xref: /freebsd/sys/contrib/openzfs/module/zfs/zio.c (revision 3a56015a2f5d630910177fa79a522bb95511ccf7)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2022 by Delphix. All rights reserved.
24  * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25  * Copyright (c) 2017, Intel Corporation.
26  * Copyright (c) 2019, 2023, 2024, Klara Inc.
27  * Copyright (c) 2019, Allan Jude
28  * Copyright (c) 2021, Datto, Inc.
29  * Copyright (c) 2021, 2024 by George Melikov. All rights reserved.
30  */
31 
32 #include <sys/sysmacros.h>
33 #include <sys/zfs_context.h>
34 #include <sys/fm/fs/zfs.h>
35 #include <sys/spa.h>
36 #include <sys/txg.h>
37 #include <sys/spa_impl.h>
38 #include <sys/vdev_impl.h>
39 #include <sys/vdev_trim.h>
40 #include <sys/zio_impl.h>
41 #include <sys/zio_compress.h>
42 #include <sys/zio_checksum.h>
43 #include <sys/dmu_objset.h>
44 #include <sys/arc.h>
45 #include <sys/brt.h>
46 #include <sys/ddt.h>
47 #include <sys/blkptr.h>
48 #include <sys/zfeature.h>
49 #include <sys/dsl_scan.h>
50 #include <sys/metaslab_impl.h>
51 #include <sys/time.h>
52 #include <sys/trace_zfs.h>
53 #include <sys/abd.h>
54 #include <sys/dsl_crypt.h>
55 #include <cityhash.h>
56 
57 /*
58  * ==========================================================================
59  * I/O type descriptions
60  * ==========================================================================
61  */
62 const char *const zio_type_name[ZIO_TYPES] = {
63 	/*
64 	 * Note: Linux kernel thread name length is limited
65 	 * so these names will differ from upstream open zfs.
66 	 */
67 	"z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_flush", "z_trim"
68 };
69 
70 int zio_dva_throttle_enabled = B_TRUE;
71 static int zio_deadman_log_all = B_FALSE;
72 
73 /*
74  * ==========================================================================
75  * I/O kmem caches
76  * ==========================================================================
77  */
78 static kmem_cache_t *zio_cache;
79 static kmem_cache_t *zio_link_cache;
80 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
81 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
82 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
83 static uint64_t zio_buf_cache_allocs[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
84 static uint64_t zio_buf_cache_frees[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
85 #endif
86 
87 /* Mark IOs as "slow" if they take longer than 30 seconds */
88 static uint_t zio_slow_io_ms = (30 * MILLISEC);
89 
90 #define	BP_SPANB(indblkshift, level) \
91 	(((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
92 #define	COMPARE_META_LEVEL	0x80000000ul
93 /*
94  * The following actions directly effect the spa's sync-to-convergence logic.
95  * The values below define the sync pass when we start performing the action.
96  * Care should be taken when changing these values as they directly impact
97  * spa_sync() performance. Tuning these values may introduce subtle performance
98  * pathologies and should only be done in the context of performance analysis.
99  * These tunables will eventually be removed and replaced with #defines once
100  * enough analysis has been done to determine optimal values.
101  *
102  * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
103  * regular blocks are not deferred.
104  *
105  * Starting in sync pass 8 (zfs_sync_pass_dont_compress), we disable
106  * compression (including of metadata).  In practice, we don't have this
107  * many sync passes, so this has no effect.
108  *
109  * The original intent was that disabling compression would help the sync
110  * passes to converge. However, in practice disabling compression increases
111  * the average number of sync passes, because when we turn compression off, a
112  * lot of block's size will change and thus we have to re-allocate (not
113  * overwrite) them. It also increases the number of 128KB allocations (e.g.
114  * for indirect blocks and spacemaps) because these will not be compressed.
115  * The 128K allocations are especially detrimental to performance on highly
116  * fragmented systems, which may have very few free segments of this size,
117  * and may need to load new metaslabs to satisfy 128K allocations.
118  */
119 
120 /* defer frees starting in this pass */
121 uint_t zfs_sync_pass_deferred_free = 2;
122 
123 /* don't compress starting in this pass */
124 static uint_t zfs_sync_pass_dont_compress = 8;
125 
126 /* rewrite new bps starting in this pass */
127 static uint_t zfs_sync_pass_rewrite = 2;
128 
129 /*
130  * An allocating zio is one that either currently has the DVA allocate
131  * stage set or will have it later in its lifetime.
132  */
133 #define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
134 
135 /*
136  * Enable smaller cores by excluding metadata
137  * allocations as well.
138  */
139 int zio_exclude_metadata = 0;
140 static int zio_requeue_io_start_cut_in_line = 1;
141 
142 #ifdef ZFS_DEBUG
143 static const int zio_buf_debug_limit = 16384;
144 #else
145 static const int zio_buf_debug_limit = 0;
146 #endif
147 
148 static inline void __zio_execute(zio_t *zio);
149 
150 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t);
151 
152 void
153 zio_init(void)
154 {
155 	size_t c;
156 
157 	zio_cache = kmem_cache_create("zio_cache",
158 	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
159 	zio_link_cache = kmem_cache_create("zio_link_cache",
160 	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
161 
162 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
163 		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
164 		size_t align, cflags, data_cflags;
165 		char name[32];
166 
167 		/*
168 		 * Create cache for each half-power of 2 size, starting from
169 		 * SPA_MINBLOCKSIZE.  It should give us memory space efficiency
170 		 * of ~7/8, sufficient for transient allocations mostly using
171 		 * these caches.
172 		 */
173 		size_t p2 = size;
174 		while (!ISP2(p2))
175 			p2 &= p2 - 1;
176 		if (!IS_P2ALIGNED(size, p2 / 2))
177 			continue;
178 
179 #ifndef _KERNEL
180 		/*
181 		 * If we are using watchpoints, put each buffer on its own page,
182 		 * to eliminate the performance overhead of trapping to the
183 		 * kernel when modifying a non-watched buffer that shares the
184 		 * page with a watched buffer.
185 		 */
186 		if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
187 			continue;
188 #endif
189 
190 		if (IS_P2ALIGNED(size, PAGESIZE))
191 			align = PAGESIZE;
192 		else
193 			align = 1 << (highbit64(size ^ (size - 1)) - 1);
194 
195 		cflags = (zio_exclude_metadata || size > zio_buf_debug_limit) ?
196 		    KMC_NODEBUG : 0;
197 		data_cflags = KMC_NODEBUG;
198 		if (abd_size_alloc_linear(size)) {
199 			cflags |= KMC_RECLAIMABLE;
200 			data_cflags |= KMC_RECLAIMABLE;
201 		}
202 		if (cflags == data_cflags) {
203 			/*
204 			 * Resulting kmem caches would be identical.
205 			 * Save memory by creating only one.
206 			 */
207 			(void) snprintf(name, sizeof (name),
208 			    "zio_buf_comb_%lu", (ulong_t)size);
209 			zio_buf_cache[c] = kmem_cache_create(name, size, align,
210 			    NULL, NULL, NULL, NULL, NULL, cflags);
211 			zio_data_buf_cache[c] = zio_buf_cache[c];
212 			continue;
213 		}
214 		(void) snprintf(name, sizeof (name), "zio_buf_%lu",
215 		    (ulong_t)size);
216 		zio_buf_cache[c] = kmem_cache_create(name, size, align,
217 		    NULL, NULL, NULL, NULL, NULL, cflags);
218 
219 		(void) snprintf(name, sizeof (name), "zio_data_buf_%lu",
220 		    (ulong_t)size);
221 		zio_data_buf_cache[c] = kmem_cache_create(name, size, align,
222 		    NULL, NULL, NULL, NULL, NULL, data_cflags);
223 	}
224 
225 	while (--c != 0) {
226 		ASSERT(zio_buf_cache[c] != NULL);
227 		if (zio_buf_cache[c - 1] == NULL)
228 			zio_buf_cache[c - 1] = zio_buf_cache[c];
229 
230 		ASSERT(zio_data_buf_cache[c] != NULL);
231 		if (zio_data_buf_cache[c - 1] == NULL)
232 			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
233 	}
234 
235 	zio_inject_init();
236 
237 	lz4_init();
238 }
239 
240 void
241 zio_fini(void)
242 {
243 	size_t n = SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT;
244 
245 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
246 	for (size_t i = 0; i < n; i++) {
247 		if (zio_buf_cache_allocs[i] != zio_buf_cache_frees[i])
248 			(void) printf("zio_fini: [%d] %llu != %llu\n",
249 			    (int)((i + 1) << SPA_MINBLOCKSHIFT),
250 			    (long long unsigned)zio_buf_cache_allocs[i],
251 			    (long long unsigned)zio_buf_cache_frees[i]);
252 	}
253 #endif
254 
255 	/*
256 	 * The same kmem cache can show up multiple times in both zio_buf_cache
257 	 * and zio_data_buf_cache. Do a wasteful but trivially correct scan to
258 	 * sort it out.
259 	 */
260 	for (size_t i = 0; i < n; i++) {
261 		kmem_cache_t *cache = zio_buf_cache[i];
262 		if (cache == NULL)
263 			continue;
264 		for (size_t j = i; j < n; j++) {
265 			if (cache == zio_buf_cache[j])
266 				zio_buf_cache[j] = NULL;
267 			if (cache == zio_data_buf_cache[j])
268 				zio_data_buf_cache[j] = NULL;
269 		}
270 		kmem_cache_destroy(cache);
271 	}
272 
273 	for (size_t i = 0; i < n; i++) {
274 		kmem_cache_t *cache = zio_data_buf_cache[i];
275 		if (cache == NULL)
276 			continue;
277 		for (size_t j = i; j < n; j++) {
278 			if (cache == zio_data_buf_cache[j])
279 				zio_data_buf_cache[j] = NULL;
280 		}
281 		kmem_cache_destroy(cache);
282 	}
283 
284 	for (size_t i = 0; i < n; i++) {
285 		VERIFY3P(zio_buf_cache[i], ==, NULL);
286 		VERIFY3P(zio_data_buf_cache[i], ==, NULL);
287 	}
288 
289 	kmem_cache_destroy(zio_link_cache);
290 	kmem_cache_destroy(zio_cache);
291 
292 	zio_inject_fini();
293 
294 	lz4_fini();
295 }
296 
297 /*
298  * ==========================================================================
299  * Allocate and free I/O buffers
300  * ==========================================================================
301  */
302 
303 #if defined(ZFS_DEBUG) && defined(_KERNEL)
304 #define	ZFS_ZIO_BUF_CANARY	1
305 #endif
306 
307 #ifdef ZFS_ZIO_BUF_CANARY
308 static const ulong_t zio_buf_canary = (ulong_t)0xdeadc0dedead210b;
309 
310 /*
311  * Use empty space after the buffer to detect overflows.
312  *
313  * Since zio_init() creates kmem caches only for certain set of buffer sizes,
314  * allocations of different sizes may have some unused space after the data.
315  * Filling part of that space with a known pattern on allocation and checking
316  * it on free should allow us to detect some buffer overflows.
317  */
318 static void
319 zio_buf_put_canary(ulong_t *p, size_t size, kmem_cache_t **cache, size_t c)
320 {
321 	size_t off = P2ROUNDUP(size, sizeof (ulong_t));
322 	ulong_t *canary = p + off / sizeof (ulong_t);
323 	size_t asize = (c + 1) << SPA_MINBLOCKSHIFT;
324 	if (c + 1 < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT &&
325 	    cache[c] == cache[c + 1])
326 		asize = (c + 2) << SPA_MINBLOCKSHIFT;
327 	for (; off < asize; canary++, off += sizeof (ulong_t))
328 		*canary = zio_buf_canary;
329 }
330 
331 static void
332 zio_buf_check_canary(ulong_t *p, size_t size, kmem_cache_t **cache, size_t c)
333 {
334 	size_t off = P2ROUNDUP(size, sizeof (ulong_t));
335 	ulong_t *canary = p + off / sizeof (ulong_t);
336 	size_t asize = (c + 1) << SPA_MINBLOCKSHIFT;
337 	if (c + 1 < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT &&
338 	    cache[c] == cache[c + 1])
339 		asize = (c + 2) << SPA_MINBLOCKSHIFT;
340 	for (; off < asize; canary++, off += sizeof (ulong_t)) {
341 		if (unlikely(*canary != zio_buf_canary)) {
342 			PANIC("ZIO buffer overflow %p (%zu) + %zu %#lx != %#lx",
343 			    p, size, (canary - p) * sizeof (ulong_t),
344 			    *canary, zio_buf_canary);
345 		}
346 	}
347 }
348 #endif
349 
350 /*
351  * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
352  * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
353  * useful to inspect ZFS metadata, but if possible, we should avoid keeping
354  * excess / transient data in-core during a crashdump.
355  */
356 void *
357 zio_buf_alloc(size_t size)
358 {
359 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
360 
361 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
362 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
363 	atomic_add_64(&zio_buf_cache_allocs[c], 1);
364 #endif
365 
366 	void *p = kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE);
367 #ifdef ZFS_ZIO_BUF_CANARY
368 	zio_buf_put_canary(p, size, zio_buf_cache, c);
369 #endif
370 	return (p);
371 }
372 
373 /*
374  * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
375  * crashdump if the kernel panics.  This exists so that we will limit the amount
376  * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
377  * of kernel heap dumped to disk when the kernel panics)
378  */
379 void *
380 zio_data_buf_alloc(size_t size)
381 {
382 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
383 
384 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
385 
386 	void *p = kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE);
387 #ifdef ZFS_ZIO_BUF_CANARY
388 	zio_buf_put_canary(p, size, zio_data_buf_cache, c);
389 #endif
390 	return (p);
391 }
392 
393 void
394 zio_buf_free(void *buf, size_t size)
395 {
396 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
397 
398 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
399 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
400 	atomic_add_64(&zio_buf_cache_frees[c], 1);
401 #endif
402 
403 #ifdef ZFS_ZIO_BUF_CANARY
404 	zio_buf_check_canary(buf, size, zio_buf_cache, c);
405 #endif
406 	kmem_cache_free(zio_buf_cache[c], buf);
407 }
408 
409 void
410 zio_data_buf_free(void *buf, size_t size)
411 {
412 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
413 
414 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
415 
416 #ifdef ZFS_ZIO_BUF_CANARY
417 	zio_buf_check_canary(buf, size, zio_data_buf_cache, c);
418 #endif
419 	kmem_cache_free(zio_data_buf_cache[c], buf);
420 }
421 
422 static void
423 zio_abd_free(void *abd, size_t size)
424 {
425 	(void) size;
426 	abd_free((abd_t *)abd);
427 }
428 
429 /*
430  * ==========================================================================
431  * Push and pop I/O transform buffers
432  * ==========================================================================
433  */
434 void
435 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize,
436     zio_transform_func_t *transform)
437 {
438 	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
439 
440 	zt->zt_orig_abd = zio->io_abd;
441 	zt->zt_orig_size = zio->io_size;
442 	zt->zt_bufsize = bufsize;
443 	zt->zt_transform = transform;
444 
445 	zt->zt_next = zio->io_transform_stack;
446 	zio->io_transform_stack = zt;
447 
448 	zio->io_abd = data;
449 	zio->io_size = size;
450 }
451 
452 void
453 zio_pop_transforms(zio_t *zio)
454 {
455 	zio_transform_t *zt;
456 
457 	while ((zt = zio->io_transform_stack) != NULL) {
458 		if (zt->zt_transform != NULL)
459 			zt->zt_transform(zio,
460 			    zt->zt_orig_abd, zt->zt_orig_size);
461 
462 		if (zt->zt_bufsize != 0)
463 			abd_free(zio->io_abd);
464 
465 		zio->io_abd = zt->zt_orig_abd;
466 		zio->io_size = zt->zt_orig_size;
467 		zio->io_transform_stack = zt->zt_next;
468 
469 		kmem_free(zt, sizeof (zio_transform_t));
470 	}
471 }
472 
473 /*
474  * ==========================================================================
475  * I/O transform callbacks for subblocks, decompression, and decryption
476  * ==========================================================================
477  */
478 static void
479 zio_subblock(zio_t *zio, abd_t *data, uint64_t size)
480 {
481 	ASSERT(zio->io_size > size);
482 
483 	if (zio->io_type == ZIO_TYPE_READ)
484 		abd_copy(data, zio->io_abd, size);
485 }
486 
487 static void
488 zio_decompress(zio_t *zio, abd_t *data, uint64_t size)
489 {
490 	if (zio->io_error == 0) {
491 		int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
492 		    zio->io_abd, data, zio->io_size, size,
493 		    &zio->io_prop.zp_complevel);
494 
495 		if (zio_injection_enabled && ret == 0)
496 			ret = zio_handle_fault_injection(zio, EINVAL);
497 
498 		if (ret != 0)
499 			zio->io_error = SET_ERROR(EIO);
500 	}
501 }
502 
503 static void
504 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size)
505 {
506 	int ret;
507 	void *tmp;
508 	blkptr_t *bp = zio->io_bp;
509 	spa_t *spa = zio->io_spa;
510 	uint64_t dsobj = zio->io_bookmark.zb_objset;
511 	uint64_t lsize = BP_GET_LSIZE(bp);
512 	dmu_object_type_t ot = BP_GET_TYPE(bp);
513 	uint8_t salt[ZIO_DATA_SALT_LEN];
514 	uint8_t iv[ZIO_DATA_IV_LEN];
515 	uint8_t mac[ZIO_DATA_MAC_LEN];
516 	boolean_t no_crypt = B_FALSE;
517 
518 	ASSERT(BP_USES_CRYPT(bp));
519 	ASSERT3U(size, !=, 0);
520 
521 	if (zio->io_error != 0)
522 		return;
523 
524 	/*
525 	 * Verify the cksum of MACs stored in an indirect bp. It will always
526 	 * be possible to verify this since it does not require an encryption
527 	 * key.
528 	 */
529 	if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) {
530 		zio_crypt_decode_mac_bp(bp, mac);
531 
532 		if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) {
533 			/*
534 			 * We haven't decompressed the data yet, but
535 			 * zio_crypt_do_indirect_mac_checksum() requires
536 			 * decompressed data to be able to parse out the MACs
537 			 * from the indirect block. We decompress it now and
538 			 * throw away the result after we are finished.
539 			 */
540 			abd_t *abd = abd_alloc_linear(lsize, B_TRUE);
541 			ret = zio_decompress_data(BP_GET_COMPRESS(bp),
542 			    zio->io_abd, abd, zio->io_size, lsize,
543 			    &zio->io_prop.zp_complevel);
544 			if (ret != 0) {
545 				abd_free(abd);
546 				ret = SET_ERROR(EIO);
547 				goto error;
548 			}
549 			ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE,
550 			    abd, lsize, BP_SHOULD_BYTESWAP(bp), mac);
551 			abd_free(abd);
552 		} else {
553 			ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE,
554 			    zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac);
555 		}
556 		abd_copy(data, zio->io_abd, size);
557 
558 		if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) {
559 			ret = zio_handle_decrypt_injection(spa,
560 			    &zio->io_bookmark, ot, ECKSUM);
561 		}
562 		if (ret != 0)
563 			goto error;
564 
565 		return;
566 	}
567 
568 	/*
569 	 * If this is an authenticated block, just check the MAC. It would be
570 	 * nice to separate this out into its own flag, but when this was done,
571 	 * we had run out of bits in what is now zio_flag_t. Future cleanup
572 	 * could make this a flag bit.
573 	 */
574 	if (BP_IS_AUTHENTICATED(bp)) {
575 		if (ot == DMU_OT_OBJSET) {
576 			ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa,
577 			    dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp));
578 		} else {
579 			zio_crypt_decode_mac_bp(bp, mac);
580 			ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj,
581 			    zio->io_abd, size, mac);
582 			if (zio_injection_enabled && ret == 0) {
583 				ret = zio_handle_decrypt_injection(spa,
584 				    &zio->io_bookmark, ot, ECKSUM);
585 			}
586 		}
587 		abd_copy(data, zio->io_abd, size);
588 
589 		if (ret != 0)
590 			goto error;
591 
592 		return;
593 	}
594 
595 	zio_crypt_decode_params_bp(bp, salt, iv);
596 
597 	if (ot == DMU_OT_INTENT_LOG) {
598 		tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t));
599 		zio_crypt_decode_mac_zil(tmp, mac);
600 		abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t));
601 	} else {
602 		zio_crypt_decode_mac_bp(bp, mac);
603 	}
604 
605 	ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp),
606 	    BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data,
607 	    zio->io_abd, &no_crypt);
608 	if (no_crypt)
609 		abd_copy(data, zio->io_abd, size);
610 
611 	if (ret != 0)
612 		goto error;
613 
614 	return;
615 
616 error:
617 	/* assert that the key was found unless this was speculative */
618 	ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE));
619 
620 	/*
621 	 * If there was a decryption / authentication error return EIO as
622 	 * the io_error. If this was not a speculative zio, create an ereport.
623 	 */
624 	if (ret == ECKSUM) {
625 		zio->io_error = SET_ERROR(EIO);
626 		if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
627 			spa_log_error(spa, &zio->io_bookmark,
628 			    BP_GET_LOGICAL_BIRTH(zio->io_bp));
629 			(void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
630 			    spa, NULL, &zio->io_bookmark, zio, 0);
631 		}
632 	} else {
633 		zio->io_error = ret;
634 	}
635 }
636 
637 /*
638  * ==========================================================================
639  * I/O parent/child relationships and pipeline interlocks
640  * ==========================================================================
641  */
642 zio_t *
643 zio_walk_parents(zio_t *cio, zio_link_t **zl)
644 {
645 	list_t *pl = &cio->io_parent_list;
646 
647 	*zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl);
648 	if (*zl == NULL)
649 		return (NULL);
650 
651 	ASSERT((*zl)->zl_child == cio);
652 	return ((*zl)->zl_parent);
653 }
654 
655 zio_t *
656 zio_walk_children(zio_t *pio, zio_link_t **zl)
657 {
658 	list_t *cl = &pio->io_child_list;
659 
660 	ASSERT(MUTEX_HELD(&pio->io_lock));
661 
662 	*zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl);
663 	if (*zl == NULL)
664 		return (NULL);
665 
666 	ASSERT((*zl)->zl_parent == pio);
667 	return ((*zl)->zl_child);
668 }
669 
670 zio_t *
671 zio_unique_parent(zio_t *cio)
672 {
673 	zio_link_t *zl = NULL;
674 	zio_t *pio = zio_walk_parents(cio, &zl);
675 
676 	VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL);
677 	return (pio);
678 }
679 
680 void
681 zio_add_child(zio_t *pio, zio_t *cio)
682 {
683 	/*
684 	 * Logical I/Os can have logical, gang, or vdev children.
685 	 * Gang I/Os can have gang or vdev children.
686 	 * Vdev I/Os can only have vdev children.
687 	 * The following ASSERT captures all of these constraints.
688 	 */
689 	ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
690 
691 	/* Parent should not have READY stage if child doesn't have it. */
692 	IMPLY((cio->io_pipeline & ZIO_STAGE_READY) == 0 &&
693 	    (cio->io_child_type != ZIO_CHILD_VDEV),
694 	    (pio->io_pipeline & ZIO_STAGE_READY) == 0);
695 
696 	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
697 	zl->zl_parent = pio;
698 	zl->zl_child = cio;
699 
700 	mutex_enter(&pio->io_lock);
701 	mutex_enter(&cio->io_lock);
702 
703 	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
704 
705 	uint64_t *countp = pio->io_children[cio->io_child_type];
706 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
707 		countp[w] += !cio->io_state[w];
708 
709 	list_insert_head(&pio->io_child_list, zl);
710 	list_insert_head(&cio->io_parent_list, zl);
711 
712 	mutex_exit(&cio->io_lock);
713 	mutex_exit(&pio->io_lock);
714 }
715 
716 void
717 zio_add_child_first(zio_t *pio, zio_t *cio)
718 {
719 	/*
720 	 * Logical I/Os can have logical, gang, or vdev children.
721 	 * Gang I/Os can have gang or vdev children.
722 	 * Vdev I/Os can only have vdev children.
723 	 * The following ASSERT captures all of these constraints.
724 	 */
725 	ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
726 
727 	/* Parent should not have READY stage if child doesn't have it. */
728 	IMPLY((cio->io_pipeline & ZIO_STAGE_READY) == 0 &&
729 	    (cio->io_child_type != ZIO_CHILD_VDEV),
730 	    (pio->io_pipeline & ZIO_STAGE_READY) == 0);
731 
732 	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
733 	zl->zl_parent = pio;
734 	zl->zl_child = cio;
735 
736 	ASSERT(list_is_empty(&cio->io_parent_list));
737 	list_insert_head(&cio->io_parent_list, zl);
738 
739 	mutex_enter(&pio->io_lock);
740 
741 	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
742 
743 	uint64_t *countp = pio->io_children[cio->io_child_type];
744 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
745 		countp[w] += !cio->io_state[w];
746 
747 	list_insert_head(&pio->io_child_list, zl);
748 
749 	mutex_exit(&pio->io_lock);
750 }
751 
752 static void
753 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
754 {
755 	ASSERT(zl->zl_parent == pio);
756 	ASSERT(zl->zl_child == cio);
757 
758 	mutex_enter(&pio->io_lock);
759 	mutex_enter(&cio->io_lock);
760 
761 	list_remove(&pio->io_child_list, zl);
762 	list_remove(&cio->io_parent_list, zl);
763 
764 	mutex_exit(&cio->io_lock);
765 	mutex_exit(&pio->io_lock);
766 	kmem_cache_free(zio_link_cache, zl);
767 }
768 
769 static boolean_t
770 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait)
771 {
772 	boolean_t waiting = B_FALSE;
773 
774 	mutex_enter(&zio->io_lock);
775 	ASSERT(zio->io_stall == NULL);
776 	for (int c = 0; c < ZIO_CHILD_TYPES; c++) {
777 		if (!(ZIO_CHILD_BIT_IS_SET(childbits, c)))
778 			continue;
779 
780 		uint64_t *countp = &zio->io_children[c][wait];
781 		if (*countp != 0) {
782 			zio->io_stage >>= 1;
783 			ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN);
784 			zio->io_stall = countp;
785 			waiting = B_TRUE;
786 			break;
787 		}
788 	}
789 	mutex_exit(&zio->io_lock);
790 	return (waiting);
791 }
792 
793 __attribute__((always_inline))
794 static inline void
795 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait,
796     zio_t **next_to_executep)
797 {
798 	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
799 	int *errorp = &pio->io_child_error[zio->io_child_type];
800 
801 	mutex_enter(&pio->io_lock);
802 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
803 		*errorp = zio_worst_error(*errorp, zio->io_error);
804 	pio->io_reexecute |= zio->io_reexecute;
805 	ASSERT3U(*countp, >, 0);
806 
807 	/*
808 	 * Propogate the Direct I/O checksum verify failure to the parent.
809 	 */
810 	if (zio->io_flags & ZIO_FLAG_DIO_CHKSUM_ERR)
811 		pio->io_flags |= ZIO_FLAG_DIO_CHKSUM_ERR;
812 
813 	(*countp)--;
814 
815 	if (*countp == 0 && pio->io_stall == countp) {
816 		zio_taskq_type_t type =
817 		    pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE :
818 		    ZIO_TASKQ_INTERRUPT;
819 		pio->io_stall = NULL;
820 		mutex_exit(&pio->io_lock);
821 
822 		/*
823 		 * If we can tell the caller to execute this parent next, do
824 		 * so. We do this if the parent's zio type matches the child's
825 		 * type, or if it's a zio_null() with no done callback, and so
826 		 * has no actual work to do. Otherwise dispatch the parent zio
827 		 * in its own taskq.
828 		 *
829 		 * Having the caller execute the parent when possible reduces
830 		 * locking on the zio taskq's, reduces context switch
831 		 * overhead, and has no recursion penalty.  Note that one
832 		 * read from disk typically causes at least 3 zio's: a
833 		 * zio_null(), the logical zio_read(), and then a physical
834 		 * zio.  When the physical ZIO completes, we are able to call
835 		 * zio_done() on all 3 of these zio's from one invocation of
836 		 * zio_execute() by returning the parent back to
837 		 * zio_execute().  Since the parent isn't executed until this
838 		 * thread returns back to zio_execute(), the caller should do
839 		 * so promptly.
840 		 *
841 		 * In other cases, dispatching the parent prevents
842 		 * overflowing the stack when we have deeply nested
843 		 * parent-child relationships, as we do with the "mega zio"
844 		 * of writes for spa_sync(), and the chain of ZIL blocks.
845 		 */
846 		if (next_to_executep != NULL && *next_to_executep == NULL &&
847 		    (pio->io_type == zio->io_type ||
848 		    (pio->io_type == ZIO_TYPE_NULL && !pio->io_done))) {
849 			*next_to_executep = pio;
850 		} else {
851 			zio_taskq_dispatch(pio, type, B_FALSE);
852 		}
853 	} else {
854 		mutex_exit(&pio->io_lock);
855 	}
856 }
857 
858 static void
859 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
860 {
861 	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
862 		zio->io_error = zio->io_child_error[c];
863 }
864 
865 int
866 zio_bookmark_compare(const void *x1, const void *x2)
867 {
868 	const zio_t *z1 = x1;
869 	const zio_t *z2 = x2;
870 
871 	if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset)
872 		return (-1);
873 	if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset)
874 		return (1);
875 
876 	if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object)
877 		return (-1);
878 	if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object)
879 		return (1);
880 
881 	if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level)
882 		return (-1);
883 	if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level)
884 		return (1);
885 
886 	if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid)
887 		return (-1);
888 	if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid)
889 		return (1);
890 
891 	if (z1 < z2)
892 		return (-1);
893 	if (z1 > z2)
894 		return (1);
895 
896 	return (0);
897 }
898 
899 /*
900  * ==========================================================================
901  * Create the various types of I/O (read, write, free, etc)
902  * ==========================================================================
903  */
904 static zio_t *
905 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
906     abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done,
907     void *private, zio_type_t type, zio_priority_t priority,
908     zio_flag_t flags, vdev_t *vd, uint64_t offset,
909     const zbookmark_phys_t *zb, enum zio_stage stage,
910     enum zio_stage pipeline)
911 {
912 	zio_t *zio;
913 
914 	IMPLY(type != ZIO_TYPE_TRIM, psize <= SPA_MAXBLOCKSIZE);
915 	ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0);
916 	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
917 
918 	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
919 	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
920 	ASSERT(vd || stage == ZIO_STAGE_OPEN);
921 
922 	IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0);
923 
924 	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
925 	memset(zio, 0, sizeof (zio_t));
926 
927 	mutex_init(&zio->io_lock, NULL, MUTEX_NOLOCKDEP, NULL);
928 	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
929 
930 	list_create(&zio->io_parent_list, sizeof (zio_link_t),
931 	    offsetof(zio_link_t, zl_parent_node));
932 	list_create(&zio->io_child_list, sizeof (zio_link_t),
933 	    offsetof(zio_link_t, zl_child_node));
934 	metaslab_trace_init(&zio->io_alloc_list);
935 
936 	if (vd != NULL)
937 		zio->io_child_type = ZIO_CHILD_VDEV;
938 	else if (flags & ZIO_FLAG_GANG_CHILD)
939 		zio->io_child_type = ZIO_CHILD_GANG;
940 	else if (flags & ZIO_FLAG_DDT_CHILD)
941 		zio->io_child_type = ZIO_CHILD_DDT;
942 	else
943 		zio->io_child_type = ZIO_CHILD_LOGICAL;
944 
945 	if (bp != NULL) {
946 		if (type != ZIO_TYPE_WRITE ||
947 		    zio->io_child_type == ZIO_CHILD_DDT) {
948 			zio->io_bp_copy = *bp;
949 			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
950 		} else {
951 			zio->io_bp = (blkptr_t *)bp;
952 		}
953 		zio->io_bp_orig = *bp;
954 		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
955 			zio->io_logical = zio;
956 		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
957 			pipeline |= ZIO_GANG_STAGES;
958 	}
959 
960 	zio->io_spa = spa;
961 	zio->io_txg = txg;
962 	zio->io_done = done;
963 	zio->io_private = private;
964 	zio->io_type = type;
965 	zio->io_priority = priority;
966 	zio->io_vd = vd;
967 	zio->io_offset = offset;
968 	zio->io_orig_abd = zio->io_abd = data;
969 	zio->io_orig_size = zio->io_size = psize;
970 	zio->io_lsize = lsize;
971 	zio->io_orig_flags = zio->io_flags = flags;
972 	zio->io_orig_stage = zio->io_stage = stage;
973 	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
974 	zio->io_pipeline_trace = ZIO_STAGE_OPEN;
975 	zio->io_allocator = ZIO_ALLOCATOR_NONE;
976 
977 	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY) ||
978 	    (pipeline & ZIO_STAGE_READY) == 0;
979 	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
980 
981 	if (zb != NULL)
982 		zio->io_bookmark = *zb;
983 
984 	if (pio != NULL) {
985 		zio->io_metaslab_class = pio->io_metaslab_class;
986 		if (zio->io_logical == NULL)
987 			zio->io_logical = pio->io_logical;
988 		if (zio->io_child_type == ZIO_CHILD_GANG)
989 			zio->io_gang_leader = pio->io_gang_leader;
990 		zio_add_child_first(pio, zio);
991 	}
992 
993 	taskq_init_ent(&zio->io_tqent);
994 
995 	return (zio);
996 }
997 
998 void
999 zio_destroy(zio_t *zio)
1000 {
1001 	metaslab_trace_fini(&zio->io_alloc_list);
1002 	list_destroy(&zio->io_parent_list);
1003 	list_destroy(&zio->io_child_list);
1004 	mutex_destroy(&zio->io_lock);
1005 	cv_destroy(&zio->io_cv);
1006 	kmem_cache_free(zio_cache, zio);
1007 }
1008 
1009 /*
1010  * ZIO intended to be between others.  Provides synchronization at READY
1011  * and DONE pipeline stages and calls the respective callbacks.
1012  */
1013 zio_t *
1014 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
1015     void *private, zio_flag_t flags)
1016 {
1017 	zio_t *zio;
1018 
1019 	zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
1020 	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
1021 	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
1022 
1023 	return (zio);
1024 }
1025 
1026 /*
1027  * ZIO intended to be a root of a tree.  Unlike null ZIO does not have a
1028  * READY pipeline stage (is ready on creation), so it should not be used
1029  * as child of any ZIO that may need waiting for grandchildren READY stage
1030  * (any other ZIO type).
1031  */
1032 zio_t *
1033 zio_root(spa_t *spa, zio_done_func_t *done, void *private, zio_flag_t flags)
1034 {
1035 	zio_t *zio;
1036 
1037 	zio = zio_create(NULL, spa, 0, NULL, NULL, 0, 0, done, private,
1038 	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, NULL, 0, NULL,
1039 	    ZIO_STAGE_OPEN, ZIO_ROOT_PIPELINE);
1040 
1041 	return (zio);
1042 }
1043 
1044 static int
1045 zfs_blkptr_verify_log(spa_t *spa, const blkptr_t *bp,
1046     enum blk_verify_flag blk_verify, const char *fmt, ...)
1047 {
1048 	va_list adx;
1049 	char buf[256];
1050 
1051 	va_start(adx, fmt);
1052 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
1053 	va_end(adx);
1054 
1055 	zfs_dbgmsg("bad blkptr at %px: "
1056 	    "DVA[0]=%#llx/%#llx "
1057 	    "DVA[1]=%#llx/%#llx "
1058 	    "DVA[2]=%#llx/%#llx "
1059 	    "prop=%#llx "
1060 	    "pad=%#llx,%#llx "
1061 	    "phys_birth=%#llx "
1062 	    "birth=%#llx "
1063 	    "fill=%#llx "
1064 	    "cksum=%#llx/%#llx/%#llx/%#llx",
1065 	    bp,
1066 	    (long long)bp->blk_dva[0].dva_word[0],
1067 	    (long long)bp->blk_dva[0].dva_word[1],
1068 	    (long long)bp->blk_dva[1].dva_word[0],
1069 	    (long long)bp->blk_dva[1].dva_word[1],
1070 	    (long long)bp->blk_dva[2].dva_word[0],
1071 	    (long long)bp->blk_dva[2].dva_word[1],
1072 	    (long long)bp->blk_prop,
1073 	    (long long)bp->blk_pad[0],
1074 	    (long long)bp->blk_pad[1],
1075 	    (long long)BP_GET_PHYSICAL_BIRTH(bp),
1076 	    (long long)BP_GET_LOGICAL_BIRTH(bp),
1077 	    (long long)bp->blk_fill,
1078 	    (long long)bp->blk_cksum.zc_word[0],
1079 	    (long long)bp->blk_cksum.zc_word[1],
1080 	    (long long)bp->blk_cksum.zc_word[2],
1081 	    (long long)bp->blk_cksum.zc_word[3]);
1082 	switch (blk_verify) {
1083 	case BLK_VERIFY_HALT:
1084 		zfs_panic_recover("%s: %s", spa_name(spa), buf);
1085 		break;
1086 	case BLK_VERIFY_LOG:
1087 		zfs_dbgmsg("%s: %s", spa_name(spa), buf);
1088 		break;
1089 	case BLK_VERIFY_ONLY:
1090 		break;
1091 	}
1092 
1093 	return (1);
1094 }
1095 
1096 /*
1097  * Verify the block pointer fields contain reasonable values.  This means
1098  * it only contains known object types, checksum/compression identifiers,
1099  * block sizes within the maximum allowed limits, valid DVAs, etc.
1100  *
1101  * If everything checks out B_TRUE is returned.  The zfs_blkptr_verify
1102  * argument controls the behavior when an invalid field is detected.
1103  *
1104  * Values for blk_verify_flag:
1105  *   BLK_VERIFY_ONLY: evaluate the block
1106  *   BLK_VERIFY_LOG: evaluate the block and log problems
1107  *   BLK_VERIFY_HALT: call zfs_panic_recover on error
1108  *
1109  * Values for blk_config_flag:
1110  *   BLK_CONFIG_HELD: caller holds SCL_VDEV for writer
1111  *   BLK_CONFIG_NEEDED: caller holds no config lock, SCL_VDEV will be
1112  *   obtained for reader
1113  *   BLK_CONFIG_SKIP: skip checks which require SCL_VDEV, for better
1114  *   performance
1115  */
1116 boolean_t
1117 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp,
1118     enum blk_config_flag blk_config, enum blk_verify_flag blk_verify)
1119 {
1120 	int errors = 0;
1121 
1122 	if (unlikely(!DMU_OT_IS_VALID(BP_GET_TYPE(bp)))) {
1123 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1124 		    "blkptr at %px has invalid TYPE %llu",
1125 		    bp, (longlong_t)BP_GET_TYPE(bp));
1126 	}
1127 	if (unlikely(BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS)) {
1128 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1129 		    "blkptr at %px has invalid COMPRESS %llu",
1130 		    bp, (longlong_t)BP_GET_COMPRESS(bp));
1131 	}
1132 	if (unlikely(BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE)) {
1133 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1134 		    "blkptr at %px has invalid LSIZE %llu",
1135 		    bp, (longlong_t)BP_GET_LSIZE(bp));
1136 	}
1137 	if (BP_IS_EMBEDDED(bp)) {
1138 		if (unlikely(BPE_GET_ETYPE(bp) >= NUM_BP_EMBEDDED_TYPES)) {
1139 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1140 			    "blkptr at %px has invalid ETYPE %llu",
1141 			    bp, (longlong_t)BPE_GET_ETYPE(bp));
1142 		}
1143 		if (unlikely(BPE_GET_PSIZE(bp) > BPE_PAYLOAD_SIZE)) {
1144 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1145 			    "blkptr at %px has invalid PSIZE %llu",
1146 			    bp, (longlong_t)BPE_GET_PSIZE(bp));
1147 		}
1148 		return (errors == 0);
1149 	}
1150 	if (unlikely(BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS)) {
1151 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1152 		    "blkptr at %px has invalid CHECKSUM %llu",
1153 		    bp, (longlong_t)BP_GET_CHECKSUM(bp));
1154 	}
1155 	if (unlikely(BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE)) {
1156 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1157 		    "blkptr at %px has invalid PSIZE %llu",
1158 		    bp, (longlong_t)BP_GET_PSIZE(bp));
1159 	}
1160 
1161 	/*
1162 	 * Do not verify individual DVAs if the config is not trusted. This
1163 	 * will be done once the zio is executed in vdev_mirror_map_alloc.
1164 	 */
1165 	if (unlikely(!spa->spa_trust_config))
1166 		return (errors == 0);
1167 
1168 	switch (blk_config) {
1169 	case BLK_CONFIG_HELD:
1170 		ASSERT(spa_config_held(spa, SCL_VDEV, RW_WRITER));
1171 		break;
1172 	case BLK_CONFIG_NEEDED:
1173 		spa_config_enter(spa, SCL_VDEV, bp, RW_READER);
1174 		break;
1175 	case BLK_CONFIG_SKIP:
1176 		return (errors == 0);
1177 	default:
1178 		panic("invalid blk_config %u", blk_config);
1179 	}
1180 
1181 	/*
1182 	 * Pool-specific checks.
1183 	 *
1184 	 * Note: it would be nice to verify that the logical birth
1185 	 * and physical birth are not too large.  However,
1186 	 * spa_freeze() allows the birth time of log blocks (and
1187 	 * dmu_sync()-ed blocks that are in the log) to be arbitrarily
1188 	 * large.
1189 	 */
1190 	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
1191 		const dva_t *dva = &bp->blk_dva[i];
1192 		uint64_t vdevid = DVA_GET_VDEV(dva);
1193 
1194 		if (unlikely(vdevid >= spa->spa_root_vdev->vdev_children)) {
1195 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1196 			    "blkptr at %px DVA %u has invalid VDEV %llu",
1197 			    bp, i, (longlong_t)vdevid);
1198 			continue;
1199 		}
1200 		vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1201 		if (unlikely(vd == NULL)) {
1202 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1203 			    "blkptr at %px DVA %u has invalid VDEV %llu",
1204 			    bp, i, (longlong_t)vdevid);
1205 			continue;
1206 		}
1207 		if (unlikely(vd->vdev_ops == &vdev_hole_ops)) {
1208 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1209 			    "blkptr at %px DVA %u has hole VDEV %llu",
1210 			    bp, i, (longlong_t)vdevid);
1211 			continue;
1212 		}
1213 		if (vd->vdev_ops == &vdev_missing_ops) {
1214 			/*
1215 			 * "missing" vdevs are valid during import, but we
1216 			 * don't have their detailed info (e.g. asize), so
1217 			 * we can't perform any more checks on them.
1218 			 */
1219 			continue;
1220 		}
1221 		uint64_t offset = DVA_GET_OFFSET(dva);
1222 		uint64_t asize = DVA_GET_ASIZE(dva);
1223 		if (DVA_GET_GANG(dva))
1224 			asize = vdev_gang_header_asize(vd);
1225 		if (unlikely(offset + asize > vd->vdev_asize)) {
1226 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1227 			    "blkptr at %px DVA %u has invalid OFFSET %llu",
1228 			    bp, i, (longlong_t)offset);
1229 		}
1230 	}
1231 	if (blk_config == BLK_CONFIG_NEEDED)
1232 		spa_config_exit(spa, SCL_VDEV, bp);
1233 
1234 	return (errors == 0);
1235 }
1236 
1237 boolean_t
1238 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp)
1239 {
1240 	(void) bp;
1241 	uint64_t vdevid = DVA_GET_VDEV(dva);
1242 
1243 	if (vdevid >= spa->spa_root_vdev->vdev_children)
1244 		return (B_FALSE);
1245 
1246 	vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1247 	if (vd == NULL)
1248 		return (B_FALSE);
1249 
1250 	if (vd->vdev_ops == &vdev_hole_ops)
1251 		return (B_FALSE);
1252 
1253 	if (vd->vdev_ops == &vdev_missing_ops) {
1254 		return (B_FALSE);
1255 	}
1256 
1257 	uint64_t offset = DVA_GET_OFFSET(dva);
1258 	uint64_t asize = DVA_GET_ASIZE(dva);
1259 
1260 	if (DVA_GET_GANG(dva))
1261 		asize = vdev_gang_header_asize(vd);
1262 	if (offset + asize > vd->vdev_asize)
1263 		return (B_FALSE);
1264 
1265 	return (B_TRUE);
1266 }
1267 
1268 zio_t *
1269 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
1270     abd_t *data, uint64_t size, zio_done_func_t *done, void *private,
1271     zio_priority_t priority, zio_flag_t flags, const zbookmark_phys_t *zb)
1272 {
1273 	zio_t *zio;
1274 
1275 	zio = zio_create(pio, spa, BP_GET_BIRTH(bp), bp,
1276 	    data, size, size, done, private,
1277 	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
1278 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1279 	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
1280 
1281 	return (zio);
1282 }
1283 
1284 zio_t *
1285 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
1286     abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp,
1287     zio_done_func_t *ready, zio_done_func_t *children_ready,
1288     zio_done_func_t *done, void *private, zio_priority_t priority,
1289     zio_flag_t flags, const zbookmark_phys_t *zb)
1290 {
1291 	zio_t *zio;
1292 	enum zio_stage pipeline = zp->zp_direct_write == B_TRUE ?
1293 	    ZIO_DIRECT_WRITE_PIPELINE : (flags & ZIO_FLAG_DDT_CHILD) ?
1294 	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE;
1295 
1296 
1297 	zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private,
1298 	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
1299 	    ZIO_STAGE_OPEN, pipeline);
1300 
1301 	zio->io_ready = ready;
1302 	zio->io_children_ready = children_ready;
1303 	zio->io_prop = *zp;
1304 
1305 	/*
1306 	 * Data can be NULL if we are going to call zio_write_override() to
1307 	 * provide the already-allocated BP.  But we may need the data to
1308 	 * verify a dedup hit (if requested).  In this case, don't try to
1309 	 * dedup (just take the already-allocated BP verbatim). Encrypted
1310 	 * dedup blocks need data as well so we also disable dedup in this
1311 	 * case.
1312 	 */
1313 	if (data == NULL &&
1314 	    (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) {
1315 		zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
1316 	}
1317 
1318 	return (zio);
1319 }
1320 
1321 zio_t *
1322 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data,
1323     uint64_t size, zio_done_func_t *done, void *private,
1324     zio_priority_t priority, zio_flag_t flags, zbookmark_phys_t *zb)
1325 {
1326 	zio_t *zio;
1327 
1328 	zio = zio_create(pio, spa, txg, bp, data, size, size, done, private,
1329 	    ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb,
1330 	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
1331 
1332 	return (zio);
1333 }
1334 
1335 void
1336 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite,
1337     boolean_t brtwrite)
1338 {
1339 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
1340 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1341 	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1342 	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
1343 	ASSERT(!brtwrite || !nopwrite);
1344 
1345 	/*
1346 	 * We must reset the io_prop to match the values that existed
1347 	 * when the bp was first written by dmu_sync() keeping in mind
1348 	 * that nopwrite and dedup are mutually exclusive.
1349 	 */
1350 	zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
1351 	zio->io_prop.zp_nopwrite = nopwrite;
1352 	zio->io_prop.zp_brtwrite = brtwrite;
1353 	zio->io_prop.zp_copies = copies;
1354 	zio->io_bp_override = bp;
1355 }
1356 
1357 void
1358 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
1359 {
1360 
1361 	(void) zfs_blkptr_verify(spa, bp, BLK_CONFIG_NEEDED, BLK_VERIFY_HALT);
1362 
1363 	/*
1364 	 * The check for EMBEDDED is a performance optimization.  We
1365 	 * process the free here (by ignoring it) rather than
1366 	 * putting it on the list and then processing it in zio_free_sync().
1367 	 */
1368 	if (BP_IS_EMBEDDED(bp))
1369 		return;
1370 
1371 	/*
1372 	 * Frees that are for the currently-syncing txg, are not going to be
1373 	 * deferred, and which will not need to do a read (i.e. not GANG or
1374 	 * DEDUP), can be processed immediately.  Otherwise, put them on the
1375 	 * in-memory list for later processing.
1376 	 *
1377 	 * Note that we only defer frees after zfs_sync_pass_deferred_free
1378 	 * when the log space map feature is disabled. [see relevant comment
1379 	 * in spa_sync_iterate_to_convergence()]
1380 	 */
1381 	if (BP_IS_GANG(bp) ||
1382 	    BP_GET_DEDUP(bp) ||
1383 	    txg != spa->spa_syncing_txg ||
1384 	    (spa_sync_pass(spa) >= zfs_sync_pass_deferred_free &&
1385 	    !spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) ||
1386 	    brt_maybe_exists(spa, bp)) {
1387 		metaslab_check_free(spa, bp);
1388 		bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
1389 	} else {
1390 		VERIFY3P(zio_free_sync(NULL, spa, txg, bp, 0), ==, NULL);
1391 	}
1392 }
1393 
1394 /*
1395  * To improve performance, this function may return NULL if we were able
1396  * to do the free immediately.  This avoids the cost of creating a zio
1397  * (and linking it to the parent, etc).
1398  */
1399 zio_t *
1400 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1401     zio_flag_t flags)
1402 {
1403 	ASSERT(!BP_IS_HOLE(bp));
1404 	ASSERT(spa_syncing_txg(spa) == txg);
1405 
1406 	if (BP_IS_EMBEDDED(bp))
1407 		return (NULL);
1408 
1409 	metaslab_check_free(spa, bp);
1410 	arc_freed(spa, bp);
1411 	dsl_scan_freed(spa, bp);
1412 
1413 	if (BP_IS_GANG(bp) ||
1414 	    BP_GET_DEDUP(bp) ||
1415 	    brt_maybe_exists(spa, bp)) {
1416 		/*
1417 		 * GANG, DEDUP and BRT blocks can induce a read (for the gang
1418 		 * block header, the DDT or the BRT), so issue them
1419 		 * asynchronously so that this thread is not tied up.
1420 		 */
1421 		enum zio_stage stage =
1422 		    ZIO_FREE_PIPELINE | ZIO_STAGE_ISSUE_ASYNC;
1423 
1424 		return (zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1425 		    BP_GET_PSIZE(bp), NULL, NULL,
1426 		    ZIO_TYPE_FREE, ZIO_PRIORITY_NOW,
1427 		    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage));
1428 	} else {
1429 		metaslab_free(spa, bp, txg, B_FALSE);
1430 		return (NULL);
1431 	}
1432 }
1433 
1434 zio_t *
1435 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1436     zio_done_func_t *done, void *private, zio_flag_t flags)
1437 {
1438 	zio_t *zio;
1439 
1440 	(void) zfs_blkptr_verify(spa, bp, (flags & ZIO_FLAG_CONFIG_WRITER) ?
1441 	    BLK_CONFIG_HELD : BLK_CONFIG_NEEDED, BLK_VERIFY_HALT);
1442 
1443 	if (BP_IS_EMBEDDED(bp))
1444 		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
1445 
1446 	/*
1447 	 * A claim is an allocation of a specific block.  Claims are needed
1448 	 * to support immediate writes in the intent log.  The issue is that
1449 	 * immediate writes contain committed data, but in a txg that was
1450 	 * *not* committed.  Upon opening the pool after an unclean shutdown,
1451 	 * the intent log claims all blocks that contain immediate write data
1452 	 * so that the SPA knows they're in use.
1453 	 *
1454 	 * All claims *must* be resolved in the first txg -- before the SPA
1455 	 * starts allocating blocks -- so that nothing is allocated twice.
1456 	 * If txg == 0 we just verify that the block is claimable.
1457 	 */
1458 	ASSERT3U(BP_GET_LOGICAL_BIRTH(&spa->spa_uberblock.ub_rootbp), <,
1459 	    spa_min_claim_txg(spa));
1460 	ASSERT(txg == spa_min_claim_txg(spa) || txg == 0);
1461 	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(8) */
1462 
1463 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1464 	    BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW,
1465 	    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
1466 	ASSERT0(zio->io_queued_timestamp);
1467 
1468 	return (zio);
1469 }
1470 
1471 zio_t *
1472 zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1473     zio_done_func_t *done, void *private, zio_priority_t priority,
1474     zio_flag_t flags, enum trim_flag trim_flags)
1475 {
1476 	zio_t *zio;
1477 
1478 	ASSERT0(vd->vdev_children);
1479 	ASSERT0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
1480 	ASSERT0(P2PHASE(size, 1ULL << vd->vdev_ashift));
1481 	ASSERT3U(size, !=, 0);
1482 
1483 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, NULL, size, size, done,
1484 	    private, ZIO_TYPE_TRIM, priority, flags | ZIO_FLAG_PHYSICAL,
1485 	    vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_TRIM_PIPELINE);
1486 	zio->io_trim_flags = trim_flags;
1487 
1488 	return (zio);
1489 }
1490 
1491 zio_t *
1492 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1493     abd_t *data, int checksum, zio_done_func_t *done, void *private,
1494     zio_priority_t priority, zio_flag_t flags, boolean_t labels)
1495 {
1496 	zio_t *zio;
1497 
1498 	ASSERT(vd->vdev_children == 0);
1499 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1500 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1501 	ASSERT3U(offset + size, <=, vd->vdev_psize);
1502 
1503 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1504 	    private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1505 	    offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
1506 
1507 	zio->io_prop.zp_checksum = checksum;
1508 
1509 	return (zio);
1510 }
1511 
1512 zio_t *
1513 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1514     abd_t *data, int checksum, zio_done_func_t *done, void *private,
1515     zio_priority_t priority, zio_flag_t flags, boolean_t labels)
1516 {
1517 	zio_t *zio;
1518 
1519 	ASSERT(vd->vdev_children == 0);
1520 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1521 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1522 	ASSERT3U(offset + size, <=, vd->vdev_psize);
1523 
1524 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1525 	    private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1526 	    offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
1527 
1528 	zio->io_prop.zp_checksum = checksum;
1529 
1530 	if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
1531 		/*
1532 		 * zec checksums are necessarily destructive -- they modify
1533 		 * the end of the write buffer to hold the verifier/checksum.
1534 		 * Therefore, we must make a local copy in case the data is
1535 		 * being written to multiple places in parallel.
1536 		 */
1537 		abd_t *wbuf = abd_alloc_sametype(data, size);
1538 		abd_copy(wbuf, data, size);
1539 
1540 		zio_push_transform(zio, wbuf, size, size, NULL);
1541 	}
1542 
1543 	return (zio);
1544 }
1545 
1546 /*
1547  * Create a child I/O to do some work for us.
1548  */
1549 zio_t *
1550 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1551     abd_t *data, uint64_t size, int type, zio_priority_t priority,
1552     zio_flag_t flags, zio_done_func_t *done, void *private)
1553 {
1554 	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1555 	zio_t *zio;
1556 
1557 	/*
1558 	 * vdev child I/Os do not propagate their error to the parent.
1559 	 * Therefore, for correct operation the caller *must* check for
1560 	 * and handle the error in the child i/o's done callback.
1561 	 * The only exceptions are i/os that we don't care about
1562 	 * (OPTIONAL or REPAIR).
1563 	 */
1564 	ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) ||
1565 	    done != NULL);
1566 
1567 	if (type == ZIO_TYPE_READ && bp != NULL) {
1568 		/*
1569 		 * If we have the bp, then the child should perform the
1570 		 * checksum and the parent need not.  This pushes error
1571 		 * detection as close to the leaves as possible and
1572 		 * eliminates redundant checksums in the interior nodes.
1573 		 */
1574 		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1575 		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1576 		/*
1577 		 * We never allow the mirror VDEV to attempt reading from any
1578 		 * additional data copies after the first Direct I/O checksum
1579 		 * verify failure. This is to avoid bad data being written out
1580 		 * through the mirror during self healing. See comment in
1581 		 * vdev_mirror_io_done() for more details.
1582 		 */
1583 		ASSERT0(pio->io_flags & ZIO_FLAG_DIO_CHKSUM_ERR);
1584 	} else if (type == ZIO_TYPE_WRITE &&
1585 	    pio->io_prop.zp_direct_write == B_TRUE) {
1586 		/*
1587 		 * By default we only will verify checksums for Direct I/O
1588 		 * writes for Linux. FreeBSD is able to place user pages under
1589 		 * write protection before issuing them to the ZIO pipeline.
1590 		 *
1591 		 * Checksum validation errors will only be reported through
1592 		 * the top-level VDEV, which is set by this child ZIO.
1593 		 */
1594 		ASSERT3P(bp, !=, NULL);
1595 		ASSERT3U(pio->io_child_type, ==, ZIO_CHILD_LOGICAL);
1596 		pipeline |= ZIO_STAGE_DIO_CHECKSUM_VERIFY;
1597 	}
1598 
1599 	if (vd->vdev_ops->vdev_op_leaf) {
1600 		ASSERT0(vd->vdev_children);
1601 		offset += VDEV_LABEL_START_SIZE;
1602 	}
1603 
1604 	flags |= ZIO_VDEV_CHILD_FLAGS(pio);
1605 
1606 	/*
1607 	 * If we've decided to do a repair, the write is not speculative --
1608 	 * even if the original read was.
1609 	 */
1610 	if (flags & ZIO_FLAG_IO_REPAIR)
1611 		flags &= ~ZIO_FLAG_SPECULATIVE;
1612 
1613 	/*
1614 	 * If we're creating a child I/O that is not associated with a
1615 	 * top-level vdev, then the child zio is not an allocating I/O.
1616 	 * If this is a retried I/O then we ignore it since we will
1617 	 * have already processed the original allocating I/O.
1618 	 */
1619 	if (flags & ZIO_FLAG_IO_ALLOCATING &&
1620 	    (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) {
1621 		ASSERT(pio->io_metaslab_class != NULL);
1622 		ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled);
1623 		ASSERT(type == ZIO_TYPE_WRITE);
1624 		ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE);
1625 		ASSERT(!(flags & ZIO_FLAG_IO_REPAIR));
1626 		ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) ||
1627 		    pio->io_child_type == ZIO_CHILD_GANG);
1628 
1629 		flags &= ~ZIO_FLAG_IO_ALLOCATING;
1630 	}
1631 
1632 	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size,
1633 	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1634 	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1635 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
1636 
1637 	return (zio);
1638 }
1639 
1640 zio_t *
1641 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size,
1642     zio_type_t type, zio_priority_t priority, zio_flag_t flags,
1643     zio_done_func_t *done, void *private)
1644 {
1645 	zio_t *zio;
1646 
1647 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1648 
1649 	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1650 	    data, size, size, done, private, type, priority,
1651 	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1652 	    vd, offset, NULL,
1653 	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1654 
1655 	return (zio);
1656 }
1657 
1658 
1659 /*
1660  * Send a flush command to the given vdev. Unlike most zio creation functions,
1661  * the flush zios are issued immediately. You can wait on pio to pause until
1662  * the flushes complete.
1663  */
1664 void
1665 zio_flush(zio_t *pio, vdev_t *vd)
1666 {
1667 	const zio_flag_t flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE |
1668 	    ZIO_FLAG_DONT_RETRY;
1669 
1670 	if (vd->vdev_nowritecache)
1671 		return;
1672 
1673 	if (vd->vdev_children == 0) {
1674 		zio_nowait(zio_create(pio, vd->vdev_spa, 0, NULL, NULL, 0, 0,
1675 		    NULL, NULL, ZIO_TYPE_FLUSH, ZIO_PRIORITY_NOW, flags, vd, 0,
1676 		    NULL, ZIO_STAGE_OPEN, ZIO_FLUSH_PIPELINE));
1677 	} else {
1678 		for (uint64_t c = 0; c < vd->vdev_children; c++)
1679 			zio_flush(pio, vd->vdev_child[c]);
1680 	}
1681 }
1682 
1683 void
1684 zio_shrink(zio_t *zio, uint64_t size)
1685 {
1686 	ASSERT3P(zio->io_executor, ==, NULL);
1687 	ASSERT3U(zio->io_orig_size, ==, zio->io_size);
1688 	ASSERT3U(size, <=, zio->io_size);
1689 
1690 	/*
1691 	 * We don't shrink for raidz because of problems with the
1692 	 * reconstruction when reading back less than the block size.
1693 	 * Note, BP_IS_RAIDZ() assumes no compression.
1694 	 */
1695 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1696 	if (!BP_IS_RAIDZ(zio->io_bp)) {
1697 		/* we are not doing a raw write */
1698 		ASSERT3U(zio->io_size, ==, zio->io_lsize);
1699 		zio->io_orig_size = zio->io_size = zio->io_lsize = size;
1700 	}
1701 }
1702 
1703 /*
1704  * Round provided allocation size up to a value that can be allocated
1705  * by at least some vdev(s) in the pool with minimum or no additional
1706  * padding and without extra space usage on others
1707  */
1708 static uint64_t
1709 zio_roundup_alloc_size(spa_t *spa, uint64_t size)
1710 {
1711 	if (size > spa->spa_min_alloc)
1712 		return (roundup(size, spa->spa_gcd_alloc));
1713 	return (spa->spa_min_alloc);
1714 }
1715 
1716 size_t
1717 zio_get_compression_max_size(enum zio_compress compress, uint64_t gcd_alloc,
1718     uint64_t min_alloc, size_t s_len)
1719 {
1720 	size_t d_len;
1721 
1722 	/* minimum 12.5% must be saved (legacy value, may be changed later) */
1723 	d_len = s_len - (s_len >> 3);
1724 
1725 	/* ZLE can't use exactly d_len bytes, it needs more, so ignore it */
1726 	if (compress == ZIO_COMPRESS_ZLE)
1727 		return (d_len);
1728 
1729 	d_len = d_len - d_len % gcd_alloc;
1730 
1731 	if (d_len < min_alloc)
1732 		return (BPE_PAYLOAD_SIZE);
1733 	return (d_len);
1734 }
1735 
1736 /*
1737  * ==========================================================================
1738  * Prepare to read and write logical blocks
1739  * ==========================================================================
1740  */
1741 
1742 static zio_t *
1743 zio_read_bp_init(zio_t *zio)
1744 {
1745 	blkptr_t *bp = zio->io_bp;
1746 	uint64_t psize =
1747 	    BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1748 
1749 	ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1750 
1751 	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1752 	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
1753 	    !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1754 		zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1755 		    psize, psize, zio_decompress);
1756 	}
1757 
1758 	if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) ||
1759 	    BP_HAS_INDIRECT_MAC_CKSUM(bp)) &&
1760 	    zio->io_child_type == ZIO_CHILD_LOGICAL) {
1761 		zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1762 		    psize, psize, zio_decrypt);
1763 	}
1764 
1765 	if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1766 		int psize = BPE_GET_PSIZE(bp);
1767 		void *data = abd_borrow_buf(zio->io_abd, psize);
1768 
1769 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1770 		decode_embedded_bp_compressed(bp, data);
1771 		abd_return_buf_copy(zio->io_abd, data, psize);
1772 	} else {
1773 		ASSERT(!BP_IS_EMBEDDED(bp));
1774 	}
1775 
1776 	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1777 		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1778 
1779 	return (zio);
1780 }
1781 
1782 static zio_t *
1783 zio_write_bp_init(zio_t *zio)
1784 {
1785 	if (!IO_IS_ALLOCATING(zio))
1786 		return (zio);
1787 
1788 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1789 
1790 	if (zio->io_bp_override) {
1791 		blkptr_t *bp = zio->io_bp;
1792 		zio_prop_t *zp = &zio->io_prop;
1793 
1794 		ASSERT(BP_GET_LOGICAL_BIRTH(bp) != zio->io_txg);
1795 
1796 		*bp = *zio->io_bp_override;
1797 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1798 
1799 		if (zp->zp_brtwrite)
1800 			return (zio);
1801 
1802 		ASSERT(!BP_GET_DEDUP(zio->io_bp_override));
1803 
1804 		if (BP_IS_EMBEDDED(bp))
1805 			return (zio);
1806 
1807 		/*
1808 		 * If we've been overridden and nopwrite is set then
1809 		 * set the flag accordingly to indicate that a nopwrite
1810 		 * has already occurred.
1811 		 */
1812 		if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1813 			ASSERT(!zp->zp_dedup);
1814 			ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum);
1815 			zio->io_flags |= ZIO_FLAG_NOPWRITE;
1816 			return (zio);
1817 		}
1818 
1819 		ASSERT(!zp->zp_nopwrite);
1820 
1821 		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1822 			return (zio);
1823 
1824 		ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1825 		    ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1826 
1827 		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum &&
1828 		    !zp->zp_encrypt) {
1829 			BP_SET_DEDUP(bp, 1);
1830 			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1831 			return (zio);
1832 		}
1833 
1834 		/*
1835 		 * We were unable to handle this as an override bp, treat
1836 		 * it as a regular write I/O.
1837 		 */
1838 		zio->io_bp_override = NULL;
1839 		*bp = zio->io_bp_orig;
1840 		zio->io_pipeline = zio->io_orig_pipeline;
1841 	}
1842 
1843 	return (zio);
1844 }
1845 
1846 static zio_t *
1847 zio_write_compress(zio_t *zio)
1848 {
1849 	spa_t *spa = zio->io_spa;
1850 	zio_prop_t *zp = &zio->io_prop;
1851 	enum zio_compress compress = zp->zp_compress;
1852 	blkptr_t *bp = zio->io_bp;
1853 	uint64_t lsize = zio->io_lsize;
1854 	uint64_t psize = zio->io_size;
1855 	uint32_t pass = 1;
1856 
1857 	/*
1858 	 * If our children haven't all reached the ready stage,
1859 	 * wait for them and then repeat this pipeline stage.
1860 	 */
1861 	if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
1862 	    ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) {
1863 		return (NULL);
1864 	}
1865 
1866 	if (!IO_IS_ALLOCATING(zio))
1867 		return (zio);
1868 
1869 	if (zio->io_children_ready != NULL) {
1870 		/*
1871 		 * Now that all our children are ready, run the callback
1872 		 * associated with this zio in case it wants to modify the
1873 		 * data to be written.
1874 		 */
1875 		ASSERT3U(zp->zp_level, >, 0);
1876 		zio->io_children_ready(zio);
1877 	}
1878 
1879 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1880 	ASSERT(zio->io_bp_override == NULL);
1881 
1882 	if (!BP_IS_HOLE(bp) && BP_GET_LOGICAL_BIRTH(bp) == zio->io_txg) {
1883 		/*
1884 		 * We're rewriting an existing block, which means we're
1885 		 * working on behalf of spa_sync().  For spa_sync() to
1886 		 * converge, it must eventually be the case that we don't
1887 		 * have to allocate new blocks.  But compression changes
1888 		 * the blocksize, which forces a reallocate, and makes
1889 		 * convergence take longer.  Therefore, after the first
1890 		 * few passes, stop compressing to ensure convergence.
1891 		 */
1892 		pass = spa_sync_pass(spa);
1893 
1894 		ASSERT(zio->io_txg == spa_syncing_txg(spa));
1895 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1896 		ASSERT(!BP_GET_DEDUP(bp));
1897 
1898 		if (pass >= zfs_sync_pass_dont_compress)
1899 			compress = ZIO_COMPRESS_OFF;
1900 
1901 		/* Make sure someone doesn't change their mind on overwrites */
1902 		ASSERT(BP_IS_EMBEDDED(bp) || BP_IS_GANG(bp) ||
1903 		    MIN(zp->zp_copies, spa_max_replication(spa))
1904 		    == BP_GET_NDVAS(bp));
1905 	}
1906 
1907 	/* If it's a compressed write that is not raw, compress the buffer. */
1908 	if (compress != ZIO_COMPRESS_OFF &&
1909 	    !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1910 		abd_t *cabd = NULL;
1911 		if (abd_cmp_zero(zio->io_abd, lsize) == 0)
1912 			psize = 0;
1913 		else if (compress == ZIO_COMPRESS_EMPTY)
1914 			psize = lsize;
1915 		else
1916 			psize = zio_compress_data(compress, zio->io_abd, &cabd,
1917 			    lsize,
1918 			    zio_get_compression_max_size(compress,
1919 			    spa->spa_gcd_alloc, spa->spa_min_alloc, lsize),
1920 			    zp->zp_complevel);
1921 		if (psize == 0) {
1922 			compress = ZIO_COMPRESS_OFF;
1923 		} else if (psize >= lsize) {
1924 			compress = ZIO_COMPRESS_OFF;
1925 			if (cabd != NULL)
1926 				abd_free(cabd);
1927 		} else if (!zp->zp_dedup && !zp->zp_encrypt &&
1928 		    psize <= BPE_PAYLOAD_SIZE &&
1929 		    zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1930 		    spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1931 			void *cbuf = abd_borrow_buf_copy(cabd, lsize);
1932 			encode_embedded_bp_compressed(bp,
1933 			    cbuf, compress, lsize, psize);
1934 			BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1935 			BP_SET_TYPE(bp, zio->io_prop.zp_type);
1936 			BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1937 			abd_return_buf(cabd, cbuf, lsize);
1938 			abd_free(cabd);
1939 			BP_SET_LOGICAL_BIRTH(bp, zio->io_txg);
1940 			zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1941 			ASSERT(spa_feature_is_active(spa,
1942 			    SPA_FEATURE_EMBEDDED_DATA));
1943 			return (zio);
1944 		} else {
1945 			/*
1946 			 * Round compressed size up to the minimum allocation
1947 			 * size of the smallest-ashift device, and zero the
1948 			 * tail. This ensures that the compressed size of the
1949 			 * BP (and thus compressratio property) are correct,
1950 			 * in that we charge for the padding used to fill out
1951 			 * the last sector.
1952 			 */
1953 			size_t rounded = (size_t)zio_roundup_alloc_size(spa,
1954 			    psize);
1955 			if (rounded >= lsize) {
1956 				compress = ZIO_COMPRESS_OFF;
1957 				abd_free(cabd);
1958 				psize = lsize;
1959 			} else {
1960 				abd_zero_off(cabd, psize, rounded - psize);
1961 				psize = rounded;
1962 				zio_push_transform(zio, cabd,
1963 				    psize, lsize, NULL);
1964 			}
1965 		}
1966 
1967 		/*
1968 		 * We were unable to handle this as an override bp, treat
1969 		 * it as a regular write I/O.
1970 		 */
1971 		zio->io_bp_override = NULL;
1972 		*bp = zio->io_bp_orig;
1973 		zio->io_pipeline = zio->io_orig_pipeline;
1974 
1975 	} else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 &&
1976 	    zp->zp_type == DMU_OT_DNODE) {
1977 		/*
1978 		 * The DMU actually relies on the zio layer's compression
1979 		 * to free metadnode blocks that have had all contained
1980 		 * dnodes freed. As a result, even when doing a raw
1981 		 * receive, we must check whether the block can be compressed
1982 		 * to a hole.
1983 		 */
1984 		if (abd_cmp_zero(zio->io_abd, lsize) == 0) {
1985 			psize = 0;
1986 			compress = ZIO_COMPRESS_OFF;
1987 		} else {
1988 			psize = lsize;
1989 		}
1990 	} else if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS &&
1991 	    !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) {
1992 		/*
1993 		 * If we are raw receiving an encrypted dataset we should not
1994 		 * take this codepath because it will change the on-disk block
1995 		 * and decryption will fail.
1996 		 */
1997 		size_t rounded = MIN((size_t)zio_roundup_alloc_size(spa, psize),
1998 		    lsize);
1999 
2000 		if (rounded != psize) {
2001 			abd_t *cdata = abd_alloc_linear(rounded, B_TRUE);
2002 			abd_zero_off(cdata, psize, rounded - psize);
2003 			abd_copy_off(cdata, zio->io_abd, 0, 0, psize);
2004 			psize = rounded;
2005 			zio_push_transform(zio, cdata,
2006 			    psize, rounded, NULL);
2007 		}
2008 	} else {
2009 		ASSERT3U(psize, !=, 0);
2010 	}
2011 
2012 	/*
2013 	 * The final pass of spa_sync() must be all rewrites, but the first
2014 	 * few passes offer a trade-off: allocating blocks defers convergence,
2015 	 * but newly allocated blocks are sequential, so they can be written
2016 	 * to disk faster.  Therefore, we allow the first few passes of
2017 	 * spa_sync() to allocate new blocks, but force rewrites after that.
2018 	 * There should only be a handful of blocks after pass 1 in any case.
2019 	 */
2020 	if (!BP_IS_HOLE(bp) && BP_GET_LOGICAL_BIRTH(bp) == zio->io_txg &&
2021 	    BP_GET_PSIZE(bp) == psize &&
2022 	    pass >= zfs_sync_pass_rewrite) {
2023 		VERIFY3U(psize, !=, 0);
2024 		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
2025 
2026 		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
2027 		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
2028 	} else {
2029 		BP_ZERO(bp);
2030 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
2031 	}
2032 
2033 	if (psize == 0) {
2034 		if (BP_GET_LOGICAL_BIRTH(&zio->io_bp_orig) != 0 &&
2035 		    spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
2036 			BP_SET_LSIZE(bp, lsize);
2037 			BP_SET_TYPE(bp, zp->zp_type);
2038 			BP_SET_LEVEL(bp, zp->zp_level);
2039 			BP_SET_BIRTH(bp, zio->io_txg, 0);
2040 		}
2041 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2042 	} else {
2043 		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
2044 		BP_SET_LSIZE(bp, lsize);
2045 		BP_SET_TYPE(bp, zp->zp_type);
2046 		BP_SET_LEVEL(bp, zp->zp_level);
2047 		BP_SET_PSIZE(bp, psize);
2048 		BP_SET_COMPRESS(bp, compress);
2049 		BP_SET_CHECKSUM(bp, zp->zp_checksum);
2050 		BP_SET_DEDUP(bp, zp->zp_dedup);
2051 		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
2052 		if (zp->zp_dedup) {
2053 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2054 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2055 			ASSERT(!zp->zp_encrypt ||
2056 			    DMU_OT_IS_ENCRYPTED(zp->zp_type));
2057 			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
2058 		}
2059 		if (zp->zp_nopwrite) {
2060 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2061 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2062 			zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
2063 		}
2064 	}
2065 	return (zio);
2066 }
2067 
2068 static zio_t *
2069 zio_free_bp_init(zio_t *zio)
2070 {
2071 	blkptr_t *bp = zio->io_bp;
2072 
2073 	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
2074 		if (BP_GET_DEDUP(bp))
2075 			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
2076 	}
2077 
2078 	ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
2079 
2080 	return (zio);
2081 }
2082 
2083 /*
2084  * ==========================================================================
2085  * Execute the I/O pipeline
2086  * ==========================================================================
2087  */
2088 
2089 static void
2090 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
2091 {
2092 	spa_t *spa = zio->io_spa;
2093 	zio_type_t t = zio->io_type;
2094 
2095 	/*
2096 	 * If we're a config writer or a probe, the normal issue and
2097 	 * interrupt threads may all be blocked waiting for the config lock.
2098 	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
2099 	 */
2100 	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
2101 		t = ZIO_TYPE_NULL;
2102 
2103 	/*
2104 	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
2105 	 */
2106 	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
2107 		t = ZIO_TYPE_NULL;
2108 
2109 	/*
2110 	 * If this is a high priority I/O, then use the high priority taskq if
2111 	 * available or cut the line otherwise.
2112 	 */
2113 	if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) {
2114 		if (spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
2115 			q++;
2116 		else
2117 			cutinline = B_TRUE;
2118 	}
2119 
2120 	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
2121 
2122 	spa_taskq_dispatch(spa, t, q, zio_execute, zio, cutinline);
2123 }
2124 
2125 static boolean_t
2126 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
2127 {
2128 	spa_t *spa = zio->io_spa;
2129 
2130 	taskq_t *tq = taskq_of_curthread();
2131 
2132 	for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
2133 		spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
2134 		uint_t i;
2135 		for (i = 0; i < tqs->stqs_count; i++) {
2136 			if (tqs->stqs_taskq[i] == tq)
2137 				return (B_TRUE);
2138 		}
2139 	}
2140 
2141 	return (B_FALSE);
2142 }
2143 
2144 static zio_t *
2145 zio_issue_async(zio_t *zio)
2146 {
2147 	ASSERT((zio->io_type != ZIO_TYPE_WRITE) || ZIO_HAS_ALLOCATOR(zio));
2148 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2149 	return (NULL);
2150 }
2151 
2152 void
2153 zio_interrupt(void *zio)
2154 {
2155 	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
2156 }
2157 
2158 void
2159 zio_delay_interrupt(zio_t *zio)
2160 {
2161 	/*
2162 	 * The timeout_generic() function isn't defined in userspace, so
2163 	 * rather than trying to implement the function, the zio delay
2164 	 * functionality has been disabled for userspace builds.
2165 	 */
2166 
2167 #ifdef _KERNEL
2168 	/*
2169 	 * If io_target_timestamp is zero, then no delay has been registered
2170 	 * for this IO, thus jump to the end of this function and "skip" the
2171 	 * delay; issuing it directly to the zio layer.
2172 	 */
2173 	if (zio->io_target_timestamp != 0) {
2174 		hrtime_t now = gethrtime();
2175 
2176 		if (now >= zio->io_target_timestamp) {
2177 			/*
2178 			 * This IO has already taken longer than the target
2179 			 * delay to complete, so we don't want to delay it
2180 			 * any longer; we "miss" the delay and issue it
2181 			 * directly to the zio layer. This is likely due to
2182 			 * the target latency being set to a value less than
2183 			 * the underlying hardware can satisfy (e.g. delay
2184 			 * set to 1ms, but the disks take 10ms to complete an
2185 			 * IO request).
2186 			 */
2187 
2188 			DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
2189 			    hrtime_t, now);
2190 
2191 			zio_interrupt(zio);
2192 		} else {
2193 			taskqid_t tid;
2194 			hrtime_t diff = zio->io_target_timestamp - now;
2195 			int ticks = MAX(1, NSEC_TO_TICK(diff));
2196 			clock_t expire_at_tick = ddi_get_lbolt() + ticks;
2197 
2198 			DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
2199 			    hrtime_t, now, hrtime_t, diff);
2200 
2201 			tid = taskq_dispatch_delay(system_taskq, zio_interrupt,
2202 			    zio, TQ_NOSLEEP, expire_at_tick);
2203 			if (tid == TASKQID_INVALID) {
2204 				/*
2205 				 * Couldn't allocate a task.  Just finish the
2206 				 * zio without a delay.
2207 				 */
2208 				zio_interrupt(zio);
2209 			}
2210 		}
2211 		return;
2212 	}
2213 #endif
2214 	DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
2215 	zio_interrupt(zio);
2216 }
2217 
2218 static void
2219 zio_deadman_impl(zio_t *pio, int ziodepth)
2220 {
2221 	zio_t *cio, *cio_next;
2222 	zio_link_t *zl = NULL;
2223 	vdev_t *vd = pio->io_vd;
2224 
2225 	if (zio_deadman_log_all || (vd != NULL && vd->vdev_ops->vdev_op_leaf)) {
2226 		vdev_queue_t *vq = vd ? &vd->vdev_queue : NULL;
2227 		zbookmark_phys_t *zb = &pio->io_bookmark;
2228 		uint64_t delta = gethrtime() - pio->io_timestamp;
2229 		uint64_t failmode = spa_get_deadman_failmode(pio->io_spa);
2230 
2231 		zfs_dbgmsg("slow zio[%d]: zio=%px timestamp=%llu "
2232 		    "delta=%llu queued=%llu io=%llu "
2233 		    "path=%s "
2234 		    "last=%llu type=%d "
2235 		    "priority=%d flags=0x%llx stage=0x%x "
2236 		    "pipeline=0x%x pipeline-trace=0x%x "
2237 		    "objset=%llu object=%llu "
2238 		    "level=%llu blkid=%llu "
2239 		    "offset=%llu size=%llu "
2240 		    "error=%d",
2241 		    ziodepth, pio, pio->io_timestamp,
2242 		    (u_longlong_t)delta, pio->io_delta, pio->io_delay,
2243 		    vd ? vd->vdev_path : "NULL",
2244 		    vq ? vq->vq_io_complete_ts : 0, pio->io_type,
2245 		    pio->io_priority, (u_longlong_t)pio->io_flags,
2246 		    pio->io_stage, pio->io_pipeline, pio->io_pipeline_trace,
2247 		    (u_longlong_t)zb->zb_objset, (u_longlong_t)zb->zb_object,
2248 		    (u_longlong_t)zb->zb_level, (u_longlong_t)zb->zb_blkid,
2249 		    (u_longlong_t)pio->io_offset, (u_longlong_t)pio->io_size,
2250 		    pio->io_error);
2251 		(void) zfs_ereport_post(FM_EREPORT_ZFS_DEADMAN,
2252 		    pio->io_spa, vd, zb, pio, 0);
2253 
2254 		if (failmode == ZIO_FAILURE_MODE_CONTINUE &&
2255 		    taskq_empty_ent(&pio->io_tqent)) {
2256 			zio_interrupt(pio);
2257 		}
2258 	}
2259 
2260 	mutex_enter(&pio->io_lock);
2261 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2262 		cio_next = zio_walk_children(pio, &zl);
2263 		zio_deadman_impl(cio, ziodepth + 1);
2264 	}
2265 	mutex_exit(&pio->io_lock);
2266 }
2267 
2268 /*
2269  * Log the critical information describing this zio and all of its children
2270  * using the zfs_dbgmsg() interface then post deadman event for the ZED.
2271  */
2272 void
2273 zio_deadman(zio_t *pio, const char *tag)
2274 {
2275 	spa_t *spa = pio->io_spa;
2276 	char *name = spa_name(spa);
2277 
2278 	if (!zfs_deadman_enabled || spa_suspended(spa))
2279 		return;
2280 
2281 	zio_deadman_impl(pio, 0);
2282 
2283 	switch (spa_get_deadman_failmode(spa)) {
2284 	case ZIO_FAILURE_MODE_WAIT:
2285 		zfs_dbgmsg("%s waiting for hung I/O to pool '%s'", tag, name);
2286 		break;
2287 
2288 	case ZIO_FAILURE_MODE_CONTINUE:
2289 		zfs_dbgmsg("%s restarting hung I/O for pool '%s'", tag, name);
2290 		break;
2291 
2292 	case ZIO_FAILURE_MODE_PANIC:
2293 		fm_panic("%s determined I/O to pool '%s' is hung.", tag, name);
2294 		break;
2295 	}
2296 }
2297 
2298 /*
2299  * Execute the I/O pipeline until one of the following occurs:
2300  * (1) the I/O completes; (2) the pipeline stalls waiting for
2301  * dependent child I/Os; (3) the I/O issues, so we're waiting
2302  * for an I/O completion interrupt; (4) the I/O is delegated by
2303  * vdev-level caching or aggregation; (5) the I/O is deferred
2304  * due to vdev-level queueing; (6) the I/O is handed off to
2305  * another thread.  In all cases, the pipeline stops whenever
2306  * there's no CPU work; it never burns a thread in cv_wait_io().
2307  *
2308  * There's no locking on io_stage because there's no legitimate way
2309  * for multiple threads to be attempting to process the same I/O.
2310  */
2311 static zio_pipe_stage_t *zio_pipeline[];
2312 
2313 /*
2314  * zio_execute() is a wrapper around the static function
2315  * __zio_execute() so that we can force  __zio_execute() to be
2316  * inlined.  This reduces stack overhead which is important
2317  * because __zio_execute() is called recursively in several zio
2318  * code paths.  zio_execute() itself cannot be inlined because
2319  * it is externally visible.
2320  */
2321 void
2322 zio_execute(void *zio)
2323 {
2324 	fstrans_cookie_t cookie;
2325 
2326 	cookie = spl_fstrans_mark();
2327 	__zio_execute(zio);
2328 	spl_fstrans_unmark(cookie);
2329 }
2330 
2331 /*
2332  * Used to determine if in the current context the stack is sized large
2333  * enough to allow zio_execute() to be called recursively.  A minimum
2334  * stack size of 16K is required to avoid needing to re-dispatch the zio.
2335  */
2336 static boolean_t
2337 zio_execute_stack_check(zio_t *zio)
2338 {
2339 #if !defined(HAVE_LARGE_STACKS)
2340 	dsl_pool_t *dp = spa_get_dsl(zio->io_spa);
2341 
2342 	/* Executing in txg_sync_thread() context. */
2343 	if (dp && curthread == dp->dp_tx.tx_sync_thread)
2344 		return (B_TRUE);
2345 
2346 	/* Pool initialization outside of zio_taskq context. */
2347 	if (dp && spa_is_initializing(dp->dp_spa) &&
2348 	    !zio_taskq_member(zio, ZIO_TASKQ_ISSUE) &&
2349 	    !zio_taskq_member(zio, ZIO_TASKQ_ISSUE_HIGH))
2350 		return (B_TRUE);
2351 #else
2352 	(void) zio;
2353 #endif /* HAVE_LARGE_STACKS */
2354 
2355 	return (B_FALSE);
2356 }
2357 
2358 __attribute__((always_inline))
2359 static inline void
2360 __zio_execute(zio_t *zio)
2361 {
2362 	ASSERT3U(zio->io_queued_timestamp, >, 0);
2363 
2364 	while (zio->io_stage < ZIO_STAGE_DONE) {
2365 		enum zio_stage pipeline = zio->io_pipeline;
2366 		enum zio_stage stage = zio->io_stage;
2367 
2368 		zio->io_executor = curthread;
2369 
2370 		ASSERT(!MUTEX_HELD(&zio->io_lock));
2371 		ASSERT(ISP2(stage));
2372 		ASSERT(zio->io_stall == NULL);
2373 
2374 		do {
2375 			stage <<= 1;
2376 		} while ((stage & pipeline) == 0);
2377 
2378 		ASSERT(stage <= ZIO_STAGE_DONE);
2379 
2380 		/*
2381 		 * If we are in interrupt context and this pipeline stage
2382 		 * will grab a config lock that is held across I/O,
2383 		 * or may wait for an I/O that needs an interrupt thread
2384 		 * to complete, issue async to avoid deadlock.
2385 		 *
2386 		 * For VDEV_IO_START, we cut in line so that the io will
2387 		 * be sent to disk promptly.
2388 		 */
2389 		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
2390 		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
2391 			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2392 			    zio_requeue_io_start_cut_in_line : B_FALSE;
2393 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2394 			return;
2395 		}
2396 
2397 		/*
2398 		 * If the current context doesn't have large enough stacks
2399 		 * the zio must be issued asynchronously to prevent overflow.
2400 		 */
2401 		if (zio_execute_stack_check(zio)) {
2402 			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2403 			    zio_requeue_io_start_cut_in_line : B_FALSE;
2404 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2405 			return;
2406 		}
2407 
2408 		zio->io_stage = stage;
2409 		zio->io_pipeline_trace |= zio->io_stage;
2410 
2411 		/*
2412 		 * The zio pipeline stage returns the next zio to execute
2413 		 * (typically the same as this one), or NULL if we should
2414 		 * stop.
2415 		 */
2416 		zio = zio_pipeline[highbit64(stage) - 1](zio);
2417 
2418 		if (zio == NULL)
2419 			return;
2420 	}
2421 }
2422 
2423 
2424 /*
2425  * ==========================================================================
2426  * Initiate I/O, either sync or async
2427  * ==========================================================================
2428  */
2429 int
2430 zio_wait(zio_t *zio)
2431 {
2432 	/*
2433 	 * Some routines, like zio_free_sync(), may return a NULL zio
2434 	 * to avoid the performance overhead of creating and then destroying
2435 	 * an unneeded zio.  For the callers' simplicity, we accept a NULL
2436 	 * zio and ignore it.
2437 	 */
2438 	if (zio == NULL)
2439 		return (0);
2440 
2441 	long timeout = MSEC_TO_TICK(zfs_deadman_ziotime_ms);
2442 	int error;
2443 
2444 	ASSERT3S(zio->io_stage, ==, ZIO_STAGE_OPEN);
2445 	ASSERT3P(zio->io_executor, ==, NULL);
2446 
2447 	zio->io_waiter = curthread;
2448 	ASSERT0(zio->io_queued_timestamp);
2449 	zio->io_queued_timestamp = gethrtime();
2450 
2451 	if (zio->io_type == ZIO_TYPE_WRITE) {
2452 		spa_select_allocator(zio);
2453 	}
2454 	__zio_execute(zio);
2455 
2456 	mutex_enter(&zio->io_lock);
2457 	while (zio->io_executor != NULL) {
2458 		error = cv_timedwait_io(&zio->io_cv, &zio->io_lock,
2459 		    ddi_get_lbolt() + timeout);
2460 
2461 		if (zfs_deadman_enabled && error == -1 &&
2462 		    gethrtime() - zio->io_queued_timestamp >
2463 		    spa_deadman_ziotime(zio->io_spa)) {
2464 			mutex_exit(&zio->io_lock);
2465 			timeout = MSEC_TO_TICK(zfs_deadman_checktime_ms);
2466 			zio_deadman(zio, FTAG);
2467 			mutex_enter(&zio->io_lock);
2468 		}
2469 	}
2470 	mutex_exit(&zio->io_lock);
2471 
2472 	error = zio->io_error;
2473 	zio_destroy(zio);
2474 
2475 	return (error);
2476 }
2477 
2478 void
2479 zio_nowait(zio_t *zio)
2480 {
2481 	/*
2482 	 * See comment in zio_wait().
2483 	 */
2484 	if (zio == NULL)
2485 		return;
2486 
2487 	ASSERT3P(zio->io_executor, ==, NULL);
2488 
2489 	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
2490 	    list_is_empty(&zio->io_parent_list)) {
2491 		zio_t *pio;
2492 
2493 		/*
2494 		 * This is a logical async I/O with no parent to wait for it.
2495 		 * We add it to the spa_async_root_zio "Godfather" I/O which
2496 		 * will ensure they complete prior to unloading the pool.
2497 		 */
2498 		spa_t *spa = zio->io_spa;
2499 		pio = spa->spa_async_zio_root[CPU_SEQID_UNSTABLE];
2500 
2501 		zio_add_child(pio, zio);
2502 	}
2503 
2504 	ASSERT0(zio->io_queued_timestamp);
2505 	zio->io_queued_timestamp = gethrtime();
2506 	if (zio->io_type == ZIO_TYPE_WRITE) {
2507 		spa_select_allocator(zio);
2508 	}
2509 	__zio_execute(zio);
2510 }
2511 
2512 /*
2513  * ==========================================================================
2514  * Reexecute, cancel, or suspend/resume failed I/O
2515  * ==========================================================================
2516  */
2517 
2518 static void
2519 zio_reexecute(void *arg)
2520 {
2521 	zio_t *pio = arg;
2522 	zio_t *cio, *cio_next, *gio;
2523 
2524 	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
2525 	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
2526 	ASSERT(pio->io_gang_leader == NULL);
2527 	ASSERT(pio->io_gang_tree == NULL);
2528 
2529 	mutex_enter(&pio->io_lock);
2530 	pio->io_flags = pio->io_orig_flags;
2531 	pio->io_stage = pio->io_orig_stage;
2532 	pio->io_pipeline = pio->io_orig_pipeline;
2533 	pio->io_reexecute = 0;
2534 	pio->io_flags |= ZIO_FLAG_REEXECUTED;
2535 	pio->io_pipeline_trace = 0;
2536 	pio->io_error = 0;
2537 	pio->io_state[ZIO_WAIT_READY] = (pio->io_stage >= ZIO_STAGE_READY) ||
2538 	    (pio->io_pipeline & ZIO_STAGE_READY) == 0;
2539 	pio->io_state[ZIO_WAIT_DONE] = (pio->io_stage >= ZIO_STAGE_DONE);
2540 	zio_link_t *zl = NULL;
2541 	while ((gio = zio_walk_parents(pio, &zl)) != NULL) {
2542 		for (int w = 0; w < ZIO_WAIT_TYPES; w++) {
2543 			gio->io_children[pio->io_child_type][w] +=
2544 			    !pio->io_state[w];
2545 		}
2546 	}
2547 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2548 		pio->io_child_error[c] = 0;
2549 
2550 	if (IO_IS_ALLOCATING(pio))
2551 		BP_ZERO(pio->io_bp);
2552 
2553 	/*
2554 	 * As we reexecute pio's children, new children could be created.
2555 	 * New children go to the head of pio's io_child_list, however,
2556 	 * so we will (correctly) not reexecute them.  The key is that
2557 	 * the remainder of pio's io_child_list, from 'cio_next' onward,
2558 	 * cannot be affected by any side effects of reexecuting 'cio'.
2559 	 */
2560 	zl = NULL;
2561 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2562 		cio_next = zio_walk_children(pio, &zl);
2563 		mutex_exit(&pio->io_lock);
2564 		zio_reexecute(cio);
2565 		mutex_enter(&pio->io_lock);
2566 	}
2567 	mutex_exit(&pio->io_lock);
2568 
2569 	/*
2570 	 * Now that all children have been reexecuted, execute the parent.
2571 	 * We don't reexecute "The Godfather" I/O here as it's the
2572 	 * responsibility of the caller to wait on it.
2573 	 */
2574 	if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) {
2575 		pio->io_queued_timestamp = gethrtime();
2576 		__zio_execute(pio);
2577 	}
2578 }
2579 
2580 void
2581 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason)
2582 {
2583 	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
2584 		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
2585 		    "failure and the failure mode property for this pool "
2586 		    "is set to panic.", spa_name(spa));
2587 
2588 	if (reason != ZIO_SUSPEND_MMP) {
2589 		cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable "
2590 		    "I/O failure and has been suspended.", spa_name(spa));
2591 	}
2592 
2593 	(void) zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL,
2594 	    NULL, NULL, 0);
2595 
2596 	mutex_enter(&spa->spa_suspend_lock);
2597 
2598 	if (spa->spa_suspend_zio_root == NULL)
2599 		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
2600 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2601 		    ZIO_FLAG_GODFATHER);
2602 
2603 	spa->spa_suspended = reason;
2604 
2605 	if (zio != NULL) {
2606 		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
2607 		ASSERT(zio != spa->spa_suspend_zio_root);
2608 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2609 		ASSERT(zio_unique_parent(zio) == NULL);
2610 		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
2611 		zio_add_child(spa->spa_suspend_zio_root, zio);
2612 	}
2613 
2614 	mutex_exit(&spa->spa_suspend_lock);
2615 }
2616 
2617 int
2618 zio_resume(spa_t *spa)
2619 {
2620 	zio_t *pio;
2621 
2622 	/*
2623 	 * Reexecute all previously suspended i/o.
2624 	 */
2625 	mutex_enter(&spa->spa_suspend_lock);
2626 	if (spa->spa_suspended != ZIO_SUSPEND_NONE)
2627 		cmn_err(CE_WARN, "Pool '%s' was suspended and is being "
2628 		    "resumed. Failed I/O will be retried.",
2629 		    spa_name(spa));
2630 	spa->spa_suspended = ZIO_SUSPEND_NONE;
2631 	cv_broadcast(&spa->spa_suspend_cv);
2632 	pio = spa->spa_suspend_zio_root;
2633 	spa->spa_suspend_zio_root = NULL;
2634 	mutex_exit(&spa->spa_suspend_lock);
2635 
2636 	if (pio == NULL)
2637 		return (0);
2638 
2639 	zio_reexecute(pio);
2640 	return (zio_wait(pio));
2641 }
2642 
2643 void
2644 zio_resume_wait(spa_t *spa)
2645 {
2646 	mutex_enter(&spa->spa_suspend_lock);
2647 	while (spa_suspended(spa))
2648 		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
2649 	mutex_exit(&spa->spa_suspend_lock);
2650 }
2651 
2652 /*
2653  * ==========================================================================
2654  * Gang blocks.
2655  *
2656  * A gang block is a collection of small blocks that looks to the DMU
2657  * like one large block.  When zio_dva_allocate() cannot find a block
2658  * of the requested size, due to either severe fragmentation or the pool
2659  * being nearly full, it calls zio_write_gang_block() to construct the
2660  * block from smaller fragments.
2661  *
2662  * A gang block consists of a gang header (zio_gbh_phys_t) and up to
2663  * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
2664  * an indirect block: it's an array of block pointers.  It consumes
2665  * only one sector and hence is allocatable regardless of fragmentation.
2666  * The gang header's bps point to its gang members, which hold the data.
2667  *
2668  * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
2669  * as the verifier to ensure uniqueness of the SHA256 checksum.
2670  * Critically, the gang block bp's blk_cksum is the checksum of the data,
2671  * not the gang header.  This ensures that data block signatures (needed for
2672  * deduplication) are independent of how the block is physically stored.
2673  *
2674  * Gang blocks can be nested: a gang member may itself be a gang block.
2675  * Thus every gang block is a tree in which root and all interior nodes are
2676  * gang headers, and the leaves are normal blocks that contain user data.
2677  * The root of the gang tree is called the gang leader.
2678  *
2679  * To perform any operation (read, rewrite, free, claim) on a gang block,
2680  * zio_gang_assemble() first assembles the gang tree (minus data leaves)
2681  * in the io_gang_tree field of the original logical i/o by recursively
2682  * reading the gang leader and all gang headers below it.  This yields
2683  * an in-core tree containing the contents of every gang header and the
2684  * bps for every constituent of the gang block.
2685  *
2686  * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
2687  * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
2688  * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
2689  * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
2690  * zio_read_gang() is a wrapper around zio_read() that omits reading gang
2691  * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
2692  * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
2693  * of the gang header plus zio_checksum_compute() of the data to update the
2694  * gang header's blk_cksum as described above.
2695  *
2696  * The two-phase assemble/issue model solves the problem of partial failure --
2697  * what if you'd freed part of a gang block but then couldn't read the
2698  * gang header for another part?  Assembling the entire gang tree first
2699  * ensures that all the necessary gang header I/O has succeeded before
2700  * starting the actual work of free, claim, or write.  Once the gang tree
2701  * is assembled, free and claim are in-memory operations that cannot fail.
2702  *
2703  * In the event that a gang write fails, zio_dva_unallocate() walks the
2704  * gang tree to immediately free (i.e. insert back into the space map)
2705  * everything we've allocated.  This ensures that we don't get ENOSPC
2706  * errors during repeated suspend/resume cycles due to a flaky device.
2707  *
2708  * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
2709  * the gang tree, we won't modify the block, so we can safely defer the free
2710  * (knowing that the block is still intact).  If we *can* assemble the gang
2711  * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
2712  * each constituent bp and we can allocate a new block on the next sync pass.
2713  *
2714  * In all cases, the gang tree allows complete recovery from partial failure.
2715  * ==========================================================================
2716  */
2717 
2718 static void
2719 zio_gang_issue_func_done(zio_t *zio)
2720 {
2721 	abd_free(zio->io_abd);
2722 }
2723 
2724 static zio_t *
2725 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2726     uint64_t offset)
2727 {
2728 	if (gn != NULL)
2729 		return (pio);
2730 
2731 	return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset),
2732 	    BP_GET_PSIZE(bp), zio_gang_issue_func_done,
2733 	    NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2734 	    &pio->io_bookmark));
2735 }
2736 
2737 static zio_t *
2738 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2739     uint64_t offset)
2740 {
2741 	zio_t *zio;
2742 
2743 	if (gn != NULL) {
2744 		abd_t *gbh_abd =
2745 		    abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2746 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2747 		    gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL,
2748 		    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2749 		    &pio->io_bookmark);
2750 		/*
2751 		 * As we rewrite each gang header, the pipeline will compute
2752 		 * a new gang block header checksum for it; but no one will
2753 		 * compute a new data checksum, so we do that here.  The one
2754 		 * exception is the gang leader: the pipeline already computed
2755 		 * its data checksum because that stage precedes gang assembly.
2756 		 * (Presently, nothing actually uses interior data checksums;
2757 		 * this is just good hygiene.)
2758 		 */
2759 		if (gn != pio->io_gang_leader->io_gang_tree) {
2760 			abd_t *buf = abd_get_offset(data, offset);
2761 
2762 			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
2763 			    buf, BP_GET_PSIZE(bp));
2764 
2765 			abd_free(buf);
2766 		}
2767 		/*
2768 		 * If we are here to damage data for testing purposes,
2769 		 * leave the GBH alone so that we can detect the damage.
2770 		 */
2771 		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
2772 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2773 	} else {
2774 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2775 		    abd_get_offset(data, offset), BP_GET_PSIZE(bp),
2776 		    zio_gang_issue_func_done, NULL, pio->io_priority,
2777 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2778 	}
2779 
2780 	return (zio);
2781 }
2782 
2783 static zio_t *
2784 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2785     uint64_t offset)
2786 {
2787 	(void) gn, (void) data, (void) offset;
2788 
2789 	zio_t *zio = zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
2790 	    ZIO_GANG_CHILD_FLAGS(pio));
2791 	if (zio == NULL) {
2792 		zio = zio_null(pio, pio->io_spa,
2793 		    NULL, NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio));
2794 	}
2795 	return (zio);
2796 }
2797 
2798 static zio_t *
2799 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2800     uint64_t offset)
2801 {
2802 	(void) gn, (void) data, (void) offset;
2803 	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
2804 	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
2805 }
2806 
2807 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
2808 	NULL,
2809 	zio_read_gang,
2810 	zio_rewrite_gang,
2811 	zio_free_gang,
2812 	zio_claim_gang,
2813 	NULL
2814 };
2815 
2816 static void zio_gang_tree_assemble_done(zio_t *zio);
2817 
2818 static zio_gang_node_t *
2819 zio_gang_node_alloc(zio_gang_node_t **gnpp)
2820 {
2821 	zio_gang_node_t *gn;
2822 
2823 	ASSERT(*gnpp == NULL);
2824 
2825 	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
2826 	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
2827 	*gnpp = gn;
2828 
2829 	return (gn);
2830 }
2831 
2832 static void
2833 zio_gang_node_free(zio_gang_node_t **gnpp)
2834 {
2835 	zio_gang_node_t *gn = *gnpp;
2836 
2837 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2838 		ASSERT(gn->gn_child[g] == NULL);
2839 
2840 	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2841 	kmem_free(gn, sizeof (*gn));
2842 	*gnpp = NULL;
2843 }
2844 
2845 static void
2846 zio_gang_tree_free(zio_gang_node_t **gnpp)
2847 {
2848 	zio_gang_node_t *gn = *gnpp;
2849 
2850 	if (gn == NULL)
2851 		return;
2852 
2853 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2854 		zio_gang_tree_free(&gn->gn_child[g]);
2855 
2856 	zio_gang_node_free(gnpp);
2857 }
2858 
2859 static void
2860 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
2861 {
2862 	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
2863 	abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2864 
2865 	ASSERT(gio->io_gang_leader == gio);
2866 	ASSERT(BP_IS_GANG(bp));
2867 
2868 	zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2869 	    zio_gang_tree_assemble_done, gn, gio->io_priority,
2870 	    ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
2871 }
2872 
2873 static void
2874 zio_gang_tree_assemble_done(zio_t *zio)
2875 {
2876 	zio_t *gio = zio->io_gang_leader;
2877 	zio_gang_node_t *gn = zio->io_private;
2878 	blkptr_t *bp = zio->io_bp;
2879 
2880 	ASSERT(gio == zio_unique_parent(zio));
2881 	ASSERT(list_is_empty(&zio->io_child_list));
2882 
2883 	if (zio->io_error)
2884 		return;
2885 
2886 	/* this ABD was created from a linear buf in zio_gang_tree_assemble */
2887 	if (BP_SHOULD_BYTESWAP(bp))
2888 		byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size);
2889 
2890 	ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh);
2891 	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
2892 	ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2893 
2894 	abd_free(zio->io_abd);
2895 
2896 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2897 		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2898 		if (!BP_IS_GANG(gbp))
2899 			continue;
2900 		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
2901 	}
2902 }
2903 
2904 static void
2905 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data,
2906     uint64_t offset)
2907 {
2908 	zio_t *gio = pio->io_gang_leader;
2909 	zio_t *zio;
2910 
2911 	ASSERT(BP_IS_GANG(bp) == !!gn);
2912 	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
2913 	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
2914 
2915 	/*
2916 	 * If you're a gang header, your data is in gn->gn_gbh.
2917 	 * If you're a gang member, your data is in 'data' and gn == NULL.
2918 	 */
2919 	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset);
2920 
2921 	if (gn != NULL) {
2922 		ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2923 
2924 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2925 			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2926 			if (BP_IS_HOLE(gbp))
2927 				continue;
2928 			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data,
2929 			    offset);
2930 			offset += BP_GET_PSIZE(gbp);
2931 		}
2932 	}
2933 
2934 	if (gn == gio->io_gang_tree)
2935 		ASSERT3U(gio->io_size, ==, offset);
2936 
2937 	if (zio != pio)
2938 		zio_nowait(zio);
2939 }
2940 
2941 static zio_t *
2942 zio_gang_assemble(zio_t *zio)
2943 {
2944 	blkptr_t *bp = zio->io_bp;
2945 
2946 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
2947 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2948 
2949 	zio->io_gang_leader = zio;
2950 
2951 	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
2952 
2953 	return (zio);
2954 }
2955 
2956 static zio_t *
2957 zio_gang_issue(zio_t *zio)
2958 {
2959 	blkptr_t *bp = zio->io_bp;
2960 
2961 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) {
2962 		return (NULL);
2963 	}
2964 
2965 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
2966 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2967 
2968 	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
2969 		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd,
2970 		    0);
2971 	else
2972 		zio_gang_tree_free(&zio->io_gang_tree);
2973 
2974 	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2975 
2976 	return (zio);
2977 }
2978 
2979 static void
2980 zio_gang_inherit_allocator(zio_t *pio, zio_t *cio)
2981 {
2982 	cio->io_allocator = pio->io_allocator;
2983 }
2984 
2985 static void
2986 zio_write_gang_member_ready(zio_t *zio)
2987 {
2988 	zio_t *pio = zio_unique_parent(zio);
2989 	dva_t *cdva = zio->io_bp->blk_dva;
2990 	dva_t *pdva = pio->io_bp->blk_dva;
2991 	uint64_t asize;
2992 	zio_t *gio __maybe_unused = zio->io_gang_leader;
2993 
2994 	if (BP_IS_HOLE(zio->io_bp))
2995 		return;
2996 
2997 	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
2998 
2999 	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
3000 	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
3001 	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
3002 	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
3003 	VERIFY3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
3004 
3005 	mutex_enter(&pio->io_lock);
3006 	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
3007 		ASSERT(DVA_GET_GANG(&pdva[d]));
3008 		asize = DVA_GET_ASIZE(&pdva[d]);
3009 		asize += DVA_GET_ASIZE(&cdva[d]);
3010 		DVA_SET_ASIZE(&pdva[d], asize);
3011 	}
3012 	mutex_exit(&pio->io_lock);
3013 }
3014 
3015 static void
3016 zio_write_gang_done(zio_t *zio)
3017 {
3018 	/*
3019 	 * The io_abd field will be NULL for a zio with no data.  The io_flags
3020 	 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't
3021 	 * check for it here as it is cleared in zio_ready.
3022 	 */
3023 	if (zio->io_abd != NULL)
3024 		abd_free(zio->io_abd);
3025 }
3026 
3027 static zio_t *
3028 zio_write_gang_block(zio_t *pio, metaslab_class_t *mc)
3029 {
3030 	spa_t *spa = pio->io_spa;
3031 	blkptr_t *bp = pio->io_bp;
3032 	zio_t *gio = pio->io_gang_leader;
3033 	zio_t *zio;
3034 	zio_gang_node_t *gn, **gnpp;
3035 	zio_gbh_phys_t *gbh;
3036 	abd_t *gbh_abd;
3037 	uint64_t txg = pio->io_txg;
3038 	uint64_t resid = pio->io_size;
3039 	uint64_t lsize;
3040 	int copies = gio->io_prop.zp_copies;
3041 	zio_prop_t zp;
3042 	int error;
3043 	boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA);
3044 
3045 	/*
3046 	 * If one copy was requested, store 2 copies of the GBH, so that we
3047 	 * can still traverse all the data (e.g. to free or scrub) even if a
3048 	 * block is damaged.  Note that we can't store 3 copies of the GBH in
3049 	 * all cases, e.g. with encryption, which uses DVA[2] for the IV+salt.
3050 	 */
3051 	int gbh_copies = copies;
3052 	if (gbh_copies == 1) {
3053 		gbh_copies = MIN(2, spa_max_replication(spa));
3054 	}
3055 
3056 	ASSERT(ZIO_HAS_ALLOCATOR(pio));
3057 	int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER;
3058 	if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
3059 		ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
3060 		ASSERT(has_data);
3061 
3062 		flags |= METASLAB_ASYNC_ALLOC;
3063 		VERIFY(zfs_refcount_held(&mc->mc_allocator[pio->io_allocator].
3064 		    mca_alloc_slots, pio));
3065 
3066 		/*
3067 		 * The logical zio has already placed a reservation for
3068 		 * 'copies' allocation slots but gang blocks may require
3069 		 * additional copies. These additional copies
3070 		 * (i.e. gbh_copies - copies) are guaranteed to succeed
3071 		 * since metaslab_class_throttle_reserve() always allows
3072 		 * additional reservations for gang blocks.
3073 		 */
3074 		VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies,
3075 		    pio->io_allocator, pio, flags));
3076 	}
3077 
3078 	error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE,
3079 	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags,
3080 	    &pio->io_alloc_list, pio, pio->io_allocator);
3081 	if (error) {
3082 		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
3083 			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
3084 			ASSERT(has_data);
3085 
3086 			/*
3087 			 * If we failed to allocate the gang block header then
3088 			 * we remove any additional allocation reservations that
3089 			 * we placed here. The original reservation will
3090 			 * be removed when the logical I/O goes to the ready
3091 			 * stage.
3092 			 */
3093 			metaslab_class_throttle_unreserve(mc,
3094 			    gbh_copies - copies, pio->io_allocator, pio);
3095 		}
3096 
3097 		pio->io_error = error;
3098 		return (pio);
3099 	}
3100 
3101 	if (pio == gio) {
3102 		gnpp = &gio->io_gang_tree;
3103 	} else {
3104 		gnpp = pio->io_private;
3105 		ASSERT(pio->io_ready == zio_write_gang_member_ready);
3106 	}
3107 
3108 	gn = zio_gang_node_alloc(gnpp);
3109 	gbh = gn->gn_gbh;
3110 	memset(gbh, 0, SPA_GANGBLOCKSIZE);
3111 	gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE);
3112 
3113 	/*
3114 	 * Create the gang header.
3115 	 */
3116 	zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE,
3117 	    zio_write_gang_done, NULL, pio->io_priority,
3118 	    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
3119 
3120 	zio_gang_inherit_allocator(pio, zio);
3121 
3122 	/*
3123 	 * Create and nowait the gang children.
3124 	 */
3125 	for (int g = 0; resid != 0; resid -= lsize, g++) {
3126 		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
3127 		    SPA_MINBLOCKSIZE);
3128 		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
3129 
3130 		zp.zp_checksum = gio->io_prop.zp_checksum;
3131 		zp.zp_compress = ZIO_COMPRESS_OFF;
3132 		zp.zp_complevel = gio->io_prop.zp_complevel;
3133 		zp.zp_type = zp.zp_storage_type = DMU_OT_NONE;
3134 		zp.zp_level = 0;
3135 		zp.zp_copies = gio->io_prop.zp_copies;
3136 		zp.zp_dedup = B_FALSE;
3137 		zp.zp_dedup_verify = B_FALSE;
3138 		zp.zp_nopwrite = B_FALSE;
3139 		zp.zp_encrypt = gio->io_prop.zp_encrypt;
3140 		zp.zp_byteorder = gio->io_prop.zp_byteorder;
3141 		zp.zp_direct_write = B_FALSE;
3142 		memset(zp.zp_salt, 0, ZIO_DATA_SALT_LEN);
3143 		memset(zp.zp_iv, 0, ZIO_DATA_IV_LEN);
3144 		memset(zp.zp_mac, 0, ZIO_DATA_MAC_LEN);
3145 
3146 		zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
3147 		    has_data ? abd_get_offset(pio->io_abd, pio->io_size -
3148 		    resid) : NULL, lsize, lsize, &zp,
3149 		    zio_write_gang_member_ready, NULL,
3150 		    zio_write_gang_done, &gn->gn_child[g], pio->io_priority,
3151 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
3152 
3153 		zio_gang_inherit_allocator(zio, cio);
3154 
3155 		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
3156 			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
3157 			ASSERT(has_data);
3158 
3159 			/*
3160 			 * Gang children won't throttle but we should
3161 			 * account for their work, so reserve an allocation
3162 			 * slot for them here.
3163 			 */
3164 			VERIFY(metaslab_class_throttle_reserve(mc,
3165 			    zp.zp_copies, cio->io_allocator, cio, flags));
3166 		}
3167 		zio_nowait(cio);
3168 	}
3169 
3170 	/*
3171 	 * Set pio's pipeline to just wait for zio to finish.
3172 	 */
3173 	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3174 
3175 	zio_nowait(zio);
3176 
3177 	return (pio);
3178 }
3179 
3180 /*
3181  * The zio_nop_write stage in the pipeline determines if allocating a
3182  * new bp is necessary.  The nopwrite feature can handle writes in
3183  * either syncing or open context (i.e. zil writes) and as a result is
3184  * mutually exclusive with dedup.
3185  *
3186  * By leveraging a cryptographically secure checksum, such as SHA256, we
3187  * can compare the checksums of the new data and the old to determine if
3188  * allocating a new block is required.  Note that our requirements for
3189  * cryptographic strength are fairly weak: there can't be any accidental
3190  * hash collisions, but we don't need to be secure against intentional
3191  * (malicious) collisions.  To trigger a nopwrite, you have to be able
3192  * to write the file to begin with, and triggering an incorrect (hash
3193  * collision) nopwrite is no worse than simply writing to the file.
3194  * That said, there are no known attacks against the checksum algorithms
3195  * used for nopwrite, assuming that the salt and the checksums
3196  * themselves remain secret.
3197  */
3198 static zio_t *
3199 zio_nop_write(zio_t *zio)
3200 {
3201 	blkptr_t *bp = zio->io_bp;
3202 	blkptr_t *bp_orig = &zio->io_bp_orig;
3203 	zio_prop_t *zp = &zio->io_prop;
3204 
3205 	ASSERT(BP_IS_HOLE(bp));
3206 	ASSERT(BP_GET_LEVEL(bp) == 0);
3207 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
3208 	ASSERT(zp->zp_nopwrite);
3209 	ASSERT(!zp->zp_dedup);
3210 	ASSERT(zio->io_bp_override == NULL);
3211 	ASSERT(IO_IS_ALLOCATING(zio));
3212 
3213 	/*
3214 	 * Check to see if the original bp and the new bp have matching
3215 	 * characteristics (i.e. same checksum, compression algorithms, etc).
3216 	 * If they don't then just continue with the pipeline which will
3217 	 * allocate a new bp.
3218 	 */
3219 	if (BP_IS_HOLE(bp_orig) ||
3220 	    !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
3221 	    ZCHECKSUM_FLAG_NOPWRITE) ||
3222 	    BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) ||
3223 	    BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
3224 	    BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
3225 	    BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
3226 	    zp->zp_copies != BP_GET_NDVAS(bp_orig))
3227 		return (zio);
3228 
3229 	/*
3230 	 * If the checksums match then reset the pipeline so that we
3231 	 * avoid allocating a new bp and issuing any I/O.
3232 	 */
3233 	if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
3234 		ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
3235 		    ZCHECKSUM_FLAG_NOPWRITE);
3236 		ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
3237 		ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
3238 		ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
3239 		ASSERT3U(bp->blk_prop, ==, bp_orig->blk_prop);
3240 
3241 		/*
3242 		 * If we're overwriting a block that is currently on an
3243 		 * indirect vdev, then ignore the nopwrite request and
3244 		 * allow a new block to be allocated on a concrete vdev.
3245 		 */
3246 		spa_config_enter(zio->io_spa, SCL_VDEV, FTAG, RW_READER);
3247 		for (int d = 0; d < BP_GET_NDVAS(bp_orig); d++) {
3248 			vdev_t *tvd = vdev_lookup_top(zio->io_spa,
3249 			    DVA_GET_VDEV(&bp_orig->blk_dva[d]));
3250 			if (tvd->vdev_ops == &vdev_indirect_ops) {
3251 				spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
3252 				return (zio);
3253 			}
3254 		}
3255 		spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
3256 
3257 		*bp = *bp_orig;
3258 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3259 		zio->io_flags |= ZIO_FLAG_NOPWRITE;
3260 	}
3261 
3262 	return (zio);
3263 }
3264 
3265 /*
3266  * ==========================================================================
3267  * Block Reference Table
3268  * ==========================================================================
3269  */
3270 static zio_t *
3271 zio_brt_free(zio_t *zio)
3272 {
3273 	blkptr_t *bp;
3274 
3275 	bp = zio->io_bp;
3276 
3277 	if (BP_GET_LEVEL(bp) > 0 ||
3278 	    BP_IS_METADATA(bp) ||
3279 	    !brt_maybe_exists(zio->io_spa, bp)) {
3280 		return (zio);
3281 	}
3282 
3283 	if (!brt_entry_decref(zio->io_spa, bp)) {
3284 		/*
3285 		 * This isn't the last reference, so we cannot free
3286 		 * the data yet.
3287 		 */
3288 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3289 	}
3290 
3291 	return (zio);
3292 }
3293 
3294 /*
3295  * ==========================================================================
3296  * Dedup
3297  * ==========================================================================
3298  */
3299 static void
3300 zio_ddt_child_read_done(zio_t *zio)
3301 {
3302 	blkptr_t *bp = zio->io_bp;
3303 	ddt_t *ddt;
3304 	ddt_entry_t *dde = zio->io_private;
3305 	zio_t *pio = zio_unique_parent(zio);
3306 
3307 	mutex_enter(&pio->io_lock);
3308 	ddt = ddt_select(zio->io_spa, bp);
3309 
3310 	if (zio->io_error == 0) {
3311 		ddt_phys_variant_t v = ddt_phys_select(ddt, dde, bp);
3312 		/* this phys variant doesn't need repair */
3313 		ddt_phys_clear(dde->dde_phys, v);
3314 	}
3315 
3316 	if (zio->io_error == 0 && dde->dde_io->dde_repair_abd == NULL)
3317 		dde->dde_io->dde_repair_abd = zio->io_abd;
3318 	else
3319 		abd_free(zio->io_abd);
3320 	mutex_exit(&pio->io_lock);
3321 }
3322 
3323 static zio_t *
3324 zio_ddt_read_start(zio_t *zio)
3325 {
3326 	blkptr_t *bp = zio->io_bp;
3327 
3328 	ASSERT(BP_GET_DEDUP(bp));
3329 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3330 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3331 
3332 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
3333 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
3334 		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
3335 		ddt_phys_variant_t v_self = ddt_phys_select(ddt, dde, bp);
3336 		ddt_univ_phys_t *ddp = dde->dde_phys;
3337 		blkptr_t blk;
3338 
3339 		ASSERT(zio->io_vsd == NULL);
3340 		zio->io_vsd = dde;
3341 
3342 		if (v_self == DDT_PHYS_NONE)
3343 			return (zio);
3344 
3345 		/* issue I/O for the other copies */
3346 		for (int p = 0; p < DDT_NPHYS(ddt); p++) {
3347 			ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p);
3348 
3349 			if (ddt_phys_birth(ddp, v) == 0 || v == v_self)
3350 				continue;
3351 
3352 			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key,
3353 			    ddp, v, &blk);
3354 			zio_nowait(zio_read(zio, zio->io_spa, &blk,
3355 			    abd_alloc_for_io(zio->io_size, B_TRUE),
3356 			    zio->io_size, zio_ddt_child_read_done, dde,
3357 			    zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) |
3358 			    ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark));
3359 		}
3360 		return (zio);
3361 	}
3362 
3363 	zio_nowait(zio_read(zio, zio->io_spa, bp,
3364 	    zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority,
3365 	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
3366 
3367 	return (zio);
3368 }
3369 
3370 static zio_t *
3371 zio_ddt_read_done(zio_t *zio)
3372 {
3373 	blkptr_t *bp = zio->io_bp;
3374 
3375 	if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) {
3376 		return (NULL);
3377 	}
3378 
3379 	ASSERT(BP_GET_DEDUP(bp));
3380 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3381 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3382 
3383 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
3384 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
3385 		ddt_entry_t *dde = zio->io_vsd;
3386 		if (ddt == NULL) {
3387 			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
3388 			return (zio);
3389 		}
3390 		if (dde == NULL) {
3391 			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
3392 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
3393 			return (NULL);
3394 		}
3395 		if (dde->dde_io->dde_repair_abd != NULL) {
3396 			abd_copy(zio->io_abd, dde->dde_io->dde_repair_abd,
3397 			    zio->io_size);
3398 			zio->io_child_error[ZIO_CHILD_DDT] = 0;
3399 		}
3400 		ddt_repair_done(ddt, dde);
3401 		zio->io_vsd = NULL;
3402 	}
3403 
3404 	ASSERT(zio->io_vsd == NULL);
3405 
3406 	return (zio);
3407 }
3408 
3409 static boolean_t
3410 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
3411 {
3412 	spa_t *spa = zio->io_spa;
3413 	boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW);
3414 
3415 	ASSERT(!(zio->io_bp_override && do_raw));
3416 
3417 	/*
3418 	 * Note: we compare the original data, not the transformed data,
3419 	 * because when zio->io_bp is an override bp, we will not have
3420 	 * pushed the I/O transforms.  That's an important optimization
3421 	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
3422 	 * However, we should never get a raw, override zio so in these
3423 	 * cases we can compare the io_abd directly. This is useful because
3424 	 * it allows us to do dedup verification even if we don't have access
3425 	 * to the original data (for instance, if the encryption keys aren't
3426 	 * loaded).
3427 	 */
3428 
3429 	for (int p = 0; p < DDT_NPHYS(ddt); p++) {
3430 		if (DDT_PHYS_IS_DITTO(ddt, p))
3431 			continue;
3432 
3433 		if (dde->dde_io == NULL)
3434 			continue;
3435 
3436 		zio_t *lio = dde->dde_io->dde_lead_zio[p];
3437 		if (lio == NULL)
3438 			continue;
3439 
3440 		if (do_raw)
3441 			return (lio->io_size != zio->io_size ||
3442 			    abd_cmp(zio->io_abd, lio->io_abd) != 0);
3443 
3444 		return (lio->io_orig_size != zio->io_orig_size ||
3445 		    abd_cmp(zio->io_orig_abd, lio->io_orig_abd) != 0);
3446 	}
3447 
3448 	for (int p = 0; p < DDT_NPHYS(ddt); p++) {
3449 		ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p);
3450 		uint64_t phys_birth = ddt_phys_birth(dde->dde_phys, v);
3451 
3452 		if (phys_birth != 0 && do_raw) {
3453 			blkptr_t blk = *zio->io_bp;
3454 			uint64_t psize;
3455 			abd_t *tmpabd;
3456 			int error;
3457 
3458 			ddt_bp_fill(dde->dde_phys, v, &blk, phys_birth);
3459 			psize = BP_GET_PSIZE(&blk);
3460 
3461 			if (psize != zio->io_size)
3462 				return (B_TRUE);
3463 
3464 			ddt_exit(ddt);
3465 
3466 			tmpabd = abd_alloc_for_io(psize, B_TRUE);
3467 
3468 			error = zio_wait(zio_read(NULL, spa, &blk, tmpabd,
3469 			    psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
3470 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3471 			    ZIO_FLAG_RAW, &zio->io_bookmark));
3472 
3473 			if (error == 0) {
3474 				if (abd_cmp(tmpabd, zio->io_abd) != 0)
3475 					error = SET_ERROR(ENOENT);
3476 			}
3477 
3478 			abd_free(tmpabd);
3479 			ddt_enter(ddt);
3480 			return (error != 0);
3481 		} else if (phys_birth != 0) {
3482 			arc_buf_t *abuf = NULL;
3483 			arc_flags_t aflags = ARC_FLAG_WAIT;
3484 			blkptr_t blk = *zio->io_bp;
3485 			int error;
3486 
3487 			ddt_bp_fill(dde->dde_phys, v, &blk, phys_birth);
3488 
3489 			if (BP_GET_LSIZE(&blk) != zio->io_orig_size)
3490 				return (B_TRUE);
3491 
3492 			ddt_exit(ddt);
3493 
3494 			error = arc_read(NULL, spa, &blk,
3495 			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
3496 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3497 			    &aflags, &zio->io_bookmark);
3498 
3499 			if (error == 0) {
3500 				if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data,
3501 				    zio->io_orig_size) != 0)
3502 					error = SET_ERROR(ENOENT);
3503 				arc_buf_destroy(abuf, &abuf);
3504 			}
3505 
3506 			ddt_enter(ddt);
3507 			return (error != 0);
3508 		}
3509 	}
3510 
3511 	return (B_FALSE);
3512 }
3513 
3514 static void
3515 zio_ddt_child_write_done(zio_t *zio)
3516 {
3517 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3518 	ddt_entry_t *dde = zio->io_private;
3519 
3520 	zio_link_t *zl = NULL;
3521 	ASSERT3P(zio_walk_parents(zio, &zl), !=, NULL);
3522 
3523 	int p = DDT_PHYS_FOR_COPIES(ddt, zio->io_prop.zp_copies);
3524 	ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p);
3525 	ddt_univ_phys_t *ddp = dde->dde_phys;
3526 
3527 	ddt_enter(ddt);
3528 
3529 	/* we're the lead, so once we're done there's no one else outstanding */
3530 	if (dde->dde_io->dde_lead_zio[p] == zio)
3531 		dde->dde_io->dde_lead_zio[p] = NULL;
3532 
3533 	ddt_univ_phys_t *orig = &dde->dde_io->dde_orig_phys;
3534 
3535 	if (zio->io_error != 0) {
3536 		/*
3537 		 * The write failed, so we're about to abort the entire IO
3538 		 * chain. We need to revert the entry back to what it was at
3539 		 * the last time it was successfully extended.
3540 		 */
3541 		ddt_phys_copy(ddp, orig, v);
3542 		ddt_phys_clear(orig, v);
3543 
3544 		ddt_exit(ddt);
3545 		return;
3546 	}
3547 
3548 	/*
3549 	 * We've successfully added new DVAs to the entry. Clear the saved
3550 	 * state or, if there's still outstanding IO, remember it so we can
3551 	 * revert to a known good state if that IO fails.
3552 	 */
3553 	if (dde->dde_io->dde_lead_zio[p] == NULL)
3554 		ddt_phys_clear(orig, v);
3555 	else
3556 		ddt_phys_copy(orig, ddp, v);
3557 
3558 	/*
3559 	 * Add references for all dedup writes that were waiting on the
3560 	 * physical one, skipping any other physical writes that are waiting.
3561 	 */
3562 	zio_t *pio;
3563 	zl = NULL;
3564 	while ((pio = zio_walk_parents(zio, &zl)) != NULL) {
3565 		if (!(pio->io_flags & ZIO_FLAG_DDT_CHILD))
3566 			ddt_phys_addref(ddp, v);
3567 	}
3568 
3569 	ddt_exit(ddt);
3570 }
3571 
3572 static void
3573 zio_ddt_child_write_ready(zio_t *zio)
3574 {
3575 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3576 	ddt_entry_t *dde = zio->io_private;
3577 
3578 	zio_link_t *zl = NULL;
3579 	ASSERT3P(zio_walk_parents(zio, &zl), !=, NULL);
3580 
3581 	int p = DDT_PHYS_FOR_COPIES(ddt, zio->io_prop.zp_copies);
3582 	ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p);
3583 
3584 	if (zio->io_error != 0)
3585 		return;
3586 
3587 	ddt_enter(ddt);
3588 
3589 	ddt_phys_extend(dde->dde_phys, v, zio->io_bp);
3590 
3591 	zio_t *pio;
3592 	zl = NULL;
3593 	while ((pio = zio_walk_parents(zio, &zl)) != NULL) {
3594 		if (!(pio->io_flags & ZIO_FLAG_DDT_CHILD))
3595 			ddt_bp_fill(dde->dde_phys, v, pio->io_bp, zio->io_txg);
3596 	}
3597 
3598 	ddt_exit(ddt);
3599 }
3600 
3601 static zio_t *
3602 zio_ddt_write(zio_t *zio)
3603 {
3604 	spa_t *spa = zio->io_spa;
3605 	blkptr_t *bp = zio->io_bp;
3606 	uint64_t txg = zio->io_txg;
3607 	zio_prop_t *zp = &zio->io_prop;
3608 	ddt_t *ddt = ddt_select(spa, bp);
3609 	ddt_entry_t *dde;
3610 
3611 	ASSERT(BP_GET_DEDUP(bp));
3612 	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
3613 	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
3614 	ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW)));
3615 	/*
3616 	 * Deduplication will not take place for Direct I/O writes. The
3617 	 * ddt_tree will be emptied in syncing context. Direct I/O writes take
3618 	 * place in the open-context. Direct I/O write can not attempt to
3619 	 * modify the ddt_tree while issuing out a write.
3620 	 */
3621 	ASSERT3B(zio->io_prop.zp_direct_write, ==, B_FALSE);
3622 
3623 	ddt_enter(ddt);
3624 	dde = ddt_lookup(ddt, bp);
3625 	if (dde == NULL) {
3626 		/* DDT size is over its quota so no new entries */
3627 		zp->zp_dedup = B_FALSE;
3628 		BP_SET_DEDUP(bp, B_FALSE);
3629 		if (zio->io_bp_override == NULL)
3630 			zio->io_pipeline = ZIO_WRITE_PIPELINE;
3631 		ddt_exit(ddt);
3632 		return (zio);
3633 	}
3634 
3635 	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
3636 		/*
3637 		 * If we're using a weak checksum, upgrade to a strong checksum
3638 		 * and try again.  If we're already using a strong checksum,
3639 		 * we can't resolve it, so just convert to an ordinary write.
3640 		 * (And automatically e-mail a paper to Nature?)
3641 		 */
3642 		if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
3643 		    ZCHECKSUM_FLAG_DEDUP)) {
3644 			zp->zp_checksum = spa_dedup_checksum(spa);
3645 			zio_pop_transforms(zio);
3646 			zio->io_stage = ZIO_STAGE_OPEN;
3647 			BP_ZERO(bp);
3648 		} else {
3649 			zp->zp_dedup = B_FALSE;
3650 			BP_SET_DEDUP(bp, B_FALSE);
3651 		}
3652 		ASSERT(!BP_GET_DEDUP(bp));
3653 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
3654 		ddt_exit(ddt);
3655 		return (zio);
3656 	}
3657 
3658 	int p = DDT_PHYS_FOR_COPIES(ddt, zp->zp_copies);
3659 	ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p);
3660 	ddt_univ_phys_t *ddp = dde->dde_phys;
3661 
3662 	/*
3663 	 * In the common cases, at this point we have a regular BP with no
3664 	 * allocated DVAs, and the corresponding DDT entry for its checksum.
3665 	 * Our goal is to fill the BP with enough DVAs to satisfy its copies=
3666 	 * requirement.
3667 	 *
3668 	 * One of three things needs to happen to fulfill this:
3669 	 *
3670 	 * - if the DDT entry has enough DVAs to satisfy the BP, we just copy
3671 	 *   them out of the entry and return;
3672 	 *
3673 	 * - if the DDT entry has no DVAs (ie its brand new), then we have to
3674 	 *   issue the write as normal so that DVAs can be allocated and the
3675 	 *   data land on disk. We then copy the DVAs into the DDT entry on
3676 	 *   return.
3677 	 *
3678 	 * - if the DDT entry has some DVAs, but too few, we have to issue the
3679 	 *   write, adjusted to have allocate fewer copies. When it returns, we
3680 	 *   add the new DVAs to the DDT entry, and update the BP to have the
3681 	 *   full amount it originally requested.
3682 	 *
3683 	 * In all cases, if there's already a writing IO in flight, we need to
3684 	 * defer the action until after the write is done. If our action is to
3685 	 * write, we need to adjust our request for additional DVAs to match
3686 	 * what will be in the DDT entry after it completes. In this way every
3687 	 * IO can be guaranteed to recieve enough DVAs simply by joining the
3688 	 * end of the chain and letting the sequence play out.
3689 	 */
3690 
3691 	/*
3692 	 * Number of DVAs in the DDT entry. If the BP is encrypted we ignore
3693 	 * the third one as normal.
3694 	 */
3695 	int have_dvas = ddt_phys_dva_count(ddp, v, BP_IS_ENCRYPTED(bp));
3696 	IMPLY(have_dvas == 0, ddt_phys_birth(ddp, v) == 0);
3697 
3698 	/* Number of DVAs requested bya the IO. */
3699 	uint8_t need_dvas = zp->zp_copies;
3700 
3701 	/*
3702 	 * What we do next depends on whether or not there's IO outstanding that
3703 	 * will update this entry.
3704 	 */
3705 	if (dde->dde_io == NULL || dde->dde_io->dde_lead_zio[p] == NULL) {
3706 		/*
3707 		 * No IO outstanding, so we only need to worry about ourselves.
3708 		 */
3709 
3710 		/*
3711 		 * Override BPs bring their own DVAs and their own problems.
3712 		 */
3713 		if (zio->io_bp_override) {
3714 			/*
3715 			 * For a brand-new entry, all the work has been done
3716 			 * for us, and we can just fill it out from the provided
3717 			 * block and leave.
3718 			 */
3719 			if (have_dvas == 0) {
3720 				ASSERT(BP_GET_LOGICAL_BIRTH(bp) == txg);
3721 				ASSERT(BP_EQUAL(bp, zio->io_bp_override));
3722 				ddt_phys_extend(ddp, v, bp);
3723 				ddt_phys_addref(ddp, v);
3724 				ddt_exit(ddt);
3725 				return (zio);
3726 			}
3727 
3728 			/*
3729 			 * If we already have this entry, then we want to treat
3730 			 * it like a regular write. To do this we just wipe
3731 			 * them out and proceed like a regular write.
3732 			 *
3733 			 * Even if there are some DVAs in the entry, we still
3734 			 * have to clear them out. We can't use them to fill
3735 			 * out the dedup entry, as they are all referenced
3736 			 * together by a bp already on disk, and will be freed
3737 			 * as a group.
3738 			 */
3739 			BP_ZERO_DVAS(bp);
3740 			BP_SET_BIRTH(bp, 0, 0);
3741 		}
3742 
3743 		/*
3744 		 * If there are enough DVAs in the entry to service our request,
3745 		 * then we can just use them as-is.
3746 		 */
3747 		if (have_dvas >= need_dvas) {
3748 			ddt_bp_fill(ddp, v, bp, txg);
3749 			ddt_phys_addref(ddp, v);
3750 			ddt_exit(ddt);
3751 			return (zio);
3752 		}
3753 
3754 		/*
3755 		 * Otherwise, we have to issue IO to fill the entry up to the
3756 		 * amount we need.
3757 		 */
3758 		need_dvas -= have_dvas;
3759 	} else {
3760 		/*
3761 		 * There's a write in-flight. If there's already enough DVAs on
3762 		 * the entry, then either there were already enough to start
3763 		 * with, or the in-flight IO is between READY and DONE, and so
3764 		 * has extended the entry with new DVAs. Either way, we don't
3765 		 * need to do anything, we can just slot in behind it.
3766 		 */
3767 
3768 		if (zio->io_bp_override) {
3769 			/*
3770 			 * If there's a write out, then we're soon going to
3771 			 * have our own copies of this block, so clear out the
3772 			 * override block and treat it as a regular dedup
3773 			 * write. See comment above.
3774 			 */
3775 			BP_ZERO_DVAS(bp);
3776 			BP_SET_BIRTH(bp, 0, 0);
3777 		}
3778 
3779 		if (have_dvas >= need_dvas) {
3780 			/*
3781 			 * A minor point: there might already be enough
3782 			 * committed DVAs in the entry to service our request,
3783 			 * but we don't know which are completed and which are
3784 			 * allocated but not yet written. In this case, should
3785 			 * the IO for the new DVAs fail, we will be on the end
3786 			 * of the IO chain and will also recieve an error, even
3787 			 * though our request could have been serviced.
3788 			 *
3789 			 * This is an extremely rare case, as it requires the
3790 			 * original block to be copied with a request for a
3791 			 * larger number of DVAs, then copied again requesting
3792 			 * the same (or already fulfilled) number of DVAs while
3793 			 * the first request is active, and then that first
3794 			 * request errors. In return, the logic required to
3795 			 * catch and handle it is complex. For now, I'm just
3796 			 * not going to bother with it.
3797 			 */
3798 
3799 			/*
3800 			 * We always fill the bp here as we may have arrived
3801 			 * after the in-flight write has passed READY, and so
3802 			 * missed out.
3803 			 */
3804 			ddt_bp_fill(ddp, v, bp, txg);
3805 			zio_add_child(zio, dde->dde_io->dde_lead_zio[p]);
3806 			ddt_exit(ddt);
3807 			return (zio);
3808 		}
3809 
3810 		/*
3811 		 * There's not enough in the entry yet, so we need to look at
3812 		 * the write in-flight and see how many DVAs it will have once
3813 		 * it completes.
3814 		 *
3815 		 * The in-flight write has potentially had its copies request
3816 		 * reduced (if we're filling out an existing entry), so we need
3817 		 * to reach in and get the original write to find out what it is
3818 		 * expecting.
3819 		 *
3820 		 * Note that the parent of the lead zio will always have the
3821 		 * highest zp_copies of any zio in the chain, because ones that
3822 		 * can be serviced without additional IO are always added to
3823 		 * the back of the chain.
3824 		 */
3825 		zio_link_t *zl = NULL;
3826 		zio_t *pio =
3827 		    zio_walk_parents(dde->dde_io->dde_lead_zio[p], &zl);
3828 		ASSERT(pio);
3829 		uint8_t parent_dvas = pio->io_prop.zp_copies;
3830 
3831 		if (parent_dvas >= need_dvas) {
3832 			zio_add_child(zio, dde->dde_io->dde_lead_zio[p]);
3833 			ddt_exit(ddt);
3834 			return (zio);
3835 		}
3836 
3837 		/*
3838 		 * Still not enough, so we will need to issue to get the
3839 		 * shortfall.
3840 		 */
3841 		need_dvas -= parent_dvas;
3842 	}
3843 
3844 	/*
3845 	 * We need to write. We will create a new write with the copies
3846 	 * property adjusted to match the number of DVAs we need to need to
3847 	 * grow the DDT entry by to satisfy the request.
3848 	 */
3849 	zio_prop_t czp = *zp;
3850 	czp.zp_copies = need_dvas;
3851 	zio_t *cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
3852 	    zio->io_orig_size, zio->io_orig_size, &czp,
3853 	    zio_ddt_child_write_ready, NULL,
3854 	    zio_ddt_child_write_done, dde, zio->io_priority,
3855 	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
3856 
3857 	zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL);
3858 
3859 	/*
3860 	 * We are the new lead zio, because our parent has the highest
3861 	 * zp_copies that has been requested for this entry so far.
3862 	 */
3863 	ddt_alloc_entry_io(dde);
3864 	if (dde->dde_io->dde_lead_zio[p] == NULL) {
3865 		/*
3866 		 * First time out, take a copy of the stable entry to revert
3867 		 * to if there's an error (see zio_ddt_child_write_done())
3868 		 */
3869 		ddt_phys_copy(&dde->dde_io->dde_orig_phys, dde->dde_phys, v);
3870 	} else {
3871 		/*
3872 		 * Make the existing chain our child, because it cannot
3873 		 * complete until we have.
3874 		 */
3875 		zio_add_child(cio, dde->dde_io->dde_lead_zio[p]);
3876 	}
3877 	dde->dde_io->dde_lead_zio[p] = cio;
3878 
3879 	ddt_exit(ddt);
3880 
3881 	zio_nowait(cio);
3882 
3883 	return (zio);
3884 }
3885 
3886 static ddt_entry_t *freedde; /* for debugging */
3887 
3888 static zio_t *
3889 zio_ddt_free(zio_t *zio)
3890 {
3891 	spa_t *spa = zio->io_spa;
3892 	blkptr_t *bp = zio->io_bp;
3893 	ddt_t *ddt = ddt_select(spa, bp);
3894 	ddt_entry_t *dde = NULL;
3895 
3896 	ASSERT(BP_GET_DEDUP(bp));
3897 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3898 
3899 	ddt_enter(ddt);
3900 	freedde = dde = ddt_lookup(ddt, bp);
3901 	if (dde) {
3902 		ddt_phys_variant_t v = ddt_phys_select(ddt, dde, bp);
3903 		if (v != DDT_PHYS_NONE)
3904 			ddt_phys_decref(dde->dde_phys, v);
3905 	}
3906 	ddt_exit(ddt);
3907 
3908 	/*
3909 	 * When no entry was found, it must have been pruned,
3910 	 * so we can free it now instead of decrementing the
3911 	 * refcount in the DDT.
3912 	 */
3913 	if (!dde) {
3914 		BP_SET_DEDUP(bp, 0);
3915 		zio->io_pipeline |= ZIO_STAGE_DVA_FREE;
3916 	}
3917 
3918 	return (zio);
3919 }
3920 
3921 /*
3922  * ==========================================================================
3923  * Allocate and free blocks
3924  * ==========================================================================
3925  */
3926 
3927 static zio_t *
3928 zio_io_to_allocate(spa_t *spa, int allocator)
3929 {
3930 	zio_t *zio;
3931 
3932 	ASSERT(MUTEX_HELD(&spa->spa_allocs[allocator].spaa_lock));
3933 
3934 	zio = avl_first(&spa->spa_allocs[allocator].spaa_tree);
3935 	if (zio == NULL)
3936 		return (NULL);
3937 
3938 	ASSERT(IO_IS_ALLOCATING(zio));
3939 	ASSERT(ZIO_HAS_ALLOCATOR(zio));
3940 
3941 	/*
3942 	 * Try to place a reservation for this zio. If we're unable to
3943 	 * reserve then we throttle.
3944 	 */
3945 	ASSERT3U(zio->io_allocator, ==, allocator);
3946 	if (!metaslab_class_throttle_reserve(zio->io_metaslab_class,
3947 	    zio->io_prop.zp_copies, allocator, zio, 0)) {
3948 		return (NULL);
3949 	}
3950 
3951 	avl_remove(&spa->spa_allocs[allocator].spaa_tree, zio);
3952 	ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE);
3953 
3954 	return (zio);
3955 }
3956 
3957 static zio_t *
3958 zio_dva_throttle(zio_t *zio)
3959 {
3960 	spa_t *spa = zio->io_spa;
3961 	zio_t *nio;
3962 	metaslab_class_t *mc;
3963 
3964 	/* locate an appropriate allocation class */
3965 	mc = spa_preferred_class(spa, zio);
3966 
3967 	if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE ||
3968 	    !mc->mc_alloc_throttle_enabled ||
3969 	    zio->io_child_type == ZIO_CHILD_GANG ||
3970 	    zio->io_flags & ZIO_FLAG_NODATA) {
3971 		return (zio);
3972 	}
3973 
3974 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3975 	ASSERT(ZIO_HAS_ALLOCATOR(zio));
3976 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3977 	ASSERT3U(zio->io_queued_timestamp, >, 0);
3978 	ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE);
3979 
3980 	int allocator = zio->io_allocator;
3981 	zio->io_metaslab_class = mc;
3982 	mutex_enter(&spa->spa_allocs[allocator].spaa_lock);
3983 	avl_add(&spa->spa_allocs[allocator].spaa_tree, zio);
3984 	nio = zio_io_to_allocate(spa, allocator);
3985 	mutex_exit(&spa->spa_allocs[allocator].spaa_lock);
3986 	return (nio);
3987 }
3988 
3989 static void
3990 zio_allocate_dispatch(spa_t *spa, int allocator)
3991 {
3992 	zio_t *zio;
3993 
3994 	mutex_enter(&spa->spa_allocs[allocator].spaa_lock);
3995 	zio = zio_io_to_allocate(spa, allocator);
3996 	mutex_exit(&spa->spa_allocs[allocator].spaa_lock);
3997 	if (zio == NULL)
3998 		return;
3999 
4000 	ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE);
4001 	ASSERT0(zio->io_error);
4002 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE);
4003 }
4004 
4005 static zio_t *
4006 zio_dva_allocate(zio_t *zio)
4007 {
4008 	spa_t *spa = zio->io_spa;
4009 	metaslab_class_t *mc;
4010 	blkptr_t *bp = zio->io_bp;
4011 	int error;
4012 	int flags = 0;
4013 
4014 	if (zio->io_gang_leader == NULL) {
4015 		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
4016 		zio->io_gang_leader = zio;
4017 	}
4018 
4019 	ASSERT(BP_IS_HOLE(bp));
4020 	ASSERT0(BP_GET_NDVAS(bp));
4021 	ASSERT3U(zio->io_prop.zp_copies, >, 0);
4022 	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
4023 	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
4024 
4025 	if (zio->io_flags & ZIO_FLAG_NODATA)
4026 		flags |= METASLAB_DONT_THROTTLE;
4027 	if (zio->io_flags & ZIO_FLAG_GANG_CHILD)
4028 		flags |= METASLAB_GANG_CHILD;
4029 	if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE)
4030 		flags |= METASLAB_ASYNC_ALLOC;
4031 
4032 	/*
4033 	 * if not already chosen, locate an appropriate allocation class
4034 	 */
4035 	mc = zio->io_metaslab_class;
4036 	if (mc == NULL) {
4037 		mc = spa_preferred_class(spa, zio);
4038 		zio->io_metaslab_class = mc;
4039 	}
4040 
4041 	/*
4042 	 * Try allocating the block in the usual metaslab class.
4043 	 * If that's full, allocate it in the normal class.
4044 	 * If that's full, allocate as a gang block,
4045 	 * and if all are full, the allocation fails (which shouldn't happen).
4046 	 *
4047 	 * Note that we do not fall back on embedded slog (ZIL) space, to
4048 	 * preserve unfragmented slog space, which is critical for decent
4049 	 * sync write performance.  If a log allocation fails, we will fall
4050 	 * back to spa_sync() which is abysmal for performance.
4051 	 */
4052 	ASSERT(ZIO_HAS_ALLOCATOR(zio));
4053 	error = metaslab_alloc(spa, mc, zio->io_size, bp,
4054 	    zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
4055 	    &zio->io_alloc_list, zio, zio->io_allocator);
4056 
4057 	/*
4058 	 * Fallback to normal class when an alloc class is full
4059 	 */
4060 	if (error == ENOSPC && mc != spa_normal_class(spa)) {
4061 		/*
4062 		 * When the dedup or special class is spilling into the  normal
4063 		 * class, there can still be significant space available due
4064 		 * to deferred frees that are in-flight.  We track the txg when
4065 		 * this occurred and back off adding new DDT entries for a few
4066 		 * txgs to allow the free blocks to be processed.
4067 		 */
4068 		if ((mc == spa_dedup_class(spa) || (spa_special_has_ddt(spa) &&
4069 		    mc == spa_special_class(spa))) &&
4070 		    spa->spa_dedup_class_full_txg != zio->io_txg) {
4071 			spa->spa_dedup_class_full_txg = zio->io_txg;
4072 			zfs_dbgmsg("%s[%d]: %s class spilling, req size %d, "
4073 			    "%llu allocated of %llu",
4074 			    spa_name(spa), (int)zio->io_txg,
4075 			    mc == spa_dedup_class(spa) ? "dedup" : "special",
4076 			    (int)zio->io_size,
4077 			    (u_longlong_t)metaslab_class_get_alloc(mc),
4078 			    (u_longlong_t)metaslab_class_get_space(mc));
4079 		}
4080 
4081 		/*
4082 		 * If throttling, transfer reservation over to normal class.
4083 		 * The io_allocator slot can remain the same even though we
4084 		 * are switching classes.
4085 		 */
4086 		if (mc->mc_alloc_throttle_enabled &&
4087 		    (zio->io_flags & ZIO_FLAG_IO_ALLOCATING)) {
4088 			metaslab_class_throttle_unreserve(mc,
4089 			    zio->io_prop.zp_copies, zio->io_allocator, zio);
4090 			zio->io_flags &= ~ZIO_FLAG_IO_ALLOCATING;
4091 
4092 			VERIFY(metaslab_class_throttle_reserve(
4093 			    spa_normal_class(spa),
4094 			    zio->io_prop.zp_copies, zio->io_allocator, zio,
4095 			    flags | METASLAB_MUST_RESERVE));
4096 		}
4097 		zio->io_metaslab_class = mc = spa_normal_class(spa);
4098 		if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) {
4099 			zfs_dbgmsg("%s: metaslab allocation failure, "
4100 			    "trying normal class: zio %px, size %llu, error %d",
4101 			    spa_name(spa), zio, (u_longlong_t)zio->io_size,
4102 			    error);
4103 		}
4104 
4105 		error = metaslab_alloc(spa, mc, zio->io_size, bp,
4106 		    zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
4107 		    &zio->io_alloc_list, zio, zio->io_allocator);
4108 	}
4109 
4110 	if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) {
4111 		if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) {
4112 			zfs_dbgmsg("%s: metaslab allocation failure, "
4113 			    "trying ganging: zio %px, size %llu, error %d",
4114 			    spa_name(spa), zio, (u_longlong_t)zio->io_size,
4115 			    error);
4116 		}
4117 		return (zio_write_gang_block(zio, mc));
4118 	}
4119 	if (error != 0) {
4120 		if (error != ENOSPC ||
4121 		    (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC)) {
4122 			zfs_dbgmsg("%s: metaslab allocation failure: zio %px, "
4123 			    "size %llu, error %d",
4124 			    spa_name(spa), zio, (u_longlong_t)zio->io_size,
4125 			    error);
4126 		}
4127 		zio->io_error = error;
4128 	}
4129 
4130 	return (zio);
4131 }
4132 
4133 static zio_t *
4134 zio_dva_free(zio_t *zio)
4135 {
4136 	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
4137 
4138 	return (zio);
4139 }
4140 
4141 static zio_t *
4142 zio_dva_claim(zio_t *zio)
4143 {
4144 	int error;
4145 
4146 	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
4147 	if (error)
4148 		zio->io_error = error;
4149 
4150 	return (zio);
4151 }
4152 
4153 /*
4154  * Undo an allocation.  This is used by zio_done() when an I/O fails
4155  * and we want to give back the block we just allocated.
4156  * This handles both normal blocks and gang blocks.
4157  */
4158 static void
4159 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
4160 {
4161 	ASSERT(BP_GET_LOGICAL_BIRTH(bp) == zio->io_txg || BP_IS_HOLE(bp));
4162 	ASSERT(zio->io_bp_override == NULL);
4163 
4164 	if (!BP_IS_HOLE(bp)) {
4165 		metaslab_free(zio->io_spa, bp, BP_GET_LOGICAL_BIRTH(bp),
4166 		    B_TRUE);
4167 	}
4168 
4169 	if (gn != NULL) {
4170 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
4171 			zio_dva_unallocate(zio, gn->gn_child[g],
4172 			    &gn->gn_gbh->zg_blkptr[g]);
4173 		}
4174 	}
4175 }
4176 
4177 /*
4178  * Try to allocate an intent log block.  Return 0 on success, errno on failure.
4179  */
4180 int
4181 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp,
4182     uint64_t size, boolean_t *slog)
4183 {
4184 	int error = 1;
4185 	zio_alloc_list_t io_alloc_list;
4186 
4187 	ASSERT(txg > spa_syncing_txg(spa));
4188 
4189 	metaslab_trace_init(&io_alloc_list);
4190 
4191 	/*
4192 	 * Block pointer fields are useful to metaslabs for stats and debugging.
4193 	 * Fill in the obvious ones before calling into metaslab_alloc().
4194 	 */
4195 	BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
4196 	BP_SET_PSIZE(new_bp, size);
4197 	BP_SET_LEVEL(new_bp, 0);
4198 
4199 	/*
4200 	 * When allocating a zil block, we don't have information about
4201 	 * the final destination of the block except the objset it's part
4202 	 * of, so we just hash the objset ID to pick the allocator to get
4203 	 * some parallelism.
4204 	 */
4205 	int flags = METASLAB_ZIL;
4206 	int allocator = (uint_t)cityhash1(os->os_dsl_dataset->ds_object)
4207 	    % spa->spa_alloc_count;
4208 	error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1,
4209 	    txg, NULL, flags, &io_alloc_list, NULL, allocator);
4210 	*slog = (error == 0);
4211 	if (error != 0) {
4212 		error = metaslab_alloc(spa, spa_embedded_log_class(spa), size,
4213 		    new_bp, 1, txg, NULL, flags,
4214 		    &io_alloc_list, NULL, allocator);
4215 	}
4216 	if (error != 0) {
4217 		error = metaslab_alloc(spa, spa_normal_class(spa), size,
4218 		    new_bp, 1, txg, NULL, flags,
4219 		    &io_alloc_list, NULL, allocator);
4220 	}
4221 	metaslab_trace_fini(&io_alloc_list);
4222 
4223 	if (error == 0) {
4224 		BP_SET_LSIZE(new_bp, size);
4225 		BP_SET_PSIZE(new_bp, size);
4226 		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
4227 		BP_SET_CHECKSUM(new_bp,
4228 		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL
4229 		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
4230 		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
4231 		BP_SET_LEVEL(new_bp, 0);
4232 		BP_SET_DEDUP(new_bp, 0);
4233 		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
4234 
4235 		/*
4236 		 * encrypted blocks will require an IV and salt. We generate
4237 		 * these now since we will not be rewriting the bp at
4238 		 * rewrite time.
4239 		 */
4240 		if (os->os_encrypted) {
4241 			uint8_t iv[ZIO_DATA_IV_LEN];
4242 			uint8_t salt[ZIO_DATA_SALT_LEN];
4243 
4244 			BP_SET_CRYPT(new_bp, B_TRUE);
4245 			VERIFY0(spa_crypt_get_salt(spa,
4246 			    dmu_objset_id(os), salt));
4247 			VERIFY0(zio_crypt_generate_iv(iv));
4248 
4249 			zio_crypt_encode_params_bp(new_bp, salt, iv);
4250 		}
4251 	} else {
4252 		zfs_dbgmsg("%s: zil block allocation failure: "
4253 		    "size %llu, error %d", spa_name(spa), (u_longlong_t)size,
4254 		    error);
4255 	}
4256 
4257 	return (error);
4258 }
4259 
4260 /*
4261  * ==========================================================================
4262  * Read and write to physical devices
4263  * ==========================================================================
4264  */
4265 
4266 /*
4267  * Issue an I/O to the underlying vdev. Typically the issue pipeline
4268  * stops after this stage and will resume upon I/O completion.
4269  * However, there are instances where the vdev layer may need to
4270  * continue the pipeline when an I/O was not issued. Since the I/O
4271  * that was sent to the vdev layer might be different than the one
4272  * currently active in the pipeline (see vdev_queue_io()), we explicitly
4273  * force the underlying vdev layers to call either zio_execute() or
4274  * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
4275  */
4276 static zio_t *
4277 zio_vdev_io_start(zio_t *zio)
4278 {
4279 	vdev_t *vd = zio->io_vd;
4280 	uint64_t align;
4281 	spa_t *spa = zio->io_spa;
4282 
4283 	zio->io_delay = 0;
4284 
4285 	ASSERT(zio->io_error == 0);
4286 	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
4287 
4288 	if (vd == NULL) {
4289 		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
4290 			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
4291 
4292 		/*
4293 		 * The mirror_ops handle multiple DVAs in a single BP.
4294 		 */
4295 		vdev_mirror_ops.vdev_op_io_start(zio);
4296 		return (NULL);
4297 	}
4298 
4299 	ASSERT3P(zio->io_logical, !=, zio);
4300 	if (zio->io_type == ZIO_TYPE_WRITE) {
4301 		ASSERT(spa->spa_trust_config);
4302 
4303 		/*
4304 		 * Note: the code can handle other kinds of writes,
4305 		 * but we don't expect them.
4306 		 */
4307 		if (zio->io_vd->vdev_noalloc) {
4308 			ASSERT(zio->io_flags &
4309 			    (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL |
4310 			    ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE));
4311 		}
4312 	}
4313 
4314 	align = 1ULL << vd->vdev_top->vdev_ashift;
4315 
4316 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
4317 	    P2PHASE(zio->io_size, align) != 0) {
4318 		/* Transform logical writes to be a full physical block size. */
4319 		uint64_t asize = P2ROUNDUP(zio->io_size, align);
4320 		abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize);
4321 		ASSERT(vd == vd->vdev_top);
4322 		if (zio->io_type == ZIO_TYPE_WRITE) {
4323 			abd_copy(abuf, zio->io_abd, zio->io_size);
4324 			abd_zero_off(abuf, zio->io_size, asize - zio->io_size);
4325 		}
4326 		zio_push_transform(zio, abuf, asize, asize, zio_subblock);
4327 	}
4328 
4329 	/*
4330 	 * If this is not a physical io, make sure that it is properly aligned
4331 	 * before proceeding.
4332 	 */
4333 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
4334 		ASSERT0(P2PHASE(zio->io_offset, align));
4335 		ASSERT0(P2PHASE(zio->io_size, align));
4336 	} else {
4337 		/*
4338 		 * For physical writes, we allow 512b aligned writes and assume
4339 		 * the device will perform a read-modify-write as necessary.
4340 		 */
4341 		ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
4342 		ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
4343 	}
4344 
4345 	VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
4346 
4347 	/*
4348 	 * If this is a repair I/O, and there's no self-healing involved --
4349 	 * that is, we're just resilvering what we expect to resilver --
4350 	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
4351 	 * This prevents spurious resilvering.
4352 	 *
4353 	 * There are a few ways that we can end up creating these spurious
4354 	 * resilver i/os:
4355 	 *
4356 	 * 1. A resilver i/o will be issued if any DVA in the BP has a
4357 	 * dirty DTL.  The mirror code will issue resilver writes to
4358 	 * each DVA, including the one(s) that are not on vdevs with dirty
4359 	 * DTLs.
4360 	 *
4361 	 * 2. With nested replication, which happens when we have a
4362 	 * "replacing" or "spare" vdev that's a child of a mirror or raidz.
4363 	 * For example, given mirror(replacing(A+B), C), it's likely that
4364 	 * only A is out of date (it's the new device). In this case, we'll
4365 	 * read from C, then use the data to resilver A+B -- but we don't
4366 	 * actually want to resilver B, just A. The top-level mirror has no
4367 	 * way to know this, so instead we just discard unnecessary repairs
4368 	 * as we work our way down the vdev tree.
4369 	 *
4370 	 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc.
4371 	 * The same logic applies to any form of nested replication: ditto
4372 	 * + mirror, RAID-Z + replacing, etc.
4373 	 *
4374 	 * However, indirect vdevs point off to other vdevs which may have
4375 	 * DTL's, so we never bypass them.  The child i/os on concrete vdevs
4376 	 * will be properly bypassed instead.
4377 	 *
4378 	 * Leaf DTL_PARTIAL can be empty when a legitimate write comes from
4379 	 * a dRAID spare vdev. For example, when a dRAID spare is first
4380 	 * used, its spare blocks need to be written to but the leaf vdev's
4381 	 * of such blocks can have empty DTL_PARTIAL.
4382 	 *
4383 	 * There seemed no clean way to allow such writes while bypassing
4384 	 * spurious ones. At this point, just avoid all bypassing for dRAID
4385 	 * for correctness.
4386 	 */
4387 	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
4388 	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
4389 	    zio->io_txg != 0 &&	/* not a delegated i/o */
4390 	    vd->vdev_ops != &vdev_indirect_ops &&
4391 	    vd->vdev_top->vdev_ops != &vdev_draid_ops &&
4392 	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
4393 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
4394 		zio_vdev_io_bypass(zio);
4395 		return (zio);
4396 	}
4397 
4398 	/*
4399 	 * Select the next best leaf I/O to process.  Distributed spares are
4400 	 * excluded since they dispatch the I/O directly to a leaf vdev after
4401 	 * applying the dRAID mapping.
4402 	 */
4403 	if (vd->vdev_ops->vdev_op_leaf &&
4404 	    vd->vdev_ops != &vdev_draid_spare_ops &&
4405 	    (zio->io_type == ZIO_TYPE_READ ||
4406 	    zio->io_type == ZIO_TYPE_WRITE ||
4407 	    zio->io_type == ZIO_TYPE_TRIM)) {
4408 
4409 		if (zio_handle_device_injection(vd, zio, ENOSYS) != 0) {
4410 			/*
4411 			 * "no-op" injections return success, but do no actual
4412 			 * work. Just skip the remaining vdev stages.
4413 			 */
4414 			zio_vdev_io_bypass(zio);
4415 			zio_interrupt(zio);
4416 			return (NULL);
4417 		}
4418 
4419 		if ((zio = vdev_queue_io(zio)) == NULL)
4420 			return (NULL);
4421 
4422 		if (!vdev_accessible(vd, zio)) {
4423 			zio->io_error = SET_ERROR(ENXIO);
4424 			zio_interrupt(zio);
4425 			return (NULL);
4426 		}
4427 		zio->io_delay = gethrtime();
4428 	}
4429 
4430 	vd->vdev_ops->vdev_op_io_start(zio);
4431 	return (NULL);
4432 }
4433 
4434 static zio_t *
4435 zio_vdev_io_done(zio_t *zio)
4436 {
4437 	vdev_t *vd = zio->io_vd;
4438 	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
4439 	boolean_t unexpected_error = B_FALSE;
4440 
4441 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
4442 		return (NULL);
4443 	}
4444 
4445 	ASSERT(zio->io_type == ZIO_TYPE_READ ||
4446 	    zio->io_type == ZIO_TYPE_WRITE ||
4447 	    zio->io_type == ZIO_TYPE_FLUSH ||
4448 	    zio->io_type == ZIO_TYPE_TRIM);
4449 
4450 	if (zio->io_delay)
4451 		zio->io_delay = gethrtime() - zio->io_delay;
4452 
4453 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
4454 	    vd->vdev_ops != &vdev_draid_spare_ops) {
4455 		if (zio->io_type != ZIO_TYPE_FLUSH)
4456 			vdev_queue_io_done(zio);
4457 
4458 		if (zio_injection_enabled && zio->io_error == 0)
4459 			zio->io_error = zio_handle_device_injections(vd, zio,
4460 			    EIO, EILSEQ);
4461 
4462 		if (zio_injection_enabled && zio->io_error == 0)
4463 			zio->io_error = zio_handle_label_injection(zio, EIO);
4464 
4465 		if (zio->io_error && zio->io_type != ZIO_TYPE_FLUSH &&
4466 		    zio->io_type != ZIO_TYPE_TRIM) {
4467 			if (!vdev_accessible(vd, zio)) {
4468 				zio->io_error = SET_ERROR(ENXIO);
4469 			} else {
4470 				unexpected_error = B_TRUE;
4471 			}
4472 		}
4473 	}
4474 
4475 	ops->vdev_op_io_done(zio);
4476 
4477 	if (unexpected_error && vd->vdev_remove_wanted == B_FALSE)
4478 		VERIFY(vdev_probe(vd, zio) == NULL);
4479 
4480 	return (zio);
4481 }
4482 
4483 /*
4484  * This function is used to change the priority of an existing zio that is
4485  * currently in-flight. This is used by the arc to upgrade priority in the
4486  * event that a demand read is made for a block that is currently queued
4487  * as a scrub or async read IO. Otherwise, the high priority read request
4488  * would end up having to wait for the lower priority IO.
4489  */
4490 void
4491 zio_change_priority(zio_t *pio, zio_priority_t priority)
4492 {
4493 	zio_t *cio, *cio_next;
4494 	zio_link_t *zl = NULL;
4495 
4496 	ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
4497 
4498 	if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) {
4499 		vdev_queue_change_io_priority(pio, priority);
4500 	} else {
4501 		pio->io_priority = priority;
4502 	}
4503 
4504 	mutex_enter(&pio->io_lock);
4505 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
4506 		cio_next = zio_walk_children(pio, &zl);
4507 		zio_change_priority(cio, priority);
4508 	}
4509 	mutex_exit(&pio->io_lock);
4510 }
4511 
4512 /*
4513  * For non-raidz ZIOs, we can just copy aside the bad data read from the
4514  * disk, and use that to finish the checksum ereport later.
4515  */
4516 static void
4517 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
4518     const abd_t *good_buf)
4519 {
4520 	/* no processing needed */
4521 	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
4522 }
4523 
4524 void
4525 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr)
4526 {
4527 	void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size);
4528 
4529 	abd_copy(abd, zio->io_abd, zio->io_size);
4530 
4531 	zcr->zcr_cbinfo = zio->io_size;
4532 	zcr->zcr_cbdata = abd;
4533 	zcr->zcr_finish = zio_vsd_default_cksum_finish;
4534 	zcr->zcr_free = zio_abd_free;
4535 }
4536 
4537 static zio_t *
4538 zio_vdev_io_assess(zio_t *zio)
4539 {
4540 	vdev_t *vd = zio->io_vd;
4541 
4542 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
4543 		return (NULL);
4544 	}
4545 
4546 	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
4547 		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
4548 
4549 	if (zio->io_vsd != NULL) {
4550 		zio->io_vsd_ops->vsd_free(zio);
4551 		zio->io_vsd = NULL;
4552 	}
4553 
4554 	/*
4555 	 * If a Direct I/O operation has a checksum verify error then this I/O
4556 	 * should not attempt to be issued again.
4557 	 */
4558 	if (zio->io_flags & ZIO_FLAG_DIO_CHKSUM_ERR) {
4559 		if (zio->io_type == ZIO_TYPE_WRITE) {
4560 			ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_LOGICAL);
4561 			ASSERT3U(zio->io_error, ==, EIO);
4562 		}
4563 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4564 		return (zio);
4565 	}
4566 
4567 	if (zio_injection_enabled && zio->io_error == 0)
4568 		zio->io_error = zio_handle_fault_injection(zio, EIO);
4569 
4570 	/*
4571 	 * If the I/O failed, determine whether we should attempt to retry it.
4572 	 *
4573 	 * On retry, we cut in line in the issue queue, since we don't want
4574 	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
4575 	 */
4576 	if (zio->io_error && vd == NULL &&
4577 	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
4578 		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
4579 		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
4580 		zio->io_error = 0;
4581 		zio->io_flags |= ZIO_FLAG_IO_RETRY | ZIO_FLAG_DONT_AGGREGATE;
4582 		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
4583 		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
4584 		    zio_requeue_io_start_cut_in_line);
4585 		return (NULL);
4586 	}
4587 
4588 	/*
4589 	 * If we got an error on a leaf device, convert it to ENXIO
4590 	 * if the device is not accessible at all.
4591 	 */
4592 	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
4593 	    !vdev_accessible(vd, zio))
4594 		zio->io_error = SET_ERROR(ENXIO);
4595 
4596 	/*
4597 	 * If we can't write to an interior vdev (mirror or RAID-Z),
4598 	 * set vdev_cant_write so that we stop trying to allocate from it.
4599 	 */
4600 	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
4601 	    vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
4602 		vdev_dbgmsg(vd, "zio_vdev_io_assess(zio=%px) setting "
4603 		    "cant_write=TRUE due to write failure with ENXIO",
4604 		    zio);
4605 		vd->vdev_cant_write = B_TRUE;
4606 	}
4607 
4608 	/*
4609 	 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future
4610 	 * attempts will ever succeed. In this case we set a persistent
4611 	 * boolean flag so that we don't bother with it in the future.
4612 	 */
4613 	if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) &&
4614 	    zio->io_type == ZIO_TYPE_FLUSH && vd != NULL)
4615 		vd->vdev_nowritecache = B_TRUE;
4616 
4617 	if (zio->io_error)
4618 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4619 
4620 	return (zio);
4621 }
4622 
4623 void
4624 zio_vdev_io_reissue(zio_t *zio)
4625 {
4626 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
4627 	ASSERT(zio->io_error == 0);
4628 
4629 	zio->io_stage >>= 1;
4630 }
4631 
4632 void
4633 zio_vdev_io_redone(zio_t *zio)
4634 {
4635 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
4636 
4637 	zio->io_stage >>= 1;
4638 }
4639 
4640 void
4641 zio_vdev_io_bypass(zio_t *zio)
4642 {
4643 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
4644 	ASSERT(zio->io_error == 0);
4645 
4646 	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
4647 	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
4648 }
4649 
4650 /*
4651  * ==========================================================================
4652  * Encrypt and store encryption parameters
4653  * ==========================================================================
4654  */
4655 
4656 
4657 /*
4658  * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for
4659  * managing the storage of encryption parameters and passing them to the
4660  * lower-level encryption functions.
4661  */
4662 static zio_t *
4663 zio_encrypt(zio_t *zio)
4664 {
4665 	zio_prop_t *zp = &zio->io_prop;
4666 	spa_t *spa = zio->io_spa;
4667 	blkptr_t *bp = zio->io_bp;
4668 	uint64_t psize = BP_GET_PSIZE(bp);
4669 	uint64_t dsobj = zio->io_bookmark.zb_objset;
4670 	dmu_object_type_t ot = BP_GET_TYPE(bp);
4671 	void *enc_buf = NULL;
4672 	abd_t *eabd = NULL;
4673 	uint8_t salt[ZIO_DATA_SALT_LEN];
4674 	uint8_t iv[ZIO_DATA_IV_LEN];
4675 	uint8_t mac[ZIO_DATA_MAC_LEN];
4676 	boolean_t no_crypt = B_FALSE;
4677 
4678 	/* the root zio already encrypted the data */
4679 	if (zio->io_child_type == ZIO_CHILD_GANG)
4680 		return (zio);
4681 
4682 	/* only ZIL blocks are re-encrypted on rewrite */
4683 	if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG)
4684 		return (zio);
4685 
4686 	if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) {
4687 		BP_SET_CRYPT(bp, B_FALSE);
4688 		return (zio);
4689 	}
4690 
4691 	/* if we are doing raw encryption set the provided encryption params */
4692 	if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) {
4693 		ASSERT0(BP_GET_LEVEL(bp));
4694 		BP_SET_CRYPT(bp, B_TRUE);
4695 		BP_SET_BYTEORDER(bp, zp->zp_byteorder);
4696 		if (ot != DMU_OT_OBJSET)
4697 			zio_crypt_encode_mac_bp(bp, zp->zp_mac);
4698 
4699 		/* dnode blocks must be written out in the provided byteorder */
4700 		if (zp->zp_byteorder != ZFS_HOST_BYTEORDER &&
4701 		    ot == DMU_OT_DNODE) {
4702 			void *bswap_buf = zio_buf_alloc(psize);
4703 			abd_t *babd = abd_get_from_buf(bswap_buf, psize);
4704 
4705 			ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4706 			abd_copy_to_buf(bswap_buf, zio->io_abd, psize);
4707 			dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf,
4708 			    psize);
4709 
4710 			abd_take_ownership_of_buf(babd, B_TRUE);
4711 			zio_push_transform(zio, babd, psize, psize, NULL);
4712 		}
4713 
4714 		if (DMU_OT_IS_ENCRYPTED(ot))
4715 			zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv);
4716 		return (zio);
4717 	}
4718 
4719 	/* indirect blocks only maintain a cksum of the lower level MACs */
4720 	if (BP_GET_LEVEL(bp) > 0) {
4721 		BP_SET_CRYPT(bp, B_TRUE);
4722 		VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE,
4723 		    zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp),
4724 		    mac));
4725 		zio_crypt_encode_mac_bp(bp, mac);
4726 		return (zio);
4727 	}
4728 
4729 	/*
4730 	 * Objset blocks are a special case since they have 2 256-bit MACs
4731 	 * embedded within them.
4732 	 */
4733 	if (ot == DMU_OT_OBJSET) {
4734 		ASSERT0(DMU_OT_IS_ENCRYPTED(ot));
4735 		ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4736 		BP_SET_CRYPT(bp, B_TRUE);
4737 		VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj,
4738 		    zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp)));
4739 		return (zio);
4740 	}
4741 
4742 	/* unencrypted object types are only authenticated with a MAC */
4743 	if (!DMU_OT_IS_ENCRYPTED(ot)) {
4744 		BP_SET_CRYPT(bp, B_TRUE);
4745 		VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj,
4746 		    zio->io_abd, psize, mac));
4747 		zio_crypt_encode_mac_bp(bp, mac);
4748 		return (zio);
4749 	}
4750 
4751 	/*
4752 	 * Later passes of sync-to-convergence may decide to rewrite data
4753 	 * in place to avoid more disk reallocations. This presents a problem
4754 	 * for encryption because this constitutes rewriting the new data with
4755 	 * the same encryption key and IV. However, this only applies to blocks
4756 	 * in the MOS (particularly the spacemaps) and we do not encrypt the
4757 	 * MOS. We assert that the zio is allocating or an intent log write
4758 	 * to enforce this.
4759 	 */
4760 	ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG);
4761 	ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG);
4762 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION));
4763 	ASSERT3U(psize, !=, 0);
4764 
4765 	enc_buf = zio_buf_alloc(psize);
4766 	eabd = abd_get_from_buf(enc_buf, psize);
4767 	abd_take_ownership_of_buf(eabd, B_TRUE);
4768 
4769 	/*
4770 	 * For an explanation of what encryption parameters are stored
4771 	 * where, see the block comment in zio_crypt.c.
4772 	 */
4773 	if (ot == DMU_OT_INTENT_LOG) {
4774 		zio_crypt_decode_params_bp(bp, salt, iv);
4775 	} else {
4776 		BP_SET_CRYPT(bp, B_TRUE);
4777 	}
4778 
4779 	/* Perform the encryption. This should not fail */
4780 	VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark,
4781 	    BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
4782 	    salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt));
4783 
4784 	/* encode encryption metadata into the bp */
4785 	if (ot == DMU_OT_INTENT_LOG) {
4786 		/*
4787 		 * ZIL blocks store the MAC in the embedded checksum, so the
4788 		 * transform must always be applied.
4789 		 */
4790 		zio_crypt_encode_mac_zil(enc_buf, mac);
4791 		zio_push_transform(zio, eabd, psize, psize, NULL);
4792 	} else {
4793 		BP_SET_CRYPT(bp, B_TRUE);
4794 		zio_crypt_encode_params_bp(bp, salt, iv);
4795 		zio_crypt_encode_mac_bp(bp, mac);
4796 
4797 		if (no_crypt) {
4798 			ASSERT3U(ot, ==, DMU_OT_DNODE);
4799 			abd_free(eabd);
4800 		} else {
4801 			zio_push_transform(zio, eabd, psize, psize, NULL);
4802 		}
4803 	}
4804 
4805 	return (zio);
4806 }
4807 
4808 /*
4809  * ==========================================================================
4810  * Generate and verify checksums
4811  * ==========================================================================
4812  */
4813 static zio_t *
4814 zio_checksum_generate(zio_t *zio)
4815 {
4816 	blkptr_t *bp = zio->io_bp;
4817 	enum zio_checksum checksum;
4818 
4819 	if (bp == NULL) {
4820 		/*
4821 		 * This is zio_write_phys().
4822 		 * We're either generating a label checksum, or none at all.
4823 		 */
4824 		checksum = zio->io_prop.zp_checksum;
4825 
4826 		if (checksum == ZIO_CHECKSUM_OFF)
4827 			return (zio);
4828 
4829 		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
4830 	} else {
4831 		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
4832 			ASSERT(!IO_IS_ALLOCATING(zio));
4833 			checksum = ZIO_CHECKSUM_GANG_HEADER;
4834 		} else {
4835 			checksum = BP_GET_CHECKSUM(bp);
4836 		}
4837 	}
4838 
4839 	zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size);
4840 
4841 	return (zio);
4842 }
4843 
4844 static zio_t *
4845 zio_checksum_verify(zio_t *zio)
4846 {
4847 	zio_bad_cksum_t info;
4848 	blkptr_t *bp = zio->io_bp;
4849 	int error;
4850 
4851 	ASSERT(zio->io_vd != NULL);
4852 
4853 	if (bp == NULL) {
4854 		/*
4855 		 * This is zio_read_phys().
4856 		 * We're either verifying a label checksum, or nothing at all.
4857 		 */
4858 		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
4859 			return (zio);
4860 
4861 		ASSERT3U(zio->io_prop.zp_checksum, ==, ZIO_CHECKSUM_LABEL);
4862 	}
4863 
4864 	ASSERT0(zio->io_flags & ZIO_FLAG_DIO_CHKSUM_ERR);
4865 	IMPLY(zio->io_flags & ZIO_FLAG_DIO_READ,
4866 	    !(zio->io_flags & ZIO_FLAG_SPECULATIVE));
4867 
4868 	if ((error = zio_checksum_error(zio, &info)) != 0) {
4869 		zio->io_error = error;
4870 		if (error == ECKSUM &&
4871 		    !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
4872 			if (zio->io_flags & ZIO_FLAG_DIO_READ) {
4873 				zio->io_flags |= ZIO_FLAG_DIO_CHKSUM_ERR;
4874 				zio_t *pio = zio_unique_parent(zio);
4875 				/*
4876 				 * Any Direct I/O read that has a checksum
4877 				 * error must be treated as suspicous as the
4878 				 * contents of the buffer could be getting
4879 				 * manipulated while the I/O is taking place.
4880 				 *
4881 				 * The checksum verify error will only be
4882 				 * reported here for disk and file VDEV's and
4883 				 * will be reported on those that the failure
4884 				 * occurred on. Other types of VDEV's report the
4885 				 * verify failure in their own code paths.
4886 				 */
4887 				if (pio->io_child_type == ZIO_CHILD_LOGICAL) {
4888 					zio_dio_chksum_verify_error_report(zio);
4889 				}
4890 			} else {
4891 				mutex_enter(&zio->io_vd->vdev_stat_lock);
4892 				zio->io_vd->vdev_stat.vs_checksum_errors++;
4893 				mutex_exit(&zio->io_vd->vdev_stat_lock);
4894 				(void) zfs_ereport_start_checksum(zio->io_spa,
4895 				    zio->io_vd, &zio->io_bookmark, zio,
4896 				    zio->io_offset, zio->io_size, &info);
4897 			}
4898 		}
4899 	}
4900 
4901 	return (zio);
4902 }
4903 
4904 static zio_t *
4905 zio_dio_checksum_verify(zio_t *zio)
4906 {
4907 	zio_t *pio = zio_unique_parent(zio);
4908 	int error;
4909 
4910 	ASSERT3P(zio->io_vd, !=, NULL);
4911 	ASSERT3P(zio->io_bp, !=, NULL);
4912 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
4913 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
4914 	ASSERT3B(pio->io_prop.zp_direct_write, ==, B_TRUE);
4915 	ASSERT3U(pio->io_child_type, ==, ZIO_CHILD_LOGICAL);
4916 
4917 	if (zfs_vdev_direct_write_verify == 0 || zio->io_error != 0)
4918 		goto out;
4919 
4920 	if ((error = zio_checksum_error(zio, NULL)) != 0) {
4921 		zio->io_error = error;
4922 		if (error == ECKSUM) {
4923 			zio->io_flags |= ZIO_FLAG_DIO_CHKSUM_ERR;
4924 			zio_dio_chksum_verify_error_report(zio);
4925 		}
4926 	}
4927 
4928 out:
4929 	return (zio);
4930 }
4931 
4932 
4933 /*
4934  * Called by RAID-Z to ensure we don't compute the checksum twice.
4935  */
4936 void
4937 zio_checksum_verified(zio_t *zio)
4938 {
4939 	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
4940 }
4941 
4942 /*
4943  * Report Direct I/O checksum verify error and create ZED event.
4944  */
4945 void
4946 zio_dio_chksum_verify_error_report(zio_t *zio)
4947 {
4948 	ASSERT(zio->io_flags & ZIO_FLAG_DIO_CHKSUM_ERR);
4949 
4950 	if (zio->io_child_type == ZIO_CHILD_LOGICAL)
4951 		return;
4952 
4953 	mutex_enter(&zio->io_vd->vdev_stat_lock);
4954 	zio->io_vd->vdev_stat.vs_dio_verify_errors++;
4955 	mutex_exit(&zio->io_vd->vdev_stat_lock);
4956 	if (zio->io_type == ZIO_TYPE_WRITE) {
4957 		/*
4958 		 * Convert checksum error for writes into EIO.
4959 		 */
4960 		zio->io_error = SET_ERROR(EIO);
4961 		/*
4962 		 * Report dio_verify_wr ZED event.
4963 		 */
4964 		(void) zfs_ereport_post(FM_EREPORT_ZFS_DIO_VERIFY_WR,
4965 		    zio->io_spa,  zio->io_vd, &zio->io_bookmark, zio, 0);
4966 	} else {
4967 		/*
4968 		 * Report dio_verify_rd ZED event.
4969 		 */
4970 		(void) zfs_ereport_post(FM_EREPORT_ZFS_DIO_VERIFY_RD,
4971 		    zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0);
4972 	}
4973 }
4974 
4975 /*
4976  * ==========================================================================
4977  * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
4978  * An error of 0 indicates success.  ENXIO indicates whole-device failure,
4979  * which may be transient (e.g. unplugged) or permanent.  ECKSUM and EIO
4980  * indicate errors that are specific to one I/O, and most likely permanent.
4981  * Any other error is presumed to be worse because we weren't expecting it.
4982  * ==========================================================================
4983  */
4984 int
4985 zio_worst_error(int e1, int e2)
4986 {
4987 	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
4988 	int r1, r2;
4989 
4990 	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
4991 		if (e1 == zio_error_rank[r1])
4992 			break;
4993 
4994 	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
4995 		if (e2 == zio_error_rank[r2])
4996 			break;
4997 
4998 	return (r1 > r2 ? e1 : e2);
4999 }
5000 
5001 /*
5002  * ==========================================================================
5003  * I/O completion
5004  * ==========================================================================
5005  */
5006 static zio_t *
5007 zio_ready(zio_t *zio)
5008 {
5009 	blkptr_t *bp = zio->io_bp;
5010 	zio_t *pio, *pio_next;
5011 	zio_link_t *zl = NULL;
5012 
5013 	if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
5014 	    ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT, ZIO_WAIT_READY)) {
5015 		return (NULL);
5016 	}
5017 
5018 	if (zio->io_ready) {
5019 		ASSERT(IO_IS_ALLOCATING(zio));
5020 		ASSERT(BP_GET_LOGICAL_BIRTH(bp) == zio->io_txg ||
5021 		    BP_IS_HOLE(bp) || (zio->io_flags & ZIO_FLAG_NOPWRITE));
5022 		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
5023 
5024 		zio->io_ready(zio);
5025 	}
5026 
5027 #ifdef ZFS_DEBUG
5028 	if (bp != NULL && bp != &zio->io_bp_copy)
5029 		zio->io_bp_copy = *bp;
5030 #endif
5031 
5032 	if (zio->io_error != 0) {
5033 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
5034 
5035 		if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
5036 			ASSERT(IO_IS_ALLOCATING(zio));
5037 			ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
5038 			ASSERT(zio->io_metaslab_class != NULL);
5039 			ASSERT(ZIO_HAS_ALLOCATOR(zio));
5040 
5041 			/*
5042 			 * We were unable to allocate anything, unreserve and
5043 			 * issue the next I/O to allocate.
5044 			 */
5045 			metaslab_class_throttle_unreserve(
5046 			    zio->io_metaslab_class, zio->io_prop.zp_copies,
5047 			    zio->io_allocator, zio);
5048 			zio_allocate_dispatch(zio->io_spa, zio->io_allocator);
5049 		}
5050 	}
5051 
5052 	mutex_enter(&zio->io_lock);
5053 	zio->io_state[ZIO_WAIT_READY] = 1;
5054 	pio = zio_walk_parents(zio, &zl);
5055 	mutex_exit(&zio->io_lock);
5056 
5057 	/*
5058 	 * As we notify zio's parents, new parents could be added.
5059 	 * New parents go to the head of zio's io_parent_list, however,
5060 	 * so we will (correctly) not notify them.  The remainder of zio's
5061 	 * io_parent_list, from 'pio_next' onward, cannot change because
5062 	 * all parents must wait for us to be done before they can be done.
5063 	 */
5064 	for (; pio != NULL; pio = pio_next) {
5065 		pio_next = zio_walk_parents(zio, &zl);
5066 		zio_notify_parent(pio, zio, ZIO_WAIT_READY, NULL);
5067 	}
5068 
5069 	if (zio->io_flags & ZIO_FLAG_NODATA) {
5070 		if (bp != NULL && BP_IS_GANG(bp)) {
5071 			zio->io_flags &= ~ZIO_FLAG_NODATA;
5072 		} else {
5073 			ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE);
5074 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
5075 		}
5076 	}
5077 
5078 	if (zio_injection_enabled &&
5079 	    zio->io_spa->spa_syncing_txg == zio->io_txg)
5080 		zio_handle_ignored_writes(zio);
5081 
5082 	return (zio);
5083 }
5084 
5085 /*
5086  * Update the allocation throttle accounting.
5087  */
5088 static void
5089 zio_dva_throttle_done(zio_t *zio)
5090 {
5091 	zio_t *lio __maybe_unused = zio->io_logical;
5092 	zio_t *pio = zio_unique_parent(zio);
5093 	vdev_t *vd = zio->io_vd;
5094 	int flags = METASLAB_ASYNC_ALLOC;
5095 
5096 	ASSERT3P(zio->io_bp, !=, NULL);
5097 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
5098 	ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE);
5099 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
5100 	ASSERT(vd != NULL);
5101 	ASSERT3P(vd, ==, vd->vdev_top);
5102 	ASSERT(zio_injection_enabled || !(zio->io_flags & ZIO_FLAG_IO_RETRY));
5103 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
5104 	ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING);
5105 	ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE));
5106 	ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA));
5107 
5108 	/*
5109 	 * Parents of gang children can have two flavors -- ones that
5110 	 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set)
5111 	 * and ones that allocated the constituent blocks. The allocation
5112 	 * throttle needs to know the allocating parent zio so we must find
5113 	 * it here.
5114 	 */
5115 	if (pio->io_child_type == ZIO_CHILD_GANG) {
5116 		/*
5117 		 * If our parent is a rewrite gang child then our grandparent
5118 		 * would have been the one that performed the allocation.
5119 		 */
5120 		if (pio->io_flags & ZIO_FLAG_IO_REWRITE)
5121 			pio = zio_unique_parent(pio);
5122 		flags |= METASLAB_GANG_CHILD;
5123 	}
5124 
5125 	ASSERT(IO_IS_ALLOCATING(pio));
5126 	ASSERT(ZIO_HAS_ALLOCATOR(pio));
5127 	ASSERT3P(zio, !=, zio->io_logical);
5128 	ASSERT(zio->io_logical != NULL);
5129 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
5130 	ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE);
5131 	ASSERT(zio->io_metaslab_class != NULL);
5132 
5133 	mutex_enter(&pio->io_lock);
5134 	metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags,
5135 	    pio->io_allocator, B_TRUE);
5136 	mutex_exit(&pio->io_lock);
5137 
5138 	metaslab_class_throttle_unreserve(zio->io_metaslab_class, 1,
5139 	    pio->io_allocator, pio);
5140 
5141 	/*
5142 	 * Call into the pipeline to see if there is more work that
5143 	 * needs to be done. If there is work to be done it will be
5144 	 * dispatched to another taskq thread.
5145 	 */
5146 	zio_allocate_dispatch(zio->io_spa, pio->io_allocator);
5147 }
5148 
5149 static zio_t *
5150 zio_done(zio_t *zio)
5151 {
5152 	/*
5153 	 * Always attempt to keep stack usage minimal here since
5154 	 * we can be called recursively up to 19 levels deep.
5155 	 */
5156 	const uint64_t psize = zio->io_size;
5157 	zio_t *pio, *pio_next;
5158 	zio_link_t *zl = NULL;
5159 
5160 	/*
5161 	 * If our children haven't all completed,
5162 	 * wait for them and then repeat this pipeline stage.
5163 	 */
5164 	if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) {
5165 		return (NULL);
5166 	}
5167 
5168 	/*
5169 	 * If the allocation throttle is enabled, then update the accounting.
5170 	 * We only track child I/Os that are part of an allocating async
5171 	 * write. We must do this since the allocation is performed
5172 	 * by the logical I/O but the actual write is done by child I/Os.
5173 	 */
5174 	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING &&
5175 	    zio->io_child_type == ZIO_CHILD_VDEV) {
5176 		ASSERT(zio->io_metaslab_class != NULL);
5177 		ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled);
5178 		zio_dva_throttle_done(zio);
5179 	}
5180 
5181 	/*
5182 	 * If the allocation throttle is enabled, verify that
5183 	 * we have decremented the refcounts for every I/O that was throttled.
5184 	 */
5185 	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
5186 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
5187 		ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
5188 		ASSERT(zio->io_bp != NULL);
5189 		ASSERT(ZIO_HAS_ALLOCATOR(zio));
5190 
5191 		metaslab_group_alloc_verify(zio->io_spa, zio->io_bp, zio,
5192 		    zio->io_allocator);
5193 		VERIFY(zfs_refcount_not_held(&zio->io_metaslab_class->
5194 		    mc_allocator[zio->io_allocator].mca_alloc_slots, zio));
5195 	}
5196 
5197 
5198 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
5199 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
5200 			ASSERT(zio->io_children[c][w] == 0);
5201 
5202 	if (zio->io_bp != NULL && !BP_IS_EMBEDDED(zio->io_bp)) {
5203 		ASSERT(zio->io_bp->blk_pad[0] == 0);
5204 		ASSERT(zio->io_bp->blk_pad[1] == 0);
5205 		ASSERT(memcmp(zio->io_bp, &zio->io_bp_copy,
5206 		    sizeof (blkptr_t)) == 0 ||
5207 		    (zio->io_bp == zio_unique_parent(zio)->io_bp));
5208 		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) &&
5209 		    zio->io_bp_override == NULL &&
5210 		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
5211 			ASSERT3U(zio->io_prop.zp_copies, <=,
5212 			    BP_GET_NDVAS(zio->io_bp));
5213 			ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 ||
5214 			    (BP_COUNT_GANG(zio->io_bp) ==
5215 			    BP_GET_NDVAS(zio->io_bp)));
5216 		}
5217 		if (zio->io_flags & ZIO_FLAG_NOPWRITE)
5218 			VERIFY(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
5219 	}
5220 
5221 	/*
5222 	 * If there were child vdev/gang/ddt errors, they apply to us now.
5223 	 */
5224 	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
5225 	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
5226 	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
5227 
5228 	/*
5229 	 * If the I/O on the transformed data was successful, generate any
5230 	 * checksum reports now while we still have the transformed data.
5231 	 */
5232 	if (zio->io_error == 0) {
5233 		while (zio->io_cksum_report != NULL) {
5234 			zio_cksum_report_t *zcr = zio->io_cksum_report;
5235 			uint64_t align = zcr->zcr_align;
5236 			uint64_t asize = P2ROUNDUP(psize, align);
5237 			abd_t *adata = zio->io_abd;
5238 
5239 			if (adata != NULL && asize != psize) {
5240 				adata = abd_alloc(asize, B_TRUE);
5241 				abd_copy(adata, zio->io_abd, psize);
5242 				abd_zero_off(adata, psize, asize - psize);
5243 			}
5244 
5245 			zio->io_cksum_report = zcr->zcr_next;
5246 			zcr->zcr_next = NULL;
5247 			zcr->zcr_finish(zcr, adata);
5248 			zfs_ereport_free_checksum(zcr);
5249 
5250 			if (adata != NULL && asize != psize)
5251 				abd_free(adata);
5252 		}
5253 	}
5254 
5255 	zio_pop_transforms(zio);	/* note: may set zio->io_error */
5256 
5257 	vdev_stat_update(zio, psize);
5258 
5259 	/*
5260 	 * If this I/O is attached to a particular vdev is slow, exceeding
5261 	 * 30 seconds to complete, post an error described the I/O delay.
5262 	 * We ignore these errors if the device is currently unavailable.
5263 	 */
5264 	if (zio->io_delay >= MSEC2NSEC(zio_slow_io_ms)) {
5265 		if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) {
5266 			/*
5267 			 * We want to only increment our slow IO counters if
5268 			 * the IO is valid (i.e. not if the drive is removed).
5269 			 *
5270 			 * zfs_ereport_post() will also do these checks, but
5271 			 * it can also ratelimit and have other failures, so we
5272 			 * need to increment the slow_io counters independent
5273 			 * of it.
5274 			 */
5275 			if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY,
5276 			    zio->io_spa, zio->io_vd, zio)) {
5277 				mutex_enter(&zio->io_vd->vdev_stat_lock);
5278 				zio->io_vd->vdev_stat.vs_slow_ios++;
5279 				mutex_exit(&zio->io_vd->vdev_stat_lock);
5280 
5281 				(void) zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
5282 				    zio->io_spa, zio->io_vd, &zio->io_bookmark,
5283 				    zio, 0);
5284 			}
5285 		}
5286 	}
5287 
5288 	if (zio->io_error) {
5289 		/*
5290 		 * If this I/O is attached to a particular vdev,
5291 		 * generate an error message describing the I/O failure
5292 		 * at the block level.  We ignore these errors if the
5293 		 * device is currently unavailable.
5294 		 */
5295 		if (zio->io_error != ECKSUM && zio->io_vd != NULL &&
5296 		    !vdev_is_dead(zio->io_vd) &&
5297 		    !(zio->io_flags & ZIO_FLAG_DIO_CHKSUM_ERR)) {
5298 			int ret = zfs_ereport_post(FM_EREPORT_ZFS_IO,
5299 			    zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0);
5300 			if (ret != EALREADY) {
5301 				mutex_enter(&zio->io_vd->vdev_stat_lock);
5302 				if (zio->io_type == ZIO_TYPE_READ)
5303 					zio->io_vd->vdev_stat.vs_read_errors++;
5304 				else if (zio->io_type == ZIO_TYPE_WRITE)
5305 					zio->io_vd->vdev_stat.vs_write_errors++;
5306 				mutex_exit(&zio->io_vd->vdev_stat_lock);
5307 			}
5308 		}
5309 
5310 		if ((zio->io_error == EIO || !(zio->io_flags &
5311 		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
5312 		    !(zio->io_flags & ZIO_FLAG_DIO_CHKSUM_ERR) &&
5313 		    zio == zio->io_logical) {
5314 			/*
5315 			 * For logical I/O requests, tell the SPA to log the
5316 			 * error and generate a logical data ereport.
5317 			 */
5318 			spa_log_error(zio->io_spa, &zio->io_bookmark,
5319 			    BP_GET_LOGICAL_BIRTH(zio->io_bp));
5320 			(void) zfs_ereport_post(FM_EREPORT_ZFS_DATA,
5321 			    zio->io_spa, NULL, &zio->io_bookmark, zio, 0);
5322 		}
5323 	}
5324 
5325 	if (zio->io_error && zio == zio->io_logical) {
5326 		/*
5327 		 * Determine whether zio should be reexecuted.  This will
5328 		 * propagate all the way to the root via zio_notify_parent().
5329 		 */
5330 		ASSERT(zio->io_vd == NULL && zio->io_bp != NULL);
5331 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
5332 
5333 		if (IO_IS_ALLOCATING(zio) &&
5334 		    !(zio->io_flags & ZIO_FLAG_CANFAIL) &&
5335 		    !(zio->io_flags & ZIO_FLAG_DIO_CHKSUM_ERR)) {
5336 			if (zio->io_error != ENOSPC)
5337 				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
5338 			else
5339 				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
5340 		}
5341 
5342 		if ((zio->io_type == ZIO_TYPE_READ ||
5343 		    zio->io_type == ZIO_TYPE_FREE) &&
5344 		    !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
5345 		    zio->io_error == ENXIO &&
5346 		    spa_load_state(zio->io_spa) == SPA_LOAD_NONE &&
5347 		    spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE)
5348 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
5349 
5350 		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
5351 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
5352 
5353 		/*
5354 		 * Here is a possibly good place to attempt to do
5355 		 * either combinatorial reconstruction or error correction
5356 		 * based on checksums.  It also might be a good place
5357 		 * to send out preliminary ereports before we suspend
5358 		 * processing.
5359 		 */
5360 	}
5361 
5362 	/*
5363 	 * If there were logical child errors, they apply to us now.
5364 	 * We defer this until now to avoid conflating logical child
5365 	 * errors with errors that happened to the zio itself when
5366 	 * updating vdev stats and reporting FMA events above.
5367 	 */
5368 	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
5369 
5370 	if ((zio->io_error || zio->io_reexecute) &&
5371 	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
5372 	    !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
5373 		zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp);
5374 
5375 	zio_gang_tree_free(&zio->io_gang_tree);
5376 
5377 	/*
5378 	 * Godfather I/Os should never suspend.
5379 	 */
5380 	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
5381 	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
5382 		zio->io_reexecute &= ~ZIO_REEXECUTE_SUSPEND;
5383 
5384 	if (zio->io_reexecute) {
5385 		/*
5386 		 * A Direct I/O operation that has a checksum verify error
5387 		 * should not attempt to reexecute. Instead, the error should
5388 		 * just be propagated back.
5389 		 */
5390 		ASSERT(!(zio->io_flags & ZIO_FLAG_DIO_CHKSUM_ERR));
5391 
5392 		/*
5393 		 * This is a logical I/O that wants to reexecute.
5394 		 *
5395 		 * Reexecute is top-down.  When an i/o fails, if it's not
5396 		 * the root, it simply notifies its parent and sticks around.
5397 		 * The parent, seeing that it still has children in zio_done(),
5398 		 * does the same.  This percolates all the way up to the root.
5399 		 * The root i/o will reexecute or suspend the entire tree.
5400 		 *
5401 		 * This approach ensures that zio_reexecute() honors
5402 		 * all the original i/o dependency relationships, e.g.
5403 		 * parents not executing until children are ready.
5404 		 */
5405 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
5406 
5407 		zio->io_gang_leader = NULL;
5408 
5409 		mutex_enter(&zio->io_lock);
5410 		zio->io_state[ZIO_WAIT_DONE] = 1;
5411 		mutex_exit(&zio->io_lock);
5412 
5413 		/*
5414 		 * "The Godfather" I/O monitors its children but is
5415 		 * not a true parent to them. It will track them through
5416 		 * the pipeline but severs its ties whenever they get into
5417 		 * trouble (e.g. suspended). This allows "The Godfather"
5418 		 * I/O to return status without blocking.
5419 		 */
5420 		zl = NULL;
5421 		for (pio = zio_walk_parents(zio, &zl); pio != NULL;
5422 		    pio = pio_next) {
5423 			zio_link_t *remove_zl = zl;
5424 			pio_next = zio_walk_parents(zio, &zl);
5425 
5426 			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
5427 			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
5428 				zio_remove_child(pio, zio, remove_zl);
5429 				/*
5430 				 * This is a rare code path, so we don't
5431 				 * bother with "next_to_execute".
5432 				 */
5433 				zio_notify_parent(pio, zio, ZIO_WAIT_DONE,
5434 				    NULL);
5435 			}
5436 		}
5437 
5438 		if ((pio = zio_unique_parent(zio)) != NULL) {
5439 			/*
5440 			 * We're not a root i/o, so there's nothing to do
5441 			 * but notify our parent.  Don't propagate errors
5442 			 * upward since we haven't permanently failed yet.
5443 			 */
5444 			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
5445 			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
5446 			/*
5447 			 * This is a rare code path, so we don't bother with
5448 			 * "next_to_execute".
5449 			 */
5450 			zio_notify_parent(pio, zio, ZIO_WAIT_DONE, NULL);
5451 		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
5452 			/*
5453 			 * We'd fail again if we reexecuted now, so suspend
5454 			 * until conditions improve (e.g. device comes online).
5455 			 */
5456 			zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR);
5457 		} else {
5458 			/*
5459 			 * Reexecution is potentially a huge amount of work.
5460 			 * Hand it off to the otherwise-unused claim taskq.
5461 			 */
5462 			spa_taskq_dispatch(zio->io_spa,
5463 			    ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE,
5464 			    zio_reexecute, zio, B_FALSE);
5465 		}
5466 		return (NULL);
5467 	}
5468 
5469 	ASSERT(list_is_empty(&zio->io_child_list));
5470 	ASSERT(zio->io_reexecute == 0);
5471 	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
5472 
5473 	/*
5474 	 * Report any checksum errors, since the I/O is complete.
5475 	 */
5476 	while (zio->io_cksum_report != NULL) {
5477 		zio_cksum_report_t *zcr = zio->io_cksum_report;
5478 		zio->io_cksum_report = zcr->zcr_next;
5479 		zcr->zcr_next = NULL;
5480 		zcr->zcr_finish(zcr, NULL);
5481 		zfs_ereport_free_checksum(zcr);
5482 	}
5483 
5484 	/*
5485 	 * It is the responsibility of the done callback to ensure that this
5486 	 * particular zio is no longer discoverable for adoption, and as
5487 	 * such, cannot acquire any new parents.
5488 	 */
5489 	if (zio->io_done)
5490 		zio->io_done(zio);
5491 
5492 	mutex_enter(&zio->io_lock);
5493 	zio->io_state[ZIO_WAIT_DONE] = 1;
5494 	mutex_exit(&zio->io_lock);
5495 
5496 	/*
5497 	 * We are done executing this zio.  We may want to execute a parent
5498 	 * next.  See the comment in zio_notify_parent().
5499 	 */
5500 	zio_t *next_to_execute = NULL;
5501 	zl = NULL;
5502 	for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) {
5503 		zio_link_t *remove_zl = zl;
5504 		pio_next = zio_walk_parents(zio, &zl);
5505 		zio_remove_child(pio, zio, remove_zl);
5506 		zio_notify_parent(pio, zio, ZIO_WAIT_DONE, &next_to_execute);
5507 	}
5508 
5509 	if (zio->io_waiter != NULL) {
5510 		mutex_enter(&zio->io_lock);
5511 		zio->io_executor = NULL;
5512 		cv_broadcast(&zio->io_cv);
5513 		mutex_exit(&zio->io_lock);
5514 	} else {
5515 		zio_destroy(zio);
5516 	}
5517 
5518 	return (next_to_execute);
5519 }
5520 
5521 /*
5522  * ==========================================================================
5523  * I/O pipeline definition
5524  * ==========================================================================
5525  */
5526 static zio_pipe_stage_t *zio_pipeline[] = {
5527 	NULL,
5528 	zio_read_bp_init,
5529 	zio_write_bp_init,
5530 	zio_free_bp_init,
5531 	zio_issue_async,
5532 	zio_write_compress,
5533 	zio_encrypt,
5534 	zio_checksum_generate,
5535 	zio_nop_write,
5536 	zio_brt_free,
5537 	zio_ddt_read_start,
5538 	zio_ddt_read_done,
5539 	zio_ddt_write,
5540 	zio_ddt_free,
5541 	zio_gang_assemble,
5542 	zio_gang_issue,
5543 	zio_dva_throttle,
5544 	zio_dva_allocate,
5545 	zio_dva_free,
5546 	zio_dva_claim,
5547 	zio_ready,
5548 	zio_vdev_io_start,
5549 	zio_vdev_io_done,
5550 	zio_vdev_io_assess,
5551 	zio_checksum_verify,
5552 	zio_dio_checksum_verify,
5553 	zio_done
5554 };
5555 
5556 
5557 
5558 
5559 /*
5560  * Compare two zbookmark_phys_t's to see which we would reach first in a
5561  * pre-order traversal of the object tree.
5562  *
5563  * This is simple in every case aside from the meta-dnode object. For all other
5564  * objects, we traverse them in order (object 1 before object 2, and so on).
5565  * However, all of these objects are traversed while traversing object 0, since
5566  * the data it points to is the list of objects.  Thus, we need to convert to a
5567  * canonical representation so we can compare meta-dnode bookmarks to
5568  * non-meta-dnode bookmarks.
5569  *
5570  * We do this by calculating "equivalents" for each field of the zbookmark.
5571  * zbookmarks outside of the meta-dnode use their own object and level, and
5572  * calculate the level 0 equivalent (the first L0 blkid that is contained in the
5573  * blocks this bookmark refers to) by multiplying their blkid by their span
5574  * (the number of L0 blocks contained within one block at their level).
5575  * zbookmarks inside the meta-dnode calculate their object equivalent
5576  * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
5577  * level + 1<<31 (any value larger than a level could ever be) for their level.
5578  * This causes them to always compare before a bookmark in their object
5579  * equivalent, compare appropriately to bookmarks in other objects, and to
5580  * compare appropriately to other bookmarks in the meta-dnode.
5581  */
5582 int
5583 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
5584     const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
5585 {
5586 	/*
5587 	 * These variables represent the "equivalent" values for the zbookmark,
5588 	 * after converting zbookmarks inside the meta dnode to their
5589 	 * normal-object equivalents.
5590 	 */
5591 	uint64_t zb1obj, zb2obj;
5592 	uint64_t zb1L0, zb2L0;
5593 	uint64_t zb1level, zb2level;
5594 
5595 	if (zb1->zb_object == zb2->zb_object &&
5596 	    zb1->zb_level == zb2->zb_level &&
5597 	    zb1->zb_blkid == zb2->zb_blkid)
5598 		return (0);
5599 
5600 	IMPLY(zb1->zb_level > 0, ibs1 >= SPA_MINBLOCKSHIFT);
5601 	IMPLY(zb2->zb_level > 0, ibs2 >= SPA_MINBLOCKSHIFT);
5602 
5603 	/*
5604 	 * BP_SPANB calculates the span in blocks.
5605 	 */
5606 	zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
5607 	zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
5608 
5609 	if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
5610 		zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
5611 		zb1L0 = 0;
5612 		zb1level = zb1->zb_level + COMPARE_META_LEVEL;
5613 	} else {
5614 		zb1obj = zb1->zb_object;
5615 		zb1level = zb1->zb_level;
5616 	}
5617 
5618 	if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
5619 		zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
5620 		zb2L0 = 0;
5621 		zb2level = zb2->zb_level + COMPARE_META_LEVEL;
5622 	} else {
5623 		zb2obj = zb2->zb_object;
5624 		zb2level = zb2->zb_level;
5625 	}
5626 
5627 	/* Now that we have a canonical representation, do the comparison. */
5628 	if (zb1obj != zb2obj)
5629 		return (zb1obj < zb2obj ? -1 : 1);
5630 	else if (zb1L0 != zb2L0)
5631 		return (zb1L0 < zb2L0 ? -1 : 1);
5632 	else if (zb1level != zb2level)
5633 		return (zb1level > zb2level ? -1 : 1);
5634 	/*
5635 	 * This can (theoretically) happen if the bookmarks have the same object
5636 	 * and level, but different blkids, if the block sizes are not the same.
5637 	 * There is presently no way to change the indirect block sizes
5638 	 */
5639 	return (0);
5640 }
5641 
5642 /*
5643  *  This function checks the following: given that last_block is the place that
5644  *  our traversal stopped last time, does that guarantee that we've visited
5645  *  every node under subtree_root?  Therefore, we can't just use the raw output
5646  *  of zbookmark_compare.  We have to pass in a modified version of
5647  *  subtree_root; by incrementing the block id, and then checking whether
5648  *  last_block is before or equal to that, we can tell whether or not having
5649  *  visited last_block implies that all of subtree_root's children have been
5650  *  visited.
5651  */
5652 boolean_t
5653 zbookmark_subtree_completed(const dnode_phys_t *dnp,
5654     const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
5655 {
5656 	zbookmark_phys_t mod_zb = *subtree_root;
5657 	mod_zb.zb_blkid++;
5658 	ASSERT0(last_block->zb_level);
5659 
5660 	/* The objset_phys_t isn't before anything. */
5661 	if (dnp == NULL)
5662 		return (B_FALSE);
5663 
5664 	/*
5665 	 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
5666 	 * data block size in sectors, because that variable is only used if
5667 	 * the bookmark refers to a block in the meta-dnode.  Since we don't
5668 	 * know without examining it what object it refers to, and there's no
5669 	 * harm in passing in this value in other cases, we always pass it in.
5670 	 *
5671 	 * We pass in 0 for the indirect block size shift because zb2 must be
5672 	 * level 0.  The indirect block size is only used to calculate the span
5673 	 * of the bookmark, but since the bookmark must be level 0, the span is
5674 	 * always 1, so the math works out.
5675 	 *
5676 	 * If you make changes to how the zbookmark_compare code works, be sure
5677 	 * to make sure that this code still works afterwards.
5678 	 */
5679 	return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
5680 	    1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
5681 	    last_block) <= 0);
5682 }
5683 
5684 /*
5685  * This function is similar to zbookmark_subtree_completed(), but returns true
5686  * if subtree_root is equal or ahead of last_block, i.e. still to be done.
5687  */
5688 boolean_t
5689 zbookmark_subtree_tbd(const dnode_phys_t *dnp,
5690     const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
5691 {
5692 	ASSERT0(last_block->zb_level);
5693 	if (dnp == NULL)
5694 		return (B_FALSE);
5695 	return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
5696 	    1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, subtree_root,
5697 	    last_block) >= 0);
5698 }
5699 
5700 EXPORT_SYMBOL(zio_type_name);
5701 EXPORT_SYMBOL(zio_buf_alloc);
5702 EXPORT_SYMBOL(zio_data_buf_alloc);
5703 EXPORT_SYMBOL(zio_buf_free);
5704 EXPORT_SYMBOL(zio_data_buf_free);
5705 
5706 ZFS_MODULE_PARAM(zfs_zio, zio_, slow_io_ms, INT, ZMOD_RW,
5707 	"Max I/O completion time (milliseconds) before marking it as slow");
5708 
5709 ZFS_MODULE_PARAM(zfs_zio, zio_, requeue_io_start_cut_in_line, INT, ZMOD_RW,
5710 	"Prioritize requeued I/O");
5711 
5712 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_deferred_free,  UINT, ZMOD_RW,
5713 	"Defer frees starting in this pass");
5714 
5715 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_dont_compress, UINT, ZMOD_RW,
5716 	"Don't compress starting in this pass");
5717 
5718 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_rewrite, UINT, ZMOD_RW,
5719 	"Rewrite new bps starting in this pass");
5720 
5721 ZFS_MODULE_PARAM(zfs_zio, zio_, dva_throttle_enabled, INT, ZMOD_RW,
5722 	"Throttle block allocations in the ZIO pipeline");
5723 
5724 ZFS_MODULE_PARAM(zfs_zio, zio_, deadman_log_all, INT, ZMOD_RW,
5725 	"Log all slow ZIOs, not just those with vdevs");
5726