1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2020 by Delphix. All rights reserved. 24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2017, Intel Corporation. 26 * Copyright (c) 2019, Klara Inc. 27 * Copyright (c) 2019, Allan Jude 28 * Copyright (c) 2021, Datto, Inc. 29 */ 30 31 #include <sys/sysmacros.h> 32 #include <sys/zfs_context.h> 33 #include <sys/fm/fs/zfs.h> 34 #include <sys/spa.h> 35 #include <sys/txg.h> 36 #include <sys/spa_impl.h> 37 #include <sys/vdev_impl.h> 38 #include <sys/vdev_trim.h> 39 #include <sys/zio_impl.h> 40 #include <sys/zio_compress.h> 41 #include <sys/zio_checksum.h> 42 #include <sys/dmu_objset.h> 43 #include <sys/arc.h> 44 #include <sys/ddt.h> 45 #include <sys/blkptr.h> 46 #include <sys/zfeature.h> 47 #include <sys/dsl_scan.h> 48 #include <sys/metaslab_impl.h> 49 #include <sys/time.h> 50 #include <sys/trace_zfs.h> 51 #include <sys/abd.h> 52 #include <sys/dsl_crypt.h> 53 #include <cityhash.h> 54 55 /* 56 * ========================================================================== 57 * I/O type descriptions 58 * ========================================================================== 59 */ 60 const char *zio_type_name[ZIO_TYPES] = { 61 /* 62 * Note: Linux kernel thread name length is limited 63 * so these names will differ from upstream open zfs. 64 */ 65 "z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_ioctl", "z_trim" 66 }; 67 68 int zio_dva_throttle_enabled = B_TRUE; 69 int zio_deadman_log_all = B_FALSE; 70 71 /* 72 * ========================================================================== 73 * I/O kmem caches 74 * ========================================================================== 75 */ 76 kmem_cache_t *zio_cache; 77 kmem_cache_t *zio_link_cache; 78 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 79 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 80 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 81 uint64_t zio_buf_cache_allocs[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 82 uint64_t zio_buf_cache_frees[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 83 #endif 84 85 /* Mark IOs as "slow" if they take longer than 30 seconds */ 86 int zio_slow_io_ms = (30 * MILLISEC); 87 88 #define BP_SPANB(indblkshift, level) \ 89 (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT))) 90 #define COMPARE_META_LEVEL 0x80000000ul 91 /* 92 * The following actions directly effect the spa's sync-to-convergence logic. 93 * The values below define the sync pass when we start performing the action. 94 * Care should be taken when changing these values as they directly impact 95 * spa_sync() performance. Tuning these values may introduce subtle performance 96 * pathologies and should only be done in the context of performance analysis. 97 * These tunables will eventually be removed and replaced with #defines once 98 * enough analysis has been done to determine optimal values. 99 * 100 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that 101 * regular blocks are not deferred. 102 * 103 * Starting in sync pass 8 (zfs_sync_pass_dont_compress), we disable 104 * compression (including of metadata). In practice, we don't have this 105 * many sync passes, so this has no effect. 106 * 107 * The original intent was that disabling compression would help the sync 108 * passes to converge. However, in practice disabling compression increases 109 * the average number of sync passes, because when we turn compression off, a 110 * lot of block's size will change and thus we have to re-allocate (not 111 * overwrite) them. It also increases the number of 128KB allocations (e.g. 112 * for indirect blocks and spacemaps) because these will not be compressed. 113 * The 128K allocations are especially detrimental to performance on highly 114 * fragmented systems, which may have very few free segments of this size, 115 * and may need to load new metaslabs to satisfy 128K allocations. 116 */ 117 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */ 118 int zfs_sync_pass_dont_compress = 8; /* don't compress starting in this pass */ 119 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */ 120 121 /* 122 * An allocating zio is one that either currently has the DVA allocate 123 * stage set or will have it later in its lifetime. 124 */ 125 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE) 126 127 /* 128 * Enable smaller cores by excluding metadata 129 * allocations as well. 130 */ 131 int zio_exclude_metadata = 0; 132 int zio_requeue_io_start_cut_in_line = 1; 133 134 #ifdef ZFS_DEBUG 135 int zio_buf_debug_limit = 16384; 136 #else 137 int zio_buf_debug_limit = 0; 138 #endif 139 140 static inline void __zio_execute(zio_t *zio); 141 142 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t); 143 144 void 145 zio_init(void) 146 { 147 size_t c; 148 149 zio_cache = kmem_cache_create("zio_cache", 150 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 151 zio_link_cache = kmem_cache_create("zio_link_cache", 152 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 153 154 /* 155 * For small buffers, we want a cache for each multiple of 156 * SPA_MINBLOCKSIZE. For larger buffers, we want a cache 157 * for each quarter-power of 2. 158 */ 159 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 160 size_t size = (c + 1) << SPA_MINBLOCKSHIFT; 161 size_t p2 = size; 162 size_t align = 0; 163 size_t data_cflags, cflags; 164 165 data_cflags = KMC_NODEBUG; 166 cflags = (zio_exclude_metadata || size > zio_buf_debug_limit) ? 167 KMC_NODEBUG : 0; 168 169 #if defined(_ILP32) && defined(_KERNEL) 170 /* 171 * Cache size limited to 1M on 32-bit platforms until ARC 172 * buffers no longer require virtual address space. 173 */ 174 if (size > zfs_max_recordsize) 175 break; 176 #endif 177 178 while (!ISP2(p2)) 179 p2 &= p2 - 1; 180 181 #ifndef _KERNEL 182 /* 183 * If we are using watchpoints, put each buffer on its own page, 184 * to eliminate the performance overhead of trapping to the 185 * kernel when modifying a non-watched buffer that shares the 186 * page with a watched buffer. 187 */ 188 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE)) 189 continue; 190 /* 191 * Here's the problem - on 4K native devices in userland on 192 * Linux using O_DIRECT, buffers must be 4K aligned or I/O 193 * will fail with EINVAL, causing zdb (and others) to coredump. 194 * Since userland probably doesn't need optimized buffer caches, 195 * we just force 4K alignment on everything. 196 */ 197 align = 8 * SPA_MINBLOCKSIZE; 198 #else 199 if (size < PAGESIZE) { 200 align = SPA_MINBLOCKSIZE; 201 } else if (IS_P2ALIGNED(size, p2 >> 2)) { 202 align = PAGESIZE; 203 } 204 #endif 205 206 if (align != 0) { 207 char name[36]; 208 if (cflags == data_cflags) { 209 /* 210 * Resulting kmem caches would be identical. 211 * Save memory by creating only one. 212 */ 213 (void) snprintf(name, sizeof (name), 214 "zio_buf_comb_%lu", (ulong_t)size); 215 zio_buf_cache[c] = kmem_cache_create(name, 216 size, align, NULL, NULL, NULL, NULL, NULL, 217 cflags); 218 zio_data_buf_cache[c] = zio_buf_cache[c]; 219 continue; 220 } 221 (void) snprintf(name, sizeof (name), "zio_buf_%lu", 222 (ulong_t)size); 223 zio_buf_cache[c] = kmem_cache_create(name, size, 224 align, NULL, NULL, NULL, NULL, NULL, cflags); 225 226 (void) snprintf(name, sizeof (name), "zio_data_buf_%lu", 227 (ulong_t)size); 228 zio_data_buf_cache[c] = kmem_cache_create(name, size, 229 align, NULL, NULL, NULL, NULL, NULL, data_cflags); 230 } 231 } 232 233 while (--c != 0) { 234 ASSERT(zio_buf_cache[c] != NULL); 235 if (zio_buf_cache[c - 1] == NULL) 236 zio_buf_cache[c - 1] = zio_buf_cache[c]; 237 238 ASSERT(zio_data_buf_cache[c] != NULL); 239 if (zio_data_buf_cache[c - 1] == NULL) 240 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c]; 241 } 242 243 zio_inject_init(); 244 245 lz4_init(); 246 } 247 248 void 249 zio_fini(void) 250 { 251 size_t n = SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; 252 253 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 254 for (size_t i = 0; i < n; i++) { 255 if (zio_buf_cache_allocs[i] != zio_buf_cache_frees[i]) 256 (void) printf("zio_fini: [%d] %llu != %llu\n", 257 (int)((i + 1) << SPA_MINBLOCKSHIFT), 258 (long long unsigned)zio_buf_cache_allocs[i], 259 (long long unsigned)zio_buf_cache_frees[i]); 260 } 261 #endif 262 263 /* 264 * The same kmem cache can show up multiple times in both zio_buf_cache 265 * and zio_data_buf_cache. Do a wasteful but trivially correct scan to 266 * sort it out. 267 */ 268 for (size_t i = 0; i < n; i++) { 269 kmem_cache_t *cache = zio_buf_cache[i]; 270 if (cache == NULL) 271 continue; 272 for (size_t j = i; j < n; j++) { 273 if (cache == zio_buf_cache[j]) 274 zio_buf_cache[j] = NULL; 275 if (cache == zio_data_buf_cache[j]) 276 zio_data_buf_cache[j] = NULL; 277 } 278 kmem_cache_destroy(cache); 279 } 280 281 for (size_t i = 0; i < n; i++) { 282 kmem_cache_t *cache = zio_data_buf_cache[i]; 283 if (cache == NULL) 284 continue; 285 for (size_t j = i; j < n; j++) { 286 if (cache == zio_data_buf_cache[j]) 287 zio_data_buf_cache[j] = NULL; 288 } 289 kmem_cache_destroy(cache); 290 } 291 292 for (size_t i = 0; i < n; i++) { 293 VERIFY3P(zio_buf_cache[i], ==, NULL); 294 VERIFY3P(zio_data_buf_cache[i], ==, NULL); 295 } 296 297 kmem_cache_destroy(zio_link_cache); 298 kmem_cache_destroy(zio_cache); 299 300 zio_inject_fini(); 301 302 lz4_fini(); 303 } 304 305 /* 306 * ========================================================================== 307 * Allocate and free I/O buffers 308 * ========================================================================== 309 */ 310 311 /* 312 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a 313 * crashdump if the kernel panics, so use it judiciously. Obviously, it's 314 * useful to inspect ZFS metadata, but if possible, we should avoid keeping 315 * excess / transient data in-core during a crashdump. 316 */ 317 void * 318 zio_buf_alloc(size_t size) 319 { 320 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 321 322 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 323 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 324 atomic_add_64(&zio_buf_cache_allocs[c], 1); 325 #endif 326 327 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE)); 328 } 329 330 /* 331 * Use zio_data_buf_alloc to allocate data. The data will not appear in a 332 * crashdump if the kernel panics. This exists so that we will limit the amount 333 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount 334 * of kernel heap dumped to disk when the kernel panics) 335 */ 336 void * 337 zio_data_buf_alloc(size_t size) 338 { 339 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 340 341 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 342 343 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE)); 344 } 345 346 void 347 zio_buf_free(void *buf, size_t size) 348 { 349 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 350 351 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 352 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 353 atomic_add_64(&zio_buf_cache_frees[c], 1); 354 #endif 355 356 kmem_cache_free(zio_buf_cache[c], buf); 357 } 358 359 void 360 zio_data_buf_free(void *buf, size_t size) 361 { 362 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 363 364 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 365 366 kmem_cache_free(zio_data_buf_cache[c], buf); 367 } 368 369 static void 370 zio_abd_free(void *abd, size_t size) 371 { 372 abd_free((abd_t *)abd); 373 } 374 375 /* 376 * ========================================================================== 377 * Push and pop I/O transform buffers 378 * ========================================================================== 379 */ 380 void 381 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize, 382 zio_transform_func_t *transform) 383 { 384 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP); 385 386 zt->zt_orig_abd = zio->io_abd; 387 zt->zt_orig_size = zio->io_size; 388 zt->zt_bufsize = bufsize; 389 zt->zt_transform = transform; 390 391 zt->zt_next = zio->io_transform_stack; 392 zio->io_transform_stack = zt; 393 394 zio->io_abd = data; 395 zio->io_size = size; 396 } 397 398 void 399 zio_pop_transforms(zio_t *zio) 400 { 401 zio_transform_t *zt; 402 403 while ((zt = zio->io_transform_stack) != NULL) { 404 if (zt->zt_transform != NULL) 405 zt->zt_transform(zio, 406 zt->zt_orig_abd, zt->zt_orig_size); 407 408 if (zt->zt_bufsize != 0) 409 abd_free(zio->io_abd); 410 411 zio->io_abd = zt->zt_orig_abd; 412 zio->io_size = zt->zt_orig_size; 413 zio->io_transform_stack = zt->zt_next; 414 415 kmem_free(zt, sizeof (zio_transform_t)); 416 } 417 } 418 419 /* 420 * ========================================================================== 421 * I/O transform callbacks for subblocks, decompression, and decryption 422 * ========================================================================== 423 */ 424 static void 425 zio_subblock(zio_t *zio, abd_t *data, uint64_t size) 426 { 427 ASSERT(zio->io_size > size); 428 429 if (zio->io_type == ZIO_TYPE_READ) 430 abd_copy(data, zio->io_abd, size); 431 } 432 433 static void 434 zio_decompress(zio_t *zio, abd_t *data, uint64_t size) 435 { 436 if (zio->io_error == 0) { 437 void *tmp = abd_borrow_buf(data, size); 438 int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp), 439 zio->io_abd, tmp, zio->io_size, size, 440 &zio->io_prop.zp_complevel); 441 abd_return_buf_copy(data, tmp, size); 442 443 if (zio_injection_enabled && ret == 0) 444 ret = zio_handle_fault_injection(zio, EINVAL); 445 446 if (ret != 0) 447 zio->io_error = SET_ERROR(EIO); 448 } 449 } 450 451 static void 452 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size) 453 { 454 int ret; 455 void *tmp; 456 blkptr_t *bp = zio->io_bp; 457 spa_t *spa = zio->io_spa; 458 uint64_t dsobj = zio->io_bookmark.zb_objset; 459 uint64_t lsize = BP_GET_LSIZE(bp); 460 dmu_object_type_t ot = BP_GET_TYPE(bp); 461 uint8_t salt[ZIO_DATA_SALT_LEN]; 462 uint8_t iv[ZIO_DATA_IV_LEN]; 463 uint8_t mac[ZIO_DATA_MAC_LEN]; 464 boolean_t no_crypt = B_FALSE; 465 466 ASSERT(BP_USES_CRYPT(bp)); 467 ASSERT3U(size, !=, 0); 468 469 if (zio->io_error != 0) 470 return; 471 472 /* 473 * Verify the cksum of MACs stored in an indirect bp. It will always 474 * be possible to verify this since it does not require an encryption 475 * key. 476 */ 477 if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) { 478 zio_crypt_decode_mac_bp(bp, mac); 479 480 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) { 481 /* 482 * We haven't decompressed the data yet, but 483 * zio_crypt_do_indirect_mac_checksum() requires 484 * decompressed data to be able to parse out the MACs 485 * from the indirect block. We decompress it now and 486 * throw away the result after we are finished. 487 */ 488 tmp = zio_buf_alloc(lsize); 489 ret = zio_decompress_data(BP_GET_COMPRESS(bp), 490 zio->io_abd, tmp, zio->io_size, lsize, 491 &zio->io_prop.zp_complevel); 492 if (ret != 0) { 493 ret = SET_ERROR(EIO); 494 goto error; 495 } 496 ret = zio_crypt_do_indirect_mac_checksum(B_FALSE, 497 tmp, lsize, BP_SHOULD_BYTESWAP(bp), mac); 498 zio_buf_free(tmp, lsize); 499 } else { 500 ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE, 501 zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac); 502 } 503 abd_copy(data, zio->io_abd, size); 504 505 if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) { 506 ret = zio_handle_decrypt_injection(spa, 507 &zio->io_bookmark, ot, ECKSUM); 508 } 509 if (ret != 0) 510 goto error; 511 512 return; 513 } 514 515 /* 516 * If this is an authenticated block, just check the MAC. It would be 517 * nice to separate this out into its own flag, but for the moment 518 * enum zio_flag is out of bits. 519 */ 520 if (BP_IS_AUTHENTICATED(bp)) { 521 if (ot == DMU_OT_OBJSET) { 522 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, 523 dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp)); 524 } else { 525 zio_crypt_decode_mac_bp(bp, mac); 526 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, 527 zio->io_abd, size, mac); 528 if (zio_injection_enabled && ret == 0) { 529 ret = zio_handle_decrypt_injection(spa, 530 &zio->io_bookmark, ot, ECKSUM); 531 } 532 } 533 abd_copy(data, zio->io_abd, size); 534 535 if (ret != 0) 536 goto error; 537 538 return; 539 } 540 541 zio_crypt_decode_params_bp(bp, salt, iv); 542 543 if (ot == DMU_OT_INTENT_LOG) { 544 tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t)); 545 zio_crypt_decode_mac_zil(tmp, mac); 546 abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t)); 547 } else { 548 zio_crypt_decode_mac_bp(bp, mac); 549 } 550 551 ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp), 552 BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data, 553 zio->io_abd, &no_crypt); 554 if (no_crypt) 555 abd_copy(data, zio->io_abd, size); 556 557 if (ret != 0) 558 goto error; 559 560 return; 561 562 error: 563 /* assert that the key was found unless this was speculative */ 564 ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE)); 565 566 /* 567 * If there was a decryption / authentication error return EIO as 568 * the io_error. If this was not a speculative zio, create an ereport. 569 */ 570 if (ret == ECKSUM) { 571 zio->io_error = SET_ERROR(EIO); 572 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) { 573 spa_log_error(spa, &zio->io_bookmark); 574 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION, 575 spa, NULL, &zio->io_bookmark, zio, 0); 576 } 577 } else { 578 zio->io_error = ret; 579 } 580 } 581 582 /* 583 * ========================================================================== 584 * I/O parent/child relationships and pipeline interlocks 585 * ========================================================================== 586 */ 587 zio_t * 588 zio_walk_parents(zio_t *cio, zio_link_t **zl) 589 { 590 list_t *pl = &cio->io_parent_list; 591 592 *zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl); 593 if (*zl == NULL) 594 return (NULL); 595 596 ASSERT((*zl)->zl_child == cio); 597 return ((*zl)->zl_parent); 598 } 599 600 zio_t * 601 zio_walk_children(zio_t *pio, zio_link_t **zl) 602 { 603 list_t *cl = &pio->io_child_list; 604 605 ASSERT(MUTEX_HELD(&pio->io_lock)); 606 607 *zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl); 608 if (*zl == NULL) 609 return (NULL); 610 611 ASSERT((*zl)->zl_parent == pio); 612 return ((*zl)->zl_child); 613 } 614 615 zio_t * 616 zio_unique_parent(zio_t *cio) 617 { 618 zio_link_t *zl = NULL; 619 zio_t *pio = zio_walk_parents(cio, &zl); 620 621 VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL); 622 return (pio); 623 } 624 625 void 626 zio_add_child(zio_t *pio, zio_t *cio) 627 { 628 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP); 629 630 /* 631 * Logical I/Os can have logical, gang, or vdev children. 632 * Gang I/Os can have gang or vdev children. 633 * Vdev I/Os can only have vdev children. 634 * The following ASSERT captures all of these constraints. 635 */ 636 ASSERT3S(cio->io_child_type, <=, pio->io_child_type); 637 638 zl->zl_parent = pio; 639 zl->zl_child = cio; 640 641 mutex_enter(&pio->io_lock); 642 mutex_enter(&cio->io_lock); 643 644 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0); 645 646 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 647 pio->io_children[cio->io_child_type][w] += !cio->io_state[w]; 648 649 list_insert_head(&pio->io_child_list, zl); 650 list_insert_head(&cio->io_parent_list, zl); 651 652 pio->io_child_count++; 653 cio->io_parent_count++; 654 655 mutex_exit(&cio->io_lock); 656 mutex_exit(&pio->io_lock); 657 } 658 659 static void 660 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl) 661 { 662 ASSERT(zl->zl_parent == pio); 663 ASSERT(zl->zl_child == cio); 664 665 mutex_enter(&pio->io_lock); 666 mutex_enter(&cio->io_lock); 667 668 list_remove(&pio->io_child_list, zl); 669 list_remove(&cio->io_parent_list, zl); 670 671 pio->io_child_count--; 672 cio->io_parent_count--; 673 674 mutex_exit(&cio->io_lock); 675 mutex_exit(&pio->io_lock); 676 kmem_cache_free(zio_link_cache, zl); 677 } 678 679 static boolean_t 680 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait) 681 { 682 boolean_t waiting = B_FALSE; 683 684 mutex_enter(&zio->io_lock); 685 ASSERT(zio->io_stall == NULL); 686 for (int c = 0; c < ZIO_CHILD_TYPES; c++) { 687 if (!(ZIO_CHILD_BIT_IS_SET(childbits, c))) 688 continue; 689 690 uint64_t *countp = &zio->io_children[c][wait]; 691 if (*countp != 0) { 692 zio->io_stage >>= 1; 693 ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN); 694 zio->io_stall = countp; 695 waiting = B_TRUE; 696 break; 697 } 698 } 699 mutex_exit(&zio->io_lock); 700 return (waiting); 701 } 702 703 __attribute__((always_inline)) 704 static inline void 705 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait, 706 zio_t **next_to_executep) 707 { 708 uint64_t *countp = &pio->io_children[zio->io_child_type][wait]; 709 int *errorp = &pio->io_child_error[zio->io_child_type]; 710 711 mutex_enter(&pio->io_lock); 712 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 713 *errorp = zio_worst_error(*errorp, zio->io_error); 714 pio->io_reexecute |= zio->io_reexecute; 715 ASSERT3U(*countp, >, 0); 716 717 (*countp)--; 718 719 if (*countp == 0 && pio->io_stall == countp) { 720 zio_taskq_type_t type = 721 pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE : 722 ZIO_TASKQ_INTERRUPT; 723 pio->io_stall = NULL; 724 mutex_exit(&pio->io_lock); 725 726 /* 727 * If we can tell the caller to execute this parent next, do 728 * so. Otherwise dispatch the parent zio as its own task. 729 * 730 * Having the caller execute the parent when possible reduces 731 * locking on the zio taskq's, reduces context switch 732 * overhead, and has no recursion penalty. Note that one 733 * read from disk typically causes at least 3 zio's: a 734 * zio_null(), the logical zio_read(), and then a physical 735 * zio. When the physical ZIO completes, we are able to call 736 * zio_done() on all 3 of these zio's from one invocation of 737 * zio_execute() by returning the parent back to 738 * zio_execute(). Since the parent isn't executed until this 739 * thread returns back to zio_execute(), the caller should do 740 * so promptly. 741 * 742 * In other cases, dispatching the parent prevents 743 * overflowing the stack when we have deeply nested 744 * parent-child relationships, as we do with the "mega zio" 745 * of writes for spa_sync(), and the chain of ZIL blocks. 746 */ 747 if (next_to_executep != NULL && *next_to_executep == NULL) { 748 *next_to_executep = pio; 749 } else { 750 zio_taskq_dispatch(pio, type, B_FALSE); 751 } 752 } else { 753 mutex_exit(&pio->io_lock); 754 } 755 } 756 757 static void 758 zio_inherit_child_errors(zio_t *zio, enum zio_child c) 759 { 760 if (zio->io_child_error[c] != 0 && zio->io_error == 0) 761 zio->io_error = zio->io_child_error[c]; 762 } 763 764 int 765 zio_bookmark_compare(const void *x1, const void *x2) 766 { 767 const zio_t *z1 = x1; 768 const zio_t *z2 = x2; 769 770 if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset) 771 return (-1); 772 if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset) 773 return (1); 774 775 if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object) 776 return (-1); 777 if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object) 778 return (1); 779 780 if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level) 781 return (-1); 782 if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level) 783 return (1); 784 785 if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid) 786 return (-1); 787 if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid) 788 return (1); 789 790 if (z1 < z2) 791 return (-1); 792 if (z1 > z2) 793 return (1); 794 795 return (0); 796 } 797 798 /* 799 * ========================================================================== 800 * Create the various types of I/O (read, write, free, etc) 801 * ========================================================================== 802 */ 803 static zio_t * 804 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 805 abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done, 806 void *private, zio_type_t type, zio_priority_t priority, 807 enum zio_flag flags, vdev_t *vd, uint64_t offset, 808 const zbookmark_phys_t *zb, enum zio_stage stage, 809 enum zio_stage pipeline) 810 { 811 zio_t *zio; 812 813 IMPLY(type != ZIO_TYPE_TRIM, psize <= SPA_MAXBLOCKSIZE); 814 ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0); 815 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0); 816 817 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER)); 818 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER)); 819 ASSERT(vd || stage == ZIO_STAGE_OPEN); 820 821 IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0); 822 823 zio = kmem_cache_alloc(zio_cache, KM_SLEEP); 824 bzero(zio, sizeof (zio_t)); 825 826 mutex_init(&zio->io_lock, NULL, MUTEX_NOLOCKDEP, NULL); 827 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL); 828 829 list_create(&zio->io_parent_list, sizeof (zio_link_t), 830 offsetof(zio_link_t, zl_parent_node)); 831 list_create(&zio->io_child_list, sizeof (zio_link_t), 832 offsetof(zio_link_t, zl_child_node)); 833 metaslab_trace_init(&zio->io_alloc_list); 834 835 if (vd != NULL) 836 zio->io_child_type = ZIO_CHILD_VDEV; 837 else if (flags & ZIO_FLAG_GANG_CHILD) 838 zio->io_child_type = ZIO_CHILD_GANG; 839 else if (flags & ZIO_FLAG_DDT_CHILD) 840 zio->io_child_type = ZIO_CHILD_DDT; 841 else 842 zio->io_child_type = ZIO_CHILD_LOGICAL; 843 844 if (bp != NULL) { 845 zio->io_bp = (blkptr_t *)bp; 846 zio->io_bp_copy = *bp; 847 zio->io_bp_orig = *bp; 848 if (type != ZIO_TYPE_WRITE || 849 zio->io_child_type == ZIO_CHILD_DDT) 850 zio->io_bp = &zio->io_bp_copy; /* so caller can free */ 851 if (zio->io_child_type == ZIO_CHILD_LOGICAL) 852 zio->io_logical = zio; 853 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp)) 854 pipeline |= ZIO_GANG_STAGES; 855 } 856 857 zio->io_spa = spa; 858 zio->io_txg = txg; 859 zio->io_done = done; 860 zio->io_private = private; 861 zio->io_type = type; 862 zio->io_priority = priority; 863 zio->io_vd = vd; 864 zio->io_offset = offset; 865 zio->io_orig_abd = zio->io_abd = data; 866 zio->io_orig_size = zio->io_size = psize; 867 zio->io_lsize = lsize; 868 zio->io_orig_flags = zio->io_flags = flags; 869 zio->io_orig_stage = zio->io_stage = stage; 870 zio->io_orig_pipeline = zio->io_pipeline = pipeline; 871 zio->io_pipeline_trace = ZIO_STAGE_OPEN; 872 873 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY); 874 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE); 875 876 if (zb != NULL) 877 zio->io_bookmark = *zb; 878 879 if (pio != NULL) { 880 zio->io_metaslab_class = pio->io_metaslab_class; 881 if (zio->io_logical == NULL) 882 zio->io_logical = pio->io_logical; 883 if (zio->io_child_type == ZIO_CHILD_GANG) 884 zio->io_gang_leader = pio->io_gang_leader; 885 zio_add_child(pio, zio); 886 } 887 888 taskq_init_ent(&zio->io_tqent); 889 890 return (zio); 891 } 892 893 static void 894 zio_destroy(zio_t *zio) 895 { 896 metaslab_trace_fini(&zio->io_alloc_list); 897 list_destroy(&zio->io_parent_list); 898 list_destroy(&zio->io_child_list); 899 mutex_destroy(&zio->io_lock); 900 cv_destroy(&zio->io_cv); 901 kmem_cache_free(zio_cache, zio); 902 } 903 904 zio_t * 905 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done, 906 void *private, enum zio_flag flags) 907 { 908 zio_t *zio; 909 910 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private, 911 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 912 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE); 913 914 return (zio); 915 } 916 917 zio_t * 918 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags) 919 { 920 return (zio_null(NULL, spa, NULL, done, private, flags)); 921 } 922 923 static int 924 zfs_blkptr_verify_log(spa_t *spa, const blkptr_t *bp, 925 enum blk_verify_flag blk_verify, const char *fmt, ...) 926 { 927 va_list adx; 928 char buf[256]; 929 930 va_start(adx, fmt); 931 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 932 va_end(adx); 933 934 switch (blk_verify) { 935 case BLK_VERIFY_HALT: 936 dprintf_bp(bp, "blkptr at %p dprintf_bp():", bp); 937 zfs_panic_recover("%s: %s", spa_name(spa), buf); 938 break; 939 case BLK_VERIFY_LOG: 940 zfs_dbgmsg("%s: %s", spa_name(spa), buf); 941 break; 942 case BLK_VERIFY_ONLY: 943 break; 944 } 945 946 return (1); 947 } 948 949 /* 950 * Verify the block pointer fields contain reasonable values. This means 951 * it only contains known object types, checksum/compression identifiers, 952 * block sizes within the maximum allowed limits, valid DVAs, etc. 953 * 954 * If everything checks out B_TRUE is returned. The zfs_blkptr_verify 955 * argument controls the behavior when an invalid field is detected. 956 * 957 * Modes for zfs_blkptr_verify: 958 * 1) BLK_VERIFY_ONLY (evaluate the block) 959 * 2) BLK_VERIFY_LOG (evaluate the block and log problems) 960 * 3) BLK_VERIFY_HALT (call zfs_panic_recover on error) 961 */ 962 boolean_t 963 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp, boolean_t config_held, 964 enum blk_verify_flag blk_verify) 965 { 966 int errors = 0; 967 968 if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) { 969 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 970 "blkptr at %p has invalid TYPE %llu", 971 bp, (longlong_t)BP_GET_TYPE(bp)); 972 } 973 if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS || 974 BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) { 975 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 976 "blkptr at %p has invalid CHECKSUM %llu", 977 bp, (longlong_t)BP_GET_CHECKSUM(bp)); 978 } 979 if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS || 980 BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) { 981 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 982 "blkptr at %p has invalid COMPRESS %llu", 983 bp, (longlong_t)BP_GET_COMPRESS(bp)); 984 } 985 if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) { 986 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 987 "blkptr at %p has invalid LSIZE %llu", 988 bp, (longlong_t)BP_GET_LSIZE(bp)); 989 } 990 if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) { 991 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 992 "blkptr at %p has invalid PSIZE %llu", 993 bp, (longlong_t)BP_GET_PSIZE(bp)); 994 } 995 996 if (BP_IS_EMBEDDED(bp)) { 997 if (BPE_GET_ETYPE(bp) >= NUM_BP_EMBEDDED_TYPES) { 998 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 999 "blkptr at %p has invalid ETYPE %llu", 1000 bp, (longlong_t)BPE_GET_ETYPE(bp)); 1001 } 1002 } 1003 1004 /* 1005 * Do not verify individual DVAs if the config is not trusted. This 1006 * will be done once the zio is executed in vdev_mirror_map_alloc. 1007 */ 1008 if (!spa->spa_trust_config) 1009 return (B_TRUE); 1010 1011 if (!config_held) 1012 spa_config_enter(spa, SCL_VDEV, bp, RW_READER); 1013 else 1014 ASSERT(spa_config_held(spa, SCL_VDEV, RW_WRITER)); 1015 /* 1016 * Pool-specific checks. 1017 * 1018 * Note: it would be nice to verify that the blk_birth and 1019 * BP_PHYSICAL_BIRTH() are not too large. However, spa_freeze() 1020 * allows the birth time of log blocks (and dmu_sync()-ed blocks 1021 * that are in the log) to be arbitrarily large. 1022 */ 1023 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 1024 const dva_t *dva = &bp->blk_dva[i]; 1025 uint64_t vdevid = DVA_GET_VDEV(dva); 1026 1027 if (vdevid >= spa->spa_root_vdev->vdev_children) { 1028 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1029 "blkptr at %p DVA %u has invalid VDEV %llu", 1030 bp, i, (longlong_t)vdevid); 1031 continue; 1032 } 1033 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid]; 1034 if (vd == NULL) { 1035 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1036 "blkptr at %p DVA %u has invalid VDEV %llu", 1037 bp, i, (longlong_t)vdevid); 1038 continue; 1039 } 1040 if (vd->vdev_ops == &vdev_hole_ops) { 1041 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1042 "blkptr at %p DVA %u has hole VDEV %llu", 1043 bp, i, (longlong_t)vdevid); 1044 continue; 1045 } 1046 if (vd->vdev_ops == &vdev_missing_ops) { 1047 /* 1048 * "missing" vdevs are valid during import, but we 1049 * don't have their detailed info (e.g. asize), so 1050 * we can't perform any more checks on them. 1051 */ 1052 continue; 1053 } 1054 uint64_t offset = DVA_GET_OFFSET(dva); 1055 uint64_t asize = DVA_GET_ASIZE(dva); 1056 if (DVA_GET_GANG(dva)) 1057 asize = vdev_gang_header_asize(vd); 1058 if (offset + asize > vd->vdev_asize) { 1059 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1060 "blkptr at %p DVA %u has invalid OFFSET %llu", 1061 bp, i, (longlong_t)offset); 1062 } 1063 } 1064 if (errors > 0) 1065 dprintf_bp(bp, "blkptr at %p dprintf_bp():", bp); 1066 if (!config_held) 1067 spa_config_exit(spa, SCL_VDEV, bp); 1068 1069 return (errors == 0); 1070 } 1071 1072 boolean_t 1073 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp) 1074 { 1075 uint64_t vdevid = DVA_GET_VDEV(dva); 1076 1077 if (vdevid >= spa->spa_root_vdev->vdev_children) 1078 return (B_FALSE); 1079 1080 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid]; 1081 if (vd == NULL) 1082 return (B_FALSE); 1083 1084 if (vd->vdev_ops == &vdev_hole_ops) 1085 return (B_FALSE); 1086 1087 if (vd->vdev_ops == &vdev_missing_ops) { 1088 return (B_FALSE); 1089 } 1090 1091 uint64_t offset = DVA_GET_OFFSET(dva); 1092 uint64_t asize = DVA_GET_ASIZE(dva); 1093 1094 if (DVA_GET_GANG(dva)) 1095 asize = vdev_gang_header_asize(vd); 1096 if (offset + asize > vd->vdev_asize) 1097 return (B_FALSE); 1098 1099 return (B_TRUE); 1100 } 1101 1102 zio_t * 1103 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, 1104 abd_t *data, uint64_t size, zio_done_func_t *done, void *private, 1105 zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb) 1106 { 1107 zio_t *zio; 1108 1109 zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp, 1110 data, size, size, done, private, 1111 ZIO_TYPE_READ, priority, flags, NULL, 0, zb, 1112 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 1113 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE); 1114 1115 return (zio); 1116 } 1117 1118 zio_t * 1119 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 1120 abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp, 1121 zio_done_func_t *ready, zio_done_func_t *children_ready, 1122 zio_done_func_t *physdone, zio_done_func_t *done, 1123 void *private, zio_priority_t priority, enum zio_flag flags, 1124 const zbookmark_phys_t *zb) 1125 { 1126 zio_t *zio; 1127 1128 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF && 1129 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS && 1130 zp->zp_compress >= ZIO_COMPRESS_OFF && 1131 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS && 1132 DMU_OT_IS_VALID(zp->zp_type) && 1133 zp->zp_level < 32 && 1134 zp->zp_copies > 0 && 1135 zp->zp_copies <= spa_max_replication(spa)); 1136 1137 zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private, 1138 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb, 1139 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 1140 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE); 1141 1142 zio->io_ready = ready; 1143 zio->io_children_ready = children_ready; 1144 zio->io_physdone = physdone; 1145 zio->io_prop = *zp; 1146 1147 /* 1148 * Data can be NULL if we are going to call zio_write_override() to 1149 * provide the already-allocated BP. But we may need the data to 1150 * verify a dedup hit (if requested). In this case, don't try to 1151 * dedup (just take the already-allocated BP verbatim). Encrypted 1152 * dedup blocks need data as well so we also disable dedup in this 1153 * case. 1154 */ 1155 if (data == NULL && 1156 (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) { 1157 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE; 1158 } 1159 1160 return (zio); 1161 } 1162 1163 zio_t * 1164 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data, 1165 uint64_t size, zio_done_func_t *done, void *private, 1166 zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb) 1167 { 1168 zio_t *zio; 1169 1170 zio = zio_create(pio, spa, txg, bp, data, size, size, done, private, 1171 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb, 1172 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE); 1173 1174 return (zio); 1175 } 1176 1177 void 1178 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite) 1179 { 1180 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 1181 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1182 ASSERT(zio->io_stage == ZIO_STAGE_OPEN); 1183 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa)); 1184 1185 /* 1186 * We must reset the io_prop to match the values that existed 1187 * when the bp was first written by dmu_sync() keeping in mind 1188 * that nopwrite and dedup are mutually exclusive. 1189 */ 1190 zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup; 1191 zio->io_prop.zp_nopwrite = nopwrite; 1192 zio->io_prop.zp_copies = copies; 1193 zio->io_bp_override = bp; 1194 } 1195 1196 void 1197 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp) 1198 { 1199 1200 (void) zfs_blkptr_verify(spa, bp, B_FALSE, BLK_VERIFY_HALT); 1201 1202 /* 1203 * The check for EMBEDDED is a performance optimization. We 1204 * process the free here (by ignoring it) rather than 1205 * putting it on the list and then processing it in zio_free_sync(). 1206 */ 1207 if (BP_IS_EMBEDDED(bp)) 1208 return; 1209 metaslab_check_free(spa, bp); 1210 1211 /* 1212 * Frees that are for the currently-syncing txg, are not going to be 1213 * deferred, and which will not need to do a read (i.e. not GANG or 1214 * DEDUP), can be processed immediately. Otherwise, put them on the 1215 * in-memory list for later processing. 1216 * 1217 * Note that we only defer frees after zfs_sync_pass_deferred_free 1218 * when the log space map feature is disabled. [see relevant comment 1219 * in spa_sync_iterate_to_convergence()] 1220 */ 1221 if (BP_IS_GANG(bp) || 1222 BP_GET_DEDUP(bp) || 1223 txg != spa->spa_syncing_txg || 1224 (spa_sync_pass(spa) >= zfs_sync_pass_deferred_free && 1225 !spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))) { 1226 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp); 1227 } else { 1228 VERIFY3P(zio_free_sync(NULL, spa, txg, bp, 0), ==, NULL); 1229 } 1230 } 1231 1232 /* 1233 * To improve performance, this function may return NULL if we were able 1234 * to do the free immediately. This avoids the cost of creating a zio 1235 * (and linking it to the parent, etc). 1236 */ 1237 zio_t * 1238 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 1239 enum zio_flag flags) 1240 { 1241 ASSERT(!BP_IS_HOLE(bp)); 1242 ASSERT(spa_syncing_txg(spa) == txg); 1243 1244 if (BP_IS_EMBEDDED(bp)) 1245 return (NULL); 1246 1247 metaslab_check_free(spa, bp); 1248 arc_freed(spa, bp); 1249 dsl_scan_freed(spa, bp); 1250 1251 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp)) { 1252 /* 1253 * GANG and DEDUP blocks can induce a read (for the gang block 1254 * header, or the DDT), so issue them asynchronously so that 1255 * this thread is not tied up. 1256 */ 1257 enum zio_stage stage = 1258 ZIO_FREE_PIPELINE | ZIO_STAGE_ISSUE_ASYNC; 1259 1260 return (zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 1261 BP_GET_PSIZE(bp), NULL, NULL, 1262 ZIO_TYPE_FREE, ZIO_PRIORITY_NOW, 1263 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage)); 1264 } else { 1265 metaslab_free(spa, bp, txg, B_FALSE); 1266 return (NULL); 1267 } 1268 } 1269 1270 zio_t * 1271 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 1272 zio_done_func_t *done, void *private, enum zio_flag flags) 1273 { 1274 zio_t *zio; 1275 1276 (void) zfs_blkptr_verify(spa, bp, flags & ZIO_FLAG_CONFIG_WRITER, 1277 BLK_VERIFY_HALT); 1278 1279 if (BP_IS_EMBEDDED(bp)) 1280 return (zio_null(pio, spa, NULL, NULL, NULL, 0)); 1281 1282 /* 1283 * A claim is an allocation of a specific block. Claims are needed 1284 * to support immediate writes in the intent log. The issue is that 1285 * immediate writes contain committed data, but in a txg that was 1286 * *not* committed. Upon opening the pool after an unclean shutdown, 1287 * the intent log claims all blocks that contain immediate write data 1288 * so that the SPA knows they're in use. 1289 * 1290 * All claims *must* be resolved in the first txg -- before the SPA 1291 * starts allocating blocks -- so that nothing is allocated twice. 1292 * If txg == 0 we just verify that the block is claimable. 1293 */ 1294 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, 1295 spa_min_claim_txg(spa)); 1296 ASSERT(txg == spa_min_claim_txg(spa) || txg == 0); 1297 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(8) */ 1298 1299 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 1300 BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, 1301 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE); 1302 ASSERT0(zio->io_queued_timestamp); 1303 1304 return (zio); 1305 } 1306 1307 zio_t * 1308 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, 1309 zio_done_func_t *done, void *private, enum zio_flag flags) 1310 { 1311 zio_t *zio; 1312 int c; 1313 1314 if (vd->vdev_children == 0) { 1315 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private, 1316 ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 1317 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE); 1318 1319 zio->io_cmd = cmd; 1320 } else { 1321 zio = zio_null(pio, spa, NULL, NULL, NULL, flags); 1322 1323 for (c = 0; c < vd->vdev_children; c++) 1324 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd, 1325 done, private, flags)); 1326 } 1327 1328 return (zio); 1329 } 1330 1331 zio_t * 1332 zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1333 zio_done_func_t *done, void *private, zio_priority_t priority, 1334 enum zio_flag flags, enum trim_flag trim_flags) 1335 { 1336 zio_t *zio; 1337 1338 ASSERT0(vd->vdev_children); 1339 ASSERT0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 1340 ASSERT0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 1341 ASSERT3U(size, !=, 0); 1342 1343 zio = zio_create(pio, vd->vdev_spa, 0, NULL, NULL, size, size, done, 1344 private, ZIO_TYPE_TRIM, priority, flags | ZIO_FLAG_PHYSICAL, 1345 vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_TRIM_PIPELINE); 1346 zio->io_trim_flags = trim_flags; 1347 1348 return (zio); 1349 } 1350 1351 zio_t * 1352 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1353 abd_t *data, int checksum, zio_done_func_t *done, void *private, 1354 zio_priority_t priority, enum zio_flag flags, boolean_t labels) 1355 { 1356 zio_t *zio; 1357 1358 ASSERT(vd->vdev_children == 0); 1359 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 1360 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 1361 ASSERT3U(offset + size, <=, vd->vdev_psize); 1362 1363 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, 1364 private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd, 1365 offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE); 1366 1367 zio->io_prop.zp_checksum = checksum; 1368 1369 return (zio); 1370 } 1371 1372 zio_t * 1373 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1374 abd_t *data, int checksum, zio_done_func_t *done, void *private, 1375 zio_priority_t priority, enum zio_flag flags, boolean_t labels) 1376 { 1377 zio_t *zio; 1378 1379 ASSERT(vd->vdev_children == 0); 1380 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 1381 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 1382 ASSERT3U(offset + size, <=, vd->vdev_psize); 1383 1384 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, 1385 private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd, 1386 offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE); 1387 1388 zio->io_prop.zp_checksum = checksum; 1389 1390 if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) { 1391 /* 1392 * zec checksums are necessarily destructive -- they modify 1393 * the end of the write buffer to hold the verifier/checksum. 1394 * Therefore, we must make a local copy in case the data is 1395 * being written to multiple places in parallel. 1396 */ 1397 abd_t *wbuf = abd_alloc_sametype(data, size); 1398 abd_copy(wbuf, data, size); 1399 1400 zio_push_transform(zio, wbuf, size, size, NULL); 1401 } 1402 1403 return (zio); 1404 } 1405 1406 /* 1407 * Create a child I/O to do some work for us. 1408 */ 1409 zio_t * 1410 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset, 1411 abd_t *data, uint64_t size, int type, zio_priority_t priority, 1412 enum zio_flag flags, zio_done_func_t *done, void *private) 1413 { 1414 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE; 1415 zio_t *zio; 1416 1417 /* 1418 * vdev child I/Os do not propagate their error to the parent. 1419 * Therefore, for correct operation the caller *must* check for 1420 * and handle the error in the child i/o's done callback. 1421 * The only exceptions are i/os that we don't care about 1422 * (OPTIONAL or REPAIR). 1423 */ 1424 ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) || 1425 done != NULL); 1426 1427 if (type == ZIO_TYPE_READ && bp != NULL) { 1428 /* 1429 * If we have the bp, then the child should perform the 1430 * checksum and the parent need not. This pushes error 1431 * detection as close to the leaves as possible and 1432 * eliminates redundant checksums in the interior nodes. 1433 */ 1434 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY; 1435 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 1436 } 1437 1438 if (vd->vdev_ops->vdev_op_leaf) { 1439 ASSERT0(vd->vdev_children); 1440 offset += VDEV_LABEL_START_SIZE; 1441 } 1442 1443 flags |= ZIO_VDEV_CHILD_FLAGS(pio); 1444 1445 /* 1446 * If we've decided to do a repair, the write is not speculative -- 1447 * even if the original read was. 1448 */ 1449 if (flags & ZIO_FLAG_IO_REPAIR) 1450 flags &= ~ZIO_FLAG_SPECULATIVE; 1451 1452 /* 1453 * If we're creating a child I/O that is not associated with a 1454 * top-level vdev, then the child zio is not an allocating I/O. 1455 * If this is a retried I/O then we ignore it since we will 1456 * have already processed the original allocating I/O. 1457 */ 1458 if (flags & ZIO_FLAG_IO_ALLOCATING && 1459 (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) { 1460 ASSERT(pio->io_metaslab_class != NULL); 1461 ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled); 1462 ASSERT(type == ZIO_TYPE_WRITE); 1463 ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE); 1464 ASSERT(!(flags & ZIO_FLAG_IO_REPAIR)); 1465 ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) || 1466 pio->io_child_type == ZIO_CHILD_GANG); 1467 1468 flags &= ~ZIO_FLAG_IO_ALLOCATING; 1469 } 1470 1471 1472 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size, 1473 done, private, type, priority, flags, vd, offset, &pio->io_bookmark, 1474 ZIO_STAGE_VDEV_IO_START >> 1, pipeline); 1475 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); 1476 1477 zio->io_physdone = pio->io_physdone; 1478 if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL) 1479 zio->io_logical->io_phys_children++; 1480 1481 return (zio); 1482 } 1483 1484 zio_t * 1485 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size, 1486 zio_type_t type, zio_priority_t priority, enum zio_flag flags, 1487 zio_done_func_t *done, void *private) 1488 { 1489 zio_t *zio; 1490 1491 ASSERT(vd->vdev_ops->vdev_op_leaf); 1492 1493 zio = zio_create(NULL, vd->vdev_spa, 0, NULL, 1494 data, size, size, done, private, type, priority, 1495 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED, 1496 vd, offset, NULL, 1497 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE); 1498 1499 return (zio); 1500 } 1501 1502 void 1503 zio_flush(zio_t *zio, vdev_t *vd) 1504 { 1505 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE, 1506 NULL, NULL, 1507 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY)); 1508 } 1509 1510 void 1511 zio_shrink(zio_t *zio, uint64_t size) 1512 { 1513 ASSERT3P(zio->io_executor, ==, NULL); 1514 ASSERT3U(zio->io_orig_size, ==, zio->io_size); 1515 ASSERT3U(size, <=, zio->io_size); 1516 1517 /* 1518 * We don't shrink for raidz because of problems with the 1519 * reconstruction when reading back less than the block size. 1520 * Note, BP_IS_RAIDZ() assumes no compression. 1521 */ 1522 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 1523 if (!BP_IS_RAIDZ(zio->io_bp)) { 1524 /* we are not doing a raw write */ 1525 ASSERT3U(zio->io_size, ==, zio->io_lsize); 1526 zio->io_orig_size = zio->io_size = zio->io_lsize = size; 1527 } 1528 } 1529 1530 /* 1531 * ========================================================================== 1532 * Prepare to read and write logical blocks 1533 * ========================================================================== 1534 */ 1535 1536 static zio_t * 1537 zio_read_bp_init(zio_t *zio) 1538 { 1539 blkptr_t *bp = zio->io_bp; 1540 uint64_t psize = 1541 BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp); 1542 1543 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 1544 1545 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF && 1546 zio->io_child_type == ZIO_CHILD_LOGICAL && 1547 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) { 1548 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize), 1549 psize, psize, zio_decompress); 1550 } 1551 1552 if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) || 1553 BP_HAS_INDIRECT_MAC_CKSUM(bp)) && 1554 zio->io_child_type == ZIO_CHILD_LOGICAL) { 1555 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize), 1556 psize, psize, zio_decrypt); 1557 } 1558 1559 if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) { 1560 int psize = BPE_GET_PSIZE(bp); 1561 void *data = abd_borrow_buf(zio->io_abd, psize); 1562 1563 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1564 decode_embedded_bp_compressed(bp, data); 1565 abd_return_buf_copy(zio->io_abd, data, psize); 1566 } else { 1567 ASSERT(!BP_IS_EMBEDDED(bp)); 1568 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 1569 } 1570 1571 if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0) 1572 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 1573 1574 if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP) 1575 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 1576 1577 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL) 1578 zio->io_pipeline = ZIO_DDT_READ_PIPELINE; 1579 1580 return (zio); 1581 } 1582 1583 static zio_t * 1584 zio_write_bp_init(zio_t *zio) 1585 { 1586 if (!IO_IS_ALLOCATING(zio)) 1587 return (zio); 1588 1589 ASSERT(zio->io_child_type != ZIO_CHILD_DDT); 1590 1591 if (zio->io_bp_override) { 1592 blkptr_t *bp = zio->io_bp; 1593 zio_prop_t *zp = &zio->io_prop; 1594 1595 ASSERT(bp->blk_birth != zio->io_txg); 1596 ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0); 1597 1598 *bp = *zio->io_bp_override; 1599 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1600 1601 if (BP_IS_EMBEDDED(bp)) 1602 return (zio); 1603 1604 /* 1605 * If we've been overridden and nopwrite is set then 1606 * set the flag accordingly to indicate that a nopwrite 1607 * has already occurred. 1608 */ 1609 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) { 1610 ASSERT(!zp->zp_dedup); 1611 ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum); 1612 zio->io_flags |= ZIO_FLAG_NOPWRITE; 1613 return (zio); 1614 } 1615 1616 ASSERT(!zp->zp_nopwrite); 1617 1618 if (BP_IS_HOLE(bp) || !zp->zp_dedup) 1619 return (zio); 1620 1621 ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags & 1622 ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify); 1623 1624 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum && 1625 !zp->zp_encrypt) { 1626 BP_SET_DEDUP(bp, 1); 1627 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE; 1628 return (zio); 1629 } 1630 1631 /* 1632 * We were unable to handle this as an override bp, treat 1633 * it as a regular write I/O. 1634 */ 1635 zio->io_bp_override = NULL; 1636 *bp = zio->io_bp_orig; 1637 zio->io_pipeline = zio->io_orig_pipeline; 1638 } 1639 1640 return (zio); 1641 } 1642 1643 static zio_t * 1644 zio_write_compress(zio_t *zio) 1645 { 1646 spa_t *spa = zio->io_spa; 1647 zio_prop_t *zp = &zio->io_prop; 1648 enum zio_compress compress = zp->zp_compress; 1649 blkptr_t *bp = zio->io_bp; 1650 uint64_t lsize = zio->io_lsize; 1651 uint64_t psize = zio->io_size; 1652 int pass = 1; 1653 1654 /* 1655 * If our children haven't all reached the ready stage, 1656 * wait for them and then repeat this pipeline stage. 1657 */ 1658 if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT | 1659 ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) { 1660 return (NULL); 1661 } 1662 1663 if (!IO_IS_ALLOCATING(zio)) 1664 return (zio); 1665 1666 if (zio->io_children_ready != NULL) { 1667 /* 1668 * Now that all our children are ready, run the callback 1669 * associated with this zio in case it wants to modify the 1670 * data to be written. 1671 */ 1672 ASSERT3U(zp->zp_level, >, 0); 1673 zio->io_children_ready(zio); 1674 } 1675 1676 ASSERT(zio->io_child_type != ZIO_CHILD_DDT); 1677 ASSERT(zio->io_bp_override == NULL); 1678 1679 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) { 1680 /* 1681 * We're rewriting an existing block, which means we're 1682 * working on behalf of spa_sync(). For spa_sync() to 1683 * converge, it must eventually be the case that we don't 1684 * have to allocate new blocks. But compression changes 1685 * the blocksize, which forces a reallocate, and makes 1686 * convergence take longer. Therefore, after the first 1687 * few passes, stop compressing to ensure convergence. 1688 */ 1689 pass = spa_sync_pass(spa); 1690 1691 ASSERT(zio->io_txg == spa_syncing_txg(spa)); 1692 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1693 ASSERT(!BP_GET_DEDUP(bp)); 1694 1695 if (pass >= zfs_sync_pass_dont_compress) 1696 compress = ZIO_COMPRESS_OFF; 1697 1698 /* Make sure someone doesn't change their mind on overwrites */ 1699 ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp), 1700 spa_max_replication(spa)) == BP_GET_NDVAS(bp)); 1701 } 1702 1703 /* If it's a compressed write that is not raw, compress the buffer. */ 1704 if (compress != ZIO_COMPRESS_OFF && 1705 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) { 1706 void *cbuf = zio_buf_alloc(lsize); 1707 psize = zio_compress_data(compress, zio->io_abd, cbuf, lsize, 1708 zp->zp_complevel); 1709 if (psize == 0 || psize >= lsize) { 1710 compress = ZIO_COMPRESS_OFF; 1711 zio_buf_free(cbuf, lsize); 1712 } else if (!zp->zp_dedup && !zp->zp_encrypt && 1713 psize <= BPE_PAYLOAD_SIZE && 1714 zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) && 1715 spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) { 1716 encode_embedded_bp_compressed(bp, 1717 cbuf, compress, lsize, psize); 1718 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA); 1719 BP_SET_TYPE(bp, zio->io_prop.zp_type); 1720 BP_SET_LEVEL(bp, zio->io_prop.zp_level); 1721 zio_buf_free(cbuf, lsize); 1722 bp->blk_birth = zio->io_txg; 1723 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1724 ASSERT(spa_feature_is_active(spa, 1725 SPA_FEATURE_EMBEDDED_DATA)); 1726 return (zio); 1727 } else { 1728 /* 1729 * Round compressed size up to the minimum allocation 1730 * size of the smallest-ashift device, and zero the 1731 * tail. This ensures that the compressed size of the 1732 * BP (and thus compressratio property) are correct, 1733 * in that we charge for the padding used to fill out 1734 * the last sector. 1735 */ 1736 ASSERT3U(spa->spa_min_alloc, >=, SPA_MINBLOCKSHIFT); 1737 size_t rounded = (size_t)roundup(psize, 1738 spa->spa_min_alloc); 1739 if (rounded >= lsize) { 1740 compress = ZIO_COMPRESS_OFF; 1741 zio_buf_free(cbuf, lsize); 1742 psize = lsize; 1743 } else { 1744 abd_t *cdata = abd_get_from_buf(cbuf, lsize); 1745 abd_take_ownership_of_buf(cdata, B_TRUE); 1746 abd_zero_off(cdata, psize, rounded - psize); 1747 psize = rounded; 1748 zio_push_transform(zio, cdata, 1749 psize, lsize, NULL); 1750 } 1751 } 1752 1753 /* 1754 * We were unable to handle this as an override bp, treat 1755 * it as a regular write I/O. 1756 */ 1757 zio->io_bp_override = NULL; 1758 *bp = zio->io_bp_orig; 1759 zio->io_pipeline = zio->io_orig_pipeline; 1760 1761 } else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 && 1762 zp->zp_type == DMU_OT_DNODE) { 1763 /* 1764 * The DMU actually relies on the zio layer's compression 1765 * to free metadnode blocks that have had all contained 1766 * dnodes freed. As a result, even when doing a raw 1767 * receive, we must check whether the block can be compressed 1768 * to a hole. 1769 */ 1770 psize = zio_compress_data(ZIO_COMPRESS_EMPTY, 1771 zio->io_abd, NULL, lsize, zp->zp_complevel); 1772 if (psize == 0 || psize >= lsize) 1773 compress = ZIO_COMPRESS_OFF; 1774 } else { 1775 ASSERT3U(psize, !=, 0); 1776 } 1777 1778 /* 1779 * The final pass of spa_sync() must be all rewrites, but the first 1780 * few passes offer a trade-off: allocating blocks defers convergence, 1781 * but newly allocated blocks are sequential, so they can be written 1782 * to disk faster. Therefore, we allow the first few passes of 1783 * spa_sync() to allocate new blocks, but force rewrites after that. 1784 * There should only be a handful of blocks after pass 1 in any case. 1785 */ 1786 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg && 1787 BP_GET_PSIZE(bp) == psize && 1788 pass >= zfs_sync_pass_rewrite) { 1789 VERIFY3U(psize, !=, 0); 1790 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES; 1791 1792 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages; 1793 zio->io_flags |= ZIO_FLAG_IO_REWRITE; 1794 } else { 1795 BP_ZERO(bp); 1796 zio->io_pipeline = ZIO_WRITE_PIPELINE; 1797 } 1798 1799 if (psize == 0) { 1800 if (zio->io_bp_orig.blk_birth != 0 && 1801 spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) { 1802 BP_SET_LSIZE(bp, lsize); 1803 BP_SET_TYPE(bp, zp->zp_type); 1804 BP_SET_LEVEL(bp, zp->zp_level); 1805 BP_SET_BIRTH(bp, zio->io_txg, 0); 1806 } 1807 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1808 } else { 1809 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER); 1810 BP_SET_LSIZE(bp, lsize); 1811 BP_SET_TYPE(bp, zp->zp_type); 1812 BP_SET_LEVEL(bp, zp->zp_level); 1813 BP_SET_PSIZE(bp, psize); 1814 BP_SET_COMPRESS(bp, compress); 1815 BP_SET_CHECKSUM(bp, zp->zp_checksum); 1816 BP_SET_DEDUP(bp, zp->zp_dedup); 1817 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 1818 if (zp->zp_dedup) { 1819 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1820 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1821 ASSERT(!zp->zp_encrypt || 1822 DMU_OT_IS_ENCRYPTED(zp->zp_type)); 1823 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE; 1824 } 1825 if (zp->zp_nopwrite) { 1826 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1827 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1828 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE; 1829 } 1830 } 1831 return (zio); 1832 } 1833 1834 static zio_t * 1835 zio_free_bp_init(zio_t *zio) 1836 { 1837 blkptr_t *bp = zio->io_bp; 1838 1839 if (zio->io_child_type == ZIO_CHILD_LOGICAL) { 1840 if (BP_GET_DEDUP(bp)) 1841 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE; 1842 } 1843 1844 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 1845 1846 return (zio); 1847 } 1848 1849 /* 1850 * ========================================================================== 1851 * Execute the I/O pipeline 1852 * ========================================================================== 1853 */ 1854 1855 static void 1856 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline) 1857 { 1858 spa_t *spa = zio->io_spa; 1859 zio_type_t t = zio->io_type; 1860 int flags = (cutinline ? TQ_FRONT : 0); 1861 1862 /* 1863 * If we're a config writer or a probe, the normal issue and 1864 * interrupt threads may all be blocked waiting for the config lock. 1865 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL. 1866 */ 1867 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE)) 1868 t = ZIO_TYPE_NULL; 1869 1870 /* 1871 * A similar issue exists for the L2ARC write thread until L2ARC 2.0. 1872 */ 1873 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux) 1874 t = ZIO_TYPE_NULL; 1875 1876 /* 1877 * If this is a high priority I/O, then use the high priority taskq if 1878 * available. 1879 */ 1880 if ((zio->io_priority == ZIO_PRIORITY_NOW || 1881 zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) && 1882 spa->spa_zio_taskq[t][q + 1].stqs_count != 0) 1883 q++; 1884 1885 ASSERT3U(q, <, ZIO_TASKQ_TYPES); 1886 1887 /* 1888 * NB: We are assuming that the zio can only be dispatched 1889 * to a single taskq at a time. It would be a grievous error 1890 * to dispatch the zio to another taskq at the same time. 1891 */ 1892 ASSERT(taskq_empty_ent(&zio->io_tqent)); 1893 spa_taskq_dispatch_ent(spa, t, q, zio_execute, zio, flags, 1894 &zio->io_tqent); 1895 } 1896 1897 static boolean_t 1898 zio_taskq_member(zio_t *zio, zio_taskq_type_t q) 1899 { 1900 spa_t *spa = zio->io_spa; 1901 1902 taskq_t *tq = taskq_of_curthread(); 1903 1904 for (zio_type_t t = 0; t < ZIO_TYPES; t++) { 1905 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1906 uint_t i; 1907 for (i = 0; i < tqs->stqs_count; i++) { 1908 if (tqs->stqs_taskq[i] == tq) 1909 return (B_TRUE); 1910 } 1911 } 1912 1913 return (B_FALSE); 1914 } 1915 1916 static zio_t * 1917 zio_issue_async(zio_t *zio) 1918 { 1919 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 1920 1921 return (NULL); 1922 } 1923 1924 void 1925 zio_interrupt(void *zio) 1926 { 1927 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE); 1928 } 1929 1930 void 1931 zio_delay_interrupt(zio_t *zio) 1932 { 1933 /* 1934 * The timeout_generic() function isn't defined in userspace, so 1935 * rather than trying to implement the function, the zio delay 1936 * functionality has been disabled for userspace builds. 1937 */ 1938 1939 #ifdef _KERNEL 1940 /* 1941 * If io_target_timestamp is zero, then no delay has been registered 1942 * for this IO, thus jump to the end of this function and "skip" the 1943 * delay; issuing it directly to the zio layer. 1944 */ 1945 if (zio->io_target_timestamp != 0) { 1946 hrtime_t now = gethrtime(); 1947 1948 if (now >= zio->io_target_timestamp) { 1949 /* 1950 * This IO has already taken longer than the target 1951 * delay to complete, so we don't want to delay it 1952 * any longer; we "miss" the delay and issue it 1953 * directly to the zio layer. This is likely due to 1954 * the target latency being set to a value less than 1955 * the underlying hardware can satisfy (e.g. delay 1956 * set to 1ms, but the disks take 10ms to complete an 1957 * IO request). 1958 */ 1959 1960 DTRACE_PROBE2(zio__delay__miss, zio_t *, zio, 1961 hrtime_t, now); 1962 1963 zio_interrupt(zio); 1964 } else { 1965 taskqid_t tid; 1966 hrtime_t diff = zio->io_target_timestamp - now; 1967 clock_t expire_at_tick = ddi_get_lbolt() + 1968 NSEC_TO_TICK(diff); 1969 1970 DTRACE_PROBE3(zio__delay__hit, zio_t *, zio, 1971 hrtime_t, now, hrtime_t, diff); 1972 1973 if (NSEC_TO_TICK(diff) == 0) { 1974 /* Our delay is less than a jiffy - just spin */ 1975 zfs_sleep_until(zio->io_target_timestamp); 1976 zio_interrupt(zio); 1977 } else { 1978 /* 1979 * Use taskq_dispatch_delay() in the place of 1980 * OpenZFS's timeout_generic(). 1981 */ 1982 tid = taskq_dispatch_delay(system_taskq, 1983 zio_interrupt, zio, TQ_NOSLEEP, 1984 expire_at_tick); 1985 if (tid == TASKQID_INVALID) { 1986 /* 1987 * Couldn't allocate a task. Just 1988 * finish the zio without a delay. 1989 */ 1990 zio_interrupt(zio); 1991 } 1992 } 1993 } 1994 return; 1995 } 1996 #endif 1997 DTRACE_PROBE1(zio__delay__skip, zio_t *, zio); 1998 zio_interrupt(zio); 1999 } 2000 2001 static void 2002 zio_deadman_impl(zio_t *pio, int ziodepth) 2003 { 2004 zio_t *cio, *cio_next; 2005 zio_link_t *zl = NULL; 2006 vdev_t *vd = pio->io_vd; 2007 2008 if (zio_deadman_log_all || (vd != NULL && vd->vdev_ops->vdev_op_leaf)) { 2009 vdev_queue_t *vq = vd ? &vd->vdev_queue : NULL; 2010 zbookmark_phys_t *zb = &pio->io_bookmark; 2011 uint64_t delta = gethrtime() - pio->io_timestamp; 2012 uint64_t failmode = spa_get_deadman_failmode(pio->io_spa); 2013 2014 zfs_dbgmsg("slow zio[%d]: zio=%px timestamp=%llu " 2015 "delta=%llu queued=%llu io=%llu " 2016 "path=%s " 2017 "last=%llu type=%d " 2018 "priority=%d flags=0x%x stage=0x%x " 2019 "pipeline=0x%x pipeline-trace=0x%x " 2020 "objset=%llu object=%llu " 2021 "level=%llu blkid=%llu " 2022 "offset=%llu size=%llu " 2023 "error=%d", 2024 ziodepth, pio, pio->io_timestamp, 2025 (u_longlong_t)delta, pio->io_delta, pio->io_delay, 2026 vd ? vd->vdev_path : "NULL", 2027 vq ? vq->vq_io_complete_ts : 0, pio->io_type, 2028 pio->io_priority, pio->io_flags, pio->io_stage, 2029 pio->io_pipeline, pio->io_pipeline_trace, 2030 (u_longlong_t)zb->zb_objset, (u_longlong_t)zb->zb_object, 2031 (u_longlong_t)zb->zb_level, (u_longlong_t)zb->zb_blkid, 2032 (u_longlong_t)pio->io_offset, (u_longlong_t)pio->io_size, 2033 pio->io_error); 2034 (void) zfs_ereport_post(FM_EREPORT_ZFS_DEADMAN, 2035 pio->io_spa, vd, zb, pio, 0); 2036 2037 if (failmode == ZIO_FAILURE_MODE_CONTINUE && 2038 taskq_empty_ent(&pio->io_tqent)) { 2039 zio_interrupt(pio); 2040 } 2041 } 2042 2043 mutex_enter(&pio->io_lock); 2044 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 2045 cio_next = zio_walk_children(pio, &zl); 2046 zio_deadman_impl(cio, ziodepth + 1); 2047 } 2048 mutex_exit(&pio->io_lock); 2049 } 2050 2051 /* 2052 * Log the critical information describing this zio and all of its children 2053 * using the zfs_dbgmsg() interface then post deadman event for the ZED. 2054 */ 2055 void 2056 zio_deadman(zio_t *pio, char *tag) 2057 { 2058 spa_t *spa = pio->io_spa; 2059 char *name = spa_name(spa); 2060 2061 if (!zfs_deadman_enabled || spa_suspended(spa)) 2062 return; 2063 2064 zio_deadman_impl(pio, 0); 2065 2066 switch (spa_get_deadman_failmode(spa)) { 2067 case ZIO_FAILURE_MODE_WAIT: 2068 zfs_dbgmsg("%s waiting for hung I/O to pool '%s'", tag, name); 2069 break; 2070 2071 case ZIO_FAILURE_MODE_CONTINUE: 2072 zfs_dbgmsg("%s restarting hung I/O for pool '%s'", tag, name); 2073 break; 2074 2075 case ZIO_FAILURE_MODE_PANIC: 2076 fm_panic("%s determined I/O to pool '%s' is hung.", tag, name); 2077 break; 2078 } 2079 } 2080 2081 /* 2082 * Execute the I/O pipeline until one of the following occurs: 2083 * (1) the I/O completes; (2) the pipeline stalls waiting for 2084 * dependent child I/Os; (3) the I/O issues, so we're waiting 2085 * for an I/O completion interrupt; (4) the I/O is delegated by 2086 * vdev-level caching or aggregation; (5) the I/O is deferred 2087 * due to vdev-level queueing; (6) the I/O is handed off to 2088 * another thread. In all cases, the pipeline stops whenever 2089 * there's no CPU work; it never burns a thread in cv_wait_io(). 2090 * 2091 * There's no locking on io_stage because there's no legitimate way 2092 * for multiple threads to be attempting to process the same I/O. 2093 */ 2094 static zio_pipe_stage_t *zio_pipeline[]; 2095 2096 /* 2097 * zio_execute() is a wrapper around the static function 2098 * __zio_execute() so that we can force __zio_execute() to be 2099 * inlined. This reduces stack overhead which is important 2100 * because __zio_execute() is called recursively in several zio 2101 * code paths. zio_execute() itself cannot be inlined because 2102 * it is externally visible. 2103 */ 2104 void 2105 zio_execute(void *zio) 2106 { 2107 fstrans_cookie_t cookie; 2108 2109 cookie = spl_fstrans_mark(); 2110 __zio_execute(zio); 2111 spl_fstrans_unmark(cookie); 2112 } 2113 2114 /* 2115 * Used to determine if in the current context the stack is sized large 2116 * enough to allow zio_execute() to be called recursively. A minimum 2117 * stack size of 16K is required to avoid needing to re-dispatch the zio. 2118 */ 2119 static boolean_t 2120 zio_execute_stack_check(zio_t *zio) 2121 { 2122 #if !defined(HAVE_LARGE_STACKS) 2123 dsl_pool_t *dp = spa_get_dsl(zio->io_spa); 2124 2125 /* Executing in txg_sync_thread() context. */ 2126 if (dp && curthread == dp->dp_tx.tx_sync_thread) 2127 return (B_TRUE); 2128 2129 /* Pool initialization outside of zio_taskq context. */ 2130 if (dp && spa_is_initializing(dp->dp_spa) && 2131 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE) && 2132 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE_HIGH)) 2133 return (B_TRUE); 2134 #endif /* HAVE_LARGE_STACKS */ 2135 2136 return (B_FALSE); 2137 } 2138 2139 __attribute__((always_inline)) 2140 static inline void 2141 __zio_execute(zio_t *zio) 2142 { 2143 ASSERT3U(zio->io_queued_timestamp, >, 0); 2144 2145 while (zio->io_stage < ZIO_STAGE_DONE) { 2146 enum zio_stage pipeline = zio->io_pipeline; 2147 enum zio_stage stage = zio->io_stage; 2148 2149 zio->io_executor = curthread; 2150 2151 ASSERT(!MUTEX_HELD(&zio->io_lock)); 2152 ASSERT(ISP2(stage)); 2153 ASSERT(zio->io_stall == NULL); 2154 2155 do { 2156 stage <<= 1; 2157 } while ((stage & pipeline) == 0); 2158 2159 ASSERT(stage <= ZIO_STAGE_DONE); 2160 2161 /* 2162 * If we are in interrupt context and this pipeline stage 2163 * will grab a config lock that is held across I/O, 2164 * or may wait for an I/O that needs an interrupt thread 2165 * to complete, issue async to avoid deadlock. 2166 * 2167 * For VDEV_IO_START, we cut in line so that the io will 2168 * be sent to disk promptly. 2169 */ 2170 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL && 2171 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) { 2172 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ? 2173 zio_requeue_io_start_cut_in_line : B_FALSE; 2174 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut); 2175 return; 2176 } 2177 2178 /* 2179 * If the current context doesn't have large enough stacks 2180 * the zio must be issued asynchronously to prevent overflow. 2181 */ 2182 if (zio_execute_stack_check(zio)) { 2183 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ? 2184 zio_requeue_io_start_cut_in_line : B_FALSE; 2185 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut); 2186 return; 2187 } 2188 2189 zio->io_stage = stage; 2190 zio->io_pipeline_trace |= zio->io_stage; 2191 2192 /* 2193 * The zio pipeline stage returns the next zio to execute 2194 * (typically the same as this one), or NULL if we should 2195 * stop. 2196 */ 2197 zio = zio_pipeline[highbit64(stage) - 1](zio); 2198 2199 if (zio == NULL) 2200 return; 2201 } 2202 } 2203 2204 2205 /* 2206 * ========================================================================== 2207 * Initiate I/O, either sync or async 2208 * ========================================================================== 2209 */ 2210 int 2211 zio_wait(zio_t *zio) 2212 { 2213 /* 2214 * Some routines, like zio_free_sync(), may return a NULL zio 2215 * to avoid the performance overhead of creating and then destroying 2216 * an unneeded zio. For the callers' simplicity, we accept a NULL 2217 * zio and ignore it. 2218 */ 2219 if (zio == NULL) 2220 return (0); 2221 2222 long timeout = MSEC_TO_TICK(zfs_deadman_ziotime_ms); 2223 int error; 2224 2225 ASSERT3S(zio->io_stage, ==, ZIO_STAGE_OPEN); 2226 ASSERT3P(zio->io_executor, ==, NULL); 2227 2228 zio->io_waiter = curthread; 2229 ASSERT0(zio->io_queued_timestamp); 2230 zio->io_queued_timestamp = gethrtime(); 2231 2232 __zio_execute(zio); 2233 2234 mutex_enter(&zio->io_lock); 2235 while (zio->io_executor != NULL) { 2236 error = cv_timedwait_io(&zio->io_cv, &zio->io_lock, 2237 ddi_get_lbolt() + timeout); 2238 2239 if (zfs_deadman_enabled && error == -1 && 2240 gethrtime() - zio->io_queued_timestamp > 2241 spa_deadman_ziotime(zio->io_spa)) { 2242 mutex_exit(&zio->io_lock); 2243 timeout = MSEC_TO_TICK(zfs_deadman_checktime_ms); 2244 zio_deadman(zio, FTAG); 2245 mutex_enter(&zio->io_lock); 2246 } 2247 } 2248 mutex_exit(&zio->io_lock); 2249 2250 error = zio->io_error; 2251 zio_destroy(zio); 2252 2253 return (error); 2254 } 2255 2256 void 2257 zio_nowait(zio_t *zio) 2258 { 2259 /* 2260 * See comment in zio_wait(). 2261 */ 2262 if (zio == NULL) 2263 return; 2264 2265 ASSERT3P(zio->io_executor, ==, NULL); 2266 2267 if (zio->io_child_type == ZIO_CHILD_LOGICAL && 2268 zio_unique_parent(zio) == NULL) { 2269 zio_t *pio; 2270 2271 /* 2272 * This is a logical async I/O with no parent to wait for it. 2273 * We add it to the spa_async_root_zio "Godfather" I/O which 2274 * will ensure they complete prior to unloading the pool. 2275 */ 2276 spa_t *spa = zio->io_spa; 2277 pio = spa->spa_async_zio_root[CPU_SEQID_UNSTABLE]; 2278 2279 zio_add_child(pio, zio); 2280 } 2281 2282 ASSERT0(zio->io_queued_timestamp); 2283 zio->io_queued_timestamp = gethrtime(); 2284 __zio_execute(zio); 2285 } 2286 2287 /* 2288 * ========================================================================== 2289 * Reexecute, cancel, or suspend/resume failed I/O 2290 * ========================================================================== 2291 */ 2292 2293 static void 2294 zio_reexecute(void *arg) 2295 { 2296 zio_t *pio = arg; 2297 zio_t *cio, *cio_next; 2298 2299 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL); 2300 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN); 2301 ASSERT(pio->io_gang_leader == NULL); 2302 ASSERT(pio->io_gang_tree == NULL); 2303 2304 pio->io_flags = pio->io_orig_flags; 2305 pio->io_stage = pio->io_orig_stage; 2306 pio->io_pipeline = pio->io_orig_pipeline; 2307 pio->io_reexecute = 0; 2308 pio->io_flags |= ZIO_FLAG_REEXECUTED; 2309 pio->io_pipeline_trace = 0; 2310 pio->io_error = 0; 2311 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 2312 pio->io_state[w] = 0; 2313 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 2314 pio->io_child_error[c] = 0; 2315 2316 if (IO_IS_ALLOCATING(pio)) 2317 BP_ZERO(pio->io_bp); 2318 2319 /* 2320 * As we reexecute pio's children, new children could be created. 2321 * New children go to the head of pio's io_child_list, however, 2322 * so we will (correctly) not reexecute them. The key is that 2323 * the remainder of pio's io_child_list, from 'cio_next' onward, 2324 * cannot be affected by any side effects of reexecuting 'cio'. 2325 */ 2326 zio_link_t *zl = NULL; 2327 mutex_enter(&pio->io_lock); 2328 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 2329 cio_next = zio_walk_children(pio, &zl); 2330 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 2331 pio->io_children[cio->io_child_type][w]++; 2332 mutex_exit(&pio->io_lock); 2333 zio_reexecute(cio); 2334 mutex_enter(&pio->io_lock); 2335 } 2336 mutex_exit(&pio->io_lock); 2337 2338 /* 2339 * Now that all children have been reexecuted, execute the parent. 2340 * We don't reexecute "The Godfather" I/O here as it's the 2341 * responsibility of the caller to wait on it. 2342 */ 2343 if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) { 2344 pio->io_queued_timestamp = gethrtime(); 2345 __zio_execute(pio); 2346 } 2347 } 2348 2349 void 2350 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason) 2351 { 2352 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC) 2353 fm_panic("Pool '%s' has encountered an uncorrectable I/O " 2354 "failure and the failure mode property for this pool " 2355 "is set to panic.", spa_name(spa)); 2356 2357 cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable I/O " 2358 "failure and has been suspended.\n", spa_name(spa)); 2359 2360 (void) zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, 2361 NULL, NULL, 0); 2362 2363 mutex_enter(&spa->spa_suspend_lock); 2364 2365 if (spa->spa_suspend_zio_root == NULL) 2366 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL, 2367 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 2368 ZIO_FLAG_GODFATHER); 2369 2370 spa->spa_suspended = reason; 2371 2372 if (zio != NULL) { 2373 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 2374 ASSERT(zio != spa->spa_suspend_zio_root); 2375 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2376 ASSERT(zio_unique_parent(zio) == NULL); 2377 ASSERT(zio->io_stage == ZIO_STAGE_DONE); 2378 zio_add_child(spa->spa_suspend_zio_root, zio); 2379 } 2380 2381 mutex_exit(&spa->spa_suspend_lock); 2382 } 2383 2384 int 2385 zio_resume(spa_t *spa) 2386 { 2387 zio_t *pio; 2388 2389 /* 2390 * Reexecute all previously suspended i/o. 2391 */ 2392 mutex_enter(&spa->spa_suspend_lock); 2393 spa->spa_suspended = ZIO_SUSPEND_NONE; 2394 cv_broadcast(&spa->spa_suspend_cv); 2395 pio = spa->spa_suspend_zio_root; 2396 spa->spa_suspend_zio_root = NULL; 2397 mutex_exit(&spa->spa_suspend_lock); 2398 2399 if (pio == NULL) 2400 return (0); 2401 2402 zio_reexecute(pio); 2403 return (zio_wait(pio)); 2404 } 2405 2406 void 2407 zio_resume_wait(spa_t *spa) 2408 { 2409 mutex_enter(&spa->spa_suspend_lock); 2410 while (spa_suspended(spa)) 2411 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock); 2412 mutex_exit(&spa->spa_suspend_lock); 2413 } 2414 2415 /* 2416 * ========================================================================== 2417 * Gang blocks. 2418 * 2419 * A gang block is a collection of small blocks that looks to the DMU 2420 * like one large block. When zio_dva_allocate() cannot find a block 2421 * of the requested size, due to either severe fragmentation or the pool 2422 * being nearly full, it calls zio_write_gang_block() to construct the 2423 * block from smaller fragments. 2424 * 2425 * A gang block consists of a gang header (zio_gbh_phys_t) and up to 2426 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like 2427 * an indirect block: it's an array of block pointers. It consumes 2428 * only one sector and hence is allocatable regardless of fragmentation. 2429 * The gang header's bps point to its gang members, which hold the data. 2430 * 2431 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg> 2432 * as the verifier to ensure uniqueness of the SHA256 checksum. 2433 * Critically, the gang block bp's blk_cksum is the checksum of the data, 2434 * not the gang header. This ensures that data block signatures (needed for 2435 * deduplication) are independent of how the block is physically stored. 2436 * 2437 * Gang blocks can be nested: a gang member may itself be a gang block. 2438 * Thus every gang block is a tree in which root and all interior nodes are 2439 * gang headers, and the leaves are normal blocks that contain user data. 2440 * The root of the gang tree is called the gang leader. 2441 * 2442 * To perform any operation (read, rewrite, free, claim) on a gang block, 2443 * zio_gang_assemble() first assembles the gang tree (minus data leaves) 2444 * in the io_gang_tree field of the original logical i/o by recursively 2445 * reading the gang leader and all gang headers below it. This yields 2446 * an in-core tree containing the contents of every gang header and the 2447 * bps for every constituent of the gang block. 2448 * 2449 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree 2450 * and invokes a callback on each bp. To free a gang block, zio_gang_issue() 2451 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp. 2452 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim(). 2453 * zio_read_gang() is a wrapper around zio_read() that omits reading gang 2454 * headers, since we already have those in io_gang_tree. zio_rewrite_gang() 2455 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite() 2456 * of the gang header plus zio_checksum_compute() of the data to update the 2457 * gang header's blk_cksum as described above. 2458 * 2459 * The two-phase assemble/issue model solves the problem of partial failure -- 2460 * what if you'd freed part of a gang block but then couldn't read the 2461 * gang header for another part? Assembling the entire gang tree first 2462 * ensures that all the necessary gang header I/O has succeeded before 2463 * starting the actual work of free, claim, or write. Once the gang tree 2464 * is assembled, free and claim are in-memory operations that cannot fail. 2465 * 2466 * In the event that a gang write fails, zio_dva_unallocate() walks the 2467 * gang tree to immediately free (i.e. insert back into the space map) 2468 * everything we've allocated. This ensures that we don't get ENOSPC 2469 * errors during repeated suspend/resume cycles due to a flaky device. 2470 * 2471 * Gang rewrites only happen during sync-to-convergence. If we can't assemble 2472 * the gang tree, we won't modify the block, so we can safely defer the free 2473 * (knowing that the block is still intact). If we *can* assemble the gang 2474 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free 2475 * each constituent bp and we can allocate a new block on the next sync pass. 2476 * 2477 * In all cases, the gang tree allows complete recovery from partial failure. 2478 * ========================================================================== 2479 */ 2480 2481 static void 2482 zio_gang_issue_func_done(zio_t *zio) 2483 { 2484 abd_free(zio->io_abd); 2485 } 2486 2487 static zio_t * 2488 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2489 uint64_t offset) 2490 { 2491 if (gn != NULL) 2492 return (pio); 2493 2494 return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset), 2495 BP_GET_PSIZE(bp), zio_gang_issue_func_done, 2496 NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 2497 &pio->io_bookmark)); 2498 } 2499 2500 static zio_t * 2501 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2502 uint64_t offset) 2503 { 2504 zio_t *zio; 2505 2506 if (gn != NULL) { 2507 abd_t *gbh_abd = 2508 abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2509 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 2510 gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL, 2511 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 2512 &pio->io_bookmark); 2513 /* 2514 * As we rewrite each gang header, the pipeline will compute 2515 * a new gang block header checksum for it; but no one will 2516 * compute a new data checksum, so we do that here. The one 2517 * exception is the gang leader: the pipeline already computed 2518 * its data checksum because that stage precedes gang assembly. 2519 * (Presently, nothing actually uses interior data checksums; 2520 * this is just good hygiene.) 2521 */ 2522 if (gn != pio->io_gang_leader->io_gang_tree) { 2523 abd_t *buf = abd_get_offset(data, offset); 2524 2525 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp), 2526 buf, BP_GET_PSIZE(bp)); 2527 2528 abd_free(buf); 2529 } 2530 /* 2531 * If we are here to damage data for testing purposes, 2532 * leave the GBH alone so that we can detect the damage. 2533 */ 2534 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE) 2535 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 2536 } else { 2537 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 2538 abd_get_offset(data, offset), BP_GET_PSIZE(bp), 2539 zio_gang_issue_func_done, NULL, pio->io_priority, 2540 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2541 } 2542 2543 return (zio); 2544 } 2545 2546 /* ARGSUSED */ 2547 static zio_t * 2548 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2549 uint64_t offset) 2550 { 2551 zio_t *zio = zio_free_sync(pio, pio->io_spa, pio->io_txg, bp, 2552 ZIO_GANG_CHILD_FLAGS(pio)); 2553 if (zio == NULL) { 2554 zio = zio_null(pio, pio->io_spa, 2555 NULL, NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)); 2556 } 2557 return (zio); 2558 } 2559 2560 /* ARGSUSED */ 2561 static zio_t * 2562 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2563 uint64_t offset) 2564 { 2565 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp, 2566 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio))); 2567 } 2568 2569 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = { 2570 NULL, 2571 zio_read_gang, 2572 zio_rewrite_gang, 2573 zio_free_gang, 2574 zio_claim_gang, 2575 NULL 2576 }; 2577 2578 static void zio_gang_tree_assemble_done(zio_t *zio); 2579 2580 static zio_gang_node_t * 2581 zio_gang_node_alloc(zio_gang_node_t **gnpp) 2582 { 2583 zio_gang_node_t *gn; 2584 2585 ASSERT(*gnpp == NULL); 2586 2587 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP); 2588 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE); 2589 *gnpp = gn; 2590 2591 return (gn); 2592 } 2593 2594 static void 2595 zio_gang_node_free(zio_gang_node_t **gnpp) 2596 { 2597 zio_gang_node_t *gn = *gnpp; 2598 2599 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 2600 ASSERT(gn->gn_child[g] == NULL); 2601 2602 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2603 kmem_free(gn, sizeof (*gn)); 2604 *gnpp = NULL; 2605 } 2606 2607 static void 2608 zio_gang_tree_free(zio_gang_node_t **gnpp) 2609 { 2610 zio_gang_node_t *gn = *gnpp; 2611 2612 if (gn == NULL) 2613 return; 2614 2615 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 2616 zio_gang_tree_free(&gn->gn_child[g]); 2617 2618 zio_gang_node_free(gnpp); 2619 } 2620 2621 static void 2622 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp) 2623 { 2624 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp); 2625 abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2626 2627 ASSERT(gio->io_gang_leader == gio); 2628 ASSERT(BP_IS_GANG(bp)); 2629 2630 zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE, 2631 zio_gang_tree_assemble_done, gn, gio->io_priority, 2632 ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark)); 2633 } 2634 2635 static void 2636 zio_gang_tree_assemble_done(zio_t *zio) 2637 { 2638 zio_t *gio = zio->io_gang_leader; 2639 zio_gang_node_t *gn = zio->io_private; 2640 blkptr_t *bp = zio->io_bp; 2641 2642 ASSERT(gio == zio_unique_parent(zio)); 2643 ASSERT(zio->io_child_count == 0); 2644 2645 if (zio->io_error) 2646 return; 2647 2648 /* this ABD was created from a linear buf in zio_gang_tree_assemble */ 2649 if (BP_SHOULD_BYTESWAP(bp)) 2650 byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size); 2651 2652 ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh); 2653 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE); 2654 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 2655 2656 abd_free(zio->io_abd); 2657 2658 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2659 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 2660 if (!BP_IS_GANG(gbp)) 2661 continue; 2662 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]); 2663 } 2664 } 2665 2666 static void 2667 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data, 2668 uint64_t offset) 2669 { 2670 zio_t *gio = pio->io_gang_leader; 2671 zio_t *zio; 2672 2673 ASSERT(BP_IS_GANG(bp) == !!gn); 2674 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp)); 2675 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree); 2676 2677 /* 2678 * If you're a gang header, your data is in gn->gn_gbh. 2679 * If you're a gang member, your data is in 'data' and gn == NULL. 2680 */ 2681 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset); 2682 2683 if (gn != NULL) { 2684 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 2685 2686 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2687 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 2688 if (BP_IS_HOLE(gbp)) 2689 continue; 2690 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data, 2691 offset); 2692 offset += BP_GET_PSIZE(gbp); 2693 } 2694 } 2695 2696 if (gn == gio->io_gang_tree) 2697 ASSERT3U(gio->io_size, ==, offset); 2698 2699 if (zio != pio) 2700 zio_nowait(zio); 2701 } 2702 2703 static zio_t * 2704 zio_gang_assemble(zio_t *zio) 2705 { 2706 blkptr_t *bp = zio->io_bp; 2707 2708 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL); 2709 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2710 2711 zio->io_gang_leader = zio; 2712 2713 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree); 2714 2715 return (zio); 2716 } 2717 2718 static zio_t * 2719 zio_gang_issue(zio_t *zio) 2720 { 2721 blkptr_t *bp = zio->io_bp; 2722 2723 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) { 2724 return (NULL); 2725 } 2726 2727 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio); 2728 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2729 2730 if (zio->io_child_error[ZIO_CHILD_GANG] == 0) 2731 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd, 2732 0); 2733 else 2734 zio_gang_tree_free(&zio->io_gang_tree); 2735 2736 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2737 2738 return (zio); 2739 } 2740 2741 static void 2742 zio_write_gang_member_ready(zio_t *zio) 2743 { 2744 zio_t *pio = zio_unique_parent(zio); 2745 dva_t *cdva = zio->io_bp->blk_dva; 2746 dva_t *pdva = pio->io_bp->blk_dva; 2747 uint64_t asize; 2748 zio_t *gio __maybe_unused = zio->io_gang_leader; 2749 2750 if (BP_IS_HOLE(zio->io_bp)) 2751 return; 2752 2753 ASSERT(BP_IS_HOLE(&zio->io_bp_orig)); 2754 2755 ASSERT(zio->io_child_type == ZIO_CHILD_GANG); 2756 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies); 2757 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp)); 2758 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp)); 2759 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp)); 2760 2761 mutex_enter(&pio->io_lock); 2762 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) { 2763 ASSERT(DVA_GET_GANG(&pdva[d])); 2764 asize = DVA_GET_ASIZE(&pdva[d]); 2765 asize += DVA_GET_ASIZE(&cdva[d]); 2766 DVA_SET_ASIZE(&pdva[d], asize); 2767 } 2768 mutex_exit(&pio->io_lock); 2769 } 2770 2771 static void 2772 zio_write_gang_done(zio_t *zio) 2773 { 2774 /* 2775 * The io_abd field will be NULL for a zio with no data. The io_flags 2776 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't 2777 * check for it here as it is cleared in zio_ready. 2778 */ 2779 if (zio->io_abd != NULL) 2780 abd_free(zio->io_abd); 2781 } 2782 2783 static zio_t * 2784 zio_write_gang_block(zio_t *pio, metaslab_class_t *mc) 2785 { 2786 spa_t *spa = pio->io_spa; 2787 blkptr_t *bp = pio->io_bp; 2788 zio_t *gio = pio->io_gang_leader; 2789 zio_t *zio; 2790 zio_gang_node_t *gn, **gnpp; 2791 zio_gbh_phys_t *gbh; 2792 abd_t *gbh_abd; 2793 uint64_t txg = pio->io_txg; 2794 uint64_t resid = pio->io_size; 2795 uint64_t lsize; 2796 int copies = gio->io_prop.zp_copies; 2797 int gbh_copies; 2798 zio_prop_t zp; 2799 int error; 2800 boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA); 2801 2802 /* 2803 * encrypted blocks need DVA[2] free so encrypted gang headers can't 2804 * have a third copy. 2805 */ 2806 gbh_copies = MIN(copies + 1, spa_max_replication(spa)); 2807 if (gio->io_prop.zp_encrypt && gbh_copies >= SPA_DVAS_PER_BP) 2808 gbh_copies = SPA_DVAS_PER_BP - 1; 2809 2810 int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER; 2811 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2812 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2813 ASSERT(has_data); 2814 2815 flags |= METASLAB_ASYNC_ALLOC; 2816 VERIFY(zfs_refcount_held(&mc->mc_allocator[pio->io_allocator]. 2817 mca_alloc_slots, pio)); 2818 2819 /* 2820 * The logical zio has already placed a reservation for 2821 * 'copies' allocation slots but gang blocks may require 2822 * additional copies. These additional copies 2823 * (i.e. gbh_copies - copies) are guaranteed to succeed 2824 * since metaslab_class_throttle_reserve() always allows 2825 * additional reservations for gang blocks. 2826 */ 2827 VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies, 2828 pio->io_allocator, pio, flags)); 2829 } 2830 2831 error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE, 2832 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags, 2833 &pio->io_alloc_list, pio, pio->io_allocator); 2834 if (error) { 2835 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2836 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2837 ASSERT(has_data); 2838 2839 /* 2840 * If we failed to allocate the gang block header then 2841 * we remove any additional allocation reservations that 2842 * we placed here. The original reservation will 2843 * be removed when the logical I/O goes to the ready 2844 * stage. 2845 */ 2846 metaslab_class_throttle_unreserve(mc, 2847 gbh_copies - copies, pio->io_allocator, pio); 2848 } 2849 2850 pio->io_error = error; 2851 return (pio); 2852 } 2853 2854 if (pio == gio) { 2855 gnpp = &gio->io_gang_tree; 2856 } else { 2857 gnpp = pio->io_private; 2858 ASSERT(pio->io_ready == zio_write_gang_member_ready); 2859 } 2860 2861 gn = zio_gang_node_alloc(gnpp); 2862 gbh = gn->gn_gbh; 2863 bzero(gbh, SPA_GANGBLOCKSIZE); 2864 gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE); 2865 2866 /* 2867 * Create the gang header. 2868 */ 2869 zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE, 2870 zio_write_gang_done, NULL, pio->io_priority, 2871 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2872 2873 /* 2874 * Create and nowait the gang children. 2875 */ 2876 for (int g = 0; resid != 0; resid -= lsize, g++) { 2877 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g), 2878 SPA_MINBLOCKSIZE); 2879 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid); 2880 2881 zp.zp_checksum = gio->io_prop.zp_checksum; 2882 zp.zp_compress = ZIO_COMPRESS_OFF; 2883 zp.zp_complevel = gio->io_prop.zp_complevel; 2884 zp.zp_type = DMU_OT_NONE; 2885 zp.zp_level = 0; 2886 zp.zp_copies = gio->io_prop.zp_copies; 2887 zp.zp_dedup = B_FALSE; 2888 zp.zp_dedup_verify = B_FALSE; 2889 zp.zp_nopwrite = B_FALSE; 2890 zp.zp_encrypt = gio->io_prop.zp_encrypt; 2891 zp.zp_byteorder = gio->io_prop.zp_byteorder; 2892 bzero(zp.zp_salt, ZIO_DATA_SALT_LEN); 2893 bzero(zp.zp_iv, ZIO_DATA_IV_LEN); 2894 bzero(zp.zp_mac, ZIO_DATA_MAC_LEN); 2895 2896 zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g], 2897 has_data ? abd_get_offset(pio->io_abd, pio->io_size - 2898 resid) : NULL, lsize, lsize, &zp, 2899 zio_write_gang_member_ready, NULL, NULL, 2900 zio_write_gang_done, &gn->gn_child[g], pio->io_priority, 2901 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2902 2903 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2904 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2905 ASSERT(has_data); 2906 2907 /* 2908 * Gang children won't throttle but we should 2909 * account for their work, so reserve an allocation 2910 * slot for them here. 2911 */ 2912 VERIFY(metaslab_class_throttle_reserve(mc, 2913 zp.zp_copies, cio->io_allocator, cio, flags)); 2914 } 2915 zio_nowait(cio); 2916 } 2917 2918 /* 2919 * Set pio's pipeline to just wait for zio to finish. 2920 */ 2921 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2922 2923 /* 2924 * We didn't allocate this bp, so make sure it doesn't get unmarked. 2925 */ 2926 pio->io_flags &= ~ZIO_FLAG_FASTWRITE; 2927 2928 zio_nowait(zio); 2929 2930 return (pio); 2931 } 2932 2933 /* 2934 * The zio_nop_write stage in the pipeline determines if allocating a 2935 * new bp is necessary. The nopwrite feature can handle writes in 2936 * either syncing or open context (i.e. zil writes) and as a result is 2937 * mutually exclusive with dedup. 2938 * 2939 * By leveraging a cryptographically secure checksum, such as SHA256, we 2940 * can compare the checksums of the new data and the old to determine if 2941 * allocating a new block is required. Note that our requirements for 2942 * cryptographic strength are fairly weak: there can't be any accidental 2943 * hash collisions, but we don't need to be secure against intentional 2944 * (malicious) collisions. To trigger a nopwrite, you have to be able 2945 * to write the file to begin with, and triggering an incorrect (hash 2946 * collision) nopwrite is no worse than simply writing to the file. 2947 * That said, there are no known attacks against the checksum algorithms 2948 * used for nopwrite, assuming that the salt and the checksums 2949 * themselves remain secret. 2950 */ 2951 static zio_t * 2952 zio_nop_write(zio_t *zio) 2953 { 2954 blkptr_t *bp = zio->io_bp; 2955 blkptr_t *bp_orig = &zio->io_bp_orig; 2956 zio_prop_t *zp = &zio->io_prop; 2957 2958 ASSERT(BP_GET_LEVEL(bp) == 0); 2959 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 2960 ASSERT(zp->zp_nopwrite); 2961 ASSERT(!zp->zp_dedup); 2962 ASSERT(zio->io_bp_override == NULL); 2963 ASSERT(IO_IS_ALLOCATING(zio)); 2964 2965 /* 2966 * Check to see if the original bp and the new bp have matching 2967 * characteristics (i.e. same checksum, compression algorithms, etc). 2968 * If they don't then just continue with the pipeline which will 2969 * allocate a new bp. 2970 */ 2971 if (BP_IS_HOLE(bp_orig) || 2972 !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags & 2973 ZCHECKSUM_FLAG_NOPWRITE) || 2974 BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) || 2975 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) || 2976 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) || 2977 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) || 2978 zp->zp_copies != BP_GET_NDVAS(bp_orig)) 2979 return (zio); 2980 2981 /* 2982 * If the checksums match then reset the pipeline so that we 2983 * avoid allocating a new bp and issuing any I/O. 2984 */ 2985 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) { 2986 ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags & 2987 ZCHECKSUM_FLAG_NOPWRITE); 2988 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig)); 2989 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig)); 2990 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF); 2991 ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop, 2992 sizeof (uint64_t)) == 0); 2993 2994 /* 2995 * If we're overwriting a block that is currently on an 2996 * indirect vdev, then ignore the nopwrite request and 2997 * allow a new block to be allocated on a concrete vdev. 2998 */ 2999 spa_config_enter(zio->io_spa, SCL_VDEV, FTAG, RW_READER); 3000 vdev_t *tvd = vdev_lookup_top(zio->io_spa, 3001 DVA_GET_VDEV(&bp->blk_dva[0])); 3002 if (tvd->vdev_ops == &vdev_indirect_ops) { 3003 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG); 3004 return (zio); 3005 } 3006 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG); 3007 3008 *bp = *bp_orig; 3009 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 3010 zio->io_flags |= ZIO_FLAG_NOPWRITE; 3011 } 3012 3013 return (zio); 3014 } 3015 3016 /* 3017 * ========================================================================== 3018 * Dedup 3019 * ========================================================================== 3020 */ 3021 static void 3022 zio_ddt_child_read_done(zio_t *zio) 3023 { 3024 blkptr_t *bp = zio->io_bp; 3025 ddt_entry_t *dde = zio->io_private; 3026 ddt_phys_t *ddp; 3027 zio_t *pio = zio_unique_parent(zio); 3028 3029 mutex_enter(&pio->io_lock); 3030 ddp = ddt_phys_select(dde, bp); 3031 if (zio->io_error == 0) 3032 ddt_phys_clear(ddp); /* this ddp doesn't need repair */ 3033 3034 if (zio->io_error == 0 && dde->dde_repair_abd == NULL) 3035 dde->dde_repair_abd = zio->io_abd; 3036 else 3037 abd_free(zio->io_abd); 3038 mutex_exit(&pio->io_lock); 3039 } 3040 3041 static zio_t * 3042 zio_ddt_read_start(zio_t *zio) 3043 { 3044 blkptr_t *bp = zio->io_bp; 3045 3046 ASSERT(BP_GET_DEDUP(bp)); 3047 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 3048 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3049 3050 if (zio->io_child_error[ZIO_CHILD_DDT]) { 3051 ddt_t *ddt = ddt_select(zio->io_spa, bp); 3052 ddt_entry_t *dde = ddt_repair_start(ddt, bp); 3053 ddt_phys_t *ddp = dde->dde_phys; 3054 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp); 3055 blkptr_t blk; 3056 3057 ASSERT(zio->io_vsd == NULL); 3058 zio->io_vsd = dde; 3059 3060 if (ddp_self == NULL) 3061 return (zio); 3062 3063 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 3064 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self) 3065 continue; 3066 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp, 3067 &blk); 3068 zio_nowait(zio_read(zio, zio->io_spa, &blk, 3069 abd_alloc_for_io(zio->io_size, B_TRUE), 3070 zio->io_size, zio_ddt_child_read_done, dde, 3071 zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) | 3072 ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark)); 3073 } 3074 return (zio); 3075 } 3076 3077 zio_nowait(zio_read(zio, zio->io_spa, bp, 3078 zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority, 3079 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark)); 3080 3081 return (zio); 3082 } 3083 3084 static zio_t * 3085 zio_ddt_read_done(zio_t *zio) 3086 { 3087 blkptr_t *bp = zio->io_bp; 3088 3089 if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) { 3090 return (NULL); 3091 } 3092 3093 ASSERT(BP_GET_DEDUP(bp)); 3094 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 3095 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3096 3097 if (zio->io_child_error[ZIO_CHILD_DDT]) { 3098 ddt_t *ddt = ddt_select(zio->io_spa, bp); 3099 ddt_entry_t *dde = zio->io_vsd; 3100 if (ddt == NULL) { 3101 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE); 3102 return (zio); 3103 } 3104 if (dde == NULL) { 3105 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1; 3106 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 3107 return (NULL); 3108 } 3109 if (dde->dde_repair_abd != NULL) { 3110 abd_copy(zio->io_abd, dde->dde_repair_abd, 3111 zio->io_size); 3112 zio->io_child_error[ZIO_CHILD_DDT] = 0; 3113 } 3114 ddt_repair_done(ddt, dde); 3115 zio->io_vsd = NULL; 3116 } 3117 3118 ASSERT(zio->io_vsd == NULL); 3119 3120 return (zio); 3121 } 3122 3123 static boolean_t 3124 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde) 3125 { 3126 spa_t *spa = zio->io_spa; 3127 boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW); 3128 3129 ASSERT(!(zio->io_bp_override && do_raw)); 3130 3131 /* 3132 * Note: we compare the original data, not the transformed data, 3133 * because when zio->io_bp is an override bp, we will not have 3134 * pushed the I/O transforms. That's an important optimization 3135 * because otherwise we'd compress/encrypt all dmu_sync() data twice. 3136 * However, we should never get a raw, override zio so in these 3137 * cases we can compare the io_abd directly. This is useful because 3138 * it allows us to do dedup verification even if we don't have access 3139 * to the original data (for instance, if the encryption keys aren't 3140 * loaded). 3141 */ 3142 3143 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 3144 zio_t *lio = dde->dde_lead_zio[p]; 3145 3146 if (lio != NULL && do_raw) { 3147 return (lio->io_size != zio->io_size || 3148 abd_cmp(zio->io_abd, lio->io_abd) != 0); 3149 } else if (lio != NULL) { 3150 return (lio->io_orig_size != zio->io_orig_size || 3151 abd_cmp(zio->io_orig_abd, lio->io_orig_abd) != 0); 3152 } 3153 } 3154 3155 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 3156 ddt_phys_t *ddp = &dde->dde_phys[p]; 3157 3158 if (ddp->ddp_phys_birth != 0 && do_raw) { 3159 blkptr_t blk = *zio->io_bp; 3160 uint64_t psize; 3161 abd_t *tmpabd; 3162 int error; 3163 3164 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth); 3165 psize = BP_GET_PSIZE(&blk); 3166 3167 if (psize != zio->io_size) 3168 return (B_TRUE); 3169 3170 ddt_exit(ddt); 3171 3172 tmpabd = abd_alloc_for_io(psize, B_TRUE); 3173 3174 error = zio_wait(zio_read(NULL, spa, &blk, tmpabd, 3175 psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ, 3176 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 3177 ZIO_FLAG_RAW, &zio->io_bookmark)); 3178 3179 if (error == 0) { 3180 if (abd_cmp(tmpabd, zio->io_abd) != 0) 3181 error = SET_ERROR(ENOENT); 3182 } 3183 3184 abd_free(tmpabd); 3185 ddt_enter(ddt); 3186 return (error != 0); 3187 } else if (ddp->ddp_phys_birth != 0) { 3188 arc_buf_t *abuf = NULL; 3189 arc_flags_t aflags = ARC_FLAG_WAIT; 3190 blkptr_t blk = *zio->io_bp; 3191 int error; 3192 3193 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth); 3194 3195 if (BP_GET_LSIZE(&blk) != zio->io_orig_size) 3196 return (B_TRUE); 3197 3198 ddt_exit(ddt); 3199 3200 error = arc_read(NULL, spa, &blk, 3201 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ, 3202 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 3203 &aflags, &zio->io_bookmark); 3204 3205 if (error == 0) { 3206 if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data, 3207 zio->io_orig_size) != 0) 3208 error = SET_ERROR(ENOENT); 3209 arc_buf_destroy(abuf, &abuf); 3210 } 3211 3212 ddt_enter(ddt); 3213 return (error != 0); 3214 } 3215 } 3216 3217 return (B_FALSE); 3218 } 3219 3220 static void 3221 zio_ddt_child_write_ready(zio_t *zio) 3222 { 3223 int p = zio->io_prop.zp_copies; 3224 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 3225 ddt_entry_t *dde = zio->io_private; 3226 ddt_phys_t *ddp = &dde->dde_phys[p]; 3227 zio_t *pio; 3228 3229 if (zio->io_error) 3230 return; 3231 3232 ddt_enter(ddt); 3233 3234 ASSERT(dde->dde_lead_zio[p] == zio); 3235 3236 ddt_phys_fill(ddp, zio->io_bp); 3237 3238 zio_link_t *zl = NULL; 3239 while ((pio = zio_walk_parents(zio, &zl)) != NULL) 3240 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg); 3241 3242 ddt_exit(ddt); 3243 } 3244 3245 static void 3246 zio_ddt_child_write_done(zio_t *zio) 3247 { 3248 int p = zio->io_prop.zp_copies; 3249 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 3250 ddt_entry_t *dde = zio->io_private; 3251 ddt_phys_t *ddp = &dde->dde_phys[p]; 3252 3253 ddt_enter(ddt); 3254 3255 ASSERT(ddp->ddp_refcnt == 0); 3256 ASSERT(dde->dde_lead_zio[p] == zio); 3257 dde->dde_lead_zio[p] = NULL; 3258 3259 if (zio->io_error == 0) { 3260 zio_link_t *zl = NULL; 3261 while (zio_walk_parents(zio, &zl) != NULL) 3262 ddt_phys_addref(ddp); 3263 } else { 3264 ddt_phys_clear(ddp); 3265 } 3266 3267 ddt_exit(ddt); 3268 } 3269 3270 static zio_t * 3271 zio_ddt_write(zio_t *zio) 3272 { 3273 spa_t *spa = zio->io_spa; 3274 blkptr_t *bp = zio->io_bp; 3275 uint64_t txg = zio->io_txg; 3276 zio_prop_t *zp = &zio->io_prop; 3277 int p = zp->zp_copies; 3278 zio_t *cio = NULL; 3279 ddt_t *ddt = ddt_select(spa, bp); 3280 ddt_entry_t *dde; 3281 ddt_phys_t *ddp; 3282 3283 ASSERT(BP_GET_DEDUP(bp)); 3284 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum); 3285 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override); 3286 ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW))); 3287 3288 ddt_enter(ddt); 3289 dde = ddt_lookup(ddt, bp, B_TRUE); 3290 ddp = &dde->dde_phys[p]; 3291 3292 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) { 3293 /* 3294 * If we're using a weak checksum, upgrade to a strong checksum 3295 * and try again. If we're already using a strong checksum, 3296 * we can't resolve it, so just convert to an ordinary write. 3297 * (And automatically e-mail a paper to Nature?) 3298 */ 3299 if (!(zio_checksum_table[zp->zp_checksum].ci_flags & 3300 ZCHECKSUM_FLAG_DEDUP)) { 3301 zp->zp_checksum = spa_dedup_checksum(spa); 3302 zio_pop_transforms(zio); 3303 zio->io_stage = ZIO_STAGE_OPEN; 3304 BP_ZERO(bp); 3305 } else { 3306 zp->zp_dedup = B_FALSE; 3307 BP_SET_DEDUP(bp, B_FALSE); 3308 } 3309 ASSERT(!BP_GET_DEDUP(bp)); 3310 zio->io_pipeline = ZIO_WRITE_PIPELINE; 3311 ddt_exit(ddt); 3312 return (zio); 3313 } 3314 3315 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) { 3316 if (ddp->ddp_phys_birth != 0) 3317 ddt_bp_fill(ddp, bp, txg); 3318 if (dde->dde_lead_zio[p] != NULL) 3319 zio_add_child(zio, dde->dde_lead_zio[p]); 3320 else 3321 ddt_phys_addref(ddp); 3322 } else if (zio->io_bp_override) { 3323 ASSERT(bp->blk_birth == txg); 3324 ASSERT(BP_EQUAL(bp, zio->io_bp_override)); 3325 ddt_phys_fill(ddp, bp); 3326 ddt_phys_addref(ddp); 3327 } else { 3328 cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd, 3329 zio->io_orig_size, zio->io_orig_size, zp, 3330 zio_ddt_child_write_ready, NULL, NULL, 3331 zio_ddt_child_write_done, dde, zio->io_priority, 3332 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark); 3333 3334 zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL); 3335 dde->dde_lead_zio[p] = cio; 3336 } 3337 3338 ddt_exit(ddt); 3339 3340 zio_nowait(cio); 3341 3342 return (zio); 3343 } 3344 3345 ddt_entry_t *freedde; /* for debugging */ 3346 3347 static zio_t * 3348 zio_ddt_free(zio_t *zio) 3349 { 3350 spa_t *spa = zio->io_spa; 3351 blkptr_t *bp = zio->io_bp; 3352 ddt_t *ddt = ddt_select(spa, bp); 3353 ddt_entry_t *dde; 3354 ddt_phys_t *ddp; 3355 3356 ASSERT(BP_GET_DEDUP(bp)); 3357 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3358 3359 ddt_enter(ddt); 3360 freedde = dde = ddt_lookup(ddt, bp, B_TRUE); 3361 if (dde) { 3362 ddp = ddt_phys_select(dde, bp); 3363 if (ddp) 3364 ddt_phys_decref(ddp); 3365 } 3366 ddt_exit(ddt); 3367 3368 return (zio); 3369 } 3370 3371 /* 3372 * ========================================================================== 3373 * Allocate and free blocks 3374 * ========================================================================== 3375 */ 3376 3377 static zio_t * 3378 zio_io_to_allocate(spa_t *spa, int allocator) 3379 { 3380 zio_t *zio; 3381 3382 ASSERT(MUTEX_HELD(&spa->spa_allocs[allocator].spaa_lock)); 3383 3384 zio = avl_first(&spa->spa_allocs[allocator].spaa_tree); 3385 if (zio == NULL) 3386 return (NULL); 3387 3388 ASSERT(IO_IS_ALLOCATING(zio)); 3389 3390 /* 3391 * Try to place a reservation for this zio. If we're unable to 3392 * reserve then we throttle. 3393 */ 3394 ASSERT3U(zio->io_allocator, ==, allocator); 3395 if (!metaslab_class_throttle_reserve(zio->io_metaslab_class, 3396 zio->io_prop.zp_copies, allocator, zio, 0)) { 3397 return (NULL); 3398 } 3399 3400 avl_remove(&spa->spa_allocs[allocator].spaa_tree, zio); 3401 ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE); 3402 3403 return (zio); 3404 } 3405 3406 static zio_t * 3407 zio_dva_throttle(zio_t *zio) 3408 { 3409 spa_t *spa = zio->io_spa; 3410 zio_t *nio; 3411 metaslab_class_t *mc; 3412 3413 /* locate an appropriate allocation class */ 3414 mc = spa_preferred_class(spa, zio->io_size, zio->io_prop.zp_type, 3415 zio->io_prop.zp_level, zio->io_prop.zp_zpl_smallblk); 3416 3417 if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE || 3418 !mc->mc_alloc_throttle_enabled || 3419 zio->io_child_type == ZIO_CHILD_GANG || 3420 zio->io_flags & ZIO_FLAG_NODATA) { 3421 return (zio); 3422 } 3423 3424 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 3425 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 3426 ASSERT3U(zio->io_queued_timestamp, >, 0); 3427 ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE); 3428 3429 zbookmark_phys_t *bm = &zio->io_bookmark; 3430 /* 3431 * We want to try to use as many allocators as possible to help improve 3432 * performance, but we also want logically adjacent IOs to be physically 3433 * adjacent to improve sequential read performance. We chunk each object 3434 * into 2^20 block regions, and then hash based on the objset, object, 3435 * level, and region to accomplish both of these goals. 3436 */ 3437 int allocator = (uint_t)cityhash4(bm->zb_objset, bm->zb_object, 3438 bm->zb_level, bm->zb_blkid >> 20) % spa->spa_alloc_count; 3439 zio->io_allocator = allocator; 3440 zio->io_metaslab_class = mc; 3441 mutex_enter(&spa->spa_allocs[allocator].spaa_lock); 3442 avl_add(&spa->spa_allocs[allocator].spaa_tree, zio); 3443 nio = zio_io_to_allocate(spa, allocator); 3444 mutex_exit(&spa->spa_allocs[allocator].spaa_lock); 3445 return (nio); 3446 } 3447 3448 static void 3449 zio_allocate_dispatch(spa_t *spa, int allocator) 3450 { 3451 zio_t *zio; 3452 3453 mutex_enter(&spa->spa_allocs[allocator].spaa_lock); 3454 zio = zio_io_to_allocate(spa, allocator); 3455 mutex_exit(&spa->spa_allocs[allocator].spaa_lock); 3456 if (zio == NULL) 3457 return; 3458 3459 ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE); 3460 ASSERT0(zio->io_error); 3461 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE); 3462 } 3463 3464 static zio_t * 3465 zio_dva_allocate(zio_t *zio) 3466 { 3467 spa_t *spa = zio->io_spa; 3468 metaslab_class_t *mc; 3469 blkptr_t *bp = zio->io_bp; 3470 int error; 3471 int flags = 0; 3472 3473 if (zio->io_gang_leader == NULL) { 3474 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 3475 zio->io_gang_leader = zio; 3476 } 3477 3478 ASSERT(BP_IS_HOLE(bp)); 3479 ASSERT0(BP_GET_NDVAS(bp)); 3480 ASSERT3U(zio->io_prop.zp_copies, >, 0); 3481 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa)); 3482 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp)); 3483 3484 flags |= (zio->io_flags & ZIO_FLAG_FASTWRITE) ? METASLAB_FASTWRITE : 0; 3485 if (zio->io_flags & ZIO_FLAG_NODATA) 3486 flags |= METASLAB_DONT_THROTTLE; 3487 if (zio->io_flags & ZIO_FLAG_GANG_CHILD) 3488 flags |= METASLAB_GANG_CHILD; 3489 if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE) 3490 flags |= METASLAB_ASYNC_ALLOC; 3491 3492 /* 3493 * if not already chosen, locate an appropriate allocation class 3494 */ 3495 mc = zio->io_metaslab_class; 3496 if (mc == NULL) { 3497 mc = spa_preferred_class(spa, zio->io_size, 3498 zio->io_prop.zp_type, zio->io_prop.zp_level, 3499 zio->io_prop.zp_zpl_smallblk); 3500 zio->io_metaslab_class = mc; 3501 } 3502 3503 /* 3504 * Try allocating the block in the usual metaslab class. 3505 * If that's full, allocate it in the normal class. 3506 * If that's full, allocate as a gang block, 3507 * and if all are full, the allocation fails (which shouldn't happen). 3508 * 3509 * Note that we do not fall back on embedded slog (ZIL) space, to 3510 * preserve unfragmented slog space, which is critical for decent 3511 * sync write performance. If a log allocation fails, we will fall 3512 * back to spa_sync() which is abysmal for performance. 3513 */ 3514 error = metaslab_alloc(spa, mc, zio->io_size, bp, 3515 zio->io_prop.zp_copies, zio->io_txg, NULL, flags, 3516 &zio->io_alloc_list, zio, zio->io_allocator); 3517 3518 /* 3519 * Fallback to normal class when an alloc class is full 3520 */ 3521 if (error == ENOSPC && mc != spa_normal_class(spa)) { 3522 /* 3523 * If throttling, transfer reservation over to normal class. 3524 * The io_allocator slot can remain the same even though we 3525 * are switching classes. 3526 */ 3527 if (mc->mc_alloc_throttle_enabled && 3528 (zio->io_flags & ZIO_FLAG_IO_ALLOCATING)) { 3529 metaslab_class_throttle_unreserve(mc, 3530 zio->io_prop.zp_copies, zio->io_allocator, zio); 3531 zio->io_flags &= ~ZIO_FLAG_IO_ALLOCATING; 3532 3533 VERIFY(metaslab_class_throttle_reserve( 3534 spa_normal_class(spa), 3535 zio->io_prop.zp_copies, zio->io_allocator, zio, 3536 flags | METASLAB_MUST_RESERVE)); 3537 } 3538 zio->io_metaslab_class = mc = spa_normal_class(spa); 3539 if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) { 3540 zfs_dbgmsg("%s: metaslab allocation failure, " 3541 "trying normal class: zio %px, size %llu, error %d", 3542 spa_name(spa), zio, (u_longlong_t)zio->io_size, 3543 error); 3544 } 3545 3546 error = metaslab_alloc(spa, mc, zio->io_size, bp, 3547 zio->io_prop.zp_copies, zio->io_txg, NULL, flags, 3548 &zio->io_alloc_list, zio, zio->io_allocator); 3549 } 3550 3551 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) { 3552 if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) { 3553 zfs_dbgmsg("%s: metaslab allocation failure, " 3554 "trying ganging: zio %px, size %llu, error %d", 3555 spa_name(spa), zio, (u_longlong_t)zio->io_size, 3556 error); 3557 } 3558 return (zio_write_gang_block(zio, mc)); 3559 } 3560 if (error != 0) { 3561 if (error != ENOSPC || 3562 (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC)) { 3563 zfs_dbgmsg("%s: metaslab allocation failure: zio %px, " 3564 "size %llu, error %d", 3565 spa_name(spa), zio, (u_longlong_t)zio->io_size, 3566 error); 3567 } 3568 zio->io_error = error; 3569 } 3570 3571 return (zio); 3572 } 3573 3574 static zio_t * 3575 zio_dva_free(zio_t *zio) 3576 { 3577 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE); 3578 3579 return (zio); 3580 } 3581 3582 static zio_t * 3583 zio_dva_claim(zio_t *zio) 3584 { 3585 int error; 3586 3587 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg); 3588 if (error) 3589 zio->io_error = error; 3590 3591 return (zio); 3592 } 3593 3594 /* 3595 * Undo an allocation. This is used by zio_done() when an I/O fails 3596 * and we want to give back the block we just allocated. 3597 * This handles both normal blocks and gang blocks. 3598 */ 3599 static void 3600 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp) 3601 { 3602 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp)); 3603 ASSERT(zio->io_bp_override == NULL); 3604 3605 if (!BP_IS_HOLE(bp)) 3606 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE); 3607 3608 if (gn != NULL) { 3609 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 3610 zio_dva_unallocate(zio, gn->gn_child[g], 3611 &gn->gn_gbh->zg_blkptr[g]); 3612 } 3613 } 3614 } 3615 3616 /* 3617 * Try to allocate an intent log block. Return 0 on success, errno on failure. 3618 */ 3619 int 3620 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp, 3621 uint64_t size, boolean_t *slog) 3622 { 3623 int error = 1; 3624 zio_alloc_list_t io_alloc_list; 3625 3626 ASSERT(txg > spa_syncing_txg(spa)); 3627 3628 metaslab_trace_init(&io_alloc_list); 3629 3630 /* 3631 * Block pointer fields are useful to metaslabs for stats and debugging. 3632 * Fill in the obvious ones before calling into metaslab_alloc(). 3633 */ 3634 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 3635 BP_SET_PSIZE(new_bp, size); 3636 BP_SET_LEVEL(new_bp, 0); 3637 3638 /* 3639 * When allocating a zil block, we don't have information about 3640 * the final destination of the block except the objset it's part 3641 * of, so we just hash the objset ID to pick the allocator to get 3642 * some parallelism. 3643 */ 3644 int flags = METASLAB_FASTWRITE | METASLAB_ZIL; 3645 int allocator = (uint_t)cityhash4(0, 0, 0, 3646 os->os_dsl_dataset->ds_object) % spa->spa_alloc_count; 3647 error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1, 3648 txg, NULL, flags, &io_alloc_list, NULL, allocator); 3649 *slog = (error == 0); 3650 if (error != 0) { 3651 error = metaslab_alloc(spa, spa_embedded_log_class(spa), size, 3652 new_bp, 1, txg, NULL, flags, 3653 &io_alloc_list, NULL, allocator); 3654 } 3655 if (error != 0) { 3656 error = metaslab_alloc(spa, spa_normal_class(spa), size, 3657 new_bp, 1, txg, NULL, flags, 3658 &io_alloc_list, NULL, allocator); 3659 } 3660 metaslab_trace_fini(&io_alloc_list); 3661 3662 if (error == 0) { 3663 BP_SET_LSIZE(new_bp, size); 3664 BP_SET_PSIZE(new_bp, size); 3665 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF); 3666 BP_SET_CHECKSUM(new_bp, 3667 spa_version(spa) >= SPA_VERSION_SLIM_ZIL 3668 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG); 3669 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 3670 BP_SET_LEVEL(new_bp, 0); 3671 BP_SET_DEDUP(new_bp, 0); 3672 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER); 3673 3674 /* 3675 * encrypted blocks will require an IV and salt. We generate 3676 * these now since we will not be rewriting the bp at 3677 * rewrite time. 3678 */ 3679 if (os->os_encrypted) { 3680 uint8_t iv[ZIO_DATA_IV_LEN]; 3681 uint8_t salt[ZIO_DATA_SALT_LEN]; 3682 3683 BP_SET_CRYPT(new_bp, B_TRUE); 3684 VERIFY0(spa_crypt_get_salt(spa, 3685 dmu_objset_id(os), salt)); 3686 VERIFY0(zio_crypt_generate_iv(iv)); 3687 3688 zio_crypt_encode_params_bp(new_bp, salt, iv); 3689 } 3690 } else { 3691 zfs_dbgmsg("%s: zil block allocation failure: " 3692 "size %llu, error %d", spa_name(spa), (u_longlong_t)size, 3693 error); 3694 } 3695 3696 return (error); 3697 } 3698 3699 /* 3700 * ========================================================================== 3701 * Read and write to physical devices 3702 * ========================================================================== 3703 */ 3704 3705 /* 3706 * Issue an I/O to the underlying vdev. Typically the issue pipeline 3707 * stops after this stage and will resume upon I/O completion. 3708 * However, there are instances where the vdev layer may need to 3709 * continue the pipeline when an I/O was not issued. Since the I/O 3710 * that was sent to the vdev layer might be different than the one 3711 * currently active in the pipeline (see vdev_queue_io()), we explicitly 3712 * force the underlying vdev layers to call either zio_execute() or 3713 * zio_interrupt() to ensure that the pipeline continues with the correct I/O. 3714 */ 3715 static zio_t * 3716 zio_vdev_io_start(zio_t *zio) 3717 { 3718 vdev_t *vd = zio->io_vd; 3719 uint64_t align; 3720 spa_t *spa = zio->io_spa; 3721 3722 zio->io_delay = 0; 3723 3724 ASSERT(zio->io_error == 0); 3725 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0); 3726 3727 if (vd == NULL) { 3728 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 3729 spa_config_enter(spa, SCL_ZIO, zio, RW_READER); 3730 3731 /* 3732 * The mirror_ops handle multiple DVAs in a single BP. 3733 */ 3734 vdev_mirror_ops.vdev_op_io_start(zio); 3735 return (NULL); 3736 } 3737 3738 ASSERT3P(zio->io_logical, !=, zio); 3739 if (zio->io_type == ZIO_TYPE_WRITE) { 3740 ASSERT(spa->spa_trust_config); 3741 3742 /* 3743 * Note: the code can handle other kinds of writes, 3744 * but we don't expect them. 3745 */ 3746 if (zio->io_vd->vdev_removing) { 3747 ASSERT(zio->io_flags & 3748 (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL | 3749 ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE)); 3750 } 3751 } 3752 3753 align = 1ULL << vd->vdev_top->vdev_ashift; 3754 3755 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) && 3756 P2PHASE(zio->io_size, align) != 0) { 3757 /* Transform logical writes to be a full physical block size. */ 3758 uint64_t asize = P2ROUNDUP(zio->io_size, align); 3759 abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize); 3760 ASSERT(vd == vd->vdev_top); 3761 if (zio->io_type == ZIO_TYPE_WRITE) { 3762 abd_copy(abuf, zio->io_abd, zio->io_size); 3763 abd_zero_off(abuf, zio->io_size, asize - zio->io_size); 3764 } 3765 zio_push_transform(zio, abuf, asize, asize, zio_subblock); 3766 } 3767 3768 /* 3769 * If this is not a physical io, make sure that it is properly aligned 3770 * before proceeding. 3771 */ 3772 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) { 3773 ASSERT0(P2PHASE(zio->io_offset, align)); 3774 ASSERT0(P2PHASE(zio->io_size, align)); 3775 } else { 3776 /* 3777 * For physical writes, we allow 512b aligned writes and assume 3778 * the device will perform a read-modify-write as necessary. 3779 */ 3780 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE)); 3781 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE)); 3782 } 3783 3784 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa)); 3785 3786 /* 3787 * If this is a repair I/O, and there's no self-healing involved -- 3788 * that is, we're just resilvering what we expect to resilver -- 3789 * then don't do the I/O unless zio's txg is actually in vd's DTL. 3790 * This prevents spurious resilvering. 3791 * 3792 * There are a few ways that we can end up creating these spurious 3793 * resilver i/os: 3794 * 3795 * 1. A resilver i/o will be issued if any DVA in the BP has a 3796 * dirty DTL. The mirror code will issue resilver writes to 3797 * each DVA, including the one(s) that are not on vdevs with dirty 3798 * DTLs. 3799 * 3800 * 2. With nested replication, which happens when we have a 3801 * "replacing" or "spare" vdev that's a child of a mirror or raidz. 3802 * For example, given mirror(replacing(A+B), C), it's likely that 3803 * only A is out of date (it's the new device). In this case, we'll 3804 * read from C, then use the data to resilver A+B -- but we don't 3805 * actually want to resilver B, just A. The top-level mirror has no 3806 * way to know this, so instead we just discard unnecessary repairs 3807 * as we work our way down the vdev tree. 3808 * 3809 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc. 3810 * The same logic applies to any form of nested replication: ditto 3811 * + mirror, RAID-Z + replacing, etc. 3812 * 3813 * However, indirect vdevs point off to other vdevs which may have 3814 * DTL's, so we never bypass them. The child i/os on concrete vdevs 3815 * will be properly bypassed instead. 3816 * 3817 * Leaf DTL_PARTIAL can be empty when a legitimate write comes from 3818 * a dRAID spare vdev. For example, when a dRAID spare is first 3819 * used, its spare blocks need to be written to but the leaf vdev's 3820 * of such blocks can have empty DTL_PARTIAL. 3821 * 3822 * There seemed no clean way to allow such writes while bypassing 3823 * spurious ones. At this point, just avoid all bypassing for dRAID 3824 * for correctness. 3825 */ 3826 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) && 3827 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) && 3828 zio->io_txg != 0 && /* not a delegated i/o */ 3829 vd->vdev_ops != &vdev_indirect_ops && 3830 vd->vdev_top->vdev_ops != &vdev_draid_ops && 3831 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) { 3832 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 3833 zio_vdev_io_bypass(zio); 3834 return (zio); 3835 } 3836 3837 /* 3838 * Select the next best leaf I/O to process. Distributed spares are 3839 * excluded since they dispatch the I/O directly to a leaf vdev after 3840 * applying the dRAID mapping. 3841 */ 3842 if (vd->vdev_ops->vdev_op_leaf && 3843 vd->vdev_ops != &vdev_draid_spare_ops && 3844 (zio->io_type == ZIO_TYPE_READ || 3845 zio->io_type == ZIO_TYPE_WRITE || 3846 zio->io_type == ZIO_TYPE_TRIM)) { 3847 3848 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio)) 3849 return (zio); 3850 3851 if ((zio = vdev_queue_io(zio)) == NULL) 3852 return (NULL); 3853 3854 if (!vdev_accessible(vd, zio)) { 3855 zio->io_error = SET_ERROR(ENXIO); 3856 zio_interrupt(zio); 3857 return (NULL); 3858 } 3859 zio->io_delay = gethrtime(); 3860 } 3861 3862 vd->vdev_ops->vdev_op_io_start(zio); 3863 return (NULL); 3864 } 3865 3866 static zio_t * 3867 zio_vdev_io_done(zio_t *zio) 3868 { 3869 vdev_t *vd = zio->io_vd; 3870 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops; 3871 boolean_t unexpected_error = B_FALSE; 3872 3873 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) { 3874 return (NULL); 3875 } 3876 3877 ASSERT(zio->io_type == ZIO_TYPE_READ || 3878 zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM); 3879 3880 if (zio->io_delay) 3881 zio->io_delay = gethrtime() - zio->io_delay; 3882 3883 if (vd != NULL && vd->vdev_ops->vdev_op_leaf && 3884 vd->vdev_ops != &vdev_draid_spare_ops) { 3885 vdev_queue_io_done(zio); 3886 3887 if (zio->io_type == ZIO_TYPE_WRITE) 3888 vdev_cache_write(zio); 3889 3890 if (zio_injection_enabled && zio->io_error == 0) 3891 zio->io_error = zio_handle_device_injections(vd, zio, 3892 EIO, EILSEQ); 3893 3894 if (zio_injection_enabled && zio->io_error == 0) 3895 zio->io_error = zio_handle_label_injection(zio, EIO); 3896 3897 if (zio->io_error && zio->io_type != ZIO_TYPE_TRIM) { 3898 if (!vdev_accessible(vd, zio)) { 3899 zio->io_error = SET_ERROR(ENXIO); 3900 } else { 3901 unexpected_error = B_TRUE; 3902 } 3903 } 3904 } 3905 3906 ops->vdev_op_io_done(zio); 3907 3908 if (unexpected_error) 3909 VERIFY(vdev_probe(vd, zio) == NULL); 3910 3911 return (zio); 3912 } 3913 3914 /* 3915 * This function is used to change the priority of an existing zio that is 3916 * currently in-flight. This is used by the arc to upgrade priority in the 3917 * event that a demand read is made for a block that is currently queued 3918 * as a scrub or async read IO. Otherwise, the high priority read request 3919 * would end up having to wait for the lower priority IO. 3920 */ 3921 void 3922 zio_change_priority(zio_t *pio, zio_priority_t priority) 3923 { 3924 zio_t *cio, *cio_next; 3925 zio_link_t *zl = NULL; 3926 3927 ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 3928 3929 if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) { 3930 vdev_queue_change_io_priority(pio, priority); 3931 } else { 3932 pio->io_priority = priority; 3933 } 3934 3935 mutex_enter(&pio->io_lock); 3936 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 3937 cio_next = zio_walk_children(pio, &zl); 3938 zio_change_priority(cio, priority); 3939 } 3940 mutex_exit(&pio->io_lock); 3941 } 3942 3943 /* 3944 * For non-raidz ZIOs, we can just copy aside the bad data read from the 3945 * disk, and use that to finish the checksum ereport later. 3946 */ 3947 static void 3948 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr, 3949 const abd_t *good_buf) 3950 { 3951 /* no processing needed */ 3952 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE); 3953 } 3954 3955 /*ARGSUSED*/ 3956 void 3957 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr) 3958 { 3959 void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size); 3960 3961 abd_copy(abd, zio->io_abd, zio->io_size); 3962 3963 zcr->zcr_cbinfo = zio->io_size; 3964 zcr->zcr_cbdata = abd; 3965 zcr->zcr_finish = zio_vsd_default_cksum_finish; 3966 zcr->zcr_free = zio_abd_free; 3967 } 3968 3969 static zio_t * 3970 zio_vdev_io_assess(zio_t *zio) 3971 { 3972 vdev_t *vd = zio->io_vd; 3973 3974 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) { 3975 return (NULL); 3976 } 3977 3978 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 3979 spa_config_exit(zio->io_spa, SCL_ZIO, zio); 3980 3981 if (zio->io_vsd != NULL) { 3982 zio->io_vsd_ops->vsd_free(zio); 3983 zio->io_vsd = NULL; 3984 } 3985 3986 if (zio_injection_enabled && zio->io_error == 0) 3987 zio->io_error = zio_handle_fault_injection(zio, EIO); 3988 3989 /* 3990 * If the I/O failed, determine whether we should attempt to retry it. 3991 * 3992 * On retry, we cut in line in the issue queue, since we don't want 3993 * compression/checksumming/etc. work to prevent our (cheap) IO reissue. 3994 */ 3995 if (zio->io_error && vd == NULL && 3996 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) { 3997 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */ 3998 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */ 3999 zio->io_error = 0; 4000 zio->io_flags |= ZIO_FLAG_IO_RETRY | 4001 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE; 4002 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1; 4003 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, 4004 zio_requeue_io_start_cut_in_line); 4005 return (NULL); 4006 } 4007 4008 /* 4009 * If we got an error on a leaf device, convert it to ENXIO 4010 * if the device is not accessible at all. 4011 */ 4012 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf && 4013 !vdev_accessible(vd, zio)) 4014 zio->io_error = SET_ERROR(ENXIO); 4015 4016 /* 4017 * If we can't write to an interior vdev (mirror or RAID-Z), 4018 * set vdev_cant_write so that we stop trying to allocate from it. 4019 */ 4020 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE && 4021 vd != NULL && !vd->vdev_ops->vdev_op_leaf) { 4022 vdev_dbgmsg(vd, "zio_vdev_io_assess(zio=%px) setting " 4023 "cant_write=TRUE due to write failure with ENXIO", 4024 zio); 4025 vd->vdev_cant_write = B_TRUE; 4026 } 4027 4028 /* 4029 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future 4030 * attempts will ever succeed. In this case we set a persistent 4031 * boolean flag so that we don't bother with it in the future. 4032 */ 4033 if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) && 4034 zio->io_type == ZIO_TYPE_IOCTL && 4035 zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL) 4036 vd->vdev_nowritecache = B_TRUE; 4037 4038 if (zio->io_error) 4039 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 4040 4041 if (vd != NULL && vd->vdev_ops->vdev_op_leaf && 4042 zio->io_physdone != NULL) { 4043 ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED)); 4044 ASSERT(zio->io_child_type == ZIO_CHILD_VDEV); 4045 zio->io_physdone(zio->io_logical); 4046 } 4047 4048 return (zio); 4049 } 4050 4051 void 4052 zio_vdev_io_reissue(zio_t *zio) 4053 { 4054 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 4055 ASSERT(zio->io_error == 0); 4056 4057 zio->io_stage >>= 1; 4058 } 4059 4060 void 4061 zio_vdev_io_redone(zio_t *zio) 4062 { 4063 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE); 4064 4065 zio->io_stage >>= 1; 4066 } 4067 4068 void 4069 zio_vdev_io_bypass(zio_t *zio) 4070 { 4071 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 4072 ASSERT(zio->io_error == 0); 4073 4074 zio->io_flags |= ZIO_FLAG_IO_BYPASS; 4075 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1; 4076 } 4077 4078 /* 4079 * ========================================================================== 4080 * Encrypt and store encryption parameters 4081 * ========================================================================== 4082 */ 4083 4084 4085 /* 4086 * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for 4087 * managing the storage of encryption parameters and passing them to the 4088 * lower-level encryption functions. 4089 */ 4090 static zio_t * 4091 zio_encrypt(zio_t *zio) 4092 { 4093 zio_prop_t *zp = &zio->io_prop; 4094 spa_t *spa = zio->io_spa; 4095 blkptr_t *bp = zio->io_bp; 4096 uint64_t psize = BP_GET_PSIZE(bp); 4097 uint64_t dsobj = zio->io_bookmark.zb_objset; 4098 dmu_object_type_t ot = BP_GET_TYPE(bp); 4099 void *enc_buf = NULL; 4100 abd_t *eabd = NULL; 4101 uint8_t salt[ZIO_DATA_SALT_LEN]; 4102 uint8_t iv[ZIO_DATA_IV_LEN]; 4103 uint8_t mac[ZIO_DATA_MAC_LEN]; 4104 boolean_t no_crypt = B_FALSE; 4105 4106 /* the root zio already encrypted the data */ 4107 if (zio->io_child_type == ZIO_CHILD_GANG) 4108 return (zio); 4109 4110 /* only ZIL blocks are re-encrypted on rewrite */ 4111 if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG) 4112 return (zio); 4113 4114 if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) { 4115 BP_SET_CRYPT(bp, B_FALSE); 4116 return (zio); 4117 } 4118 4119 /* if we are doing raw encryption set the provided encryption params */ 4120 if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) { 4121 ASSERT0(BP_GET_LEVEL(bp)); 4122 BP_SET_CRYPT(bp, B_TRUE); 4123 BP_SET_BYTEORDER(bp, zp->zp_byteorder); 4124 if (ot != DMU_OT_OBJSET) 4125 zio_crypt_encode_mac_bp(bp, zp->zp_mac); 4126 4127 /* dnode blocks must be written out in the provided byteorder */ 4128 if (zp->zp_byteorder != ZFS_HOST_BYTEORDER && 4129 ot == DMU_OT_DNODE) { 4130 void *bswap_buf = zio_buf_alloc(psize); 4131 abd_t *babd = abd_get_from_buf(bswap_buf, psize); 4132 4133 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 4134 abd_copy_to_buf(bswap_buf, zio->io_abd, psize); 4135 dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf, 4136 psize); 4137 4138 abd_take_ownership_of_buf(babd, B_TRUE); 4139 zio_push_transform(zio, babd, psize, psize, NULL); 4140 } 4141 4142 if (DMU_OT_IS_ENCRYPTED(ot)) 4143 zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv); 4144 return (zio); 4145 } 4146 4147 /* indirect blocks only maintain a cksum of the lower level MACs */ 4148 if (BP_GET_LEVEL(bp) > 0) { 4149 BP_SET_CRYPT(bp, B_TRUE); 4150 VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE, 4151 zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp), 4152 mac)); 4153 zio_crypt_encode_mac_bp(bp, mac); 4154 return (zio); 4155 } 4156 4157 /* 4158 * Objset blocks are a special case since they have 2 256-bit MACs 4159 * embedded within them. 4160 */ 4161 if (ot == DMU_OT_OBJSET) { 4162 ASSERT0(DMU_OT_IS_ENCRYPTED(ot)); 4163 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 4164 BP_SET_CRYPT(bp, B_TRUE); 4165 VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj, 4166 zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp))); 4167 return (zio); 4168 } 4169 4170 /* unencrypted object types are only authenticated with a MAC */ 4171 if (!DMU_OT_IS_ENCRYPTED(ot)) { 4172 BP_SET_CRYPT(bp, B_TRUE); 4173 VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj, 4174 zio->io_abd, psize, mac)); 4175 zio_crypt_encode_mac_bp(bp, mac); 4176 return (zio); 4177 } 4178 4179 /* 4180 * Later passes of sync-to-convergence may decide to rewrite data 4181 * in place to avoid more disk reallocations. This presents a problem 4182 * for encryption because this constitutes rewriting the new data with 4183 * the same encryption key and IV. However, this only applies to blocks 4184 * in the MOS (particularly the spacemaps) and we do not encrypt the 4185 * MOS. We assert that the zio is allocating or an intent log write 4186 * to enforce this. 4187 */ 4188 ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG); 4189 ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG); 4190 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION)); 4191 ASSERT3U(psize, !=, 0); 4192 4193 enc_buf = zio_buf_alloc(psize); 4194 eabd = abd_get_from_buf(enc_buf, psize); 4195 abd_take_ownership_of_buf(eabd, B_TRUE); 4196 4197 /* 4198 * For an explanation of what encryption parameters are stored 4199 * where, see the block comment in zio_crypt.c. 4200 */ 4201 if (ot == DMU_OT_INTENT_LOG) { 4202 zio_crypt_decode_params_bp(bp, salt, iv); 4203 } else { 4204 BP_SET_CRYPT(bp, B_TRUE); 4205 } 4206 4207 /* Perform the encryption. This should not fail */ 4208 VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark, 4209 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), 4210 salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt)); 4211 4212 /* encode encryption metadata into the bp */ 4213 if (ot == DMU_OT_INTENT_LOG) { 4214 /* 4215 * ZIL blocks store the MAC in the embedded checksum, so the 4216 * transform must always be applied. 4217 */ 4218 zio_crypt_encode_mac_zil(enc_buf, mac); 4219 zio_push_transform(zio, eabd, psize, psize, NULL); 4220 } else { 4221 BP_SET_CRYPT(bp, B_TRUE); 4222 zio_crypt_encode_params_bp(bp, salt, iv); 4223 zio_crypt_encode_mac_bp(bp, mac); 4224 4225 if (no_crypt) { 4226 ASSERT3U(ot, ==, DMU_OT_DNODE); 4227 abd_free(eabd); 4228 } else { 4229 zio_push_transform(zio, eabd, psize, psize, NULL); 4230 } 4231 } 4232 4233 return (zio); 4234 } 4235 4236 /* 4237 * ========================================================================== 4238 * Generate and verify checksums 4239 * ========================================================================== 4240 */ 4241 static zio_t * 4242 zio_checksum_generate(zio_t *zio) 4243 { 4244 blkptr_t *bp = zio->io_bp; 4245 enum zio_checksum checksum; 4246 4247 if (bp == NULL) { 4248 /* 4249 * This is zio_write_phys(). 4250 * We're either generating a label checksum, or none at all. 4251 */ 4252 checksum = zio->io_prop.zp_checksum; 4253 4254 if (checksum == ZIO_CHECKSUM_OFF) 4255 return (zio); 4256 4257 ASSERT(checksum == ZIO_CHECKSUM_LABEL); 4258 } else { 4259 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) { 4260 ASSERT(!IO_IS_ALLOCATING(zio)); 4261 checksum = ZIO_CHECKSUM_GANG_HEADER; 4262 } else { 4263 checksum = BP_GET_CHECKSUM(bp); 4264 } 4265 } 4266 4267 zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size); 4268 4269 return (zio); 4270 } 4271 4272 static zio_t * 4273 zio_checksum_verify(zio_t *zio) 4274 { 4275 zio_bad_cksum_t info; 4276 blkptr_t *bp = zio->io_bp; 4277 int error; 4278 4279 ASSERT(zio->io_vd != NULL); 4280 4281 if (bp == NULL) { 4282 /* 4283 * This is zio_read_phys(). 4284 * We're either verifying a label checksum, or nothing at all. 4285 */ 4286 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF) 4287 return (zio); 4288 4289 ASSERT3U(zio->io_prop.zp_checksum, ==, ZIO_CHECKSUM_LABEL); 4290 } 4291 4292 if ((error = zio_checksum_error(zio, &info)) != 0) { 4293 zio->io_error = error; 4294 if (error == ECKSUM && 4295 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 4296 (void) zfs_ereport_start_checksum(zio->io_spa, 4297 zio->io_vd, &zio->io_bookmark, zio, 4298 zio->io_offset, zio->io_size, &info); 4299 mutex_enter(&zio->io_vd->vdev_stat_lock); 4300 zio->io_vd->vdev_stat.vs_checksum_errors++; 4301 mutex_exit(&zio->io_vd->vdev_stat_lock); 4302 } 4303 } 4304 4305 return (zio); 4306 } 4307 4308 /* 4309 * Called by RAID-Z to ensure we don't compute the checksum twice. 4310 */ 4311 void 4312 zio_checksum_verified(zio_t *zio) 4313 { 4314 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 4315 } 4316 4317 /* 4318 * ========================================================================== 4319 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other. 4320 * An error of 0 indicates success. ENXIO indicates whole-device failure, 4321 * which may be transient (e.g. unplugged) or permanent. ECKSUM and EIO 4322 * indicate errors that are specific to one I/O, and most likely permanent. 4323 * Any other error is presumed to be worse because we weren't expecting it. 4324 * ========================================================================== 4325 */ 4326 int 4327 zio_worst_error(int e1, int e2) 4328 { 4329 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO }; 4330 int r1, r2; 4331 4332 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++) 4333 if (e1 == zio_error_rank[r1]) 4334 break; 4335 4336 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++) 4337 if (e2 == zio_error_rank[r2]) 4338 break; 4339 4340 return (r1 > r2 ? e1 : e2); 4341 } 4342 4343 /* 4344 * ========================================================================== 4345 * I/O completion 4346 * ========================================================================== 4347 */ 4348 static zio_t * 4349 zio_ready(zio_t *zio) 4350 { 4351 blkptr_t *bp = zio->io_bp; 4352 zio_t *pio, *pio_next; 4353 zio_link_t *zl = NULL; 4354 4355 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT, 4356 ZIO_WAIT_READY)) { 4357 return (NULL); 4358 } 4359 4360 if (zio->io_ready) { 4361 ASSERT(IO_IS_ALLOCATING(zio)); 4362 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) || 4363 (zio->io_flags & ZIO_FLAG_NOPWRITE)); 4364 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0); 4365 4366 zio->io_ready(zio); 4367 } 4368 4369 if (bp != NULL && bp != &zio->io_bp_copy) 4370 zio->io_bp_copy = *bp; 4371 4372 if (zio->io_error != 0) { 4373 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 4374 4375 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 4376 ASSERT(IO_IS_ALLOCATING(zio)); 4377 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 4378 ASSERT(zio->io_metaslab_class != NULL); 4379 4380 /* 4381 * We were unable to allocate anything, unreserve and 4382 * issue the next I/O to allocate. 4383 */ 4384 metaslab_class_throttle_unreserve( 4385 zio->io_metaslab_class, zio->io_prop.zp_copies, 4386 zio->io_allocator, zio); 4387 zio_allocate_dispatch(zio->io_spa, zio->io_allocator); 4388 } 4389 } 4390 4391 mutex_enter(&zio->io_lock); 4392 zio->io_state[ZIO_WAIT_READY] = 1; 4393 pio = zio_walk_parents(zio, &zl); 4394 mutex_exit(&zio->io_lock); 4395 4396 /* 4397 * As we notify zio's parents, new parents could be added. 4398 * New parents go to the head of zio's io_parent_list, however, 4399 * so we will (correctly) not notify them. The remainder of zio's 4400 * io_parent_list, from 'pio_next' onward, cannot change because 4401 * all parents must wait for us to be done before they can be done. 4402 */ 4403 for (; pio != NULL; pio = pio_next) { 4404 pio_next = zio_walk_parents(zio, &zl); 4405 zio_notify_parent(pio, zio, ZIO_WAIT_READY, NULL); 4406 } 4407 4408 if (zio->io_flags & ZIO_FLAG_NODATA) { 4409 if (BP_IS_GANG(bp)) { 4410 zio->io_flags &= ~ZIO_FLAG_NODATA; 4411 } else { 4412 ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE); 4413 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 4414 } 4415 } 4416 4417 if (zio_injection_enabled && 4418 zio->io_spa->spa_syncing_txg == zio->io_txg) 4419 zio_handle_ignored_writes(zio); 4420 4421 return (zio); 4422 } 4423 4424 /* 4425 * Update the allocation throttle accounting. 4426 */ 4427 static void 4428 zio_dva_throttle_done(zio_t *zio) 4429 { 4430 zio_t *lio __maybe_unused = zio->io_logical; 4431 zio_t *pio = zio_unique_parent(zio); 4432 vdev_t *vd = zio->io_vd; 4433 int flags = METASLAB_ASYNC_ALLOC; 4434 4435 ASSERT3P(zio->io_bp, !=, NULL); 4436 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE); 4437 ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE); 4438 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); 4439 ASSERT(vd != NULL); 4440 ASSERT3P(vd, ==, vd->vdev_top); 4441 ASSERT(zio_injection_enabled || !(zio->io_flags & ZIO_FLAG_IO_RETRY)); 4442 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR)); 4443 ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING); 4444 ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE)); 4445 ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA)); 4446 4447 /* 4448 * Parents of gang children can have two flavors -- ones that 4449 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set) 4450 * and ones that allocated the constituent blocks. The allocation 4451 * throttle needs to know the allocating parent zio so we must find 4452 * it here. 4453 */ 4454 if (pio->io_child_type == ZIO_CHILD_GANG) { 4455 /* 4456 * If our parent is a rewrite gang child then our grandparent 4457 * would have been the one that performed the allocation. 4458 */ 4459 if (pio->io_flags & ZIO_FLAG_IO_REWRITE) 4460 pio = zio_unique_parent(pio); 4461 flags |= METASLAB_GANG_CHILD; 4462 } 4463 4464 ASSERT(IO_IS_ALLOCATING(pio)); 4465 ASSERT3P(zio, !=, zio->io_logical); 4466 ASSERT(zio->io_logical != NULL); 4467 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR)); 4468 ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE); 4469 ASSERT(zio->io_metaslab_class != NULL); 4470 4471 mutex_enter(&pio->io_lock); 4472 metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags, 4473 pio->io_allocator, B_TRUE); 4474 mutex_exit(&pio->io_lock); 4475 4476 metaslab_class_throttle_unreserve(zio->io_metaslab_class, 1, 4477 pio->io_allocator, pio); 4478 4479 /* 4480 * Call into the pipeline to see if there is more work that 4481 * needs to be done. If there is work to be done it will be 4482 * dispatched to another taskq thread. 4483 */ 4484 zio_allocate_dispatch(zio->io_spa, pio->io_allocator); 4485 } 4486 4487 static zio_t * 4488 zio_done(zio_t *zio) 4489 { 4490 /* 4491 * Always attempt to keep stack usage minimal here since 4492 * we can be called recursively up to 19 levels deep. 4493 */ 4494 const uint64_t psize = zio->io_size; 4495 zio_t *pio, *pio_next; 4496 zio_link_t *zl = NULL; 4497 4498 /* 4499 * If our children haven't all completed, 4500 * wait for them and then repeat this pipeline stage. 4501 */ 4502 if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) { 4503 return (NULL); 4504 } 4505 4506 /* 4507 * If the allocation throttle is enabled, then update the accounting. 4508 * We only track child I/Os that are part of an allocating async 4509 * write. We must do this since the allocation is performed 4510 * by the logical I/O but the actual write is done by child I/Os. 4511 */ 4512 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING && 4513 zio->io_child_type == ZIO_CHILD_VDEV) { 4514 ASSERT(zio->io_metaslab_class != NULL); 4515 ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled); 4516 zio_dva_throttle_done(zio); 4517 } 4518 4519 /* 4520 * If the allocation throttle is enabled, verify that 4521 * we have decremented the refcounts for every I/O that was throttled. 4522 */ 4523 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 4524 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 4525 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 4526 ASSERT(zio->io_bp != NULL); 4527 4528 metaslab_group_alloc_verify(zio->io_spa, zio->io_bp, zio, 4529 zio->io_allocator); 4530 VERIFY(zfs_refcount_not_held(&zio->io_metaslab_class-> 4531 mc_allocator[zio->io_allocator].mca_alloc_slots, zio)); 4532 } 4533 4534 4535 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 4536 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 4537 ASSERT(zio->io_children[c][w] == 0); 4538 4539 if (zio->io_bp != NULL && !BP_IS_EMBEDDED(zio->io_bp)) { 4540 ASSERT(zio->io_bp->blk_pad[0] == 0); 4541 ASSERT(zio->io_bp->blk_pad[1] == 0); 4542 ASSERT(bcmp(zio->io_bp, &zio->io_bp_copy, 4543 sizeof (blkptr_t)) == 0 || 4544 (zio->io_bp == zio_unique_parent(zio)->io_bp)); 4545 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) && 4546 zio->io_bp_override == NULL && 4547 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) { 4548 ASSERT3U(zio->io_prop.zp_copies, <=, 4549 BP_GET_NDVAS(zio->io_bp)); 4550 ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 || 4551 (BP_COUNT_GANG(zio->io_bp) == 4552 BP_GET_NDVAS(zio->io_bp))); 4553 } 4554 if (zio->io_flags & ZIO_FLAG_NOPWRITE) 4555 VERIFY(BP_EQUAL(zio->io_bp, &zio->io_bp_orig)); 4556 } 4557 4558 /* 4559 * If there were child vdev/gang/ddt errors, they apply to us now. 4560 */ 4561 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV); 4562 zio_inherit_child_errors(zio, ZIO_CHILD_GANG); 4563 zio_inherit_child_errors(zio, ZIO_CHILD_DDT); 4564 4565 /* 4566 * If the I/O on the transformed data was successful, generate any 4567 * checksum reports now while we still have the transformed data. 4568 */ 4569 if (zio->io_error == 0) { 4570 while (zio->io_cksum_report != NULL) { 4571 zio_cksum_report_t *zcr = zio->io_cksum_report; 4572 uint64_t align = zcr->zcr_align; 4573 uint64_t asize = P2ROUNDUP(psize, align); 4574 abd_t *adata = zio->io_abd; 4575 4576 if (adata != NULL && asize != psize) { 4577 adata = abd_alloc(asize, B_TRUE); 4578 abd_copy(adata, zio->io_abd, psize); 4579 abd_zero_off(adata, psize, asize - psize); 4580 } 4581 4582 zio->io_cksum_report = zcr->zcr_next; 4583 zcr->zcr_next = NULL; 4584 zcr->zcr_finish(zcr, adata); 4585 zfs_ereport_free_checksum(zcr); 4586 4587 if (adata != NULL && asize != psize) 4588 abd_free(adata); 4589 } 4590 } 4591 4592 zio_pop_transforms(zio); /* note: may set zio->io_error */ 4593 4594 vdev_stat_update(zio, psize); 4595 4596 /* 4597 * If this I/O is attached to a particular vdev is slow, exceeding 4598 * 30 seconds to complete, post an error described the I/O delay. 4599 * We ignore these errors if the device is currently unavailable. 4600 */ 4601 if (zio->io_delay >= MSEC2NSEC(zio_slow_io_ms)) { 4602 if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) { 4603 /* 4604 * We want to only increment our slow IO counters if 4605 * the IO is valid (i.e. not if the drive is removed). 4606 * 4607 * zfs_ereport_post() will also do these checks, but 4608 * it can also ratelimit and have other failures, so we 4609 * need to increment the slow_io counters independent 4610 * of it. 4611 */ 4612 if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY, 4613 zio->io_spa, zio->io_vd, zio)) { 4614 mutex_enter(&zio->io_vd->vdev_stat_lock); 4615 zio->io_vd->vdev_stat.vs_slow_ios++; 4616 mutex_exit(&zio->io_vd->vdev_stat_lock); 4617 4618 (void) zfs_ereport_post(FM_EREPORT_ZFS_DELAY, 4619 zio->io_spa, zio->io_vd, &zio->io_bookmark, 4620 zio, 0); 4621 } 4622 } 4623 } 4624 4625 if (zio->io_error) { 4626 /* 4627 * If this I/O is attached to a particular vdev, 4628 * generate an error message describing the I/O failure 4629 * at the block level. We ignore these errors if the 4630 * device is currently unavailable. 4631 */ 4632 if (zio->io_error != ECKSUM && zio->io_vd != NULL && 4633 !vdev_is_dead(zio->io_vd)) { 4634 int ret = zfs_ereport_post(FM_EREPORT_ZFS_IO, 4635 zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0); 4636 if (ret != EALREADY) { 4637 mutex_enter(&zio->io_vd->vdev_stat_lock); 4638 if (zio->io_type == ZIO_TYPE_READ) 4639 zio->io_vd->vdev_stat.vs_read_errors++; 4640 else if (zio->io_type == ZIO_TYPE_WRITE) 4641 zio->io_vd->vdev_stat.vs_write_errors++; 4642 mutex_exit(&zio->io_vd->vdev_stat_lock); 4643 } 4644 } 4645 4646 if ((zio->io_error == EIO || !(zio->io_flags & 4647 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) && 4648 zio == zio->io_logical) { 4649 /* 4650 * For logical I/O requests, tell the SPA to log the 4651 * error and generate a logical data ereport. 4652 */ 4653 spa_log_error(zio->io_spa, &zio->io_bookmark); 4654 (void) zfs_ereport_post(FM_EREPORT_ZFS_DATA, 4655 zio->io_spa, NULL, &zio->io_bookmark, zio, 0); 4656 } 4657 } 4658 4659 if (zio->io_error && zio == zio->io_logical) { 4660 /* 4661 * Determine whether zio should be reexecuted. This will 4662 * propagate all the way to the root via zio_notify_parent(). 4663 */ 4664 ASSERT(zio->io_vd == NULL && zio->io_bp != NULL); 4665 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 4666 4667 if (IO_IS_ALLOCATING(zio) && 4668 !(zio->io_flags & ZIO_FLAG_CANFAIL)) { 4669 if (zio->io_error != ENOSPC) 4670 zio->io_reexecute |= ZIO_REEXECUTE_NOW; 4671 else 4672 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 4673 } 4674 4675 if ((zio->io_type == ZIO_TYPE_READ || 4676 zio->io_type == ZIO_TYPE_FREE) && 4677 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && 4678 zio->io_error == ENXIO && 4679 spa_load_state(zio->io_spa) == SPA_LOAD_NONE && 4680 spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE) 4681 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 4682 4683 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute) 4684 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 4685 4686 /* 4687 * Here is a possibly good place to attempt to do 4688 * either combinatorial reconstruction or error correction 4689 * based on checksums. It also might be a good place 4690 * to send out preliminary ereports before we suspend 4691 * processing. 4692 */ 4693 } 4694 4695 /* 4696 * If there were logical child errors, they apply to us now. 4697 * We defer this until now to avoid conflating logical child 4698 * errors with errors that happened to the zio itself when 4699 * updating vdev stats and reporting FMA events above. 4700 */ 4701 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL); 4702 4703 if ((zio->io_error || zio->io_reexecute) && 4704 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio && 4705 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE))) 4706 zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp); 4707 4708 zio_gang_tree_free(&zio->io_gang_tree); 4709 4710 /* 4711 * Godfather I/Os should never suspend. 4712 */ 4713 if ((zio->io_flags & ZIO_FLAG_GODFATHER) && 4714 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) 4715 zio->io_reexecute &= ~ZIO_REEXECUTE_SUSPEND; 4716 4717 if (zio->io_reexecute) { 4718 /* 4719 * This is a logical I/O that wants to reexecute. 4720 * 4721 * Reexecute is top-down. When an i/o fails, if it's not 4722 * the root, it simply notifies its parent and sticks around. 4723 * The parent, seeing that it still has children in zio_done(), 4724 * does the same. This percolates all the way up to the root. 4725 * The root i/o will reexecute or suspend the entire tree. 4726 * 4727 * This approach ensures that zio_reexecute() honors 4728 * all the original i/o dependency relationships, e.g. 4729 * parents not executing until children are ready. 4730 */ 4731 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 4732 4733 zio->io_gang_leader = NULL; 4734 4735 mutex_enter(&zio->io_lock); 4736 zio->io_state[ZIO_WAIT_DONE] = 1; 4737 mutex_exit(&zio->io_lock); 4738 4739 /* 4740 * "The Godfather" I/O monitors its children but is 4741 * not a true parent to them. It will track them through 4742 * the pipeline but severs its ties whenever they get into 4743 * trouble (e.g. suspended). This allows "The Godfather" 4744 * I/O to return status without blocking. 4745 */ 4746 zl = NULL; 4747 for (pio = zio_walk_parents(zio, &zl); pio != NULL; 4748 pio = pio_next) { 4749 zio_link_t *remove_zl = zl; 4750 pio_next = zio_walk_parents(zio, &zl); 4751 4752 if ((pio->io_flags & ZIO_FLAG_GODFATHER) && 4753 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) { 4754 zio_remove_child(pio, zio, remove_zl); 4755 /* 4756 * This is a rare code path, so we don't 4757 * bother with "next_to_execute". 4758 */ 4759 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, 4760 NULL); 4761 } 4762 } 4763 4764 if ((pio = zio_unique_parent(zio)) != NULL) { 4765 /* 4766 * We're not a root i/o, so there's nothing to do 4767 * but notify our parent. Don't propagate errors 4768 * upward since we haven't permanently failed yet. 4769 */ 4770 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 4771 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE; 4772 /* 4773 * This is a rare code path, so we don't bother with 4774 * "next_to_execute". 4775 */ 4776 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, NULL); 4777 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) { 4778 /* 4779 * We'd fail again if we reexecuted now, so suspend 4780 * until conditions improve (e.g. device comes online). 4781 */ 4782 zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR); 4783 } else { 4784 /* 4785 * Reexecution is potentially a huge amount of work. 4786 * Hand it off to the otherwise-unused claim taskq. 4787 */ 4788 ASSERT(taskq_empty_ent(&zio->io_tqent)); 4789 spa_taskq_dispatch_ent(zio->io_spa, 4790 ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE, 4791 zio_reexecute, zio, 0, &zio->io_tqent); 4792 } 4793 return (NULL); 4794 } 4795 4796 ASSERT(zio->io_child_count == 0); 4797 ASSERT(zio->io_reexecute == 0); 4798 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL)); 4799 4800 /* 4801 * Report any checksum errors, since the I/O is complete. 4802 */ 4803 while (zio->io_cksum_report != NULL) { 4804 zio_cksum_report_t *zcr = zio->io_cksum_report; 4805 zio->io_cksum_report = zcr->zcr_next; 4806 zcr->zcr_next = NULL; 4807 zcr->zcr_finish(zcr, NULL); 4808 zfs_ereport_free_checksum(zcr); 4809 } 4810 4811 if (zio->io_flags & ZIO_FLAG_FASTWRITE && zio->io_bp && 4812 !BP_IS_HOLE(zio->io_bp) && !BP_IS_EMBEDDED(zio->io_bp) && 4813 !(zio->io_flags & ZIO_FLAG_NOPWRITE)) { 4814 metaslab_fastwrite_unmark(zio->io_spa, zio->io_bp); 4815 } 4816 4817 /* 4818 * It is the responsibility of the done callback to ensure that this 4819 * particular zio is no longer discoverable for adoption, and as 4820 * such, cannot acquire any new parents. 4821 */ 4822 if (zio->io_done) 4823 zio->io_done(zio); 4824 4825 mutex_enter(&zio->io_lock); 4826 zio->io_state[ZIO_WAIT_DONE] = 1; 4827 mutex_exit(&zio->io_lock); 4828 4829 /* 4830 * We are done executing this zio. We may want to execute a parent 4831 * next. See the comment in zio_notify_parent(). 4832 */ 4833 zio_t *next_to_execute = NULL; 4834 zl = NULL; 4835 for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) { 4836 zio_link_t *remove_zl = zl; 4837 pio_next = zio_walk_parents(zio, &zl); 4838 zio_remove_child(pio, zio, remove_zl); 4839 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, &next_to_execute); 4840 } 4841 4842 if (zio->io_waiter != NULL) { 4843 mutex_enter(&zio->io_lock); 4844 zio->io_executor = NULL; 4845 cv_broadcast(&zio->io_cv); 4846 mutex_exit(&zio->io_lock); 4847 } else { 4848 zio_destroy(zio); 4849 } 4850 4851 return (next_to_execute); 4852 } 4853 4854 /* 4855 * ========================================================================== 4856 * I/O pipeline definition 4857 * ========================================================================== 4858 */ 4859 static zio_pipe_stage_t *zio_pipeline[] = { 4860 NULL, 4861 zio_read_bp_init, 4862 zio_write_bp_init, 4863 zio_free_bp_init, 4864 zio_issue_async, 4865 zio_write_compress, 4866 zio_encrypt, 4867 zio_checksum_generate, 4868 zio_nop_write, 4869 zio_ddt_read_start, 4870 zio_ddt_read_done, 4871 zio_ddt_write, 4872 zio_ddt_free, 4873 zio_gang_assemble, 4874 zio_gang_issue, 4875 zio_dva_throttle, 4876 zio_dva_allocate, 4877 zio_dva_free, 4878 zio_dva_claim, 4879 zio_ready, 4880 zio_vdev_io_start, 4881 zio_vdev_io_done, 4882 zio_vdev_io_assess, 4883 zio_checksum_verify, 4884 zio_done 4885 }; 4886 4887 4888 4889 4890 /* 4891 * Compare two zbookmark_phys_t's to see which we would reach first in a 4892 * pre-order traversal of the object tree. 4893 * 4894 * This is simple in every case aside from the meta-dnode object. For all other 4895 * objects, we traverse them in order (object 1 before object 2, and so on). 4896 * However, all of these objects are traversed while traversing object 0, since 4897 * the data it points to is the list of objects. Thus, we need to convert to a 4898 * canonical representation so we can compare meta-dnode bookmarks to 4899 * non-meta-dnode bookmarks. 4900 * 4901 * We do this by calculating "equivalents" for each field of the zbookmark. 4902 * zbookmarks outside of the meta-dnode use their own object and level, and 4903 * calculate the level 0 equivalent (the first L0 blkid that is contained in the 4904 * blocks this bookmark refers to) by multiplying their blkid by their span 4905 * (the number of L0 blocks contained within one block at their level). 4906 * zbookmarks inside the meta-dnode calculate their object equivalent 4907 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use 4908 * level + 1<<31 (any value larger than a level could ever be) for their level. 4909 * This causes them to always compare before a bookmark in their object 4910 * equivalent, compare appropriately to bookmarks in other objects, and to 4911 * compare appropriately to other bookmarks in the meta-dnode. 4912 */ 4913 int 4914 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2, 4915 const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2) 4916 { 4917 /* 4918 * These variables represent the "equivalent" values for the zbookmark, 4919 * after converting zbookmarks inside the meta dnode to their 4920 * normal-object equivalents. 4921 */ 4922 uint64_t zb1obj, zb2obj; 4923 uint64_t zb1L0, zb2L0; 4924 uint64_t zb1level, zb2level; 4925 4926 if (zb1->zb_object == zb2->zb_object && 4927 zb1->zb_level == zb2->zb_level && 4928 zb1->zb_blkid == zb2->zb_blkid) 4929 return (0); 4930 4931 IMPLY(zb1->zb_level > 0, ibs1 >= SPA_MINBLOCKSHIFT); 4932 IMPLY(zb2->zb_level > 0, ibs2 >= SPA_MINBLOCKSHIFT); 4933 4934 /* 4935 * BP_SPANB calculates the span in blocks. 4936 */ 4937 zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level); 4938 zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level); 4939 4940 if (zb1->zb_object == DMU_META_DNODE_OBJECT) { 4941 zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 4942 zb1L0 = 0; 4943 zb1level = zb1->zb_level + COMPARE_META_LEVEL; 4944 } else { 4945 zb1obj = zb1->zb_object; 4946 zb1level = zb1->zb_level; 4947 } 4948 4949 if (zb2->zb_object == DMU_META_DNODE_OBJECT) { 4950 zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 4951 zb2L0 = 0; 4952 zb2level = zb2->zb_level + COMPARE_META_LEVEL; 4953 } else { 4954 zb2obj = zb2->zb_object; 4955 zb2level = zb2->zb_level; 4956 } 4957 4958 /* Now that we have a canonical representation, do the comparison. */ 4959 if (zb1obj != zb2obj) 4960 return (zb1obj < zb2obj ? -1 : 1); 4961 else if (zb1L0 != zb2L0) 4962 return (zb1L0 < zb2L0 ? -1 : 1); 4963 else if (zb1level != zb2level) 4964 return (zb1level > zb2level ? -1 : 1); 4965 /* 4966 * This can (theoretically) happen if the bookmarks have the same object 4967 * and level, but different blkids, if the block sizes are not the same. 4968 * There is presently no way to change the indirect block sizes 4969 */ 4970 return (0); 4971 } 4972 4973 /* 4974 * This function checks the following: given that last_block is the place that 4975 * our traversal stopped last time, does that guarantee that we've visited 4976 * every node under subtree_root? Therefore, we can't just use the raw output 4977 * of zbookmark_compare. We have to pass in a modified version of 4978 * subtree_root; by incrementing the block id, and then checking whether 4979 * last_block is before or equal to that, we can tell whether or not having 4980 * visited last_block implies that all of subtree_root's children have been 4981 * visited. 4982 */ 4983 boolean_t 4984 zbookmark_subtree_completed(const dnode_phys_t *dnp, 4985 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block) 4986 { 4987 zbookmark_phys_t mod_zb = *subtree_root; 4988 mod_zb.zb_blkid++; 4989 ASSERT(last_block->zb_level == 0); 4990 4991 /* The objset_phys_t isn't before anything. */ 4992 if (dnp == NULL) 4993 return (B_FALSE); 4994 4995 /* 4996 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the 4997 * data block size in sectors, because that variable is only used if 4998 * the bookmark refers to a block in the meta-dnode. Since we don't 4999 * know without examining it what object it refers to, and there's no 5000 * harm in passing in this value in other cases, we always pass it in. 5001 * 5002 * We pass in 0 for the indirect block size shift because zb2 must be 5003 * level 0. The indirect block size is only used to calculate the span 5004 * of the bookmark, but since the bookmark must be level 0, the span is 5005 * always 1, so the math works out. 5006 * 5007 * If you make changes to how the zbookmark_compare code works, be sure 5008 * to make sure that this code still works afterwards. 5009 */ 5010 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift, 5011 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb, 5012 last_block) <= 0); 5013 } 5014 5015 EXPORT_SYMBOL(zio_type_name); 5016 EXPORT_SYMBOL(zio_buf_alloc); 5017 EXPORT_SYMBOL(zio_data_buf_alloc); 5018 EXPORT_SYMBOL(zio_buf_free); 5019 EXPORT_SYMBOL(zio_data_buf_free); 5020 5021 /* BEGIN CSTYLED */ 5022 ZFS_MODULE_PARAM(zfs_zio, zio_, slow_io_ms, INT, ZMOD_RW, 5023 "Max I/O completion time (milliseconds) before marking it as slow"); 5024 5025 ZFS_MODULE_PARAM(zfs_zio, zio_, requeue_io_start_cut_in_line, INT, ZMOD_RW, 5026 "Prioritize requeued I/O"); 5027 5028 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_deferred_free, INT, ZMOD_RW, 5029 "Defer frees starting in this pass"); 5030 5031 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_dont_compress, INT, ZMOD_RW, 5032 "Don't compress starting in this pass"); 5033 5034 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_rewrite, INT, ZMOD_RW, 5035 "Rewrite new bps starting in this pass"); 5036 5037 ZFS_MODULE_PARAM(zfs_zio, zio_, dva_throttle_enabled, INT, ZMOD_RW, 5038 "Throttle block allocations in the ZIO pipeline"); 5039 5040 ZFS_MODULE_PARAM(zfs_zio, zio_, deadman_log_all, INT, ZMOD_RW, 5041 "Log all slow ZIOs, not just those with vdevs"); 5042 /* END CSTYLED */ 5043