1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2020 by Delphix. All rights reserved. 24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2017, Intel Corporation. 26 * Copyright (c) 2019, Klara Inc. 27 * Copyright (c) 2019, Allan Jude 28 */ 29 30 #include <sys/sysmacros.h> 31 #include <sys/zfs_context.h> 32 #include <sys/fm/fs/zfs.h> 33 #include <sys/spa.h> 34 #include <sys/txg.h> 35 #include <sys/spa_impl.h> 36 #include <sys/vdev_impl.h> 37 #include <sys/vdev_trim.h> 38 #include <sys/zio_impl.h> 39 #include <sys/zio_compress.h> 40 #include <sys/zio_checksum.h> 41 #include <sys/dmu_objset.h> 42 #include <sys/arc.h> 43 #include <sys/ddt.h> 44 #include <sys/blkptr.h> 45 #include <sys/zfeature.h> 46 #include <sys/dsl_scan.h> 47 #include <sys/metaslab_impl.h> 48 #include <sys/time.h> 49 #include <sys/trace_zfs.h> 50 #include <sys/abd.h> 51 #include <sys/dsl_crypt.h> 52 #include <cityhash.h> 53 54 /* 55 * ========================================================================== 56 * I/O type descriptions 57 * ========================================================================== 58 */ 59 const char *zio_type_name[ZIO_TYPES] = { 60 /* 61 * Note: Linux kernel thread name length is limited 62 * so these names will differ from upstream open zfs. 63 */ 64 "z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_ioctl", "z_trim" 65 }; 66 67 int zio_dva_throttle_enabled = B_TRUE; 68 int zio_deadman_log_all = B_FALSE; 69 70 /* 71 * ========================================================================== 72 * I/O kmem caches 73 * ========================================================================== 74 */ 75 kmem_cache_t *zio_cache; 76 kmem_cache_t *zio_link_cache; 77 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 78 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 79 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 80 uint64_t zio_buf_cache_allocs[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 81 uint64_t zio_buf_cache_frees[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 82 #endif 83 84 /* Mark IOs as "slow" if they take longer than 30 seconds */ 85 int zio_slow_io_ms = (30 * MILLISEC); 86 87 #define BP_SPANB(indblkshift, level) \ 88 (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT))) 89 #define COMPARE_META_LEVEL 0x80000000ul 90 /* 91 * The following actions directly effect the spa's sync-to-convergence logic. 92 * The values below define the sync pass when we start performing the action. 93 * Care should be taken when changing these values as they directly impact 94 * spa_sync() performance. Tuning these values may introduce subtle performance 95 * pathologies and should only be done in the context of performance analysis. 96 * These tunables will eventually be removed and replaced with #defines once 97 * enough analysis has been done to determine optimal values. 98 * 99 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that 100 * regular blocks are not deferred. 101 * 102 * Starting in sync pass 8 (zfs_sync_pass_dont_compress), we disable 103 * compression (including of metadata). In practice, we don't have this 104 * many sync passes, so this has no effect. 105 * 106 * The original intent was that disabling compression would help the sync 107 * passes to converge. However, in practice disabling compression increases 108 * the average number of sync passes, because when we turn compression off, a 109 * lot of block's size will change and thus we have to re-allocate (not 110 * overwrite) them. It also increases the number of 128KB allocations (e.g. 111 * for indirect blocks and spacemaps) because these will not be compressed. 112 * The 128K allocations are especially detrimental to performance on highly 113 * fragmented systems, which may have very few free segments of this size, 114 * and may need to load new metaslabs to satisfy 128K allocations. 115 */ 116 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */ 117 int zfs_sync_pass_dont_compress = 8; /* don't compress starting in this pass */ 118 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */ 119 120 /* 121 * An allocating zio is one that either currently has the DVA allocate 122 * stage set or will have it later in its lifetime. 123 */ 124 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE) 125 126 /* 127 * Enable smaller cores by excluding metadata 128 * allocations as well. 129 */ 130 int zio_exclude_metadata = 0; 131 int zio_requeue_io_start_cut_in_line = 1; 132 133 #ifdef ZFS_DEBUG 134 int zio_buf_debug_limit = 16384; 135 #else 136 int zio_buf_debug_limit = 0; 137 #endif 138 139 static inline void __zio_execute(zio_t *zio); 140 141 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t); 142 143 void 144 zio_init(void) 145 { 146 size_t c; 147 148 zio_cache = kmem_cache_create("zio_cache", 149 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 150 zio_link_cache = kmem_cache_create("zio_link_cache", 151 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 152 153 /* 154 * For small buffers, we want a cache for each multiple of 155 * SPA_MINBLOCKSIZE. For larger buffers, we want a cache 156 * for each quarter-power of 2. 157 */ 158 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 159 size_t size = (c + 1) << SPA_MINBLOCKSHIFT; 160 size_t p2 = size; 161 size_t align = 0; 162 size_t data_cflags, cflags; 163 164 data_cflags = KMC_NODEBUG; 165 cflags = (zio_exclude_metadata || size > zio_buf_debug_limit) ? 166 KMC_NODEBUG : 0; 167 168 #if defined(_ILP32) && defined(_KERNEL) 169 /* 170 * Cache size limited to 1M on 32-bit platforms until ARC 171 * buffers no longer require virtual address space. 172 */ 173 if (size > zfs_max_recordsize) 174 break; 175 #endif 176 177 while (!ISP2(p2)) 178 p2 &= p2 - 1; 179 180 #ifndef _KERNEL 181 /* 182 * If we are using watchpoints, put each buffer on its own page, 183 * to eliminate the performance overhead of trapping to the 184 * kernel when modifying a non-watched buffer that shares the 185 * page with a watched buffer. 186 */ 187 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE)) 188 continue; 189 /* 190 * Here's the problem - on 4K native devices in userland on 191 * Linux using O_DIRECT, buffers must be 4K aligned or I/O 192 * will fail with EINVAL, causing zdb (and others) to coredump. 193 * Since userland probably doesn't need optimized buffer caches, 194 * we just force 4K alignment on everything. 195 */ 196 align = 8 * SPA_MINBLOCKSIZE; 197 #else 198 if (size < PAGESIZE) { 199 align = SPA_MINBLOCKSIZE; 200 } else if (IS_P2ALIGNED(size, p2 >> 2)) { 201 align = PAGESIZE; 202 } 203 #endif 204 205 if (align != 0) { 206 char name[36]; 207 (void) snprintf(name, sizeof (name), "zio_buf_%lu", 208 (ulong_t)size); 209 zio_buf_cache[c] = kmem_cache_create(name, size, 210 align, NULL, NULL, NULL, NULL, NULL, cflags); 211 212 (void) snprintf(name, sizeof (name), "zio_data_buf_%lu", 213 (ulong_t)size); 214 zio_data_buf_cache[c] = kmem_cache_create(name, size, 215 align, NULL, NULL, NULL, NULL, NULL, data_cflags); 216 } 217 } 218 219 while (--c != 0) { 220 ASSERT(zio_buf_cache[c] != NULL); 221 if (zio_buf_cache[c - 1] == NULL) 222 zio_buf_cache[c - 1] = zio_buf_cache[c]; 223 224 ASSERT(zio_data_buf_cache[c] != NULL); 225 if (zio_data_buf_cache[c - 1] == NULL) 226 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c]; 227 } 228 229 zio_inject_init(); 230 231 lz4_init(); 232 } 233 234 void 235 zio_fini(void) 236 { 237 size_t c; 238 kmem_cache_t *last_cache = NULL; 239 kmem_cache_t *last_data_cache = NULL; 240 241 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 242 #ifdef _ILP32 243 /* 244 * Cache size limited to 1M on 32-bit platforms until ARC 245 * buffers no longer require virtual address space. 246 */ 247 if (((c + 1) << SPA_MINBLOCKSHIFT) > zfs_max_recordsize) 248 break; 249 #endif 250 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 251 if (zio_buf_cache_allocs[c] != zio_buf_cache_frees[c]) 252 (void) printf("zio_fini: [%d] %llu != %llu\n", 253 (int)((c + 1) << SPA_MINBLOCKSHIFT), 254 (long long unsigned)zio_buf_cache_allocs[c], 255 (long long unsigned)zio_buf_cache_frees[c]); 256 #endif 257 if (zio_buf_cache[c] != last_cache) { 258 last_cache = zio_buf_cache[c]; 259 kmem_cache_destroy(zio_buf_cache[c]); 260 } 261 zio_buf_cache[c] = NULL; 262 263 if (zio_data_buf_cache[c] != last_data_cache) { 264 last_data_cache = zio_data_buf_cache[c]; 265 kmem_cache_destroy(zio_data_buf_cache[c]); 266 } 267 zio_data_buf_cache[c] = NULL; 268 } 269 270 kmem_cache_destroy(zio_link_cache); 271 kmem_cache_destroy(zio_cache); 272 273 zio_inject_fini(); 274 275 lz4_fini(); 276 } 277 278 /* 279 * ========================================================================== 280 * Allocate and free I/O buffers 281 * ========================================================================== 282 */ 283 284 /* 285 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a 286 * crashdump if the kernel panics, so use it judiciously. Obviously, it's 287 * useful to inspect ZFS metadata, but if possible, we should avoid keeping 288 * excess / transient data in-core during a crashdump. 289 */ 290 void * 291 zio_buf_alloc(size_t size) 292 { 293 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 294 295 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 296 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 297 atomic_add_64(&zio_buf_cache_allocs[c], 1); 298 #endif 299 300 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE)); 301 } 302 303 /* 304 * Use zio_data_buf_alloc to allocate data. The data will not appear in a 305 * crashdump if the kernel panics. This exists so that we will limit the amount 306 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount 307 * of kernel heap dumped to disk when the kernel panics) 308 */ 309 void * 310 zio_data_buf_alloc(size_t size) 311 { 312 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 313 314 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 315 316 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE)); 317 } 318 319 void 320 zio_buf_free(void *buf, size_t size) 321 { 322 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 323 324 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 325 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 326 atomic_add_64(&zio_buf_cache_frees[c], 1); 327 #endif 328 329 kmem_cache_free(zio_buf_cache[c], buf); 330 } 331 332 void 333 zio_data_buf_free(void *buf, size_t size) 334 { 335 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 336 337 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 338 339 kmem_cache_free(zio_data_buf_cache[c], buf); 340 } 341 342 static void 343 zio_abd_free(void *abd, size_t size) 344 { 345 abd_free((abd_t *)abd); 346 } 347 348 /* 349 * ========================================================================== 350 * Push and pop I/O transform buffers 351 * ========================================================================== 352 */ 353 void 354 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize, 355 zio_transform_func_t *transform) 356 { 357 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP); 358 359 zt->zt_orig_abd = zio->io_abd; 360 zt->zt_orig_size = zio->io_size; 361 zt->zt_bufsize = bufsize; 362 zt->zt_transform = transform; 363 364 zt->zt_next = zio->io_transform_stack; 365 zio->io_transform_stack = zt; 366 367 zio->io_abd = data; 368 zio->io_size = size; 369 } 370 371 void 372 zio_pop_transforms(zio_t *zio) 373 { 374 zio_transform_t *zt; 375 376 while ((zt = zio->io_transform_stack) != NULL) { 377 if (zt->zt_transform != NULL) 378 zt->zt_transform(zio, 379 zt->zt_orig_abd, zt->zt_orig_size); 380 381 if (zt->zt_bufsize != 0) 382 abd_free(zio->io_abd); 383 384 zio->io_abd = zt->zt_orig_abd; 385 zio->io_size = zt->zt_orig_size; 386 zio->io_transform_stack = zt->zt_next; 387 388 kmem_free(zt, sizeof (zio_transform_t)); 389 } 390 } 391 392 /* 393 * ========================================================================== 394 * I/O transform callbacks for subblocks, decompression, and decryption 395 * ========================================================================== 396 */ 397 static void 398 zio_subblock(zio_t *zio, abd_t *data, uint64_t size) 399 { 400 ASSERT(zio->io_size > size); 401 402 if (zio->io_type == ZIO_TYPE_READ) 403 abd_copy(data, zio->io_abd, size); 404 } 405 406 static void 407 zio_decompress(zio_t *zio, abd_t *data, uint64_t size) 408 { 409 if (zio->io_error == 0) { 410 void *tmp = abd_borrow_buf(data, size); 411 int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp), 412 zio->io_abd, tmp, zio->io_size, size, 413 &zio->io_prop.zp_complevel); 414 abd_return_buf_copy(data, tmp, size); 415 416 if (zio_injection_enabled && ret == 0) 417 ret = zio_handle_fault_injection(zio, EINVAL); 418 419 if (ret != 0) 420 zio->io_error = SET_ERROR(EIO); 421 } 422 } 423 424 static void 425 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size) 426 { 427 int ret; 428 void *tmp; 429 blkptr_t *bp = zio->io_bp; 430 spa_t *spa = zio->io_spa; 431 uint64_t dsobj = zio->io_bookmark.zb_objset; 432 uint64_t lsize = BP_GET_LSIZE(bp); 433 dmu_object_type_t ot = BP_GET_TYPE(bp); 434 uint8_t salt[ZIO_DATA_SALT_LEN]; 435 uint8_t iv[ZIO_DATA_IV_LEN]; 436 uint8_t mac[ZIO_DATA_MAC_LEN]; 437 boolean_t no_crypt = B_FALSE; 438 439 ASSERT(BP_USES_CRYPT(bp)); 440 ASSERT3U(size, !=, 0); 441 442 if (zio->io_error != 0) 443 return; 444 445 /* 446 * Verify the cksum of MACs stored in an indirect bp. It will always 447 * be possible to verify this since it does not require an encryption 448 * key. 449 */ 450 if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) { 451 zio_crypt_decode_mac_bp(bp, mac); 452 453 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) { 454 /* 455 * We haven't decompressed the data yet, but 456 * zio_crypt_do_indirect_mac_checksum() requires 457 * decompressed data to be able to parse out the MACs 458 * from the indirect block. We decompress it now and 459 * throw away the result after we are finished. 460 */ 461 tmp = zio_buf_alloc(lsize); 462 ret = zio_decompress_data(BP_GET_COMPRESS(bp), 463 zio->io_abd, tmp, zio->io_size, lsize, 464 &zio->io_prop.zp_complevel); 465 if (ret != 0) { 466 ret = SET_ERROR(EIO); 467 goto error; 468 } 469 ret = zio_crypt_do_indirect_mac_checksum(B_FALSE, 470 tmp, lsize, BP_SHOULD_BYTESWAP(bp), mac); 471 zio_buf_free(tmp, lsize); 472 } else { 473 ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE, 474 zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac); 475 } 476 abd_copy(data, zio->io_abd, size); 477 478 if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) { 479 ret = zio_handle_decrypt_injection(spa, 480 &zio->io_bookmark, ot, ECKSUM); 481 } 482 if (ret != 0) 483 goto error; 484 485 return; 486 } 487 488 /* 489 * If this is an authenticated block, just check the MAC. It would be 490 * nice to separate this out into its own flag, but for the moment 491 * enum zio_flag is out of bits. 492 */ 493 if (BP_IS_AUTHENTICATED(bp)) { 494 if (ot == DMU_OT_OBJSET) { 495 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, 496 dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp)); 497 } else { 498 zio_crypt_decode_mac_bp(bp, mac); 499 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, 500 zio->io_abd, size, mac); 501 if (zio_injection_enabled && ret == 0) { 502 ret = zio_handle_decrypt_injection(spa, 503 &zio->io_bookmark, ot, ECKSUM); 504 } 505 } 506 abd_copy(data, zio->io_abd, size); 507 508 if (ret != 0) 509 goto error; 510 511 return; 512 } 513 514 zio_crypt_decode_params_bp(bp, salt, iv); 515 516 if (ot == DMU_OT_INTENT_LOG) { 517 tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t)); 518 zio_crypt_decode_mac_zil(tmp, mac); 519 abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t)); 520 } else { 521 zio_crypt_decode_mac_bp(bp, mac); 522 } 523 524 ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp), 525 BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data, 526 zio->io_abd, &no_crypt); 527 if (no_crypt) 528 abd_copy(data, zio->io_abd, size); 529 530 if (ret != 0) 531 goto error; 532 533 return; 534 535 error: 536 /* assert that the key was found unless this was speculative */ 537 ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE)); 538 539 /* 540 * If there was a decryption / authentication error return EIO as 541 * the io_error. If this was not a speculative zio, create an ereport. 542 */ 543 if (ret == ECKSUM) { 544 zio->io_error = SET_ERROR(EIO); 545 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) { 546 spa_log_error(spa, &zio->io_bookmark); 547 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION, 548 spa, NULL, &zio->io_bookmark, zio, 0); 549 } 550 } else { 551 zio->io_error = ret; 552 } 553 } 554 555 /* 556 * ========================================================================== 557 * I/O parent/child relationships and pipeline interlocks 558 * ========================================================================== 559 */ 560 zio_t * 561 zio_walk_parents(zio_t *cio, zio_link_t **zl) 562 { 563 list_t *pl = &cio->io_parent_list; 564 565 *zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl); 566 if (*zl == NULL) 567 return (NULL); 568 569 ASSERT((*zl)->zl_child == cio); 570 return ((*zl)->zl_parent); 571 } 572 573 zio_t * 574 zio_walk_children(zio_t *pio, zio_link_t **zl) 575 { 576 list_t *cl = &pio->io_child_list; 577 578 ASSERT(MUTEX_HELD(&pio->io_lock)); 579 580 *zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl); 581 if (*zl == NULL) 582 return (NULL); 583 584 ASSERT((*zl)->zl_parent == pio); 585 return ((*zl)->zl_child); 586 } 587 588 zio_t * 589 zio_unique_parent(zio_t *cio) 590 { 591 zio_link_t *zl = NULL; 592 zio_t *pio = zio_walk_parents(cio, &zl); 593 594 VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL); 595 return (pio); 596 } 597 598 void 599 zio_add_child(zio_t *pio, zio_t *cio) 600 { 601 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP); 602 603 /* 604 * Logical I/Os can have logical, gang, or vdev children. 605 * Gang I/Os can have gang or vdev children. 606 * Vdev I/Os can only have vdev children. 607 * The following ASSERT captures all of these constraints. 608 */ 609 ASSERT3S(cio->io_child_type, <=, pio->io_child_type); 610 611 zl->zl_parent = pio; 612 zl->zl_child = cio; 613 614 mutex_enter(&pio->io_lock); 615 mutex_enter(&cio->io_lock); 616 617 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0); 618 619 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 620 pio->io_children[cio->io_child_type][w] += !cio->io_state[w]; 621 622 list_insert_head(&pio->io_child_list, zl); 623 list_insert_head(&cio->io_parent_list, zl); 624 625 pio->io_child_count++; 626 cio->io_parent_count++; 627 628 mutex_exit(&cio->io_lock); 629 mutex_exit(&pio->io_lock); 630 } 631 632 static void 633 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl) 634 { 635 ASSERT(zl->zl_parent == pio); 636 ASSERT(zl->zl_child == cio); 637 638 mutex_enter(&pio->io_lock); 639 mutex_enter(&cio->io_lock); 640 641 list_remove(&pio->io_child_list, zl); 642 list_remove(&cio->io_parent_list, zl); 643 644 pio->io_child_count--; 645 cio->io_parent_count--; 646 647 mutex_exit(&cio->io_lock); 648 mutex_exit(&pio->io_lock); 649 kmem_cache_free(zio_link_cache, zl); 650 } 651 652 static boolean_t 653 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait) 654 { 655 boolean_t waiting = B_FALSE; 656 657 mutex_enter(&zio->io_lock); 658 ASSERT(zio->io_stall == NULL); 659 for (int c = 0; c < ZIO_CHILD_TYPES; c++) { 660 if (!(ZIO_CHILD_BIT_IS_SET(childbits, c))) 661 continue; 662 663 uint64_t *countp = &zio->io_children[c][wait]; 664 if (*countp != 0) { 665 zio->io_stage >>= 1; 666 ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN); 667 zio->io_stall = countp; 668 waiting = B_TRUE; 669 break; 670 } 671 } 672 mutex_exit(&zio->io_lock); 673 return (waiting); 674 } 675 676 __attribute__((always_inline)) 677 static inline void 678 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait, 679 zio_t **next_to_executep) 680 { 681 uint64_t *countp = &pio->io_children[zio->io_child_type][wait]; 682 int *errorp = &pio->io_child_error[zio->io_child_type]; 683 684 mutex_enter(&pio->io_lock); 685 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 686 *errorp = zio_worst_error(*errorp, zio->io_error); 687 pio->io_reexecute |= zio->io_reexecute; 688 ASSERT3U(*countp, >, 0); 689 690 (*countp)--; 691 692 if (*countp == 0 && pio->io_stall == countp) { 693 zio_taskq_type_t type = 694 pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE : 695 ZIO_TASKQ_INTERRUPT; 696 pio->io_stall = NULL; 697 mutex_exit(&pio->io_lock); 698 699 /* 700 * If we can tell the caller to execute this parent next, do 701 * so. Otherwise dispatch the parent zio as its own task. 702 * 703 * Having the caller execute the parent when possible reduces 704 * locking on the zio taskq's, reduces context switch 705 * overhead, and has no recursion penalty. Note that one 706 * read from disk typically causes at least 3 zio's: a 707 * zio_null(), the logical zio_read(), and then a physical 708 * zio. When the physical ZIO completes, we are able to call 709 * zio_done() on all 3 of these zio's from one invocation of 710 * zio_execute() by returning the parent back to 711 * zio_execute(). Since the parent isn't executed until this 712 * thread returns back to zio_execute(), the caller should do 713 * so promptly. 714 * 715 * In other cases, dispatching the parent prevents 716 * overflowing the stack when we have deeply nested 717 * parent-child relationships, as we do with the "mega zio" 718 * of writes for spa_sync(), and the chain of ZIL blocks. 719 */ 720 if (next_to_executep != NULL && *next_to_executep == NULL) { 721 *next_to_executep = pio; 722 } else { 723 zio_taskq_dispatch(pio, type, B_FALSE); 724 } 725 } else { 726 mutex_exit(&pio->io_lock); 727 } 728 } 729 730 static void 731 zio_inherit_child_errors(zio_t *zio, enum zio_child c) 732 { 733 if (zio->io_child_error[c] != 0 && zio->io_error == 0) 734 zio->io_error = zio->io_child_error[c]; 735 } 736 737 int 738 zio_bookmark_compare(const void *x1, const void *x2) 739 { 740 const zio_t *z1 = x1; 741 const zio_t *z2 = x2; 742 743 if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset) 744 return (-1); 745 if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset) 746 return (1); 747 748 if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object) 749 return (-1); 750 if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object) 751 return (1); 752 753 if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level) 754 return (-1); 755 if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level) 756 return (1); 757 758 if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid) 759 return (-1); 760 if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid) 761 return (1); 762 763 if (z1 < z2) 764 return (-1); 765 if (z1 > z2) 766 return (1); 767 768 return (0); 769 } 770 771 /* 772 * ========================================================================== 773 * Create the various types of I/O (read, write, free, etc) 774 * ========================================================================== 775 */ 776 static zio_t * 777 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 778 abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done, 779 void *private, zio_type_t type, zio_priority_t priority, 780 enum zio_flag flags, vdev_t *vd, uint64_t offset, 781 const zbookmark_phys_t *zb, enum zio_stage stage, 782 enum zio_stage pipeline) 783 { 784 zio_t *zio; 785 786 IMPLY(type != ZIO_TYPE_TRIM, psize <= SPA_MAXBLOCKSIZE); 787 ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0); 788 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0); 789 790 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER)); 791 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER)); 792 ASSERT(vd || stage == ZIO_STAGE_OPEN); 793 794 IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0); 795 796 zio = kmem_cache_alloc(zio_cache, KM_SLEEP); 797 bzero(zio, sizeof (zio_t)); 798 799 mutex_init(&zio->io_lock, NULL, MUTEX_NOLOCKDEP, NULL); 800 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL); 801 802 list_create(&zio->io_parent_list, sizeof (zio_link_t), 803 offsetof(zio_link_t, zl_parent_node)); 804 list_create(&zio->io_child_list, sizeof (zio_link_t), 805 offsetof(zio_link_t, zl_child_node)); 806 metaslab_trace_init(&zio->io_alloc_list); 807 808 if (vd != NULL) 809 zio->io_child_type = ZIO_CHILD_VDEV; 810 else if (flags & ZIO_FLAG_GANG_CHILD) 811 zio->io_child_type = ZIO_CHILD_GANG; 812 else if (flags & ZIO_FLAG_DDT_CHILD) 813 zio->io_child_type = ZIO_CHILD_DDT; 814 else 815 zio->io_child_type = ZIO_CHILD_LOGICAL; 816 817 if (bp != NULL) { 818 zio->io_bp = (blkptr_t *)bp; 819 zio->io_bp_copy = *bp; 820 zio->io_bp_orig = *bp; 821 if (type != ZIO_TYPE_WRITE || 822 zio->io_child_type == ZIO_CHILD_DDT) 823 zio->io_bp = &zio->io_bp_copy; /* so caller can free */ 824 if (zio->io_child_type == ZIO_CHILD_LOGICAL) 825 zio->io_logical = zio; 826 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp)) 827 pipeline |= ZIO_GANG_STAGES; 828 } 829 830 zio->io_spa = spa; 831 zio->io_txg = txg; 832 zio->io_done = done; 833 zio->io_private = private; 834 zio->io_type = type; 835 zio->io_priority = priority; 836 zio->io_vd = vd; 837 zio->io_offset = offset; 838 zio->io_orig_abd = zio->io_abd = data; 839 zio->io_orig_size = zio->io_size = psize; 840 zio->io_lsize = lsize; 841 zio->io_orig_flags = zio->io_flags = flags; 842 zio->io_orig_stage = zio->io_stage = stage; 843 zio->io_orig_pipeline = zio->io_pipeline = pipeline; 844 zio->io_pipeline_trace = ZIO_STAGE_OPEN; 845 846 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY); 847 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE); 848 849 if (zb != NULL) 850 zio->io_bookmark = *zb; 851 852 if (pio != NULL) { 853 if (zio->io_metaslab_class == NULL) 854 zio->io_metaslab_class = pio->io_metaslab_class; 855 if (zio->io_logical == NULL) 856 zio->io_logical = pio->io_logical; 857 if (zio->io_child_type == ZIO_CHILD_GANG) 858 zio->io_gang_leader = pio->io_gang_leader; 859 zio_add_child(pio, zio); 860 } 861 862 taskq_init_ent(&zio->io_tqent); 863 864 return (zio); 865 } 866 867 static void 868 zio_destroy(zio_t *zio) 869 { 870 metaslab_trace_fini(&zio->io_alloc_list); 871 list_destroy(&zio->io_parent_list); 872 list_destroy(&zio->io_child_list); 873 mutex_destroy(&zio->io_lock); 874 cv_destroy(&zio->io_cv); 875 kmem_cache_free(zio_cache, zio); 876 } 877 878 zio_t * 879 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done, 880 void *private, enum zio_flag flags) 881 { 882 zio_t *zio; 883 884 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private, 885 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 886 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE); 887 888 return (zio); 889 } 890 891 zio_t * 892 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags) 893 { 894 return (zio_null(NULL, spa, NULL, done, private, flags)); 895 } 896 897 static int 898 zfs_blkptr_verify_log(spa_t *spa, const blkptr_t *bp, 899 enum blk_verify_flag blk_verify, const char *fmt, ...) 900 { 901 va_list adx; 902 char buf[256]; 903 904 va_start(adx, fmt); 905 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 906 va_end(adx); 907 908 switch (blk_verify) { 909 case BLK_VERIFY_HALT: 910 dprintf_bp(bp, "blkptr at %p dprintf_bp():", bp); 911 zfs_panic_recover("%s: %s", spa_name(spa), buf); 912 break; 913 case BLK_VERIFY_LOG: 914 zfs_dbgmsg("%s: %s", spa_name(spa), buf); 915 break; 916 case BLK_VERIFY_ONLY: 917 break; 918 } 919 920 return (1); 921 } 922 923 /* 924 * Verify the block pointer fields contain reasonable values. This means 925 * it only contains known object types, checksum/compression identifiers, 926 * block sizes within the maximum allowed limits, valid DVAs, etc. 927 * 928 * If everything checks out B_TRUE is returned. The zfs_blkptr_verify 929 * argument controls the behavior when an invalid field is detected. 930 * 931 * Modes for zfs_blkptr_verify: 932 * 1) BLK_VERIFY_ONLY (evaluate the block) 933 * 2) BLK_VERIFY_LOG (evaluate the block and log problems) 934 * 3) BLK_VERIFY_HALT (call zfs_panic_recover on error) 935 */ 936 boolean_t 937 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp, boolean_t config_held, 938 enum blk_verify_flag blk_verify) 939 { 940 int errors = 0; 941 942 if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) { 943 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 944 "blkptr at %p has invalid TYPE %llu", 945 bp, (longlong_t)BP_GET_TYPE(bp)); 946 } 947 if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS || 948 BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) { 949 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 950 "blkptr at %p has invalid CHECKSUM %llu", 951 bp, (longlong_t)BP_GET_CHECKSUM(bp)); 952 } 953 if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS || 954 BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) { 955 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 956 "blkptr at %p has invalid COMPRESS %llu", 957 bp, (longlong_t)BP_GET_COMPRESS(bp)); 958 } 959 if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) { 960 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 961 "blkptr at %p has invalid LSIZE %llu", 962 bp, (longlong_t)BP_GET_LSIZE(bp)); 963 } 964 if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) { 965 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 966 "blkptr at %p has invalid PSIZE %llu", 967 bp, (longlong_t)BP_GET_PSIZE(bp)); 968 } 969 970 if (BP_IS_EMBEDDED(bp)) { 971 if (BPE_GET_ETYPE(bp) >= NUM_BP_EMBEDDED_TYPES) { 972 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 973 "blkptr at %p has invalid ETYPE %llu", 974 bp, (longlong_t)BPE_GET_ETYPE(bp)); 975 } 976 } 977 978 /* 979 * Do not verify individual DVAs if the config is not trusted. This 980 * will be done once the zio is executed in vdev_mirror_map_alloc. 981 */ 982 if (!spa->spa_trust_config) 983 return (B_TRUE); 984 985 if (!config_held) 986 spa_config_enter(spa, SCL_VDEV, bp, RW_READER); 987 else 988 ASSERT(spa_config_held(spa, SCL_VDEV, RW_WRITER)); 989 /* 990 * Pool-specific checks. 991 * 992 * Note: it would be nice to verify that the blk_birth and 993 * BP_PHYSICAL_BIRTH() are not too large. However, spa_freeze() 994 * allows the birth time of log blocks (and dmu_sync()-ed blocks 995 * that are in the log) to be arbitrarily large. 996 */ 997 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 998 uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]); 999 1000 if (vdevid >= spa->spa_root_vdev->vdev_children) { 1001 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1002 "blkptr at %p DVA %u has invalid VDEV %llu", 1003 bp, i, (longlong_t)vdevid); 1004 continue; 1005 } 1006 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid]; 1007 if (vd == NULL) { 1008 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1009 "blkptr at %p DVA %u has invalid VDEV %llu", 1010 bp, i, (longlong_t)vdevid); 1011 continue; 1012 } 1013 if (vd->vdev_ops == &vdev_hole_ops) { 1014 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1015 "blkptr at %p DVA %u has hole VDEV %llu", 1016 bp, i, (longlong_t)vdevid); 1017 continue; 1018 } 1019 if (vd->vdev_ops == &vdev_missing_ops) { 1020 /* 1021 * "missing" vdevs are valid during import, but we 1022 * don't have their detailed info (e.g. asize), so 1023 * we can't perform any more checks on them. 1024 */ 1025 continue; 1026 } 1027 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]); 1028 uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]); 1029 if (BP_IS_GANG(bp)) 1030 asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); 1031 if (offset + asize > vd->vdev_asize) { 1032 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1033 "blkptr at %p DVA %u has invalid OFFSET %llu", 1034 bp, i, (longlong_t)offset); 1035 } 1036 } 1037 if (errors > 0) 1038 dprintf_bp(bp, "blkptr at %p dprintf_bp():", bp); 1039 if (!config_held) 1040 spa_config_exit(spa, SCL_VDEV, bp); 1041 1042 return (errors == 0); 1043 } 1044 1045 boolean_t 1046 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp) 1047 { 1048 uint64_t vdevid = DVA_GET_VDEV(dva); 1049 1050 if (vdevid >= spa->spa_root_vdev->vdev_children) 1051 return (B_FALSE); 1052 1053 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid]; 1054 if (vd == NULL) 1055 return (B_FALSE); 1056 1057 if (vd->vdev_ops == &vdev_hole_ops) 1058 return (B_FALSE); 1059 1060 if (vd->vdev_ops == &vdev_missing_ops) { 1061 return (B_FALSE); 1062 } 1063 1064 uint64_t offset = DVA_GET_OFFSET(dva); 1065 uint64_t asize = DVA_GET_ASIZE(dva); 1066 1067 if (BP_IS_GANG(bp)) 1068 asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); 1069 if (offset + asize > vd->vdev_asize) 1070 return (B_FALSE); 1071 1072 return (B_TRUE); 1073 } 1074 1075 zio_t * 1076 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, 1077 abd_t *data, uint64_t size, zio_done_func_t *done, void *private, 1078 zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb) 1079 { 1080 zio_t *zio; 1081 1082 (void) zfs_blkptr_verify(spa, bp, flags & ZIO_FLAG_CONFIG_WRITER, 1083 BLK_VERIFY_HALT); 1084 1085 zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp, 1086 data, size, size, done, private, 1087 ZIO_TYPE_READ, priority, flags, NULL, 0, zb, 1088 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 1089 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE); 1090 1091 return (zio); 1092 } 1093 1094 zio_t * 1095 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 1096 abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp, 1097 zio_done_func_t *ready, zio_done_func_t *children_ready, 1098 zio_done_func_t *physdone, zio_done_func_t *done, 1099 void *private, zio_priority_t priority, enum zio_flag flags, 1100 const zbookmark_phys_t *zb) 1101 { 1102 zio_t *zio; 1103 1104 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF && 1105 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS && 1106 zp->zp_compress >= ZIO_COMPRESS_OFF && 1107 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS && 1108 DMU_OT_IS_VALID(zp->zp_type) && 1109 zp->zp_level < 32 && 1110 zp->zp_copies > 0 && 1111 zp->zp_copies <= spa_max_replication(spa)); 1112 1113 zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private, 1114 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb, 1115 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 1116 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE); 1117 1118 zio->io_ready = ready; 1119 zio->io_children_ready = children_ready; 1120 zio->io_physdone = physdone; 1121 zio->io_prop = *zp; 1122 1123 /* 1124 * Data can be NULL if we are going to call zio_write_override() to 1125 * provide the already-allocated BP. But we may need the data to 1126 * verify a dedup hit (if requested). In this case, don't try to 1127 * dedup (just take the already-allocated BP verbatim). Encrypted 1128 * dedup blocks need data as well so we also disable dedup in this 1129 * case. 1130 */ 1131 if (data == NULL && 1132 (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) { 1133 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE; 1134 } 1135 1136 return (zio); 1137 } 1138 1139 zio_t * 1140 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data, 1141 uint64_t size, zio_done_func_t *done, void *private, 1142 zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb) 1143 { 1144 zio_t *zio; 1145 1146 zio = zio_create(pio, spa, txg, bp, data, size, size, done, private, 1147 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb, 1148 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE); 1149 1150 return (zio); 1151 } 1152 1153 void 1154 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite) 1155 { 1156 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 1157 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1158 ASSERT(zio->io_stage == ZIO_STAGE_OPEN); 1159 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa)); 1160 1161 /* 1162 * We must reset the io_prop to match the values that existed 1163 * when the bp was first written by dmu_sync() keeping in mind 1164 * that nopwrite and dedup are mutually exclusive. 1165 */ 1166 zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup; 1167 zio->io_prop.zp_nopwrite = nopwrite; 1168 zio->io_prop.zp_copies = copies; 1169 zio->io_bp_override = bp; 1170 } 1171 1172 void 1173 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp) 1174 { 1175 1176 (void) zfs_blkptr_verify(spa, bp, B_FALSE, BLK_VERIFY_HALT); 1177 1178 /* 1179 * The check for EMBEDDED is a performance optimization. We 1180 * process the free here (by ignoring it) rather than 1181 * putting it on the list and then processing it in zio_free_sync(). 1182 */ 1183 if (BP_IS_EMBEDDED(bp)) 1184 return; 1185 metaslab_check_free(spa, bp); 1186 1187 /* 1188 * Frees that are for the currently-syncing txg, are not going to be 1189 * deferred, and which will not need to do a read (i.e. not GANG or 1190 * DEDUP), can be processed immediately. Otherwise, put them on the 1191 * in-memory list for later processing. 1192 * 1193 * Note that we only defer frees after zfs_sync_pass_deferred_free 1194 * when the log space map feature is disabled. [see relevant comment 1195 * in spa_sync_iterate_to_convergence()] 1196 */ 1197 if (BP_IS_GANG(bp) || 1198 BP_GET_DEDUP(bp) || 1199 txg != spa->spa_syncing_txg || 1200 (spa_sync_pass(spa) >= zfs_sync_pass_deferred_free && 1201 !spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))) { 1202 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp); 1203 } else { 1204 VERIFY3P(zio_free_sync(NULL, spa, txg, bp, 0), ==, NULL); 1205 } 1206 } 1207 1208 /* 1209 * To improve performance, this function may return NULL if we were able 1210 * to do the free immediately. This avoids the cost of creating a zio 1211 * (and linking it to the parent, etc). 1212 */ 1213 zio_t * 1214 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 1215 enum zio_flag flags) 1216 { 1217 ASSERT(!BP_IS_HOLE(bp)); 1218 ASSERT(spa_syncing_txg(spa) == txg); 1219 1220 if (BP_IS_EMBEDDED(bp)) 1221 return (NULL); 1222 1223 metaslab_check_free(spa, bp); 1224 arc_freed(spa, bp); 1225 dsl_scan_freed(spa, bp); 1226 1227 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp)) { 1228 /* 1229 * GANG and DEDUP blocks can induce a read (for the gang block 1230 * header, or the DDT), so issue them asynchronously so that 1231 * this thread is not tied up. 1232 */ 1233 enum zio_stage stage = 1234 ZIO_FREE_PIPELINE | ZIO_STAGE_ISSUE_ASYNC; 1235 1236 return (zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 1237 BP_GET_PSIZE(bp), NULL, NULL, 1238 ZIO_TYPE_FREE, ZIO_PRIORITY_NOW, 1239 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage)); 1240 } else { 1241 metaslab_free(spa, bp, txg, B_FALSE); 1242 return (NULL); 1243 } 1244 } 1245 1246 zio_t * 1247 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 1248 zio_done_func_t *done, void *private, enum zio_flag flags) 1249 { 1250 zio_t *zio; 1251 1252 (void) zfs_blkptr_verify(spa, bp, flags & ZIO_FLAG_CONFIG_WRITER, 1253 BLK_VERIFY_HALT); 1254 1255 if (BP_IS_EMBEDDED(bp)) 1256 return (zio_null(pio, spa, NULL, NULL, NULL, 0)); 1257 1258 /* 1259 * A claim is an allocation of a specific block. Claims are needed 1260 * to support immediate writes in the intent log. The issue is that 1261 * immediate writes contain committed data, but in a txg that was 1262 * *not* committed. Upon opening the pool after an unclean shutdown, 1263 * the intent log claims all blocks that contain immediate write data 1264 * so that the SPA knows they're in use. 1265 * 1266 * All claims *must* be resolved in the first txg -- before the SPA 1267 * starts allocating blocks -- so that nothing is allocated twice. 1268 * If txg == 0 we just verify that the block is claimable. 1269 */ 1270 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, 1271 spa_min_claim_txg(spa)); 1272 ASSERT(txg == spa_min_claim_txg(spa) || txg == 0); 1273 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(1M) */ 1274 1275 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 1276 BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, 1277 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE); 1278 ASSERT0(zio->io_queued_timestamp); 1279 1280 return (zio); 1281 } 1282 1283 zio_t * 1284 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, 1285 zio_done_func_t *done, void *private, enum zio_flag flags) 1286 { 1287 zio_t *zio; 1288 int c; 1289 1290 if (vd->vdev_children == 0) { 1291 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private, 1292 ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 1293 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE); 1294 1295 zio->io_cmd = cmd; 1296 } else { 1297 zio = zio_null(pio, spa, NULL, NULL, NULL, flags); 1298 1299 for (c = 0; c < vd->vdev_children; c++) 1300 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd, 1301 done, private, flags)); 1302 } 1303 1304 return (zio); 1305 } 1306 1307 zio_t * 1308 zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1309 zio_done_func_t *done, void *private, zio_priority_t priority, 1310 enum zio_flag flags, enum trim_flag trim_flags) 1311 { 1312 zio_t *zio; 1313 1314 ASSERT0(vd->vdev_children); 1315 ASSERT0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 1316 ASSERT0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 1317 ASSERT3U(size, !=, 0); 1318 1319 zio = zio_create(pio, vd->vdev_spa, 0, NULL, NULL, size, size, done, 1320 private, ZIO_TYPE_TRIM, priority, flags | ZIO_FLAG_PHYSICAL, 1321 vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_TRIM_PIPELINE); 1322 zio->io_trim_flags = trim_flags; 1323 1324 return (zio); 1325 } 1326 1327 zio_t * 1328 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1329 abd_t *data, int checksum, zio_done_func_t *done, void *private, 1330 zio_priority_t priority, enum zio_flag flags, boolean_t labels) 1331 { 1332 zio_t *zio; 1333 1334 ASSERT(vd->vdev_children == 0); 1335 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 1336 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 1337 ASSERT3U(offset + size, <=, vd->vdev_psize); 1338 1339 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, 1340 private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd, 1341 offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE); 1342 1343 zio->io_prop.zp_checksum = checksum; 1344 1345 return (zio); 1346 } 1347 1348 zio_t * 1349 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1350 abd_t *data, int checksum, zio_done_func_t *done, void *private, 1351 zio_priority_t priority, enum zio_flag flags, boolean_t labels) 1352 { 1353 zio_t *zio; 1354 1355 ASSERT(vd->vdev_children == 0); 1356 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 1357 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 1358 ASSERT3U(offset + size, <=, vd->vdev_psize); 1359 1360 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, 1361 private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd, 1362 offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE); 1363 1364 zio->io_prop.zp_checksum = checksum; 1365 1366 if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) { 1367 /* 1368 * zec checksums are necessarily destructive -- they modify 1369 * the end of the write buffer to hold the verifier/checksum. 1370 * Therefore, we must make a local copy in case the data is 1371 * being written to multiple places in parallel. 1372 */ 1373 abd_t *wbuf = abd_alloc_sametype(data, size); 1374 abd_copy(wbuf, data, size); 1375 1376 zio_push_transform(zio, wbuf, size, size, NULL); 1377 } 1378 1379 return (zio); 1380 } 1381 1382 /* 1383 * Create a child I/O to do some work for us. 1384 */ 1385 zio_t * 1386 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset, 1387 abd_t *data, uint64_t size, int type, zio_priority_t priority, 1388 enum zio_flag flags, zio_done_func_t *done, void *private) 1389 { 1390 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE; 1391 zio_t *zio; 1392 1393 /* 1394 * vdev child I/Os do not propagate their error to the parent. 1395 * Therefore, for correct operation the caller *must* check for 1396 * and handle the error in the child i/o's done callback. 1397 * The only exceptions are i/os that we don't care about 1398 * (OPTIONAL or REPAIR). 1399 */ 1400 ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) || 1401 done != NULL); 1402 1403 if (type == ZIO_TYPE_READ && bp != NULL) { 1404 /* 1405 * If we have the bp, then the child should perform the 1406 * checksum and the parent need not. This pushes error 1407 * detection as close to the leaves as possible and 1408 * eliminates redundant checksums in the interior nodes. 1409 */ 1410 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY; 1411 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 1412 } 1413 1414 if (vd->vdev_ops->vdev_op_leaf) { 1415 ASSERT0(vd->vdev_children); 1416 offset += VDEV_LABEL_START_SIZE; 1417 } 1418 1419 flags |= ZIO_VDEV_CHILD_FLAGS(pio); 1420 1421 /* 1422 * If we've decided to do a repair, the write is not speculative -- 1423 * even if the original read was. 1424 */ 1425 if (flags & ZIO_FLAG_IO_REPAIR) 1426 flags &= ~ZIO_FLAG_SPECULATIVE; 1427 1428 /* 1429 * If we're creating a child I/O that is not associated with a 1430 * top-level vdev, then the child zio is not an allocating I/O. 1431 * If this is a retried I/O then we ignore it since we will 1432 * have already processed the original allocating I/O. 1433 */ 1434 if (flags & ZIO_FLAG_IO_ALLOCATING && 1435 (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) { 1436 ASSERT(pio->io_metaslab_class != NULL); 1437 ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled); 1438 ASSERT(type == ZIO_TYPE_WRITE); 1439 ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE); 1440 ASSERT(!(flags & ZIO_FLAG_IO_REPAIR)); 1441 ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) || 1442 pio->io_child_type == ZIO_CHILD_GANG); 1443 1444 flags &= ~ZIO_FLAG_IO_ALLOCATING; 1445 } 1446 1447 1448 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size, 1449 done, private, type, priority, flags, vd, offset, &pio->io_bookmark, 1450 ZIO_STAGE_VDEV_IO_START >> 1, pipeline); 1451 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); 1452 1453 zio->io_physdone = pio->io_physdone; 1454 if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL) 1455 zio->io_logical->io_phys_children++; 1456 1457 return (zio); 1458 } 1459 1460 zio_t * 1461 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size, 1462 zio_type_t type, zio_priority_t priority, enum zio_flag flags, 1463 zio_done_func_t *done, void *private) 1464 { 1465 zio_t *zio; 1466 1467 ASSERT(vd->vdev_ops->vdev_op_leaf); 1468 1469 zio = zio_create(NULL, vd->vdev_spa, 0, NULL, 1470 data, size, size, done, private, type, priority, 1471 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED, 1472 vd, offset, NULL, 1473 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE); 1474 1475 return (zio); 1476 } 1477 1478 void 1479 zio_flush(zio_t *zio, vdev_t *vd) 1480 { 1481 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE, 1482 NULL, NULL, 1483 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY)); 1484 } 1485 1486 void 1487 zio_shrink(zio_t *zio, uint64_t size) 1488 { 1489 ASSERT3P(zio->io_executor, ==, NULL); 1490 ASSERT3U(zio->io_orig_size, ==, zio->io_size); 1491 ASSERT3U(size, <=, zio->io_size); 1492 1493 /* 1494 * We don't shrink for raidz because of problems with the 1495 * reconstruction when reading back less than the block size. 1496 * Note, BP_IS_RAIDZ() assumes no compression. 1497 */ 1498 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 1499 if (!BP_IS_RAIDZ(zio->io_bp)) { 1500 /* we are not doing a raw write */ 1501 ASSERT3U(zio->io_size, ==, zio->io_lsize); 1502 zio->io_orig_size = zio->io_size = zio->io_lsize = size; 1503 } 1504 } 1505 1506 /* 1507 * ========================================================================== 1508 * Prepare to read and write logical blocks 1509 * ========================================================================== 1510 */ 1511 1512 static zio_t * 1513 zio_read_bp_init(zio_t *zio) 1514 { 1515 blkptr_t *bp = zio->io_bp; 1516 uint64_t psize = 1517 BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp); 1518 1519 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 1520 1521 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF && 1522 zio->io_child_type == ZIO_CHILD_LOGICAL && 1523 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) { 1524 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize), 1525 psize, psize, zio_decompress); 1526 } 1527 1528 if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) || 1529 BP_HAS_INDIRECT_MAC_CKSUM(bp)) && 1530 zio->io_child_type == ZIO_CHILD_LOGICAL) { 1531 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize), 1532 psize, psize, zio_decrypt); 1533 } 1534 1535 if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) { 1536 int psize = BPE_GET_PSIZE(bp); 1537 void *data = abd_borrow_buf(zio->io_abd, psize); 1538 1539 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1540 decode_embedded_bp_compressed(bp, data); 1541 abd_return_buf_copy(zio->io_abd, data, psize); 1542 } else { 1543 ASSERT(!BP_IS_EMBEDDED(bp)); 1544 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 1545 } 1546 1547 if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0) 1548 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 1549 1550 if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP) 1551 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 1552 1553 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL) 1554 zio->io_pipeline = ZIO_DDT_READ_PIPELINE; 1555 1556 return (zio); 1557 } 1558 1559 static zio_t * 1560 zio_write_bp_init(zio_t *zio) 1561 { 1562 if (!IO_IS_ALLOCATING(zio)) 1563 return (zio); 1564 1565 ASSERT(zio->io_child_type != ZIO_CHILD_DDT); 1566 1567 if (zio->io_bp_override) { 1568 blkptr_t *bp = zio->io_bp; 1569 zio_prop_t *zp = &zio->io_prop; 1570 1571 ASSERT(bp->blk_birth != zio->io_txg); 1572 ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0); 1573 1574 *bp = *zio->io_bp_override; 1575 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1576 1577 if (BP_IS_EMBEDDED(bp)) 1578 return (zio); 1579 1580 /* 1581 * If we've been overridden and nopwrite is set then 1582 * set the flag accordingly to indicate that a nopwrite 1583 * has already occurred. 1584 */ 1585 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) { 1586 ASSERT(!zp->zp_dedup); 1587 ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum); 1588 zio->io_flags |= ZIO_FLAG_NOPWRITE; 1589 return (zio); 1590 } 1591 1592 ASSERT(!zp->zp_nopwrite); 1593 1594 if (BP_IS_HOLE(bp) || !zp->zp_dedup) 1595 return (zio); 1596 1597 ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags & 1598 ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify); 1599 1600 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum && 1601 !zp->zp_encrypt) { 1602 BP_SET_DEDUP(bp, 1); 1603 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE; 1604 return (zio); 1605 } 1606 1607 /* 1608 * We were unable to handle this as an override bp, treat 1609 * it as a regular write I/O. 1610 */ 1611 zio->io_bp_override = NULL; 1612 *bp = zio->io_bp_orig; 1613 zio->io_pipeline = zio->io_orig_pipeline; 1614 } 1615 1616 return (zio); 1617 } 1618 1619 static zio_t * 1620 zio_write_compress(zio_t *zio) 1621 { 1622 spa_t *spa = zio->io_spa; 1623 zio_prop_t *zp = &zio->io_prop; 1624 enum zio_compress compress = zp->zp_compress; 1625 blkptr_t *bp = zio->io_bp; 1626 uint64_t lsize = zio->io_lsize; 1627 uint64_t psize = zio->io_size; 1628 int pass = 1; 1629 1630 /* 1631 * If our children haven't all reached the ready stage, 1632 * wait for them and then repeat this pipeline stage. 1633 */ 1634 if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT | 1635 ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) { 1636 return (NULL); 1637 } 1638 1639 if (!IO_IS_ALLOCATING(zio)) 1640 return (zio); 1641 1642 if (zio->io_children_ready != NULL) { 1643 /* 1644 * Now that all our children are ready, run the callback 1645 * associated with this zio in case it wants to modify the 1646 * data to be written. 1647 */ 1648 ASSERT3U(zp->zp_level, >, 0); 1649 zio->io_children_ready(zio); 1650 } 1651 1652 ASSERT(zio->io_child_type != ZIO_CHILD_DDT); 1653 ASSERT(zio->io_bp_override == NULL); 1654 1655 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) { 1656 /* 1657 * We're rewriting an existing block, which means we're 1658 * working on behalf of spa_sync(). For spa_sync() to 1659 * converge, it must eventually be the case that we don't 1660 * have to allocate new blocks. But compression changes 1661 * the blocksize, which forces a reallocate, and makes 1662 * convergence take longer. Therefore, after the first 1663 * few passes, stop compressing to ensure convergence. 1664 */ 1665 pass = spa_sync_pass(spa); 1666 1667 ASSERT(zio->io_txg == spa_syncing_txg(spa)); 1668 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1669 ASSERT(!BP_GET_DEDUP(bp)); 1670 1671 if (pass >= zfs_sync_pass_dont_compress) 1672 compress = ZIO_COMPRESS_OFF; 1673 1674 /* Make sure someone doesn't change their mind on overwrites */ 1675 ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp), 1676 spa_max_replication(spa)) == BP_GET_NDVAS(bp)); 1677 } 1678 1679 /* If it's a compressed write that is not raw, compress the buffer. */ 1680 if (compress != ZIO_COMPRESS_OFF && 1681 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) { 1682 void *cbuf = zio_buf_alloc(lsize); 1683 psize = zio_compress_data(compress, zio->io_abd, cbuf, lsize, 1684 zp->zp_complevel); 1685 if (psize == 0 || psize >= lsize) { 1686 compress = ZIO_COMPRESS_OFF; 1687 zio_buf_free(cbuf, lsize); 1688 } else if (!zp->zp_dedup && !zp->zp_encrypt && 1689 psize <= BPE_PAYLOAD_SIZE && 1690 zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) && 1691 spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) { 1692 encode_embedded_bp_compressed(bp, 1693 cbuf, compress, lsize, psize); 1694 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA); 1695 BP_SET_TYPE(bp, zio->io_prop.zp_type); 1696 BP_SET_LEVEL(bp, zio->io_prop.zp_level); 1697 zio_buf_free(cbuf, lsize); 1698 bp->blk_birth = zio->io_txg; 1699 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1700 ASSERT(spa_feature_is_active(spa, 1701 SPA_FEATURE_EMBEDDED_DATA)); 1702 return (zio); 1703 } else { 1704 /* 1705 * Round up compressed size up to the ashift 1706 * of the smallest-ashift device, and zero the tail. 1707 * This ensures that the compressed size of the BP 1708 * (and thus compressratio property) are correct, 1709 * in that we charge for the padding used to fill out 1710 * the last sector. 1711 */ 1712 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT); 1713 size_t rounded = (size_t)P2ROUNDUP(psize, 1714 1ULL << spa->spa_min_ashift); 1715 if (rounded >= lsize) { 1716 compress = ZIO_COMPRESS_OFF; 1717 zio_buf_free(cbuf, lsize); 1718 psize = lsize; 1719 } else { 1720 abd_t *cdata = abd_get_from_buf(cbuf, lsize); 1721 abd_take_ownership_of_buf(cdata, B_TRUE); 1722 abd_zero_off(cdata, psize, rounded - psize); 1723 psize = rounded; 1724 zio_push_transform(zio, cdata, 1725 psize, lsize, NULL); 1726 } 1727 } 1728 1729 /* 1730 * We were unable to handle this as an override bp, treat 1731 * it as a regular write I/O. 1732 */ 1733 zio->io_bp_override = NULL; 1734 *bp = zio->io_bp_orig; 1735 zio->io_pipeline = zio->io_orig_pipeline; 1736 1737 } else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 && 1738 zp->zp_type == DMU_OT_DNODE) { 1739 /* 1740 * The DMU actually relies on the zio layer's compression 1741 * to free metadnode blocks that have had all contained 1742 * dnodes freed. As a result, even when doing a raw 1743 * receive, we must check whether the block can be compressed 1744 * to a hole. 1745 */ 1746 psize = zio_compress_data(ZIO_COMPRESS_EMPTY, 1747 zio->io_abd, NULL, lsize, zp->zp_complevel); 1748 if (psize == 0 || psize >= lsize) 1749 compress = ZIO_COMPRESS_OFF; 1750 } else { 1751 ASSERT3U(psize, !=, 0); 1752 } 1753 1754 /* 1755 * The final pass of spa_sync() must be all rewrites, but the first 1756 * few passes offer a trade-off: allocating blocks defers convergence, 1757 * but newly allocated blocks are sequential, so they can be written 1758 * to disk faster. Therefore, we allow the first few passes of 1759 * spa_sync() to allocate new blocks, but force rewrites after that. 1760 * There should only be a handful of blocks after pass 1 in any case. 1761 */ 1762 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg && 1763 BP_GET_PSIZE(bp) == psize && 1764 pass >= zfs_sync_pass_rewrite) { 1765 VERIFY3U(psize, !=, 0); 1766 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES; 1767 1768 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages; 1769 zio->io_flags |= ZIO_FLAG_IO_REWRITE; 1770 } else { 1771 BP_ZERO(bp); 1772 zio->io_pipeline = ZIO_WRITE_PIPELINE; 1773 } 1774 1775 if (psize == 0) { 1776 if (zio->io_bp_orig.blk_birth != 0 && 1777 spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) { 1778 BP_SET_LSIZE(bp, lsize); 1779 BP_SET_TYPE(bp, zp->zp_type); 1780 BP_SET_LEVEL(bp, zp->zp_level); 1781 BP_SET_BIRTH(bp, zio->io_txg, 0); 1782 } 1783 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1784 } else { 1785 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER); 1786 BP_SET_LSIZE(bp, lsize); 1787 BP_SET_TYPE(bp, zp->zp_type); 1788 BP_SET_LEVEL(bp, zp->zp_level); 1789 BP_SET_PSIZE(bp, psize); 1790 BP_SET_COMPRESS(bp, compress); 1791 BP_SET_CHECKSUM(bp, zp->zp_checksum); 1792 BP_SET_DEDUP(bp, zp->zp_dedup); 1793 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 1794 if (zp->zp_dedup) { 1795 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1796 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1797 ASSERT(!zp->zp_encrypt || 1798 DMU_OT_IS_ENCRYPTED(zp->zp_type)); 1799 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE; 1800 } 1801 if (zp->zp_nopwrite) { 1802 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1803 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1804 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE; 1805 } 1806 } 1807 return (zio); 1808 } 1809 1810 static zio_t * 1811 zio_free_bp_init(zio_t *zio) 1812 { 1813 blkptr_t *bp = zio->io_bp; 1814 1815 if (zio->io_child_type == ZIO_CHILD_LOGICAL) { 1816 if (BP_GET_DEDUP(bp)) 1817 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE; 1818 } 1819 1820 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 1821 1822 return (zio); 1823 } 1824 1825 /* 1826 * ========================================================================== 1827 * Execute the I/O pipeline 1828 * ========================================================================== 1829 */ 1830 1831 static void 1832 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline) 1833 { 1834 spa_t *spa = zio->io_spa; 1835 zio_type_t t = zio->io_type; 1836 int flags = (cutinline ? TQ_FRONT : 0); 1837 1838 /* 1839 * If we're a config writer or a probe, the normal issue and 1840 * interrupt threads may all be blocked waiting for the config lock. 1841 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL. 1842 */ 1843 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE)) 1844 t = ZIO_TYPE_NULL; 1845 1846 /* 1847 * A similar issue exists for the L2ARC write thread until L2ARC 2.0. 1848 */ 1849 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux) 1850 t = ZIO_TYPE_NULL; 1851 1852 /* 1853 * If this is a high priority I/O, then use the high priority taskq if 1854 * available. 1855 */ 1856 if ((zio->io_priority == ZIO_PRIORITY_NOW || 1857 zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) && 1858 spa->spa_zio_taskq[t][q + 1].stqs_count != 0) 1859 q++; 1860 1861 ASSERT3U(q, <, ZIO_TASKQ_TYPES); 1862 1863 /* 1864 * NB: We are assuming that the zio can only be dispatched 1865 * to a single taskq at a time. It would be a grievous error 1866 * to dispatch the zio to another taskq at the same time. 1867 */ 1868 ASSERT(taskq_empty_ent(&zio->io_tqent)); 1869 spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio, 1870 flags, &zio->io_tqent); 1871 } 1872 1873 static boolean_t 1874 zio_taskq_member(zio_t *zio, zio_taskq_type_t q) 1875 { 1876 spa_t *spa = zio->io_spa; 1877 1878 taskq_t *tq = taskq_of_curthread(); 1879 1880 for (zio_type_t t = 0; t < ZIO_TYPES; t++) { 1881 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1882 uint_t i; 1883 for (i = 0; i < tqs->stqs_count; i++) { 1884 if (tqs->stqs_taskq[i] == tq) 1885 return (B_TRUE); 1886 } 1887 } 1888 1889 return (B_FALSE); 1890 } 1891 1892 static zio_t * 1893 zio_issue_async(zio_t *zio) 1894 { 1895 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 1896 1897 return (NULL); 1898 } 1899 1900 void 1901 zio_interrupt(zio_t *zio) 1902 { 1903 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE); 1904 } 1905 1906 void 1907 zio_delay_interrupt(zio_t *zio) 1908 { 1909 /* 1910 * The timeout_generic() function isn't defined in userspace, so 1911 * rather than trying to implement the function, the zio delay 1912 * functionality has been disabled for userspace builds. 1913 */ 1914 1915 #ifdef _KERNEL 1916 /* 1917 * If io_target_timestamp is zero, then no delay has been registered 1918 * for this IO, thus jump to the end of this function and "skip" the 1919 * delay; issuing it directly to the zio layer. 1920 */ 1921 if (zio->io_target_timestamp != 0) { 1922 hrtime_t now = gethrtime(); 1923 1924 if (now >= zio->io_target_timestamp) { 1925 /* 1926 * This IO has already taken longer than the target 1927 * delay to complete, so we don't want to delay it 1928 * any longer; we "miss" the delay and issue it 1929 * directly to the zio layer. This is likely due to 1930 * the target latency being set to a value less than 1931 * the underlying hardware can satisfy (e.g. delay 1932 * set to 1ms, but the disks take 10ms to complete an 1933 * IO request). 1934 */ 1935 1936 DTRACE_PROBE2(zio__delay__miss, zio_t *, zio, 1937 hrtime_t, now); 1938 1939 zio_interrupt(zio); 1940 } else { 1941 taskqid_t tid; 1942 hrtime_t diff = zio->io_target_timestamp - now; 1943 clock_t expire_at_tick = ddi_get_lbolt() + 1944 NSEC_TO_TICK(diff); 1945 1946 DTRACE_PROBE3(zio__delay__hit, zio_t *, zio, 1947 hrtime_t, now, hrtime_t, diff); 1948 1949 if (NSEC_TO_TICK(diff) == 0) { 1950 /* Our delay is less than a jiffy - just spin */ 1951 zfs_sleep_until(zio->io_target_timestamp); 1952 zio_interrupt(zio); 1953 } else { 1954 /* 1955 * Use taskq_dispatch_delay() in the place of 1956 * OpenZFS's timeout_generic(). 1957 */ 1958 tid = taskq_dispatch_delay(system_taskq, 1959 (task_func_t *)zio_interrupt, 1960 zio, TQ_NOSLEEP, expire_at_tick); 1961 if (tid == TASKQID_INVALID) { 1962 /* 1963 * Couldn't allocate a task. Just 1964 * finish the zio without a delay. 1965 */ 1966 zio_interrupt(zio); 1967 } 1968 } 1969 } 1970 return; 1971 } 1972 #endif 1973 DTRACE_PROBE1(zio__delay__skip, zio_t *, zio); 1974 zio_interrupt(zio); 1975 } 1976 1977 static void 1978 zio_deadman_impl(zio_t *pio, int ziodepth) 1979 { 1980 zio_t *cio, *cio_next; 1981 zio_link_t *zl = NULL; 1982 vdev_t *vd = pio->io_vd; 1983 1984 if (zio_deadman_log_all || (vd != NULL && vd->vdev_ops->vdev_op_leaf)) { 1985 vdev_queue_t *vq = vd ? &vd->vdev_queue : NULL; 1986 zbookmark_phys_t *zb = &pio->io_bookmark; 1987 uint64_t delta = gethrtime() - pio->io_timestamp; 1988 uint64_t failmode = spa_get_deadman_failmode(pio->io_spa); 1989 1990 zfs_dbgmsg("slow zio[%d]: zio=%px timestamp=%llu " 1991 "delta=%llu queued=%llu io=%llu " 1992 "path=%s last=%llu " 1993 "type=%d priority=%d flags=0x%x " 1994 "stage=0x%x pipeline=0x%x pipeline-trace=0x%x " 1995 "objset=%llu object=%llu level=%llu blkid=%llu " 1996 "offset=%llu size=%llu error=%d", 1997 ziodepth, pio, pio->io_timestamp, 1998 delta, pio->io_delta, pio->io_delay, 1999 vd ? vd->vdev_path : "NULL", vq ? vq->vq_io_complete_ts : 0, 2000 pio->io_type, pio->io_priority, pio->io_flags, 2001 pio->io_stage, pio->io_pipeline, pio->io_pipeline_trace, 2002 zb->zb_objset, zb->zb_object, zb->zb_level, zb->zb_blkid, 2003 pio->io_offset, pio->io_size, pio->io_error); 2004 (void) zfs_ereport_post(FM_EREPORT_ZFS_DEADMAN, 2005 pio->io_spa, vd, zb, pio, 0); 2006 2007 if (failmode == ZIO_FAILURE_MODE_CONTINUE && 2008 taskq_empty_ent(&pio->io_tqent)) { 2009 zio_interrupt(pio); 2010 } 2011 } 2012 2013 mutex_enter(&pio->io_lock); 2014 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 2015 cio_next = zio_walk_children(pio, &zl); 2016 zio_deadman_impl(cio, ziodepth + 1); 2017 } 2018 mutex_exit(&pio->io_lock); 2019 } 2020 2021 /* 2022 * Log the critical information describing this zio and all of its children 2023 * using the zfs_dbgmsg() interface then post deadman event for the ZED. 2024 */ 2025 void 2026 zio_deadman(zio_t *pio, char *tag) 2027 { 2028 spa_t *spa = pio->io_spa; 2029 char *name = spa_name(spa); 2030 2031 if (!zfs_deadman_enabled || spa_suspended(spa)) 2032 return; 2033 2034 zio_deadman_impl(pio, 0); 2035 2036 switch (spa_get_deadman_failmode(spa)) { 2037 case ZIO_FAILURE_MODE_WAIT: 2038 zfs_dbgmsg("%s waiting for hung I/O to pool '%s'", tag, name); 2039 break; 2040 2041 case ZIO_FAILURE_MODE_CONTINUE: 2042 zfs_dbgmsg("%s restarting hung I/O for pool '%s'", tag, name); 2043 break; 2044 2045 case ZIO_FAILURE_MODE_PANIC: 2046 fm_panic("%s determined I/O to pool '%s' is hung.", tag, name); 2047 break; 2048 } 2049 } 2050 2051 /* 2052 * Execute the I/O pipeline until one of the following occurs: 2053 * (1) the I/O completes; (2) the pipeline stalls waiting for 2054 * dependent child I/Os; (3) the I/O issues, so we're waiting 2055 * for an I/O completion interrupt; (4) the I/O is delegated by 2056 * vdev-level caching or aggregation; (5) the I/O is deferred 2057 * due to vdev-level queueing; (6) the I/O is handed off to 2058 * another thread. In all cases, the pipeline stops whenever 2059 * there's no CPU work; it never burns a thread in cv_wait_io(). 2060 * 2061 * There's no locking on io_stage because there's no legitimate way 2062 * for multiple threads to be attempting to process the same I/O. 2063 */ 2064 static zio_pipe_stage_t *zio_pipeline[]; 2065 2066 /* 2067 * zio_execute() is a wrapper around the static function 2068 * __zio_execute() so that we can force __zio_execute() to be 2069 * inlined. This reduces stack overhead which is important 2070 * because __zio_execute() is called recursively in several zio 2071 * code paths. zio_execute() itself cannot be inlined because 2072 * it is externally visible. 2073 */ 2074 void 2075 zio_execute(zio_t *zio) 2076 { 2077 fstrans_cookie_t cookie; 2078 2079 cookie = spl_fstrans_mark(); 2080 __zio_execute(zio); 2081 spl_fstrans_unmark(cookie); 2082 } 2083 2084 /* 2085 * Used to determine if in the current context the stack is sized large 2086 * enough to allow zio_execute() to be called recursively. A minimum 2087 * stack size of 16K is required to avoid needing to re-dispatch the zio. 2088 */ 2089 static boolean_t 2090 zio_execute_stack_check(zio_t *zio) 2091 { 2092 #if !defined(HAVE_LARGE_STACKS) 2093 dsl_pool_t *dp = spa_get_dsl(zio->io_spa); 2094 2095 /* Executing in txg_sync_thread() context. */ 2096 if (dp && curthread == dp->dp_tx.tx_sync_thread) 2097 return (B_TRUE); 2098 2099 /* Pool initialization outside of zio_taskq context. */ 2100 if (dp && spa_is_initializing(dp->dp_spa) && 2101 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE) && 2102 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE_HIGH)) 2103 return (B_TRUE); 2104 #endif /* HAVE_LARGE_STACKS */ 2105 2106 return (B_FALSE); 2107 } 2108 2109 __attribute__((always_inline)) 2110 static inline void 2111 __zio_execute(zio_t *zio) 2112 { 2113 ASSERT3U(zio->io_queued_timestamp, >, 0); 2114 2115 while (zio->io_stage < ZIO_STAGE_DONE) { 2116 enum zio_stage pipeline = zio->io_pipeline; 2117 enum zio_stage stage = zio->io_stage; 2118 2119 zio->io_executor = curthread; 2120 2121 ASSERT(!MUTEX_HELD(&zio->io_lock)); 2122 ASSERT(ISP2(stage)); 2123 ASSERT(zio->io_stall == NULL); 2124 2125 do { 2126 stage <<= 1; 2127 } while ((stage & pipeline) == 0); 2128 2129 ASSERT(stage <= ZIO_STAGE_DONE); 2130 2131 /* 2132 * If we are in interrupt context and this pipeline stage 2133 * will grab a config lock that is held across I/O, 2134 * or may wait for an I/O that needs an interrupt thread 2135 * to complete, issue async to avoid deadlock. 2136 * 2137 * For VDEV_IO_START, we cut in line so that the io will 2138 * be sent to disk promptly. 2139 */ 2140 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL && 2141 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) { 2142 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ? 2143 zio_requeue_io_start_cut_in_line : B_FALSE; 2144 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut); 2145 return; 2146 } 2147 2148 /* 2149 * If the current context doesn't have large enough stacks 2150 * the zio must be issued asynchronously to prevent overflow. 2151 */ 2152 if (zio_execute_stack_check(zio)) { 2153 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ? 2154 zio_requeue_io_start_cut_in_line : B_FALSE; 2155 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut); 2156 return; 2157 } 2158 2159 zio->io_stage = stage; 2160 zio->io_pipeline_trace |= zio->io_stage; 2161 2162 /* 2163 * The zio pipeline stage returns the next zio to execute 2164 * (typically the same as this one), or NULL if we should 2165 * stop. 2166 */ 2167 zio = zio_pipeline[highbit64(stage) - 1](zio); 2168 2169 if (zio == NULL) 2170 return; 2171 } 2172 } 2173 2174 2175 /* 2176 * ========================================================================== 2177 * Initiate I/O, either sync or async 2178 * ========================================================================== 2179 */ 2180 int 2181 zio_wait(zio_t *zio) 2182 { 2183 /* 2184 * Some routines, like zio_free_sync(), may return a NULL zio 2185 * to avoid the performance overhead of creating and then destroying 2186 * an unneeded zio. For the callers' simplicity, we accept a NULL 2187 * zio and ignore it. 2188 */ 2189 if (zio == NULL) 2190 return (0); 2191 2192 long timeout = MSEC_TO_TICK(zfs_deadman_ziotime_ms); 2193 int error; 2194 2195 ASSERT3S(zio->io_stage, ==, ZIO_STAGE_OPEN); 2196 ASSERT3P(zio->io_executor, ==, NULL); 2197 2198 zio->io_waiter = curthread; 2199 ASSERT0(zio->io_queued_timestamp); 2200 zio->io_queued_timestamp = gethrtime(); 2201 2202 __zio_execute(zio); 2203 2204 mutex_enter(&zio->io_lock); 2205 while (zio->io_executor != NULL) { 2206 error = cv_timedwait_io(&zio->io_cv, &zio->io_lock, 2207 ddi_get_lbolt() + timeout); 2208 2209 if (zfs_deadman_enabled && error == -1 && 2210 gethrtime() - zio->io_queued_timestamp > 2211 spa_deadman_ziotime(zio->io_spa)) { 2212 mutex_exit(&zio->io_lock); 2213 timeout = MSEC_TO_TICK(zfs_deadman_checktime_ms); 2214 zio_deadman(zio, FTAG); 2215 mutex_enter(&zio->io_lock); 2216 } 2217 } 2218 mutex_exit(&zio->io_lock); 2219 2220 error = zio->io_error; 2221 zio_destroy(zio); 2222 2223 return (error); 2224 } 2225 2226 void 2227 zio_nowait(zio_t *zio) 2228 { 2229 /* 2230 * See comment in zio_wait(). 2231 */ 2232 if (zio == NULL) 2233 return; 2234 2235 ASSERT3P(zio->io_executor, ==, NULL); 2236 2237 if (zio->io_child_type == ZIO_CHILD_LOGICAL && 2238 zio_unique_parent(zio) == NULL) { 2239 zio_t *pio; 2240 2241 /* 2242 * This is a logical async I/O with no parent to wait for it. 2243 * We add it to the spa_async_root_zio "Godfather" I/O which 2244 * will ensure they complete prior to unloading the pool. 2245 */ 2246 spa_t *spa = zio->io_spa; 2247 kpreempt_disable(); 2248 pio = spa->spa_async_zio_root[CPU_SEQID]; 2249 kpreempt_enable(); 2250 2251 zio_add_child(pio, zio); 2252 } 2253 2254 ASSERT0(zio->io_queued_timestamp); 2255 zio->io_queued_timestamp = gethrtime(); 2256 __zio_execute(zio); 2257 } 2258 2259 /* 2260 * ========================================================================== 2261 * Reexecute, cancel, or suspend/resume failed I/O 2262 * ========================================================================== 2263 */ 2264 2265 static void 2266 zio_reexecute(zio_t *pio) 2267 { 2268 zio_t *cio, *cio_next; 2269 2270 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL); 2271 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN); 2272 ASSERT(pio->io_gang_leader == NULL); 2273 ASSERT(pio->io_gang_tree == NULL); 2274 2275 pio->io_flags = pio->io_orig_flags; 2276 pio->io_stage = pio->io_orig_stage; 2277 pio->io_pipeline = pio->io_orig_pipeline; 2278 pio->io_reexecute = 0; 2279 pio->io_flags |= ZIO_FLAG_REEXECUTED; 2280 pio->io_pipeline_trace = 0; 2281 pio->io_error = 0; 2282 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 2283 pio->io_state[w] = 0; 2284 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 2285 pio->io_child_error[c] = 0; 2286 2287 if (IO_IS_ALLOCATING(pio)) 2288 BP_ZERO(pio->io_bp); 2289 2290 /* 2291 * As we reexecute pio's children, new children could be created. 2292 * New children go to the head of pio's io_child_list, however, 2293 * so we will (correctly) not reexecute them. The key is that 2294 * the remainder of pio's io_child_list, from 'cio_next' onward, 2295 * cannot be affected by any side effects of reexecuting 'cio'. 2296 */ 2297 zio_link_t *zl = NULL; 2298 mutex_enter(&pio->io_lock); 2299 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 2300 cio_next = zio_walk_children(pio, &zl); 2301 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 2302 pio->io_children[cio->io_child_type][w]++; 2303 mutex_exit(&pio->io_lock); 2304 zio_reexecute(cio); 2305 mutex_enter(&pio->io_lock); 2306 } 2307 mutex_exit(&pio->io_lock); 2308 2309 /* 2310 * Now that all children have been reexecuted, execute the parent. 2311 * We don't reexecute "The Godfather" I/O here as it's the 2312 * responsibility of the caller to wait on it. 2313 */ 2314 if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) { 2315 pio->io_queued_timestamp = gethrtime(); 2316 __zio_execute(pio); 2317 } 2318 } 2319 2320 void 2321 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason) 2322 { 2323 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC) 2324 fm_panic("Pool '%s' has encountered an uncorrectable I/O " 2325 "failure and the failure mode property for this pool " 2326 "is set to panic.", spa_name(spa)); 2327 2328 cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable I/O " 2329 "failure and has been suspended.\n", spa_name(spa)); 2330 2331 (void) zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, 2332 NULL, NULL, 0); 2333 2334 mutex_enter(&spa->spa_suspend_lock); 2335 2336 if (spa->spa_suspend_zio_root == NULL) 2337 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL, 2338 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 2339 ZIO_FLAG_GODFATHER); 2340 2341 spa->spa_suspended = reason; 2342 2343 if (zio != NULL) { 2344 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 2345 ASSERT(zio != spa->spa_suspend_zio_root); 2346 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2347 ASSERT(zio_unique_parent(zio) == NULL); 2348 ASSERT(zio->io_stage == ZIO_STAGE_DONE); 2349 zio_add_child(spa->spa_suspend_zio_root, zio); 2350 } 2351 2352 mutex_exit(&spa->spa_suspend_lock); 2353 } 2354 2355 int 2356 zio_resume(spa_t *spa) 2357 { 2358 zio_t *pio; 2359 2360 /* 2361 * Reexecute all previously suspended i/o. 2362 */ 2363 mutex_enter(&spa->spa_suspend_lock); 2364 spa->spa_suspended = ZIO_SUSPEND_NONE; 2365 cv_broadcast(&spa->spa_suspend_cv); 2366 pio = spa->spa_suspend_zio_root; 2367 spa->spa_suspend_zio_root = NULL; 2368 mutex_exit(&spa->spa_suspend_lock); 2369 2370 if (pio == NULL) 2371 return (0); 2372 2373 zio_reexecute(pio); 2374 return (zio_wait(pio)); 2375 } 2376 2377 void 2378 zio_resume_wait(spa_t *spa) 2379 { 2380 mutex_enter(&spa->spa_suspend_lock); 2381 while (spa_suspended(spa)) 2382 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock); 2383 mutex_exit(&spa->spa_suspend_lock); 2384 } 2385 2386 /* 2387 * ========================================================================== 2388 * Gang blocks. 2389 * 2390 * A gang block is a collection of small blocks that looks to the DMU 2391 * like one large block. When zio_dva_allocate() cannot find a block 2392 * of the requested size, due to either severe fragmentation or the pool 2393 * being nearly full, it calls zio_write_gang_block() to construct the 2394 * block from smaller fragments. 2395 * 2396 * A gang block consists of a gang header (zio_gbh_phys_t) and up to 2397 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like 2398 * an indirect block: it's an array of block pointers. It consumes 2399 * only one sector and hence is allocatable regardless of fragmentation. 2400 * The gang header's bps point to its gang members, which hold the data. 2401 * 2402 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg> 2403 * as the verifier to ensure uniqueness of the SHA256 checksum. 2404 * Critically, the gang block bp's blk_cksum is the checksum of the data, 2405 * not the gang header. This ensures that data block signatures (needed for 2406 * deduplication) are independent of how the block is physically stored. 2407 * 2408 * Gang blocks can be nested: a gang member may itself be a gang block. 2409 * Thus every gang block is a tree in which root and all interior nodes are 2410 * gang headers, and the leaves are normal blocks that contain user data. 2411 * The root of the gang tree is called the gang leader. 2412 * 2413 * To perform any operation (read, rewrite, free, claim) on a gang block, 2414 * zio_gang_assemble() first assembles the gang tree (minus data leaves) 2415 * in the io_gang_tree field of the original logical i/o by recursively 2416 * reading the gang leader and all gang headers below it. This yields 2417 * an in-core tree containing the contents of every gang header and the 2418 * bps for every constituent of the gang block. 2419 * 2420 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree 2421 * and invokes a callback on each bp. To free a gang block, zio_gang_issue() 2422 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp. 2423 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim(). 2424 * zio_read_gang() is a wrapper around zio_read() that omits reading gang 2425 * headers, since we already have those in io_gang_tree. zio_rewrite_gang() 2426 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite() 2427 * of the gang header plus zio_checksum_compute() of the data to update the 2428 * gang header's blk_cksum as described above. 2429 * 2430 * The two-phase assemble/issue model solves the problem of partial failure -- 2431 * what if you'd freed part of a gang block but then couldn't read the 2432 * gang header for another part? Assembling the entire gang tree first 2433 * ensures that all the necessary gang header I/O has succeeded before 2434 * starting the actual work of free, claim, or write. Once the gang tree 2435 * is assembled, free and claim are in-memory operations that cannot fail. 2436 * 2437 * In the event that a gang write fails, zio_dva_unallocate() walks the 2438 * gang tree to immediately free (i.e. insert back into the space map) 2439 * everything we've allocated. This ensures that we don't get ENOSPC 2440 * errors during repeated suspend/resume cycles due to a flaky device. 2441 * 2442 * Gang rewrites only happen during sync-to-convergence. If we can't assemble 2443 * the gang tree, we won't modify the block, so we can safely defer the free 2444 * (knowing that the block is still intact). If we *can* assemble the gang 2445 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free 2446 * each constituent bp and we can allocate a new block on the next sync pass. 2447 * 2448 * In all cases, the gang tree allows complete recovery from partial failure. 2449 * ========================================================================== 2450 */ 2451 2452 static void 2453 zio_gang_issue_func_done(zio_t *zio) 2454 { 2455 abd_put(zio->io_abd); 2456 } 2457 2458 static zio_t * 2459 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2460 uint64_t offset) 2461 { 2462 if (gn != NULL) 2463 return (pio); 2464 2465 return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset), 2466 BP_GET_PSIZE(bp), zio_gang_issue_func_done, 2467 NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 2468 &pio->io_bookmark)); 2469 } 2470 2471 static zio_t * 2472 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2473 uint64_t offset) 2474 { 2475 zio_t *zio; 2476 2477 if (gn != NULL) { 2478 abd_t *gbh_abd = 2479 abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2480 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 2481 gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL, 2482 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 2483 &pio->io_bookmark); 2484 /* 2485 * As we rewrite each gang header, the pipeline will compute 2486 * a new gang block header checksum for it; but no one will 2487 * compute a new data checksum, so we do that here. The one 2488 * exception is the gang leader: the pipeline already computed 2489 * its data checksum because that stage precedes gang assembly. 2490 * (Presently, nothing actually uses interior data checksums; 2491 * this is just good hygiene.) 2492 */ 2493 if (gn != pio->io_gang_leader->io_gang_tree) { 2494 abd_t *buf = abd_get_offset(data, offset); 2495 2496 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp), 2497 buf, BP_GET_PSIZE(bp)); 2498 2499 abd_put(buf); 2500 } 2501 /* 2502 * If we are here to damage data for testing purposes, 2503 * leave the GBH alone so that we can detect the damage. 2504 */ 2505 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE) 2506 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 2507 } else { 2508 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 2509 abd_get_offset(data, offset), BP_GET_PSIZE(bp), 2510 zio_gang_issue_func_done, NULL, pio->io_priority, 2511 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2512 } 2513 2514 return (zio); 2515 } 2516 2517 /* ARGSUSED */ 2518 static zio_t * 2519 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2520 uint64_t offset) 2521 { 2522 zio_t *zio = zio_free_sync(pio, pio->io_spa, pio->io_txg, bp, 2523 ZIO_GANG_CHILD_FLAGS(pio)); 2524 if (zio == NULL) { 2525 zio = zio_null(pio, pio->io_spa, 2526 NULL, NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)); 2527 } 2528 return (zio); 2529 } 2530 2531 /* ARGSUSED */ 2532 static zio_t * 2533 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2534 uint64_t offset) 2535 { 2536 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp, 2537 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio))); 2538 } 2539 2540 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = { 2541 NULL, 2542 zio_read_gang, 2543 zio_rewrite_gang, 2544 zio_free_gang, 2545 zio_claim_gang, 2546 NULL 2547 }; 2548 2549 static void zio_gang_tree_assemble_done(zio_t *zio); 2550 2551 static zio_gang_node_t * 2552 zio_gang_node_alloc(zio_gang_node_t **gnpp) 2553 { 2554 zio_gang_node_t *gn; 2555 2556 ASSERT(*gnpp == NULL); 2557 2558 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP); 2559 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE); 2560 *gnpp = gn; 2561 2562 return (gn); 2563 } 2564 2565 static void 2566 zio_gang_node_free(zio_gang_node_t **gnpp) 2567 { 2568 zio_gang_node_t *gn = *gnpp; 2569 2570 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 2571 ASSERT(gn->gn_child[g] == NULL); 2572 2573 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2574 kmem_free(gn, sizeof (*gn)); 2575 *gnpp = NULL; 2576 } 2577 2578 static void 2579 zio_gang_tree_free(zio_gang_node_t **gnpp) 2580 { 2581 zio_gang_node_t *gn = *gnpp; 2582 2583 if (gn == NULL) 2584 return; 2585 2586 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 2587 zio_gang_tree_free(&gn->gn_child[g]); 2588 2589 zio_gang_node_free(gnpp); 2590 } 2591 2592 static void 2593 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp) 2594 { 2595 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp); 2596 abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2597 2598 ASSERT(gio->io_gang_leader == gio); 2599 ASSERT(BP_IS_GANG(bp)); 2600 2601 zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE, 2602 zio_gang_tree_assemble_done, gn, gio->io_priority, 2603 ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark)); 2604 } 2605 2606 static void 2607 zio_gang_tree_assemble_done(zio_t *zio) 2608 { 2609 zio_t *gio = zio->io_gang_leader; 2610 zio_gang_node_t *gn = zio->io_private; 2611 blkptr_t *bp = zio->io_bp; 2612 2613 ASSERT(gio == zio_unique_parent(zio)); 2614 ASSERT(zio->io_child_count == 0); 2615 2616 if (zio->io_error) 2617 return; 2618 2619 /* this ABD was created from a linear buf in zio_gang_tree_assemble */ 2620 if (BP_SHOULD_BYTESWAP(bp)) 2621 byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size); 2622 2623 ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh); 2624 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE); 2625 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 2626 2627 abd_put(zio->io_abd); 2628 2629 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2630 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 2631 if (!BP_IS_GANG(gbp)) 2632 continue; 2633 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]); 2634 } 2635 } 2636 2637 static void 2638 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data, 2639 uint64_t offset) 2640 { 2641 zio_t *gio = pio->io_gang_leader; 2642 zio_t *zio; 2643 2644 ASSERT(BP_IS_GANG(bp) == !!gn); 2645 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp)); 2646 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree); 2647 2648 /* 2649 * If you're a gang header, your data is in gn->gn_gbh. 2650 * If you're a gang member, your data is in 'data' and gn == NULL. 2651 */ 2652 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset); 2653 2654 if (gn != NULL) { 2655 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 2656 2657 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2658 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 2659 if (BP_IS_HOLE(gbp)) 2660 continue; 2661 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data, 2662 offset); 2663 offset += BP_GET_PSIZE(gbp); 2664 } 2665 } 2666 2667 if (gn == gio->io_gang_tree) 2668 ASSERT3U(gio->io_size, ==, offset); 2669 2670 if (zio != pio) 2671 zio_nowait(zio); 2672 } 2673 2674 static zio_t * 2675 zio_gang_assemble(zio_t *zio) 2676 { 2677 blkptr_t *bp = zio->io_bp; 2678 2679 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL); 2680 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2681 2682 zio->io_gang_leader = zio; 2683 2684 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree); 2685 2686 return (zio); 2687 } 2688 2689 static zio_t * 2690 zio_gang_issue(zio_t *zio) 2691 { 2692 blkptr_t *bp = zio->io_bp; 2693 2694 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) { 2695 return (NULL); 2696 } 2697 2698 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio); 2699 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2700 2701 if (zio->io_child_error[ZIO_CHILD_GANG] == 0) 2702 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd, 2703 0); 2704 else 2705 zio_gang_tree_free(&zio->io_gang_tree); 2706 2707 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2708 2709 return (zio); 2710 } 2711 2712 static void 2713 zio_write_gang_member_ready(zio_t *zio) 2714 { 2715 zio_t *pio = zio_unique_parent(zio); 2716 dva_t *cdva = zio->io_bp->blk_dva; 2717 dva_t *pdva = pio->io_bp->blk_dva; 2718 uint64_t asize; 2719 zio_t *gio __maybe_unused = zio->io_gang_leader; 2720 2721 if (BP_IS_HOLE(zio->io_bp)) 2722 return; 2723 2724 ASSERT(BP_IS_HOLE(&zio->io_bp_orig)); 2725 2726 ASSERT(zio->io_child_type == ZIO_CHILD_GANG); 2727 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies); 2728 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp)); 2729 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp)); 2730 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp)); 2731 2732 mutex_enter(&pio->io_lock); 2733 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) { 2734 ASSERT(DVA_GET_GANG(&pdva[d])); 2735 asize = DVA_GET_ASIZE(&pdva[d]); 2736 asize += DVA_GET_ASIZE(&cdva[d]); 2737 DVA_SET_ASIZE(&pdva[d], asize); 2738 } 2739 mutex_exit(&pio->io_lock); 2740 } 2741 2742 static void 2743 zio_write_gang_done(zio_t *zio) 2744 { 2745 /* 2746 * The io_abd field will be NULL for a zio with no data. The io_flags 2747 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't 2748 * check for it here as it is cleared in zio_ready. 2749 */ 2750 if (zio->io_abd != NULL) 2751 abd_put(zio->io_abd); 2752 } 2753 2754 static zio_t * 2755 zio_write_gang_block(zio_t *pio) 2756 { 2757 spa_t *spa = pio->io_spa; 2758 metaslab_class_t *mc = spa_normal_class(spa); 2759 blkptr_t *bp = pio->io_bp; 2760 zio_t *gio = pio->io_gang_leader; 2761 zio_t *zio; 2762 zio_gang_node_t *gn, **gnpp; 2763 zio_gbh_phys_t *gbh; 2764 abd_t *gbh_abd; 2765 uint64_t txg = pio->io_txg; 2766 uint64_t resid = pio->io_size; 2767 uint64_t lsize; 2768 int copies = gio->io_prop.zp_copies; 2769 int gbh_copies; 2770 zio_prop_t zp; 2771 int error; 2772 boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA); 2773 2774 /* 2775 * encrypted blocks need DVA[2] free so encrypted gang headers can't 2776 * have a third copy. 2777 */ 2778 gbh_copies = MIN(copies + 1, spa_max_replication(spa)); 2779 if (gio->io_prop.zp_encrypt && gbh_copies >= SPA_DVAS_PER_BP) 2780 gbh_copies = SPA_DVAS_PER_BP - 1; 2781 2782 int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER; 2783 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2784 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2785 ASSERT(has_data); 2786 2787 flags |= METASLAB_ASYNC_ALLOC; 2788 VERIFY(zfs_refcount_held(&mc->mc_alloc_slots[pio->io_allocator], 2789 pio)); 2790 2791 /* 2792 * The logical zio has already placed a reservation for 2793 * 'copies' allocation slots but gang blocks may require 2794 * additional copies. These additional copies 2795 * (i.e. gbh_copies - copies) are guaranteed to succeed 2796 * since metaslab_class_throttle_reserve() always allows 2797 * additional reservations for gang blocks. 2798 */ 2799 VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies, 2800 pio->io_allocator, pio, flags)); 2801 } 2802 2803 error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE, 2804 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags, 2805 &pio->io_alloc_list, pio, pio->io_allocator); 2806 if (error) { 2807 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2808 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2809 ASSERT(has_data); 2810 2811 /* 2812 * If we failed to allocate the gang block header then 2813 * we remove any additional allocation reservations that 2814 * we placed here. The original reservation will 2815 * be removed when the logical I/O goes to the ready 2816 * stage. 2817 */ 2818 metaslab_class_throttle_unreserve(mc, 2819 gbh_copies - copies, pio->io_allocator, pio); 2820 } 2821 2822 pio->io_error = error; 2823 return (pio); 2824 } 2825 2826 if (pio == gio) { 2827 gnpp = &gio->io_gang_tree; 2828 } else { 2829 gnpp = pio->io_private; 2830 ASSERT(pio->io_ready == zio_write_gang_member_ready); 2831 } 2832 2833 gn = zio_gang_node_alloc(gnpp); 2834 gbh = gn->gn_gbh; 2835 bzero(gbh, SPA_GANGBLOCKSIZE); 2836 gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE); 2837 2838 /* 2839 * Create the gang header. 2840 */ 2841 zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE, 2842 zio_write_gang_done, NULL, pio->io_priority, 2843 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2844 2845 /* 2846 * Create and nowait the gang children. 2847 */ 2848 for (int g = 0; resid != 0; resid -= lsize, g++) { 2849 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g), 2850 SPA_MINBLOCKSIZE); 2851 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid); 2852 2853 zp.zp_checksum = gio->io_prop.zp_checksum; 2854 zp.zp_compress = ZIO_COMPRESS_OFF; 2855 zp.zp_complevel = gio->io_prop.zp_complevel; 2856 zp.zp_type = DMU_OT_NONE; 2857 zp.zp_level = 0; 2858 zp.zp_copies = gio->io_prop.zp_copies; 2859 zp.zp_dedup = B_FALSE; 2860 zp.zp_dedup_verify = B_FALSE; 2861 zp.zp_nopwrite = B_FALSE; 2862 zp.zp_encrypt = gio->io_prop.zp_encrypt; 2863 zp.zp_byteorder = gio->io_prop.zp_byteorder; 2864 bzero(zp.zp_salt, ZIO_DATA_SALT_LEN); 2865 bzero(zp.zp_iv, ZIO_DATA_IV_LEN); 2866 bzero(zp.zp_mac, ZIO_DATA_MAC_LEN); 2867 2868 zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g], 2869 has_data ? abd_get_offset(pio->io_abd, pio->io_size - 2870 resid) : NULL, lsize, lsize, &zp, 2871 zio_write_gang_member_ready, NULL, NULL, 2872 zio_write_gang_done, &gn->gn_child[g], pio->io_priority, 2873 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2874 2875 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2876 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2877 ASSERT(has_data); 2878 2879 /* 2880 * Gang children won't throttle but we should 2881 * account for their work, so reserve an allocation 2882 * slot for them here. 2883 */ 2884 VERIFY(metaslab_class_throttle_reserve(mc, 2885 zp.zp_copies, cio->io_allocator, cio, flags)); 2886 } 2887 zio_nowait(cio); 2888 } 2889 2890 /* 2891 * Set pio's pipeline to just wait for zio to finish. 2892 */ 2893 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2894 2895 /* 2896 * We didn't allocate this bp, so make sure it doesn't get unmarked. 2897 */ 2898 pio->io_flags &= ~ZIO_FLAG_FASTWRITE; 2899 2900 zio_nowait(zio); 2901 2902 return (pio); 2903 } 2904 2905 /* 2906 * The zio_nop_write stage in the pipeline determines if allocating a 2907 * new bp is necessary. The nopwrite feature can handle writes in 2908 * either syncing or open context (i.e. zil writes) and as a result is 2909 * mutually exclusive with dedup. 2910 * 2911 * By leveraging a cryptographically secure checksum, such as SHA256, we 2912 * can compare the checksums of the new data and the old to determine if 2913 * allocating a new block is required. Note that our requirements for 2914 * cryptographic strength are fairly weak: there can't be any accidental 2915 * hash collisions, but we don't need to be secure against intentional 2916 * (malicious) collisions. To trigger a nopwrite, you have to be able 2917 * to write the file to begin with, and triggering an incorrect (hash 2918 * collision) nopwrite is no worse than simply writing to the file. 2919 * That said, there are no known attacks against the checksum algorithms 2920 * used for nopwrite, assuming that the salt and the checksums 2921 * themselves remain secret. 2922 */ 2923 static zio_t * 2924 zio_nop_write(zio_t *zio) 2925 { 2926 blkptr_t *bp = zio->io_bp; 2927 blkptr_t *bp_orig = &zio->io_bp_orig; 2928 zio_prop_t *zp = &zio->io_prop; 2929 2930 ASSERT(BP_GET_LEVEL(bp) == 0); 2931 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 2932 ASSERT(zp->zp_nopwrite); 2933 ASSERT(!zp->zp_dedup); 2934 ASSERT(zio->io_bp_override == NULL); 2935 ASSERT(IO_IS_ALLOCATING(zio)); 2936 2937 /* 2938 * Check to see if the original bp and the new bp have matching 2939 * characteristics (i.e. same checksum, compression algorithms, etc). 2940 * If they don't then just continue with the pipeline which will 2941 * allocate a new bp. 2942 */ 2943 if (BP_IS_HOLE(bp_orig) || 2944 !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags & 2945 ZCHECKSUM_FLAG_NOPWRITE) || 2946 BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) || 2947 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) || 2948 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) || 2949 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) || 2950 zp->zp_copies != BP_GET_NDVAS(bp_orig)) 2951 return (zio); 2952 2953 /* 2954 * If the checksums match then reset the pipeline so that we 2955 * avoid allocating a new bp and issuing any I/O. 2956 */ 2957 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) { 2958 ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags & 2959 ZCHECKSUM_FLAG_NOPWRITE); 2960 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig)); 2961 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig)); 2962 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF); 2963 ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop, 2964 sizeof (uint64_t)) == 0); 2965 2966 /* 2967 * If we're overwriting a block that is currently on an 2968 * indirect vdev, then ignore the nopwrite request and 2969 * allow a new block to be allocated on a concrete vdev. 2970 */ 2971 spa_config_enter(zio->io_spa, SCL_VDEV, FTAG, RW_READER); 2972 vdev_t *tvd = vdev_lookup_top(zio->io_spa, 2973 DVA_GET_VDEV(&bp->blk_dva[0])); 2974 if (tvd->vdev_ops == &vdev_indirect_ops) { 2975 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG); 2976 return (zio); 2977 } 2978 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG); 2979 2980 *bp = *bp_orig; 2981 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2982 zio->io_flags |= ZIO_FLAG_NOPWRITE; 2983 } 2984 2985 return (zio); 2986 } 2987 2988 /* 2989 * ========================================================================== 2990 * Dedup 2991 * ========================================================================== 2992 */ 2993 static void 2994 zio_ddt_child_read_done(zio_t *zio) 2995 { 2996 blkptr_t *bp = zio->io_bp; 2997 ddt_entry_t *dde = zio->io_private; 2998 ddt_phys_t *ddp; 2999 zio_t *pio = zio_unique_parent(zio); 3000 3001 mutex_enter(&pio->io_lock); 3002 ddp = ddt_phys_select(dde, bp); 3003 if (zio->io_error == 0) 3004 ddt_phys_clear(ddp); /* this ddp doesn't need repair */ 3005 3006 if (zio->io_error == 0 && dde->dde_repair_abd == NULL) 3007 dde->dde_repair_abd = zio->io_abd; 3008 else 3009 abd_free(zio->io_abd); 3010 mutex_exit(&pio->io_lock); 3011 } 3012 3013 static zio_t * 3014 zio_ddt_read_start(zio_t *zio) 3015 { 3016 blkptr_t *bp = zio->io_bp; 3017 3018 ASSERT(BP_GET_DEDUP(bp)); 3019 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 3020 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3021 3022 if (zio->io_child_error[ZIO_CHILD_DDT]) { 3023 ddt_t *ddt = ddt_select(zio->io_spa, bp); 3024 ddt_entry_t *dde = ddt_repair_start(ddt, bp); 3025 ddt_phys_t *ddp = dde->dde_phys; 3026 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp); 3027 blkptr_t blk; 3028 3029 ASSERT(zio->io_vsd == NULL); 3030 zio->io_vsd = dde; 3031 3032 if (ddp_self == NULL) 3033 return (zio); 3034 3035 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 3036 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self) 3037 continue; 3038 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp, 3039 &blk); 3040 zio_nowait(zio_read(zio, zio->io_spa, &blk, 3041 abd_alloc_for_io(zio->io_size, B_TRUE), 3042 zio->io_size, zio_ddt_child_read_done, dde, 3043 zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) | 3044 ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark)); 3045 } 3046 return (zio); 3047 } 3048 3049 zio_nowait(zio_read(zio, zio->io_spa, bp, 3050 zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority, 3051 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark)); 3052 3053 return (zio); 3054 } 3055 3056 static zio_t * 3057 zio_ddt_read_done(zio_t *zio) 3058 { 3059 blkptr_t *bp = zio->io_bp; 3060 3061 if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) { 3062 return (NULL); 3063 } 3064 3065 ASSERT(BP_GET_DEDUP(bp)); 3066 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 3067 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3068 3069 if (zio->io_child_error[ZIO_CHILD_DDT]) { 3070 ddt_t *ddt = ddt_select(zio->io_spa, bp); 3071 ddt_entry_t *dde = zio->io_vsd; 3072 if (ddt == NULL) { 3073 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE); 3074 return (zio); 3075 } 3076 if (dde == NULL) { 3077 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1; 3078 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 3079 return (NULL); 3080 } 3081 if (dde->dde_repair_abd != NULL) { 3082 abd_copy(zio->io_abd, dde->dde_repair_abd, 3083 zio->io_size); 3084 zio->io_child_error[ZIO_CHILD_DDT] = 0; 3085 } 3086 ddt_repair_done(ddt, dde); 3087 zio->io_vsd = NULL; 3088 } 3089 3090 ASSERT(zio->io_vsd == NULL); 3091 3092 return (zio); 3093 } 3094 3095 static boolean_t 3096 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde) 3097 { 3098 spa_t *spa = zio->io_spa; 3099 boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW); 3100 3101 ASSERT(!(zio->io_bp_override && do_raw)); 3102 3103 /* 3104 * Note: we compare the original data, not the transformed data, 3105 * because when zio->io_bp is an override bp, we will not have 3106 * pushed the I/O transforms. That's an important optimization 3107 * because otherwise we'd compress/encrypt all dmu_sync() data twice. 3108 * However, we should never get a raw, override zio so in these 3109 * cases we can compare the io_abd directly. This is useful because 3110 * it allows us to do dedup verification even if we don't have access 3111 * to the original data (for instance, if the encryption keys aren't 3112 * loaded). 3113 */ 3114 3115 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 3116 zio_t *lio = dde->dde_lead_zio[p]; 3117 3118 if (lio != NULL && do_raw) { 3119 return (lio->io_size != zio->io_size || 3120 abd_cmp(zio->io_abd, lio->io_abd) != 0); 3121 } else if (lio != NULL) { 3122 return (lio->io_orig_size != zio->io_orig_size || 3123 abd_cmp(zio->io_orig_abd, lio->io_orig_abd) != 0); 3124 } 3125 } 3126 3127 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 3128 ddt_phys_t *ddp = &dde->dde_phys[p]; 3129 3130 if (ddp->ddp_phys_birth != 0 && do_raw) { 3131 blkptr_t blk = *zio->io_bp; 3132 uint64_t psize; 3133 abd_t *tmpabd; 3134 int error; 3135 3136 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth); 3137 psize = BP_GET_PSIZE(&blk); 3138 3139 if (psize != zio->io_size) 3140 return (B_TRUE); 3141 3142 ddt_exit(ddt); 3143 3144 tmpabd = abd_alloc_for_io(psize, B_TRUE); 3145 3146 error = zio_wait(zio_read(NULL, spa, &blk, tmpabd, 3147 psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ, 3148 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 3149 ZIO_FLAG_RAW, &zio->io_bookmark)); 3150 3151 if (error == 0) { 3152 if (abd_cmp(tmpabd, zio->io_abd) != 0) 3153 error = SET_ERROR(ENOENT); 3154 } 3155 3156 abd_free(tmpabd); 3157 ddt_enter(ddt); 3158 return (error != 0); 3159 } else if (ddp->ddp_phys_birth != 0) { 3160 arc_buf_t *abuf = NULL; 3161 arc_flags_t aflags = ARC_FLAG_WAIT; 3162 blkptr_t blk = *zio->io_bp; 3163 int error; 3164 3165 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth); 3166 3167 if (BP_GET_LSIZE(&blk) != zio->io_orig_size) 3168 return (B_TRUE); 3169 3170 ddt_exit(ddt); 3171 3172 error = arc_read(NULL, spa, &blk, 3173 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ, 3174 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 3175 &aflags, &zio->io_bookmark); 3176 3177 if (error == 0) { 3178 if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data, 3179 zio->io_orig_size) != 0) 3180 error = SET_ERROR(ENOENT); 3181 arc_buf_destroy(abuf, &abuf); 3182 } 3183 3184 ddt_enter(ddt); 3185 return (error != 0); 3186 } 3187 } 3188 3189 return (B_FALSE); 3190 } 3191 3192 static void 3193 zio_ddt_child_write_ready(zio_t *zio) 3194 { 3195 int p = zio->io_prop.zp_copies; 3196 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 3197 ddt_entry_t *dde = zio->io_private; 3198 ddt_phys_t *ddp = &dde->dde_phys[p]; 3199 zio_t *pio; 3200 3201 if (zio->io_error) 3202 return; 3203 3204 ddt_enter(ddt); 3205 3206 ASSERT(dde->dde_lead_zio[p] == zio); 3207 3208 ddt_phys_fill(ddp, zio->io_bp); 3209 3210 zio_link_t *zl = NULL; 3211 while ((pio = zio_walk_parents(zio, &zl)) != NULL) 3212 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg); 3213 3214 ddt_exit(ddt); 3215 } 3216 3217 static void 3218 zio_ddt_child_write_done(zio_t *zio) 3219 { 3220 int p = zio->io_prop.zp_copies; 3221 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 3222 ddt_entry_t *dde = zio->io_private; 3223 ddt_phys_t *ddp = &dde->dde_phys[p]; 3224 3225 ddt_enter(ddt); 3226 3227 ASSERT(ddp->ddp_refcnt == 0); 3228 ASSERT(dde->dde_lead_zio[p] == zio); 3229 dde->dde_lead_zio[p] = NULL; 3230 3231 if (zio->io_error == 0) { 3232 zio_link_t *zl = NULL; 3233 while (zio_walk_parents(zio, &zl) != NULL) 3234 ddt_phys_addref(ddp); 3235 } else { 3236 ddt_phys_clear(ddp); 3237 } 3238 3239 ddt_exit(ddt); 3240 } 3241 3242 static zio_t * 3243 zio_ddt_write(zio_t *zio) 3244 { 3245 spa_t *spa = zio->io_spa; 3246 blkptr_t *bp = zio->io_bp; 3247 uint64_t txg = zio->io_txg; 3248 zio_prop_t *zp = &zio->io_prop; 3249 int p = zp->zp_copies; 3250 zio_t *cio = NULL; 3251 ddt_t *ddt = ddt_select(spa, bp); 3252 ddt_entry_t *dde; 3253 ddt_phys_t *ddp; 3254 3255 ASSERT(BP_GET_DEDUP(bp)); 3256 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum); 3257 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override); 3258 ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW))); 3259 3260 ddt_enter(ddt); 3261 dde = ddt_lookup(ddt, bp, B_TRUE); 3262 ddp = &dde->dde_phys[p]; 3263 3264 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) { 3265 /* 3266 * If we're using a weak checksum, upgrade to a strong checksum 3267 * and try again. If we're already using a strong checksum, 3268 * we can't resolve it, so just convert to an ordinary write. 3269 * (And automatically e-mail a paper to Nature?) 3270 */ 3271 if (!(zio_checksum_table[zp->zp_checksum].ci_flags & 3272 ZCHECKSUM_FLAG_DEDUP)) { 3273 zp->zp_checksum = spa_dedup_checksum(spa); 3274 zio_pop_transforms(zio); 3275 zio->io_stage = ZIO_STAGE_OPEN; 3276 BP_ZERO(bp); 3277 } else { 3278 zp->zp_dedup = B_FALSE; 3279 BP_SET_DEDUP(bp, B_FALSE); 3280 } 3281 ASSERT(!BP_GET_DEDUP(bp)); 3282 zio->io_pipeline = ZIO_WRITE_PIPELINE; 3283 ddt_exit(ddt); 3284 return (zio); 3285 } 3286 3287 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) { 3288 if (ddp->ddp_phys_birth != 0) 3289 ddt_bp_fill(ddp, bp, txg); 3290 if (dde->dde_lead_zio[p] != NULL) 3291 zio_add_child(zio, dde->dde_lead_zio[p]); 3292 else 3293 ddt_phys_addref(ddp); 3294 } else if (zio->io_bp_override) { 3295 ASSERT(bp->blk_birth == txg); 3296 ASSERT(BP_EQUAL(bp, zio->io_bp_override)); 3297 ddt_phys_fill(ddp, bp); 3298 ddt_phys_addref(ddp); 3299 } else { 3300 cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd, 3301 zio->io_orig_size, zio->io_orig_size, zp, 3302 zio_ddt_child_write_ready, NULL, NULL, 3303 zio_ddt_child_write_done, dde, zio->io_priority, 3304 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark); 3305 3306 zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL); 3307 dde->dde_lead_zio[p] = cio; 3308 } 3309 3310 ddt_exit(ddt); 3311 3312 zio_nowait(cio); 3313 3314 return (zio); 3315 } 3316 3317 ddt_entry_t *freedde; /* for debugging */ 3318 3319 static zio_t * 3320 zio_ddt_free(zio_t *zio) 3321 { 3322 spa_t *spa = zio->io_spa; 3323 blkptr_t *bp = zio->io_bp; 3324 ddt_t *ddt = ddt_select(spa, bp); 3325 ddt_entry_t *dde; 3326 ddt_phys_t *ddp; 3327 3328 ASSERT(BP_GET_DEDUP(bp)); 3329 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3330 3331 ddt_enter(ddt); 3332 freedde = dde = ddt_lookup(ddt, bp, B_TRUE); 3333 if (dde) { 3334 ddp = ddt_phys_select(dde, bp); 3335 if (ddp) 3336 ddt_phys_decref(ddp); 3337 } 3338 ddt_exit(ddt); 3339 3340 return (zio); 3341 } 3342 3343 /* 3344 * ========================================================================== 3345 * Allocate and free blocks 3346 * ========================================================================== 3347 */ 3348 3349 static zio_t * 3350 zio_io_to_allocate(spa_t *spa, int allocator) 3351 { 3352 zio_t *zio; 3353 3354 ASSERT(MUTEX_HELD(&spa->spa_alloc_locks[allocator])); 3355 3356 zio = avl_first(&spa->spa_alloc_trees[allocator]); 3357 if (zio == NULL) 3358 return (NULL); 3359 3360 ASSERT(IO_IS_ALLOCATING(zio)); 3361 3362 /* 3363 * Try to place a reservation for this zio. If we're unable to 3364 * reserve then we throttle. 3365 */ 3366 ASSERT3U(zio->io_allocator, ==, allocator); 3367 if (!metaslab_class_throttle_reserve(zio->io_metaslab_class, 3368 zio->io_prop.zp_copies, zio->io_allocator, zio, 0)) { 3369 return (NULL); 3370 } 3371 3372 avl_remove(&spa->spa_alloc_trees[allocator], zio); 3373 ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE); 3374 3375 return (zio); 3376 } 3377 3378 static zio_t * 3379 zio_dva_throttle(zio_t *zio) 3380 { 3381 spa_t *spa = zio->io_spa; 3382 zio_t *nio; 3383 metaslab_class_t *mc; 3384 3385 /* locate an appropriate allocation class */ 3386 mc = spa_preferred_class(spa, zio->io_size, zio->io_prop.zp_type, 3387 zio->io_prop.zp_level, zio->io_prop.zp_zpl_smallblk); 3388 3389 if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE || 3390 !mc->mc_alloc_throttle_enabled || 3391 zio->io_child_type == ZIO_CHILD_GANG || 3392 zio->io_flags & ZIO_FLAG_NODATA) { 3393 return (zio); 3394 } 3395 3396 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 3397 3398 ASSERT3U(zio->io_queued_timestamp, >, 0); 3399 ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE); 3400 3401 zbookmark_phys_t *bm = &zio->io_bookmark; 3402 /* 3403 * We want to try to use as many allocators as possible to help improve 3404 * performance, but we also want logically adjacent IOs to be physically 3405 * adjacent to improve sequential read performance. We chunk each object 3406 * into 2^20 block regions, and then hash based on the objset, object, 3407 * level, and region to accomplish both of these goals. 3408 */ 3409 zio->io_allocator = cityhash4(bm->zb_objset, bm->zb_object, 3410 bm->zb_level, bm->zb_blkid >> 20) % spa->spa_alloc_count; 3411 mutex_enter(&spa->spa_alloc_locks[zio->io_allocator]); 3412 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 3413 zio->io_metaslab_class = mc; 3414 avl_add(&spa->spa_alloc_trees[zio->io_allocator], zio); 3415 nio = zio_io_to_allocate(spa, zio->io_allocator); 3416 mutex_exit(&spa->spa_alloc_locks[zio->io_allocator]); 3417 return (nio); 3418 } 3419 3420 static void 3421 zio_allocate_dispatch(spa_t *spa, int allocator) 3422 { 3423 zio_t *zio; 3424 3425 mutex_enter(&spa->spa_alloc_locks[allocator]); 3426 zio = zio_io_to_allocate(spa, allocator); 3427 mutex_exit(&spa->spa_alloc_locks[allocator]); 3428 if (zio == NULL) 3429 return; 3430 3431 ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE); 3432 ASSERT0(zio->io_error); 3433 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE); 3434 } 3435 3436 static zio_t * 3437 zio_dva_allocate(zio_t *zio) 3438 { 3439 spa_t *spa = zio->io_spa; 3440 metaslab_class_t *mc; 3441 blkptr_t *bp = zio->io_bp; 3442 int error; 3443 int flags = 0; 3444 3445 if (zio->io_gang_leader == NULL) { 3446 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 3447 zio->io_gang_leader = zio; 3448 } 3449 3450 ASSERT(BP_IS_HOLE(bp)); 3451 ASSERT0(BP_GET_NDVAS(bp)); 3452 ASSERT3U(zio->io_prop.zp_copies, >, 0); 3453 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa)); 3454 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp)); 3455 3456 flags |= (zio->io_flags & ZIO_FLAG_FASTWRITE) ? METASLAB_FASTWRITE : 0; 3457 if (zio->io_flags & ZIO_FLAG_NODATA) 3458 flags |= METASLAB_DONT_THROTTLE; 3459 if (zio->io_flags & ZIO_FLAG_GANG_CHILD) 3460 flags |= METASLAB_GANG_CHILD; 3461 if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE) 3462 flags |= METASLAB_ASYNC_ALLOC; 3463 3464 /* 3465 * if not already chosen, locate an appropriate allocation class 3466 */ 3467 mc = zio->io_metaslab_class; 3468 if (mc == NULL) { 3469 mc = spa_preferred_class(spa, zio->io_size, 3470 zio->io_prop.zp_type, zio->io_prop.zp_level, 3471 zio->io_prop.zp_zpl_smallblk); 3472 zio->io_metaslab_class = mc; 3473 } 3474 3475 error = metaslab_alloc(spa, mc, zio->io_size, bp, 3476 zio->io_prop.zp_copies, zio->io_txg, NULL, flags, 3477 &zio->io_alloc_list, zio, zio->io_allocator); 3478 3479 /* 3480 * Fallback to normal class when an alloc class is full 3481 */ 3482 if (error == ENOSPC && mc != spa_normal_class(spa)) { 3483 /* 3484 * If throttling, transfer reservation over to normal class. 3485 * The io_allocator slot can remain the same even though we 3486 * are switching classes. 3487 */ 3488 if (mc->mc_alloc_throttle_enabled && 3489 (zio->io_flags & ZIO_FLAG_IO_ALLOCATING)) { 3490 metaslab_class_throttle_unreserve(mc, 3491 zio->io_prop.zp_copies, zio->io_allocator, zio); 3492 zio->io_flags &= ~ZIO_FLAG_IO_ALLOCATING; 3493 3494 mc = spa_normal_class(spa); 3495 VERIFY(metaslab_class_throttle_reserve(mc, 3496 zio->io_prop.zp_copies, zio->io_allocator, zio, 3497 flags | METASLAB_MUST_RESERVE)); 3498 } else { 3499 mc = spa_normal_class(spa); 3500 } 3501 zio->io_metaslab_class = mc; 3502 3503 error = metaslab_alloc(spa, mc, zio->io_size, bp, 3504 zio->io_prop.zp_copies, zio->io_txg, NULL, flags, 3505 &zio->io_alloc_list, zio, zio->io_allocator); 3506 } 3507 3508 if (error != 0) { 3509 zfs_dbgmsg("%s: metaslab allocation failure: zio %px, " 3510 "size %llu, error %d", spa_name(spa), zio, zio->io_size, 3511 error); 3512 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) 3513 return (zio_write_gang_block(zio)); 3514 zio->io_error = error; 3515 } 3516 3517 return (zio); 3518 } 3519 3520 static zio_t * 3521 zio_dva_free(zio_t *zio) 3522 { 3523 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE); 3524 3525 return (zio); 3526 } 3527 3528 static zio_t * 3529 zio_dva_claim(zio_t *zio) 3530 { 3531 int error; 3532 3533 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg); 3534 if (error) 3535 zio->io_error = error; 3536 3537 return (zio); 3538 } 3539 3540 /* 3541 * Undo an allocation. This is used by zio_done() when an I/O fails 3542 * and we want to give back the block we just allocated. 3543 * This handles both normal blocks and gang blocks. 3544 */ 3545 static void 3546 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp) 3547 { 3548 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp)); 3549 ASSERT(zio->io_bp_override == NULL); 3550 3551 if (!BP_IS_HOLE(bp)) 3552 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE); 3553 3554 if (gn != NULL) { 3555 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 3556 zio_dva_unallocate(zio, gn->gn_child[g], 3557 &gn->gn_gbh->zg_blkptr[g]); 3558 } 3559 } 3560 } 3561 3562 /* 3563 * Try to allocate an intent log block. Return 0 on success, errno on failure. 3564 */ 3565 int 3566 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp, 3567 uint64_t size, boolean_t *slog) 3568 { 3569 int error = 1; 3570 zio_alloc_list_t io_alloc_list; 3571 3572 ASSERT(txg > spa_syncing_txg(spa)); 3573 3574 metaslab_trace_init(&io_alloc_list); 3575 3576 /* 3577 * Block pointer fields are useful to metaslabs for stats and debugging. 3578 * Fill in the obvious ones before calling into metaslab_alloc(). 3579 */ 3580 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 3581 BP_SET_PSIZE(new_bp, size); 3582 BP_SET_LEVEL(new_bp, 0); 3583 3584 /* 3585 * When allocating a zil block, we don't have information about 3586 * the final destination of the block except the objset it's part 3587 * of, so we just hash the objset ID to pick the allocator to get 3588 * some parallelism. 3589 */ 3590 error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1, 3591 txg, NULL, METASLAB_FASTWRITE, &io_alloc_list, NULL, 3592 cityhash4(0, 0, 0, os->os_dsl_dataset->ds_object) % 3593 spa->spa_alloc_count); 3594 if (error == 0) { 3595 *slog = TRUE; 3596 } else { 3597 error = metaslab_alloc(spa, spa_normal_class(spa), size, 3598 new_bp, 1, txg, NULL, METASLAB_FASTWRITE, 3599 &io_alloc_list, NULL, cityhash4(0, 0, 0, 3600 os->os_dsl_dataset->ds_object) % spa->spa_alloc_count); 3601 if (error == 0) 3602 *slog = FALSE; 3603 } 3604 metaslab_trace_fini(&io_alloc_list); 3605 3606 if (error == 0) { 3607 BP_SET_LSIZE(new_bp, size); 3608 BP_SET_PSIZE(new_bp, size); 3609 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF); 3610 BP_SET_CHECKSUM(new_bp, 3611 spa_version(spa) >= SPA_VERSION_SLIM_ZIL 3612 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG); 3613 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 3614 BP_SET_LEVEL(new_bp, 0); 3615 BP_SET_DEDUP(new_bp, 0); 3616 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER); 3617 3618 /* 3619 * encrypted blocks will require an IV and salt. We generate 3620 * these now since we will not be rewriting the bp at 3621 * rewrite time. 3622 */ 3623 if (os->os_encrypted) { 3624 uint8_t iv[ZIO_DATA_IV_LEN]; 3625 uint8_t salt[ZIO_DATA_SALT_LEN]; 3626 3627 BP_SET_CRYPT(new_bp, B_TRUE); 3628 VERIFY0(spa_crypt_get_salt(spa, 3629 dmu_objset_id(os), salt)); 3630 VERIFY0(zio_crypt_generate_iv(iv)); 3631 3632 zio_crypt_encode_params_bp(new_bp, salt, iv); 3633 } 3634 } else { 3635 zfs_dbgmsg("%s: zil block allocation failure: " 3636 "size %llu, error %d", spa_name(spa), size, error); 3637 } 3638 3639 return (error); 3640 } 3641 3642 /* 3643 * ========================================================================== 3644 * Read and write to physical devices 3645 * ========================================================================== 3646 */ 3647 3648 /* 3649 * Issue an I/O to the underlying vdev. Typically the issue pipeline 3650 * stops after this stage and will resume upon I/O completion. 3651 * However, there are instances where the vdev layer may need to 3652 * continue the pipeline when an I/O was not issued. Since the I/O 3653 * that was sent to the vdev layer might be different than the one 3654 * currently active in the pipeline (see vdev_queue_io()), we explicitly 3655 * force the underlying vdev layers to call either zio_execute() or 3656 * zio_interrupt() to ensure that the pipeline continues with the correct I/O. 3657 */ 3658 static zio_t * 3659 zio_vdev_io_start(zio_t *zio) 3660 { 3661 vdev_t *vd = zio->io_vd; 3662 uint64_t align; 3663 spa_t *spa = zio->io_spa; 3664 3665 zio->io_delay = 0; 3666 3667 ASSERT(zio->io_error == 0); 3668 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0); 3669 3670 if (vd == NULL) { 3671 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 3672 spa_config_enter(spa, SCL_ZIO, zio, RW_READER); 3673 3674 /* 3675 * The mirror_ops handle multiple DVAs in a single BP. 3676 */ 3677 vdev_mirror_ops.vdev_op_io_start(zio); 3678 return (NULL); 3679 } 3680 3681 ASSERT3P(zio->io_logical, !=, zio); 3682 if (zio->io_type == ZIO_TYPE_WRITE) { 3683 ASSERT(spa->spa_trust_config); 3684 3685 /* 3686 * Note: the code can handle other kinds of writes, 3687 * but we don't expect them. 3688 */ 3689 if (zio->io_vd->vdev_removing) { 3690 ASSERT(zio->io_flags & 3691 (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL | 3692 ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE)); 3693 } 3694 } 3695 3696 align = 1ULL << vd->vdev_top->vdev_ashift; 3697 3698 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) && 3699 P2PHASE(zio->io_size, align) != 0) { 3700 /* Transform logical writes to be a full physical block size. */ 3701 uint64_t asize = P2ROUNDUP(zio->io_size, align); 3702 abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize); 3703 ASSERT(vd == vd->vdev_top); 3704 if (zio->io_type == ZIO_TYPE_WRITE) { 3705 abd_copy(abuf, zio->io_abd, zio->io_size); 3706 abd_zero_off(abuf, zio->io_size, asize - zio->io_size); 3707 } 3708 zio_push_transform(zio, abuf, asize, asize, zio_subblock); 3709 } 3710 3711 /* 3712 * If this is not a physical io, make sure that it is properly aligned 3713 * before proceeding. 3714 */ 3715 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) { 3716 ASSERT0(P2PHASE(zio->io_offset, align)); 3717 ASSERT0(P2PHASE(zio->io_size, align)); 3718 } else { 3719 /* 3720 * For physical writes, we allow 512b aligned writes and assume 3721 * the device will perform a read-modify-write as necessary. 3722 */ 3723 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE)); 3724 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE)); 3725 } 3726 3727 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa)); 3728 3729 /* 3730 * If this is a repair I/O, and there's no self-healing involved -- 3731 * that is, we're just resilvering what we expect to resilver -- 3732 * then don't do the I/O unless zio's txg is actually in vd's DTL. 3733 * This prevents spurious resilvering. 3734 * 3735 * There are a few ways that we can end up creating these spurious 3736 * resilver i/os: 3737 * 3738 * 1. A resilver i/o will be issued if any DVA in the BP has a 3739 * dirty DTL. The mirror code will issue resilver writes to 3740 * each DVA, including the one(s) that are not on vdevs with dirty 3741 * DTLs. 3742 * 3743 * 2. With nested replication, which happens when we have a 3744 * "replacing" or "spare" vdev that's a child of a mirror or raidz. 3745 * For example, given mirror(replacing(A+B), C), it's likely that 3746 * only A is out of date (it's the new device). In this case, we'll 3747 * read from C, then use the data to resilver A+B -- but we don't 3748 * actually want to resilver B, just A. The top-level mirror has no 3749 * way to know this, so instead we just discard unnecessary repairs 3750 * as we work our way down the vdev tree. 3751 * 3752 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc. 3753 * The same logic applies to any form of nested replication: ditto 3754 * + mirror, RAID-Z + replacing, etc. 3755 * 3756 * However, indirect vdevs point off to other vdevs which may have 3757 * DTL's, so we never bypass them. The child i/os on concrete vdevs 3758 * will be properly bypassed instead. 3759 */ 3760 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) && 3761 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) && 3762 zio->io_txg != 0 && /* not a delegated i/o */ 3763 vd->vdev_ops != &vdev_indirect_ops && 3764 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) { 3765 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 3766 zio_vdev_io_bypass(zio); 3767 return (zio); 3768 } 3769 3770 if (vd->vdev_ops->vdev_op_leaf && (zio->io_type == ZIO_TYPE_READ || 3771 zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM)) { 3772 3773 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio)) 3774 return (zio); 3775 3776 if ((zio = vdev_queue_io(zio)) == NULL) 3777 return (NULL); 3778 3779 if (!vdev_accessible(vd, zio)) { 3780 zio->io_error = SET_ERROR(ENXIO); 3781 zio_interrupt(zio); 3782 return (NULL); 3783 } 3784 zio->io_delay = gethrtime(); 3785 } 3786 3787 vd->vdev_ops->vdev_op_io_start(zio); 3788 return (NULL); 3789 } 3790 3791 static zio_t * 3792 zio_vdev_io_done(zio_t *zio) 3793 { 3794 vdev_t *vd = zio->io_vd; 3795 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops; 3796 boolean_t unexpected_error = B_FALSE; 3797 3798 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) { 3799 return (NULL); 3800 } 3801 3802 ASSERT(zio->io_type == ZIO_TYPE_READ || 3803 zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM); 3804 3805 if (zio->io_delay) 3806 zio->io_delay = gethrtime() - zio->io_delay; 3807 3808 if (vd != NULL && vd->vdev_ops->vdev_op_leaf) { 3809 3810 vdev_queue_io_done(zio); 3811 3812 if (zio->io_type == ZIO_TYPE_WRITE) 3813 vdev_cache_write(zio); 3814 3815 if (zio_injection_enabled && zio->io_error == 0) 3816 zio->io_error = zio_handle_device_injections(vd, zio, 3817 EIO, EILSEQ); 3818 3819 if (zio_injection_enabled && zio->io_error == 0) 3820 zio->io_error = zio_handle_label_injection(zio, EIO); 3821 3822 if (zio->io_error && zio->io_type != ZIO_TYPE_TRIM) { 3823 if (!vdev_accessible(vd, zio)) { 3824 zio->io_error = SET_ERROR(ENXIO); 3825 } else { 3826 unexpected_error = B_TRUE; 3827 } 3828 } 3829 } 3830 3831 ops->vdev_op_io_done(zio); 3832 3833 if (unexpected_error) 3834 VERIFY(vdev_probe(vd, zio) == NULL); 3835 3836 return (zio); 3837 } 3838 3839 /* 3840 * This function is used to change the priority of an existing zio that is 3841 * currently in-flight. This is used by the arc to upgrade priority in the 3842 * event that a demand read is made for a block that is currently queued 3843 * as a scrub or async read IO. Otherwise, the high priority read request 3844 * would end up having to wait for the lower priority IO. 3845 */ 3846 void 3847 zio_change_priority(zio_t *pio, zio_priority_t priority) 3848 { 3849 zio_t *cio, *cio_next; 3850 zio_link_t *zl = NULL; 3851 3852 ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 3853 3854 if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) { 3855 vdev_queue_change_io_priority(pio, priority); 3856 } else { 3857 pio->io_priority = priority; 3858 } 3859 3860 mutex_enter(&pio->io_lock); 3861 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 3862 cio_next = zio_walk_children(pio, &zl); 3863 zio_change_priority(cio, priority); 3864 } 3865 mutex_exit(&pio->io_lock); 3866 } 3867 3868 /* 3869 * For non-raidz ZIOs, we can just copy aside the bad data read from the 3870 * disk, and use that to finish the checksum ereport later. 3871 */ 3872 static void 3873 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr, 3874 const abd_t *good_buf) 3875 { 3876 /* no processing needed */ 3877 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE); 3878 } 3879 3880 /*ARGSUSED*/ 3881 void 3882 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored) 3883 { 3884 void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size); 3885 3886 abd_copy(abd, zio->io_abd, zio->io_size); 3887 3888 zcr->zcr_cbinfo = zio->io_size; 3889 zcr->zcr_cbdata = abd; 3890 zcr->zcr_finish = zio_vsd_default_cksum_finish; 3891 zcr->zcr_free = zio_abd_free; 3892 } 3893 3894 static zio_t * 3895 zio_vdev_io_assess(zio_t *zio) 3896 { 3897 vdev_t *vd = zio->io_vd; 3898 3899 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) { 3900 return (NULL); 3901 } 3902 3903 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 3904 spa_config_exit(zio->io_spa, SCL_ZIO, zio); 3905 3906 if (zio->io_vsd != NULL) { 3907 zio->io_vsd_ops->vsd_free(zio); 3908 zio->io_vsd = NULL; 3909 } 3910 3911 if (zio_injection_enabled && zio->io_error == 0) 3912 zio->io_error = zio_handle_fault_injection(zio, EIO); 3913 3914 /* 3915 * If the I/O failed, determine whether we should attempt to retry it. 3916 * 3917 * On retry, we cut in line in the issue queue, since we don't want 3918 * compression/checksumming/etc. work to prevent our (cheap) IO reissue. 3919 */ 3920 if (zio->io_error && vd == NULL && 3921 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) { 3922 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */ 3923 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */ 3924 zio->io_error = 0; 3925 zio->io_flags |= ZIO_FLAG_IO_RETRY | 3926 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE; 3927 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1; 3928 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, 3929 zio_requeue_io_start_cut_in_line); 3930 return (NULL); 3931 } 3932 3933 /* 3934 * If we got an error on a leaf device, convert it to ENXIO 3935 * if the device is not accessible at all. 3936 */ 3937 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf && 3938 !vdev_accessible(vd, zio)) 3939 zio->io_error = SET_ERROR(ENXIO); 3940 3941 /* 3942 * If we can't write to an interior vdev (mirror or RAID-Z), 3943 * set vdev_cant_write so that we stop trying to allocate from it. 3944 */ 3945 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE && 3946 vd != NULL && !vd->vdev_ops->vdev_op_leaf) { 3947 vd->vdev_cant_write = B_TRUE; 3948 } 3949 3950 /* 3951 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future 3952 * attempts will ever succeed. In this case we set a persistent 3953 * boolean flag so that we don't bother with it in the future. 3954 */ 3955 if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) && 3956 zio->io_type == ZIO_TYPE_IOCTL && 3957 zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL) 3958 vd->vdev_nowritecache = B_TRUE; 3959 3960 if (zio->io_error) 3961 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 3962 3963 if (vd != NULL && vd->vdev_ops->vdev_op_leaf && 3964 zio->io_physdone != NULL) { 3965 ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED)); 3966 ASSERT(zio->io_child_type == ZIO_CHILD_VDEV); 3967 zio->io_physdone(zio->io_logical); 3968 } 3969 3970 return (zio); 3971 } 3972 3973 void 3974 zio_vdev_io_reissue(zio_t *zio) 3975 { 3976 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 3977 ASSERT(zio->io_error == 0); 3978 3979 zio->io_stage >>= 1; 3980 } 3981 3982 void 3983 zio_vdev_io_redone(zio_t *zio) 3984 { 3985 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE); 3986 3987 zio->io_stage >>= 1; 3988 } 3989 3990 void 3991 zio_vdev_io_bypass(zio_t *zio) 3992 { 3993 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 3994 ASSERT(zio->io_error == 0); 3995 3996 zio->io_flags |= ZIO_FLAG_IO_BYPASS; 3997 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1; 3998 } 3999 4000 /* 4001 * ========================================================================== 4002 * Encrypt and store encryption parameters 4003 * ========================================================================== 4004 */ 4005 4006 4007 /* 4008 * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for 4009 * managing the storage of encryption parameters and passing them to the 4010 * lower-level encryption functions. 4011 */ 4012 static zio_t * 4013 zio_encrypt(zio_t *zio) 4014 { 4015 zio_prop_t *zp = &zio->io_prop; 4016 spa_t *spa = zio->io_spa; 4017 blkptr_t *bp = zio->io_bp; 4018 uint64_t psize = BP_GET_PSIZE(bp); 4019 uint64_t dsobj = zio->io_bookmark.zb_objset; 4020 dmu_object_type_t ot = BP_GET_TYPE(bp); 4021 void *enc_buf = NULL; 4022 abd_t *eabd = NULL; 4023 uint8_t salt[ZIO_DATA_SALT_LEN]; 4024 uint8_t iv[ZIO_DATA_IV_LEN]; 4025 uint8_t mac[ZIO_DATA_MAC_LEN]; 4026 boolean_t no_crypt = B_FALSE; 4027 4028 /* the root zio already encrypted the data */ 4029 if (zio->io_child_type == ZIO_CHILD_GANG) 4030 return (zio); 4031 4032 /* only ZIL blocks are re-encrypted on rewrite */ 4033 if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG) 4034 return (zio); 4035 4036 if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) { 4037 BP_SET_CRYPT(bp, B_FALSE); 4038 return (zio); 4039 } 4040 4041 /* if we are doing raw encryption set the provided encryption params */ 4042 if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) { 4043 ASSERT0(BP_GET_LEVEL(bp)); 4044 BP_SET_CRYPT(bp, B_TRUE); 4045 BP_SET_BYTEORDER(bp, zp->zp_byteorder); 4046 if (ot != DMU_OT_OBJSET) 4047 zio_crypt_encode_mac_bp(bp, zp->zp_mac); 4048 4049 /* dnode blocks must be written out in the provided byteorder */ 4050 if (zp->zp_byteorder != ZFS_HOST_BYTEORDER && 4051 ot == DMU_OT_DNODE) { 4052 void *bswap_buf = zio_buf_alloc(psize); 4053 abd_t *babd = abd_get_from_buf(bswap_buf, psize); 4054 4055 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 4056 abd_copy_to_buf(bswap_buf, zio->io_abd, psize); 4057 dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf, 4058 psize); 4059 4060 abd_take_ownership_of_buf(babd, B_TRUE); 4061 zio_push_transform(zio, babd, psize, psize, NULL); 4062 } 4063 4064 if (DMU_OT_IS_ENCRYPTED(ot)) 4065 zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv); 4066 return (zio); 4067 } 4068 4069 /* indirect blocks only maintain a cksum of the lower level MACs */ 4070 if (BP_GET_LEVEL(bp) > 0) { 4071 BP_SET_CRYPT(bp, B_TRUE); 4072 VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE, 4073 zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp), 4074 mac)); 4075 zio_crypt_encode_mac_bp(bp, mac); 4076 return (zio); 4077 } 4078 4079 /* 4080 * Objset blocks are a special case since they have 2 256-bit MACs 4081 * embedded within them. 4082 */ 4083 if (ot == DMU_OT_OBJSET) { 4084 ASSERT0(DMU_OT_IS_ENCRYPTED(ot)); 4085 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 4086 BP_SET_CRYPT(bp, B_TRUE); 4087 VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj, 4088 zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp))); 4089 return (zio); 4090 } 4091 4092 /* unencrypted object types are only authenticated with a MAC */ 4093 if (!DMU_OT_IS_ENCRYPTED(ot)) { 4094 BP_SET_CRYPT(bp, B_TRUE); 4095 VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj, 4096 zio->io_abd, psize, mac)); 4097 zio_crypt_encode_mac_bp(bp, mac); 4098 return (zio); 4099 } 4100 4101 /* 4102 * Later passes of sync-to-convergence may decide to rewrite data 4103 * in place to avoid more disk reallocations. This presents a problem 4104 * for encryption because this constitutes rewriting the new data with 4105 * the same encryption key and IV. However, this only applies to blocks 4106 * in the MOS (particularly the spacemaps) and we do not encrypt the 4107 * MOS. We assert that the zio is allocating or an intent log write 4108 * to enforce this. 4109 */ 4110 ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG); 4111 ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG); 4112 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION)); 4113 ASSERT3U(psize, !=, 0); 4114 4115 enc_buf = zio_buf_alloc(psize); 4116 eabd = abd_get_from_buf(enc_buf, psize); 4117 abd_take_ownership_of_buf(eabd, B_TRUE); 4118 4119 /* 4120 * For an explanation of what encryption parameters are stored 4121 * where, see the block comment in zio_crypt.c. 4122 */ 4123 if (ot == DMU_OT_INTENT_LOG) { 4124 zio_crypt_decode_params_bp(bp, salt, iv); 4125 } else { 4126 BP_SET_CRYPT(bp, B_TRUE); 4127 } 4128 4129 /* Perform the encryption. This should not fail */ 4130 VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark, 4131 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), 4132 salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt)); 4133 4134 /* encode encryption metadata into the bp */ 4135 if (ot == DMU_OT_INTENT_LOG) { 4136 /* 4137 * ZIL blocks store the MAC in the embedded checksum, so the 4138 * transform must always be applied. 4139 */ 4140 zio_crypt_encode_mac_zil(enc_buf, mac); 4141 zio_push_transform(zio, eabd, psize, psize, NULL); 4142 } else { 4143 BP_SET_CRYPT(bp, B_TRUE); 4144 zio_crypt_encode_params_bp(bp, salt, iv); 4145 zio_crypt_encode_mac_bp(bp, mac); 4146 4147 if (no_crypt) { 4148 ASSERT3U(ot, ==, DMU_OT_DNODE); 4149 abd_free(eabd); 4150 } else { 4151 zio_push_transform(zio, eabd, psize, psize, NULL); 4152 } 4153 } 4154 4155 return (zio); 4156 } 4157 4158 /* 4159 * ========================================================================== 4160 * Generate and verify checksums 4161 * ========================================================================== 4162 */ 4163 static zio_t * 4164 zio_checksum_generate(zio_t *zio) 4165 { 4166 blkptr_t *bp = zio->io_bp; 4167 enum zio_checksum checksum; 4168 4169 if (bp == NULL) { 4170 /* 4171 * This is zio_write_phys(). 4172 * We're either generating a label checksum, or none at all. 4173 */ 4174 checksum = zio->io_prop.zp_checksum; 4175 4176 if (checksum == ZIO_CHECKSUM_OFF) 4177 return (zio); 4178 4179 ASSERT(checksum == ZIO_CHECKSUM_LABEL); 4180 } else { 4181 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) { 4182 ASSERT(!IO_IS_ALLOCATING(zio)); 4183 checksum = ZIO_CHECKSUM_GANG_HEADER; 4184 } else { 4185 checksum = BP_GET_CHECKSUM(bp); 4186 } 4187 } 4188 4189 zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size); 4190 4191 return (zio); 4192 } 4193 4194 static zio_t * 4195 zio_checksum_verify(zio_t *zio) 4196 { 4197 zio_bad_cksum_t info; 4198 blkptr_t *bp = zio->io_bp; 4199 int error; 4200 4201 ASSERT(zio->io_vd != NULL); 4202 4203 if (bp == NULL) { 4204 /* 4205 * This is zio_read_phys(). 4206 * We're either verifying a label checksum, or nothing at all. 4207 */ 4208 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF) 4209 return (zio); 4210 4211 ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL); 4212 } 4213 4214 if ((error = zio_checksum_error(zio, &info)) != 0) { 4215 zio->io_error = error; 4216 if (error == ECKSUM && 4217 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 4218 int ret = zfs_ereport_start_checksum(zio->io_spa, 4219 zio->io_vd, &zio->io_bookmark, zio, 4220 zio->io_offset, zio->io_size, NULL, &info); 4221 4222 if (ret != EALREADY) { 4223 mutex_enter(&zio->io_vd->vdev_stat_lock); 4224 zio->io_vd->vdev_stat.vs_checksum_errors++; 4225 mutex_exit(&zio->io_vd->vdev_stat_lock); 4226 } 4227 } 4228 } 4229 4230 return (zio); 4231 } 4232 4233 /* 4234 * Called by RAID-Z to ensure we don't compute the checksum twice. 4235 */ 4236 void 4237 zio_checksum_verified(zio_t *zio) 4238 { 4239 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 4240 } 4241 4242 /* 4243 * ========================================================================== 4244 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other. 4245 * An error of 0 indicates success. ENXIO indicates whole-device failure, 4246 * which may be transient (e.g. unplugged) or permanent. ECKSUM and EIO 4247 * indicate errors that are specific to one I/O, and most likely permanent. 4248 * Any other error is presumed to be worse because we weren't expecting it. 4249 * ========================================================================== 4250 */ 4251 int 4252 zio_worst_error(int e1, int e2) 4253 { 4254 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO }; 4255 int r1, r2; 4256 4257 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++) 4258 if (e1 == zio_error_rank[r1]) 4259 break; 4260 4261 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++) 4262 if (e2 == zio_error_rank[r2]) 4263 break; 4264 4265 return (r1 > r2 ? e1 : e2); 4266 } 4267 4268 /* 4269 * ========================================================================== 4270 * I/O completion 4271 * ========================================================================== 4272 */ 4273 static zio_t * 4274 zio_ready(zio_t *zio) 4275 { 4276 blkptr_t *bp = zio->io_bp; 4277 zio_t *pio, *pio_next; 4278 zio_link_t *zl = NULL; 4279 4280 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT, 4281 ZIO_WAIT_READY)) { 4282 return (NULL); 4283 } 4284 4285 if (zio->io_ready) { 4286 ASSERT(IO_IS_ALLOCATING(zio)); 4287 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) || 4288 (zio->io_flags & ZIO_FLAG_NOPWRITE)); 4289 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0); 4290 4291 zio->io_ready(zio); 4292 } 4293 4294 if (bp != NULL && bp != &zio->io_bp_copy) 4295 zio->io_bp_copy = *bp; 4296 4297 if (zio->io_error != 0) { 4298 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 4299 4300 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 4301 ASSERT(IO_IS_ALLOCATING(zio)); 4302 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 4303 ASSERT(zio->io_metaslab_class != NULL); 4304 4305 /* 4306 * We were unable to allocate anything, unreserve and 4307 * issue the next I/O to allocate. 4308 */ 4309 metaslab_class_throttle_unreserve( 4310 zio->io_metaslab_class, zio->io_prop.zp_copies, 4311 zio->io_allocator, zio); 4312 zio_allocate_dispatch(zio->io_spa, zio->io_allocator); 4313 } 4314 } 4315 4316 mutex_enter(&zio->io_lock); 4317 zio->io_state[ZIO_WAIT_READY] = 1; 4318 pio = zio_walk_parents(zio, &zl); 4319 mutex_exit(&zio->io_lock); 4320 4321 /* 4322 * As we notify zio's parents, new parents could be added. 4323 * New parents go to the head of zio's io_parent_list, however, 4324 * so we will (correctly) not notify them. The remainder of zio's 4325 * io_parent_list, from 'pio_next' onward, cannot change because 4326 * all parents must wait for us to be done before they can be done. 4327 */ 4328 for (; pio != NULL; pio = pio_next) { 4329 pio_next = zio_walk_parents(zio, &zl); 4330 zio_notify_parent(pio, zio, ZIO_WAIT_READY, NULL); 4331 } 4332 4333 if (zio->io_flags & ZIO_FLAG_NODATA) { 4334 if (BP_IS_GANG(bp)) { 4335 zio->io_flags &= ~ZIO_FLAG_NODATA; 4336 } else { 4337 ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE); 4338 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 4339 } 4340 } 4341 4342 if (zio_injection_enabled && 4343 zio->io_spa->spa_syncing_txg == zio->io_txg) 4344 zio_handle_ignored_writes(zio); 4345 4346 return (zio); 4347 } 4348 4349 /* 4350 * Update the allocation throttle accounting. 4351 */ 4352 static void 4353 zio_dva_throttle_done(zio_t *zio) 4354 { 4355 zio_t *lio __maybe_unused = zio->io_logical; 4356 zio_t *pio = zio_unique_parent(zio); 4357 vdev_t *vd = zio->io_vd; 4358 int flags = METASLAB_ASYNC_ALLOC; 4359 4360 ASSERT3P(zio->io_bp, !=, NULL); 4361 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE); 4362 ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE); 4363 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); 4364 ASSERT(vd != NULL); 4365 ASSERT3P(vd, ==, vd->vdev_top); 4366 ASSERT(zio_injection_enabled || !(zio->io_flags & ZIO_FLAG_IO_RETRY)); 4367 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR)); 4368 ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING); 4369 ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE)); 4370 ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA)); 4371 4372 /* 4373 * Parents of gang children can have two flavors -- ones that 4374 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set) 4375 * and ones that allocated the constituent blocks. The allocation 4376 * throttle needs to know the allocating parent zio so we must find 4377 * it here. 4378 */ 4379 if (pio->io_child_type == ZIO_CHILD_GANG) { 4380 /* 4381 * If our parent is a rewrite gang child then our grandparent 4382 * would have been the one that performed the allocation. 4383 */ 4384 if (pio->io_flags & ZIO_FLAG_IO_REWRITE) 4385 pio = zio_unique_parent(pio); 4386 flags |= METASLAB_GANG_CHILD; 4387 } 4388 4389 ASSERT(IO_IS_ALLOCATING(pio)); 4390 ASSERT3P(zio, !=, zio->io_logical); 4391 ASSERT(zio->io_logical != NULL); 4392 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR)); 4393 ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE); 4394 ASSERT(zio->io_metaslab_class != NULL); 4395 4396 mutex_enter(&pio->io_lock); 4397 metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags, 4398 pio->io_allocator, B_TRUE); 4399 mutex_exit(&pio->io_lock); 4400 4401 metaslab_class_throttle_unreserve(zio->io_metaslab_class, 1, 4402 pio->io_allocator, pio); 4403 4404 /* 4405 * Call into the pipeline to see if there is more work that 4406 * needs to be done. If there is work to be done it will be 4407 * dispatched to another taskq thread. 4408 */ 4409 zio_allocate_dispatch(zio->io_spa, pio->io_allocator); 4410 } 4411 4412 static zio_t * 4413 zio_done(zio_t *zio) 4414 { 4415 /* 4416 * Always attempt to keep stack usage minimal here since 4417 * we can be called recursively up to 19 levels deep. 4418 */ 4419 const uint64_t psize = zio->io_size; 4420 zio_t *pio, *pio_next; 4421 zio_link_t *zl = NULL; 4422 4423 /* 4424 * If our children haven't all completed, 4425 * wait for them and then repeat this pipeline stage. 4426 */ 4427 if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) { 4428 return (NULL); 4429 } 4430 4431 /* 4432 * If the allocation throttle is enabled, then update the accounting. 4433 * We only track child I/Os that are part of an allocating async 4434 * write. We must do this since the allocation is performed 4435 * by the logical I/O but the actual write is done by child I/Os. 4436 */ 4437 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING && 4438 zio->io_child_type == ZIO_CHILD_VDEV) { 4439 ASSERT(zio->io_metaslab_class != NULL); 4440 ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled); 4441 zio_dva_throttle_done(zio); 4442 } 4443 4444 /* 4445 * If the allocation throttle is enabled, verify that 4446 * we have decremented the refcounts for every I/O that was throttled. 4447 */ 4448 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 4449 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 4450 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 4451 ASSERT(zio->io_bp != NULL); 4452 4453 metaslab_group_alloc_verify(zio->io_spa, zio->io_bp, zio, 4454 zio->io_allocator); 4455 VERIFY(zfs_refcount_not_held( 4456 &zio->io_metaslab_class->mc_alloc_slots[zio->io_allocator], 4457 zio)); 4458 } 4459 4460 4461 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 4462 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 4463 ASSERT(zio->io_children[c][w] == 0); 4464 4465 if (zio->io_bp != NULL && !BP_IS_EMBEDDED(zio->io_bp)) { 4466 ASSERT(zio->io_bp->blk_pad[0] == 0); 4467 ASSERT(zio->io_bp->blk_pad[1] == 0); 4468 ASSERT(bcmp(zio->io_bp, &zio->io_bp_copy, 4469 sizeof (blkptr_t)) == 0 || 4470 (zio->io_bp == zio_unique_parent(zio)->io_bp)); 4471 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) && 4472 zio->io_bp_override == NULL && 4473 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) { 4474 ASSERT3U(zio->io_prop.zp_copies, <=, 4475 BP_GET_NDVAS(zio->io_bp)); 4476 ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 || 4477 (BP_COUNT_GANG(zio->io_bp) == 4478 BP_GET_NDVAS(zio->io_bp))); 4479 } 4480 if (zio->io_flags & ZIO_FLAG_NOPWRITE) 4481 VERIFY(BP_EQUAL(zio->io_bp, &zio->io_bp_orig)); 4482 } 4483 4484 /* 4485 * If there were child vdev/gang/ddt errors, they apply to us now. 4486 */ 4487 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV); 4488 zio_inherit_child_errors(zio, ZIO_CHILD_GANG); 4489 zio_inherit_child_errors(zio, ZIO_CHILD_DDT); 4490 4491 /* 4492 * If the I/O on the transformed data was successful, generate any 4493 * checksum reports now while we still have the transformed data. 4494 */ 4495 if (zio->io_error == 0) { 4496 while (zio->io_cksum_report != NULL) { 4497 zio_cksum_report_t *zcr = zio->io_cksum_report; 4498 uint64_t align = zcr->zcr_align; 4499 uint64_t asize = P2ROUNDUP(psize, align); 4500 abd_t *adata = zio->io_abd; 4501 4502 if (asize != psize) { 4503 adata = abd_alloc(asize, B_TRUE); 4504 abd_copy(adata, zio->io_abd, psize); 4505 abd_zero_off(adata, psize, asize - psize); 4506 } 4507 4508 zio->io_cksum_report = zcr->zcr_next; 4509 zcr->zcr_next = NULL; 4510 zcr->zcr_finish(zcr, adata); 4511 zfs_ereport_free_checksum(zcr); 4512 4513 if (asize != psize) 4514 abd_free(adata); 4515 } 4516 } 4517 4518 zio_pop_transforms(zio); /* note: may set zio->io_error */ 4519 4520 vdev_stat_update(zio, psize); 4521 4522 /* 4523 * If this I/O is attached to a particular vdev is slow, exceeding 4524 * 30 seconds to complete, post an error described the I/O delay. 4525 * We ignore these errors if the device is currently unavailable. 4526 */ 4527 if (zio->io_delay >= MSEC2NSEC(zio_slow_io_ms)) { 4528 if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) { 4529 /* 4530 * We want to only increment our slow IO counters if 4531 * the IO is valid (i.e. not if the drive is removed). 4532 * 4533 * zfs_ereport_post() will also do these checks, but 4534 * it can also ratelimit and have other failures, so we 4535 * need to increment the slow_io counters independent 4536 * of it. 4537 */ 4538 if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY, 4539 zio->io_spa, zio->io_vd, zio)) { 4540 mutex_enter(&zio->io_vd->vdev_stat_lock); 4541 zio->io_vd->vdev_stat.vs_slow_ios++; 4542 mutex_exit(&zio->io_vd->vdev_stat_lock); 4543 4544 (void) zfs_ereport_post(FM_EREPORT_ZFS_DELAY, 4545 zio->io_spa, zio->io_vd, &zio->io_bookmark, 4546 zio, 0); 4547 } 4548 } 4549 } 4550 4551 if (zio->io_error) { 4552 /* 4553 * If this I/O is attached to a particular vdev, 4554 * generate an error message describing the I/O failure 4555 * at the block level. We ignore these errors if the 4556 * device is currently unavailable. 4557 */ 4558 if (zio->io_error != ECKSUM && zio->io_vd != NULL && 4559 !vdev_is_dead(zio->io_vd)) { 4560 int ret = zfs_ereport_post(FM_EREPORT_ZFS_IO, 4561 zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0); 4562 if (ret != EALREADY) { 4563 mutex_enter(&zio->io_vd->vdev_stat_lock); 4564 if (zio->io_type == ZIO_TYPE_READ) 4565 zio->io_vd->vdev_stat.vs_read_errors++; 4566 else if (zio->io_type == ZIO_TYPE_WRITE) 4567 zio->io_vd->vdev_stat.vs_write_errors++; 4568 mutex_exit(&zio->io_vd->vdev_stat_lock); 4569 } 4570 } 4571 4572 if ((zio->io_error == EIO || !(zio->io_flags & 4573 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) && 4574 zio == zio->io_logical) { 4575 /* 4576 * For logical I/O requests, tell the SPA to log the 4577 * error and generate a logical data ereport. 4578 */ 4579 spa_log_error(zio->io_spa, &zio->io_bookmark); 4580 (void) zfs_ereport_post(FM_EREPORT_ZFS_DATA, 4581 zio->io_spa, NULL, &zio->io_bookmark, zio, 0); 4582 } 4583 } 4584 4585 if (zio->io_error && zio == zio->io_logical) { 4586 /* 4587 * Determine whether zio should be reexecuted. This will 4588 * propagate all the way to the root via zio_notify_parent(). 4589 */ 4590 ASSERT(zio->io_vd == NULL && zio->io_bp != NULL); 4591 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 4592 4593 if (IO_IS_ALLOCATING(zio) && 4594 !(zio->io_flags & ZIO_FLAG_CANFAIL)) { 4595 if (zio->io_error != ENOSPC) 4596 zio->io_reexecute |= ZIO_REEXECUTE_NOW; 4597 else 4598 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 4599 } 4600 4601 if ((zio->io_type == ZIO_TYPE_READ || 4602 zio->io_type == ZIO_TYPE_FREE) && 4603 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && 4604 zio->io_error == ENXIO && 4605 spa_load_state(zio->io_spa) == SPA_LOAD_NONE && 4606 spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE) 4607 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 4608 4609 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute) 4610 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 4611 4612 /* 4613 * Here is a possibly good place to attempt to do 4614 * either combinatorial reconstruction or error correction 4615 * based on checksums. It also might be a good place 4616 * to send out preliminary ereports before we suspend 4617 * processing. 4618 */ 4619 } 4620 4621 /* 4622 * If there were logical child errors, they apply to us now. 4623 * We defer this until now to avoid conflating logical child 4624 * errors with errors that happened to the zio itself when 4625 * updating vdev stats and reporting FMA events above. 4626 */ 4627 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL); 4628 4629 if ((zio->io_error || zio->io_reexecute) && 4630 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio && 4631 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE))) 4632 zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp); 4633 4634 zio_gang_tree_free(&zio->io_gang_tree); 4635 4636 /* 4637 * Godfather I/Os should never suspend. 4638 */ 4639 if ((zio->io_flags & ZIO_FLAG_GODFATHER) && 4640 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) 4641 zio->io_reexecute &= ~ZIO_REEXECUTE_SUSPEND; 4642 4643 if (zio->io_reexecute) { 4644 /* 4645 * This is a logical I/O that wants to reexecute. 4646 * 4647 * Reexecute is top-down. When an i/o fails, if it's not 4648 * the root, it simply notifies its parent and sticks around. 4649 * The parent, seeing that it still has children in zio_done(), 4650 * does the same. This percolates all the way up to the root. 4651 * The root i/o will reexecute or suspend the entire tree. 4652 * 4653 * This approach ensures that zio_reexecute() honors 4654 * all the original i/o dependency relationships, e.g. 4655 * parents not executing until children are ready. 4656 */ 4657 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 4658 4659 zio->io_gang_leader = NULL; 4660 4661 mutex_enter(&zio->io_lock); 4662 zio->io_state[ZIO_WAIT_DONE] = 1; 4663 mutex_exit(&zio->io_lock); 4664 4665 /* 4666 * "The Godfather" I/O monitors its children but is 4667 * not a true parent to them. It will track them through 4668 * the pipeline but severs its ties whenever they get into 4669 * trouble (e.g. suspended). This allows "The Godfather" 4670 * I/O to return status without blocking. 4671 */ 4672 zl = NULL; 4673 for (pio = zio_walk_parents(zio, &zl); pio != NULL; 4674 pio = pio_next) { 4675 zio_link_t *remove_zl = zl; 4676 pio_next = zio_walk_parents(zio, &zl); 4677 4678 if ((pio->io_flags & ZIO_FLAG_GODFATHER) && 4679 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) { 4680 zio_remove_child(pio, zio, remove_zl); 4681 /* 4682 * This is a rare code path, so we don't 4683 * bother with "next_to_execute". 4684 */ 4685 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, 4686 NULL); 4687 } 4688 } 4689 4690 if ((pio = zio_unique_parent(zio)) != NULL) { 4691 /* 4692 * We're not a root i/o, so there's nothing to do 4693 * but notify our parent. Don't propagate errors 4694 * upward since we haven't permanently failed yet. 4695 */ 4696 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 4697 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE; 4698 /* 4699 * This is a rare code path, so we don't bother with 4700 * "next_to_execute". 4701 */ 4702 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, NULL); 4703 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) { 4704 /* 4705 * We'd fail again if we reexecuted now, so suspend 4706 * until conditions improve (e.g. device comes online). 4707 */ 4708 zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR); 4709 } else { 4710 /* 4711 * Reexecution is potentially a huge amount of work. 4712 * Hand it off to the otherwise-unused claim taskq. 4713 */ 4714 ASSERT(taskq_empty_ent(&zio->io_tqent)); 4715 spa_taskq_dispatch_ent(zio->io_spa, 4716 ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE, 4717 (task_func_t *)zio_reexecute, zio, 0, 4718 &zio->io_tqent); 4719 } 4720 return (NULL); 4721 } 4722 4723 ASSERT(zio->io_child_count == 0); 4724 ASSERT(zio->io_reexecute == 0); 4725 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL)); 4726 4727 /* 4728 * Report any checksum errors, since the I/O is complete. 4729 */ 4730 while (zio->io_cksum_report != NULL) { 4731 zio_cksum_report_t *zcr = zio->io_cksum_report; 4732 zio->io_cksum_report = zcr->zcr_next; 4733 zcr->zcr_next = NULL; 4734 zcr->zcr_finish(zcr, NULL); 4735 zfs_ereport_free_checksum(zcr); 4736 } 4737 4738 if (zio->io_flags & ZIO_FLAG_FASTWRITE && zio->io_bp && 4739 !BP_IS_HOLE(zio->io_bp) && !BP_IS_EMBEDDED(zio->io_bp) && 4740 !(zio->io_flags & ZIO_FLAG_NOPWRITE)) { 4741 metaslab_fastwrite_unmark(zio->io_spa, zio->io_bp); 4742 } 4743 4744 /* 4745 * It is the responsibility of the done callback to ensure that this 4746 * particular zio is no longer discoverable for adoption, and as 4747 * such, cannot acquire any new parents. 4748 */ 4749 if (zio->io_done) 4750 zio->io_done(zio); 4751 4752 mutex_enter(&zio->io_lock); 4753 zio->io_state[ZIO_WAIT_DONE] = 1; 4754 mutex_exit(&zio->io_lock); 4755 4756 /* 4757 * We are done executing this zio. We may want to execute a parent 4758 * next. See the comment in zio_notify_parent(). 4759 */ 4760 zio_t *next_to_execute = NULL; 4761 zl = NULL; 4762 for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) { 4763 zio_link_t *remove_zl = zl; 4764 pio_next = zio_walk_parents(zio, &zl); 4765 zio_remove_child(pio, zio, remove_zl); 4766 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, &next_to_execute); 4767 } 4768 4769 if (zio->io_waiter != NULL) { 4770 mutex_enter(&zio->io_lock); 4771 zio->io_executor = NULL; 4772 cv_broadcast(&zio->io_cv); 4773 mutex_exit(&zio->io_lock); 4774 } else { 4775 zio_destroy(zio); 4776 } 4777 4778 return (next_to_execute); 4779 } 4780 4781 /* 4782 * ========================================================================== 4783 * I/O pipeline definition 4784 * ========================================================================== 4785 */ 4786 static zio_pipe_stage_t *zio_pipeline[] = { 4787 NULL, 4788 zio_read_bp_init, 4789 zio_write_bp_init, 4790 zio_free_bp_init, 4791 zio_issue_async, 4792 zio_write_compress, 4793 zio_encrypt, 4794 zio_checksum_generate, 4795 zio_nop_write, 4796 zio_ddt_read_start, 4797 zio_ddt_read_done, 4798 zio_ddt_write, 4799 zio_ddt_free, 4800 zio_gang_assemble, 4801 zio_gang_issue, 4802 zio_dva_throttle, 4803 zio_dva_allocate, 4804 zio_dva_free, 4805 zio_dva_claim, 4806 zio_ready, 4807 zio_vdev_io_start, 4808 zio_vdev_io_done, 4809 zio_vdev_io_assess, 4810 zio_checksum_verify, 4811 zio_done 4812 }; 4813 4814 4815 4816 4817 /* 4818 * Compare two zbookmark_phys_t's to see which we would reach first in a 4819 * pre-order traversal of the object tree. 4820 * 4821 * This is simple in every case aside from the meta-dnode object. For all other 4822 * objects, we traverse them in order (object 1 before object 2, and so on). 4823 * However, all of these objects are traversed while traversing object 0, since 4824 * the data it points to is the list of objects. Thus, we need to convert to a 4825 * canonical representation so we can compare meta-dnode bookmarks to 4826 * non-meta-dnode bookmarks. 4827 * 4828 * We do this by calculating "equivalents" for each field of the zbookmark. 4829 * zbookmarks outside of the meta-dnode use their own object and level, and 4830 * calculate the level 0 equivalent (the first L0 blkid that is contained in the 4831 * blocks this bookmark refers to) by multiplying their blkid by their span 4832 * (the number of L0 blocks contained within one block at their level). 4833 * zbookmarks inside the meta-dnode calculate their object equivalent 4834 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use 4835 * level + 1<<31 (any value larger than a level could ever be) for their level. 4836 * This causes them to always compare before a bookmark in their object 4837 * equivalent, compare appropriately to bookmarks in other objects, and to 4838 * compare appropriately to other bookmarks in the meta-dnode. 4839 */ 4840 int 4841 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2, 4842 const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2) 4843 { 4844 /* 4845 * These variables represent the "equivalent" values for the zbookmark, 4846 * after converting zbookmarks inside the meta dnode to their 4847 * normal-object equivalents. 4848 */ 4849 uint64_t zb1obj, zb2obj; 4850 uint64_t zb1L0, zb2L0; 4851 uint64_t zb1level, zb2level; 4852 4853 if (zb1->zb_object == zb2->zb_object && 4854 zb1->zb_level == zb2->zb_level && 4855 zb1->zb_blkid == zb2->zb_blkid) 4856 return (0); 4857 4858 IMPLY(zb1->zb_level > 0, ibs1 >= SPA_MINBLOCKSHIFT); 4859 IMPLY(zb2->zb_level > 0, ibs2 >= SPA_MINBLOCKSHIFT); 4860 4861 /* 4862 * BP_SPANB calculates the span in blocks. 4863 */ 4864 zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level); 4865 zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level); 4866 4867 if (zb1->zb_object == DMU_META_DNODE_OBJECT) { 4868 zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 4869 zb1L0 = 0; 4870 zb1level = zb1->zb_level + COMPARE_META_LEVEL; 4871 } else { 4872 zb1obj = zb1->zb_object; 4873 zb1level = zb1->zb_level; 4874 } 4875 4876 if (zb2->zb_object == DMU_META_DNODE_OBJECT) { 4877 zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 4878 zb2L0 = 0; 4879 zb2level = zb2->zb_level + COMPARE_META_LEVEL; 4880 } else { 4881 zb2obj = zb2->zb_object; 4882 zb2level = zb2->zb_level; 4883 } 4884 4885 /* Now that we have a canonical representation, do the comparison. */ 4886 if (zb1obj != zb2obj) 4887 return (zb1obj < zb2obj ? -1 : 1); 4888 else if (zb1L0 != zb2L0) 4889 return (zb1L0 < zb2L0 ? -1 : 1); 4890 else if (zb1level != zb2level) 4891 return (zb1level > zb2level ? -1 : 1); 4892 /* 4893 * This can (theoretically) happen if the bookmarks have the same object 4894 * and level, but different blkids, if the block sizes are not the same. 4895 * There is presently no way to change the indirect block sizes 4896 */ 4897 return (0); 4898 } 4899 4900 /* 4901 * This function checks the following: given that last_block is the place that 4902 * our traversal stopped last time, does that guarantee that we've visited 4903 * every node under subtree_root? Therefore, we can't just use the raw output 4904 * of zbookmark_compare. We have to pass in a modified version of 4905 * subtree_root; by incrementing the block id, and then checking whether 4906 * last_block is before or equal to that, we can tell whether or not having 4907 * visited last_block implies that all of subtree_root's children have been 4908 * visited. 4909 */ 4910 boolean_t 4911 zbookmark_subtree_completed(const dnode_phys_t *dnp, 4912 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block) 4913 { 4914 zbookmark_phys_t mod_zb = *subtree_root; 4915 mod_zb.zb_blkid++; 4916 ASSERT(last_block->zb_level == 0); 4917 4918 /* The objset_phys_t isn't before anything. */ 4919 if (dnp == NULL) 4920 return (B_FALSE); 4921 4922 /* 4923 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the 4924 * data block size in sectors, because that variable is only used if 4925 * the bookmark refers to a block in the meta-dnode. Since we don't 4926 * know without examining it what object it refers to, and there's no 4927 * harm in passing in this value in other cases, we always pass it in. 4928 * 4929 * We pass in 0 for the indirect block size shift because zb2 must be 4930 * level 0. The indirect block size is only used to calculate the span 4931 * of the bookmark, but since the bookmark must be level 0, the span is 4932 * always 1, so the math works out. 4933 * 4934 * If you make changes to how the zbookmark_compare code works, be sure 4935 * to make sure that this code still works afterwards. 4936 */ 4937 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift, 4938 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb, 4939 last_block) <= 0); 4940 } 4941 4942 EXPORT_SYMBOL(zio_type_name); 4943 EXPORT_SYMBOL(zio_buf_alloc); 4944 EXPORT_SYMBOL(zio_data_buf_alloc); 4945 EXPORT_SYMBOL(zio_buf_free); 4946 EXPORT_SYMBOL(zio_data_buf_free); 4947 4948 /* BEGIN CSTYLED */ 4949 ZFS_MODULE_PARAM(zfs_zio, zio_, slow_io_ms, INT, ZMOD_RW, 4950 "Max I/O completion time (milliseconds) before marking it as slow"); 4951 4952 ZFS_MODULE_PARAM(zfs_zio, zio_, requeue_io_start_cut_in_line, INT, ZMOD_RW, 4953 "Prioritize requeued I/O"); 4954 4955 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_deferred_free, INT, ZMOD_RW, 4956 "Defer frees starting in this pass"); 4957 4958 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_dont_compress, INT, ZMOD_RW, 4959 "Don't compress starting in this pass"); 4960 4961 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_rewrite, INT, ZMOD_RW, 4962 "Rewrite new bps starting in this pass"); 4963 4964 ZFS_MODULE_PARAM(zfs_zio, zio_, dva_throttle_enabled, INT, ZMOD_RW, 4965 "Throttle block allocations in the ZIO pipeline"); 4966 4967 ZFS_MODULE_PARAM(zfs_zio, zio_, deadman_log_all, INT, ZMOD_RW, 4968 "Log all slow ZIOs, not just those with vdevs"); 4969 /* END CSTYLED */ 4970