1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2020 by Delphix. All rights reserved. 24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2017, Intel Corporation. 26 * Copyright (c) 2019, Klara Inc. 27 * Copyright (c) 2019, Allan Jude 28 * Copyright (c) 2021, Datto, Inc. 29 */ 30 31 #include <sys/sysmacros.h> 32 #include <sys/zfs_context.h> 33 #include <sys/fm/fs/zfs.h> 34 #include <sys/spa.h> 35 #include <sys/txg.h> 36 #include <sys/spa_impl.h> 37 #include <sys/vdev_impl.h> 38 #include <sys/vdev_trim.h> 39 #include <sys/zio_impl.h> 40 #include <sys/zio_compress.h> 41 #include <sys/zio_checksum.h> 42 #include <sys/dmu_objset.h> 43 #include <sys/arc.h> 44 #include <sys/ddt.h> 45 #include <sys/blkptr.h> 46 #include <sys/zfeature.h> 47 #include <sys/dsl_scan.h> 48 #include <sys/metaslab_impl.h> 49 #include <sys/time.h> 50 #include <sys/trace_zfs.h> 51 #include <sys/abd.h> 52 #include <sys/dsl_crypt.h> 53 #include <cityhash.h> 54 55 /* 56 * ========================================================================== 57 * I/O type descriptions 58 * ========================================================================== 59 */ 60 const char *const zio_type_name[ZIO_TYPES] = { 61 /* 62 * Note: Linux kernel thread name length is limited 63 * so these names will differ from upstream open zfs. 64 */ 65 "z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_ioctl", "z_trim" 66 }; 67 68 int zio_dva_throttle_enabled = B_TRUE; 69 static int zio_deadman_log_all = B_FALSE; 70 71 /* 72 * ========================================================================== 73 * I/O kmem caches 74 * ========================================================================== 75 */ 76 static kmem_cache_t *zio_cache; 77 static kmem_cache_t *zio_link_cache; 78 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 79 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 80 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 81 static uint64_t zio_buf_cache_allocs[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 82 static uint64_t zio_buf_cache_frees[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 83 #endif 84 85 /* Mark IOs as "slow" if they take longer than 30 seconds */ 86 static int zio_slow_io_ms = (30 * MILLISEC); 87 88 #define BP_SPANB(indblkshift, level) \ 89 (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT))) 90 #define COMPARE_META_LEVEL 0x80000000ul 91 /* 92 * The following actions directly effect the spa's sync-to-convergence logic. 93 * The values below define the sync pass when we start performing the action. 94 * Care should be taken when changing these values as they directly impact 95 * spa_sync() performance. Tuning these values may introduce subtle performance 96 * pathologies and should only be done in the context of performance analysis. 97 * These tunables will eventually be removed and replaced with #defines once 98 * enough analysis has been done to determine optimal values. 99 * 100 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that 101 * regular blocks are not deferred. 102 * 103 * Starting in sync pass 8 (zfs_sync_pass_dont_compress), we disable 104 * compression (including of metadata). In practice, we don't have this 105 * many sync passes, so this has no effect. 106 * 107 * The original intent was that disabling compression would help the sync 108 * passes to converge. However, in practice disabling compression increases 109 * the average number of sync passes, because when we turn compression off, a 110 * lot of block's size will change and thus we have to re-allocate (not 111 * overwrite) them. It also increases the number of 128KB allocations (e.g. 112 * for indirect blocks and spacemaps) because these will not be compressed. 113 * The 128K allocations are especially detrimental to performance on highly 114 * fragmented systems, which may have very few free segments of this size, 115 * and may need to load new metaslabs to satisfy 128K allocations. 116 */ 117 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */ 118 static int zfs_sync_pass_dont_compress = 8; /* don't compress s. i. t. p. */ 119 static int zfs_sync_pass_rewrite = 2; /* rewrite new bps s. i. t. p. */ 120 121 /* 122 * An allocating zio is one that either currently has the DVA allocate 123 * stage set or will have it later in its lifetime. 124 */ 125 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE) 126 127 /* 128 * Enable smaller cores by excluding metadata 129 * allocations as well. 130 */ 131 int zio_exclude_metadata = 0; 132 static int zio_requeue_io_start_cut_in_line = 1; 133 134 #ifdef ZFS_DEBUG 135 static const int zio_buf_debug_limit = 16384; 136 #else 137 static const int zio_buf_debug_limit = 0; 138 #endif 139 140 static inline void __zio_execute(zio_t *zio); 141 142 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t); 143 144 void 145 zio_init(void) 146 { 147 size_t c; 148 149 zio_cache = kmem_cache_create("zio_cache", 150 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 151 zio_link_cache = kmem_cache_create("zio_link_cache", 152 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 153 154 /* 155 * For small buffers, we want a cache for each multiple of 156 * SPA_MINBLOCKSIZE. For larger buffers, we want a cache 157 * for each quarter-power of 2. 158 */ 159 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 160 size_t size = (c + 1) << SPA_MINBLOCKSHIFT; 161 size_t p2 = size; 162 size_t align = 0; 163 size_t data_cflags, cflags; 164 165 data_cflags = KMC_NODEBUG; 166 cflags = (zio_exclude_metadata || size > zio_buf_debug_limit) ? 167 KMC_NODEBUG : 0; 168 169 while (!ISP2(p2)) 170 p2 &= p2 - 1; 171 172 #ifndef _KERNEL 173 /* 174 * If we are using watchpoints, put each buffer on its own page, 175 * to eliminate the performance overhead of trapping to the 176 * kernel when modifying a non-watched buffer that shares the 177 * page with a watched buffer. 178 */ 179 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE)) 180 continue; 181 /* 182 * Here's the problem - on 4K native devices in userland on 183 * Linux using O_DIRECT, buffers must be 4K aligned or I/O 184 * will fail with EINVAL, causing zdb (and others) to coredump. 185 * Since userland probably doesn't need optimized buffer caches, 186 * we just force 4K alignment on everything. 187 */ 188 align = 8 * SPA_MINBLOCKSIZE; 189 #else 190 if (size < PAGESIZE) { 191 align = SPA_MINBLOCKSIZE; 192 } else if (IS_P2ALIGNED(size, p2 >> 2)) { 193 align = PAGESIZE; 194 } 195 #endif 196 197 if (align != 0) { 198 char name[36]; 199 if (cflags == data_cflags) { 200 /* 201 * Resulting kmem caches would be identical. 202 * Save memory by creating only one. 203 */ 204 (void) snprintf(name, sizeof (name), 205 "zio_buf_comb_%lu", (ulong_t)size); 206 zio_buf_cache[c] = kmem_cache_create(name, 207 size, align, NULL, NULL, NULL, NULL, NULL, 208 cflags); 209 zio_data_buf_cache[c] = zio_buf_cache[c]; 210 continue; 211 } 212 (void) snprintf(name, sizeof (name), "zio_buf_%lu", 213 (ulong_t)size); 214 zio_buf_cache[c] = kmem_cache_create(name, size, 215 align, NULL, NULL, NULL, NULL, NULL, cflags); 216 217 (void) snprintf(name, sizeof (name), "zio_data_buf_%lu", 218 (ulong_t)size); 219 zio_data_buf_cache[c] = kmem_cache_create(name, size, 220 align, NULL, NULL, NULL, NULL, NULL, data_cflags); 221 } 222 } 223 224 while (--c != 0) { 225 ASSERT(zio_buf_cache[c] != NULL); 226 if (zio_buf_cache[c - 1] == NULL) 227 zio_buf_cache[c - 1] = zio_buf_cache[c]; 228 229 ASSERT(zio_data_buf_cache[c] != NULL); 230 if (zio_data_buf_cache[c - 1] == NULL) 231 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c]; 232 } 233 234 zio_inject_init(); 235 236 lz4_init(); 237 } 238 239 void 240 zio_fini(void) 241 { 242 size_t n = SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; 243 244 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 245 for (size_t i = 0; i < n; i++) { 246 if (zio_buf_cache_allocs[i] != zio_buf_cache_frees[i]) 247 (void) printf("zio_fini: [%d] %llu != %llu\n", 248 (int)((i + 1) << SPA_MINBLOCKSHIFT), 249 (long long unsigned)zio_buf_cache_allocs[i], 250 (long long unsigned)zio_buf_cache_frees[i]); 251 } 252 #endif 253 254 /* 255 * The same kmem cache can show up multiple times in both zio_buf_cache 256 * and zio_data_buf_cache. Do a wasteful but trivially correct scan to 257 * sort it out. 258 */ 259 for (size_t i = 0; i < n; i++) { 260 kmem_cache_t *cache = zio_buf_cache[i]; 261 if (cache == NULL) 262 continue; 263 for (size_t j = i; j < n; j++) { 264 if (cache == zio_buf_cache[j]) 265 zio_buf_cache[j] = NULL; 266 if (cache == zio_data_buf_cache[j]) 267 zio_data_buf_cache[j] = NULL; 268 } 269 kmem_cache_destroy(cache); 270 } 271 272 for (size_t i = 0; i < n; i++) { 273 kmem_cache_t *cache = zio_data_buf_cache[i]; 274 if (cache == NULL) 275 continue; 276 for (size_t j = i; j < n; j++) { 277 if (cache == zio_data_buf_cache[j]) 278 zio_data_buf_cache[j] = NULL; 279 } 280 kmem_cache_destroy(cache); 281 } 282 283 for (size_t i = 0; i < n; i++) { 284 VERIFY3P(zio_buf_cache[i], ==, NULL); 285 VERIFY3P(zio_data_buf_cache[i], ==, NULL); 286 } 287 288 kmem_cache_destroy(zio_link_cache); 289 kmem_cache_destroy(zio_cache); 290 291 zio_inject_fini(); 292 293 lz4_fini(); 294 } 295 296 /* 297 * ========================================================================== 298 * Allocate and free I/O buffers 299 * ========================================================================== 300 */ 301 302 /* 303 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a 304 * crashdump if the kernel panics, so use it judiciously. Obviously, it's 305 * useful to inspect ZFS metadata, but if possible, we should avoid keeping 306 * excess / transient data in-core during a crashdump. 307 */ 308 void * 309 zio_buf_alloc(size_t size) 310 { 311 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 312 313 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 314 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 315 atomic_add_64(&zio_buf_cache_allocs[c], 1); 316 #endif 317 318 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE)); 319 } 320 321 /* 322 * Use zio_data_buf_alloc to allocate data. The data will not appear in a 323 * crashdump if the kernel panics. This exists so that we will limit the amount 324 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount 325 * of kernel heap dumped to disk when the kernel panics) 326 */ 327 void * 328 zio_data_buf_alloc(size_t size) 329 { 330 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 331 332 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 333 334 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE)); 335 } 336 337 void 338 zio_buf_free(void *buf, size_t size) 339 { 340 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 341 342 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 343 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 344 atomic_add_64(&zio_buf_cache_frees[c], 1); 345 #endif 346 347 kmem_cache_free(zio_buf_cache[c], buf); 348 } 349 350 void 351 zio_data_buf_free(void *buf, size_t size) 352 { 353 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 354 355 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 356 357 kmem_cache_free(zio_data_buf_cache[c], buf); 358 } 359 360 static void 361 zio_abd_free(void *abd, size_t size) 362 { 363 (void) size; 364 abd_free((abd_t *)abd); 365 } 366 367 /* 368 * ========================================================================== 369 * Push and pop I/O transform buffers 370 * ========================================================================== 371 */ 372 void 373 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize, 374 zio_transform_func_t *transform) 375 { 376 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP); 377 378 zt->zt_orig_abd = zio->io_abd; 379 zt->zt_orig_size = zio->io_size; 380 zt->zt_bufsize = bufsize; 381 zt->zt_transform = transform; 382 383 zt->zt_next = zio->io_transform_stack; 384 zio->io_transform_stack = zt; 385 386 zio->io_abd = data; 387 zio->io_size = size; 388 } 389 390 void 391 zio_pop_transforms(zio_t *zio) 392 { 393 zio_transform_t *zt; 394 395 while ((zt = zio->io_transform_stack) != NULL) { 396 if (zt->zt_transform != NULL) 397 zt->zt_transform(zio, 398 zt->zt_orig_abd, zt->zt_orig_size); 399 400 if (zt->zt_bufsize != 0) 401 abd_free(zio->io_abd); 402 403 zio->io_abd = zt->zt_orig_abd; 404 zio->io_size = zt->zt_orig_size; 405 zio->io_transform_stack = zt->zt_next; 406 407 kmem_free(zt, sizeof (zio_transform_t)); 408 } 409 } 410 411 /* 412 * ========================================================================== 413 * I/O transform callbacks for subblocks, decompression, and decryption 414 * ========================================================================== 415 */ 416 static void 417 zio_subblock(zio_t *zio, abd_t *data, uint64_t size) 418 { 419 ASSERT(zio->io_size > size); 420 421 if (zio->io_type == ZIO_TYPE_READ) 422 abd_copy(data, zio->io_abd, size); 423 } 424 425 static void 426 zio_decompress(zio_t *zio, abd_t *data, uint64_t size) 427 { 428 if (zio->io_error == 0) { 429 void *tmp = abd_borrow_buf(data, size); 430 int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp), 431 zio->io_abd, tmp, zio->io_size, size, 432 &zio->io_prop.zp_complevel); 433 abd_return_buf_copy(data, tmp, size); 434 435 if (zio_injection_enabled && ret == 0) 436 ret = zio_handle_fault_injection(zio, EINVAL); 437 438 if (ret != 0) 439 zio->io_error = SET_ERROR(EIO); 440 } 441 } 442 443 static void 444 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size) 445 { 446 int ret; 447 void *tmp; 448 blkptr_t *bp = zio->io_bp; 449 spa_t *spa = zio->io_spa; 450 uint64_t dsobj = zio->io_bookmark.zb_objset; 451 uint64_t lsize = BP_GET_LSIZE(bp); 452 dmu_object_type_t ot = BP_GET_TYPE(bp); 453 uint8_t salt[ZIO_DATA_SALT_LEN]; 454 uint8_t iv[ZIO_DATA_IV_LEN]; 455 uint8_t mac[ZIO_DATA_MAC_LEN]; 456 boolean_t no_crypt = B_FALSE; 457 458 ASSERT(BP_USES_CRYPT(bp)); 459 ASSERT3U(size, !=, 0); 460 461 if (zio->io_error != 0) 462 return; 463 464 /* 465 * Verify the cksum of MACs stored in an indirect bp. It will always 466 * be possible to verify this since it does not require an encryption 467 * key. 468 */ 469 if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) { 470 zio_crypt_decode_mac_bp(bp, mac); 471 472 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) { 473 /* 474 * We haven't decompressed the data yet, but 475 * zio_crypt_do_indirect_mac_checksum() requires 476 * decompressed data to be able to parse out the MACs 477 * from the indirect block. We decompress it now and 478 * throw away the result after we are finished. 479 */ 480 tmp = zio_buf_alloc(lsize); 481 ret = zio_decompress_data(BP_GET_COMPRESS(bp), 482 zio->io_abd, tmp, zio->io_size, lsize, 483 &zio->io_prop.zp_complevel); 484 if (ret != 0) { 485 ret = SET_ERROR(EIO); 486 goto error; 487 } 488 ret = zio_crypt_do_indirect_mac_checksum(B_FALSE, 489 tmp, lsize, BP_SHOULD_BYTESWAP(bp), mac); 490 zio_buf_free(tmp, lsize); 491 } else { 492 ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE, 493 zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac); 494 } 495 abd_copy(data, zio->io_abd, size); 496 497 if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) { 498 ret = zio_handle_decrypt_injection(spa, 499 &zio->io_bookmark, ot, ECKSUM); 500 } 501 if (ret != 0) 502 goto error; 503 504 return; 505 } 506 507 /* 508 * If this is an authenticated block, just check the MAC. It would be 509 * nice to separate this out into its own flag, but for the moment 510 * enum zio_flag is out of bits. 511 */ 512 if (BP_IS_AUTHENTICATED(bp)) { 513 if (ot == DMU_OT_OBJSET) { 514 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, 515 dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp)); 516 } else { 517 zio_crypt_decode_mac_bp(bp, mac); 518 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, 519 zio->io_abd, size, mac); 520 if (zio_injection_enabled && ret == 0) { 521 ret = zio_handle_decrypt_injection(spa, 522 &zio->io_bookmark, ot, ECKSUM); 523 } 524 } 525 abd_copy(data, zio->io_abd, size); 526 527 if (ret != 0) 528 goto error; 529 530 return; 531 } 532 533 zio_crypt_decode_params_bp(bp, salt, iv); 534 535 if (ot == DMU_OT_INTENT_LOG) { 536 tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t)); 537 zio_crypt_decode_mac_zil(tmp, mac); 538 abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t)); 539 } else { 540 zio_crypt_decode_mac_bp(bp, mac); 541 } 542 543 ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp), 544 BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data, 545 zio->io_abd, &no_crypt); 546 if (no_crypt) 547 abd_copy(data, zio->io_abd, size); 548 549 if (ret != 0) 550 goto error; 551 552 return; 553 554 error: 555 /* assert that the key was found unless this was speculative */ 556 ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE)); 557 558 /* 559 * If there was a decryption / authentication error return EIO as 560 * the io_error. If this was not a speculative zio, create an ereport. 561 */ 562 if (ret == ECKSUM) { 563 zio->io_error = SET_ERROR(EIO); 564 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) { 565 spa_log_error(spa, &zio->io_bookmark); 566 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION, 567 spa, NULL, &zio->io_bookmark, zio, 0); 568 } 569 } else { 570 zio->io_error = ret; 571 } 572 } 573 574 /* 575 * ========================================================================== 576 * I/O parent/child relationships and pipeline interlocks 577 * ========================================================================== 578 */ 579 zio_t * 580 zio_walk_parents(zio_t *cio, zio_link_t **zl) 581 { 582 list_t *pl = &cio->io_parent_list; 583 584 *zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl); 585 if (*zl == NULL) 586 return (NULL); 587 588 ASSERT((*zl)->zl_child == cio); 589 return ((*zl)->zl_parent); 590 } 591 592 zio_t * 593 zio_walk_children(zio_t *pio, zio_link_t **zl) 594 { 595 list_t *cl = &pio->io_child_list; 596 597 ASSERT(MUTEX_HELD(&pio->io_lock)); 598 599 *zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl); 600 if (*zl == NULL) 601 return (NULL); 602 603 ASSERT((*zl)->zl_parent == pio); 604 return ((*zl)->zl_child); 605 } 606 607 zio_t * 608 zio_unique_parent(zio_t *cio) 609 { 610 zio_link_t *zl = NULL; 611 zio_t *pio = zio_walk_parents(cio, &zl); 612 613 VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL); 614 return (pio); 615 } 616 617 void 618 zio_add_child(zio_t *pio, zio_t *cio) 619 { 620 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP); 621 622 /* 623 * Logical I/Os can have logical, gang, or vdev children. 624 * Gang I/Os can have gang or vdev children. 625 * Vdev I/Os can only have vdev children. 626 * The following ASSERT captures all of these constraints. 627 */ 628 ASSERT3S(cio->io_child_type, <=, pio->io_child_type); 629 630 zl->zl_parent = pio; 631 zl->zl_child = cio; 632 633 mutex_enter(&pio->io_lock); 634 mutex_enter(&cio->io_lock); 635 636 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0); 637 638 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 639 pio->io_children[cio->io_child_type][w] += !cio->io_state[w]; 640 641 list_insert_head(&pio->io_child_list, zl); 642 list_insert_head(&cio->io_parent_list, zl); 643 644 pio->io_child_count++; 645 cio->io_parent_count++; 646 647 mutex_exit(&cio->io_lock); 648 mutex_exit(&pio->io_lock); 649 } 650 651 static void 652 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl) 653 { 654 ASSERT(zl->zl_parent == pio); 655 ASSERT(zl->zl_child == cio); 656 657 mutex_enter(&pio->io_lock); 658 mutex_enter(&cio->io_lock); 659 660 list_remove(&pio->io_child_list, zl); 661 list_remove(&cio->io_parent_list, zl); 662 663 pio->io_child_count--; 664 cio->io_parent_count--; 665 666 mutex_exit(&cio->io_lock); 667 mutex_exit(&pio->io_lock); 668 kmem_cache_free(zio_link_cache, zl); 669 } 670 671 static boolean_t 672 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait) 673 { 674 boolean_t waiting = B_FALSE; 675 676 mutex_enter(&zio->io_lock); 677 ASSERT(zio->io_stall == NULL); 678 for (int c = 0; c < ZIO_CHILD_TYPES; c++) { 679 if (!(ZIO_CHILD_BIT_IS_SET(childbits, c))) 680 continue; 681 682 uint64_t *countp = &zio->io_children[c][wait]; 683 if (*countp != 0) { 684 zio->io_stage >>= 1; 685 ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN); 686 zio->io_stall = countp; 687 waiting = B_TRUE; 688 break; 689 } 690 } 691 mutex_exit(&zio->io_lock); 692 return (waiting); 693 } 694 695 __attribute__((always_inline)) 696 static inline void 697 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait, 698 zio_t **next_to_executep) 699 { 700 uint64_t *countp = &pio->io_children[zio->io_child_type][wait]; 701 int *errorp = &pio->io_child_error[zio->io_child_type]; 702 703 mutex_enter(&pio->io_lock); 704 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 705 *errorp = zio_worst_error(*errorp, zio->io_error); 706 pio->io_reexecute |= zio->io_reexecute; 707 ASSERT3U(*countp, >, 0); 708 709 (*countp)--; 710 711 if (*countp == 0 && pio->io_stall == countp) { 712 zio_taskq_type_t type = 713 pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE : 714 ZIO_TASKQ_INTERRUPT; 715 pio->io_stall = NULL; 716 mutex_exit(&pio->io_lock); 717 718 /* 719 * If we can tell the caller to execute this parent next, do 720 * so. Otherwise dispatch the parent zio as its own task. 721 * 722 * Having the caller execute the parent when possible reduces 723 * locking on the zio taskq's, reduces context switch 724 * overhead, and has no recursion penalty. Note that one 725 * read from disk typically causes at least 3 zio's: a 726 * zio_null(), the logical zio_read(), and then a physical 727 * zio. When the physical ZIO completes, we are able to call 728 * zio_done() on all 3 of these zio's from one invocation of 729 * zio_execute() by returning the parent back to 730 * zio_execute(). Since the parent isn't executed until this 731 * thread returns back to zio_execute(), the caller should do 732 * so promptly. 733 * 734 * In other cases, dispatching the parent prevents 735 * overflowing the stack when we have deeply nested 736 * parent-child relationships, as we do with the "mega zio" 737 * of writes for spa_sync(), and the chain of ZIL blocks. 738 */ 739 if (next_to_executep != NULL && *next_to_executep == NULL) { 740 *next_to_executep = pio; 741 } else { 742 zio_taskq_dispatch(pio, type, B_FALSE); 743 } 744 } else { 745 mutex_exit(&pio->io_lock); 746 } 747 } 748 749 static void 750 zio_inherit_child_errors(zio_t *zio, enum zio_child c) 751 { 752 if (zio->io_child_error[c] != 0 && zio->io_error == 0) 753 zio->io_error = zio->io_child_error[c]; 754 } 755 756 int 757 zio_bookmark_compare(const void *x1, const void *x2) 758 { 759 const zio_t *z1 = x1; 760 const zio_t *z2 = x2; 761 762 if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset) 763 return (-1); 764 if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset) 765 return (1); 766 767 if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object) 768 return (-1); 769 if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object) 770 return (1); 771 772 if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level) 773 return (-1); 774 if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level) 775 return (1); 776 777 if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid) 778 return (-1); 779 if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid) 780 return (1); 781 782 if (z1 < z2) 783 return (-1); 784 if (z1 > z2) 785 return (1); 786 787 return (0); 788 } 789 790 /* 791 * ========================================================================== 792 * Create the various types of I/O (read, write, free, etc) 793 * ========================================================================== 794 */ 795 static zio_t * 796 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 797 abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done, 798 void *private, zio_type_t type, zio_priority_t priority, 799 enum zio_flag flags, vdev_t *vd, uint64_t offset, 800 const zbookmark_phys_t *zb, enum zio_stage stage, 801 enum zio_stage pipeline) 802 { 803 zio_t *zio; 804 805 IMPLY(type != ZIO_TYPE_TRIM, psize <= SPA_MAXBLOCKSIZE); 806 ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0); 807 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0); 808 809 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER)); 810 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER)); 811 ASSERT(vd || stage == ZIO_STAGE_OPEN); 812 813 IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0); 814 815 zio = kmem_cache_alloc(zio_cache, KM_SLEEP); 816 memset(zio, 0, sizeof (zio_t)); 817 818 mutex_init(&zio->io_lock, NULL, MUTEX_NOLOCKDEP, NULL); 819 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL); 820 821 list_create(&zio->io_parent_list, sizeof (zio_link_t), 822 offsetof(zio_link_t, zl_parent_node)); 823 list_create(&zio->io_child_list, sizeof (zio_link_t), 824 offsetof(zio_link_t, zl_child_node)); 825 metaslab_trace_init(&zio->io_alloc_list); 826 827 if (vd != NULL) 828 zio->io_child_type = ZIO_CHILD_VDEV; 829 else if (flags & ZIO_FLAG_GANG_CHILD) 830 zio->io_child_type = ZIO_CHILD_GANG; 831 else if (flags & ZIO_FLAG_DDT_CHILD) 832 zio->io_child_type = ZIO_CHILD_DDT; 833 else 834 zio->io_child_type = ZIO_CHILD_LOGICAL; 835 836 if (bp != NULL) { 837 zio->io_bp = (blkptr_t *)bp; 838 zio->io_bp_copy = *bp; 839 zio->io_bp_orig = *bp; 840 if (type != ZIO_TYPE_WRITE || 841 zio->io_child_type == ZIO_CHILD_DDT) 842 zio->io_bp = &zio->io_bp_copy; /* so caller can free */ 843 if (zio->io_child_type == ZIO_CHILD_LOGICAL) 844 zio->io_logical = zio; 845 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp)) 846 pipeline |= ZIO_GANG_STAGES; 847 } 848 849 zio->io_spa = spa; 850 zio->io_txg = txg; 851 zio->io_done = done; 852 zio->io_private = private; 853 zio->io_type = type; 854 zio->io_priority = priority; 855 zio->io_vd = vd; 856 zio->io_offset = offset; 857 zio->io_orig_abd = zio->io_abd = data; 858 zio->io_orig_size = zio->io_size = psize; 859 zio->io_lsize = lsize; 860 zio->io_orig_flags = zio->io_flags = flags; 861 zio->io_orig_stage = zio->io_stage = stage; 862 zio->io_orig_pipeline = zio->io_pipeline = pipeline; 863 zio->io_pipeline_trace = ZIO_STAGE_OPEN; 864 865 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY); 866 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE); 867 868 if (zb != NULL) 869 zio->io_bookmark = *zb; 870 871 if (pio != NULL) { 872 zio->io_metaslab_class = pio->io_metaslab_class; 873 if (zio->io_logical == NULL) 874 zio->io_logical = pio->io_logical; 875 if (zio->io_child_type == ZIO_CHILD_GANG) 876 zio->io_gang_leader = pio->io_gang_leader; 877 zio_add_child(pio, zio); 878 } 879 880 taskq_init_ent(&zio->io_tqent); 881 882 return (zio); 883 } 884 885 static void 886 zio_destroy(zio_t *zio) 887 { 888 metaslab_trace_fini(&zio->io_alloc_list); 889 list_destroy(&zio->io_parent_list); 890 list_destroy(&zio->io_child_list); 891 mutex_destroy(&zio->io_lock); 892 cv_destroy(&zio->io_cv); 893 kmem_cache_free(zio_cache, zio); 894 } 895 896 zio_t * 897 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done, 898 void *private, enum zio_flag flags) 899 { 900 zio_t *zio; 901 902 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private, 903 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 904 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE); 905 906 return (zio); 907 } 908 909 zio_t * 910 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags) 911 { 912 return (zio_null(NULL, spa, NULL, done, private, flags)); 913 } 914 915 static int 916 zfs_blkptr_verify_log(spa_t *spa, const blkptr_t *bp, 917 enum blk_verify_flag blk_verify, const char *fmt, ...) 918 { 919 va_list adx; 920 char buf[256]; 921 922 va_start(adx, fmt); 923 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 924 va_end(adx); 925 926 switch (blk_verify) { 927 case BLK_VERIFY_HALT: 928 dprintf_bp(bp, "blkptr at %p dprintf_bp():", bp); 929 zfs_panic_recover("%s: %s", spa_name(spa), buf); 930 break; 931 case BLK_VERIFY_LOG: 932 zfs_dbgmsg("%s: %s", spa_name(spa), buf); 933 break; 934 case BLK_VERIFY_ONLY: 935 break; 936 } 937 938 return (1); 939 } 940 941 /* 942 * Verify the block pointer fields contain reasonable values. This means 943 * it only contains known object types, checksum/compression identifiers, 944 * block sizes within the maximum allowed limits, valid DVAs, etc. 945 * 946 * If everything checks out B_TRUE is returned. The zfs_blkptr_verify 947 * argument controls the behavior when an invalid field is detected. 948 * 949 * Modes for zfs_blkptr_verify: 950 * 1) BLK_VERIFY_ONLY (evaluate the block) 951 * 2) BLK_VERIFY_LOG (evaluate the block and log problems) 952 * 3) BLK_VERIFY_HALT (call zfs_panic_recover on error) 953 */ 954 boolean_t 955 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp, boolean_t config_held, 956 enum blk_verify_flag blk_verify) 957 { 958 int errors = 0; 959 960 if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) { 961 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 962 "blkptr at %p has invalid TYPE %llu", 963 bp, (longlong_t)BP_GET_TYPE(bp)); 964 } 965 if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS) { 966 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 967 "blkptr at %p has invalid CHECKSUM %llu", 968 bp, (longlong_t)BP_GET_CHECKSUM(bp)); 969 } 970 if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS) { 971 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 972 "blkptr at %p has invalid COMPRESS %llu", 973 bp, (longlong_t)BP_GET_COMPRESS(bp)); 974 } 975 if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) { 976 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 977 "blkptr at %p has invalid LSIZE %llu", 978 bp, (longlong_t)BP_GET_LSIZE(bp)); 979 } 980 if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) { 981 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 982 "blkptr at %p has invalid PSIZE %llu", 983 bp, (longlong_t)BP_GET_PSIZE(bp)); 984 } 985 986 if (BP_IS_EMBEDDED(bp)) { 987 if (BPE_GET_ETYPE(bp) >= NUM_BP_EMBEDDED_TYPES) { 988 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 989 "blkptr at %p has invalid ETYPE %llu", 990 bp, (longlong_t)BPE_GET_ETYPE(bp)); 991 } 992 } 993 994 /* 995 * Do not verify individual DVAs if the config is not trusted. This 996 * will be done once the zio is executed in vdev_mirror_map_alloc. 997 */ 998 if (!spa->spa_trust_config) 999 return (errors == 0); 1000 1001 if (!config_held) 1002 spa_config_enter(spa, SCL_VDEV, bp, RW_READER); 1003 else 1004 ASSERT(spa_config_held(spa, SCL_VDEV, RW_WRITER)); 1005 /* 1006 * Pool-specific checks. 1007 * 1008 * Note: it would be nice to verify that the blk_birth and 1009 * BP_PHYSICAL_BIRTH() are not too large. However, spa_freeze() 1010 * allows the birth time of log blocks (and dmu_sync()-ed blocks 1011 * that are in the log) to be arbitrarily large. 1012 */ 1013 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 1014 const dva_t *dva = &bp->blk_dva[i]; 1015 uint64_t vdevid = DVA_GET_VDEV(dva); 1016 1017 if (vdevid >= spa->spa_root_vdev->vdev_children) { 1018 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1019 "blkptr at %p DVA %u has invalid VDEV %llu", 1020 bp, i, (longlong_t)vdevid); 1021 continue; 1022 } 1023 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid]; 1024 if (vd == NULL) { 1025 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1026 "blkptr at %p DVA %u has invalid VDEV %llu", 1027 bp, i, (longlong_t)vdevid); 1028 continue; 1029 } 1030 if (vd->vdev_ops == &vdev_hole_ops) { 1031 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1032 "blkptr at %p DVA %u has hole VDEV %llu", 1033 bp, i, (longlong_t)vdevid); 1034 continue; 1035 } 1036 if (vd->vdev_ops == &vdev_missing_ops) { 1037 /* 1038 * "missing" vdevs are valid during import, but we 1039 * don't have their detailed info (e.g. asize), so 1040 * we can't perform any more checks on them. 1041 */ 1042 continue; 1043 } 1044 uint64_t offset = DVA_GET_OFFSET(dva); 1045 uint64_t asize = DVA_GET_ASIZE(dva); 1046 if (DVA_GET_GANG(dva)) 1047 asize = vdev_gang_header_asize(vd); 1048 if (offset + asize > vd->vdev_asize) { 1049 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1050 "blkptr at %p DVA %u has invalid OFFSET %llu", 1051 bp, i, (longlong_t)offset); 1052 } 1053 } 1054 if (errors > 0) 1055 dprintf_bp(bp, "blkptr at %p dprintf_bp():", bp); 1056 if (!config_held) 1057 spa_config_exit(spa, SCL_VDEV, bp); 1058 1059 return (errors == 0); 1060 } 1061 1062 boolean_t 1063 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp) 1064 { 1065 (void) bp; 1066 uint64_t vdevid = DVA_GET_VDEV(dva); 1067 1068 if (vdevid >= spa->spa_root_vdev->vdev_children) 1069 return (B_FALSE); 1070 1071 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid]; 1072 if (vd == NULL) 1073 return (B_FALSE); 1074 1075 if (vd->vdev_ops == &vdev_hole_ops) 1076 return (B_FALSE); 1077 1078 if (vd->vdev_ops == &vdev_missing_ops) { 1079 return (B_FALSE); 1080 } 1081 1082 uint64_t offset = DVA_GET_OFFSET(dva); 1083 uint64_t asize = DVA_GET_ASIZE(dva); 1084 1085 if (DVA_GET_GANG(dva)) 1086 asize = vdev_gang_header_asize(vd); 1087 if (offset + asize > vd->vdev_asize) 1088 return (B_FALSE); 1089 1090 return (B_TRUE); 1091 } 1092 1093 zio_t * 1094 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, 1095 abd_t *data, uint64_t size, zio_done_func_t *done, void *private, 1096 zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb) 1097 { 1098 zio_t *zio; 1099 1100 zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp, 1101 data, size, size, done, private, 1102 ZIO_TYPE_READ, priority, flags, NULL, 0, zb, 1103 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 1104 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE); 1105 1106 return (zio); 1107 } 1108 1109 zio_t * 1110 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 1111 abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp, 1112 zio_done_func_t *ready, zio_done_func_t *children_ready, 1113 zio_done_func_t *physdone, zio_done_func_t *done, 1114 void *private, zio_priority_t priority, enum zio_flag flags, 1115 const zbookmark_phys_t *zb) 1116 { 1117 zio_t *zio; 1118 1119 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF && 1120 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS && 1121 zp->zp_compress >= ZIO_COMPRESS_OFF && 1122 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS && 1123 DMU_OT_IS_VALID(zp->zp_type) && 1124 zp->zp_level < 32 && 1125 zp->zp_copies > 0 && 1126 zp->zp_copies <= spa_max_replication(spa)); 1127 1128 zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private, 1129 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb, 1130 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 1131 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE); 1132 1133 zio->io_ready = ready; 1134 zio->io_children_ready = children_ready; 1135 zio->io_physdone = physdone; 1136 zio->io_prop = *zp; 1137 1138 /* 1139 * Data can be NULL if we are going to call zio_write_override() to 1140 * provide the already-allocated BP. But we may need the data to 1141 * verify a dedup hit (if requested). In this case, don't try to 1142 * dedup (just take the already-allocated BP verbatim). Encrypted 1143 * dedup blocks need data as well so we also disable dedup in this 1144 * case. 1145 */ 1146 if (data == NULL && 1147 (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) { 1148 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE; 1149 } 1150 1151 return (zio); 1152 } 1153 1154 zio_t * 1155 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data, 1156 uint64_t size, zio_done_func_t *done, void *private, 1157 zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb) 1158 { 1159 zio_t *zio; 1160 1161 zio = zio_create(pio, spa, txg, bp, data, size, size, done, private, 1162 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb, 1163 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE); 1164 1165 return (zio); 1166 } 1167 1168 void 1169 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite) 1170 { 1171 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 1172 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1173 ASSERT(zio->io_stage == ZIO_STAGE_OPEN); 1174 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa)); 1175 1176 /* 1177 * We must reset the io_prop to match the values that existed 1178 * when the bp was first written by dmu_sync() keeping in mind 1179 * that nopwrite and dedup are mutually exclusive. 1180 */ 1181 zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup; 1182 zio->io_prop.zp_nopwrite = nopwrite; 1183 zio->io_prop.zp_copies = copies; 1184 zio->io_bp_override = bp; 1185 } 1186 1187 void 1188 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp) 1189 { 1190 1191 (void) zfs_blkptr_verify(spa, bp, B_FALSE, BLK_VERIFY_HALT); 1192 1193 /* 1194 * The check for EMBEDDED is a performance optimization. We 1195 * process the free here (by ignoring it) rather than 1196 * putting it on the list and then processing it in zio_free_sync(). 1197 */ 1198 if (BP_IS_EMBEDDED(bp)) 1199 return; 1200 metaslab_check_free(spa, bp); 1201 1202 /* 1203 * Frees that are for the currently-syncing txg, are not going to be 1204 * deferred, and which will not need to do a read (i.e. not GANG or 1205 * DEDUP), can be processed immediately. Otherwise, put them on the 1206 * in-memory list for later processing. 1207 * 1208 * Note that we only defer frees after zfs_sync_pass_deferred_free 1209 * when the log space map feature is disabled. [see relevant comment 1210 * in spa_sync_iterate_to_convergence()] 1211 */ 1212 if (BP_IS_GANG(bp) || 1213 BP_GET_DEDUP(bp) || 1214 txg != spa->spa_syncing_txg || 1215 (spa_sync_pass(spa) >= zfs_sync_pass_deferred_free && 1216 !spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))) { 1217 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp); 1218 } else { 1219 VERIFY3P(zio_free_sync(NULL, spa, txg, bp, 0), ==, NULL); 1220 } 1221 } 1222 1223 /* 1224 * To improve performance, this function may return NULL if we were able 1225 * to do the free immediately. This avoids the cost of creating a zio 1226 * (and linking it to the parent, etc). 1227 */ 1228 zio_t * 1229 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 1230 enum zio_flag flags) 1231 { 1232 ASSERT(!BP_IS_HOLE(bp)); 1233 ASSERT(spa_syncing_txg(spa) == txg); 1234 1235 if (BP_IS_EMBEDDED(bp)) 1236 return (NULL); 1237 1238 metaslab_check_free(spa, bp); 1239 arc_freed(spa, bp); 1240 dsl_scan_freed(spa, bp); 1241 1242 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp)) { 1243 /* 1244 * GANG and DEDUP blocks can induce a read (for the gang block 1245 * header, or the DDT), so issue them asynchronously so that 1246 * this thread is not tied up. 1247 */ 1248 enum zio_stage stage = 1249 ZIO_FREE_PIPELINE | ZIO_STAGE_ISSUE_ASYNC; 1250 1251 return (zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 1252 BP_GET_PSIZE(bp), NULL, NULL, 1253 ZIO_TYPE_FREE, ZIO_PRIORITY_NOW, 1254 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage)); 1255 } else { 1256 metaslab_free(spa, bp, txg, B_FALSE); 1257 return (NULL); 1258 } 1259 } 1260 1261 zio_t * 1262 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 1263 zio_done_func_t *done, void *private, enum zio_flag flags) 1264 { 1265 zio_t *zio; 1266 1267 (void) zfs_blkptr_verify(spa, bp, flags & ZIO_FLAG_CONFIG_WRITER, 1268 BLK_VERIFY_HALT); 1269 1270 if (BP_IS_EMBEDDED(bp)) 1271 return (zio_null(pio, spa, NULL, NULL, NULL, 0)); 1272 1273 /* 1274 * A claim is an allocation of a specific block. Claims are needed 1275 * to support immediate writes in the intent log. The issue is that 1276 * immediate writes contain committed data, but in a txg that was 1277 * *not* committed. Upon opening the pool after an unclean shutdown, 1278 * the intent log claims all blocks that contain immediate write data 1279 * so that the SPA knows they're in use. 1280 * 1281 * All claims *must* be resolved in the first txg -- before the SPA 1282 * starts allocating blocks -- so that nothing is allocated twice. 1283 * If txg == 0 we just verify that the block is claimable. 1284 */ 1285 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, 1286 spa_min_claim_txg(spa)); 1287 ASSERT(txg == spa_min_claim_txg(spa) || txg == 0); 1288 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(8) */ 1289 1290 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 1291 BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, 1292 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE); 1293 ASSERT0(zio->io_queued_timestamp); 1294 1295 return (zio); 1296 } 1297 1298 zio_t * 1299 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, 1300 zio_done_func_t *done, void *private, enum zio_flag flags) 1301 { 1302 zio_t *zio; 1303 int c; 1304 1305 if (vd->vdev_children == 0) { 1306 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private, 1307 ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 1308 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE); 1309 1310 zio->io_cmd = cmd; 1311 } else { 1312 zio = zio_null(pio, spa, NULL, NULL, NULL, flags); 1313 1314 for (c = 0; c < vd->vdev_children; c++) 1315 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd, 1316 done, private, flags)); 1317 } 1318 1319 return (zio); 1320 } 1321 1322 zio_t * 1323 zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1324 zio_done_func_t *done, void *private, zio_priority_t priority, 1325 enum zio_flag flags, enum trim_flag trim_flags) 1326 { 1327 zio_t *zio; 1328 1329 ASSERT0(vd->vdev_children); 1330 ASSERT0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 1331 ASSERT0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 1332 ASSERT3U(size, !=, 0); 1333 1334 zio = zio_create(pio, vd->vdev_spa, 0, NULL, NULL, size, size, done, 1335 private, ZIO_TYPE_TRIM, priority, flags | ZIO_FLAG_PHYSICAL, 1336 vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_TRIM_PIPELINE); 1337 zio->io_trim_flags = trim_flags; 1338 1339 return (zio); 1340 } 1341 1342 zio_t * 1343 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1344 abd_t *data, int checksum, zio_done_func_t *done, void *private, 1345 zio_priority_t priority, enum zio_flag flags, boolean_t labels) 1346 { 1347 zio_t *zio; 1348 1349 ASSERT(vd->vdev_children == 0); 1350 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 1351 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 1352 ASSERT3U(offset + size, <=, vd->vdev_psize); 1353 1354 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, 1355 private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd, 1356 offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE); 1357 1358 zio->io_prop.zp_checksum = checksum; 1359 1360 return (zio); 1361 } 1362 1363 zio_t * 1364 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1365 abd_t *data, int checksum, zio_done_func_t *done, void *private, 1366 zio_priority_t priority, enum zio_flag flags, boolean_t labels) 1367 { 1368 zio_t *zio; 1369 1370 ASSERT(vd->vdev_children == 0); 1371 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 1372 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 1373 ASSERT3U(offset + size, <=, vd->vdev_psize); 1374 1375 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, 1376 private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd, 1377 offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE); 1378 1379 zio->io_prop.zp_checksum = checksum; 1380 1381 if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) { 1382 /* 1383 * zec checksums are necessarily destructive -- they modify 1384 * the end of the write buffer to hold the verifier/checksum. 1385 * Therefore, we must make a local copy in case the data is 1386 * being written to multiple places in parallel. 1387 */ 1388 abd_t *wbuf = abd_alloc_sametype(data, size); 1389 abd_copy(wbuf, data, size); 1390 1391 zio_push_transform(zio, wbuf, size, size, NULL); 1392 } 1393 1394 return (zio); 1395 } 1396 1397 /* 1398 * Create a child I/O to do some work for us. 1399 */ 1400 zio_t * 1401 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset, 1402 abd_t *data, uint64_t size, int type, zio_priority_t priority, 1403 enum zio_flag flags, zio_done_func_t *done, void *private) 1404 { 1405 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE; 1406 zio_t *zio; 1407 1408 /* 1409 * vdev child I/Os do not propagate their error to the parent. 1410 * Therefore, for correct operation the caller *must* check for 1411 * and handle the error in the child i/o's done callback. 1412 * The only exceptions are i/os that we don't care about 1413 * (OPTIONAL or REPAIR). 1414 */ 1415 ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) || 1416 done != NULL); 1417 1418 if (type == ZIO_TYPE_READ && bp != NULL) { 1419 /* 1420 * If we have the bp, then the child should perform the 1421 * checksum and the parent need not. This pushes error 1422 * detection as close to the leaves as possible and 1423 * eliminates redundant checksums in the interior nodes. 1424 */ 1425 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY; 1426 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 1427 } 1428 1429 if (vd->vdev_ops->vdev_op_leaf) { 1430 ASSERT0(vd->vdev_children); 1431 offset += VDEV_LABEL_START_SIZE; 1432 } 1433 1434 flags |= ZIO_VDEV_CHILD_FLAGS(pio); 1435 1436 /* 1437 * If we've decided to do a repair, the write is not speculative -- 1438 * even if the original read was. 1439 */ 1440 if (flags & ZIO_FLAG_IO_REPAIR) 1441 flags &= ~ZIO_FLAG_SPECULATIVE; 1442 1443 /* 1444 * If we're creating a child I/O that is not associated with a 1445 * top-level vdev, then the child zio is not an allocating I/O. 1446 * If this is a retried I/O then we ignore it since we will 1447 * have already processed the original allocating I/O. 1448 */ 1449 if (flags & ZIO_FLAG_IO_ALLOCATING && 1450 (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) { 1451 ASSERT(pio->io_metaslab_class != NULL); 1452 ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled); 1453 ASSERT(type == ZIO_TYPE_WRITE); 1454 ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE); 1455 ASSERT(!(flags & ZIO_FLAG_IO_REPAIR)); 1456 ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) || 1457 pio->io_child_type == ZIO_CHILD_GANG); 1458 1459 flags &= ~ZIO_FLAG_IO_ALLOCATING; 1460 } 1461 1462 1463 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size, 1464 done, private, type, priority, flags, vd, offset, &pio->io_bookmark, 1465 ZIO_STAGE_VDEV_IO_START >> 1, pipeline); 1466 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); 1467 1468 zio->io_physdone = pio->io_physdone; 1469 if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL) 1470 zio->io_logical->io_phys_children++; 1471 1472 return (zio); 1473 } 1474 1475 zio_t * 1476 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size, 1477 zio_type_t type, zio_priority_t priority, enum zio_flag flags, 1478 zio_done_func_t *done, void *private) 1479 { 1480 zio_t *zio; 1481 1482 ASSERT(vd->vdev_ops->vdev_op_leaf); 1483 1484 zio = zio_create(NULL, vd->vdev_spa, 0, NULL, 1485 data, size, size, done, private, type, priority, 1486 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED, 1487 vd, offset, NULL, 1488 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE); 1489 1490 return (zio); 1491 } 1492 1493 void 1494 zio_flush(zio_t *zio, vdev_t *vd) 1495 { 1496 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE, 1497 NULL, NULL, 1498 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY)); 1499 } 1500 1501 void 1502 zio_shrink(zio_t *zio, uint64_t size) 1503 { 1504 ASSERT3P(zio->io_executor, ==, NULL); 1505 ASSERT3U(zio->io_orig_size, ==, zio->io_size); 1506 ASSERT3U(size, <=, zio->io_size); 1507 1508 /* 1509 * We don't shrink for raidz because of problems with the 1510 * reconstruction when reading back less than the block size. 1511 * Note, BP_IS_RAIDZ() assumes no compression. 1512 */ 1513 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 1514 if (!BP_IS_RAIDZ(zio->io_bp)) { 1515 /* we are not doing a raw write */ 1516 ASSERT3U(zio->io_size, ==, zio->io_lsize); 1517 zio->io_orig_size = zio->io_size = zio->io_lsize = size; 1518 } 1519 } 1520 1521 /* 1522 * ========================================================================== 1523 * Prepare to read and write logical blocks 1524 * ========================================================================== 1525 */ 1526 1527 static zio_t * 1528 zio_read_bp_init(zio_t *zio) 1529 { 1530 blkptr_t *bp = zio->io_bp; 1531 uint64_t psize = 1532 BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp); 1533 1534 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 1535 1536 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF && 1537 zio->io_child_type == ZIO_CHILD_LOGICAL && 1538 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) { 1539 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize), 1540 psize, psize, zio_decompress); 1541 } 1542 1543 if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) || 1544 BP_HAS_INDIRECT_MAC_CKSUM(bp)) && 1545 zio->io_child_type == ZIO_CHILD_LOGICAL) { 1546 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize), 1547 psize, psize, zio_decrypt); 1548 } 1549 1550 if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) { 1551 int psize = BPE_GET_PSIZE(bp); 1552 void *data = abd_borrow_buf(zio->io_abd, psize); 1553 1554 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1555 decode_embedded_bp_compressed(bp, data); 1556 abd_return_buf_copy(zio->io_abd, data, psize); 1557 } else { 1558 ASSERT(!BP_IS_EMBEDDED(bp)); 1559 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 1560 } 1561 1562 if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0) 1563 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 1564 1565 if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP) 1566 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 1567 1568 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL) 1569 zio->io_pipeline = ZIO_DDT_READ_PIPELINE; 1570 1571 return (zio); 1572 } 1573 1574 static zio_t * 1575 zio_write_bp_init(zio_t *zio) 1576 { 1577 if (!IO_IS_ALLOCATING(zio)) 1578 return (zio); 1579 1580 ASSERT(zio->io_child_type != ZIO_CHILD_DDT); 1581 1582 if (zio->io_bp_override) { 1583 blkptr_t *bp = zio->io_bp; 1584 zio_prop_t *zp = &zio->io_prop; 1585 1586 ASSERT(bp->blk_birth != zio->io_txg); 1587 ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0); 1588 1589 *bp = *zio->io_bp_override; 1590 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1591 1592 if (BP_IS_EMBEDDED(bp)) 1593 return (zio); 1594 1595 /* 1596 * If we've been overridden and nopwrite is set then 1597 * set the flag accordingly to indicate that a nopwrite 1598 * has already occurred. 1599 */ 1600 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) { 1601 ASSERT(!zp->zp_dedup); 1602 ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum); 1603 zio->io_flags |= ZIO_FLAG_NOPWRITE; 1604 return (zio); 1605 } 1606 1607 ASSERT(!zp->zp_nopwrite); 1608 1609 if (BP_IS_HOLE(bp) || !zp->zp_dedup) 1610 return (zio); 1611 1612 ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags & 1613 ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify); 1614 1615 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum && 1616 !zp->zp_encrypt) { 1617 BP_SET_DEDUP(bp, 1); 1618 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE; 1619 return (zio); 1620 } 1621 1622 /* 1623 * We were unable to handle this as an override bp, treat 1624 * it as a regular write I/O. 1625 */ 1626 zio->io_bp_override = NULL; 1627 *bp = zio->io_bp_orig; 1628 zio->io_pipeline = zio->io_orig_pipeline; 1629 } 1630 1631 return (zio); 1632 } 1633 1634 static zio_t * 1635 zio_write_compress(zio_t *zio) 1636 { 1637 spa_t *spa = zio->io_spa; 1638 zio_prop_t *zp = &zio->io_prop; 1639 enum zio_compress compress = zp->zp_compress; 1640 blkptr_t *bp = zio->io_bp; 1641 uint64_t lsize = zio->io_lsize; 1642 uint64_t psize = zio->io_size; 1643 int pass = 1; 1644 1645 /* 1646 * If our children haven't all reached the ready stage, 1647 * wait for them and then repeat this pipeline stage. 1648 */ 1649 if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT | 1650 ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) { 1651 return (NULL); 1652 } 1653 1654 if (!IO_IS_ALLOCATING(zio)) 1655 return (zio); 1656 1657 if (zio->io_children_ready != NULL) { 1658 /* 1659 * Now that all our children are ready, run the callback 1660 * associated with this zio in case it wants to modify the 1661 * data to be written. 1662 */ 1663 ASSERT3U(zp->zp_level, >, 0); 1664 zio->io_children_ready(zio); 1665 } 1666 1667 ASSERT(zio->io_child_type != ZIO_CHILD_DDT); 1668 ASSERT(zio->io_bp_override == NULL); 1669 1670 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) { 1671 /* 1672 * We're rewriting an existing block, which means we're 1673 * working on behalf of spa_sync(). For spa_sync() to 1674 * converge, it must eventually be the case that we don't 1675 * have to allocate new blocks. But compression changes 1676 * the blocksize, which forces a reallocate, and makes 1677 * convergence take longer. Therefore, after the first 1678 * few passes, stop compressing to ensure convergence. 1679 */ 1680 pass = spa_sync_pass(spa); 1681 1682 ASSERT(zio->io_txg == spa_syncing_txg(spa)); 1683 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1684 ASSERT(!BP_GET_DEDUP(bp)); 1685 1686 if (pass >= zfs_sync_pass_dont_compress) 1687 compress = ZIO_COMPRESS_OFF; 1688 1689 /* Make sure someone doesn't change their mind on overwrites */ 1690 ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp), 1691 spa_max_replication(spa)) == BP_GET_NDVAS(bp)); 1692 } 1693 1694 /* If it's a compressed write that is not raw, compress the buffer. */ 1695 if (compress != ZIO_COMPRESS_OFF && 1696 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) { 1697 void *cbuf = zio_buf_alloc(lsize); 1698 psize = zio_compress_data(compress, zio->io_abd, cbuf, lsize, 1699 zp->zp_complevel); 1700 if (psize == 0 || psize >= lsize) { 1701 compress = ZIO_COMPRESS_OFF; 1702 zio_buf_free(cbuf, lsize); 1703 } else if (!zp->zp_dedup && !zp->zp_encrypt && 1704 psize <= BPE_PAYLOAD_SIZE && 1705 zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) && 1706 spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) { 1707 encode_embedded_bp_compressed(bp, 1708 cbuf, compress, lsize, psize); 1709 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA); 1710 BP_SET_TYPE(bp, zio->io_prop.zp_type); 1711 BP_SET_LEVEL(bp, zio->io_prop.zp_level); 1712 zio_buf_free(cbuf, lsize); 1713 bp->blk_birth = zio->io_txg; 1714 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1715 ASSERT(spa_feature_is_active(spa, 1716 SPA_FEATURE_EMBEDDED_DATA)); 1717 return (zio); 1718 } else { 1719 /* 1720 * Round compressed size up to the minimum allocation 1721 * size of the smallest-ashift device, and zero the 1722 * tail. This ensures that the compressed size of the 1723 * BP (and thus compressratio property) are correct, 1724 * in that we charge for the padding used to fill out 1725 * the last sector. 1726 */ 1727 ASSERT3U(spa->spa_min_alloc, >=, SPA_MINBLOCKSHIFT); 1728 size_t rounded = (size_t)roundup(psize, 1729 spa->spa_min_alloc); 1730 if (rounded >= lsize) { 1731 compress = ZIO_COMPRESS_OFF; 1732 zio_buf_free(cbuf, lsize); 1733 psize = lsize; 1734 } else { 1735 abd_t *cdata = abd_get_from_buf(cbuf, lsize); 1736 abd_take_ownership_of_buf(cdata, B_TRUE); 1737 abd_zero_off(cdata, psize, rounded - psize); 1738 psize = rounded; 1739 zio_push_transform(zio, cdata, 1740 psize, lsize, NULL); 1741 } 1742 } 1743 1744 /* 1745 * We were unable to handle this as an override bp, treat 1746 * it as a regular write I/O. 1747 */ 1748 zio->io_bp_override = NULL; 1749 *bp = zio->io_bp_orig; 1750 zio->io_pipeline = zio->io_orig_pipeline; 1751 1752 } else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 && 1753 zp->zp_type == DMU_OT_DNODE) { 1754 /* 1755 * The DMU actually relies on the zio layer's compression 1756 * to free metadnode blocks that have had all contained 1757 * dnodes freed. As a result, even when doing a raw 1758 * receive, we must check whether the block can be compressed 1759 * to a hole. 1760 */ 1761 psize = zio_compress_data(ZIO_COMPRESS_EMPTY, 1762 zio->io_abd, NULL, lsize, zp->zp_complevel); 1763 if (psize == 0 || psize >= lsize) 1764 compress = ZIO_COMPRESS_OFF; 1765 } else if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS && 1766 !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) { 1767 /* 1768 * If we are raw receiving an encrypted dataset we should not 1769 * take this codepath because it will change the on-disk block 1770 * and decryption will fail. 1771 */ 1772 size_t rounded = MIN((size_t)roundup(psize, 1773 spa->spa_min_alloc), lsize); 1774 1775 if (rounded != psize) { 1776 abd_t *cdata = abd_alloc_linear(rounded, B_TRUE); 1777 abd_zero_off(cdata, psize, rounded - psize); 1778 abd_copy_off(cdata, zio->io_abd, 0, 0, psize); 1779 psize = rounded; 1780 zio_push_transform(zio, cdata, 1781 psize, rounded, NULL); 1782 } 1783 } else { 1784 ASSERT3U(psize, !=, 0); 1785 } 1786 1787 /* 1788 * The final pass of spa_sync() must be all rewrites, but the first 1789 * few passes offer a trade-off: allocating blocks defers convergence, 1790 * but newly allocated blocks are sequential, so they can be written 1791 * to disk faster. Therefore, we allow the first few passes of 1792 * spa_sync() to allocate new blocks, but force rewrites after that. 1793 * There should only be a handful of blocks after pass 1 in any case. 1794 */ 1795 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg && 1796 BP_GET_PSIZE(bp) == psize && 1797 pass >= zfs_sync_pass_rewrite) { 1798 VERIFY3U(psize, !=, 0); 1799 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES; 1800 1801 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages; 1802 zio->io_flags |= ZIO_FLAG_IO_REWRITE; 1803 } else { 1804 BP_ZERO(bp); 1805 zio->io_pipeline = ZIO_WRITE_PIPELINE; 1806 } 1807 1808 if (psize == 0) { 1809 if (zio->io_bp_orig.blk_birth != 0 && 1810 spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) { 1811 BP_SET_LSIZE(bp, lsize); 1812 BP_SET_TYPE(bp, zp->zp_type); 1813 BP_SET_LEVEL(bp, zp->zp_level); 1814 BP_SET_BIRTH(bp, zio->io_txg, 0); 1815 } 1816 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1817 } else { 1818 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER); 1819 BP_SET_LSIZE(bp, lsize); 1820 BP_SET_TYPE(bp, zp->zp_type); 1821 BP_SET_LEVEL(bp, zp->zp_level); 1822 BP_SET_PSIZE(bp, psize); 1823 BP_SET_COMPRESS(bp, compress); 1824 BP_SET_CHECKSUM(bp, zp->zp_checksum); 1825 BP_SET_DEDUP(bp, zp->zp_dedup); 1826 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 1827 if (zp->zp_dedup) { 1828 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1829 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1830 ASSERT(!zp->zp_encrypt || 1831 DMU_OT_IS_ENCRYPTED(zp->zp_type)); 1832 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE; 1833 } 1834 if (zp->zp_nopwrite) { 1835 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1836 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1837 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE; 1838 } 1839 } 1840 return (zio); 1841 } 1842 1843 static zio_t * 1844 zio_free_bp_init(zio_t *zio) 1845 { 1846 blkptr_t *bp = zio->io_bp; 1847 1848 if (zio->io_child_type == ZIO_CHILD_LOGICAL) { 1849 if (BP_GET_DEDUP(bp)) 1850 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE; 1851 } 1852 1853 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 1854 1855 return (zio); 1856 } 1857 1858 /* 1859 * ========================================================================== 1860 * Execute the I/O pipeline 1861 * ========================================================================== 1862 */ 1863 1864 static void 1865 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline) 1866 { 1867 spa_t *spa = zio->io_spa; 1868 zio_type_t t = zio->io_type; 1869 int flags = (cutinline ? TQ_FRONT : 0); 1870 1871 /* 1872 * If we're a config writer or a probe, the normal issue and 1873 * interrupt threads may all be blocked waiting for the config lock. 1874 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL. 1875 */ 1876 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE)) 1877 t = ZIO_TYPE_NULL; 1878 1879 /* 1880 * A similar issue exists for the L2ARC write thread until L2ARC 2.0. 1881 */ 1882 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux) 1883 t = ZIO_TYPE_NULL; 1884 1885 /* 1886 * If this is a high priority I/O, then use the high priority taskq if 1887 * available. 1888 */ 1889 if ((zio->io_priority == ZIO_PRIORITY_NOW || 1890 zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) && 1891 spa->spa_zio_taskq[t][q + 1].stqs_count != 0) 1892 q++; 1893 1894 ASSERT3U(q, <, ZIO_TASKQ_TYPES); 1895 1896 /* 1897 * NB: We are assuming that the zio can only be dispatched 1898 * to a single taskq at a time. It would be a grievous error 1899 * to dispatch the zio to another taskq at the same time. 1900 */ 1901 ASSERT(taskq_empty_ent(&zio->io_tqent)); 1902 spa_taskq_dispatch_ent(spa, t, q, zio_execute, zio, flags, 1903 &zio->io_tqent); 1904 } 1905 1906 static boolean_t 1907 zio_taskq_member(zio_t *zio, zio_taskq_type_t q) 1908 { 1909 spa_t *spa = zio->io_spa; 1910 1911 taskq_t *tq = taskq_of_curthread(); 1912 1913 for (zio_type_t t = 0; t < ZIO_TYPES; t++) { 1914 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1915 uint_t i; 1916 for (i = 0; i < tqs->stqs_count; i++) { 1917 if (tqs->stqs_taskq[i] == tq) 1918 return (B_TRUE); 1919 } 1920 } 1921 1922 return (B_FALSE); 1923 } 1924 1925 static zio_t * 1926 zio_issue_async(zio_t *zio) 1927 { 1928 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 1929 1930 return (NULL); 1931 } 1932 1933 void 1934 zio_interrupt(void *zio) 1935 { 1936 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE); 1937 } 1938 1939 void 1940 zio_delay_interrupt(zio_t *zio) 1941 { 1942 /* 1943 * The timeout_generic() function isn't defined in userspace, so 1944 * rather than trying to implement the function, the zio delay 1945 * functionality has been disabled for userspace builds. 1946 */ 1947 1948 #ifdef _KERNEL 1949 /* 1950 * If io_target_timestamp is zero, then no delay has been registered 1951 * for this IO, thus jump to the end of this function and "skip" the 1952 * delay; issuing it directly to the zio layer. 1953 */ 1954 if (zio->io_target_timestamp != 0) { 1955 hrtime_t now = gethrtime(); 1956 1957 if (now >= zio->io_target_timestamp) { 1958 /* 1959 * This IO has already taken longer than the target 1960 * delay to complete, so we don't want to delay it 1961 * any longer; we "miss" the delay and issue it 1962 * directly to the zio layer. This is likely due to 1963 * the target latency being set to a value less than 1964 * the underlying hardware can satisfy (e.g. delay 1965 * set to 1ms, but the disks take 10ms to complete an 1966 * IO request). 1967 */ 1968 1969 DTRACE_PROBE2(zio__delay__miss, zio_t *, zio, 1970 hrtime_t, now); 1971 1972 zio_interrupt(zio); 1973 } else { 1974 taskqid_t tid; 1975 hrtime_t diff = zio->io_target_timestamp - now; 1976 clock_t expire_at_tick = ddi_get_lbolt() + 1977 NSEC_TO_TICK(diff); 1978 1979 DTRACE_PROBE3(zio__delay__hit, zio_t *, zio, 1980 hrtime_t, now, hrtime_t, diff); 1981 1982 if (NSEC_TO_TICK(diff) == 0) { 1983 /* Our delay is less than a jiffy - just spin */ 1984 zfs_sleep_until(zio->io_target_timestamp); 1985 zio_interrupt(zio); 1986 } else { 1987 /* 1988 * Use taskq_dispatch_delay() in the place of 1989 * OpenZFS's timeout_generic(). 1990 */ 1991 tid = taskq_dispatch_delay(system_taskq, 1992 zio_interrupt, zio, TQ_NOSLEEP, 1993 expire_at_tick); 1994 if (tid == TASKQID_INVALID) { 1995 /* 1996 * Couldn't allocate a task. Just 1997 * finish the zio without a delay. 1998 */ 1999 zio_interrupt(zio); 2000 } 2001 } 2002 } 2003 return; 2004 } 2005 #endif 2006 DTRACE_PROBE1(zio__delay__skip, zio_t *, zio); 2007 zio_interrupt(zio); 2008 } 2009 2010 static void 2011 zio_deadman_impl(zio_t *pio, int ziodepth) 2012 { 2013 zio_t *cio, *cio_next; 2014 zio_link_t *zl = NULL; 2015 vdev_t *vd = pio->io_vd; 2016 2017 if (zio_deadman_log_all || (vd != NULL && vd->vdev_ops->vdev_op_leaf)) { 2018 vdev_queue_t *vq = vd ? &vd->vdev_queue : NULL; 2019 zbookmark_phys_t *zb = &pio->io_bookmark; 2020 uint64_t delta = gethrtime() - pio->io_timestamp; 2021 uint64_t failmode = spa_get_deadman_failmode(pio->io_spa); 2022 2023 zfs_dbgmsg("slow zio[%d]: zio=%px timestamp=%llu " 2024 "delta=%llu queued=%llu io=%llu " 2025 "path=%s " 2026 "last=%llu type=%d " 2027 "priority=%d flags=0x%x stage=0x%x " 2028 "pipeline=0x%x pipeline-trace=0x%x " 2029 "objset=%llu object=%llu " 2030 "level=%llu blkid=%llu " 2031 "offset=%llu size=%llu " 2032 "error=%d", 2033 ziodepth, pio, pio->io_timestamp, 2034 (u_longlong_t)delta, pio->io_delta, pio->io_delay, 2035 vd ? vd->vdev_path : "NULL", 2036 vq ? vq->vq_io_complete_ts : 0, pio->io_type, 2037 pio->io_priority, pio->io_flags, pio->io_stage, 2038 pio->io_pipeline, pio->io_pipeline_trace, 2039 (u_longlong_t)zb->zb_objset, (u_longlong_t)zb->zb_object, 2040 (u_longlong_t)zb->zb_level, (u_longlong_t)zb->zb_blkid, 2041 (u_longlong_t)pio->io_offset, (u_longlong_t)pio->io_size, 2042 pio->io_error); 2043 (void) zfs_ereport_post(FM_EREPORT_ZFS_DEADMAN, 2044 pio->io_spa, vd, zb, pio, 0); 2045 2046 if (failmode == ZIO_FAILURE_MODE_CONTINUE && 2047 taskq_empty_ent(&pio->io_tqent)) { 2048 zio_interrupt(pio); 2049 } 2050 } 2051 2052 mutex_enter(&pio->io_lock); 2053 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 2054 cio_next = zio_walk_children(pio, &zl); 2055 zio_deadman_impl(cio, ziodepth + 1); 2056 } 2057 mutex_exit(&pio->io_lock); 2058 } 2059 2060 /* 2061 * Log the critical information describing this zio and all of its children 2062 * using the zfs_dbgmsg() interface then post deadman event for the ZED. 2063 */ 2064 void 2065 zio_deadman(zio_t *pio, const char *tag) 2066 { 2067 spa_t *spa = pio->io_spa; 2068 char *name = spa_name(spa); 2069 2070 if (!zfs_deadman_enabled || spa_suspended(spa)) 2071 return; 2072 2073 zio_deadman_impl(pio, 0); 2074 2075 switch (spa_get_deadman_failmode(spa)) { 2076 case ZIO_FAILURE_MODE_WAIT: 2077 zfs_dbgmsg("%s waiting for hung I/O to pool '%s'", tag, name); 2078 break; 2079 2080 case ZIO_FAILURE_MODE_CONTINUE: 2081 zfs_dbgmsg("%s restarting hung I/O for pool '%s'", tag, name); 2082 break; 2083 2084 case ZIO_FAILURE_MODE_PANIC: 2085 fm_panic("%s determined I/O to pool '%s' is hung.", tag, name); 2086 break; 2087 } 2088 } 2089 2090 /* 2091 * Execute the I/O pipeline until one of the following occurs: 2092 * (1) the I/O completes; (2) the pipeline stalls waiting for 2093 * dependent child I/Os; (3) the I/O issues, so we're waiting 2094 * for an I/O completion interrupt; (4) the I/O is delegated by 2095 * vdev-level caching or aggregation; (5) the I/O is deferred 2096 * due to vdev-level queueing; (6) the I/O is handed off to 2097 * another thread. In all cases, the pipeline stops whenever 2098 * there's no CPU work; it never burns a thread in cv_wait_io(). 2099 * 2100 * There's no locking on io_stage because there's no legitimate way 2101 * for multiple threads to be attempting to process the same I/O. 2102 */ 2103 static zio_pipe_stage_t *zio_pipeline[]; 2104 2105 /* 2106 * zio_execute() is a wrapper around the static function 2107 * __zio_execute() so that we can force __zio_execute() to be 2108 * inlined. This reduces stack overhead which is important 2109 * because __zio_execute() is called recursively in several zio 2110 * code paths. zio_execute() itself cannot be inlined because 2111 * it is externally visible. 2112 */ 2113 void 2114 zio_execute(void *zio) 2115 { 2116 fstrans_cookie_t cookie; 2117 2118 cookie = spl_fstrans_mark(); 2119 __zio_execute(zio); 2120 spl_fstrans_unmark(cookie); 2121 } 2122 2123 /* 2124 * Used to determine if in the current context the stack is sized large 2125 * enough to allow zio_execute() to be called recursively. A minimum 2126 * stack size of 16K is required to avoid needing to re-dispatch the zio. 2127 */ 2128 static boolean_t 2129 zio_execute_stack_check(zio_t *zio) 2130 { 2131 #if !defined(HAVE_LARGE_STACKS) 2132 dsl_pool_t *dp = spa_get_dsl(zio->io_spa); 2133 2134 /* Executing in txg_sync_thread() context. */ 2135 if (dp && curthread == dp->dp_tx.tx_sync_thread) 2136 return (B_TRUE); 2137 2138 /* Pool initialization outside of zio_taskq context. */ 2139 if (dp && spa_is_initializing(dp->dp_spa) && 2140 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE) && 2141 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE_HIGH)) 2142 return (B_TRUE); 2143 #else 2144 (void) zio; 2145 #endif /* HAVE_LARGE_STACKS */ 2146 2147 return (B_FALSE); 2148 } 2149 2150 __attribute__((always_inline)) 2151 static inline void 2152 __zio_execute(zio_t *zio) 2153 { 2154 ASSERT3U(zio->io_queued_timestamp, >, 0); 2155 2156 while (zio->io_stage < ZIO_STAGE_DONE) { 2157 enum zio_stage pipeline = zio->io_pipeline; 2158 enum zio_stage stage = zio->io_stage; 2159 2160 zio->io_executor = curthread; 2161 2162 ASSERT(!MUTEX_HELD(&zio->io_lock)); 2163 ASSERT(ISP2(stage)); 2164 ASSERT(zio->io_stall == NULL); 2165 2166 do { 2167 stage <<= 1; 2168 } while ((stage & pipeline) == 0); 2169 2170 ASSERT(stage <= ZIO_STAGE_DONE); 2171 2172 /* 2173 * If we are in interrupt context and this pipeline stage 2174 * will grab a config lock that is held across I/O, 2175 * or may wait for an I/O that needs an interrupt thread 2176 * to complete, issue async to avoid deadlock. 2177 * 2178 * For VDEV_IO_START, we cut in line so that the io will 2179 * be sent to disk promptly. 2180 */ 2181 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL && 2182 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) { 2183 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ? 2184 zio_requeue_io_start_cut_in_line : B_FALSE; 2185 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut); 2186 return; 2187 } 2188 2189 /* 2190 * If the current context doesn't have large enough stacks 2191 * the zio must be issued asynchronously to prevent overflow. 2192 */ 2193 if (zio_execute_stack_check(zio)) { 2194 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ? 2195 zio_requeue_io_start_cut_in_line : B_FALSE; 2196 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut); 2197 return; 2198 } 2199 2200 zio->io_stage = stage; 2201 zio->io_pipeline_trace |= zio->io_stage; 2202 2203 /* 2204 * The zio pipeline stage returns the next zio to execute 2205 * (typically the same as this one), or NULL if we should 2206 * stop. 2207 */ 2208 zio = zio_pipeline[highbit64(stage) - 1](zio); 2209 2210 if (zio == NULL) 2211 return; 2212 } 2213 } 2214 2215 2216 /* 2217 * ========================================================================== 2218 * Initiate I/O, either sync or async 2219 * ========================================================================== 2220 */ 2221 int 2222 zio_wait(zio_t *zio) 2223 { 2224 /* 2225 * Some routines, like zio_free_sync(), may return a NULL zio 2226 * to avoid the performance overhead of creating and then destroying 2227 * an unneeded zio. For the callers' simplicity, we accept a NULL 2228 * zio and ignore it. 2229 */ 2230 if (zio == NULL) 2231 return (0); 2232 2233 long timeout = MSEC_TO_TICK(zfs_deadman_ziotime_ms); 2234 int error; 2235 2236 ASSERT3S(zio->io_stage, ==, ZIO_STAGE_OPEN); 2237 ASSERT3P(zio->io_executor, ==, NULL); 2238 2239 zio->io_waiter = curthread; 2240 ASSERT0(zio->io_queued_timestamp); 2241 zio->io_queued_timestamp = gethrtime(); 2242 2243 __zio_execute(zio); 2244 2245 mutex_enter(&zio->io_lock); 2246 while (zio->io_executor != NULL) { 2247 error = cv_timedwait_io(&zio->io_cv, &zio->io_lock, 2248 ddi_get_lbolt() + timeout); 2249 2250 if (zfs_deadman_enabled && error == -1 && 2251 gethrtime() - zio->io_queued_timestamp > 2252 spa_deadman_ziotime(zio->io_spa)) { 2253 mutex_exit(&zio->io_lock); 2254 timeout = MSEC_TO_TICK(zfs_deadman_checktime_ms); 2255 zio_deadman(zio, FTAG); 2256 mutex_enter(&zio->io_lock); 2257 } 2258 } 2259 mutex_exit(&zio->io_lock); 2260 2261 error = zio->io_error; 2262 zio_destroy(zio); 2263 2264 return (error); 2265 } 2266 2267 void 2268 zio_nowait(zio_t *zio) 2269 { 2270 /* 2271 * See comment in zio_wait(). 2272 */ 2273 if (zio == NULL) 2274 return; 2275 2276 ASSERT3P(zio->io_executor, ==, NULL); 2277 2278 if (zio->io_child_type == ZIO_CHILD_LOGICAL && 2279 zio_unique_parent(zio) == NULL) { 2280 zio_t *pio; 2281 2282 /* 2283 * This is a logical async I/O with no parent to wait for it. 2284 * We add it to the spa_async_root_zio "Godfather" I/O which 2285 * will ensure they complete prior to unloading the pool. 2286 */ 2287 spa_t *spa = zio->io_spa; 2288 pio = spa->spa_async_zio_root[CPU_SEQID_UNSTABLE]; 2289 2290 zio_add_child(pio, zio); 2291 } 2292 2293 ASSERT0(zio->io_queued_timestamp); 2294 zio->io_queued_timestamp = gethrtime(); 2295 __zio_execute(zio); 2296 } 2297 2298 /* 2299 * ========================================================================== 2300 * Reexecute, cancel, or suspend/resume failed I/O 2301 * ========================================================================== 2302 */ 2303 2304 static void 2305 zio_reexecute(void *arg) 2306 { 2307 zio_t *pio = arg; 2308 zio_t *cio, *cio_next; 2309 2310 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL); 2311 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN); 2312 ASSERT(pio->io_gang_leader == NULL); 2313 ASSERT(pio->io_gang_tree == NULL); 2314 2315 pio->io_flags = pio->io_orig_flags; 2316 pio->io_stage = pio->io_orig_stage; 2317 pio->io_pipeline = pio->io_orig_pipeline; 2318 pio->io_reexecute = 0; 2319 pio->io_flags |= ZIO_FLAG_REEXECUTED; 2320 pio->io_pipeline_trace = 0; 2321 pio->io_error = 0; 2322 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 2323 pio->io_state[w] = 0; 2324 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 2325 pio->io_child_error[c] = 0; 2326 2327 if (IO_IS_ALLOCATING(pio)) 2328 BP_ZERO(pio->io_bp); 2329 2330 /* 2331 * As we reexecute pio's children, new children could be created. 2332 * New children go to the head of pio's io_child_list, however, 2333 * so we will (correctly) not reexecute them. The key is that 2334 * the remainder of pio's io_child_list, from 'cio_next' onward, 2335 * cannot be affected by any side effects of reexecuting 'cio'. 2336 */ 2337 zio_link_t *zl = NULL; 2338 mutex_enter(&pio->io_lock); 2339 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 2340 cio_next = zio_walk_children(pio, &zl); 2341 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 2342 pio->io_children[cio->io_child_type][w]++; 2343 mutex_exit(&pio->io_lock); 2344 zio_reexecute(cio); 2345 mutex_enter(&pio->io_lock); 2346 } 2347 mutex_exit(&pio->io_lock); 2348 2349 /* 2350 * Now that all children have been reexecuted, execute the parent. 2351 * We don't reexecute "The Godfather" I/O here as it's the 2352 * responsibility of the caller to wait on it. 2353 */ 2354 if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) { 2355 pio->io_queued_timestamp = gethrtime(); 2356 __zio_execute(pio); 2357 } 2358 } 2359 2360 void 2361 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason) 2362 { 2363 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC) 2364 fm_panic("Pool '%s' has encountered an uncorrectable I/O " 2365 "failure and the failure mode property for this pool " 2366 "is set to panic.", spa_name(spa)); 2367 2368 cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable I/O " 2369 "failure and has been suspended.\n", spa_name(spa)); 2370 2371 (void) zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, 2372 NULL, NULL, 0); 2373 2374 mutex_enter(&spa->spa_suspend_lock); 2375 2376 if (spa->spa_suspend_zio_root == NULL) 2377 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL, 2378 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 2379 ZIO_FLAG_GODFATHER); 2380 2381 spa->spa_suspended = reason; 2382 2383 if (zio != NULL) { 2384 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 2385 ASSERT(zio != spa->spa_suspend_zio_root); 2386 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2387 ASSERT(zio_unique_parent(zio) == NULL); 2388 ASSERT(zio->io_stage == ZIO_STAGE_DONE); 2389 zio_add_child(spa->spa_suspend_zio_root, zio); 2390 } 2391 2392 mutex_exit(&spa->spa_suspend_lock); 2393 } 2394 2395 int 2396 zio_resume(spa_t *spa) 2397 { 2398 zio_t *pio; 2399 2400 /* 2401 * Reexecute all previously suspended i/o. 2402 */ 2403 mutex_enter(&spa->spa_suspend_lock); 2404 spa->spa_suspended = ZIO_SUSPEND_NONE; 2405 cv_broadcast(&spa->spa_suspend_cv); 2406 pio = spa->spa_suspend_zio_root; 2407 spa->spa_suspend_zio_root = NULL; 2408 mutex_exit(&spa->spa_suspend_lock); 2409 2410 if (pio == NULL) 2411 return (0); 2412 2413 zio_reexecute(pio); 2414 return (zio_wait(pio)); 2415 } 2416 2417 void 2418 zio_resume_wait(spa_t *spa) 2419 { 2420 mutex_enter(&spa->spa_suspend_lock); 2421 while (spa_suspended(spa)) 2422 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock); 2423 mutex_exit(&spa->spa_suspend_lock); 2424 } 2425 2426 /* 2427 * ========================================================================== 2428 * Gang blocks. 2429 * 2430 * A gang block is a collection of small blocks that looks to the DMU 2431 * like one large block. When zio_dva_allocate() cannot find a block 2432 * of the requested size, due to either severe fragmentation or the pool 2433 * being nearly full, it calls zio_write_gang_block() to construct the 2434 * block from smaller fragments. 2435 * 2436 * A gang block consists of a gang header (zio_gbh_phys_t) and up to 2437 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like 2438 * an indirect block: it's an array of block pointers. It consumes 2439 * only one sector and hence is allocatable regardless of fragmentation. 2440 * The gang header's bps point to its gang members, which hold the data. 2441 * 2442 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg> 2443 * as the verifier to ensure uniqueness of the SHA256 checksum. 2444 * Critically, the gang block bp's blk_cksum is the checksum of the data, 2445 * not the gang header. This ensures that data block signatures (needed for 2446 * deduplication) are independent of how the block is physically stored. 2447 * 2448 * Gang blocks can be nested: a gang member may itself be a gang block. 2449 * Thus every gang block is a tree in which root and all interior nodes are 2450 * gang headers, and the leaves are normal blocks that contain user data. 2451 * The root of the gang tree is called the gang leader. 2452 * 2453 * To perform any operation (read, rewrite, free, claim) on a gang block, 2454 * zio_gang_assemble() first assembles the gang tree (minus data leaves) 2455 * in the io_gang_tree field of the original logical i/o by recursively 2456 * reading the gang leader and all gang headers below it. This yields 2457 * an in-core tree containing the contents of every gang header and the 2458 * bps for every constituent of the gang block. 2459 * 2460 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree 2461 * and invokes a callback on each bp. To free a gang block, zio_gang_issue() 2462 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp. 2463 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim(). 2464 * zio_read_gang() is a wrapper around zio_read() that omits reading gang 2465 * headers, since we already have those in io_gang_tree. zio_rewrite_gang() 2466 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite() 2467 * of the gang header plus zio_checksum_compute() of the data to update the 2468 * gang header's blk_cksum as described above. 2469 * 2470 * The two-phase assemble/issue model solves the problem of partial failure -- 2471 * what if you'd freed part of a gang block but then couldn't read the 2472 * gang header for another part? Assembling the entire gang tree first 2473 * ensures that all the necessary gang header I/O has succeeded before 2474 * starting the actual work of free, claim, or write. Once the gang tree 2475 * is assembled, free and claim are in-memory operations that cannot fail. 2476 * 2477 * In the event that a gang write fails, zio_dva_unallocate() walks the 2478 * gang tree to immediately free (i.e. insert back into the space map) 2479 * everything we've allocated. This ensures that we don't get ENOSPC 2480 * errors during repeated suspend/resume cycles due to a flaky device. 2481 * 2482 * Gang rewrites only happen during sync-to-convergence. If we can't assemble 2483 * the gang tree, we won't modify the block, so we can safely defer the free 2484 * (knowing that the block is still intact). If we *can* assemble the gang 2485 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free 2486 * each constituent bp and we can allocate a new block on the next sync pass. 2487 * 2488 * In all cases, the gang tree allows complete recovery from partial failure. 2489 * ========================================================================== 2490 */ 2491 2492 static void 2493 zio_gang_issue_func_done(zio_t *zio) 2494 { 2495 abd_free(zio->io_abd); 2496 } 2497 2498 static zio_t * 2499 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2500 uint64_t offset) 2501 { 2502 if (gn != NULL) 2503 return (pio); 2504 2505 return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset), 2506 BP_GET_PSIZE(bp), zio_gang_issue_func_done, 2507 NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 2508 &pio->io_bookmark)); 2509 } 2510 2511 static zio_t * 2512 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2513 uint64_t offset) 2514 { 2515 zio_t *zio; 2516 2517 if (gn != NULL) { 2518 abd_t *gbh_abd = 2519 abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2520 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 2521 gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL, 2522 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 2523 &pio->io_bookmark); 2524 /* 2525 * As we rewrite each gang header, the pipeline will compute 2526 * a new gang block header checksum for it; but no one will 2527 * compute a new data checksum, so we do that here. The one 2528 * exception is the gang leader: the pipeline already computed 2529 * its data checksum because that stage precedes gang assembly. 2530 * (Presently, nothing actually uses interior data checksums; 2531 * this is just good hygiene.) 2532 */ 2533 if (gn != pio->io_gang_leader->io_gang_tree) { 2534 abd_t *buf = abd_get_offset(data, offset); 2535 2536 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp), 2537 buf, BP_GET_PSIZE(bp)); 2538 2539 abd_free(buf); 2540 } 2541 /* 2542 * If we are here to damage data for testing purposes, 2543 * leave the GBH alone so that we can detect the damage. 2544 */ 2545 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE) 2546 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 2547 } else { 2548 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 2549 abd_get_offset(data, offset), BP_GET_PSIZE(bp), 2550 zio_gang_issue_func_done, NULL, pio->io_priority, 2551 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2552 } 2553 2554 return (zio); 2555 } 2556 2557 static zio_t * 2558 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2559 uint64_t offset) 2560 { 2561 (void) gn, (void) data, (void) offset; 2562 2563 zio_t *zio = zio_free_sync(pio, pio->io_spa, pio->io_txg, bp, 2564 ZIO_GANG_CHILD_FLAGS(pio)); 2565 if (zio == NULL) { 2566 zio = zio_null(pio, pio->io_spa, 2567 NULL, NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)); 2568 } 2569 return (zio); 2570 } 2571 2572 static zio_t * 2573 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2574 uint64_t offset) 2575 { 2576 (void) gn, (void) data, (void) offset; 2577 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp, 2578 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio))); 2579 } 2580 2581 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = { 2582 NULL, 2583 zio_read_gang, 2584 zio_rewrite_gang, 2585 zio_free_gang, 2586 zio_claim_gang, 2587 NULL 2588 }; 2589 2590 static void zio_gang_tree_assemble_done(zio_t *zio); 2591 2592 static zio_gang_node_t * 2593 zio_gang_node_alloc(zio_gang_node_t **gnpp) 2594 { 2595 zio_gang_node_t *gn; 2596 2597 ASSERT(*gnpp == NULL); 2598 2599 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP); 2600 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE); 2601 *gnpp = gn; 2602 2603 return (gn); 2604 } 2605 2606 static void 2607 zio_gang_node_free(zio_gang_node_t **gnpp) 2608 { 2609 zio_gang_node_t *gn = *gnpp; 2610 2611 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 2612 ASSERT(gn->gn_child[g] == NULL); 2613 2614 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2615 kmem_free(gn, sizeof (*gn)); 2616 *gnpp = NULL; 2617 } 2618 2619 static void 2620 zio_gang_tree_free(zio_gang_node_t **gnpp) 2621 { 2622 zio_gang_node_t *gn = *gnpp; 2623 2624 if (gn == NULL) 2625 return; 2626 2627 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 2628 zio_gang_tree_free(&gn->gn_child[g]); 2629 2630 zio_gang_node_free(gnpp); 2631 } 2632 2633 static void 2634 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp) 2635 { 2636 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp); 2637 abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2638 2639 ASSERT(gio->io_gang_leader == gio); 2640 ASSERT(BP_IS_GANG(bp)); 2641 2642 zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE, 2643 zio_gang_tree_assemble_done, gn, gio->io_priority, 2644 ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark)); 2645 } 2646 2647 static void 2648 zio_gang_tree_assemble_done(zio_t *zio) 2649 { 2650 zio_t *gio = zio->io_gang_leader; 2651 zio_gang_node_t *gn = zio->io_private; 2652 blkptr_t *bp = zio->io_bp; 2653 2654 ASSERT(gio == zio_unique_parent(zio)); 2655 ASSERT(zio->io_child_count == 0); 2656 2657 if (zio->io_error) 2658 return; 2659 2660 /* this ABD was created from a linear buf in zio_gang_tree_assemble */ 2661 if (BP_SHOULD_BYTESWAP(bp)) 2662 byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size); 2663 2664 ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh); 2665 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE); 2666 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 2667 2668 abd_free(zio->io_abd); 2669 2670 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2671 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 2672 if (!BP_IS_GANG(gbp)) 2673 continue; 2674 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]); 2675 } 2676 } 2677 2678 static void 2679 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data, 2680 uint64_t offset) 2681 { 2682 zio_t *gio = pio->io_gang_leader; 2683 zio_t *zio; 2684 2685 ASSERT(BP_IS_GANG(bp) == !!gn); 2686 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp)); 2687 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree); 2688 2689 /* 2690 * If you're a gang header, your data is in gn->gn_gbh. 2691 * If you're a gang member, your data is in 'data' and gn == NULL. 2692 */ 2693 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset); 2694 2695 if (gn != NULL) { 2696 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 2697 2698 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2699 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 2700 if (BP_IS_HOLE(gbp)) 2701 continue; 2702 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data, 2703 offset); 2704 offset += BP_GET_PSIZE(gbp); 2705 } 2706 } 2707 2708 if (gn == gio->io_gang_tree) 2709 ASSERT3U(gio->io_size, ==, offset); 2710 2711 if (zio != pio) 2712 zio_nowait(zio); 2713 } 2714 2715 static zio_t * 2716 zio_gang_assemble(zio_t *zio) 2717 { 2718 blkptr_t *bp = zio->io_bp; 2719 2720 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL); 2721 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2722 2723 zio->io_gang_leader = zio; 2724 2725 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree); 2726 2727 return (zio); 2728 } 2729 2730 static zio_t * 2731 zio_gang_issue(zio_t *zio) 2732 { 2733 blkptr_t *bp = zio->io_bp; 2734 2735 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) { 2736 return (NULL); 2737 } 2738 2739 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio); 2740 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2741 2742 if (zio->io_child_error[ZIO_CHILD_GANG] == 0) 2743 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd, 2744 0); 2745 else 2746 zio_gang_tree_free(&zio->io_gang_tree); 2747 2748 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2749 2750 return (zio); 2751 } 2752 2753 static void 2754 zio_write_gang_member_ready(zio_t *zio) 2755 { 2756 zio_t *pio = zio_unique_parent(zio); 2757 dva_t *cdva = zio->io_bp->blk_dva; 2758 dva_t *pdva = pio->io_bp->blk_dva; 2759 uint64_t asize; 2760 zio_t *gio __maybe_unused = zio->io_gang_leader; 2761 2762 if (BP_IS_HOLE(zio->io_bp)) 2763 return; 2764 2765 ASSERT(BP_IS_HOLE(&zio->io_bp_orig)); 2766 2767 ASSERT(zio->io_child_type == ZIO_CHILD_GANG); 2768 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies); 2769 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp)); 2770 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp)); 2771 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp)); 2772 2773 mutex_enter(&pio->io_lock); 2774 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) { 2775 ASSERT(DVA_GET_GANG(&pdva[d])); 2776 asize = DVA_GET_ASIZE(&pdva[d]); 2777 asize += DVA_GET_ASIZE(&cdva[d]); 2778 DVA_SET_ASIZE(&pdva[d], asize); 2779 } 2780 mutex_exit(&pio->io_lock); 2781 } 2782 2783 static void 2784 zio_write_gang_done(zio_t *zio) 2785 { 2786 /* 2787 * The io_abd field will be NULL for a zio with no data. The io_flags 2788 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't 2789 * check for it here as it is cleared in zio_ready. 2790 */ 2791 if (zio->io_abd != NULL) 2792 abd_free(zio->io_abd); 2793 } 2794 2795 static zio_t * 2796 zio_write_gang_block(zio_t *pio, metaslab_class_t *mc) 2797 { 2798 spa_t *spa = pio->io_spa; 2799 blkptr_t *bp = pio->io_bp; 2800 zio_t *gio = pio->io_gang_leader; 2801 zio_t *zio; 2802 zio_gang_node_t *gn, **gnpp; 2803 zio_gbh_phys_t *gbh; 2804 abd_t *gbh_abd; 2805 uint64_t txg = pio->io_txg; 2806 uint64_t resid = pio->io_size; 2807 uint64_t lsize; 2808 int copies = gio->io_prop.zp_copies; 2809 int gbh_copies; 2810 zio_prop_t zp; 2811 int error; 2812 boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA); 2813 2814 /* 2815 * encrypted blocks need DVA[2] free so encrypted gang headers can't 2816 * have a third copy. 2817 */ 2818 gbh_copies = MIN(copies + 1, spa_max_replication(spa)); 2819 if (gio->io_prop.zp_encrypt && gbh_copies >= SPA_DVAS_PER_BP) 2820 gbh_copies = SPA_DVAS_PER_BP - 1; 2821 2822 int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER; 2823 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2824 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2825 ASSERT(has_data); 2826 2827 flags |= METASLAB_ASYNC_ALLOC; 2828 VERIFY(zfs_refcount_held(&mc->mc_allocator[pio->io_allocator]. 2829 mca_alloc_slots, pio)); 2830 2831 /* 2832 * The logical zio has already placed a reservation for 2833 * 'copies' allocation slots but gang blocks may require 2834 * additional copies. These additional copies 2835 * (i.e. gbh_copies - copies) are guaranteed to succeed 2836 * since metaslab_class_throttle_reserve() always allows 2837 * additional reservations for gang blocks. 2838 */ 2839 VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies, 2840 pio->io_allocator, pio, flags)); 2841 } 2842 2843 error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE, 2844 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags, 2845 &pio->io_alloc_list, pio, pio->io_allocator); 2846 if (error) { 2847 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2848 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2849 ASSERT(has_data); 2850 2851 /* 2852 * If we failed to allocate the gang block header then 2853 * we remove any additional allocation reservations that 2854 * we placed here. The original reservation will 2855 * be removed when the logical I/O goes to the ready 2856 * stage. 2857 */ 2858 metaslab_class_throttle_unreserve(mc, 2859 gbh_copies - copies, pio->io_allocator, pio); 2860 } 2861 2862 pio->io_error = error; 2863 return (pio); 2864 } 2865 2866 if (pio == gio) { 2867 gnpp = &gio->io_gang_tree; 2868 } else { 2869 gnpp = pio->io_private; 2870 ASSERT(pio->io_ready == zio_write_gang_member_ready); 2871 } 2872 2873 gn = zio_gang_node_alloc(gnpp); 2874 gbh = gn->gn_gbh; 2875 memset(gbh, 0, SPA_GANGBLOCKSIZE); 2876 gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE); 2877 2878 /* 2879 * Create the gang header. 2880 */ 2881 zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE, 2882 zio_write_gang_done, NULL, pio->io_priority, 2883 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2884 2885 /* 2886 * Create and nowait the gang children. 2887 */ 2888 for (int g = 0; resid != 0; resid -= lsize, g++) { 2889 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g), 2890 SPA_MINBLOCKSIZE); 2891 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid); 2892 2893 zp.zp_checksum = gio->io_prop.zp_checksum; 2894 zp.zp_compress = ZIO_COMPRESS_OFF; 2895 zp.zp_complevel = gio->io_prop.zp_complevel; 2896 zp.zp_type = DMU_OT_NONE; 2897 zp.zp_level = 0; 2898 zp.zp_copies = gio->io_prop.zp_copies; 2899 zp.zp_dedup = B_FALSE; 2900 zp.zp_dedup_verify = B_FALSE; 2901 zp.zp_nopwrite = B_FALSE; 2902 zp.zp_encrypt = gio->io_prop.zp_encrypt; 2903 zp.zp_byteorder = gio->io_prop.zp_byteorder; 2904 memset(zp.zp_salt, 0, ZIO_DATA_SALT_LEN); 2905 memset(zp.zp_iv, 0, ZIO_DATA_IV_LEN); 2906 memset(zp.zp_mac, 0, ZIO_DATA_MAC_LEN); 2907 2908 zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g], 2909 has_data ? abd_get_offset(pio->io_abd, pio->io_size - 2910 resid) : NULL, lsize, lsize, &zp, 2911 zio_write_gang_member_ready, NULL, NULL, 2912 zio_write_gang_done, &gn->gn_child[g], pio->io_priority, 2913 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2914 2915 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2916 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2917 ASSERT(has_data); 2918 2919 /* 2920 * Gang children won't throttle but we should 2921 * account for their work, so reserve an allocation 2922 * slot for them here. 2923 */ 2924 VERIFY(metaslab_class_throttle_reserve(mc, 2925 zp.zp_copies, cio->io_allocator, cio, flags)); 2926 } 2927 zio_nowait(cio); 2928 } 2929 2930 /* 2931 * Set pio's pipeline to just wait for zio to finish. 2932 */ 2933 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2934 2935 /* 2936 * We didn't allocate this bp, so make sure it doesn't get unmarked. 2937 */ 2938 pio->io_flags &= ~ZIO_FLAG_FASTWRITE; 2939 2940 zio_nowait(zio); 2941 2942 return (pio); 2943 } 2944 2945 /* 2946 * The zio_nop_write stage in the pipeline determines if allocating a 2947 * new bp is necessary. The nopwrite feature can handle writes in 2948 * either syncing or open context (i.e. zil writes) and as a result is 2949 * mutually exclusive with dedup. 2950 * 2951 * By leveraging a cryptographically secure checksum, such as SHA256, we 2952 * can compare the checksums of the new data and the old to determine if 2953 * allocating a new block is required. Note that our requirements for 2954 * cryptographic strength are fairly weak: there can't be any accidental 2955 * hash collisions, but we don't need to be secure against intentional 2956 * (malicious) collisions. To trigger a nopwrite, you have to be able 2957 * to write the file to begin with, and triggering an incorrect (hash 2958 * collision) nopwrite is no worse than simply writing to the file. 2959 * That said, there are no known attacks against the checksum algorithms 2960 * used for nopwrite, assuming that the salt and the checksums 2961 * themselves remain secret. 2962 */ 2963 static zio_t * 2964 zio_nop_write(zio_t *zio) 2965 { 2966 blkptr_t *bp = zio->io_bp; 2967 blkptr_t *bp_orig = &zio->io_bp_orig; 2968 zio_prop_t *zp = &zio->io_prop; 2969 2970 ASSERT(BP_GET_LEVEL(bp) == 0); 2971 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 2972 ASSERT(zp->zp_nopwrite); 2973 ASSERT(!zp->zp_dedup); 2974 ASSERT(zio->io_bp_override == NULL); 2975 ASSERT(IO_IS_ALLOCATING(zio)); 2976 2977 /* 2978 * Check to see if the original bp and the new bp have matching 2979 * characteristics (i.e. same checksum, compression algorithms, etc). 2980 * If they don't then just continue with the pipeline which will 2981 * allocate a new bp. 2982 */ 2983 if (BP_IS_HOLE(bp_orig) || 2984 !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags & 2985 ZCHECKSUM_FLAG_NOPWRITE) || 2986 BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) || 2987 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) || 2988 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) || 2989 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) || 2990 zp->zp_copies != BP_GET_NDVAS(bp_orig)) 2991 return (zio); 2992 2993 /* 2994 * If the checksums match then reset the pipeline so that we 2995 * avoid allocating a new bp and issuing any I/O. 2996 */ 2997 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) { 2998 ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags & 2999 ZCHECKSUM_FLAG_NOPWRITE); 3000 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig)); 3001 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig)); 3002 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF); 3003 ASSERT(memcmp(&bp->blk_prop, &bp_orig->blk_prop, 3004 sizeof (uint64_t)) == 0); 3005 3006 /* 3007 * If we're overwriting a block that is currently on an 3008 * indirect vdev, then ignore the nopwrite request and 3009 * allow a new block to be allocated on a concrete vdev. 3010 */ 3011 spa_config_enter(zio->io_spa, SCL_VDEV, FTAG, RW_READER); 3012 vdev_t *tvd = vdev_lookup_top(zio->io_spa, 3013 DVA_GET_VDEV(&bp->blk_dva[0])); 3014 if (tvd->vdev_ops == &vdev_indirect_ops) { 3015 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG); 3016 return (zio); 3017 } 3018 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG); 3019 3020 *bp = *bp_orig; 3021 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 3022 zio->io_flags |= ZIO_FLAG_NOPWRITE; 3023 } 3024 3025 return (zio); 3026 } 3027 3028 /* 3029 * ========================================================================== 3030 * Dedup 3031 * ========================================================================== 3032 */ 3033 static void 3034 zio_ddt_child_read_done(zio_t *zio) 3035 { 3036 blkptr_t *bp = zio->io_bp; 3037 ddt_entry_t *dde = zio->io_private; 3038 ddt_phys_t *ddp; 3039 zio_t *pio = zio_unique_parent(zio); 3040 3041 mutex_enter(&pio->io_lock); 3042 ddp = ddt_phys_select(dde, bp); 3043 if (zio->io_error == 0) 3044 ddt_phys_clear(ddp); /* this ddp doesn't need repair */ 3045 3046 if (zio->io_error == 0 && dde->dde_repair_abd == NULL) 3047 dde->dde_repair_abd = zio->io_abd; 3048 else 3049 abd_free(zio->io_abd); 3050 mutex_exit(&pio->io_lock); 3051 } 3052 3053 static zio_t * 3054 zio_ddt_read_start(zio_t *zio) 3055 { 3056 blkptr_t *bp = zio->io_bp; 3057 3058 ASSERT(BP_GET_DEDUP(bp)); 3059 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 3060 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3061 3062 if (zio->io_child_error[ZIO_CHILD_DDT]) { 3063 ddt_t *ddt = ddt_select(zio->io_spa, bp); 3064 ddt_entry_t *dde = ddt_repair_start(ddt, bp); 3065 ddt_phys_t *ddp = dde->dde_phys; 3066 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp); 3067 blkptr_t blk; 3068 3069 ASSERT(zio->io_vsd == NULL); 3070 zio->io_vsd = dde; 3071 3072 if (ddp_self == NULL) 3073 return (zio); 3074 3075 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 3076 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self) 3077 continue; 3078 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp, 3079 &blk); 3080 zio_nowait(zio_read(zio, zio->io_spa, &blk, 3081 abd_alloc_for_io(zio->io_size, B_TRUE), 3082 zio->io_size, zio_ddt_child_read_done, dde, 3083 zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) | 3084 ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark)); 3085 } 3086 return (zio); 3087 } 3088 3089 zio_nowait(zio_read(zio, zio->io_spa, bp, 3090 zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority, 3091 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark)); 3092 3093 return (zio); 3094 } 3095 3096 static zio_t * 3097 zio_ddt_read_done(zio_t *zio) 3098 { 3099 blkptr_t *bp = zio->io_bp; 3100 3101 if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) { 3102 return (NULL); 3103 } 3104 3105 ASSERT(BP_GET_DEDUP(bp)); 3106 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 3107 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3108 3109 if (zio->io_child_error[ZIO_CHILD_DDT]) { 3110 ddt_t *ddt = ddt_select(zio->io_spa, bp); 3111 ddt_entry_t *dde = zio->io_vsd; 3112 if (ddt == NULL) { 3113 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE); 3114 return (zio); 3115 } 3116 if (dde == NULL) { 3117 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1; 3118 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 3119 return (NULL); 3120 } 3121 if (dde->dde_repair_abd != NULL) { 3122 abd_copy(zio->io_abd, dde->dde_repair_abd, 3123 zio->io_size); 3124 zio->io_child_error[ZIO_CHILD_DDT] = 0; 3125 } 3126 ddt_repair_done(ddt, dde); 3127 zio->io_vsd = NULL; 3128 } 3129 3130 ASSERT(zio->io_vsd == NULL); 3131 3132 return (zio); 3133 } 3134 3135 static boolean_t 3136 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde) 3137 { 3138 spa_t *spa = zio->io_spa; 3139 boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW); 3140 3141 ASSERT(!(zio->io_bp_override && do_raw)); 3142 3143 /* 3144 * Note: we compare the original data, not the transformed data, 3145 * because when zio->io_bp is an override bp, we will not have 3146 * pushed the I/O transforms. That's an important optimization 3147 * because otherwise we'd compress/encrypt all dmu_sync() data twice. 3148 * However, we should never get a raw, override zio so in these 3149 * cases we can compare the io_abd directly. This is useful because 3150 * it allows us to do dedup verification even if we don't have access 3151 * to the original data (for instance, if the encryption keys aren't 3152 * loaded). 3153 */ 3154 3155 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 3156 zio_t *lio = dde->dde_lead_zio[p]; 3157 3158 if (lio != NULL && do_raw) { 3159 return (lio->io_size != zio->io_size || 3160 abd_cmp(zio->io_abd, lio->io_abd) != 0); 3161 } else if (lio != NULL) { 3162 return (lio->io_orig_size != zio->io_orig_size || 3163 abd_cmp(zio->io_orig_abd, lio->io_orig_abd) != 0); 3164 } 3165 } 3166 3167 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 3168 ddt_phys_t *ddp = &dde->dde_phys[p]; 3169 3170 if (ddp->ddp_phys_birth != 0 && do_raw) { 3171 blkptr_t blk = *zio->io_bp; 3172 uint64_t psize; 3173 abd_t *tmpabd; 3174 int error; 3175 3176 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth); 3177 psize = BP_GET_PSIZE(&blk); 3178 3179 if (psize != zio->io_size) 3180 return (B_TRUE); 3181 3182 ddt_exit(ddt); 3183 3184 tmpabd = abd_alloc_for_io(psize, B_TRUE); 3185 3186 error = zio_wait(zio_read(NULL, spa, &blk, tmpabd, 3187 psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ, 3188 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 3189 ZIO_FLAG_RAW, &zio->io_bookmark)); 3190 3191 if (error == 0) { 3192 if (abd_cmp(tmpabd, zio->io_abd) != 0) 3193 error = SET_ERROR(ENOENT); 3194 } 3195 3196 abd_free(tmpabd); 3197 ddt_enter(ddt); 3198 return (error != 0); 3199 } else if (ddp->ddp_phys_birth != 0) { 3200 arc_buf_t *abuf = NULL; 3201 arc_flags_t aflags = ARC_FLAG_WAIT; 3202 blkptr_t blk = *zio->io_bp; 3203 int error; 3204 3205 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth); 3206 3207 if (BP_GET_LSIZE(&blk) != zio->io_orig_size) 3208 return (B_TRUE); 3209 3210 ddt_exit(ddt); 3211 3212 error = arc_read(NULL, spa, &blk, 3213 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ, 3214 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 3215 &aflags, &zio->io_bookmark); 3216 3217 if (error == 0) { 3218 if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data, 3219 zio->io_orig_size) != 0) 3220 error = SET_ERROR(ENOENT); 3221 arc_buf_destroy(abuf, &abuf); 3222 } 3223 3224 ddt_enter(ddt); 3225 return (error != 0); 3226 } 3227 } 3228 3229 return (B_FALSE); 3230 } 3231 3232 static void 3233 zio_ddt_child_write_ready(zio_t *zio) 3234 { 3235 int p = zio->io_prop.zp_copies; 3236 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 3237 ddt_entry_t *dde = zio->io_private; 3238 ddt_phys_t *ddp = &dde->dde_phys[p]; 3239 zio_t *pio; 3240 3241 if (zio->io_error) 3242 return; 3243 3244 ddt_enter(ddt); 3245 3246 ASSERT(dde->dde_lead_zio[p] == zio); 3247 3248 ddt_phys_fill(ddp, zio->io_bp); 3249 3250 zio_link_t *zl = NULL; 3251 while ((pio = zio_walk_parents(zio, &zl)) != NULL) 3252 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg); 3253 3254 ddt_exit(ddt); 3255 } 3256 3257 static void 3258 zio_ddt_child_write_done(zio_t *zio) 3259 { 3260 int p = zio->io_prop.zp_copies; 3261 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 3262 ddt_entry_t *dde = zio->io_private; 3263 ddt_phys_t *ddp = &dde->dde_phys[p]; 3264 3265 ddt_enter(ddt); 3266 3267 ASSERT(ddp->ddp_refcnt == 0); 3268 ASSERT(dde->dde_lead_zio[p] == zio); 3269 dde->dde_lead_zio[p] = NULL; 3270 3271 if (zio->io_error == 0) { 3272 zio_link_t *zl = NULL; 3273 while (zio_walk_parents(zio, &zl) != NULL) 3274 ddt_phys_addref(ddp); 3275 } else { 3276 ddt_phys_clear(ddp); 3277 } 3278 3279 ddt_exit(ddt); 3280 } 3281 3282 static zio_t * 3283 zio_ddt_write(zio_t *zio) 3284 { 3285 spa_t *spa = zio->io_spa; 3286 blkptr_t *bp = zio->io_bp; 3287 uint64_t txg = zio->io_txg; 3288 zio_prop_t *zp = &zio->io_prop; 3289 int p = zp->zp_copies; 3290 zio_t *cio = NULL; 3291 ddt_t *ddt = ddt_select(spa, bp); 3292 ddt_entry_t *dde; 3293 ddt_phys_t *ddp; 3294 3295 ASSERT(BP_GET_DEDUP(bp)); 3296 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum); 3297 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override); 3298 ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW))); 3299 3300 ddt_enter(ddt); 3301 dde = ddt_lookup(ddt, bp, B_TRUE); 3302 ddp = &dde->dde_phys[p]; 3303 3304 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) { 3305 /* 3306 * If we're using a weak checksum, upgrade to a strong checksum 3307 * and try again. If we're already using a strong checksum, 3308 * we can't resolve it, so just convert to an ordinary write. 3309 * (And automatically e-mail a paper to Nature?) 3310 */ 3311 if (!(zio_checksum_table[zp->zp_checksum].ci_flags & 3312 ZCHECKSUM_FLAG_DEDUP)) { 3313 zp->zp_checksum = spa_dedup_checksum(spa); 3314 zio_pop_transforms(zio); 3315 zio->io_stage = ZIO_STAGE_OPEN; 3316 BP_ZERO(bp); 3317 } else { 3318 zp->zp_dedup = B_FALSE; 3319 BP_SET_DEDUP(bp, B_FALSE); 3320 } 3321 ASSERT(!BP_GET_DEDUP(bp)); 3322 zio->io_pipeline = ZIO_WRITE_PIPELINE; 3323 ddt_exit(ddt); 3324 return (zio); 3325 } 3326 3327 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) { 3328 if (ddp->ddp_phys_birth != 0) 3329 ddt_bp_fill(ddp, bp, txg); 3330 if (dde->dde_lead_zio[p] != NULL) 3331 zio_add_child(zio, dde->dde_lead_zio[p]); 3332 else 3333 ddt_phys_addref(ddp); 3334 } else if (zio->io_bp_override) { 3335 ASSERT(bp->blk_birth == txg); 3336 ASSERT(BP_EQUAL(bp, zio->io_bp_override)); 3337 ddt_phys_fill(ddp, bp); 3338 ddt_phys_addref(ddp); 3339 } else { 3340 cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd, 3341 zio->io_orig_size, zio->io_orig_size, zp, 3342 zio_ddt_child_write_ready, NULL, NULL, 3343 zio_ddt_child_write_done, dde, zio->io_priority, 3344 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark); 3345 3346 zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL); 3347 dde->dde_lead_zio[p] = cio; 3348 } 3349 3350 ddt_exit(ddt); 3351 3352 zio_nowait(cio); 3353 3354 return (zio); 3355 } 3356 3357 ddt_entry_t *freedde; /* for debugging */ 3358 3359 static zio_t * 3360 zio_ddt_free(zio_t *zio) 3361 { 3362 spa_t *spa = zio->io_spa; 3363 blkptr_t *bp = zio->io_bp; 3364 ddt_t *ddt = ddt_select(spa, bp); 3365 ddt_entry_t *dde; 3366 ddt_phys_t *ddp; 3367 3368 ASSERT(BP_GET_DEDUP(bp)); 3369 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3370 3371 ddt_enter(ddt); 3372 freedde = dde = ddt_lookup(ddt, bp, B_TRUE); 3373 if (dde) { 3374 ddp = ddt_phys_select(dde, bp); 3375 if (ddp) 3376 ddt_phys_decref(ddp); 3377 } 3378 ddt_exit(ddt); 3379 3380 return (zio); 3381 } 3382 3383 /* 3384 * ========================================================================== 3385 * Allocate and free blocks 3386 * ========================================================================== 3387 */ 3388 3389 static zio_t * 3390 zio_io_to_allocate(spa_t *spa, int allocator) 3391 { 3392 zio_t *zio; 3393 3394 ASSERT(MUTEX_HELD(&spa->spa_allocs[allocator].spaa_lock)); 3395 3396 zio = avl_first(&spa->spa_allocs[allocator].spaa_tree); 3397 if (zio == NULL) 3398 return (NULL); 3399 3400 ASSERT(IO_IS_ALLOCATING(zio)); 3401 3402 /* 3403 * Try to place a reservation for this zio. If we're unable to 3404 * reserve then we throttle. 3405 */ 3406 ASSERT3U(zio->io_allocator, ==, allocator); 3407 if (!metaslab_class_throttle_reserve(zio->io_metaslab_class, 3408 zio->io_prop.zp_copies, allocator, zio, 0)) { 3409 return (NULL); 3410 } 3411 3412 avl_remove(&spa->spa_allocs[allocator].spaa_tree, zio); 3413 ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE); 3414 3415 return (zio); 3416 } 3417 3418 static zio_t * 3419 zio_dva_throttle(zio_t *zio) 3420 { 3421 spa_t *spa = zio->io_spa; 3422 zio_t *nio; 3423 metaslab_class_t *mc; 3424 3425 /* locate an appropriate allocation class */ 3426 mc = spa_preferred_class(spa, zio->io_size, zio->io_prop.zp_type, 3427 zio->io_prop.zp_level, zio->io_prop.zp_zpl_smallblk); 3428 3429 if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE || 3430 !mc->mc_alloc_throttle_enabled || 3431 zio->io_child_type == ZIO_CHILD_GANG || 3432 zio->io_flags & ZIO_FLAG_NODATA) { 3433 return (zio); 3434 } 3435 3436 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 3437 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 3438 ASSERT3U(zio->io_queued_timestamp, >, 0); 3439 ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE); 3440 3441 zbookmark_phys_t *bm = &zio->io_bookmark; 3442 /* 3443 * We want to try to use as many allocators as possible to help improve 3444 * performance, but we also want logically adjacent IOs to be physically 3445 * adjacent to improve sequential read performance. We chunk each object 3446 * into 2^20 block regions, and then hash based on the objset, object, 3447 * level, and region to accomplish both of these goals. 3448 */ 3449 int allocator = (uint_t)cityhash4(bm->zb_objset, bm->zb_object, 3450 bm->zb_level, bm->zb_blkid >> 20) % spa->spa_alloc_count; 3451 zio->io_allocator = allocator; 3452 zio->io_metaslab_class = mc; 3453 mutex_enter(&spa->spa_allocs[allocator].spaa_lock); 3454 avl_add(&spa->spa_allocs[allocator].spaa_tree, zio); 3455 nio = zio_io_to_allocate(spa, allocator); 3456 mutex_exit(&spa->spa_allocs[allocator].spaa_lock); 3457 return (nio); 3458 } 3459 3460 static void 3461 zio_allocate_dispatch(spa_t *spa, int allocator) 3462 { 3463 zio_t *zio; 3464 3465 mutex_enter(&spa->spa_allocs[allocator].spaa_lock); 3466 zio = zio_io_to_allocate(spa, allocator); 3467 mutex_exit(&spa->spa_allocs[allocator].spaa_lock); 3468 if (zio == NULL) 3469 return; 3470 3471 ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE); 3472 ASSERT0(zio->io_error); 3473 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE); 3474 } 3475 3476 static zio_t * 3477 zio_dva_allocate(zio_t *zio) 3478 { 3479 spa_t *spa = zio->io_spa; 3480 metaslab_class_t *mc; 3481 blkptr_t *bp = zio->io_bp; 3482 int error; 3483 int flags = 0; 3484 3485 if (zio->io_gang_leader == NULL) { 3486 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 3487 zio->io_gang_leader = zio; 3488 } 3489 3490 ASSERT(BP_IS_HOLE(bp)); 3491 ASSERT0(BP_GET_NDVAS(bp)); 3492 ASSERT3U(zio->io_prop.zp_copies, >, 0); 3493 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa)); 3494 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp)); 3495 3496 flags |= (zio->io_flags & ZIO_FLAG_FASTWRITE) ? METASLAB_FASTWRITE : 0; 3497 if (zio->io_flags & ZIO_FLAG_NODATA) 3498 flags |= METASLAB_DONT_THROTTLE; 3499 if (zio->io_flags & ZIO_FLAG_GANG_CHILD) 3500 flags |= METASLAB_GANG_CHILD; 3501 if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE) 3502 flags |= METASLAB_ASYNC_ALLOC; 3503 3504 /* 3505 * if not already chosen, locate an appropriate allocation class 3506 */ 3507 mc = zio->io_metaslab_class; 3508 if (mc == NULL) { 3509 mc = spa_preferred_class(spa, zio->io_size, 3510 zio->io_prop.zp_type, zio->io_prop.zp_level, 3511 zio->io_prop.zp_zpl_smallblk); 3512 zio->io_metaslab_class = mc; 3513 } 3514 3515 /* 3516 * Try allocating the block in the usual metaslab class. 3517 * If that's full, allocate it in the normal class. 3518 * If that's full, allocate as a gang block, 3519 * and if all are full, the allocation fails (which shouldn't happen). 3520 * 3521 * Note that we do not fall back on embedded slog (ZIL) space, to 3522 * preserve unfragmented slog space, which is critical for decent 3523 * sync write performance. If a log allocation fails, we will fall 3524 * back to spa_sync() which is abysmal for performance. 3525 */ 3526 error = metaslab_alloc(spa, mc, zio->io_size, bp, 3527 zio->io_prop.zp_copies, zio->io_txg, NULL, flags, 3528 &zio->io_alloc_list, zio, zio->io_allocator); 3529 3530 /* 3531 * Fallback to normal class when an alloc class is full 3532 */ 3533 if (error == ENOSPC && mc != spa_normal_class(spa)) { 3534 /* 3535 * If throttling, transfer reservation over to normal class. 3536 * The io_allocator slot can remain the same even though we 3537 * are switching classes. 3538 */ 3539 if (mc->mc_alloc_throttle_enabled && 3540 (zio->io_flags & ZIO_FLAG_IO_ALLOCATING)) { 3541 metaslab_class_throttle_unreserve(mc, 3542 zio->io_prop.zp_copies, zio->io_allocator, zio); 3543 zio->io_flags &= ~ZIO_FLAG_IO_ALLOCATING; 3544 3545 VERIFY(metaslab_class_throttle_reserve( 3546 spa_normal_class(spa), 3547 zio->io_prop.zp_copies, zio->io_allocator, zio, 3548 flags | METASLAB_MUST_RESERVE)); 3549 } 3550 zio->io_metaslab_class = mc = spa_normal_class(spa); 3551 if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) { 3552 zfs_dbgmsg("%s: metaslab allocation failure, " 3553 "trying normal class: zio %px, size %llu, error %d", 3554 spa_name(spa), zio, (u_longlong_t)zio->io_size, 3555 error); 3556 } 3557 3558 error = metaslab_alloc(spa, mc, zio->io_size, bp, 3559 zio->io_prop.zp_copies, zio->io_txg, NULL, flags, 3560 &zio->io_alloc_list, zio, zio->io_allocator); 3561 } 3562 3563 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) { 3564 if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) { 3565 zfs_dbgmsg("%s: metaslab allocation failure, " 3566 "trying ganging: zio %px, size %llu, error %d", 3567 spa_name(spa), zio, (u_longlong_t)zio->io_size, 3568 error); 3569 } 3570 return (zio_write_gang_block(zio, mc)); 3571 } 3572 if (error != 0) { 3573 if (error != ENOSPC || 3574 (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC)) { 3575 zfs_dbgmsg("%s: metaslab allocation failure: zio %px, " 3576 "size %llu, error %d", 3577 spa_name(spa), zio, (u_longlong_t)zio->io_size, 3578 error); 3579 } 3580 zio->io_error = error; 3581 } 3582 3583 return (zio); 3584 } 3585 3586 static zio_t * 3587 zio_dva_free(zio_t *zio) 3588 { 3589 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE); 3590 3591 return (zio); 3592 } 3593 3594 static zio_t * 3595 zio_dva_claim(zio_t *zio) 3596 { 3597 int error; 3598 3599 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg); 3600 if (error) 3601 zio->io_error = error; 3602 3603 return (zio); 3604 } 3605 3606 /* 3607 * Undo an allocation. This is used by zio_done() when an I/O fails 3608 * and we want to give back the block we just allocated. 3609 * This handles both normal blocks and gang blocks. 3610 */ 3611 static void 3612 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp) 3613 { 3614 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp)); 3615 ASSERT(zio->io_bp_override == NULL); 3616 3617 if (!BP_IS_HOLE(bp)) 3618 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE); 3619 3620 if (gn != NULL) { 3621 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 3622 zio_dva_unallocate(zio, gn->gn_child[g], 3623 &gn->gn_gbh->zg_blkptr[g]); 3624 } 3625 } 3626 } 3627 3628 /* 3629 * Try to allocate an intent log block. Return 0 on success, errno on failure. 3630 */ 3631 int 3632 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp, 3633 uint64_t size, boolean_t *slog) 3634 { 3635 int error = 1; 3636 zio_alloc_list_t io_alloc_list; 3637 3638 ASSERT(txg > spa_syncing_txg(spa)); 3639 3640 metaslab_trace_init(&io_alloc_list); 3641 3642 /* 3643 * Block pointer fields are useful to metaslabs for stats and debugging. 3644 * Fill in the obvious ones before calling into metaslab_alloc(). 3645 */ 3646 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 3647 BP_SET_PSIZE(new_bp, size); 3648 BP_SET_LEVEL(new_bp, 0); 3649 3650 /* 3651 * When allocating a zil block, we don't have information about 3652 * the final destination of the block except the objset it's part 3653 * of, so we just hash the objset ID to pick the allocator to get 3654 * some parallelism. 3655 */ 3656 int flags = METASLAB_FASTWRITE | METASLAB_ZIL; 3657 int allocator = (uint_t)cityhash4(0, 0, 0, 3658 os->os_dsl_dataset->ds_object) % spa->spa_alloc_count; 3659 error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1, 3660 txg, NULL, flags, &io_alloc_list, NULL, allocator); 3661 *slog = (error == 0); 3662 if (error != 0) { 3663 error = metaslab_alloc(spa, spa_embedded_log_class(spa), size, 3664 new_bp, 1, txg, NULL, flags, 3665 &io_alloc_list, NULL, allocator); 3666 } 3667 if (error != 0) { 3668 error = metaslab_alloc(spa, spa_normal_class(spa), size, 3669 new_bp, 1, txg, NULL, flags, 3670 &io_alloc_list, NULL, allocator); 3671 } 3672 metaslab_trace_fini(&io_alloc_list); 3673 3674 if (error == 0) { 3675 BP_SET_LSIZE(new_bp, size); 3676 BP_SET_PSIZE(new_bp, size); 3677 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF); 3678 BP_SET_CHECKSUM(new_bp, 3679 spa_version(spa) >= SPA_VERSION_SLIM_ZIL 3680 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG); 3681 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 3682 BP_SET_LEVEL(new_bp, 0); 3683 BP_SET_DEDUP(new_bp, 0); 3684 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER); 3685 3686 /* 3687 * encrypted blocks will require an IV and salt. We generate 3688 * these now since we will not be rewriting the bp at 3689 * rewrite time. 3690 */ 3691 if (os->os_encrypted) { 3692 uint8_t iv[ZIO_DATA_IV_LEN]; 3693 uint8_t salt[ZIO_DATA_SALT_LEN]; 3694 3695 BP_SET_CRYPT(new_bp, B_TRUE); 3696 VERIFY0(spa_crypt_get_salt(spa, 3697 dmu_objset_id(os), salt)); 3698 VERIFY0(zio_crypt_generate_iv(iv)); 3699 3700 zio_crypt_encode_params_bp(new_bp, salt, iv); 3701 } 3702 } else { 3703 zfs_dbgmsg("%s: zil block allocation failure: " 3704 "size %llu, error %d", spa_name(spa), (u_longlong_t)size, 3705 error); 3706 } 3707 3708 return (error); 3709 } 3710 3711 /* 3712 * ========================================================================== 3713 * Read and write to physical devices 3714 * ========================================================================== 3715 */ 3716 3717 /* 3718 * Issue an I/O to the underlying vdev. Typically the issue pipeline 3719 * stops after this stage and will resume upon I/O completion. 3720 * However, there are instances where the vdev layer may need to 3721 * continue the pipeline when an I/O was not issued. Since the I/O 3722 * that was sent to the vdev layer might be different than the one 3723 * currently active in the pipeline (see vdev_queue_io()), we explicitly 3724 * force the underlying vdev layers to call either zio_execute() or 3725 * zio_interrupt() to ensure that the pipeline continues with the correct I/O. 3726 */ 3727 static zio_t * 3728 zio_vdev_io_start(zio_t *zio) 3729 { 3730 vdev_t *vd = zio->io_vd; 3731 uint64_t align; 3732 spa_t *spa = zio->io_spa; 3733 3734 zio->io_delay = 0; 3735 3736 ASSERT(zio->io_error == 0); 3737 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0); 3738 3739 if (vd == NULL) { 3740 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 3741 spa_config_enter(spa, SCL_ZIO, zio, RW_READER); 3742 3743 /* 3744 * The mirror_ops handle multiple DVAs in a single BP. 3745 */ 3746 vdev_mirror_ops.vdev_op_io_start(zio); 3747 return (NULL); 3748 } 3749 3750 ASSERT3P(zio->io_logical, !=, zio); 3751 if (zio->io_type == ZIO_TYPE_WRITE) { 3752 ASSERT(spa->spa_trust_config); 3753 3754 /* 3755 * Note: the code can handle other kinds of writes, 3756 * but we don't expect them. 3757 */ 3758 if (zio->io_vd->vdev_noalloc) { 3759 ASSERT(zio->io_flags & 3760 (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL | 3761 ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE)); 3762 } 3763 } 3764 3765 align = 1ULL << vd->vdev_top->vdev_ashift; 3766 3767 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) && 3768 P2PHASE(zio->io_size, align) != 0) { 3769 /* Transform logical writes to be a full physical block size. */ 3770 uint64_t asize = P2ROUNDUP(zio->io_size, align); 3771 abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize); 3772 ASSERT(vd == vd->vdev_top); 3773 if (zio->io_type == ZIO_TYPE_WRITE) { 3774 abd_copy(abuf, zio->io_abd, zio->io_size); 3775 abd_zero_off(abuf, zio->io_size, asize - zio->io_size); 3776 } 3777 zio_push_transform(zio, abuf, asize, asize, zio_subblock); 3778 } 3779 3780 /* 3781 * If this is not a physical io, make sure that it is properly aligned 3782 * before proceeding. 3783 */ 3784 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) { 3785 ASSERT0(P2PHASE(zio->io_offset, align)); 3786 ASSERT0(P2PHASE(zio->io_size, align)); 3787 } else { 3788 /* 3789 * For physical writes, we allow 512b aligned writes and assume 3790 * the device will perform a read-modify-write as necessary. 3791 */ 3792 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE)); 3793 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE)); 3794 } 3795 3796 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa)); 3797 3798 /* 3799 * If this is a repair I/O, and there's no self-healing involved -- 3800 * that is, we're just resilvering what we expect to resilver -- 3801 * then don't do the I/O unless zio's txg is actually in vd's DTL. 3802 * This prevents spurious resilvering. 3803 * 3804 * There are a few ways that we can end up creating these spurious 3805 * resilver i/os: 3806 * 3807 * 1. A resilver i/o will be issued if any DVA in the BP has a 3808 * dirty DTL. The mirror code will issue resilver writes to 3809 * each DVA, including the one(s) that are not on vdevs with dirty 3810 * DTLs. 3811 * 3812 * 2. With nested replication, which happens when we have a 3813 * "replacing" or "spare" vdev that's a child of a mirror or raidz. 3814 * For example, given mirror(replacing(A+B), C), it's likely that 3815 * only A is out of date (it's the new device). In this case, we'll 3816 * read from C, then use the data to resilver A+B -- but we don't 3817 * actually want to resilver B, just A. The top-level mirror has no 3818 * way to know this, so instead we just discard unnecessary repairs 3819 * as we work our way down the vdev tree. 3820 * 3821 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc. 3822 * The same logic applies to any form of nested replication: ditto 3823 * + mirror, RAID-Z + replacing, etc. 3824 * 3825 * However, indirect vdevs point off to other vdevs which may have 3826 * DTL's, so we never bypass them. The child i/os on concrete vdevs 3827 * will be properly bypassed instead. 3828 * 3829 * Leaf DTL_PARTIAL can be empty when a legitimate write comes from 3830 * a dRAID spare vdev. For example, when a dRAID spare is first 3831 * used, its spare blocks need to be written to but the leaf vdev's 3832 * of such blocks can have empty DTL_PARTIAL. 3833 * 3834 * There seemed no clean way to allow such writes while bypassing 3835 * spurious ones. At this point, just avoid all bypassing for dRAID 3836 * for correctness. 3837 */ 3838 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) && 3839 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) && 3840 zio->io_txg != 0 && /* not a delegated i/o */ 3841 vd->vdev_ops != &vdev_indirect_ops && 3842 vd->vdev_top->vdev_ops != &vdev_draid_ops && 3843 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) { 3844 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 3845 zio_vdev_io_bypass(zio); 3846 return (zio); 3847 } 3848 3849 /* 3850 * Select the next best leaf I/O to process. Distributed spares are 3851 * excluded since they dispatch the I/O directly to a leaf vdev after 3852 * applying the dRAID mapping. 3853 */ 3854 if (vd->vdev_ops->vdev_op_leaf && 3855 vd->vdev_ops != &vdev_draid_spare_ops && 3856 (zio->io_type == ZIO_TYPE_READ || 3857 zio->io_type == ZIO_TYPE_WRITE || 3858 zio->io_type == ZIO_TYPE_TRIM)) { 3859 3860 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio)) 3861 return (zio); 3862 3863 if ((zio = vdev_queue_io(zio)) == NULL) 3864 return (NULL); 3865 3866 if (!vdev_accessible(vd, zio)) { 3867 zio->io_error = SET_ERROR(ENXIO); 3868 zio_interrupt(zio); 3869 return (NULL); 3870 } 3871 zio->io_delay = gethrtime(); 3872 } 3873 3874 vd->vdev_ops->vdev_op_io_start(zio); 3875 return (NULL); 3876 } 3877 3878 static zio_t * 3879 zio_vdev_io_done(zio_t *zio) 3880 { 3881 vdev_t *vd = zio->io_vd; 3882 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops; 3883 boolean_t unexpected_error = B_FALSE; 3884 3885 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) { 3886 return (NULL); 3887 } 3888 3889 ASSERT(zio->io_type == ZIO_TYPE_READ || 3890 zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM); 3891 3892 if (zio->io_delay) 3893 zio->io_delay = gethrtime() - zio->io_delay; 3894 3895 if (vd != NULL && vd->vdev_ops->vdev_op_leaf && 3896 vd->vdev_ops != &vdev_draid_spare_ops) { 3897 vdev_queue_io_done(zio); 3898 3899 if (zio->io_type == ZIO_TYPE_WRITE) 3900 vdev_cache_write(zio); 3901 3902 if (zio_injection_enabled && zio->io_error == 0) 3903 zio->io_error = zio_handle_device_injections(vd, zio, 3904 EIO, EILSEQ); 3905 3906 if (zio_injection_enabled && zio->io_error == 0) 3907 zio->io_error = zio_handle_label_injection(zio, EIO); 3908 3909 if (zio->io_error && zio->io_type != ZIO_TYPE_TRIM) { 3910 if (!vdev_accessible(vd, zio)) { 3911 zio->io_error = SET_ERROR(ENXIO); 3912 } else { 3913 unexpected_error = B_TRUE; 3914 } 3915 } 3916 } 3917 3918 ops->vdev_op_io_done(zio); 3919 3920 if (unexpected_error) 3921 VERIFY(vdev_probe(vd, zio) == NULL); 3922 3923 return (zio); 3924 } 3925 3926 /* 3927 * This function is used to change the priority of an existing zio that is 3928 * currently in-flight. This is used by the arc to upgrade priority in the 3929 * event that a demand read is made for a block that is currently queued 3930 * as a scrub or async read IO. Otherwise, the high priority read request 3931 * would end up having to wait for the lower priority IO. 3932 */ 3933 void 3934 zio_change_priority(zio_t *pio, zio_priority_t priority) 3935 { 3936 zio_t *cio, *cio_next; 3937 zio_link_t *zl = NULL; 3938 3939 ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 3940 3941 if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) { 3942 vdev_queue_change_io_priority(pio, priority); 3943 } else { 3944 pio->io_priority = priority; 3945 } 3946 3947 mutex_enter(&pio->io_lock); 3948 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 3949 cio_next = zio_walk_children(pio, &zl); 3950 zio_change_priority(cio, priority); 3951 } 3952 mutex_exit(&pio->io_lock); 3953 } 3954 3955 /* 3956 * For non-raidz ZIOs, we can just copy aside the bad data read from the 3957 * disk, and use that to finish the checksum ereport later. 3958 */ 3959 static void 3960 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr, 3961 const abd_t *good_buf) 3962 { 3963 /* no processing needed */ 3964 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE); 3965 } 3966 3967 void 3968 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr) 3969 { 3970 void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size); 3971 3972 abd_copy(abd, zio->io_abd, zio->io_size); 3973 3974 zcr->zcr_cbinfo = zio->io_size; 3975 zcr->zcr_cbdata = abd; 3976 zcr->zcr_finish = zio_vsd_default_cksum_finish; 3977 zcr->zcr_free = zio_abd_free; 3978 } 3979 3980 static zio_t * 3981 zio_vdev_io_assess(zio_t *zio) 3982 { 3983 vdev_t *vd = zio->io_vd; 3984 3985 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) { 3986 return (NULL); 3987 } 3988 3989 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 3990 spa_config_exit(zio->io_spa, SCL_ZIO, zio); 3991 3992 if (zio->io_vsd != NULL) { 3993 zio->io_vsd_ops->vsd_free(zio); 3994 zio->io_vsd = NULL; 3995 } 3996 3997 if (zio_injection_enabled && zio->io_error == 0) 3998 zio->io_error = zio_handle_fault_injection(zio, EIO); 3999 4000 /* 4001 * If the I/O failed, determine whether we should attempt to retry it. 4002 * 4003 * On retry, we cut in line in the issue queue, since we don't want 4004 * compression/checksumming/etc. work to prevent our (cheap) IO reissue. 4005 */ 4006 if (zio->io_error && vd == NULL && 4007 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) { 4008 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */ 4009 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */ 4010 zio->io_error = 0; 4011 zio->io_flags |= ZIO_FLAG_IO_RETRY | 4012 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE; 4013 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1; 4014 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, 4015 zio_requeue_io_start_cut_in_line); 4016 return (NULL); 4017 } 4018 4019 /* 4020 * If we got an error on a leaf device, convert it to ENXIO 4021 * if the device is not accessible at all. 4022 */ 4023 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf && 4024 !vdev_accessible(vd, zio)) 4025 zio->io_error = SET_ERROR(ENXIO); 4026 4027 /* 4028 * If we can't write to an interior vdev (mirror or RAID-Z), 4029 * set vdev_cant_write so that we stop trying to allocate from it. 4030 */ 4031 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE && 4032 vd != NULL && !vd->vdev_ops->vdev_op_leaf) { 4033 vdev_dbgmsg(vd, "zio_vdev_io_assess(zio=%px) setting " 4034 "cant_write=TRUE due to write failure with ENXIO", 4035 zio); 4036 vd->vdev_cant_write = B_TRUE; 4037 } 4038 4039 /* 4040 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future 4041 * attempts will ever succeed. In this case we set a persistent 4042 * boolean flag so that we don't bother with it in the future. 4043 */ 4044 if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) && 4045 zio->io_type == ZIO_TYPE_IOCTL && 4046 zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL) 4047 vd->vdev_nowritecache = B_TRUE; 4048 4049 if (zio->io_error) 4050 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 4051 4052 if (vd != NULL && vd->vdev_ops->vdev_op_leaf && 4053 zio->io_physdone != NULL) { 4054 ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED)); 4055 ASSERT(zio->io_child_type == ZIO_CHILD_VDEV); 4056 zio->io_physdone(zio->io_logical); 4057 } 4058 4059 return (zio); 4060 } 4061 4062 void 4063 zio_vdev_io_reissue(zio_t *zio) 4064 { 4065 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 4066 ASSERT(zio->io_error == 0); 4067 4068 zio->io_stage >>= 1; 4069 } 4070 4071 void 4072 zio_vdev_io_redone(zio_t *zio) 4073 { 4074 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE); 4075 4076 zio->io_stage >>= 1; 4077 } 4078 4079 void 4080 zio_vdev_io_bypass(zio_t *zio) 4081 { 4082 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 4083 ASSERT(zio->io_error == 0); 4084 4085 zio->io_flags |= ZIO_FLAG_IO_BYPASS; 4086 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1; 4087 } 4088 4089 /* 4090 * ========================================================================== 4091 * Encrypt and store encryption parameters 4092 * ========================================================================== 4093 */ 4094 4095 4096 /* 4097 * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for 4098 * managing the storage of encryption parameters and passing them to the 4099 * lower-level encryption functions. 4100 */ 4101 static zio_t * 4102 zio_encrypt(zio_t *zio) 4103 { 4104 zio_prop_t *zp = &zio->io_prop; 4105 spa_t *spa = zio->io_spa; 4106 blkptr_t *bp = zio->io_bp; 4107 uint64_t psize = BP_GET_PSIZE(bp); 4108 uint64_t dsobj = zio->io_bookmark.zb_objset; 4109 dmu_object_type_t ot = BP_GET_TYPE(bp); 4110 void *enc_buf = NULL; 4111 abd_t *eabd = NULL; 4112 uint8_t salt[ZIO_DATA_SALT_LEN]; 4113 uint8_t iv[ZIO_DATA_IV_LEN]; 4114 uint8_t mac[ZIO_DATA_MAC_LEN]; 4115 boolean_t no_crypt = B_FALSE; 4116 4117 /* the root zio already encrypted the data */ 4118 if (zio->io_child_type == ZIO_CHILD_GANG) 4119 return (zio); 4120 4121 /* only ZIL blocks are re-encrypted on rewrite */ 4122 if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG) 4123 return (zio); 4124 4125 if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) { 4126 BP_SET_CRYPT(bp, B_FALSE); 4127 return (zio); 4128 } 4129 4130 /* if we are doing raw encryption set the provided encryption params */ 4131 if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) { 4132 ASSERT0(BP_GET_LEVEL(bp)); 4133 BP_SET_CRYPT(bp, B_TRUE); 4134 BP_SET_BYTEORDER(bp, zp->zp_byteorder); 4135 if (ot != DMU_OT_OBJSET) 4136 zio_crypt_encode_mac_bp(bp, zp->zp_mac); 4137 4138 /* dnode blocks must be written out in the provided byteorder */ 4139 if (zp->zp_byteorder != ZFS_HOST_BYTEORDER && 4140 ot == DMU_OT_DNODE) { 4141 void *bswap_buf = zio_buf_alloc(psize); 4142 abd_t *babd = abd_get_from_buf(bswap_buf, psize); 4143 4144 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 4145 abd_copy_to_buf(bswap_buf, zio->io_abd, psize); 4146 dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf, 4147 psize); 4148 4149 abd_take_ownership_of_buf(babd, B_TRUE); 4150 zio_push_transform(zio, babd, psize, psize, NULL); 4151 } 4152 4153 if (DMU_OT_IS_ENCRYPTED(ot)) 4154 zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv); 4155 return (zio); 4156 } 4157 4158 /* indirect blocks only maintain a cksum of the lower level MACs */ 4159 if (BP_GET_LEVEL(bp) > 0) { 4160 BP_SET_CRYPT(bp, B_TRUE); 4161 VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE, 4162 zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp), 4163 mac)); 4164 zio_crypt_encode_mac_bp(bp, mac); 4165 return (zio); 4166 } 4167 4168 /* 4169 * Objset blocks are a special case since they have 2 256-bit MACs 4170 * embedded within them. 4171 */ 4172 if (ot == DMU_OT_OBJSET) { 4173 ASSERT0(DMU_OT_IS_ENCRYPTED(ot)); 4174 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 4175 BP_SET_CRYPT(bp, B_TRUE); 4176 VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj, 4177 zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp))); 4178 return (zio); 4179 } 4180 4181 /* unencrypted object types are only authenticated with a MAC */ 4182 if (!DMU_OT_IS_ENCRYPTED(ot)) { 4183 BP_SET_CRYPT(bp, B_TRUE); 4184 VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj, 4185 zio->io_abd, psize, mac)); 4186 zio_crypt_encode_mac_bp(bp, mac); 4187 return (zio); 4188 } 4189 4190 /* 4191 * Later passes of sync-to-convergence may decide to rewrite data 4192 * in place to avoid more disk reallocations. This presents a problem 4193 * for encryption because this constitutes rewriting the new data with 4194 * the same encryption key and IV. However, this only applies to blocks 4195 * in the MOS (particularly the spacemaps) and we do not encrypt the 4196 * MOS. We assert that the zio is allocating or an intent log write 4197 * to enforce this. 4198 */ 4199 ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG); 4200 ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG); 4201 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION)); 4202 ASSERT3U(psize, !=, 0); 4203 4204 enc_buf = zio_buf_alloc(psize); 4205 eabd = abd_get_from_buf(enc_buf, psize); 4206 abd_take_ownership_of_buf(eabd, B_TRUE); 4207 4208 /* 4209 * For an explanation of what encryption parameters are stored 4210 * where, see the block comment in zio_crypt.c. 4211 */ 4212 if (ot == DMU_OT_INTENT_LOG) { 4213 zio_crypt_decode_params_bp(bp, salt, iv); 4214 } else { 4215 BP_SET_CRYPT(bp, B_TRUE); 4216 } 4217 4218 /* Perform the encryption. This should not fail */ 4219 VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark, 4220 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), 4221 salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt)); 4222 4223 /* encode encryption metadata into the bp */ 4224 if (ot == DMU_OT_INTENT_LOG) { 4225 /* 4226 * ZIL blocks store the MAC in the embedded checksum, so the 4227 * transform must always be applied. 4228 */ 4229 zio_crypt_encode_mac_zil(enc_buf, mac); 4230 zio_push_transform(zio, eabd, psize, psize, NULL); 4231 } else { 4232 BP_SET_CRYPT(bp, B_TRUE); 4233 zio_crypt_encode_params_bp(bp, salt, iv); 4234 zio_crypt_encode_mac_bp(bp, mac); 4235 4236 if (no_crypt) { 4237 ASSERT3U(ot, ==, DMU_OT_DNODE); 4238 abd_free(eabd); 4239 } else { 4240 zio_push_transform(zio, eabd, psize, psize, NULL); 4241 } 4242 } 4243 4244 return (zio); 4245 } 4246 4247 /* 4248 * ========================================================================== 4249 * Generate and verify checksums 4250 * ========================================================================== 4251 */ 4252 static zio_t * 4253 zio_checksum_generate(zio_t *zio) 4254 { 4255 blkptr_t *bp = zio->io_bp; 4256 enum zio_checksum checksum; 4257 4258 if (bp == NULL) { 4259 /* 4260 * This is zio_write_phys(). 4261 * We're either generating a label checksum, or none at all. 4262 */ 4263 checksum = zio->io_prop.zp_checksum; 4264 4265 if (checksum == ZIO_CHECKSUM_OFF) 4266 return (zio); 4267 4268 ASSERT(checksum == ZIO_CHECKSUM_LABEL); 4269 } else { 4270 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) { 4271 ASSERT(!IO_IS_ALLOCATING(zio)); 4272 checksum = ZIO_CHECKSUM_GANG_HEADER; 4273 } else { 4274 checksum = BP_GET_CHECKSUM(bp); 4275 } 4276 } 4277 4278 zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size); 4279 4280 return (zio); 4281 } 4282 4283 static zio_t * 4284 zio_checksum_verify(zio_t *zio) 4285 { 4286 zio_bad_cksum_t info; 4287 blkptr_t *bp = zio->io_bp; 4288 int error; 4289 4290 ASSERT(zio->io_vd != NULL); 4291 4292 if (bp == NULL) { 4293 /* 4294 * This is zio_read_phys(). 4295 * We're either verifying a label checksum, or nothing at all. 4296 */ 4297 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF) 4298 return (zio); 4299 4300 ASSERT3U(zio->io_prop.zp_checksum, ==, ZIO_CHECKSUM_LABEL); 4301 } 4302 4303 if ((error = zio_checksum_error(zio, &info)) != 0) { 4304 zio->io_error = error; 4305 if (error == ECKSUM && 4306 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 4307 (void) zfs_ereport_start_checksum(zio->io_spa, 4308 zio->io_vd, &zio->io_bookmark, zio, 4309 zio->io_offset, zio->io_size, &info); 4310 mutex_enter(&zio->io_vd->vdev_stat_lock); 4311 zio->io_vd->vdev_stat.vs_checksum_errors++; 4312 mutex_exit(&zio->io_vd->vdev_stat_lock); 4313 } 4314 } 4315 4316 return (zio); 4317 } 4318 4319 /* 4320 * Called by RAID-Z to ensure we don't compute the checksum twice. 4321 */ 4322 void 4323 zio_checksum_verified(zio_t *zio) 4324 { 4325 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 4326 } 4327 4328 /* 4329 * ========================================================================== 4330 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other. 4331 * An error of 0 indicates success. ENXIO indicates whole-device failure, 4332 * which may be transient (e.g. unplugged) or permanent. ECKSUM and EIO 4333 * indicate errors that are specific to one I/O, and most likely permanent. 4334 * Any other error is presumed to be worse because we weren't expecting it. 4335 * ========================================================================== 4336 */ 4337 int 4338 zio_worst_error(int e1, int e2) 4339 { 4340 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO }; 4341 int r1, r2; 4342 4343 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++) 4344 if (e1 == zio_error_rank[r1]) 4345 break; 4346 4347 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++) 4348 if (e2 == zio_error_rank[r2]) 4349 break; 4350 4351 return (r1 > r2 ? e1 : e2); 4352 } 4353 4354 /* 4355 * ========================================================================== 4356 * I/O completion 4357 * ========================================================================== 4358 */ 4359 static zio_t * 4360 zio_ready(zio_t *zio) 4361 { 4362 blkptr_t *bp = zio->io_bp; 4363 zio_t *pio, *pio_next; 4364 zio_link_t *zl = NULL; 4365 4366 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT, 4367 ZIO_WAIT_READY)) { 4368 return (NULL); 4369 } 4370 4371 if (zio->io_ready) { 4372 ASSERT(IO_IS_ALLOCATING(zio)); 4373 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) || 4374 (zio->io_flags & ZIO_FLAG_NOPWRITE)); 4375 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0); 4376 4377 zio->io_ready(zio); 4378 } 4379 4380 if (bp != NULL && bp != &zio->io_bp_copy) 4381 zio->io_bp_copy = *bp; 4382 4383 if (zio->io_error != 0) { 4384 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 4385 4386 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 4387 ASSERT(IO_IS_ALLOCATING(zio)); 4388 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 4389 ASSERT(zio->io_metaslab_class != NULL); 4390 4391 /* 4392 * We were unable to allocate anything, unreserve and 4393 * issue the next I/O to allocate. 4394 */ 4395 metaslab_class_throttle_unreserve( 4396 zio->io_metaslab_class, zio->io_prop.zp_copies, 4397 zio->io_allocator, zio); 4398 zio_allocate_dispatch(zio->io_spa, zio->io_allocator); 4399 } 4400 } 4401 4402 mutex_enter(&zio->io_lock); 4403 zio->io_state[ZIO_WAIT_READY] = 1; 4404 pio = zio_walk_parents(zio, &zl); 4405 mutex_exit(&zio->io_lock); 4406 4407 /* 4408 * As we notify zio's parents, new parents could be added. 4409 * New parents go to the head of zio's io_parent_list, however, 4410 * so we will (correctly) not notify them. The remainder of zio's 4411 * io_parent_list, from 'pio_next' onward, cannot change because 4412 * all parents must wait for us to be done before they can be done. 4413 */ 4414 for (; pio != NULL; pio = pio_next) { 4415 pio_next = zio_walk_parents(zio, &zl); 4416 zio_notify_parent(pio, zio, ZIO_WAIT_READY, NULL); 4417 } 4418 4419 if (zio->io_flags & ZIO_FLAG_NODATA) { 4420 if (BP_IS_GANG(bp)) { 4421 zio->io_flags &= ~ZIO_FLAG_NODATA; 4422 } else { 4423 ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE); 4424 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 4425 } 4426 } 4427 4428 if (zio_injection_enabled && 4429 zio->io_spa->spa_syncing_txg == zio->io_txg) 4430 zio_handle_ignored_writes(zio); 4431 4432 return (zio); 4433 } 4434 4435 /* 4436 * Update the allocation throttle accounting. 4437 */ 4438 static void 4439 zio_dva_throttle_done(zio_t *zio) 4440 { 4441 zio_t *lio __maybe_unused = zio->io_logical; 4442 zio_t *pio = zio_unique_parent(zio); 4443 vdev_t *vd = zio->io_vd; 4444 int flags = METASLAB_ASYNC_ALLOC; 4445 4446 ASSERT3P(zio->io_bp, !=, NULL); 4447 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE); 4448 ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE); 4449 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); 4450 ASSERT(vd != NULL); 4451 ASSERT3P(vd, ==, vd->vdev_top); 4452 ASSERT(zio_injection_enabled || !(zio->io_flags & ZIO_FLAG_IO_RETRY)); 4453 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR)); 4454 ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING); 4455 ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE)); 4456 ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA)); 4457 4458 /* 4459 * Parents of gang children can have two flavors -- ones that 4460 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set) 4461 * and ones that allocated the constituent blocks. The allocation 4462 * throttle needs to know the allocating parent zio so we must find 4463 * it here. 4464 */ 4465 if (pio->io_child_type == ZIO_CHILD_GANG) { 4466 /* 4467 * If our parent is a rewrite gang child then our grandparent 4468 * would have been the one that performed the allocation. 4469 */ 4470 if (pio->io_flags & ZIO_FLAG_IO_REWRITE) 4471 pio = zio_unique_parent(pio); 4472 flags |= METASLAB_GANG_CHILD; 4473 } 4474 4475 ASSERT(IO_IS_ALLOCATING(pio)); 4476 ASSERT3P(zio, !=, zio->io_logical); 4477 ASSERT(zio->io_logical != NULL); 4478 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR)); 4479 ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE); 4480 ASSERT(zio->io_metaslab_class != NULL); 4481 4482 mutex_enter(&pio->io_lock); 4483 metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags, 4484 pio->io_allocator, B_TRUE); 4485 mutex_exit(&pio->io_lock); 4486 4487 metaslab_class_throttle_unreserve(zio->io_metaslab_class, 1, 4488 pio->io_allocator, pio); 4489 4490 /* 4491 * Call into the pipeline to see if there is more work that 4492 * needs to be done. If there is work to be done it will be 4493 * dispatched to another taskq thread. 4494 */ 4495 zio_allocate_dispatch(zio->io_spa, pio->io_allocator); 4496 } 4497 4498 static zio_t * 4499 zio_done(zio_t *zio) 4500 { 4501 /* 4502 * Always attempt to keep stack usage minimal here since 4503 * we can be called recursively up to 19 levels deep. 4504 */ 4505 const uint64_t psize = zio->io_size; 4506 zio_t *pio, *pio_next; 4507 zio_link_t *zl = NULL; 4508 4509 /* 4510 * If our children haven't all completed, 4511 * wait for them and then repeat this pipeline stage. 4512 */ 4513 if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) { 4514 return (NULL); 4515 } 4516 4517 /* 4518 * If the allocation throttle is enabled, then update the accounting. 4519 * We only track child I/Os that are part of an allocating async 4520 * write. We must do this since the allocation is performed 4521 * by the logical I/O but the actual write is done by child I/Os. 4522 */ 4523 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING && 4524 zio->io_child_type == ZIO_CHILD_VDEV) { 4525 ASSERT(zio->io_metaslab_class != NULL); 4526 ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled); 4527 zio_dva_throttle_done(zio); 4528 } 4529 4530 /* 4531 * If the allocation throttle is enabled, verify that 4532 * we have decremented the refcounts for every I/O that was throttled. 4533 */ 4534 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 4535 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 4536 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 4537 ASSERT(zio->io_bp != NULL); 4538 4539 metaslab_group_alloc_verify(zio->io_spa, zio->io_bp, zio, 4540 zio->io_allocator); 4541 VERIFY(zfs_refcount_not_held(&zio->io_metaslab_class-> 4542 mc_allocator[zio->io_allocator].mca_alloc_slots, zio)); 4543 } 4544 4545 4546 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 4547 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 4548 ASSERT(zio->io_children[c][w] == 0); 4549 4550 if (zio->io_bp != NULL && !BP_IS_EMBEDDED(zio->io_bp)) { 4551 ASSERT(zio->io_bp->blk_pad[0] == 0); 4552 ASSERT(zio->io_bp->blk_pad[1] == 0); 4553 ASSERT(memcmp(zio->io_bp, &zio->io_bp_copy, 4554 sizeof (blkptr_t)) == 0 || 4555 (zio->io_bp == zio_unique_parent(zio)->io_bp)); 4556 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) && 4557 zio->io_bp_override == NULL && 4558 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) { 4559 ASSERT3U(zio->io_prop.zp_copies, <=, 4560 BP_GET_NDVAS(zio->io_bp)); 4561 ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 || 4562 (BP_COUNT_GANG(zio->io_bp) == 4563 BP_GET_NDVAS(zio->io_bp))); 4564 } 4565 if (zio->io_flags & ZIO_FLAG_NOPWRITE) 4566 VERIFY(BP_EQUAL(zio->io_bp, &zio->io_bp_orig)); 4567 } 4568 4569 /* 4570 * If there were child vdev/gang/ddt errors, they apply to us now. 4571 */ 4572 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV); 4573 zio_inherit_child_errors(zio, ZIO_CHILD_GANG); 4574 zio_inherit_child_errors(zio, ZIO_CHILD_DDT); 4575 4576 /* 4577 * If the I/O on the transformed data was successful, generate any 4578 * checksum reports now while we still have the transformed data. 4579 */ 4580 if (zio->io_error == 0) { 4581 while (zio->io_cksum_report != NULL) { 4582 zio_cksum_report_t *zcr = zio->io_cksum_report; 4583 uint64_t align = zcr->zcr_align; 4584 uint64_t asize = P2ROUNDUP(psize, align); 4585 abd_t *adata = zio->io_abd; 4586 4587 if (adata != NULL && asize != psize) { 4588 adata = abd_alloc(asize, B_TRUE); 4589 abd_copy(adata, zio->io_abd, psize); 4590 abd_zero_off(adata, psize, asize - psize); 4591 } 4592 4593 zio->io_cksum_report = zcr->zcr_next; 4594 zcr->zcr_next = NULL; 4595 zcr->zcr_finish(zcr, adata); 4596 zfs_ereport_free_checksum(zcr); 4597 4598 if (adata != NULL && asize != psize) 4599 abd_free(adata); 4600 } 4601 } 4602 4603 zio_pop_transforms(zio); /* note: may set zio->io_error */ 4604 4605 vdev_stat_update(zio, psize); 4606 4607 /* 4608 * If this I/O is attached to a particular vdev is slow, exceeding 4609 * 30 seconds to complete, post an error described the I/O delay. 4610 * We ignore these errors if the device is currently unavailable. 4611 */ 4612 if (zio->io_delay >= MSEC2NSEC(zio_slow_io_ms)) { 4613 if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) { 4614 /* 4615 * We want to only increment our slow IO counters if 4616 * the IO is valid (i.e. not if the drive is removed). 4617 * 4618 * zfs_ereport_post() will also do these checks, but 4619 * it can also ratelimit and have other failures, so we 4620 * need to increment the slow_io counters independent 4621 * of it. 4622 */ 4623 if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY, 4624 zio->io_spa, zio->io_vd, zio)) { 4625 mutex_enter(&zio->io_vd->vdev_stat_lock); 4626 zio->io_vd->vdev_stat.vs_slow_ios++; 4627 mutex_exit(&zio->io_vd->vdev_stat_lock); 4628 4629 (void) zfs_ereport_post(FM_EREPORT_ZFS_DELAY, 4630 zio->io_spa, zio->io_vd, &zio->io_bookmark, 4631 zio, 0); 4632 } 4633 } 4634 } 4635 4636 if (zio->io_error) { 4637 /* 4638 * If this I/O is attached to a particular vdev, 4639 * generate an error message describing the I/O failure 4640 * at the block level. We ignore these errors if the 4641 * device is currently unavailable. 4642 */ 4643 if (zio->io_error != ECKSUM && zio->io_vd != NULL && 4644 !vdev_is_dead(zio->io_vd)) { 4645 int ret = zfs_ereport_post(FM_EREPORT_ZFS_IO, 4646 zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0); 4647 if (ret != EALREADY) { 4648 mutex_enter(&zio->io_vd->vdev_stat_lock); 4649 if (zio->io_type == ZIO_TYPE_READ) 4650 zio->io_vd->vdev_stat.vs_read_errors++; 4651 else if (zio->io_type == ZIO_TYPE_WRITE) 4652 zio->io_vd->vdev_stat.vs_write_errors++; 4653 mutex_exit(&zio->io_vd->vdev_stat_lock); 4654 } 4655 } 4656 4657 if ((zio->io_error == EIO || !(zio->io_flags & 4658 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) && 4659 zio == zio->io_logical) { 4660 /* 4661 * For logical I/O requests, tell the SPA to log the 4662 * error and generate a logical data ereport. 4663 */ 4664 spa_log_error(zio->io_spa, &zio->io_bookmark); 4665 (void) zfs_ereport_post(FM_EREPORT_ZFS_DATA, 4666 zio->io_spa, NULL, &zio->io_bookmark, zio, 0); 4667 } 4668 } 4669 4670 if (zio->io_error && zio == zio->io_logical) { 4671 /* 4672 * Determine whether zio should be reexecuted. This will 4673 * propagate all the way to the root via zio_notify_parent(). 4674 */ 4675 ASSERT(zio->io_vd == NULL && zio->io_bp != NULL); 4676 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 4677 4678 if (IO_IS_ALLOCATING(zio) && 4679 !(zio->io_flags & ZIO_FLAG_CANFAIL)) { 4680 if (zio->io_error != ENOSPC) 4681 zio->io_reexecute |= ZIO_REEXECUTE_NOW; 4682 else 4683 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 4684 } 4685 4686 if ((zio->io_type == ZIO_TYPE_READ || 4687 zio->io_type == ZIO_TYPE_FREE) && 4688 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && 4689 zio->io_error == ENXIO && 4690 spa_load_state(zio->io_spa) == SPA_LOAD_NONE && 4691 spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE) 4692 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 4693 4694 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute) 4695 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 4696 4697 /* 4698 * Here is a possibly good place to attempt to do 4699 * either combinatorial reconstruction or error correction 4700 * based on checksums. It also might be a good place 4701 * to send out preliminary ereports before we suspend 4702 * processing. 4703 */ 4704 } 4705 4706 /* 4707 * If there were logical child errors, they apply to us now. 4708 * We defer this until now to avoid conflating logical child 4709 * errors with errors that happened to the zio itself when 4710 * updating vdev stats and reporting FMA events above. 4711 */ 4712 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL); 4713 4714 if ((zio->io_error || zio->io_reexecute) && 4715 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio && 4716 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE))) 4717 zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp); 4718 4719 zio_gang_tree_free(&zio->io_gang_tree); 4720 4721 /* 4722 * Godfather I/Os should never suspend. 4723 */ 4724 if ((zio->io_flags & ZIO_FLAG_GODFATHER) && 4725 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) 4726 zio->io_reexecute &= ~ZIO_REEXECUTE_SUSPEND; 4727 4728 if (zio->io_reexecute) { 4729 /* 4730 * This is a logical I/O that wants to reexecute. 4731 * 4732 * Reexecute is top-down. When an i/o fails, if it's not 4733 * the root, it simply notifies its parent and sticks around. 4734 * The parent, seeing that it still has children in zio_done(), 4735 * does the same. This percolates all the way up to the root. 4736 * The root i/o will reexecute or suspend the entire tree. 4737 * 4738 * This approach ensures that zio_reexecute() honors 4739 * all the original i/o dependency relationships, e.g. 4740 * parents not executing until children are ready. 4741 */ 4742 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 4743 4744 zio->io_gang_leader = NULL; 4745 4746 mutex_enter(&zio->io_lock); 4747 zio->io_state[ZIO_WAIT_DONE] = 1; 4748 mutex_exit(&zio->io_lock); 4749 4750 /* 4751 * "The Godfather" I/O monitors its children but is 4752 * not a true parent to them. It will track them through 4753 * the pipeline but severs its ties whenever they get into 4754 * trouble (e.g. suspended). This allows "The Godfather" 4755 * I/O to return status without blocking. 4756 */ 4757 zl = NULL; 4758 for (pio = zio_walk_parents(zio, &zl); pio != NULL; 4759 pio = pio_next) { 4760 zio_link_t *remove_zl = zl; 4761 pio_next = zio_walk_parents(zio, &zl); 4762 4763 if ((pio->io_flags & ZIO_FLAG_GODFATHER) && 4764 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) { 4765 zio_remove_child(pio, zio, remove_zl); 4766 /* 4767 * This is a rare code path, so we don't 4768 * bother with "next_to_execute". 4769 */ 4770 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, 4771 NULL); 4772 } 4773 } 4774 4775 if ((pio = zio_unique_parent(zio)) != NULL) { 4776 /* 4777 * We're not a root i/o, so there's nothing to do 4778 * but notify our parent. Don't propagate errors 4779 * upward since we haven't permanently failed yet. 4780 */ 4781 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 4782 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE; 4783 /* 4784 * This is a rare code path, so we don't bother with 4785 * "next_to_execute". 4786 */ 4787 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, NULL); 4788 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) { 4789 /* 4790 * We'd fail again if we reexecuted now, so suspend 4791 * until conditions improve (e.g. device comes online). 4792 */ 4793 zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR); 4794 } else { 4795 /* 4796 * Reexecution is potentially a huge amount of work. 4797 * Hand it off to the otherwise-unused claim taskq. 4798 */ 4799 ASSERT(taskq_empty_ent(&zio->io_tqent)); 4800 spa_taskq_dispatch_ent(zio->io_spa, 4801 ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE, 4802 zio_reexecute, zio, 0, &zio->io_tqent); 4803 } 4804 return (NULL); 4805 } 4806 4807 ASSERT(zio->io_child_count == 0); 4808 ASSERT(zio->io_reexecute == 0); 4809 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL)); 4810 4811 /* 4812 * Report any checksum errors, since the I/O is complete. 4813 */ 4814 while (zio->io_cksum_report != NULL) { 4815 zio_cksum_report_t *zcr = zio->io_cksum_report; 4816 zio->io_cksum_report = zcr->zcr_next; 4817 zcr->zcr_next = NULL; 4818 zcr->zcr_finish(zcr, NULL); 4819 zfs_ereport_free_checksum(zcr); 4820 } 4821 4822 if (zio->io_flags & ZIO_FLAG_FASTWRITE && zio->io_bp && 4823 !BP_IS_HOLE(zio->io_bp) && !BP_IS_EMBEDDED(zio->io_bp) && 4824 !(zio->io_flags & ZIO_FLAG_NOPWRITE)) { 4825 metaslab_fastwrite_unmark(zio->io_spa, zio->io_bp); 4826 } 4827 4828 /* 4829 * It is the responsibility of the done callback to ensure that this 4830 * particular zio is no longer discoverable for adoption, and as 4831 * such, cannot acquire any new parents. 4832 */ 4833 if (zio->io_done) 4834 zio->io_done(zio); 4835 4836 mutex_enter(&zio->io_lock); 4837 zio->io_state[ZIO_WAIT_DONE] = 1; 4838 mutex_exit(&zio->io_lock); 4839 4840 /* 4841 * We are done executing this zio. We may want to execute a parent 4842 * next. See the comment in zio_notify_parent(). 4843 */ 4844 zio_t *next_to_execute = NULL; 4845 zl = NULL; 4846 for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) { 4847 zio_link_t *remove_zl = zl; 4848 pio_next = zio_walk_parents(zio, &zl); 4849 zio_remove_child(pio, zio, remove_zl); 4850 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, &next_to_execute); 4851 } 4852 4853 if (zio->io_waiter != NULL) { 4854 mutex_enter(&zio->io_lock); 4855 zio->io_executor = NULL; 4856 cv_broadcast(&zio->io_cv); 4857 mutex_exit(&zio->io_lock); 4858 } else { 4859 zio_destroy(zio); 4860 } 4861 4862 return (next_to_execute); 4863 } 4864 4865 /* 4866 * ========================================================================== 4867 * I/O pipeline definition 4868 * ========================================================================== 4869 */ 4870 static zio_pipe_stage_t *zio_pipeline[] = { 4871 NULL, 4872 zio_read_bp_init, 4873 zio_write_bp_init, 4874 zio_free_bp_init, 4875 zio_issue_async, 4876 zio_write_compress, 4877 zio_encrypt, 4878 zio_checksum_generate, 4879 zio_nop_write, 4880 zio_ddt_read_start, 4881 zio_ddt_read_done, 4882 zio_ddt_write, 4883 zio_ddt_free, 4884 zio_gang_assemble, 4885 zio_gang_issue, 4886 zio_dva_throttle, 4887 zio_dva_allocate, 4888 zio_dva_free, 4889 zio_dva_claim, 4890 zio_ready, 4891 zio_vdev_io_start, 4892 zio_vdev_io_done, 4893 zio_vdev_io_assess, 4894 zio_checksum_verify, 4895 zio_done 4896 }; 4897 4898 4899 4900 4901 /* 4902 * Compare two zbookmark_phys_t's to see which we would reach first in a 4903 * pre-order traversal of the object tree. 4904 * 4905 * This is simple in every case aside from the meta-dnode object. For all other 4906 * objects, we traverse them in order (object 1 before object 2, and so on). 4907 * However, all of these objects are traversed while traversing object 0, since 4908 * the data it points to is the list of objects. Thus, we need to convert to a 4909 * canonical representation so we can compare meta-dnode bookmarks to 4910 * non-meta-dnode bookmarks. 4911 * 4912 * We do this by calculating "equivalents" for each field of the zbookmark. 4913 * zbookmarks outside of the meta-dnode use their own object and level, and 4914 * calculate the level 0 equivalent (the first L0 blkid that is contained in the 4915 * blocks this bookmark refers to) by multiplying their blkid by their span 4916 * (the number of L0 blocks contained within one block at their level). 4917 * zbookmarks inside the meta-dnode calculate their object equivalent 4918 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use 4919 * level + 1<<31 (any value larger than a level could ever be) for their level. 4920 * This causes them to always compare before a bookmark in their object 4921 * equivalent, compare appropriately to bookmarks in other objects, and to 4922 * compare appropriately to other bookmarks in the meta-dnode. 4923 */ 4924 int 4925 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2, 4926 const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2) 4927 { 4928 /* 4929 * These variables represent the "equivalent" values for the zbookmark, 4930 * after converting zbookmarks inside the meta dnode to their 4931 * normal-object equivalents. 4932 */ 4933 uint64_t zb1obj, zb2obj; 4934 uint64_t zb1L0, zb2L0; 4935 uint64_t zb1level, zb2level; 4936 4937 if (zb1->zb_object == zb2->zb_object && 4938 zb1->zb_level == zb2->zb_level && 4939 zb1->zb_blkid == zb2->zb_blkid) 4940 return (0); 4941 4942 IMPLY(zb1->zb_level > 0, ibs1 >= SPA_MINBLOCKSHIFT); 4943 IMPLY(zb2->zb_level > 0, ibs2 >= SPA_MINBLOCKSHIFT); 4944 4945 /* 4946 * BP_SPANB calculates the span in blocks. 4947 */ 4948 zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level); 4949 zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level); 4950 4951 if (zb1->zb_object == DMU_META_DNODE_OBJECT) { 4952 zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 4953 zb1L0 = 0; 4954 zb1level = zb1->zb_level + COMPARE_META_LEVEL; 4955 } else { 4956 zb1obj = zb1->zb_object; 4957 zb1level = zb1->zb_level; 4958 } 4959 4960 if (zb2->zb_object == DMU_META_DNODE_OBJECT) { 4961 zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 4962 zb2L0 = 0; 4963 zb2level = zb2->zb_level + COMPARE_META_LEVEL; 4964 } else { 4965 zb2obj = zb2->zb_object; 4966 zb2level = zb2->zb_level; 4967 } 4968 4969 /* Now that we have a canonical representation, do the comparison. */ 4970 if (zb1obj != zb2obj) 4971 return (zb1obj < zb2obj ? -1 : 1); 4972 else if (zb1L0 != zb2L0) 4973 return (zb1L0 < zb2L0 ? -1 : 1); 4974 else if (zb1level != zb2level) 4975 return (zb1level > zb2level ? -1 : 1); 4976 /* 4977 * This can (theoretically) happen if the bookmarks have the same object 4978 * and level, but different blkids, if the block sizes are not the same. 4979 * There is presently no way to change the indirect block sizes 4980 */ 4981 return (0); 4982 } 4983 4984 /* 4985 * This function checks the following: given that last_block is the place that 4986 * our traversal stopped last time, does that guarantee that we've visited 4987 * every node under subtree_root? Therefore, we can't just use the raw output 4988 * of zbookmark_compare. We have to pass in a modified version of 4989 * subtree_root; by incrementing the block id, and then checking whether 4990 * last_block is before or equal to that, we can tell whether or not having 4991 * visited last_block implies that all of subtree_root's children have been 4992 * visited. 4993 */ 4994 boolean_t 4995 zbookmark_subtree_completed(const dnode_phys_t *dnp, 4996 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block) 4997 { 4998 zbookmark_phys_t mod_zb = *subtree_root; 4999 mod_zb.zb_blkid++; 5000 ASSERT(last_block->zb_level == 0); 5001 5002 /* The objset_phys_t isn't before anything. */ 5003 if (dnp == NULL) 5004 return (B_FALSE); 5005 5006 /* 5007 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the 5008 * data block size in sectors, because that variable is only used if 5009 * the bookmark refers to a block in the meta-dnode. Since we don't 5010 * know without examining it what object it refers to, and there's no 5011 * harm in passing in this value in other cases, we always pass it in. 5012 * 5013 * We pass in 0 for the indirect block size shift because zb2 must be 5014 * level 0. The indirect block size is only used to calculate the span 5015 * of the bookmark, but since the bookmark must be level 0, the span is 5016 * always 1, so the math works out. 5017 * 5018 * If you make changes to how the zbookmark_compare code works, be sure 5019 * to make sure that this code still works afterwards. 5020 */ 5021 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift, 5022 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb, 5023 last_block) <= 0); 5024 } 5025 5026 EXPORT_SYMBOL(zio_type_name); 5027 EXPORT_SYMBOL(zio_buf_alloc); 5028 EXPORT_SYMBOL(zio_data_buf_alloc); 5029 EXPORT_SYMBOL(zio_buf_free); 5030 EXPORT_SYMBOL(zio_data_buf_free); 5031 5032 ZFS_MODULE_PARAM(zfs_zio, zio_, slow_io_ms, INT, ZMOD_RW, 5033 "Max I/O completion time (milliseconds) before marking it as slow"); 5034 5035 ZFS_MODULE_PARAM(zfs_zio, zio_, requeue_io_start_cut_in_line, INT, ZMOD_RW, 5036 "Prioritize requeued I/O"); 5037 5038 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_deferred_free, INT, ZMOD_RW, 5039 "Defer frees starting in this pass"); 5040 5041 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_dont_compress, INT, ZMOD_RW, 5042 "Don't compress starting in this pass"); 5043 5044 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_rewrite, INT, ZMOD_RW, 5045 "Rewrite new bps starting in this pass"); 5046 5047 ZFS_MODULE_PARAM(zfs_zio, zio_, dva_throttle_enabled, INT, ZMOD_RW, 5048 "Throttle block allocations in the ZIO pipeline"); 5049 5050 ZFS_MODULE_PARAM(zfs_zio, zio_, deadman_log_all, INT, ZMOD_RW, 5051 "Log all slow ZIOs, not just those with vdevs"); 5052