xref: /freebsd/sys/contrib/openzfs/module/zfs/zio.c (revision 41ce62251c1ed0003fc13b8735de5f9eff4c5c03)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
24  * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25  * Copyright (c) 2017, Intel Corporation.
26  * Copyright (c) 2019, Klara Inc.
27  * Copyright (c) 2019, Allan Jude
28  */
29 
30 #include <sys/sysmacros.h>
31 #include <sys/zfs_context.h>
32 #include <sys/fm/fs/zfs.h>
33 #include <sys/spa.h>
34 #include <sys/txg.h>
35 #include <sys/spa_impl.h>
36 #include <sys/vdev_impl.h>
37 #include <sys/vdev_trim.h>
38 #include <sys/zio_impl.h>
39 #include <sys/zio_compress.h>
40 #include <sys/zio_checksum.h>
41 #include <sys/dmu_objset.h>
42 #include <sys/arc.h>
43 #include <sys/ddt.h>
44 #include <sys/blkptr.h>
45 #include <sys/zfeature.h>
46 #include <sys/dsl_scan.h>
47 #include <sys/metaslab_impl.h>
48 #include <sys/time.h>
49 #include <sys/trace_zfs.h>
50 #include <sys/abd.h>
51 #include <sys/dsl_crypt.h>
52 #include <cityhash.h>
53 
54 /*
55  * ==========================================================================
56  * I/O type descriptions
57  * ==========================================================================
58  */
59 const char *zio_type_name[ZIO_TYPES] = {
60 	/*
61 	 * Note: Linux kernel thread name length is limited
62 	 * so these names will differ from upstream open zfs.
63 	 */
64 	"z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_ioctl", "z_trim"
65 };
66 
67 int zio_dva_throttle_enabled = B_TRUE;
68 int zio_deadman_log_all = B_FALSE;
69 
70 /*
71  * ==========================================================================
72  * I/O kmem caches
73  * ==========================================================================
74  */
75 kmem_cache_t *zio_cache;
76 kmem_cache_t *zio_link_cache;
77 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
78 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
79 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
80 uint64_t zio_buf_cache_allocs[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
81 uint64_t zio_buf_cache_frees[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
82 #endif
83 
84 /* Mark IOs as "slow" if they take longer than 30 seconds */
85 int zio_slow_io_ms = (30 * MILLISEC);
86 
87 #define	BP_SPANB(indblkshift, level) \
88 	(((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
89 #define	COMPARE_META_LEVEL	0x80000000ul
90 /*
91  * The following actions directly effect the spa's sync-to-convergence logic.
92  * The values below define the sync pass when we start performing the action.
93  * Care should be taken when changing these values as they directly impact
94  * spa_sync() performance. Tuning these values may introduce subtle performance
95  * pathologies and should only be done in the context of performance analysis.
96  * These tunables will eventually be removed and replaced with #defines once
97  * enough analysis has been done to determine optimal values.
98  *
99  * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
100  * regular blocks are not deferred.
101  *
102  * Starting in sync pass 8 (zfs_sync_pass_dont_compress), we disable
103  * compression (including of metadata).  In practice, we don't have this
104  * many sync passes, so this has no effect.
105  *
106  * The original intent was that disabling compression would help the sync
107  * passes to converge. However, in practice disabling compression increases
108  * the average number of sync passes, because when we turn compression off, a
109  * lot of block's size will change and thus we have to re-allocate (not
110  * overwrite) them. It also increases the number of 128KB allocations (e.g.
111  * for indirect blocks and spacemaps) because these will not be compressed.
112  * The 128K allocations are especially detrimental to performance on highly
113  * fragmented systems, which may have very few free segments of this size,
114  * and may need to load new metaslabs to satisfy 128K allocations.
115  */
116 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
117 int zfs_sync_pass_dont_compress = 8; /* don't compress starting in this pass */
118 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
119 
120 /*
121  * An allocating zio is one that either currently has the DVA allocate
122  * stage set or will have it later in its lifetime.
123  */
124 #define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
125 
126 /*
127  * Enable smaller cores by excluding metadata
128  * allocations as well.
129  */
130 int zio_exclude_metadata = 0;
131 int zio_requeue_io_start_cut_in_line = 1;
132 
133 #ifdef ZFS_DEBUG
134 int zio_buf_debug_limit = 16384;
135 #else
136 int zio_buf_debug_limit = 0;
137 #endif
138 
139 static inline void __zio_execute(zio_t *zio);
140 
141 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t);
142 
143 void
144 zio_init(void)
145 {
146 	size_t c;
147 
148 	zio_cache = kmem_cache_create("zio_cache",
149 	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
150 	zio_link_cache = kmem_cache_create("zio_link_cache",
151 	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
152 
153 	/*
154 	 * For small buffers, we want a cache for each multiple of
155 	 * SPA_MINBLOCKSIZE.  For larger buffers, we want a cache
156 	 * for each quarter-power of 2.
157 	 */
158 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
159 		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
160 		size_t p2 = size;
161 		size_t align = 0;
162 		size_t data_cflags, cflags;
163 
164 		data_cflags = KMC_NODEBUG;
165 		cflags = (zio_exclude_metadata || size > zio_buf_debug_limit) ?
166 		    KMC_NODEBUG : 0;
167 
168 #if defined(_ILP32) && defined(_KERNEL)
169 		/*
170 		 * Cache size limited to 1M on 32-bit platforms until ARC
171 		 * buffers no longer require virtual address space.
172 		 */
173 		if (size > zfs_max_recordsize)
174 			break;
175 #endif
176 
177 		while (!ISP2(p2))
178 			p2 &= p2 - 1;
179 
180 #ifndef _KERNEL
181 		/*
182 		 * If we are using watchpoints, put each buffer on its own page,
183 		 * to eliminate the performance overhead of trapping to the
184 		 * kernel when modifying a non-watched buffer that shares the
185 		 * page with a watched buffer.
186 		 */
187 		if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
188 			continue;
189 		/*
190 		 * Here's the problem - on 4K native devices in userland on
191 		 * Linux using O_DIRECT, buffers must be 4K aligned or I/O
192 		 * will fail with EINVAL, causing zdb (and others) to coredump.
193 		 * Since userland probably doesn't need optimized buffer caches,
194 		 * we just force 4K alignment on everything.
195 		 */
196 		align = 8 * SPA_MINBLOCKSIZE;
197 #else
198 		if (size < PAGESIZE) {
199 			align = SPA_MINBLOCKSIZE;
200 		} else if (IS_P2ALIGNED(size, p2 >> 2)) {
201 			align = PAGESIZE;
202 		}
203 #endif
204 
205 		if (align != 0) {
206 			char name[36];
207 			(void) snprintf(name, sizeof (name), "zio_buf_%lu",
208 			    (ulong_t)size);
209 			zio_buf_cache[c] = kmem_cache_create(name, size,
210 			    align, NULL, NULL, NULL, NULL, NULL, cflags);
211 
212 			(void) snprintf(name, sizeof (name), "zio_data_buf_%lu",
213 			    (ulong_t)size);
214 			zio_data_buf_cache[c] = kmem_cache_create(name, size,
215 			    align, NULL, NULL, NULL, NULL, NULL, data_cflags);
216 		}
217 	}
218 
219 	while (--c != 0) {
220 		ASSERT(zio_buf_cache[c] != NULL);
221 		if (zio_buf_cache[c - 1] == NULL)
222 			zio_buf_cache[c - 1] = zio_buf_cache[c];
223 
224 		ASSERT(zio_data_buf_cache[c] != NULL);
225 		if (zio_data_buf_cache[c - 1] == NULL)
226 			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
227 	}
228 
229 	zio_inject_init();
230 
231 	lz4_init();
232 }
233 
234 void
235 zio_fini(void)
236 {
237 	size_t c;
238 	kmem_cache_t *last_cache = NULL;
239 	kmem_cache_t *last_data_cache = NULL;
240 
241 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
242 #ifdef _ILP32
243 		/*
244 		 * Cache size limited to 1M on 32-bit platforms until ARC
245 		 * buffers no longer require virtual address space.
246 		 */
247 		if (((c + 1) << SPA_MINBLOCKSHIFT) > zfs_max_recordsize)
248 			break;
249 #endif
250 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
251 		if (zio_buf_cache_allocs[c] != zio_buf_cache_frees[c])
252 			(void) printf("zio_fini: [%d] %llu != %llu\n",
253 			    (int)((c + 1) << SPA_MINBLOCKSHIFT),
254 			    (long long unsigned)zio_buf_cache_allocs[c],
255 			    (long long unsigned)zio_buf_cache_frees[c]);
256 #endif
257 		if (zio_buf_cache[c] != last_cache) {
258 			last_cache = zio_buf_cache[c];
259 			kmem_cache_destroy(zio_buf_cache[c]);
260 		}
261 		zio_buf_cache[c] = NULL;
262 
263 		if (zio_data_buf_cache[c] != last_data_cache) {
264 			last_data_cache = zio_data_buf_cache[c];
265 			kmem_cache_destroy(zio_data_buf_cache[c]);
266 		}
267 		zio_data_buf_cache[c] = NULL;
268 	}
269 
270 	kmem_cache_destroy(zio_link_cache);
271 	kmem_cache_destroy(zio_cache);
272 
273 	zio_inject_fini();
274 
275 	lz4_fini();
276 }
277 
278 /*
279  * ==========================================================================
280  * Allocate and free I/O buffers
281  * ==========================================================================
282  */
283 
284 /*
285  * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
286  * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
287  * useful to inspect ZFS metadata, but if possible, we should avoid keeping
288  * excess / transient data in-core during a crashdump.
289  */
290 void *
291 zio_buf_alloc(size_t size)
292 {
293 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
294 
295 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
296 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
297 	atomic_add_64(&zio_buf_cache_allocs[c], 1);
298 #endif
299 
300 	return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
301 }
302 
303 /*
304  * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
305  * crashdump if the kernel panics.  This exists so that we will limit the amount
306  * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
307  * of kernel heap dumped to disk when the kernel panics)
308  */
309 void *
310 zio_data_buf_alloc(size_t size)
311 {
312 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
313 
314 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
315 
316 	return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
317 }
318 
319 void
320 zio_buf_free(void *buf, size_t size)
321 {
322 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
323 
324 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
325 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
326 	atomic_add_64(&zio_buf_cache_frees[c], 1);
327 #endif
328 
329 	kmem_cache_free(zio_buf_cache[c], buf);
330 }
331 
332 void
333 zio_data_buf_free(void *buf, size_t size)
334 {
335 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
336 
337 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
338 
339 	kmem_cache_free(zio_data_buf_cache[c], buf);
340 }
341 
342 static void
343 zio_abd_free(void *abd, size_t size)
344 {
345 	abd_free((abd_t *)abd);
346 }
347 
348 /*
349  * ==========================================================================
350  * Push and pop I/O transform buffers
351  * ==========================================================================
352  */
353 void
354 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize,
355     zio_transform_func_t *transform)
356 {
357 	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
358 
359 	zt->zt_orig_abd = zio->io_abd;
360 	zt->zt_orig_size = zio->io_size;
361 	zt->zt_bufsize = bufsize;
362 	zt->zt_transform = transform;
363 
364 	zt->zt_next = zio->io_transform_stack;
365 	zio->io_transform_stack = zt;
366 
367 	zio->io_abd = data;
368 	zio->io_size = size;
369 }
370 
371 void
372 zio_pop_transforms(zio_t *zio)
373 {
374 	zio_transform_t *zt;
375 
376 	while ((zt = zio->io_transform_stack) != NULL) {
377 		if (zt->zt_transform != NULL)
378 			zt->zt_transform(zio,
379 			    zt->zt_orig_abd, zt->zt_orig_size);
380 
381 		if (zt->zt_bufsize != 0)
382 			abd_free(zio->io_abd);
383 
384 		zio->io_abd = zt->zt_orig_abd;
385 		zio->io_size = zt->zt_orig_size;
386 		zio->io_transform_stack = zt->zt_next;
387 
388 		kmem_free(zt, sizeof (zio_transform_t));
389 	}
390 }
391 
392 /*
393  * ==========================================================================
394  * I/O transform callbacks for subblocks, decompression, and decryption
395  * ==========================================================================
396  */
397 static void
398 zio_subblock(zio_t *zio, abd_t *data, uint64_t size)
399 {
400 	ASSERT(zio->io_size > size);
401 
402 	if (zio->io_type == ZIO_TYPE_READ)
403 		abd_copy(data, zio->io_abd, size);
404 }
405 
406 static void
407 zio_decompress(zio_t *zio, abd_t *data, uint64_t size)
408 {
409 	if (zio->io_error == 0) {
410 		void *tmp = abd_borrow_buf(data, size);
411 		int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
412 		    zio->io_abd, tmp, zio->io_size, size,
413 		    &zio->io_prop.zp_complevel);
414 		abd_return_buf_copy(data, tmp, size);
415 
416 		if (zio_injection_enabled && ret == 0)
417 			ret = zio_handle_fault_injection(zio, EINVAL);
418 
419 		if (ret != 0)
420 			zio->io_error = SET_ERROR(EIO);
421 	}
422 }
423 
424 static void
425 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size)
426 {
427 	int ret;
428 	void *tmp;
429 	blkptr_t *bp = zio->io_bp;
430 	spa_t *spa = zio->io_spa;
431 	uint64_t dsobj = zio->io_bookmark.zb_objset;
432 	uint64_t lsize = BP_GET_LSIZE(bp);
433 	dmu_object_type_t ot = BP_GET_TYPE(bp);
434 	uint8_t salt[ZIO_DATA_SALT_LEN];
435 	uint8_t iv[ZIO_DATA_IV_LEN];
436 	uint8_t mac[ZIO_DATA_MAC_LEN];
437 	boolean_t no_crypt = B_FALSE;
438 
439 	ASSERT(BP_USES_CRYPT(bp));
440 	ASSERT3U(size, !=, 0);
441 
442 	if (zio->io_error != 0)
443 		return;
444 
445 	/*
446 	 * Verify the cksum of MACs stored in an indirect bp. It will always
447 	 * be possible to verify this since it does not require an encryption
448 	 * key.
449 	 */
450 	if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) {
451 		zio_crypt_decode_mac_bp(bp, mac);
452 
453 		if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) {
454 			/*
455 			 * We haven't decompressed the data yet, but
456 			 * zio_crypt_do_indirect_mac_checksum() requires
457 			 * decompressed data to be able to parse out the MACs
458 			 * from the indirect block. We decompress it now and
459 			 * throw away the result after we are finished.
460 			 */
461 			tmp = zio_buf_alloc(lsize);
462 			ret = zio_decompress_data(BP_GET_COMPRESS(bp),
463 			    zio->io_abd, tmp, zio->io_size, lsize,
464 			    &zio->io_prop.zp_complevel);
465 			if (ret != 0) {
466 				ret = SET_ERROR(EIO);
467 				goto error;
468 			}
469 			ret = zio_crypt_do_indirect_mac_checksum(B_FALSE,
470 			    tmp, lsize, BP_SHOULD_BYTESWAP(bp), mac);
471 			zio_buf_free(tmp, lsize);
472 		} else {
473 			ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE,
474 			    zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac);
475 		}
476 		abd_copy(data, zio->io_abd, size);
477 
478 		if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) {
479 			ret = zio_handle_decrypt_injection(spa,
480 			    &zio->io_bookmark, ot, ECKSUM);
481 		}
482 		if (ret != 0)
483 			goto error;
484 
485 		return;
486 	}
487 
488 	/*
489 	 * If this is an authenticated block, just check the MAC. It would be
490 	 * nice to separate this out into its own flag, but for the moment
491 	 * enum zio_flag is out of bits.
492 	 */
493 	if (BP_IS_AUTHENTICATED(bp)) {
494 		if (ot == DMU_OT_OBJSET) {
495 			ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa,
496 			    dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp));
497 		} else {
498 			zio_crypt_decode_mac_bp(bp, mac);
499 			ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj,
500 			    zio->io_abd, size, mac);
501 			if (zio_injection_enabled && ret == 0) {
502 				ret = zio_handle_decrypt_injection(spa,
503 				    &zio->io_bookmark, ot, ECKSUM);
504 			}
505 		}
506 		abd_copy(data, zio->io_abd, size);
507 
508 		if (ret != 0)
509 			goto error;
510 
511 		return;
512 	}
513 
514 	zio_crypt_decode_params_bp(bp, salt, iv);
515 
516 	if (ot == DMU_OT_INTENT_LOG) {
517 		tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t));
518 		zio_crypt_decode_mac_zil(tmp, mac);
519 		abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t));
520 	} else {
521 		zio_crypt_decode_mac_bp(bp, mac);
522 	}
523 
524 	ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp),
525 	    BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data,
526 	    zio->io_abd, &no_crypt);
527 	if (no_crypt)
528 		abd_copy(data, zio->io_abd, size);
529 
530 	if (ret != 0)
531 		goto error;
532 
533 	return;
534 
535 error:
536 	/* assert that the key was found unless this was speculative */
537 	ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE));
538 
539 	/*
540 	 * If there was a decryption / authentication error return EIO as
541 	 * the io_error. If this was not a speculative zio, create an ereport.
542 	 */
543 	if (ret == ECKSUM) {
544 		zio->io_error = SET_ERROR(EIO);
545 		if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
546 			spa_log_error(spa, &zio->io_bookmark);
547 			(void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
548 			    spa, NULL, &zio->io_bookmark, zio, 0);
549 		}
550 	} else {
551 		zio->io_error = ret;
552 	}
553 }
554 
555 /*
556  * ==========================================================================
557  * I/O parent/child relationships and pipeline interlocks
558  * ==========================================================================
559  */
560 zio_t *
561 zio_walk_parents(zio_t *cio, zio_link_t **zl)
562 {
563 	list_t *pl = &cio->io_parent_list;
564 
565 	*zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl);
566 	if (*zl == NULL)
567 		return (NULL);
568 
569 	ASSERT((*zl)->zl_child == cio);
570 	return ((*zl)->zl_parent);
571 }
572 
573 zio_t *
574 zio_walk_children(zio_t *pio, zio_link_t **zl)
575 {
576 	list_t *cl = &pio->io_child_list;
577 
578 	ASSERT(MUTEX_HELD(&pio->io_lock));
579 
580 	*zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl);
581 	if (*zl == NULL)
582 		return (NULL);
583 
584 	ASSERT((*zl)->zl_parent == pio);
585 	return ((*zl)->zl_child);
586 }
587 
588 zio_t *
589 zio_unique_parent(zio_t *cio)
590 {
591 	zio_link_t *zl = NULL;
592 	zio_t *pio = zio_walk_parents(cio, &zl);
593 
594 	VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL);
595 	return (pio);
596 }
597 
598 void
599 zio_add_child(zio_t *pio, zio_t *cio)
600 {
601 	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
602 
603 	/*
604 	 * Logical I/Os can have logical, gang, or vdev children.
605 	 * Gang I/Os can have gang or vdev children.
606 	 * Vdev I/Os can only have vdev children.
607 	 * The following ASSERT captures all of these constraints.
608 	 */
609 	ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
610 
611 	zl->zl_parent = pio;
612 	zl->zl_child = cio;
613 
614 	mutex_enter(&pio->io_lock);
615 	mutex_enter(&cio->io_lock);
616 
617 	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
618 
619 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
620 		pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
621 
622 	list_insert_head(&pio->io_child_list, zl);
623 	list_insert_head(&cio->io_parent_list, zl);
624 
625 	pio->io_child_count++;
626 	cio->io_parent_count++;
627 
628 	mutex_exit(&cio->io_lock);
629 	mutex_exit(&pio->io_lock);
630 }
631 
632 static void
633 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
634 {
635 	ASSERT(zl->zl_parent == pio);
636 	ASSERT(zl->zl_child == cio);
637 
638 	mutex_enter(&pio->io_lock);
639 	mutex_enter(&cio->io_lock);
640 
641 	list_remove(&pio->io_child_list, zl);
642 	list_remove(&cio->io_parent_list, zl);
643 
644 	pio->io_child_count--;
645 	cio->io_parent_count--;
646 
647 	mutex_exit(&cio->io_lock);
648 	mutex_exit(&pio->io_lock);
649 	kmem_cache_free(zio_link_cache, zl);
650 }
651 
652 static boolean_t
653 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait)
654 {
655 	boolean_t waiting = B_FALSE;
656 
657 	mutex_enter(&zio->io_lock);
658 	ASSERT(zio->io_stall == NULL);
659 	for (int c = 0; c < ZIO_CHILD_TYPES; c++) {
660 		if (!(ZIO_CHILD_BIT_IS_SET(childbits, c)))
661 			continue;
662 
663 		uint64_t *countp = &zio->io_children[c][wait];
664 		if (*countp != 0) {
665 			zio->io_stage >>= 1;
666 			ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN);
667 			zio->io_stall = countp;
668 			waiting = B_TRUE;
669 			break;
670 		}
671 	}
672 	mutex_exit(&zio->io_lock);
673 	return (waiting);
674 }
675 
676 __attribute__((always_inline))
677 static inline void
678 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait,
679     zio_t **next_to_executep)
680 {
681 	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
682 	int *errorp = &pio->io_child_error[zio->io_child_type];
683 
684 	mutex_enter(&pio->io_lock);
685 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
686 		*errorp = zio_worst_error(*errorp, zio->io_error);
687 	pio->io_reexecute |= zio->io_reexecute;
688 	ASSERT3U(*countp, >, 0);
689 
690 	(*countp)--;
691 
692 	if (*countp == 0 && pio->io_stall == countp) {
693 		zio_taskq_type_t type =
694 		    pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE :
695 		    ZIO_TASKQ_INTERRUPT;
696 		pio->io_stall = NULL;
697 		mutex_exit(&pio->io_lock);
698 
699 		/*
700 		 * If we can tell the caller to execute this parent next, do
701 		 * so.  Otherwise dispatch the parent zio as its own task.
702 		 *
703 		 * Having the caller execute the parent when possible reduces
704 		 * locking on the zio taskq's, reduces context switch
705 		 * overhead, and has no recursion penalty.  Note that one
706 		 * read from disk typically causes at least 3 zio's: a
707 		 * zio_null(), the logical zio_read(), and then a physical
708 		 * zio.  When the physical ZIO completes, we are able to call
709 		 * zio_done() on all 3 of these zio's from one invocation of
710 		 * zio_execute() by returning the parent back to
711 		 * zio_execute().  Since the parent isn't executed until this
712 		 * thread returns back to zio_execute(), the caller should do
713 		 * so promptly.
714 		 *
715 		 * In other cases, dispatching the parent prevents
716 		 * overflowing the stack when we have deeply nested
717 		 * parent-child relationships, as we do with the "mega zio"
718 		 * of writes for spa_sync(), and the chain of ZIL blocks.
719 		 */
720 		if (next_to_executep != NULL && *next_to_executep == NULL) {
721 			*next_to_executep = pio;
722 		} else {
723 			zio_taskq_dispatch(pio, type, B_FALSE);
724 		}
725 	} else {
726 		mutex_exit(&pio->io_lock);
727 	}
728 }
729 
730 static void
731 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
732 {
733 	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
734 		zio->io_error = zio->io_child_error[c];
735 }
736 
737 int
738 zio_bookmark_compare(const void *x1, const void *x2)
739 {
740 	const zio_t *z1 = x1;
741 	const zio_t *z2 = x2;
742 
743 	if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset)
744 		return (-1);
745 	if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset)
746 		return (1);
747 
748 	if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object)
749 		return (-1);
750 	if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object)
751 		return (1);
752 
753 	if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level)
754 		return (-1);
755 	if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level)
756 		return (1);
757 
758 	if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid)
759 		return (-1);
760 	if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid)
761 		return (1);
762 
763 	if (z1 < z2)
764 		return (-1);
765 	if (z1 > z2)
766 		return (1);
767 
768 	return (0);
769 }
770 
771 /*
772  * ==========================================================================
773  * Create the various types of I/O (read, write, free, etc)
774  * ==========================================================================
775  */
776 static zio_t *
777 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
778     abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done,
779     void *private, zio_type_t type, zio_priority_t priority,
780     enum zio_flag flags, vdev_t *vd, uint64_t offset,
781     const zbookmark_phys_t *zb, enum zio_stage stage,
782     enum zio_stage pipeline)
783 {
784 	zio_t *zio;
785 
786 	IMPLY(type != ZIO_TYPE_TRIM, psize <= SPA_MAXBLOCKSIZE);
787 	ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0);
788 	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
789 
790 	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
791 	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
792 	ASSERT(vd || stage == ZIO_STAGE_OPEN);
793 
794 	IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0);
795 
796 	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
797 	bzero(zio, sizeof (zio_t));
798 
799 	mutex_init(&zio->io_lock, NULL, MUTEX_NOLOCKDEP, NULL);
800 	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
801 
802 	list_create(&zio->io_parent_list, sizeof (zio_link_t),
803 	    offsetof(zio_link_t, zl_parent_node));
804 	list_create(&zio->io_child_list, sizeof (zio_link_t),
805 	    offsetof(zio_link_t, zl_child_node));
806 	metaslab_trace_init(&zio->io_alloc_list);
807 
808 	if (vd != NULL)
809 		zio->io_child_type = ZIO_CHILD_VDEV;
810 	else if (flags & ZIO_FLAG_GANG_CHILD)
811 		zio->io_child_type = ZIO_CHILD_GANG;
812 	else if (flags & ZIO_FLAG_DDT_CHILD)
813 		zio->io_child_type = ZIO_CHILD_DDT;
814 	else
815 		zio->io_child_type = ZIO_CHILD_LOGICAL;
816 
817 	if (bp != NULL) {
818 		zio->io_bp = (blkptr_t *)bp;
819 		zio->io_bp_copy = *bp;
820 		zio->io_bp_orig = *bp;
821 		if (type != ZIO_TYPE_WRITE ||
822 		    zio->io_child_type == ZIO_CHILD_DDT)
823 			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
824 		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
825 			zio->io_logical = zio;
826 		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
827 			pipeline |= ZIO_GANG_STAGES;
828 	}
829 
830 	zio->io_spa = spa;
831 	zio->io_txg = txg;
832 	zio->io_done = done;
833 	zio->io_private = private;
834 	zio->io_type = type;
835 	zio->io_priority = priority;
836 	zio->io_vd = vd;
837 	zio->io_offset = offset;
838 	zio->io_orig_abd = zio->io_abd = data;
839 	zio->io_orig_size = zio->io_size = psize;
840 	zio->io_lsize = lsize;
841 	zio->io_orig_flags = zio->io_flags = flags;
842 	zio->io_orig_stage = zio->io_stage = stage;
843 	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
844 	zio->io_pipeline_trace = ZIO_STAGE_OPEN;
845 
846 	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
847 	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
848 
849 	if (zb != NULL)
850 		zio->io_bookmark = *zb;
851 
852 	if (pio != NULL) {
853 		if (zio->io_metaslab_class == NULL)
854 			zio->io_metaslab_class = pio->io_metaslab_class;
855 		if (zio->io_logical == NULL)
856 			zio->io_logical = pio->io_logical;
857 		if (zio->io_child_type == ZIO_CHILD_GANG)
858 			zio->io_gang_leader = pio->io_gang_leader;
859 		zio_add_child(pio, zio);
860 	}
861 
862 	taskq_init_ent(&zio->io_tqent);
863 
864 	return (zio);
865 }
866 
867 static void
868 zio_destroy(zio_t *zio)
869 {
870 	metaslab_trace_fini(&zio->io_alloc_list);
871 	list_destroy(&zio->io_parent_list);
872 	list_destroy(&zio->io_child_list);
873 	mutex_destroy(&zio->io_lock);
874 	cv_destroy(&zio->io_cv);
875 	kmem_cache_free(zio_cache, zio);
876 }
877 
878 zio_t *
879 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
880     void *private, enum zio_flag flags)
881 {
882 	zio_t *zio;
883 
884 	zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
885 	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
886 	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
887 
888 	return (zio);
889 }
890 
891 zio_t *
892 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
893 {
894 	return (zio_null(NULL, spa, NULL, done, private, flags));
895 }
896 
897 static int
898 zfs_blkptr_verify_log(spa_t *spa, const blkptr_t *bp,
899     enum blk_verify_flag blk_verify, const char *fmt, ...)
900 {
901 	va_list adx;
902 	char buf[256];
903 
904 	va_start(adx, fmt);
905 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
906 	va_end(adx);
907 
908 	switch (blk_verify) {
909 	case BLK_VERIFY_HALT:
910 		dprintf_bp(bp, "blkptr at %p dprintf_bp():", bp);
911 		zfs_panic_recover("%s: %s", spa_name(spa), buf);
912 		break;
913 	case BLK_VERIFY_LOG:
914 		zfs_dbgmsg("%s: %s", spa_name(spa), buf);
915 		break;
916 	case BLK_VERIFY_ONLY:
917 		break;
918 	}
919 
920 	return (1);
921 }
922 
923 /*
924  * Verify the block pointer fields contain reasonable values.  This means
925  * it only contains known object types, checksum/compression identifiers,
926  * block sizes within the maximum allowed limits, valid DVAs, etc.
927  *
928  * If everything checks out B_TRUE is returned.  The zfs_blkptr_verify
929  * argument controls the behavior when an invalid field is detected.
930  *
931  * Modes for zfs_blkptr_verify:
932  *   1) BLK_VERIFY_ONLY (evaluate the block)
933  *   2) BLK_VERIFY_LOG (evaluate the block and log problems)
934  *   3) BLK_VERIFY_HALT (call zfs_panic_recover on error)
935  */
936 boolean_t
937 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp, boolean_t config_held,
938     enum blk_verify_flag blk_verify)
939 {
940 	int errors = 0;
941 
942 	if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
943 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
944 		    "blkptr at %p has invalid TYPE %llu",
945 		    bp, (longlong_t)BP_GET_TYPE(bp));
946 	}
947 	if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS ||
948 	    BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) {
949 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
950 		    "blkptr at %p has invalid CHECKSUM %llu",
951 		    bp, (longlong_t)BP_GET_CHECKSUM(bp));
952 	}
953 	if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS ||
954 	    BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) {
955 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
956 		    "blkptr at %p has invalid COMPRESS %llu",
957 		    bp, (longlong_t)BP_GET_COMPRESS(bp));
958 	}
959 	if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
960 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
961 		    "blkptr at %p has invalid LSIZE %llu",
962 		    bp, (longlong_t)BP_GET_LSIZE(bp));
963 	}
964 	if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
965 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
966 		    "blkptr at %p has invalid PSIZE %llu",
967 		    bp, (longlong_t)BP_GET_PSIZE(bp));
968 	}
969 
970 	if (BP_IS_EMBEDDED(bp)) {
971 		if (BPE_GET_ETYPE(bp) >= NUM_BP_EMBEDDED_TYPES) {
972 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
973 			    "blkptr at %p has invalid ETYPE %llu",
974 			    bp, (longlong_t)BPE_GET_ETYPE(bp));
975 		}
976 	}
977 
978 	/*
979 	 * Do not verify individual DVAs if the config is not trusted. This
980 	 * will be done once the zio is executed in vdev_mirror_map_alloc.
981 	 */
982 	if (!spa->spa_trust_config)
983 		return (B_TRUE);
984 
985 	if (!config_held)
986 		spa_config_enter(spa, SCL_VDEV, bp, RW_READER);
987 	else
988 		ASSERT(spa_config_held(spa, SCL_VDEV, RW_WRITER));
989 	/*
990 	 * Pool-specific checks.
991 	 *
992 	 * Note: it would be nice to verify that the blk_birth and
993 	 * BP_PHYSICAL_BIRTH() are not too large.  However, spa_freeze()
994 	 * allows the birth time of log blocks (and dmu_sync()-ed blocks
995 	 * that are in the log) to be arbitrarily large.
996 	 */
997 	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
998 		uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]);
999 
1000 		if (vdevid >= spa->spa_root_vdev->vdev_children) {
1001 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1002 			    "blkptr at %p DVA %u has invalid VDEV %llu",
1003 			    bp, i, (longlong_t)vdevid);
1004 			continue;
1005 		}
1006 		vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1007 		if (vd == NULL) {
1008 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1009 			    "blkptr at %p DVA %u has invalid VDEV %llu",
1010 			    bp, i, (longlong_t)vdevid);
1011 			continue;
1012 		}
1013 		if (vd->vdev_ops == &vdev_hole_ops) {
1014 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1015 			    "blkptr at %p DVA %u has hole VDEV %llu",
1016 			    bp, i, (longlong_t)vdevid);
1017 			continue;
1018 		}
1019 		if (vd->vdev_ops == &vdev_missing_ops) {
1020 			/*
1021 			 * "missing" vdevs are valid during import, but we
1022 			 * don't have their detailed info (e.g. asize), so
1023 			 * we can't perform any more checks on them.
1024 			 */
1025 			continue;
1026 		}
1027 		uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
1028 		uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]);
1029 		if (BP_IS_GANG(bp))
1030 			asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
1031 		if (offset + asize > vd->vdev_asize) {
1032 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1033 			    "blkptr at %p DVA %u has invalid OFFSET %llu",
1034 			    bp, i, (longlong_t)offset);
1035 		}
1036 	}
1037 	if (errors > 0)
1038 		dprintf_bp(bp, "blkptr at %p dprintf_bp():", bp);
1039 	if (!config_held)
1040 		spa_config_exit(spa, SCL_VDEV, bp);
1041 
1042 	return (errors == 0);
1043 }
1044 
1045 boolean_t
1046 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp)
1047 {
1048 	uint64_t vdevid = DVA_GET_VDEV(dva);
1049 
1050 	if (vdevid >= spa->spa_root_vdev->vdev_children)
1051 		return (B_FALSE);
1052 
1053 	vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1054 	if (vd == NULL)
1055 		return (B_FALSE);
1056 
1057 	if (vd->vdev_ops == &vdev_hole_ops)
1058 		return (B_FALSE);
1059 
1060 	if (vd->vdev_ops == &vdev_missing_ops) {
1061 		return (B_FALSE);
1062 	}
1063 
1064 	uint64_t offset = DVA_GET_OFFSET(dva);
1065 	uint64_t asize = DVA_GET_ASIZE(dva);
1066 
1067 	if (BP_IS_GANG(bp))
1068 		asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
1069 	if (offset + asize > vd->vdev_asize)
1070 		return (B_FALSE);
1071 
1072 	return (B_TRUE);
1073 }
1074 
1075 zio_t *
1076 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
1077     abd_t *data, uint64_t size, zio_done_func_t *done, void *private,
1078     zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
1079 {
1080 	zio_t *zio;
1081 
1082 	(void) zfs_blkptr_verify(spa, bp, flags & ZIO_FLAG_CONFIG_WRITER,
1083 	    BLK_VERIFY_HALT);
1084 
1085 	zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
1086 	    data, size, size, done, private,
1087 	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
1088 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1089 	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
1090 
1091 	return (zio);
1092 }
1093 
1094 zio_t *
1095 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
1096     abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp,
1097     zio_done_func_t *ready, zio_done_func_t *children_ready,
1098     zio_done_func_t *physdone, zio_done_func_t *done,
1099     void *private, zio_priority_t priority, enum zio_flag flags,
1100     const zbookmark_phys_t *zb)
1101 {
1102 	zio_t *zio;
1103 
1104 	ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
1105 	    zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
1106 	    zp->zp_compress >= ZIO_COMPRESS_OFF &&
1107 	    zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
1108 	    DMU_OT_IS_VALID(zp->zp_type) &&
1109 	    zp->zp_level < 32 &&
1110 	    zp->zp_copies > 0 &&
1111 	    zp->zp_copies <= spa_max_replication(spa));
1112 
1113 	zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private,
1114 	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
1115 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1116 	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
1117 
1118 	zio->io_ready = ready;
1119 	zio->io_children_ready = children_ready;
1120 	zio->io_physdone = physdone;
1121 	zio->io_prop = *zp;
1122 
1123 	/*
1124 	 * Data can be NULL if we are going to call zio_write_override() to
1125 	 * provide the already-allocated BP.  But we may need the data to
1126 	 * verify a dedup hit (if requested).  In this case, don't try to
1127 	 * dedup (just take the already-allocated BP verbatim). Encrypted
1128 	 * dedup blocks need data as well so we also disable dedup in this
1129 	 * case.
1130 	 */
1131 	if (data == NULL &&
1132 	    (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) {
1133 		zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
1134 	}
1135 
1136 	return (zio);
1137 }
1138 
1139 zio_t *
1140 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data,
1141     uint64_t size, zio_done_func_t *done, void *private,
1142     zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb)
1143 {
1144 	zio_t *zio;
1145 
1146 	zio = zio_create(pio, spa, txg, bp, data, size, size, done, private,
1147 	    ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb,
1148 	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
1149 
1150 	return (zio);
1151 }
1152 
1153 void
1154 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
1155 {
1156 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
1157 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1158 	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1159 	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
1160 
1161 	/*
1162 	 * We must reset the io_prop to match the values that existed
1163 	 * when the bp was first written by dmu_sync() keeping in mind
1164 	 * that nopwrite and dedup are mutually exclusive.
1165 	 */
1166 	zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
1167 	zio->io_prop.zp_nopwrite = nopwrite;
1168 	zio->io_prop.zp_copies = copies;
1169 	zio->io_bp_override = bp;
1170 }
1171 
1172 void
1173 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
1174 {
1175 
1176 	(void) zfs_blkptr_verify(spa, bp, B_FALSE, BLK_VERIFY_HALT);
1177 
1178 	/*
1179 	 * The check for EMBEDDED is a performance optimization.  We
1180 	 * process the free here (by ignoring it) rather than
1181 	 * putting it on the list and then processing it in zio_free_sync().
1182 	 */
1183 	if (BP_IS_EMBEDDED(bp))
1184 		return;
1185 	metaslab_check_free(spa, bp);
1186 
1187 	/*
1188 	 * Frees that are for the currently-syncing txg, are not going to be
1189 	 * deferred, and which will not need to do a read (i.e. not GANG or
1190 	 * DEDUP), can be processed immediately.  Otherwise, put them on the
1191 	 * in-memory list for later processing.
1192 	 *
1193 	 * Note that we only defer frees after zfs_sync_pass_deferred_free
1194 	 * when the log space map feature is disabled. [see relevant comment
1195 	 * in spa_sync_iterate_to_convergence()]
1196 	 */
1197 	if (BP_IS_GANG(bp) ||
1198 	    BP_GET_DEDUP(bp) ||
1199 	    txg != spa->spa_syncing_txg ||
1200 	    (spa_sync_pass(spa) >= zfs_sync_pass_deferred_free &&
1201 	    !spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))) {
1202 		bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
1203 	} else {
1204 		VERIFY3P(zio_free_sync(NULL, spa, txg, bp, 0), ==, NULL);
1205 	}
1206 }
1207 
1208 /*
1209  * To improve performance, this function may return NULL if we were able
1210  * to do the free immediately.  This avoids the cost of creating a zio
1211  * (and linking it to the parent, etc).
1212  */
1213 zio_t *
1214 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1215     enum zio_flag flags)
1216 {
1217 	ASSERT(!BP_IS_HOLE(bp));
1218 	ASSERT(spa_syncing_txg(spa) == txg);
1219 
1220 	if (BP_IS_EMBEDDED(bp))
1221 		return (NULL);
1222 
1223 	metaslab_check_free(spa, bp);
1224 	arc_freed(spa, bp);
1225 	dsl_scan_freed(spa, bp);
1226 
1227 	if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp)) {
1228 		/*
1229 		 * GANG and DEDUP blocks can induce a read (for the gang block
1230 		 * header, or the DDT), so issue them asynchronously so that
1231 		 * this thread is not tied up.
1232 		 */
1233 		enum zio_stage stage =
1234 		    ZIO_FREE_PIPELINE | ZIO_STAGE_ISSUE_ASYNC;
1235 
1236 		return (zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1237 		    BP_GET_PSIZE(bp), NULL, NULL,
1238 		    ZIO_TYPE_FREE, ZIO_PRIORITY_NOW,
1239 		    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage));
1240 	} else {
1241 		metaslab_free(spa, bp, txg, B_FALSE);
1242 		return (NULL);
1243 	}
1244 }
1245 
1246 zio_t *
1247 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1248     zio_done_func_t *done, void *private, enum zio_flag flags)
1249 {
1250 	zio_t *zio;
1251 
1252 	(void) zfs_blkptr_verify(spa, bp, flags & ZIO_FLAG_CONFIG_WRITER,
1253 	    BLK_VERIFY_HALT);
1254 
1255 	if (BP_IS_EMBEDDED(bp))
1256 		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
1257 
1258 	/*
1259 	 * A claim is an allocation of a specific block.  Claims are needed
1260 	 * to support immediate writes in the intent log.  The issue is that
1261 	 * immediate writes contain committed data, but in a txg that was
1262 	 * *not* committed.  Upon opening the pool after an unclean shutdown,
1263 	 * the intent log claims all blocks that contain immediate write data
1264 	 * so that the SPA knows they're in use.
1265 	 *
1266 	 * All claims *must* be resolved in the first txg -- before the SPA
1267 	 * starts allocating blocks -- so that nothing is allocated twice.
1268 	 * If txg == 0 we just verify that the block is claimable.
1269 	 */
1270 	ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <,
1271 	    spa_min_claim_txg(spa));
1272 	ASSERT(txg == spa_min_claim_txg(spa) || txg == 0);
1273 	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(1M) */
1274 
1275 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1276 	    BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW,
1277 	    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
1278 	ASSERT0(zio->io_queued_timestamp);
1279 
1280 	return (zio);
1281 }
1282 
1283 zio_t *
1284 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
1285     zio_done_func_t *done, void *private, enum zio_flag flags)
1286 {
1287 	zio_t *zio;
1288 	int c;
1289 
1290 	if (vd->vdev_children == 0) {
1291 		zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
1292 		    ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
1293 		    ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
1294 
1295 		zio->io_cmd = cmd;
1296 	} else {
1297 		zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
1298 
1299 		for (c = 0; c < vd->vdev_children; c++)
1300 			zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
1301 			    done, private, flags));
1302 	}
1303 
1304 	return (zio);
1305 }
1306 
1307 zio_t *
1308 zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1309     zio_done_func_t *done, void *private, zio_priority_t priority,
1310     enum zio_flag flags, enum trim_flag trim_flags)
1311 {
1312 	zio_t *zio;
1313 
1314 	ASSERT0(vd->vdev_children);
1315 	ASSERT0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
1316 	ASSERT0(P2PHASE(size, 1ULL << vd->vdev_ashift));
1317 	ASSERT3U(size, !=, 0);
1318 
1319 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, NULL, size, size, done,
1320 	    private, ZIO_TYPE_TRIM, priority, flags | ZIO_FLAG_PHYSICAL,
1321 	    vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_TRIM_PIPELINE);
1322 	zio->io_trim_flags = trim_flags;
1323 
1324 	return (zio);
1325 }
1326 
1327 zio_t *
1328 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1329     abd_t *data, int checksum, zio_done_func_t *done, void *private,
1330     zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1331 {
1332 	zio_t *zio;
1333 
1334 	ASSERT(vd->vdev_children == 0);
1335 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1336 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1337 	ASSERT3U(offset + size, <=, vd->vdev_psize);
1338 
1339 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1340 	    private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1341 	    offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
1342 
1343 	zio->io_prop.zp_checksum = checksum;
1344 
1345 	return (zio);
1346 }
1347 
1348 zio_t *
1349 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1350     abd_t *data, int checksum, zio_done_func_t *done, void *private,
1351     zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1352 {
1353 	zio_t *zio;
1354 
1355 	ASSERT(vd->vdev_children == 0);
1356 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1357 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1358 	ASSERT3U(offset + size, <=, vd->vdev_psize);
1359 
1360 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1361 	    private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1362 	    offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
1363 
1364 	zio->io_prop.zp_checksum = checksum;
1365 
1366 	if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
1367 		/*
1368 		 * zec checksums are necessarily destructive -- they modify
1369 		 * the end of the write buffer to hold the verifier/checksum.
1370 		 * Therefore, we must make a local copy in case the data is
1371 		 * being written to multiple places in parallel.
1372 		 */
1373 		abd_t *wbuf = abd_alloc_sametype(data, size);
1374 		abd_copy(wbuf, data, size);
1375 
1376 		zio_push_transform(zio, wbuf, size, size, NULL);
1377 	}
1378 
1379 	return (zio);
1380 }
1381 
1382 /*
1383  * Create a child I/O to do some work for us.
1384  */
1385 zio_t *
1386 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1387     abd_t *data, uint64_t size, int type, zio_priority_t priority,
1388     enum zio_flag flags, zio_done_func_t *done, void *private)
1389 {
1390 	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1391 	zio_t *zio;
1392 
1393 	/*
1394 	 * vdev child I/Os do not propagate their error to the parent.
1395 	 * Therefore, for correct operation the caller *must* check for
1396 	 * and handle the error in the child i/o's done callback.
1397 	 * The only exceptions are i/os that we don't care about
1398 	 * (OPTIONAL or REPAIR).
1399 	 */
1400 	ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) ||
1401 	    done != NULL);
1402 
1403 	if (type == ZIO_TYPE_READ && bp != NULL) {
1404 		/*
1405 		 * If we have the bp, then the child should perform the
1406 		 * checksum and the parent need not.  This pushes error
1407 		 * detection as close to the leaves as possible and
1408 		 * eliminates redundant checksums in the interior nodes.
1409 		 */
1410 		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1411 		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1412 	}
1413 
1414 	if (vd->vdev_ops->vdev_op_leaf) {
1415 		ASSERT0(vd->vdev_children);
1416 		offset += VDEV_LABEL_START_SIZE;
1417 	}
1418 
1419 	flags |= ZIO_VDEV_CHILD_FLAGS(pio);
1420 
1421 	/*
1422 	 * If we've decided to do a repair, the write is not speculative --
1423 	 * even if the original read was.
1424 	 */
1425 	if (flags & ZIO_FLAG_IO_REPAIR)
1426 		flags &= ~ZIO_FLAG_SPECULATIVE;
1427 
1428 	/*
1429 	 * If we're creating a child I/O that is not associated with a
1430 	 * top-level vdev, then the child zio is not an allocating I/O.
1431 	 * If this is a retried I/O then we ignore it since we will
1432 	 * have already processed the original allocating I/O.
1433 	 */
1434 	if (flags & ZIO_FLAG_IO_ALLOCATING &&
1435 	    (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) {
1436 		ASSERT(pio->io_metaslab_class != NULL);
1437 		ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled);
1438 		ASSERT(type == ZIO_TYPE_WRITE);
1439 		ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE);
1440 		ASSERT(!(flags & ZIO_FLAG_IO_REPAIR));
1441 		ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) ||
1442 		    pio->io_child_type == ZIO_CHILD_GANG);
1443 
1444 		flags &= ~ZIO_FLAG_IO_ALLOCATING;
1445 	}
1446 
1447 
1448 	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size,
1449 	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1450 	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1451 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
1452 
1453 	zio->io_physdone = pio->io_physdone;
1454 	if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
1455 		zio->io_logical->io_phys_children++;
1456 
1457 	return (zio);
1458 }
1459 
1460 zio_t *
1461 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size,
1462     zio_type_t type, zio_priority_t priority, enum zio_flag flags,
1463     zio_done_func_t *done, void *private)
1464 {
1465 	zio_t *zio;
1466 
1467 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1468 
1469 	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1470 	    data, size, size, done, private, type, priority,
1471 	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1472 	    vd, offset, NULL,
1473 	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1474 
1475 	return (zio);
1476 }
1477 
1478 void
1479 zio_flush(zio_t *zio, vdev_t *vd)
1480 {
1481 	zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
1482 	    NULL, NULL,
1483 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1484 }
1485 
1486 void
1487 zio_shrink(zio_t *zio, uint64_t size)
1488 {
1489 	ASSERT3P(zio->io_executor, ==, NULL);
1490 	ASSERT3U(zio->io_orig_size, ==, zio->io_size);
1491 	ASSERT3U(size, <=, zio->io_size);
1492 
1493 	/*
1494 	 * We don't shrink for raidz because of problems with the
1495 	 * reconstruction when reading back less than the block size.
1496 	 * Note, BP_IS_RAIDZ() assumes no compression.
1497 	 */
1498 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1499 	if (!BP_IS_RAIDZ(zio->io_bp)) {
1500 		/* we are not doing a raw write */
1501 		ASSERT3U(zio->io_size, ==, zio->io_lsize);
1502 		zio->io_orig_size = zio->io_size = zio->io_lsize = size;
1503 	}
1504 }
1505 
1506 /*
1507  * ==========================================================================
1508  * Prepare to read and write logical blocks
1509  * ==========================================================================
1510  */
1511 
1512 static zio_t *
1513 zio_read_bp_init(zio_t *zio)
1514 {
1515 	blkptr_t *bp = zio->io_bp;
1516 	uint64_t psize =
1517 	    BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1518 
1519 	ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1520 
1521 	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1522 	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
1523 	    !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1524 		zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1525 		    psize, psize, zio_decompress);
1526 	}
1527 
1528 	if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) ||
1529 	    BP_HAS_INDIRECT_MAC_CKSUM(bp)) &&
1530 	    zio->io_child_type == ZIO_CHILD_LOGICAL) {
1531 		zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1532 		    psize, psize, zio_decrypt);
1533 	}
1534 
1535 	if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1536 		int psize = BPE_GET_PSIZE(bp);
1537 		void *data = abd_borrow_buf(zio->io_abd, psize);
1538 
1539 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1540 		decode_embedded_bp_compressed(bp, data);
1541 		abd_return_buf_copy(zio->io_abd, data, psize);
1542 	} else {
1543 		ASSERT(!BP_IS_EMBEDDED(bp));
1544 		ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1545 	}
1546 
1547 	if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1548 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1549 
1550 	if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1551 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1552 
1553 	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1554 		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1555 
1556 	return (zio);
1557 }
1558 
1559 static zio_t *
1560 zio_write_bp_init(zio_t *zio)
1561 {
1562 	if (!IO_IS_ALLOCATING(zio))
1563 		return (zio);
1564 
1565 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1566 
1567 	if (zio->io_bp_override) {
1568 		blkptr_t *bp = zio->io_bp;
1569 		zio_prop_t *zp = &zio->io_prop;
1570 
1571 		ASSERT(bp->blk_birth != zio->io_txg);
1572 		ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1573 
1574 		*bp = *zio->io_bp_override;
1575 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1576 
1577 		if (BP_IS_EMBEDDED(bp))
1578 			return (zio);
1579 
1580 		/*
1581 		 * If we've been overridden and nopwrite is set then
1582 		 * set the flag accordingly to indicate that a nopwrite
1583 		 * has already occurred.
1584 		 */
1585 		if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1586 			ASSERT(!zp->zp_dedup);
1587 			ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum);
1588 			zio->io_flags |= ZIO_FLAG_NOPWRITE;
1589 			return (zio);
1590 		}
1591 
1592 		ASSERT(!zp->zp_nopwrite);
1593 
1594 		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1595 			return (zio);
1596 
1597 		ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1598 		    ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1599 
1600 		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum &&
1601 		    !zp->zp_encrypt) {
1602 			BP_SET_DEDUP(bp, 1);
1603 			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1604 			return (zio);
1605 		}
1606 
1607 		/*
1608 		 * We were unable to handle this as an override bp, treat
1609 		 * it as a regular write I/O.
1610 		 */
1611 		zio->io_bp_override = NULL;
1612 		*bp = zio->io_bp_orig;
1613 		zio->io_pipeline = zio->io_orig_pipeline;
1614 	}
1615 
1616 	return (zio);
1617 }
1618 
1619 static zio_t *
1620 zio_write_compress(zio_t *zio)
1621 {
1622 	spa_t *spa = zio->io_spa;
1623 	zio_prop_t *zp = &zio->io_prop;
1624 	enum zio_compress compress = zp->zp_compress;
1625 	blkptr_t *bp = zio->io_bp;
1626 	uint64_t lsize = zio->io_lsize;
1627 	uint64_t psize = zio->io_size;
1628 	int pass = 1;
1629 
1630 	/*
1631 	 * If our children haven't all reached the ready stage,
1632 	 * wait for them and then repeat this pipeline stage.
1633 	 */
1634 	if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
1635 	    ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) {
1636 		return (NULL);
1637 	}
1638 
1639 	if (!IO_IS_ALLOCATING(zio))
1640 		return (zio);
1641 
1642 	if (zio->io_children_ready != NULL) {
1643 		/*
1644 		 * Now that all our children are ready, run the callback
1645 		 * associated with this zio in case it wants to modify the
1646 		 * data to be written.
1647 		 */
1648 		ASSERT3U(zp->zp_level, >, 0);
1649 		zio->io_children_ready(zio);
1650 	}
1651 
1652 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1653 	ASSERT(zio->io_bp_override == NULL);
1654 
1655 	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1656 		/*
1657 		 * We're rewriting an existing block, which means we're
1658 		 * working on behalf of spa_sync().  For spa_sync() to
1659 		 * converge, it must eventually be the case that we don't
1660 		 * have to allocate new blocks.  But compression changes
1661 		 * the blocksize, which forces a reallocate, and makes
1662 		 * convergence take longer.  Therefore, after the first
1663 		 * few passes, stop compressing to ensure convergence.
1664 		 */
1665 		pass = spa_sync_pass(spa);
1666 
1667 		ASSERT(zio->io_txg == spa_syncing_txg(spa));
1668 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1669 		ASSERT(!BP_GET_DEDUP(bp));
1670 
1671 		if (pass >= zfs_sync_pass_dont_compress)
1672 			compress = ZIO_COMPRESS_OFF;
1673 
1674 		/* Make sure someone doesn't change their mind on overwrites */
1675 		ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1676 		    spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1677 	}
1678 
1679 	/* If it's a compressed write that is not raw, compress the buffer. */
1680 	if (compress != ZIO_COMPRESS_OFF &&
1681 	    !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1682 		void *cbuf = zio_buf_alloc(lsize);
1683 		psize = zio_compress_data(compress, zio->io_abd, cbuf, lsize,
1684 		    zp->zp_complevel);
1685 		if (psize == 0 || psize >= lsize) {
1686 			compress = ZIO_COMPRESS_OFF;
1687 			zio_buf_free(cbuf, lsize);
1688 		} else if (!zp->zp_dedup && !zp->zp_encrypt &&
1689 		    psize <= BPE_PAYLOAD_SIZE &&
1690 		    zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1691 		    spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1692 			encode_embedded_bp_compressed(bp,
1693 			    cbuf, compress, lsize, psize);
1694 			BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1695 			BP_SET_TYPE(bp, zio->io_prop.zp_type);
1696 			BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1697 			zio_buf_free(cbuf, lsize);
1698 			bp->blk_birth = zio->io_txg;
1699 			zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1700 			ASSERT(spa_feature_is_active(spa,
1701 			    SPA_FEATURE_EMBEDDED_DATA));
1702 			return (zio);
1703 		} else {
1704 			/*
1705 			 * Round up compressed size up to the ashift
1706 			 * of the smallest-ashift device, and zero the tail.
1707 			 * This ensures that the compressed size of the BP
1708 			 * (and thus compressratio property) are correct,
1709 			 * in that we charge for the padding used to fill out
1710 			 * the last sector.
1711 			 */
1712 			ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
1713 			size_t rounded = (size_t)P2ROUNDUP(psize,
1714 			    1ULL << spa->spa_min_ashift);
1715 			if (rounded >= lsize) {
1716 				compress = ZIO_COMPRESS_OFF;
1717 				zio_buf_free(cbuf, lsize);
1718 				psize = lsize;
1719 			} else {
1720 				abd_t *cdata = abd_get_from_buf(cbuf, lsize);
1721 				abd_take_ownership_of_buf(cdata, B_TRUE);
1722 				abd_zero_off(cdata, psize, rounded - psize);
1723 				psize = rounded;
1724 				zio_push_transform(zio, cdata,
1725 				    psize, lsize, NULL);
1726 			}
1727 		}
1728 
1729 		/*
1730 		 * We were unable to handle this as an override bp, treat
1731 		 * it as a regular write I/O.
1732 		 */
1733 		zio->io_bp_override = NULL;
1734 		*bp = zio->io_bp_orig;
1735 		zio->io_pipeline = zio->io_orig_pipeline;
1736 
1737 	} else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 &&
1738 	    zp->zp_type == DMU_OT_DNODE) {
1739 		/*
1740 		 * The DMU actually relies on the zio layer's compression
1741 		 * to free metadnode blocks that have had all contained
1742 		 * dnodes freed. As a result, even when doing a raw
1743 		 * receive, we must check whether the block can be compressed
1744 		 * to a hole.
1745 		 */
1746 		psize = zio_compress_data(ZIO_COMPRESS_EMPTY,
1747 		    zio->io_abd, NULL, lsize, zp->zp_complevel);
1748 		if (psize == 0 || psize >= lsize)
1749 			compress = ZIO_COMPRESS_OFF;
1750 	} else {
1751 		ASSERT3U(psize, !=, 0);
1752 	}
1753 
1754 	/*
1755 	 * The final pass of spa_sync() must be all rewrites, but the first
1756 	 * few passes offer a trade-off: allocating blocks defers convergence,
1757 	 * but newly allocated blocks are sequential, so they can be written
1758 	 * to disk faster.  Therefore, we allow the first few passes of
1759 	 * spa_sync() to allocate new blocks, but force rewrites after that.
1760 	 * There should only be a handful of blocks after pass 1 in any case.
1761 	 */
1762 	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1763 	    BP_GET_PSIZE(bp) == psize &&
1764 	    pass >= zfs_sync_pass_rewrite) {
1765 		VERIFY3U(psize, !=, 0);
1766 		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1767 
1768 		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1769 		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1770 	} else {
1771 		BP_ZERO(bp);
1772 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
1773 	}
1774 
1775 	if (psize == 0) {
1776 		if (zio->io_bp_orig.blk_birth != 0 &&
1777 		    spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1778 			BP_SET_LSIZE(bp, lsize);
1779 			BP_SET_TYPE(bp, zp->zp_type);
1780 			BP_SET_LEVEL(bp, zp->zp_level);
1781 			BP_SET_BIRTH(bp, zio->io_txg, 0);
1782 		}
1783 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1784 	} else {
1785 		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1786 		BP_SET_LSIZE(bp, lsize);
1787 		BP_SET_TYPE(bp, zp->zp_type);
1788 		BP_SET_LEVEL(bp, zp->zp_level);
1789 		BP_SET_PSIZE(bp, psize);
1790 		BP_SET_COMPRESS(bp, compress);
1791 		BP_SET_CHECKSUM(bp, zp->zp_checksum);
1792 		BP_SET_DEDUP(bp, zp->zp_dedup);
1793 		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1794 		if (zp->zp_dedup) {
1795 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1796 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1797 			ASSERT(!zp->zp_encrypt ||
1798 			    DMU_OT_IS_ENCRYPTED(zp->zp_type));
1799 			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1800 		}
1801 		if (zp->zp_nopwrite) {
1802 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1803 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1804 			zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1805 		}
1806 	}
1807 	return (zio);
1808 }
1809 
1810 static zio_t *
1811 zio_free_bp_init(zio_t *zio)
1812 {
1813 	blkptr_t *bp = zio->io_bp;
1814 
1815 	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1816 		if (BP_GET_DEDUP(bp))
1817 			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1818 	}
1819 
1820 	ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1821 
1822 	return (zio);
1823 }
1824 
1825 /*
1826  * ==========================================================================
1827  * Execute the I/O pipeline
1828  * ==========================================================================
1829  */
1830 
1831 static void
1832 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1833 {
1834 	spa_t *spa = zio->io_spa;
1835 	zio_type_t t = zio->io_type;
1836 	int flags = (cutinline ? TQ_FRONT : 0);
1837 
1838 	/*
1839 	 * If we're a config writer or a probe, the normal issue and
1840 	 * interrupt threads may all be blocked waiting for the config lock.
1841 	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1842 	 */
1843 	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1844 		t = ZIO_TYPE_NULL;
1845 
1846 	/*
1847 	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1848 	 */
1849 	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1850 		t = ZIO_TYPE_NULL;
1851 
1852 	/*
1853 	 * If this is a high priority I/O, then use the high priority taskq if
1854 	 * available.
1855 	 */
1856 	if ((zio->io_priority == ZIO_PRIORITY_NOW ||
1857 	    zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) &&
1858 	    spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1859 		q++;
1860 
1861 	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1862 
1863 	/*
1864 	 * NB: We are assuming that the zio can only be dispatched
1865 	 * to a single taskq at a time.  It would be a grievous error
1866 	 * to dispatch the zio to another taskq at the same time.
1867 	 */
1868 	ASSERT(taskq_empty_ent(&zio->io_tqent));
1869 	spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1870 	    flags, &zio->io_tqent);
1871 }
1872 
1873 static boolean_t
1874 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1875 {
1876 	spa_t *spa = zio->io_spa;
1877 
1878 	taskq_t *tq = taskq_of_curthread();
1879 
1880 	for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1881 		spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1882 		uint_t i;
1883 		for (i = 0; i < tqs->stqs_count; i++) {
1884 			if (tqs->stqs_taskq[i] == tq)
1885 				return (B_TRUE);
1886 		}
1887 	}
1888 
1889 	return (B_FALSE);
1890 }
1891 
1892 static zio_t *
1893 zio_issue_async(zio_t *zio)
1894 {
1895 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1896 
1897 	return (NULL);
1898 }
1899 
1900 void
1901 zio_interrupt(zio_t *zio)
1902 {
1903 	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1904 }
1905 
1906 void
1907 zio_delay_interrupt(zio_t *zio)
1908 {
1909 	/*
1910 	 * The timeout_generic() function isn't defined in userspace, so
1911 	 * rather than trying to implement the function, the zio delay
1912 	 * functionality has been disabled for userspace builds.
1913 	 */
1914 
1915 #ifdef _KERNEL
1916 	/*
1917 	 * If io_target_timestamp is zero, then no delay has been registered
1918 	 * for this IO, thus jump to the end of this function and "skip" the
1919 	 * delay; issuing it directly to the zio layer.
1920 	 */
1921 	if (zio->io_target_timestamp != 0) {
1922 		hrtime_t now = gethrtime();
1923 
1924 		if (now >= zio->io_target_timestamp) {
1925 			/*
1926 			 * This IO has already taken longer than the target
1927 			 * delay to complete, so we don't want to delay it
1928 			 * any longer; we "miss" the delay and issue it
1929 			 * directly to the zio layer. This is likely due to
1930 			 * the target latency being set to a value less than
1931 			 * the underlying hardware can satisfy (e.g. delay
1932 			 * set to 1ms, but the disks take 10ms to complete an
1933 			 * IO request).
1934 			 */
1935 
1936 			DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
1937 			    hrtime_t, now);
1938 
1939 			zio_interrupt(zio);
1940 		} else {
1941 			taskqid_t tid;
1942 			hrtime_t diff = zio->io_target_timestamp - now;
1943 			clock_t expire_at_tick = ddi_get_lbolt() +
1944 			    NSEC_TO_TICK(diff);
1945 
1946 			DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
1947 			    hrtime_t, now, hrtime_t, diff);
1948 
1949 			if (NSEC_TO_TICK(diff) == 0) {
1950 				/* Our delay is less than a jiffy - just spin */
1951 				zfs_sleep_until(zio->io_target_timestamp);
1952 				zio_interrupt(zio);
1953 			} else {
1954 				/*
1955 				 * Use taskq_dispatch_delay() in the place of
1956 				 * OpenZFS's timeout_generic().
1957 				 */
1958 				tid = taskq_dispatch_delay(system_taskq,
1959 				    (task_func_t *)zio_interrupt,
1960 				    zio, TQ_NOSLEEP, expire_at_tick);
1961 				if (tid == TASKQID_INVALID) {
1962 					/*
1963 					 * Couldn't allocate a task.  Just
1964 					 * finish the zio without a delay.
1965 					 */
1966 					zio_interrupt(zio);
1967 				}
1968 			}
1969 		}
1970 		return;
1971 	}
1972 #endif
1973 	DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
1974 	zio_interrupt(zio);
1975 }
1976 
1977 static void
1978 zio_deadman_impl(zio_t *pio, int ziodepth)
1979 {
1980 	zio_t *cio, *cio_next;
1981 	zio_link_t *zl = NULL;
1982 	vdev_t *vd = pio->io_vd;
1983 
1984 	if (zio_deadman_log_all || (vd != NULL && vd->vdev_ops->vdev_op_leaf)) {
1985 		vdev_queue_t *vq = vd ? &vd->vdev_queue : NULL;
1986 		zbookmark_phys_t *zb = &pio->io_bookmark;
1987 		uint64_t delta = gethrtime() - pio->io_timestamp;
1988 		uint64_t failmode = spa_get_deadman_failmode(pio->io_spa);
1989 
1990 		zfs_dbgmsg("slow zio[%d]: zio=%px timestamp=%llu "
1991 		    "delta=%llu queued=%llu io=%llu "
1992 		    "path=%s last=%llu "
1993 		    "type=%d priority=%d flags=0x%x "
1994 		    "stage=0x%x pipeline=0x%x pipeline-trace=0x%x "
1995 		    "objset=%llu object=%llu level=%llu blkid=%llu "
1996 		    "offset=%llu size=%llu error=%d",
1997 		    ziodepth, pio, pio->io_timestamp,
1998 		    delta, pio->io_delta, pio->io_delay,
1999 		    vd ? vd->vdev_path : "NULL", vq ? vq->vq_io_complete_ts : 0,
2000 		    pio->io_type, pio->io_priority, pio->io_flags,
2001 		    pio->io_stage, pio->io_pipeline, pio->io_pipeline_trace,
2002 		    zb->zb_objset, zb->zb_object, zb->zb_level, zb->zb_blkid,
2003 		    pio->io_offset, pio->io_size, pio->io_error);
2004 		(void) zfs_ereport_post(FM_EREPORT_ZFS_DEADMAN,
2005 		    pio->io_spa, vd, zb, pio, 0);
2006 
2007 		if (failmode == ZIO_FAILURE_MODE_CONTINUE &&
2008 		    taskq_empty_ent(&pio->io_tqent)) {
2009 			zio_interrupt(pio);
2010 		}
2011 	}
2012 
2013 	mutex_enter(&pio->io_lock);
2014 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2015 		cio_next = zio_walk_children(pio, &zl);
2016 		zio_deadman_impl(cio, ziodepth + 1);
2017 	}
2018 	mutex_exit(&pio->io_lock);
2019 }
2020 
2021 /*
2022  * Log the critical information describing this zio and all of its children
2023  * using the zfs_dbgmsg() interface then post deadman event for the ZED.
2024  */
2025 void
2026 zio_deadman(zio_t *pio, char *tag)
2027 {
2028 	spa_t *spa = pio->io_spa;
2029 	char *name = spa_name(spa);
2030 
2031 	if (!zfs_deadman_enabled || spa_suspended(spa))
2032 		return;
2033 
2034 	zio_deadman_impl(pio, 0);
2035 
2036 	switch (spa_get_deadman_failmode(spa)) {
2037 	case ZIO_FAILURE_MODE_WAIT:
2038 		zfs_dbgmsg("%s waiting for hung I/O to pool '%s'", tag, name);
2039 		break;
2040 
2041 	case ZIO_FAILURE_MODE_CONTINUE:
2042 		zfs_dbgmsg("%s restarting hung I/O for pool '%s'", tag, name);
2043 		break;
2044 
2045 	case ZIO_FAILURE_MODE_PANIC:
2046 		fm_panic("%s determined I/O to pool '%s' is hung.", tag, name);
2047 		break;
2048 	}
2049 }
2050 
2051 /*
2052  * Execute the I/O pipeline until one of the following occurs:
2053  * (1) the I/O completes; (2) the pipeline stalls waiting for
2054  * dependent child I/Os; (3) the I/O issues, so we're waiting
2055  * for an I/O completion interrupt; (4) the I/O is delegated by
2056  * vdev-level caching or aggregation; (5) the I/O is deferred
2057  * due to vdev-level queueing; (6) the I/O is handed off to
2058  * another thread.  In all cases, the pipeline stops whenever
2059  * there's no CPU work; it never burns a thread in cv_wait_io().
2060  *
2061  * There's no locking on io_stage because there's no legitimate way
2062  * for multiple threads to be attempting to process the same I/O.
2063  */
2064 static zio_pipe_stage_t *zio_pipeline[];
2065 
2066 /*
2067  * zio_execute() is a wrapper around the static function
2068  * __zio_execute() so that we can force  __zio_execute() to be
2069  * inlined.  This reduces stack overhead which is important
2070  * because __zio_execute() is called recursively in several zio
2071  * code paths.  zio_execute() itself cannot be inlined because
2072  * it is externally visible.
2073  */
2074 void
2075 zio_execute(zio_t *zio)
2076 {
2077 	fstrans_cookie_t cookie;
2078 
2079 	cookie = spl_fstrans_mark();
2080 	__zio_execute(zio);
2081 	spl_fstrans_unmark(cookie);
2082 }
2083 
2084 /*
2085  * Used to determine if in the current context the stack is sized large
2086  * enough to allow zio_execute() to be called recursively.  A minimum
2087  * stack size of 16K is required to avoid needing to re-dispatch the zio.
2088  */
2089 static boolean_t
2090 zio_execute_stack_check(zio_t *zio)
2091 {
2092 #if !defined(HAVE_LARGE_STACKS)
2093 	dsl_pool_t *dp = spa_get_dsl(zio->io_spa);
2094 
2095 	/* Executing in txg_sync_thread() context. */
2096 	if (dp && curthread == dp->dp_tx.tx_sync_thread)
2097 		return (B_TRUE);
2098 
2099 	/* Pool initialization outside of zio_taskq context. */
2100 	if (dp && spa_is_initializing(dp->dp_spa) &&
2101 	    !zio_taskq_member(zio, ZIO_TASKQ_ISSUE) &&
2102 	    !zio_taskq_member(zio, ZIO_TASKQ_ISSUE_HIGH))
2103 		return (B_TRUE);
2104 #endif /* HAVE_LARGE_STACKS */
2105 
2106 	return (B_FALSE);
2107 }
2108 
2109 __attribute__((always_inline))
2110 static inline void
2111 __zio_execute(zio_t *zio)
2112 {
2113 	ASSERT3U(zio->io_queued_timestamp, >, 0);
2114 
2115 	while (zio->io_stage < ZIO_STAGE_DONE) {
2116 		enum zio_stage pipeline = zio->io_pipeline;
2117 		enum zio_stage stage = zio->io_stage;
2118 
2119 		zio->io_executor = curthread;
2120 
2121 		ASSERT(!MUTEX_HELD(&zio->io_lock));
2122 		ASSERT(ISP2(stage));
2123 		ASSERT(zio->io_stall == NULL);
2124 
2125 		do {
2126 			stage <<= 1;
2127 		} while ((stage & pipeline) == 0);
2128 
2129 		ASSERT(stage <= ZIO_STAGE_DONE);
2130 
2131 		/*
2132 		 * If we are in interrupt context and this pipeline stage
2133 		 * will grab a config lock that is held across I/O,
2134 		 * or may wait for an I/O that needs an interrupt thread
2135 		 * to complete, issue async to avoid deadlock.
2136 		 *
2137 		 * For VDEV_IO_START, we cut in line so that the io will
2138 		 * be sent to disk promptly.
2139 		 */
2140 		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
2141 		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
2142 			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2143 			    zio_requeue_io_start_cut_in_line : B_FALSE;
2144 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2145 			return;
2146 		}
2147 
2148 		/*
2149 		 * If the current context doesn't have large enough stacks
2150 		 * the zio must be issued asynchronously to prevent overflow.
2151 		 */
2152 		if (zio_execute_stack_check(zio)) {
2153 			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2154 			    zio_requeue_io_start_cut_in_line : B_FALSE;
2155 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2156 			return;
2157 		}
2158 
2159 		zio->io_stage = stage;
2160 		zio->io_pipeline_trace |= zio->io_stage;
2161 
2162 		/*
2163 		 * The zio pipeline stage returns the next zio to execute
2164 		 * (typically the same as this one), or NULL if we should
2165 		 * stop.
2166 		 */
2167 		zio = zio_pipeline[highbit64(stage) - 1](zio);
2168 
2169 		if (zio == NULL)
2170 			return;
2171 	}
2172 }
2173 
2174 
2175 /*
2176  * ==========================================================================
2177  * Initiate I/O, either sync or async
2178  * ==========================================================================
2179  */
2180 int
2181 zio_wait(zio_t *zio)
2182 {
2183 	/*
2184 	 * Some routines, like zio_free_sync(), may return a NULL zio
2185 	 * to avoid the performance overhead of creating and then destroying
2186 	 * an unneeded zio.  For the callers' simplicity, we accept a NULL
2187 	 * zio and ignore it.
2188 	 */
2189 	if (zio == NULL)
2190 		return (0);
2191 
2192 	long timeout = MSEC_TO_TICK(zfs_deadman_ziotime_ms);
2193 	int error;
2194 
2195 	ASSERT3S(zio->io_stage, ==, ZIO_STAGE_OPEN);
2196 	ASSERT3P(zio->io_executor, ==, NULL);
2197 
2198 	zio->io_waiter = curthread;
2199 	ASSERT0(zio->io_queued_timestamp);
2200 	zio->io_queued_timestamp = gethrtime();
2201 
2202 	__zio_execute(zio);
2203 
2204 	mutex_enter(&zio->io_lock);
2205 	while (zio->io_executor != NULL) {
2206 		error = cv_timedwait_io(&zio->io_cv, &zio->io_lock,
2207 		    ddi_get_lbolt() + timeout);
2208 
2209 		if (zfs_deadman_enabled && error == -1 &&
2210 		    gethrtime() - zio->io_queued_timestamp >
2211 		    spa_deadman_ziotime(zio->io_spa)) {
2212 			mutex_exit(&zio->io_lock);
2213 			timeout = MSEC_TO_TICK(zfs_deadman_checktime_ms);
2214 			zio_deadman(zio, FTAG);
2215 			mutex_enter(&zio->io_lock);
2216 		}
2217 	}
2218 	mutex_exit(&zio->io_lock);
2219 
2220 	error = zio->io_error;
2221 	zio_destroy(zio);
2222 
2223 	return (error);
2224 }
2225 
2226 void
2227 zio_nowait(zio_t *zio)
2228 {
2229 	/*
2230 	 * See comment in zio_wait().
2231 	 */
2232 	if (zio == NULL)
2233 		return;
2234 
2235 	ASSERT3P(zio->io_executor, ==, NULL);
2236 
2237 	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
2238 	    zio_unique_parent(zio) == NULL) {
2239 		zio_t *pio;
2240 
2241 		/*
2242 		 * This is a logical async I/O with no parent to wait for it.
2243 		 * We add it to the spa_async_root_zio "Godfather" I/O which
2244 		 * will ensure they complete prior to unloading the pool.
2245 		 */
2246 		spa_t *spa = zio->io_spa;
2247 		kpreempt_disable();
2248 		pio = spa->spa_async_zio_root[CPU_SEQID];
2249 		kpreempt_enable();
2250 
2251 		zio_add_child(pio, zio);
2252 	}
2253 
2254 	ASSERT0(zio->io_queued_timestamp);
2255 	zio->io_queued_timestamp = gethrtime();
2256 	__zio_execute(zio);
2257 }
2258 
2259 /*
2260  * ==========================================================================
2261  * Reexecute, cancel, or suspend/resume failed I/O
2262  * ==========================================================================
2263  */
2264 
2265 static void
2266 zio_reexecute(zio_t *pio)
2267 {
2268 	zio_t *cio, *cio_next;
2269 
2270 	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
2271 	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
2272 	ASSERT(pio->io_gang_leader == NULL);
2273 	ASSERT(pio->io_gang_tree == NULL);
2274 
2275 	pio->io_flags = pio->io_orig_flags;
2276 	pio->io_stage = pio->io_orig_stage;
2277 	pio->io_pipeline = pio->io_orig_pipeline;
2278 	pio->io_reexecute = 0;
2279 	pio->io_flags |= ZIO_FLAG_REEXECUTED;
2280 	pio->io_pipeline_trace = 0;
2281 	pio->io_error = 0;
2282 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2283 		pio->io_state[w] = 0;
2284 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2285 		pio->io_child_error[c] = 0;
2286 
2287 	if (IO_IS_ALLOCATING(pio))
2288 		BP_ZERO(pio->io_bp);
2289 
2290 	/*
2291 	 * As we reexecute pio's children, new children could be created.
2292 	 * New children go to the head of pio's io_child_list, however,
2293 	 * so we will (correctly) not reexecute them.  The key is that
2294 	 * the remainder of pio's io_child_list, from 'cio_next' onward,
2295 	 * cannot be affected by any side effects of reexecuting 'cio'.
2296 	 */
2297 	zio_link_t *zl = NULL;
2298 	mutex_enter(&pio->io_lock);
2299 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2300 		cio_next = zio_walk_children(pio, &zl);
2301 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2302 			pio->io_children[cio->io_child_type][w]++;
2303 		mutex_exit(&pio->io_lock);
2304 		zio_reexecute(cio);
2305 		mutex_enter(&pio->io_lock);
2306 	}
2307 	mutex_exit(&pio->io_lock);
2308 
2309 	/*
2310 	 * Now that all children have been reexecuted, execute the parent.
2311 	 * We don't reexecute "The Godfather" I/O here as it's the
2312 	 * responsibility of the caller to wait on it.
2313 	 */
2314 	if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) {
2315 		pio->io_queued_timestamp = gethrtime();
2316 		__zio_execute(pio);
2317 	}
2318 }
2319 
2320 void
2321 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason)
2322 {
2323 	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
2324 		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
2325 		    "failure and the failure mode property for this pool "
2326 		    "is set to panic.", spa_name(spa));
2327 
2328 	cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable I/O "
2329 	    "failure and has been suspended.\n", spa_name(spa));
2330 
2331 	(void) zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL,
2332 	    NULL, NULL, 0);
2333 
2334 	mutex_enter(&spa->spa_suspend_lock);
2335 
2336 	if (spa->spa_suspend_zio_root == NULL)
2337 		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
2338 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2339 		    ZIO_FLAG_GODFATHER);
2340 
2341 	spa->spa_suspended = reason;
2342 
2343 	if (zio != NULL) {
2344 		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
2345 		ASSERT(zio != spa->spa_suspend_zio_root);
2346 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2347 		ASSERT(zio_unique_parent(zio) == NULL);
2348 		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
2349 		zio_add_child(spa->spa_suspend_zio_root, zio);
2350 	}
2351 
2352 	mutex_exit(&spa->spa_suspend_lock);
2353 }
2354 
2355 int
2356 zio_resume(spa_t *spa)
2357 {
2358 	zio_t *pio;
2359 
2360 	/*
2361 	 * Reexecute all previously suspended i/o.
2362 	 */
2363 	mutex_enter(&spa->spa_suspend_lock);
2364 	spa->spa_suspended = ZIO_SUSPEND_NONE;
2365 	cv_broadcast(&spa->spa_suspend_cv);
2366 	pio = spa->spa_suspend_zio_root;
2367 	spa->spa_suspend_zio_root = NULL;
2368 	mutex_exit(&spa->spa_suspend_lock);
2369 
2370 	if (pio == NULL)
2371 		return (0);
2372 
2373 	zio_reexecute(pio);
2374 	return (zio_wait(pio));
2375 }
2376 
2377 void
2378 zio_resume_wait(spa_t *spa)
2379 {
2380 	mutex_enter(&spa->spa_suspend_lock);
2381 	while (spa_suspended(spa))
2382 		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
2383 	mutex_exit(&spa->spa_suspend_lock);
2384 }
2385 
2386 /*
2387  * ==========================================================================
2388  * Gang blocks.
2389  *
2390  * A gang block is a collection of small blocks that looks to the DMU
2391  * like one large block.  When zio_dva_allocate() cannot find a block
2392  * of the requested size, due to either severe fragmentation or the pool
2393  * being nearly full, it calls zio_write_gang_block() to construct the
2394  * block from smaller fragments.
2395  *
2396  * A gang block consists of a gang header (zio_gbh_phys_t) and up to
2397  * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
2398  * an indirect block: it's an array of block pointers.  It consumes
2399  * only one sector and hence is allocatable regardless of fragmentation.
2400  * The gang header's bps point to its gang members, which hold the data.
2401  *
2402  * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
2403  * as the verifier to ensure uniqueness of the SHA256 checksum.
2404  * Critically, the gang block bp's blk_cksum is the checksum of the data,
2405  * not the gang header.  This ensures that data block signatures (needed for
2406  * deduplication) are independent of how the block is physically stored.
2407  *
2408  * Gang blocks can be nested: a gang member may itself be a gang block.
2409  * Thus every gang block is a tree in which root and all interior nodes are
2410  * gang headers, and the leaves are normal blocks that contain user data.
2411  * The root of the gang tree is called the gang leader.
2412  *
2413  * To perform any operation (read, rewrite, free, claim) on a gang block,
2414  * zio_gang_assemble() first assembles the gang tree (minus data leaves)
2415  * in the io_gang_tree field of the original logical i/o by recursively
2416  * reading the gang leader and all gang headers below it.  This yields
2417  * an in-core tree containing the contents of every gang header and the
2418  * bps for every constituent of the gang block.
2419  *
2420  * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
2421  * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
2422  * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
2423  * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
2424  * zio_read_gang() is a wrapper around zio_read() that omits reading gang
2425  * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
2426  * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
2427  * of the gang header plus zio_checksum_compute() of the data to update the
2428  * gang header's blk_cksum as described above.
2429  *
2430  * The two-phase assemble/issue model solves the problem of partial failure --
2431  * what if you'd freed part of a gang block but then couldn't read the
2432  * gang header for another part?  Assembling the entire gang tree first
2433  * ensures that all the necessary gang header I/O has succeeded before
2434  * starting the actual work of free, claim, or write.  Once the gang tree
2435  * is assembled, free and claim are in-memory operations that cannot fail.
2436  *
2437  * In the event that a gang write fails, zio_dva_unallocate() walks the
2438  * gang tree to immediately free (i.e. insert back into the space map)
2439  * everything we've allocated.  This ensures that we don't get ENOSPC
2440  * errors during repeated suspend/resume cycles due to a flaky device.
2441  *
2442  * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
2443  * the gang tree, we won't modify the block, so we can safely defer the free
2444  * (knowing that the block is still intact).  If we *can* assemble the gang
2445  * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
2446  * each constituent bp and we can allocate a new block on the next sync pass.
2447  *
2448  * In all cases, the gang tree allows complete recovery from partial failure.
2449  * ==========================================================================
2450  */
2451 
2452 static void
2453 zio_gang_issue_func_done(zio_t *zio)
2454 {
2455 	abd_put(zio->io_abd);
2456 }
2457 
2458 static zio_t *
2459 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2460     uint64_t offset)
2461 {
2462 	if (gn != NULL)
2463 		return (pio);
2464 
2465 	return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset),
2466 	    BP_GET_PSIZE(bp), zio_gang_issue_func_done,
2467 	    NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2468 	    &pio->io_bookmark));
2469 }
2470 
2471 static zio_t *
2472 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2473     uint64_t offset)
2474 {
2475 	zio_t *zio;
2476 
2477 	if (gn != NULL) {
2478 		abd_t *gbh_abd =
2479 		    abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2480 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2481 		    gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL,
2482 		    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2483 		    &pio->io_bookmark);
2484 		/*
2485 		 * As we rewrite each gang header, the pipeline will compute
2486 		 * a new gang block header checksum for it; but no one will
2487 		 * compute a new data checksum, so we do that here.  The one
2488 		 * exception is the gang leader: the pipeline already computed
2489 		 * its data checksum because that stage precedes gang assembly.
2490 		 * (Presently, nothing actually uses interior data checksums;
2491 		 * this is just good hygiene.)
2492 		 */
2493 		if (gn != pio->io_gang_leader->io_gang_tree) {
2494 			abd_t *buf = abd_get_offset(data, offset);
2495 
2496 			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
2497 			    buf, BP_GET_PSIZE(bp));
2498 
2499 			abd_put(buf);
2500 		}
2501 		/*
2502 		 * If we are here to damage data for testing purposes,
2503 		 * leave the GBH alone so that we can detect the damage.
2504 		 */
2505 		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
2506 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2507 	} else {
2508 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2509 		    abd_get_offset(data, offset), BP_GET_PSIZE(bp),
2510 		    zio_gang_issue_func_done, NULL, pio->io_priority,
2511 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2512 	}
2513 
2514 	return (zio);
2515 }
2516 
2517 /* ARGSUSED */
2518 static zio_t *
2519 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2520     uint64_t offset)
2521 {
2522 	zio_t *zio = zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
2523 	    ZIO_GANG_CHILD_FLAGS(pio));
2524 	if (zio == NULL) {
2525 		zio = zio_null(pio, pio->io_spa,
2526 		    NULL, NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio));
2527 	}
2528 	return (zio);
2529 }
2530 
2531 /* ARGSUSED */
2532 static zio_t *
2533 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2534     uint64_t offset)
2535 {
2536 	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
2537 	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
2538 }
2539 
2540 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
2541 	NULL,
2542 	zio_read_gang,
2543 	zio_rewrite_gang,
2544 	zio_free_gang,
2545 	zio_claim_gang,
2546 	NULL
2547 };
2548 
2549 static void zio_gang_tree_assemble_done(zio_t *zio);
2550 
2551 static zio_gang_node_t *
2552 zio_gang_node_alloc(zio_gang_node_t **gnpp)
2553 {
2554 	zio_gang_node_t *gn;
2555 
2556 	ASSERT(*gnpp == NULL);
2557 
2558 	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
2559 	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
2560 	*gnpp = gn;
2561 
2562 	return (gn);
2563 }
2564 
2565 static void
2566 zio_gang_node_free(zio_gang_node_t **gnpp)
2567 {
2568 	zio_gang_node_t *gn = *gnpp;
2569 
2570 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2571 		ASSERT(gn->gn_child[g] == NULL);
2572 
2573 	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2574 	kmem_free(gn, sizeof (*gn));
2575 	*gnpp = NULL;
2576 }
2577 
2578 static void
2579 zio_gang_tree_free(zio_gang_node_t **gnpp)
2580 {
2581 	zio_gang_node_t *gn = *gnpp;
2582 
2583 	if (gn == NULL)
2584 		return;
2585 
2586 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2587 		zio_gang_tree_free(&gn->gn_child[g]);
2588 
2589 	zio_gang_node_free(gnpp);
2590 }
2591 
2592 static void
2593 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
2594 {
2595 	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
2596 	abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2597 
2598 	ASSERT(gio->io_gang_leader == gio);
2599 	ASSERT(BP_IS_GANG(bp));
2600 
2601 	zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2602 	    zio_gang_tree_assemble_done, gn, gio->io_priority,
2603 	    ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
2604 }
2605 
2606 static void
2607 zio_gang_tree_assemble_done(zio_t *zio)
2608 {
2609 	zio_t *gio = zio->io_gang_leader;
2610 	zio_gang_node_t *gn = zio->io_private;
2611 	blkptr_t *bp = zio->io_bp;
2612 
2613 	ASSERT(gio == zio_unique_parent(zio));
2614 	ASSERT(zio->io_child_count == 0);
2615 
2616 	if (zio->io_error)
2617 		return;
2618 
2619 	/* this ABD was created from a linear buf in zio_gang_tree_assemble */
2620 	if (BP_SHOULD_BYTESWAP(bp))
2621 		byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size);
2622 
2623 	ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh);
2624 	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
2625 	ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2626 
2627 	abd_put(zio->io_abd);
2628 
2629 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2630 		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2631 		if (!BP_IS_GANG(gbp))
2632 			continue;
2633 		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
2634 	}
2635 }
2636 
2637 static void
2638 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data,
2639     uint64_t offset)
2640 {
2641 	zio_t *gio = pio->io_gang_leader;
2642 	zio_t *zio;
2643 
2644 	ASSERT(BP_IS_GANG(bp) == !!gn);
2645 	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
2646 	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
2647 
2648 	/*
2649 	 * If you're a gang header, your data is in gn->gn_gbh.
2650 	 * If you're a gang member, your data is in 'data' and gn == NULL.
2651 	 */
2652 	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset);
2653 
2654 	if (gn != NULL) {
2655 		ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2656 
2657 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2658 			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2659 			if (BP_IS_HOLE(gbp))
2660 				continue;
2661 			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data,
2662 			    offset);
2663 			offset += BP_GET_PSIZE(gbp);
2664 		}
2665 	}
2666 
2667 	if (gn == gio->io_gang_tree)
2668 		ASSERT3U(gio->io_size, ==, offset);
2669 
2670 	if (zio != pio)
2671 		zio_nowait(zio);
2672 }
2673 
2674 static zio_t *
2675 zio_gang_assemble(zio_t *zio)
2676 {
2677 	blkptr_t *bp = zio->io_bp;
2678 
2679 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
2680 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2681 
2682 	zio->io_gang_leader = zio;
2683 
2684 	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
2685 
2686 	return (zio);
2687 }
2688 
2689 static zio_t *
2690 zio_gang_issue(zio_t *zio)
2691 {
2692 	blkptr_t *bp = zio->io_bp;
2693 
2694 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) {
2695 		return (NULL);
2696 	}
2697 
2698 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
2699 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2700 
2701 	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
2702 		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd,
2703 		    0);
2704 	else
2705 		zio_gang_tree_free(&zio->io_gang_tree);
2706 
2707 	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2708 
2709 	return (zio);
2710 }
2711 
2712 static void
2713 zio_write_gang_member_ready(zio_t *zio)
2714 {
2715 	zio_t *pio = zio_unique_parent(zio);
2716 	dva_t *cdva = zio->io_bp->blk_dva;
2717 	dva_t *pdva = pio->io_bp->blk_dva;
2718 	uint64_t asize;
2719 	zio_t *gio __maybe_unused = zio->io_gang_leader;
2720 
2721 	if (BP_IS_HOLE(zio->io_bp))
2722 		return;
2723 
2724 	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
2725 
2726 	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
2727 	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
2728 	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
2729 	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
2730 	ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
2731 
2732 	mutex_enter(&pio->io_lock);
2733 	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
2734 		ASSERT(DVA_GET_GANG(&pdva[d]));
2735 		asize = DVA_GET_ASIZE(&pdva[d]);
2736 		asize += DVA_GET_ASIZE(&cdva[d]);
2737 		DVA_SET_ASIZE(&pdva[d], asize);
2738 	}
2739 	mutex_exit(&pio->io_lock);
2740 }
2741 
2742 static void
2743 zio_write_gang_done(zio_t *zio)
2744 {
2745 	/*
2746 	 * The io_abd field will be NULL for a zio with no data.  The io_flags
2747 	 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't
2748 	 * check for it here as it is cleared in zio_ready.
2749 	 */
2750 	if (zio->io_abd != NULL)
2751 		abd_put(zio->io_abd);
2752 }
2753 
2754 static zio_t *
2755 zio_write_gang_block(zio_t *pio)
2756 {
2757 	spa_t *spa = pio->io_spa;
2758 	metaslab_class_t *mc = spa_normal_class(spa);
2759 	blkptr_t *bp = pio->io_bp;
2760 	zio_t *gio = pio->io_gang_leader;
2761 	zio_t *zio;
2762 	zio_gang_node_t *gn, **gnpp;
2763 	zio_gbh_phys_t *gbh;
2764 	abd_t *gbh_abd;
2765 	uint64_t txg = pio->io_txg;
2766 	uint64_t resid = pio->io_size;
2767 	uint64_t lsize;
2768 	int copies = gio->io_prop.zp_copies;
2769 	int gbh_copies;
2770 	zio_prop_t zp;
2771 	int error;
2772 	boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA);
2773 
2774 	/*
2775 	 * encrypted blocks need DVA[2] free so encrypted gang headers can't
2776 	 * have a third copy.
2777 	 */
2778 	gbh_copies = MIN(copies + 1, spa_max_replication(spa));
2779 	if (gio->io_prop.zp_encrypt && gbh_copies >= SPA_DVAS_PER_BP)
2780 		gbh_copies = SPA_DVAS_PER_BP - 1;
2781 
2782 	int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER;
2783 	if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2784 		ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2785 		ASSERT(has_data);
2786 
2787 		flags |= METASLAB_ASYNC_ALLOC;
2788 		VERIFY(zfs_refcount_held(&mc->mc_alloc_slots[pio->io_allocator],
2789 		    pio));
2790 
2791 		/*
2792 		 * The logical zio has already placed a reservation for
2793 		 * 'copies' allocation slots but gang blocks may require
2794 		 * additional copies. These additional copies
2795 		 * (i.e. gbh_copies - copies) are guaranteed to succeed
2796 		 * since metaslab_class_throttle_reserve() always allows
2797 		 * additional reservations for gang blocks.
2798 		 */
2799 		VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies,
2800 		    pio->io_allocator, pio, flags));
2801 	}
2802 
2803 	error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE,
2804 	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags,
2805 	    &pio->io_alloc_list, pio, pio->io_allocator);
2806 	if (error) {
2807 		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2808 			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2809 			ASSERT(has_data);
2810 
2811 			/*
2812 			 * If we failed to allocate the gang block header then
2813 			 * we remove any additional allocation reservations that
2814 			 * we placed here. The original reservation will
2815 			 * be removed when the logical I/O goes to the ready
2816 			 * stage.
2817 			 */
2818 			metaslab_class_throttle_unreserve(mc,
2819 			    gbh_copies - copies, pio->io_allocator, pio);
2820 		}
2821 
2822 		pio->io_error = error;
2823 		return (pio);
2824 	}
2825 
2826 	if (pio == gio) {
2827 		gnpp = &gio->io_gang_tree;
2828 	} else {
2829 		gnpp = pio->io_private;
2830 		ASSERT(pio->io_ready == zio_write_gang_member_ready);
2831 	}
2832 
2833 	gn = zio_gang_node_alloc(gnpp);
2834 	gbh = gn->gn_gbh;
2835 	bzero(gbh, SPA_GANGBLOCKSIZE);
2836 	gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE);
2837 
2838 	/*
2839 	 * Create the gang header.
2840 	 */
2841 	zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2842 	    zio_write_gang_done, NULL, pio->io_priority,
2843 	    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2844 
2845 	/*
2846 	 * Create and nowait the gang children.
2847 	 */
2848 	for (int g = 0; resid != 0; resid -= lsize, g++) {
2849 		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
2850 		    SPA_MINBLOCKSIZE);
2851 		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
2852 
2853 		zp.zp_checksum = gio->io_prop.zp_checksum;
2854 		zp.zp_compress = ZIO_COMPRESS_OFF;
2855 		zp.zp_complevel = gio->io_prop.zp_complevel;
2856 		zp.zp_type = DMU_OT_NONE;
2857 		zp.zp_level = 0;
2858 		zp.zp_copies = gio->io_prop.zp_copies;
2859 		zp.zp_dedup = B_FALSE;
2860 		zp.zp_dedup_verify = B_FALSE;
2861 		zp.zp_nopwrite = B_FALSE;
2862 		zp.zp_encrypt = gio->io_prop.zp_encrypt;
2863 		zp.zp_byteorder = gio->io_prop.zp_byteorder;
2864 		bzero(zp.zp_salt, ZIO_DATA_SALT_LEN);
2865 		bzero(zp.zp_iv, ZIO_DATA_IV_LEN);
2866 		bzero(zp.zp_mac, ZIO_DATA_MAC_LEN);
2867 
2868 		zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
2869 		    has_data ? abd_get_offset(pio->io_abd, pio->io_size -
2870 		    resid) : NULL, lsize, lsize, &zp,
2871 		    zio_write_gang_member_ready, NULL, NULL,
2872 		    zio_write_gang_done, &gn->gn_child[g], pio->io_priority,
2873 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2874 
2875 		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2876 			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2877 			ASSERT(has_data);
2878 
2879 			/*
2880 			 * Gang children won't throttle but we should
2881 			 * account for their work, so reserve an allocation
2882 			 * slot for them here.
2883 			 */
2884 			VERIFY(metaslab_class_throttle_reserve(mc,
2885 			    zp.zp_copies, cio->io_allocator, cio, flags));
2886 		}
2887 		zio_nowait(cio);
2888 	}
2889 
2890 	/*
2891 	 * Set pio's pipeline to just wait for zio to finish.
2892 	 */
2893 	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2894 
2895 	/*
2896 	 * We didn't allocate this bp, so make sure it doesn't get unmarked.
2897 	 */
2898 	pio->io_flags &= ~ZIO_FLAG_FASTWRITE;
2899 
2900 	zio_nowait(zio);
2901 
2902 	return (pio);
2903 }
2904 
2905 /*
2906  * The zio_nop_write stage in the pipeline determines if allocating a
2907  * new bp is necessary.  The nopwrite feature can handle writes in
2908  * either syncing or open context (i.e. zil writes) and as a result is
2909  * mutually exclusive with dedup.
2910  *
2911  * By leveraging a cryptographically secure checksum, such as SHA256, we
2912  * can compare the checksums of the new data and the old to determine if
2913  * allocating a new block is required.  Note that our requirements for
2914  * cryptographic strength are fairly weak: there can't be any accidental
2915  * hash collisions, but we don't need to be secure against intentional
2916  * (malicious) collisions.  To trigger a nopwrite, you have to be able
2917  * to write the file to begin with, and triggering an incorrect (hash
2918  * collision) nopwrite is no worse than simply writing to the file.
2919  * That said, there are no known attacks against the checksum algorithms
2920  * used for nopwrite, assuming that the salt and the checksums
2921  * themselves remain secret.
2922  */
2923 static zio_t *
2924 zio_nop_write(zio_t *zio)
2925 {
2926 	blkptr_t *bp = zio->io_bp;
2927 	blkptr_t *bp_orig = &zio->io_bp_orig;
2928 	zio_prop_t *zp = &zio->io_prop;
2929 
2930 	ASSERT(BP_GET_LEVEL(bp) == 0);
2931 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2932 	ASSERT(zp->zp_nopwrite);
2933 	ASSERT(!zp->zp_dedup);
2934 	ASSERT(zio->io_bp_override == NULL);
2935 	ASSERT(IO_IS_ALLOCATING(zio));
2936 
2937 	/*
2938 	 * Check to see if the original bp and the new bp have matching
2939 	 * characteristics (i.e. same checksum, compression algorithms, etc).
2940 	 * If they don't then just continue with the pipeline which will
2941 	 * allocate a new bp.
2942 	 */
2943 	if (BP_IS_HOLE(bp_orig) ||
2944 	    !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
2945 	    ZCHECKSUM_FLAG_NOPWRITE) ||
2946 	    BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) ||
2947 	    BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
2948 	    BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
2949 	    BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
2950 	    zp->zp_copies != BP_GET_NDVAS(bp_orig))
2951 		return (zio);
2952 
2953 	/*
2954 	 * If the checksums match then reset the pipeline so that we
2955 	 * avoid allocating a new bp and issuing any I/O.
2956 	 */
2957 	if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
2958 		ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
2959 		    ZCHECKSUM_FLAG_NOPWRITE);
2960 		ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
2961 		ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
2962 		ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
2963 		ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
2964 		    sizeof (uint64_t)) == 0);
2965 
2966 		/*
2967 		 * If we're overwriting a block that is currently on an
2968 		 * indirect vdev, then ignore the nopwrite request and
2969 		 * allow a new block to be allocated on a concrete vdev.
2970 		 */
2971 		spa_config_enter(zio->io_spa, SCL_VDEV, FTAG, RW_READER);
2972 		vdev_t *tvd = vdev_lookup_top(zio->io_spa,
2973 		    DVA_GET_VDEV(&bp->blk_dva[0]));
2974 		if (tvd->vdev_ops == &vdev_indirect_ops) {
2975 			spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
2976 			return (zio);
2977 		}
2978 		spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
2979 
2980 		*bp = *bp_orig;
2981 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2982 		zio->io_flags |= ZIO_FLAG_NOPWRITE;
2983 	}
2984 
2985 	return (zio);
2986 }
2987 
2988 /*
2989  * ==========================================================================
2990  * Dedup
2991  * ==========================================================================
2992  */
2993 static void
2994 zio_ddt_child_read_done(zio_t *zio)
2995 {
2996 	blkptr_t *bp = zio->io_bp;
2997 	ddt_entry_t *dde = zio->io_private;
2998 	ddt_phys_t *ddp;
2999 	zio_t *pio = zio_unique_parent(zio);
3000 
3001 	mutex_enter(&pio->io_lock);
3002 	ddp = ddt_phys_select(dde, bp);
3003 	if (zio->io_error == 0)
3004 		ddt_phys_clear(ddp);	/* this ddp doesn't need repair */
3005 
3006 	if (zio->io_error == 0 && dde->dde_repair_abd == NULL)
3007 		dde->dde_repair_abd = zio->io_abd;
3008 	else
3009 		abd_free(zio->io_abd);
3010 	mutex_exit(&pio->io_lock);
3011 }
3012 
3013 static zio_t *
3014 zio_ddt_read_start(zio_t *zio)
3015 {
3016 	blkptr_t *bp = zio->io_bp;
3017 
3018 	ASSERT(BP_GET_DEDUP(bp));
3019 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3020 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3021 
3022 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
3023 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
3024 		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
3025 		ddt_phys_t *ddp = dde->dde_phys;
3026 		ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
3027 		blkptr_t blk;
3028 
3029 		ASSERT(zio->io_vsd == NULL);
3030 		zio->io_vsd = dde;
3031 
3032 		if (ddp_self == NULL)
3033 			return (zio);
3034 
3035 		for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
3036 			if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
3037 				continue;
3038 			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
3039 			    &blk);
3040 			zio_nowait(zio_read(zio, zio->io_spa, &blk,
3041 			    abd_alloc_for_io(zio->io_size, B_TRUE),
3042 			    zio->io_size, zio_ddt_child_read_done, dde,
3043 			    zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) |
3044 			    ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark));
3045 		}
3046 		return (zio);
3047 	}
3048 
3049 	zio_nowait(zio_read(zio, zio->io_spa, bp,
3050 	    zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority,
3051 	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
3052 
3053 	return (zio);
3054 }
3055 
3056 static zio_t *
3057 zio_ddt_read_done(zio_t *zio)
3058 {
3059 	blkptr_t *bp = zio->io_bp;
3060 
3061 	if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) {
3062 		return (NULL);
3063 	}
3064 
3065 	ASSERT(BP_GET_DEDUP(bp));
3066 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3067 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3068 
3069 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
3070 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
3071 		ddt_entry_t *dde = zio->io_vsd;
3072 		if (ddt == NULL) {
3073 			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
3074 			return (zio);
3075 		}
3076 		if (dde == NULL) {
3077 			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
3078 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
3079 			return (NULL);
3080 		}
3081 		if (dde->dde_repair_abd != NULL) {
3082 			abd_copy(zio->io_abd, dde->dde_repair_abd,
3083 			    zio->io_size);
3084 			zio->io_child_error[ZIO_CHILD_DDT] = 0;
3085 		}
3086 		ddt_repair_done(ddt, dde);
3087 		zio->io_vsd = NULL;
3088 	}
3089 
3090 	ASSERT(zio->io_vsd == NULL);
3091 
3092 	return (zio);
3093 }
3094 
3095 static boolean_t
3096 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
3097 {
3098 	spa_t *spa = zio->io_spa;
3099 	boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW);
3100 
3101 	ASSERT(!(zio->io_bp_override && do_raw));
3102 
3103 	/*
3104 	 * Note: we compare the original data, not the transformed data,
3105 	 * because when zio->io_bp is an override bp, we will not have
3106 	 * pushed the I/O transforms.  That's an important optimization
3107 	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
3108 	 * However, we should never get a raw, override zio so in these
3109 	 * cases we can compare the io_abd directly. This is useful because
3110 	 * it allows us to do dedup verification even if we don't have access
3111 	 * to the original data (for instance, if the encryption keys aren't
3112 	 * loaded).
3113 	 */
3114 
3115 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
3116 		zio_t *lio = dde->dde_lead_zio[p];
3117 
3118 		if (lio != NULL && do_raw) {
3119 			return (lio->io_size != zio->io_size ||
3120 			    abd_cmp(zio->io_abd, lio->io_abd) != 0);
3121 		} else if (lio != NULL) {
3122 			return (lio->io_orig_size != zio->io_orig_size ||
3123 			    abd_cmp(zio->io_orig_abd, lio->io_orig_abd) != 0);
3124 		}
3125 	}
3126 
3127 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
3128 		ddt_phys_t *ddp = &dde->dde_phys[p];
3129 
3130 		if (ddp->ddp_phys_birth != 0 && do_raw) {
3131 			blkptr_t blk = *zio->io_bp;
3132 			uint64_t psize;
3133 			abd_t *tmpabd;
3134 			int error;
3135 
3136 			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
3137 			psize = BP_GET_PSIZE(&blk);
3138 
3139 			if (psize != zio->io_size)
3140 				return (B_TRUE);
3141 
3142 			ddt_exit(ddt);
3143 
3144 			tmpabd = abd_alloc_for_io(psize, B_TRUE);
3145 
3146 			error = zio_wait(zio_read(NULL, spa, &blk, tmpabd,
3147 			    psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
3148 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3149 			    ZIO_FLAG_RAW, &zio->io_bookmark));
3150 
3151 			if (error == 0) {
3152 				if (abd_cmp(tmpabd, zio->io_abd) != 0)
3153 					error = SET_ERROR(ENOENT);
3154 			}
3155 
3156 			abd_free(tmpabd);
3157 			ddt_enter(ddt);
3158 			return (error != 0);
3159 		} else if (ddp->ddp_phys_birth != 0) {
3160 			arc_buf_t *abuf = NULL;
3161 			arc_flags_t aflags = ARC_FLAG_WAIT;
3162 			blkptr_t blk = *zio->io_bp;
3163 			int error;
3164 
3165 			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
3166 
3167 			if (BP_GET_LSIZE(&blk) != zio->io_orig_size)
3168 				return (B_TRUE);
3169 
3170 			ddt_exit(ddt);
3171 
3172 			error = arc_read(NULL, spa, &blk,
3173 			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
3174 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3175 			    &aflags, &zio->io_bookmark);
3176 
3177 			if (error == 0) {
3178 				if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data,
3179 				    zio->io_orig_size) != 0)
3180 					error = SET_ERROR(ENOENT);
3181 				arc_buf_destroy(abuf, &abuf);
3182 			}
3183 
3184 			ddt_enter(ddt);
3185 			return (error != 0);
3186 		}
3187 	}
3188 
3189 	return (B_FALSE);
3190 }
3191 
3192 static void
3193 zio_ddt_child_write_ready(zio_t *zio)
3194 {
3195 	int p = zio->io_prop.zp_copies;
3196 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3197 	ddt_entry_t *dde = zio->io_private;
3198 	ddt_phys_t *ddp = &dde->dde_phys[p];
3199 	zio_t *pio;
3200 
3201 	if (zio->io_error)
3202 		return;
3203 
3204 	ddt_enter(ddt);
3205 
3206 	ASSERT(dde->dde_lead_zio[p] == zio);
3207 
3208 	ddt_phys_fill(ddp, zio->io_bp);
3209 
3210 	zio_link_t *zl = NULL;
3211 	while ((pio = zio_walk_parents(zio, &zl)) != NULL)
3212 		ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
3213 
3214 	ddt_exit(ddt);
3215 }
3216 
3217 static void
3218 zio_ddt_child_write_done(zio_t *zio)
3219 {
3220 	int p = zio->io_prop.zp_copies;
3221 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3222 	ddt_entry_t *dde = zio->io_private;
3223 	ddt_phys_t *ddp = &dde->dde_phys[p];
3224 
3225 	ddt_enter(ddt);
3226 
3227 	ASSERT(ddp->ddp_refcnt == 0);
3228 	ASSERT(dde->dde_lead_zio[p] == zio);
3229 	dde->dde_lead_zio[p] = NULL;
3230 
3231 	if (zio->io_error == 0) {
3232 		zio_link_t *zl = NULL;
3233 		while (zio_walk_parents(zio, &zl) != NULL)
3234 			ddt_phys_addref(ddp);
3235 	} else {
3236 		ddt_phys_clear(ddp);
3237 	}
3238 
3239 	ddt_exit(ddt);
3240 }
3241 
3242 static zio_t *
3243 zio_ddt_write(zio_t *zio)
3244 {
3245 	spa_t *spa = zio->io_spa;
3246 	blkptr_t *bp = zio->io_bp;
3247 	uint64_t txg = zio->io_txg;
3248 	zio_prop_t *zp = &zio->io_prop;
3249 	int p = zp->zp_copies;
3250 	zio_t *cio = NULL;
3251 	ddt_t *ddt = ddt_select(spa, bp);
3252 	ddt_entry_t *dde;
3253 	ddt_phys_t *ddp;
3254 
3255 	ASSERT(BP_GET_DEDUP(bp));
3256 	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
3257 	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
3258 	ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW)));
3259 
3260 	ddt_enter(ddt);
3261 	dde = ddt_lookup(ddt, bp, B_TRUE);
3262 	ddp = &dde->dde_phys[p];
3263 
3264 	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
3265 		/*
3266 		 * If we're using a weak checksum, upgrade to a strong checksum
3267 		 * and try again.  If we're already using a strong checksum,
3268 		 * we can't resolve it, so just convert to an ordinary write.
3269 		 * (And automatically e-mail a paper to Nature?)
3270 		 */
3271 		if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
3272 		    ZCHECKSUM_FLAG_DEDUP)) {
3273 			zp->zp_checksum = spa_dedup_checksum(spa);
3274 			zio_pop_transforms(zio);
3275 			zio->io_stage = ZIO_STAGE_OPEN;
3276 			BP_ZERO(bp);
3277 		} else {
3278 			zp->zp_dedup = B_FALSE;
3279 			BP_SET_DEDUP(bp, B_FALSE);
3280 		}
3281 		ASSERT(!BP_GET_DEDUP(bp));
3282 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
3283 		ddt_exit(ddt);
3284 		return (zio);
3285 	}
3286 
3287 	if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
3288 		if (ddp->ddp_phys_birth != 0)
3289 			ddt_bp_fill(ddp, bp, txg);
3290 		if (dde->dde_lead_zio[p] != NULL)
3291 			zio_add_child(zio, dde->dde_lead_zio[p]);
3292 		else
3293 			ddt_phys_addref(ddp);
3294 	} else if (zio->io_bp_override) {
3295 		ASSERT(bp->blk_birth == txg);
3296 		ASSERT(BP_EQUAL(bp, zio->io_bp_override));
3297 		ddt_phys_fill(ddp, bp);
3298 		ddt_phys_addref(ddp);
3299 	} else {
3300 		cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
3301 		    zio->io_orig_size, zio->io_orig_size, zp,
3302 		    zio_ddt_child_write_ready, NULL, NULL,
3303 		    zio_ddt_child_write_done, dde, zio->io_priority,
3304 		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
3305 
3306 		zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL);
3307 		dde->dde_lead_zio[p] = cio;
3308 	}
3309 
3310 	ddt_exit(ddt);
3311 
3312 	zio_nowait(cio);
3313 
3314 	return (zio);
3315 }
3316 
3317 ddt_entry_t *freedde; /* for debugging */
3318 
3319 static zio_t *
3320 zio_ddt_free(zio_t *zio)
3321 {
3322 	spa_t *spa = zio->io_spa;
3323 	blkptr_t *bp = zio->io_bp;
3324 	ddt_t *ddt = ddt_select(spa, bp);
3325 	ddt_entry_t *dde;
3326 	ddt_phys_t *ddp;
3327 
3328 	ASSERT(BP_GET_DEDUP(bp));
3329 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3330 
3331 	ddt_enter(ddt);
3332 	freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
3333 	if (dde) {
3334 		ddp = ddt_phys_select(dde, bp);
3335 		if (ddp)
3336 			ddt_phys_decref(ddp);
3337 	}
3338 	ddt_exit(ddt);
3339 
3340 	return (zio);
3341 }
3342 
3343 /*
3344  * ==========================================================================
3345  * Allocate and free blocks
3346  * ==========================================================================
3347  */
3348 
3349 static zio_t *
3350 zio_io_to_allocate(spa_t *spa, int allocator)
3351 {
3352 	zio_t *zio;
3353 
3354 	ASSERT(MUTEX_HELD(&spa->spa_alloc_locks[allocator]));
3355 
3356 	zio = avl_first(&spa->spa_alloc_trees[allocator]);
3357 	if (zio == NULL)
3358 		return (NULL);
3359 
3360 	ASSERT(IO_IS_ALLOCATING(zio));
3361 
3362 	/*
3363 	 * Try to place a reservation for this zio. If we're unable to
3364 	 * reserve then we throttle.
3365 	 */
3366 	ASSERT3U(zio->io_allocator, ==, allocator);
3367 	if (!metaslab_class_throttle_reserve(zio->io_metaslab_class,
3368 	    zio->io_prop.zp_copies, zio->io_allocator, zio, 0)) {
3369 		return (NULL);
3370 	}
3371 
3372 	avl_remove(&spa->spa_alloc_trees[allocator], zio);
3373 	ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE);
3374 
3375 	return (zio);
3376 }
3377 
3378 static zio_t *
3379 zio_dva_throttle(zio_t *zio)
3380 {
3381 	spa_t *spa = zio->io_spa;
3382 	zio_t *nio;
3383 	metaslab_class_t *mc;
3384 
3385 	/* locate an appropriate allocation class */
3386 	mc = spa_preferred_class(spa, zio->io_size, zio->io_prop.zp_type,
3387 	    zio->io_prop.zp_level, zio->io_prop.zp_zpl_smallblk);
3388 
3389 	if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE ||
3390 	    !mc->mc_alloc_throttle_enabled ||
3391 	    zio->io_child_type == ZIO_CHILD_GANG ||
3392 	    zio->io_flags & ZIO_FLAG_NODATA) {
3393 		return (zio);
3394 	}
3395 
3396 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3397 
3398 	ASSERT3U(zio->io_queued_timestamp, >, 0);
3399 	ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE);
3400 
3401 	zbookmark_phys_t *bm = &zio->io_bookmark;
3402 	/*
3403 	 * We want to try to use as many allocators as possible to help improve
3404 	 * performance, but we also want logically adjacent IOs to be physically
3405 	 * adjacent to improve sequential read performance. We chunk each object
3406 	 * into 2^20 block regions, and then hash based on the objset, object,
3407 	 * level, and region to accomplish both of these goals.
3408 	 */
3409 	zio->io_allocator = cityhash4(bm->zb_objset, bm->zb_object,
3410 	    bm->zb_level, bm->zb_blkid >> 20) % spa->spa_alloc_count;
3411 	mutex_enter(&spa->spa_alloc_locks[zio->io_allocator]);
3412 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3413 	zio->io_metaslab_class = mc;
3414 	avl_add(&spa->spa_alloc_trees[zio->io_allocator], zio);
3415 	nio = zio_io_to_allocate(spa, zio->io_allocator);
3416 	mutex_exit(&spa->spa_alloc_locks[zio->io_allocator]);
3417 	return (nio);
3418 }
3419 
3420 static void
3421 zio_allocate_dispatch(spa_t *spa, int allocator)
3422 {
3423 	zio_t *zio;
3424 
3425 	mutex_enter(&spa->spa_alloc_locks[allocator]);
3426 	zio = zio_io_to_allocate(spa, allocator);
3427 	mutex_exit(&spa->spa_alloc_locks[allocator]);
3428 	if (zio == NULL)
3429 		return;
3430 
3431 	ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE);
3432 	ASSERT0(zio->io_error);
3433 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE);
3434 }
3435 
3436 static zio_t *
3437 zio_dva_allocate(zio_t *zio)
3438 {
3439 	spa_t *spa = zio->io_spa;
3440 	metaslab_class_t *mc;
3441 	blkptr_t *bp = zio->io_bp;
3442 	int error;
3443 	int flags = 0;
3444 
3445 	if (zio->io_gang_leader == NULL) {
3446 		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3447 		zio->io_gang_leader = zio;
3448 	}
3449 
3450 	ASSERT(BP_IS_HOLE(bp));
3451 	ASSERT0(BP_GET_NDVAS(bp));
3452 	ASSERT3U(zio->io_prop.zp_copies, >, 0);
3453 	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
3454 	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
3455 
3456 	flags |= (zio->io_flags & ZIO_FLAG_FASTWRITE) ? METASLAB_FASTWRITE : 0;
3457 	if (zio->io_flags & ZIO_FLAG_NODATA)
3458 		flags |= METASLAB_DONT_THROTTLE;
3459 	if (zio->io_flags & ZIO_FLAG_GANG_CHILD)
3460 		flags |= METASLAB_GANG_CHILD;
3461 	if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE)
3462 		flags |= METASLAB_ASYNC_ALLOC;
3463 
3464 	/*
3465 	 * if not already chosen, locate an appropriate allocation class
3466 	 */
3467 	mc = zio->io_metaslab_class;
3468 	if (mc == NULL) {
3469 		mc = spa_preferred_class(spa, zio->io_size,
3470 		    zio->io_prop.zp_type, zio->io_prop.zp_level,
3471 		    zio->io_prop.zp_zpl_smallblk);
3472 		zio->io_metaslab_class = mc;
3473 	}
3474 
3475 	error = metaslab_alloc(spa, mc, zio->io_size, bp,
3476 	    zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3477 	    &zio->io_alloc_list, zio, zio->io_allocator);
3478 
3479 	/*
3480 	 * Fallback to normal class when an alloc class is full
3481 	 */
3482 	if (error == ENOSPC && mc != spa_normal_class(spa)) {
3483 		/*
3484 		 * If throttling, transfer reservation over to normal class.
3485 		 * The io_allocator slot can remain the same even though we
3486 		 * are switching classes.
3487 		 */
3488 		if (mc->mc_alloc_throttle_enabled &&
3489 		    (zio->io_flags & ZIO_FLAG_IO_ALLOCATING)) {
3490 			metaslab_class_throttle_unreserve(mc,
3491 			    zio->io_prop.zp_copies, zio->io_allocator, zio);
3492 			zio->io_flags &= ~ZIO_FLAG_IO_ALLOCATING;
3493 
3494 			mc = spa_normal_class(spa);
3495 			VERIFY(metaslab_class_throttle_reserve(mc,
3496 			    zio->io_prop.zp_copies, zio->io_allocator, zio,
3497 			    flags | METASLAB_MUST_RESERVE));
3498 		} else {
3499 			mc = spa_normal_class(spa);
3500 		}
3501 		zio->io_metaslab_class = mc;
3502 
3503 		error = metaslab_alloc(spa, mc, zio->io_size, bp,
3504 		    zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3505 		    &zio->io_alloc_list, zio, zio->io_allocator);
3506 	}
3507 
3508 	if (error != 0) {
3509 		zfs_dbgmsg("%s: metaslab allocation failure: zio %px, "
3510 		    "size %llu, error %d", spa_name(spa), zio, zio->io_size,
3511 		    error);
3512 		if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
3513 			return (zio_write_gang_block(zio));
3514 		zio->io_error = error;
3515 	}
3516 
3517 	return (zio);
3518 }
3519 
3520 static zio_t *
3521 zio_dva_free(zio_t *zio)
3522 {
3523 	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
3524 
3525 	return (zio);
3526 }
3527 
3528 static zio_t *
3529 zio_dva_claim(zio_t *zio)
3530 {
3531 	int error;
3532 
3533 	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
3534 	if (error)
3535 		zio->io_error = error;
3536 
3537 	return (zio);
3538 }
3539 
3540 /*
3541  * Undo an allocation.  This is used by zio_done() when an I/O fails
3542  * and we want to give back the block we just allocated.
3543  * This handles both normal blocks and gang blocks.
3544  */
3545 static void
3546 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
3547 {
3548 	ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
3549 	ASSERT(zio->io_bp_override == NULL);
3550 
3551 	if (!BP_IS_HOLE(bp))
3552 		metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
3553 
3554 	if (gn != NULL) {
3555 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
3556 			zio_dva_unallocate(zio, gn->gn_child[g],
3557 			    &gn->gn_gbh->zg_blkptr[g]);
3558 		}
3559 	}
3560 }
3561 
3562 /*
3563  * Try to allocate an intent log block.  Return 0 on success, errno on failure.
3564  */
3565 int
3566 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp,
3567     uint64_t size, boolean_t *slog)
3568 {
3569 	int error = 1;
3570 	zio_alloc_list_t io_alloc_list;
3571 
3572 	ASSERT(txg > spa_syncing_txg(spa));
3573 
3574 	metaslab_trace_init(&io_alloc_list);
3575 
3576 	/*
3577 	 * Block pointer fields are useful to metaslabs for stats and debugging.
3578 	 * Fill in the obvious ones before calling into metaslab_alloc().
3579 	 */
3580 	BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3581 	BP_SET_PSIZE(new_bp, size);
3582 	BP_SET_LEVEL(new_bp, 0);
3583 
3584 	/*
3585 	 * When allocating a zil block, we don't have information about
3586 	 * the final destination of the block except the objset it's part
3587 	 * of, so we just hash the objset ID to pick the allocator to get
3588 	 * some parallelism.
3589 	 */
3590 	error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1,
3591 	    txg, NULL, METASLAB_FASTWRITE, &io_alloc_list, NULL,
3592 	    cityhash4(0, 0, 0, os->os_dsl_dataset->ds_object) %
3593 	    spa->spa_alloc_count);
3594 	if (error == 0) {
3595 		*slog = TRUE;
3596 	} else {
3597 		error = metaslab_alloc(spa, spa_normal_class(spa), size,
3598 		    new_bp, 1, txg, NULL, METASLAB_FASTWRITE,
3599 		    &io_alloc_list, NULL, cityhash4(0, 0, 0,
3600 		    os->os_dsl_dataset->ds_object) % spa->spa_alloc_count);
3601 		if (error == 0)
3602 			*slog = FALSE;
3603 	}
3604 	metaslab_trace_fini(&io_alloc_list);
3605 
3606 	if (error == 0) {
3607 		BP_SET_LSIZE(new_bp, size);
3608 		BP_SET_PSIZE(new_bp, size);
3609 		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
3610 		BP_SET_CHECKSUM(new_bp,
3611 		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL
3612 		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
3613 		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3614 		BP_SET_LEVEL(new_bp, 0);
3615 		BP_SET_DEDUP(new_bp, 0);
3616 		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
3617 
3618 		/*
3619 		 * encrypted blocks will require an IV and salt. We generate
3620 		 * these now since we will not be rewriting the bp at
3621 		 * rewrite time.
3622 		 */
3623 		if (os->os_encrypted) {
3624 			uint8_t iv[ZIO_DATA_IV_LEN];
3625 			uint8_t salt[ZIO_DATA_SALT_LEN];
3626 
3627 			BP_SET_CRYPT(new_bp, B_TRUE);
3628 			VERIFY0(spa_crypt_get_salt(spa,
3629 			    dmu_objset_id(os), salt));
3630 			VERIFY0(zio_crypt_generate_iv(iv));
3631 
3632 			zio_crypt_encode_params_bp(new_bp, salt, iv);
3633 		}
3634 	} else {
3635 		zfs_dbgmsg("%s: zil block allocation failure: "
3636 		    "size %llu, error %d", spa_name(spa), size, error);
3637 	}
3638 
3639 	return (error);
3640 }
3641 
3642 /*
3643  * ==========================================================================
3644  * Read and write to physical devices
3645  * ==========================================================================
3646  */
3647 
3648 /*
3649  * Issue an I/O to the underlying vdev. Typically the issue pipeline
3650  * stops after this stage and will resume upon I/O completion.
3651  * However, there are instances where the vdev layer may need to
3652  * continue the pipeline when an I/O was not issued. Since the I/O
3653  * that was sent to the vdev layer might be different than the one
3654  * currently active in the pipeline (see vdev_queue_io()), we explicitly
3655  * force the underlying vdev layers to call either zio_execute() or
3656  * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
3657  */
3658 static zio_t *
3659 zio_vdev_io_start(zio_t *zio)
3660 {
3661 	vdev_t *vd = zio->io_vd;
3662 	uint64_t align;
3663 	spa_t *spa = zio->io_spa;
3664 
3665 	zio->io_delay = 0;
3666 
3667 	ASSERT(zio->io_error == 0);
3668 	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
3669 
3670 	if (vd == NULL) {
3671 		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3672 			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
3673 
3674 		/*
3675 		 * The mirror_ops handle multiple DVAs in a single BP.
3676 		 */
3677 		vdev_mirror_ops.vdev_op_io_start(zio);
3678 		return (NULL);
3679 	}
3680 
3681 	ASSERT3P(zio->io_logical, !=, zio);
3682 	if (zio->io_type == ZIO_TYPE_WRITE) {
3683 		ASSERT(spa->spa_trust_config);
3684 
3685 		/*
3686 		 * Note: the code can handle other kinds of writes,
3687 		 * but we don't expect them.
3688 		 */
3689 		if (zio->io_vd->vdev_removing) {
3690 			ASSERT(zio->io_flags &
3691 			    (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL |
3692 			    ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE));
3693 		}
3694 	}
3695 
3696 	align = 1ULL << vd->vdev_top->vdev_ashift;
3697 
3698 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
3699 	    P2PHASE(zio->io_size, align) != 0) {
3700 		/* Transform logical writes to be a full physical block size. */
3701 		uint64_t asize = P2ROUNDUP(zio->io_size, align);
3702 		abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize);
3703 		ASSERT(vd == vd->vdev_top);
3704 		if (zio->io_type == ZIO_TYPE_WRITE) {
3705 			abd_copy(abuf, zio->io_abd, zio->io_size);
3706 			abd_zero_off(abuf, zio->io_size, asize - zio->io_size);
3707 		}
3708 		zio_push_transform(zio, abuf, asize, asize, zio_subblock);
3709 	}
3710 
3711 	/*
3712 	 * If this is not a physical io, make sure that it is properly aligned
3713 	 * before proceeding.
3714 	 */
3715 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
3716 		ASSERT0(P2PHASE(zio->io_offset, align));
3717 		ASSERT0(P2PHASE(zio->io_size, align));
3718 	} else {
3719 		/*
3720 		 * For physical writes, we allow 512b aligned writes and assume
3721 		 * the device will perform a read-modify-write as necessary.
3722 		 */
3723 		ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
3724 		ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
3725 	}
3726 
3727 	VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
3728 
3729 	/*
3730 	 * If this is a repair I/O, and there's no self-healing involved --
3731 	 * that is, we're just resilvering what we expect to resilver --
3732 	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
3733 	 * This prevents spurious resilvering.
3734 	 *
3735 	 * There are a few ways that we can end up creating these spurious
3736 	 * resilver i/os:
3737 	 *
3738 	 * 1. A resilver i/o will be issued if any DVA in the BP has a
3739 	 * dirty DTL.  The mirror code will issue resilver writes to
3740 	 * each DVA, including the one(s) that are not on vdevs with dirty
3741 	 * DTLs.
3742 	 *
3743 	 * 2. With nested replication, which happens when we have a
3744 	 * "replacing" or "spare" vdev that's a child of a mirror or raidz.
3745 	 * For example, given mirror(replacing(A+B), C), it's likely that
3746 	 * only A is out of date (it's the new device). In this case, we'll
3747 	 * read from C, then use the data to resilver A+B -- but we don't
3748 	 * actually want to resilver B, just A. The top-level mirror has no
3749 	 * way to know this, so instead we just discard unnecessary repairs
3750 	 * as we work our way down the vdev tree.
3751 	 *
3752 	 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc.
3753 	 * The same logic applies to any form of nested replication: ditto
3754 	 * + mirror, RAID-Z + replacing, etc.
3755 	 *
3756 	 * However, indirect vdevs point off to other vdevs which may have
3757 	 * DTL's, so we never bypass them.  The child i/os on concrete vdevs
3758 	 * will be properly bypassed instead.
3759 	 */
3760 	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
3761 	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
3762 	    zio->io_txg != 0 &&	/* not a delegated i/o */
3763 	    vd->vdev_ops != &vdev_indirect_ops &&
3764 	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
3765 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3766 		zio_vdev_io_bypass(zio);
3767 		return (zio);
3768 	}
3769 
3770 	if (vd->vdev_ops->vdev_op_leaf && (zio->io_type == ZIO_TYPE_READ ||
3771 	    zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM)) {
3772 
3773 		if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio))
3774 			return (zio);
3775 
3776 		if ((zio = vdev_queue_io(zio)) == NULL)
3777 			return (NULL);
3778 
3779 		if (!vdev_accessible(vd, zio)) {
3780 			zio->io_error = SET_ERROR(ENXIO);
3781 			zio_interrupt(zio);
3782 			return (NULL);
3783 		}
3784 		zio->io_delay = gethrtime();
3785 	}
3786 
3787 	vd->vdev_ops->vdev_op_io_start(zio);
3788 	return (NULL);
3789 }
3790 
3791 static zio_t *
3792 zio_vdev_io_done(zio_t *zio)
3793 {
3794 	vdev_t *vd = zio->io_vd;
3795 	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
3796 	boolean_t unexpected_error = B_FALSE;
3797 
3798 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3799 		return (NULL);
3800 	}
3801 
3802 	ASSERT(zio->io_type == ZIO_TYPE_READ ||
3803 	    zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM);
3804 
3805 	if (zio->io_delay)
3806 		zio->io_delay = gethrtime() - zio->io_delay;
3807 
3808 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
3809 
3810 		vdev_queue_io_done(zio);
3811 
3812 		if (zio->io_type == ZIO_TYPE_WRITE)
3813 			vdev_cache_write(zio);
3814 
3815 		if (zio_injection_enabled && zio->io_error == 0)
3816 			zio->io_error = zio_handle_device_injections(vd, zio,
3817 			    EIO, EILSEQ);
3818 
3819 		if (zio_injection_enabled && zio->io_error == 0)
3820 			zio->io_error = zio_handle_label_injection(zio, EIO);
3821 
3822 		if (zio->io_error && zio->io_type != ZIO_TYPE_TRIM) {
3823 			if (!vdev_accessible(vd, zio)) {
3824 				zio->io_error = SET_ERROR(ENXIO);
3825 			} else {
3826 				unexpected_error = B_TRUE;
3827 			}
3828 		}
3829 	}
3830 
3831 	ops->vdev_op_io_done(zio);
3832 
3833 	if (unexpected_error)
3834 		VERIFY(vdev_probe(vd, zio) == NULL);
3835 
3836 	return (zio);
3837 }
3838 
3839 /*
3840  * This function is used to change the priority of an existing zio that is
3841  * currently in-flight. This is used by the arc to upgrade priority in the
3842  * event that a demand read is made for a block that is currently queued
3843  * as a scrub or async read IO. Otherwise, the high priority read request
3844  * would end up having to wait for the lower priority IO.
3845  */
3846 void
3847 zio_change_priority(zio_t *pio, zio_priority_t priority)
3848 {
3849 	zio_t *cio, *cio_next;
3850 	zio_link_t *zl = NULL;
3851 
3852 	ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
3853 
3854 	if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) {
3855 		vdev_queue_change_io_priority(pio, priority);
3856 	} else {
3857 		pio->io_priority = priority;
3858 	}
3859 
3860 	mutex_enter(&pio->io_lock);
3861 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
3862 		cio_next = zio_walk_children(pio, &zl);
3863 		zio_change_priority(cio, priority);
3864 	}
3865 	mutex_exit(&pio->io_lock);
3866 }
3867 
3868 /*
3869  * For non-raidz ZIOs, we can just copy aside the bad data read from the
3870  * disk, and use that to finish the checksum ereport later.
3871  */
3872 static void
3873 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
3874     const abd_t *good_buf)
3875 {
3876 	/* no processing needed */
3877 	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
3878 }
3879 
3880 /*ARGSUSED*/
3881 void
3882 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
3883 {
3884 	void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size);
3885 
3886 	abd_copy(abd, zio->io_abd, zio->io_size);
3887 
3888 	zcr->zcr_cbinfo = zio->io_size;
3889 	zcr->zcr_cbdata = abd;
3890 	zcr->zcr_finish = zio_vsd_default_cksum_finish;
3891 	zcr->zcr_free = zio_abd_free;
3892 }
3893 
3894 static zio_t *
3895 zio_vdev_io_assess(zio_t *zio)
3896 {
3897 	vdev_t *vd = zio->io_vd;
3898 
3899 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3900 		return (NULL);
3901 	}
3902 
3903 	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3904 		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
3905 
3906 	if (zio->io_vsd != NULL) {
3907 		zio->io_vsd_ops->vsd_free(zio);
3908 		zio->io_vsd = NULL;
3909 	}
3910 
3911 	if (zio_injection_enabled && zio->io_error == 0)
3912 		zio->io_error = zio_handle_fault_injection(zio, EIO);
3913 
3914 	/*
3915 	 * If the I/O failed, determine whether we should attempt to retry it.
3916 	 *
3917 	 * On retry, we cut in line in the issue queue, since we don't want
3918 	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
3919 	 */
3920 	if (zio->io_error && vd == NULL &&
3921 	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
3922 		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
3923 		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
3924 		zio->io_error = 0;
3925 		zio->io_flags |= ZIO_FLAG_IO_RETRY |
3926 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
3927 		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
3928 		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
3929 		    zio_requeue_io_start_cut_in_line);
3930 		return (NULL);
3931 	}
3932 
3933 	/*
3934 	 * If we got an error on a leaf device, convert it to ENXIO
3935 	 * if the device is not accessible at all.
3936 	 */
3937 	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3938 	    !vdev_accessible(vd, zio))
3939 		zio->io_error = SET_ERROR(ENXIO);
3940 
3941 	/*
3942 	 * If we can't write to an interior vdev (mirror or RAID-Z),
3943 	 * set vdev_cant_write so that we stop trying to allocate from it.
3944 	 */
3945 	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
3946 	    vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
3947 		vd->vdev_cant_write = B_TRUE;
3948 	}
3949 
3950 	/*
3951 	 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future
3952 	 * attempts will ever succeed. In this case we set a persistent
3953 	 * boolean flag so that we don't bother with it in the future.
3954 	 */
3955 	if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) &&
3956 	    zio->io_type == ZIO_TYPE_IOCTL &&
3957 	    zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL)
3958 		vd->vdev_nowritecache = B_TRUE;
3959 
3960 	if (zio->io_error)
3961 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3962 
3963 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3964 	    zio->io_physdone != NULL) {
3965 		ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
3966 		ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
3967 		zio->io_physdone(zio->io_logical);
3968 	}
3969 
3970 	return (zio);
3971 }
3972 
3973 void
3974 zio_vdev_io_reissue(zio_t *zio)
3975 {
3976 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3977 	ASSERT(zio->io_error == 0);
3978 
3979 	zio->io_stage >>= 1;
3980 }
3981 
3982 void
3983 zio_vdev_io_redone(zio_t *zio)
3984 {
3985 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
3986 
3987 	zio->io_stage >>= 1;
3988 }
3989 
3990 void
3991 zio_vdev_io_bypass(zio_t *zio)
3992 {
3993 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3994 	ASSERT(zio->io_error == 0);
3995 
3996 	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
3997 	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
3998 }
3999 
4000 /*
4001  * ==========================================================================
4002  * Encrypt and store encryption parameters
4003  * ==========================================================================
4004  */
4005 
4006 
4007 /*
4008  * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for
4009  * managing the storage of encryption parameters and passing them to the
4010  * lower-level encryption functions.
4011  */
4012 static zio_t *
4013 zio_encrypt(zio_t *zio)
4014 {
4015 	zio_prop_t *zp = &zio->io_prop;
4016 	spa_t *spa = zio->io_spa;
4017 	blkptr_t *bp = zio->io_bp;
4018 	uint64_t psize = BP_GET_PSIZE(bp);
4019 	uint64_t dsobj = zio->io_bookmark.zb_objset;
4020 	dmu_object_type_t ot = BP_GET_TYPE(bp);
4021 	void *enc_buf = NULL;
4022 	abd_t *eabd = NULL;
4023 	uint8_t salt[ZIO_DATA_SALT_LEN];
4024 	uint8_t iv[ZIO_DATA_IV_LEN];
4025 	uint8_t mac[ZIO_DATA_MAC_LEN];
4026 	boolean_t no_crypt = B_FALSE;
4027 
4028 	/* the root zio already encrypted the data */
4029 	if (zio->io_child_type == ZIO_CHILD_GANG)
4030 		return (zio);
4031 
4032 	/* only ZIL blocks are re-encrypted on rewrite */
4033 	if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG)
4034 		return (zio);
4035 
4036 	if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) {
4037 		BP_SET_CRYPT(bp, B_FALSE);
4038 		return (zio);
4039 	}
4040 
4041 	/* if we are doing raw encryption set the provided encryption params */
4042 	if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) {
4043 		ASSERT0(BP_GET_LEVEL(bp));
4044 		BP_SET_CRYPT(bp, B_TRUE);
4045 		BP_SET_BYTEORDER(bp, zp->zp_byteorder);
4046 		if (ot != DMU_OT_OBJSET)
4047 			zio_crypt_encode_mac_bp(bp, zp->zp_mac);
4048 
4049 		/* dnode blocks must be written out in the provided byteorder */
4050 		if (zp->zp_byteorder != ZFS_HOST_BYTEORDER &&
4051 		    ot == DMU_OT_DNODE) {
4052 			void *bswap_buf = zio_buf_alloc(psize);
4053 			abd_t *babd = abd_get_from_buf(bswap_buf, psize);
4054 
4055 			ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4056 			abd_copy_to_buf(bswap_buf, zio->io_abd, psize);
4057 			dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf,
4058 			    psize);
4059 
4060 			abd_take_ownership_of_buf(babd, B_TRUE);
4061 			zio_push_transform(zio, babd, psize, psize, NULL);
4062 		}
4063 
4064 		if (DMU_OT_IS_ENCRYPTED(ot))
4065 			zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv);
4066 		return (zio);
4067 	}
4068 
4069 	/* indirect blocks only maintain a cksum of the lower level MACs */
4070 	if (BP_GET_LEVEL(bp) > 0) {
4071 		BP_SET_CRYPT(bp, B_TRUE);
4072 		VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE,
4073 		    zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp),
4074 		    mac));
4075 		zio_crypt_encode_mac_bp(bp, mac);
4076 		return (zio);
4077 	}
4078 
4079 	/*
4080 	 * Objset blocks are a special case since they have 2 256-bit MACs
4081 	 * embedded within them.
4082 	 */
4083 	if (ot == DMU_OT_OBJSET) {
4084 		ASSERT0(DMU_OT_IS_ENCRYPTED(ot));
4085 		ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4086 		BP_SET_CRYPT(bp, B_TRUE);
4087 		VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj,
4088 		    zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp)));
4089 		return (zio);
4090 	}
4091 
4092 	/* unencrypted object types are only authenticated with a MAC */
4093 	if (!DMU_OT_IS_ENCRYPTED(ot)) {
4094 		BP_SET_CRYPT(bp, B_TRUE);
4095 		VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj,
4096 		    zio->io_abd, psize, mac));
4097 		zio_crypt_encode_mac_bp(bp, mac);
4098 		return (zio);
4099 	}
4100 
4101 	/*
4102 	 * Later passes of sync-to-convergence may decide to rewrite data
4103 	 * in place to avoid more disk reallocations. This presents a problem
4104 	 * for encryption because this constitutes rewriting the new data with
4105 	 * the same encryption key and IV. However, this only applies to blocks
4106 	 * in the MOS (particularly the spacemaps) and we do not encrypt the
4107 	 * MOS. We assert that the zio is allocating or an intent log write
4108 	 * to enforce this.
4109 	 */
4110 	ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG);
4111 	ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG);
4112 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION));
4113 	ASSERT3U(psize, !=, 0);
4114 
4115 	enc_buf = zio_buf_alloc(psize);
4116 	eabd = abd_get_from_buf(enc_buf, psize);
4117 	abd_take_ownership_of_buf(eabd, B_TRUE);
4118 
4119 	/*
4120 	 * For an explanation of what encryption parameters are stored
4121 	 * where, see the block comment in zio_crypt.c.
4122 	 */
4123 	if (ot == DMU_OT_INTENT_LOG) {
4124 		zio_crypt_decode_params_bp(bp, salt, iv);
4125 	} else {
4126 		BP_SET_CRYPT(bp, B_TRUE);
4127 	}
4128 
4129 	/* Perform the encryption. This should not fail */
4130 	VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark,
4131 	    BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
4132 	    salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt));
4133 
4134 	/* encode encryption metadata into the bp */
4135 	if (ot == DMU_OT_INTENT_LOG) {
4136 		/*
4137 		 * ZIL blocks store the MAC in the embedded checksum, so the
4138 		 * transform must always be applied.
4139 		 */
4140 		zio_crypt_encode_mac_zil(enc_buf, mac);
4141 		zio_push_transform(zio, eabd, psize, psize, NULL);
4142 	} else {
4143 		BP_SET_CRYPT(bp, B_TRUE);
4144 		zio_crypt_encode_params_bp(bp, salt, iv);
4145 		zio_crypt_encode_mac_bp(bp, mac);
4146 
4147 		if (no_crypt) {
4148 			ASSERT3U(ot, ==, DMU_OT_DNODE);
4149 			abd_free(eabd);
4150 		} else {
4151 			zio_push_transform(zio, eabd, psize, psize, NULL);
4152 		}
4153 	}
4154 
4155 	return (zio);
4156 }
4157 
4158 /*
4159  * ==========================================================================
4160  * Generate and verify checksums
4161  * ==========================================================================
4162  */
4163 static zio_t *
4164 zio_checksum_generate(zio_t *zio)
4165 {
4166 	blkptr_t *bp = zio->io_bp;
4167 	enum zio_checksum checksum;
4168 
4169 	if (bp == NULL) {
4170 		/*
4171 		 * This is zio_write_phys().
4172 		 * We're either generating a label checksum, or none at all.
4173 		 */
4174 		checksum = zio->io_prop.zp_checksum;
4175 
4176 		if (checksum == ZIO_CHECKSUM_OFF)
4177 			return (zio);
4178 
4179 		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
4180 	} else {
4181 		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
4182 			ASSERT(!IO_IS_ALLOCATING(zio));
4183 			checksum = ZIO_CHECKSUM_GANG_HEADER;
4184 		} else {
4185 			checksum = BP_GET_CHECKSUM(bp);
4186 		}
4187 	}
4188 
4189 	zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size);
4190 
4191 	return (zio);
4192 }
4193 
4194 static zio_t *
4195 zio_checksum_verify(zio_t *zio)
4196 {
4197 	zio_bad_cksum_t info;
4198 	blkptr_t *bp = zio->io_bp;
4199 	int error;
4200 
4201 	ASSERT(zio->io_vd != NULL);
4202 
4203 	if (bp == NULL) {
4204 		/*
4205 		 * This is zio_read_phys().
4206 		 * We're either verifying a label checksum, or nothing at all.
4207 		 */
4208 		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
4209 			return (zio);
4210 
4211 		ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
4212 	}
4213 
4214 	if ((error = zio_checksum_error(zio, &info)) != 0) {
4215 		zio->io_error = error;
4216 		if (error == ECKSUM &&
4217 		    !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
4218 			int ret = zfs_ereport_start_checksum(zio->io_spa,
4219 			    zio->io_vd, &zio->io_bookmark, zio,
4220 			    zio->io_offset, zio->io_size, NULL, &info);
4221 
4222 			if (ret != EALREADY) {
4223 				mutex_enter(&zio->io_vd->vdev_stat_lock);
4224 				zio->io_vd->vdev_stat.vs_checksum_errors++;
4225 				mutex_exit(&zio->io_vd->vdev_stat_lock);
4226 			}
4227 		}
4228 	}
4229 
4230 	return (zio);
4231 }
4232 
4233 /*
4234  * Called by RAID-Z to ensure we don't compute the checksum twice.
4235  */
4236 void
4237 zio_checksum_verified(zio_t *zio)
4238 {
4239 	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
4240 }
4241 
4242 /*
4243  * ==========================================================================
4244  * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
4245  * An error of 0 indicates success.  ENXIO indicates whole-device failure,
4246  * which may be transient (e.g. unplugged) or permanent.  ECKSUM and EIO
4247  * indicate errors that are specific to one I/O, and most likely permanent.
4248  * Any other error is presumed to be worse because we weren't expecting it.
4249  * ==========================================================================
4250  */
4251 int
4252 zio_worst_error(int e1, int e2)
4253 {
4254 	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
4255 	int r1, r2;
4256 
4257 	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
4258 		if (e1 == zio_error_rank[r1])
4259 			break;
4260 
4261 	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
4262 		if (e2 == zio_error_rank[r2])
4263 			break;
4264 
4265 	return (r1 > r2 ? e1 : e2);
4266 }
4267 
4268 /*
4269  * ==========================================================================
4270  * I/O completion
4271  * ==========================================================================
4272  */
4273 static zio_t *
4274 zio_ready(zio_t *zio)
4275 {
4276 	blkptr_t *bp = zio->io_bp;
4277 	zio_t *pio, *pio_next;
4278 	zio_link_t *zl = NULL;
4279 
4280 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT,
4281 	    ZIO_WAIT_READY)) {
4282 		return (NULL);
4283 	}
4284 
4285 	if (zio->io_ready) {
4286 		ASSERT(IO_IS_ALLOCATING(zio));
4287 		ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
4288 		    (zio->io_flags & ZIO_FLAG_NOPWRITE));
4289 		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
4290 
4291 		zio->io_ready(zio);
4292 	}
4293 
4294 	if (bp != NULL && bp != &zio->io_bp_copy)
4295 		zio->io_bp_copy = *bp;
4296 
4297 	if (zio->io_error != 0) {
4298 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4299 
4300 		if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4301 			ASSERT(IO_IS_ALLOCATING(zio));
4302 			ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4303 			ASSERT(zio->io_metaslab_class != NULL);
4304 
4305 			/*
4306 			 * We were unable to allocate anything, unreserve and
4307 			 * issue the next I/O to allocate.
4308 			 */
4309 			metaslab_class_throttle_unreserve(
4310 			    zio->io_metaslab_class, zio->io_prop.zp_copies,
4311 			    zio->io_allocator, zio);
4312 			zio_allocate_dispatch(zio->io_spa, zio->io_allocator);
4313 		}
4314 	}
4315 
4316 	mutex_enter(&zio->io_lock);
4317 	zio->io_state[ZIO_WAIT_READY] = 1;
4318 	pio = zio_walk_parents(zio, &zl);
4319 	mutex_exit(&zio->io_lock);
4320 
4321 	/*
4322 	 * As we notify zio's parents, new parents could be added.
4323 	 * New parents go to the head of zio's io_parent_list, however,
4324 	 * so we will (correctly) not notify them.  The remainder of zio's
4325 	 * io_parent_list, from 'pio_next' onward, cannot change because
4326 	 * all parents must wait for us to be done before they can be done.
4327 	 */
4328 	for (; pio != NULL; pio = pio_next) {
4329 		pio_next = zio_walk_parents(zio, &zl);
4330 		zio_notify_parent(pio, zio, ZIO_WAIT_READY, NULL);
4331 	}
4332 
4333 	if (zio->io_flags & ZIO_FLAG_NODATA) {
4334 		if (BP_IS_GANG(bp)) {
4335 			zio->io_flags &= ~ZIO_FLAG_NODATA;
4336 		} else {
4337 			ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE);
4338 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
4339 		}
4340 	}
4341 
4342 	if (zio_injection_enabled &&
4343 	    zio->io_spa->spa_syncing_txg == zio->io_txg)
4344 		zio_handle_ignored_writes(zio);
4345 
4346 	return (zio);
4347 }
4348 
4349 /*
4350  * Update the allocation throttle accounting.
4351  */
4352 static void
4353 zio_dva_throttle_done(zio_t *zio)
4354 {
4355 	zio_t *lio __maybe_unused = zio->io_logical;
4356 	zio_t *pio = zio_unique_parent(zio);
4357 	vdev_t *vd = zio->io_vd;
4358 	int flags = METASLAB_ASYNC_ALLOC;
4359 
4360 	ASSERT3P(zio->io_bp, !=, NULL);
4361 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
4362 	ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE);
4363 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
4364 	ASSERT(vd != NULL);
4365 	ASSERT3P(vd, ==, vd->vdev_top);
4366 	ASSERT(zio_injection_enabled || !(zio->io_flags & ZIO_FLAG_IO_RETRY));
4367 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4368 	ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING);
4369 	ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE));
4370 	ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA));
4371 
4372 	/*
4373 	 * Parents of gang children can have two flavors -- ones that
4374 	 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set)
4375 	 * and ones that allocated the constituent blocks. The allocation
4376 	 * throttle needs to know the allocating parent zio so we must find
4377 	 * it here.
4378 	 */
4379 	if (pio->io_child_type == ZIO_CHILD_GANG) {
4380 		/*
4381 		 * If our parent is a rewrite gang child then our grandparent
4382 		 * would have been the one that performed the allocation.
4383 		 */
4384 		if (pio->io_flags & ZIO_FLAG_IO_REWRITE)
4385 			pio = zio_unique_parent(pio);
4386 		flags |= METASLAB_GANG_CHILD;
4387 	}
4388 
4389 	ASSERT(IO_IS_ALLOCATING(pio));
4390 	ASSERT3P(zio, !=, zio->io_logical);
4391 	ASSERT(zio->io_logical != NULL);
4392 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4393 	ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE);
4394 	ASSERT(zio->io_metaslab_class != NULL);
4395 
4396 	mutex_enter(&pio->io_lock);
4397 	metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags,
4398 	    pio->io_allocator, B_TRUE);
4399 	mutex_exit(&pio->io_lock);
4400 
4401 	metaslab_class_throttle_unreserve(zio->io_metaslab_class, 1,
4402 	    pio->io_allocator, pio);
4403 
4404 	/*
4405 	 * Call into the pipeline to see if there is more work that
4406 	 * needs to be done. If there is work to be done it will be
4407 	 * dispatched to another taskq thread.
4408 	 */
4409 	zio_allocate_dispatch(zio->io_spa, pio->io_allocator);
4410 }
4411 
4412 static zio_t *
4413 zio_done(zio_t *zio)
4414 {
4415 	/*
4416 	 * Always attempt to keep stack usage minimal here since
4417 	 * we can be called recursively up to 19 levels deep.
4418 	 */
4419 	const uint64_t psize = zio->io_size;
4420 	zio_t *pio, *pio_next;
4421 	zio_link_t *zl = NULL;
4422 
4423 	/*
4424 	 * If our children haven't all completed,
4425 	 * wait for them and then repeat this pipeline stage.
4426 	 */
4427 	if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) {
4428 		return (NULL);
4429 	}
4430 
4431 	/*
4432 	 * If the allocation throttle is enabled, then update the accounting.
4433 	 * We only track child I/Os that are part of an allocating async
4434 	 * write. We must do this since the allocation is performed
4435 	 * by the logical I/O but the actual write is done by child I/Os.
4436 	 */
4437 	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING &&
4438 	    zio->io_child_type == ZIO_CHILD_VDEV) {
4439 		ASSERT(zio->io_metaslab_class != NULL);
4440 		ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled);
4441 		zio_dva_throttle_done(zio);
4442 	}
4443 
4444 	/*
4445 	 * If the allocation throttle is enabled, verify that
4446 	 * we have decremented the refcounts for every I/O that was throttled.
4447 	 */
4448 	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4449 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
4450 		ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4451 		ASSERT(zio->io_bp != NULL);
4452 
4453 		metaslab_group_alloc_verify(zio->io_spa, zio->io_bp, zio,
4454 		    zio->io_allocator);
4455 		VERIFY(zfs_refcount_not_held(
4456 		    &zio->io_metaslab_class->mc_alloc_slots[zio->io_allocator],
4457 		    zio));
4458 	}
4459 
4460 
4461 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
4462 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
4463 			ASSERT(zio->io_children[c][w] == 0);
4464 
4465 	if (zio->io_bp != NULL && !BP_IS_EMBEDDED(zio->io_bp)) {
4466 		ASSERT(zio->io_bp->blk_pad[0] == 0);
4467 		ASSERT(zio->io_bp->blk_pad[1] == 0);
4468 		ASSERT(bcmp(zio->io_bp, &zio->io_bp_copy,
4469 		    sizeof (blkptr_t)) == 0 ||
4470 		    (zio->io_bp == zio_unique_parent(zio)->io_bp));
4471 		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) &&
4472 		    zio->io_bp_override == NULL &&
4473 		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
4474 			ASSERT3U(zio->io_prop.zp_copies, <=,
4475 			    BP_GET_NDVAS(zio->io_bp));
4476 			ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 ||
4477 			    (BP_COUNT_GANG(zio->io_bp) ==
4478 			    BP_GET_NDVAS(zio->io_bp)));
4479 		}
4480 		if (zio->io_flags & ZIO_FLAG_NOPWRITE)
4481 			VERIFY(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
4482 	}
4483 
4484 	/*
4485 	 * If there were child vdev/gang/ddt errors, they apply to us now.
4486 	 */
4487 	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
4488 	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
4489 	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
4490 
4491 	/*
4492 	 * If the I/O on the transformed data was successful, generate any
4493 	 * checksum reports now while we still have the transformed data.
4494 	 */
4495 	if (zio->io_error == 0) {
4496 		while (zio->io_cksum_report != NULL) {
4497 			zio_cksum_report_t *zcr = zio->io_cksum_report;
4498 			uint64_t align = zcr->zcr_align;
4499 			uint64_t asize = P2ROUNDUP(psize, align);
4500 			abd_t *adata = zio->io_abd;
4501 
4502 			if (asize != psize) {
4503 				adata = abd_alloc(asize, B_TRUE);
4504 				abd_copy(adata, zio->io_abd, psize);
4505 				abd_zero_off(adata, psize, asize - psize);
4506 			}
4507 
4508 			zio->io_cksum_report = zcr->zcr_next;
4509 			zcr->zcr_next = NULL;
4510 			zcr->zcr_finish(zcr, adata);
4511 			zfs_ereport_free_checksum(zcr);
4512 
4513 			if (asize != psize)
4514 				abd_free(adata);
4515 		}
4516 	}
4517 
4518 	zio_pop_transforms(zio);	/* note: may set zio->io_error */
4519 
4520 	vdev_stat_update(zio, psize);
4521 
4522 	/*
4523 	 * If this I/O is attached to a particular vdev is slow, exceeding
4524 	 * 30 seconds to complete, post an error described the I/O delay.
4525 	 * We ignore these errors if the device is currently unavailable.
4526 	 */
4527 	if (zio->io_delay >= MSEC2NSEC(zio_slow_io_ms)) {
4528 		if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) {
4529 			/*
4530 			 * We want to only increment our slow IO counters if
4531 			 * the IO is valid (i.e. not if the drive is removed).
4532 			 *
4533 			 * zfs_ereport_post() will also do these checks, but
4534 			 * it can also ratelimit and have other failures, so we
4535 			 * need to increment the slow_io counters independent
4536 			 * of it.
4537 			 */
4538 			if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY,
4539 			    zio->io_spa, zio->io_vd, zio)) {
4540 				mutex_enter(&zio->io_vd->vdev_stat_lock);
4541 				zio->io_vd->vdev_stat.vs_slow_ios++;
4542 				mutex_exit(&zio->io_vd->vdev_stat_lock);
4543 
4544 				(void) zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
4545 				    zio->io_spa, zio->io_vd, &zio->io_bookmark,
4546 				    zio, 0);
4547 			}
4548 		}
4549 	}
4550 
4551 	if (zio->io_error) {
4552 		/*
4553 		 * If this I/O is attached to a particular vdev,
4554 		 * generate an error message describing the I/O failure
4555 		 * at the block level.  We ignore these errors if the
4556 		 * device is currently unavailable.
4557 		 */
4558 		if (zio->io_error != ECKSUM && zio->io_vd != NULL &&
4559 		    !vdev_is_dead(zio->io_vd)) {
4560 			int ret = zfs_ereport_post(FM_EREPORT_ZFS_IO,
4561 			    zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0);
4562 			if (ret != EALREADY) {
4563 				mutex_enter(&zio->io_vd->vdev_stat_lock);
4564 				if (zio->io_type == ZIO_TYPE_READ)
4565 					zio->io_vd->vdev_stat.vs_read_errors++;
4566 				else if (zio->io_type == ZIO_TYPE_WRITE)
4567 					zio->io_vd->vdev_stat.vs_write_errors++;
4568 				mutex_exit(&zio->io_vd->vdev_stat_lock);
4569 			}
4570 		}
4571 
4572 		if ((zio->io_error == EIO || !(zio->io_flags &
4573 		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
4574 		    zio == zio->io_logical) {
4575 			/*
4576 			 * For logical I/O requests, tell the SPA to log the
4577 			 * error and generate a logical data ereport.
4578 			 */
4579 			spa_log_error(zio->io_spa, &zio->io_bookmark);
4580 			(void) zfs_ereport_post(FM_EREPORT_ZFS_DATA,
4581 			    zio->io_spa, NULL, &zio->io_bookmark, zio, 0);
4582 		}
4583 	}
4584 
4585 	if (zio->io_error && zio == zio->io_logical) {
4586 		/*
4587 		 * Determine whether zio should be reexecuted.  This will
4588 		 * propagate all the way to the root via zio_notify_parent().
4589 		 */
4590 		ASSERT(zio->io_vd == NULL && zio->io_bp != NULL);
4591 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4592 
4593 		if (IO_IS_ALLOCATING(zio) &&
4594 		    !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
4595 			if (zio->io_error != ENOSPC)
4596 				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
4597 			else
4598 				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4599 		}
4600 
4601 		if ((zio->io_type == ZIO_TYPE_READ ||
4602 		    zio->io_type == ZIO_TYPE_FREE) &&
4603 		    !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
4604 		    zio->io_error == ENXIO &&
4605 		    spa_load_state(zio->io_spa) == SPA_LOAD_NONE &&
4606 		    spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE)
4607 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4608 
4609 		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
4610 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4611 
4612 		/*
4613 		 * Here is a possibly good place to attempt to do
4614 		 * either combinatorial reconstruction or error correction
4615 		 * based on checksums.  It also might be a good place
4616 		 * to send out preliminary ereports before we suspend
4617 		 * processing.
4618 		 */
4619 	}
4620 
4621 	/*
4622 	 * If there were logical child errors, they apply to us now.
4623 	 * We defer this until now to avoid conflating logical child
4624 	 * errors with errors that happened to the zio itself when
4625 	 * updating vdev stats and reporting FMA events above.
4626 	 */
4627 	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
4628 
4629 	if ((zio->io_error || zio->io_reexecute) &&
4630 	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
4631 	    !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
4632 		zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp);
4633 
4634 	zio_gang_tree_free(&zio->io_gang_tree);
4635 
4636 	/*
4637 	 * Godfather I/Os should never suspend.
4638 	 */
4639 	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
4640 	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
4641 		zio->io_reexecute &= ~ZIO_REEXECUTE_SUSPEND;
4642 
4643 	if (zio->io_reexecute) {
4644 		/*
4645 		 * This is a logical I/O that wants to reexecute.
4646 		 *
4647 		 * Reexecute is top-down.  When an i/o fails, if it's not
4648 		 * the root, it simply notifies its parent and sticks around.
4649 		 * The parent, seeing that it still has children in zio_done(),
4650 		 * does the same.  This percolates all the way up to the root.
4651 		 * The root i/o will reexecute or suspend the entire tree.
4652 		 *
4653 		 * This approach ensures that zio_reexecute() honors
4654 		 * all the original i/o dependency relationships, e.g.
4655 		 * parents not executing until children are ready.
4656 		 */
4657 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4658 
4659 		zio->io_gang_leader = NULL;
4660 
4661 		mutex_enter(&zio->io_lock);
4662 		zio->io_state[ZIO_WAIT_DONE] = 1;
4663 		mutex_exit(&zio->io_lock);
4664 
4665 		/*
4666 		 * "The Godfather" I/O monitors its children but is
4667 		 * not a true parent to them. It will track them through
4668 		 * the pipeline but severs its ties whenever they get into
4669 		 * trouble (e.g. suspended). This allows "The Godfather"
4670 		 * I/O to return status without blocking.
4671 		 */
4672 		zl = NULL;
4673 		for (pio = zio_walk_parents(zio, &zl); pio != NULL;
4674 		    pio = pio_next) {
4675 			zio_link_t *remove_zl = zl;
4676 			pio_next = zio_walk_parents(zio, &zl);
4677 
4678 			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
4679 			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
4680 				zio_remove_child(pio, zio, remove_zl);
4681 				/*
4682 				 * This is a rare code path, so we don't
4683 				 * bother with "next_to_execute".
4684 				 */
4685 				zio_notify_parent(pio, zio, ZIO_WAIT_DONE,
4686 				    NULL);
4687 			}
4688 		}
4689 
4690 		if ((pio = zio_unique_parent(zio)) != NULL) {
4691 			/*
4692 			 * We're not a root i/o, so there's nothing to do
4693 			 * but notify our parent.  Don't propagate errors
4694 			 * upward since we haven't permanently failed yet.
4695 			 */
4696 			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
4697 			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
4698 			/*
4699 			 * This is a rare code path, so we don't bother with
4700 			 * "next_to_execute".
4701 			 */
4702 			zio_notify_parent(pio, zio, ZIO_WAIT_DONE, NULL);
4703 		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
4704 			/*
4705 			 * We'd fail again if we reexecuted now, so suspend
4706 			 * until conditions improve (e.g. device comes online).
4707 			 */
4708 			zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR);
4709 		} else {
4710 			/*
4711 			 * Reexecution is potentially a huge amount of work.
4712 			 * Hand it off to the otherwise-unused claim taskq.
4713 			 */
4714 			ASSERT(taskq_empty_ent(&zio->io_tqent));
4715 			spa_taskq_dispatch_ent(zio->io_spa,
4716 			    ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE,
4717 			    (task_func_t *)zio_reexecute, zio, 0,
4718 			    &zio->io_tqent);
4719 		}
4720 		return (NULL);
4721 	}
4722 
4723 	ASSERT(zio->io_child_count == 0);
4724 	ASSERT(zio->io_reexecute == 0);
4725 	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
4726 
4727 	/*
4728 	 * Report any checksum errors, since the I/O is complete.
4729 	 */
4730 	while (zio->io_cksum_report != NULL) {
4731 		zio_cksum_report_t *zcr = zio->io_cksum_report;
4732 		zio->io_cksum_report = zcr->zcr_next;
4733 		zcr->zcr_next = NULL;
4734 		zcr->zcr_finish(zcr, NULL);
4735 		zfs_ereport_free_checksum(zcr);
4736 	}
4737 
4738 	if (zio->io_flags & ZIO_FLAG_FASTWRITE && zio->io_bp &&
4739 	    !BP_IS_HOLE(zio->io_bp) && !BP_IS_EMBEDDED(zio->io_bp) &&
4740 	    !(zio->io_flags & ZIO_FLAG_NOPWRITE)) {
4741 		metaslab_fastwrite_unmark(zio->io_spa, zio->io_bp);
4742 	}
4743 
4744 	/*
4745 	 * It is the responsibility of the done callback to ensure that this
4746 	 * particular zio is no longer discoverable for adoption, and as
4747 	 * such, cannot acquire any new parents.
4748 	 */
4749 	if (zio->io_done)
4750 		zio->io_done(zio);
4751 
4752 	mutex_enter(&zio->io_lock);
4753 	zio->io_state[ZIO_WAIT_DONE] = 1;
4754 	mutex_exit(&zio->io_lock);
4755 
4756 	/*
4757 	 * We are done executing this zio.  We may want to execute a parent
4758 	 * next.  See the comment in zio_notify_parent().
4759 	 */
4760 	zio_t *next_to_execute = NULL;
4761 	zl = NULL;
4762 	for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) {
4763 		zio_link_t *remove_zl = zl;
4764 		pio_next = zio_walk_parents(zio, &zl);
4765 		zio_remove_child(pio, zio, remove_zl);
4766 		zio_notify_parent(pio, zio, ZIO_WAIT_DONE, &next_to_execute);
4767 	}
4768 
4769 	if (zio->io_waiter != NULL) {
4770 		mutex_enter(&zio->io_lock);
4771 		zio->io_executor = NULL;
4772 		cv_broadcast(&zio->io_cv);
4773 		mutex_exit(&zio->io_lock);
4774 	} else {
4775 		zio_destroy(zio);
4776 	}
4777 
4778 	return (next_to_execute);
4779 }
4780 
4781 /*
4782  * ==========================================================================
4783  * I/O pipeline definition
4784  * ==========================================================================
4785  */
4786 static zio_pipe_stage_t *zio_pipeline[] = {
4787 	NULL,
4788 	zio_read_bp_init,
4789 	zio_write_bp_init,
4790 	zio_free_bp_init,
4791 	zio_issue_async,
4792 	zio_write_compress,
4793 	zio_encrypt,
4794 	zio_checksum_generate,
4795 	zio_nop_write,
4796 	zio_ddt_read_start,
4797 	zio_ddt_read_done,
4798 	zio_ddt_write,
4799 	zio_ddt_free,
4800 	zio_gang_assemble,
4801 	zio_gang_issue,
4802 	zio_dva_throttle,
4803 	zio_dva_allocate,
4804 	zio_dva_free,
4805 	zio_dva_claim,
4806 	zio_ready,
4807 	zio_vdev_io_start,
4808 	zio_vdev_io_done,
4809 	zio_vdev_io_assess,
4810 	zio_checksum_verify,
4811 	zio_done
4812 };
4813 
4814 
4815 
4816 
4817 /*
4818  * Compare two zbookmark_phys_t's to see which we would reach first in a
4819  * pre-order traversal of the object tree.
4820  *
4821  * This is simple in every case aside from the meta-dnode object. For all other
4822  * objects, we traverse them in order (object 1 before object 2, and so on).
4823  * However, all of these objects are traversed while traversing object 0, since
4824  * the data it points to is the list of objects.  Thus, we need to convert to a
4825  * canonical representation so we can compare meta-dnode bookmarks to
4826  * non-meta-dnode bookmarks.
4827  *
4828  * We do this by calculating "equivalents" for each field of the zbookmark.
4829  * zbookmarks outside of the meta-dnode use their own object and level, and
4830  * calculate the level 0 equivalent (the first L0 blkid that is contained in the
4831  * blocks this bookmark refers to) by multiplying their blkid by their span
4832  * (the number of L0 blocks contained within one block at their level).
4833  * zbookmarks inside the meta-dnode calculate their object equivalent
4834  * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
4835  * level + 1<<31 (any value larger than a level could ever be) for their level.
4836  * This causes them to always compare before a bookmark in their object
4837  * equivalent, compare appropriately to bookmarks in other objects, and to
4838  * compare appropriately to other bookmarks in the meta-dnode.
4839  */
4840 int
4841 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
4842     const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
4843 {
4844 	/*
4845 	 * These variables represent the "equivalent" values for the zbookmark,
4846 	 * after converting zbookmarks inside the meta dnode to their
4847 	 * normal-object equivalents.
4848 	 */
4849 	uint64_t zb1obj, zb2obj;
4850 	uint64_t zb1L0, zb2L0;
4851 	uint64_t zb1level, zb2level;
4852 
4853 	if (zb1->zb_object == zb2->zb_object &&
4854 	    zb1->zb_level == zb2->zb_level &&
4855 	    zb1->zb_blkid == zb2->zb_blkid)
4856 		return (0);
4857 
4858 	IMPLY(zb1->zb_level > 0, ibs1 >= SPA_MINBLOCKSHIFT);
4859 	IMPLY(zb2->zb_level > 0, ibs2 >= SPA_MINBLOCKSHIFT);
4860 
4861 	/*
4862 	 * BP_SPANB calculates the span in blocks.
4863 	 */
4864 	zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
4865 	zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
4866 
4867 	if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
4868 		zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4869 		zb1L0 = 0;
4870 		zb1level = zb1->zb_level + COMPARE_META_LEVEL;
4871 	} else {
4872 		zb1obj = zb1->zb_object;
4873 		zb1level = zb1->zb_level;
4874 	}
4875 
4876 	if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
4877 		zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4878 		zb2L0 = 0;
4879 		zb2level = zb2->zb_level + COMPARE_META_LEVEL;
4880 	} else {
4881 		zb2obj = zb2->zb_object;
4882 		zb2level = zb2->zb_level;
4883 	}
4884 
4885 	/* Now that we have a canonical representation, do the comparison. */
4886 	if (zb1obj != zb2obj)
4887 		return (zb1obj < zb2obj ? -1 : 1);
4888 	else if (zb1L0 != zb2L0)
4889 		return (zb1L0 < zb2L0 ? -1 : 1);
4890 	else if (zb1level != zb2level)
4891 		return (zb1level > zb2level ? -1 : 1);
4892 	/*
4893 	 * This can (theoretically) happen if the bookmarks have the same object
4894 	 * and level, but different blkids, if the block sizes are not the same.
4895 	 * There is presently no way to change the indirect block sizes
4896 	 */
4897 	return (0);
4898 }
4899 
4900 /*
4901  *  This function checks the following: given that last_block is the place that
4902  *  our traversal stopped last time, does that guarantee that we've visited
4903  *  every node under subtree_root?  Therefore, we can't just use the raw output
4904  *  of zbookmark_compare.  We have to pass in a modified version of
4905  *  subtree_root; by incrementing the block id, and then checking whether
4906  *  last_block is before or equal to that, we can tell whether or not having
4907  *  visited last_block implies that all of subtree_root's children have been
4908  *  visited.
4909  */
4910 boolean_t
4911 zbookmark_subtree_completed(const dnode_phys_t *dnp,
4912     const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
4913 {
4914 	zbookmark_phys_t mod_zb = *subtree_root;
4915 	mod_zb.zb_blkid++;
4916 	ASSERT(last_block->zb_level == 0);
4917 
4918 	/* The objset_phys_t isn't before anything. */
4919 	if (dnp == NULL)
4920 		return (B_FALSE);
4921 
4922 	/*
4923 	 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
4924 	 * data block size in sectors, because that variable is only used if
4925 	 * the bookmark refers to a block in the meta-dnode.  Since we don't
4926 	 * know without examining it what object it refers to, and there's no
4927 	 * harm in passing in this value in other cases, we always pass it in.
4928 	 *
4929 	 * We pass in 0 for the indirect block size shift because zb2 must be
4930 	 * level 0.  The indirect block size is only used to calculate the span
4931 	 * of the bookmark, but since the bookmark must be level 0, the span is
4932 	 * always 1, so the math works out.
4933 	 *
4934 	 * If you make changes to how the zbookmark_compare code works, be sure
4935 	 * to make sure that this code still works afterwards.
4936 	 */
4937 	return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
4938 	    1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
4939 	    last_block) <= 0);
4940 }
4941 
4942 EXPORT_SYMBOL(zio_type_name);
4943 EXPORT_SYMBOL(zio_buf_alloc);
4944 EXPORT_SYMBOL(zio_data_buf_alloc);
4945 EXPORT_SYMBOL(zio_buf_free);
4946 EXPORT_SYMBOL(zio_data_buf_free);
4947 
4948 /* BEGIN CSTYLED */
4949 ZFS_MODULE_PARAM(zfs_zio, zio_, slow_io_ms, INT, ZMOD_RW,
4950 	"Max I/O completion time (milliseconds) before marking it as slow");
4951 
4952 ZFS_MODULE_PARAM(zfs_zio, zio_, requeue_io_start_cut_in_line, INT, ZMOD_RW,
4953 	"Prioritize requeued I/O");
4954 
4955 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_deferred_free,  INT, ZMOD_RW,
4956 	"Defer frees starting in this pass");
4957 
4958 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_dont_compress, INT, ZMOD_RW,
4959 	"Don't compress starting in this pass");
4960 
4961 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_rewrite, INT, ZMOD_RW,
4962 	"Rewrite new bps starting in this pass");
4963 
4964 ZFS_MODULE_PARAM(zfs_zio, zio_, dva_throttle_enabled, INT, ZMOD_RW,
4965 	"Throttle block allocations in the ZIO pipeline");
4966 
4967 ZFS_MODULE_PARAM(zfs_zio, zio_, deadman_log_all, INT, ZMOD_RW,
4968 	"Log all slow ZIOs, not just those with vdevs");
4969 /* END CSTYLED */
4970