1 // SPDX-License-Identifier: CDDL-1.0 2 /* 3 * CDDL HEADER START 4 * 5 * The contents of this file are subject to the terms of the 6 * Common Development and Distribution License (the "License"). 7 * You may not use this file except in compliance with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or https://opensource.org/licenses/CDDL-1.0. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2022 by Delphix. All rights reserved. 25 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2017, Intel Corporation. 27 * Copyright (c) 2019, 2023, 2024, 2025, Klara, Inc. 28 * Copyright (c) 2019, Allan Jude 29 * Copyright (c) 2021, Datto, Inc. 30 * Copyright (c) 2021, 2024 by George Melikov. All rights reserved. 31 */ 32 33 #include <sys/sysmacros.h> 34 #include <sys/zfs_context.h> 35 #include <sys/fm/fs/zfs.h> 36 #include <sys/spa.h> 37 #include <sys/txg.h> 38 #include <sys/spa_impl.h> 39 #include <sys/vdev_impl.h> 40 #include <sys/vdev_trim.h> 41 #include <sys/zio_impl.h> 42 #include <sys/zio_compress.h> 43 #include <sys/zio_checksum.h> 44 #include <sys/dmu_objset.h> 45 #include <sys/arc.h> 46 #include <sys/brt.h> 47 #include <sys/ddt.h> 48 #include <sys/blkptr.h> 49 #include <sys/zfeature.h> 50 #include <sys/dsl_scan.h> 51 #include <sys/metaslab_impl.h> 52 #include <sys/time.h> 53 #include <sys/trace_zfs.h> 54 #include <sys/abd.h> 55 #include <sys/dsl_crypt.h> 56 #include <cityhash.h> 57 58 /* 59 * ========================================================================== 60 * I/O type descriptions 61 * ========================================================================== 62 */ 63 const char *const zio_type_name[ZIO_TYPES] = { 64 /* 65 * Note: Linux kernel thread name length is limited 66 * so these names will differ from upstream open zfs. 67 */ 68 "z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_flush", "z_trim" 69 }; 70 71 int zio_dva_throttle_enabled = B_TRUE; 72 static int zio_deadman_log_all = B_FALSE; 73 74 /* 75 * ========================================================================== 76 * I/O kmem caches 77 * ========================================================================== 78 */ 79 static kmem_cache_t *zio_cache; 80 static kmem_cache_t *zio_link_cache; 81 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 82 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 83 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 84 static uint64_t zio_buf_cache_allocs[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 85 static uint64_t zio_buf_cache_frees[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 86 #endif 87 88 /* Mark IOs as "slow" if they take longer than 30 seconds */ 89 static uint_t zio_slow_io_ms = (30 * MILLISEC); 90 91 #define BP_SPANB(indblkshift, level) \ 92 (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT))) 93 #define COMPARE_META_LEVEL 0x80000000ul 94 /* 95 * The following actions directly effect the spa's sync-to-convergence logic. 96 * The values below define the sync pass when we start performing the action. 97 * Care should be taken when changing these values as they directly impact 98 * spa_sync() performance. Tuning these values may introduce subtle performance 99 * pathologies and should only be done in the context of performance analysis. 100 * These tunables will eventually be removed and replaced with #defines once 101 * enough analysis has been done to determine optimal values. 102 * 103 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that 104 * regular blocks are not deferred. 105 * 106 * Starting in sync pass 8 (zfs_sync_pass_dont_compress), we disable 107 * compression (including of metadata). In practice, we don't have this 108 * many sync passes, so this has no effect. 109 * 110 * The original intent was that disabling compression would help the sync 111 * passes to converge. However, in practice disabling compression increases 112 * the average number of sync passes, because when we turn compression off, a 113 * lot of block's size will change and thus we have to re-allocate (not 114 * overwrite) them. It also increases the number of 128KB allocations (e.g. 115 * for indirect blocks and spacemaps) because these will not be compressed. 116 * The 128K allocations are especially detrimental to performance on highly 117 * fragmented systems, which may have very few free segments of this size, 118 * and may need to load new metaslabs to satisfy 128K allocations. 119 */ 120 121 /* defer frees starting in this pass */ 122 uint_t zfs_sync_pass_deferred_free = 2; 123 124 /* don't compress starting in this pass */ 125 static uint_t zfs_sync_pass_dont_compress = 8; 126 127 /* rewrite new bps starting in this pass */ 128 static uint_t zfs_sync_pass_rewrite = 2; 129 130 /* 131 * An allocating zio is one that either currently has the DVA allocate 132 * stage set or will have it later in its lifetime. 133 */ 134 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE) 135 136 /* 137 * Enable smaller cores by excluding metadata 138 * allocations as well. 139 */ 140 int zio_exclude_metadata = 0; 141 static int zio_requeue_io_start_cut_in_line = 1; 142 143 #ifdef ZFS_DEBUG 144 static const int zio_buf_debug_limit = 16384; 145 #else 146 static const int zio_buf_debug_limit = 0; 147 #endif 148 149 typedef struct zio_stats { 150 kstat_named_t ziostat_total_allocations; 151 kstat_named_t ziostat_alloc_class_fallbacks; 152 kstat_named_t ziostat_gang_writes; 153 kstat_named_t ziostat_gang_multilevel; 154 } zio_stats_t; 155 156 static zio_stats_t zio_stats = { 157 { "total_allocations", KSTAT_DATA_UINT64 }, 158 { "alloc_class_fallbacks", KSTAT_DATA_UINT64 }, 159 { "gang_writes", KSTAT_DATA_UINT64 }, 160 { "gang_multilevel", KSTAT_DATA_UINT64 }, 161 }; 162 163 struct { 164 wmsum_t ziostat_total_allocations; 165 wmsum_t ziostat_alloc_class_fallbacks; 166 wmsum_t ziostat_gang_writes; 167 wmsum_t ziostat_gang_multilevel; 168 } ziostat_sums; 169 170 #define ZIOSTAT_BUMP(stat) wmsum_add(&ziostat_sums.stat, 1); 171 172 static kstat_t *zio_ksp; 173 174 static inline void __zio_execute(zio_t *zio); 175 176 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t); 177 178 static int 179 zio_kstats_update(kstat_t *ksp, int rw) 180 { 181 zio_stats_t *zs = ksp->ks_data; 182 if (rw == KSTAT_WRITE) 183 return (EACCES); 184 185 zs->ziostat_total_allocations.value.ui64 = 186 wmsum_value(&ziostat_sums.ziostat_total_allocations); 187 zs->ziostat_alloc_class_fallbacks.value.ui64 = 188 wmsum_value(&ziostat_sums.ziostat_alloc_class_fallbacks); 189 zs->ziostat_gang_writes.value.ui64 = 190 wmsum_value(&ziostat_sums.ziostat_gang_writes); 191 zs->ziostat_gang_multilevel.value.ui64 = 192 wmsum_value(&ziostat_sums.ziostat_gang_multilevel); 193 return (0); 194 } 195 196 void 197 zio_init(void) 198 { 199 size_t c; 200 201 zio_cache = kmem_cache_create("zio_cache", 202 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 203 zio_link_cache = kmem_cache_create("zio_link_cache", 204 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 205 206 wmsum_init(&ziostat_sums.ziostat_total_allocations, 0); 207 wmsum_init(&ziostat_sums.ziostat_alloc_class_fallbacks, 0); 208 wmsum_init(&ziostat_sums.ziostat_gang_writes, 0); 209 wmsum_init(&ziostat_sums.ziostat_gang_multilevel, 0); 210 zio_ksp = kstat_create("zfs", 0, "zio_stats", 211 "misc", KSTAT_TYPE_NAMED, sizeof (zio_stats) / 212 sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 213 if (zio_ksp != NULL) { 214 zio_ksp->ks_data = &zio_stats; 215 zio_ksp->ks_update = zio_kstats_update; 216 kstat_install(zio_ksp); 217 } 218 219 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 220 size_t size = (c + 1) << SPA_MINBLOCKSHIFT; 221 size_t align, cflags, data_cflags; 222 char name[32]; 223 224 /* 225 * Create cache for each half-power of 2 size, starting from 226 * SPA_MINBLOCKSIZE. It should give us memory space efficiency 227 * of ~7/8, sufficient for transient allocations mostly using 228 * these caches. 229 */ 230 size_t p2 = size; 231 while (!ISP2(p2)) 232 p2 &= p2 - 1; 233 if (!IS_P2ALIGNED(size, p2 / 2)) 234 continue; 235 236 #ifndef _KERNEL 237 /* 238 * If we are using watchpoints, put each buffer on its own page, 239 * to eliminate the performance overhead of trapping to the 240 * kernel when modifying a non-watched buffer that shares the 241 * page with a watched buffer. 242 */ 243 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE)) 244 continue; 245 #endif 246 247 if (IS_P2ALIGNED(size, PAGESIZE)) 248 align = PAGESIZE; 249 else 250 align = 1 << (highbit64(size ^ (size - 1)) - 1); 251 252 cflags = (zio_exclude_metadata || size > zio_buf_debug_limit) ? 253 KMC_NODEBUG : 0; 254 data_cflags = KMC_NODEBUG; 255 if (abd_size_alloc_linear(size)) { 256 cflags |= KMC_RECLAIMABLE; 257 data_cflags |= KMC_RECLAIMABLE; 258 } 259 if (cflags == data_cflags) { 260 /* 261 * Resulting kmem caches would be identical. 262 * Save memory by creating only one. 263 */ 264 (void) snprintf(name, sizeof (name), 265 "zio_buf_comb_%lu", (ulong_t)size); 266 zio_buf_cache[c] = kmem_cache_create(name, size, align, 267 NULL, NULL, NULL, NULL, NULL, cflags); 268 zio_data_buf_cache[c] = zio_buf_cache[c]; 269 continue; 270 } 271 (void) snprintf(name, sizeof (name), "zio_buf_%lu", 272 (ulong_t)size); 273 zio_buf_cache[c] = kmem_cache_create(name, size, align, 274 NULL, NULL, NULL, NULL, NULL, cflags); 275 276 (void) snprintf(name, sizeof (name), "zio_data_buf_%lu", 277 (ulong_t)size); 278 zio_data_buf_cache[c] = kmem_cache_create(name, size, align, 279 NULL, NULL, NULL, NULL, NULL, data_cflags); 280 } 281 282 while (--c != 0) { 283 ASSERT(zio_buf_cache[c] != NULL); 284 if (zio_buf_cache[c - 1] == NULL) 285 zio_buf_cache[c - 1] = zio_buf_cache[c]; 286 287 ASSERT(zio_data_buf_cache[c] != NULL); 288 if (zio_data_buf_cache[c - 1] == NULL) 289 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c]; 290 } 291 292 zio_inject_init(); 293 294 lz4_init(); 295 } 296 297 void 298 zio_fini(void) 299 { 300 size_t n = SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; 301 302 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 303 for (size_t i = 0; i < n; i++) { 304 if (zio_buf_cache_allocs[i] != zio_buf_cache_frees[i]) 305 (void) printf("zio_fini: [%d] %llu != %llu\n", 306 (int)((i + 1) << SPA_MINBLOCKSHIFT), 307 (long long unsigned)zio_buf_cache_allocs[i], 308 (long long unsigned)zio_buf_cache_frees[i]); 309 } 310 #endif 311 312 /* 313 * The same kmem cache can show up multiple times in both zio_buf_cache 314 * and zio_data_buf_cache. Do a wasteful but trivially correct scan to 315 * sort it out. 316 */ 317 for (size_t i = 0; i < n; i++) { 318 kmem_cache_t *cache = zio_buf_cache[i]; 319 if (cache == NULL) 320 continue; 321 for (size_t j = i; j < n; j++) { 322 if (cache == zio_buf_cache[j]) 323 zio_buf_cache[j] = NULL; 324 if (cache == zio_data_buf_cache[j]) 325 zio_data_buf_cache[j] = NULL; 326 } 327 kmem_cache_destroy(cache); 328 } 329 330 for (size_t i = 0; i < n; i++) { 331 kmem_cache_t *cache = zio_data_buf_cache[i]; 332 if (cache == NULL) 333 continue; 334 for (size_t j = i; j < n; j++) { 335 if (cache == zio_data_buf_cache[j]) 336 zio_data_buf_cache[j] = NULL; 337 } 338 kmem_cache_destroy(cache); 339 } 340 341 for (size_t i = 0; i < n; i++) { 342 VERIFY0P(zio_buf_cache[i]); 343 VERIFY0P(zio_data_buf_cache[i]); 344 } 345 346 if (zio_ksp != NULL) { 347 kstat_delete(zio_ksp); 348 zio_ksp = NULL; 349 } 350 351 wmsum_fini(&ziostat_sums.ziostat_total_allocations); 352 wmsum_fini(&ziostat_sums.ziostat_alloc_class_fallbacks); 353 wmsum_fini(&ziostat_sums.ziostat_gang_writes); 354 wmsum_fini(&ziostat_sums.ziostat_gang_multilevel); 355 356 kmem_cache_destroy(zio_link_cache); 357 kmem_cache_destroy(zio_cache); 358 359 zio_inject_fini(); 360 361 lz4_fini(); 362 } 363 364 /* 365 * ========================================================================== 366 * Allocate and free I/O buffers 367 * ========================================================================== 368 */ 369 370 #if defined(ZFS_DEBUG) && defined(_KERNEL) 371 #define ZFS_ZIO_BUF_CANARY 1 372 #endif 373 374 #ifdef ZFS_ZIO_BUF_CANARY 375 static const ulong_t zio_buf_canary = (ulong_t)0xdeadc0dedead210b; 376 377 /* 378 * Use empty space after the buffer to detect overflows. 379 * 380 * Since zio_init() creates kmem caches only for certain set of buffer sizes, 381 * allocations of different sizes may have some unused space after the data. 382 * Filling part of that space with a known pattern on allocation and checking 383 * it on free should allow us to detect some buffer overflows. 384 */ 385 static void 386 zio_buf_put_canary(ulong_t *p, size_t size, kmem_cache_t **cache, size_t c) 387 { 388 size_t off = P2ROUNDUP(size, sizeof (ulong_t)); 389 ulong_t *canary = p + off / sizeof (ulong_t); 390 size_t asize = (c + 1) << SPA_MINBLOCKSHIFT; 391 if (c + 1 < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT && 392 cache[c] == cache[c + 1]) 393 asize = (c + 2) << SPA_MINBLOCKSHIFT; 394 for (; off < asize; canary++, off += sizeof (ulong_t)) 395 *canary = zio_buf_canary; 396 } 397 398 static void 399 zio_buf_check_canary(ulong_t *p, size_t size, kmem_cache_t **cache, size_t c) 400 { 401 size_t off = P2ROUNDUP(size, sizeof (ulong_t)); 402 ulong_t *canary = p + off / sizeof (ulong_t); 403 size_t asize = (c + 1) << SPA_MINBLOCKSHIFT; 404 if (c + 1 < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT && 405 cache[c] == cache[c + 1]) 406 asize = (c + 2) << SPA_MINBLOCKSHIFT; 407 for (; off < asize; canary++, off += sizeof (ulong_t)) { 408 if (unlikely(*canary != zio_buf_canary)) { 409 PANIC("ZIO buffer overflow %p (%zu) + %zu %#lx != %#lx", 410 p, size, (canary - p) * sizeof (ulong_t), 411 *canary, zio_buf_canary); 412 } 413 } 414 } 415 #endif 416 417 /* 418 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a 419 * crashdump if the kernel panics, so use it judiciously. Obviously, it's 420 * useful to inspect ZFS metadata, but if possible, we should avoid keeping 421 * excess / transient data in-core during a crashdump. 422 */ 423 void * 424 zio_buf_alloc(size_t size) 425 { 426 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 427 428 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 429 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 430 atomic_add_64(&zio_buf_cache_allocs[c], 1); 431 #endif 432 433 void *p = kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE); 434 #ifdef ZFS_ZIO_BUF_CANARY 435 zio_buf_put_canary(p, size, zio_buf_cache, c); 436 #endif 437 return (p); 438 } 439 440 /* 441 * Use zio_data_buf_alloc to allocate data. The data will not appear in a 442 * crashdump if the kernel panics. This exists so that we will limit the amount 443 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount 444 * of kernel heap dumped to disk when the kernel panics) 445 */ 446 void * 447 zio_data_buf_alloc(size_t size) 448 { 449 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 450 451 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 452 453 void *p = kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE); 454 #ifdef ZFS_ZIO_BUF_CANARY 455 zio_buf_put_canary(p, size, zio_data_buf_cache, c); 456 #endif 457 return (p); 458 } 459 460 void 461 zio_buf_free(void *buf, size_t size) 462 { 463 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 464 465 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 466 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 467 atomic_add_64(&zio_buf_cache_frees[c], 1); 468 #endif 469 470 #ifdef ZFS_ZIO_BUF_CANARY 471 zio_buf_check_canary(buf, size, zio_buf_cache, c); 472 #endif 473 kmem_cache_free(zio_buf_cache[c], buf); 474 } 475 476 void 477 zio_data_buf_free(void *buf, size_t size) 478 { 479 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 480 481 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 482 483 #ifdef ZFS_ZIO_BUF_CANARY 484 zio_buf_check_canary(buf, size, zio_data_buf_cache, c); 485 #endif 486 kmem_cache_free(zio_data_buf_cache[c], buf); 487 } 488 489 static void 490 zio_abd_free(void *abd, size_t size) 491 { 492 (void) size; 493 abd_free((abd_t *)abd); 494 } 495 496 /* 497 * ========================================================================== 498 * Push and pop I/O transform buffers 499 * ========================================================================== 500 */ 501 void 502 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize, 503 zio_transform_func_t *transform) 504 { 505 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP); 506 507 zt->zt_orig_abd = zio->io_abd; 508 zt->zt_orig_size = zio->io_size; 509 zt->zt_bufsize = bufsize; 510 zt->zt_transform = transform; 511 512 zt->zt_next = zio->io_transform_stack; 513 zio->io_transform_stack = zt; 514 515 zio->io_abd = data; 516 zio->io_size = size; 517 } 518 519 void 520 zio_pop_transforms(zio_t *zio) 521 { 522 zio_transform_t *zt; 523 524 while ((zt = zio->io_transform_stack) != NULL) { 525 if (zt->zt_transform != NULL) 526 zt->zt_transform(zio, 527 zt->zt_orig_abd, zt->zt_orig_size); 528 529 if (zt->zt_bufsize != 0) 530 abd_free(zio->io_abd); 531 532 zio->io_abd = zt->zt_orig_abd; 533 zio->io_size = zt->zt_orig_size; 534 zio->io_transform_stack = zt->zt_next; 535 536 kmem_free(zt, sizeof (zio_transform_t)); 537 } 538 } 539 540 /* 541 * ========================================================================== 542 * I/O transform callbacks for subblocks, decompression, and decryption 543 * ========================================================================== 544 */ 545 static void 546 zio_subblock(zio_t *zio, abd_t *data, uint64_t size) 547 { 548 ASSERT(zio->io_size > size); 549 550 if (zio->io_type == ZIO_TYPE_READ) 551 abd_copy(data, zio->io_abd, size); 552 } 553 554 static void 555 zio_decompress(zio_t *zio, abd_t *data, uint64_t size) 556 { 557 if (zio->io_error == 0) { 558 int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp), 559 zio->io_abd, data, zio->io_size, size, 560 &zio->io_prop.zp_complevel); 561 562 if (zio_injection_enabled && ret == 0) 563 ret = zio_handle_fault_injection(zio, EINVAL); 564 565 if (ret != 0) 566 zio->io_error = SET_ERROR(EIO); 567 } 568 } 569 570 static void 571 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size) 572 { 573 int ret; 574 void *tmp; 575 blkptr_t *bp = zio->io_bp; 576 spa_t *spa = zio->io_spa; 577 uint64_t dsobj = zio->io_bookmark.zb_objset; 578 uint64_t lsize = BP_GET_LSIZE(bp); 579 dmu_object_type_t ot = BP_GET_TYPE(bp); 580 uint8_t salt[ZIO_DATA_SALT_LEN]; 581 uint8_t iv[ZIO_DATA_IV_LEN]; 582 uint8_t mac[ZIO_DATA_MAC_LEN]; 583 boolean_t no_crypt = B_FALSE; 584 585 ASSERT(BP_USES_CRYPT(bp)); 586 ASSERT3U(size, !=, 0); 587 588 if (zio->io_error != 0) 589 return; 590 591 /* 592 * Verify the cksum of MACs stored in an indirect bp. It will always 593 * be possible to verify this since it does not require an encryption 594 * key. 595 */ 596 if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) { 597 zio_crypt_decode_mac_bp(bp, mac); 598 599 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) { 600 /* 601 * We haven't decompressed the data yet, but 602 * zio_crypt_do_indirect_mac_checksum() requires 603 * decompressed data to be able to parse out the MACs 604 * from the indirect block. We decompress it now and 605 * throw away the result after we are finished. 606 */ 607 abd_t *abd = abd_alloc_linear(lsize, B_TRUE); 608 ret = zio_decompress_data(BP_GET_COMPRESS(bp), 609 zio->io_abd, abd, zio->io_size, lsize, 610 &zio->io_prop.zp_complevel); 611 if (ret != 0) { 612 abd_free(abd); 613 ret = SET_ERROR(EIO); 614 goto error; 615 } 616 ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE, 617 abd, lsize, BP_SHOULD_BYTESWAP(bp), mac); 618 abd_free(abd); 619 } else { 620 ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE, 621 zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac); 622 } 623 abd_copy(data, zio->io_abd, size); 624 625 if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) { 626 ret = zio_handle_decrypt_injection(spa, 627 &zio->io_bookmark, ot, ECKSUM); 628 } 629 if (ret != 0) 630 goto error; 631 632 return; 633 } 634 635 /* 636 * If this is an authenticated block, just check the MAC. It would be 637 * nice to separate this out into its own flag, but when this was done, 638 * we had run out of bits in what is now zio_flag_t. Future cleanup 639 * could make this a flag bit. 640 */ 641 if (BP_IS_AUTHENTICATED(bp)) { 642 if (ot == DMU_OT_OBJSET) { 643 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, 644 dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp)); 645 } else { 646 zio_crypt_decode_mac_bp(bp, mac); 647 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, 648 zio->io_abd, size, mac); 649 if (zio_injection_enabled && ret == 0) { 650 ret = zio_handle_decrypt_injection(spa, 651 &zio->io_bookmark, ot, ECKSUM); 652 } 653 } 654 abd_copy(data, zio->io_abd, size); 655 656 if (ret != 0) 657 goto error; 658 659 return; 660 } 661 662 zio_crypt_decode_params_bp(bp, salt, iv); 663 664 if (ot == DMU_OT_INTENT_LOG) { 665 tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t)); 666 zio_crypt_decode_mac_zil(tmp, mac); 667 abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t)); 668 } else { 669 zio_crypt_decode_mac_bp(bp, mac); 670 } 671 672 ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp), 673 BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data, 674 zio->io_abd, &no_crypt); 675 if (no_crypt) 676 abd_copy(data, zio->io_abd, size); 677 678 if (ret != 0) 679 goto error; 680 681 return; 682 683 error: 684 /* assert that the key was found unless this was speculative */ 685 ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE)); 686 687 /* 688 * If there was a decryption / authentication error return EIO as 689 * the io_error. If this was not a speculative zio, create an ereport. 690 */ 691 if (ret == ECKSUM) { 692 zio->io_error = SET_ERROR(EIO); 693 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) { 694 spa_log_error(spa, &zio->io_bookmark, 695 BP_GET_PHYSICAL_BIRTH(zio->io_bp)); 696 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION, 697 spa, NULL, &zio->io_bookmark, zio, 0); 698 } 699 } else { 700 zio->io_error = ret; 701 } 702 } 703 704 /* 705 * ========================================================================== 706 * I/O parent/child relationships and pipeline interlocks 707 * ========================================================================== 708 */ 709 zio_t * 710 zio_walk_parents(zio_t *cio, zio_link_t **zl) 711 { 712 list_t *pl = &cio->io_parent_list; 713 714 *zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl); 715 if (*zl == NULL) 716 return (NULL); 717 718 ASSERT((*zl)->zl_child == cio); 719 return ((*zl)->zl_parent); 720 } 721 722 zio_t * 723 zio_walk_children(zio_t *pio, zio_link_t **zl) 724 { 725 list_t *cl = &pio->io_child_list; 726 727 ASSERT(MUTEX_HELD(&pio->io_lock)); 728 729 *zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl); 730 if (*zl == NULL) 731 return (NULL); 732 733 ASSERT((*zl)->zl_parent == pio); 734 return ((*zl)->zl_child); 735 } 736 737 zio_t * 738 zio_unique_parent(zio_t *cio) 739 { 740 zio_link_t *zl = NULL; 741 zio_t *pio = zio_walk_parents(cio, &zl); 742 743 VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL); 744 return (pio); 745 } 746 747 static void 748 zio_add_child_impl(zio_t *pio, zio_t *cio, boolean_t first) 749 { 750 /* 751 * Logical I/Os can have logical, gang, or vdev children. 752 * Gang I/Os can have gang or vdev children. 753 * Vdev I/Os can only have vdev children. 754 * The following ASSERT captures all of these constraints. 755 */ 756 ASSERT3S(cio->io_child_type, <=, pio->io_child_type); 757 758 /* Parent should not have READY stage if child doesn't have it. */ 759 IMPLY((cio->io_pipeline & ZIO_STAGE_READY) == 0 && 760 (cio->io_child_type != ZIO_CHILD_VDEV), 761 (pio->io_pipeline & ZIO_STAGE_READY) == 0); 762 763 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP); 764 zl->zl_parent = pio; 765 zl->zl_child = cio; 766 767 mutex_enter(&pio->io_lock); 768 769 if (first) 770 ASSERT(list_is_empty(&cio->io_parent_list)); 771 else 772 mutex_enter(&cio->io_lock); 773 774 ASSERT0(pio->io_state[ZIO_WAIT_DONE]); 775 776 uint64_t *countp = pio->io_children[cio->io_child_type]; 777 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 778 countp[w] += !cio->io_state[w]; 779 780 list_insert_head(&pio->io_child_list, zl); 781 list_insert_head(&cio->io_parent_list, zl); 782 783 if (!first) 784 mutex_exit(&cio->io_lock); 785 786 mutex_exit(&pio->io_lock); 787 } 788 789 void 790 zio_add_child(zio_t *pio, zio_t *cio) 791 { 792 zio_add_child_impl(pio, cio, B_FALSE); 793 } 794 795 static void 796 zio_add_child_first(zio_t *pio, zio_t *cio) 797 { 798 zio_add_child_impl(pio, cio, B_TRUE); 799 } 800 801 static void 802 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl) 803 { 804 ASSERT(zl->zl_parent == pio); 805 ASSERT(zl->zl_child == cio); 806 807 mutex_enter(&pio->io_lock); 808 mutex_enter(&cio->io_lock); 809 810 list_remove(&pio->io_child_list, zl); 811 list_remove(&cio->io_parent_list, zl); 812 813 mutex_exit(&cio->io_lock); 814 mutex_exit(&pio->io_lock); 815 kmem_cache_free(zio_link_cache, zl); 816 } 817 818 static boolean_t 819 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait) 820 { 821 boolean_t waiting = B_FALSE; 822 823 mutex_enter(&zio->io_lock); 824 ASSERT0P(zio->io_stall); 825 for (int c = 0; c < ZIO_CHILD_TYPES; c++) { 826 if (!(ZIO_CHILD_BIT_IS_SET(childbits, c))) 827 continue; 828 829 uint64_t *countp = &zio->io_children[c][wait]; 830 if (*countp != 0) { 831 zio->io_stage >>= 1; 832 ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN); 833 zio->io_stall = countp; 834 waiting = B_TRUE; 835 break; 836 } 837 } 838 mutex_exit(&zio->io_lock); 839 return (waiting); 840 } 841 842 __attribute__((always_inline)) 843 static inline void 844 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait, 845 zio_t **next_to_executep) 846 { 847 uint64_t *countp = &pio->io_children[zio->io_child_type][wait]; 848 int *errorp = &pio->io_child_error[zio->io_child_type]; 849 850 mutex_enter(&pio->io_lock); 851 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 852 *errorp = zio_worst_error(*errorp, zio->io_error); 853 pio->io_post |= zio->io_post; 854 ASSERT3U(*countp, >, 0); 855 856 (*countp)--; 857 858 if (*countp == 0 && pio->io_stall == countp) { 859 zio_taskq_type_t type = 860 pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE : 861 ZIO_TASKQ_INTERRUPT; 862 pio->io_stall = NULL; 863 mutex_exit(&pio->io_lock); 864 865 /* 866 * If we can tell the caller to execute this parent next, do 867 * so. We do this if the parent's zio type matches the child's 868 * type, or if it's a zio_null() with no done callback, and so 869 * has no actual work to do. Otherwise dispatch the parent zio 870 * in its own taskq. 871 * 872 * Having the caller execute the parent when possible reduces 873 * locking on the zio taskq's, reduces context switch 874 * overhead, and has no recursion penalty. Note that one 875 * read from disk typically causes at least 3 zio's: a 876 * zio_null(), the logical zio_read(), and then a physical 877 * zio. When the physical ZIO completes, we are able to call 878 * zio_done() on all 3 of these zio's from one invocation of 879 * zio_execute() by returning the parent back to 880 * zio_execute(). Since the parent isn't executed until this 881 * thread returns back to zio_execute(), the caller should do 882 * so promptly. 883 * 884 * In other cases, dispatching the parent prevents 885 * overflowing the stack when we have deeply nested 886 * parent-child relationships, as we do with the "mega zio" 887 * of writes for spa_sync(), and the chain of ZIL blocks. 888 */ 889 if (next_to_executep != NULL && *next_to_executep == NULL && 890 (pio->io_type == zio->io_type || 891 (pio->io_type == ZIO_TYPE_NULL && !pio->io_done))) { 892 *next_to_executep = pio; 893 } else { 894 zio_taskq_dispatch(pio, type, B_FALSE); 895 } 896 } else { 897 mutex_exit(&pio->io_lock); 898 } 899 } 900 901 static void 902 zio_inherit_child_errors(zio_t *zio, enum zio_child c) 903 { 904 if (zio->io_child_error[c] != 0 && zio->io_error == 0) 905 zio->io_error = zio->io_child_error[c]; 906 } 907 908 int 909 zio_bookmark_compare(const void *x1, const void *x2) 910 { 911 const zio_t *z1 = x1; 912 const zio_t *z2 = x2; 913 914 if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset) 915 return (-1); 916 if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset) 917 return (1); 918 919 if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object) 920 return (-1); 921 if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object) 922 return (1); 923 924 if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level) 925 return (-1); 926 if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level) 927 return (1); 928 929 if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid) 930 return (-1); 931 if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid) 932 return (1); 933 934 if (z1 < z2) 935 return (-1); 936 if (z1 > z2) 937 return (1); 938 939 return (0); 940 } 941 942 /* 943 * ========================================================================== 944 * Create the various types of I/O (read, write, free, etc) 945 * ========================================================================== 946 */ 947 static zio_t * 948 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 949 abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done, 950 void *private, zio_type_t type, zio_priority_t priority, 951 zio_flag_t flags, vdev_t *vd, uint64_t offset, 952 const zbookmark_phys_t *zb, enum zio_stage stage, 953 enum zio_stage pipeline) 954 { 955 zio_t *zio; 956 957 IMPLY(type != ZIO_TYPE_TRIM, psize <= SPA_MAXBLOCKSIZE); 958 ASSERT0(P2PHASE(psize, SPA_MINBLOCKSIZE)); 959 ASSERT0(P2PHASE(offset, SPA_MINBLOCKSIZE)); 960 961 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER)); 962 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER)); 963 ASSERT(vd || stage == ZIO_STAGE_OPEN); 964 965 IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0); 966 967 zio = kmem_cache_alloc(zio_cache, KM_SLEEP); 968 memset(zio, 0, sizeof (zio_t)); 969 970 mutex_init(&zio->io_lock, NULL, MUTEX_NOLOCKDEP, NULL); 971 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL); 972 973 list_create(&zio->io_parent_list, sizeof (zio_link_t), 974 offsetof(zio_link_t, zl_parent_node)); 975 list_create(&zio->io_child_list, sizeof (zio_link_t), 976 offsetof(zio_link_t, zl_child_node)); 977 metaslab_trace_init(&zio->io_alloc_list); 978 979 if (vd != NULL) 980 zio->io_child_type = ZIO_CHILD_VDEV; 981 else if (flags & ZIO_FLAG_GANG_CHILD) 982 zio->io_child_type = ZIO_CHILD_GANG; 983 else if (flags & ZIO_FLAG_DDT_CHILD) 984 zio->io_child_type = ZIO_CHILD_DDT; 985 else 986 zio->io_child_type = ZIO_CHILD_LOGICAL; 987 988 if (bp != NULL) { 989 if (type != ZIO_TYPE_WRITE || 990 zio->io_child_type == ZIO_CHILD_DDT) { 991 zio->io_bp_copy = *bp; 992 zio->io_bp = &zio->io_bp_copy; /* so caller can free */ 993 } else { 994 zio->io_bp = (blkptr_t *)bp; 995 } 996 zio->io_bp_orig = *bp; 997 if (zio->io_child_type == ZIO_CHILD_LOGICAL) 998 zio->io_logical = zio; 999 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp)) 1000 pipeline |= ZIO_GANG_STAGES; 1001 if (flags & ZIO_FLAG_PREALLOCATED) { 1002 BP_ZERO_DVAS(zio->io_bp); 1003 BP_SET_BIRTH(zio->io_bp, 0, 0); 1004 } 1005 } 1006 1007 zio->io_spa = spa; 1008 zio->io_txg = txg; 1009 zio->io_done = done; 1010 zio->io_private = private; 1011 zio->io_type = type; 1012 zio->io_priority = priority; 1013 zio->io_vd = vd; 1014 zio->io_offset = offset; 1015 zio->io_orig_abd = zio->io_abd = data; 1016 zio->io_orig_size = zio->io_size = psize; 1017 zio->io_lsize = lsize; 1018 zio->io_orig_flags = zio->io_flags = flags; 1019 zio->io_orig_stage = zio->io_stage = stage; 1020 zio->io_orig_pipeline = zio->io_pipeline = pipeline; 1021 zio->io_pipeline_trace = ZIO_STAGE_OPEN; 1022 zio->io_allocator = ZIO_ALLOCATOR_NONE; 1023 1024 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY) || 1025 (pipeline & ZIO_STAGE_READY) == 0; 1026 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE); 1027 1028 if (zb != NULL) 1029 zio->io_bookmark = *zb; 1030 1031 if (pio != NULL) { 1032 zio->io_metaslab_class = pio->io_metaslab_class; 1033 if (zio->io_logical == NULL) 1034 zio->io_logical = pio->io_logical; 1035 if (zio->io_child_type == ZIO_CHILD_GANG) 1036 zio->io_gang_leader = pio->io_gang_leader; 1037 zio_add_child_first(pio, zio); 1038 } 1039 1040 taskq_init_ent(&zio->io_tqent); 1041 1042 return (zio); 1043 } 1044 1045 void 1046 zio_destroy(zio_t *zio) 1047 { 1048 metaslab_trace_fini(&zio->io_alloc_list); 1049 list_destroy(&zio->io_parent_list); 1050 list_destroy(&zio->io_child_list); 1051 mutex_destroy(&zio->io_lock); 1052 cv_destroy(&zio->io_cv); 1053 kmem_cache_free(zio_cache, zio); 1054 } 1055 1056 /* 1057 * ZIO intended to be between others. Provides synchronization at READY 1058 * and DONE pipeline stages and calls the respective callbacks. 1059 */ 1060 zio_t * 1061 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done, 1062 void *private, zio_flag_t flags) 1063 { 1064 zio_t *zio; 1065 1066 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private, 1067 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 1068 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE); 1069 1070 return (zio); 1071 } 1072 1073 /* 1074 * ZIO intended to be a root of a tree. Unlike null ZIO does not have a 1075 * READY pipeline stage (is ready on creation), so it should not be used 1076 * as child of any ZIO that may need waiting for grandchildren READY stage 1077 * (any other ZIO type). 1078 */ 1079 zio_t * 1080 zio_root(spa_t *spa, zio_done_func_t *done, void *private, zio_flag_t flags) 1081 { 1082 zio_t *zio; 1083 1084 zio = zio_create(NULL, spa, 0, NULL, NULL, 0, 0, done, private, 1085 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, NULL, 0, NULL, 1086 ZIO_STAGE_OPEN, ZIO_ROOT_PIPELINE); 1087 1088 return (zio); 1089 } 1090 1091 static int 1092 zfs_blkptr_verify_log(spa_t *spa, const blkptr_t *bp, 1093 enum blk_verify_flag blk_verify, const char *fmt, ...) 1094 { 1095 va_list adx; 1096 char buf[256]; 1097 1098 va_start(adx, fmt); 1099 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 1100 va_end(adx); 1101 1102 zfs_dbgmsg("bad blkptr at %px: " 1103 "DVA[0]=%#llx/%#llx " 1104 "DVA[1]=%#llx/%#llx " 1105 "DVA[2]=%#llx/%#llx " 1106 "prop=%#llx " 1107 "prop2=%#llx " 1108 "pad=%#llx " 1109 "phys_birth=%#llx " 1110 "birth=%#llx " 1111 "fill=%#llx " 1112 "cksum=%#llx/%#llx/%#llx/%#llx", 1113 bp, 1114 (long long)bp->blk_dva[0].dva_word[0], 1115 (long long)bp->blk_dva[0].dva_word[1], 1116 (long long)bp->blk_dva[1].dva_word[0], 1117 (long long)bp->blk_dva[1].dva_word[1], 1118 (long long)bp->blk_dva[2].dva_word[0], 1119 (long long)bp->blk_dva[2].dva_word[1], 1120 (long long)bp->blk_prop, 1121 (long long)bp->blk_prop2, 1122 (long long)bp->blk_pad, 1123 (long long)BP_GET_RAW_PHYSICAL_BIRTH(bp), 1124 (long long)BP_GET_LOGICAL_BIRTH(bp), 1125 (long long)bp->blk_fill, 1126 (long long)bp->blk_cksum.zc_word[0], 1127 (long long)bp->blk_cksum.zc_word[1], 1128 (long long)bp->blk_cksum.zc_word[2], 1129 (long long)bp->blk_cksum.zc_word[3]); 1130 switch (blk_verify) { 1131 case BLK_VERIFY_HALT: 1132 zfs_panic_recover("%s: %s", spa_name(spa), buf); 1133 break; 1134 case BLK_VERIFY_LOG: 1135 zfs_dbgmsg("%s: %s", spa_name(spa), buf); 1136 break; 1137 case BLK_VERIFY_ONLY: 1138 break; 1139 } 1140 1141 return (1); 1142 } 1143 1144 /* 1145 * Verify the block pointer fields contain reasonable values. This means 1146 * it only contains known object types, checksum/compression identifiers, 1147 * block sizes within the maximum allowed limits, valid DVAs, etc. 1148 * 1149 * If everything checks out 0 is returned. The zfs_blkptr_verify 1150 * argument controls the behavior when an invalid field is detected. 1151 * 1152 * Values for blk_verify_flag: 1153 * BLK_VERIFY_ONLY: evaluate the block 1154 * BLK_VERIFY_LOG: evaluate the block and log problems 1155 * BLK_VERIFY_HALT: call zfs_panic_recover on error 1156 * 1157 * Values for blk_config_flag: 1158 * BLK_CONFIG_HELD: caller holds SCL_VDEV for writer 1159 * BLK_CONFIG_NEEDED: caller holds no config lock, SCL_VDEV will be 1160 * obtained for reader 1161 * BLK_CONFIG_SKIP: skip checks which require SCL_VDEV, for better 1162 * performance 1163 */ 1164 int 1165 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp, 1166 enum blk_config_flag blk_config, enum blk_verify_flag blk_verify) 1167 { 1168 int errors = 0; 1169 1170 if (unlikely(!DMU_OT_IS_VALID(BP_GET_TYPE(bp)))) { 1171 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1172 "blkptr at %px has invalid TYPE %llu", 1173 bp, (longlong_t)BP_GET_TYPE(bp)); 1174 } 1175 if (unlikely(BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS)) { 1176 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1177 "blkptr at %px has invalid COMPRESS %llu", 1178 bp, (longlong_t)BP_GET_COMPRESS(bp)); 1179 } 1180 if (unlikely(BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE)) { 1181 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1182 "blkptr at %px has invalid LSIZE %llu", 1183 bp, (longlong_t)BP_GET_LSIZE(bp)); 1184 } 1185 if (BP_IS_EMBEDDED(bp)) { 1186 if (unlikely(BPE_GET_ETYPE(bp) >= NUM_BP_EMBEDDED_TYPES)) { 1187 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1188 "blkptr at %px has invalid ETYPE %llu", 1189 bp, (longlong_t)BPE_GET_ETYPE(bp)); 1190 } 1191 if (unlikely(BPE_GET_PSIZE(bp) > BPE_PAYLOAD_SIZE)) { 1192 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1193 "blkptr at %px has invalid PSIZE %llu", 1194 bp, (longlong_t)BPE_GET_PSIZE(bp)); 1195 } 1196 return (errors ? ECKSUM : 0); 1197 } else if (BP_IS_HOLE(bp)) { 1198 /* 1199 * Holes are allowed (expected, even) to have no DVAs, no 1200 * checksum, and no psize. 1201 */ 1202 return (errors ? ECKSUM : 0); 1203 } else if (unlikely(!DVA_IS_VALID(&bp->blk_dva[0]))) { 1204 /* Non-hole, non-embedded BPs _must_ have at least one DVA */ 1205 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1206 "blkptr at %px has no valid DVAs", bp); 1207 } 1208 if (unlikely(BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS)) { 1209 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1210 "blkptr at %px has invalid CHECKSUM %llu", 1211 bp, (longlong_t)BP_GET_CHECKSUM(bp)); 1212 } 1213 if (unlikely(BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE)) { 1214 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1215 "blkptr at %px has invalid PSIZE %llu", 1216 bp, (longlong_t)BP_GET_PSIZE(bp)); 1217 } 1218 1219 /* 1220 * Do not verify individual DVAs if the config is not trusted. This 1221 * will be done once the zio is executed in vdev_mirror_map_alloc. 1222 */ 1223 if (unlikely(!spa->spa_trust_config)) 1224 return (errors ? ECKSUM : 0); 1225 1226 switch (blk_config) { 1227 case BLK_CONFIG_HELD: 1228 ASSERT(spa_config_held(spa, SCL_VDEV, RW_WRITER)); 1229 break; 1230 case BLK_CONFIG_NEEDED: 1231 spa_config_enter(spa, SCL_VDEV, bp, RW_READER); 1232 break; 1233 case BLK_CONFIG_NEEDED_TRY: 1234 if (!spa_config_tryenter(spa, SCL_VDEV, bp, RW_READER)) 1235 return (EBUSY); 1236 break; 1237 case BLK_CONFIG_SKIP: 1238 return (errors ? ECKSUM : 0); 1239 default: 1240 panic("invalid blk_config %u", blk_config); 1241 } 1242 1243 /* 1244 * Pool-specific checks. 1245 * 1246 * Note: it would be nice to verify that the logical birth 1247 * and physical birth are not too large. However, 1248 * spa_freeze() allows the birth time of log blocks (and 1249 * dmu_sync()-ed blocks that are in the log) to be arbitrarily 1250 * large. 1251 */ 1252 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 1253 const dva_t *dva = &bp->blk_dva[i]; 1254 uint64_t vdevid = DVA_GET_VDEV(dva); 1255 1256 if (unlikely(vdevid >= spa->spa_root_vdev->vdev_children)) { 1257 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1258 "blkptr at %px DVA %u has invalid VDEV %llu", 1259 bp, i, (longlong_t)vdevid); 1260 continue; 1261 } 1262 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid]; 1263 if (unlikely(vd == NULL)) { 1264 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1265 "blkptr at %px DVA %u has invalid VDEV %llu", 1266 bp, i, (longlong_t)vdevid); 1267 continue; 1268 } 1269 if (unlikely(vd->vdev_ops == &vdev_hole_ops)) { 1270 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1271 "blkptr at %px DVA %u has hole VDEV %llu", 1272 bp, i, (longlong_t)vdevid); 1273 continue; 1274 } 1275 if (vd->vdev_ops == &vdev_missing_ops) { 1276 /* 1277 * "missing" vdevs are valid during import, but we 1278 * don't have their detailed info (e.g. asize), so 1279 * we can't perform any more checks on them. 1280 */ 1281 continue; 1282 } 1283 uint64_t offset = DVA_GET_OFFSET(dva); 1284 uint64_t asize = DVA_GET_ASIZE(dva); 1285 if (DVA_GET_GANG(dva)) 1286 asize = vdev_gang_header_asize(vd); 1287 if (unlikely(offset + asize > vd->vdev_asize)) { 1288 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1289 "blkptr at %px DVA %u has invalid OFFSET %llu", 1290 bp, i, (longlong_t)offset); 1291 } 1292 } 1293 if (blk_config == BLK_CONFIG_NEEDED || blk_config == 1294 BLK_CONFIG_NEEDED_TRY) 1295 spa_config_exit(spa, SCL_VDEV, bp); 1296 1297 return (errors ? ECKSUM : 0); 1298 } 1299 1300 boolean_t 1301 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp) 1302 { 1303 (void) bp; 1304 uint64_t vdevid = DVA_GET_VDEV(dva); 1305 1306 if (vdevid >= spa->spa_root_vdev->vdev_children) 1307 return (B_FALSE); 1308 1309 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid]; 1310 if (vd == NULL) 1311 return (B_FALSE); 1312 1313 if (vd->vdev_ops == &vdev_hole_ops) 1314 return (B_FALSE); 1315 1316 if (vd->vdev_ops == &vdev_missing_ops) { 1317 return (B_FALSE); 1318 } 1319 1320 uint64_t offset = DVA_GET_OFFSET(dva); 1321 uint64_t asize = DVA_GET_ASIZE(dva); 1322 1323 if (DVA_GET_GANG(dva)) 1324 asize = vdev_gang_header_asize(vd); 1325 if (offset + asize > vd->vdev_asize) 1326 return (B_FALSE); 1327 1328 return (B_TRUE); 1329 } 1330 1331 zio_t * 1332 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, 1333 abd_t *data, uint64_t size, zio_done_func_t *done, void *private, 1334 zio_priority_t priority, zio_flag_t flags, const zbookmark_phys_t *zb) 1335 { 1336 zio_t *zio; 1337 1338 zio = zio_create(pio, spa, BP_GET_PHYSICAL_BIRTH(bp), bp, 1339 data, size, size, done, private, 1340 ZIO_TYPE_READ, priority, flags, NULL, 0, zb, 1341 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 1342 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE); 1343 1344 return (zio); 1345 } 1346 1347 zio_t * 1348 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 1349 abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp, 1350 zio_done_func_t *ready, zio_done_func_t *children_ready, 1351 zio_done_func_t *done, void *private, zio_priority_t priority, 1352 zio_flag_t flags, const zbookmark_phys_t *zb) 1353 { 1354 zio_t *zio; 1355 enum zio_stage pipeline = zp->zp_direct_write == B_TRUE ? 1356 ZIO_DIRECT_WRITE_PIPELINE : (flags & ZIO_FLAG_DDT_CHILD) ? 1357 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE; 1358 1359 1360 zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private, 1361 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb, 1362 ZIO_STAGE_OPEN, pipeline); 1363 1364 zio->io_ready = ready; 1365 zio->io_children_ready = children_ready; 1366 zio->io_prop = *zp; 1367 1368 /* 1369 * Data can be NULL if we are going to call zio_write_override() to 1370 * provide the already-allocated BP. But we may need the data to 1371 * verify a dedup hit (if requested). In this case, don't try to 1372 * dedup (just take the already-allocated BP verbatim). Encrypted 1373 * dedup blocks need data as well so we also disable dedup in this 1374 * case. 1375 */ 1376 if (data == NULL && 1377 (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) { 1378 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE; 1379 } 1380 1381 return (zio); 1382 } 1383 1384 zio_t * 1385 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data, 1386 uint64_t size, zio_done_func_t *done, void *private, 1387 zio_priority_t priority, zio_flag_t flags, zbookmark_phys_t *zb) 1388 { 1389 zio_t *zio; 1390 1391 zio = zio_create(pio, spa, txg, bp, data, size, size, done, private, 1392 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb, 1393 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE); 1394 1395 return (zio); 1396 } 1397 1398 void 1399 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, int gang_copies, 1400 boolean_t nopwrite, boolean_t brtwrite) 1401 { 1402 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 1403 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1404 ASSERT(zio->io_stage == ZIO_STAGE_OPEN); 1405 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa)); 1406 ASSERT(!brtwrite || !nopwrite); 1407 1408 /* 1409 * We must reset the io_prop to match the values that existed 1410 * when the bp was first written by dmu_sync() keeping in mind 1411 * that nopwrite and dedup are mutually exclusive. 1412 */ 1413 zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup; 1414 zio->io_prop.zp_nopwrite = nopwrite; 1415 zio->io_prop.zp_brtwrite = brtwrite; 1416 zio->io_prop.zp_copies = copies; 1417 zio->io_prop.zp_gang_copies = gang_copies; 1418 zio->io_bp_override = bp; 1419 } 1420 1421 void 1422 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp) 1423 { 1424 1425 (void) zfs_blkptr_verify(spa, bp, BLK_CONFIG_NEEDED, BLK_VERIFY_HALT); 1426 1427 /* 1428 * The check for EMBEDDED is a performance optimization. We 1429 * process the free here (by ignoring it) rather than 1430 * putting it on the list and then processing it in zio_free_sync(). 1431 */ 1432 if (BP_IS_EMBEDDED(bp)) 1433 return; 1434 1435 /* 1436 * Frees that are for the currently-syncing txg, are not going to be 1437 * deferred, and which will not need to do a read (i.e. not GANG or 1438 * DEDUP), can be processed immediately. Otherwise, put them on the 1439 * in-memory list for later processing. 1440 * 1441 * Note that we only defer frees after zfs_sync_pass_deferred_free 1442 * when the log space map feature is disabled. [see relevant comment 1443 * in spa_sync_iterate_to_convergence()] 1444 */ 1445 if (BP_IS_GANG(bp) || 1446 BP_GET_DEDUP(bp) || 1447 txg != spa->spa_syncing_txg || 1448 (spa_sync_pass(spa) >= zfs_sync_pass_deferred_free && 1449 !spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) || 1450 brt_maybe_exists(spa, bp)) { 1451 metaslab_check_free(spa, bp); 1452 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp); 1453 } else { 1454 VERIFY0P(zio_free_sync(NULL, spa, txg, bp, 0)); 1455 } 1456 } 1457 1458 /* 1459 * To improve performance, this function may return NULL if we were able 1460 * to do the free immediately. This avoids the cost of creating a zio 1461 * (and linking it to the parent, etc). 1462 */ 1463 zio_t * 1464 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 1465 zio_flag_t flags) 1466 { 1467 ASSERT(!BP_IS_HOLE(bp)); 1468 ASSERT(spa_syncing_txg(spa) == txg); 1469 1470 if (BP_IS_EMBEDDED(bp)) 1471 return (NULL); 1472 1473 metaslab_check_free(spa, bp); 1474 arc_freed(spa, bp); 1475 dsl_scan_freed(spa, bp); 1476 1477 if (BP_IS_GANG(bp) || 1478 BP_GET_DEDUP(bp) || 1479 brt_maybe_exists(spa, bp)) { 1480 /* 1481 * GANG, DEDUP and BRT blocks can induce a read (for the gang 1482 * block header, the DDT or the BRT), so issue them 1483 * asynchronously so that this thread is not tied up. 1484 */ 1485 enum zio_stage stage = 1486 ZIO_FREE_PIPELINE | ZIO_STAGE_ISSUE_ASYNC; 1487 1488 return (zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 1489 BP_GET_PSIZE(bp), NULL, NULL, 1490 ZIO_TYPE_FREE, ZIO_PRIORITY_NOW, 1491 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage)); 1492 } else { 1493 metaslab_free(spa, bp, txg, B_FALSE); 1494 return (NULL); 1495 } 1496 } 1497 1498 zio_t * 1499 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 1500 zio_done_func_t *done, void *private, zio_flag_t flags) 1501 { 1502 zio_t *zio; 1503 1504 (void) zfs_blkptr_verify(spa, bp, (flags & ZIO_FLAG_CONFIG_WRITER) ? 1505 BLK_CONFIG_HELD : BLK_CONFIG_NEEDED, BLK_VERIFY_HALT); 1506 1507 if (BP_IS_EMBEDDED(bp)) 1508 return (zio_null(pio, spa, NULL, NULL, NULL, 0)); 1509 1510 /* 1511 * A claim is an allocation of a specific block. Claims are needed 1512 * to support immediate writes in the intent log. The issue is that 1513 * immediate writes contain committed data, but in a txg that was 1514 * *not* committed. Upon opening the pool after an unclean shutdown, 1515 * the intent log claims all blocks that contain immediate write data 1516 * so that the SPA knows they're in use. 1517 * 1518 * All claims *must* be resolved in the first txg -- before the SPA 1519 * starts allocating blocks -- so that nothing is allocated twice. 1520 * If txg == 0 we just verify that the block is claimable. 1521 */ 1522 ASSERT3U(BP_GET_LOGICAL_BIRTH(&spa->spa_uberblock.ub_rootbp), <, 1523 spa_min_claim_txg(spa)); 1524 ASSERT(txg == spa_min_claim_txg(spa) || txg == 0); 1525 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(8) */ 1526 1527 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 1528 BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, 1529 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE); 1530 ASSERT0(zio->io_queued_timestamp); 1531 1532 return (zio); 1533 } 1534 1535 zio_t * 1536 zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1537 zio_done_func_t *done, void *private, zio_priority_t priority, 1538 zio_flag_t flags, enum trim_flag trim_flags) 1539 { 1540 zio_t *zio; 1541 1542 ASSERT0(vd->vdev_children); 1543 ASSERT0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 1544 ASSERT0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 1545 ASSERT3U(size, !=, 0); 1546 1547 zio = zio_create(pio, vd->vdev_spa, 0, NULL, NULL, size, size, done, 1548 private, ZIO_TYPE_TRIM, priority, flags | ZIO_FLAG_PHYSICAL, 1549 vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_TRIM_PIPELINE); 1550 zio->io_trim_flags = trim_flags; 1551 1552 return (zio); 1553 } 1554 1555 zio_t * 1556 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1557 abd_t *data, int checksum, zio_done_func_t *done, void *private, 1558 zio_priority_t priority, zio_flag_t flags, boolean_t labels) 1559 { 1560 zio_t *zio; 1561 1562 ASSERT0(vd->vdev_children); 1563 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 1564 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 1565 ASSERT3U(offset + size, <=, vd->vdev_psize); 1566 1567 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, 1568 private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd, 1569 offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE); 1570 1571 zio->io_prop.zp_checksum = checksum; 1572 1573 return (zio); 1574 } 1575 1576 zio_t * 1577 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1578 abd_t *data, int checksum, zio_done_func_t *done, void *private, 1579 zio_priority_t priority, zio_flag_t flags, boolean_t labels) 1580 { 1581 zio_t *zio; 1582 1583 ASSERT0(vd->vdev_children); 1584 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 1585 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 1586 ASSERT3U(offset + size, <=, vd->vdev_psize); 1587 1588 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, 1589 private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd, 1590 offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE); 1591 1592 zio->io_prop.zp_checksum = checksum; 1593 1594 if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) { 1595 /* 1596 * zec checksums are necessarily destructive -- they modify 1597 * the end of the write buffer to hold the verifier/checksum. 1598 * Therefore, we must make a local copy in case the data is 1599 * being written to multiple places in parallel. 1600 */ 1601 abd_t *wbuf = abd_alloc_sametype(data, size); 1602 abd_copy(wbuf, data, size); 1603 1604 zio_push_transform(zio, wbuf, size, size, NULL); 1605 } 1606 1607 return (zio); 1608 } 1609 1610 /* 1611 * Create a child I/O to do some work for us. 1612 */ 1613 zio_t * 1614 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset, 1615 abd_t *data, uint64_t size, int type, zio_priority_t priority, 1616 zio_flag_t flags, zio_done_func_t *done, void *private) 1617 { 1618 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE; 1619 zio_t *zio; 1620 1621 /* 1622 * vdev child I/Os do not propagate their error to the parent. 1623 * Therefore, for correct operation the caller *must* check for 1624 * and handle the error in the child i/o's done callback. 1625 * The only exceptions are i/os that we don't care about 1626 * (OPTIONAL or REPAIR). 1627 */ 1628 ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) || 1629 done != NULL); 1630 1631 if (type == ZIO_TYPE_READ && bp != NULL) { 1632 /* 1633 * If we have the bp, then the child should perform the 1634 * checksum and the parent need not. This pushes error 1635 * detection as close to the leaves as possible and 1636 * eliminates redundant checksums in the interior nodes. 1637 */ 1638 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY; 1639 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 1640 /* 1641 * We never allow the mirror VDEV to attempt reading from any 1642 * additional data copies after the first Direct I/O checksum 1643 * verify failure. This is to avoid bad data being written out 1644 * through the mirror during self healing. See comment in 1645 * vdev_mirror_io_done() for more details. 1646 */ 1647 ASSERT0(pio->io_post & ZIO_POST_DIO_CHKSUM_ERR); 1648 } else if (type == ZIO_TYPE_WRITE && 1649 pio->io_prop.zp_direct_write == B_TRUE) { 1650 /* 1651 * By default we only will verify checksums for Direct I/O 1652 * writes for Linux. FreeBSD is able to place user pages under 1653 * write protection before issuing them to the ZIO pipeline. 1654 * 1655 * Checksum validation errors will only be reported through 1656 * the top-level VDEV, which is set by this child ZIO. 1657 */ 1658 ASSERT3P(bp, !=, NULL); 1659 ASSERT3U(pio->io_child_type, ==, ZIO_CHILD_LOGICAL); 1660 pipeline |= ZIO_STAGE_DIO_CHECKSUM_VERIFY; 1661 } 1662 1663 if (vd->vdev_ops->vdev_op_leaf) { 1664 ASSERT0(vd->vdev_children); 1665 offset += VDEV_LABEL_START_SIZE; 1666 } 1667 1668 flags |= ZIO_VDEV_CHILD_FLAGS(pio); 1669 1670 /* 1671 * If we've decided to do a repair, the write is not speculative -- 1672 * even if the original read was. 1673 */ 1674 if (flags & ZIO_FLAG_IO_REPAIR) 1675 flags &= ~ZIO_FLAG_SPECULATIVE; 1676 1677 /* 1678 * If we're creating a child I/O that is not associated with a 1679 * top-level vdev, then the child zio is not an allocating I/O. 1680 * If this is a retried I/O then we ignore it since we will 1681 * have already processed the original allocating I/O. 1682 */ 1683 if (flags & ZIO_FLAG_ALLOC_THROTTLED && 1684 (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) { 1685 ASSERT(pio->io_metaslab_class != NULL); 1686 ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled); 1687 ASSERT(type == ZIO_TYPE_WRITE); 1688 ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE); 1689 ASSERT(!(flags & ZIO_FLAG_IO_REPAIR)); 1690 ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) || 1691 pio->io_child_type == ZIO_CHILD_GANG); 1692 1693 flags &= ~ZIO_FLAG_ALLOC_THROTTLED; 1694 } 1695 1696 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size, 1697 done, private, type, priority, flags, vd, offset, &pio->io_bookmark, 1698 ZIO_STAGE_VDEV_IO_START >> 1, pipeline); 1699 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); 1700 1701 return (zio); 1702 } 1703 1704 zio_t * 1705 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size, 1706 zio_type_t type, zio_priority_t priority, zio_flag_t flags, 1707 zio_done_func_t *done, void *private) 1708 { 1709 zio_t *zio; 1710 1711 ASSERT(vd->vdev_ops->vdev_op_leaf); 1712 1713 zio = zio_create(NULL, vd->vdev_spa, 0, NULL, 1714 data, size, size, done, private, type, priority, 1715 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED, 1716 vd, offset, NULL, 1717 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE); 1718 1719 return (zio); 1720 } 1721 1722 1723 /* 1724 * Send a flush command to the given vdev. Unlike most zio creation functions, 1725 * the flush zios are issued immediately. You can wait on pio to pause until 1726 * the flushes complete. 1727 */ 1728 void 1729 zio_flush(zio_t *pio, vdev_t *vd) 1730 { 1731 const zio_flag_t flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | 1732 ZIO_FLAG_DONT_RETRY; 1733 1734 if (vd->vdev_nowritecache) 1735 return; 1736 1737 if (vd->vdev_children == 0) { 1738 zio_nowait(zio_create(pio, vd->vdev_spa, 0, NULL, NULL, 0, 0, 1739 NULL, NULL, ZIO_TYPE_FLUSH, ZIO_PRIORITY_NOW, flags, vd, 0, 1740 NULL, ZIO_STAGE_OPEN, ZIO_FLUSH_PIPELINE)); 1741 } else { 1742 for (uint64_t c = 0; c < vd->vdev_children; c++) 1743 zio_flush(pio, vd->vdev_child[c]); 1744 } 1745 } 1746 1747 void 1748 zio_shrink(zio_t *zio, uint64_t size) 1749 { 1750 ASSERT0P(zio->io_executor); 1751 ASSERT3U(zio->io_orig_size, ==, zio->io_size); 1752 ASSERT3U(size, <=, zio->io_size); 1753 1754 /* 1755 * We don't shrink for raidz because of problems with the 1756 * reconstruction when reading back less than the block size. 1757 * Note, BP_IS_RAIDZ() assumes no compression. 1758 */ 1759 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 1760 if (!BP_IS_RAIDZ(zio->io_bp)) { 1761 /* we are not doing a raw write */ 1762 ASSERT3U(zio->io_size, ==, zio->io_lsize); 1763 zio->io_orig_size = zio->io_size = zio->io_lsize = size; 1764 } 1765 } 1766 1767 /* 1768 * Round provided allocation size up to a value that can be allocated 1769 * by at least some vdev(s) in the pool with minimum or no additional 1770 * padding and without extra space usage on others 1771 */ 1772 static uint64_t 1773 zio_roundup_alloc_size(spa_t *spa, uint64_t size) 1774 { 1775 if (size > spa->spa_min_alloc) 1776 return (roundup(size, spa->spa_gcd_alloc)); 1777 return (spa->spa_min_alloc); 1778 } 1779 1780 size_t 1781 zio_get_compression_max_size(enum zio_compress compress, uint64_t gcd_alloc, 1782 uint64_t min_alloc, size_t s_len) 1783 { 1784 size_t d_len; 1785 1786 /* minimum 12.5% must be saved (legacy value, may be changed later) */ 1787 d_len = s_len - (s_len >> 3); 1788 1789 /* ZLE can't use exactly d_len bytes, it needs more, so ignore it */ 1790 if (compress == ZIO_COMPRESS_ZLE) 1791 return (d_len); 1792 1793 d_len = d_len - d_len % gcd_alloc; 1794 1795 if (d_len < min_alloc) 1796 return (BPE_PAYLOAD_SIZE); 1797 return (d_len); 1798 } 1799 1800 /* 1801 * ========================================================================== 1802 * Prepare to read and write logical blocks 1803 * ========================================================================== 1804 */ 1805 1806 static zio_t * 1807 zio_read_bp_init(zio_t *zio) 1808 { 1809 blkptr_t *bp = zio->io_bp; 1810 uint64_t psize = 1811 BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp); 1812 1813 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 1814 1815 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF && 1816 zio->io_child_type == ZIO_CHILD_LOGICAL && 1817 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) { 1818 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize), 1819 psize, psize, zio_decompress); 1820 } 1821 1822 if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) || 1823 BP_HAS_INDIRECT_MAC_CKSUM(bp)) && 1824 zio->io_child_type == ZIO_CHILD_LOGICAL) { 1825 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize), 1826 psize, psize, zio_decrypt); 1827 } 1828 1829 if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) { 1830 int psize = BPE_GET_PSIZE(bp); 1831 void *data = abd_borrow_buf(zio->io_abd, psize); 1832 1833 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1834 decode_embedded_bp_compressed(bp, data); 1835 abd_return_buf_copy(zio->io_abd, data, psize); 1836 } else { 1837 ASSERT(!BP_IS_EMBEDDED(bp)); 1838 } 1839 1840 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL) 1841 zio->io_pipeline = ZIO_DDT_READ_PIPELINE; 1842 1843 return (zio); 1844 } 1845 1846 static zio_t * 1847 zio_write_bp_init(zio_t *zio) 1848 { 1849 if (!IO_IS_ALLOCATING(zio)) 1850 return (zio); 1851 1852 ASSERT(zio->io_child_type != ZIO_CHILD_DDT); 1853 1854 if (zio->io_bp_override) { 1855 blkptr_t *bp = zio->io_bp; 1856 zio_prop_t *zp = &zio->io_prop; 1857 1858 ASSERT(BP_GET_BIRTH(bp) != zio->io_txg); 1859 1860 *bp = *zio->io_bp_override; 1861 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1862 1863 if (zp->zp_brtwrite) 1864 return (zio); 1865 1866 ASSERT(!BP_GET_DEDUP(zio->io_bp_override)); 1867 1868 if (BP_IS_EMBEDDED(bp)) 1869 return (zio); 1870 1871 /* 1872 * If we've been overridden and nopwrite is set then 1873 * set the flag accordingly to indicate that a nopwrite 1874 * has already occurred. 1875 */ 1876 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) { 1877 ASSERT(!zp->zp_dedup); 1878 ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum); 1879 zio->io_flags |= ZIO_FLAG_NOPWRITE; 1880 return (zio); 1881 } 1882 1883 ASSERT(!zp->zp_nopwrite); 1884 1885 if (BP_IS_HOLE(bp) || !zp->zp_dedup) 1886 return (zio); 1887 1888 ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags & 1889 ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify); 1890 1891 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum && 1892 !zp->zp_encrypt) { 1893 BP_SET_DEDUP(bp, 1); 1894 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE; 1895 return (zio); 1896 } 1897 1898 /* 1899 * We were unable to handle this as an override bp, treat 1900 * it as a regular write I/O. 1901 */ 1902 zio->io_bp_override = NULL; 1903 *bp = zio->io_bp_orig; 1904 zio->io_pipeline = zio->io_orig_pipeline; 1905 } 1906 1907 return (zio); 1908 } 1909 1910 static zio_t * 1911 zio_write_compress(zio_t *zio) 1912 { 1913 spa_t *spa = zio->io_spa; 1914 zio_prop_t *zp = &zio->io_prop; 1915 enum zio_compress compress = zp->zp_compress; 1916 blkptr_t *bp = zio->io_bp; 1917 uint64_t lsize = zio->io_lsize; 1918 uint64_t psize = zio->io_size; 1919 uint32_t pass = 1; 1920 1921 /* 1922 * If our children haven't all reached the ready stage, 1923 * wait for them and then repeat this pipeline stage. 1924 */ 1925 if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT | 1926 ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) { 1927 return (NULL); 1928 } 1929 1930 if (!IO_IS_ALLOCATING(zio)) 1931 return (zio); 1932 1933 if (zio->io_children_ready != NULL) { 1934 /* 1935 * Now that all our children are ready, run the callback 1936 * associated with this zio in case it wants to modify the 1937 * data to be written. 1938 */ 1939 ASSERT3U(zp->zp_level, >, 0); 1940 zio->io_children_ready(zio); 1941 } 1942 1943 ASSERT(zio->io_child_type != ZIO_CHILD_DDT); 1944 ASSERT0P(zio->io_bp_override); 1945 1946 if (!BP_IS_HOLE(bp) && BP_GET_BIRTH(bp) == zio->io_txg) { 1947 /* 1948 * We're rewriting an existing block, which means we're 1949 * working on behalf of spa_sync(). For spa_sync() to 1950 * converge, it must eventually be the case that we don't 1951 * have to allocate new blocks. But compression changes 1952 * the blocksize, which forces a reallocate, and makes 1953 * convergence take longer. Therefore, after the first 1954 * few passes, stop compressing to ensure convergence. 1955 */ 1956 pass = spa_sync_pass(spa); 1957 1958 ASSERT(zio->io_txg == spa_syncing_txg(spa)); 1959 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1960 ASSERT(!BP_GET_DEDUP(bp)); 1961 1962 if (pass >= zfs_sync_pass_dont_compress) 1963 compress = ZIO_COMPRESS_OFF; 1964 1965 /* Make sure someone doesn't change their mind on overwrites */ 1966 ASSERT(BP_IS_EMBEDDED(bp) || BP_IS_GANG(bp) || 1967 MIN(zp->zp_copies, spa_max_replication(spa)) 1968 == BP_GET_NDVAS(bp)); 1969 } 1970 1971 /* If it's a compressed write that is not raw, compress the buffer. */ 1972 if (compress != ZIO_COMPRESS_OFF && 1973 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) { 1974 abd_t *cabd = NULL; 1975 if (abd_cmp_zero(zio->io_abd, lsize) == 0) 1976 psize = 0; 1977 else if (compress == ZIO_COMPRESS_EMPTY) 1978 psize = lsize; 1979 else 1980 psize = zio_compress_data(compress, zio->io_abd, &cabd, 1981 lsize, 1982 zio_get_compression_max_size(compress, 1983 spa->spa_gcd_alloc, spa->spa_min_alloc, lsize), 1984 zp->zp_complevel); 1985 if (psize == 0) { 1986 compress = ZIO_COMPRESS_OFF; 1987 } else if (psize >= lsize) { 1988 compress = ZIO_COMPRESS_OFF; 1989 if (cabd != NULL) 1990 abd_free(cabd); 1991 } else if (psize <= BPE_PAYLOAD_SIZE && !zp->zp_encrypt && 1992 zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) && 1993 spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) { 1994 void *cbuf = abd_borrow_buf_copy(cabd, lsize); 1995 encode_embedded_bp_compressed(bp, 1996 cbuf, compress, lsize, psize); 1997 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA); 1998 BP_SET_TYPE(bp, zio->io_prop.zp_type); 1999 BP_SET_LEVEL(bp, zio->io_prop.zp_level); 2000 abd_return_buf(cabd, cbuf, lsize); 2001 abd_free(cabd); 2002 BP_SET_LOGICAL_BIRTH(bp, zio->io_txg); 2003 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2004 ASSERT(spa_feature_is_active(spa, 2005 SPA_FEATURE_EMBEDDED_DATA)); 2006 return (zio); 2007 } else { 2008 /* 2009 * Round compressed size up to the minimum allocation 2010 * size of the smallest-ashift device, and zero the 2011 * tail. This ensures that the compressed size of the 2012 * BP (and thus compressratio property) are correct, 2013 * in that we charge for the padding used to fill out 2014 * the last sector. 2015 */ 2016 size_t rounded = (size_t)zio_roundup_alloc_size(spa, 2017 psize); 2018 if (rounded >= lsize) { 2019 compress = ZIO_COMPRESS_OFF; 2020 abd_free(cabd); 2021 psize = lsize; 2022 } else { 2023 abd_zero_off(cabd, psize, rounded - psize); 2024 psize = rounded; 2025 zio_push_transform(zio, cabd, 2026 psize, lsize, NULL); 2027 } 2028 } 2029 2030 /* 2031 * We were unable to handle this as an override bp, treat 2032 * it as a regular write I/O. 2033 */ 2034 zio->io_bp_override = NULL; 2035 *bp = zio->io_bp_orig; 2036 zio->io_pipeline = zio->io_orig_pipeline; 2037 2038 } else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 && 2039 zp->zp_type == DMU_OT_DNODE) { 2040 /* 2041 * The DMU actually relies on the zio layer's compression 2042 * to free metadnode blocks that have had all contained 2043 * dnodes freed. As a result, even when doing a raw 2044 * receive, we must check whether the block can be compressed 2045 * to a hole. 2046 */ 2047 if (abd_cmp_zero(zio->io_abd, lsize) == 0) { 2048 psize = 0; 2049 compress = ZIO_COMPRESS_OFF; 2050 } else { 2051 psize = lsize; 2052 } 2053 } else if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS && 2054 !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) { 2055 /* 2056 * If we are raw receiving an encrypted dataset we should not 2057 * take this codepath because it will change the on-disk block 2058 * and decryption will fail. 2059 */ 2060 size_t rounded = MIN((size_t)zio_roundup_alloc_size(spa, psize), 2061 lsize); 2062 2063 if (rounded != psize) { 2064 abd_t *cdata = abd_alloc_linear(rounded, B_TRUE); 2065 abd_zero_off(cdata, psize, rounded - psize); 2066 abd_copy_off(cdata, zio->io_abd, 0, 0, psize); 2067 psize = rounded; 2068 zio_push_transform(zio, cdata, 2069 psize, rounded, NULL); 2070 } 2071 } else { 2072 ASSERT3U(psize, !=, 0); 2073 } 2074 2075 /* 2076 * The final pass of spa_sync() must be all rewrites, but the first 2077 * few passes offer a trade-off: allocating blocks defers convergence, 2078 * but newly allocated blocks are sequential, so they can be written 2079 * to disk faster. Therefore, we allow the first few passes of 2080 * spa_sync() to allocate new blocks, but force rewrites after that. 2081 * There should only be a handful of blocks after pass 1 in any case. 2082 */ 2083 if (!BP_IS_HOLE(bp) && BP_GET_BIRTH(bp) == zio->io_txg && 2084 BP_GET_PSIZE(bp) == psize && 2085 pass >= zfs_sync_pass_rewrite) { 2086 VERIFY3U(psize, !=, 0); 2087 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES; 2088 2089 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages; 2090 zio->io_flags |= ZIO_FLAG_IO_REWRITE; 2091 } else { 2092 BP_ZERO(bp); 2093 zio->io_pipeline = ZIO_WRITE_PIPELINE; 2094 } 2095 2096 if (psize == 0) { 2097 if (BP_GET_LOGICAL_BIRTH(&zio->io_bp_orig) != 0 && 2098 spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) { 2099 BP_SET_LSIZE(bp, lsize); 2100 BP_SET_TYPE(bp, zp->zp_type); 2101 BP_SET_LEVEL(bp, zp->zp_level); 2102 BP_SET_BIRTH(bp, zio->io_txg, 0); 2103 } 2104 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2105 } else { 2106 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER); 2107 BP_SET_LSIZE(bp, lsize); 2108 BP_SET_TYPE(bp, zp->zp_type); 2109 BP_SET_LEVEL(bp, zp->zp_level); 2110 BP_SET_PSIZE(bp, psize); 2111 BP_SET_COMPRESS(bp, compress); 2112 BP_SET_CHECKSUM(bp, zp->zp_checksum); 2113 BP_SET_DEDUP(bp, zp->zp_dedup); 2114 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 2115 if (zp->zp_dedup) { 2116 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2117 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 2118 ASSERT(!zp->zp_encrypt || 2119 DMU_OT_IS_ENCRYPTED(zp->zp_type)); 2120 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE; 2121 } 2122 if (zp->zp_nopwrite) { 2123 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2124 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 2125 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE; 2126 } 2127 } 2128 return (zio); 2129 } 2130 2131 static zio_t * 2132 zio_free_bp_init(zio_t *zio) 2133 { 2134 blkptr_t *bp = zio->io_bp; 2135 2136 if (zio->io_child_type == ZIO_CHILD_LOGICAL) { 2137 if (BP_GET_DEDUP(bp)) 2138 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE; 2139 } 2140 2141 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 2142 2143 return (zio); 2144 } 2145 2146 /* 2147 * ========================================================================== 2148 * Execute the I/O pipeline 2149 * ========================================================================== 2150 */ 2151 2152 static void 2153 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline) 2154 { 2155 spa_t *spa = zio->io_spa; 2156 zio_type_t t = zio->io_type; 2157 2158 /* 2159 * If we're a config writer or a probe, the normal issue and 2160 * interrupt threads may all be blocked waiting for the config lock. 2161 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL. 2162 */ 2163 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE)) 2164 t = ZIO_TYPE_NULL; 2165 2166 /* 2167 * A similar issue exists for the L2ARC write thread until L2ARC 2.0. 2168 */ 2169 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux) 2170 t = ZIO_TYPE_NULL; 2171 2172 /* 2173 * If this is a high priority I/O, then use the high priority taskq if 2174 * available or cut the line otherwise. 2175 */ 2176 if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) { 2177 if (spa->spa_zio_taskq[t][q + 1].stqs_count != 0) 2178 q++; 2179 else 2180 cutinline = B_TRUE; 2181 } 2182 2183 ASSERT3U(q, <, ZIO_TASKQ_TYPES); 2184 2185 spa_taskq_dispatch(spa, t, q, zio_execute, zio, cutinline); 2186 } 2187 2188 static boolean_t 2189 zio_taskq_member(zio_t *zio, zio_taskq_type_t q) 2190 { 2191 spa_t *spa = zio->io_spa; 2192 2193 taskq_t *tq = taskq_of_curthread(); 2194 2195 for (zio_type_t t = 0; t < ZIO_TYPES; t++) { 2196 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 2197 uint_t i; 2198 for (i = 0; i < tqs->stqs_count; i++) { 2199 if (tqs->stqs_taskq[i] == tq) 2200 return (B_TRUE); 2201 } 2202 } 2203 2204 return (B_FALSE); 2205 } 2206 2207 static zio_t * 2208 zio_issue_async(zio_t *zio) 2209 { 2210 ASSERT((zio->io_type != ZIO_TYPE_WRITE) || ZIO_HAS_ALLOCATOR(zio)); 2211 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 2212 return (NULL); 2213 } 2214 2215 void 2216 zio_interrupt(void *zio) 2217 { 2218 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE); 2219 } 2220 2221 void 2222 zio_delay_interrupt(zio_t *zio) 2223 { 2224 /* 2225 * The timeout_generic() function isn't defined in userspace, so 2226 * rather than trying to implement the function, the zio delay 2227 * functionality has been disabled for userspace builds. 2228 */ 2229 2230 #ifdef _KERNEL 2231 /* 2232 * If io_target_timestamp is zero, then no delay has been registered 2233 * for this IO, thus jump to the end of this function and "skip" the 2234 * delay; issuing it directly to the zio layer. 2235 */ 2236 if (zio->io_target_timestamp != 0) { 2237 hrtime_t now = gethrtime(); 2238 2239 if (now >= zio->io_target_timestamp) { 2240 /* 2241 * This IO has already taken longer than the target 2242 * delay to complete, so we don't want to delay it 2243 * any longer; we "miss" the delay and issue it 2244 * directly to the zio layer. This is likely due to 2245 * the target latency being set to a value less than 2246 * the underlying hardware can satisfy (e.g. delay 2247 * set to 1ms, but the disks take 10ms to complete an 2248 * IO request). 2249 */ 2250 2251 DTRACE_PROBE2(zio__delay__miss, zio_t *, zio, 2252 hrtime_t, now); 2253 2254 zio_interrupt(zio); 2255 } else { 2256 taskqid_t tid; 2257 hrtime_t diff = zio->io_target_timestamp - now; 2258 int ticks = MAX(1, NSEC_TO_TICK(diff)); 2259 clock_t expire_at_tick = ddi_get_lbolt() + ticks; 2260 2261 DTRACE_PROBE3(zio__delay__hit, zio_t *, zio, 2262 hrtime_t, now, hrtime_t, diff); 2263 2264 tid = taskq_dispatch_delay(system_taskq, zio_interrupt, 2265 zio, TQ_NOSLEEP, expire_at_tick); 2266 if (tid == TASKQID_INVALID) { 2267 /* 2268 * Couldn't allocate a task. Just finish the 2269 * zio without a delay. 2270 */ 2271 zio_interrupt(zio); 2272 } 2273 } 2274 return; 2275 } 2276 #endif 2277 DTRACE_PROBE1(zio__delay__skip, zio_t *, zio); 2278 zio_interrupt(zio); 2279 } 2280 2281 static void 2282 zio_deadman_impl(zio_t *pio, int ziodepth) 2283 { 2284 zio_t *cio, *cio_next; 2285 zio_link_t *zl = NULL; 2286 vdev_t *vd = pio->io_vd; 2287 uint64_t failmode = spa_get_deadman_failmode(pio->io_spa); 2288 2289 if (zio_deadman_log_all || (vd != NULL && vd->vdev_ops->vdev_op_leaf)) { 2290 vdev_queue_t *vq = vd ? &vd->vdev_queue : NULL; 2291 zbookmark_phys_t *zb = &pio->io_bookmark; 2292 uint64_t delta = gethrtime() - pio->io_timestamp; 2293 2294 zfs_dbgmsg("slow zio[%d]: zio=%px timestamp=%llu " 2295 "delta=%llu queued=%llu io=%llu " 2296 "path=%s " 2297 "last=%llu type=%d " 2298 "priority=%d flags=0x%llx stage=0x%x " 2299 "pipeline=0x%x pipeline-trace=0x%x " 2300 "objset=%llu object=%llu " 2301 "level=%llu blkid=%llu " 2302 "offset=%llu size=%llu " 2303 "error=%d", 2304 ziodepth, pio, pio->io_timestamp, 2305 (u_longlong_t)delta, pio->io_delta, pio->io_delay, 2306 vd ? vd->vdev_path : "NULL", 2307 vq ? vq->vq_io_complete_ts : 0, pio->io_type, 2308 pio->io_priority, (u_longlong_t)pio->io_flags, 2309 pio->io_stage, pio->io_pipeline, pio->io_pipeline_trace, 2310 (u_longlong_t)zb->zb_objset, (u_longlong_t)zb->zb_object, 2311 (u_longlong_t)zb->zb_level, (u_longlong_t)zb->zb_blkid, 2312 (u_longlong_t)pio->io_offset, (u_longlong_t)pio->io_size, 2313 pio->io_error); 2314 (void) zfs_ereport_post(FM_EREPORT_ZFS_DEADMAN, 2315 pio->io_spa, vd, zb, pio, 0); 2316 } 2317 2318 if (vd != NULL && vd->vdev_ops->vdev_op_leaf && 2319 list_is_empty(&pio->io_child_list) && 2320 failmode == ZIO_FAILURE_MODE_CONTINUE && 2321 taskq_empty_ent(&pio->io_tqent) && 2322 pio->io_queue_state == ZIO_QS_ACTIVE) { 2323 pio->io_error = EINTR; 2324 zio_interrupt(pio); 2325 } 2326 2327 mutex_enter(&pio->io_lock); 2328 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 2329 cio_next = zio_walk_children(pio, &zl); 2330 zio_deadman_impl(cio, ziodepth + 1); 2331 } 2332 mutex_exit(&pio->io_lock); 2333 } 2334 2335 /* 2336 * Log the critical information describing this zio and all of its children 2337 * using the zfs_dbgmsg() interface then post deadman event for the ZED. 2338 */ 2339 void 2340 zio_deadman(zio_t *pio, const char *tag) 2341 { 2342 spa_t *spa = pio->io_spa; 2343 char *name = spa_name(spa); 2344 2345 if (!zfs_deadman_enabled || spa_suspended(spa)) 2346 return; 2347 2348 zio_deadman_impl(pio, 0); 2349 2350 switch (spa_get_deadman_failmode(spa)) { 2351 case ZIO_FAILURE_MODE_WAIT: 2352 zfs_dbgmsg("%s waiting for hung I/O to pool '%s'", tag, name); 2353 break; 2354 2355 case ZIO_FAILURE_MODE_CONTINUE: 2356 zfs_dbgmsg("%s restarting hung I/O for pool '%s'", tag, name); 2357 break; 2358 2359 case ZIO_FAILURE_MODE_PANIC: 2360 fm_panic("%s determined I/O to pool '%s' is hung.", tag, name); 2361 break; 2362 } 2363 } 2364 2365 /* 2366 * Execute the I/O pipeline until one of the following occurs: 2367 * (1) the I/O completes; (2) the pipeline stalls waiting for 2368 * dependent child I/Os; (3) the I/O issues, so we're waiting 2369 * for an I/O completion interrupt; (4) the I/O is delegated by 2370 * vdev-level caching or aggregation; (5) the I/O is deferred 2371 * due to vdev-level queueing; (6) the I/O is handed off to 2372 * another thread. In all cases, the pipeline stops whenever 2373 * there's no CPU work; it never burns a thread in cv_wait_io(). 2374 * 2375 * There's no locking on io_stage because there's no legitimate way 2376 * for multiple threads to be attempting to process the same I/O. 2377 */ 2378 static zio_pipe_stage_t *zio_pipeline[]; 2379 2380 /* 2381 * zio_execute() is a wrapper around the static function 2382 * __zio_execute() so that we can force __zio_execute() to be 2383 * inlined. This reduces stack overhead which is important 2384 * because __zio_execute() is called recursively in several zio 2385 * code paths. zio_execute() itself cannot be inlined because 2386 * it is externally visible. 2387 */ 2388 void 2389 zio_execute(void *zio) 2390 { 2391 fstrans_cookie_t cookie; 2392 2393 cookie = spl_fstrans_mark(); 2394 __zio_execute(zio); 2395 spl_fstrans_unmark(cookie); 2396 } 2397 2398 /* 2399 * Used to determine if in the current context the stack is sized large 2400 * enough to allow zio_execute() to be called recursively. A minimum 2401 * stack size of 16K is required to avoid needing to re-dispatch the zio. 2402 */ 2403 static boolean_t 2404 zio_execute_stack_check(zio_t *zio) 2405 { 2406 #if !defined(HAVE_LARGE_STACKS) 2407 dsl_pool_t *dp = spa_get_dsl(zio->io_spa); 2408 2409 /* Executing in txg_sync_thread() context. */ 2410 if (dp && curthread == dp->dp_tx.tx_sync_thread) 2411 return (B_TRUE); 2412 2413 /* Pool initialization outside of zio_taskq context. */ 2414 if (dp && spa_is_initializing(dp->dp_spa) && 2415 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE) && 2416 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE_HIGH)) 2417 return (B_TRUE); 2418 #else 2419 (void) zio; 2420 #endif /* HAVE_LARGE_STACKS */ 2421 2422 return (B_FALSE); 2423 } 2424 2425 __attribute__((always_inline)) 2426 static inline void 2427 __zio_execute(zio_t *zio) 2428 { 2429 ASSERT3U(zio->io_queued_timestamp, >, 0); 2430 2431 while (zio->io_stage < ZIO_STAGE_DONE) { 2432 enum zio_stage pipeline = zio->io_pipeline; 2433 enum zio_stage stage = zio->io_stage; 2434 2435 zio->io_executor = curthread; 2436 2437 ASSERT(!MUTEX_HELD(&zio->io_lock)); 2438 ASSERT(ISP2(stage)); 2439 ASSERT0P(zio->io_stall); 2440 2441 do { 2442 stage <<= 1; 2443 } while ((stage & pipeline) == 0); 2444 2445 ASSERT(stage <= ZIO_STAGE_DONE); 2446 2447 /* 2448 * If we are in interrupt context and this pipeline stage 2449 * will grab a config lock that is held across I/O, 2450 * or may wait for an I/O that needs an interrupt thread 2451 * to complete, issue async to avoid deadlock. 2452 * 2453 * For VDEV_IO_START, we cut in line so that the io will 2454 * be sent to disk promptly. 2455 */ 2456 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL && 2457 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) { 2458 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ? 2459 zio_requeue_io_start_cut_in_line : B_FALSE; 2460 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut); 2461 return; 2462 } 2463 2464 /* 2465 * If the current context doesn't have large enough stacks 2466 * the zio must be issued asynchronously to prevent overflow. 2467 */ 2468 if (zio_execute_stack_check(zio)) { 2469 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ? 2470 zio_requeue_io_start_cut_in_line : B_FALSE; 2471 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut); 2472 return; 2473 } 2474 2475 zio->io_stage = stage; 2476 zio->io_pipeline_trace |= zio->io_stage; 2477 2478 /* 2479 * The zio pipeline stage returns the next zio to execute 2480 * (typically the same as this one), or NULL if we should 2481 * stop. 2482 */ 2483 zio = zio_pipeline[highbit64(stage) - 1](zio); 2484 2485 if (zio == NULL) 2486 return; 2487 } 2488 } 2489 2490 2491 /* 2492 * ========================================================================== 2493 * Initiate I/O, either sync or async 2494 * ========================================================================== 2495 */ 2496 int 2497 zio_wait(zio_t *zio) 2498 { 2499 /* 2500 * Some routines, like zio_free_sync(), may return a NULL zio 2501 * to avoid the performance overhead of creating and then destroying 2502 * an unneeded zio. For the callers' simplicity, we accept a NULL 2503 * zio and ignore it. 2504 */ 2505 if (zio == NULL) 2506 return (0); 2507 2508 long timeout = MSEC_TO_TICK(zfs_deadman_ziotime_ms); 2509 int error; 2510 2511 ASSERT3S(zio->io_stage, ==, ZIO_STAGE_OPEN); 2512 ASSERT0P(zio->io_executor); 2513 2514 zio->io_waiter = curthread; 2515 ASSERT0(zio->io_queued_timestamp); 2516 zio->io_queued_timestamp = gethrtime(); 2517 2518 if (zio->io_type == ZIO_TYPE_WRITE) { 2519 spa_select_allocator(zio); 2520 } 2521 __zio_execute(zio); 2522 2523 mutex_enter(&zio->io_lock); 2524 while (zio->io_executor != NULL) { 2525 error = cv_timedwait_io(&zio->io_cv, &zio->io_lock, 2526 ddi_get_lbolt() + timeout); 2527 2528 if (zfs_deadman_enabled && error == -1 && 2529 gethrtime() - zio->io_queued_timestamp > 2530 spa_deadman_ziotime(zio->io_spa)) { 2531 mutex_exit(&zio->io_lock); 2532 timeout = MSEC_TO_TICK(zfs_deadman_checktime_ms); 2533 zio_deadman(zio, FTAG); 2534 mutex_enter(&zio->io_lock); 2535 } 2536 } 2537 mutex_exit(&zio->io_lock); 2538 2539 error = zio->io_error; 2540 zio_destroy(zio); 2541 2542 return (error); 2543 } 2544 2545 void 2546 zio_nowait(zio_t *zio) 2547 { 2548 /* 2549 * See comment in zio_wait(). 2550 */ 2551 if (zio == NULL) 2552 return; 2553 2554 ASSERT0P(zio->io_executor); 2555 2556 if (zio->io_child_type == ZIO_CHILD_LOGICAL && 2557 list_is_empty(&zio->io_parent_list)) { 2558 zio_t *pio; 2559 2560 /* 2561 * This is a logical async I/O with no parent to wait for it. 2562 * We add it to the spa_async_root_zio "Godfather" I/O which 2563 * will ensure they complete prior to unloading the pool. 2564 */ 2565 spa_t *spa = zio->io_spa; 2566 pio = spa->spa_async_zio_root[CPU_SEQID_UNSTABLE]; 2567 2568 zio_add_child(pio, zio); 2569 } 2570 2571 ASSERT0(zio->io_queued_timestamp); 2572 zio->io_queued_timestamp = gethrtime(); 2573 if (zio->io_type == ZIO_TYPE_WRITE) { 2574 spa_select_allocator(zio); 2575 } 2576 __zio_execute(zio); 2577 } 2578 2579 /* 2580 * ========================================================================== 2581 * Reexecute, cancel, or suspend/resume failed I/O 2582 * ========================================================================== 2583 */ 2584 2585 static void 2586 zio_reexecute(void *arg) 2587 { 2588 zio_t *pio = arg; 2589 zio_t *cio, *cio_next, *gio; 2590 2591 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL); 2592 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN); 2593 ASSERT0P(pio->io_gang_leader); 2594 ASSERT0P(pio->io_gang_tree); 2595 2596 mutex_enter(&pio->io_lock); 2597 pio->io_flags = pio->io_orig_flags; 2598 pio->io_stage = pio->io_orig_stage; 2599 pio->io_pipeline = pio->io_orig_pipeline; 2600 pio->io_post = 0; 2601 pio->io_flags |= ZIO_FLAG_REEXECUTED; 2602 pio->io_pipeline_trace = 0; 2603 pio->io_error = 0; 2604 pio->io_state[ZIO_WAIT_READY] = (pio->io_stage >= ZIO_STAGE_READY) || 2605 (pio->io_pipeline & ZIO_STAGE_READY) == 0; 2606 pio->io_state[ZIO_WAIT_DONE] = (pio->io_stage >= ZIO_STAGE_DONE); 2607 2608 /* 2609 * It's possible for a failed ZIO to be a descendant of more than one 2610 * ZIO tree. When reexecuting it, we have to be sure to add its wait 2611 * states to all parent wait counts. 2612 * 2613 * Those parents, in turn, may have other children that are currently 2614 * active, usually because they've already been reexecuted after 2615 * resuming. Those children may be executing and may call 2616 * zio_notify_parent() at the same time as we're updating our parent's 2617 * counts. To avoid races while updating the counts, we take 2618 * gio->io_lock before each update. 2619 */ 2620 zio_link_t *zl = NULL; 2621 while ((gio = zio_walk_parents(pio, &zl)) != NULL) { 2622 mutex_enter(&gio->io_lock); 2623 for (int w = 0; w < ZIO_WAIT_TYPES; w++) { 2624 gio->io_children[pio->io_child_type][w] += 2625 !pio->io_state[w]; 2626 } 2627 mutex_exit(&gio->io_lock); 2628 } 2629 2630 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 2631 pio->io_child_error[c] = 0; 2632 2633 if (IO_IS_ALLOCATING(pio)) 2634 BP_ZERO(pio->io_bp); 2635 2636 /* 2637 * As we reexecute pio's children, new children could be created. 2638 * New children go to the head of pio's io_child_list, however, 2639 * so we will (correctly) not reexecute them. The key is that 2640 * the remainder of pio's io_child_list, from 'cio_next' onward, 2641 * cannot be affected by any side effects of reexecuting 'cio'. 2642 */ 2643 zl = NULL; 2644 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 2645 cio_next = zio_walk_children(pio, &zl); 2646 mutex_exit(&pio->io_lock); 2647 zio_reexecute(cio); 2648 mutex_enter(&pio->io_lock); 2649 } 2650 mutex_exit(&pio->io_lock); 2651 2652 /* 2653 * Now that all children have been reexecuted, execute the parent. 2654 * We don't reexecute "The Godfather" I/O here as it's the 2655 * responsibility of the caller to wait on it. 2656 */ 2657 if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) { 2658 pio->io_queued_timestamp = gethrtime(); 2659 __zio_execute(pio); 2660 } 2661 } 2662 2663 void 2664 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason) 2665 { 2666 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC) 2667 fm_panic("Pool '%s' has encountered an uncorrectable I/O " 2668 "failure and the failure mode property for this pool " 2669 "is set to panic.", spa_name(spa)); 2670 2671 if (reason != ZIO_SUSPEND_MMP) { 2672 cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable " 2673 "I/O failure and has been suspended.", spa_name(spa)); 2674 } 2675 2676 (void) zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, 2677 NULL, NULL, 0); 2678 2679 mutex_enter(&spa->spa_suspend_lock); 2680 2681 if (spa->spa_suspend_zio_root == NULL) 2682 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL, 2683 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 2684 ZIO_FLAG_GODFATHER); 2685 2686 spa->spa_suspended = reason; 2687 2688 if (zio != NULL) { 2689 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 2690 ASSERT(zio != spa->spa_suspend_zio_root); 2691 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2692 ASSERT0P(zio_unique_parent(zio)); 2693 ASSERT(zio->io_stage == ZIO_STAGE_DONE); 2694 zio_add_child(spa->spa_suspend_zio_root, zio); 2695 } 2696 2697 mutex_exit(&spa->spa_suspend_lock); 2698 2699 txg_wait_kick(spa->spa_dsl_pool); 2700 } 2701 2702 int 2703 zio_resume(spa_t *spa) 2704 { 2705 zio_t *pio; 2706 2707 /* 2708 * Reexecute all previously suspended i/o. 2709 */ 2710 mutex_enter(&spa->spa_suspend_lock); 2711 if (spa->spa_suspended != ZIO_SUSPEND_NONE) 2712 cmn_err(CE_WARN, "Pool '%s' was suspended and is being " 2713 "resumed. Failed I/O will be retried.", 2714 spa_name(spa)); 2715 spa->spa_suspended = ZIO_SUSPEND_NONE; 2716 cv_broadcast(&spa->spa_suspend_cv); 2717 pio = spa->spa_suspend_zio_root; 2718 spa->spa_suspend_zio_root = NULL; 2719 mutex_exit(&spa->spa_suspend_lock); 2720 2721 if (pio == NULL) 2722 return (0); 2723 2724 zio_reexecute(pio); 2725 return (zio_wait(pio)); 2726 } 2727 2728 void 2729 zio_resume_wait(spa_t *spa) 2730 { 2731 mutex_enter(&spa->spa_suspend_lock); 2732 while (spa_suspended(spa)) 2733 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock); 2734 mutex_exit(&spa->spa_suspend_lock); 2735 } 2736 2737 /* 2738 * ========================================================================== 2739 * Gang blocks. 2740 * 2741 * A gang block is a collection of small blocks that looks to the DMU 2742 * like one large block. When zio_dva_allocate() cannot find a block 2743 * of the requested size, due to either severe fragmentation or the pool 2744 * being nearly full, it calls zio_write_gang_block() to construct the 2745 * block from smaller fragments. 2746 * 2747 * A gang block consists of a a gang header and up to gbh_nblkptrs(size) 2748 * gang members. The gang header is like an indirect block: it's an array 2749 * of block pointers, though the header has a small tail (a zio_eck_t) 2750 * that stores an embedded checksum. It is allocated using only a single 2751 * sector as the requested size, and hence is allocatable regardless of 2752 * fragmentation. Its size is determined by the smallest allocatable 2753 * asize of the vdevs it was allocated on. The gang header's bps point 2754 * to its gang members, which hold the data. 2755 * 2756 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg> 2757 * as the verifier to ensure uniqueness of the SHA256 checksum. 2758 * Critically, the gang block bp's blk_cksum is the checksum of the data, 2759 * not the gang header. This ensures that data block signatures (needed for 2760 * deduplication) are independent of how the block is physically stored. 2761 * 2762 * Gang blocks can be nested: a gang member may itself be a gang block. 2763 * Thus every gang block is a tree in which root and all interior nodes are 2764 * gang headers, and the leaves are normal blocks that contain user data. 2765 * The root of the gang tree is called the gang leader. 2766 * 2767 * To perform any operation (read, rewrite, free, claim) on a gang block, 2768 * zio_gang_assemble() first assembles the gang tree (minus data leaves) 2769 * in the io_gang_tree field of the original logical i/o by recursively 2770 * reading the gang leader and all gang headers below it. This yields 2771 * an in-core tree containing the contents of every gang header and the 2772 * bps for every constituent of the gang block. 2773 * 2774 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree 2775 * and invokes a callback on each bp. To free a gang block, zio_gang_issue() 2776 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp. 2777 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim(). 2778 * zio_read_gang() is a wrapper around zio_read() that omits reading gang 2779 * headers, since we already have those in io_gang_tree. zio_rewrite_gang() 2780 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite() 2781 * of the gang header plus zio_checksum_compute() of the data to update the 2782 * gang header's blk_cksum as described above. 2783 * 2784 * The two-phase assemble/issue model solves the problem of partial failure -- 2785 * what if you'd freed part of a gang block but then couldn't read the 2786 * gang header for another part? Assembling the entire gang tree first 2787 * ensures that all the necessary gang header I/O has succeeded before 2788 * starting the actual work of free, claim, or write. Once the gang tree 2789 * is assembled, free and claim are in-memory operations that cannot fail. 2790 * 2791 * In the event that a gang write fails, zio_dva_unallocate() walks the 2792 * gang tree to immediately free (i.e. insert back into the space map) 2793 * everything we've allocated. This ensures that we don't get ENOSPC 2794 * errors during repeated suspend/resume cycles due to a flaky device. 2795 * 2796 * Gang rewrites only happen during sync-to-convergence. If we can't assemble 2797 * the gang tree, we won't modify the block, so we can safely defer the free 2798 * (knowing that the block is still intact). If we *can* assemble the gang 2799 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free 2800 * each constituent bp and we can allocate a new block on the next sync pass. 2801 * 2802 * In all cases, the gang tree allows complete recovery from partial failure. 2803 * ========================================================================== 2804 */ 2805 2806 static void 2807 zio_gang_issue_func_done(zio_t *zio) 2808 { 2809 abd_free(zio->io_abd); 2810 } 2811 2812 static zio_t * 2813 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2814 uint64_t offset) 2815 { 2816 if (gn != NULL) 2817 return (pio); 2818 2819 return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset), 2820 BP_GET_PSIZE(bp), zio_gang_issue_func_done, 2821 NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 2822 &pio->io_bookmark)); 2823 } 2824 2825 static zio_t * 2826 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2827 uint64_t offset) 2828 { 2829 zio_t *zio; 2830 2831 if (gn != NULL) { 2832 abd_t *gbh_abd = 2833 abd_get_from_buf(gn->gn_gbh, gn->gn_gangblocksize); 2834 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 2835 gbh_abd, gn->gn_gangblocksize, zio_gang_issue_func_done, 2836 NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 2837 &pio->io_bookmark); 2838 /* 2839 * As we rewrite each gang header, the pipeline will compute 2840 * a new gang block header checksum for it; but no one will 2841 * compute a new data checksum, so we do that here. The one 2842 * exception is the gang leader: the pipeline already computed 2843 * its data checksum because that stage precedes gang assembly. 2844 * (Presently, nothing actually uses interior data checksums; 2845 * this is just good hygiene.) 2846 */ 2847 if (gn != pio->io_gang_leader->io_gang_tree) { 2848 abd_t *buf = abd_get_offset(data, offset); 2849 2850 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp), 2851 buf, BP_GET_PSIZE(bp)); 2852 2853 abd_free(buf); 2854 } 2855 /* 2856 * If we are here to damage data for testing purposes, 2857 * leave the GBH alone so that we can detect the damage. 2858 */ 2859 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE) 2860 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 2861 } else { 2862 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 2863 abd_get_offset(data, offset), BP_GET_PSIZE(bp), 2864 zio_gang_issue_func_done, NULL, pio->io_priority, 2865 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2866 } 2867 2868 return (zio); 2869 } 2870 2871 static zio_t * 2872 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2873 uint64_t offset) 2874 { 2875 (void) gn, (void) data, (void) offset; 2876 2877 zio_t *zio = zio_free_sync(pio, pio->io_spa, pio->io_txg, bp, 2878 ZIO_GANG_CHILD_FLAGS(pio)); 2879 if (zio == NULL) { 2880 zio = zio_null(pio, pio->io_spa, 2881 NULL, NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)); 2882 } 2883 return (zio); 2884 } 2885 2886 static zio_t * 2887 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2888 uint64_t offset) 2889 { 2890 (void) gn, (void) data, (void) offset; 2891 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp, 2892 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio))); 2893 } 2894 2895 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = { 2896 NULL, 2897 zio_read_gang, 2898 zio_rewrite_gang, 2899 zio_free_gang, 2900 zio_claim_gang, 2901 NULL 2902 }; 2903 2904 static void zio_gang_tree_assemble_done(zio_t *zio); 2905 2906 static zio_gang_node_t * 2907 zio_gang_node_alloc(zio_gang_node_t **gnpp, uint64_t gangblocksize) 2908 { 2909 zio_gang_node_t *gn; 2910 2911 ASSERT0P(*gnpp); 2912 2913 gn = kmem_zalloc(sizeof (*gn) + 2914 (gbh_nblkptrs(gangblocksize) * sizeof (gn)), KM_SLEEP); 2915 gn->gn_gangblocksize = gn->gn_allocsize = gangblocksize; 2916 gn->gn_gbh = zio_buf_alloc(gangblocksize); 2917 *gnpp = gn; 2918 2919 return (gn); 2920 } 2921 2922 static void 2923 zio_gang_node_free(zio_gang_node_t **gnpp) 2924 { 2925 zio_gang_node_t *gn = *gnpp; 2926 2927 for (int g = 0; g < gbh_nblkptrs(gn->gn_allocsize); g++) 2928 ASSERT0P(gn->gn_child[g]); 2929 2930 zio_buf_free(gn->gn_gbh, gn->gn_allocsize); 2931 kmem_free(gn, sizeof (*gn) + 2932 (gbh_nblkptrs(gn->gn_allocsize) * sizeof (gn))); 2933 *gnpp = NULL; 2934 } 2935 2936 static void 2937 zio_gang_tree_free(zio_gang_node_t **gnpp) 2938 { 2939 zio_gang_node_t *gn = *gnpp; 2940 2941 if (gn == NULL) 2942 return; 2943 2944 for (int g = 0; g < gbh_nblkptrs(gn->gn_allocsize); g++) 2945 zio_gang_tree_free(&gn->gn_child[g]); 2946 2947 zio_gang_node_free(gnpp); 2948 } 2949 2950 static void 2951 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp) 2952 { 2953 uint64_t gangblocksize = UINT64_MAX; 2954 if (spa_feature_is_active(gio->io_spa, 2955 SPA_FEATURE_DYNAMIC_GANG_HEADER)) { 2956 spa_config_enter(gio->io_spa, SCL_VDEV, FTAG, RW_READER); 2957 for (int dva = 0; dva < BP_GET_NDVAS(bp); dva++) { 2958 vdev_t *vd = vdev_lookup_top(gio->io_spa, 2959 DVA_GET_VDEV(&bp->blk_dva[dva])); 2960 uint64_t psize = vdev_gang_header_psize(vd); 2961 gangblocksize = MIN(gangblocksize, psize); 2962 } 2963 spa_config_exit(gio->io_spa, SCL_VDEV, FTAG); 2964 } else { 2965 gangblocksize = SPA_OLD_GANGBLOCKSIZE; 2966 } 2967 ASSERT3U(gangblocksize, !=, UINT64_MAX); 2968 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp, gangblocksize); 2969 abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, gangblocksize); 2970 2971 ASSERT(gio->io_gang_leader == gio); 2972 ASSERT(BP_IS_GANG(bp)); 2973 2974 zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, gangblocksize, 2975 zio_gang_tree_assemble_done, gn, gio->io_priority, 2976 ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark)); 2977 } 2978 2979 static void 2980 zio_gang_tree_assemble_done(zio_t *zio) 2981 { 2982 zio_t *gio = zio->io_gang_leader; 2983 zio_gang_node_t *gn = zio->io_private; 2984 blkptr_t *bp = zio->io_bp; 2985 2986 ASSERT(gio == zio_unique_parent(zio)); 2987 ASSERT(list_is_empty(&zio->io_child_list)); 2988 2989 if (zio->io_error) 2990 return; 2991 2992 /* this ABD was created from a linear buf in zio_gang_tree_assemble */ 2993 if (BP_SHOULD_BYTESWAP(bp)) 2994 byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size); 2995 2996 ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh); 2997 /* 2998 * If this was an old-style gangblock, the gangblocksize should have 2999 * been updated in zio_checksum_error to reflect that. 3000 */ 3001 ASSERT3U(gbh_eck(gn->gn_gbh, gn->gn_gangblocksize)->zec_magic, 3002 ==, ZEC_MAGIC); 3003 3004 abd_free(zio->io_abd); 3005 3006 for (int g = 0; g < gbh_nblkptrs(gn->gn_gangblocksize); g++) { 3007 blkptr_t *gbp = gbh_bp(gn->gn_gbh, g); 3008 if (!BP_IS_GANG(gbp)) 3009 continue; 3010 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]); 3011 } 3012 } 3013 3014 static void 3015 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data, 3016 uint64_t offset) 3017 { 3018 zio_t *gio = pio->io_gang_leader; 3019 zio_t *zio; 3020 3021 ASSERT(BP_IS_GANG(bp) == !!gn); 3022 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp)); 3023 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree); 3024 3025 /* 3026 * If you're a gang header, your data is in gn->gn_gbh. 3027 * If you're a gang member, your data is in 'data' and gn == NULL. 3028 */ 3029 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset); 3030 3031 if (gn != NULL) { 3032 ASSERT3U(gbh_eck(gn->gn_gbh, 3033 gn->gn_gangblocksize)->zec_magic, ==, ZEC_MAGIC); 3034 3035 for (int g = 0; g < gbh_nblkptrs(gn->gn_gangblocksize); g++) { 3036 blkptr_t *gbp = gbh_bp(gn->gn_gbh, g); 3037 if (BP_IS_HOLE(gbp)) 3038 continue; 3039 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data, 3040 offset); 3041 offset += BP_GET_PSIZE(gbp); 3042 } 3043 } 3044 3045 if (gn == gio->io_gang_tree) 3046 ASSERT3U(gio->io_size, ==, offset); 3047 3048 if (zio != pio) 3049 zio_nowait(zio); 3050 } 3051 3052 static zio_t * 3053 zio_gang_assemble(zio_t *zio) 3054 { 3055 blkptr_t *bp = zio->io_bp; 3056 3057 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL); 3058 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 3059 3060 zio->io_gang_leader = zio; 3061 3062 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree); 3063 3064 return (zio); 3065 } 3066 3067 static zio_t * 3068 zio_gang_issue(zio_t *zio) 3069 { 3070 blkptr_t *bp = zio->io_bp; 3071 3072 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) { 3073 return (NULL); 3074 } 3075 3076 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio); 3077 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 3078 3079 if (zio->io_child_error[ZIO_CHILD_GANG] == 0) 3080 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd, 3081 0); 3082 else 3083 zio_gang_tree_free(&zio->io_gang_tree); 3084 3085 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 3086 3087 return (zio); 3088 } 3089 3090 static void 3091 zio_gang_inherit_allocator(zio_t *pio, zio_t *cio) 3092 { 3093 cio->io_allocator = pio->io_allocator; 3094 } 3095 3096 static void 3097 zio_write_gang_member_ready(zio_t *zio) 3098 { 3099 zio_t *pio = zio_unique_parent(zio); 3100 dva_t *cdva = zio->io_bp->blk_dva; 3101 dva_t *pdva = pio->io_bp->blk_dva; 3102 uint64_t asize; 3103 zio_t *gio __maybe_unused = zio->io_gang_leader; 3104 3105 if (BP_IS_HOLE(zio->io_bp)) 3106 return; 3107 3108 /* 3109 * If we're getting direct-invoked from zio_write_gang_block(), 3110 * the bp_orig will be set. 3111 */ 3112 ASSERT(BP_IS_HOLE(&zio->io_bp_orig) || 3113 zio->io_flags & ZIO_FLAG_PREALLOCATED); 3114 3115 ASSERT(zio->io_child_type == ZIO_CHILD_GANG); 3116 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies); 3117 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp)); 3118 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp)); 3119 VERIFY3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp)); 3120 3121 mutex_enter(&pio->io_lock); 3122 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) { 3123 ASSERT(DVA_GET_GANG(&pdva[d])); 3124 asize = DVA_GET_ASIZE(&pdva[d]); 3125 asize += DVA_GET_ASIZE(&cdva[d]); 3126 DVA_SET_ASIZE(&pdva[d], asize); 3127 } 3128 mutex_exit(&pio->io_lock); 3129 } 3130 3131 static void 3132 zio_write_gang_done(zio_t *zio) 3133 { 3134 /* 3135 * The io_abd field will be NULL for a zio with no data. The io_flags 3136 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't 3137 * check for it here as it is cleared in zio_ready. 3138 */ 3139 if (zio->io_abd != NULL) 3140 abd_free(zio->io_abd); 3141 } 3142 3143 static void 3144 zio_update_feature(void *arg, dmu_tx_t *tx) 3145 { 3146 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 3147 spa_feature_incr(spa, (spa_feature_t)(uintptr_t)arg, tx); 3148 } 3149 3150 static zio_t * 3151 zio_write_gang_block(zio_t *pio, metaslab_class_t *mc) 3152 { 3153 spa_t *spa = pio->io_spa; 3154 blkptr_t *bp = pio->io_bp; 3155 zio_t *gio = pio->io_gang_leader; 3156 zio_t *zio; 3157 zio_gang_node_t *gn, **gnpp; 3158 zio_gbh_phys_t *gbh; 3159 abd_t *gbh_abd; 3160 uint64_t txg = pio->io_txg; 3161 uint64_t resid = pio->io_size; 3162 zio_prop_t zp; 3163 int error; 3164 boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA); 3165 3166 /* 3167 * Store multiple copies of the GBH, so that we can still traverse 3168 * all the data (e.g. to free or scrub) even if a block is damaged. 3169 * This value respects the redundant_metadata property. 3170 */ 3171 int gbh_copies = gio->io_prop.zp_gang_copies; 3172 if (gbh_copies == 0) { 3173 /* 3174 * This should only happen in the case where we're filling in 3175 * DDT entries for a parent that wants more copies than the DDT 3176 * has. In that case, we cannot gang without creating a mixed 3177 * blkptr, which is illegal. 3178 */ 3179 ASSERT3U(gio->io_child_type, ==, ZIO_CHILD_DDT); 3180 pio->io_error = EAGAIN; 3181 return (pio); 3182 } 3183 ASSERT3S(gbh_copies, >, 0); 3184 ASSERT3S(gbh_copies, <=, SPA_DVAS_PER_BP); 3185 3186 ASSERT(ZIO_HAS_ALLOCATOR(pio)); 3187 int flags = METASLAB_GANG_HEADER; 3188 if (pio->io_flags & ZIO_FLAG_ALLOC_THROTTLED) { 3189 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 3190 ASSERT(has_data); 3191 3192 flags |= METASLAB_ASYNC_ALLOC; 3193 } 3194 3195 uint64_t gangblocksize = SPA_OLD_GANGBLOCKSIZE; 3196 uint64_t candidate = gangblocksize; 3197 error = metaslab_alloc_range(spa, mc, gangblocksize, gangblocksize, 3198 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags, 3199 &pio->io_alloc_list, pio->io_allocator, pio, &candidate); 3200 if (error) { 3201 pio->io_error = error; 3202 return (pio); 3203 } 3204 if (spa_feature_is_active(spa, SPA_FEATURE_DYNAMIC_GANG_HEADER)) 3205 gangblocksize = candidate; 3206 3207 if (pio == gio) { 3208 gnpp = &gio->io_gang_tree; 3209 } else { 3210 gnpp = pio->io_private; 3211 ASSERT(pio->io_ready == zio_write_gang_member_ready); 3212 } 3213 3214 gn = zio_gang_node_alloc(gnpp, gangblocksize); 3215 gbh = gn->gn_gbh; 3216 memset(gbh, 0, gangblocksize); 3217 gbh_abd = abd_get_from_buf(gbh, gangblocksize); 3218 3219 /* 3220 * Create the gang header. 3221 */ 3222 zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, gangblocksize, 3223 zio_write_gang_done, NULL, pio->io_priority, 3224 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 3225 3226 zio_gang_inherit_allocator(pio, zio); 3227 if (pio->io_flags & ZIO_FLAG_ALLOC_THROTTLED) { 3228 boolean_t more; 3229 VERIFY(metaslab_class_throttle_reserve(mc, zio->io_allocator, 3230 gbh_copies, zio->io_size, B_TRUE, &more)); 3231 zio->io_flags |= ZIO_FLAG_ALLOC_THROTTLED; 3232 } 3233 3234 /* 3235 * Create and nowait the gang children. First, we try to do 3236 * opportunistic allocations. If that fails to generate enough 3237 * space, we fall back to normal zio_write calls for nested gang. 3238 */ 3239 int g; 3240 boolean_t any_failed = B_FALSE; 3241 for (g = 0; resid != 0; g++) { 3242 flags &= METASLAB_ASYNC_ALLOC; 3243 flags |= METASLAB_GANG_CHILD; 3244 zp.zp_checksum = gio->io_prop.zp_checksum; 3245 zp.zp_compress = ZIO_COMPRESS_OFF; 3246 zp.zp_complevel = gio->io_prop.zp_complevel; 3247 zp.zp_type = zp.zp_storage_type = DMU_OT_NONE; 3248 zp.zp_level = 0; 3249 zp.zp_copies = gio->io_prop.zp_copies; 3250 zp.zp_gang_copies = gio->io_prop.zp_gang_copies; 3251 zp.zp_dedup = B_FALSE; 3252 zp.zp_dedup_verify = B_FALSE; 3253 zp.zp_nopwrite = B_FALSE; 3254 zp.zp_encrypt = gio->io_prop.zp_encrypt; 3255 zp.zp_byteorder = gio->io_prop.zp_byteorder; 3256 zp.zp_direct_write = B_FALSE; 3257 memset(zp.zp_salt, 0, ZIO_DATA_SALT_LEN); 3258 memset(zp.zp_iv, 0, ZIO_DATA_IV_LEN); 3259 memset(zp.zp_mac, 0, ZIO_DATA_MAC_LEN); 3260 3261 uint64_t min_size = zio_roundup_alloc_size(spa, 3262 resid / (gbh_nblkptrs(gangblocksize) - g)); 3263 min_size = MIN(min_size, resid); 3264 bp = &((blkptr_t *)gbh)[g]; 3265 3266 zio_alloc_list_t cio_list; 3267 metaslab_trace_init(&cio_list); 3268 uint64_t allocated_size = UINT64_MAX; 3269 error = metaslab_alloc_range(spa, mc, min_size, resid, 3270 bp, gio->io_prop.zp_copies, txg, NULL, 3271 flags, &cio_list, zio->io_allocator, NULL, &allocated_size); 3272 3273 boolean_t allocated = error == 0; 3274 any_failed |= !allocated; 3275 3276 uint64_t psize = allocated ? MIN(resid, allocated_size) : 3277 min_size; 3278 ASSERT3U(psize, >=, min_size); 3279 3280 zio_t *cio = zio_write(zio, spa, txg, bp, has_data ? 3281 abd_get_offset(pio->io_abd, pio->io_size - resid) : NULL, 3282 psize, psize, &zp, zio_write_gang_member_ready, NULL, 3283 zio_write_gang_done, &gn->gn_child[g], pio->io_priority, 3284 ZIO_GANG_CHILD_FLAGS(pio) | 3285 (allocated ? ZIO_FLAG_PREALLOCATED : 0), &pio->io_bookmark); 3286 3287 resid -= psize; 3288 zio_gang_inherit_allocator(zio, cio); 3289 if (allocated) { 3290 metaslab_trace_move(&cio_list, &cio->io_alloc_list); 3291 metaslab_group_alloc_increment_all(spa, 3292 &cio->io_bp_orig, zio->io_allocator, flags, psize, 3293 cio); 3294 } 3295 /* 3296 * We do not reserve for the child writes, since we already 3297 * reserved for the parent. Unreserve though will be called 3298 * for individual children. We can do this since sum of all 3299 * child's physical sizes is equal to parent's physical size. 3300 * It would not work for potentially bigger allocation sizes. 3301 */ 3302 3303 zio_nowait(cio); 3304 } 3305 3306 /* 3307 * If we used more gang children than the old limit, we must already be 3308 * using the new headers. No need to update anything, just move on. 3309 * 3310 * Otherwise, we might be in a case where we need to turn on the new 3311 * feature, so we check that. We enable the new feature if we didn't 3312 * manage to fit everything into 3 gang children and we could have 3313 * written more than that. 3314 */ 3315 if (g > gbh_nblkptrs(SPA_OLD_GANGBLOCKSIZE)) { 3316 ASSERT(spa_feature_is_active(spa, 3317 SPA_FEATURE_DYNAMIC_GANG_HEADER)); 3318 } else if (any_failed && candidate > SPA_OLD_GANGBLOCKSIZE && 3319 spa_feature_is_enabled(spa, SPA_FEATURE_DYNAMIC_GANG_HEADER) && 3320 !spa_feature_is_active(spa, SPA_FEATURE_DYNAMIC_GANG_HEADER)) { 3321 dmu_tx_t *tx = 3322 dmu_tx_create_assigned(spa->spa_dsl_pool, txg + 1); 3323 dsl_sync_task_nowait(spa->spa_dsl_pool, 3324 zio_update_feature, 3325 (void *)SPA_FEATURE_DYNAMIC_GANG_HEADER, tx); 3326 dmu_tx_commit(tx); 3327 } 3328 3329 /* 3330 * Set pio's pipeline to just wait for zio to finish. 3331 */ 3332 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 3333 3334 zio_nowait(zio); 3335 3336 return (pio); 3337 } 3338 3339 /* 3340 * The zio_nop_write stage in the pipeline determines if allocating a 3341 * new bp is necessary. The nopwrite feature can handle writes in 3342 * either syncing or open context (i.e. zil writes) and as a result is 3343 * mutually exclusive with dedup. 3344 * 3345 * By leveraging a cryptographically secure checksum, such as SHA256, we 3346 * can compare the checksums of the new data and the old to determine if 3347 * allocating a new block is required. Note that our requirements for 3348 * cryptographic strength are fairly weak: there can't be any accidental 3349 * hash collisions, but we don't need to be secure against intentional 3350 * (malicious) collisions. To trigger a nopwrite, you have to be able 3351 * to write the file to begin with, and triggering an incorrect (hash 3352 * collision) nopwrite is no worse than simply writing to the file. 3353 * That said, there are no known attacks against the checksum algorithms 3354 * used for nopwrite, assuming that the salt and the checksums 3355 * themselves remain secret. 3356 */ 3357 static zio_t * 3358 zio_nop_write(zio_t *zio) 3359 { 3360 blkptr_t *bp = zio->io_bp; 3361 blkptr_t *bp_orig = &zio->io_bp_orig; 3362 zio_prop_t *zp = &zio->io_prop; 3363 3364 ASSERT(BP_IS_HOLE(bp)); 3365 ASSERT0(BP_GET_LEVEL(bp)); 3366 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 3367 ASSERT(zp->zp_nopwrite); 3368 ASSERT(!zp->zp_dedup); 3369 ASSERT0P(zio->io_bp_override); 3370 ASSERT(IO_IS_ALLOCATING(zio)); 3371 3372 /* 3373 * Check to see if the original bp and the new bp have matching 3374 * characteristics (i.e. same checksum, compression algorithms, etc). 3375 * If they don't then just continue with the pipeline which will 3376 * allocate a new bp. 3377 */ 3378 if (BP_IS_HOLE(bp_orig) || 3379 !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags & 3380 ZCHECKSUM_FLAG_NOPWRITE) || 3381 BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) || 3382 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) || 3383 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) || 3384 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) || 3385 zp->zp_copies != BP_GET_NDVAS(bp_orig)) 3386 return (zio); 3387 3388 /* 3389 * If the checksums match then reset the pipeline so that we 3390 * avoid allocating a new bp and issuing any I/O. 3391 */ 3392 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) { 3393 ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags & 3394 ZCHECKSUM_FLAG_NOPWRITE); 3395 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig)); 3396 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig)); 3397 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF); 3398 ASSERT3U(bp->blk_prop, ==, bp_orig->blk_prop); 3399 3400 /* 3401 * If we're overwriting a block that is currently on an 3402 * indirect vdev, then ignore the nopwrite request and 3403 * allow a new block to be allocated on a concrete vdev. 3404 */ 3405 spa_config_enter(zio->io_spa, SCL_VDEV, FTAG, RW_READER); 3406 for (int d = 0; d < BP_GET_NDVAS(bp_orig); d++) { 3407 vdev_t *tvd = vdev_lookup_top(zio->io_spa, 3408 DVA_GET_VDEV(&bp_orig->blk_dva[d])); 3409 if (tvd->vdev_ops == &vdev_indirect_ops) { 3410 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG); 3411 return (zio); 3412 } 3413 } 3414 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG); 3415 3416 *bp = *bp_orig; 3417 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 3418 zio->io_flags |= ZIO_FLAG_NOPWRITE; 3419 } 3420 3421 return (zio); 3422 } 3423 3424 /* 3425 * ========================================================================== 3426 * Block Reference Table 3427 * ========================================================================== 3428 */ 3429 static zio_t * 3430 zio_brt_free(zio_t *zio) 3431 { 3432 blkptr_t *bp; 3433 3434 bp = zio->io_bp; 3435 3436 if (BP_GET_LEVEL(bp) > 0 || 3437 BP_IS_METADATA(bp) || 3438 !brt_maybe_exists(zio->io_spa, bp)) { 3439 return (zio); 3440 } 3441 3442 if (!brt_entry_decref(zio->io_spa, bp)) { 3443 /* 3444 * This isn't the last reference, so we cannot free 3445 * the data yet. 3446 */ 3447 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 3448 } 3449 3450 return (zio); 3451 } 3452 3453 /* 3454 * ========================================================================== 3455 * Dedup 3456 * ========================================================================== 3457 */ 3458 static void 3459 zio_ddt_child_read_done(zio_t *zio) 3460 { 3461 blkptr_t *bp = zio->io_bp; 3462 ddt_t *ddt; 3463 ddt_entry_t *dde = zio->io_private; 3464 zio_t *pio = zio_unique_parent(zio); 3465 3466 mutex_enter(&pio->io_lock); 3467 ddt = ddt_select(zio->io_spa, bp); 3468 3469 if (zio->io_error == 0) { 3470 ddt_phys_variant_t v = ddt_phys_select(ddt, dde, bp); 3471 /* this phys variant doesn't need repair */ 3472 ddt_phys_clear(dde->dde_phys, v); 3473 } 3474 3475 if (zio->io_error == 0 && dde->dde_io->dde_repair_abd == NULL) 3476 dde->dde_io->dde_repair_abd = zio->io_abd; 3477 else 3478 abd_free(zio->io_abd); 3479 mutex_exit(&pio->io_lock); 3480 } 3481 3482 static zio_t * 3483 zio_ddt_read_start(zio_t *zio) 3484 { 3485 blkptr_t *bp = zio->io_bp; 3486 3487 ASSERT(BP_GET_DEDUP(bp)); 3488 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 3489 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3490 3491 if (zio->io_child_error[ZIO_CHILD_DDT]) { 3492 ddt_t *ddt = ddt_select(zio->io_spa, bp); 3493 ddt_entry_t *dde = ddt_repair_start(ddt, bp); 3494 ddt_phys_variant_t v_self = ddt_phys_select(ddt, dde, bp); 3495 ddt_univ_phys_t *ddp = dde->dde_phys; 3496 blkptr_t blk; 3497 3498 ASSERT0P(zio->io_vsd); 3499 zio->io_vsd = dde; 3500 3501 if (v_self == DDT_PHYS_NONE) 3502 return (zio); 3503 3504 /* issue I/O for the other copies */ 3505 for (int p = 0; p < DDT_NPHYS(ddt); p++) { 3506 ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p); 3507 3508 if (ddt_phys_birth(ddp, v) == 0 || v == v_self) 3509 continue; 3510 3511 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, 3512 ddp, v, &blk); 3513 zio_nowait(zio_read(zio, zio->io_spa, &blk, 3514 abd_alloc_for_io(zio->io_size, B_TRUE), 3515 zio->io_size, zio_ddt_child_read_done, dde, 3516 zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) | 3517 ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark)); 3518 } 3519 return (zio); 3520 } 3521 3522 zio_nowait(zio_read(zio, zio->io_spa, bp, 3523 zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority, 3524 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark)); 3525 3526 return (zio); 3527 } 3528 3529 static zio_t * 3530 zio_ddt_read_done(zio_t *zio) 3531 { 3532 blkptr_t *bp = zio->io_bp; 3533 3534 if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) { 3535 return (NULL); 3536 } 3537 3538 ASSERT(BP_GET_DEDUP(bp)); 3539 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 3540 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3541 3542 if (zio->io_child_error[ZIO_CHILD_DDT]) { 3543 ddt_t *ddt = ddt_select(zio->io_spa, bp); 3544 ddt_entry_t *dde = zio->io_vsd; 3545 if (ddt == NULL) { 3546 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE); 3547 return (zio); 3548 } 3549 if (dde == NULL) { 3550 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1; 3551 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 3552 return (NULL); 3553 } 3554 if (dde->dde_io->dde_repair_abd != NULL) { 3555 abd_copy(zio->io_abd, dde->dde_io->dde_repair_abd, 3556 zio->io_size); 3557 zio->io_child_error[ZIO_CHILD_DDT] = 0; 3558 } 3559 ddt_repair_done(ddt, dde); 3560 zio->io_vsd = NULL; 3561 } 3562 3563 ASSERT0P(zio->io_vsd); 3564 3565 return (zio); 3566 } 3567 3568 static boolean_t 3569 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde) 3570 { 3571 spa_t *spa = zio->io_spa; 3572 boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW); 3573 3574 ASSERT(!(zio->io_bp_override && do_raw)); 3575 3576 /* 3577 * Note: we compare the original data, not the transformed data, 3578 * because when zio->io_bp is an override bp, we will not have 3579 * pushed the I/O transforms. That's an important optimization 3580 * because otherwise we'd compress/encrypt all dmu_sync() data twice. 3581 * However, we should never get a raw, override zio so in these 3582 * cases we can compare the io_abd directly. This is useful because 3583 * it allows us to do dedup verification even if we don't have access 3584 * to the original data (for instance, if the encryption keys aren't 3585 * loaded). 3586 */ 3587 3588 for (int p = 0; p < DDT_NPHYS(ddt); p++) { 3589 if (DDT_PHYS_IS_DITTO(ddt, p)) 3590 continue; 3591 3592 if (dde->dde_io == NULL) 3593 continue; 3594 3595 zio_t *lio = dde->dde_io->dde_lead_zio[p]; 3596 if (lio == NULL) 3597 continue; 3598 3599 if (do_raw) 3600 return (lio->io_size != zio->io_size || 3601 abd_cmp(zio->io_abd, lio->io_abd) != 0); 3602 3603 return (lio->io_orig_size != zio->io_orig_size || 3604 abd_cmp(zio->io_orig_abd, lio->io_orig_abd) != 0); 3605 } 3606 3607 for (int p = 0; p < DDT_NPHYS(ddt); p++) { 3608 ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p); 3609 uint64_t phys_birth = ddt_phys_birth(dde->dde_phys, v); 3610 3611 if (phys_birth != 0 && do_raw) { 3612 blkptr_t blk = *zio->io_bp; 3613 uint64_t psize; 3614 abd_t *tmpabd; 3615 int error; 3616 3617 ddt_bp_fill(dde->dde_phys, v, &blk, phys_birth); 3618 psize = BP_GET_PSIZE(&blk); 3619 3620 if (psize != zio->io_size) 3621 return (B_TRUE); 3622 3623 ddt_exit(ddt); 3624 3625 tmpabd = abd_alloc_for_io(psize, B_TRUE); 3626 3627 error = zio_wait(zio_read(NULL, spa, &blk, tmpabd, 3628 psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ, 3629 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 3630 ZIO_FLAG_RAW, &zio->io_bookmark)); 3631 3632 if (error == 0) { 3633 if (abd_cmp(tmpabd, zio->io_abd) != 0) 3634 error = SET_ERROR(ENOENT); 3635 } 3636 3637 abd_free(tmpabd); 3638 ddt_enter(ddt); 3639 return (error != 0); 3640 } else if (phys_birth != 0) { 3641 arc_buf_t *abuf = NULL; 3642 arc_flags_t aflags = ARC_FLAG_WAIT; 3643 blkptr_t blk = *zio->io_bp; 3644 int error; 3645 3646 ddt_bp_fill(dde->dde_phys, v, &blk, phys_birth); 3647 3648 if (BP_GET_LSIZE(&blk) != zio->io_orig_size) 3649 return (B_TRUE); 3650 3651 ddt_exit(ddt); 3652 3653 error = arc_read(NULL, spa, &blk, 3654 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ, 3655 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 3656 &aflags, &zio->io_bookmark); 3657 3658 if (error == 0) { 3659 if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data, 3660 zio->io_orig_size) != 0) 3661 error = SET_ERROR(ENOENT); 3662 arc_buf_destroy(abuf, &abuf); 3663 } 3664 3665 ddt_enter(ddt); 3666 return (error != 0); 3667 } 3668 } 3669 3670 return (B_FALSE); 3671 } 3672 3673 static void 3674 zio_ddt_child_write_done(zio_t *zio) 3675 { 3676 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 3677 ddt_entry_t *dde = zio->io_private; 3678 3679 zio_link_t *zl = NULL; 3680 ASSERT3P(zio_walk_parents(zio, &zl), !=, NULL); 3681 3682 int p = DDT_PHYS_FOR_COPIES(ddt, zio->io_prop.zp_copies); 3683 ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p); 3684 ddt_univ_phys_t *ddp = dde->dde_phys; 3685 3686 ddt_enter(ddt); 3687 3688 /* we're the lead, so once we're done there's no one else outstanding */ 3689 if (dde->dde_io->dde_lead_zio[p] == zio) 3690 dde->dde_io->dde_lead_zio[p] = NULL; 3691 3692 ddt_univ_phys_t *orig = &dde->dde_io->dde_orig_phys; 3693 3694 if (zio->io_error != 0) { 3695 /* 3696 * The write failed, so we're about to abort the entire IO 3697 * chain. We need to revert the entry back to what it was at 3698 * the last time it was successfully extended. 3699 */ 3700 ddt_phys_unextend(ddp, orig, v); 3701 ddt_phys_clear(orig, v); 3702 3703 ddt_exit(ddt); 3704 return; 3705 } 3706 3707 /* 3708 * Add references for all dedup writes that were waiting on the 3709 * physical one, skipping any other physical writes that are waiting. 3710 */ 3711 zio_t *pio; 3712 zl = NULL; 3713 while ((pio = zio_walk_parents(zio, &zl)) != NULL) { 3714 if (!(pio->io_flags & ZIO_FLAG_DDT_CHILD)) 3715 ddt_phys_addref(ddp, v); 3716 } 3717 3718 /* 3719 * We've successfully added new DVAs to the entry. Clear the saved 3720 * state or, if there's still outstanding IO, remember it so we can 3721 * revert to a known good state if that IO fails. 3722 */ 3723 if (dde->dde_io->dde_lead_zio[p] == NULL) 3724 ddt_phys_clear(orig, v); 3725 else 3726 ddt_phys_copy(orig, ddp, v); 3727 3728 ddt_exit(ddt); 3729 } 3730 3731 static void 3732 zio_ddt_child_write_ready(zio_t *zio) 3733 { 3734 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 3735 ddt_entry_t *dde = zio->io_private; 3736 3737 zio_link_t *zl = NULL; 3738 ASSERT3P(zio_walk_parents(zio, &zl), !=, NULL); 3739 3740 int p = DDT_PHYS_FOR_COPIES(ddt, zio->io_prop.zp_copies); 3741 ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p); 3742 3743 if (ddt_phys_is_gang(dde->dde_phys, v)) { 3744 for (int i = 0; i < BP_GET_NDVAS(zio->io_bp); i++) { 3745 dva_t *d = &zio->io_bp->blk_dva[i]; 3746 metaslab_group_alloc_decrement(zio->io_spa, 3747 DVA_GET_VDEV(d), zio->io_allocator, 3748 METASLAB_ASYNC_ALLOC, zio->io_size, zio); 3749 } 3750 zio->io_error = EAGAIN; 3751 } 3752 3753 if (zio->io_error != 0) 3754 return; 3755 3756 ddt_enter(ddt); 3757 3758 ddt_phys_extend(dde->dde_phys, v, zio->io_bp); 3759 3760 zio_t *pio; 3761 zl = NULL; 3762 while ((pio = zio_walk_parents(zio, &zl)) != NULL) { 3763 if (!(pio->io_flags & ZIO_FLAG_DDT_CHILD)) 3764 ddt_bp_fill(dde->dde_phys, v, pio->io_bp, zio->io_txg); 3765 } 3766 3767 ddt_exit(ddt); 3768 } 3769 3770 static zio_t * 3771 zio_ddt_write(zio_t *zio) 3772 { 3773 spa_t *spa = zio->io_spa; 3774 blkptr_t *bp = zio->io_bp; 3775 uint64_t txg = zio->io_txg; 3776 zio_prop_t *zp = &zio->io_prop; 3777 ddt_t *ddt = ddt_select(spa, bp); 3778 ddt_entry_t *dde; 3779 3780 ASSERT(BP_GET_DEDUP(bp)); 3781 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum); 3782 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override); 3783 ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW))); 3784 /* 3785 * Deduplication will not take place for Direct I/O writes. The 3786 * ddt_tree will be emptied in syncing context. Direct I/O writes take 3787 * place in the open-context. Direct I/O write can not attempt to 3788 * modify the ddt_tree while issuing out a write. 3789 */ 3790 ASSERT3B(zio->io_prop.zp_direct_write, ==, B_FALSE); 3791 3792 ddt_enter(ddt); 3793 /* 3794 * Search DDT for matching entry. Skip DVAs verification here, since 3795 * they can go only from override, and once we get here the override 3796 * pointer can't have "D" flag to be confused with pruned DDT entries. 3797 */ 3798 IMPLY(zio->io_bp_override, !BP_GET_DEDUP(zio->io_bp_override)); 3799 dde = ddt_lookup(ddt, bp, B_FALSE); 3800 if (dde == NULL) { 3801 /* DDT size is over its quota so no new entries */ 3802 zp->zp_dedup = B_FALSE; 3803 BP_SET_DEDUP(bp, B_FALSE); 3804 if (zio->io_bp_override == NULL) 3805 zio->io_pipeline = ZIO_WRITE_PIPELINE; 3806 ddt_exit(ddt); 3807 return (zio); 3808 } 3809 3810 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) { 3811 /* 3812 * If we're using a weak checksum, upgrade to a strong checksum 3813 * and try again. If we're already using a strong checksum, 3814 * we can't resolve it, so just convert to an ordinary write. 3815 * (And automatically e-mail a paper to Nature?) 3816 */ 3817 if (!(zio_checksum_table[zp->zp_checksum].ci_flags & 3818 ZCHECKSUM_FLAG_DEDUP)) { 3819 zp->zp_checksum = spa_dedup_checksum(spa); 3820 zio_pop_transforms(zio); 3821 zio->io_stage = ZIO_STAGE_OPEN; 3822 BP_ZERO(bp); 3823 } else { 3824 zp->zp_dedup = B_FALSE; 3825 BP_SET_DEDUP(bp, B_FALSE); 3826 } 3827 ASSERT(!BP_GET_DEDUP(bp)); 3828 zio->io_pipeline = ZIO_WRITE_PIPELINE; 3829 ddt_exit(ddt); 3830 return (zio); 3831 } 3832 3833 int p = DDT_PHYS_FOR_COPIES(ddt, zp->zp_copies); 3834 ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p); 3835 ddt_univ_phys_t *ddp = dde->dde_phys; 3836 3837 /* 3838 * In the common cases, at this point we have a regular BP with no 3839 * allocated DVAs, and the corresponding DDT entry for its checksum. 3840 * Our goal is to fill the BP with enough DVAs to satisfy its copies= 3841 * requirement. 3842 * 3843 * One of three things needs to happen to fulfill this: 3844 * 3845 * - if the DDT entry has enough DVAs to satisfy the BP, we just copy 3846 * them out of the entry and return; 3847 * 3848 * - if the DDT entry has no DVAs (ie its brand new), then we have to 3849 * issue the write as normal so that DVAs can be allocated and the 3850 * data land on disk. We then copy the DVAs into the DDT entry on 3851 * return. 3852 * 3853 * - if the DDT entry has some DVAs, but too few, we have to issue the 3854 * write, adjusted to have allocate fewer copies. When it returns, we 3855 * add the new DVAs to the DDT entry, and update the BP to have the 3856 * full amount it originally requested. 3857 * 3858 * In all cases, if there's already a writing IO in flight, we need to 3859 * defer the action until after the write is done. If our action is to 3860 * write, we need to adjust our request for additional DVAs to match 3861 * what will be in the DDT entry after it completes. In this way every 3862 * IO can be guaranteed to recieve enough DVAs simply by joining the 3863 * end of the chain and letting the sequence play out. 3864 */ 3865 3866 /* 3867 * Number of DVAs in the DDT entry. If the BP is encrypted we ignore 3868 * the third one as normal. 3869 */ 3870 int have_dvas = ddt_phys_dva_count(ddp, v, BP_IS_ENCRYPTED(bp)); 3871 IMPLY(have_dvas == 0, ddt_phys_birth(ddp, v) == 0); 3872 boolean_t is_ganged = ddt_phys_is_gang(ddp, v); 3873 3874 /* Number of DVAs requested by the IO. */ 3875 uint8_t need_dvas = zp->zp_copies; 3876 /* Number of DVAs in outstanding writes for this dde. */ 3877 uint8_t parent_dvas = 0; 3878 3879 /* 3880 * What we do next depends on whether or not there's IO outstanding that 3881 * will update this entry. 3882 */ 3883 if (dde->dde_io == NULL || dde->dde_io->dde_lead_zio[p] == NULL) { 3884 /* 3885 * No IO outstanding, so we only need to worry about ourselves. 3886 */ 3887 3888 /* 3889 * Override BPs bring their own DVAs and their own problems. 3890 */ 3891 if (zio->io_bp_override) { 3892 /* 3893 * For a brand-new entry, all the work has been done 3894 * for us, and we can just fill it out from the provided 3895 * block and leave. 3896 */ 3897 if (have_dvas == 0) { 3898 ASSERT(BP_GET_BIRTH(bp) == txg); 3899 ASSERT(BP_EQUAL(bp, zio->io_bp_override)); 3900 ddt_phys_extend(ddp, v, bp); 3901 ddt_phys_addref(ddp, v); 3902 ddt_exit(ddt); 3903 return (zio); 3904 } 3905 3906 /* 3907 * If we already have this entry, then we want to treat 3908 * it like a regular write. To do this we just wipe 3909 * them out and proceed like a regular write. 3910 * 3911 * Even if there are some DVAs in the entry, we still 3912 * have to clear them out. We can't use them to fill 3913 * out the dedup entry, as they are all referenced 3914 * together by a bp already on disk, and will be freed 3915 * as a group. 3916 */ 3917 BP_ZERO_DVAS(bp); 3918 BP_SET_BIRTH(bp, 0, 0); 3919 } 3920 3921 /* 3922 * If there are enough DVAs in the entry to service our request, 3923 * then we can just use them as-is. 3924 */ 3925 if (have_dvas >= need_dvas) { 3926 /* 3927 * For rewrite operations, try preserving the original 3928 * logical birth time. If the result matches the 3929 * original BP, this becomes a NOP. 3930 */ 3931 if (zp->zp_rewrite) { 3932 uint64_t orig_logical_birth = 3933 BP_GET_LOGICAL_BIRTH(&zio->io_bp_orig); 3934 ddt_bp_fill(ddp, v, bp, orig_logical_birth); 3935 if (BP_EQUAL(bp, &zio->io_bp_orig)) { 3936 /* We can skip accounting. */ 3937 zio->io_flags |= ZIO_FLAG_NOPWRITE; 3938 ddt_exit(ddt); 3939 return (zio); 3940 } 3941 } 3942 3943 ddt_bp_fill(ddp, v, bp, txg); 3944 ddt_phys_addref(ddp, v); 3945 ddt_exit(ddt); 3946 return (zio); 3947 } 3948 3949 /* 3950 * Otherwise, we have to issue IO to fill the entry up to the 3951 * amount we need. 3952 */ 3953 need_dvas -= have_dvas; 3954 } else { 3955 /* 3956 * There's a write in-flight. If there's already enough DVAs on 3957 * the entry, then either there were already enough to start 3958 * with, or the in-flight IO is between READY and DONE, and so 3959 * has extended the entry with new DVAs. Either way, we don't 3960 * need to do anything, we can just slot in behind it. 3961 */ 3962 3963 if (zio->io_bp_override) { 3964 /* 3965 * If there's a write out, then we're soon going to 3966 * have our own copies of this block, so clear out the 3967 * override block and treat it as a regular dedup 3968 * write. See comment above. 3969 */ 3970 BP_ZERO_DVAS(bp); 3971 BP_SET_BIRTH(bp, 0, 0); 3972 } 3973 3974 if (have_dvas >= need_dvas) { 3975 /* 3976 * A minor point: there might already be enough 3977 * committed DVAs in the entry to service our request, 3978 * but we don't know which are completed and which are 3979 * allocated but not yet written. In this case, should 3980 * the IO for the new DVAs fail, we will be on the end 3981 * of the IO chain and will also recieve an error, even 3982 * though our request could have been serviced. 3983 * 3984 * This is an extremely rare case, as it requires the 3985 * original block to be copied with a request for a 3986 * larger number of DVAs, then copied again requesting 3987 * the same (or already fulfilled) number of DVAs while 3988 * the first request is active, and then that first 3989 * request errors. In return, the logic required to 3990 * catch and handle it is complex. For now, I'm just 3991 * not going to bother with it. 3992 */ 3993 3994 /* 3995 * We always fill the bp here as we may have arrived 3996 * after the in-flight write has passed READY, and so 3997 * missed out. 3998 */ 3999 ddt_bp_fill(ddp, v, bp, txg); 4000 zio_add_child(zio, dde->dde_io->dde_lead_zio[p]); 4001 ddt_exit(ddt); 4002 return (zio); 4003 } 4004 4005 /* 4006 * There's not enough in the entry yet, so we need to look at 4007 * the write in-flight and see how many DVAs it will have once 4008 * it completes. 4009 * 4010 * The in-flight write has potentially had its copies request 4011 * reduced (if we're filling out an existing entry), so we need 4012 * to reach in and get the original write to find out what it is 4013 * expecting. 4014 * 4015 * Note that the parent of the lead zio will always have the 4016 * highest zp_copies of any zio in the chain, because ones that 4017 * can be serviced without additional IO are always added to 4018 * the back of the chain. 4019 */ 4020 zio_link_t *zl = NULL; 4021 zio_t *pio = 4022 zio_walk_parents(dde->dde_io->dde_lead_zio[p], &zl); 4023 ASSERT(pio); 4024 parent_dvas = pio->io_prop.zp_copies; 4025 4026 if (parent_dvas >= need_dvas) { 4027 zio_add_child(zio, dde->dde_io->dde_lead_zio[p]); 4028 ddt_exit(ddt); 4029 return (zio); 4030 } 4031 4032 /* 4033 * Still not enough, so we will need to issue to get the 4034 * shortfall. 4035 */ 4036 need_dvas -= parent_dvas; 4037 } 4038 4039 if (is_ganged) { 4040 zp->zp_dedup = B_FALSE; 4041 BP_SET_DEDUP(bp, B_FALSE); 4042 zio->io_pipeline = ZIO_WRITE_PIPELINE; 4043 ddt_exit(ddt); 4044 return (zio); 4045 } 4046 4047 /* 4048 * We need to write. We will create a new write with the copies 4049 * property adjusted to match the number of DVAs we need to need to 4050 * grow the DDT entry by to satisfy the request. 4051 */ 4052 zio_prop_t czp = *zp; 4053 if (have_dvas > 0 || parent_dvas > 0) { 4054 czp.zp_copies = need_dvas; 4055 czp.zp_gang_copies = 0; 4056 } else { 4057 ASSERT3U(czp.zp_copies, ==, need_dvas); 4058 } 4059 4060 zio_t *cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd, 4061 zio->io_orig_size, zio->io_orig_size, &czp, 4062 zio_ddt_child_write_ready, NULL, 4063 zio_ddt_child_write_done, dde, zio->io_priority, 4064 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark); 4065 4066 zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL); 4067 4068 /* 4069 * We are the new lead zio, because our parent has the highest 4070 * zp_copies that has been requested for this entry so far. 4071 */ 4072 ddt_alloc_entry_io(dde); 4073 if (dde->dde_io->dde_lead_zio[p] == NULL) { 4074 /* 4075 * First time out, take a copy of the stable entry to revert 4076 * to if there's an error (see zio_ddt_child_write_done()) 4077 */ 4078 ddt_phys_copy(&dde->dde_io->dde_orig_phys, dde->dde_phys, v); 4079 } else { 4080 /* 4081 * Make the existing chain our child, because it cannot 4082 * complete until we have. 4083 */ 4084 zio_add_child(cio, dde->dde_io->dde_lead_zio[p]); 4085 } 4086 dde->dde_io->dde_lead_zio[p] = cio; 4087 4088 ddt_exit(ddt); 4089 4090 zio_nowait(cio); 4091 4092 return (zio); 4093 } 4094 4095 static ddt_entry_t *freedde; /* for debugging */ 4096 4097 static zio_t * 4098 zio_ddt_free(zio_t *zio) 4099 { 4100 spa_t *spa = zio->io_spa; 4101 blkptr_t *bp = zio->io_bp; 4102 ddt_t *ddt = ddt_select(spa, bp); 4103 ddt_entry_t *dde = NULL; 4104 4105 ASSERT(BP_GET_DEDUP(bp)); 4106 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 4107 4108 ddt_enter(ddt); 4109 freedde = dde = ddt_lookup(ddt, bp, B_TRUE); 4110 if (dde) { 4111 ddt_phys_variant_t v = ddt_phys_select(ddt, dde, bp); 4112 if (v != DDT_PHYS_NONE) 4113 ddt_phys_decref(dde->dde_phys, v); 4114 } 4115 ddt_exit(ddt); 4116 4117 /* 4118 * When no entry was found, it must have been pruned, 4119 * so we can free it now instead of decrementing the 4120 * refcount in the DDT. 4121 */ 4122 if (!dde) { 4123 BP_SET_DEDUP(bp, 0); 4124 zio->io_pipeline |= ZIO_STAGE_DVA_FREE; 4125 } 4126 4127 return (zio); 4128 } 4129 4130 /* 4131 * ========================================================================== 4132 * Allocate and free blocks 4133 * ========================================================================== 4134 */ 4135 4136 static zio_t * 4137 zio_io_to_allocate(metaslab_class_allocator_t *mca, boolean_t *more) 4138 { 4139 zio_t *zio; 4140 4141 ASSERT(MUTEX_HELD(&mca->mca_lock)); 4142 4143 zio = avl_first(&mca->mca_tree); 4144 if (zio == NULL) { 4145 *more = B_FALSE; 4146 return (NULL); 4147 } 4148 4149 ASSERT(IO_IS_ALLOCATING(zio)); 4150 ASSERT(ZIO_HAS_ALLOCATOR(zio)); 4151 4152 /* 4153 * Try to place a reservation for this zio. If we're unable to 4154 * reserve then we throttle. 4155 */ 4156 if (!metaslab_class_throttle_reserve(zio->io_metaslab_class, 4157 zio->io_allocator, zio->io_prop.zp_copies, zio->io_size, 4158 B_FALSE, more)) { 4159 return (NULL); 4160 } 4161 zio->io_flags |= ZIO_FLAG_ALLOC_THROTTLED; 4162 4163 avl_remove(&mca->mca_tree, zio); 4164 ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE); 4165 4166 if (avl_is_empty(&mca->mca_tree)) 4167 *more = B_FALSE; 4168 return (zio); 4169 } 4170 4171 static zio_t * 4172 zio_dva_throttle(zio_t *zio) 4173 { 4174 spa_t *spa = zio->io_spa; 4175 zio_t *nio; 4176 metaslab_class_t *mc; 4177 boolean_t more; 4178 4179 /* 4180 * If not already chosen, choose an appropriate allocation class. 4181 */ 4182 mc = zio->io_metaslab_class; 4183 if (mc == NULL) 4184 mc = spa_preferred_class(spa, zio); 4185 4186 if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE || 4187 !mc->mc_alloc_throttle_enabled || 4188 zio->io_child_type == ZIO_CHILD_GANG || 4189 zio->io_flags & ZIO_FLAG_NODATA) { 4190 return (zio); 4191 } 4192 4193 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 4194 ASSERT(ZIO_HAS_ALLOCATOR(zio)); 4195 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 4196 ASSERT3U(zio->io_queued_timestamp, >, 0); 4197 ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE); 4198 4199 zio->io_metaslab_class = mc; 4200 metaslab_class_allocator_t *mca = &mc->mc_allocator[zio->io_allocator]; 4201 mutex_enter(&mca->mca_lock); 4202 avl_add(&mca->mca_tree, zio); 4203 nio = zio_io_to_allocate(mca, &more); 4204 mutex_exit(&mca->mca_lock); 4205 return (nio); 4206 } 4207 4208 static void 4209 zio_allocate_dispatch(metaslab_class_t *mc, int allocator) 4210 { 4211 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator]; 4212 zio_t *zio; 4213 boolean_t more; 4214 4215 do { 4216 mutex_enter(&mca->mca_lock); 4217 zio = zio_io_to_allocate(mca, &more); 4218 mutex_exit(&mca->mca_lock); 4219 if (zio == NULL) 4220 return; 4221 4222 ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE); 4223 ASSERT0(zio->io_error); 4224 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE); 4225 } while (more); 4226 } 4227 4228 static zio_t * 4229 zio_dva_allocate(zio_t *zio) 4230 { 4231 spa_t *spa = zio->io_spa; 4232 metaslab_class_t *mc, *newmc; 4233 blkptr_t *bp = zio->io_bp; 4234 int error; 4235 int flags = 0; 4236 4237 if (zio->io_gang_leader == NULL) { 4238 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 4239 zio->io_gang_leader = zio; 4240 } 4241 if (zio->io_flags & ZIO_FLAG_PREALLOCATED) { 4242 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_GANG); 4243 memcpy(zio->io_bp->blk_dva, zio->io_bp_orig.blk_dva, 4244 3 * sizeof (dva_t)); 4245 BP_SET_LOGICAL_BIRTH(zio->io_bp, 4246 BP_GET_LOGICAL_BIRTH(&zio->io_bp_orig)); 4247 BP_SET_PHYSICAL_BIRTH(zio->io_bp, 4248 BP_GET_RAW_PHYSICAL_BIRTH(&zio->io_bp_orig)); 4249 return (zio); 4250 } 4251 4252 ASSERT(BP_IS_HOLE(bp)); 4253 ASSERT0(BP_GET_NDVAS(bp)); 4254 ASSERT3U(zio->io_prop.zp_copies, >, 0); 4255 4256 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa)); 4257 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp)); 4258 4259 if (zio->io_flags & ZIO_FLAG_GANG_CHILD) 4260 flags |= METASLAB_GANG_CHILD; 4261 if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE) 4262 flags |= METASLAB_ASYNC_ALLOC; 4263 4264 /* 4265 * If not already chosen, choose an appropriate allocation class. 4266 */ 4267 mc = zio->io_metaslab_class; 4268 if (mc == NULL) { 4269 mc = spa_preferred_class(spa, zio); 4270 zio->io_metaslab_class = mc; 4271 } 4272 ZIOSTAT_BUMP(ziostat_total_allocations); 4273 4274 again: 4275 /* 4276 * Try allocating the block in the usual metaslab class. 4277 * If that's full, allocate it in some other class(es). 4278 * If that's full, allocate as a gang block, 4279 * and if all are full, the allocation fails (which shouldn't happen). 4280 * 4281 * Note that we do not fall back on embedded slog (ZIL) space, to 4282 * preserve unfragmented slog space, which is critical for decent 4283 * sync write performance. If a log allocation fails, we will fall 4284 * back to spa_sync() which is abysmal for performance. 4285 */ 4286 ASSERT(ZIO_HAS_ALLOCATOR(zio)); 4287 error = metaslab_alloc(spa, mc, zio->io_size, bp, 4288 zio->io_prop.zp_copies, zio->io_txg, NULL, flags, 4289 &zio->io_alloc_list, zio->io_allocator, zio); 4290 4291 /* 4292 * When the dedup or special class is spilling into the normal class, 4293 * there can still be significant space available due to deferred 4294 * frees that are in-flight. We track the txg when this occurred and 4295 * back off adding new DDT entries for a few txgs to allow the free 4296 * blocks to be processed. 4297 */ 4298 if (error == ENOSPC && spa->spa_dedup_class_full_txg != zio->io_txg && 4299 (mc == spa_dedup_class(spa) || (mc == spa_special_class(spa) && 4300 !spa_has_dedup(spa) && spa_special_has_ddt(spa)))) { 4301 spa->spa_dedup_class_full_txg = zio->io_txg; 4302 zfs_dbgmsg("%s[%llu]: %s class spilling, req size %llu, " 4303 "%llu allocated of %llu", 4304 spa_name(spa), (u_longlong_t)zio->io_txg, 4305 metaslab_class_get_name(mc), 4306 (u_longlong_t)zio->io_size, 4307 (u_longlong_t)metaslab_class_get_alloc(mc), 4308 (u_longlong_t)metaslab_class_get_space(mc)); 4309 } 4310 4311 /* 4312 * Fall back to some other class when this one is full. 4313 */ 4314 if (error == ENOSPC && (newmc = spa_preferred_class(spa, zio)) != mc) { 4315 /* 4316 * If we are holding old class reservation, drop it. 4317 * Dispatch the next ZIO(s) there if some are waiting. 4318 */ 4319 if (zio->io_flags & ZIO_FLAG_ALLOC_THROTTLED) { 4320 if (metaslab_class_throttle_unreserve(mc, 4321 zio->io_allocator, zio->io_prop.zp_copies, 4322 zio->io_size)) { 4323 zio_allocate_dispatch(zio->io_metaslab_class, 4324 zio->io_allocator); 4325 } 4326 zio->io_flags &= ~ZIO_FLAG_ALLOC_THROTTLED; 4327 } 4328 4329 if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) { 4330 zfs_dbgmsg("%s: metaslab allocation failure in %s " 4331 "class, trying fallback to %s class: zio %px, " 4332 "size %llu, error %d", spa_name(spa), 4333 metaslab_class_get_name(mc), 4334 metaslab_class_get_name(newmc), 4335 zio, (u_longlong_t)zio->io_size, error); 4336 } 4337 zio->io_metaslab_class = mc = newmc; 4338 ZIOSTAT_BUMP(ziostat_alloc_class_fallbacks); 4339 4340 /* 4341 * If the new class uses throttling, return to that pipeline 4342 * stage. Otherwise just do another allocation attempt. 4343 */ 4344 if (zio->io_priority != ZIO_PRIORITY_SYNC_WRITE && 4345 mc->mc_alloc_throttle_enabled && 4346 zio->io_child_type != ZIO_CHILD_GANG && 4347 !(zio->io_flags & ZIO_FLAG_NODATA)) { 4348 zio->io_stage = ZIO_STAGE_DVA_THROTTLE >> 1; 4349 return (zio); 4350 } 4351 goto again; 4352 } 4353 4354 if (error == ENOSPC && zio->io_size > spa->spa_min_alloc) { 4355 if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) { 4356 zfs_dbgmsg("%s: metaslab allocation failure, " 4357 "trying ganging: zio %px, size %llu, error %d", 4358 spa_name(spa), zio, (u_longlong_t)zio->io_size, 4359 error); 4360 } 4361 ZIOSTAT_BUMP(ziostat_gang_writes); 4362 if (flags & METASLAB_GANG_CHILD) 4363 ZIOSTAT_BUMP(ziostat_gang_multilevel); 4364 return (zio_write_gang_block(zio, mc)); 4365 } 4366 if (error != 0) { 4367 if (error != ENOSPC || 4368 (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC)) { 4369 zfs_dbgmsg("%s: metaslab allocation failure: zio %px, " 4370 "size %llu, error %d", 4371 spa_name(spa), zio, (u_longlong_t)zio->io_size, 4372 error); 4373 } 4374 zio->io_error = error; 4375 } else if (zio->io_prop.zp_rewrite) { 4376 /* 4377 * For rewrite operations, preserve the logical birth time 4378 * but set the physical birth time to the current txg. 4379 */ 4380 uint64_t logical_birth = BP_GET_LOGICAL_BIRTH(&zio->io_bp_orig); 4381 ASSERT3U(logical_birth, <=, zio->io_txg); 4382 BP_SET_BIRTH(zio->io_bp, logical_birth, zio->io_txg); 4383 BP_SET_REWRITE(zio->io_bp, 1); 4384 } 4385 4386 return (zio); 4387 } 4388 4389 static zio_t * 4390 zio_dva_free(zio_t *zio) 4391 { 4392 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE); 4393 4394 return (zio); 4395 } 4396 4397 static zio_t * 4398 zio_dva_claim(zio_t *zio) 4399 { 4400 int error; 4401 4402 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg); 4403 if (error) 4404 zio->io_error = error; 4405 4406 return (zio); 4407 } 4408 4409 /* 4410 * Undo an allocation. This is used by zio_done() when an I/O fails 4411 * and we want to give back the block we just allocated. 4412 * This handles both normal blocks and gang blocks. 4413 */ 4414 static void 4415 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp) 4416 { 4417 ASSERT(BP_GET_BIRTH(bp) == zio->io_txg || BP_IS_HOLE(bp)); 4418 ASSERT0P(zio->io_bp_override); 4419 4420 if (!BP_IS_HOLE(bp)) { 4421 metaslab_free(zio->io_spa, bp, BP_GET_BIRTH(bp), B_TRUE); 4422 } 4423 4424 if (gn != NULL) { 4425 for (int g = 0; g < gbh_nblkptrs(gn->gn_gangblocksize); g++) { 4426 zio_dva_unallocate(zio, gn->gn_child[g], 4427 gbh_bp(gn->gn_gbh, g)); 4428 } 4429 } 4430 } 4431 4432 /* 4433 * Try to allocate an intent log block. Return 0 on success, errno on failure. 4434 */ 4435 int 4436 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp, 4437 uint64_t size, boolean_t *slog) 4438 { 4439 int error; 4440 zio_alloc_list_t io_alloc_list; 4441 4442 ASSERT(txg > spa_syncing_txg(spa)); 4443 4444 metaslab_trace_init(&io_alloc_list); 4445 4446 /* 4447 * Block pointer fields are useful to metaslabs for stats and debugging. 4448 * Fill in the obvious ones before calling into metaslab_alloc(). 4449 */ 4450 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 4451 BP_SET_PSIZE(new_bp, size); 4452 BP_SET_LEVEL(new_bp, 0); 4453 4454 /* 4455 * When allocating a zil block, we don't have information about 4456 * the final destination of the block except the objset it's part 4457 * of, so we just hash the objset ID to pick the allocator to get 4458 * some parallelism. 4459 */ 4460 int flags = METASLAB_ZIL; 4461 int allocator = (uint_t)cityhash1(os->os_dsl_dataset->ds_object) 4462 % spa->spa_alloc_count; 4463 ZIOSTAT_BUMP(ziostat_total_allocations); 4464 4465 /* Try log class (dedicated slog devices) first */ 4466 error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1, 4467 txg, NULL, flags, &io_alloc_list, allocator, NULL); 4468 *slog = (error == 0); 4469 4470 /* Try special_embedded_log class (reserved on special vdevs) */ 4471 if (error != 0) { 4472 error = metaslab_alloc(spa, spa_special_embedded_log_class(spa), 4473 size, new_bp, 1, txg, NULL, flags, &io_alloc_list, 4474 allocator, NULL); 4475 } 4476 4477 /* Try special class (general special vdev allocation) */ 4478 if (error != 0) { 4479 error = metaslab_alloc(spa, spa_special_class(spa), size, 4480 new_bp, 1, txg, NULL, flags, &io_alloc_list, allocator, 4481 NULL); 4482 } 4483 4484 /* Try embedded_log class (reserved on normal vdevs) */ 4485 if (error != 0) { 4486 error = metaslab_alloc(spa, spa_embedded_log_class(spa), size, 4487 new_bp, 1, txg, NULL, flags, &io_alloc_list, allocator, 4488 NULL); 4489 } 4490 4491 /* Finally fall back to normal class */ 4492 if (error != 0) { 4493 ZIOSTAT_BUMP(ziostat_alloc_class_fallbacks); 4494 error = metaslab_alloc(spa, spa_normal_class(spa), size, 4495 new_bp, 1, txg, NULL, flags, &io_alloc_list, allocator, 4496 NULL); 4497 } 4498 metaslab_trace_fini(&io_alloc_list); 4499 4500 if (error == 0) { 4501 BP_SET_LSIZE(new_bp, size); 4502 BP_SET_PSIZE(new_bp, size); 4503 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF); 4504 BP_SET_CHECKSUM(new_bp, 4505 spa_version(spa) >= SPA_VERSION_SLIM_ZIL 4506 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG); 4507 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 4508 BP_SET_LEVEL(new_bp, 0); 4509 BP_SET_DEDUP(new_bp, 0); 4510 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER); 4511 4512 /* 4513 * encrypted blocks will require an IV and salt. We generate 4514 * these now since we will not be rewriting the bp at 4515 * rewrite time. 4516 */ 4517 if (os->os_encrypted) { 4518 uint8_t iv[ZIO_DATA_IV_LEN]; 4519 uint8_t salt[ZIO_DATA_SALT_LEN]; 4520 4521 BP_SET_CRYPT(new_bp, B_TRUE); 4522 VERIFY0(spa_crypt_get_salt(spa, 4523 dmu_objset_id(os), salt)); 4524 VERIFY0(zio_crypt_generate_iv(iv)); 4525 4526 zio_crypt_encode_params_bp(new_bp, salt, iv); 4527 } 4528 } else { 4529 zfs_dbgmsg("%s: zil block allocation failure: " 4530 "size %llu, error %d", spa_name(spa), (u_longlong_t)size, 4531 error); 4532 } 4533 4534 return (error); 4535 } 4536 4537 /* 4538 * ========================================================================== 4539 * Read and write to physical devices 4540 * ========================================================================== 4541 */ 4542 4543 /* 4544 * Issue an I/O to the underlying vdev. Typically the issue pipeline 4545 * stops after this stage and will resume upon I/O completion. 4546 * However, there are instances where the vdev layer may need to 4547 * continue the pipeline when an I/O was not issued. Since the I/O 4548 * that was sent to the vdev layer might be different than the one 4549 * currently active in the pipeline (see vdev_queue_io()), we explicitly 4550 * force the underlying vdev layers to call either zio_execute() or 4551 * zio_interrupt() to ensure that the pipeline continues with the correct I/O. 4552 */ 4553 static zio_t * 4554 zio_vdev_io_start(zio_t *zio) 4555 { 4556 vdev_t *vd = zio->io_vd; 4557 uint64_t align; 4558 spa_t *spa = zio->io_spa; 4559 4560 zio->io_delay = 0; 4561 4562 ASSERT0(zio->io_error); 4563 ASSERT0(zio->io_child_error[ZIO_CHILD_VDEV]); 4564 4565 if (vd == NULL) { 4566 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 4567 spa_config_enter(spa, SCL_ZIO, zio, RW_READER); 4568 4569 /* 4570 * The mirror_ops handle multiple DVAs in a single BP. 4571 */ 4572 vdev_mirror_ops.vdev_op_io_start(zio); 4573 return (NULL); 4574 } 4575 4576 ASSERT3P(zio->io_logical, !=, zio); 4577 if (zio->io_type == ZIO_TYPE_WRITE) { 4578 ASSERT(spa->spa_trust_config); 4579 4580 /* 4581 * Note: the code can handle other kinds of writes, 4582 * but we don't expect them. 4583 */ 4584 if (zio->io_vd->vdev_noalloc) { 4585 ASSERT(zio->io_flags & 4586 (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL | 4587 ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE)); 4588 } 4589 } 4590 4591 align = 1ULL << vd->vdev_top->vdev_ashift; 4592 4593 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) && 4594 P2PHASE(zio->io_size, align) != 0) { 4595 /* Transform logical writes to be a full physical block size. */ 4596 uint64_t asize = P2ROUNDUP(zio->io_size, align); 4597 abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize); 4598 ASSERT(vd == vd->vdev_top); 4599 if (zio->io_type == ZIO_TYPE_WRITE) { 4600 abd_copy(abuf, zio->io_abd, zio->io_size); 4601 abd_zero_off(abuf, zio->io_size, asize - zio->io_size); 4602 } 4603 zio_push_transform(zio, abuf, asize, asize, zio_subblock); 4604 } 4605 4606 /* 4607 * If this is not a physical io, make sure that it is properly aligned 4608 * before proceeding. 4609 */ 4610 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) { 4611 ASSERT0(P2PHASE(zio->io_offset, align)); 4612 ASSERT0(P2PHASE(zio->io_size, align)); 4613 } else { 4614 /* 4615 * For physical writes, we allow 512b aligned writes and assume 4616 * the device will perform a read-modify-write as necessary. 4617 */ 4618 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE)); 4619 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE)); 4620 } 4621 4622 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa)); 4623 4624 /* 4625 * If this is a repair I/O, and there's no self-healing involved -- 4626 * that is, we're just resilvering what we expect to resilver -- 4627 * then don't do the I/O unless zio's txg is actually in vd's DTL. 4628 * This prevents spurious resilvering. 4629 * 4630 * There are a few ways that we can end up creating these spurious 4631 * resilver i/os: 4632 * 4633 * 1. A resilver i/o will be issued if any DVA in the BP has a 4634 * dirty DTL. The mirror code will issue resilver writes to 4635 * each DVA, including the one(s) that are not on vdevs with dirty 4636 * DTLs. 4637 * 4638 * 2. With nested replication, which happens when we have a 4639 * "replacing" or "spare" vdev that's a child of a mirror or raidz. 4640 * For example, given mirror(replacing(A+B), C), it's likely that 4641 * only A is out of date (it's the new device). In this case, we'll 4642 * read from C, then use the data to resilver A+B -- but we don't 4643 * actually want to resilver B, just A. The top-level mirror has no 4644 * way to know this, so instead we just discard unnecessary repairs 4645 * as we work our way down the vdev tree. 4646 * 4647 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc. 4648 * The same logic applies to any form of nested replication: ditto 4649 * + mirror, RAID-Z + replacing, etc. 4650 * 4651 * However, indirect vdevs point off to other vdevs which may have 4652 * DTL's, so we never bypass them. The child i/os on concrete vdevs 4653 * will be properly bypassed instead. 4654 * 4655 * Leaf DTL_PARTIAL can be empty when a legitimate write comes from 4656 * a dRAID spare vdev. For example, when a dRAID spare is first 4657 * used, its spare blocks need to be written to but the leaf vdev's 4658 * of such blocks can have empty DTL_PARTIAL. 4659 * 4660 * There seemed no clean way to allow such writes while bypassing 4661 * spurious ones. At this point, just avoid all bypassing for dRAID 4662 * for correctness. 4663 */ 4664 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) && 4665 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) && 4666 zio->io_txg != 0 && /* not a delegated i/o */ 4667 vd->vdev_ops != &vdev_indirect_ops && 4668 vd->vdev_top->vdev_ops != &vdev_draid_ops && 4669 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) { 4670 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 4671 zio_vdev_io_bypass(zio); 4672 return (zio); 4673 } 4674 4675 /* 4676 * Select the next best leaf I/O to process. Distributed spares are 4677 * excluded since they dispatch the I/O directly to a leaf vdev after 4678 * applying the dRAID mapping. 4679 */ 4680 if (vd->vdev_ops->vdev_op_leaf && 4681 vd->vdev_ops != &vdev_draid_spare_ops && 4682 (zio->io_type == ZIO_TYPE_READ || 4683 zio->io_type == ZIO_TYPE_WRITE || 4684 zio->io_type == ZIO_TYPE_TRIM)) { 4685 4686 if ((zio = vdev_queue_io(zio)) == NULL) 4687 return (NULL); 4688 4689 if (!vdev_accessible(vd, zio)) { 4690 zio->io_error = SET_ERROR(ENXIO); 4691 zio_interrupt(zio); 4692 return (NULL); 4693 } 4694 zio->io_delay = gethrtime(); 4695 4696 if (zio_handle_device_injection(vd, zio, ENOSYS) != 0) { 4697 /* 4698 * "no-op" injections return success, but do no actual 4699 * work. Just return it. 4700 */ 4701 zio_delay_interrupt(zio); 4702 return (NULL); 4703 } 4704 } 4705 4706 vd->vdev_ops->vdev_op_io_start(zio); 4707 return (NULL); 4708 } 4709 4710 static zio_t * 4711 zio_vdev_io_done(zio_t *zio) 4712 { 4713 vdev_t *vd = zio->io_vd; 4714 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops; 4715 boolean_t unexpected_error = B_FALSE; 4716 4717 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) { 4718 return (NULL); 4719 } 4720 4721 ASSERT(zio->io_type == ZIO_TYPE_READ || 4722 zio->io_type == ZIO_TYPE_WRITE || 4723 zio->io_type == ZIO_TYPE_FLUSH || 4724 zio->io_type == ZIO_TYPE_TRIM); 4725 4726 if (zio->io_delay) 4727 zio->io_delay = gethrtime() - zio->io_delay; 4728 4729 if (vd != NULL && vd->vdev_ops->vdev_op_leaf && 4730 vd->vdev_ops != &vdev_draid_spare_ops) { 4731 if (zio->io_type != ZIO_TYPE_FLUSH) 4732 vdev_queue_io_done(zio); 4733 4734 if (zio_injection_enabled && zio->io_error == 0) 4735 zio->io_error = zio_handle_device_injections(vd, zio, 4736 EIO, EILSEQ); 4737 4738 if (zio_injection_enabled && zio->io_error == 0) 4739 zio->io_error = zio_handle_label_injection(zio, EIO); 4740 4741 if (zio->io_error && zio->io_type != ZIO_TYPE_FLUSH && 4742 zio->io_type != ZIO_TYPE_TRIM) { 4743 if (!vdev_accessible(vd, zio)) { 4744 zio->io_error = SET_ERROR(ENXIO); 4745 } else { 4746 unexpected_error = B_TRUE; 4747 } 4748 } 4749 } 4750 4751 ops->vdev_op_io_done(zio); 4752 4753 if (unexpected_error && vd->vdev_remove_wanted == B_FALSE) 4754 VERIFY0P(vdev_probe(vd, zio)); 4755 4756 return (zio); 4757 } 4758 4759 /* 4760 * This function is used to change the priority of an existing zio that is 4761 * currently in-flight. This is used by the arc to upgrade priority in the 4762 * event that a demand read is made for a block that is currently queued 4763 * as a scrub or async read IO. Otherwise, the high priority read request 4764 * would end up having to wait for the lower priority IO. 4765 */ 4766 void 4767 zio_change_priority(zio_t *pio, zio_priority_t priority) 4768 { 4769 zio_t *cio, *cio_next; 4770 zio_link_t *zl = NULL; 4771 4772 ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 4773 4774 if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) { 4775 vdev_queue_change_io_priority(pio, priority); 4776 } else { 4777 pio->io_priority = priority; 4778 } 4779 4780 mutex_enter(&pio->io_lock); 4781 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 4782 cio_next = zio_walk_children(pio, &zl); 4783 zio_change_priority(cio, priority); 4784 } 4785 mutex_exit(&pio->io_lock); 4786 } 4787 4788 /* 4789 * For non-raidz ZIOs, we can just copy aside the bad data read from the 4790 * disk, and use that to finish the checksum ereport later. 4791 */ 4792 static void 4793 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr, 4794 const abd_t *good_buf) 4795 { 4796 /* no processing needed */ 4797 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE); 4798 } 4799 4800 void 4801 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr) 4802 { 4803 void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size); 4804 4805 abd_copy(abd, zio->io_abd, zio->io_size); 4806 4807 zcr->zcr_cbinfo = zio->io_size; 4808 zcr->zcr_cbdata = abd; 4809 zcr->zcr_finish = zio_vsd_default_cksum_finish; 4810 zcr->zcr_free = zio_abd_free; 4811 } 4812 4813 static zio_t * 4814 zio_vdev_io_assess(zio_t *zio) 4815 { 4816 vdev_t *vd = zio->io_vd; 4817 4818 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) { 4819 return (NULL); 4820 } 4821 4822 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 4823 spa_config_exit(zio->io_spa, SCL_ZIO, zio); 4824 4825 if (zio->io_vsd != NULL) { 4826 zio->io_vsd_ops->vsd_free(zio); 4827 zio->io_vsd = NULL; 4828 } 4829 4830 /* 4831 * If a Direct I/O operation has a checksum verify error then this I/O 4832 * should not attempt to be issued again. 4833 */ 4834 if (zio->io_post & ZIO_POST_DIO_CHKSUM_ERR) { 4835 if (zio->io_type == ZIO_TYPE_WRITE) { 4836 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_LOGICAL); 4837 ASSERT3U(zio->io_error, ==, EIO); 4838 } 4839 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 4840 return (zio); 4841 } 4842 4843 if (zio_injection_enabled && zio->io_error == 0) 4844 zio->io_error = zio_handle_fault_injection(zio, EIO); 4845 4846 /* 4847 * If the I/O failed, determine whether we should attempt to retry it. 4848 * 4849 * On retry, we cut in line in the issue queue, since we don't want 4850 * compression/checksumming/etc. work to prevent our (cheap) IO reissue. 4851 */ 4852 if (zio->io_error && vd == NULL && 4853 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) { 4854 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */ 4855 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */ 4856 zio->io_error = 0; 4857 zio->io_flags |= ZIO_FLAG_IO_RETRY | ZIO_FLAG_DONT_AGGREGATE; 4858 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1; 4859 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, 4860 zio_requeue_io_start_cut_in_line); 4861 return (NULL); 4862 } 4863 4864 /* 4865 * If we got an error on a leaf device, convert it to ENXIO 4866 * if the device is not accessible at all. 4867 */ 4868 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf && 4869 !vdev_accessible(vd, zio)) 4870 zio->io_error = SET_ERROR(ENXIO); 4871 4872 /* 4873 * If we can't write to an interior vdev (mirror or RAID-Z), 4874 * set vdev_cant_write so that we stop trying to allocate from it. 4875 */ 4876 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE && 4877 vd != NULL && !vd->vdev_ops->vdev_op_leaf) { 4878 vdev_dbgmsg(vd, "zio_vdev_io_assess(zio=%px) setting " 4879 "cant_write=TRUE due to write failure with ENXIO", 4880 zio); 4881 vd->vdev_cant_write = B_TRUE; 4882 } 4883 4884 /* 4885 * If a cache flush returns ENOTSUP we know that no future 4886 * attempts will ever succeed. In this case we set a persistent 4887 * boolean flag so that we don't bother with it in the future, and 4888 * then we act like the flush succeeded. 4889 */ 4890 if (zio->io_error == ENOTSUP && zio->io_type == ZIO_TYPE_FLUSH && 4891 vd != NULL) { 4892 vd->vdev_nowritecache = B_TRUE; 4893 zio->io_error = 0; 4894 } 4895 4896 if (zio->io_error) 4897 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 4898 4899 return (zio); 4900 } 4901 4902 void 4903 zio_vdev_io_reissue(zio_t *zio) 4904 { 4905 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 4906 ASSERT0(zio->io_error); 4907 4908 zio->io_stage >>= 1; 4909 } 4910 4911 void 4912 zio_vdev_io_redone(zio_t *zio) 4913 { 4914 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE); 4915 4916 zio->io_stage >>= 1; 4917 } 4918 4919 void 4920 zio_vdev_io_bypass(zio_t *zio) 4921 { 4922 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 4923 ASSERT0(zio->io_error); 4924 4925 zio->io_flags |= ZIO_FLAG_IO_BYPASS; 4926 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1; 4927 } 4928 4929 /* 4930 * ========================================================================== 4931 * Encrypt and store encryption parameters 4932 * ========================================================================== 4933 */ 4934 4935 4936 /* 4937 * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for 4938 * managing the storage of encryption parameters and passing them to the 4939 * lower-level encryption functions. 4940 */ 4941 static zio_t * 4942 zio_encrypt(zio_t *zio) 4943 { 4944 zio_prop_t *zp = &zio->io_prop; 4945 spa_t *spa = zio->io_spa; 4946 blkptr_t *bp = zio->io_bp; 4947 uint64_t psize = BP_GET_PSIZE(bp); 4948 uint64_t dsobj = zio->io_bookmark.zb_objset; 4949 dmu_object_type_t ot = BP_GET_TYPE(bp); 4950 void *enc_buf = NULL; 4951 abd_t *eabd = NULL; 4952 uint8_t salt[ZIO_DATA_SALT_LEN]; 4953 uint8_t iv[ZIO_DATA_IV_LEN]; 4954 uint8_t mac[ZIO_DATA_MAC_LEN]; 4955 boolean_t no_crypt = B_FALSE; 4956 4957 /* the root zio already encrypted the data */ 4958 if (zio->io_child_type == ZIO_CHILD_GANG) 4959 return (zio); 4960 4961 /* only ZIL blocks are re-encrypted on rewrite */ 4962 if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG) 4963 return (zio); 4964 4965 if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) { 4966 BP_SET_CRYPT(bp, B_FALSE); 4967 return (zio); 4968 } 4969 4970 /* if we are doing raw encryption set the provided encryption params */ 4971 if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) { 4972 ASSERT0(BP_GET_LEVEL(bp)); 4973 BP_SET_CRYPT(bp, B_TRUE); 4974 BP_SET_BYTEORDER(bp, zp->zp_byteorder); 4975 if (ot != DMU_OT_OBJSET) 4976 zio_crypt_encode_mac_bp(bp, zp->zp_mac); 4977 4978 /* dnode blocks must be written out in the provided byteorder */ 4979 if (zp->zp_byteorder != ZFS_HOST_BYTEORDER && 4980 ot == DMU_OT_DNODE) { 4981 void *bswap_buf = zio_buf_alloc(psize); 4982 abd_t *babd = abd_get_from_buf(bswap_buf, psize); 4983 4984 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 4985 abd_copy_to_buf(bswap_buf, zio->io_abd, psize); 4986 dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf, 4987 psize); 4988 4989 abd_take_ownership_of_buf(babd, B_TRUE); 4990 zio_push_transform(zio, babd, psize, psize, NULL); 4991 } 4992 4993 if (DMU_OT_IS_ENCRYPTED(ot)) 4994 zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv); 4995 return (zio); 4996 } 4997 4998 /* indirect blocks only maintain a cksum of the lower level MACs */ 4999 if (BP_GET_LEVEL(bp) > 0) { 5000 BP_SET_CRYPT(bp, B_TRUE); 5001 VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE, 5002 zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp), 5003 mac)); 5004 zio_crypt_encode_mac_bp(bp, mac); 5005 return (zio); 5006 } 5007 5008 /* 5009 * Objset blocks are a special case since they have 2 256-bit MACs 5010 * embedded within them. 5011 */ 5012 if (ot == DMU_OT_OBJSET) { 5013 ASSERT0(DMU_OT_IS_ENCRYPTED(ot)); 5014 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 5015 BP_SET_CRYPT(bp, B_TRUE); 5016 VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj, 5017 zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp))); 5018 return (zio); 5019 } 5020 5021 /* unencrypted object types are only authenticated with a MAC */ 5022 if (!DMU_OT_IS_ENCRYPTED(ot)) { 5023 BP_SET_CRYPT(bp, B_TRUE); 5024 VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj, 5025 zio->io_abd, psize, mac)); 5026 zio_crypt_encode_mac_bp(bp, mac); 5027 return (zio); 5028 } 5029 5030 /* 5031 * Later passes of sync-to-convergence may decide to rewrite data 5032 * in place to avoid more disk reallocations. This presents a problem 5033 * for encryption because this constitutes rewriting the new data with 5034 * the same encryption key and IV. However, this only applies to blocks 5035 * in the MOS (particularly the spacemaps) and we do not encrypt the 5036 * MOS. We assert that the zio is allocating or an intent log write 5037 * to enforce this. 5038 */ 5039 ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG); 5040 ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG); 5041 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION)); 5042 ASSERT3U(psize, !=, 0); 5043 5044 enc_buf = zio_buf_alloc(psize); 5045 eabd = abd_get_from_buf(enc_buf, psize); 5046 abd_take_ownership_of_buf(eabd, B_TRUE); 5047 5048 /* 5049 * For an explanation of what encryption parameters are stored 5050 * where, see the block comment in zio_crypt.c. 5051 */ 5052 if (ot == DMU_OT_INTENT_LOG) { 5053 zio_crypt_decode_params_bp(bp, salt, iv); 5054 } else { 5055 BP_SET_CRYPT(bp, B_TRUE); 5056 } 5057 5058 /* Perform the encryption. This should not fail */ 5059 VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark, 5060 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), 5061 salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt)); 5062 5063 /* encode encryption metadata into the bp */ 5064 if (ot == DMU_OT_INTENT_LOG) { 5065 /* 5066 * ZIL blocks store the MAC in the embedded checksum, so the 5067 * transform must always be applied. 5068 */ 5069 zio_crypt_encode_mac_zil(enc_buf, mac); 5070 zio_push_transform(zio, eabd, psize, psize, NULL); 5071 } else { 5072 BP_SET_CRYPT(bp, B_TRUE); 5073 zio_crypt_encode_params_bp(bp, salt, iv); 5074 zio_crypt_encode_mac_bp(bp, mac); 5075 5076 if (no_crypt) { 5077 ASSERT3U(ot, ==, DMU_OT_DNODE); 5078 abd_free(eabd); 5079 } else { 5080 zio_push_transform(zio, eabd, psize, psize, NULL); 5081 } 5082 } 5083 5084 return (zio); 5085 } 5086 5087 /* 5088 * ========================================================================== 5089 * Generate and verify checksums 5090 * ========================================================================== 5091 */ 5092 static zio_t * 5093 zio_checksum_generate(zio_t *zio) 5094 { 5095 blkptr_t *bp = zio->io_bp; 5096 enum zio_checksum checksum; 5097 5098 if (bp == NULL) { 5099 /* 5100 * This is zio_write_phys(). 5101 * We're either generating a label checksum, or none at all. 5102 */ 5103 checksum = zio->io_prop.zp_checksum; 5104 5105 if (checksum == ZIO_CHECKSUM_OFF) 5106 return (zio); 5107 5108 ASSERT(checksum == ZIO_CHECKSUM_LABEL); 5109 } else { 5110 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) { 5111 ASSERT(!IO_IS_ALLOCATING(zio)); 5112 checksum = ZIO_CHECKSUM_GANG_HEADER; 5113 } else { 5114 checksum = BP_GET_CHECKSUM(bp); 5115 } 5116 } 5117 5118 zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size); 5119 5120 return (zio); 5121 } 5122 5123 static zio_t * 5124 zio_checksum_verify(zio_t *zio) 5125 { 5126 zio_bad_cksum_t info; 5127 blkptr_t *bp = zio->io_bp; 5128 int error; 5129 5130 ASSERT(zio->io_vd != NULL); 5131 5132 if (bp == NULL) { 5133 /* 5134 * This is zio_read_phys(). 5135 * We're either verifying a label checksum, or nothing at all. 5136 */ 5137 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF) 5138 return (zio); 5139 5140 ASSERT3U(zio->io_prop.zp_checksum, ==, ZIO_CHECKSUM_LABEL); 5141 } 5142 5143 ASSERT0(zio->io_post & ZIO_POST_DIO_CHKSUM_ERR); 5144 IMPLY(zio->io_flags & ZIO_FLAG_DIO_READ, 5145 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)); 5146 5147 if ((error = zio_checksum_error(zio, &info)) != 0) { 5148 zio->io_error = error; 5149 if (error == ECKSUM && 5150 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 5151 if (zio->io_flags & ZIO_FLAG_DIO_READ) { 5152 zio->io_post |= ZIO_POST_DIO_CHKSUM_ERR; 5153 zio_t *pio = zio_unique_parent(zio); 5154 /* 5155 * Any Direct I/O read that has a checksum 5156 * error must be treated as suspicous as the 5157 * contents of the buffer could be getting 5158 * manipulated while the I/O is taking place. 5159 * 5160 * The checksum verify error will only be 5161 * reported here for disk and file VDEV's and 5162 * will be reported on those that the failure 5163 * occurred on. Other types of VDEV's report the 5164 * verify failure in their own code paths. 5165 */ 5166 if (pio->io_child_type == ZIO_CHILD_LOGICAL) { 5167 zio_dio_chksum_verify_error_report(zio); 5168 } 5169 } else { 5170 mutex_enter(&zio->io_vd->vdev_stat_lock); 5171 zio->io_vd->vdev_stat.vs_checksum_errors++; 5172 mutex_exit(&zio->io_vd->vdev_stat_lock); 5173 (void) zfs_ereport_start_checksum(zio->io_spa, 5174 zio->io_vd, &zio->io_bookmark, zio, 5175 zio->io_offset, zio->io_size, &info); 5176 } 5177 } 5178 } 5179 5180 return (zio); 5181 } 5182 5183 static zio_t * 5184 zio_dio_checksum_verify(zio_t *zio) 5185 { 5186 zio_t *pio = zio_unique_parent(zio); 5187 int error; 5188 5189 ASSERT3P(zio->io_vd, !=, NULL); 5190 ASSERT3P(zio->io_bp, !=, NULL); 5191 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); 5192 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE); 5193 ASSERT3B(pio->io_prop.zp_direct_write, ==, B_TRUE); 5194 ASSERT3U(pio->io_child_type, ==, ZIO_CHILD_LOGICAL); 5195 5196 if (zfs_vdev_direct_write_verify == 0 || zio->io_error != 0) 5197 goto out; 5198 5199 if ((error = zio_checksum_error(zio, NULL)) != 0) { 5200 zio->io_error = error; 5201 if (error == ECKSUM) { 5202 zio->io_post |= ZIO_POST_DIO_CHKSUM_ERR; 5203 zio_dio_chksum_verify_error_report(zio); 5204 } 5205 } 5206 5207 out: 5208 return (zio); 5209 } 5210 5211 5212 /* 5213 * Called by RAID-Z to ensure we don't compute the checksum twice. 5214 */ 5215 void 5216 zio_checksum_verified(zio_t *zio) 5217 { 5218 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 5219 } 5220 5221 /* 5222 * Report Direct I/O checksum verify error and create ZED event. 5223 */ 5224 void 5225 zio_dio_chksum_verify_error_report(zio_t *zio) 5226 { 5227 ASSERT(zio->io_post & ZIO_POST_DIO_CHKSUM_ERR); 5228 5229 if (zio->io_child_type == ZIO_CHILD_LOGICAL) 5230 return; 5231 5232 mutex_enter(&zio->io_vd->vdev_stat_lock); 5233 zio->io_vd->vdev_stat.vs_dio_verify_errors++; 5234 mutex_exit(&zio->io_vd->vdev_stat_lock); 5235 if (zio->io_type == ZIO_TYPE_WRITE) { 5236 /* 5237 * Convert checksum error for writes into EIO. 5238 */ 5239 zio->io_error = SET_ERROR(EIO); 5240 /* 5241 * Report dio_verify_wr ZED event. 5242 */ 5243 (void) zfs_ereport_post(FM_EREPORT_ZFS_DIO_VERIFY_WR, 5244 zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0); 5245 } else { 5246 /* 5247 * Report dio_verify_rd ZED event. 5248 */ 5249 (void) zfs_ereport_post(FM_EREPORT_ZFS_DIO_VERIFY_RD, 5250 zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0); 5251 } 5252 } 5253 5254 /* 5255 * ========================================================================== 5256 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other. 5257 * An error of 0 indicates success. ENXIO indicates whole-device failure, 5258 * which may be transient (e.g. unplugged) or permanent. ECKSUM and EIO 5259 * indicate errors that are specific to one I/O, and most likely permanent. 5260 * Any other error is presumed to be worse because we weren't expecting it. 5261 * ========================================================================== 5262 */ 5263 int 5264 zio_worst_error(int e1, int e2) 5265 { 5266 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO }; 5267 int r1, r2; 5268 5269 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++) 5270 if (e1 == zio_error_rank[r1]) 5271 break; 5272 5273 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++) 5274 if (e2 == zio_error_rank[r2]) 5275 break; 5276 5277 return (r1 > r2 ? e1 : e2); 5278 } 5279 5280 /* 5281 * ========================================================================== 5282 * I/O completion 5283 * ========================================================================== 5284 */ 5285 static zio_t * 5286 zio_ready(zio_t *zio) 5287 { 5288 blkptr_t *bp = zio->io_bp; 5289 zio_t *pio, *pio_next; 5290 zio_link_t *zl = NULL; 5291 5292 if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT | 5293 ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT, ZIO_WAIT_READY)) { 5294 return (NULL); 5295 } 5296 5297 if (zio->io_ready) { 5298 ASSERT(IO_IS_ALLOCATING(zio)); 5299 ASSERT(BP_GET_BIRTH(bp) == zio->io_txg || 5300 BP_IS_HOLE(bp) || (zio->io_flags & ZIO_FLAG_NOPWRITE)); 5301 ASSERT0(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY]); 5302 5303 zio->io_ready(zio); 5304 } 5305 5306 #ifdef ZFS_DEBUG 5307 if (bp != NULL && bp != &zio->io_bp_copy) 5308 zio->io_bp_copy = *bp; 5309 #endif 5310 5311 if (zio->io_error != 0) { 5312 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 5313 5314 if (zio->io_flags & ZIO_FLAG_ALLOC_THROTTLED) { 5315 ASSERT(IO_IS_ALLOCATING(zio)); 5316 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 5317 ASSERT(zio->io_metaslab_class != NULL); 5318 ASSERT(ZIO_HAS_ALLOCATOR(zio)); 5319 5320 /* 5321 * We were unable to allocate anything, unreserve and 5322 * issue the next I/O to allocate. 5323 */ 5324 if (metaslab_class_throttle_unreserve( 5325 zio->io_metaslab_class, zio->io_allocator, 5326 zio->io_prop.zp_copies, zio->io_size)) { 5327 zio_allocate_dispatch(zio->io_metaslab_class, 5328 zio->io_allocator); 5329 } 5330 } 5331 } 5332 5333 mutex_enter(&zio->io_lock); 5334 zio->io_state[ZIO_WAIT_READY] = 1; 5335 pio = zio_walk_parents(zio, &zl); 5336 mutex_exit(&zio->io_lock); 5337 5338 /* 5339 * As we notify zio's parents, new parents could be added. 5340 * New parents go to the head of zio's io_parent_list, however, 5341 * so we will (correctly) not notify them. The remainder of zio's 5342 * io_parent_list, from 'pio_next' onward, cannot change because 5343 * all parents must wait for us to be done before they can be done. 5344 */ 5345 for (; pio != NULL; pio = pio_next) { 5346 pio_next = zio_walk_parents(zio, &zl); 5347 zio_notify_parent(pio, zio, ZIO_WAIT_READY, NULL); 5348 } 5349 5350 if (zio->io_flags & ZIO_FLAG_NODATA) { 5351 if (bp != NULL && BP_IS_GANG(bp)) { 5352 zio->io_flags &= ~ZIO_FLAG_NODATA; 5353 } else { 5354 ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE); 5355 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 5356 } 5357 } 5358 5359 if (zio_injection_enabled && 5360 zio->io_spa->spa_syncing_txg == zio->io_txg) 5361 zio_handle_ignored_writes(zio); 5362 5363 return (zio); 5364 } 5365 5366 /* 5367 * Update the allocation throttle accounting. 5368 */ 5369 static void 5370 zio_dva_throttle_done(zio_t *zio) 5371 { 5372 zio_t *pio = zio_unique_parent(zio); 5373 vdev_t *vd = zio->io_vd; 5374 int flags = METASLAB_ASYNC_ALLOC; 5375 const void *tag = pio; 5376 uint64_t size = pio->io_size; 5377 5378 ASSERT3P(zio->io_bp, !=, NULL); 5379 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE); 5380 ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE); 5381 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); 5382 ASSERT(vd != NULL); 5383 ASSERT3P(vd, ==, vd->vdev_top); 5384 ASSERT(zio_injection_enabled || !(zio->io_flags & ZIO_FLAG_IO_RETRY)); 5385 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR)); 5386 ASSERT(zio->io_flags & ZIO_FLAG_ALLOC_THROTTLED); 5387 5388 /* 5389 * Parents of gang children can have two flavors -- ones that allocated 5390 * the gang header (will have ZIO_FLAG_IO_REWRITE set) and ones that 5391 * allocated the constituent blocks. The first use their parent as tag. 5392 * We set the size to match the original allocation call for that case. 5393 */ 5394 if (pio->io_child_type == ZIO_CHILD_GANG && 5395 (pio->io_flags & ZIO_FLAG_IO_REWRITE)) { 5396 tag = zio_unique_parent(pio); 5397 size = SPA_OLD_GANGBLOCKSIZE; 5398 } 5399 5400 ASSERT(IO_IS_ALLOCATING(pio) || (pio->io_child_type == ZIO_CHILD_GANG && 5401 (pio->io_flags & ZIO_FLAG_IO_REWRITE))); 5402 ASSERT(ZIO_HAS_ALLOCATOR(pio)); 5403 ASSERT3P(zio, !=, zio->io_logical); 5404 ASSERT(zio->io_logical != NULL); 5405 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR)); 5406 ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE); 5407 ASSERT(zio->io_metaslab_class != NULL); 5408 ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled); 5409 5410 metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, 5411 pio->io_allocator, flags, size, tag); 5412 5413 if (metaslab_class_throttle_unreserve(pio->io_metaslab_class, 5414 pio->io_allocator, 1, pio->io_size)) { 5415 zio_allocate_dispatch(zio->io_metaslab_class, 5416 pio->io_allocator); 5417 } 5418 } 5419 5420 static zio_t * 5421 zio_done(zio_t *zio) 5422 { 5423 /* 5424 * Always attempt to keep stack usage minimal here since 5425 * we can be called recursively up to 19 levels deep. 5426 */ 5427 const uint64_t psize = zio->io_size; 5428 zio_t *pio, *pio_next; 5429 zio_link_t *zl = NULL; 5430 5431 /* 5432 * If our children haven't all completed, 5433 * wait for them and then repeat this pipeline stage. 5434 */ 5435 if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) { 5436 return (NULL); 5437 } 5438 5439 /* 5440 * If the allocation throttle is enabled, then update the accounting. 5441 * We only track child I/Os that are part of an allocating async 5442 * write. We must do this since the allocation is performed 5443 * by the logical I/O but the actual write is done by child I/Os. 5444 */ 5445 if (zio->io_flags & ZIO_FLAG_ALLOC_THROTTLED && 5446 zio->io_child_type == ZIO_CHILD_VDEV) 5447 zio_dva_throttle_done(zio); 5448 5449 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 5450 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 5451 ASSERT0(zio->io_children[c][w]); 5452 5453 if (zio->io_bp != NULL && !BP_IS_EMBEDDED(zio->io_bp)) { 5454 ASSERT(memcmp(zio->io_bp, &zio->io_bp_copy, 5455 sizeof (blkptr_t)) == 0 || 5456 (zio->io_bp == zio_unique_parent(zio)->io_bp)); 5457 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) && 5458 zio->io_bp_override == NULL && 5459 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) { 5460 ASSERT3U(zio->io_prop.zp_copies, <=, 5461 BP_GET_NDVAS(zio->io_bp)); 5462 ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 || 5463 (BP_COUNT_GANG(zio->io_bp) == 5464 BP_GET_NDVAS(zio->io_bp))); 5465 } 5466 if (zio->io_flags & ZIO_FLAG_NOPWRITE) 5467 VERIFY(BP_EQUAL(zio->io_bp, &zio->io_bp_orig)); 5468 } 5469 5470 /* 5471 * If there were child vdev/gang/ddt errors, they apply to us now. 5472 */ 5473 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV); 5474 zio_inherit_child_errors(zio, ZIO_CHILD_GANG); 5475 zio_inherit_child_errors(zio, ZIO_CHILD_DDT); 5476 5477 /* 5478 * If the I/O on the transformed data was successful, generate any 5479 * checksum reports now while we still have the transformed data. 5480 */ 5481 if (zio->io_error == 0) { 5482 while (zio->io_cksum_report != NULL) { 5483 zio_cksum_report_t *zcr = zio->io_cksum_report; 5484 uint64_t align = zcr->zcr_align; 5485 uint64_t asize = P2ROUNDUP(psize, align); 5486 abd_t *adata = zio->io_abd; 5487 5488 if (adata != NULL && asize != psize) { 5489 adata = abd_alloc(asize, B_TRUE); 5490 abd_copy(adata, zio->io_abd, psize); 5491 abd_zero_off(adata, psize, asize - psize); 5492 } 5493 5494 zio->io_cksum_report = zcr->zcr_next; 5495 zcr->zcr_next = NULL; 5496 zcr->zcr_finish(zcr, adata); 5497 zfs_ereport_free_checksum(zcr); 5498 5499 if (adata != NULL && asize != psize) 5500 abd_free(adata); 5501 } 5502 } 5503 5504 zio_pop_transforms(zio); /* note: may set zio->io_error */ 5505 5506 vdev_stat_update(zio, psize); 5507 5508 /* 5509 * If this I/O is attached to a particular vdev is slow, exceeding 5510 * 30 seconds to complete, post an error described the I/O delay. 5511 * We ignore these errors if the device is currently unavailable. 5512 */ 5513 if (zio->io_delay >= MSEC2NSEC(zio_slow_io_ms)) { 5514 if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) { 5515 /* 5516 * We want to only increment our slow IO counters if 5517 * the IO is valid (i.e. not if the drive is removed). 5518 * 5519 * zfs_ereport_post() will also do these checks, but 5520 * it can also ratelimit and have other failures, so we 5521 * need to increment the slow_io counters independent 5522 * of it. 5523 */ 5524 if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY, 5525 zio->io_spa, zio->io_vd, zio)) { 5526 mutex_enter(&zio->io_vd->vdev_stat_lock); 5527 zio->io_vd->vdev_stat.vs_slow_ios++; 5528 mutex_exit(&zio->io_vd->vdev_stat_lock); 5529 5530 (void) zfs_ereport_post(FM_EREPORT_ZFS_DELAY, 5531 zio->io_spa, zio->io_vd, &zio->io_bookmark, 5532 zio, 0); 5533 } 5534 } 5535 } 5536 5537 if (zio->io_error) { 5538 /* 5539 * If this I/O is attached to a particular vdev, 5540 * generate an error message describing the I/O failure 5541 * at the block level. We ignore these errors if the 5542 * device is currently unavailable. 5543 */ 5544 if (zio->io_error != ECKSUM && zio->io_vd != NULL && 5545 !vdev_is_dead(zio->io_vd) && 5546 !(zio->io_post & ZIO_POST_DIO_CHKSUM_ERR)) { 5547 int ret = zfs_ereport_post(FM_EREPORT_ZFS_IO, 5548 zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0); 5549 if (ret != EALREADY) { 5550 mutex_enter(&zio->io_vd->vdev_stat_lock); 5551 if (zio->io_type == ZIO_TYPE_READ) 5552 zio->io_vd->vdev_stat.vs_read_errors++; 5553 else if (zio->io_type == ZIO_TYPE_WRITE) 5554 zio->io_vd->vdev_stat.vs_write_errors++; 5555 mutex_exit(&zio->io_vd->vdev_stat_lock); 5556 } 5557 } 5558 5559 if ((zio->io_error == EIO || !(zio->io_flags & 5560 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) && 5561 !(zio->io_post & ZIO_POST_DIO_CHKSUM_ERR) && 5562 zio == zio->io_logical) { 5563 /* 5564 * For logical I/O requests, tell the SPA to log the 5565 * error and generate a logical data ereport. 5566 */ 5567 spa_log_error(zio->io_spa, &zio->io_bookmark, 5568 BP_GET_PHYSICAL_BIRTH(zio->io_bp)); 5569 (void) zfs_ereport_post(FM_EREPORT_ZFS_DATA, 5570 zio->io_spa, NULL, &zio->io_bookmark, zio, 0); 5571 } 5572 } 5573 5574 if (zio->io_error && zio == zio->io_logical) { 5575 5576 /* 5577 * A DDT child tried to create a mixed gang/non-gang BP. We're 5578 * going to have to just retry as a non-dedup IO. 5579 */ 5580 if (zio->io_error == EAGAIN && IO_IS_ALLOCATING(zio) && 5581 zio->io_prop.zp_dedup) { 5582 zio->io_post |= ZIO_POST_REEXECUTE; 5583 zio->io_prop.zp_dedup = B_FALSE; 5584 } 5585 /* 5586 * Determine whether zio should be reexecuted. This will 5587 * propagate all the way to the root via zio_notify_parent(). 5588 */ 5589 ASSERT(zio->io_vd == NULL && zio->io_bp != NULL); 5590 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 5591 5592 if (IO_IS_ALLOCATING(zio) && 5593 !(zio->io_flags & ZIO_FLAG_CANFAIL) && 5594 !(zio->io_post & ZIO_POST_DIO_CHKSUM_ERR)) { 5595 if (zio->io_error != ENOSPC) 5596 zio->io_post |= ZIO_POST_REEXECUTE; 5597 else 5598 zio->io_post |= ZIO_POST_SUSPEND; 5599 } 5600 5601 if ((zio->io_type == ZIO_TYPE_READ || 5602 zio->io_type == ZIO_TYPE_FREE) && 5603 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && 5604 zio->io_error == ENXIO && 5605 spa_load_state(zio->io_spa) == SPA_LOAD_NONE && 5606 spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE) 5607 zio->io_post |= ZIO_POST_SUSPEND; 5608 5609 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && 5610 !(zio->io_post & (ZIO_POST_REEXECUTE|ZIO_POST_SUSPEND))) 5611 zio->io_post |= ZIO_POST_SUSPEND; 5612 5613 /* 5614 * Here is a possibly good place to attempt to do 5615 * either combinatorial reconstruction or error correction 5616 * based on checksums. It also might be a good place 5617 * to send out preliminary ereports before we suspend 5618 * processing. 5619 */ 5620 } 5621 5622 /* 5623 * If there were logical child errors, they apply to us now. 5624 * We defer this until now to avoid conflating logical child 5625 * errors with errors that happened to the zio itself when 5626 * updating vdev stats and reporting FMA events above. 5627 */ 5628 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL); 5629 5630 if ((zio->io_error || 5631 (zio->io_post & (ZIO_POST_REEXECUTE|ZIO_POST_SUSPEND))) && 5632 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio && 5633 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE))) 5634 zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp); 5635 5636 zio_gang_tree_free(&zio->io_gang_tree); 5637 5638 /* 5639 * Godfather I/Os should never suspend. 5640 */ 5641 if ((zio->io_flags & ZIO_FLAG_GODFATHER) && 5642 (zio->io_post & ZIO_POST_SUSPEND)) 5643 zio->io_post &= ~ZIO_POST_SUSPEND; 5644 5645 if (zio->io_post & (ZIO_POST_REEXECUTE|ZIO_POST_SUSPEND)) { 5646 /* 5647 * A Direct I/O operation that has a checksum verify error 5648 * should not attempt to reexecute. Instead, the error should 5649 * just be propagated back. 5650 */ 5651 ASSERT0(zio->io_post & ZIO_POST_DIO_CHKSUM_ERR); 5652 5653 /* 5654 * This is a logical I/O that wants to reexecute. 5655 * 5656 * Reexecute is top-down. When an i/o fails, if it's not 5657 * the root, it simply notifies its parent and sticks around. 5658 * The parent, seeing that it still has children in zio_done(), 5659 * does the same. This percolates all the way up to the root. 5660 * The root i/o will reexecute or suspend the entire tree. 5661 * 5662 * This approach ensures that zio_reexecute() honors 5663 * all the original i/o dependency relationships, e.g. 5664 * parents not executing until children are ready. 5665 */ 5666 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 5667 5668 zio->io_gang_leader = NULL; 5669 5670 mutex_enter(&zio->io_lock); 5671 zio->io_state[ZIO_WAIT_DONE] = 1; 5672 mutex_exit(&zio->io_lock); 5673 5674 /* 5675 * "The Godfather" I/O monitors its children but is 5676 * not a true parent to them. It will track them through 5677 * the pipeline but severs its ties whenever they get into 5678 * trouble (e.g. suspended). This allows "The Godfather" 5679 * I/O to return status without blocking. 5680 */ 5681 zl = NULL; 5682 for (pio = zio_walk_parents(zio, &zl); pio != NULL; 5683 pio = pio_next) { 5684 zio_link_t *remove_zl = zl; 5685 pio_next = zio_walk_parents(zio, &zl); 5686 5687 if ((pio->io_flags & ZIO_FLAG_GODFATHER) && 5688 (zio->io_post & ZIO_POST_SUSPEND)) { 5689 zio_remove_child(pio, zio, remove_zl); 5690 /* 5691 * This is a rare code path, so we don't 5692 * bother with "next_to_execute". 5693 */ 5694 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, 5695 NULL); 5696 } 5697 } 5698 5699 if ((pio = zio_unique_parent(zio)) != NULL) { 5700 /* 5701 * We're not a root i/o, so there's nothing to do 5702 * but notify our parent. Don't propagate errors 5703 * upward since we haven't permanently failed yet. 5704 */ 5705 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 5706 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE; 5707 /* 5708 * This is a rare code path, so we don't bother with 5709 * "next_to_execute". 5710 */ 5711 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, NULL); 5712 } else if (zio->io_post & ZIO_POST_SUSPEND) { 5713 /* 5714 * We'd fail again if we reexecuted now, so suspend 5715 * until conditions improve (e.g. device comes online). 5716 */ 5717 zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR); 5718 } else { 5719 ASSERT(zio->io_post & ZIO_POST_REEXECUTE); 5720 /* 5721 * Reexecution is potentially a huge amount of work. 5722 * Hand it off to the otherwise-unused claim taskq. 5723 */ 5724 spa_taskq_dispatch(zio->io_spa, 5725 ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE, 5726 zio_reexecute, zio, B_FALSE); 5727 } 5728 return (NULL); 5729 } 5730 5731 ASSERT(list_is_empty(&zio->io_child_list)); 5732 ASSERT0(zio->io_post & ZIO_POST_REEXECUTE); 5733 ASSERT0(zio->io_post & ZIO_POST_SUSPEND); 5734 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL)); 5735 5736 /* 5737 * Report any checksum errors, since the I/O is complete. 5738 */ 5739 while (zio->io_cksum_report != NULL) { 5740 zio_cksum_report_t *zcr = zio->io_cksum_report; 5741 zio->io_cksum_report = zcr->zcr_next; 5742 zcr->zcr_next = NULL; 5743 zcr->zcr_finish(zcr, NULL); 5744 zfs_ereport_free_checksum(zcr); 5745 } 5746 5747 /* 5748 * It is the responsibility of the done callback to ensure that this 5749 * particular zio is no longer discoverable for adoption, and as 5750 * such, cannot acquire any new parents. 5751 */ 5752 if (zio->io_done) 5753 zio->io_done(zio); 5754 5755 mutex_enter(&zio->io_lock); 5756 zio->io_state[ZIO_WAIT_DONE] = 1; 5757 mutex_exit(&zio->io_lock); 5758 5759 /* 5760 * We are done executing this zio. We may want to execute a parent 5761 * next. See the comment in zio_notify_parent(). 5762 */ 5763 zio_t *next_to_execute = NULL; 5764 zl = NULL; 5765 for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) { 5766 zio_link_t *remove_zl = zl; 5767 pio_next = zio_walk_parents(zio, &zl); 5768 zio_remove_child(pio, zio, remove_zl); 5769 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, &next_to_execute); 5770 } 5771 5772 if (zio->io_waiter != NULL) { 5773 mutex_enter(&zio->io_lock); 5774 zio->io_executor = NULL; 5775 cv_broadcast(&zio->io_cv); 5776 mutex_exit(&zio->io_lock); 5777 } else { 5778 zio_destroy(zio); 5779 } 5780 5781 return (next_to_execute); 5782 } 5783 5784 /* 5785 * ========================================================================== 5786 * I/O pipeline definition 5787 * ========================================================================== 5788 */ 5789 static zio_pipe_stage_t *zio_pipeline[] = { 5790 NULL, 5791 zio_read_bp_init, 5792 zio_write_bp_init, 5793 zio_free_bp_init, 5794 zio_issue_async, 5795 zio_write_compress, 5796 zio_encrypt, 5797 zio_checksum_generate, 5798 zio_nop_write, 5799 zio_brt_free, 5800 zio_ddt_read_start, 5801 zio_ddt_read_done, 5802 zio_ddt_write, 5803 zio_ddt_free, 5804 zio_gang_assemble, 5805 zio_gang_issue, 5806 zio_dva_throttle, 5807 zio_dva_allocate, 5808 zio_dva_free, 5809 zio_dva_claim, 5810 zio_ready, 5811 zio_vdev_io_start, 5812 zio_vdev_io_done, 5813 zio_vdev_io_assess, 5814 zio_checksum_verify, 5815 zio_dio_checksum_verify, 5816 zio_done 5817 }; 5818 5819 5820 5821 5822 /* 5823 * Compare two zbookmark_phys_t's to see which we would reach first in a 5824 * pre-order traversal of the object tree. 5825 * 5826 * This is simple in every case aside from the meta-dnode object. For all other 5827 * objects, we traverse them in order (object 1 before object 2, and so on). 5828 * However, all of these objects are traversed while traversing object 0, since 5829 * the data it points to is the list of objects. Thus, we need to convert to a 5830 * canonical representation so we can compare meta-dnode bookmarks to 5831 * non-meta-dnode bookmarks. 5832 * 5833 * We do this by calculating "equivalents" for each field of the zbookmark. 5834 * zbookmarks outside of the meta-dnode use their own object and level, and 5835 * calculate the level 0 equivalent (the first L0 blkid that is contained in the 5836 * blocks this bookmark refers to) by multiplying their blkid by their span 5837 * (the number of L0 blocks contained within one block at their level). 5838 * zbookmarks inside the meta-dnode calculate their object equivalent 5839 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use 5840 * level + 1<<31 (any value larger than a level could ever be) for their level. 5841 * This causes them to always compare before a bookmark in their object 5842 * equivalent, compare appropriately to bookmarks in other objects, and to 5843 * compare appropriately to other bookmarks in the meta-dnode. 5844 */ 5845 int 5846 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2, 5847 const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2) 5848 { 5849 /* 5850 * These variables represent the "equivalent" values for the zbookmark, 5851 * after converting zbookmarks inside the meta dnode to their 5852 * normal-object equivalents. 5853 */ 5854 uint64_t zb1obj, zb2obj; 5855 uint64_t zb1L0, zb2L0; 5856 uint64_t zb1level, zb2level; 5857 5858 if (zb1->zb_object == zb2->zb_object && 5859 zb1->zb_level == zb2->zb_level && 5860 zb1->zb_blkid == zb2->zb_blkid) 5861 return (0); 5862 5863 IMPLY(zb1->zb_level > 0, ibs1 >= SPA_MINBLOCKSHIFT); 5864 IMPLY(zb2->zb_level > 0, ibs2 >= SPA_MINBLOCKSHIFT); 5865 5866 /* 5867 * BP_SPANB calculates the span in blocks. 5868 */ 5869 zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level); 5870 zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level); 5871 5872 if (zb1->zb_object == DMU_META_DNODE_OBJECT) { 5873 zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 5874 zb1L0 = 0; 5875 zb1level = zb1->zb_level + COMPARE_META_LEVEL; 5876 } else { 5877 zb1obj = zb1->zb_object; 5878 zb1level = zb1->zb_level; 5879 } 5880 5881 if (zb2->zb_object == DMU_META_DNODE_OBJECT) { 5882 zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 5883 zb2L0 = 0; 5884 zb2level = zb2->zb_level + COMPARE_META_LEVEL; 5885 } else { 5886 zb2obj = zb2->zb_object; 5887 zb2level = zb2->zb_level; 5888 } 5889 5890 /* Now that we have a canonical representation, do the comparison. */ 5891 if (zb1obj != zb2obj) 5892 return (zb1obj < zb2obj ? -1 : 1); 5893 else if (zb1L0 != zb2L0) 5894 return (zb1L0 < zb2L0 ? -1 : 1); 5895 else if (zb1level != zb2level) 5896 return (zb1level > zb2level ? -1 : 1); 5897 /* 5898 * This can (theoretically) happen if the bookmarks have the same object 5899 * and level, but different blkids, if the block sizes are not the same. 5900 * There is presently no way to change the indirect block sizes 5901 */ 5902 return (0); 5903 } 5904 5905 /* 5906 * This function checks the following: given that last_block is the place that 5907 * our traversal stopped last time, does that guarantee that we've visited 5908 * every node under subtree_root? Therefore, we can't just use the raw output 5909 * of zbookmark_compare. We have to pass in a modified version of 5910 * subtree_root; by incrementing the block id, and then checking whether 5911 * last_block is before or equal to that, we can tell whether or not having 5912 * visited last_block implies that all of subtree_root's children have been 5913 * visited. 5914 */ 5915 boolean_t 5916 zbookmark_subtree_completed(const dnode_phys_t *dnp, 5917 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block) 5918 { 5919 zbookmark_phys_t mod_zb = *subtree_root; 5920 mod_zb.zb_blkid++; 5921 ASSERT0(last_block->zb_level); 5922 5923 /* The objset_phys_t isn't before anything. */ 5924 if (dnp == NULL) 5925 return (B_FALSE); 5926 5927 /* 5928 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the 5929 * data block size in sectors, because that variable is only used if 5930 * the bookmark refers to a block in the meta-dnode. Since we don't 5931 * know without examining it what object it refers to, and there's no 5932 * harm in passing in this value in other cases, we always pass it in. 5933 * 5934 * We pass in 0 for the indirect block size shift because zb2 must be 5935 * level 0. The indirect block size is only used to calculate the span 5936 * of the bookmark, but since the bookmark must be level 0, the span is 5937 * always 1, so the math works out. 5938 * 5939 * If you make changes to how the zbookmark_compare code works, be sure 5940 * to make sure that this code still works afterwards. 5941 */ 5942 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift, 5943 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb, 5944 last_block) <= 0); 5945 } 5946 5947 /* 5948 * This function is similar to zbookmark_subtree_completed(), but returns true 5949 * if subtree_root is equal or ahead of last_block, i.e. still to be done. 5950 */ 5951 boolean_t 5952 zbookmark_subtree_tbd(const dnode_phys_t *dnp, 5953 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block) 5954 { 5955 ASSERT0(last_block->zb_level); 5956 if (dnp == NULL) 5957 return (B_FALSE); 5958 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift, 5959 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, subtree_root, 5960 last_block) >= 0); 5961 } 5962 5963 EXPORT_SYMBOL(zio_type_name); 5964 EXPORT_SYMBOL(zio_buf_alloc); 5965 EXPORT_SYMBOL(zio_data_buf_alloc); 5966 EXPORT_SYMBOL(zio_buf_free); 5967 EXPORT_SYMBOL(zio_data_buf_free); 5968 5969 ZFS_MODULE_PARAM(zfs_zio, zio_, slow_io_ms, INT, ZMOD_RW, 5970 "Max I/O completion time (milliseconds) before marking it as slow"); 5971 5972 ZFS_MODULE_PARAM(zfs_zio, zio_, requeue_io_start_cut_in_line, INT, ZMOD_RW, 5973 "Prioritize requeued I/O"); 5974 5975 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_deferred_free, UINT, ZMOD_RW, 5976 "Defer frees starting in this pass"); 5977 5978 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_dont_compress, UINT, ZMOD_RW, 5979 "Don't compress starting in this pass"); 5980 5981 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_rewrite, UINT, ZMOD_RW, 5982 "Rewrite new bps starting in this pass"); 5983 5984 ZFS_MODULE_PARAM(zfs_zio, zio_, dva_throttle_enabled, INT, ZMOD_RW, 5985 "Throttle block allocations in the ZIO pipeline"); 5986 5987 ZFS_MODULE_PARAM(zfs_zio, zio_, deadman_log_all, INT, ZMOD_RW, 5988 "Log all slow ZIOs, not just those with vdevs"); 5989