1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 24 * Copyright (c) 2014 Integros [integros.com] 25 * Copyright (c) 2018 Datto Inc. 26 */ 27 28 /* Portions Copyright 2010 Robert Milkowski */ 29 30 #include <sys/zfs_context.h> 31 #include <sys/spa.h> 32 #include <sys/spa_impl.h> 33 #include <sys/dmu.h> 34 #include <sys/zap.h> 35 #include <sys/arc.h> 36 #include <sys/stat.h> 37 #include <sys/zil.h> 38 #include <sys/zil_impl.h> 39 #include <sys/dsl_dataset.h> 40 #include <sys/vdev_impl.h> 41 #include <sys/dmu_tx.h> 42 #include <sys/dsl_pool.h> 43 #include <sys/metaslab.h> 44 #include <sys/trace_zfs.h> 45 #include <sys/abd.h> 46 #include <sys/brt.h> 47 #include <sys/wmsum.h> 48 49 /* 50 * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system 51 * calls that change the file system. Each itx has enough information to 52 * be able to replay them after a system crash, power loss, or 53 * equivalent failure mode. These are stored in memory until either: 54 * 55 * 1. they are committed to the pool by the DMU transaction group 56 * (txg), at which point they can be discarded; or 57 * 2. they are committed to the on-disk ZIL for the dataset being 58 * modified (e.g. due to an fsync, O_DSYNC, or other synchronous 59 * requirement). 60 * 61 * In the event of a crash or power loss, the itxs contained by each 62 * dataset's on-disk ZIL will be replayed when that dataset is first 63 * instantiated (e.g. if the dataset is a normal filesystem, when it is 64 * first mounted). 65 * 66 * As hinted at above, there is one ZIL per dataset (both the in-memory 67 * representation, and the on-disk representation). The on-disk format 68 * consists of 3 parts: 69 * 70 * - a single, per-dataset, ZIL header; which points to a chain of 71 * - zero or more ZIL blocks; each of which contains 72 * - zero or more ZIL records 73 * 74 * A ZIL record holds the information necessary to replay a single 75 * system call transaction. A ZIL block can hold many ZIL records, and 76 * the blocks are chained together, similarly to a singly linked list. 77 * 78 * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL 79 * block in the chain, and the ZIL header points to the first block in 80 * the chain. 81 * 82 * Note, there is not a fixed place in the pool to hold these ZIL 83 * blocks; they are dynamically allocated and freed as needed from the 84 * blocks available on the pool, though they can be preferentially 85 * allocated from a dedicated "log" vdev. 86 */ 87 88 /* 89 * This controls the amount of time that a ZIL block (lwb) will remain 90 * "open" when it isn't "full", and it has a thread waiting for it to be 91 * committed to stable storage. Please refer to the zil_commit_waiter() 92 * function (and the comments within it) for more details. 93 */ 94 static uint_t zfs_commit_timeout_pct = 10; 95 96 /* 97 * See zil.h for more information about these fields. 98 */ 99 static zil_kstat_values_t zil_stats = { 100 { "zil_commit_count", KSTAT_DATA_UINT64 }, 101 { "zil_commit_writer_count", KSTAT_DATA_UINT64 }, 102 { "zil_commit_error_count", KSTAT_DATA_UINT64 }, 103 { "zil_commit_stall_count", KSTAT_DATA_UINT64 }, 104 { "zil_commit_suspend_count", KSTAT_DATA_UINT64 }, 105 { "zil_itx_count", KSTAT_DATA_UINT64 }, 106 { "zil_itx_indirect_count", KSTAT_DATA_UINT64 }, 107 { "zil_itx_indirect_bytes", KSTAT_DATA_UINT64 }, 108 { "zil_itx_copied_count", KSTAT_DATA_UINT64 }, 109 { "zil_itx_copied_bytes", KSTAT_DATA_UINT64 }, 110 { "zil_itx_needcopy_count", KSTAT_DATA_UINT64 }, 111 { "zil_itx_needcopy_bytes", KSTAT_DATA_UINT64 }, 112 { "zil_itx_metaslab_normal_count", KSTAT_DATA_UINT64 }, 113 { "zil_itx_metaslab_normal_bytes", KSTAT_DATA_UINT64 }, 114 { "zil_itx_metaslab_normal_write", KSTAT_DATA_UINT64 }, 115 { "zil_itx_metaslab_normal_alloc", KSTAT_DATA_UINT64 }, 116 { "zil_itx_metaslab_slog_count", KSTAT_DATA_UINT64 }, 117 { "zil_itx_metaslab_slog_bytes", KSTAT_DATA_UINT64 }, 118 { "zil_itx_metaslab_slog_write", KSTAT_DATA_UINT64 }, 119 { "zil_itx_metaslab_slog_alloc", KSTAT_DATA_UINT64 }, 120 }; 121 122 static zil_sums_t zil_sums_global; 123 static kstat_t *zil_kstats_global; 124 125 /* 126 * Disable intent logging replay. This global ZIL switch affects all pools. 127 */ 128 int zil_replay_disable = 0; 129 130 /* 131 * Disable the flush commands that are normally sent to the disk(s) by the ZIL 132 * after an LWB write has completed. Setting this will cause ZIL corruption on 133 * power loss if a volatile out-of-order write cache is enabled. 134 */ 135 static int zil_nocacheflush = 0; 136 137 /* 138 * Limit SLOG write size per commit executed with synchronous priority. 139 * Any writes above that will be executed with lower (asynchronous) priority 140 * to limit potential SLOG device abuse by single active ZIL writer. 141 */ 142 static uint64_t zil_slog_bulk = 64 * 1024 * 1024; 143 144 static kmem_cache_t *zil_lwb_cache; 145 static kmem_cache_t *zil_zcw_cache; 146 147 static void zil_lwb_commit(zilog_t *zilog, lwb_t *lwb, itx_t *itx); 148 static itx_t *zil_itx_clone(itx_t *oitx); 149 static uint64_t zil_max_waste_space(zilog_t *zilog); 150 151 static int 152 zil_bp_compare(const void *x1, const void *x2) 153 { 154 const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva; 155 const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva; 156 157 int cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2)); 158 if (likely(cmp)) 159 return (cmp); 160 161 return (TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2))); 162 } 163 164 static void 165 zil_bp_tree_init(zilog_t *zilog) 166 { 167 avl_create(&zilog->zl_bp_tree, zil_bp_compare, 168 sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node)); 169 } 170 171 static void 172 zil_bp_tree_fini(zilog_t *zilog) 173 { 174 avl_tree_t *t = &zilog->zl_bp_tree; 175 zil_bp_node_t *zn; 176 void *cookie = NULL; 177 178 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL) 179 kmem_free(zn, sizeof (zil_bp_node_t)); 180 181 avl_destroy(t); 182 } 183 184 int 185 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp) 186 { 187 avl_tree_t *t = &zilog->zl_bp_tree; 188 const dva_t *dva; 189 zil_bp_node_t *zn; 190 avl_index_t where; 191 192 if (BP_IS_EMBEDDED(bp)) 193 return (0); 194 195 dva = BP_IDENTITY(bp); 196 197 if (avl_find(t, dva, &where) != NULL) 198 return (SET_ERROR(EEXIST)); 199 200 zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP); 201 zn->zn_dva = *dva; 202 avl_insert(t, zn, where); 203 204 return (0); 205 } 206 207 static zil_header_t * 208 zil_header_in_syncing_context(zilog_t *zilog) 209 { 210 return ((zil_header_t *)zilog->zl_header); 211 } 212 213 static void 214 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp) 215 { 216 zio_cksum_t *zc = &bp->blk_cksum; 217 218 (void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_0], 219 sizeof (zc->zc_word[ZIL_ZC_GUID_0])); 220 (void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_1], 221 sizeof (zc->zc_word[ZIL_ZC_GUID_1])); 222 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os); 223 zc->zc_word[ZIL_ZC_SEQ] = 1ULL; 224 } 225 226 static int 227 zil_kstats_global_update(kstat_t *ksp, int rw) 228 { 229 zil_kstat_values_t *zs = ksp->ks_data; 230 ASSERT3P(&zil_stats, ==, zs); 231 232 if (rw == KSTAT_WRITE) { 233 return (SET_ERROR(EACCES)); 234 } 235 236 zil_kstat_values_update(zs, &zil_sums_global); 237 238 return (0); 239 } 240 241 /* 242 * Read a log block and make sure it's valid. 243 */ 244 static int 245 zil_read_log_block(zilog_t *zilog, boolean_t decrypt, const blkptr_t *bp, 246 blkptr_t *nbp, char **begin, char **end, arc_buf_t **abuf) 247 { 248 zio_flag_t zio_flags = ZIO_FLAG_CANFAIL; 249 arc_flags_t aflags = ARC_FLAG_WAIT; 250 zbookmark_phys_t zb; 251 int error; 252 253 if (zilog->zl_header->zh_claim_txg == 0) 254 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; 255 256 if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) 257 zio_flags |= ZIO_FLAG_SPECULATIVE; 258 259 if (!decrypt) 260 zio_flags |= ZIO_FLAG_RAW; 261 262 SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET], 263 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); 264 265 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, 266 abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); 267 268 if (error == 0) { 269 zio_cksum_t cksum = bp->blk_cksum; 270 271 /* 272 * Validate the checksummed log block. 273 * 274 * Sequence numbers should be... sequential. The checksum 275 * verifier for the next block should be bp's checksum plus 1. 276 * 277 * Also check the log chain linkage and size used. 278 */ 279 cksum.zc_word[ZIL_ZC_SEQ]++; 280 281 uint64_t size = BP_GET_LSIZE(bp); 282 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { 283 zil_chain_t *zilc = (*abuf)->b_data; 284 char *lr = (char *)(zilc + 1); 285 286 if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum, 287 sizeof (cksum)) || 288 zilc->zc_nused < sizeof (*zilc) || 289 zilc->zc_nused > size) { 290 error = SET_ERROR(ECKSUM); 291 } else { 292 *begin = lr; 293 *end = lr + zilc->zc_nused - sizeof (*zilc); 294 *nbp = zilc->zc_next_blk; 295 } 296 } else { 297 char *lr = (*abuf)->b_data; 298 zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1; 299 300 if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum, 301 sizeof (cksum)) || 302 (zilc->zc_nused > (size - sizeof (*zilc)))) { 303 error = SET_ERROR(ECKSUM); 304 } else { 305 *begin = lr; 306 *end = lr + zilc->zc_nused; 307 *nbp = zilc->zc_next_blk; 308 } 309 } 310 } 311 312 return (error); 313 } 314 315 /* 316 * Read a TX_WRITE log data block. 317 */ 318 static int 319 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf) 320 { 321 zio_flag_t zio_flags = ZIO_FLAG_CANFAIL; 322 const blkptr_t *bp = &lr->lr_blkptr; 323 arc_flags_t aflags = ARC_FLAG_WAIT; 324 arc_buf_t *abuf = NULL; 325 zbookmark_phys_t zb; 326 int error; 327 328 if (BP_IS_HOLE(bp)) { 329 if (wbuf != NULL) 330 memset(wbuf, 0, MAX(BP_GET_LSIZE(bp), lr->lr_length)); 331 return (0); 332 } 333 334 if (zilog->zl_header->zh_claim_txg == 0) 335 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; 336 337 /* 338 * If we are not using the resulting data, we are just checking that 339 * it hasn't been corrupted so we don't need to waste CPU time 340 * decompressing and decrypting it. 341 */ 342 if (wbuf == NULL) 343 zio_flags |= ZIO_FLAG_RAW; 344 345 ASSERT3U(BP_GET_LSIZE(bp), !=, 0); 346 SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid, 347 ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp)); 348 349 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf, 350 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); 351 352 if (error == 0) { 353 if (wbuf != NULL) 354 memcpy(wbuf, abuf->b_data, arc_buf_size(abuf)); 355 arc_buf_destroy(abuf, &abuf); 356 } 357 358 return (error); 359 } 360 361 void 362 zil_sums_init(zil_sums_t *zs) 363 { 364 wmsum_init(&zs->zil_commit_count, 0); 365 wmsum_init(&zs->zil_commit_writer_count, 0); 366 wmsum_init(&zs->zil_commit_error_count, 0); 367 wmsum_init(&zs->zil_commit_stall_count, 0); 368 wmsum_init(&zs->zil_commit_suspend_count, 0); 369 wmsum_init(&zs->zil_itx_count, 0); 370 wmsum_init(&zs->zil_itx_indirect_count, 0); 371 wmsum_init(&zs->zil_itx_indirect_bytes, 0); 372 wmsum_init(&zs->zil_itx_copied_count, 0); 373 wmsum_init(&zs->zil_itx_copied_bytes, 0); 374 wmsum_init(&zs->zil_itx_needcopy_count, 0); 375 wmsum_init(&zs->zil_itx_needcopy_bytes, 0); 376 wmsum_init(&zs->zil_itx_metaslab_normal_count, 0); 377 wmsum_init(&zs->zil_itx_metaslab_normal_bytes, 0); 378 wmsum_init(&zs->zil_itx_metaslab_normal_write, 0); 379 wmsum_init(&zs->zil_itx_metaslab_normal_alloc, 0); 380 wmsum_init(&zs->zil_itx_metaslab_slog_count, 0); 381 wmsum_init(&zs->zil_itx_metaslab_slog_bytes, 0); 382 wmsum_init(&zs->zil_itx_metaslab_slog_write, 0); 383 wmsum_init(&zs->zil_itx_metaslab_slog_alloc, 0); 384 } 385 386 void 387 zil_sums_fini(zil_sums_t *zs) 388 { 389 wmsum_fini(&zs->zil_commit_count); 390 wmsum_fini(&zs->zil_commit_writer_count); 391 wmsum_fini(&zs->zil_commit_error_count); 392 wmsum_fini(&zs->zil_commit_stall_count); 393 wmsum_fini(&zs->zil_commit_suspend_count); 394 wmsum_fini(&zs->zil_itx_count); 395 wmsum_fini(&zs->zil_itx_indirect_count); 396 wmsum_fini(&zs->zil_itx_indirect_bytes); 397 wmsum_fini(&zs->zil_itx_copied_count); 398 wmsum_fini(&zs->zil_itx_copied_bytes); 399 wmsum_fini(&zs->zil_itx_needcopy_count); 400 wmsum_fini(&zs->zil_itx_needcopy_bytes); 401 wmsum_fini(&zs->zil_itx_metaslab_normal_count); 402 wmsum_fini(&zs->zil_itx_metaslab_normal_bytes); 403 wmsum_fini(&zs->zil_itx_metaslab_normal_write); 404 wmsum_fini(&zs->zil_itx_metaslab_normal_alloc); 405 wmsum_fini(&zs->zil_itx_metaslab_slog_count); 406 wmsum_fini(&zs->zil_itx_metaslab_slog_bytes); 407 wmsum_fini(&zs->zil_itx_metaslab_slog_write); 408 wmsum_fini(&zs->zil_itx_metaslab_slog_alloc); 409 } 410 411 void 412 zil_kstat_values_update(zil_kstat_values_t *zs, zil_sums_t *zil_sums) 413 { 414 zs->zil_commit_count.value.ui64 = 415 wmsum_value(&zil_sums->zil_commit_count); 416 zs->zil_commit_writer_count.value.ui64 = 417 wmsum_value(&zil_sums->zil_commit_writer_count); 418 zs->zil_commit_error_count.value.ui64 = 419 wmsum_value(&zil_sums->zil_commit_error_count); 420 zs->zil_commit_stall_count.value.ui64 = 421 wmsum_value(&zil_sums->zil_commit_stall_count); 422 zs->zil_commit_suspend_count.value.ui64 = 423 wmsum_value(&zil_sums->zil_commit_suspend_count); 424 zs->zil_itx_count.value.ui64 = 425 wmsum_value(&zil_sums->zil_itx_count); 426 zs->zil_itx_indirect_count.value.ui64 = 427 wmsum_value(&zil_sums->zil_itx_indirect_count); 428 zs->zil_itx_indirect_bytes.value.ui64 = 429 wmsum_value(&zil_sums->zil_itx_indirect_bytes); 430 zs->zil_itx_copied_count.value.ui64 = 431 wmsum_value(&zil_sums->zil_itx_copied_count); 432 zs->zil_itx_copied_bytes.value.ui64 = 433 wmsum_value(&zil_sums->zil_itx_copied_bytes); 434 zs->zil_itx_needcopy_count.value.ui64 = 435 wmsum_value(&zil_sums->zil_itx_needcopy_count); 436 zs->zil_itx_needcopy_bytes.value.ui64 = 437 wmsum_value(&zil_sums->zil_itx_needcopy_bytes); 438 zs->zil_itx_metaslab_normal_count.value.ui64 = 439 wmsum_value(&zil_sums->zil_itx_metaslab_normal_count); 440 zs->zil_itx_metaslab_normal_bytes.value.ui64 = 441 wmsum_value(&zil_sums->zil_itx_metaslab_normal_bytes); 442 zs->zil_itx_metaslab_normal_write.value.ui64 = 443 wmsum_value(&zil_sums->zil_itx_metaslab_normal_write); 444 zs->zil_itx_metaslab_normal_alloc.value.ui64 = 445 wmsum_value(&zil_sums->zil_itx_metaslab_normal_alloc); 446 zs->zil_itx_metaslab_slog_count.value.ui64 = 447 wmsum_value(&zil_sums->zil_itx_metaslab_slog_count); 448 zs->zil_itx_metaslab_slog_bytes.value.ui64 = 449 wmsum_value(&zil_sums->zil_itx_metaslab_slog_bytes); 450 zs->zil_itx_metaslab_slog_write.value.ui64 = 451 wmsum_value(&zil_sums->zil_itx_metaslab_slog_write); 452 zs->zil_itx_metaslab_slog_alloc.value.ui64 = 453 wmsum_value(&zil_sums->zil_itx_metaslab_slog_alloc); 454 } 455 456 /* 457 * Parse the intent log, and call parse_func for each valid record within. 458 */ 459 int 460 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func, 461 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg, 462 boolean_t decrypt) 463 { 464 const zil_header_t *zh = zilog->zl_header; 465 boolean_t claimed = !!zh->zh_claim_txg; 466 uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX; 467 uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX; 468 uint64_t max_blk_seq = 0; 469 uint64_t max_lr_seq = 0; 470 uint64_t blk_count = 0; 471 uint64_t lr_count = 0; 472 blkptr_t blk, next_blk = {{{{0}}}}; 473 int error = 0; 474 475 /* 476 * Old logs didn't record the maximum zh_claim_lr_seq. 477 */ 478 if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) 479 claim_lr_seq = UINT64_MAX; 480 481 /* 482 * Starting at the block pointed to by zh_log we read the log chain. 483 * For each block in the chain we strongly check that block to 484 * ensure its validity. We stop when an invalid block is found. 485 * For each block pointer in the chain we call parse_blk_func(). 486 * For each record in each valid block we call parse_lr_func(). 487 * If the log has been claimed, stop if we encounter a sequence 488 * number greater than the highest claimed sequence number. 489 */ 490 zil_bp_tree_init(zilog); 491 492 for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) { 493 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; 494 int reclen; 495 char *lrp, *end; 496 arc_buf_t *abuf = NULL; 497 498 if (blk_seq > claim_blk_seq) 499 break; 500 501 error = parse_blk_func(zilog, &blk, arg, txg); 502 if (error != 0) 503 break; 504 ASSERT3U(max_blk_seq, <, blk_seq); 505 max_blk_seq = blk_seq; 506 blk_count++; 507 508 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq) 509 break; 510 511 error = zil_read_log_block(zilog, decrypt, &blk, &next_blk, 512 &lrp, &end, &abuf); 513 if (error != 0) { 514 if (abuf) 515 arc_buf_destroy(abuf, &abuf); 516 if (claimed) { 517 char name[ZFS_MAX_DATASET_NAME_LEN]; 518 519 dmu_objset_name(zilog->zl_os, name); 520 521 cmn_err(CE_WARN, "ZFS read log block error %d, " 522 "dataset %s, seq 0x%llx\n", error, name, 523 (u_longlong_t)blk_seq); 524 } 525 break; 526 } 527 528 for (; lrp < end; lrp += reclen) { 529 lr_t *lr = (lr_t *)lrp; 530 531 /* 532 * Are the remaining bytes large enough to hold an 533 * log record? 534 */ 535 if ((char *)(lr + 1) > end) { 536 cmn_err(CE_WARN, "zil_parse: lr_t overrun"); 537 error = SET_ERROR(ECKSUM); 538 arc_buf_destroy(abuf, &abuf); 539 goto done; 540 } 541 reclen = lr->lrc_reclen; 542 if (reclen < sizeof (lr_t) || reclen > end - lrp) { 543 cmn_err(CE_WARN, 544 "zil_parse: lr_t has an invalid reclen"); 545 error = SET_ERROR(ECKSUM); 546 arc_buf_destroy(abuf, &abuf); 547 goto done; 548 } 549 550 if (lr->lrc_seq > claim_lr_seq) { 551 arc_buf_destroy(abuf, &abuf); 552 goto done; 553 } 554 555 error = parse_lr_func(zilog, lr, arg, txg); 556 if (error != 0) { 557 arc_buf_destroy(abuf, &abuf); 558 goto done; 559 } 560 ASSERT3U(max_lr_seq, <, lr->lrc_seq); 561 max_lr_seq = lr->lrc_seq; 562 lr_count++; 563 } 564 arc_buf_destroy(abuf, &abuf); 565 } 566 done: 567 zilog->zl_parse_error = error; 568 zilog->zl_parse_blk_seq = max_blk_seq; 569 zilog->zl_parse_lr_seq = max_lr_seq; 570 zilog->zl_parse_blk_count = blk_count; 571 zilog->zl_parse_lr_count = lr_count; 572 573 zil_bp_tree_fini(zilog); 574 575 return (error); 576 } 577 578 static int 579 zil_clear_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx, 580 uint64_t first_txg) 581 { 582 (void) tx; 583 ASSERT(!BP_IS_HOLE(bp)); 584 585 /* 586 * As we call this function from the context of a rewind to a 587 * checkpoint, each ZIL block whose txg is later than the txg 588 * that we rewind to is invalid. Thus, we return -1 so 589 * zil_parse() doesn't attempt to read it. 590 */ 591 if (BP_GET_LOGICAL_BIRTH(bp) >= first_txg) 592 return (-1); 593 594 if (zil_bp_tree_add(zilog, bp) != 0) 595 return (0); 596 597 zio_free(zilog->zl_spa, first_txg, bp); 598 return (0); 599 } 600 601 static int 602 zil_noop_log_record(zilog_t *zilog, const lr_t *lrc, void *tx, 603 uint64_t first_txg) 604 { 605 (void) zilog, (void) lrc, (void) tx, (void) first_txg; 606 return (0); 607 } 608 609 static int 610 zil_claim_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx, 611 uint64_t first_txg) 612 { 613 /* 614 * Claim log block if not already committed and not already claimed. 615 * If tx == NULL, just verify that the block is claimable. 616 */ 617 if (BP_IS_HOLE(bp) || BP_GET_LOGICAL_BIRTH(bp) < first_txg || 618 zil_bp_tree_add(zilog, bp) != 0) 619 return (0); 620 621 return (zio_wait(zio_claim(NULL, zilog->zl_spa, 622 tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL, 623 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB))); 624 } 625 626 static int 627 zil_claim_write(zilog_t *zilog, const lr_t *lrc, void *tx, uint64_t first_txg) 628 { 629 lr_write_t *lr = (lr_write_t *)lrc; 630 int error; 631 632 ASSERT3U(lrc->lrc_reclen, >=, sizeof (*lr)); 633 634 /* 635 * If the block is not readable, don't claim it. This can happen 636 * in normal operation when a log block is written to disk before 637 * some of the dmu_sync() blocks it points to. In this case, the 638 * transaction cannot have been committed to anyone (we would have 639 * waited for all writes to be stable first), so it is semantically 640 * correct to declare this the end of the log. 641 */ 642 if (BP_GET_LOGICAL_BIRTH(&lr->lr_blkptr) >= first_txg) { 643 error = zil_read_log_data(zilog, lr, NULL); 644 if (error != 0) 645 return (error); 646 } 647 648 return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg)); 649 } 650 651 static int 652 zil_claim_clone_range(zilog_t *zilog, const lr_t *lrc, void *tx, 653 uint64_t first_txg) 654 { 655 const lr_clone_range_t *lr = (const lr_clone_range_t *)lrc; 656 const blkptr_t *bp; 657 spa_t *spa = zilog->zl_spa; 658 uint_t ii; 659 660 ASSERT3U(lrc->lrc_reclen, >=, sizeof (*lr)); 661 ASSERT3U(lrc->lrc_reclen, >=, offsetof(lr_clone_range_t, 662 lr_bps[lr->lr_nbps])); 663 664 if (tx == NULL) { 665 return (0); 666 } 667 668 /* 669 * XXX: Do we need to byteswap lr? 670 */ 671 672 for (ii = 0; ii < lr->lr_nbps; ii++) { 673 bp = &lr->lr_bps[ii]; 674 675 /* 676 * When data is embedded into the BP there is no need to create 677 * BRT entry as there is no data block. Just copy the BP as it 678 * contains the data. 679 */ 680 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) 681 continue; 682 683 /* 684 * We can not handle block pointers from the future, since they 685 * are not yet allocated. It should not normally happen, but 686 * just in case lets be safe and just stop here now instead of 687 * corrupting the pool. 688 */ 689 if (BP_GET_BIRTH(bp) >= first_txg) 690 return (SET_ERROR(ENOENT)); 691 692 /* 693 * Assert the block is really allocated before we reference it. 694 */ 695 metaslab_check_free(spa, bp); 696 } 697 698 for (ii = 0; ii < lr->lr_nbps; ii++) { 699 bp = &lr->lr_bps[ii]; 700 if (!BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) 701 brt_pending_add(spa, bp, tx); 702 } 703 704 return (0); 705 } 706 707 static int 708 zil_claim_log_record(zilog_t *zilog, const lr_t *lrc, void *tx, 709 uint64_t first_txg) 710 { 711 712 switch (lrc->lrc_txtype) { 713 case TX_WRITE: 714 return (zil_claim_write(zilog, lrc, tx, first_txg)); 715 case TX_CLONE_RANGE: 716 return (zil_claim_clone_range(zilog, lrc, tx, first_txg)); 717 default: 718 return (0); 719 } 720 } 721 722 static int 723 zil_free_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx, 724 uint64_t claim_txg) 725 { 726 (void) claim_txg; 727 728 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp); 729 730 return (0); 731 } 732 733 static int 734 zil_free_write(zilog_t *zilog, const lr_t *lrc, void *tx, uint64_t claim_txg) 735 { 736 lr_write_t *lr = (lr_write_t *)lrc; 737 blkptr_t *bp = &lr->lr_blkptr; 738 739 ASSERT3U(lrc->lrc_reclen, >=, sizeof (*lr)); 740 741 /* 742 * If we previously claimed it, we need to free it. 743 */ 744 if (BP_GET_LOGICAL_BIRTH(bp) >= claim_txg && 745 zil_bp_tree_add(zilog, bp) == 0 && !BP_IS_HOLE(bp)) { 746 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp); 747 } 748 749 return (0); 750 } 751 752 static int 753 zil_free_clone_range(zilog_t *zilog, const lr_t *lrc, void *tx) 754 { 755 const lr_clone_range_t *lr = (const lr_clone_range_t *)lrc; 756 const blkptr_t *bp; 757 spa_t *spa; 758 uint_t ii; 759 760 ASSERT3U(lrc->lrc_reclen, >=, sizeof (*lr)); 761 ASSERT3U(lrc->lrc_reclen, >=, offsetof(lr_clone_range_t, 762 lr_bps[lr->lr_nbps])); 763 764 if (tx == NULL) { 765 return (0); 766 } 767 768 spa = zilog->zl_spa; 769 770 for (ii = 0; ii < lr->lr_nbps; ii++) { 771 bp = &lr->lr_bps[ii]; 772 773 if (!BP_IS_HOLE(bp)) { 774 zio_free(spa, dmu_tx_get_txg(tx), bp); 775 } 776 } 777 778 return (0); 779 } 780 781 static int 782 zil_free_log_record(zilog_t *zilog, const lr_t *lrc, void *tx, 783 uint64_t claim_txg) 784 { 785 786 if (claim_txg == 0) { 787 return (0); 788 } 789 790 switch (lrc->lrc_txtype) { 791 case TX_WRITE: 792 return (zil_free_write(zilog, lrc, tx, claim_txg)); 793 case TX_CLONE_RANGE: 794 return (zil_free_clone_range(zilog, lrc, tx)); 795 default: 796 return (0); 797 } 798 } 799 800 static int 801 zil_lwb_vdev_compare(const void *x1, const void *x2) 802 { 803 const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev; 804 const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev; 805 806 return (TREE_CMP(v1, v2)); 807 } 808 809 /* 810 * Allocate a new lwb. We may already have a block pointer for it, in which 811 * case we get size and version from there. Or we may not yet, in which case 812 * we choose them here and later make the block allocation match. 813 */ 814 static lwb_t * 815 zil_alloc_lwb(zilog_t *zilog, int sz, blkptr_t *bp, boolean_t slog, 816 uint64_t txg, lwb_state_t state) 817 { 818 lwb_t *lwb; 819 820 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); 821 lwb->lwb_zilog = zilog; 822 if (bp) { 823 lwb->lwb_blk = *bp; 824 lwb->lwb_slim = (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2); 825 sz = BP_GET_LSIZE(bp); 826 } else { 827 BP_ZERO(&lwb->lwb_blk); 828 lwb->lwb_slim = (spa_version(zilog->zl_spa) >= 829 SPA_VERSION_SLIM_ZIL); 830 } 831 lwb->lwb_slog = slog; 832 lwb->lwb_error = 0; 833 if (lwb->lwb_slim) { 834 lwb->lwb_nmax = sz; 835 lwb->lwb_nused = lwb->lwb_nfilled = sizeof (zil_chain_t); 836 } else { 837 lwb->lwb_nmax = sz - sizeof (zil_chain_t); 838 lwb->lwb_nused = lwb->lwb_nfilled = 0; 839 } 840 lwb->lwb_sz = sz; 841 lwb->lwb_state = state; 842 lwb->lwb_buf = zio_buf_alloc(sz); 843 lwb->lwb_child_zio = NULL; 844 lwb->lwb_write_zio = NULL; 845 lwb->lwb_root_zio = NULL; 846 lwb->lwb_issued_timestamp = 0; 847 lwb->lwb_issued_txg = 0; 848 lwb->lwb_alloc_txg = txg; 849 lwb->lwb_max_txg = 0; 850 851 mutex_enter(&zilog->zl_lock); 852 list_insert_tail(&zilog->zl_lwb_list, lwb); 853 if (state != LWB_STATE_NEW) 854 zilog->zl_last_lwb_opened = lwb; 855 mutex_exit(&zilog->zl_lock); 856 857 return (lwb); 858 } 859 860 static void 861 zil_free_lwb(zilog_t *zilog, lwb_t *lwb) 862 { 863 ASSERT(MUTEX_HELD(&zilog->zl_lock)); 864 ASSERT(lwb->lwb_state == LWB_STATE_NEW || 865 lwb->lwb_state == LWB_STATE_FLUSH_DONE); 866 ASSERT3P(lwb->lwb_child_zio, ==, NULL); 867 ASSERT3P(lwb->lwb_write_zio, ==, NULL); 868 ASSERT3P(lwb->lwb_root_zio, ==, NULL); 869 ASSERT3U(lwb->lwb_alloc_txg, <=, spa_syncing_txg(zilog->zl_spa)); 870 ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa)); 871 VERIFY(list_is_empty(&lwb->lwb_itxs)); 872 VERIFY(list_is_empty(&lwb->lwb_waiters)); 873 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree)); 874 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock)); 875 876 /* 877 * Clear the zilog's field to indicate this lwb is no longer 878 * valid, and prevent use-after-free errors. 879 */ 880 if (zilog->zl_last_lwb_opened == lwb) 881 zilog->zl_last_lwb_opened = NULL; 882 883 kmem_cache_free(zil_lwb_cache, lwb); 884 } 885 886 /* 887 * Called when we create in-memory log transactions so that we know 888 * to cleanup the itxs at the end of spa_sync(). 889 */ 890 static void 891 zilog_dirty(zilog_t *zilog, uint64_t txg) 892 { 893 dsl_pool_t *dp = zilog->zl_dmu_pool; 894 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 895 896 ASSERT(spa_writeable(zilog->zl_spa)); 897 898 if (ds->ds_is_snapshot) 899 panic("dirtying snapshot!"); 900 901 if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) { 902 /* up the hold count until we can be written out */ 903 dmu_buf_add_ref(ds->ds_dbuf, zilog); 904 905 zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg); 906 } 907 } 908 909 /* 910 * Determine if the zil is dirty in the specified txg. Callers wanting to 911 * ensure that the dirty state does not change must hold the itxg_lock for 912 * the specified txg. Holding the lock will ensure that the zil cannot be 913 * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current 914 * state. 915 */ 916 static boolean_t __maybe_unused 917 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg) 918 { 919 dsl_pool_t *dp = zilog->zl_dmu_pool; 920 921 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK)) 922 return (B_TRUE); 923 return (B_FALSE); 924 } 925 926 /* 927 * Determine if the zil is dirty. The zil is considered dirty if it has 928 * any pending itx records that have not been cleaned by zil_clean(). 929 */ 930 static boolean_t 931 zilog_is_dirty(zilog_t *zilog) 932 { 933 dsl_pool_t *dp = zilog->zl_dmu_pool; 934 935 for (int t = 0; t < TXG_SIZE; t++) { 936 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t)) 937 return (B_TRUE); 938 } 939 return (B_FALSE); 940 } 941 942 /* 943 * Its called in zil_commit context (zil_process_commit_list()/zil_create()). 944 * It activates SPA_FEATURE_ZILSAXATTR feature, if its enabled. 945 * Check dsl_dataset_feature_is_active to avoid txg_wait_synced() on every 946 * zil_commit. 947 */ 948 static void 949 zil_commit_activate_saxattr_feature(zilog_t *zilog) 950 { 951 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 952 uint64_t txg = 0; 953 dmu_tx_t *tx = NULL; 954 955 if (spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) && 956 dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL && 957 !dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR)) { 958 tx = dmu_tx_create(zilog->zl_os); 959 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 960 dsl_dataset_dirty(ds, tx); 961 txg = dmu_tx_get_txg(tx); 962 963 mutex_enter(&ds->ds_lock); 964 ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] = 965 (void *)B_TRUE; 966 mutex_exit(&ds->ds_lock); 967 dmu_tx_commit(tx); 968 txg_wait_synced(zilog->zl_dmu_pool, txg); 969 } 970 } 971 972 /* 973 * Create an on-disk intent log. 974 */ 975 static lwb_t * 976 zil_create(zilog_t *zilog) 977 { 978 const zil_header_t *zh = zilog->zl_header; 979 lwb_t *lwb = NULL; 980 uint64_t txg = 0; 981 dmu_tx_t *tx = NULL; 982 blkptr_t blk; 983 int error = 0; 984 boolean_t slog = FALSE; 985 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 986 987 988 /* 989 * Wait for any previous destroy to complete. 990 */ 991 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 992 993 ASSERT(zh->zh_claim_txg == 0); 994 ASSERT(zh->zh_replay_seq == 0); 995 996 blk = zh->zh_log; 997 998 /* 999 * Allocate an initial log block if: 1000 * - there isn't one already 1001 * - the existing block is the wrong endianness 1002 */ 1003 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) { 1004 tx = dmu_tx_create(zilog->zl_os); 1005 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 1006 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 1007 txg = dmu_tx_get_txg(tx); 1008 1009 if (!BP_IS_HOLE(&blk)) { 1010 zio_free(zilog->zl_spa, txg, &blk); 1011 BP_ZERO(&blk); 1012 } 1013 1014 error = zio_alloc_zil(zilog->zl_spa, zilog->zl_os, txg, &blk, 1015 ZIL_MIN_BLKSZ, &slog); 1016 if (error == 0) 1017 zil_init_log_chain(zilog, &blk); 1018 } 1019 1020 /* 1021 * Allocate a log write block (lwb) for the first log block. 1022 */ 1023 if (error == 0) 1024 lwb = zil_alloc_lwb(zilog, 0, &blk, slog, txg, LWB_STATE_NEW); 1025 1026 /* 1027 * If we just allocated the first log block, commit our transaction 1028 * and wait for zil_sync() to stuff the block pointer into zh_log. 1029 * (zh is part of the MOS, so we cannot modify it in open context.) 1030 */ 1031 if (tx != NULL) { 1032 /* 1033 * If "zilsaxattr" feature is enabled on zpool, then activate 1034 * it now when we're creating the ZIL chain. We can't wait with 1035 * this until we write the first xattr log record because we 1036 * need to wait for the feature activation to sync out. 1037 */ 1038 if (spa_feature_is_enabled(zilog->zl_spa, 1039 SPA_FEATURE_ZILSAXATTR) && dmu_objset_type(zilog->zl_os) != 1040 DMU_OST_ZVOL) { 1041 mutex_enter(&ds->ds_lock); 1042 ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] = 1043 (void *)B_TRUE; 1044 mutex_exit(&ds->ds_lock); 1045 } 1046 1047 dmu_tx_commit(tx); 1048 txg_wait_synced(zilog->zl_dmu_pool, txg); 1049 } else { 1050 /* 1051 * This branch covers the case where we enable the feature on a 1052 * zpool that has existing ZIL headers. 1053 */ 1054 zil_commit_activate_saxattr_feature(zilog); 1055 } 1056 IMPLY(spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) && 1057 dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL, 1058 dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR)); 1059 1060 ASSERT(error != 0 || memcmp(&blk, &zh->zh_log, sizeof (blk)) == 0); 1061 IMPLY(error == 0, lwb != NULL); 1062 1063 return (lwb); 1064 } 1065 1066 /* 1067 * In one tx, free all log blocks and clear the log header. If keep_first 1068 * is set, then we're replaying a log with no content. We want to keep the 1069 * first block, however, so that the first synchronous transaction doesn't 1070 * require a txg_wait_synced() in zil_create(). We don't need to 1071 * txg_wait_synced() here either when keep_first is set, because both 1072 * zil_create() and zil_destroy() will wait for any in-progress destroys 1073 * to complete. 1074 * Return B_TRUE if there were any entries to replay. 1075 */ 1076 boolean_t 1077 zil_destroy(zilog_t *zilog, boolean_t keep_first) 1078 { 1079 const zil_header_t *zh = zilog->zl_header; 1080 lwb_t *lwb; 1081 dmu_tx_t *tx; 1082 uint64_t txg; 1083 1084 /* 1085 * Wait for any previous destroy to complete. 1086 */ 1087 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 1088 1089 zilog->zl_old_header = *zh; /* debugging aid */ 1090 1091 if (BP_IS_HOLE(&zh->zh_log)) 1092 return (B_FALSE); 1093 1094 tx = dmu_tx_create(zilog->zl_os); 1095 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 1096 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 1097 txg = dmu_tx_get_txg(tx); 1098 1099 mutex_enter(&zilog->zl_lock); 1100 1101 ASSERT3U(zilog->zl_destroy_txg, <, txg); 1102 zilog->zl_destroy_txg = txg; 1103 zilog->zl_keep_first = keep_first; 1104 1105 if (!list_is_empty(&zilog->zl_lwb_list)) { 1106 ASSERT(zh->zh_claim_txg == 0); 1107 VERIFY(!keep_first); 1108 while ((lwb = list_remove_head(&zilog->zl_lwb_list)) != NULL) { 1109 if (lwb->lwb_buf != NULL) 1110 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 1111 if (!BP_IS_HOLE(&lwb->lwb_blk)) 1112 zio_free(zilog->zl_spa, txg, &lwb->lwb_blk); 1113 zil_free_lwb(zilog, lwb); 1114 } 1115 } else if (!keep_first) { 1116 zil_destroy_sync(zilog, tx); 1117 } 1118 mutex_exit(&zilog->zl_lock); 1119 1120 dmu_tx_commit(tx); 1121 1122 return (B_TRUE); 1123 } 1124 1125 void 1126 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx) 1127 { 1128 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 1129 (void) zil_parse(zilog, zil_free_log_block, 1130 zil_free_log_record, tx, zilog->zl_header->zh_claim_txg, B_FALSE); 1131 } 1132 1133 int 1134 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg) 1135 { 1136 dmu_tx_t *tx = txarg; 1137 zilog_t *zilog; 1138 uint64_t first_txg; 1139 zil_header_t *zh; 1140 objset_t *os; 1141 int error; 1142 1143 error = dmu_objset_own_obj(dp, ds->ds_object, 1144 DMU_OST_ANY, B_FALSE, B_FALSE, FTAG, &os); 1145 if (error != 0) { 1146 /* 1147 * EBUSY indicates that the objset is inconsistent, in which 1148 * case it can not have a ZIL. 1149 */ 1150 if (error != EBUSY) { 1151 cmn_err(CE_WARN, "can't open objset for %llu, error %u", 1152 (unsigned long long)ds->ds_object, error); 1153 } 1154 1155 return (0); 1156 } 1157 1158 zilog = dmu_objset_zil(os); 1159 zh = zil_header_in_syncing_context(zilog); 1160 ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa)); 1161 first_txg = spa_min_claim_txg(zilog->zl_spa); 1162 1163 /* 1164 * If the spa_log_state is not set to be cleared, check whether 1165 * the current uberblock is a checkpoint one and if the current 1166 * header has been claimed before moving on. 1167 * 1168 * If the current uberblock is a checkpointed uberblock then 1169 * one of the following scenarios took place: 1170 * 1171 * 1] We are currently rewinding to the checkpoint of the pool. 1172 * 2] We crashed in the middle of a checkpoint rewind but we 1173 * did manage to write the checkpointed uberblock to the 1174 * vdev labels, so when we tried to import the pool again 1175 * the checkpointed uberblock was selected from the import 1176 * procedure. 1177 * 1178 * In both cases we want to zero out all the ZIL blocks, except 1179 * the ones that have been claimed at the time of the checkpoint 1180 * (their zh_claim_txg != 0). The reason is that these blocks 1181 * may be corrupted since we may have reused their locations on 1182 * disk after we took the checkpoint. 1183 * 1184 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier 1185 * when we first figure out whether the current uberblock is 1186 * checkpointed or not. Unfortunately, that would discard all 1187 * the logs, including the ones that are claimed, and we would 1188 * leak space. 1189 */ 1190 if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR || 1191 (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 && 1192 zh->zh_claim_txg == 0)) { 1193 if (!BP_IS_HOLE(&zh->zh_log)) { 1194 (void) zil_parse(zilog, zil_clear_log_block, 1195 zil_noop_log_record, tx, first_txg, B_FALSE); 1196 } 1197 BP_ZERO(&zh->zh_log); 1198 if (os->os_encrypted) 1199 os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE; 1200 dsl_dataset_dirty(dmu_objset_ds(os), tx); 1201 dmu_objset_disown(os, B_FALSE, FTAG); 1202 return (0); 1203 } 1204 1205 /* 1206 * If we are not rewinding and opening the pool normally, then 1207 * the min_claim_txg should be equal to the first txg of the pool. 1208 */ 1209 ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa)); 1210 1211 /* 1212 * Claim all log blocks if we haven't already done so, and remember 1213 * the highest claimed sequence number. This ensures that if we can 1214 * read only part of the log now (e.g. due to a missing device), 1215 * but we can read the entire log later, we will not try to replay 1216 * or destroy beyond the last block we successfully claimed. 1217 */ 1218 ASSERT3U(zh->zh_claim_txg, <=, first_txg); 1219 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) { 1220 (void) zil_parse(zilog, zil_claim_log_block, 1221 zil_claim_log_record, tx, first_txg, B_FALSE); 1222 zh->zh_claim_txg = first_txg; 1223 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq; 1224 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq; 1225 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1) 1226 zh->zh_flags |= ZIL_REPLAY_NEEDED; 1227 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID; 1228 if (os->os_encrypted) 1229 os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE; 1230 dsl_dataset_dirty(dmu_objset_ds(os), tx); 1231 } 1232 1233 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1)); 1234 dmu_objset_disown(os, B_FALSE, FTAG); 1235 return (0); 1236 } 1237 1238 /* 1239 * Check the log by walking the log chain. 1240 * Checksum errors are ok as they indicate the end of the chain. 1241 * Any other error (no device or read failure) returns an error. 1242 */ 1243 int 1244 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx) 1245 { 1246 (void) dp; 1247 zilog_t *zilog; 1248 objset_t *os; 1249 blkptr_t *bp; 1250 int error; 1251 1252 ASSERT(tx == NULL); 1253 1254 error = dmu_objset_from_ds(ds, &os); 1255 if (error != 0) { 1256 cmn_err(CE_WARN, "can't open objset %llu, error %d", 1257 (unsigned long long)ds->ds_object, error); 1258 return (0); 1259 } 1260 1261 zilog = dmu_objset_zil(os); 1262 bp = (blkptr_t *)&zilog->zl_header->zh_log; 1263 1264 if (!BP_IS_HOLE(bp)) { 1265 vdev_t *vd; 1266 boolean_t valid = B_TRUE; 1267 1268 /* 1269 * Check the first block and determine if it's on a log device 1270 * which may have been removed or faulted prior to loading this 1271 * pool. If so, there's no point in checking the rest of the 1272 * log as its content should have already been synced to the 1273 * pool. 1274 */ 1275 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER); 1276 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0])); 1277 if (vd->vdev_islog && vdev_is_dead(vd)) 1278 valid = vdev_log_state_valid(vd); 1279 spa_config_exit(os->os_spa, SCL_STATE, FTAG); 1280 1281 if (!valid) 1282 return (0); 1283 1284 /* 1285 * Check whether the current uberblock is checkpointed (e.g. 1286 * we are rewinding) and whether the current header has been 1287 * claimed or not. If it hasn't then skip verifying it. We 1288 * do this because its ZIL blocks may be part of the pool's 1289 * state before the rewind, which is no longer valid. 1290 */ 1291 zil_header_t *zh = zil_header_in_syncing_context(zilog); 1292 if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 && 1293 zh->zh_claim_txg == 0) 1294 return (0); 1295 } 1296 1297 /* 1298 * Because tx == NULL, zil_claim_log_block() will not actually claim 1299 * any blocks, but just determine whether it is possible to do so. 1300 * In addition to checking the log chain, zil_claim_log_block() 1301 * will invoke zio_claim() with a done func of spa_claim_notify(), 1302 * which will update spa_max_claim_txg. See spa_load() for details. 1303 */ 1304 error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx, 1305 zilog->zl_header->zh_claim_txg ? -1ULL : 1306 spa_min_claim_txg(os->os_spa), B_FALSE); 1307 1308 return ((error == ECKSUM || error == ENOENT) ? 0 : error); 1309 } 1310 1311 /* 1312 * When an itx is "skipped", this function is used to properly mark the 1313 * waiter as "done, and signal any thread(s) waiting on it. An itx can 1314 * be skipped (and not committed to an lwb) for a variety of reasons, 1315 * one of them being that the itx was committed via spa_sync(), prior to 1316 * it being committed to an lwb; this can happen if a thread calling 1317 * zil_commit() is racing with spa_sync(). 1318 */ 1319 static void 1320 zil_commit_waiter_skip(zil_commit_waiter_t *zcw) 1321 { 1322 mutex_enter(&zcw->zcw_lock); 1323 ASSERT3B(zcw->zcw_done, ==, B_FALSE); 1324 zcw->zcw_done = B_TRUE; 1325 cv_broadcast(&zcw->zcw_cv); 1326 mutex_exit(&zcw->zcw_lock); 1327 } 1328 1329 /* 1330 * This function is used when the given waiter is to be linked into an 1331 * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb. 1332 * At this point, the waiter will no longer be referenced by the itx, 1333 * and instead, will be referenced by the lwb. 1334 */ 1335 static void 1336 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb) 1337 { 1338 /* 1339 * The lwb_waiters field of the lwb is protected by the zilog's 1340 * zl_issuer_lock while the lwb is open and zl_lock otherwise. 1341 * zl_issuer_lock also protects leaving the open state. 1342 * zcw_lwb setting is protected by zl_issuer_lock and state != 1343 * flush_done, which transition is protected by zl_lock. 1344 */ 1345 ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_issuer_lock)); 1346 IMPLY(lwb->lwb_state != LWB_STATE_OPENED, 1347 MUTEX_HELD(&lwb->lwb_zilog->zl_lock)); 1348 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_NEW); 1349 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE); 1350 1351 ASSERT(!list_link_active(&zcw->zcw_node)); 1352 list_insert_tail(&lwb->lwb_waiters, zcw); 1353 ASSERT3P(zcw->zcw_lwb, ==, NULL); 1354 zcw->zcw_lwb = lwb; 1355 } 1356 1357 /* 1358 * This function is used when zio_alloc_zil() fails to allocate a ZIL 1359 * block, and the given waiter must be linked to the "nolwb waiters" 1360 * list inside of zil_process_commit_list(). 1361 */ 1362 static void 1363 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb) 1364 { 1365 ASSERT(!list_link_active(&zcw->zcw_node)); 1366 list_insert_tail(nolwb, zcw); 1367 ASSERT3P(zcw->zcw_lwb, ==, NULL); 1368 } 1369 1370 void 1371 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp) 1372 { 1373 avl_tree_t *t = &lwb->lwb_vdev_tree; 1374 avl_index_t where; 1375 zil_vdev_node_t *zv, zvsearch; 1376 int ndvas = BP_GET_NDVAS(bp); 1377 int i; 1378 1379 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE); 1380 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE); 1381 1382 if (zil_nocacheflush) 1383 return; 1384 1385 mutex_enter(&lwb->lwb_vdev_lock); 1386 for (i = 0; i < ndvas; i++) { 1387 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]); 1388 if (avl_find(t, &zvsearch, &where) == NULL) { 1389 zv = kmem_alloc(sizeof (*zv), KM_SLEEP); 1390 zv->zv_vdev = zvsearch.zv_vdev; 1391 avl_insert(t, zv, where); 1392 } 1393 } 1394 mutex_exit(&lwb->lwb_vdev_lock); 1395 } 1396 1397 static void 1398 zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb) 1399 { 1400 avl_tree_t *src = &lwb->lwb_vdev_tree; 1401 avl_tree_t *dst = &nlwb->lwb_vdev_tree; 1402 void *cookie = NULL; 1403 zil_vdev_node_t *zv; 1404 1405 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE); 1406 ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE); 1407 ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE); 1408 1409 /* 1410 * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does 1411 * not need the protection of lwb_vdev_lock (it will only be modified 1412 * while holding zilog->zl_lock) as its writes and those of its 1413 * children have all completed. The younger 'nlwb' may be waiting on 1414 * future writes to additional vdevs. 1415 */ 1416 mutex_enter(&nlwb->lwb_vdev_lock); 1417 /* 1418 * Tear down the 'lwb' vdev tree, ensuring that entries which do not 1419 * exist in 'nlwb' are moved to it, freeing any would-be duplicates. 1420 */ 1421 while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) { 1422 avl_index_t where; 1423 1424 if (avl_find(dst, zv, &where) == NULL) { 1425 avl_insert(dst, zv, where); 1426 } else { 1427 kmem_free(zv, sizeof (*zv)); 1428 } 1429 } 1430 mutex_exit(&nlwb->lwb_vdev_lock); 1431 } 1432 1433 void 1434 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg) 1435 { 1436 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg); 1437 } 1438 1439 /* 1440 * This function is a called after all vdevs associated with a given lwb write 1441 * have completed their flush command; or as soon as the lwb write completes, 1442 * if "zil_nocacheflush" is set. Further, all "previous" lwb's will have 1443 * completed before this function is called; i.e. this function is called for 1444 * all previous lwbs before it's called for "this" lwb (enforced via zio the 1445 * dependencies configured in zil_lwb_set_zio_dependency()). 1446 * 1447 * The intention is for this function to be called as soon as the contents of 1448 * an lwb are considered "stable" on disk, and will survive any sudden loss of 1449 * power. At this point, any threads waiting for the lwb to reach this state 1450 * are signalled, and the "waiter" structures are marked "done". 1451 */ 1452 static void 1453 zil_lwb_flush_vdevs_done(zio_t *zio) 1454 { 1455 lwb_t *lwb = zio->io_private; 1456 zilog_t *zilog = lwb->lwb_zilog; 1457 zil_commit_waiter_t *zcw; 1458 itx_t *itx; 1459 1460 spa_config_exit(zilog->zl_spa, SCL_STATE, lwb); 1461 1462 hrtime_t t = gethrtime() - lwb->lwb_issued_timestamp; 1463 1464 mutex_enter(&zilog->zl_lock); 1465 1466 zilog->zl_last_lwb_latency = (zilog->zl_last_lwb_latency * 7 + t) / 8; 1467 1468 lwb->lwb_root_zio = NULL; 1469 1470 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE); 1471 lwb->lwb_state = LWB_STATE_FLUSH_DONE; 1472 1473 if (zilog->zl_last_lwb_opened == lwb) { 1474 /* 1475 * Remember the highest committed log sequence number 1476 * for ztest. We only update this value when all the log 1477 * writes succeeded, because ztest wants to ASSERT that 1478 * it got the whole log chain. 1479 */ 1480 zilog->zl_commit_lr_seq = zilog->zl_lr_seq; 1481 } 1482 1483 while ((itx = list_remove_head(&lwb->lwb_itxs)) != NULL) 1484 zil_itx_destroy(itx); 1485 1486 while ((zcw = list_remove_head(&lwb->lwb_waiters)) != NULL) { 1487 mutex_enter(&zcw->zcw_lock); 1488 1489 ASSERT3P(zcw->zcw_lwb, ==, lwb); 1490 zcw->zcw_lwb = NULL; 1491 /* 1492 * We expect any ZIO errors from child ZIOs to have been 1493 * propagated "up" to this specific LWB's root ZIO, in 1494 * order for this error handling to work correctly. This 1495 * includes ZIO errors from either this LWB's write or 1496 * flush, as well as any errors from other dependent LWBs 1497 * (e.g. a root LWB ZIO that might be a child of this LWB). 1498 * 1499 * With that said, it's important to note that LWB flush 1500 * errors are not propagated up to the LWB root ZIO. 1501 * This is incorrect behavior, and results in VDEV flush 1502 * errors not being handled correctly here. See the 1503 * comment above the call to "zio_flush" for details. 1504 */ 1505 1506 zcw->zcw_zio_error = zio->io_error; 1507 1508 ASSERT3B(zcw->zcw_done, ==, B_FALSE); 1509 zcw->zcw_done = B_TRUE; 1510 cv_broadcast(&zcw->zcw_cv); 1511 1512 mutex_exit(&zcw->zcw_lock); 1513 } 1514 1515 uint64_t txg = lwb->lwb_issued_txg; 1516 1517 /* Once we drop the lock, lwb may be freed by zil_sync(). */ 1518 mutex_exit(&zilog->zl_lock); 1519 1520 mutex_enter(&zilog->zl_lwb_io_lock); 1521 ASSERT3U(zilog->zl_lwb_inflight[txg & TXG_MASK], >, 0); 1522 zilog->zl_lwb_inflight[txg & TXG_MASK]--; 1523 if (zilog->zl_lwb_inflight[txg & TXG_MASK] == 0) 1524 cv_broadcast(&zilog->zl_lwb_io_cv); 1525 mutex_exit(&zilog->zl_lwb_io_lock); 1526 } 1527 1528 /* 1529 * Wait for the completion of all issued write/flush of that txg provided. 1530 * It guarantees zil_lwb_flush_vdevs_done() is called and returned. 1531 */ 1532 static void 1533 zil_lwb_flush_wait_all(zilog_t *zilog, uint64_t txg) 1534 { 1535 ASSERT3U(txg, ==, spa_syncing_txg(zilog->zl_spa)); 1536 1537 mutex_enter(&zilog->zl_lwb_io_lock); 1538 while (zilog->zl_lwb_inflight[txg & TXG_MASK] > 0) 1539 cv_wait(&zilog->zl_lwb_io_cv, &zilog->zl_lwb_io_lock); 1540 mutex_exit(&zilog->zl_lwb_io_lock); 1541 1542 #ifdef ZFS_DEBUG 1543 mutex_enter(&zilog->zl_lock); 1544 mutex_enter(&zilog->zl_lwb_io_lock); 1545 lwb_t *lwb = list_head(&zilog->zl_lwb_list); 1546 while (lwb != NULL) { 1547 if (lwb->lwb_issued_txg <= txg) { 1548 ASSERT(lwb->lwb_state != LWB_STATE_ISSUED); 1549 ASSERT(lwb->lwb_state != LWB_STATE_WRITE_DONE); 1550 IMPLY(lwb->lwb_issued_txg > 0, 1551 lwb->lwb_state == LWB_STATE_FLUSH_DONE); 1552 } 1553 IMPLY(lwb->lwb_state == LWB_STATE_WRITE_DONE || 1554 lwb->lwb_state == LWB_STATE_FLUSH_DONE, 1555 lwb->lwb_buf == NULL); 1556 lwb = list_next(&zilog->zl_lwb_list, lwb); 1557 } 1558 mutex_exit(&zilog->zl_lwb_io_lock); 1559 mutex_exit(&zilog->zl_lock); 1560 #endif 1561 } 1562 1563 /* 1564 * This is called when an lwb's write zio completes. The callback's purpose is 1565 * to issue the flush commands for the vdevs in the lwb's lwb_vdev_tree. The 1566 * tree will contain the vdevs involved in writing out this specific lwb's 1567 * data, and in the case that cache flushes have been deferred, vdevs involved 1568 * in writing the data for previous lwbs. The writes corresponding to all the 1569 * vdevs in the lwb_vdev_tree will have completed by the time this is called, 1570 * due to the zio dependencies configured in zil_lwb_set_zio_dependency(), 1571 * which takes deferred flushes into account. The lwb will be "done" once 1572 * zil_lwb_flush_vdevs_done() is called, which occurs in the zio completion 1573 * callback for the lwb's root zio. 1574 */ 1575 static void 1576 zil_lwb_write_done(zio_t *zio) 1577 { 1578 lwb_t *lwb = zio->io_private; 1579 spa_t *spa = zio->io_spa; 1580 zilog_t *zilog = lwb->lwb_zilog; 1581 avl_tree_t *t = &lwb->lwb_vdev_tree; 1582 void *cookie = NULL; 1583 zil_vdev_node_t *zv; 1584 lwb_t *nlwb; 1585 1586 ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0); 1587 1588 abd_free(zio->io_abd); 1589 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 1590 lwb->lwb_buf = NULL; 1591 1592 mutex_enter(&zilog->zl_lock); 1593 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED); 1594 lwb->lwb_state = LWB_STATE_WRITE_DONE; 1595 lwb->lwb_child_zio = NULL; 1596 lwb->lwb_write_zio = NULL; 1597 1598 /* 1599 * If nlwb is not yet issued, zil_lwb_set_zio_dependency() is not 1600 * called for it yet, and when it will be, it won't be able to make 1601 * its write ZIO a parent this ZIO. In such case we can not defer 1602 * our flushes or below may be a race between the done callbacks. 1603 */ 1604 nlwb = list_next(&zilog->zl_lwb_list, lwb); 1605 if (nlwb && nlwb->lwb_state != LWB_STATE_ISSUED) 1606 nlwb = NULL; 1607 mutex_exit(&zilog->zl_lock); 1608 1609 if (avl_numnodes(t) == 0) 1610 return; 1611 1612 /* 1613 * If there was an IO error, we're not going to call zio_flush() 1614 * on these vdevs, so we simply empty the tree and free the 1615 * nodes. We avoid calling zio_flush() since there isn't any 1616 * good reason for doing so, after the lwb block failed to be 1617 * written out. 1618 * 1619 * Additionally, we don't perform any further error handling at 1620 * this point (e.g. setting "zcw_zio_error" appropriately), as 1621 * we expect that to occur in "zil_lwb_flush_vdevs_done" (thus, 1622 * we expect any error seen here, to have been propagated to 1623 * that function). 1624 */ 1625 if (zio->io_error != 0) { 1626 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) 1627 kmem_free(zv, sizeof (*zv)); 1628 return; 1629 } 1630 1631 /* 1632 * If this lwb does not have any threads waiting for it to complete, we 1633 * want to defer issuing the flush command to the vdevs written to by 1634 * "this" lwb, and instead rely on the "next" lwb to handle the flush 1635 * command for those vdevs. Thus, we merge the vdev tree of "this" lwb 1636 * with the vdev tree of the "next" lwb in the list, and assume the 1637 * "next" lwb will handle flushing the vdevs (or deferring the flush(s) 1638 * again). 1639 * 1640 * This is a useful performance optimization, especially for workloads 1641 * with lots of async write activity and few sync write and/or fsync 1642 * activity, as it has the potential to coalesce multiple flush 1643 * commands to a vdev into one. 1644 */ 1645 if (list_is_empty(&lwb->lwb_waiters) && nlwb != NULL) { 1646 zil_lwb_flush_defer(lwb, nlwb); 1647 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree)); 1648 return; 1649 } 1650 1651 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) { 1652 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev); 1653 if (vd != NULL) { 1654 /* 1655 * The "ZIO_FLAG_DONT_PROPAGATE" is currently 1656 * always used within "zio_flush". This means, 1657 * any errors when flushing the vdev(s), will 1658 * (unfortunately) not be handled correctly, 1659 * since these "zio_flush" errors will not be 1660 * propagated up to "zil_lwb_flush_vdevs_done". 1661 */ 1662 zio_flush(lwb->lwb_root_zio, vd); 1663 } 1664 kmem_free(zv, sizeof (*zv)); 1665 } 1666 } 1667 1668 /* 1669 * Build the zio dependency chain, which is used to preserve the ordering of 1670 * lwb completions that is required by the semantics of the ZIL. Each new lwb 1671 * zio becomes a parent of the previous lwb zio, such that the new lwb's zio 1672 * cannot complete until the previous lwb's zio completes. 1673 * 1674 * This is required by the semantics of zil_commit(): the commit waiters 1675 * attached to the lwbs will be woken in the lwb zio's completion callback, 1676 * so this zio dependency graph ensures the waiters are woken in the correct 1677 * order (the same order the lwbs were created). 1678 */ 1679 static void 1680 zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb) 1681 { 1682 ASSERT(MUTEX_HELD(&zilog->zl_lock)); 1683 1684 lwb_t *prev_lwb = list_prev(&zilog->zl_lwb_list, lwb); 1685 if (prev_lwb == NULL || 1686 prev_lwb->lwb_state == LWB_STATE_FLUSH_DONE) 1687 return; 1688 1689 /* 1690 * If the previous lwb's write hasn't already completed, we also want 1691 * to order the completion of the lwb write zios (above, we only order 1692 * the completion of the lwb root zios). This is required because of 1693 * how we can defer the flush commands for each lwb. 1694 * 1695 * When the flush commands are deferred, the previous lwb will rely on 1696 * this lwb to flush the vdevs written to by that previous lwb. Thus, 1697 * we need to ensure this lwb doesn't issue the flush until after the 1698 * previous lwb's write completes. We ensure this ordering by setting 1699 * the zio parent/child relationship here. 1700 * 1701 * Without this relationship on the lwb's write zio, it's possible for 1702 * this lwb's write to complete prior to the previous lwb's write 1703 * completing; and thus, the vdevs for the previous lwb would be 1704 * flushed prior to that lwb's data being written to those vdevs (the 1705 * vdevs are flushed in the lwb write zio's completion handler, 1706 * zil_lwb_write_done()). 1707 */ 1708 if (prev_lwb->lwb_state == LWB_STATE_ISSUED) { 1709 ASSERT3P(prev_lwb->lwb_write_zio, !=, NULL); 1710 zio_add_child(lwb->lwb_write_zio, prev_lwb->lwb_write_zio); 1711 } else { 1712 ASSERT3S(prev_lwb->lwb_state, ==, LWB_STATE_WRITE_DONE); 1713 } 1714 1715 ASSERT3P(prev_lwb->lwb_root_zio, !=, NULL); 1716 zio_add_child(lwb->lwb_root_zio, prev_lwb->lwb_root_zio); 1717 } 1718 1719 1720 /* 1721 * This function's purpose is to "open" an lwb such that it is ready to 1722 * accept new itxs being committed to it. This function is idempotent; if 1723 * the passed in lwb has already been opened, it is essentially a no-op. 1724 */ 1725 static void 1726 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb) 1727 { 1728 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1729 1730 if (lwb->lwb_state != LWB_STATE_NEW) { 1731 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED); 1732 return; 1733 } 1734 1735 mutex_enter(&zilog->zl_lock); 1736 lwb->lwb_state = LWB_STATE_OPENED; 1737 zilog->zl_last_lwb_opened = lwb; 1738 mutex_exit(&zilog->zl_lock); 1739 } 1740 1741 /* 1742 * Maximum block size used by the ZIL. This is picked up when the ZIL is 1743 * initialized. Otherwise this should not be used directly; see 1744 * zl_max_block_size instead. 1745 */ 1746 static uint_t zil_maxblocksize = SPA_OLD_MAXBLOCKSIZE; 1747 1748 /* 1749 * Plan splitting of the provided burst size between several blocks. 1750 */ 1751 static uint_t 1752 zil_lwb_plan(zilog_t *zilog, uint64_t size, uint_t *minsize) 1753 { 1754 uint_t md = zilog->zl_max_block_size - sizeof (zil_chain_t); 1755 1756 if (size <= md) { 1757 /* 1758 * Small bursts are written as-is in one block. 1759 */ 1760 *minsize = size; 1761 return (size); 1762 } else if (size > 8 * md) { 1763 /* 1764 * Big bursts use maximum blocks. The first block size 1765 * is hard to predict, but it does not really matter. 1766 */ 1767 *minsize = 0; 1768 return (md); 1769 } 1770 1771 /* 1772 * Medium bursts try to divide evenly to better utilize several SLOG 1773 * VDEVs. The first block size we predict assuming the worst case of 1774 * maxing out others. Fall back to using maximum blocks if due to 1775 * large records or wasted space we can not predict anything better. 1776 */ 1777 uint_t s = size; 1778 uint_t n = DIV_ROUND_UP(s, md - sizeof (lr_write_t)); 1779 uint_t chunk = DIV_ROUND_UP(s, n); 1780 uint_t waste = zil_max_waste_space(zilog); 1781 waste = MAX(waste, zilog->zl_cur_max); 1782 if (chunk <= md - waste) { 1783 *minsize = MAX(s - (md - waste) * (n - 1), waste); 1784 return (chunk); 1785 } else { 1786 *minsize = 0; 1787 return (md); 1788 } 1789 } 1790 1791 /* 1792 * Try to predict next block size based on previous history. Make prediction 1793 * sufficient for 7 of 8 previous bursts. Don't try to save if the saving is 1794 * less then 50%, extra writes may cost more, but we don't want single spike 1795 * to badly affect our predictions. 1796 */ 1797 static uint_t 1798 zil_lwb_predict(zilog_t *zilog) 1799 { 1800 uint_t m, o; 1801 1802 /* If we are in the middle of a burst, take it into account also. */ 1803 if (zilog->zl_cur_size > 0) { 1804 o = zil_lwb_plan(zilog, zilog->zl_cur_size, &m); 1805 } else { 1806 o = UINT_MAX; 1807 m = 0; 1808 } 1809 1810 /* Find minimum optimal size. We don't need to go below that. */ 1811 for (int i = 0; i < ZIL_BURSTS; i++) 1812 o = MIN(o, zilog->zl_prev_opt[i]); 1813 1814 /* Find two biggest minimal first block sizes above the optimal. */ 1815 uint_t m1 = MAX(m, o), m2 = o; 1816 for (int i = 0; i < ZIL_BURSTS; i++) { 1817 m = zilog->zl_prev_min[i]; 1818 if (m >= m1) { 1819 m2 = m1; 1820 m1 = m; 1821 } else if (m > m2) { 1822 m2 = m; 1823 } 1824 } 1825 1826 /* 1827 * If second minimum size gives 50% saving -- use it. It may cost us 1828 * one additional write later, but the space saving is just too big. 1829 */ 1830 return ((m1 < m2 * 2) ? m1 : m2); 1831 } 1832 1833 /* 1834 * Close the log block for being issued and allocate the next one. 1835 * Has to be called under zl_issuer_lock to chain more lwbs. 1836 */ 1837 static lwb_t * 1838 zil_lwb_write_close(zilog_t *zilog, lwb_t *lwb, lwb_state_t state) 1839 { 1840 uint64_t blksz, plan, plan2; 1841 1842 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1843 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED); 1844 lwb->lwb_state = LWB_STATE_CLOSED; 1845 1846 /* 1847 * If there was an allocation failure then returned NULL will trigger 1848 * zil_commit_writer_stall() at the caller. This is inherently racy, 1849 * since allocation may not have happened yet. 1850 */ 1851 if (lwb->lwb_error != 0) 1852 return (NULL); 1853 1854 /* 1855 * Log blocks are pre-allocated. Here we select the size of the next 1856 * block, based on what's left of this burst and the previous history. 1857 * While we try to only write used part of the block, we can't just 1858 * always allocate the maximum block size because we can exhaust all 1859 * available pool log space, so we try to be reasonable. 1860 */ 1861 if (zilog->zl_cur_left > 0) { 1862 /* 1863 * We are in the middle of a burst and know how much is left. 1864 * But if workload is multi-threaded there may be more soon. 1865 * Try to predict what can it be and plan for the worst case. 1866 */ 1867 uint_t m; 1868 plan = zil_lwb_plan(zilog, zilog->zl_cur_left, &m); 1869 if (zilog->zl_parallel) { 1870 plan2 = zil_lwb_plan(zilog, zilog->zl_cur_left + 1871 zil_lwb_predict(zilog), &m); 1872 if (plan < plan2) 1873 plan = plan2; 1874 } 1875 } else { 1876 /* 1877 * The previous burst is done and we can only predict what 1878 * will come next. 1879 */ 1880 plan = zil_lwb_predict(zilog); 1881 } 1882 blksz = plan + sizeof (zil_chain_t); 1883 blksz = P2ROUNDUP_TYPED(blksz, ZIL_MIN_BLKSZ, uint64_t); 1884 blksz = MIN(blksz, zilog->zl_max_block_size); 1885 DTRACE_PROBE3(zil__block__size, zilog_t *, zilog, uint64_t, blksz, 1886 uint64_t, plan); 1887 1888 return (zil_alloc_lwb(zilog, blksz, NULL, 0, 0, state)); 1889 } 1890 1891 /* 1892 * Finalize previously closed block and issue the write zio. 1893 */ 1894 static void 1895 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb) 1896 { 1897 spa_t *spa = zilog->zl_spa; 1898 zil_chain_t *zilc; 1899 boolean_t slog; 1900 zbookmark_phys_t zb; 1901 zio_priority_t prio; 1902 int error; 1903 1904 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_CLOSED); 1905 1906 /* Actually fill the lwb with the data. */ 1907 for (itx_t *itx = list_head(&lwb->lwb_itxs); itx; 1908 itx = list_next(&lwb->lwb_itxs, itx)) 1909 zil_lwb_commit(zilog, lwb, itx); 1910 lwb->lwb_nused = lwb->lwb_nfilled; 1911 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_nmax); 1912 1913 lwb->lwb_root_zio = zio_root(spa, zil_lwb_flush_vdevs_done, lwb, 1914 ZIO_FLAG_CANFAIL); 1915 1916 /* 1917 * The lwb is now ready to be issued, but it can be only if it already 1918 * got its block pointer allocated or the allocation has failed. 1919 * Otherwise leave it as-is, relying on some other thread to issue it 1920 * after allocating its block pointer via calling zil_lwb_write_issue() 1921 * for the previous lwb(s) in the chain. 1922 */ 1923 mutex_enter(&zilog->zl_lock); 1924 lwb->lwb_state = LWB_STATE_READY; 1925 if (BP_IS_HOLE(&lwb->lwb_blk) && lwb->lwb_error == 0) { 1926 mutex_exit(&zilog->zl_lock); 1927 return; 1928 } 1929 mutex_exit(&zilog->zl_lock); 1930 1931 next_lwb: 1932 if (lwb->lwb_slim) 1933 zilc = (zil_chain_t *)lwb->lwb_buf; 1934 else 1935 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_nmax); 1936 int wsz = lwb->lwb_sz; 1937 if (lwb->lwb_error == 0) { 1938 abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf, lwb->lwb_sz); 1939 if (!lwb->lwb_slog || zilog->zl_cur_size <= zil_slog_bulk) 1940 prio = ZIO_PRIORITY_SYNC_WRITE; 1941 else 1942 prio = ZIO_PRIORITY_ASYNC_WRITE; 1943 SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1944 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, 1945 lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]); 1946 lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio, spa, 0, 1947 &lwb->lwb_blk, lwb_abd, lwb->lwb_sz, zil_lwb_write_done, 1948 lwb, prio, ZIO_FLAG_CANFAIL, &zb); 1949 zil_lwb_add_block(lwb, &lwb->lwb_blk); 1950 1951 if (lwb->lwb_slim) { 1952 /* For Slim ZIL only write what is used. */ 1953 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, 1954 int); 1955 ASSERT3S(wsz, <=, lwb->lwb_sz); 1956 zio_shrink(lwb->lwb_write_zio, wsz); 1957 wsz = lwb->lwb_write_zio->io_size; 1958 } 1959 memset(lwb->lwb_buf + lwb->lwb_nused, 0, wsz - lwb->lwb_nused); 1960 zilc->zc_pad = 0; 1961 zilc->zc_nused = lwb->lwb_nused; 1962 zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum; 1963 } else { 1964 /* 1965 * We can't write the lwb if there was an allocation failure, 1966 * so create a null zio instead just to maintain dependencies. 1967 */ 1968 lwb->lwb_write_zio = zio_null(lwb->lwb_root_zio, spa, NULL, 1969 zil_lwb_write_done, lwb, ZIO_FLAG_CANFAIL); 1970 lwb->lwb_write_zio->io_error = lwb->lwb_error; 1971 } 1972 if (lwb->lwb_child_zio) 1973 zio_add_child(lwb->lwb_write_zio, lwb->lwb_child_zio); 1974 1975 /* 1976 * Open transaction to allocate the next block pointer. 1977 */ 1978 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os); 1979 VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE)); 1980 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 1981 uint64_t txg = dmu_tx_get_txg(tx); 1982 1983 /* 1984 * Allocate next the block pointer unless we are already in error. 1985 */ 1986 lwb_t *nlwb = list_next(&zilog->zl_lwb_list, lwb); 1987 blkptr_t *bp = &zilc->zc_next_blk; 1988 BP_ZERO(bp); 1989 error = lwb->lwb_error; 1990 if (error == 0) { 1991 error = zio_alloc_zil(spa, zilog->zl_os, txg, bp, nlwb->lwb_sz, 1992 &slog); 1993 } 1994 if (error == 0) { 1995 ASSERT3U(BP_GET_LOGICAL_BIRTH(bp), ==, txg); 1996 BP_SET_CHECKSUM(bp, nlwb->lwb_slim ? ZIO_CHECKSUM_ZILOG2 : 1997 ZIO_CHECKSUM_ZILOG); 1998 bp->blk_cksum = lwb->lwb_blk.blk_cksum; 1999 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++; 2000 } 2001 2002 /* 2003 * Reduce TXG open time by incrementing inflight counter and committing 2004 * the transaciton. zil_sync() will wait for it to return to zero. 2005 */ 2006 mutex_enter(&zilog->zl_lwb_io_lock); 2007 lwb->lwb_issued_txg = txg; 2008 zilog->zl_lwb_inflight[txg & TXG_MASK]++; 2009 zilog->zl_lwb_max_issued_txg = MAX(txg, zilog->zl_lwb_max_issued_txg); 2010 mutex_exit(&zilog->zl_lwb_io_lock); 2011 dmu_tx_commit(tx); 2012 2013 spa_config_enter(spa, SCL_STATE, lwb, RW_READER); 2014 2015 /* 2016 * We've completed all potentially blocking operations. Update the 2017 * nlwb and allow it proceed without possible lock order reversals. 2018 */ 2019 mutex_enter(&zilog->zl_lock); 2020 zil_lwb_set_zio_dependency(zilog, lwb); 2021 lwb->lwb_state = LWB_STATE_ISSUED; 2022 2023 if (nlwb) { 2024 nlwb->lwb_blk = *bp; 2025 nlwb->lwb_error = error; 2026 nlwb->lwb_slog = slog; 2027 nlwb->lwb_alloc_txg = txg; 2028 if (nlwb->lwb_state != LWB_STATE_READY) 2029 nlwb = NULL; 2030 } 2031 mutex_exit(&zilog->zl_lock); 2032 2033 if (lwb->lwb_slog) { 2034 ZIL_STAT_BUMP(zilog, zil_itx_metaslab_slog_count); 2035 ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_bytes, 2036 lwb->lwb_nused); 2037 ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_write, 2038 wsz); 2039 ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_alloc, 2040 BP_GET_LSIZE(&lwb->lwb_blk)); 2041 } else { 2042 ZIL_STAT_BUMP(zilog, zil_itx_metaslab_normal_count); 2043 ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_bytes, 2044 lwb->lwb_nused); 2045 ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_write, 2046 wsz); 2047 ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_alloc, 2048 BP_GET_LSIZE(&lwb->lwb_blk)); 2049 } 2050 lwb->lwb_issued_timestamp = gethrtime(); 2051 if (lwb->lwb_child_zio) 2052 zio_nowait(lwb->lwb_child_zio); 2053 zio_nowait(lwb->lwb_write_zio); 2054 zio_nowait(lwb->lwb_root_zio); 2055 2056 /* 2057 * If nlwb was ready when we gave it the block pointer, 2058 * it is on us to issue it and possibly following ones. 2059 */ 2060 lwb = nlwb; 2061 if (lwb) 2062 goto next_lwb; 2063 } 2064 2065 /* 2066 * Maximum amount of data that can be put into single log block. 2067 */ 2068 uint64_t 2069 zil_max_log_data(zilog_t *zilog, size_t hdrsize) 2070 { 2071 return (zilog->zl_max_block_size - sizeof (zil_chain_t) - hdrsize); 2072 } 2073 2074 /* 2075 * Maximum amount of log space we agree to waste to reduce number of 2076 * WR_NEED_COPY chunks to reduce zl_get_data() overhead (~6%). 2077 */ 2078 static inline uint64_t 2079 zil_max_waste_space(zilog_t *zilog) 2080 { 2081 return (zil_max_log_data(zilog, sizeof (lr_write_t)) / 16); 2082 } 2083 2084 /* 2085 * Maximum amount of write data for WR_COPIED. For correctness, consumers 2086 * must fall back to WR_NEED_COPY if we can't fit the entire record into one 2087 * maximum sized log block, because each WR_COPIED record must fit in a 2088 * single log block. Below that it is a tradeoff of additional memory copy 2089 * and possibly worse log space efficiency vs additional range lock/unlock. 2090 */ 2091 static uint_t zil_maxcopied = 7680; 2092 2093 uint64_t 2094 zil_max_copied_data(zilog_t *zilog) 2095 { 2096 uint64_t max_data = zil_max_log_data(zilog, sizeof (lr_write_t)); 2097 return (MIN(max_data, zil_maxcopied)); 2098 } 2099 2100 static uint64_t 2101 zil_itx_record_size(itx_t *itx) 2102 { 2103 lr_t *lr = &itx->itx_lr; 2104 2105 if (lr->lrc_txtype == TX_COMMIT) 2106 return (0); 2107 ASSERT3U(lr->lrc_reclen, >=, sizeof (lr_t)); 2108 return (lr->lrc_reclen); 2109 } 2110 2111 static uint64_t 2112 zil_itx_data_size(itx_t *itx) 2113 { 2114 lr_t *lr = &itx->itx_lr; 2115 lr_write_t *lrw = (lr_write_t *)lr; 2116 2117 if (lr->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) { 2118 ASSERT3U(lr->lrc_reclen, ==, sizeof (lr_write_t)); 2119 return (P2ROUNDUP_TYPED(lrw->lr_length, sizeof (uint64_t), 2120 uint64_t)); 2121 } 2122 return (0); 2123 } 2124 2125 static uint64_t 2126 zil_itx_full_size(itx_t *itx) 2127 { 2128 lr_t *lr = &itx->itx_lr; 2129 2130 if (lr->lrc_txtype == TX_COMMIT) 2131 return (0); 2132 ASSERT3U(lr->lrc_reclen, >=, sizeof (lr_t)); 2133 return (lr->lrc_reclen + zil_itx_data_size(itx)); 2134 } 2135 2136 /* 2137 * Estimate space needed in the lwb for the itx. Allocate more lwbs or 2138 * split the itx as needed, but don't touch the actual transaction data. 2139 * Has to be called under zl_issuer_lock to call zil_lwb_write_close() 2140 * to chain more lwbs. 2141 */ 2142 static lwb_t * 2143 zil_lwb_assign(zilog_t *zilog, lwb_t *lwb, itx_t *itx, list_t *ilwbs) 2144 { 2145 itx_t *citx; 2146 lr_t *lr, *clr; 2147 lr_write_t *lrw; 2148 uint64_t dlen, dnow, lwb_sp, reclen, max_log_data; 2149 2150 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2151 ASSERT3P(lwb, !=, NULL); 2152 ASSERT3P(lwb->lwb_buf, !=, NULL); 2153 2154 zil_lwb_write_open(zilog, lwb); 2155 2156 lr = &itx->itx_lr; 2157 lrw = (lr_write_t *)lr; 2158 2159 /* 2160 * A commit itx doesn't represent any on-disk state; instead 2161 * it's simply used as a place holder on the commit list, and 2162 * provides a mechanism for attaching a "commit waiter" onto the 2163 * correct lwb (such that the waiter can be signalled upon 2164 * completion of that lwb). Thus, we don't process this itx's 2165 * log record if it's a commit itx (these itx's don't have log 2166 * records), and instead link the itx's waiter onto the lwb's 2167 * list of waiters. 2168 * 2169 * For more details, see the comment above zil_commit(). 2170 */ 2171 if (lr->lrc_txtype == TX_COMMIT) { 2172 zil_commit_waiter_link_lwb(itx->itx_private, lwb); 2173 list_insert_tail(&lwb->lwb_itxs, itx); 2174 return (lwb); 2175 } 2176 2177 reclen = lr->lrc_reclen; 2178 ASSERT3U(reclen, >=, sizeof (lr_t)); 2179 ASSERT3U(reclen, <=, zil_max_log_data(zilog, 0)); 2180 dlen = zil_itx_data_size(itx); 2181 2182 cont: 2183 /* 2184 * If this record won't fit in the current log block, start a new one. 2185 * For WR_NEED_COPY optimize layout for minimal number of chunks. 2186 */ 2187 lwb_sp = lwb->lwb_nmax - lwb->lwb_nused; 2188 max_log_data = zil_max_log_data(zilog, sizeof (lr_write_t)); 2189 if (reclen > lwb_sp || (reclen + dlen > lwb_sp && 2190 lwb_sp < zil_max_waste_space(zilog) && 2191 (dlen % max_log_data == 0 || 2192 lwb_sp < reclen + dlen % max_log_data))) { 2193 list_insert_tail(ilwbs, lwb); 2194 lwb = zil_lwb_write_close(zilog, lwb, LWB_STATE_OPENED); 2195 if (lwb == NULL) 2196 return (NULL); 2197 lwb_sp = lwb->lwb_nmax - lwb->lwb_nused; 2198 } 2199 2200 /* 2201 * There must be enough space in the log block to hold reclen. 2202 * For WR_COPIED, we need to fit the whole record in one block, 2203 * and reclen is the write record header size + the data size. 2204 * For WR_NEED_COPY, we can create multiple records, splitting 2205 * the data into multiple blocks, so we only need to fit one 2206 * word of data per block; in this case reclen is just the header 2207 * size (no data). 2208 */ 2209 ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp); 2210 2211 dnow = MIN(dlen, lwb_sp - reclen); 2212 if (dlen > dnow) { 2213 ASSERT3U(lr->lrc_txtype, ==, TX_WRITE); 2214 ASSERT3U(itx->itx_wr_state, ==, WR_NEED_COPY); 2215 citx = zil_itx_clone(itx); 2216 clr = &citx->itx_lr; 2217 lr_write_t *clrw = (lr_write_t *)clr; 2218 clrw->lr_length = dnow; 2219 lrw->lr_offset += dnow; 2220 lrw->lr_length -= dnow; 2221 zilog->zl_cur_left -= dnow; 2222 } else { 2223 citx = itx; 2224 clr = lr; 2225 } 2226 2227 /* 2228 * We're actually making an entry, so update lrc_seq to be the 2229 * log record sequence number. Note that this is generally not 2230 * equal to the itx sequence number because not all transactions 2231 * are synchronous, and sometimes spa_sync() gets there first. 2232 */ 2233 clr->lrc_seq = ++zilog->zl_lr_seq; 2234 2235 lwb->lwb_nused += reclen + dnow; 2236 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_nmax); 2237 ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t))); 2238 2239 zil_lwb_add_txg(lwb, lr->lrc_txg); 2240 list_insert_tail(&lwb->lwb_itxs, citx); 2241 2242 dlen -= dnow; 2243 if (dlen > 0) 2244 goto cont; 2245 2246 if (lr->lrc_txtype == TX_WRITE && 2247 lr->lrc_txg > spa_freeze_txg(zilog->zl_spa)) 2248 txg_wait_synced(zilog->zl_dmu_pool, lr->lrc_txg); 2249 2250 return (lwb); 2251 } 2252 2253 /* 2254 * Fill the actual transaction data into the lwb, following zil_lwb_assign(). 2255 * Does not require locking. 2256 */ 2257 static void 2258 zil_lwb_commit(zilog_t *zilog, lwb_t *lwb, itx_t *itx) 2259 { 2260 lr_t *lr, *lrb; 2261 lr_write_t *lrw, *lrwb; 2262 char *lr_buf; 2263 uint64_t dlen, reclen; 2264 2265 lr = &itx->itx_lr; 2266 lrw = (lr_write_t *)lr; 2267 2268 if (lr->lrc_txtype == TX_COMMIT) 2269 return; 2270 2271 reclen = lr->lrc_reclen; 2272 dlen = zil_itx_data_size(itx); 2273 ASSERT3U(reclen + dlen, <=, lwb->lwb_nused - lwb->lwb_nfilled); 2274 2275 lr_buf = lwb->lwb_buf + lwb->lwb_nfilled; 2276 memcpy(lr_buf, lr, reclen); 2277 lrb = (lr_t *)lr_buf; /* Like lr, but inside lwb. */ 2278 lrwb = (lr_write_t *)lrb; /* Like lrw, but inside lwb. */ 2279 2280 ZIL_STAT_BUMP(zilog, zil_itx_count); 2281 2282 /* 2283 * If it's a write, fetch the data or get its blkptr as appropriate. 2284 */ 2285 if (lr->lrc_txtype == TX_WRITE) { 2286 if (itx->itx_wr_state == WR_COPIED) { 2287 ZIL_STAT_BUMP(zilog, zil_itx_copied_count); 2288 ZIL_STAT_INCR(zilog, zil_itx_copied_bytes, 2289 lrw->lr_length); 2290 } else { 2291 char *dbuf; 2292 int error; 2293 2294 if (itx->itx_wr_state == WR_NEED_COPY) { 2295 dbuf = lr_buf + reclen; 2296 lrb->lrc_reclen += dlen; 2297 ZIL_STAT_BUMP(zilog, zil_itx_needcopy_count); 2298 ZIL_STAT_INCR(zilog, zil_itx_needcopy_bytes, 2299 dlen); 2300 } else { 2301 ASSERT3S(itx->itx_wr_state, ==, WR_INDIRECT); 2302 dbuf = NULL; 2303 ZIL_STAT_BUMP(zilog, zil_itx_indirect_count); 2304 ZIL_STAT_INCR(zilog, zil_itx_indirect_bytes, 2305 lrw->lr_length); 2306 if (lwb->lwb_child_zio == NULL) { 2307 lwb->lwb_child_zio = zio_null(NULL, 2308 zilog->zl_spa, NULL, NULL, NULL, 2309 ZIO_FLAG_CANFAIL); 2310 } 2311 } 2312 2313 /* 2314 * The "lwb_child_zio" we pass in will become a child of 2315 * "lwb_write_zio", when one is created, so one will be 2316 * a parent of any zio's created by the "zl_get_data". 2317 * This way "lwb_write_zio" will first wait for children 2318 * block pointers before own writing, and then for their 2319 * writing completion before the vdev cache flushing. 2320 */ 2321 error = zilog->zl_get_data(itx->itx_private, 2322 itx->itx_gen, lrwb, dbuf, lwb, 2323 lwb->lwb_child_zio); 2324 if (dbuf != NULL && error == 0) { 2325 /* Zero any padding bytes in the last block. */ 2326 memset((char *)dbuf + lrwb->lr_length, 0, 2327 dlen - lrwb->lr_length); 2328 } 2329 2330 /* 2331 * Typically, the only return values we should see from 2332 * ->zl_get_data() are 0, EIO, ENOENT, EEXIST or 2333 * EALREADY. However, it is also possible to see other 2334 * error values such as ENOSPC or EINVAL from 2335 * dmu_read() -> dnode_hold() -> dnode_hold_impl() or 2336 * ENXIO as well as a multitude of others from the 2337 * block layer through dmu_buf_hold() -> dbuf_read() 2338 * -> zio_wait(), as well as through dmu_read() -> 2339 * dnode_hold() -> dnode_hold_impl() -> dbuf_read() -> 2340 * zio_wait(). When these errors happen, we can assume 2341 * that neither an immediate write nor an indirect 2342 * write occurred, so we need to fall back to 2343 * txg_wait_synced(). This is unusual, so we print to 2344 * dmesg whenever one of these errors occurs. 2345 */ 2346 switch (error) { 2347 case 0: 2348 break; 2349 default: 2350 cmn_err(CE_WARN, "zil_lwb_commit() received " 2351 "unexpected error %d from ->zl_get_data()" 2352 ". Falling back to txg_wait_synced().", 2353 error); 2354 zfs_fallthrough; 2355 case EIO: 2356 txg_wait_synced(zilog->zl_dmu_pool, 2357 lr->lrc_txg); 2358 zfs_fallthrough; 2359 case ENOENT: 2360 zfs_fallthrough; 2361 case EEXIST: 2362 zfs_fallthrough; 2363 case EALREADY: 2364 return; 2365 } 2366 } 2367 } 2368 2369 lwb->lwb_nfilled += reclen + dlen; 2370 ASSERT3S(lwb->lwb_nfilled, <=, lwb->lwb_nused); 2371 ASSERT0(P2PHASE(lwb->lwb_nfilled, sizeof (uint64_t))); 2372 } 2373 2374 itx_t * 2375 zil_itx_create(uint64_t txtype, size_t olrsize) 2376 { 2377 size_t itxsize, lrsize; 2378 itx_t *itx; 2379 2380 ASSERT3U(olrsize, >=, sizeof (lr_t)); 2381 lrsize = P2ROUNDUP_TYPED(olrsize, sizeof (uint64_t), size_t); 2382 ASSERT3U(lrsize, >=, olrsize); 2383 itxsize = offsetof(itx_t, itx_lr) + lrsize; 2384 2385 itx = zio_data_buf_alloc(itxsize); 2386 itx->itx_lr.lrc_txtype = txtype; 2387 itx->itx_lr.lrc_reclen = lrsize; 2388 itx->itx_lr.lrc_seq = 0; /* defensive */ 2389 memset((char *)&itx->itx_lr + olrsize, 0, lrsize - olrsize); 2390 itx->itx_sync = B_TRUE; /* default is synchronous */ 2391 itx->itx_callback = NULL; 2392 itx->itx_callback_data = NULL; 2393 itx->itx_size = itxsize; 2394 2395 return (itx); 2396 } 2397 2398 static itx_t * 2399 zil_itx_clone(itx_t *oitx) 2400 { 2401 ASSERT3U(oitx->itx_size, >=, sizeof (itx_t)); 2402 ASSERT3U(oitx->itx_size, ==, 2403 offsetof(itx_t, itx_lr) + oitx->itx_lr.lrc_reclen); 2404 2405 itx_t *itx = zio_data_buf_alloc(oitx->itx_size); 2406 memcpy(itx, oitx, oitx->itx_size); 2407 itx->itx_callback = NULL; 2408 itx->itx_callback_data = NULL; 2409 return (itx); 2410 } 2411 2412 void 2413 zil_itx_destroy(itx_t *itx) 2414 { 2415 ASSERT3U(itx->itx_size, >=, sizeof (itx_t)); 2416 ASSERT3U(itx->itx_lr.lrc_reclen, ==, 2417 itx->itx_size - offsetof(itx_t, itx_lr)); 2418 IMPLY(itx->itx_lr.lrc_txtype == TX_COMMIT, itx->itx_callback == NULL); 2419 IMPLY(itx->itx_callback != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT); 2420 2421 if (itx->itx_callback != NULL) 2422 itx->itx_callback(itx->itx_callback_data); 2423 2424 zio_data_buf_free(itx, itx->itx_size); 2425 } 2426 2427 /* 2428 * Free up the sync and async itxs. The itxs_t has already been detached 2429 * so no locks are needed. 2430 */ 2431 static void 2432 zil_itxg_clean(void *arg) 2433 { 2434 itx_t *itx; 2435 list_t *list; 2436 avl_tree_t *t; 2437 void *cookie; 2438 itxs_t *itxs = arg; 2439 itx_async_node_t *ian; 2440 2441 list = &itxs->i_sync_list; 2442 while ((itx = list_remove_head(list)) != NULL) { 2443 /* 2444 * In the general case, commit itxs will not be found 2445 * here, as they'll be committed to an lwb via 2446 * zil_lwb_assign(), and free'd in that function. Having 2447 * said that, it is still possible for commit itxs to be 2448 * found here, due to the following race: 2449 * 2450 * - a thread calls zil_commit() which assigns the 2451 * commit itx to a per-txg i_sync_list 2452 * - zil_itxg_clean() is called (e.g. via spa_sync()) 2453 * while the waiter is still on the i_sync_list 2454 * 2455 * There's nothing to prevent syncing the txg while the 2456 * waiter is on the i_sync_list. This normally doesn't 2457 * happen because spa_sync() is slower than zil_commit(), 2458 * but if zil_commit() calls txg_wait_synced() (e.g. 2459 * because zil_create() or zil_commit_writer_stall() is 2460 * called) we will hit this case. 2461 */ 2462 if (itx->itx_lr.lrc_txtype == TX_COMMIT) 2463 zil_commit_waiter_skip(itx->itx_private); 2464 2465 zil_itx_destroy(itx); 2466 } 2467 2468 cookie = NULL; 2469 t = &itxs->i_async_tree; 2470 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { 2471 list = &ian->ia_list; 2472 while ((itx = list_remove_head(list)) != NULL) { 2473 /* commit itxs should never be on the async lists. */ 2474 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT); 2475 zil_itx_destroy(itx); 2476 } 2477 list_destroy(list); 2478 kmem_free(ian, sizeof (itx_async_node_t)); 2479 } 2480 avl_destroy(t); 2481 2482 kmem_free(itxs, sizeof (itxs_t)); 2483 } 2484 2485 static int 2486 zil_aitx_compare(const void *x1, const void *x2) 2487 { 2488 const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid; 2489 const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid; 2490 2491 return (TREE_CMP(o1, o2)); 2492 } 2493 2494 /* 2495 * Remove all async itx with the given oid. 2496 */ 2497 void 2498 zil_remove_async(zilog_t *zilog, uint64_t oid) 2499 { 2500 uint64_t otxg, txg; 2501 itx_async_node_t *ian, ian_search; 2502 avl_tree_t *t; 2503 avl_index_t where; 2504 list_t clean_list; 2505 itx_t *itx; 2506 2507 ASSERT(oid != 0); 2508 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node)); 2509 2510 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 2511 otxg = ZILTEST_TXG; 2512 else 2513 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 2514 2515 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 2516 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 2517 2518 mutex_enter(&itxg->itxg_lock); 2519 if (itxg->itxg_txg != txg) { 2520 mutex_exit(&itxg->itxg_lock); 2521 continue; 2522 } 2523 2524 /* 2525 * Locate the object node and append its list. 2526 */ 2527 t = &itxg->itxg_itxs->i_async_tree; 2528 ian_search.ia_foid = oid; 2529 ian = avl_find(t, &ian_search, &where); 2530 if (ian != NULL) 2531 list_move_tail(&clean_list, &ian->ia_list); 2532 mutex_exit(&itxg->itxg_lock); 2533 } 2534 while ((itx = list_remove_head(&clean_list)) != NULL) { 2535 /* commit itxs should never be on the async lists. */ 2536 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT); 2537 zil_itx_destroy(itx); 2538 } 2539 list_destroy(&clean_list); 2540 } 2541 2542 void 2543 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx) 2544 { 2545 uint64_t txg; 2546 itxg_t *itxg; 2547 itxs_t *itxs, *clean = NULL; 2548 2549 /* 2550 * Ensure the data of a renamed file is committed before the rename. 2551 */ 2552 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME) 2553 zil_async_to_sync(zilog, itx->itx_oid); 2554 2555 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) 2556 txg = ZILTEST_TXG; 2557 else 2558 txg = dmu_tx_get_txg(tx); 2559 2560 itxg = &zilog->zl_itxg[txg & TXG_MASK]; 2561 mutex_enter(&itxg->itxg_lock); 2562 itxs = itxg->itxg_itxs; 2563 if (itxg->itxg_txg != txg) { 2564 if (itxs != NULL) { 2565 /* 2566 * The zil_clean callback hasn't got around to cleaning 2567 * this itxg. Save the itxs for release below. 2568 * This should be rare. 2569 */ 2570 zfs_dbgmsg("zil_itx_assign: missed itx cleanup for " 2571 "txg %llu", (u_longlong_t)itxg->itxg_txg); 2572 clean = itxg->itxg_itxs; 2573 } 2574 itxg->itxg_txg = txg; 2575 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), 2576 KM_SLEEP); 2577 2578 list_create(&itxs->i_sync_list, sizeof (itx_t), 2579 offsetof(itx_t, itx_node)); 2580 avl_create(&itxs->i_async_tree, zil_aitx_compare, 2581 sizeof (itx_async_node_t), 2582 offsetof(itx_async_node_t, ia_node)); 2583 } 2584 if (itx->itx_sync) { 2585 list_insert_tail(&itxs->i_sync_list, itx); 2586 } else { 2587 avl_tree_t *t = &itxs->i_async_tree; 2588 uint64_t foid = 2589 LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid); 2590 itx_async_node_t *ian; 2591 avl_index_t where; 2592 2593 ian = avl_find(t, &foid, &where); 2594 if (ian == NULL) { 2595 ian = kmem_alloc(sizeof (itx_async_node_t), 2596 KM_SLEEP); 2597 list_create(&ian->ia_list, sizeof (itx_t), 2598 offsetof(itx_t, itx_node)); 2599 ian->ia_foid = foid; 2600 avl_insert(t, ian, where); 2601 } 2602 list_insert_tail(&ian->ia_list, itx); 2603 } 2604 2605 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx); 2606 2607 /* 2608 * We don't want to dirty the ZIL using ZILTEST_TXG, because 2609 * zil_clean() will never be called using ZILTEST_TXG. Thus, we 2610 * need to be careful to always dirty the ZIL using the "real" 2611 * TXG (not itxg_txg) even when the SPA is frozen. 2612 */ 2613 zilog_dirty(zilog, dmu_tx_get_txg(tx)); 2614 mutex_exit(&itxg->itxg_lock); 2615 2616 /* Release the old itxs now we've dropped the lock */ 2617 if (clean != NULL) 2618 zil_itxg_clean(clean); 2619 } 2620 2621 /* 2622 * If there are any in-memory intent log transactions which have now been 2623 * synced then start up a taskq to free them. We should only do this after we 2624 * have written out the uberblocks (i.e. txg has been committed) so that 2625 * don't inadvertently clean out in-memory log records that would be required 2626 * by zil_commit(). 2627 */ 2628 void 2629 zil_clean(zilog_t *zilog, uint64_t synced_txg) 2630 { 2631 itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK]; 2632 itxs_t *clean_me; 2633 2634 ASSERT3U(synced_txg, <, ZILTEST_TXG); 2635 2636 mutex_enter(&itxg->itxg_lock); 2637 if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) { 2638 mutex_exit(&itxg->itxg_lock); 2639 return; 2640 } 2641 ASSERT3U(itxg->itxg_txg, <=, synced_txg); 2642 ASSERT3U(itxg->itxg_txg, !=, 0); 2643 clean_me = itxg->itxg_itxs; 2644 itxg->itxg_itxs = NULL; 2645 itxg->itxg_txg = 0; 2646 mutex_exit(&itxg->itxg_lock); 2647 /* 2648 * Preferably start a task queue to free up the old itxs but 2649 * if taskq_dispatch can't allocate resources to do that then 2650 * free it in-line. This should be rare. Note, using TQ_SLEEP 2651 * created a bad performance problem. 2652 */ 2653 ASSERT3P(zilog->zl_dmu_pool, !=, NULL); 2654 ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL); 2655 taskqid_t id = taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq, 2656 zil_itxg_clean, clean_me, TQ_NOSLEEP); 2657 if (id == TASKQID_INVALID) 2658 zil_itxg_clean(clean_me); 2659 } 2660 2661 /* 2662 * This function will traverse the queue of itxs that need to be 2663 * committed, and move them onto the ZIL's zl_itx_commit_list. 2664 */ 2665 static uint64_t 2666 zil_get_commit_list(zilog_t *zilog) 2667 { 2668 uint64_t otxg, txg, wtxg = 0; 2669 list_t *commit_list = &zilog->zl_itx_commit_list; 2670 2671 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2672 2673 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 2674 otxg = ZILTEST_TXG; 2675 else 2676 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 2677 2678 /* 2679 * This is inherently racy, since there is nothing to prevent 2680 * the last synced txg from changing. That's okay since we'll 2681 * only commit things in the future. 2682 */ 2683 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 2684 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 2685 2686 mutex_enter(&itxg->itxg_lock); 2687 if (itxg->itxg_txg != txg) { 2688 mutex_exit(&itxg->itxg_lock); 2689 continue; 2690 } 2691 2692 /* 2693 * If we're adding itx records to the zl_itx_commit_list, 2694 * then the zil better be dirty in this "txg". We can assert 2695 * that here since we're holding the itxg_lock which will 2696 * prevent spa_sync from cleaning it. Once we add the itxs 2697 * to the zl_itx_commit_list we must commit it to disk even 2698 * if it's unnecessary (i.e. the txg was synced). 2699 */ 2700 ASSERT(zilog_is_dirty_in_txg(zilog, txg) || 2701 spa_freeze_txg(zilog->zl_spa) != UINT64_MAX); 2702 list_t *sync_list = &itxg->itxg_itxs->i_sync_list; 2703 itx_t *itx = NULL; 2704 if (unlikely(zilog->zl_suspend > 0)) { 2705 /* 2706 * ZIL was just suspended, but we lost the race. 2707 * Allow all earlier itxs to be committed, but ask 2708 * caller to do txg_wait_synced(txg) for any new. 2709 */ 2710 if (!list_is_empty(sync_list)) 2711 wtxg = MAX(wtxg, txg); 2712 } else { 2713 itx = list_head(sync_list); 2714 list_move_tail(commit_list, sync_list); 2715 } 2716 2717 mutex_exit(&itxg->itxg_lock); 2718 2719 while (itx != NULL) { 2720 uint64_t s = zil_itx_full_size(itx); 2721 zilog->zl_cur_size += s; 2722 zilog->zl_cur_left += s; 2723 s = zil_itx_record_size(itx); 2724 zilog->zl_cur_max = MAX(zilog->zl_cur_max, s); 2725 itx = list_next(commit_list, itx); 2726 } 2727 } 2728 return (wtxg); 2729 } 2730 2731 /* 2732 * Move the async itxs for a specified object to commit into sync lists. 2733 */ 2734 void 2735 zil_async_to_sync(zilog_t *zilog, uint64_t foid) 2736 { 2737 uint64_t otxg, txg; 2738 itx_async_node_t *ian, ian_search; 2739 avl_tree_t *t; 2740 avl_index_t where; 2741 2742 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 2743 otxg = ZILTEST_TXG; 2744 else 2745 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 2746 2747 /* 2748 * This is inherently racy, since there is nothing to prevent 2749 * the last synced txg from changing. 2750 */ 2751 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 2752 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 2753 2754 mutex_enter(&itxg->itxg_lock); 2755 if (itxg->itxg_txg != txg) { 2756 mutex_exit(&itxg->itxg_lock); 2757 continue; 2758 } 2759 2760 /* 2761 * If a foid is specified then find that node and append its 2762 * list. Otherwise walk the tree appending all the lists 2763 * to the sync list. We add to the end rather than the 2764 * beginning to ensure the create has happened. 2765 */ 2766 t = &itxg->itxg_itxs->i_async_tree; 2767 if (foid != 0) { 2768 ian_search.ia_foid = foid; 2769 ian = avl_find(t, &ian_search, &where); 2770 if (ian != NULL) { 2771 list_move_tail(&itxg->itxg_itxs->i_sync_list, 2772 &ian->ia_list); 2773 } 2774 } else { 2775 void *cookie = NULL; 2776 2777 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { 2778 list_move_tail(&itxg->itxg_itxs->i_sync_list, 2779 &ian->ia_list); 2780 list_destroy(&ian->ia_list); 2781 kmem_free(ian, sizeof (itx_async_node_t)); 2782 } 2783 } 2784 mutex_exit(&itxg->itxg_lock); 2785 } 2786 } 2787 2788 /* 2789 * This function will prune commit itxs that are at the head of the 2790 * commit list (it won't prune past the first non-commit itx), and 2791 * either: a) attach them to the last lwb that's still pending 2792 * completion, or b) skip them altogether. 2793 * 2794 * This is used as a performance optimization to prevent commit itxs 2795 * from generating new lwbs when it's unnecessary to do so. 2796 */ 2797 static void 2798 zil_prune_commit_list(zilog_t *zilog) 2799 { 2800 itx_t *itx; 2801 2802 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2803 2804 while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) { 2805 lr_t *lrc = &itx->itx_lr; 2806 if (lrc->lrc_txtype != TX_COMMIT) 2807 break; 2808 2809 mutex_enter(&zilog->zl_lock); 2810 2811 lwb_t *last_lwb = zilog->zl_last_lwb_opened; 2812 if (last_lwb == NULL || 2813 last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) { 2814 /* 2815 * All of the itxs this waiter was waiting on 2816 * must have already completed (or there were 2817 * never any itx's for it to wait on), so it's 2818 * safe to skip this waiter and mark it done. 2819 */ 2820 zil_commit_waiter_skip(itx->itx_private); 2821 } else { 2822 zil_commit_waiter_link_lwb(itx->itx_private, last_lwb); 2823 } 2824 2825 mutex_exit(&zilog->zl_lock); 2826 2827 list_remove(&zilog->zl_itx_commit_list, itx); 2828 zil_itx_destroy(itx); 2829 } 2830 2831 IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT); 2832 } 2833 2834 static void 2835 zil_commit_writer_stall(zilog_t *zilog) 2836 { 2837 /* 2838 * When zio_alloc_zil() fails to allocate the next lwb block on 2839 * disk, we must call txg_wait_synced() to ensure all of the 2840 * lwbs in the zilog's zl_lwb_list are synced and then freed (in 2841 * zil_sync()), such that any subsequent ZIL writer (i.e. a call 2842 * to zil_process_commit_list()) will have to call zil_create(), 2843 * and start a new ZIL chain. 2844 * 2845 * Since zil_alloc_zil() failed, the lwb that was previously 2846 * issued does not have a pointer to the "next" lwb on disk. 2847 * Thus, if another ZIL writer thread was to allocate the "next" 2848 * on-disk lwb, that block could be leaked in the event of a 2849 * crash (because the previous lwb on-disk would not point to 2850 * it). 2851 * 2852 * We must hold the zilog's zl_issuer_lock while we do this, to 2853 * ensure no new threads enter zil_process_commit_list() until 2854 * all lwb's in the zl_lwb_list have been synced and freed 2855 * (which is achieved via the txg_wait_synced() call). 2856 */ 2857 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2858 ZIL_STAT_BUMP(zilog, zil_commit_stall_count); 2859 txg_wait_synced(zilog->zl_dmu_pool, 0); 2860 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 2861 } 2862 2863 static void 2864 zil_burst_done(zilog_t *zilog) 2865 { 2866 if (!list_is_empty(&zilog->zl_itx_commit_list) || 2867 zilog->zl_cur_size == 0) 2868 return; 2869 2870 if (zilog->zl_parallel) 2871 zilog->zl_parallel--; 2872 2873 uint_t r = (zilog->zl_prev_rotor + 1) & (ZIL_BURSTS - 1); 2874 zilog->zl_prev_rotor = r; 2875 zilog->zl_prev_opt[r] = zil_lwb_plan(zilog, zilog->zl_cur_size, 2876 &zilog->zl_prev_min[r]); 2877 2878 zilog->zl_cur_size = 0; 2879 zilog->zl_cur_max = 0; 2880 zilog->zl_cur_left = 0; 2881 } 2882 2883 /* 2884 * This function will traverse the commit list, creating new lwbs as 2885 * needed, and committing the itxs from the commit list to these newly 2886 * created lwbs. Additionally, as a new lwb is created, the previous 2887 * lwb will be issued to the zio layer to be written to disk. 2888 */ 2889 static void 2890 zil_process_commit_list(zilog_t *zilog, zil_commit_waiter_t *zcw, list_t *ilwbs) 2891 { 2892 spa_t *spa = zilog->zl_spa; 2893 list_t nolwb_itxs; 2894 list_t nolwb_waiters; 2895 lwb_t *lwb, *plwb; 2896 itx_t *itx; 2897 2898 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2899 2900 /* 2901 * Return if there's nothing to commit before we dirty the fs by 2902 * calling zil_create(). 2903 */ 2904 if (list_is_empty(&zilog->zl_itx_commit_list)) 2905 return; 2906 2907 list_create(&nolwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node)); 2908 list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t), 2909 offsetof(zil_commit_waiter_t, zcw_node)); 2910 2911 lwb = list_tail(&zilog->zl_lwb_list); 2912 if (lwb == NULL) { 2913 lwb = zil_create(zilog); 2914 } else { 2915 /* 2916 * Activate SPA_FEATURE_ZILSAXATTR for the cases where ZIL will 2917 * have already been created (zl_lwb_list not empty). 2918 */ 2919 zil_commit_activate_saxattr_feature(zilog); 2920 ASSERT(lwb->lwb_state == LWB_STATE_NEW || 2921 lwb->lwb_state == LWB_STATE_OPENED); 2922 2923 /* 2924 * If the lwb is still opened, it means the workload is really 2925 * multi-threaded and we won the chance of write aggregation. 2926 * If it is not opened yet, but previous lwb is still not 2927 * flushed, it still means the workload is multi-threaded, but 2928 * there was too much time between the commits to aggregate, so 2929 * we try aggregation next times, but without too much hopes. 2930 */ 2931 if (lwb->lwb_state == LWB_STATE_OPENED) { 2932 zilog->zl_parallel = ZIL_BURSTS; 2933 } else if ((plwb = list_prev(&zilog->zl_lwb_list, lwb)) 2934 != NULL && plwb->lwb_state != LWB_STATE_FLUSH_DONE) { 2935 zilog->zl_parallel = MAX(zilog->zl_parallel, 2936 ZIL_BURSTS / 2); 2937 } 2938 } 2939 2940 while ((itx = list_remove_head(&zilog->zl_itx_commit_list)) != NULL) { 2941 lr_t *lrc = &itx->itx_lr; 2942 uint64_t txg = lrc->lrc_txg; 2943 2944 ASSERT3U(txg, !=, 0); 2945 2946 if (lrc->lrc_txtype == TX_COMMIT) { 2947 DTRACE_PROBE2(zil__process__commit__itx, 2948 zilog_t *, zilog, itx_t *, itx); 2949 } else { 2950 DTRACE_PROBE2(zil__process__normal__itx, 2951 zilog_t *, zilog, itx_t *, itx); 2952 } 2953 2954 boolean_t synced = txg <= spa_last_synced_txg(spa); 2955 boolean_t frozen = txg > spa_freeze_txg(spa); 2956 2957 /* 2958 * If the txg of this itx has already been synced out, then 2959 * we don't need to commit this itx to an lwb. This is 2960 * because the data of this itx will have already been 2961 * written to the main pool. This is inherently racy, and 2962 * it's still ok to commit an itx whose txg has already 2963 * been synced; this will result in a write that's 2964 * unnecessary, but will do no harm. 2965 * 2966 * With that said, we always want to commit TX_COMMIT itxs 2967 * to an lwb, regardless of whether or not that itx's txg 2968 * has been synced out. We do this to ensure any OPENED lwb 2969 * will always have at least one zil_commit_waiter_t linked 2970 * to the lwb. 2971 * 2972 * As a counter-example, if we skipped TX_COMMIT itx's 2973 * whose txg had already been synced, the following 2974 * situation could occur if we happened to be racing with 2975 * spa_sync: 2976 * 2977 * 1. We commit a non-TX_COMMIT itx to an lwb, where the 2978 * itx's txg is 10 and the last synced txg is 9. 2979 * 2. spa_sync finishes syncing out txg 10. 2980 * 3. We move to the next itx in the list, it's a TX_COMMIT 2981 * whose txg is 10, so we skip it rather than committing 2982 * it to the lwb used in (1). 2983 * 2984 * If the itx that is skipped in (3) is the last TX_COMMIT 2985 * itx in the commit list, than it's possible for the lwb 2986 * used in (1) to remain in the OPENED state indefinitely. 2987 * 2988 * To prevent the above scenario from occurring, ensuring 2989 * that once an lwb is OPENED it will transition to ISSUED 2990 * and eventually DONE, we always commit TX_COMMIT itx's to 2991 * an lwb here, even if that itx's txg has already been 2992 * synced. 2993 * 2994 * Finally, if the pool is frozen, we _always_ commit the 2995 * itx. The point of freezing the pool is to prevent data 2996 * from being written to the main pool via spa_sync, and 2997 * instead rely solely on the ZIL to persistently store the 2998 * data; i.e. when the pool is frozen, the last synced txg 2999 * value can't be trusted. 3000 */ 3001 if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) { 3002 if (lwb != NULL) { 3003 lwb = zil_lwb_assign(zilog, lwb, itx, ilwbs); 3004 if (lwb == NULL) { 3005 list_insert_tail(&nolwb_itxs, itx); 3006 } else if ((zcw->zcw_lwb != NULL && 3007 zcw->zcw_lwb != lwb) || zcw->zcw_done) { 3008 /* 3009 * Our lwb is done, leave the rest of 3010 * itx list to somebody else who care. 3011 */ 3012 zilog->zl_parallel = ZIL_BURSTS; 3013 zilog->zl_cur_left -= 3014 zil_itx_full_size(itx); 3015 break; 3016 } 3017 } else { 3018 if (lrc->lrc_txtype == TX_COMMIT) { 3019 zil_commit_waiter_link_nolwb( 3020 itx->itx_private, &nolwb_waiters); 3021 } 3022 list_insert_tail(&nolwb_itxs, itx); 3023 } 3024 zilog->zl_cur_left -= zil_itx_full_size(itx); 3025 } else { 3026 ASSERT3S(lrc->lrc_txtype, !=, TX_COMMIT); 3027 zilog->zl_cur_left -= zil_itx_full_size(itx); 3028 zil_itx_destroy(itx); 3029 } 3030 } 3031 3032 if (lwb == NULL) { 3033 /* 3034 * This indicates zio_alloc_zil() failed to allocate the 3035 * "next" lwb on-disk. When this happens, we must stall 3036 * the ZIL write pipeline; see the comment within 3037 * zil_commit_writer_stall() for more details. 3038 */ 3039 while ((lwb = list_remove_head(ilwbs)) != NULL) 3040 zil_lwb_write_issue(zilog, lwb); 3041 zil_commit_writer_stall(zilog); 3042 3043 /* 3044 * Additionally, we have to signal and mark the "nolwb" 3045 * waiters as "done" here, since without an lwb, we 3046 * can't do this via zil_lwb_flush_vdevs_done() like 3047 * normal. 3048 */ 3049 zil_commit_waiter_t *zcw; 3050 while ((zcw = list_remove_head(&nolwb_waiters)) != NULL) 3051 zil_commit_waiter_skip(zcw); 3052 3053 /* 3054 * And finally, we have to destroy the itx's that 3055 * couldn't be committed to an lwb; this will also call 3056 * the itx's callback if one exists for the itx. 3057 */ 3058 while ((itx = list_remove_head(&nolwb_itxs)) != NULL) 3059 zil_itx_destroy(itx); 3060 } else { 3061 ASSERT(list_is_empty(&nolwb_waiters)); 3062 ASSERT3P(lwb, !=, NULL); 3063 ASSERT(lwb->lwb_state == LWB_STATE_NEW || 3064 lwb->lwb_state == LWB_STATE_OPENED); 3065 3066 /* 3067 * At this point, the ZIL block pointed at by the "lwb" 3068 * variable is in "new" or "opened" state. 3069 * 3070 * If it's "new", then no itxs have been committed to it, so 3071 * there's no point in issuing its zio (i.e. it's "empty"). 3072 * 3073 * If it's "opened", then it contains one or more itxs that 3074 * eventually need to be committed to stable storage. In 3075 * this case we intentionally do not issue the lwb's zio 3076 * to disk yet, and instead rely on one of the following 3077 * two mechanisms for issuing the zio: 3078 * 3079 * 1. Ideally, there will be more ZIL activity occurring on 3080 * the system, such that this function will be immediately 3081 * called again by different thread and this lwb will be 3082 * closed by zil_lwb_assign(). This way, the lwb will be 3083 * "full" when it is issued to disk, and we'll make use of 3084 * the lwb's size the best we can. 3085 * 3086 * 2. If there isn't sufficient ZIL activity occurring on 3087 * the system, zil_commit_waiter() will close it and issue 3088 * the zio. If this occurs, the lwb is not guaranteed 3089 * to be "full" by the time its zio is issued, and means 3090 * the size of the lwb was "too large" given the amount 3091 * of ZIL activity occurring on the system at that time. 3092 * 3093 * We do this for a couple of reasons: 3094 * 3095 * 1. To try and reduce the number of IOPs needed to 3096 * write the same number of itxs. If an lwb has space 3097 * available in its buffer for more itxs, and more itxs 3098 * will be committed relatively soon (relative to the 3099 * latency of performing a write), then it's beneficial 3100 * to wait for these "next" itxs. This way, more itxs 3101 * can be committed to stable storage with fewer writes. 3102 * 3103 * 2. To try and use the largest lwb block size that the 3104 * incoming rate of itxs can support. Again, this is to 3105 * try and pack as many itxs into as few lwbs as 3106 * possible, without significantly impacting the latency 3107 * of each individual itx. 3108 */ 3109 if (lwb->lwb_state == LWB_STATE_OPENED && !zilog->zl_parallel) { 3110 zil_burst_done(zilog); 3111 list_insert_tail(ilwbs, lwb); 3112 lwb = zil_lwb_write_close(zilog, lwb, LWB_STATE_NEW); 3113 if (lwb == NULL) { 3114 while ((lwb = list_remove_head(ilwbs)) != NULL) 3115 zil_lwb_write_issue(zilog, lwb); 3116 zil_commit_writer_stall(zilog); 3117 } 3118 } 3119 } 3120 } 3121 3122 /* 3123 * This function is responsible for ensuring the passed in commit waiter 3124 * (and associated commit itx) is committed to an lwb. If the waiter is 3125 * not already committed to an lwb, all itxs in the zilog's queue of 3126 * itxs will be processed. The assumption is the passed in waiter's 3127 * commit itx will found in the queue just like the other non-commit 3128 * itxs, such that when the entire queue is processed, the waiter will 3129 * have been committed to an lwb. 3130 * 3131 * The lwb associated with the passed in waiter is not guaranteed to 3132 * have been issued by the time this function completes. If the lwb is 3133 * not issued, we rely on future calls to zil_commit_writer() to issue 3134 * the lwb, or the timeout mechanism found in zil_commit_waiter(). 3135 */ 3136 static uint64_t 3137 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw) 3138 { 3139 list_t ilwbs; 3140 lwb_t *lwb; 3141 uint64_t wtxg = 0; 3142 3143 ASSERT(!MUTEX_HELD(&zilog->zl_lock)); 3144 ASSERT(spa_writeable(zilog->zl_spa)); 3145 3146 list_create(&ilwbs, sizeof (lwb_t), offsetof(lwb_t, lwb_issue_node)); 3147 mutex_enter(&zilog->zl_issuer_lock); 3148 3149 if (zcw->zcw_lwb != NULL || zcw->zcw_done) { 3150 /* 3151 * It's possible that, while we were waiting to acquire 3152 * the "zl_issuer_lock", another thread committed this 3153 * waiter to an lwb. If that occurs, we bail out early, 3154 * without processing any of the zilog's queue of itxs. 3155 * 3156 * On certain workloads and system configurations, the 3157 * "zl_issuer_lock" can become highly contended. In an 3158 * attempt to reduce this contention, we immediately drop 3159 * the lock if the waiter has already been processed. 3160 * 3161 * We've measured this optimization to reduce CPU spent 3162 * contending on this lock by up to 5%, using a system 3163 * with 32 CPUs, low latency storage (~50 usec writes), 3164 * and 1024 threads performing sync writes. 3165 */ 3166 goto out; 3167 } 3168 3169 ZIL_STAT_BUMP(zilog, zil_commit_writer_count); 3170 3171 wtxg = zil_get_commit_list(zilog); 3172 zil_prune_commit_list(zilog); 3173 zil_process_commit_list(zilog, zcw, &ilwbs); 3174 3175 out: 3176 mutex_exit(&zilog->zl_issuer_lock); 3177 while ((lwb = list_remove_head(&ilwbs)) != NULL) 3178 zil_lwb_write_issue(zilog, lwb); 3179 list_destroy(&ilwbs); 3180 return (wtxg); 3181 } 3182 3183 static void 3184 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw) 3185 { 3186 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock)); 3187 ASSERT(MUTEX_HELD(&zcw->zcw_lock)); 3188 ASSERT3B(zcw->zcw_done, ==, B_FALSE); 3189 3190 lwb_t *lwb = zcw->zcw_lwb; 3191 ASSERT3P(lwb, !=, NULL); 3192 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_NEW); 3193 3194 /* 3195 * If the lwb has already been issued by another thread, we can 3196 * immediately return since there's no work to be done (the 3197 * point of this function is to issue the lwb). Additionally, we 3198 * do this prior to acquiring the zl_issuer_lock, to avoid 3199 * acquiring it when it's not necessary to do so. 3200 */ 3201 if (lwb->lwb_state != LWB_STATE_OPENED) 3202 return; 3203 3204 /* 3205 * In order to call zil_lwb_write_close() we must hold the 3206 * zilog's "zl_issuer_lock". We can't simply acquire that lock, 3207 * since we're already holding the commit waiter's "zcw_lock", 3208 * and those two locks are acquired in the opposite order 3209 * elsewhere. 3210 */ 3211 mutex_exit(&zcw->zcw_lock); 3212 mutex_enter(&zilog->zl_issuer_lock); 3213 mutex_enter(&zcw->zcw_lock); 3214 3215 /* 3216 * Since we just dropped and re-acquired the commit waiter's 3217 * lock, we have to re-check to see if the waiter was marked 3218 * "done" during that process. If the waiter was marked "done", 3219 * the "lwb" pointer is no longer valid (it can be free'd after 3220 * the waiter is marked "done"), so without this check we could 3221 * wind up with a use-after-free error below. 3222 */ 3223 if (zcw->zcw_done) { 3224 mutex_exit(&zilog->zl_issuer_lock); 3225 return; 3226 } 3227 3228 ASSERT3P(lwb, ==, zcw->zcw_lwb); 3229 3230 /* 3231 * We've already checked this above, but since we hadn't acquired 3232 * the zilog's zl_issuer_lock, we have to perform this check a 3233 * second time while holding the lock. 3234 * 3235 * We don't need to hold the zl_lock since the lwb cannot transition 3236 * from OPENED to CLOSED while we hold the zl_issuer_lock. The lwb 3237 * _can_ transition from CLOSED to DONE, but it's OK to race with 3238 * that transition since we treat the lwb the same, whether it's in 3239 * the CLOSED, ISSUED or DONE states. 3240 * 3241 * The important thing, is we treat the lwb differently depending on 3242 * if it's OPENED or CLOSED, and block any other threads that might 3243 * attempt to close/issue this lwb. For that reason we hold the 3244 * zl_issuer_lock when checking the lwb_state; we must not call 3245 * zil_lwb_write_close() if the lwb had already been closed/issued. 3246 * 3247 * See the comment above the lwb_state_t structure definition for 3248 * more details on the lwb states, and locking requirements. 3249 */ 3250 if (lwb->lwb_state != LWB_STATE_OPENED) { 3251 mutex_exit(&zilog->zl_issuer_lock); 3252 return; 3253 } 3254 3255 /* 3256 * We do not need zcw_lock once we hold zl_issuer_lock and know lwb 3257 * is still open. But we have to drop it to avoid a deadlock in case 3258 * callback of zio issued by zil_lwb_write_issue() try to get it, 3259 * while zil_lwb_write_issue() is blocked on attempt to issue next 3260 * lwb it found in LWB_STATE_READY state. 3261 */ 3262 mutex_exit(&zcw->zcw_lock); 3263 3264 /* 3265 * As described in the comments above zil_commit_waiter() and 3266 * zil_process_commit_list(), we need to issue this lwb's zio 3267 * since we've reached the commit waiter's timeout and it still 3268 * hasn't been issued. 3269 */ 3270 zil_burst_done(zilog); 3271 lwb_t *nlwb = zil_lwb_write_close(zilog, lwb, LWB_STATE_NEW); 3272 3273 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_CLOSED); 3274 3275 if (nlwb == NULL) { 3276 /* 3277 * When zil_lwb_write_close() returns NULL, this 3278 * indicates zio_alloc_zil() failed to allocate the 3279 * "next" lwb on-disk. When this occurs, the ZIL write 3280 * pipeline must be stalled; see the comment within the 3281 * zil_commit_writer_stall() function for more details. 3282 */ 3283 zil_lwb_write_issue(zilog, lwb); 3284 zil_commit_writer_stall(zilog); 3285 mutex_exit(&zilog->zl_issuer_lock); 3286 } else { 3287 mutex_exit(&zilog->zl_issuer_lock); 3288 zil_lwb_write_issue(zilog, lwb); 3289 } 3290 mutex_enter(&zcw->zcw_lock); 3291 } 3292 3293 /* 3294 * This function is responsible for performing the following two tasks: 3295 * 3296 * 1. its primary responsibility is to block until the given "commit 3297 * waiter" is considered "done". 3298 * 3299 * 2. its secondary responsibility is to issue the zio for the lwb that 3300 * the given "commit waiter" is waiting on, if this function has 3301 * waited "long enough" and the lwb is still in the "open" state. 3302 * 3303 * Given a sufficient amount of itxs being generated and written using 3304 * the ZIL, the lwb's zio will be issued via the zil_lwb_assign() 3305 * function. If this does not occur, this secondary responsibility will 3306 * ensure the lwb is issued even if there is not other synchronous 3307 * activity on the system. 3308 * 3309 * For more details, see zil_process_commit_list(); more specifically, 3310 * the comment at the bottom of that function. 3311 */ 3312 static void 3313 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw) 3314 { 3315 ASSERT(!MUTEX_HELD(&zilog->zl_lock)); 3316 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock)); 3317 ASSERT(spa_writeable(zilog->zl_spa)); 3318 3319 mutex_enter(&zcw->zcw_lock); 3320 3321 /* 3322 * The timeout is scaled based on the lwb latency to avoid 3323 * significantly impacting the latency of each individual itx. 3324 * For more details, see the comment at the bottom of the 3325 * zil_process_commit_list() function. 3326 */ 3327 int pct = MAX(zfs_commit_timeout_pct, 1); 3328 hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100; 3329 hrtime_t wakeup = gethrtime() + sleep; 3330 boolean_t timedout = B_FALSE; 3331 3332 while (!zcw->zcw_done) { 3333 ASSERT(MUTEX_HELD(&zcw->zcw_lock)); 3334 3335 lwb_t *lwb = zcw->zcw_lwb; 3336 3337 /* 3338 * Usually, the waiter will have a non-NULL lwb field here, 3339 * but it's possible for it to be NULL as a result of 3340 * zil_commit() racing with spa_sync(). 3341 * 3342 * When zil_clean() is called, it's possible for the itxg 3343 * list (which may be cleaned via a taskq) to contain 3344 * commit itxs. When this occurs, the commit waiters linked 3345 * off of these commit itxs will not be committed to an 3346 * lwb. Additionally, these commit waiters will not be 3347 * marked done until zil_commit_waiter_skip() is called via 3348 * zil_itxg_clean(). 3349 * 3350 * Thus, it's possible for this commit waiter (i.e. the 3351 * "zcw" variable) to be found in this "in between" state; 3352 * where it's "zcw_lwb" field is NULL, and it hasn't yet 3353 * been skipped, so it's "zcw_done" field is still B_FALSE. 3354 */ 3355 IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_NEW); 3356 3357 if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) { 3358 ASSERT3B(timedout, ==, B_FALSE); 3359 3360 /* 3361 * If the lwb hasn't been issued yet, then we 3362 * need to wait with a timeout, in case this 3363 * function needs to issue the lwb after the 3364 * timeout is reached; responsibility (2) from 3365 * the comment above this function. 3366 */ 3367 int rc = cv_timedwait_hires(&zcw->zcw_cv, 3368 &zcw->zcw_lock, wakeup, USEC2NSEC(1), 3369 CALLOUT_FLAG_ABSOLUTE); 3370 3371 if (rc != -1 || zcw->zcw_done) 3372 continue; 3373 3374 timedout = B_TRUE; 3375 zil_commit_waiter_timeout(zilog, zcw); 3376 3377 if (!zcw->zcw_done) { 3378 /* 3379 * If the commit waiter has already been 3380 * marked "done", it's possible for the 3381 * waiter's lwb structure to have already 3382 * been freed. Thus, we can only reliably 3383 * make these assertions if the waiter 3384 * isn't done. 3385 */ 3386 ASSERT3P(lwb, ==, zcw->zcw_lwb); 3387 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED); 3388 } 3389 } else { 3390 /* 3391 * If the lwb isn't open, then it must have already 3392 * been issued. In that case, there's no need to 3393 * use a timeout when waiting for the lwb to 3394 * complete. 3395 * 3396 * Additionally, if the lwb is NULL, the waiter 3397 * will soon be signaled and marked done via 3398 * zil_clean() and zil_itxg_clean(), so no timeout 3399 * is required. 3400 */ 3401 3402 IMPLY(lwb != NULL, 3403 lwb->lwb_state == LWB_STATE_CLOSED || 3404 lwb->lwb_state == LWB_STATE_READY || 3405 lwb->lwb_state == LWB_STATE_ISSUED || 3406 lwb->lwb_state == LWB_STATE_WRITE_DONE || 3407 lwb->lwb_state == LWB_STATE_FLUSH_DONE); 3408 cv_wait(&zcw->zcw_cv, &zcw->zcw_lock); 3409 } 3410 } 3411 3412 mutex_exit(&zcw->zcw_lock); 3413 } 3414 3415 static zil_commit_waiter_t * 3416 zil_alloc_commit_waiter(void) 3417 { 3418 zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP); 3419 3420 cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL); 3421 mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL); 3422 list_link_init(&zcw->zcw_node); 3423 zcw->zcw_lwb = NULL; 3424 zcw->zcw_done = B_FALSE; 3425 zcw->zcw_zio_error = 0; 3426 3427 return (zcw); 3428 } 3429 3430 static void 3431 zil_free_commit_waiter(zil_commit_waiter_t *zcw) 3432 { 3433 ASSERT(!list_link_active(&zcw->zcw_node)); 3434 ASSERT3P(zcw->zcw_lwb, ==, NULL); 3435 ASSERT3B(zcw->zcw_done, ==, B_TRUE); 3436 mutex_destroy(&zcw->zcw_lock); 3437 cv_destroy(&zcw->zcw_cv); 3438 kmem_cache_free(zil_zcw_cache, zcw); 3439 } 3440 3441 /* 3442 * This function is used to create a TX_COMMIT itx and assign it. This 3443 * way, it will be linked into the ZIL's list of synchronous itxs, and 3444 * then later committed to an lwb (or skipped) when 3445 * zil_process_commit_list() is called. 3446 */ 3447 static void 3448 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw) 3449 { 3450 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os); 3451 3452 /* 3453 * Since we are not going to create any new dirty data, and we 3454 * can even help with clearing the existing dirty data, we 3455 * should not be subject to the dirty data based delays. We 3456 * use TXG_NOTHROTTLE to bypass the delay mechanism. 3457 */ 3458 VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE)); 3459 3460 itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t)); 3461 itx->itx_sync = B_TRUE; 3462 itx->itx_private = zcw; 3463 3464 zil_itx_assign(zilog, itx, tx); 3465 3466 dmu_tx_commit(tx); 3467 } 3468 3469 /* 3470 * Commit ZFS Intent Log transactions (itxs) to stable storage. 3471 * 3472 * When writing ZIL transactions to the on-disk representation of the 3473 * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple 3474 * itxs can be committed to a single lwb. Once a lwb is written and 3475 * committed to stable storage (i.e. the lwb is written, and vdevs have 3476 * been flushed), each itx that was committed to that lwb is also 3477 * considered to be committed to stable storage. 3478 * 3479 * When an itx is committed to an lwb, the log record (lr_t) contained 3480 * by the itx is copied into the lwb's zio buffer, and once this buffer 3481 * is written to disk, it becomes an on-disk ZIL block. 3482 * 3483 * As itxs are generated, they're inserted into the ZIL's queue of 3484 * uncommitted itxs. The semantics of zil_commit() are such that it will 3485 * block until all itxs that were in the queue when it was called, are 3486 * committed to stable storage. 3487 * 3488 * If "foid" is zero, this means all "synchronous" and "asynchronous" 3489 * itxs, for all objects in the dataset, will be committed to stable 3490 * storage prior to zil_commit() returning. If "foid" is non-zero, all 3491 * "synchronous" itxs for all objects, but only "asynchronous" itxs 3492 * that correspond to the foid passed in, will be committed to stable 3493 * storage prior to zil_commit() returning. 3494 * 3495 * Generally speaking, when zil_commit() is called, the consumer doesn't 3496 * actually care about _all_ of the uncommitted itxs. Instead, they're 3497 * simply trying to waiting for a specific itx to be committed to disk, 3498 * but the interface(s) for interacting with the ZIL don't allow such 3499 * fine-grained communication. A better interface would allow a consumer 3500 * to create and assign an itx, and then pass a reference to this itx to 3501 * zil_commit(); such that zil_commit() would return as soon as that 3502 * specific itx was committed to disk (instead of waiting for _all_ 3503 * itxs to be committed). 3504 * 3505 * When a thread calls zil_commit() a special "commit itx" will be 3506 * generated, along with a corresponding "waiter" for this commit itx. 3507 * zil_commit() will wait on this waiter's CV, such that when the waiter 3508 * is marked done, and signaled, zil_commit() will return. 3509 * 3510 * This commit itx is inserted into the queue of uncommitted itxs. This 3511 * provides an easy mechanism for determining which itxs were in the 3512 * queue prior to zil_commit() having been called, and which itxs were 3513 * added after zil_commit() was called. 3514 * 3515 * The commit itx is special; it doesn't have any on-disk representation. 3516 * When a commit itx is "committed" to an lwb, the waiter associated 3517 * with it is linked onto the lwb's list of waiters. Then, when that lwb 3518 * completes, each waiter on the lwb's list is marked done and signaled 3519 * -- allowing the thread waiting on the waiter to return from zil_commit(). 3520 * 3521 * It's important to point out a few critical factors that allow us 3522 * to make use of the commit itxs, commit waiters, per-lwb lists of 3523 * commit waiters, and zio completion callbacks like we're doing: 3524 * 3525 * 1. The list of waiters for each lwb is traversed, and each commit 3526 * waiter is marked "done" and signaled, in the zio completion 3527 * callback of the lwb's zio[*]. 3528 * 3529 * * Actually, the waiters are signaled in the zio completion 3530 * callback of the root zio for the flush commands that are sent to 3531 * the vdevs upon completion of the lwb zio. 3532 * 3533 * 2. When the itxs are inserted into the ZIL's queue of uncommitted 3534 * itxs, the order in which they are inserted is preserved[*]; as 3535 * itxs are added to the queue, they are added to the tail of 3536 * in-memory linked lists. 3537 * 3538 * When committing the itxs to lwbs (to be written to disk), they 3539 * are committed in the same order in which the itxs were added to 3540 * the uncommitted queue's linked list(s); i.e. the linked list of 3541 * itxs to commit is traversed from head to tail, and each itx is 3542 * committed to an lwb in that order. 3543 * 3544 * * To clarify: 3545 * 3546 * - the order of "sync" itxs is preserved w.r.t. other 3547 * "sync" itxs, regardless of the corresponding objects. 3548 * - the order of "async" itxs is preserved w.r.t. other 3549 * "async" itxs corresponding to the same object. 3550 * - the order of "async" itxs is *not* preserved w.r.t. other 3551 * "async" itxs corresponding to different objects. 3552 * - the order of "sync" itxs w.r.t. "async" itxs (or vice 3553 * versa) is *not* preserved, even for itxs that correspond 3554 * to the same object. 3555 * 3556 * For more details, see: zil_itx_assign(), zil_async_to_sync(), 3557 * zil_get_commit_list(), and zil_process_commit_list(). 3558 * 3559 * 3. The lwbs represent a linked list of blocks on disk. Thus, any 3560 * lwb cannot be considered committed to stable storage, until its 3561 * "previous" lwb is also committed to stable storage. This fact, 3562 * coupled with the fact described above, means that itxs are 3563 * committed in (roughly) the order in which they were generated. 3564 * This is essential because itxs are dependent on prior itxs. 3565 * Thus, we *must not* deem an itx as being committed to stable 3566 * storage, until *all* prior itxs have also been committed to 3567 * stable storage. 3568 * 3569 * To enforce this ordering of lwb zio's, while still leveraging as 3570 * much of the underlying storage performance as possible, we rely 3571 * on two fundamental concepts: 3572 * 3573 * 1. The creation and issuance of lwb zio's is protected by 3574 * the zilog's "zl_issuer_lock", which ensures only a single 3575 * thread is creating and/or issuing lwb's at a time 3576 * 2. The "previous" lwb is a child of the "current" lwb 3577 * (leveraging the zio parent-child dependency graph) 3578 * 3579 * By relying on this parent-child zio relationship, we can have 3580 * many lwb zio's concurrently issued to the underlying storage, 3581 * but the order in which they complete will be the same order in 3582 * which they were created. 3583 */ 3584 void 3585 zil_commit(zilog_t *zilog, uint64_t foid) 3586 { 3587 /* 3588 * We should never attempt to call zil_commit on a snapshot for 3589 * a couple of reasons: 3590 * 3591 * 1. A snapshot may never be modified, thus it cannot have any 3592 * in-flight itxs that would have modified the dataset. 3593 * 3594 * 2. By design, when zil_commit() is called, a commit itx will 3595 * be assigned to this zilog; as a result, the zilog will be 3596 * dirtied. We must not dirty the zilog of a snapshot; there's 3597 * checks in the code that enforce this invariant, and will 3598 * cause a panic if it's not upheld. 3599 */ 3600 ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE); 3601 3602 if (zilog->zl_sync == ZFS_SYNC_DISABLED) 3603 return; 3604 3605 if (!spa_writeable(zilog->zl_spa)) { 3606 /* 3607 * If the SPA is not writable, there should never be any 3608 * pending itxs waiting to be committed to disk. If that 3609 * weren't true, we'd skip writing those itxs out, and 3610 * would break the semantics of zil_commit(); thus, we're 3611 * verifying that truth before we return to the caller. 3612 */ 3613 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3614 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL); 3615 for (int i = 0; i < TXG_SIZE; i++) 3616 ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL); 3617 return; 3618 } 3619 3620 /* 3621 * If the ZIL is suspended, we don't want to dirty it by calling 3622 * zil_commit_itx_assign() below, nor can we write out 3623 * lwbs like would be done in zil_commit_write(). Thus, we 3624 * simply rely on txg_wait_synced() to maintain the necessary 3625 * semantics, and avoid calling those functions altogether. 3626 */ 3627 if (zilog->zl_suspend > 0) { 3628 ZIL_STAT_BUMP(zilog, zil_commit_suspend_count); 3629 txg_wait_synced(zilog->zl_dmu_pool, 0); 3630 return; 3631 } 3632 3633 zil_commit_impl(zilog, foid); 3634 } 3635 3636 void 3637 zil_commit_impl(zilog_t *zilog, uint64_t foid) 3638 { 3639 ZIL_STAT_BUMP(zilog, zil_commit_count); 3640 3641 /* 3642 * Move the "async" itxs for the specified foid to the "sync" 3643 * queues, such that they will be later committed (or skipped) 3644 * to an lwb when zil_process_commit_list() is called. 3645 * 3646 * Since these "async" itxs must be committed prior to this 3647 * call to zil_commit returning, we must perform this operation 3648 * before we call zil_commit_itx_assign(). 3649 */ 3650 zil_async_to_sync(zilog, foid); 3651 3652 /* 3653 * We allocate a new "waiter" structure which will initially be 3654 * linked to the commit itx using the itx's "itx_private" field. 3655 * Since the commit itx doesn't represent any on-disk state, 3656 * when it's committed to an lwb, rather than copying the its 3657 * lr_t into the lwb's buffer, the commit itx's "waiter" will be 3658 * added to the lwb's list of waiters. Then, when the lwb is 3659 * committed to stable storage, each waiter in the lwb's list of 3660 * waiters will be marked "done", and signalled. 3661 * 3662 * We must create the waiter and assign the commit itx prior to 3663 * calling zil_commit_writer(), or else our specific commit itx 3664 * is not guaranteed to be committed to an lwb prior to calling 3665 * zil_commit_waiter(). 3666 */ 3667 zil_commit_waiter_t *zcw = zil_alloc_commit_waiter(); 3668 zil_commit_itx_assign(zilog, zcw); 3669 3670 uint64_t wtxg = zil_commit_writer(zilog, zcw); 3671 zil_commit_waiter(zilog, zcw); 3672 3673 if (zcw->zcw_zio_error != 0) { 3674 /* 3675 * If there was an error writing out the ZIL blocks that 3676 * this thread is waiting on, then we fallback to 3677 * relying on spa_sync() to write out the data this 3678 * thread is waiting on. Obviously this has performance 3679 * implications, but the expectation is for this to be 3680 * an exceptional case, and shouldn't occur often. 3681 */ 3682 ZIL_STAT_BUMP(zilog, zil_commit_error_count); 3683 DTRACE_PROBE2(zil__commit__io__error, 3684 zilog_t *, zilog, zil_commit_waiter_t *, zcw); 3685 txg_wait_synced(zilog->zl_dmu_pool, 0); 3686 } else if (wtxg != 0) { 3687 ZIL_STAT_BUMP(zilog, zil_commit_suspend_count); 3688 txg_wait_synced(zilog->zl_dmu_pool, wtxg); 3689 } 3690 3691 zil_free_commit_waiter(zcw); 3692 } 3693 3694 /* 3695 * Called in syncing context to free committed log blocks and update log header. 3696 */ 3697 void 3698 zil_sync(zilog_t *zilog, dmu_tx_t *tx) 3699 { 3700 zil_header_t *zh = zil_header_in_syncing_context(zilog); 3701 uint64_t txg = dmu_tx_get_txg(tx); 3702 spa_t *spa = zilog->zl_spa; 3703 uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK]; 3704 lwb_t *lwb; 3705 3706 /* 3707 * We don't zero out zl_destroy_txg, so make sure we don't try 3708 * to destroy it twice. 3709 */ 3710 if (spa_sync_pass(spa) != 1) 3711 return; 3712 3713 zil_lwb_flush_wait_all(zilog, txg); 3714 3715 mutex_enter(&zilog->zl_lock); 3716 3717 ASSERT(zilog->zl_stop_sync == 0); 3718 3719 if (*replayed_seq != 0) { 3720 ASSERT(zh->zh_replay_seq < *replayed_seq); 3721 zh->zh_replay_seq = *replayed_seq; 3722 *replayed_seq = 0; 3723 } 3724 3725 if (zilog->zl_destroy_txg == txg) { 3726 blkptr_t blk = zh->zh_log; 3727 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 3728 3729 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3730 3731 memset(zh, 0, sizeof (zil_header_t)); 3732 memset(zilog->zl_replayed_seq, 0, 3733 sizeof (zilog->zl_replayed_seq)); 3734 3735 if (zilog->zl_keep_first) { 3736 /* 3737 * If this block was part of log chain that couldn't 3738 * be claimed because a device was missing during 3739 * zil_claim(), but that device later returns, 3740 * then this block could erroneously appear valid. 3741 * To guard against this, assign a new GUID to the new 3742 * log chain so it doesn't matter what blk points to. 3743 */ 3744 zil_init_log_chain(zilog, &blk); 3745 zh->zh_log = blk; 3746 } else { 3747 /* 3748 * A destroyed ZIL chain can't contain any TX_SETSAXATTR 3749 * records. So, deactivate the feature for this dataset. 3750 * We activate it again when we start a new ZIL chain. 3751 */ 3752 if (dsl_dataset_feature_is_active(ds, 3753 SPA_FEATURE_ZILSAXATTR)) 3754 dsl_dataset_deactivate_feature(ds, 3755 SPA_FEATURE_ZILSAXATTR, tx); 3756 } 3757 } 3758 3759 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 3760 zh->zh_log = lwb->lwb_blk; 3761 if (lwb->lwb_state != LWB_STATE_FLUSH_DONE || 3762 lwb->lwb_alloc_txg > txg || lwb->lwb_max_txg > txg) 3763 break; 3764 list_remove(&zilog->zl_lwb_list, lwb); 3765 if (!BP_IS_HOLE(&lwb->lwb_blk)) 3766 zio_free(spa, txg, &lwb->lwb_blk); 3767 zil_free_lwb(zilog, lwb); 3768 3769 /* 3770 * If we don't have anything left in the lwb list then 3771 * we've had an allocation failure and we need to zero 3772 * out the zil_header blkptr so that we don't end 3773 * up freeing the same block twice. 3774 */ 3775 if (list_is_empty(&zilog->zl_lwb_list)) 3776 BP_ZERO(&zh->zh_log); 3777 } 3778 3779 mutex_exit(&zilog->zl_lock); 3780 } 3781 3782 static int 3783 zil_lwb_cons(void *vbuf, void *unused, int kmflag) 3784 { 3785 (void) unused, (void) kmflag; 3786 lwb_t *lwb = vbuf; 3787 list_create(&lwb->lwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node)); 3788 list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t), 3789 offsetof(zil_commit_waiter_t, zcw_node)); 3790 avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare, 3791 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node)); 3792 mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL); 3793 return (0); 3794 } 3795 3796 static void 3797 zil_lwb_dest(void *vbuf, void *unused) 3798 { 3799 (void) unused; 3800 lwb_t *lwb = vbuf; 3801 mutex_destroy(&lwb->lwb_vdev_lock); 3802 avl_destroy(&lwb->lwb_vdev_tree); 3803 list_destroy(&lwb->lwb_waiters); 3804 list_destroy(&lwb->lwb_itxs); 3805 } 3806 3807 void 3808 zil_init(void) 3809 { 3810 zil_lwb_cache = kmem_cache_create("zil_lwb_cache", 3811 sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0); 3812 3813 zil_zcw_cache = kmem_cache_create("zil_zcw_cache", 3814 sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 3815 3816 zil_sums_init(&zil_sums_global); 3817 zil_kstats_global = kstat_create("zfs", 0, "zil", "misc", 3818 KSTAT_TYPE_NAMED, sizeof (zil_stats) / sizeof (kstat_named_t), 3819 KSTAT_FLAG_VIRTUAL); 3820 3821 if (zil_kstats_global != NULL) { 3822 zil_kstats_global->ks_data = &zil_stats; 3823 zil_kstats_global->ks_update = zil_kstats_global_update; 3824 zil_kstats_global->ks_private = NULL; 3825 kstat_install(zil_kstats_global); 3826 } 3827 } 3828 3829 void 3830 zil_fini(void) 3831 { 3832 kmem_cache_destroy(zil_zcw_cache); 3833 kmem_cache_destroy(zil_lwb_cache); 3834 3835 if (zil_kstats_global != NULL) { 3836 kstat_delete(zil_kstats_global); 3837 zil_kstats_global = NULL; 3838 } 3839 3840 zil_sums_fini(&zil_sums_global); 3841 } 3842 3843 void 3844 zil_set_sync(zilog_t *zilog, uint64_t sync) 3845 { 3846 zilog->zl_sync = sync; 3847 } 3848 3849 void 3850 zil_set_logbias(zilog_t *zilog, uint64_t logbias) 3851 { 3852 zilog->zl_logbias = logbias; 3853 } 3854 3855 zilog_t * 3856 zil_alloc(objset_t *os, zil_header_t *zh_phys) 3857 { 3858 zilog_t *zilog; 3859 3860 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP); 3861 3862 zilog->zl_header = zh_phys; 3863 zilog->zl_os = os; 3864 zilog->zl_spa = dmu_objset_spa(os); 3865 zilog->zl_dmu_pool = dmu_objset_pool(os); 3866 zilog->zl_destroy_txg = TXG_INITIAL - 1; 3867 zilog->zl_logbias = dmu_objset_logbias(os); 3868 zilog->zl_sync = dmu_objset_syncprop(os); 3869 zilog->zl_dirty_max_txg = 0; 3870 zilog->zl_last_lwb_opened = NULL; 3871 zilog->zl_last_lwb_latency = 0; 3872 zilog->zl_max_block_size = MIN(MAX(P2ALIGN_TYPED(zil_maxblocksize, 3873 ZIL_MIN_BLKSZ, uint64_t), ZIL_MIN_BLKSZ), 3874 spa_maxblocksize(dmu_objset_spa(os))); 3875 3876 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL); 3877 mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL); 3878 mutex_init(&zilog->zl_lwb_io_lock, NULL, MUTEX_DEFAULT, NULL); 3879 3880 for (int i = 0; i < TXG_SIZE; i++) { 3881 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL, 3882 MUTEX_DEFAULT, NULL); 3883 } 3884 3885 list_create(&zilog->zl_lwb_list, sizeof (lwb_t), 3886 offsetof(lwb_t, lwb_node)); 3887 3888 list_create(&zilog->zl_itx_commit_list, sizeof (itx_t), 3889 offsetof(itx_t, itx_node)); 3890 3891 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL); 3892 cv_init(&zilog->zl_lwb_io_cv, NULL, CV_DEFAULT, NULL); 3893 3894 for (int i = 0; i < ZIL_BURSTS; i++) { 3895 zilog->zl_prev_opt[i] = zilog->zl_max_block_size - 3896 sizeof (zil_chain_t); 3897 } 3898 3899 return (zilog); 3900 } 3901 3902 void 3903 zil_free(zilog_t *zilog) 3904 { 3905 int i; 3906 3907 zilog->zl_stop_sync = 1; 3908 3909 ASSERT0(zilog->zl_suspend); 3910 ASSERT0(zilog->zl_suspending); 3911 3912 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3913 list_destroy(&zilog->zl_lwb_list); 3914 3915 ASSERT(list_is_empty(&zilog->zl_itx_commit_list)); 3916 list_destroy(&zilog->zl_itx_commit_list); 3917 3918 for (i = 0; i < TXG_SIZE; i++) { 3919 /* 3920 * It's possible for an itx to be generated that doesn't dirty 3921 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean() 3922 * callback to remove the entry. We remove those here. 3923 * 3924 * Also free up the ziltest itxs. 3925 */ 3926 if (zilog->zl_itxg[i].itxg_itxs) 3927 zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs); 3928 mutex_destroy(&zilog->zl_itxg[i].itxg_lock); 3929 } 3930 3931 mutex_destroy(&zilog->zl_issuer_lock); 3932 mutex_destroy(&zilog->zl_lock); 3933 mutex_destroy(&zilog->zl_lwb_io_lock); 3934 3935 cv_destroy(&zilog->zl_cv_suspend); 3936 cv_destroy(&zilog->zl_lwb_io_cv); 3937 3938 kmem_free(zilog, sizeof (zilog_t)); 3939 } 3940 3941 /* 3942 * Open an intent log. 3943 */ 3944 zilog_t * 3945 zil_open(objset_t *os, zil_get_data_t *get_data, zil_sums_t *zil_sums) 3946 { 3947 zilog_t *zilog = dmu_objset_zil(os); 3948 3949 ASSERT3P(zilog->zl_get_data, ==, NULL); 3950 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL); 3951 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3952 3953 zilog->zl_get_data = get_data; 3954 zilog->zl_sums = zil_sums; 3955 3956 return (zilog); 3957 } 3958 3959 /* 3960 * Close an intent log. 3961 */ 3962 void 3963 zil_close(zilog_t *zilog) 3964 { 3965 lwb_t *lwb; 3966 uint64_t txg; 3967 3968 if (!dmu_objset_is_snapshot(zilog->zl_os)) { 3969 zil_commit(zilog, 0); 3970 } else { 3971 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3972 ASSERT0(zilog->zl_dirty_max_txg); 3973 ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE); 3974 } 3975 3976 mutex_enter(&zilog->zl_lock); 3977 txg = zilog->zl_dirty_max_txg; 3978 lwb = list_tail(&zilog->zl_lwb_list); 3979 if (lwb != NULL) { 3980 txg = MAX(txg, lwb->lwb_alloc_txg); 3981 txg = MAX(txg, lwb->lwb_max_txg); 3982 } 3983 mutex_exit(&zilog->zl_lock); 3984 3985 /* 3986 * zl_lwb_max_issued_txg may be larger than lwb_max_txg. It depends 3987 * on the time when the dmu_tx transaction is assigned in 3988 * zil_lwb_write_issue(). 3989 */ 3990 mutex_enter(&zilog->zl_lwb_io_lock); 3991 txg = MAX(zilog->zl_lwb_max_issued_txg, txg); 3992 mutex_exit(&zilog->zl_lwb_io_lock); 3993 3994 /* 3995 * We need to use txg_wait_synced() to wait until that txg is synced. 3996 * zil_sync() will guarantee all lwbs up to that txg have been 3997 * written out, flushed, and cleaned. 3998 */ 3999 if (txg != 0) 4000 txg_wait_synced(zilog->zl_dmu_pool, txg); 4001 4002 if (zilog_is_dirty(zilog)) 4003 zfs_dbgmsg("zil (%px) is dirty, txg %llu", zilog, 4004 (u_longlong_t)txg); 4005 if (txg < spa_freeze_txg(zilog->zl_spa)) 4006 VERIFY(!zilog_is_dirty(zilog)); 4007 4008 zilog->zl_get_data = NULL; 4009 4010 /* 4011 * We should have only one lwb left on the list; remove it now. 4012 */ 4013 mutex_enter(&zilog->zl_lock); 4014 lwb = list_remove_head(&zilog->zl_lwb_list); 4015 if (lwb != NULL) { 4016 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 4017 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_NEW); 4018 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 4019 zil_free_lwb(zilog, lwb); 4020 } 4021 mutex_exit(&zilog->zl_lock); 4022 } 4023 4024 static const char *suspend_tag = "zil suspending"; 4025 4026 /* 4027 * Suspend an intent log. While in suspended mode, we still honor 4028 * synchronous semantics, but we rely on txg_wait_synced() to do it. 4029 * On old version pools, we suspend the log briefly when taking a 4030 * snapshot so that it will have an empty intent log. 4031 * 4032 * Long holds are not really intended to be used the way we do here -- 4033 * held for such a short time. A concurrent caller of dsl_dataset_long_held() 4034 * could fail. Therefore we take pains to only put a long hold if it is 4035 * actually necessary. Fortunately, it will only be necessary if the 4036 * objset is currently mounted (or the ZVOL equivalent). In that case it 4037 * will already have a long hold, so we are not really making things any worse. 4038 * 4039 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or 4040 * zvol_state_t), and use their mechanism to prevent their hold from being 4041 * dropped (e.g. VFS_HOLD()). However, that would be even more pain for 4042 * very little gain. 4043 * 4044 * if cookiep == NULL, this does both the suspend & resume. 4045 * Otherwise, it returns with the dataset "long held", and the cookie 4046 * should be passed into zil_resume(). 4047 */ 4048 int 4049 zil_suspend(const char *osname, void **cookiep) 4050 { 4051 objset_t *os; 4052 zilog_t *zilog; 4053 const zil_header_t *zh; 4054 int error; 4055 4056 error = dmu_objset_hold(osname, suspend_tag, &os); 4057 if (error != 0) 4058 return (error); 4059 zilog = dmu_objset_zil(os); 4060 4061 mutex_enter(&zilog->zl_lock); 4062 zh = zilog->zl_header; 4063 4064 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */ 4065 mutex_exit(&zilog->zl_lock); 4066 dmu_objset_rele(os, suspend_tag); 4067 return (SET_ERROR(EBUSY)); 4068 } 4069 4070 /* 4071 * Don't put a long hold in the cases where we can avoid it. This 4072 * is when there is no cookie so we are doing a suspend & resume 4073 * (i.e. called from zil_vdev_offline()), and there's nothing to do 4074 * for the suspend because it's already suspended, or there's no ZIL. 4075 */ 4076 if (cookiep == NULL && !zilog->zl_suspending && 4077 (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) { 4078 mutex_exit(&zilog->zl_lock); 4079 dmu_objset_rele(os, suspend_tag); 4080 return (0); 4081 } 4082 4083 dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag); 4084 dsl_pool_rele(dmu_objset_pool(os), suspend_tag); 4085 4086 zilog->zl_suspend++; 4087 4088 if (zilog->zl_suspend > 1) { 4089 /* 4090 * Someone else is already suspending it. 4091 * Just wait for them to finish. 4092 */ 4093 4094 while (zilog->zl_suspending) 4095 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock); 4096 mutex_exit(&zilog->zl_lock); 4097 4098 if (cookiep == NULL) 4099 zil_resume(os); 4100 else 4101 *cookiep = os; 4102 return (0); 4103 } 4104 4105 /* 4106 * If there is no pointer to an on-disk block, this ZIL must not 4107 * be active (e.g. filesystem not mounted), so there's nothing 4108 * to clean up. 4109 */ 4110 if (BP_IS_HOLE(&zh->zh_log)) { 4111 ASSERT(cookiep != NULL); /* fast path already handled */ 4112 4113 *cookiep = os; 4114 mutex_exit(&zilog->zl_lock); 4115 return (0); 4116 } 4117 4118 /* 4119 * The ZIL has work to do. Ensure that the associated encryption 4120 * key will remain mapped while we are committing the log by 4121 * grabbing a reference to it. If the key isn't loaded we have no 4122 * choice but to return an error until the wrapping key is loaded. 4123 */ 4124 if (os->os_encrypted && 4125 dsl_dataset_create_key_mapping(dmu_objset_ds(os)) != 0) { 4126 zilog->zl_suspend--; 4127 mutex_exit(&zilog->zl_lock); 4128 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag); 4129 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag); 4130 return (SET_ERROR(EACCES)); 4131 } 4132 4133 zilog->zl_suspending = B_TRUE; 4134 mutex_exit(&zilog->zl_lock); 4135 4136 /* 4137 * We need to use zil_commit_impl to ensure we wait for all 4138 * LWB_STATE_OPENED, _CLOSED and _READY lwbs to be committed 4139 * to disk before proceeding. If we used zil_commit instead, it 4140 * would just call txg_wait_synced(), because zl_suspend is set. 4141 * txg_wait_synced() doesn't wait for these lwb's to be 4142 * LWB_STATE_FLUSH_DONE before returning. 4143 */ 4144 zil_commit_impl(zilog, 0); 4145 4146 /* 4147 * Now that we've ensured all lwb's are LWB_STATE_FLUSH_DONE, we 4148 * use txg_wait_synced() to ensure the data from the zilog has 4149 * migrated to the main pool before calling zil_destroy(). 4150 */ 4151 txg_wait_synced(zilog->zl_dmu_pool, 0); 4152 4153 zil_destroy(zilog, B_FALSE); 4154 4155 mutex_enter(&zilog->zl_lock); 4156 zilog->zl_suspending = B_FALSE; 4157 cv_broadcast(&zilog->zl_cv_suspend); 4158 mutex_exit(&zilog->zl_lock); 4159 4160 if (os->os_encrypted) 4161 dsl_dataset_remove_key_mapping(dmu_objset_ds(os)); 4162 4163 if (cookiep == NULL) 4164 zil_resume(os); 4165 else 4166 *cookiep = os; 4167 return (0); 4168 } 4169 4170 void 4171 zil_resume(void *cookie) 4172 { 4173 objset_t *os = cookie; 4174 zilog_t *zilog = dmu_objset_zil(os); 4175 4176 mutex_enter(&zilog->zl_lock); 4177 ASSERT(zilog->zl_suspend != 0); 4178 zilog->zl_suspend--; 4179 mutex_exit(&zilog->zl_lock); 4180 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag); 4181 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag); 4182 } 4183 4184 typedef struct zil_replay_arg { 4185 zil_replay_func_t *const *zr_replay; 4186 void *zr_arg; 4187 boolean_t zr_byteswap; 4188 char *zr_lr; 4189 } zil_replay_arg_t; 4190 4191 static int 4192 zil_replay_error(zilog_t *zilog, const lr_t *lr, int error) 4193 { 4194 char name[ZFS_MAX_DATASET_NAME_LEN]; 4195 4196 zilog->zl_replaying_seq--; /* didn't actually replay this one */ 4197 4198 dmu_objset_name(zilog->zl_os, name); 4199 4200 cmn_err(CE_WARN, "ZFS replay transaction error %d, " 4201 "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name, 4202 (u_longlong_t)lr->lrc_seq, 4203 (u_longlong_t)(lr->lrc_txtype & ~TX_CI), 4204 (lr->lrc_txtype & TX_CI) ? "CI" : ""); 4205 4206 return (error); 4207 } 4208 4209 static int 4210 zil_replay_log_record(zilog_t *zilog, const lr_t *lr, void *zra, 4211 uint64_t claim_txg) 4212 { 4213 zil_replay_arg_t *zr = zra; 4214 const zil_header_t *zh = zilog->zl_header; 4215 uint64_t reclen = lr->lrc_reclen; 4216 uint64_t txtype = lr->lrc_txtype; 4217 int error = 0; 4218 4219 zilog->zl_replaying_seq = lr->lrc_seq; 4220 4221 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */ 4222 return (0); 4223 4224 if (lr->lrc_txg < claim_txg) /* already committed */ 4225 return (0); 4226 4227 /* Strip case-insensitive bit, still present in log record */ 4228 txtype &= ~TX_CI; 4229 4230 if (txtype == 0 || txtype >= TX_MAX_TYPE) 4231 return (zil_replay_error(zilog, lr, EINVAL)); 4232 4233 /* 4234 * If this record type can be logged out of order, the object 4235 * (lr_foid) may no longer exist. That's legitimate, not an error. 4236 */ 4237 if (TX_OOO(txtype)) { 4238 error = dmu_object_info(zilog->zl_os, 4239 LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL); 4240 if (error == ENOENT || error == EEXIST) 4241 return (0); 4242 } 4243 4244 /* 4245 * Make a copy of the data so we can revise and extend it. 4246 */ 4247 memcpy(zr->zr_lr, lr, reclen); 4248 4249 /* 4250 * If this is a TX_WRITE with a blkptr, suck in the data. 4251 */ 4252 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) { 4253 error = zil_read_log_data(zilog, (lr_write_t *)lr, 4254 zr->zr_lr + reclen); 4255 if (error != 0) 4256 return (zil_replay_error(zilog, lr, error)); 4257 } 4258 4259 /* 4260 * The log block containing this lr may have been byteswapped 4261 * so that we can easily examine common fields like lrc_txtype. 4262 * However, the log is a mix of different record types, and only the 4263 * replay vectors know how to byteswap their records. Therefore, if 4264 * the lr was byteswapped, undo it before invoking the replay vector. 4265 */ 4266 if (zr->zr_byteswap) 4267 byteswap_uint64_array(zr->zr_lr, reclen); 4268 4269 /* 4270 * We must now do two things atomically: replay this log record, 4271 * and update the log header sequence number to reflect the fact that 4272 * we did so. At the end of each replay function the sequence number 4273 * is updated if we are in replay mode. 4274 */ 4275 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap); 4276 if (error != 0) { 4277 /* 4278 * The DMU's dnode layer doesn't see removes until the txg 4279 * commits, so a subsequent claim can spuriously fail with 4280 * EEXIST. So if we receive any error we try syncing out 4281 * any removes then retry the transaction. Note that we 4282 * specify B_FALSE for byteswap now, so we don't do it twice. 4283 */ 4284 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0); 4285 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE); 4286 if (error != 0) 4287 return (zil_replay_error(zilog, lr, error)); 4288 } 4289 return (0); 4290 } 4291 4292 static int 4293 zil_incr_blks(zilog_t *zilog, const blkptr_t *bp, void *arg, uint64_t claim_txg) 4294 { 4295 (void) bp, (void) arg, (void) claim_txg; 4296 4297 zilog->zl_replay_blks++; 4298 4299 return (0); 4300 } 4301 4302 /* 4303 * If this dataset has a non-empty intent log, replay it and destroy it. 4304 * Return B_TRUE if there were any entries to replay. 4305 */ 4306 boolean_t 4307 zil_replay(objset_t *os, void *arg, 4308 zil_replay_func_t *const replay_func[TX_MAX_TYPE]) 4309 { 4310 zilog_t *zilog = dmu_objset_zil(os); 4311 const zil_header_t *zh = zilog->zl_header; 4312 zil_replay_arg_t zr; 4313 4314 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) { 4315 return (zil_destroy(zilog, B_TRUE)); 4316 } 4317 4318 zr.zr_replay = replay_func; 4319 zr.zr_arg = arg; 4320 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log); 4321 zr.zr_lr = vmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP); 4322 4323 /* 4324 * Wait for in-progress removes to sync before starting replay. 4325 */ 4326 txg_wait_synced(zilog->zl_dmu_pool, 0); 4327 4328 zilog->zl_replay = B_TRUE; 4329 zilog->zl_replay_time = ddi_get_lbolt(); 4330 ASSERT(zilog->zl_replay_blks == 0); 4331 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr, 4332 zh->zh_claim_txg, B_TRUE); 4333 vmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE); 4334 4335 zil_destroy(zilog, B_FALSE); 4336 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 4337 zilog->zl_replay = B_FALSE; 4338 4339 return (B_TRUE); 4340 } 4341 4342 boolean_t 4343 zil_replaying(zilog_t *zilog, dmu_tx_t *tx) 4344 { 4345 if (zilog->zl_sync == ZFS_SYNC_DISABLED) 4346 return (B_TRUE); 4347 4348 if (zilog->zl_replay) { 4349 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 4350 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] = 4351 zilog->zl_replaying_seq; 4352 return (B_TRUE); 4353 } 4354 4355 return (B_FALSE); 4356 } 4357 4358 int 4359 zil_reset(const char *osname, void *arg) 4360 { 4361 (void) arg; 4362 4363 int error = zil_suspend(osname, NULL); 4364 /* EACCES means crypto key not loaded */ 4365 if ((error == EACCES) || (error == EBUSY)) 4366 return (SET_ERROR(error)); 4367 if (error != 0) 4368 return (SET_ERROR(EEXIST)); 4369 return (0); 4370 } 4371 4372 EXPORT_SYMBOL(zil_alloc); 4373 EXPORT_SYMBOL(zil_free); 4374 EXPORT_SYMBOL(zil_open); 4375 EXPORT_SYMBOL(zil_close); 4376 EXPORT_SYMBOL(zil_replay); 4377 EXPORT_SYMBOL(zil_replaying); 4378 EXPORT_SYMBOL(zil_destroy); 4379 EXPORT_SYMBOL(zil_destroy_sync); 4380 EXPORT_SYMBOL(zil_itx_create); 4381 EXPORT_SYMBOL(zil_itx_destroy); 4382 EXPORT_SYMBOL(zil_itx_assign); 4383 EXPORT_SYMBOL(zil_commit); 4384 EXPORT_SYMBOL(zil_claim); 4385 EXPORT_SYMBOL(zil_check_log_chain); 4386 EXPORT_SYMBOL(zil_sync); 4387 EXPORT_SYMBOL(zil_clean); 4388 EXPORT_SYMBOL(zil_suspend); 4389 EXPORT_SYMBOL(zil_resume); 4390 EXPORT_SYMBOL(zil_lwb_add_block); 4391 EXPORT_SYMBOL(zil_bp_tree_add); 4392 EXPORT_SYMBOL(zil_set_sync); 4393 EXPORT_SYMBOL(zil_set_logbias); 4394 EXPORT_SYMBOL(zil_sums_init); 4395 EXPORT_SYMBOL(zil_sums_fini); 4396 EXPORT_SYMBOL(zil_kstat_values_update); 4397 4398 ZFS_MODULE_PARAM(zfs, zfs_, commit_timeout_pct, UINT, ZMOD_RW, 4399 "ZIL block open timeout percentage"); 4400 4401 ZFS_MODULE_PARAM(zfs_zil, zil_, replay_disable, INT, ZMOD_RW, 4402 "Disable intent logging replay"); 4403 4404 ZFS_MODULE_PARAM(zfs_zil, zil_, nocacheflush, INT, ZMOD_RW, 4405 "Disable ZIL cache flushes"); 4406 4407 ZFS_MODULE_PARAM(zfs_zil, zil_, slog_bulk, U64, ZMOD_RW, 4408 "Limit in bytes slog sync writes per commit"); 4409 4410 ZFS_MODULE_PARAM(zfs_zil, zil_, maxblocksize, UINT, ZMOD_RW, 4411 "Limit in bytes of ZIL log block size"); 4412 4413 ZFS_MODULE_PARAM(zfs_zil, zil_, maxcopied, UINT, ZMOD_RW, 4414 "Limit in bytes WR_COPIED size"); 4415