200 	    zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
1201 	    DMU_OT_IS_VALID(zp->zp_type) &&
1202 	    zp->zp_level < 32 &&
1203 	    zp->zp_copies > 0 &&
1204 	    zp->zp_copies <= spa_max_replication(spa));
1205 
1206 	zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private,
1207 	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
1208 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1209 	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
1210 
1211 	zio->io_ready = ready;
1212 	zio->io_children_ready = children_ready;
1213 	zio->io_prop = *zp;
1214 
1215 	/*
1216 	 * Data can be NULL if we are going to call zio_write_override() to
1217 	 * provide the already-allocated BP.  But we may need the data to
1218 	 * verify a dedup hit (if requested).  In this case, don't try to
1219 	 * dedup (just take the already-allocated BP verbatim). Encrypted
1220 	 * dedup blocks need data as well so we also disable dedup in this
1221 	 * case.
1222 	 */
1223 	if (data == NULL &&
1224 	    (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) {
1225 		zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
1226 	}
1227 
1228 	return (zio);
1229 }
1230 
1231 zio_t *
1232 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data,
1233     uint64_t size, zio_done_func_t *done, void *private,
1234     zio_priority_t priority, zio_flag_t flags, zbookmark_phys_t *zb)
1235 {
1236 	zio_t *zio;
1237 
1238 	zio = zio_create(pio, spa, txg, bp, data, size, size, done, private,
1239 	    ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb,
1240 	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
1241 
1242 	return (zio);
1243 }
1244 
1245 void
1246 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite,
1247     boolean_t brtwrite)
1248 {
1249 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
1250 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1251 	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1252 	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
1253 	ASSERT(!brtwrite || !nopwrite);
1254 
1255 	/*
1256 	 * We must reset the io_prop to match the values that existed
1257 	 * when the bp was first written by dmu_sync() keeping in mind
1258 	 * that nopwrite and dedup are mutually exclusive.
1259 	 */
1260 	zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
1261 	zio->io_prop.zp_nopwrite = nopwrite;
1262 	zio->io_prop.zp_brtwrite = brtwrite;
1263 	zio->io_prop.zp_copies = copies;
1264 	zio->io_bp_override = bp;
1265 }
1266 
1267 void
1268 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
1269 {
1270 
1271 	(void) zfs_blkptr_verify(spa, bp, BLK_CONFIG_NEEDED, BLK_VERIFY_HALT);
1272 
1273 	/*
1274 	 * The check for EMBEDDED is a performance optimization.  We
1275 	 * process the free here (by ignoring it) rather than
1276 	 * putting it on the list and then processing it in zio_free_sync().
1277 	 */
1278 	if (BP_IS_EMBEDDED(bp))
1279 		return;
1280 
1281 	/*
1282 	 * Frees that are for the currently-syncing txg, are not going to be
1283 	 * deferred, and which will not need to do a read (i.e. not GANG or
1284 	 * DEDUP), can be processed immediately.  Otherwise, put them on the
1285 	 * in-memory list for later processing.
1286 	 *
1287 	 * Note that we only defer frees after zfs_sync_pass_deferred_free
1288 	 * when the log space map feature is disabled. [see relevant comment
1289 	 * in spa_sync_iterate_to_convergence()]
1290 	 */
1291 	if (BP_IS_GANG(bp) ||
1292 	    BP_GET_DEDUP(bp) ||
1293 	    txg != spa->spa_syncing_txg ||
1294 	    (spa_sync_pass(spa) >= zfs_sync_pass_deferred_free &&
1295 	    !spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) ||
1296 	    brt_maybe_exists(spa, bp)) {
1297 		metaslab_check_free(spa, bp);
1298 		bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
1299 	} else {
1300 		VERIFY3P(zio_free_sync(NULL, spa, txg, bp, 0), ==, NULL);
1301 	}
1302 }
1303 
1304 /*
1305  * To improve performance, this function may return NULL if we were able
1306  * to do the free immediately.  This avoids the cost of creating a zio
1307  * (and linking it to the parent, etc).
1308  */
1309 zio_t *
1310 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1311     zio_flag_t flags)
1312 {
1313 	ASSERT(!BP_IS_HOLE(bp));
1314 	ASSERT(spa_syncing_txg(spa) == txg);
1315 
1316 	if (BP_IS_EMBEDDED(bp))
1317 		return (NULL);
1318 
1319 	metaslab_check_free(spa, bp);
1320 	arc_freed(spa, bp);
1321 	dsl_scan_freed(spa, bp);
1322 
1323 	if (BP_IS_GANG(bp) ||
1324 	    BP_GET_DEDUP(bp) ||
1325 	    brt_maybe_exists(spa, bp)) {
1326 		/*
1327 		 * GANG, DEDUP and BRT blocks can induce a read (for the gang
1328 		 * block header, the DDT or the BRT), so issue them
1329 		 * asynchronously so that this thread is not tied up.
1330 		 */
1331 		enum zio_stage stage =
1332 		    ZIO_FREE_PIPELINE | ZIO_STAGE_ISSUE_ASYNC;
1333 
1334 		return (zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1335 		    BP_GET_PSIZE(bp), NULL, NULL,
1336 		    ZIO_TYPE_FREE, ZIO_PRIORITY_NOW,
1337 		    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage));
1338 	} else {
1339 		metaslab_free(spa, bp, txg, B_FALSE);
1340 		return (NULL);
1341 	}
1342 }
1343 
1344 zio_t *
1345 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1346     zio_done_func_t *done, void *private, zio_flag_t flags)
1347 {
1348 	zio_t *zio;
1349 
1350 	(void) zfs_blkptr_verify(spa, bp, (flags & ZIO_FLAG_CONFIG_WRITER) ?
1351 	    BLK_CONFIG_HELD : BLK_CONFIG_NEEDED, BLK_VERIFY_HALT);
1352 
1353 	if (BP_IS_EMBEDDED(bp))
1354 		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
1355 
1356 	/*
1357 	 * A claim is an allocation of a specific block.  Claims are needed
1358 	 * to support immediate writes in the intent log.  The issue is that
1359 	 * immediate writes contain committed data, but in a txg that was
1360 	 * *not* committed.  Upon opening the pool after an unclean shutdown,
1361 	 * the intent log claims all blocks that contain immediate write data
1362 	 * so that the SPA knows they're in use.
1363 	 *
1364 	 * All claims *must* be resolved in the first txg -- before the SPA
1365 	 * starts allocating blocks -- so that nothing is allocated twice.
1366 	 * If txg == 0 we just verify that the block is claimable.
1367 	 */
1368 	ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <,
1369 	    spa_min_claim_txg(spa));
1370 	ASSERT(txg == spa_min_claim_txg(spa) || txg == 0);
1371 	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(8) */
1372 
1373 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1374 	    BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW,
1375 	    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
1376 	ASSERT0(zio->io_queued_timestamp);
1377 
1378 	return (zio);
1379 }
1380 
1381 zio_t *
1382 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
1383     zio_done_func_t *done, void *private, zio_flag_t flags)
1384 {
1385 	zio_t *zio;
1386 	int c;
1387 
1388 	if (vd->vdev_children == 0) {
1389 		zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
1390 		    ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
1391 		    ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
1392 
1393 		zio->io_cmd = cmd;
1394 	} else {
1395 		zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
1396 
1397 		for (c = 0; c < vd->vdev_children; c++)
1398 			zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
1399 			    done, private, flags));
1400 	}
1401 
1402 	return (zio);
1403 }
1404 
1405 zio_t *
1406 zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1407     zio_done_func_t *done, void *private, zio_priority_t priority,
1408     zio_flag_t flags, enum trim_flag trim_flags)
1409 {
1410 	zio_t *zio;
1411 
1412 	ASSERT0(vd->vdev_children);
1413 	ASSERT0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
1414 	ASSERT0(P2PHASE(size, 1ULL << vd->vdev_ashift));
1415 	ASSERT3U(size, !=, 0);
1416 
1417 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, NULL, size, size, done,
1418 	    private, ZIO_TYPE_TRIM, priority, flags | ZIO_FLAG_PHYSICAL,
1419 	    vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_TRIM_PIPELINE);
1420 	zio->io_trim_flags = trim_flags;
1421 
1422 	return (zio);
1423 }
1424 
1425 zio_t *
1426 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1427     abd_t *data, int checksum, zio_done_func_t *done, void *private,
1428     zio_priority_t priority, zio_flag_t flags, boolean_t labels)
1429 {
1430 	zio_t *zio;
1431 
1432 	ASSERT(vd->vdev_children == 0);
1433 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1434 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1435 	ASSERT3U(offset + size, <=, vd->vdev_psize);
1436 
1437 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1438 	    private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1439 	    offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
1440 
1441 	zio->io_prop.zp_checksum = checksum;
1442 
1443 	return (zio);
1444 }
1445 
1446 zio_t *
1447 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1448     abd_t *data, int checksum, zio_done_func_t *done, void *private,
1449     zio_priority_t priority, zio_flag_t flags, boolean_t labels)
1450 {
1451 	zio_t *zio;
1452 
1453 	ASSERT(vd->vdev_children == 0);
1454 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1455 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1456 	ASSERT3U(offset + size, <=, vd->vdev_psize);
1457 
1458 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1459 	    private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1460 	    offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
1461 
1462 	zio->io_prop.zp_checksum = checksum;
1463 
1464 	if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
1465 		/*
1466 		 * zec checksums are necessarily destructive -- they modify
1467 		 * the end of the write buffer to hold the verifier/checksum.
1468 		 * Therefore, we must make a local copy in case the data is
1469 		 * being written to multiple places in parallel.
1470 		 */
1471 		abd_t *wbuf = abd_alloc_sametype(data, size);
1472 		abd_copy(wbuf, data, size);
1473 
1474 		zio_push_transform(zio, wbuf, size, size, NULL);
1475 	}
1476 
1477 	return (zio);
1478 }
1479 
1480 /*
1481  * Create a child I/O to do some work for us.
1482  */
1483 zio_t *
1484 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1485     abd_t *data, uint64_t size, int type, zio_priority_t priority,
1486     zio_flag_t flags, zio_done_func_t *done, void *private)
1487 {
1488 	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1489 	zio_t *zio;
1490 
1491 	/*
1492 	 * vdev child I/Os do not propagate their error to the parent.
1493 	 * Therefore, for correct operation the caller *must* check for
1494 	 * and handle the error in the child i/o's done callback.
1495 	 * The only exceptions are i/os that we don't care about
1496 	 * (OPTIONAL or REPAIR).
1497 	 */
1498 	ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) ||
1499 	    done != NULL);
1500 
1501 	if (type == ZIO_TYPE_READ && bp != NULL) {
1502 		/*
1503 		 * If we have the bp, then the child should perform the
1504 		 * checksum and the parent need not.  This pushes error
1505 		 * detection as close to the leaves as possible and
1506 		 * eliminates redundant checksums in the interior nodes.
1507 		 */
1508 		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1509 		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1510 	}
1511 
1512 	if (vd->vdev_ops->vdev_op_leaf) {
1513 		ASSERT0(vd->vdev_children);
1514 		offset += VDEV_LABEL_START_SIZE;
1515 	}
1516 
1517 	flags |= ZIO_VDEV_CHILD_FLAGS(pio);
1518 
1519 	/*
1520 	 * If we've decided to do a repair, the write is not speculative --
1521 	 * even if the original read was.
1522 	 */
1523 	if (flags & ZIO_FLAG_IO_REPAIR)
1524 		flags &= ~ZIO_FLAG_SPECULATIVE;
1525 
1526 	/*
1527 	 * If we're creating a child I/O that is not associated with a
1528 	 * top-level vdev, then the child zio is not an allocating I/O.
1529 	 * If this is a retried I/O then we ignore it since we will
1530 	 * have already processed the original allocating I/O.
1531 	 */
1532 	if (flags & ZIO_FLAG_IO_ALLOCATING &&
1533 	    (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) {
1534 		ASSERT(pio->io_metaslab_class != NULL);
1535 		ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled);
1536 		ASSERT(type == ZIO_TYPE_WRITE);
1537 		ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE);
1538 		ASSERT(!(flags & ZIO_FLAG_IO_REPAIR));
1539 		ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) ||
1540 		    pio->io_child_type == ZIO_CHILD_GANG);
1541 
1542 		flags &= ~ZIO_FLAG_IO_ALLOCATING;
1543 	}
1544 
1545 	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size,
1546 	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1547 	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1548 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
1549 
1550 	return (zio);
1551 }
1552 
1553 zio_t *
1554 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size,
1555     zio_type_t type, zio_priority_t priority, zio_flag_t flags,
1556     zio_done_func_t *done, void *private)
1557 {
1558 	zio_t *zio;
1559 
1560 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1561 
1562 	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1563 	    data, size, size, done, private, type, priority,
1564 	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1565 	    vd, offset, NULL,
1566 	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1567 
1568 	return (zio);
1569 }
1570 
1571 void
1572 zio_flush(zio_t *zio, vdev_t *vd)
1573 {
1574 	zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
1575 	    NULL, NULL,
1576 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1577 }
1578 
1579 void
1580 zio_shrink(zio_t *zio, uint64_t size)
1581 {
1582 	ASSERT3P(zio->io_executor, ==, NULL);
1583 	ASSERT3U(zio->io_orig_size, ==, zio->io_size);
1584 	ASSERT3U(size, <=, zio->io_size);
1585 
1586 	/*
1587 	 * We don't shrink for raidz because of problems with the
1588 	 * reconstruction when reading back less than the block size.
1589 	 * Note, BP_IS_RAIDZ() assumes no compression.
1590 	 */
1591 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1592 	if (!BP_IS_RAIDZ(zio->io_bp)) {
1593 		/* we are not doing a raw write */
1594 		ASSERT3U(zio->io_size, ==, zio->io_lsize);
1595 		zio->io_orig_size = zio->io_size = zio->io_lsize = size;
1596 	}
1597 }
1598 
1599 /*
1600  * Round provided allocation size up to a value that can be allocated
1601  * by at least some vdev(s) in the pool with minimum or no additional
1602  * padding and without extra space usage on others
1603  */
1604 static uint64_t
1605 zio_roundup_alloc_size(spa_t *spa, uint64_t size)
1606 {
1607 	if (size > spa->spa_min_alloc)
1608 		return (roundup(size, spa->spa_gcd_alloc));
1609 	return (spa->spa_min_alloc);
1610 }
1611 
1612 /*
1613  * ==========================================================================
1614  * Prepare to read and write logical blocks
1615  * ==========================================================================
1616  */
1617 
1618 static zio_t *
1619 zio_read_bp_init(zio_t *zio)
1620 {
1621 	blkptr_t *bp = zio->io_bp;
1622 	uint64_t psize =
1623 	    BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1624 
1625 	ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1626 
1627 	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1628 	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
1629 	    !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1630 		zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1631 		    psize, psize, zio_decompress);
1632 	}
1633 
1634 	if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) ||
1635 	    BP_HAS_INDIRECT_MAC_CKSUM(bp)) &&
1636 	    zio->io_child_type == ZIO_CHILD_LOGICAL) {
1637 		zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1638 		    psize, psize, zio_decrypt);
1639 	}
1640 
1641 	if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1642 		int psize = BPE_GET_PSIZE(bp);
1643 		void *data = abd_borrow_buf(zio->io_abd, psize);
1644 
1645 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1646 		decode_embedded_bp_compressed(bp, data);
1647 		abd_return_buf_copy(zio->io_abd, data, psize);
1648 	} else {
1649 		ASSERT(!BP_IS_EMBEDDED(bp));
1650 	}
1651 
1652 	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1653 		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1654 
1655 	return (zio);
1656 }
1657 
1658 static zio_t *
1659 zio_write_bp_init(zio_t *zio)
1660 {
1661 	if (!IO_IS_ALLOCATING(zio))
1662 		return (zio);
1663 
1664 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1665 
1666 	if (zio->io_bp_override) {
1667 		blkptr_t *bp = zio->io_bp;
1668 		zio_prop_t *zp = &zio->io_prop;
1669 
1670 		ASSERT(bp->blk_birth != zio->io_txg);
1671 
1672 		*bp = *zio->io_bp_override;
1673 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1674 
1675 		if (zp->zp_brtwrite)
1676 			return (zio);
1677 
1678 		ASSERT(!BP_GET_DEDUP(zio->io_bp_override));
1679 
1680 		if (BP_IS_EMBEDDED(bp))
1681 			return (zio);
1682 
1683 		/*
1684 		 * If we've been overridden and nopwrite is set then
1685 		 * set the flag accordingly to indicate that a nopwrite
1686 		 * has already occurred.
1687 		 */
1688 		if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1689 			ASSERT(!zp->zp_dedup);
1690 			ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum);
1691 			zio->io_flags |= ZIO_FLAG_NOPWRITE;
1692 			return (zio);
1693 		}
1694 
1695 		ASSERT(!zp->zp_nopwrite);
1696 
1697 		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1698 			return (zio);
1699 
1700 		ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1701 		    ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1702 
1703 		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum &&
1704 		    !zp->zp_encrypt) {
1705 			BP_SET_DEDUP(bp, 1);
1706 			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1707 			return (zio);
1708 		}
1709 
1710 		/*
1711 		 * We were unable to handle this as an override bp, treat
1712 		 * it as a regular write I/O.
1713 		 */
1714 		zio->io_bp_override = NULL;
1715 		*bp = zio->io_bp_orig;
1716 		zio->io_pipeline = zio->io_orig_pipeline;
1717 	}
1718 
1719 	return (zio);
1720 }
1721 
1722 static zio_t *
1723 zio_write_compress(zio_t *zio)
1724 {
1725 	spa_t *spa = zio->io_spa;
1726 	zio_prop_t *zp = &zio->io_prop;
1727 	enum zio_compress compress = zp->zp_compress;
1728 	blkptr_t *bp = zio->io_bp;
1729 	uint64_t lsize = zio->io_lsize;
1730 	uint64_t psize = zio->io_size;
1731 	uint32_t pass = 1;
1732 
1733 	/*
1734 	 * If our children haven't all reached the ready stage,
1735 	 * wait for them and then repeat this pipeline stage.
1736 	 */
1737 	if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
1738 	    ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) {
1739 		return (NULL);
1740 	}
1741 
1742 	if (!IO_IS_ALLOCATING(zio))
1743 		return (zio);
1744 
1745 	if (zio->io_children_ready != NULL) {
1746 		/*
1747 		 * Now that all our children are ready, run the callback
1748 		 * associated with this zio in case it wants to modify the
1749 		 * data to be written.
1750 		 */
1751 		ASSERT3U(zp->zp_level, >, 0);
1752 		zio->io_children_ready(zio);
1753 	}
1754 
1755 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1756 	ASSERT(zio->io_bp_override == NULL);
1757 
1758 	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1759 		/*
1760 		 * We're rewriting an existing block, which means we're
1761 		 * working on behalf of spa_sync().  For spa_sync() to
1762 		 * converge, it must eventually be the case that we don't
1763 		 * have to allocate new blocks.  But compression changes
1764 		 * the blocksize, which forces a reallocate, and makes
1765 		 * convergence take longer.  Therefore, after the first
1766 		 * few passes, stop compressing to ensure convergence.
1767 		 */
1768 		pass = spa_sync_pass(spa);
1769 
1770 		ASSERT(zio->io_txg == spa_syncing_txg(spa));
1771 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1772 		ASSERT(!BP_GET_DEDUP(bp));
1773 
1774 		if (pass >= zfs_sync_pass_dont_compress)
1775 			compress = ZIO_COMPRESS_OFF;
1776 
1777 		/* Make sure someone doesn't change their mind on overwrites */
1778 		ASSERT(BP_IS_EMBEDDED(bp) || BP_IS_GANG(bp) ||
1779 		    MIN(zp->zp_copies, spa_max_replication(spa))
1780 		    == BP_GET_NDVAS(bp));
1781 	}
1782 
1783 	/* If it's a compressed write that is not raw, compress the buffer. */
1784 	if (compress != ZIO_COMPRESS_OFF &&
1785 	    !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1786 		void *cbuf = NULL;
1787 		psize = zio_compress_data(compress, zio->io_abd, &cbuf, lsize,
1788 		    zp->zp_complevel);
1789 		if (psize == 0) {
1790 			compress = ZIO_COMPRESS_OFF;
1791 		} else if (psize >= lsize) {
1792 			compress = ZIO_COMPRESS_OFF;
1793 			if (cbuf != NULL)
1794 				zio_buf_free(cbuf, lsize);
1795 		} else if (!zp->zp_dedup && !zp->zp_encrypt &&
1796 		    psize <= BPE_PAYLOAD_SIZE &&
1797 		    zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1798 		    spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1799 			encode_embedded_bp_compressed(bp,
1800 			    cbuf, compress, lsize, psize);
1801 			BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1802 			BP_SET_TYPE(bp, zio->io_prop.zp_type);
1803 			BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1804 			zio_buf_free(cbuf, lsize);
1805 			bp->blk_birth = zio->io_txg;
1806 			zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1807 			ASSERT(spa_feature_is_active(spa,
1808 			    SPA_FEATURE_EMBEDDED_DATA));
1809 			return (zio);
1810 		} else {
1811 			/*
1812 			 * Round compressed size up to the minimum allocation
1813 			 * size of the smallest-ashift device, and zero the
1814 			 * tail. This ensures that the compressed size of the
1815 			 * BP (and thus compressratio property) are correct,
1816 			 * in that we charge for the padding used to fill out
1817 			 * the last sector.
1818 			 */
1819 			size_t rounded = (size_t)zio_roundup_alloc_size(spa,
1820 			    psize);
1821 			if (rounded >= lsize) {
1822 				compress = ZIO_COMPRESS_OFF;
1823 				zio_buf_free(cbuf, lsize);
1824 				psize = lsize;
1825 			} else {
1826 				abd_t *cdata = abd_get_from_buf(cbuf, lsize);
1827 				abd_take_ownership_of_buf(cdata, B_TRUE);
1828 				abd_zero_off(cdata, psize, rounded - psize);
1829 				psize = rounded;
1830 				zio_push_transform(zio, cdata,
1831 				    psize, lsize, NULL);
1832 			}
1833 		}
1834 
1835 		/*
1836 		 * We were unable to handle this as an override bp, treat
1837 		 * it as a regular write I/O.
1838 		 */
1839 		zio->io_bp_override = NULL;
1840 		*bp = zio->io_bp_orig;
1841 		zio->io_pipeline = zio->io_orig_pipeline;
1842 
1843 	} else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 &&
1844 	    zp->zp_type == DMU_OT_DNODE) {
1845 		/*
1846 		 * The DMU actually relies on the zio layer's compression
1847 		 * to free metadnode blocks that have had all contained
1848 		 * dnodes freed. As a result, even when doing a raw
1849 		 * receive, we must check whether the block can be compressed
1850 		 * to a hole.
1851 		 */
1852 		psize = zio_compress_data(ZIO_COMPRESS_EMPTY,
1853 		    zio->io_abd, NULL, lsize, zp->zp_complevel);
1854 		if (psize == 0 || psize >= lsize)
1855 			compress = ZIO_COMPRESS_OFF;
1856 	} else if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS &&
1857 	    !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) {
1858 		/*
1859 		 * If we are raw receiving an encrypted dataset we should not
1860 		 * take this codepath because it will change the on-disk block
1861 		 * and decryption will fail.
1862 		 */
1863 		size_t rounded = MIN((size_t)zio_roundup_alloc_size(spa, psize),
1864 		    lsize);
1865 
1866 		if (rounded != psize) {
1867 			abd_t *cdata = abd_alloc_linear(rounded, B_TRUE);
1868 			abd_zero_off(cdata, psize, rounded - psize);
1869 			abd_copy_off(cdata, zio->io_abd, 0, 0, psize);
1870 			psize = rounded;
1871 			zio_push_transform(zio, cdata,
1872 			    psize, rounded, NULL);
1873 		}
1874 	} else {
1875 		ASSERT3U(psize, !=, 0);
1876 	}
1877 
1878 	/*
1879 	 * The final pass of spa_sync() must be all rewrites, but the first
1880 	 * few passes offer a trade-off: allocating blocks defers convergence,
1881 	 * but newly allocated blocks are sequential, so they can be written
1882 	 * to disk faster.  Therefore, we allow the first few passes of
1883 	 * spa_sync() to allocate new blocks, but force rewrites after that.
1884 	 * There should only be a handful of blocks after pass 1 in any case.
1885 	 */
1886 	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1887 	    BP_GET_PSIZE(bp) == psize &&
1888 	    pass >= zfs_sync_pass_rewrite) {
1889 		VERIFY3U(psize, !=, 0);
1890 		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1891 
1892 		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1893 		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1894 	} else {
1895 		BP_ZERO(bp);
1896 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
1897 	}
1898 
1899 	if (psize == 0) {
1900 		if (zio->io_bp_orig.blk_birth != 0 &&
1901 		    spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1902 			BP_SET_LSIZE(bp, lsize);
1903 			BP_SET_TYPE(bp, zp->zp_type);
1904 			BP_SET_LEVEL(bp, zp->zp_level);
1905 			BP_SET_BIRTH(bp, zio->io_txg, 0);
1906 		}
1907 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1908 	} else {
1909 		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1910 		BP_SET_LSIZE(bp, lsize);
1911 		BP_SET_TYPE(bp, zp->zp_type);
1912 		BP_SET_LEVEL(bp, zp->zp_level);
1913 		BP_SET_PSIZE(bp, psize);
1914 		BP_SET_COMPRESS(bp, compress);
1915 		BP_SET_CHECKSUM(bp, zp->zp_checksum);
1916 		BP_SET_DEDUP(bp, zp->zp_dedup);
1917 		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1918 		if (zp->zp_dedup) {
1919 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1920 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1921 			ASSERT(!zp->zp_encrypt ||
1922 			    DMU_OT_IS_ENCRYPTED(zp->zp_type));
1923 			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1924 		}
1925 		if (zp->zp_nopwrite) {
1926 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1927 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1928 			zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1929 		}
1930 	}
1931 	return (zio);
1932 }
1933 
1934 static zio_t *
1935 zio_free_bp_init(zio_t *zio)
1936 {
1937 	blkptr_t *bp = zio->io_bp;
1938 
1939 	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1940 		if (BP_GET_DEDUP(bp))
1941 			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1942 	}
1943 
1944 	ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1945 
1946 	return (zio);
1947 }
1948 
1949 /*
1950  * ==========================================================================
1951  * Execute the I/O pipeline
1952  * ==========================================================================
1953  */
1954 
1955 static void
1956 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1957 {
1958 	spa_t *spa = zio->io_spa;
1959 	zio_type_t t = zio->io_type;
1960 	int flags = (cutinline ? TQ_FRONT : 0);
1961 
1962 	/*
1963 	 * If we're a config writer or a probe, the normal issue and
1964 	 * interrupt threads may all be blocked waiting for the config lock.
1965 	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1966 	 */
1967 	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1968 		t = ZIO_TYPE_NULL;
1969 
1970 	/*
1971 	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1972 	 */
1973 	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1974 		t = ZIO_TYPE_NULL;
1975 
1976 	/*
1977 	 * If this is a high priority I/O, then use the high priority taskq if
1978 	 * available.
1979 	 */
1980 	if ((zio->io_priority == ZIO_PRIORITY_NOW ||
1981 	    zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) &&
1982 	    spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1983 		q++;
1984 
1985 	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1986 
1987 	/*
1988 	 * NB: We are assuming that the zio can only be dispatched
1989 	 * to a single taskq at a time.  It would be a grievous error
1990 	 * to dispatch the zio to another taskq at the same time.
1991 	 */
1992 	ASSERT(taskq_empty_ent(&zio->io_tqent));
1993 	spa_taskq_dispatch_ent(spa, t, q, zio_execute, zio, flags,
1994 	    &zio->io_tqent);
1995 }
1996 
1997 static boolean_t
1998 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1999 {
2000 	spa_t *spa = zio->io_spa;
2001 
2002 	taskq_t *tq = taskq_of_curthread();
2003 
2004 	for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
2005 		spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
2006 		uint_t i;
2007 		for (i = 0; i < tqs->stqs_count; i++) {
2008 			if (tqs->stqs_taskq[i] == tq)
2009 				return (B_TRUE);
2010 		}
2011 	}
2012 
2013 	return (B_FALSE);
2014 }
2015 
2016 static zio_t *
2017 zio_issue_async(zio_t *zio)
2018 {
2019 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2020 
2021 	return (NULL);
2022 }
2023 
2024 void
2025 zio_interrupt(void *zio)
2026 {
2027 	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
2028 }
2029 
2030 void
2031 zio_delay_interrupt(zio_t *zio)
2032 {
2033 	/*
2034 	 * The timeout_generic() function isn't defined in userspace, so
2035 	 * rather than trying to implement the function, the zio delay
2036 	 * functionality has been disabled for userspace builds.
2037 	 */
2038 
2039 #ifdef _KERNEL
2040 	/*
2041 	 * If io_target_timestamp is zero, then no delay has been registered
2042 	 * for this IO, thus jump to the end of this function and "skip" the
2043 	 * delay; issuing it directly to the zio layer.
2044 	 */
2045 	if (zio->io_target_timestamp != 0) {
2046 		hrtime_t now = gethrtime();
2047 
2048 		if (now >= zio->io_target_timestamp) {
2049 			/*
2050 			 * This IO has already taken longer than the target
2051 			 * delay to complete, so we don't want to delay it
2052 			 * any longer; we "miss" the delay and issue it
2053 			 * directly to the zio layer. This is likely due to
2054 			 * the target latency being set to a value less than
2055 			 * the underlying hardware can satisfy (e.g. delay
2056 			 * set to 1ms, but the disks take 10ms to complete an
2057 			 * IO request).
2058 			 */
2059 
2060 			DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
2061 			    hrtime_t, now);
2062 
2063 			zio_interrupt(zio);
2064 		} else {
2065 			taskqid_t tid;
2066 			hrtime_t diff = zio->io_target_timestamp - now;
2067 			clock_t expire_at_tick = ddi_get_lbolt() +
2068 			    NSEC_TO_TICK(diff);
2069 
2070 			DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
2071 			    hrtime_t, now, hrtime_t, diff);
2072 
2073 			if (NSEC_TO_TICK(diff) == 0) {
2074 				/* Our delay is less than a jiffy - just spin */
2075 				zfs_sleep_until(zio->io_target_timestamp);
2076 				zio_interrupt(zio);
2077 			} else {
2078 				/*
2079 				 * Use taskq_dispatch_delay() in the place of
2080 				 * OpenZFS's timeout_generic().
2081 				 */
2082 				tid = taskq_dispatch_delay(system_taskq,
2083 				    zio_interrupt, zio, TQ_NOSLEEP,
2084 				    expire_at_tick);
2085 				if (tid == TASKQID_INVALID) {
2086 					/*
2087 					 * Couldn't allocate a task.  Just
2088 					 * finish the zio without a delay.
2089 					 */
2090 					zio_interrupt(zio);
2091 				}
2092 			}
2093 		}
2094 		return;
2095 	}
2096 #endif
2097 	DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
2098 	zio_interrupt(zio);
2099 }
2100 
2101 static void
2102 zio_deadman_impl(zio_t *pio, int ziodepth)
2103 {
2104 	zio_t *cio, *cio_next;
2105 	zio_link_t *zl = NULL;
2106 	vdev_t *vd = pio->io_vd;
2107 
2108 	if (zio_deadman_log_all || (vd != NULL && vd->vdev_ops->vdev_op_leaf)) {
2109 		vdev_queue_t *vq = vd ? &vd->vdev_queue : NULL;
2110 		zbookmark_phys_t *zb = &pio->io_bookmark;
2111 		uint64_t delta = gethrtime() - pio->io_timestamp;
2112 		uint64_t failmode = spa_get_deadman_failmode(pio->io_spa);
2113 
2114 		zfs_dbgmsg("slow zio[%d]: zio=%px timestamp=%llu "
2115 		    "delta=%llu queued=%llu io=%llu "
2116 		    "path=%s "
2117 		    "last=%llu type=%d "
2118 		    "priority=%d flags=0x%llx stage=0x%x "
2119 		    "pipeline=0x%x pipeline-trace=0x%x "
2120 		    "objset=%llu object=%llu "
2121 		    "level=%llu blkid=%llu "
2122 		    "offset=%llu size=%llu "
2123 		    "error=%d",
2124 		    ziodepth, pio, pio->io_timestamp,
2125 		    (u_longlong_t)delta, pio->io_delta, pio->io_delay,
2126 		    vd ? vd->vdev_path : "NULL",
2127 		    vq ? vq->vq_io_complete_ts : 0, pio->io_type,
2128 		    pio->io_priority, (u_longlong_t)pio->io_flags,
2129 		    pio->io_stage, pio->io_pipeline, pio->io_pipeline_trace,
2130 		    (u_longlong_t)zb->zb_objset, (u_longlong_t)zb->zb_object,
2131 		    (u_longlong_t)zb->zb_level, (u_longlong_t)zb->zb_blkid,
2132 		    (u_longlong_t)pio->io_offset, (u_longlong_t)pio->io_size,
2133 		    pio->io_error);
2134 		(void) zfs_ereport_post(FM_EREPORT_ZFS_DEADMAN,
2135 		    pio->io_spa, vd, zb, pio, 0);
2136 
2137 		if (failmode == ZIO_FAILURE_MODE_CONTINUE &&
2138 		    taskq_empty_ent(&pio->io_tqent)) {
2139 			zio_interrupt(pio);
2140 		}
2141 	}
2142 
2143 	mutex_enter(&pio->io_lock);
2144 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2145 		cio_next = zio_walk_children(pio, &zl);
2146 		zio_deadman_impl(cio, ziodepth + 1);
2147 	}
2148 	mutex_exit(&pio->io_lock);
2149 }
2150 
2151 /*
2152  * Log the critical information describing this zio and all of its children
2153  * using the zfs_dbgmsg() interface then post deadman event for the ZED.
2154  */
2155 void
2156 zio_deadman(zio_t *pio, const char *tag)
2157 {
2158 	spa_t *spa = pio->io_spa;
2159 	char *name = spa_name(spa);
2160 
2161 	if (!zfs_deadman_enabled || spa_suspended(spa))
2162 		return;
2163 
2164 	zio_deadman_impl(pio, 0);
2165 
2166 	switch (spa_get_deadman_failmode(spa)) {
2167 	case ZIO_FAILURE_MODE_WAIT:
2168 		zfs_dbgmsg("%s waiting for hung I/O to pool '%s'", tag, name);
2169 		break;
2170 
2171 	case ZIO_FAILURE_MODE_CONTINUE:
2172 		zfs_dbgmsg("%s restarting hung I/O for pool '%s'", tag, name);
2173 		break;
2174 
2175 	case ZIO_FAILURE_MODE_PANIC:
2176 		fm_panic("%s determined I/O to pool '%s' is hung.", tag, name);
2177 		break;
2178 	}
2179 }
2180 
2181 /*
2182  * Execute the I/O pipeline until one of the following occurs:
2183  * (1) the I/O completes; (2) the pipeline stalls waiting for
2184  * dependent child I/Os; (3) the I/O issues, so we're waiting
2185  * for an I/O completion interrupt; (4) the I/O is delegated by
2186  * vdev-level caching or aggregation; (5) the I/O is deferred
2187  * due to vdev-level queueing; (6) the I/O is handed off to
2188  * another thread.  In all cases, the pipeline stops whenever
2189  * there's no CPU work; it never burns a thread in cv_wait_io().
2190  *
2191  * There's no locking on io_stage because there's no legitimate way
2192  * for multiple threads to be attempting to process the same I/O.
2193  */
2194 static zio_pipe_stage_t *zio_pipeline[];
2195 
2196 /*
2197  * zio_execute() is a wrapper around the static function
2198  * __zio_execute() so that we can force  __zio_execute() to be
2199  * inlined.  This reduces stack overhead which is important
2200  * because __zio_execute() is called recursively in several zio
2201  * code paths.  zio_execute() itself cannot be inlined because
2202  * it is externally visible.
2203  */
2204 void
2205 zio_execute(void *zio)
2206 {
2207 	fstrans_cookie_t cookie;
2208 
2209 	cookie = spl_fstrans_mark();
2210 	__zio_execute(zio);
2211 	spl_fstrans_unmark(cookie);
2212 }
2213 
2214 /*
2215  * Used to determine if in the current context the stack is sized large
2216  * enough to allow zio_execute() to be called recursively.  A minimum
2217  * stack size of 16K is required to avoid needing to re-dispatch the zio.
2218  */
2219 static boolean_t
2220 zio_execute_stack_check(zio_t *zio)
2221 {
2222 #if !defined(HAVE_LARGE_STACKS)
2223 	dsl_pool_t *dp = spa_get_dsl(zio->io_spa);
2224 
2225 	/* Executing in txg_sync_thread() context. */
2226 	if (dp && curthread == dp->dp_tx.tx_sync_thread)
2227 		return (B_TRUE);
2228 
2229 	/* Pool initialization outside of zio_taskq context. */
2230 	if (dp && spa_is_initializing(dp->dp_spa) &&
2231 	    !zio_taskq_member(zio, ZIO_TASKQ_ISSUE) &&
2232 	    !zio_taskq_member(zio, ZIO_TASKQ_ISSUE_HIGH))
2233 		return (B_TRUE);
2234 #else
2235 	(void) zio;
2236 #endif /* HAVE_LARGE_STACKS */
2237 
2238 	return (B_FALSE);
2239 }
2240 
2241 __attribute__((always_inline))
2242 static inline void
2243 __zio_execute(zio_t *zio)
2244 {
2245 	ASSERT3U(zio->io_queued_timestamp, >, 0);
2246 
2247 	while (zio->io_stage < ZIO_STAGE_DONE) {
2248 		enum zio_stage pipeline = zio->io_pipeline;
2249 		enum zio_stage stage = zio->io_stage;
2250 
2251 		zio->io_executor = curthread;
2252 
2253 		ASSERT(!MUTEX_HELD(&zio->io_lock));
2254 		ASSERT(ISP2(stage));
2255 		ASSERT(zio->io_stall == NULL);
2256 
2257 		do {
2258 			stage <<= 1;
2259 		} while ((stage & pipeline) == 0);
2260 
2261 		ASSERT(stage <= ZIO_STAGE_DONE);
2262 
2263 		/*
2264 		 * If we are in interrupt context and this pipeline stage
2265 		 * will grab a config lock that is held across I/O,
2266 		 * or may wait for an I/O that needs an interrupt thread
2267 		 * to complete, issue async to avoid deadlock.
2268 		 *
2269 		 * For VDEV_IO_START, we cut in line so that the io will
2270 		 * be sent to disk promptly.
2271 		 */
2272 		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
2273 		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
2274 			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2275 			    zio_requeue_io_start_cut_in_line : B_FALSE;
2276 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2277 			return;
2278 		}
2279 
2280 		/*
2281 		 * If the current context doesn't have large enough stacks
2282 		 * the zio must be issued asynchronously to prevent overflow.
2283 		 */
2284 		if (zio_execute_stack_check(zio)) {
2285 			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2286 			    zio_requeue_io_start_cut_in_line : B_FALSE;
2287 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2288 			return;
2289 		}
2290 
2291 		zio->io_stage = stage;
2292 		zio->io_pipeline_trace |= zio->io_stage;
2293 
2294 		/*
2295 		 * The zio pipeline stage returns the next zio to execute
2296 		 * (typically the same as this one), or NULL if we should
2297 		 * stop.
2298 		 */
2299 		zio = zio_pipeline[highbit64(stage) - 1](zio);
2300 
2301 		if (zio == NULL)
2302 			return;
2303 	}
2304 }
2305 
2306 
2307 /*
2308  * ==========================================================================
2309  * Initiate I/O, either sync or async
2310  * ==========================================================================
2311  */
2312 int
2313 zio_wait(zio_t *zio)
2314 {
2315 	/*
2316 	 * Some routines, like zio_free_sync(), may return a NULL zio
2317 	 * to avoid the performance overhead of creating and then destroying
2318 	 * an unneeded zio.  For the callers' simplicity, we accept a NULL
2319 	 * zio and ignore it.
2320 	 */
2321 	if (zio == NULL)
2322 		return (0);
2323 
2324 	long timeout = MSEC_TO_TICK(zfs_deadman_ziotime_ms);
2325 	int error;
2326 
2327 	ASSERT3S(zio->io_stage, ==, ZIO_STAGE_OPEN);
2328 	ASSERT3P(zio->io_executor, ==, NULL);
2329 
2330 	zio->io_waiter = curthread;
2331 	ASSERT0(zio->io_queued_timestamp);
2332 	zio->io_queued_timestamp = gethrtime();
2333 
2334 	__zio_execute(zio);
2335 
2336 	mutex_enter(&zio->io_lock);
2337 	while (zio->io_executor != NULL) {
2338 		error = cv_timedwait_io(&zio->io_cv, &zio->io_lock,
2339 		    ddi_get_lbolt() + timeout);
2340 
2341 		if (zfs_deadman_enabled && error == -1 &&
2342 		    gethrtime() - zio->io_queued_timestamp >
2343 		    spa_deadman_ziotime(zio->io_spa)) {
2344 			mutex_exit(&zio->io_lock);
2345 			timeout = MSEC_TO_TICK(zfs_deadman_checktime_ms);
2346 			zio_deadman(zio, FTAG);
2347 			mutex_enter(&zio->io_lock);
2348 		}
2349 	}
2350 	mutex_exit(&zio->io_lock);
2351 
2352 	error = zio->io_error;
2353 	zio_destroy(zio);
2354 
2355 	return (error);
2356 }
2357 
2358 void
2359 zio_nowait(zio_t *zio)
2360 {
2361 	/*
2362 	 * See comment in zio_wait().
2363 	 */
2364 	if (zio == NULL)
2365 		return;
2366 
2367 	ASSERT3P(zio->io_executor, ==, NULL);
2368 
2369 	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
2370 	    list_is_empty(&zio->io_parent_list)) {
2371 		zio_t *pio;
2372 
2373 		/*
2374 		 * This is a logical async I/O with no parent to wait for it.
2375 		 * We add it to the spa_async_root_zio "Godfather" I/O which
2376 		 * will ensure they complete prior to unloading the pool.
2377 		 */
2378 		spa_t *spa = zio->io_spa;
2379 		pio = spa->spa_async_zio_root[CPU_SEQID_UNSTABLE];
2380 
2381 		zio_add_child(pio, zio);
2382 	}
2383 
2384 	ASSERT0(zio->io_queued_timestamp);
2385 	zio->io_queued_timestamp = gethrtime();
2386 	__zio_execute(zio);
2387 }
2388 
2389 /*
2390  * ==========================================================================
2391  * Reexecute, cancel, or suspend/resume failed I/O
2392  * ==========================================================================
2393  */
2394 
2395 static void
2396 zio_reexecute(void *arg)
2397 {
2398 	zio_t *pio = arg;
2399 	zio_t *cio, *cio_next;
2400 
2401 	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
2402 	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
2403 	ASSERT(pio->io_gang_leader == NULL);
2404 	ASSERT(pio->io_gang_tree == NULL);
2405 
2406 	pio->io_flags = pio->io_orig_flags;
2407 	pio->io_stage = pio->io_orig_stage;
2408 	pio->io_pipeline = pio->io_orig_pipeline;
2409 	pio->io_reexecute = 0;
2410 	pio->io_flags |= ZIO_FLAG_REEXECUTED;
2411 	pio->io_pipeline_trace = 0;
2412 	pio->io_error = 0;
2413 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2414 		pio->io_state[w] = 0;
2415 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2416 		pio->io_child_error[c] = 0;
2417 
2418 	if (IO_IS_ALLOCATING(pio))
2419 		BP_ZERO(pio->io_bp);
2420 
2421 	/*
2422 	 * As we reexecute pio's children, new children could be created.
2423 	 * New children go to the head of pio's io_child_list, however,
2424 	 * so we will (correctly) not reexecute them.  The key is that
2425 	 * the remainder of pio's io_child_list, from 'cio_next' onward,
2426 	 * cannot be affected by any side effects of reexecuting 'cio'.
2427 	 */
2428 	zio_link_t *zl = NULL;
2429 	mutex_enter(&pio->io_lock);
2430 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2431 		cio_next = zio_walk_children(pio, &zl);
2432 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2433 			pio->io_children[cio->io_child_type][w]++;
2434 		mutex_exit(&pio->io_lock);
2435 		zio_reexecute(cio);
2436 		mutex_enter(&pio->io_lock);
2437 	}
2438 	mutex_exit(&pio->io_lock);
2439 
2440 	/*
2441 	 * Now that all children have been reexecuted, execute the parent.
2442 	 * We don't reexecute "The Godfather" I/O here as it's the
2443 	 * responsibility of the caller to wait on it.
2444 	 */
2445 	if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) {
2446 		pio->io_queued_timestamp = gethrtime();
2447 		__zio_execute(pio);
2448 	}
2449 }
2450 
2451 void
2452 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason)
2453 {
2454 	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
2455 		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
2456 		    "failure and the failure mode property for this pool "
2457 		    "is set to panic.", spa_name(spa));
2458 
2459 	cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable I/O "
2460 	    "failure and has been suspended.\n", spa_name(spa));
2461 
2462 	(void) zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL,
2463 	    NULL, NULL, 0);
2464 
2465 	mutex_enter(&spa->spa_suspend_lock);
2466 
2467 	if (spa->spa_suspend_zio_root == NULL)
2468 		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
2469 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2470 		    ZIO_FLAG_GODFATHER);
2471 
2472 	spa->spa_suspended = reason;
2473 
2474 	if (zio != NULL) {
2475 		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
2476 		ASSERT(zio != spa->spa_suspend_zio_root);
2477 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2478 		ASSERT(zio_unique_parent(zio) == NULL);
2479 		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
2480 		zio_add_child(spa->spa_suspend_zio_root, zio);
2481 	}
2482 
2483 	mutex_exit(&spa->spa_suspend_lock);
2484 }
2485 
2486 int
2487 zio_resume(spa_t *spa)
2488 {
2489 	zio_t *pio;
2490 
2491 	/*
2492 	 * Reexecute all previously suspended i/o.
2493 	 */
2494 	mutex_enter(&spa->spa_suspend_lock);
2495 	spa->spa_suspended = ZIO_SUSPEND_NONE;
2496 	cv_broadcast(&spa->spa_suspend_cv);
2497 	pio = spa->spa_suspend_zio_root;
2498 	spa->spa_suspend_zio_root = NULL;
2499 	mutex_exit(&spa->spa_suspend_lock);
2500 
2501 	if (pio == NULL)
2502 		return (0);
2503 
2504 	zio_reexecute(pio);
2505 	return (zio_wait(pio));
2506 }
2507 
2508 void
2509 zio_resume_wait(spa_t *spa)
2510 {
2511 	mutex_enter(&spa->spa_suspend_lock);
2512 	while (spa_suspended(spa))
2513 		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
2514 	mutex_exit(&spa->spa_suspend_lock);
2515 }
2516 
2517 /*
2518  * ==========================================================================
2519  * Gang blocks.
2520  *
2521  * A gang block is a collection of small blocks that looks to the DMU
2522  * like one large block.  When zio_dva_allocate() cannot find a block
2523  * of the requested size, due to either severe fragmentation or the pool
2524  * being nearly full, it calls zio_write_gang_block() to construct the
2525  * block from smaller fragments.
2526  *
2527  * A gang block consists of a gang header (zio_gbh_phys_t) and up to
2528  * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
2529  * an indirect block: it's an array of block pointers.  It consumes
2530  * only one sector and hence is allocatable regardless of fragmentation.
2531  * The gang header's bps point to its gang members, which hold the data.
2532  *
2533  * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
2534  * as the verifier to ensure uniqueness of the SHA256 checksum.
2535  * Critically, the gang block bp's blk_cksum is the checksum of the data,
2536  * not the gang header.  This ensures that data block signatures (needed for
2537  * deduplication) are independent of how the block is physically stored.
2538  *
2539  * Gang blocks can be nested: a gang member may itself be a gang block.
2540  * Thus every gang block is a tree in which root and all interior nodes are
2541  * gang headers, and the leaves are normal blocks that contain user data.
2542  * The root of the gang tree is called the gang leader.
2543  *
2544  * To perform any operation (read, rewrite, free, claim) on a gang block,
2545  * zio_gang_assemble() first assembles the gang tree (minus data leaves)
2546  * in the io_gang_tree field of the original logical i/o by recursively
2547  * reading the gang leader and all gang headers below it.  This yields
2548  * an in-core tree containing the contents of every gang header and the
2549  * bps for every constituent of the gang block.
2550  *
2551  * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
2552  * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
2553  * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
2554  * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
2555  * zio_read_gang() is a wrapper around zio_read() that omits reading gang
2556  * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
2557  * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
2558  * of the gang header plus zio_checksum_compute() of the data to update the
2559  * gang header's blk_cksum as described above.
2560  *
2561  * The two-phase assemble/issue model solves the problem of partial failure --
2562  * what if you'd freed part of a gang block but then couldn't read the
2563  * gang header for another part?  Assembling the entire gang tree first
2564  * ensures that all the necessary gang header I/O has succeeded before
2565  * starting the actual work of free, claim, or write.  Once the gang tree
2566  * is assembled, free and claim are in-memory operations that cannot fail.
2567  *
2568  * In the event that a gang write fails, zio_dva_unallocate() walks the
2569  * gang tree to immediately free (i.e. insert back into the space map)
2570  * everything we've allocated.  This ensures that we don't get ENOSPC
2571  * errors during repeated suspend/resume cycles due to a flaky device.
2572  *
2573  * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
2574  * the gang tree, we won't modify the block, so we can safely defer the free
2575  * (knowing that the block is still intact).  If we *can* assemble the gang
2576  * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
2577  * each constituent bp and we can allocate a new block on the next sync pass.
2578  *
2579  * In all cases, the gang tree allows complete recovery from partial failure.
2580  * ==========================================================================
2581  */
2582 
2583 static void
2584 zio_gang_issue_func_done(zio_t *zio)
2585 {
2586 	abd_free(zio->io_abd);
2587 }
2588 
2589 static zio_t *
2590 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2591     uint64_t offset)
2592 {
2593 	if (gn != NULL)
2594 		return (pio);
2595 
2596 	return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset),
2597 	    BP_GET_PSIZE(bp), zio_gang_issue_func_done,
2598 	    NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2599 	    &pio->io_bookmark));
2600 }
2601 
2602 static zio_t *
2603 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2604     uint64_t offset)
2605 {
2606 	zio_t *zio;
2607 
2608 	if (gn != NULL) {
2609 		abd_t *gbh_abd =
2610 		    abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2611 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2612 		    gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL,
2613 		    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2614 		    &pio->io_bookmark);
2615 		/*
2616 		 * As we rewrite each gang header, the pipeline will compute
2617 		 * a new gang block header checksum for it; but no one will
2618 		 * compute a new data checksum, so we do that here.  The one
2619 		 * exception is the gang leader: the pipeline already computed
2620 		 * its data checksum because that stage precedes gang assembly.
2621 		 * (Presently, nothing actually uses interior data checksums;
2622 		 * this is just good hygiene.)
2623 		 */
2624 		if (gn != pio->io_gang_leader->io_gang_tree) {
2625 			abd_t *buf = abd_get_offset(data, offset);
2626 
2627 			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
2628 			    buf, BP_GET_PSIZE(bp));
2629 
2630 			abd_free(buf);
2631 		}
2632 		/*
2633 		 * If we are here to damage data for testing purposes,
2634 		 * leave the GBH alone so that we can detect the damage.
2635 		 */
2636 		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
2637 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2638 	} else {
2639 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2640 		    abd_get_offset(data, offset), BP_GET_PSIZE(bp),
2641 		    zio_gang_issue_func_done, NULL, pio->io_priority,
2642 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2643 	}
2644 
2645 	return (zio);
2646 }
2647 
2648 static zio_t *
2649 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2650     uint64_t offset)
2651 {
2652 	(void) gn, (void) data, (void) offset;
2653 
2654 	zio_t *zio = zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
2655 	    ZIO_GANG_CHILD_FLAGS(pio));
2656 	if (zio == NULL) {
2657 		zio = zio_null(pio, pio->io_spa,
2658 		    NULL, NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio));
2659 	}
2660 	return (zio);
2661 }
2662 
2663 static zio_t *
2664 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2665     uint64_t offset)
2666 {
2667 	(void) gn, (void) data, (void) offset;
2668 	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
2669 	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
2670 }
2671 
2672 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
2673 	NULL,
2674 	zio_read_gang,
2675 	zio_rewrite_gang,
2676 	zio_free_gang,
2677 	zio_claim_gang,
2678 	NULL
2679 };
2680 
2681 static void zio_gang_tree_assemble_done(zio_t *zio);
2682 
2683 static zio_gang_node_t *
2684 zio_gang_node_alloc(zio_gang_node_t **gnpp)
2685 {
2686 	zio_gang_node_t *gn;
2687 
2688 	ASSERT(*gnpp == NULL);
2689 
2690 	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
2691 	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
2692 	*gnpp = gn;
2693 
2694 	return (gn);
2695 }
2696 
2697 static void
2698 zio_gang_node_free(zio_gang_node_t **gnpp)
2699 {
2700 	zio_gang_node_t *gn = *gnpp;
2701 
2702 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2703 		ASSERT(gn->gn_child[g] == NULL);
2704 
2705 	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2706 	kmem_free(gn, sizeof (*gn));
2707 	*gnpp = NULL;
2708 }
2709 
2710 static void
2711 zio_gang_tree_free(zio_gang_node_t **gnpp)
2712 {
2713 	zio_gang_node_t *gn = *gnpp;
2714 
2715 	if (gn == NULL)
2716 		return;
2717 
2718 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2719 		zio_gang_tree_free(&gn->gn_child[g]);
2720 
2721 	zio_gang_node_free(gnpp);
2722 }
2723 
2724 static void
2725 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
2726 {
2727 	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
2728 	abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2729 
2730 	ASSERT(gio->io_gang_leader == gio);
2731 	ASSERT(BP_IS_GANG(bp));
2732 
2733 	zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2734 	    zio_gang_tree_assemble_done, gn, gio->io_priority,
2735 	    ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
2736 }
2737 
2738 static void
2739 zio_gang_tree_assemble_done(zio_t *zio)
2740 {
2741 	zio_t *gio = zio->io_gang_leader;
2742 	zio_gang_node_t *gn = zio->io_private;
2743 	blkptr_t *bp = zio->io_bp;
2744 
2745 	ASSERT(gio == zio_unique_parent(zio));
2746 	ASSERT(list_is_empty(&zio->io_child_list));
2747 
2748 	if (zio->io_error)
2749 		return;
2750 
2751 	/* this ABD was created from a linear buf in zio_gang_tree_assemble */
2752 	if (BP_SHOULD_BYTESWAP(bp))
2753 		byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size);
2754 
2755 	ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh);
2756 	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
2757 	ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2758 
2759 	abd_free(zio->io_abd);
2760 
2761 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2762 		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2763 		if (!BP_IS_GANG(gbp))
2764 			continue;
2765 		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
2766 	}
2767 }
2768 
2769 static void
2770 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data,
2771     uint64_t offset)
2772 {
2773 	zio_t *gio = pio->io_gang_leader;
2774 	zio_t *zio;
2775 
2776 	ASSERT(BP_IS_GANG(bp) == !!gn);
2777 	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
2778 	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
2779 
2780 	/*
2781 	 * If you're a gang header, your data is in gn->gn_gbh.
2782 	 * If you're a gang member, your data is in 'data' and gn == NULL.
2783 	 */
2784 	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset);
2785 
2786 	if (gn != NULL) {
2787 		ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2788 
2789 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2790 			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2791 			if (BP_IS_HOLE(gbp))
2792 				continue;
2793 			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data,
2794 			    offset);
2795 			offset += BP_GET_PSIZE(gbp);
2796 		}
2797 	}
2798 
2799 	if (gn == gio->io_gang_tree)
2800 		ASSERT3U(gio->io_size, ==, offset);
2801 
2802 	if (zio != pio)
2803 		zio_nowait(zio);
2804 }
2805 
2806 static zio_t *
2807 zio_gang_assemble(zio_t *zio)
2808 {
2809 	blkptr_t *bp = zio->io_bp;
2810 
2811 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
2812 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2813 
2814 	zio->io_gang_leader = zio;
2815 
2816 	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
2817 
2818 	return (zio);
2819 }
2820 
2821 static zio_t *
2822 zio_gang_issue(zio_t *zio)
2823 {
2824 	blkptr_t *bp = zio->io_bp;
2825 
2826 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) {
2827 		return (NULL);
2828 	}
2829 
2830 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
2831 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2832 
2833 	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
2834 		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd,
2835 		    0);
2836 	else
2837 		zio_gang_tree_free(&zio->io_gang_tree);
2838 
2839 	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2840 
2841 	return (zio);
2842 }
2843 
2844 static void
2845 zio_write_gang_member_ready(zio_t *zio)
2846 {
2847 	zio_t *pio = zio_unique_parent(zio);
2848 	dva_t *cdva = zio->io_bp->blk_dva;
2849 	dva_t *pdva = pio->io_bp->blk_dva;
2850 	uint64_t asize;
2851 	zio_t *gio __maybe_unused = zio->io_gang_leader;
2852 
2853 	if (BP_IS_HOLE(zio->io_bp))
2854 		return;
2855 
2856 	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
2857 
2858 	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
2859 	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
2860 	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
2861 	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
2862 	VERIFY3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
2863 
2864 	mutex_enter(&pio->io_lock);
2865 	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
2866 		ASSERT(DVA_GET_GANG(&pdva[d]));
2867 		asize = DVA_GET_ASIZE(&pdva[d]);
2868 		asize += DVA_GET_ASIZE(&cdva[d]);
2869 		DVA_SET_ASIZE(&pdva[d], asize);
2870 	}
2871 	mutex_exit(&pio->io_lock);
2872 }
2873 
2874 static void
2875 zio_write_gang_done(zio_t *zio)
2876 {
2877 	/*
2878 	 * The io_abd field will be NULL for a zio with no data.  The io_flags
2879 	 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't
2880 	 * check for it here as it is cleared in zio_ready.
2881 	 */
2882 	if (zio->io_abd != NULL)
2883 		abd_free(zio->io_abd);
2884 }
2885 
2886 static zio_t *
2887 zio_write_gang_block(zio_t *pio, metaslab_class_t *mc)
2888 {
2889 	spa_t *spa = pio->io_spa;
2890 	blkptr_t *bp = pio->io_bp;
2891 	zio_t *gio = pio->io_gang_leader;
2892 	zio_t *zio;
2893 	zio_gang_node_t *gn, **gnpp;
2894 	zio_gbh_phys_t *gbh;
2895 	abd_t *gbh_abd;
2896 	uint64_t txg = pio->io_txg;
2897 	uint64_t resid = pio->io_size;
2898 	uint64_t lsize;
2899 	int copies = gio->io_prop.zp_copies;
2900 	zio_prop_t zp;
2901 	int error;
2902 	boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA);
2903 
2904 	/*
2905 	 * If one copy was requested, store 2 copies of the GBH, so that we
2906 	 * can still traverse all the data (e.g. to free or scrub) even if a
2907 	 * block is damaged.  Note that we can't store 3 copies of the GBH in
2908 	 * all cases, e.g. with encryption, which uses DVA[2] for the IV+salt.
2909 	 */
2910 	int gbh_copies = copies;
2911 	if (gbh_copies == 1) {
2912 		gbh_copies = MIN(2, spa_max_replication(spa));
2913 	}
2914 
2915 	int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER;
2916 	if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2917 		ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2918 		ASSERT(has_data);
2919 
2920 		flags |= METASLAB_ASYNC_ALLOC;
2921 		VERIFY(zfs_refcount_held(&mc->mc_allocator[pio->io_allocator].
2922 		    mca_alloc_slots, pio));
2923 
2924 		/*
2925 		 * The logical zio has already placed a reservation for
2926 		 * 'copies' allocation slots but gang blocks may require
2927 		 * additional copies. These additional copies
2928 		 * (i.e. gbh_copies - copies) are guaranteed to succeed
2929 		 * since metaslab_class_throttle_reserve() always allows
2930 		 * additional reservations for gang blocks.
2931 		 */
2932 		VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies,
2933 		    pio->io_allocator, pio, flags));
2934 	}
2935 
2936 	error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE,
2937 	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags,
2938 	    &pio->io_alloc_list, pio, pio->io_allocator);
2939 	if (error) {
2940 		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2941 			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2942 			ASSERT(has_data);
2943 
2944 			/*
2945 			 * If we failed to allocate the gang block header then
2946 			 * we remove any additional allocation reservations that
2947 			 * we placed here. The original reservation will
2948 			 * be removed when the logical I/O goes to the ready
2949 			 * stage.
2950 			 */
2951 			metaslab_class_throttle_unreserve(mc,
2952 			    gbh_copies - copies, pio->io_allocator, pio);
2953 		}
2954 
2955 		pio->io_error = error;
2956 		return (pio);
2957 	}
2958 
2959 	if (pio == gio) {
2960 		gnpp = &gio->io_gang_tree;
2961 	} else {
2962 		gnpp = pio->io_private;
2963 		ASSERT(pio->io_ready == zio_write_gang_member_ready);
2964 	}
2965 
2966 	gn = zio_gang_node_alloc(gnpp);
2967 	gbh = gn->gn_gbh;
2968 	memset(gbh, 0, SPA_GANGBLOCKSIZE);
2969 	gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE);
2970 
2971 	/*
2972 	 * Create the gang header.
2973 	 */
2974 	zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2975 	    zio_write_gang_done, NULL, pio->io_priority,
2976 	    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2977 
2978 	/*
2979 	 * Create and nowait the gang children.
2980 	 */
2981 	for (int g = 0; resid != 0; resid -= lsize, g++) {
2982 		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
2983 		    SPA_MINBLOCKSIZE);
2984 		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
2985 
2986 		zp.zp_checksum = gio->io_prop.zp_checksum;
2987 		zp.zp_compress = ZIO_COMPRESS_OFF;
2988 		zp.zp_complevel = gio->io_prop.zp_complevel;
2989 		zp.zp_type = DMU_OT_NONE;
2990 		zp.zp_level = 0;
2991 		zp.zp_copies = gio->io_prop.zp_copies;
2992 		zp.zp_dedup = B_FALSE;
2993 		zp.zp_dedup_verify = B_FALSE;
2994 		zp.zp_nopwrite = B_FALSE;
2995 		zp.zp_encrypt = gio->io_prop.zp_encrypt;
2996 		zp.zp_byteorder = gio->io_prop.zp_byteorder;
2997 		memset(zp.zp_salt, 0, ZIO_DATA_SALT_LEN);
2998 		memset(zp.zp_iv, 0, ZIO_DATA_IV_LEN);
2999 		memset(zp.zp_mac, 0, ZIO_DATA_MAC_LEN);
3000 
3001 		zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
3002 		    has_data ? abd_get_offset(pio->io_abd, pio->io_size -
3003 		    resid) : NULL, lsize, lsize, &zp,
3004 		    zio_write_gang_member_ready, NULL,
3005 		    zio_write_gang_done, &gn->gn_child[g], pio->io_priority,
3006 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
3007 
3008 		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
3009 			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
3010 			ASSERT(has_data);
3011 
3012 			/*
3013 			 * Gang children won't throttle but we should
3014 			 * account for their work, so reserve an allocation
3015 			 * slot for them here.
3016 			 */
3017 			VERIFY(metaslab_class_throttle_reserve(mc,
3018 			    zp.zp_copies, cio->io_allocator, cio, flags));
3019 		}
3020 		zio_nowait(cio);
3021 	}
3022 
3023 	/*
3024 	 * Set pio's pipeline to just wait for zio to finish.
3025 	 */
3026 	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3027 
3028 	zio_nowait(zio);
3029 
3030 	return (pio);
3031 }
3032 
3033 /*
3034  * The zio_nop_write stage in the pipeline determines if allocating a
3035  * new bp is necessary.  The nopwrite feature can handle writes in
3036  * either syncing or open context (i.e. zil writes) and as a result is
3037  * mutually exclusive with dedup.
3038  *
3039  * By leveraging a cryptographically secure checksum, such as SHA256, we
3040  * can compare the checksums of the new data and the old to determine if
3041  * allocating a new block is required.  Note that our requirements for
3042  * cryptographic strength are fairly weak: there can't be any accidental
3043  * hash collisions, but we don't need to be secure against intentional
3044  * (malicious) collisions.  To trigger a nopwrite, you have to be able
3045  * to write the file to begin with, and triggering an incorrect (hash
3046  * collision) nopwrite is no worse than simply writing to the file.
3047  * That said, there are no known attacks against the checksum algorithms
3048  * used for nopwrite, assuming that the salt and the checksums
3049  * themselves remain secret.
3050  */
3051 static zio_t *
3052 zio_nop_write(zio_t *zio)
3053 {
3054 	blkptr_t *bp = zio->io_bp;
3055 	blkptr_t *bp_orig = &zio->io_bp_orig;
3056 	zio_prop_t *zp = &zio->io_prop;
3057 
3058 	ASSERT(BP_IS_HOLE(bp));
3059 	ASSERT(BP_GET_LEVEL(bp) == 0);
3060 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
3061 	ASSERT(zp->zp_nopwrite);
3062 	ASSERT(!zp->zp_dedup);
3063 	ASSERT(zio->io_bp_override == NULL);
3064 	ASSERT(IO_IS_ALLOCATING(zio));
3065 
3066 	/*
3067 	 * Check to see if the original bp and the new bp have matching
3068 	 * characteristics (i.e. same checksum, compression algorithms, etc).
3069 	 * If they don't then just continue with the pipeline which will
3070 	 * allocate a new bp.
3071 	 */
3072 	if (BP_IS_HOLE(bp_orig) ||
3073 	    !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
3074 	    ZCHECKSUM_FLAG_NOPWRITE) ||
3075 	    BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) ||
3076 	    BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
3077 	    BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
3078 	    BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
3079 	    zp->zp_copies != BP_GET_NDVAS(bp_orig))
3080 		return (zio);
3081 
3082 	/*
3083 	 * If the checksums match then reset the pipeline so that we
3084 	 * avoid allocating a new bp and issuing any I/O.
3085 	 */
3086 	if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
3087 		ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
3088 		    ZCHECKSUM_FLAG_NOPWRITE);
3089 		ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
3090 		ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
3091 		ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
3092 		ASSERT3U(bp->blk_prop, ==, bp_orig->blk_prop);
3093 
3094 		/*
3095 		 * If we're overwriting a block that is currently on an
3096 		 * indirect vdev, then ignore the nopwrite request and
3097 		 * allow a new block to be allocated on a concrete vdev.
3098 		 */
3099 		spa_config_enter(zio->io_spa, SCL_VDEV, FTAG, RW_READER);
3100 		for (int d = 0; d < BP_GET_NDVAS(bp_orig); d++) {
3101 			vdev_t *tvd = vdev_lookup_top(zio->io_spa,
3102 			    DVA_GET_VDEV(&bp_orig->blk_dva[d]));
3103 			if (tvd->vdev_ops == &vdev_indirect_ops) {
3104 				spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
3105 				return (zio);
3106 			}
3107 		}
3108 		spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
3109 
3110 		*bp = *bp_orig;
3111 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3112 		zio->io_flags |= ZIO_FLAG_NOPWRITE;
3113 	}
3114 
3115 	return (zio);
3116 }
3117 
3118 /*
3119  * ==========================================================================
3120  * Block Reference Table
3121  * ==========================================================================
3122  */
3123 static zio_t *
3124 zio_brt_free(zio_t *zio)
3125 {
3126 	blkptr_t *bp;
3127 
3128 	bp = zio->io_bp;
3129 
3130 	if (BP_GET_LEVEL(bp) > 0 ||
3131 	    BP_IS_METADATA(bp) ||
3132 	    !brt_maybe_exists(zio->io_spa, bp)) {
3133 		return (zio);
3134 	}
3135 
3136 	if (!brt_entry_decref(zio->io_spa, bp)) {
3137 		/*
3138 		 * This isn't the last reference, so we cannot free
3139 		 * the data yet.
3140 		 */
3141 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3142 	}
3143 
3144 	return (zio);
3145 }
3146 
3147 /*
3148  * ==========================================================================
3149  * Dedup
3150  * ==========================================================================
3151  */
3152 static void
3153 zio_ddt_child_read_done(zio_t *zio)
3154 {
3155 	blkptr_t *bp = zio->io_bp;
3156 	ddt_entry_t *dde = zio->io_private;
3157 	ddt_phys_t *ddp;
3158 	zio_t *pio = zio_unique_parent(zio);
3159 
3160 	mutex_enter(&pio->io_lock);
3161 	ddp = ddt_phys_select(dde, bp);
3162 	if (zio->io_error == 0)
3163 		ddt_phys_clear(ddp);	/* this ddp doesn't need repair */
3164 
3165 	if (zio->io_error == 0 && dde->dde_repair_abd == NULL)
3166 		dde->dde_repair_abd = zio->io_abd;
3167 	else
3168 		abd_free(zio->io_abd);
3169 	mutex_exit(&pio->io_lock);
3170 }
3171 
3172 static zio_t *
3173 zio_ddt_read_start(zio_t *zio)
3174 {
3175 	blkptr_t *bp = zio->io_bp;
3176 
3177 	ASSERT(BP_GET_DEDUP(bp));
3178 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3179 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3180 
3181 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
3182 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
3183 		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
3184 		ddt_phys_t *ddp = dde->dde_phys;
3185 		ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
3186 		blkptr_t blk;
3187 
3188 		ASSERT(zio->io_vsd == NULL);
3189 		zio->io_vsd = dde;
3190 
3191 		if (ddp_self == NULL)
3192 			return (zio);
3193 
3194 		for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
3195 			if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
3196 				continue;
3197 			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
3198 			    &blk);
3199 			zio_nowait(zio_read(zio, zio->io_spa, &blk,
3200 			    abd_alloc_for_io(zio->io_size, B_TRUE),
3201 			    zio->io_size, zio_ddt_child_read_done, dde,
3202 			    zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) |
3203 			    ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark));
3204 		}
3205 		return (zio);
3206 	}
3207 
3208 	zio_nowait(zio_read(zio, zio->io_spa, bp,
3209 	    zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority,
3210 	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
3211 
3212 	return (zio);
3213 }
3214 
3215 static zio_t *
3216 zio_ddt_read_done(zio_t *zio)
3217 {
3218 	blkptr_t *bp = zio->io_bp;
3219 
3220 	if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) {
3221 		return (NULL);
3222 	}
3223 
3224 	ASSERT(BP_GET_DEDUP(bp));
3225 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3226 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3227 
3228 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
3229 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
3230 		ddt_entry_t *dde = zio->io_vsd;
3231 		if (ddt == NULL) {
3232 			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
3233 			return (zio);
3234 		}
3235 		if (dde == NULL) {
3236 			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
3237 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
3238 			return (NULL);
3239 		}
3240 		if (dde->dde_repair_abd != NULL) {
3241 			abd_copy(zio->io_abd, dde->dde_repair_abd,
3242 			    zio->io_size);
3243 			zio->io_child_error[ZIO_CHILD_DDT] = 0;
3244 		}
3245 		ddt_repair_done(ddt, dde);
3246 		zio->io_vsd = NULL;
3247 	}
3248 
3249 	ASSERT(zio->io_vsd == NULL);
3250 
3251 	return (zio);
3252 }
3253 
3254 static boolean_t
3255 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
3256 {
3257 	spa_t *spa = zio->io_spa;
3258 	boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW);
3259 
3260 	ASSERT(!(zio->io_bp_override && do_raw));
3261 
3262 	/*
3263 	 * Note: we compare the original data, not the transformed data,
3264 	 * because when zio->io_bp is an override bp, we will not have
3265 	 * pushed the I/O transforms.  That's an important optimization
3266 	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
3267 	 * However, we should never get a raw, override zio so in these
3268 	 * cases we can compare the io_abd directly. This is useful because
3269 	 * it allows us to do dedup verification even if we don't have access
3270 	 * to the original data (for instance, if the encryption keys aren't
3271 	 * loaded).
3272 	 */
3273 
3274 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
3275 		zio_t *lio = dde->dde_lead_zio[p];
3276 
3277 		if (lio != NULL && do_raw) {
3278 			return (lio->io_size != zio->io_size ||
3279 			    abd_cmp(zio->io_abd, lio->io_abd) != 0);
3280 		} else if (lio != NULL) {
3281 			return (lio->io_orig_size != zio->io_orig_size ||
3282 			    abd_cmp(zio->io_orig_abd, lio->io_orig_abd) != 0);
3283 		}
3284 	}
3285 
3286 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
3287 		ddt_phys_t *ddp = &dde->dde_phys[p];
3288 
3289 		if (ddp->ddp_phys_birth != 0 && do_raw) {
3290 			blkptr_t blk = *zio->io_bp;
3291 			uint64_t psize;
3292 			abd_t *tmpabd;
3293 			int error;
3294 
3295 			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
3296 			psize = BP_GET_PSIZE(&blk);
3297 
3298 			if (psize != zio->io_size)
3299 				return (B_TRUE);
3300 
3301 			ddt_exit(ddt);
3302 
3303 			tmpabd = abd_alloc_for_io(psize, B_TRUE);
3304 
3305 			error = zio_wait(zio_read(NULL, spa, &blk, tmpabd,
3306 			    psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
3307 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3308 			    ZIO_FLAG_RAW, &zio->io_bookmark));
3309 
3310 			if (error == 0) {
3311 				if (abd_cmp(tmpabd, zio->io_abd) != 0)
3312 					error = SET_ERROR(ENOENT);
3313 			}
3314 
3315 			abd_free(tmpabd);
3316 			ddt_enter(ddt);
3317 			return (error != 0);
3318 		} else if (ddp->ddp_phys_birth != 0) {
3319 			arc_buf_t *abuf = NULL;
3320 			arc_flags_t aflags = ARC_FLAG_WAIT;
3321 			blkptr_t blk = *zio->io_bp;
3322 			int error;
3323 
3324 			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
3325 
3326 			if (BP_GET_LSIZE(&blk) != zio->io_orig_size)
3327 				return (B_TRUE);
3328 
3329 			ddt_exit(ddt);
3330 
3331 			error = arc_read(NULL, spa, &blk,
3332 			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
3333 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3334 			    &aflags, &zio->io_bookmark);
3335 
3336 			if (error == 0) {
3337 				if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data,
3338 				    zio->io_orig_size) != 0)
3339 					error = SET_ERROR(ENOENT);
3340 				arc_buf_destroy(abuf, &abuf);
3341 			}
3342 
3343 			ddt_enter(ddt);
3344 			return (error != 0);
3345 		}
3346 	}
3347 
3348 	return (B_FALSE);
3349 }
3350 
3351 static void
3352 zio_ddt_child_write_ready(zio_t *zio)
3353 {
3354 	int p = zio->io_prop.zp_copies;
3355 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3356 	ddt_entry_t *dde = zio->io_private;
3357 	ddt_phys_t *ddp = &dde->dde_phys[p];
3358 	zio_t *pio;
3359 
3360 	if (zio->io_error)
3361 		return;
3362 
3363 	ddt_enter(ddt);
3364 
3365 	ASSERT(dde->dde_lead_zio[p] == zio);
3366 
3367 	ddt_phys_fill(ddp, zio->io_bp);
3368 
3369 	zio_link_t *zl = NULL;
3370 	while ((pio = zio_walk_parents(zio, &zl)) != NULL)
3371 		ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
3372 
3373 	ddt_exit(ddt);
3374 }
3375 
3376 static void
3377 zio_ddt_child_write_done(zio_t *zio)
3378 {
3379 	int p = zio->io_prop.zp_copies;
3380 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3381 	ddt_entry_t *dde = zio->io_private;
3382 	ddt_phys_t *ddp = &dde->dde_phys[p];
3383 
3384 	ddt_enter(ddt);
3385 
3386 	ASSERT(ddp->ddp_refcnt == 0);
3387 	ASSERT(dde->dde_lead_zio[p] == zio);
3388 	dde->dde_lead_zio[p] = NULL;
3389 
3390 	if (zio->io_error == 0) {
3391 		zio_link_t *zl = NULL;
3392 		while (zio_walk_parents(zio, &zl) != NULL)
3393 			ddt_phys_addref(ddp);
3394 	} else {
3395 		ddt_phys_clear(ddp);
3396 	}
3397 
3398 	ddt_exit(ddt);
3399 }
3400 
3401 static zio_t *
3402 zio_ddt_write(zio_t *zio)
3403 {
3404 	spa_t *spa = zio->io_spa;
3405 	blkptr_t *bp = zio->io_bp;
3406 	uint64_t txg = zio->io_txg;
3407 	zio_prop_t *zp = &zio->io_prop;
3408 	int p = zp->zp_copies;
3409 	zio_t *cio = NULL;
3410 	ddt_t *ddt = ddt_select(spa, bp);
3411 	ddt_entry_t *dde;
3412 	ddt_phys_t *ddp;
3413 
3414 	ASSERT(BP_GET_DEDUP(bp));
3415 	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
3416 	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
3417 	ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW)));
3418 
3419 	ddt_enter(ddt);
3420 	dde = ddt_lookup(ddt, bp, B_TRUE);
3421 	ddp = &dde->dde_phys[p];
3422 
3423 	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
3424 		/*
3425 		 * If we're using a weak checksum, upgrade to a strong checksum
3426 		 * and try again.  If we're already using a strong checksum,
3427 		 * we can't resolve it, so just convert to an ordinary write.
3428 		 * (And automatically e-mail a paper to Nature?)
3429 		 */
3430 		if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
3431 		    ZCHECKSUM_FLAG_DEDUP)) {
3432 			zp->zp_checksum = spa_dedup_checksum(spa);
3433 			zio_pop_transforms(zio);
3434 			zio->io_stage = ZIO_STAGE_OPEN;
3435 			BP_ZERO(bp);
3436 		} else {
3437 			zp->zp_dedup = B_FALSE;
3438 			BP_SET_DEDUP(bp, B_FALSE);
3439 		}
3440 		ASSERT(!BP_GET_DEDUP(bp));
3441 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
3442 		ddt_exit(ddt);
3443 		return (zio);
3444 	}
3445 
3446 	if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
3447 		if (ddp->ddp_phys_birth != 0)
3448 			ddt_bp_fill(ddp, bp, txg);
3449 		if (dde->dde_lead_zio[p] != NULL)
3450 			zio_add_child(zio, dde->dde_lead_zio[p]);
3451 		else
3452 			ddt_phys_addref(ddp);
3453 	} else if (zio->io_bp_override) {
3454 		ASSERT(bp->blk_birth == txg);
3455 		ASSERT(BP_EQUAL(bp, zio->io_bp_override));
3456 		ddt_phys_fill(ddp, bp);
3457 		ddt_phys_addref(ddp);
3458 	} else {
3459 		cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
3460 		    zio->io_orig_size, zio->io_orig_size, zp,
3461 		    zio_ddt_child_write_ready, NULL,
3462 		    zio_ddt_child_write_done, dde, zio->io_priority,
3463 		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
3464 
3465 		zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL);
3466 		dde->dde_lead_zio[p] = cio;
3467 	}
3468 
3469 	ddt_exit(ddt);
3470 
3471 	zio_nowait(cio);
3472 
3473 	return (zio);
3474 }
3475 
3476 static ddt_entry_t *freedde; /* for debugging */
3477 
3478 static zio_t *
3479 zio_ddt_free(zio_t *zio)
3480 {
3481 	spa_t *spa = zio->io_spa;
3482 	blkptr_t *bp = zio->io_bp;
3483 	ddt_t *ddt = ddt_select(spa, bp);
3484 	ddt_entry_t *dde;
3485 	ddt_phys_t *ddp;
3486 
3487 	ASSERT(BP_GET_DEDUP(bp));
3488 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3489 
3490 	ddt_enter(ddt);
3491 	freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
3492 	if (dde) {
3493 		ddp = ddt_phys_select(dde, bp);
3494 		if (ddp)
3495 			ddt_phys_decref(ddp);
3496 	}
3497 	ddt_exit(ddt);
3498 
3499 	return (zio);
3500 }
3501 
3502 /*
3503  * ==========================================================================
3504  * Allocate and free blocks
3505  * ==========================================================================
3506  */
3507 
3508 static zio_t *
3509 zio_io_to_allocate(spa_t *spa, int allocator)
3510 {
3511 	zio_t *zio;
3512 
3513 	ASSERT(MUTEX_HELD(&spa->spa_allocs[allocator].spaa_lock));
3514 
3515 	zio = avl_first(&spa->spa_allocs[allocator].spaa_tree);
3516 	if (zio == NULL)
3517 		return (NULL);
3518 
3519 	ASSERT(IO_IS_ALLOCATING(zio));
3520 
3521 	/*
3522 	 * Try to place a reservation for this zio. If we're unable to
3523 	 * reserve then we throttle.
3524 	 */
3525 	ASSERT3U(zio->io_allocator, ==, allocator);
3526 	if (!metaslab_class_throttle_reserve(zio->io_metaslab_class,
3527 	    zio->io_prop.zp_copies, allocator, zio, 0)) {
3528 		return (NULL);
3529 	}
3530 
3531 	avl_remove(&spa->spa_allocs[allocator].spaa_tree, zio);
3532 	ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE);
3533 
3534 	return (zio);
3535 }
3536 
3537 static zio_t *
3538 zio_dva_throttle(zio_t *zio)
3539 {
3540 	spa_t *spa = zio->io_spa;
3541 	zio_t *nio;
3542 	metaslab_class_t *mc;
3543 
3544 	/* locate an appropriate allocation class */
3545 	mc = spa_preferred_class(spa, zio->io_size, zio->io_prop.zp_type,
3546 	    zio->io_prop.zp_level, zio->io_prop.zp_zpl_smallblk);
3547 
3548 	if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE ||
3549 	    !mc->mc_alloc_throttle_enabled ||
3550 	    zio->io_child_type == ZIO_CHILD_GANG ||
3551 	    zio->io_flags & ZIO_FLAG_NODATA) {
3552 		return (zio);
3553 	}
3554 
3555 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3556 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3557 	ASSERT3U(zio->io_queued_timestamp, >, 0);
3558 	ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE);
3559 
3560 	zbookmark_phys_t *bm = &zio->io_bookmark;
3561 	/*
3562 	 * We want to try to use as many allocators as possible to help improve
3563 	 * performance, but we also want logically adjacent IOs to be physically
3564 	 * adjacent to improve sequential read performance. We chunk each object
3565 	 * into 2^20 block regions, and then hash based on the objset, object,
3566 	 * level, and region to accomplish both of these goals.
3567 	 */
3568 	int allocator = (uint_t)cityhash4(bm->zb_objset, bm->zb_object,
3569 	    bm->zb_level, bm->zb_blkid >> 20) % spa->spa_alloc_count;
3570 	zio->io_allocator = allocator;
3571 	zio->io_metaslab_class = mc;
3572 	mutex_enter(&spa->spa_allocs[allocator].spaa_lock);
3573 	avl_add(&spa->spa_allocs[allocator].spaa_tree, zio);
3574 	nio = zio_io_to_allocate(spa, allocator);
3575 	mutex_exit(&spa->spa_allocs[allocator].spaa_lock);
3576 	return (nio);
3577 }
3578 
3579 static void
3580 zio_allocate_dispatch(spa_t *spa, int allocator)
3581 {
3582 	zio_t *zio;
3583 
3584 	mutex_enter(&spa->spa_allocs[allocator].spaa_lock);
3585 	zio = zio_io_to_allocate(spa, allocator);
3586 	mutex_exit(&spa->spa_allocs[allocator].spaa_lock);
3587 	if (zio == NULL)
3588 		return;
3589 
3590 	ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE);
3591 	ASSERT0(zio->io_error);
3592 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE);
3593 }
3594 
3595 static zio_t *
3596 zio_dva_allocate(zio_t *zio)
3597 {
3598 	spa_t *spa = zio->io_spa;
3599 	metaslab_class_t *mc;
3600 	blkptr_t *bp = zio->io_bp;
3601 	int error;
3602 	int flags = 0;
3603 
3604 	if (zio->io_gang_leader == NULL) {
3605 		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3606 		zio->io_gang_leader = zio;
3607 	}
3608 
3609 	ASSERT(BP_IS_HOLE(bp));
3610 	ASSERT0(BP_GET_NDVAS(bp));
3611 	ASSERT3U(zio->io_prop.zp_copies, >, 0);
3612 	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
3613 	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
3614 
3615 	if (zio->io_flags & ZIO_FLAG_NODATA)
3616 		flags |= METASLAB_DONT_THROTTLE;
3617 	if (zio->io_flags & ZIO_FLAG_GANG_CHILD)
3618 		flags |= METASLAB_GANG_CHILD;
3619 	if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE)
3620 		flags |= METASLAB_ASYNC_ALLOC;
3621 
3622 	/*
3623 	 * if not already chosen, locate an appropriate allocation class
3624 	 */
3625 	mc = zio->io_metaslab_class;
3626 	if (mc == NULL) {
3627 		mc = spa_preferred_class(spa, zio->io_size,
3628 		    zio->io_prop.zp_type, zio->io_prop.zp_level,
3629 		    zio->io_prop.zp_zpl_smallblk);
3630 		zio->io_metaslab_class = mc;
3631 	}
3632 
3633 	/*
3634 	 * Try allocating the block in the usual metaslab class.
3635 	 * If that's full, allocate it in the normal class.
3636 	 * If that's full, allocate as a gang block,
3637 	 * and if all are full, the allocation fails (which shouldn't happen).
3638 	 *
3639 	 * Note that we do not fall back on embedded slog (ZIL) space, to
3640 	 * preserve unfragmented slog space, which is critical for decent
3641 	 * sync write performance.  If a log allocation fails, we will fall
3642 	 * back to spa_sync() which is abysmal for performance.
3643 	 */
3644 	error = metaslab_alloc(spa, mc, zio->io_size, bp,
3645 	    zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3646 	    &zio->io_alloc_list, zio, zio->io_allocator);
3647 
3648 	/*
3649 	 * Fallback to normal class when an alloc class is full
3650 	 */
3651 	if (error == ENOSPC && mc != spa_normal_class(spa)) {
3652 		/*
3653 		 * If throttling, transfer reservation over to normal class.
3654 		 * The io_allocator slot can remain the same even though we
3655 		 * are switching classes.
3656 		 */
3657 		if (mc->mc_alloc_throttle_enabled &&
3658 		    (zio->io_flags & ZIO_FLAG_IO_ALLOCATING)) {
3659 			metaslab_class_throttle_unreserve(mc,
3660 			    zio->io_prop.zp_copies, zio->io_allocator, zio);
3661 			zio->io_flags &= ~ZIO_FLAG_IO_ALLOCATING;
3662 
3663 			VERIFY(metaslab_class_throttle_reserve(
3664 			    spa_normal_class(spa),
3665 			    zio->io_prop.zp_copies, zio->io_allocator, zio,
3666 			    flags | METASLAB_MUST_RESERVE));
3667 		}
3668 		zio->io_metaslab_class = mc = spa_normal_class(spa);
3669 		if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) {
3670 			zfs_dbgmsg("%s: metaslab allocation failure, "
3671 			    "trying normal class: zio %px, size %llu, error %d",
3672 			    spa_name(spa), zio, (u_longlong_t)zio->io_size,
3673 			    error);
3674 		}
3675 
3676 		error = metaslab_alloc(spa, mc, zio->io_size, bp,
3677 		    zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3678 		    &zio->io_alloc_list, zio, zio->io_allocator);
3679 	}
3680 
3681 	if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) {
3682 		if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) {
3683 			zfs_dbgmsg("%s: metaslab allocation failure, "
3684 			    "trying ganging: zio %px, size %llu, error %d",
3685 			    spa_name(spa), zio, (u_longlong_t)zio->io_size,
3686 			    error);
3687 		}
3688 		return (zio_write_gang_block(zio, mc));
3689 	}
3690 	if (error != 0) {
3691 		if (error != ENOSPC ||
3692 		    (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC)) {
3693 			zfs_dbgmsg("%s: metaslab allocation failure: zio %px, "
3694 			    "size %llu, error %d",
3695 			    spa_name(spa), zio, (u_longlong_t)zio->io_size,
3696 			    error);
3697 		}
3698 		zio->io_error = error;
3699 	}
3700 
3701 	return (zio);
3702 }
3703 
3704 static zio_t *
3705 zio_dva_free(zio_t *zio)
3706 {
3707 	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
3708 
3709 	return (zio);
3710 }
3711 
3712 static zio_t *
3713 zio_dva_claim(zio_t *zio)
3714 {
3715 	int error;
3716 
3717 	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
3718 	if (error)
3719 		zio->io_error = error;
3720 
3721 	return (zio);
3722 }
3723 
3724 /*
3725  * Undo an allocation.  This is used by zio_done() when an I/O fails
3726  * and we want to give back the block we just allocated.
3727  * This handles both normal blocks and gang blocks.
3728  */
3729 static void
3730 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
3731 {
3732 	ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
3733 	ASSERT(zio->io_bp_override == NULL);
3734 
3735 	if (!BP_IS_HOLE(bp))
3736 		metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
3737 
3738 	if (gn != NULL) {
3739 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
3740 			zio_dva_unallocate(zio, gn->gn_child[g],
3741 			    &gn->gn_gbh->zg_blkptr[g]);
3742 		}
3743 	}
3744 }
3745 
3746 /*
3747  * Try to allocate an intent log block.  Return 0 on success, errno on failure.
3748  */
3749 int
3750 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp,
3751     uint64_t size, boolean_t *slog)
3752 {
3753 	int error = 1;
3754 	zio_alloc_list_t io_alloc_list;
3755 
3756 	ASSERT(txg > spa_syncing_txg(spa));
3757 
3758 	metaslab_trace_init(&io_alloc_list);
3759 
3760 	/*
3761 	 * Block pointer fields are useful to metaslabs for stats and debugging.
3762 	 * Fill in the obvious ones before calling into metaslab_alloc().
3763 	 */
3764 	BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3765 	BP_SET_PSIZE(new_bp, size);
3766 	BP_SET_LEVEL(new_bp, 0);
3767 
3768 	/*
3769 	 * When allocating a zil block, we don't have information about
3770 	 * the final destination of the block except the objset it's part
3771 	 * of, so we just hash the objset ID to pick the allocator to get
3772 	 * some parallelism.
3773 	 */
3774 	int flags = METASLAB_ZIL;
3775 	int allocator = (uint_t)cityhash4(0, 0, 0,
3776 	    os->os_dsl_dataset->ds_object) % spa->spa_alloc_count;
3777 	error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1,
3778 	    txg, NULL, flags, &io_alloc_list, NULL, allocator);
3779 	*slog = (error == 0);
3780 	if (error != 0) {
3781 		error = metaslab_alloc(spa, spa_embedded_log_class(spa), size,
3782 		    new_bp, 1, txg, NULL, flags,
3783 		    &io_alloc_list, NULL, allocator);
3784 	}
3785 	if (error != 0) {
3786 		error = metaslab_alloc(spa, spa_normal_class(spa), size,
3787 		    new_bp, 1, txg, NULL, flags,
3788 		    &io_alloc_list, NULL, allocator);
3789 	}
3790 	metaslab_trace_fini(&io_alloc_list);
3791 
3792 	if (error == 0) {
3793 		BP_SET_LSIZE(new_bp, size);
3794 		BP_SET_PSIZE(new_bp, size);
3795 		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
3796 		BP_SET_CHECKSUM(new_bp,
3797 		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL
3798 		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
3799 		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3800 		BP_SET_LEVEL(new_bp, 0);
3801 		BP_SET_DEDUP(new_bp, 0);
3802 		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
3803 
3804 		/*
3805 		 * encrypted blocks will require an IV and salt. We generate
3806 		 * these now since we will not be rewriting the bp at
3807 		 * rewrite time.
3808 		 */
3809 		if (os->os_encrypted) {
3810 			uint8_t iv[ZIO_DATA_IV_LEN];
3811 			uint8_t salt[ZIO_DATA_SALT_LEN];
3812 
3813 			BP_SET_CRYPT(new_bp, B_TRUE);
3814 			VERIFY0(spa_crypt_get_salt(spa,
3815 			    dmu_objset_id(os), salt));
3816 			VERIFY0(zio_crypt_generate_iv(iv));
3817 
3818 			zio_crypt_encode_params_bp(new_bp, salt, iv);
3819 		}
3820 	} else {
3821 		zfs_dbgmsg("%s: zil block allocation failure: "
3822 		    "size %llu, error %d", spa_name(spa), (u_longlong_t)size,
3823 		    error);
3824 	}
3825 
3826 	return (error);
3827 }
3828 
3829 /*
3830  * ==========================================================================
3831  * Read and write to physical devices
3832  * ==========================================================================
3833  */
3834 
3835 /*
3836  * Issue an I/O to the underlying vdev. Typically the issue pipeline
3837  * stops after this stage and will resume upon I/O completion.
3838  * However, there are instances where the vdev layer may need to
3839  * continue the pipeline when an I/O was not issued. Since the I/O
3840  * that was sent to the vdev layer might be different than the one
3841  * currently active in the pipeline (see vdev_queue_io()), we explicitly
3842  * force the underlying vdev layers to call either zio_execute() or
3843  * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
3844  */
3845 static zio_t *
3846 zio_vdev_io_start(zio_t *zio)
3847 {
3848 	vdev_t *vd = zio->io_vd;
3849 	uint64_t align;
3850 	spa_t *spa = zio->io_spa;
3851 
3852 	zio->io_delay = 0;
3853 
3854 	ASSERT(zio->io_error == 0);
3855 	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
3856 
3857 	if (vd == NULL) {
3858 		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3859 			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
3860 
3861 		/*
3862 		 * The mirror_ops handle multiple DVAs in a single BP.
3863 		 */
3864 		vdev_mirror_ops.vdev_op_io_start(zio);
3865 		return (NULL);
3866 	}
3867 
3868 	ASSERT3P(zio->io_logical, !=, zio);
3869 	if (zio->io_type == ZIO_TYPE_WRITE) {
3870 		ASSERT(spa->spa_trust_config);
3871 
3872 		/*
3873 		 * Note: the code can handle other kinds of writes,
3874 		 * but we don't expect them.
3875 		 */
3876 		if (zio->io_vd->vdev_noalloc) {
3877 			ASSERT(zio->io_flags &
3878 			    (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL |
3879 			    ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE));
3880 		}
3881 	}
3882 
3883 	align = 1ULL << vd->vdev_top->vdev_ashift;
3884 
3885 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
3886 	    P2PHASE(zio->io_size, align) != 0) {
3887 		/* Transform logical writes to be a full physical block size. */
3888 		uint64_t asize = P2ROUNDUP(zio->io_size, align);
3889 		abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize);
3890 		ASSERT(vd == vd->vdev_top);
3891 		if (zio->io_type == ZIO_TYPE_WRITE) {
3892 			abd_copy(abuf, zio->io_abd, zio->io_size);
3893 			abd_zero_off(abuf, zio->io_size, asize - zio->io_size);
3894 		}
3895 		zio_push_transform(zio, abuf, asize, asize, zio_subblock);
3896 	}
3897 
3898 	/*
3899 	 * If this is not a physical io, make sure that it is properly aligned
3900 	 * before proceeding.
3901 	 */
3902 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
3903 		ASSERT0(P2PHASE(zio->io_offset, align));
3904 		ASSERT0(P2PHASE(zio->io_size, align));
3905 	} else {
3906 		/*
3907 		 * For physical writes, we allow 512b aligned writes and assume
3908 		 * the device will perform a read-modify-write as necessary.
3909 		 */
3910 		ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
3911 		ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
3912 	}
3913 
3914 	VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
3915 
3916 	/*
3917 	 * If this is a repair I/O, and there's no self-healing involved --
3918 	 * that is, we're just resilvering what we expect to resilver --
3919 	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
3920 	 * This prevents spurious resilvering.
3921 	 *
3922 	 * There are a few ways that we can end up creating these spurious
3923 	 * resilver i/os:
3924 	 *
3925 	 * 1. A resilver i/o will be issued if any DVA in the BP has a
3926 	 * dirty DTL.  The mirror code will issue resilver writes to
3927 	 * each DVA, including the one(s) that are not on vdevs with dirty
3928 	 * DTLs.
3929 	 *
3930 	 * 2. With nested replication, which happens when we have a
3931 	 * "replacing" or "spare" vdev that's a child of a mirror or raidz.
3932 	 * For example, given mirror(replacing(A+B), C), it's likely that
3933 	 * only A is out of date (it's the new device). In this case, we'll
3934 	 * read from C, then use the data to resilver A+B -- but we don't
3935 	 * actually want to resilver B, just A. The top-level mirror has no
3936 	 * way to know this, so instead we just discard unnecessary repairs
3937 	 * as we work our way down the vdev tree.
3938 	 *
3939 	 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc.
3940 	 * The same logic applies to any form of nested replication: ditto
3941 	 * + mirror, RAID-Z + replacing, etc.
3942 	 *
3943 	 * However, indirect vdevs point off to other vdevs which may have
3944 	 * DTL's, so we never bypass them.  The child i/os on concrete vdevs
3945 	 * will be properly bypassed instead.
3946 	 *
3947 	 * Leaf DTL_PARTIAL can be empty when a legitimate write comes from
3948 	 * a dRAID spare vdev. For example, when a dRAID spare is first
3949 	 * used, its spare blocks need to be written to but the leaf vdev's
3950 	 * of such blocks can have empty DTL_PARTIAL.
3951 	 *
3952 	 * There seemed no clean way to allow such writes while bypassing
3953 	 * spurious ones. At this point, just avoid all bypassing for dRAID
3954 	 * for correctness.
3955 	 */
3956 	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
3957 	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
3958 	    zio->io_txg != 0 &&	/* not a delegated i/o */
3959 	    vd->vdev_ops != &vdev_indirect_ops &&
3960 	    vd->vdev_top->vdev_ops != &vdev_draid_ops &&
3961 	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
3962 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3963 		zio_vdev_io_bypass(zio);
3964 		return (zio);
3965 	}
3966 
3967 	/*
3968 	 * Select the next best leaf I/O to process.  Distributed spares are
3969 	 * excluded since they dispatch the I/O directly to a leaf vdev after
3970 	 * applying the dRAID mapping.
3971 	 */
3972 	if (vd->vdev_ops->vdev_op_leaf &&
3973 	    vd->vdev_ops != &vdev_draid_spare_ops &&
3974 	    (zio->io_type == ZIO_TYPE_READ ||
3975 	    zio->io_type == ZIO_TYPE_WRITE ||
3976 	    zio->io_type == ZIO_TYPE_TRIM)) {
3977 
3978 		if ((zio = vdev_queue_io(zio)) == NULL)
3979 			return (NULL);
3980 
3981 		if (!vdev_accessible(vd, zio)) {
3982 			zio->io_error = SET_ERROR(ENXIO);
3983 			zio_interrupt(zio);
3984 			return (NULL);
3985 		}
3986 		zio->io_delay = gethrtime();
3987 	}
3988 
3989 	vd->vdev_ops->vdev_op_io_start(zio);
3990 	return (NULL);
3991 }
3992 
3993 static zio_t *
3994 zio_vdev_io_done(zio_t *zio)
3995 {
3996 	vdev_t *vd = zio->io_vd;
3997 	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
3998 	boolean_t unexpected_error = B_FALSE;
3999 
4000 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
4001 		return (NULL);
4002 	}
4003 
4004 	ASSERT(zio->io_type == ZIO_TYPE_READ ||
4005 	    zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM);
4006 
4007 	if (zio->io_delay)
4008 		zio->io_delay = gethrtime() - zio->io_delay;
4009 
4010 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
4011 	    vd->vdev_ops != &vdev_draid_spare_ops) {
4012 		vdev_queue_io_done(zio);
4013 
4014 		if (zio_injection_enabled && zio->io_error == 0)
4015 			zio->io_error = zio_handle_device_injections(vd, zio,
4016 			    EIO, EILSEQ);
4017 
4018 		if (zio_injection_enabled && zio->io_error == 0)
4019 			zio->io_error = zio_handle_label_injection(zio, EIO);
4020 
4021 		if (zio->io_error && zio->io_type != ZIO_TYPE_TRIM) {
4022 			if (!vdev_accessible(vd, zio)) {
4023 				zio->io_error = SET_ERROR(ENXIO);
4024 			} else {
4025 				unexpected_error = B_TRUE;
4026 			}
4027 		}
4028 	}
4029 
4030 	ops->vdev_op_io_done(zio);
4031 
4032 	if (unexpected_error && vd->vdev_remove_wanted == B_FALSE)
4033 		VERIFY(vdev_probe(vd, zio) == NULL);
4034 
4035 	return (zio);
4036 }
4037 
4038 /*
4039  * This function is used to change the priority of an existing zio that is
4040  * currently in-flight. This is used by the arc to upgrade priority in the
4041  * event that a demand read is made for a block that is currently queued
4042  * as a scrub or async read IO. Otherwise, the high priority read request
4043  * would end up having to wait for the lower priority IO.
4044  */
4045 void
4046 zio_change_priority(zio_t *pio, zio_priority_t priority)
4047 {
4048 	zio_t *cio, *cio_next;
4049 	zio_link_t *zl = NULL;
4050 
4051 	ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
4052 
4053 	if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) {
4054 		vdev_queue_change_io_priority(pio, priority);
4055 	} else {
4056 		pio->io_priority = priority;
4057 	}
4058 
4059 	mutex_enter(&pio->io_lock);
4060 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
4061 		cio_next = zio_walk_children(pio, &zl);
4062 		zio_change_priority(cio, priority);
4063 	}
4064 	mutex_exit(&pio->io_lock);
4065 }
4066 
4067 /*
4068  * For non-raidz ZIOs, we can just copy aside the bad data read from the
4069  * disk, and use that to finish the checksum ereport later.
4070  */
4071 static void
4072 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
4073     const abd_t *good_buf)
4074 {
4075 	/* no processing needed */
4076 	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
4077 }
4078 
4079 void
4080 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr)
4081 {
4082 	void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size);
4083 
4084 	abd_copy(abd, zio->io_abd, zio->io_size);
4085 
4086 	zcr->zcr_cbinfo = zio->io_size;
4087 	zcr->zcr_cbdata = abd;
4088 	zcr->zcr_finish = zio_vsd_default_cksum_finish;
4089 	zcr->zcr_free = zio_abd_free;
4090 }
4091 
4092 static zio_t *
4093 zio_vdev_io_assess(zio_t *zio)
4094 {
4095 	vdev_t *vd = zio->io_vd;
4096 
4097 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
4098 		return (NULL);
4099 	}
4100 
4101 	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
4102 		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
4103 
4104 	if (zio->io_vsd != NULL) {
4105 		zio->io_vsd_ops->vsd_free(zio);
4106 		zio->io_vsd = NULL;
4107 	}
4108 
4109 	if (zio_injection_enabled && zio->io_error == 0)
4110 		zio->io_error = zio_handle_fault_injection(zio, EIO);
4111 
4112 	/*
4113 	 * If the I/O failed, determine whether we should attempt to retry it.
4114 	 *
4115 	 * On retry, we cut in line in the issue queue, since we don't want
4116 	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
4117 	 */
4118 	if (zio->io_error && vd == NULL &&
4119 	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
4120 		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
4121 		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
4122 		zio->io_error = 0;
4123 		zio->io_flags |= ZIO_FLAG_IO_RETRY | ZIO_FLAG_DONT_AGGREGATE;
4124 		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
4125 		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
4126 		    zio_requeue_io_start_cut_in_line);
4127 		return (NULL);
4128 	}
4129 
4130 	/*
4131 	 * If we got an error on a leaf device, convert it to ENXIO
4132 	 * if the device is not accessible at all.
4133 	 */
4134 	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
4135 	    !vdev_accessible(vd, zio))
4136 		zio->io_error = SET_ERROR(ENXIO);
4137 
4138 	/*
4139 	 * If we can't write to an interior vdev (mirror or RAID-Z),
4140 	 * set vdev_cant_write so that we stop trying to allocate from it.
4141 	 */
4142 	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
4143 	    vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
4144 		vdev_dbgmsg(vd, "zio_vdev_io_assess(zio=%px) setting "
4145 		    "cant_write=TRUE due to write failure with ENXIO",
4146 		    zio);
4147 		vd->vdev_cant_write = B_TRUE;
4148 	}
4149 
4150 	/*
4151 	 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future
4152 	 * attempts will ever succeed. In this case we set a persistent
4153 	 * boolean flag so that we don't bother with it in the future.
4154 	 */
4155 	if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) &&
4156 	    zio->io_type == ZIO_TYPE_IOCTL &&
4157 	    zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL)
4158 		vd->vdev_nowritecache = B_TRUE;
4159 
4160 	if (zio->io_error)
4161 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4162 
4163 	return (zio);
4164 }
4165 
4166 void
4167 zio_vdev_io_reissue(zio_t *zio)
4168 {
4169 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
4170 	ASSERT(zio->io_error == 0);
4171 
4172 	zio->io_stage >>= 1;
4173 }
4174 
4175 void
4176 zio_vdev_io_redone(zio_t *zio)
4177 {
4178 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
4179 
4180 	zio->io_stage >>= 1;
4181 }
4182 
4183 void
4184 zio_vdev_io_bypass(zio_t *zio)
4185 {
4186 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
4187 	ASSERT(zio->io_error == 0);
4188 
4189 	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
4190 	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
4191 }
4192 
4193 /*
4194  * ==========================================================================
4195  * Encrypt and store encryption parameters
4196  * ==========================================================================
4197  */
4198 
4199 
4200 /*
4201  * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for
4202  * managing the storage of encryption parameters and passing them to the
4203  * lower-level encryption functions.
4204  */
4205 static zio_t *
4206 zio_encrypt(zio_t *zio)
4207 {
4208 	zio_prop_t *zp = &zio->io_prop;
4209 	spa_t *spa = zio->io_spa;
4210 	blkptr_t *bp = zio->io_bp;
4211 	uint64_t psize = BP_GET_PSIZE(bp);
4212 	uint64_t dsobj = zio->io_bookmark.zb_objset;
4213 	dmu_object_type_t ot = BP_GET_TYPE(bp);
4214 	void *enc_buf = NULL;
4215 	abd_t *eabd = NULL;
4216 	uint8_t salt[ZIO_DATA_SALT_LEN];
4217 	uint8_t iv[ZIO_DATA_IV_LEN];
4218 	uint8_t mac[ZIO_DATA_MAC_LEN];
4219 	boolean_t no_crypt = B_FALSE;
4220 
4221 	/* the root zio already encrypted the data */
4222 	if (zio->io_child_type == ZIO_CHILD_GANG)
4223 		return (zio);
4224 
4225 	/* only ZIL blocks are re-encrypted on rewrite */
4226 	if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG)
4227 		return (zio);
4228 
4229 	if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) {
4230 		BP_SET_CRYPT(bp, B_FALSE);
4231 		return (zio);
4232 	}
4233 
4234 	/* if we are doing raw encryption set the provided encryption params */
4235 	if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) {
4236 		ASSERT0(BP_GET_LEVEL(bp));
4237 		BP_SET_CRYPT(bp, B_TRUE);
4238 		BP_SET_BYTEORDER(bp, zp->zp_byteorder);
4239 		if (ot != DMU_OT_OBJSET)
4240 			zio_crypt_encode_mac_bp(bp, zp->zp_mac);
4241 
4242 		/* dnode blocks must be written out in the provided byteorder */
4243 		if (zp->zp_byteorder != ZFS_HOST_BYTEORDER &&
4244 		    ot == DMU_OT_DNODE) {
4245 			void *bswap_buf = zio_buf_alloc(psize);
4246 			abd_t *babd = abd_get_from_buf(bswap_buf, psize);
4247 
4248 			ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4249 			abd_copy_to_buf(bswap_buf, zio->io_abd, psize);
4250 			dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf,
4251 			    psize);
4252 
4253 			abd_take_ownership_of_buf(babd, B_TRUE);
4254 			zio_push_transform(zio, babd, psize, psize, NULL);
4255 		}
4256 
4257 		if (DMU_OT_IS_ENCRYPTED(ot))
4258 			zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv);
4259 		return (zio);
4260 	}
4261 
4262 	/* indirect blocks only maintain a cksum of the lower level MACs */
4263 	if (BP_GET_LEVEL(bp) > 0) {
4264 		BP_SET_CRYPT(bp, B_TRUE);
4265 		VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE,
4266 		    zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp),
4267 		    mac));
4268 		zio_crypt_encode_mac_bp(bp, mac);
4269 		return (zio);
4270 	}
4271 
4272 	/*
4273 	 * Objset blocks are a special case since they have 2 256-bit MACs
4274 	 * embedded within them.
4275 	 */
4276 	if (ot == DMU_OT_OBJSET) {
4277 		ASSERT0(DMU_OT_IS_ENCRYPTED(ot));
4278 		ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4279 		BP_SET_CRYPT(bp, B_TRUE);
4280 		VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj,
4281 		    zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp)));
4282 		return (zio);
4283 	}
4284 
4285 	/* unencrypted object types are only authenticated with a MAC */
4286 	if (!DMU_OT_IS_ENCRYPTED(ot)) {
4287 		BP_SET_CRYPT(bp, B_TRUE);
4288 		VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj,
4289 		    zio->io_abd, psize, mac));
4290 		zio_crypt_encode_mac_bp(bp, mac);
4291 		return (zio);
4292 	}
4293 
4294 	/*
4295 	 * Later passes of sync-to-convergence may decide to rewrite data
4296 	 * in place to avoid more disk reallocations. This presents a problem
4297 	 * for encryption because this constitutes rewriting the new data with
4298 	 * the same encryption key and IV. However, this only applies to blocks
4299 	 * in the MOS (particularly the spacemaps) and we do not encrypt the
4300 	 * MOS. We assert that the zio is allocating or an intent log write
4301 	 * to enforce this.
4302 	 */
4303 	ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG);
4304 	ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG);
4305 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION));
4306 	ASSERT3U(psize, !=, 0);
4307 
4308 	enc_buf = zio_buf_alloc(psize);
4309 	eabd = abd_get_from_buf(enc_buf, psize);
4310 	abd_take_ownership_of_buf(eabd, B_TRUE);
4311 
4312 	/*
4313 	 * For an explanation of what encryption parameters are stored
4314 	 * where, see the block comment in zio_crypt.c.
4315 	 */
4316 	if (ot == DMU_OT_INTENT_LOG) {
4317 		zio_crypt_decode_params_bp(bp, salt, iv);
4318 	} else {
4319 		BP_SET_CRYPT(bp, B_TRUE);
4320 	}
4321 
4322 	/* Perform the encryption. This should not fail */
4323 	VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark,
4324 	    BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
4325 	    salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt));
4326 
4327 	/* encode encryption metadata into the bp */
4328 	if (ot == DMU_OT_INTENT_LOG) {
4329 		/*
4330 		 * ZIL blocks store the MAC in the embedded checksum, so the
4331 		 * transform must always be applied.
4332 		 */
4333 		zio_crypt_encode_mac_zil(enc_buf, mac);
4334 		zio_push_transform(zio, eabd, psize, psize, NULL);
4335 	} else {
4336 		BP_SET_CRYPT(bp, B_TRUE);
4337 		zio_crypt_encode_params_bp(bp, salt, iv);
4338 		zio_crypt_encode_mac_bp(bp, mac);
4339 
4340 		if (no_crypt) {
4341 			ASSERT3U(ot, ==, DMU_OT_DNODE);
4342 			abd_free(eabd);
4343 		} else {
4344 			zio_push_transform(zio, eabd, psize, psize, NULL);
4345 		}
4346 	}
4347 
4348 	return (zio);
4349 }
4350 
4351 /*
4352  * ==========================================================================
4353  * Generate and verify checksums
4354  * ==========================================================================
4355  */
4356 static zio_t *
4357 zio_checksum_generate(zio_t *zio)
4358 {
4359 	blkptr_t *bp = zio->io_bp;
4360 	enum zio_checksum checksum;
4361 
4362 	if (bp == NULL) {
4363 		/*
4364 		 * This is zio_write_phys().
4365 		 * We're either generating a label checksum, or none at all.
4366 		 */
4367 		checksum = zio->io_prop.zp_checksum;
4368 
4369 		if (checksum == ZIO_CHECKSUM_OFF)
4370 			return (zio);
4371 
4372 		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
4373 	} else {
4374 		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
4375 			ASSERT(!IO_IS_ALLOCATING(zio));
4376 			checksum = ZIO_CHECKSUM_GANG_HEADER;
4377 		} else {
4378 			checksum = BP_GET_CHECKSUM(bp);
4379 		}
4380 	}
4381 
4382 	zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size);
4383 
4384 	return (zio);
4385 }
4386 
4387 static zio_t *
4388 zio_checksum_verify(zio_t *zio)
4389 {
4390 	zio_bad_cksum_t info;
4391 	blkptr_t *bp = zio->io_bp;
4392 	int error;
4393 
4394 	ASSERT(zio->io_vd != NULL);
4395 
4396 	if (bp == NULL) {
4397 		/*
4398 		 * This is zio_read_phys().
4399 		 * We're either verifying a label checksum, or nothing at all.
4400 		 */
4401 		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
4402 			return (zio);
4403 
4404 		ASSERT3U(zio->io_prop.zp_checksum, ==, ZIO_CHECKSUM_LABEL);
4405 	}
4406 
4407 	if ((error = zio_checksum_error(zio, &info)) != 0) {
4408 		zio->io_error = error;
4409 		if (error == ECKSUM &&
4410 		    !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
4411 			mutex_enter(&zio->io_vd->vdev_stat_lock);
4412 			zio->io_vd->vdev_stat.vs_checksum_errors++;
4413 			mutex_exit(&zio->io_vd->vdev_stat_lock);
4414 			(void) zfs_ereport_start_checksum(zio->io_spa,
4415 			    zio->io_vd, &zio->io_bookmark, zio,
4416 			    zio->io_offset, zio->io_size, &info);
4417 		}
4418 	}
4419 
4420 	return (zio);
4421 }
4422 
4423 /*
4424  * Called by RAID-Z to ensure we don't compute the checksum twice.
4425  */
4426 void
4427 zio_checksum_verified(zio_t *zio)
4428 {
4429 	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
4430 }
4431 
4432 /*
4433  * ==========================================================================
4434  * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
4435  * An error of 0 indicates success.  ENXIO indicates whole-device failure,
4436  * which may be transient (e.g. unplugged) or permanent.  ECKSUM and EIO
4437  * indicate errors that are specific to one I/O, and most likely permanent.
4438  * Any other error is presumed to be worse because we weren't expecting it.
4439  * ==========================================================================
4440  */
4441 int
4442 zio_worst_error(int e1, int e2)
4443 {
4444 	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
4445 	int r1, r2;
4446 
4447 	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
4448 		if (e1 == zio_error_rank[r1])
4449 			break;
4450 
4451 	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
4452 		if (e2 == zio_error_rank[r2])
4453 			break;
4454 
4455 	return (r1 > r2 ? e1 : e2);
4456 }
4457 
4458 /*
4459  * ==========================================================================
4460  * I/O completion
4461  * ==========================================================================
4462  */
4463 static zio_t *
4464 zio_ready(zio_t *zio)
4465 {
4466 	blkptr_t *bp = zio->io_bp;
4467 	zio_t *pio, *pio_next;
4468 	zio_link_t *zl = NULL;
4469 
4470 	if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
4471 	    ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT, ZIO_WAIT_READY)) {
4472 		return (NULL);
4473 	}
4474 
4475 	if (zio->io_ready) {
4476 		ASSERT(IO_IS_ALLOCATING(zio));
4477 		ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
4478 		    (zio->io_flags & ZIO_FLAG_NOPWRITE));
4479 		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
4480 
4481 		zio->io_ready(zio);
4482 	}
4483 
4484 #ifdef ZFS_DEBUG
4485 	if (bp != NULL && bp != &zio->io_bp_copy)
4486 		zio->io_bp_copy = *bp;
4487 #endif
4488 
4489 	if (zio->io_error != 0) {
4490 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4491 
4492 		if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4493 			ASSERT(IO_IS_ALLOCATING(zio));
4494 			ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4495 			ASSERT(zio->io_metaslab_class != NULL);
4496 
4497 			/*
4498 			 * We were unable to allocate anything, unreserve and
4499 			 * issue the next I/O to allocate.
4500 			 */
4501 			metaslab_class_throttle_unreserve(
4502 			    zio->io_metaslab_class, zio->io_prop.zp_copies,
4503 			    zio->io_allocator, zio);
4504 			zio_allocate_dispatch(zio->io_spa, zio->io_allocator);
4505 		}
4506 	}
4507 
4508 	mutex_enter(&zio->io_lock);
4509 	zio->io_state[ZIO_WAIT_READY] = 1;
4510 	pio = zio_walk_parents(zio, &zl);
4511 	mutex_exit(&zio->io_lock);
4512 
4513 	/*
4514 	 * As we notify zio's parents, new parents could be added.
4515 	 * New parents go to the head of zio's io_parent_list, however,
4516 	 * so we will (correctly) not notify them.  The remainder of zio's
4517 	 * io_parent_list, from 'pio_next' onward, cannot change because
4518 	 * all parents must wait for us to be done before they can be done.
4519 	 */
4520 	for (; pio != NULL; pio = pio_next) {
4521 		pio_next = zio_walk_parents(zio, &zl);
4522 		zio_notify_parent(pio, zio, ZIO_WAIT_READY, NULL);
4523 	}
4524 
4525 	if (zio->io_flags & ZIO_FLAG_NODATA) {
4526 		if (bp != NULL && BP_IS_GANG(bp)) {
4527 			zio->io_flags &= ~ZIO_FLAG_NODATA;
4528 		} else {
4529 			ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE);
4530 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
4531 		}
4532 	}
4533 
4534 	if (zio_injection_enabled &&
4535 	    zio->io_spa->spa_syncing_txg == zio->io_txg)
4536 		zio_handle_ignored_writes(zio);
4537 
4538 	return (zio);
4539 }
4540 
4541 /*
4542  * Update the allocation throttle accounting.
4543  */
4544 static void
4545 zio_dva_throttle_done(zio_t *zio)
4546 {
4547 	zio_t *lio __maybe_unused = zio->io_logical;
4548 	zio_t *pio = zio_unique_parent(zio);
4549 	vdev_t *vd = zio->io_vd;
4550 	int flags = METASLAB_ASYNC_ALLOC;
4551 
4552 	ASSERT3P(zio->io_bp, !=, NULL);
4553 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
4554 	ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE);
4555 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
4556 	ASSERT(vd != NULL);
4557 	ASSERT3P(vd, ==, vd->vdev_top);
4558 	ASSERT(zio_injection_enabled || !(zio->io_flags & ZIO_FLAG_IO_RETRY));
4559 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4560 	ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING);
4561 	ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE));
4562 	ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA));
4563 
4564 	/*
4565 	 * Parents of gang children can have two flavors -- ones that
4566 	 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set)
4567 	 * and ones that allocated the constituent blocks. The allocation
4568 	 * throttle needs to know the allocating parent zio so we must find
4569 	 * it here.
4570 	 */
4571 	if (pio->io_child_type == ZIO_CHILD_GANG) {
4572 		/*
4573 		 * If our parent is a rewrite gang child then our grandparent
4574 		 * would have been the one that performed the allocation.
4575 		 */
4576 		if (pio->io_flags & ZIO_FLAG_IO_REWRITE)
4577 			pio = zio_unique_parent(pio);
4578 		flags |= METASLAB_GANG_CHILD;
4579 	}
4580 
4581 	ASSERT(IO_IS_ALLOCATING(pio));
4582 	ASSERT3P(zio, !=, zio->io_logical);
4583 	ASSERT(zio->io_logical != NULL);
4584 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4585 	ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE);
4586 	ASSERT(zio->io_metaslab_class != NULL);
4587 
4588 	mutex_enter(&pio->io_lock);
4589 	metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags,
4590 	    pio->io_allocator, B_TRUE);
4591 	mutex_exit(&pio->io_lock);
4592 
4593 	metaslab_class_throttle_unreserve(zio->io_metaslab_class, 1,
4594 	    pio->io_allocator, pio);
4595 
4596 	/*
4597 	 * Call into the pipeline to see if there is more work that
4598 	 * needs to be done. If there is work to be done it will be
4599 	 * dispatched to another taskq thread.
4600 	 */
4601 	zio_allocate_dispatch(zio->io_spa, pio->io_allocator);
4602 }
4603 
4604 static zio_t *
4605 zio_done(zio_t *zio)
4606 {
4607 	/*
4608 	 * Always attempt to keep stack usage minimal here since
4609 	 * we can be called recursively up to 19 levels deep.
4610 	 */
4611 	const uint64_t psize = zio->io_size;
4612 	zio_t *pio, *pio_next;
4613 	zio_link_t *zl = NULL;
4614 
4615 	/*
4616 	 * If our children haven't all completed,
4617 	 * wait for them and then repeat this pipeline stage.
4618 	 */
4619 	if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) {
4620 		return (NULL);
4621 	}
4622 
4623 	/*
4624 	 * If the allocation throttle is enabled, then update the accounting.
4625 	 * We only track child I/Os that are part of an allocating async
4626 	 * write. We must do this since the allocation is performed
4627 	 * by the logical I/O but the actual write is done by child I/Os.
4628 	 */
4629 	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING &&
4630 	    zio->io_child_type == ZIO_CHILD_VDEV) {
4631 		ASSERT(zio->io_metaslab_class != NULL);
4632 		ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled);
4633 		zio_dva_throttle_done(zio);
4634 	}
4635 
4636 	/*
4637 	 * If the allocation throttle is enabled, verify that
4638 	 * we have decremented the refcounts for every I/O that was throttled.
4639 	 */
4640 	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4641 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
4642 		ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4643 		ASSERT(zio->io_bp != NULL);
4644 
4645 		metaslab_group_alloc_verify(zio->io_spa, zio->io_bp, zio,
4646 		    zio->io_allocator);
4647 		VERIFY(zfs_refcount_not_held(&zio->io_metaslab_class->
4648 		    mc_allocator[zio->io_allocator].mca_alloc_slots, zio));
4649 	}
4650 
4651 
4652 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
4653 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
4654 			ASSERT(zio->io_children[c][w] == 0);
4655 
4656 	if (zio->io_bp != NULL && !BP_IS_EMBEDDED(zio->io_bp)) {
4657 		ASSERT(zio->io_bp->blk_pad[0] == 0);
4658 		ASSERT(zio->io_bp->blk_pad[1] == 0);
4659 		ASSERT(memcmp(zio->io_bp, &zio->io_bp_copy,
4660 		    sizeof (blkptr_t)) == 0 ||
4661 		    (zio->io_bp == zio_unique_parent(zio)->io_bp));
4662 		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) &&
4663 		    zio->io_bp_override == NULL &&
4664 		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
4665 			ASSERT3U(zio->io_prop.zp_copies, <=,
4666 			    BP_GET_NDVAS(zio->io_bp));
4667 			ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 ||
4668 			    (BP_COUNT_GANG(zio->io_bp) ==
4669 			    BP_GET_NDVAS(zio->io_bp)));
4670 		}
4671 		if (zio->io_flags & ZIO_FLAG_NOPWRITE)
4672 			VERIFY(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
4673 	}
4674 
4675 	/*
4676 	 * If there were child vdev/gang/ddt errors, they apply to us now.
4677 	 */
4678 	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
4679 	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
4680 	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
4681 
4682 	/*
4683 	 * If the I/O on the transformed data was successful, generate any
4684 	 * checksum reports now while we still have the transformed data.
4685 	 */
4686 	if (zio->io_error == 0) {
4687 		while (zio->io_cksum_report != NULL) {
4688 			zio_cksum_report_t *zcr = zio->io_cksum_report;
4689 			uint64_t align = zcr->zcr_align;
4690 			uint64_t asize = P2ROUNDUP(psize, align);
4691 			abd_t *adata = zio->io_abd;
4692 
4693 			if (adata != NULL && asize != psize) {
4694 				adata = abd_alloc(asize, B_TRUE);
4695 				abd_copy(adata, zio->io_abd, psize);
4696 				abd_zero_off(adata, psize, asize - psize);
4697 			}
4698 
4699 			zio->io_cksum_report = zcr->zcr_next;
4700 			zcr->zcr_next = NULL;
4701 			zcr->zcr_finish(zcr, adata);
4702 			zfs_ereport_free_checksum(zcr);
4703 
4704 			if (adata != NULL && asize != psize)
4705 				abd_free(adata);
4706 		}
4707 	}
4708 
4709 	zio_pop_transforms(zio);	/* note: may set zio->io_error */
4710 
4711 	vdev_stat_update(zio, psize);
4712 
4713 	/*
4714 	 * If this I/O is attached to a particular vdev is slow, exceeding
4715 	 * 30 seconds to complete, post an error described the I/O delay.
4716 	 * We ignore these errors if the device is currently unavailable.
4717 	 */
4718 	if (zio->io_delay >= MSEC2NSEC(zio_slow_io_ms)) {
4719 		if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) {
4720 			/*
4721 			 * We want to only increment our slow IO counters if
4722 			 * the IO is valid (i.e. not if the drive is removed).
4723 			 *
4724 			 * zfs_ereport_post() will also do these checks, but
4725 			 * it can also ratelimit and have other failures, so we
4726 			 * need to increment the slow_io counters independent
4727 			 * of it.
4728 			 */
4729 			if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY,
4730 			    zio->io_spa, zio->io_vd, zio)) {
4731 				mutex_enter(&zio->io_vd->vdev_stat_lock);
4732 				zio->io_vd->vdev_stat.vs_slow_ios++;
4733 				mutex_exit(&zio->io_vd->vdev_stat_lock);
4734 
4735 				(void) zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
4736 				    zio->io_spa, zio->io_vd, &zio->io_bookmark,
4737 				    zio, 0);
4738 			}
4739 		}
4740 	}
4741 
4742 	if (zio->io_error) {
4743 		/*
4744 		 * If this I/O is attached to a particular vdev,
4745 		 * generate an error message describing the I/O failure
4746 		 * at the block level.  We ignore these errors if the
4747 		 * device is currently unavailable.
4748 		 */
4749 		if (zio->io_error != ECKSUM && zio->io_vd != NULL &&
4750 		    !vdev_is_dead(zio->io_vd)) {
4751 			int ret = zfs_ereport_post(FM_EREPORT_ZFS_IO,
4752 			    zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0);
4753 			if (ret != EALREADY) {
4754 				mutex_enter(&zio->io_vd->vdev_stat_lock);
4755 				if (zio->io_type == ZIO_TYPE_READ)
4756 					zio->io_vd->vdev_stat.vs_read_errors++;
4757 				else if (zio->io_type == ZIO_TYPE_WRITE)
4758 					zio->io_vd->vdev_stat.vs_write_errors++;
4759 				mutex_exit(&zio->io_vd->vdev_stat_lock);
4760 			}
4761 		}
4762 
4763 		if ((zio->io_error == EIO || !(zio->io_flags &
4764 		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
4765 		    zio == zio->io_logical) {
4766 			/*
4767 			 * For logical I/O requests, tell the SPA to log the
4768 			 * error and generate a logical data ereport.
4769 			 */
4770 			spa_log_error(zio->io_spa, &zio->io_bookmark,
4771 			    &zio->io_bp->blk_birth);
4772 			(void) zfs_ereport_post(FM_EREPORT_ZFS_DATA,
4773 			    zio->io_spa, NULL, &zio->io_bookmark, zio, 0);
4774 		}
4775 	}
4776 
4777 	if (zio->io_error && zio == zio->io_logical) {
4778 		/*
4779 		 * Determine whether zio should be reexecuted.  This will
4780 		 * propagate all the way to the root via zio_notify_parent().
4781 		 */
4782 		ASSERT(zio->io_vd == NULL && zio->io_bp != NULL);
4783 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4784 
4785 		if (IO_IS_ALLOCATING(zio) &&
4786 		    !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
4787 			if (zio->io_error != ENOSPC)
4788 				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
4789 			else
4790 				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4791 		}
4792 
4793 		if ((zio->io_type == ZIO_TYPE_READ ||
4794 		    zio->io_type == ZIO_TYPE_FREE) &&
4795 		    !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
4796 		    zio->io_error == ENXIO &&
4797 		    spa_load_state(zio->io_spa) == SPA_LOAD_NONE &&
4798 		    spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE)
4799 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4800 
4801 		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
4802 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4803 
4804 		/*
4805 		 * Here is a possibly good place to attempt to do
4806 		 * either combinatorial reconstruction or error correction
4807 		 * based on checksums.  It also might be a good place
4808 		 * to send out preliminary ereports before we suspend
4809 		 * processing.
4810 		 */
4811 	}
4812 
4813 	/*
4814 	 * If there were logical child errors, they apply to us now.
4815 	 * We defer this until now to avoid conflating logical child
4816 	 * errors with errors that happened to the zio itself when
4817 	 * updating vdev stats and reporting FMA events above.
4818 	 */
4819 	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
4820 
4821 	if ((zio->io_error || zio->io_reexecute) &&
4822 	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
4823 	    !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
4824 		zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp);
4825 
4826 	zio_gang_tree_free(&zio->io_gang_tree);
4827 
4828 	/*
4829 	 * Godfather I/Os should never suspend.
4830 	 */
4831 	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
4832 	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
4833 		zio->io_reexecute &= ~ZIO_REEXECUTE_SUSPEND;
4834 
4835 	if (zio->io_reexecute) {
4836 		/*
4837 		 * This is a logical I/O that wants to reexecute.
4838 		 *
4839 		 * Reexecute is top-down.  When an i/o fails, if it's not
4840 		 * the root, it simply notifies its parent and sticks around.
4841 		 * The parent, seeing that it still has children in zio_done(),
4842 		 * does the same.  This percolates all the way up to the root.
4843 		 * The root i/o will reexecute or suspend the entire tree.
4844 		 *
4845 		 * This approach ensures that zio_reexecute() honors
4846 		 * all the original i/o dependency relationships, e.g.
4847 		 * parents not executing until children are ready.
4848 		 */
4849 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4850 
4851 		zio->io_gang_leader = NULL;
4852 
4853 		mutex_enter(&zio->io_lock);
4854 		zio->io_state[ZIO_WAIT_DONE] = 1;
4855 		mutex_exit(&zio->io_lock);
4856 
4857 		/*
4858 		 * "The Godfather" I/O monitors its children but is
4859 		 * not a true parent to them. It will track them through
4860 		 * the pipeline but severs its ties whenever they get into
4861 		 * trouble (e.g. suspended). This allows "The Godfather"
4862 		 * I/O to return status without blocking.
4863 		 */
4864 		zl = NULL;
4865 		for (pio = zio_walk_parents(zio, &zl); pio != NULL;
4866 		    pio = pio_next) {
4867 			zio_link_t *remove_zl = zl;
4868 			pio_next = zio_walk_parents(zio, &zl);
4869 
4870 			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
4871 			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
4872 				zio_remove_child(pio, zio, remove_zl);
4873 				/*
4874 				 * This is a rare code path, so we don't
4875 				 * bother with "next_to_execute".
4876 				 */
4877 				zio_notify_parent(pio, zio, ZIO_WAIT_DONE,
4878 				    NULL);
4879 			}
4880 		}
4881 
4882 		if ((pio = zio_unique_parent(zio)) != NULL) {
4883 			/*
4884 			 * We're not a root i/o, so there's nothing to do
4885 			 * but notify our parent.  Don't propagate errors
4886 			 * upward since we haven't permanently failed yet.
4887 			 */
4888 			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
4889 			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
4890 			/*
4891 			 * This is a rare code path, so we don't bother with
4892 			 * "next_to_execute".
4893 			 */
4894 			zio_notify_parent(pio, zio, ZIO_WAIT_DONE, NULL);
4895 		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
4896 			/*
4897 			 * We'd fail again if we reexecuted now, so suspend
4898 			 * until conditions improve (e.g. device comes online).
4899 			 */
4900 			zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR);
4901 		} else {
4902 			/*
4903 			 * Reexecution is potentially a huge amount of work.
4904 			 * Hand it off to the otherwise-unused claim taskq.
4905 			 */
4906 			ASSERT(taskq_empty_ent(&zio->io_tqent));
4907 			spa_taskq_dispatch_ent(zio->io_spa,
4908 			    ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE,
4909 			    zio_reexecute, zio, 0, &zio->io_tqent);
4910 		}
4911 		return (NULL);
4912 	}
4913 
4914 	ASSERT(list_is_empty(&zio->io_child_list));
4915 	ASSERT(zio->io_reexecute == 0);
4916 	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
4917 
4918 	/*
4919 	 * Report any checksum errors, since the I/O is complete.
4920 	 */
4921 	while (zio->io_cksum_report != NULL) {
4922 		zio_cksum_report_t *zcr = zio->io_cksum_report;
4923 		zio->io_cksum_report = zcr->zcr_next;
4924 		zcr->zcr_next = NULL;
4925 		zcr->zcr_finish(zcr, NULL);
4926 		zfs_ereport_free_checksum(zcr);
4927 	}
4928 
4929 	/*
4930 	 * It is the responsibility of the done callback to ensure that this
4931 	 * particular zio is no longer discoverable for adoption, and as
4932 	 * such, cannot acquire any new parents.
4933 	 */
4934 	if (zio->io_done)
4935 		zio->io_done(zio);
4936 
4937 	mutex_enter(&zio->io_lock);
4938 	zio->io_state[ZIO_WAIT_DONE] = 1;
4939 	mutex_exit(&zio->io_lock);
4940 
4941 	/*
4942 	 * We are done executing this zio.  We may want to execute a parent
4943 	 * next.  See the comment in zio_notify_parent().
4944 	 */
4945 	zio_t *next_to_execute = NULL;
4946 	zl = NULL;
4947 	for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) {
4948 		zio_link_t *remove_zl = zl;
4949 		pio_next = zio_walk_parents(zio, &zl);
4950 		zio_remove_child(pio, zio, remove_zl);
4951 		zio_notify_parent(pio, zio, ZIO_WAIT_DONE, &next_to_execute);
4952 	}
4953 
4954 	if (zio->io_waiter != NULL) {
4955 		mutex_enter(&zio->io_lock);
4956 		zio->io_executor = NULL;
4957 		cv_broadcast(&zio->io_cv);
4958 		mutex_exit(&zio->io_lock);
4959 	} else {
4960 		zio_destroy(zio);
4961 	}
4962 
4963 	return (next_to_execute);
4964 }
4965 
4966 /*
4967  * ==========================================================================
4968  * I/O pipeline definition
4969  * ==========================================================================
4970  */
4971 static zio_pipe_stage_t *zio_pipeline[] = {
4972 	NULL,
4973 	zio_read_bp_init,
4974 	zio_write_bp_init,
4975 	zio_free_bp_init,
4976 	zio_issue_async,
4977 	zio_write_compress,
4978 	zio_encrypt,
4979 	zio_checksum_generate,
4980 	zio_nop_write,
4981 	zio_brt_free,
4982 	zio_ddt_read_start,
4983 	zio_ddt_read_done,
4984 	zio_ddt_write,
4985 	zio_ddt_free,
4986 	zio_gang_assemble,
4987 	zio_gang_issue,
4988 	zio_dva_throttle,
4989 	zio_dva_allocate,
4990 	zio_dva_free,
4991 	zio_dva_claim,
4992 	zio_ready,
4993 	zio_vdev_io_start,
4994 	zio_vdev_io_done,
4995 	zio_vdev_io_assess,
4996 	zio_checksum_verify,
4997 	zio_done
4998 };
4999 
5000 
5001 
5002 
5003 /*
5004  * Compare two zbookmark_phys_t's to see which we would reach first in a
5005  * pre-order traversal of the object tree.
5006  *
5007  * This is simple in every case aside from the meta-dnode object. For all other
5008  * objects, we traverse them in order (object 1 before object 2, and so on).
5009  * However, all of these objects are traversed while traversing object 0, since
5010  * the data it points to is the list of objects.  Thus, we need to convert to a
5011  * canonical representation so we can compare meta-dnode bookmarks to
5012  * non-meta-dnode bookmarks.
5013  *
5014  * We do this by calculating "equivalents" for each field of the zbookmark.
5015  * zbookmarks outside of the meta-dnode use their own object and level, and
5016  * calculate the level 0 equivalent (the first L0 blkid that is contained in the
5017  * blocks this bookmark refers to) by multiplying their blkid by their span
5018  * (the number of L0 blocks contained within one block at their level).
5019  * zbookmarks inside the meta-dnode calculate their object equivalent
5020  * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
5021  * level + 1<<31 (any value larger than a level could ever be) for their level.
5022  * This causes them to always compare before a bookmark in their object
5023  * equivalent, compare appropriately to bookmarks in other objects, and to
5024  * compare appropriately to other bookmarks in the meta-dnode.
5025  */
5026 int
5027 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
5028     const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
5029 {
5030 	/*
5031 	 * These variables represent the "equivalent" values for the zbookmark,
5032 	 * after converting zbookmarks inside the meta dnode to their
5033 	 * normal-object equivalents.
5034 	 */
5035 	uint64_t zb1obj, zb2obj;
5036 	uint64_t zb1L0, zb2L0;
5037 	uint64_t zb1level, zb2level;
5038 
5039 	if (zb1->zb_object == zb2->zb_object &&
5040 	    zb1->zb_level == zb2->zb_level &&
5041 	    zb1->zb_blkid == zb2->zb_blkid)
5042 		return (0);
5043 
5044 	IMPLY(zb1->zb_level > 0, ibs1 >= SPA_MINBLOCKSHIFT);
5045 	IMPLY(zb2->zb_level > 0, ibs2 >= SPA_MINBLOCKSHIFT);
5046 
5047 	/*
5048 	 * BP_SPANB calculates the span in blocks.
5049 	 */
5050 	zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
5051 	zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
5052 
5053 	if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
5054 		zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
5055 		zb1L0 = 0;
5056 		zb1level = zb1->zb_level + COMPARE_META_LEVEL;
5057 	} else {
5058 		zb1obj = zb1->zb_object;
5059 		zb1level = zb1->zb_level;
5060 	}
5061 
5062 	if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
5063 		zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
5064 		zb2L0 = 0;
5065 		zb2level = zb2->zb_level + COMPARE_META_LEVEL;
5066 	} else {
5067 		zb2obj = zb2->zb_object;
5068 		zb2level = zb2->zb_level;
5069 	}
5070 
5071 	/* Now that we have a canonical representation, do the comparison. */
5072 	if (zb1obj != zb2obj)
5073 		return (zb1obj < zb2obj ? -1 : 1);
5074 	else if (zb1L0 != zb2L0)
5075 		return (zb1L0 < zb2L0 ? -1 : 1);
5076 	else if (zb1level != zb2level)
5077 		return (zb1level > zb2level ? -1 : 1);
5078 	/*
5079 	 * This can (theoretically) happen if the bookmarks have the same object
5080 	 * and level, but different blkids, if the block sizes are not the same.
5081 	 * There is presently no way to change the indirect block sizes
5082 	 */
5083 	return (0);
5084 }
5085 
5086 /*
5087  *  This function checks the following: given that last_block is the place that
5088  *  our traversal stopped last time, does that guarantee that we've visited
5089  *  every node under subtree_root?  Therefore, we can't just use the raw output
5090  *  of zbookmark_compare.  We have to pass in a modified version of
5091  *  subtree_root; by incrementing the block id, and then checking whether
5092  *  last_block is before or equal to that, we can tell whether or not having
5093  *  visited last_block implies that all of subtree_root's children have been
5094  *  visited.
5095  */
5096 boolean_t
5097 zbookmark_subtree_completed(const dnode_phys_t *dnp,
5098     const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
5099 {
5100 	zbookmark_phys_t mod_zb = *subtree_root;
5101 	mod_zb.zb_blkid++;
5102 	ASSERT0(last_block->zb_level);
5103 
5104 	/* The objset_phys_t isn't before anything. */
5105 	if (dnp == NULL)
5106 		return (B_FALSE);
5107 
5108 	/*
5109 	 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
5110 	 * data block size in sectors, because that variable is only used if
5111 	 * the bookmark refers to a block in the meta-dnode.  Since we don't
5112 	 * know without examining it what object it refers to, and there's no
5113 	 * harm in passing in this value in other cases, we always pass it in.
5114 	 *
5115 	 * We pass in 0 for the indirect block size shift because zb2 must be
5116 	 * level 0.  The indirect block size is only used to calculate the span
5117 	 * of the bookmark, but since the bookmark must be level 0, the span is
5118 	 * always 1, so the math works out.
5119 	 *
5120 	 * If you make changes to how the zbookmark_compare code works, be sure
5121 	 * to make sure that this code still works afterwards.
5122 	 */
5123 	return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
5124 	    1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
5125 	    last_block) <= 0);
5126 }
5127 
5128 /*
5129  * This function is similar to zbookmark_subtree_completed(), but returns true
5130  * if subtree_root is equal or ahead of last_block, i.e. still to be done.
5131  */
5132 boolean_t
5133 zbookmark_subtree_tbd(const dnode_phys_t *dnp,
5134     const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
5135 {
5136 	ASSERT0(last_block->zb_level);
5137 	if (dnp == NULL)
5138 		return (B_FALSE);
5139 	return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
5140 	    1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, subtree_root,
5141 	    last_block) >= 0);
5142 }
5143 
5144 EXPORT_SYMBOL(zio_type_name);
5145 EXPORT_SYMBOL(zio_buf_alloc);
5146 EXPORT_SYMBOL(zio_data_buf_alloc);
5147 EXPORT_SYMBOL(zio_buf_free);
5148 EXPORT_SYMBOL(zio_data_buf_free);
5149 
5150 ZFS_MODULE_PARAM(zfs_zio, zio_, slow_io_ms, INT, ZMOD_RW,
5151 	"Max I/O completion time (milliseconds) before marking it as slow");
5152 
5153 ZFS_MODULE_PARAM(zfs_zio, zio_, requeue_io_start_cut_in_line, INT, ZMOD_RW,
5154 	"Prioritize requeued I/O");
5155 
5156 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_deferred_free,  UINT, ZMOD_RW,
5157 	"Defer frees starting in this pass");
5158 
5159 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_dont_compress, UINT, ZMOD_RW,
5160 	"Don't compress starting in this pass");
5161 
5162 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_rewrite, UINT, ZMOD_RW,
5163 	"Rewrite new bps starting in this pass");
5164 
5165 ZFS_MODULE_PARAM(zfs_zio, zio_, dva_throttle_enabled, INT, ZMOD_RW,
5166 	"Throttle block allocations in the ZIO pipeline");
5167 
5168 ZFS_MODULE_PARAM(zfs_zio, zio_, deadman_log_all, INT, ZMOD_RW,
5169 	"Log all slow ZIOs, not just those with vdevs");
5170