xref: /freebsd/sys/contrib/openzfs/module/zfs/zil.c (revision f5ce3f4ef562ea9fc4d8f9c13c268f48a5bacba7)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24  * Copyright (c) 2014 Integros [integros.com]
25  * Copyright (c) 2018 Datto Inc.
26  */
27 
28 /* Portions Copyright 2010 Robert Milkowski */
29 
30 #include <sys/zfs_context.h>
31 #include <sys/spa.h>
32 #include <sys/spa_impl.h>
33 #include <sys/dmu.h>
34 #include <sys/zap.h>
35 #include <sys/arc.h>
36 #include <sys/stat.h>
37 #include <sys/zil.h>
38 #include <sys/zil_impl.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/vdev_impl.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/dsl_pool.h>
43 #include <sys/metaslab.h>
44 #include <sys/trace_zfs.h>
45 #include <sys/abd.h>
46 #include <sys/brt.h>
47 #include <sys/wmsum.h>
48 
49 /*
50  * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system
51  * calls that change the file system. Each itx has enough information to
52  * be able to replay them after a system crash, power loss, or
53  * equivalent failure mode. These are stored in memory until either:
54  *
55  *   1. they are committed to the pool by the DMU transaction group
56  *      (txg), at which point they can be discarded; or
57  *   2. they are committed to the on-disk ZIL for the dataset being
58  *      modified (e.g. due to an fsync, O_DSYNC, or other synchronous
59  *      requirement).
60  *
61  * In the event of a crash or power loss, the itxs contained by each
62  * dataset's on-disk ZIL will be replayed when that dataset is first
63  * instantiated (e.g. if the dataset is a normal filesystem, when it is
64  * first mounted).
65  *
66  * As hinted at above, there is one ZIL per dataset (both the in-memory
67  * representation, and the on-disk representation). The on-disk format
68  * consists of 3 parts:
69  *
70  * 	- a single, per-dataset, ZIL header; which points to a chain of
71  * 	- zero or more ZIL blocks; each of which contains
72  * 	- zero or more ZIL records
73  *
74  * A ZIL record holds the information necessary to replay a single
75  * system call transaction. A ZIL block can hold many ZIL records, and
76  * the blocks are chained together, similarly to a singly linked list.
77  *
78  * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL
79  * block in the chain, and the ZIL header points to the first block in
80  * the chain.
81  *
82  * Note, there is not a fixed place in the pool to hold these ZIL
83  * blocks; they are dynamically allocated and freed as needed from the
84  * blocks available on the pool, though they can be preferentially
85  * allocated from a dedicated "log" vdev.
86  */
87 
88 /*
89  * This controls the amount of time that a ZIL block (lwb) will remain
90  * "open" when it isn't "full", and it has a thread waiting for it to be
91  * committed to stable storage. Please refer to the zil_commit_waiter()
92  * function (and the comments within it) for more details.
93  */
94 static uint_t zfs_commit_timeout_pct = 10;
95 
96 /*
97  * See zil.h for more information about these fields.
98  */
99 static zil_kstat_values_t zil_stats = {
100 	{ "zil_commit_count",			KSTAT_DATA_UINT64 },
101 	{ "zil_commit_writer_count",		KSTAT_DATA_UINT64 },
102 	{ "zil_commit_error_count",		KSTAT_DATA_UINT64 },
103 	{ "zil_commit_stall_count",		KSTAT_DATA_UINT64 },
104 	{ "zil_commit_suspend_count",		KSTAT_DATA_UINT64 },
105 	{ "zil_itx_count",			KSTAT_DATA_UINT64 },
106 	{ "zil_itx_indirect_count",		KSTAT_DATA_UINT64 },
107 	{ "zil_itx_indirect_bytes",		KSTAT_DATA_UINT64 },
108 	{ "zil_itx_copied_count",		KSTAT_DATA_UINT64 },
109 	{ "zil_itx_copied_bytes",		KSTAT_DATA_UINT64 },
110 	{ "zil_itx_needcopy_count",		KSTAT_DATA_UINT64 },
111 	{ "zil_itx_needcopy_bytes",		KSTAT_DATA_UINT64 },
112 	{ "zil_itx_metaslab_normal_count",	KSTAT_DATA_UINT64 },
113 	{ "zil_itx_metaslab_normal_bytes",	KSTAT_DATA_UINT64 },
114 	{ "zil_itx_metaslab_normal_write",	KSTAT_DATA_UINT64 },
115 	{ "zil_itx_metaslab_normal_alloc",	KSTAT_DATA_UINT64 },
116 	{ "zil_itx_metaslab_slog_count",	KSTAT_DATA_UINT64 },
117 	{ "zil_itx_metaslab_slog_bytes",	KSTAT_DATA_UINT64 },
118 	{ "zil_itx_metaslab_slog_write",	KSTAT_DATA_UINT64 },
119 	{ "zil_itx_metaslab_slog_alloc",	KSTAT_DATA_UINT64 },
120 };
121 
122 static zil_sums_t zil_sums_global;
123 static kstat_t *zil_kstats_global;
124 
125 /*
126  * Disable intent logging replay.  This global ZIL switch affects all pools.
127  */
128 int zil_replay_disable = 0;
129 
130 /*
131  * Disable the flush commands that are normally sent to the disk(s) by the ZIL
132  * after an LWB write has completed. Setting this will cause ZIL corruption on
133  * power loss if a volatile out-of-order write cache is enabled.
134  */
135 static int zil_nocacheflush = 0;
136 
137 /*
138  * Limit SLOG write size per commit executed with synchronous priority.
139  * Any writes above that will be executed with lower (asynchronous) priority
140  * to limit potential SLOG device abuse by single active ZIL writer.
141  */
142 static uint64_t zil_slog_bulk = 64 * 1024 * 1024;
143 
144 static kmem_cache_t *zil_lwb_cache;
145 static kmem_cache_t *zil_zcw_cache;
146 
147 static void zil_lwb_commit(zilog_t *zilog, lwb_t *lwb, itx_t *itx);
148 static itx_t *zil_itx_clone(itx_t *oitx);
149 static uint64_t zil_max_waste_space(zilog_t *zilog);
150 
151 static int
152 zil_bp_compare(const void *x1, const void *x2)
153 {
154 	const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
155 	const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
156 
157 	int cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2));
158 	if (likely(cmp))
159 		return (cmp);
160 
161 	return (TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2)));
162 }
163 
164 static void
165 zil_bp_tree_init(zilog_t *zilog)
166 {
167 	avl_create(&zilog->zl_bp_tree, zil_bp_compare,
168 	    sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
169 }
170 
171 static void
172 zil_bp_tree_fini(zilog_t *zilog)
173 {
174 	avl_tree_t *t = &zilog->zl_bp_tree;
175 	zil_bp_node_t *zn;
176 	void *cookie = NULL;
177 
178 	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
179 		kmem_free(zn, sizeof (zil_bp_node_t));
180 
181 	avl_destroy(t);
182 }
183 
184 int
185 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
186 {
187 	avl_tree_t *t = &zilog->zl_bp_tree;
188 	const dva_t *dva;
189 	zil_bp_node_t *zn;
190 	avl_index_t where;
191 
192 	if (BP_IS_EMBEDDED(bp))
193 		return (0);
194 
195 	dva = BP_IDENTITY(bp);
196 
197 	if (avl_find(t, dva, &where) != NULL)
198 		return (SET_ERROR(EEXIST));
199 
200 	zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
201 	zn->zn_dva = *dva;
202 	avl_insert(t, zn, where);
203 
204 	return (0);
205 }
206 
207 static zil_header_t *
208 zil_header_in_syncing_context(zilog_t *zilog)
209 {
210 	return ((zil_header_t *)zilog->zl_header);
211 }
212 
213 static void
214 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
215 {
216 	zio_cksum_t *zc = &bp->blk_cksum;
217 
218 	(void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_0],
219 	    sizeof (zc->zc_word[ZIL_ZC_GUID_0]));
220 	(void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_1],
221 	    sizeof (zc->zc_word[ZIL_ZC_GUID_1]));
222 	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
223 	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
224 }
225 
226 static int
227 zil_kstats_global_update(kstat_t *ksp, int rw)
228 {
229 	zil_kstat_values_t *zs = ksp->ks_data;
230 	ASSERT3P(&zil_stats, ==, zs);
231 
232 	if (rw == KSTAT_WRITE) {
233 		return (SET_ERROR(EACCES));
234 	}
235 
236 	zil_kstat_values_update(zs, &zil_sums_global);
237 
238 	return (0);
239 }
240 
241 /*
242  * Read a log block and make sure it's valid.
243  */
244 static int
245 zil_read_log_block(zilog_t *zilog, boolean_t decrypt, const blkptr_t *bp,
246     blkptr_t *nbp, char **begin, char **end, arc_buf_t **abuf)
247 {
248 	zio_flag_t zio_flags = ZIO_FLAG_CANFAIL;
249 	arc_flags_t aflags = ARC_FLAG_WAIT;
250 	zbookmark_phys_t zb;
251 	int error;
252 
253 	if (zilog->zl_header->zh_claim_txg == 0)
254 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
255 
256 	if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
257 		zio_flags |= ZIO_FLAG_SPECULATIVE;
258 
259 	if (!decrypt)
260 		zio_flags |= ZIO_FLAG_RAW;
261 
262 	SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
263 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
264 
265 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func,
266 	    abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
267 
268 	if (error == 0) {
269 		zio_cksum_t cksum = bp->blk_cksum;
270 
271 		/*
272 		 * Validate the checksummed log block.
273 		 *
274 		 * Sequence numbers should be... sequential.  The checksum
275 		 * verifier for the next block should be bp's checksum plus 1.
276 		 *
277 		 * Also check the log chain linkage and size used.
278 		 */
279 		cksum.zc_word[ZIL_ZC_SEQ]++;
280 
281 		uint64_t size = BP_GET_LSIZE(bp);
282 		if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
283 			zil_chain_t *zilc = (*abuf)->b_data;
284 			char *lr = (char *)(zilc + 1);
285 
286 			if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
287 			    sizeof (cksum)) ||
288 			    zilc->zc_nused < sizeof (*zilc) ||
289 			    zilc->zc_nused > size) {
290 				error = SET_ERROR(ECKSUM);
291 			} else {
292 				*begin = lr;
293 				*end = lr + zilc->zc_nused - sizeof (*zilc);
294 				*nbp = zilc->zc_next_blk;
295 			}
296 		} else {
297 			char *lr = (*abuf)->b_data;
298 			zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
299 
300 			if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
301 			    sizeof (cksum)) ||
302 			    (zilc->zc_nused > (size - sizeof (*zilc)))) {
303 				error = SET_ERROR(ECKSUM);
304 			} else {
305 				*begin = lr;
306 				*end = lr + zilc->zc_nused;
307 				*nbp = zilc->zc_next_blk;
308 			}
309 		}
310 	}
311 
312 	return (error);
313 }
314 
315 /*
316  * Read a TX_WRITE log data block.
317  */
318 static int
319 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
320 {
321 	zio_flag_t zio_flags = ZIO_FLAG_CANFAIL;
322 	const blkptr_t *bp = &lr->lr_blkptr;
323 	arc_flags_t aflags = ARC_FLAG_WAIT;
324 	arc_buf_t *abuf = NULL;
325 	zbookmark_phys_t zb;
326 	int error;
327 
328 	if (BP_IS_HOLE(bp)) {
329 		if (wbuf != NULL)
330 			memset(wbuf, 0, MAX(BP_GET_LSIZE(bp), lr->lr_length));
331 		return (0);
332 	}
333 
334 	if (zilog->zl_header->zh_claim_txg == 0)
335 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
336 
337 	/*
338 	 * If we are not using the resulting data, we are just checking that
339 	 * it hasn't been corrupted so we don't need to waste CPU time
340 	 * decompressing and decrypting it.
341 	 */
342 	if (wbuf == NULL)
343 		zio_flags |= ZIO_FLAG_RAW;
344 
345 	ASSERT3U(BP_GET_LSIZE(bp), !=, 0);
346 	SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
347 	    ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
348 
349 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
350 	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
351 
352 	if (error == 0) {
353 		if (wbuf != NULL)
354 			memcpy(wbuf, abuf->b_data, arc_buf_size(abuf));
355 		arc_buf_destroy(abuf, &abuf);
356 	}
357 
358 	return (error);
359 }
360 
361 void
362 zil_sums_init(zil_sums_t *zs)
363 {
364 	wmsum_init(&zs->zil_commit_count, 0);
365 	wmsum_init(&zs->zil_commit_writer_count, 0);
366 	wmsum_init(&zs->zil_commit_error_count, 0);
367 	wmsum_init(&zs->zil_commit_stall_count, 0);
368 	wmsum_init(&zs->zil_commit_suspend_count, 0);
369 	wmsum_init(&zs->zil_itx_count, 0);
370 	wmsum_init(&zs->zil_itx_indirect_count, 0);
371 	wmsum_init(&zs->zil_itx_indirect_bytes, 0);
372 	wmsum_init(&zs->zil_itx_copied_count, 0);
373 	wmsum_init(&zs->zil_itx_copied_bytes, 0);
374 	wmsum_init(&zs->zil_itx_needcopy_count, 0);
375 	wmsum_init(&zs->zil_itx_needcopy_bytes, 0);
376 	wmsum_init(&zs->zil_itx_metaslab_normal_count, 0);
377 	wmsum_init(&zs->zil_itx_metaslab_normal_bytes, 0);
378 	wmsum_init(&zs->zil_itx_metaslab_normal_write, 0);
379 	wmsum_init(&zs->zil_itx_metaslab_normal_alloc, 0);
380 	wmsum_init(&zs->zil_itx_metaslab_slog_count, 0);
381 	wmsum_init(&zs->zil_itx_metaslab_slog_bytes, 0);
382 	wmsum_init(&zs->zil_itx_metaslab_slog_write, 0);
383 	wmsum_init(&zs->zil_itx_metaslab_slog_alloc, 0);
384 }
385 
386 void
387 zil_sums_fini(zil_sums_t *zs)
388 {
389 	wmsum_fini(&zs->zil_commit_count);
390 	wmsum_fini(&zs->zil_commit_writer_count);
391 	wmsum_fini(&zs->zil_commit_error_count);
392 	wmsum_fini(&zs->zil_commit_stall_count);
393 	wmsum_fini(&zs->zil_commit_suspend_count);
394 	wmsum_fini(&zs->zil_itx_count);
395 	wmsum_fini(&zs->zil_itx_indirect_count);
396 	wmsum_fini(&zs->zil_itx_indirect_bytes);
397 	wmsum_fini(&zs->zil_itx_copied_count);
398 	wmsum_fini(&zs->zil_itx_copied_bytes);
399 	wmsum_fini(&zs->zil_itx_needcopy_count);
400 	wmsum_fini(&zs->zil_itx_needcopy_bytes);
401 	wmsum_fini(&zs->zil_itx_metaslab_normal_count);
402 	wmsum_fini(&zs->zil_itx_metaslab_normal_bytes);
403 	wmsum_fini(&zs->zil_itx_metaslab_normal_write);
404 	wmsum_fini(&zs->zil_itx_metaslab_normal_alloc);
405 	wmsum_fini(&zs->zil_itx_metaslab_slog_count);
406 	wmsum_fini(&zs->zil_itx_metaslab_slog_bytes);
407 	wmsum_fini(&zs->zil_itx_metaslab_slog_write);
408 	wmsum_fini(&zs->zil_itx_metaslab_slog_alloc);
409 }
410 
411 void
412 zil_kstat_values_update(zil_kstat_values_t *zs, zil_sums_t *zil_sums)
413 {
414 	zs->zil_commit_count.value.ui64 =
415 	    wmsum_value(&zil_sums->zil_commit_count);
416 	zs->zil_commit_writer_count.value.ui64 =
417 	    wmsum_value(&zil_sums->zil_commit_writer_count);
418 	zs->zil_commit_error_count.value.ui64 =
419 	    wmsum_value(&zil_sums->zil_commit_error_count);
420 	zs->zil_commit_stall_count.value.ui64 =
421 	    wmsum_value(&zil_sums->zil_commit_stall_count);
422 	zs->zil_commit_suspend_count.value.ui64 =
423 	    wmsum_value(&zil_sums->zil_commit_suspend_count);
424 	zs->zil_itx_count.value.ui64 =
425 	    wmsum_value(&zil_sums->zil_itx_count);
426 	zs->zil_itx_indirect_count.value.ui64 =
427 	    wmsum_value(&zil_sums->zil_itx_indirect_count);
428 	zs->zil_itx_indirect_bytes.value.ui64 =
429 	    wmsum_value(&zil_sums->zil_itx_indirect_bytes);
430 	zs->zil_itx_copied_count.value.ui64 =
431 	    wmsum_value(&zil_sums->zil_itx_copied_count);
432 	zs->zil_itx_copied_bytes.value.ui64 =
433 	    wmsum_value(&zil_sums->zil_itx_copied_bytes);
434 	zs->zil_itx_needcopy_count.value.ui64 =
435 	    wmsum_value(&zil_sums->zil_itx_needcopy_count);
436 	zs->zil_itx_needcopy_bytes.value.ui64 =
437 	    wmsum_value(&zil_sums->zil_itx_needcopy_bytes);
438 	zs->zil_itx_metaslab_normal_count.value.ui64 =
439 	    wmsum_value(&zil_sums->zil_itx_metaslab_normal_count);
440 	zs->zil_itx_metaslab_normal_bytes.value.ui64 =
441 	    wmsum_value(&zil_sums->zil_itx_metaslab_normal_bytes);
442 	zs->zil_itx_metaslab_normal_write.value.ui64 =
443 	    wmsum_value(&zil_sums->zil_itx_metaslab_normal_write);
444 	zs->zil_itx_metaslab_normal_alloc.value.ui64 =
445 	    wmsum_value(&zil_sums->zil_itx_metaslab_normal_alloc);
446 	zs->zil_itx_metaslab_slog_count.value.ui64 =
447 	    wmsum_value(&zil_sums->zil_itx_metaslab_slog_count);
448 	zs->zil_itx_metaslab_slog_bytes.value.ui64 =
449 	    wmsum_value(&zil_sums->zil_itx_metaslab_slog_bytes);
450 	zs->zil_itx_metaslab_slog_write.value.ui64 =
451 	    wmsum_value(&zil_sums->zil_itx_metaslab_slog_write);
452 	zs->zil_itx_metaslab_slog_alloc.value.ui64 =
453 	    wmsum_value(&zil_sums->zil_itx_metaslab_slog_alloc);
454 }
455 
456 /*
457  * Parse the intent log, and call parse_func for each valid record within.
458  */
459 int
460 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
461     zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg,
462     boolean_t decrypt)
463 {
464 	const zil_header_t *zh = zilog->zl_header;
465 	boolean_t claimed = !!zh->zh_claim_txg;
466 	uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
467 	uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
468 	uint64_t max_blk_seq = 0;
469 	uint64_t max_lr_seq = 0;
470 	uint64_t blk_count = 0;
471 	uint64_t lr_count = 0;
472 	blkptr_t blk, next_blk = {{{{0}}}};
473 	int error = 0;
474 
475 	/*
476 	 * Old logs didn't record the maximum zh_claim_lr_seq.
477 	 */
478 	if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
479 		claim_lr_seq = UINT64_MAX;
480 
481 	/*
482 	 * Starting at the block pointed to by zh_log we read the log chain.
483 	 * For each block in the chain we strongly check that block to
484 	 * ensure its validity.  We stop when an invalid block is found.
485 	 * For each block pointer in the chain we call parse_blk_func().
486 	 * For each record in each valid block we call parse_lr_func().
487 	 * If the log has been claimed, stop if we encounter a sequence
488 	 * number greater than the highest claimed sequence number.
489 	 */
490 	zil_bp_tree_init(zilog);
491 
492 	for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
493 		uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
494 		int reclen;
495 		char *lrp, *end;
496 		arc_buf_t *abuf = NULL;
497 
498 		if (blk_seq > claim_blk_seq)
499 			break;
500 
501 		error = parse_blk_func(zilog, &blk, arg, txg);
502 		if (error != 0)
503 			break;
504 		ASSERT3U(max_blk_seq, <, blk_seq);
505 		max_blk_seq = blk_seq;
506 		blk_count++;
507 
508 		if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
509 			break;
510 
511 		error = zil_read_log_block(zilog, decrypt, &blk, &next_blk,
512 		    &lrp, &end, &abuf);
513 		if (error != 0) {
514 			if (abuf)
515 				arc_buf_destroy(abuf, &abuf);
516 			if (claimed) {
517 				char name[ZFS_MAX_DATASET_NAME_LEN];
518 
519 				dmu_objset_name(zilog->zl_os, name);
520 
521 				cmn_err(CE_WARN, "ZFS read log block error %d, "
522 				    "dataset %s, seq 0x%llx\n", error, name,
523 				    (u_longlong_t)blk_seq);
524 			}
525 			break;
526 		}
527 
528 		for (; lrp < end; lrp += reclen) {
529 			lr_t *lr = (lr_t *)lrp;
530 
531 			/*
532 			 * Are the remaining bytes large enough to hold an
533 			 * log record?
534 			 */
535 			if ((char *)(lr + 1) > end) {
536 				cmn_err(CE_WARN, "zil_parse: lr_t overrun");
537 				error = SET_ERROR(ECKSUM);
538 				arc_buf_destroy(abuf, &abuf);
539 				goto done;
540 			}
541 			reclen = lr->lrc_reclen;
542 			if (reclen < sizeof (lr_t) || reclen > end - lrp) {
543 				cmn_err(CE_WARN,
544 				    "zil_parse: lr_t has an invalid reclen");
545 				error = SET_ERROR(ECKSUM);
546 				arc_buf_destroy(abuf, &abuf);
547 				goto done;
548 			}
549 
550 			if (lr->lrc_seq > claim_lr_seq) {
551 				arc_buf_destroy(abuf, &abuf);
552 				goto done;
553 			}
554 
555 			error = parse_lr_func(zilog, lr, arg, txg);
556 			if (error != 0) {
557 				arc_buf_destroy(abuf, &abuf);
558 				goto done;
559 			}
560 			ASSERT3U(max_lr_seq, <, lr->lrc_seq);
561 			max_lr_seq = lr->lrc_seq;
562 			lr_count++;
563 		}
564 		arc_buf_destroy(abuf, &abuf);
565 	}
566 done:
567 	zilog->zl_parse_error = error;
568 	zilog->zl_parse_blk_seq = max_blk_seq;
569 	zilog->zl_parse_lr_seq = max_lr_seq;
570 	zilog->zl_parse_blk_count = blk_count;
571 	zilog->zl_parse_lr_count = lr_count;
572 
573 	zil_bp_tree_fini(zilog);
574 
575 	return (error);
576 }
577 
578 static int
579 zil_clear_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
580     uint64_t first_txg)
581 {
582 	(void) tx;
583 	ASSERT(!BP_IS_HOLE(bp));
584 
585 	/*
586 	 * As we call this function from the context of a rewind to a
587 	 * checkpoint, each ZIL block whose txg is later than the txg
588 	 * that we rewind to is invalid. Thus, we return -1 so
589 	 * zil_parse() doesn't attempt to read it.
590 	 */
591 	if (BP_GET_LOGICAL_BIRTH(bp) >= first_txg)
592 		return (-1);
593 
594 	if (zil_bp_tree_add(zilog, bp) != 0)
595 		return (0);
596 
597 	zio_free(zilog->zl_spa, first_txg, bp);
598 	return (0);
599 }
600 
601 static int
602 zil_noop_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
603     uint64_t first_txg)
604 {
605 	(void) zilog, (void) lrc, (void) tx, (void) first_txg;
606 	return (0);
607 }
608 
609 static int
610 zil_claim_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
611     uint64_t first_txg)
612 {
613 	/*
614 	 * Claim log block if not already committed and not already claimed.
615 	 * If tx == NULL, just verify that the block is claimable.
616 	 */
617 	if (BP_IS_HOLE(bp) || BP_GET_LOGICAL_BIRTH(bp) < first_txg ||
618 	    zil_bp_tree_add(zilog, bp) != 0)
619 		return (0);
620 
621 	return (zio_wait(zio_claim(NULL, zilog->zl_spa,
622 	    tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
623 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
624 }
625 
626 static int
627 zil_claim_write(zilog_t *zilog, const lr_t *lrc, void *tx, uint64_t first_txg)
628 {
629 	lr_write_t *lr = (lr_write_t *)lrc;
630 	int error;
631 
632 	ASSERT3U(lrc->lrc_reclen, >=, sizeof (*lr));
633 
634 	/*
635 	 * If the block is not readable, don't claim it.  This can happen
636 	 * in normal operation when a log block is written to disk before
637 	 * some of the dmu_sync() blocks it points to.  In this case, the
638 	 * transaction cannot have been committed to anyone (we would have
639 	 * waited for all writes to be stable first), so it is semantically
640 	 * correct to declare this the end of the log.
641 	 */
642 	if (BP_GET_LOGICAL_BIRTH(&lr->lr_blkptr) >= first_txg) {
643 		error = zil_read_log_data(zilog, lr, NULL);
644 		if (error != 0)
645 			return (error);
646 	}
647 
648 	return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
649 }
650 
651 static int
652 zil_claim_clone_range(zilog_t *zilog, const lr_t *lrc, void *tx,
653     uint64_t first_txg)
654 {
655 	const lr_clone_range_t *lr = (const lr_clone_range_t *)lrc;
656 	const blkptr_t *bp;
657 	spa_t *spa = zilog->zl_spa;
658 	uint_t ii;
659 
660 	ASSERT3U(lrc->lrc_reclen, >=, sizeof (*lr));
661 	ASSERT3U(lrc->lrc_reclen, >=, offsetof(lr_clone_range_t,
662 	    lr_bps[lr->lr_nbps]));
663 
664 	if (tx == NULL) {
665 		return (0);
666 	}
667 
668 	/*
669 	 * XXX: Do we need to byteswap lr?
670 	 */
671 
672 	for (ii = 0; ii < lr->lr_nbps; ii++) {
673 		bp = &lr->lr_bps[ii];
674 
675 		/*
676 		 * When data is embedded into the BP there is no need to create
677 		 * BRT entry as there is no data block.  Just copy the BP as it
678 		 * contains the data.
679 		 */
680 		if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
681 			continue;
682 
683 		/*
684 		 * We can not handle block pointers from the future, since they
685 		 * are not yet allocated.  It should not normally happen, but
686 		 * just in case lets be safe and just stop here now instead of
687 		 * corrupting the pool.
688 		 */
689 		if (BP_GET_BIRTH(bp) >= first_txg)
690 			return (SET_ERROR(ENOENT));
691 
692 		/*
693 		 * Assert the block is really allocated before we reference it.
694 		 */
695 		metaslab_check_free(spa, bp);
696 	}
697 
698 	for (ii = 0; ii < lr->lr_nbps; ii++) {
699 		bp = &lr->lr_bps[ii];
700 		if (!BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp))
701 			brt_pending_add(spa, bp, tx);
702 	}
703 
704 	return (0);
705 }
706 
707 static int
708 zil_claim_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
709     uint64_t first_txg)
710 {
711 
712 	switch (lrc->lrc_txtype) {
713 	case TX_WRITE:
714 		return (zil_claim_write(zilog, lrc, tx, first_txg));
715 	case TX_CLONE_RANGE:
716 		return (zil_claim_clone_range(zilog, lrc, tx, first_txg));
717 	default:
718 		return (0);
719 	}
720 }
721 
722 static int
723 zil_free_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
724     uint64_t claim_txg)
725 {
726 	(void) claim_txg;
727 
728 	zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
729 
730 	return (0);
731 }
732 
733 static int
734 zil_free_write(zilog_t *zilog, const lr_t *lrc, void *tx, uint64_t claim_txg)
735 {
736 	lr_write_t *lr = (lr_write_t *)lrc;
737 	blkptr_t *bp = &lr->lr_blkptr;
738 
739 	ASSERT3U(lrc->lrc_reclen, >=, sizeof (*lr));
740 
741 	/*
742 	 * If we previously claimed it, we need to free it.
743 	 */
744 	if (BP_GET_LOGICAL_BIRTH(bp) >= claim_txg &&
745 	    zil_bp_tree_add(zilog, bp) == 0 && !BP_IS_HOLE(bp)) {
746 		zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
747 	}
748 
749 	return (0);
750 }
751 
752 static int
753 zil_free_clone_range(zilog_t *zilog, const lr_t *lrc, void *tx)
754 {
755 	const lr_clone_range_t *lr = (const lr_clone_range_t *)lrc;
756 	const blkptr_t *bp;
757 	spa_t *spa;
758 	uint_t ii;
759 
760 	ASSERT3U(lrc->lrc_reclen, >=, sizeof (*lr));
761 	ASSERT3U(lrc->lrc_reclen, >=, offsetof(lr_clone_range_t,
762 	    lr_bps[lr->lr_nbps]));
763 
764 	if (tx == NULL) {
765 		return (0);
766 	}
767 
768 	spa = zilog->zl_spa;
769 
770 	for (ii = 0; ii < lr->lr_nbps; ii++) {
771 		bp = &lr->lr_bps[ii];
772 
773 		if (!BP_IS_HOLE(bp)) {
774 			zio_free(spa, dmu_tx_get_txg(tx), bp);
775 		}
776 	}
777 
778 	return (0);
779 }
780 
781 static int
782 zil_free_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
783     uint64_t claim_txg)
784 {
785 
786 	if (claim_txg == 0) {
787 		return (0);
788 	}
789 
790 	switch (lrc->lrc_txtype) {
791 	case TX_WRITE:
792 		return (zil_free_write(zilog, lrc, tx, claim_txg));
793 	case TX_CLONE_RANGE:
794 		return (zil_free_clone_range(zilog, lrc, tx));
795 	default:
796 		return (0);
797 	}
798 }
799 
800 static int
801 zil_lwb_vdev_compare(const void *x1, const void *x2)
802 {
803 	const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
804 	const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
805 
806 	return (TREE_CMP(v1, v2));
807 }
808 
809 /*
810  * Allocate a new lwb.  We may already have a block pointer for it, in which
811  * case we get size and version from there.  Or we may not yet, in which case
812  * we choose them here and later make the block allocation match.
813  */
814 static lwb_t *
815 zil_alloc_lwb(zilog_t *zilog, int sz, blkptr_t *bp, boolean_t slog,
816     uint64_t txg, lwb_state_t state)
817 {
818 	lwb_t *lwb;
819 
820 	lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
821 	lwb->lwb_zilog = zilog;
822 	if (bp) {
823 		lwb->lwb_blk = *bp;
824 		lwb->lwb_slim = (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2);
825 		sz = BP_GET_LSIZE(bp);
826 	} else {
827 		BP_ZERO(&lwb->lwb_blk);
828 		lwb->lwb_slim = (spa_version(zilog->zl_spa) >=
829 		    SPA_VERSION_SLIM_ZIL);
830 	}
831 	lwb->lwb_slog = slog;
832 	lwb->lwb_error = 0;
833 	if (lwb->lwb_slim) {
834 		lwb->lwb_nmax = sz;
835 		lwb->lwb_nused = lwb->lwb_nfilled = sizeof (zil_chain_t);
836 	} else {
837 		lwb->lwb_nmax = sz - sizeof (zil_chain_t);
838 		lwb->lwb_nused = lwb->lwb_nfilled = 0;
839 	}
840 	lwb->lwb_sz = sz;
841 	lwb->lwb_state = state;
842 	lwb->lwb_buf = zio_buf_alloc(sz);
843 	lwb->lwb_child_zio = NULL;
844 	lwb->lwb_write_zio = NULL;
845 	lwb->lwb_root_zio = NULL;
846 	lwb->lwb_issued_timestamp = 0;
847 	lwb->lwb_issued_txg = 0;
848 	lwb->lwb_alloc_txg = txg;
849 	lwb->lwb_max_txg = 0;
850 
851 	mutex_enter(&zilog->zl_lock);
852 	list_insert_tail(&zilog->zl_lwb_list, lwb);
853 	if (state != LWB_STATE_NEW)
854 		zilog->zl_last_lwb_opened = lwb;
855 	mutex_exit(&zilog->zl_lock);
856 
857 	return (lwb);
858 }
859 
860 static void
861 zil_free_lwb(zilog_t *zilog, lwb_t *lwb)
862 {
863 	ASSERT(MUTEX_HELD(&zilog->zl_lock));
864 	ASSERT(lwb->lwb_state == LWB_STATE_NEW ||
865 	    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
866 	ASSERT3P(lwb->lwb_child_zio, ==, NULL);
867 	ASSERT3P(lwb->lwb_write_zio, ==, NULL);
868 	ASSERT3P(lwb->lwb_root_zio, ==, NULL);
869 	ASSERT3U(lwb->lwb_alloc_txg, <=, spa_syncing_txg(zilog->zl_spa));
870 	ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa));
871 	VERIFY(list_is_empty(&lwb->lwb_itxs));
872 	VERIFY(list_is_empty(&lwb->lwb_waiters));
873 	ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
874 	ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
875 
876 	/*
877 	 * Clear the zilog's field to indicate this lwb is no longer
878 	 * valid, and prevent use-after-free errors.
879 	 */
880 	if (zilog->zl_last_lwb_opened == lwb)
881 		zilog->zl_last_lwb_opened = NULL;
882 
883 	kmem_cache_free(zil_lwb_cache, lwb);
884 }
885 
886 /*
887  * Called when we create in-memory log transactions so that we know
888  * to cleanup the itxs at the end of spa_sync().
889  */
890 static void
891 zilog_dirty(zilog_t *zilog, uint64_t txg)
892 {
893 	dsl_pool_t *dp = zilog->zl_dmu_pool;
894 	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
895 
896 	ASSERT(spa_writeable(zilog->zl_spa));
897 
898 	if (ds->ds_is_snapshot)
899 		panic("dirtying snapshot!");
900 
901 	if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
902 		/* up the hold count until we can be written out */
903 		dmu_buf_add_ref(ds->ds_dbuf, zilog);
904 
905 		zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg);
906 	}
907 }
908 
909 /*
910  * Determine if the zil is dirty in the specified txg. Callers wanting to
911  * ensure that the dirty state does not change must hold the itxg_lock for
912  * the specified txg. Holding the lock will ensure that the zil cannot be
913  * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
914  * state.
915  */
916 static boolean_t __maybe_unused
917 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
918 {
919 	dsl_pool_t *dp = zilog->zl_dmu_pool;
920 
921 	if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
922 		return (B_TRUE);
923 	return (B_FALSE);
924 }
925 
926 /*
927  * Determine if the zil is dirty. The zil is considered dirty if it has
928  * any pending itx records that have not been cleaned by zil_clean().
929  */
930 static boolean_t
931 zilog_is_dirty(zilog_t *zilog)
932 {
933 	dsl_pool_t *dp = zilog->zl_dmu_pool;
934 
935 	for (int t = 0; t < TXG_SIZE; t++) {
936 		if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
937 			return (B_TRUE);
938 	}
939 	return (B_FALSE);
940 }
941 
942 /*
943  * Its called in zil_commit context (zil_process_commit_list()/zil_create()).
944  * It activates SPA_FEATURE_ZILSAXATTR feature, if its enabled.
945  * Check dsl_dataset_feature_is_active to avoid txg_wait_synced() on every
946  * zil_commit.
947  */
948 static void
949 zil_commit_activate_saxattr_feature(zilog_t *zilog)
950 {
951 	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
952 	uint64_t txg = 0;
953 	dmu_tx_t *tx = NULL;
954 
955 	if (spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) &&
956 	    dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL &&
957 	    !dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR)) {
958 		tx = dmu_tx_create(zilog->zl_os);
959 		VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
960 		dsl_dataset_dirty(ds, tx);
961 		txg = dmu_tx_get_txg(tx);
962 
963 		mutex_enter(&ds->ds_lock);
964 		ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] =
965 		    (void *)B_TRUE;
966 		mutex_exit(&ds->ds_lock);
967 		dmu_tx_commit(tx);
968 		txg_wait_synced(zilog->zl_dmu_pool, txg);
969 	}
970 }
971 
972 /*
973  * Create an on-disk intent log.
974  */
975 static lwb_t *
976 zil_create(zilog_t *zilog)
977 {
978 	const zil_header_t *zh = zilog->zl_header;
979 	lwb_t *lwb = NULL;
980 	uint64_t txg = 0;
981 	dmu_tx_t *tx = NULL;
982 	blkptr_t blk;
983 	int error = 0;
984 	boolean_t slog = FALSE;
985 	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
986 
987 
988 	/*
989 	 * Wait for any previous destroy to complete.
990 	 */
991 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
992 
993 	ASSERT(zh->zh_claim_txg == 0);
994 	ASSERT(zh->zh_replay_seq == 0);
995 
996 	blk = zh->zh_log;
997 
998 	/*
999 	 * Allocate an initial log block if:
1000 	 *    - there isn't one already
1001 	 *    - the existing block is the wrong endianness
1002 	 */
1003 	if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
1004 		tx = dmu_tx_create(zilog->zl_os);
1005 		VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1006 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1007 		txg = dmu_tx_get_txg(tx);
1008 
1009 		if (!BP_IS_HOLE(&blk)) {
1010 			zio_free(zilog->zl_spa, txg, &blk);
1011 			BP_ZERO(&blk);
1012 		}
1013 
1014 		error = zio_alloc_zil(zilog->zl_spa, zilog->zl_os, txg, &blk,
1015 		    ZIL_MIN_BLKSZ, &slog);
1016 		if (error == 0)
1017 			zil_init_log_chain(zilog, &blk);
1018 	}
1019 
1020 	/*
1021 	 * Allocate a log write block (lwb) for the first log block.
1022 	 */
1023 	if (error == 0)
1024 		lwb = zil_alloc_lwb(zilog, 0, &blk, slog, txg, LWB_STATE_NEW);
1025 
1026 	/*
1027 	 * If we just allocated the first log block, commit our transaction
1028 	 * and wait for zil_sync() to stuff the block pointer into zh_log.
1029 	 * (zh is part of the MOS, so we cannot modify it in open context.)
1030 	 */
1031 	if (tx != NULL) {
1032 		/*
1033 		 * If "zilsaxattr" feature is enabled on zpool, then activate
1034 		 * it now when we're creating the ZIL chain. We can't wait with
1035 		 * this until we write the first xattr log record because we
1036 		 * need to wait for the feature activation to sync out.
1037 		 */
1038 		if (spa_feature_is_enabled(zilog->zl_spa,
1039 		    SPA_FEATURE_ZILSAXATTR) && dmu_objset_type(zilog->zl_os) !=
1040 		    DMU_OST_ZVOL) {
1041 			mutex_enter(&ds->ds_lock);
1042 			ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] =
1043 			    (void *)B_TRUE;
1044 			mutex_exit(&ds->ds_lock);
1045 		}
1046 
1047 		dmu_tx_commit(tx);
1048 		txg_wait_synced(zilog->zl_dmu_pool, txg);
1049 	} else {
1050 		/*
1051 		 * This branch covers the case where we enable the feature on a
1052 		 * zpool that has existing ZIL headers.
1053 		 */
1054 		zil_commit_activate_saxattr_feature(zilog);
1055 	}
1056 	IMPLY(spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) &&
1057 	    dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL,
1058 	    dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR));
1059 
1060 	ASSERT(error != 0 || memcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
1061 	IMPLY(error == 0, lwb != NULL);
1062 
1063 	return (lwb);
1064 }
1065 
1066 /*
1067  * In one tx, free all log blocks and clear the log header. If keep_first
1068  * is set, then we're replaying a log with no content. We want to keep the
1069  * first block, however, so that the first synchronous transaction doesn't
1070  * require a txg_wait_synced() in zil_create(). We don't need to
1071  * txg_wait_synced() here either when keep_first is set, because both
1072  * zil_create() and zil_destroy() will wait for any in-progress destroys
1073  * to complete.
1074  * Return B_TRUE if there were any entries to replay.
1075  */
1076 boolean_t
1077 zil_destroy(zilog_t *zilog, boolean_t keep_first)
1078 {
1079 	const zil_header_t *zh = zilog->zl_header;
1080 	lwb_t *lwb;
1081 	dmu_tx_t *tx;
1082 	uint64_t txg;
1083 
1084 	/*
1085 	 * Wait for any previous destroy to complete.
1086 	 */
1087 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
1088 
1089 	zilog->zl_old_header = *zh;		/* debugging aid */
1090 
1091 	if (BP_IS_HOLE(&zh->zh_log))
1092 		return (B_FALSE);
1093 
1094 	tx = dmu_tx_create(zilog->zl_os);
1095 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1096 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1097 	txg = dmu_tx_get_txg(tx);
1098 
1099 	mutex_enter(&zilog->zl_lock);
1100 
1101 	ASSERT3U(zilog->zl_destroy_txg, <, txg);
1102 	zilog->zl_destroy_txg = txg;
1103 	zilog->zl_keep_first = keep_first;
1104 
1105 	if (!list_is_empty(&zilog->zl_lwb_list)) {
1106 		ASSERT(zh->zh_claim_txg == 0);
1107 		VERIFY(!keep_first);
1108 		while ((lwb = list_remove_head(&zilog->zl_lwb_list)) != NULL) {
1109 			if (lwb->lwb_buf != NULL)
1110 				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1111 			if (!BP_IS_HOLE(&lwb->lwb_blk))
1112 				zio_free(zilog->zl_spa, txg, &lwb->lwb_blk);
1113 			zil_free_lwb(zilog, lwb);
1114 		}
1115 	} else if (!keep_first) {
1116 		zil_destroy_sync(zilog, tx);
1117 	}
1118 	mutex_exit(&zilog->zl_lock);
1119 
1120 	dmu_tx_commit(tx);
1121 
1122 	return (B_TRUE);
1123 }
1124 
1125 void
1126 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
1127 {
1128 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
1129 	(void) zil_parse(zilog, zil_free_log_block,
1130 	    zil_free_log_record, tx, zilog->zl_header->zh_claim_txg, B_FALSE);
1131 }
1132 
1133 int
1134 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
1135 {
1136 	dmu_tx_t *tx = txarg;
1137 	zilog_t *zilog;
1138 	uint64_t first_txg;
1139 	zil_header_t *zh;
1140 	objset_t *os;
1141 	int error;
1142 
1143 	error = dmu_objset_own_obj(dp, ds->ds_object,
1144 	    DMU_OST_ANY, B_FALSE, B_FALSE, FTAG, &os);
1145 	if (error != 0) {
1146 		/*
1147 		 * EBUSY indicates that the objset is inconsistent, in which
1148 		 * case it can not have a ZIL.
1149 		 */
1150 		if (error != EBUSY) {
1151 			cmn_err(CE_WARN, "can't open objset for %llu, error %u",
1152 			    (unsigned long long)ds->ds_object, error);
1153 		}
1154 
1155 		return (0);
1156 	}
1157 
1158 	zilog = dmu_objset_zil(os);
1159 	zh = zil_header_in_syncing_context(zilog);
1160 	ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa));
1161 	first_txg = spa_min_claim_txg(zilog->zl_spa);
1162 
1163 	/*
1164 	 * If the spa_log_state is not set to be cleared, check whether
1165 	 * the current uberblock is a checkpoint one and if the current
1166 	 * header has been claimed before moving on.
1167 	 *
1168 	 * If the current uberblock is a checkpointed uberblock then
1169 	 * one of the following scenarios took place:
1170 	 *
1171 	 * 1] We are currently rewinding to the checkpoint of the pool.
1172 	 * 2] We crashed in the middle of a checkpoint rewind but we
1173 	 *    did manage to write the checkpointed uberblock to the
1174 	 *    vdev labels, so when we tried to import the pool again
1175 	 *    the checkpointed uberblock was selected from the import
1176 	 *    procedure.
1177 	 *
1178 	 * In both cases we want to zero out all the ZIL blocks, except
1179 	 * the ones that have been claimed at the time of the checkpoint
1180 	 * (their zh_claim_txg != 0). The reason is that these blocks
1181 	 * may be corrupted since we may have reused their locations on
1182 	 * disk after we took the checkpoint.
1183 	 *
1184 	 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier
1185 	 * when we first figure out whether the current uberblock is
1186 	 * checkpointed or not. Unfortunately, that would discard all
1187 	 * the logs, including the ones that are claimed, and we would
1188 	 * leak space.
1189 	 */
1190 	if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR ||
1191 	    (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
1192 	    zh->zh_claim_txg == 0)) {
1193 		if (!BP_IS_HOLE(&zh->zh_log)) {
1194 			(void) zil_parse(zilog, zil_clear_log_block,
1195 			    zil_noop_log_record, tx, first_txg, B_FALSE);
1196 		}
1197 		BP_ZERO(&zh->zh_log);
1198 		if (os->os_encrypted)
1199 			os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
1200 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
1201 		dmu_objset_disown(os, B_FALSE, FTAG);
1202 		return (0);
1203 	}
1204 
1205 	/*
1206 	 * If we are not rewinding and opening the pool normally, then
1207 	 * the min_claim_txg should be equal to the first txg of the pool.
1208 	 */
1209 	ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa));
1210 
1211 	/*
1212 	 * Claim all log blocks if we haven't already done so, and remember
1213 	 * the highest claimed sequence number.  This ensures that if we can
1214 	 * read only part of the log now (e.g. due to a missing device),
1215 	 * but we can read the entire log later, we will not try to replay
1216 	 * or destroy beyond the last block we successfully claimed.
1217 	 */
1218 	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
1219 	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
1220 		(void) zil_parse(zilog, zil_claim_log_block,
1221 		    zil_claim_log_record, tx, first_txg, B_FALSE);
1222 		zh->zh_claim_txg = first_txg;
1223 		zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
1224 		zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
1225 		if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
1226 			zh->zh_flags |= ZIL_REPLAY_NEEDED;
1227 		zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
1228 		if (os->os_encrypted)
1229 			os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
1230 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
1231 	}
1232 
1233 	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
1234 	dmu_objset_disown(os, B_FALSE, FTAG);
1235 	return (0);
1236 }
1237 
1238 /*
1239  * Check the log by walking the log chain.
1240  * Checksum errors are ok as they indicate the end of the chain.
1241  * Any other error (no device or read failure) returns an error.
1242  */
1243 int
1244 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
1245 {
1246 	(void) dp;
1247 	zilog_t *zilog;
1248 	objset_t *os;
1249 	blkptr_t *bp;
1250 	int error;
1251 
1252 	ASSERT(tx == NULL);
1253 
1254 	error = dmu_objset_from_ds(ds, &os);
1255 	if (error != 0) {
1256 		cmn_err(CE_WARN, "can't open objset %llu, error %d",
1257 		    (unsigned long long)ds->ds_object, error);
1258 		return (0);
1259 	}
1260 
1261 	zilog = dmu_objset_zil(os);
1262 	bp = (blkptr_t *)&zilog->zl_header->zh_log;
1263 
1264 	if (!BP_IS_HOLE(bp)) {
1265 		vdev_t *vd;
1266 		boolean_t valid = B_TRUE;
1267 
1268 		/*
1269 		 * Check the first block and determine if it's on a log device
1270 		 * which may have been removed or faulted prior to loading this
1271 		 * pool.  If so, there's no point in checking the rest of the
1272 		 * log as its content should have already been synced to the
1273 		 * pool.
1274 		 */
1275 		spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
1276 		vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
1277 		if (vd->vdev_islog && vdev_is_dead(vd))
1278 			valid = vdev_log_state_valid(vd);
1279 		spa_config_exit(os->os_spa, SCL_STATE, FTAG);
1280 
1281 		if (!valid)
1282 			return (0);
1283 
1284 		/*
1285 		 * Check whether the current uberblock is checkpointed (e.g.
1286 		 * we are rewinding) and whether the current header has been
1287 		 * claimed or not. If it hasn't then skip verifying it. We
1288 		 * do this because its ZIL blocks may be part of the pool's
1289 		 * state before the rewind, which is no longer valid.
1290 		 */
1291 		zil_header_t *zh = zil_header_in_syncing_context(zilog);
1292 		if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
1293 		    zh->zh_claim_txg == 0)
1294 			return (0);
1295 	}
1296 
1297 	/*
1298 	 * Because tx == NULL, zil_claim_log_block() will not actually claim
1299 	 * any blocks, but just determine whether it is possible to do so.
1300 	 * In addition to checking the log chain, zil_claim_log_block()
1301 	 * will invoke zio_claim() with a done func of spa_claim_notify(),
1302 	 * which will update spa_max_claim_txg.  See spa_load() for details.
1303 	 */
1304 	error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
1305 	    zilog->zl_header->zh_claim_txg ? -1ULL :
1306 	    spa_min_claim_txg(os->os_spa), B_FALSE);
1307 
1308 	return ((error == ECKSUM || error == ENOENT) ? 0 : error);
1309 }
1310 
1311 /*
1312  * When an itx is "skipped", this function is used to properly mark the
1313  * waiter as "done, and signal any thread(s) waiting on it. An itx can
1314  * be skipped (and not committed to an lwb) for a variety of reasons,
1315  * one of them being that the itx was committed via spa_sync(), prior to
1316  * it being committed to an lwb; this can happen if a thread calling
1317  * zil_commit() is racing with spa_sync().
1318  */
1319 static void
1320 zil_commit_waiter_skip(zil_commit_waiter_t *zcw)
1321 {
1322 	mutex_enter(&zcw->zcw_lock);
1323 	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1324 	zcw->zcw_done = B_TRUE;
1325 	cv_broadcast(&zcw->zcw_cv);
1326 	mutex_exit(&zcw->zcw_lock);
1327 }
1328 
1329 /*
1330  * This function is used when the given waiter is to be linked into an
1331  * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb.
1332  * At this point, the waiter will no longer be referenced by the itx,
1333  * and instead, will be referenced by the lwb.
1334  */
1335 static void
1336 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb)
1337 {
1338 	/*
1339 	 * The lwb_waiters field of the lwb is protected by the zilog's
1340 	 * zl_issuer_lock while the lwb is open and zl_lock otherwise.
1341 	 * zl_issuer_lock also protects leaving the open state.
1342 	 * zcw_lwb setting is protected by zl_issuer_lock and state !=
1343 	 * flush_done, which transition is protected by zl_lock.
1344 	 */
1345 	ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_issuer_lock));
1346 	IMPLY(lwb->lwb_state != LWB_STATE_OPENED,
1347 	    MUTEX_HELD(&lwb->lwb_zilog->zl_lock));
1348 	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_NEW);
1349 	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1350 
1351 	ASSERT(!list_link_active(&zcw->zcw_node));
1352 	list_insert_tail(&lwb->lwb_waiters, zcw);
1353 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
1354 	zcw->zcw_lwb = lwb;
1355 }
1356 
1357 /*
1358  * This function is used when zio_alloc_zil() fails to allocate a ZIL
1359  * block, and the given waiter must be linked to the "nolwb waiters"
1360  * list inside of zil_process_commit_list().
1361  */
1362 static void
1363 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb)
1364 {
1365 	ASSERT(!list_link_active(&zcw->zcw_node));
1366 	list_insert_tail(nolwb, zcw);
1367 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
1368 }
1369 
1370 void
1371 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp)
1372 {
1373 	avl_tree_t *t = &lwb->lwb_vdev_tree;
1374 	avl_index_t where;
1375 	zil_vdev_node_t *zv, zvsearch;
1376 	int ndvas = BP_GET_NDVAS(bp);
1377 	int i;
1378 
1379 	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
1380 	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1381 
1382 	if (zil_nocacheflush)
1383 		return;
1384 
1385 	mutex_enter(&lwb->lwb_vdev_lock);
1386 	for (i = 0; i < ndvas; i++) {
1387 		zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
1388 		if (avl_find(t, &zvsearch, &where) == NULL) {
1389 			zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
1390 			zv->zv_vdev = zvsearch.zv_vdev;
1391 			avl_insert(t, zv, where);
1392 		}
1393 	}
1394 	mutex_exit(&lwb->lwb_vdev_lock);
1395 }
1396 
1397 static void
1398 zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb)
1399 {
1400 	avl_tree_t *src = &lwb->lwb_vdev_tree;
1401 	avl_tree_t *dst = &nlwb->lwb_vdev_tree;
1402 	void *cookie = NULL;
1403 	zil_vdev_node_t *zv;
1404 
1405 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1406 	ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
1407 	ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1408 
1409 	/*
1410 	 * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does
1411 	 * not need the protection of lwb_vdev_lock (it will only be modified
1412 	 * while holding zilog->zl_lock) as its writes and those of its
1413 	 * children have all completed.  The younger 'nlwb' may be waiting on
1414 	 * future writes to additional vdevs.
1415 	 */
1416 	mutex_enter(&nlwb->lwb_vdev_lock);
1417 	/*
1418 	 * Tear down the 'lwb' vdev tree, ensuring that entries which do not
1419 	 * exist in 'nlwb' are moved to it, freeing any would-be duplicates.
1420 	 */
1421 	while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) {
1422 		avl_index_t where;
1423 
1424 		if (avl_find(dst, zv, &where) == NULL) {
1425 			avl_insert(dst, zv, where);
1426 		} else {
1427 			kmem_free(zv, sizeof (*zv));
1428 		}
1429 	}
1430 	mutex_exit(&nlwb->lwb_vdev_lock);
1431 }
1432 
1433 void
1434 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg)
1435 {
1436 	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1437 }
1438 
1439 /*
1440  * This function is a called after all vdevs associated with a given lwb write
1441  * have completed their flush command; or as soon as the lwb write completes,
1442  * if "zil_nocacheflush" is set. Further, all "previous" lwb's will have
1443  * completed before this function is called; i.e. this function is called for
1444  * all previous lwbs before it's called for "this" lwb (enforced via zio the
1445  * dependencies configured in zil_lwb_set_zio_dependency()).
1446  *
1447  * The intention is for this function to be called as soon as the contents of
1448  * an lwb are considered "stable" on disk, and will survive any sudden loss of
1449  * power. At this point, any threads waiting for the lwb to reach this state
1450  * are signalled, and the "waiter" structures are marked "done".
1451  */
1452 static void
1453 zil_lwb_flush_vdevs_done(zio_t *zio)
1454 {
1455 	lwb_t *lwb = zio->io_private;
1456 	zilog_t *zilog = lwb->lwb_zilog;
1457 	zil_commit_waiter_t *zcw;
1458 	itx_t *itx;
1459 
1460 	spa_config_exit(zilog->zl_spa, SCL_STATE, lwb);
1461 
1462 	hrtime_t t = gethrtime() - lwb->lwb_issued_timestamp;
1463 
1464 	mutex_enter(&zilog->zl_lock);
1465 
1466 	zilog->zl_last_lwb_latency = (zilog->zl_last_lwb_latency * 7 + t) / 8;
1467 
1468 	lwb->lwb_root_zio = NULL;
1469 
1470 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1471 	lwb->lwb_state = LWB_STATE_FLUSH_DONE;
1472 
1473 	if (zilog->zl_last_lwb_opened == lwb) {
1474 		/*
1475 		 * Remember the highest committed log sequence number
1476 		 * for ztest. We only update this value when all the log
1477 		 * writes succeeded, because ztest wants to ASSERT that
1478 		 * it got the whole log chain.
1479 		 */
1480 		zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1481 	}
1482 
1483 	while ((itx = list_remove_head(&lwb->lwb_itxs)) != NULL)
1484 		zil_itx_destroy(itx);
1485 
1486 	while ((zcw = list_remove_head(&lwb->lwb_waiters)) != NULL) {
1487 		mutex_enter(&zcw->zcw_lock);
1488 
1489 		ASSERT3P(zcw->zcw_lwb, ==, lwb);
1490 		zcw->zcw_lwb = NULL;
1491 		/*
1492 		 * We expect any ZIO errors from child ZIOs to have been
1493 		 * propagated "up" to this specific LWB's root ZIO, in
1494 		 * order for this error handling to work correctly. This
1495 		 * includes ZIO errors from either this LWB's write or
1496 		 * flush, as well as any errors from other dependent LWBs
1497 		 * (e.g. a root LWB ZIO that might be a child of this LWB).
1498 		 *
1499 		 * With that said, it's important to note that LWB flush
1500 		 * errors are not propagated up to the LWB root ZIO.
1501 		 * This is incorrect behavior, and results in VDEV flush
1502 		 * errors not being handled correctly here. See the
1503 		 * comment above the call to "zio_flush" for details.
1504 		 */
1505 
1506 		zcw->zcw_zio_error = zio->io_error;
1507 
1508 		ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1509 		zcw->zcw_done = B_TRUE;
1510 		cv_broadcast(&zcw->zcw_cv);
1511 
1512 		mutex_exit(&zcw->zcw_lock);
1513 	}
1514 
1515 	uint64_t txg = lwb->lwb_issued_txg;
1516 
1517 	/* Once we drop the lock, lwb may be freed by zil_sync(). */
1518 	mutex_exit(&zilog->zl_lock);
1519 
1520 	mutex_enter(&zilog->zl_lwb_io_lock);
1521 	ASSERT3U(zilog->zl_lwb_inflight[txg & TXG_MASK], >, 0);
1522 	zilog->zl_lwb_inflight[txg & TXG_MASK]--;
1523 	if (zilog->zl_lwb_inflight[txg & TXG_MASK] == 0)
1524 		cv_broadcast(&zilog->zl_lwb_io_cv);
1525 	mutex_exit(&zilog->zl_lwb_io_lock);
1526 }
1527 
1528 /*
1529  * Wait for the completion of all issued write/flush of that txg provided.
1530  * It guarantees zil_lwb_flush_vdevs_done() is called and returned.
1531  */
1532 static void
1533 zil_lwb_flush_wait_all(zilog_t *zilog, uint64_t txg)
1534 {
1535 	ASSERT3U(txg, ==, spa_syncing_txg(zilog->zl_spa));
1536 
1537 	mutex_enter(&zilog->zl_lwb_io_lock);
1538 	while (zilog->zl_lwb_inflight[txg & TXG_MASK] > 0)
1539 		cv_wait(&zilog->zl_lwb_io_cv, &zilog->zl_lwb_io_lock);
1540 	mutex_exit(&zilog->zl_lwb_io_lock);
1541 
1542 #ifdef ZFS_DEBUG
1543 	mutex_enter(&zilog->zl_lock);
1544 	mutex_enter(&zilog->zl_lwb_io_lock);
1545 	lwb_t *lwb = list_head(&zilog->zl_lwb_list);
1546 	while (lwb != NULL) {
1547 		if (lwb->lwb_issued_txg <= txg) {
1548 			ASSERT(lwb->lwb_state != LWB_STATE_ISSUED);
1549 			ASSERT(lwb->lwb_state != LWB_STATE_WRITE_DONE);
1550 			IMPLY(lwb->lwb_issued_txg > 0,
1551 			    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
1552 		}
1553 		IMPLY(lwb->lwb_state == LWB_STATE_WRITE_DONE ||
1554 		    lwb->lwb_state == LWB_STATE_FLUSH_DONE,
1555 		    lwb->lwb_buf == NULL);
1556 		lwb = list_next(&zilog->zl_lwb_list, lwb);
1557 	}
1558 	mutex_exit(&zilog->zl_lwb_io_lock);
1559 	mutex_exit(&zilog->zl_lock);
1560 #endif
1561 }
1562 
1563 /*
1564  * This is called when an lwb's write zio completes. The callback's purpose is
1565  * to issue the flush commands for the vdevs in the lwb's lwb_vdev_tree. The
1566  * tree will contain the vdevs involved in writing out this specific lwb's
1567  * data, and in the case that cache flushes have been deferred, vdevs involved
1568  * in writing the data for previous lwbs. The writes corresponding to all the
1569  * vdevs in the lwb_vdev_tree will have completed by the time this is called,
1570  * due to the zio dependencies configured in zil_lwb_set_zio_dependency(),
1571  * which takes deferred flushes into account. The lwb will be "done" once
1572  * zil_lwb_flush_vdevs_done() is called, which occurs in the zio completion
1573  * callback for the lwb's root zio.
1574  */
1575 static void
1576 zil_lwb_write_done(zio_t *zio)
1577 {
1578 	lwb_t *lwb = zio->io_private;
1579 	spa_t *spa = zio->io_spa;
1580 	zilog_t *zilog = lwb->lwb_zilog;
1581 	avl_tree_t *t = &lwb->lwb_vdev_tree;
1582 	void *cookie = NULL;
1583 	zil_vdev_node_t *zv;
1584 	lwb_t *nlwb;
1585 
1586 	ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0);
1587 
1588 	abd_free(zio->io_abd);
1589 	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1590 	lwb->lwb_buf = NULL;
1591 
1592 	mutex_enter(&zilog->zl_lock);
1593 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED);
1594 	lwb->lwb_state = LWB_STATE_WRITE_DONE;
1595 	lwb->lwb_child_zio = NULL;
1596 	lwb->lwb_write_zio = NULL;
1597 
1598 	/*
1599 	 * If nlwb is not yet issued, zil_lwb_set_zio_dependency() is not
1600 	 * called for it yet, and when it will be, it won't be able to make
1601 	 * its write ZIO a parent this ZIO.  In such case we can not defer
1602 	 * our flushes or below may be a race between the done callbacks.
1603 	 */
1604 	nlwb = list_next(&zilog->zl_lwb_list, lwb);
1605 	if (nlwb && nlwb->lwb_state != LWB_STATE_ISSUED)
1606 		nlwb = NULL;
1607 	mutex_exit(&zilog->zl_lock);
1608 
1609 	if (avl_numnodes(t) == 0)
1610 		return;
1611 
1612 	/*
1613 	 * If there was an IO error, we're not going to call zio_flush()
1614 	 * on these vdevs, so we simply empty the tree and free the
1615 	 * nodes. We avoid calling zio_flush() since there isn't any
1616 	 * good reason for doing so, after the lwb block failed to be
1617 	 * written out.
1618 	 *
1619 	 * Additionally, we don't perform any further error handling at
1620 	 * this point (e.g. setting "zcw_zio_error" appropriately), as
1621 	 * we expect that to occur in "zil_lwb_flush_vdevs_done" (thus,
1622 	 * we expect any error seen here, to have been propagated to
1623 	 * that function).
1624 	 */
1625 	if (zio->io_error != 0) {
1626 		while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
1627 			kmem_free(zv, sizeof (*zv));
1628 		return;
1629 	}
1630 
1631 	/*
1632 	 * If this lwb does not have any threads waiting for it to complete, we
1633 	 * want to defer issuing the flush command to the vdevs written to by
1634 	 * "this" lwb, and instead rely on the "next" lwb to handle the flush
1635 	 * command for those vdevs. Thus, we merge the vdev tree of "this" lwb
1636 	 * with the vdev tree of the "next" lwb in the list, and assume the
1637 	 * "next" lwb will handle flushing the vdevs (or deferring the flush(s)
1638 	 * again).
1639 	 *
1640 	 * This is a useful performance optimization, especially for workloads
1641 	 * with lots of async write activity and few sync write and/or fsync
1642 	 * activity, as it has the potential to coalesce multiple flush
1643 	 * commands to a vdev into one.
1644 	 */
1645 	if (list_is_empty(&lwb->lwb_waiters) && nlwb != NULL) {
1646 		zil_lwb_flush_defer(lwb, nlwb);
1647 		ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
1648 		return;
1649 	}
1650 
1651 	while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
1652 		vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
1653 		if (vd != NULL) {
1654 			/*
1655 			 * The "ZIO_FLAG_DONT_PROPAGATE" is currently
1656 			 * always used within "zio_flush". This means,
1657 			 * any errors when flushing the vdev(s), will
1658 			 * (unfortunately) not be handled correctly,
1659 			 * since these "zio_flush" errors will not be
1660 			 * propagated up to "zil_lwb_flush_vdevs_done".
1661 			 */
1662 			zio_flush(lwb->lwb_root_zio, vd);
1663 		}
1664 		kmem_free(zv, sizeof (*zv));
1665 	}
1666 }
1667 
1668 /*
1669  * Build the zio dependency chain, which is used to preserve the ordering of
1670  * lwb completions that is required by the semantics of the ZIL. Each new lwb
1671  * zio becomes a parent of the previous lwb zio, such that the new lwb's zio
1672  * cannot complete until the previous lwb's zio completes.
1673  *
1674  * This is required by the semantics of zil_commit(): the commit waiters
1675  * attached to the lwbs will be woken in the lwb zio's completion callback,
1676  * so this zio dependency graph ensures the waiters are woken in the correct
1677  * order (the same order the lwbs were created).
1678  */
1679 static void
1680 zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb)
1681 {
1682 	ASSERT(MUTEX_HELD(&zilog->zl_lock));
1683 
1684 	lwb_t *prev_lwb = list_prev(&zilog->zl_lwb_list, lwb);
1685 	if (prev_lwb == NULL ||
1686 	    prev_lwb->lwb_state == LWB_STATE_FLUSH_DONE)
1687 		return;
1688 
1689 	/*
1690 	 * If the previous lwb's write hasn't already completed, we also want
1691 	 * to order the completion of the lwb write zios (above, we only order
1692 	 * the completion of the lwb root zios). This is required because of
1693 	 * how we can defer the flush commands for each lwb.
1694 	 *
1695 	 * When the flush commands are deferred, the previous lwb will rely on
1696 	 * this lwb to flush the vdevs written to by that previous lwb. Thus,
1697 	 * we need to ensure this lwb doesn't issue the flush until after the
1698 	 * previous lwb's write completes. We ensure this ordering by setting
1699 	 * the zio parent/child relationship here.
1700 	 *
1701 	 * Without this relationship on the lwb's write zio, it's possible for
1702 	 * this lwb's write to complete prior to the previous lwb's write
1703 	 * completing; and thus, the vdevs for the previous lwb would be
1704 	 * flushed prior to that lwb's data being written to those vdevs (the
1705 	 * vdevs are flushed in the lwb write zio's completion handler,
1706 	 * zil_lwb_write_done()).
1707 	 */
1708 	if (prev_lwb->lwb_state == LWB_STATE_ISSUED) {
1709 		ASSERT3P(prev_lwb->lwb_write_zio, !=, NULL);
1710 		zio_add_child(lwb->lwb_write_zio, prev_lwb->lwb_write_zio);
1711 	} else {
1712 		ASSERT3S(prev_lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1713 	}
1714 
1715 	ASSERT3P(prev_lwb->lwb_root_zio, !=, NULL);
1716 	zio_add_child(lwb->lwb_root_zio, prev_lwb->lwb_root_zio);
1717 }
1718 
1719 
1720 /*
1721  * This function's purpose is to "open" an lwb such that it is ready to
1722  * accept new itxs being committed to it. This function is idempotent; if
1723  * the passed in lwb has already been opened, it is essentially a no-op.
1724  */
1725 static void
1726 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb)
1727 {
1728 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1729 
1730 	if (lwb->lwb_state != LWB_STATE_NEW) {
1731 		ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1732 		return;
1733 	}
1734 
1735 	mutex_enter(&zilog->zl_lock);
1736 	lwb->lwb_state = LWB_STATE_OPENED;
1737 	zilog->zl_last_lwb_opened = lwb;
1738 	mutex_exit(&zilog->zl_lock);
1739 }
1740 
1741 /*
1742  * Maximum block size used by the ZIL.  This is picked up when the ZIL is
1743  * initialized.  Otherwise this should not be used directly; see
1744  * zl_max_block_size instead.
1745  */
1746 static uint_t zil_maxblocksize = SPA_OLD_MAXBLOCKSIZE;
1747 
1748 /*
1749  * Plan splitting of the provided burst size between several blocks.
1750  */
1751 static uint_t
1752 zil_lwb_plan(zilog_t *zilog, uint64_t size, uint_t *minsize)
1753 {
1754 	uint_t md = zilog->zl_max_block_size - sizeof (zil_chain_t);
1755 
1756 	if (size <= md) {
1757 		/*
1758 		 * Small bursts are written as-is in one block.
1759 		 */
1760 		*minsize = size;
1761 		return (size);
1762 	} else if (size > 8 * md) {
1763 		/*
1764 		 * Big bursts use maximum blocks.  The first block size
1765 		 * is hard to predict, but it does not really matter.
1766 		 */
1767 		*minsize = 0;
1768 		return (md);
1769 	}
1770 
1771 	/*
1772 	 * Medium bursts try to divide evenly to better utilize several SLOG
1773 	 * VDEVs.  The first block size we predict assuming the worst case of
1774 	 * maxing out others.  Fall back to using maximum blocks if due to
1775 	 * large records or wasted space we can not predict anything better.
1776 	 */
1777 	uint_t s = size;
1778 	uint_t n = DIV_ROUND_UP(s, md - sizeof (lr_write_t));
1779 	uint_t chunk = DIV_ROUND_UP(s, n);
1780 	uint_t waste = zil_max_waste_space(zilog);
1781 	waste = MAX(waste, zilog->zl_cur_max);
1782 	if (chunk <= md - waste) {
1783 		*minsize = MAX(s - (md - waste) * (n - 1), waste);
1784 		return (chunk);
1785 	} else {
1786 		*minsize = 0;
1787 		return (md);
1788 	}
1789 }
1790 
1791 /*
1792  * Try to predict next block size based on previous history.  Make prediction
1793  * sufficient for 7 of 8 previous bursts.  Don't try to save if the saving is
1794  * less then 50%, extra writes may cost more, but we don't want single spike
1795  * to badly affect our predictions.
1796  */
1797 static uint_t
1798 zil_lwb_predict(zilog_t *zilog)
1799 {
1800 	uint_t m, o;
1801 
1802 	/* If we are in the middle of a burst, take it into account also. */
1803 	if (zilog->zl_cur_size > 0) {
1804 		o = zil_lwb_plan(zilog, zilog->zl_cur_size, &m);
1805 	} else {
1806 		o = UINT_MAX;
1807 		m = 0;
1808 	}
1809 
1810 	/* Find minimum optimal size.  We don't need to go below that. */
1811 	for (int i = 0; i < ZIL_BURSTS; i++)
1812 		o = MIN(o, zilog->zl_prev_opt[i]);
1813 
1814 	/* Find two biggest minimal first block sizes above the optimal. */
1815 	uint_t m1 = MAX(m, o), m2 = o;
1816 	for (int i = 0; i < ZIL_BURSTS; i++) {
1817 		m = zilog->zl_prev_min[i];
1818 		if (m >= m1) {
1819 			m2 = m1;
1820 			m1 = m;
1821 		} else if (m > m2) {
1822 			m2 = m;
1823 		}
1824 	}
1825 
1826 	/*
1827 	 * If second minimum size gives 50% saving -- use it.  It may cost us
1828 	 * one additional write later, but the space saving is just too big.
1829 	 */
1830 	return ((m1 < m2 * 2) ? m1 : m2);
1831 }
1832 
1833 /*
1834  * Close the log block for being issued and allocate the next one.
1835  * Has to be called under zl_issuer_lock to chain more lwbs.
1836  */
1837 static lwb_t *
1838 zil_lwb_write_close(zilog_t *zilog, lwb_t *lwb, lwb_state_t state)
1839 {
1840 	uint64_t blksz, plan, plan2;
1841 
1842 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1843 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1844 	lwb->lwb_state = LWB_STATE_CLOSED;
1845 
1846 	/*
1847 	 * If there was an allocation failure then returned NULL will trigger
1848 	 * zil_commit_writer_stall() at the caller.  This is inherently racy,
1849 	 * since allocation may not have happened yet.
1850 	 */
1851 	if (lwb->lwb_error != 0)
1852 		return (NULL);
1853 
1854 	/*
1855 	 * Log blocks are pre-allocated.  Here we select the size of the next
1856 	 * block, based on what's left of this burst and the previous history.
1857 	 * While we try to only write used part of the block, we can't just
1858 	 * always allocate the maximum block size because we can exhaust all
1859 	 * available pool log space, so we try to be reasonable.
1860 	 */
1861 	if (zilog->zl_cur_left > 0) {
1862 		/*
1863 		 * We are in the middle of a burst and know how much is left.
1864 		 * But if workload is multi-threaded there may be more soon.
1865 		 * Try to predict what can it be and plan for the worst case.
1866 		 */
1867 		uint_t m;
1868 		plan = zil_lwb_plan(zilog, zilog->zl_cur_left, &m);
1869 		if (zilog->zl_parallel) {
1870 			plan2 = zil_lwb_plan(zilog, zilog->zl_cur_left +
1871 			    zil_lwb_predict(zilog), &m);
1872 			if (plan < plan2)
1873 				plan = plan2;
1874 		}
1875 	} else {
1876 		/*
1877 		 * The previous burst is done and we can only predict what
1878 		 * will come next.
1879 		 */
1880 		plan = zil_lwb_predict(zilog);
1881 	}
1882 	blksz = plan + sizeof (zil_chain_t);
1883 	blksz = P2ROUNDUP_TYPED(blksz, ZIL_MIN_BLKSZ, uint64_t);
1884 	blksz = MIN(blksz, zilog->zl_max_block_size);
1885 	DTRACE_PROBE3(zil__block__size, zilog_t *, zilog, uint64_t, blksz,
1886 	    uint64_t, plan);
1887 
1888 	return (zil_alloc_lwb(zilog, blksz, NULL, 0, 0, state));
1889 }
1890 
1891 /*
1892  * Finalize previously closed block and issue the write zio.
1893  */
1894 static void
1895 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb)
1896 {
1897 	spa_t *spa = zilog->zl_spa;
1898 	zil_chain_t *zilc;
1899 	boolean_t slog;
1900 	zbookmark_phys_t zb;
1901 	zio_priority_t prio;
1902 	int error;
1903 
1904 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_CLOSED);
1905 
1906 	/* Actually fill the lwb with the data. */
1907 	for (itx_t *itx = list_head(&lwb->lwb_itxs); itx;
1908 	    itx = list_next(&lwb->lwb_itxs, itx))
1909 		zil_lwb_commit(zilog, lwb, itx);
1910 	lwb->lwb_nused = lwb->lwb_nfilled;
1911 	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_nmax);
1912 
1913 	lwb->lwb_root_zio = zio_root(spa, zil_lwb_flush_vdevs_done, lwb,
1914 	    ZIO_FLAG_CANFAIL);
1915 
1916 	/*
1917 	 * The lwb is now ready to be issued, but it can be only if it already
1918 	 * got its block pointer allocated or the allocation has failed.
1919 	 * Otherwise leave it as-is, relying on some other thread to issue it
1920 	 * after allocating its block pointer via calling zil_lwb_write_issue()
1921 	 * for the previous lwb(s) in the chain.
1922 	 */
1923 	mutex_enter(&zilog->zl_lock);
1924 	lwb->lwb_state = LWB_STATE_READY;
1925 	if (BP_IS_HOLE(&lwb->lwb_blk) && lwb->lwb_error == 0) {
1926 		mutex_exit(&zilog->zl_lock);
1927 		return;
1928 	}
1929 	mutex_exit(&zilog->zl_lock);
1930 
1931 next_lwb:
1932 	if (lwb->lwb_slim)
1933 		zilc = (zil_chain_t *)lwb->lwb_buf;
1934 	else
1935 		zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_nmax);
1936 	int wsz = lwb->lwb_sz;
1937 	if (lwb->lwb_error == 0) {
1938 		abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf, lwb->lwb_sz);
1939 		if (!lwb->lwb_slog || zilog->zl_cur_size <= zil_slog_bulk)
1940 			prio = ZIO_PRIORITY_SYNC_WRITE;
1941 		else
1942 			prio = ZIO_PRIORITY_ASYNC_WRITE;
1943 		SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1944 		    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
1945 		    lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
1946 		lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio, spa, 0,
1947 		    &lwb->lwb_blk, lwb_abd, lwb->lwb_sz, zil_lwb_write_done,
1948 		    lwb, prio, ZIO_FLAG_CANFAIL, &zb);
1949 		zil_lwb_add_block(lwb, &lwb->lwb_blk);
1950 
1951 		if (lwb->lwb_slim) {
1952 			/* For Slim ZIL only write what is used. */
1953 			wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ,
1954 			    int);
1955 			ASSERT3S(wsz, <=, lwb->lwb_sz);
1956 			zio_shrink(lwb->lwb_write_zio, wsz);
1957 			wsz = lwb->lwb_write_zio->io_size;
1958 		}
1959 		memset(lwb->lwb_buf + lwb->lwb_nused, 0, wsz - lwb->lwb_nused);
1960 		zilc->zc_pad = 0;
1961 		zilc->zc_nused = lwb->lwb_nused;
1962 		zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1963 	} else {
1964 		/*
1965 		 * We can't write the lwb if there was an allocation failure,
1966 		 * so create a null zio instead just to maintain dependencies.
1967 		 */
1968 		lwb->lwb_write_zio = zio_null(lwb->lwb_root_zio, spa, NULL,
1969 		    zil_lwb_write_done, lwb, ZIO_FLAG_CANFAIL);
1970 		lwb->lwb_write_zio->io_error = lwb->lwb_error;
1971 	}
1972 	if (lwb->lwb_child_zio)
1973 		zio_add_child(lwb->lwb_write_zio, lwb->lwb_child_zio);
1974 
1975 	/*
1976 	 * Open transaction to allocate the next block pointer.
1977 	 */
1978 	dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
1979 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));
1980 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1981 	uint64_t txg = dmu_tx_get_txg(tx);
1982 
1983 	/*
1984 	 * Allocate next the block pointer unless we are already in error.
1985 	 */
1986 	lwb_t *nlwb = list_next(&zilog->zl_lwb_list, lwb);
1987 	blkptr_t *bp = &zilc->zc_next_blk;
1988 	BP_ZERO(bp);
1989 	error = lwb->lwb_error;
1990 	if (error == 0) {
1991 		error = zio_alloc_zil(spa, zilog->zl_os, txg, bp, nlwb->lwb_sz,
1992 		    &slog);
1993 	}
1994 	if (error == 0) {
1995 		ASSERT3U(BP_GET_LOGICAL_BIRTH(bp), ==, txg);
1996 		BP_SET_CHECKSUM(bp, nlwb->lwb_slim ? ZIO_CHECKSUM_ZILOG2 :
1997 		    ZIO_CHECKSUM_ZILOG);
1998 		bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1999 		bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
2000 	}
2001 
2002 	/*
2003 	 * Reduce TXG open time by incrementing inflight counter and committing
2004 	 * the transaciton.  zil_sync() will wait for it to return to zero.
2005 	 */
2006 	mutex_enter(&zilog->zl_lwb_io_lock);
2007 	lwb->lwb_issued_txg = txg;
2008 	zilog->zl_lwb_inflight[txg & TXG_MASK]++;
2009 	zilog->zl_lwb_max_issued_txg = MAX(txg, zilog->zl_lwb_max_issued_txg);
2010 	mutex_exit(&zilog->zl_lwb_io_lock);
2011 	dmu_tx_commit(tx);
2012 
2013 	spa_config_enter(spa, SCL_STATE, lwb, RW_READER);
2014 
2015 	/*
2016 	 * We've completed all potentially blocking operations.  Update the
2017 	 * nlwb and allow it proceed without possible lock order reversals.
2018 	 */
2019 	mutex_enter(&zilog->zl_lock);
2020 	zil_lwb_set_zio_dependency(zilog, lwb);
2021 	lwb->lwb_state = LWB_STATE_ISSUED;
2022 
2023 	if (nlwb) {
2024 		nlwb->lwb_blk = *bp;
2025 		nlwb->lwb_error = error;
2026 		nlwb->lwb_slog = slog;
2027 		nlwb->lwb_alloc_txg = txg;
2028 		if (nlwb->lwb_state != LWB_STATE_READY)
2029 			nlwb = NULL;
2030 	}
2031 	mutex_exit(&zilog->zl_lock);
2032 
2033 	if (lwb->lwb_slog) {
2034 		ZIL_STAT_BUMP(zilog, zil_itx_metaslab_slog_count);
2035 		ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_bytes,
2036 		    lwb->lwb_nused);
2037 		ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_write,
2038 		    wsz);
2039 		ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_alloc,
2040 		    BP_GET_LSIZE(&lwb->lwb_blk));
2041 	} else {
2042 		ZIL_STAT_BUMP(zilog, zil_itx_metaslab_normal_count);
2043 		ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_bytes,
2044 		    lwb->lwb_nused);
2045 		ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_write,
2046 		    wsz);
2047 		ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_alloc,
2048 		    BP_GET_LSIZE(&lwb->lwb_blk));
2049 	}
2050 	lwb->lwb_issued_timestamp = gethrtime();
2051 	if (lwb->lwb_child_zio)
2052 		zio_nowait(lwb->lwb_child_zio);
2053 	zio_nowait(lwb->lwb_write_zio);
2054 	zio_nowait(lwb->lwb_root_zio);
2055 
2056 	/*
2057 	 * If nlwb was ready when we gave it the block pointer,
2058 	 * it is on us to issue it and possibly following ones.
2059 	 */
2060 	lwb = nlwb;
2061 	if (lwb)
2062 		goto next_lwb;
2063 }
2064 
2065 /*
2066  * Maximum amount of data that can be put into single log block.
2067  */
2068 uint64_t
2069 zil_max_log_data(zilog_t *zilog, size_t hdrsize)
2070 {
2071 	return (zilog->zl_max_block_size - sizeof (zil_chain_t) - hdrsize);
2072 }
2073 
2074 /*
2075  * Maximum amount of log space we agree to waste to reduce number of
2076  * WR_NEED_COPY chunks to reduce zl_get_data() overhead (~6%).
2077  */
2078 static inline uint64_t
2079 zil_max_waste_space(zilog_t *zilog)
2080 {
2081 	return (zil_max_log_data(zilog, sizeof (lr_write_t)) / 16);
2082 }
2083 
2084 /*
2085  * Maximum amount of write data for WR_COPIED.  For correctness, consumers
2086  * must fall back to WR_NEED_COPY if we can't fit the entire record into one
2087  * maximum sized log block, because each WR_COPIED record must fit in a
2088  * single log block.  Below that it is a tradeoff of additional memory copy
2089  * and possibly worse log space efficiency vs additional range lock/unlock.
2090  */
2091 static uint_t zil_maxcopied = 7680;
2092 
2093 uint64_t
2094 zil_max_copied_data(zilog_t *zilog)
2095 {
2096 	uint64_t max_data = zil_max_log_data(zilog, sizeof (lr_write_t));
2097 	return (MIN(max_data, zil_maxcopied));
2098 }
2099 
2100 static uint64_t
2101 zil_itx_record_size(itx_t *itx)
2102 {
2103 	lr_t *lr = &itx->itx_lr;
2104 
2105 	if (lr->lrc_txtype == TX_COMMIT)
2106 		return (0);
2107 	ASSERT3U(lr->lrc_reclen, >=, sizeof (lr_t));
2108 	return (lr->lrc_reclen);
2109 }
2110 
2111 static uint64_t
2112 zil_itx_data_size(itx_t *itx)
2113 {
2114 	lr_t *lr = &itx->itx_lr;
2115 	lr_write_t *lrw = (lr_write_t *)lr;
2116 
2117 	if (lr->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
2118 		ASSERT3U(lr->lrc_reclen, ==, sizeof (lr_write_t));
2119 		return (P2ROUNDUP_TYPED(lrw->lr_length, sizeof (uint64_t),
2120 		    uint64_t));
2121 	}
2122 	return (0);
2123 }
2124 
2125 static uint64_t
2126 zil_itx_full_size(itx_t *itx)
2127 {
2128 	lr_t *lr = &itx->itx_lr;
2129 
2130 	if (lr->lrc_txtype == TX_COMMIT)
2131 		return (0);
2132 	ASSERT3U(lr->lrc_reclen, >=, sizeof (lr_t));
2133 	return (lr->lrc_reclen + zil_itx_data_size(itx));
2134 }
2135 
2136 /*
2137  * Estimate space needed in the lwb for the itx.  Allocate more lwbs or
2138  * split the itx as needed, but don't touch the actual transaction data.
2139  * Has to be called under zl_issuer_lock to call zil_lwb_write_close()
2140  * to chain more lwbs.
2141  */
2142 static lwb_t *
2143 zil_lwb_assign(zilog_t *zilog, lwb_t *lwb, itx_t *itx, list_t *ilwbs)
2144 {
2145 	itx_t *citx;
2146 	lr_t *lr, *clr;
2147 	lr_write_t *lrw;
2148 	uint64_t dlen, dnow, lwb_sp, reclen, max_log_data;
2149 
2150 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2151 	ASSERT3P(lwb, !=, NULL);
2152 	ASSERT3P(lwb->lwb_buf, !=, NULL);
2153 
2154 	zil_lwb_write_open(zilog, lwb);
2155 
2156 	lr = &itx->itx_lr;
2157 	lrw = (lr_write_t *)lr;
2158 
2159 	/*
2160 	 * A commit itx doesn't represent any on-disk state; instead
2161 	 * it's simply used as a place holder on the commit list, and
2162 	 * provides a mechanism for attaching a "commit waiter" onto the
2163 	 * correct lwb (such that the waiter can be signalled upon
2164 	 * completion of that lwb). Thus, we don't process this itx's
2165 	 * log record if it's a commit itx (these itx's don't have log
2166 	 * records), and instead link the itx's waiter onto the lwb's
2167 	 * list of waiters.
2168 	 *
2169 	 * For more details, see the comment above zil_commit().
2170 	 */
2171 	if (lr->lrc_txtype == TX_COMMIT) {
2172 		zil_commit_waiter_link_lwb(itx->itx_private, lwb);
2173 		list_insert_tail(&lwb->lwb_itxs, itx);
2174 		return (lwb);
2175 	}
2176 
2177 	reclen = lr->lrc_reclen;
2178 	ASSERT3U(reclen, >=, sizeof (lr_t));
2179 	ASSERT3U(reclen, <=, zil_max_log_data(zilog, 0));
2180 	dlen = zil_itx_data_size(itx);
2181 
2182 cont:
2183 	/*
2184 	 * If this record won't fit in the current log block, start a new one.
2185 	 * For WR_NEED_COPY optimize layout for minimal number of chunks.
2186 	 */
2187 	lwb_sp = lwb->lwb_nmax - lwb->lwb_nused;
2188 	max_log_data = zil_max_log_data(zilog, sizeof (lr_write_t));
2189 	if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
2190 	    lwb_sp < zil_max_waste_space(zilog) &&
2191 	    (dlen % max_log_data == 0 ||
2192 	    lwb_sp < reclen + dlen % max_log_data))) {
2193 		list_insert_tail(ilwbs, lwb);
2194 		lwb = zil_lwb_write_close(zilog, lwb, LWB_STATE_OPENED);
2195 		if (lwb == NULL)
2196 			return (NULL);
2197 		lwb_sp = lwb->lwb_nmax - lwb->lwb_nused;
2198 	}
2199 
2200 	/*
2201 	 * There must be enough space in the log block to hold reclen.
2202 	 * For WR_COPIED, we need to fit the whole record in one block,
2203 	 * and reclen is the write record header size + the data size.
2204 	 * For WR_NEED_COPY, we can create multiple records, splitting
2205 	 * the data into multiple blocks, so we only need to fit one
2206 	 * word of data per block; in this case reclen is just the header
2207 	 * size (no data).
2208 	 */
2209 	ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
2210 
2211 	dnow = MIN(dlen, lwb_sp - reclen);
2212 	if (dlen > dnow) {
2213 		ASSERT3U(lr->lrc_txtype, ==, TX_WRITE);
2214 		ASSERT3U(itx->itx_wr_state, ==, WR_NEED_COPY);
2215 		citx = zil_itx_clone(itx);
2216 		clr = &citx->itx_lr;
2217 		lr_write_t *clrw = (lr_write_t *)clr;
2218 		clrw->lr_length = dnow;
2219 		lrw->lr_offset += dnow;
2220 		lrw->lr_length -= dnow;
2221 		zilog->zl_cur_left -= dnow;
2222 	} else {
2223 		citx = itx;
2224 		clr = lr;
2225 	}
2226 
2227 	/*
2228 	 * We're actually making an entry, so update lrc_seq to be the
2229 	 * log record sequence number.  Note that this is generally not
2230 	 * equal to the itx sequence number because not all transactions
2231 	 * are synchronous, and sometimes spa_sync() gets there first.
2232 	 */
2233 	clr->lrc_seq = ++zilog->zl_lr_seq;
2234 
2235 	lwb->lwb_nused += reclen + dnow;
2236 	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_nmax);
2237 	ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
2238 
2239 	zil_lwb_add_txg(lwb, lr->lrc_txg);
2240 	list_insert_tail(&lwb->lwb_itxs, citx);
2241 
2242 	dlen -= dnow;
2243 	if (dlen > 0)
2244 		goto cont;
2245 
2246 	if (lr->lrc_txtype == TX_WRITE &&
2247 	    lr->lrc_txg > spa_freeze_txg(zilog->zl_spa))
2248 		txg_wait_synced(zilog->zl_dmu_pool, lr->lrc_txg);
2249 
2250 	return (lwb);
2251 }
2252 
2253 /*
2254  * Fill the actual transaction data into the lwb, following zil_lwb_assign().
2255  * Does not require locking.
2256  */
2257 static void
2258 zil_lwb_commit(zilog_t *zilog, lwb_t *lwb, itx_t *itx)
2259 {
2260 	lr_t *lr, *lrb;
2261 	lr_write_t *lrw, *lrwb;
2262 	char *lr_buf;
2263 	uint64_t dlen, reclen;
2264 
2265 	lr = &itx->itx_lr;
2266 	lrw = (lr_write_t *)lr;
2267 
2268 	if (lr->lrc_txtype == TX_COMMIT)
2269 		return;
2270 
2271 	reclen = lr->lrc_reclen;
2272 	dlen = zil_itx_data_size(itx);
2273 	ASSERT3U(reclen + dlen, <=, lwb->lwb_nused - lwb->lwb_nfilled);
2274 
2275 	lr_buf = lwb->lwb_buf + lwb->lwb_nfilled;
2276 	memcpy(lr_buf, lr, reclen);
2277 	lrb = (lr_t *)lr_buf;		/* Like lr, but inside lwb. */
2278 	lrwb = (lr_write_t *)lrb;	/* Like lrw, but inside lwb. */
2279 
2280 	ZIL_STAT_BUMP(zilog, zil_itx_count);
2281 
2282 	/*
2283 	 * If it's a write, fetch the data or get its blkptr as appropriate.
2284 	 */
2285 	if (lr->lrc_txtype == TX_WRITE) {
2286 		if (itx->itx_wr_state == WR_COPIED) {
2287 			ZIL_STAT_BUMP(zilog, zil_itx_copied_count);
2288 			ZIL_STAT_INCR(zilog, zil_itx_copied_bytes,
2289 			    lrw->lr_length);
2290 		} else {
2291 			char *dbuf;
2292 			int error;
2293 
2294 			if (itx->itx_wr_state == WR_NEED_COPY) {
2295 				dbuf = lr_buf + reclen;
2296 				lrb->lrc_reclen += dlen;
2297 				ZIL_STAT_BUMP(zilog, zil_itx_needcopy_count);
2298 				ZIL_STAT_INCR(zilog, zil_itx_needcopy_bytes,
2299 				    dlen);
2300 			} else {
2301 				ASSERT3S(itx->itx_wr_state, ==, WR_INDIRECT);
2302 				dbuf = NULL;
2303 				ZIL_STAT_BUMP(zilog, zil_itx_indirect_count);
2304 				ZIL_STAT_INCR(zilog, zil_itx_indirect_bytes,
2305 				    lrw->lr_length);
2306 				if (lwb->lwb_child_zio == NULL) {
2307 					lwb->lwb_child_zio = zio_null(NULL,
2308 					    zilog->zl_spa, NULL, NULL, NULL,
2309 					    ZIO_FLAG_CANFAIL);
2310 				}
2311 			}
2312 
2313 			/*
2314 			 * The "lwb_child_zio" we pass in will become a child of
2315 			 * "lwb_write_zio", when one is created, so one will be
2316 			 * a parent of any zio's created by the "zl_get_data".
2317 			 * This way "lwb_write_zio" will first wait for children
2318 			 * block pointers before own writing, and then for their
2319 			 * writing completion before the vdev cache flushing.
2320 			 */
2321 			error = zilog->zl_get_data(itx->itx_private,
2322 			    itx->itx_gen, lrwb, dbuf, lwb,
2323 			    lwb->lwb_child_zio);
2324 			if (dbuf != NULL && error == 0) {
2325 				/* Zero any padding bytes in the last block. */
2326 				memset((char *)dbuf + lrwb->lr_length, 0,
2327 				    dlen - lrwb->lr_length);
2328 			}
2329 
2330 			/*
2331 			 * Typically, the only return values we should see from
2332 			 * ->zl_get_data() are 0, EIO, ENOENT, EEXIST or
2333 			 *  EALREADY. However, it is also possible to see other
2334 			 *  error values such as ENOSPC or EINVAL from
2335 			 *  dmu_read() -> dnode_hold() -> dnode_hold_impl() or
2336 			 *  ENXIO as well as a multitude of others from the
2337 			 *  block layer through dmu_buf_hold() -> dbuf_read()
2338 			 *  -> zio_wait(), as well as through dmu_read() ->
2339 			 *  dnode_hold() -> dnode_hold_impl() -> dbuf_read() ->
2340 			 *  zio_wait(). When these errors happen, we can assume
2341 			 *  that neither an immediate write nor an indirect
2342 			 *  write occurred, so we need to fall back to
2343 			 *  txg_wait_synced(). This is unusual, so we print to
2344 			 *  dmesg whenever one of these errors occurs.
2345 			 */
2346 			switch (error) {
2347 			case 0:
2348 				break;
2349 			default:
2350 				cmn_err(CE_WARN, "zil_lwb_commit() received "
2351 				    "unexpected error %d from ->zl_get_data()"
2352 				    ". Falling back to txg_wait_synced().",
2353 				    error);
2354 				zfs_fallthrough;
2355 			case EIO:
2356 				txg_wait_synced(zilog->zl_dmu_pool,
2357 				    lr->lrc_txg);
2358 				zfs_fallthrough;
2359 			case ENOENT:
2360 				zfs_fallthrough;
2361 			case EEXIST:
2362 				zfs_fallthrough;
2363 			case EALREADY:
2364 				return;
2365 			}
2366 		}
2367 	}
2368 
2369 	lwb->lwb_nfilled += reclen + dlen;
2370 	ASSERT3S(lwb->lwb_nfilled, <=, lwb->lwb_nused);
2371 	ASSERT0(P2PHASE(lwb->lwb_nfilled, sizeof (uint64_t)));
2372 }
2373 
2374 itx_t *
2375 zil_itx_create(uint64_t txtype, size_t olrsize)
2376 {
2377 	size_t itxsize, lrsize;
2378 	itx_t *itx;
2379 
2380 	ASSERT3U(olrsize, >=, sizeof (lr_t));
2381 	lrsize = P2ROUNDUP_TYPED(olrsize, sizeof (uint64_t), size_t);
2382 	ASSERT3U(lrsize, >=, olrsize);
2383 	itxsize = offsetof(itx_t, itx_lr) + lrsize;
2384 
2385 	itx = zio_data_buf_alloc(itxsize);
2386 	itx->itx_lr.lrc_txtype = txtype;
2387 	itx->itx_lr.lrc_reclen = lrsize;
2388 	itx->itx_lr.lrc_seq = 0;	/* defensive */
2389 	memset((char *)&itx->itx_lr + olrsize, 0, lrsize - olrsize);
2390 	itx->itx_sync = B_TRUE;		/* default is synchronous */
2391 	itx->itx_callback = NULL;
2392 	itx->itx_callback_data = NULL;
2393 	itx->itx_size = itxsize;
2394 
2395 	return (itx);
2396 }
2397 
2398 static itx_t *
2399 zil_itx_clone(itx_t *oitx)
2400 {
2401 	ASSERT3U(oitx->itx_size, >=, sizeof (itx_t));
2402 	ASSERT3U(oitx->itx_size, ==,
2403 	    offsetof(itx_t, itx_lr) + oitx->itx_lr.lrc_reclen);
2404 
2405 	itx_t *itx = zio_data_buf_alloc(oitx->itx_size);
2406 	memcpy(itx, oitx, oitx->itx_size);
2407 	itx->itx_callback = NULL;
2408 	itx->itx_callback_data = NULL;
2409 	return (itx);
2410 }
2411 
2412 void
2413 zil_itx_destroy(itx_t *itx)
2414 {
2415 	ASSERT3U(itx->itx_size, >=, sizeof (itx_t));
2416 	ASSERT3U(itx->itx_lr.lrc_reclen, ==,
2417 	    itx->itx_size - offsetof(itx_t, itx_lr));
2418 	IMPLY(itx->itx_lr.lrc_txtype == TX_COMMIT, itx->itx_callback == NULL);
2419 	IMPLY(itx->itx_callback != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
2420 
2421 	if (itx->itx_callback != NULL)
2422 		itx->itx_callback(itx->itx_callback_data);
2423 
2424 	zio_data_buf_free(itx, itx->itx_size);
2425 }
2426 
2427 /*
2428  * Free up the sync and async itxs. The itxs_t has already been detached
2429  * so no locks are needed.
2430  */
2431 static void
2432 zil_itxg_clean(void *arg)
2433 {
2434 	itx_t *itx;
2435 	list_t *list;
2436 	avl_tree_t *t;
2437 	void *cookie;
2438 	itxs_t *itxs = arg;
2439 	itx_async_node_t *ian;
2440 
2441 	list = &itxs->i_sync_list;
2442 	while ((itx = list_remove_head(list)) != NULL) {
2443 		/*
2444 		 * In the general case, commit itxs will not be found
2445 		 * here, as they'll be committed to an lwb via
2446 		 * zil_lwb_assign(), and free'd in that function. Having
2447 		 * said that, it is still possible for commit itxs to be
2448 		 * found here, due to the following race:
2449 		 *
2450 		 *	- a thread calls zil_commit() which assigns the
2451 		 *	  commit itx to a per-txg i_sync_list
2452 		 *	- zil_itxg_clean() is called (e.g. via spa_sync())
2453 		 *	  while the waiter is still on the i_sync_list
2454 		 *
2455 		 * There's nothing to prevent syncing the txg while the
2456 		 * waiter is on the i_sync_list. This normally doesn't
2457 		 * happen because spa_sync() is slower than zil_commit(),
2458 		 * but if zil_commit() calls txg_wait_synced() (e.g.
2459 		 * because zil_create() or zil_commit_writer_stall() is
2460 		 * called) we will hit this case.
2461 		 */
2462 		if (itx->itx_lr.lrc_txtype == TX_COMMIT)
2463 			zil_commit_waiter_skip(itx->itx_private);
2464 
2465 		zil_itx_destroy(itx);
2466 	}
2467 
2468 	cookie = NULL;
2469 	t = &itxs->i_async_tree;
2470 	while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
2471 		list = &ian->ia_list;
2472 		while ((itx = list_remove_head(list)) != NULL) {
2473 			/* commit itxs should never be on the async lists. */
2474 			ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
2475 			zil_itx_destroy(itx);
2476 		}
2477 		list_destroy(list);
2478 		kmem_free(ian, sizeof (itx_async_node_t));
2479 	}
2480 	avl_destroy(t);
2481 
2482 	kmem_free(itxs, sizeof (itxs_t));
2483 }
2484 
2485 static int
2486 zil_aitx_compare(const void *x1, const void *x2)
2487 {
2488 	const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
2489 	const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
2490 
2491 	return (TREE_CMP(o1, o2));
2492 }
2493 
2494 /*
2495  * Remove all async itx with the given oid.
2496  */
2497 void
2498 zil_remove_async(zilog_t *zilog, uint64_t oid)
2499 {
2500 	uint64_t otxg, txg;
2501 	itx_async_node_t *ian, ian_search;
2502 	avl_tree_t *t;
2503 	avl_index_t where;
2504 	list_t clean_list;
2505 	itx_t *itx;
2506 
2507 	ASSERT(oid != 0);
2508 	list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
2509 
2510 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2511 		otxg = ZILTEST_TXG;
2512 	else
2513 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2514 
2515 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2516 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2517 
2518 		mutex_enter(&itxg->itxg_lock);
2519 		if (itxg->itxg_txg != txg) {
2520 			mutex_exit(&itxg->itxg_lock);
2521 			continue;
2522 		}
2523 
2524 		/*
2525 		 * Locate the object node and append its list.
2526 		 */
2527 		t = &itxg->itxg_itxs->i_async_tree;
2528 		ian_search.ia_foid = oid;
2529 		ian = avl_find(t, &ian_search, &where);
2530 		if (ian != NULL)
2531 			list_move_tail(&clean_list, &ian->ia_list);
2532 		mutex_exit(&itxg->itxg_lock);
2533 	}
2534 	while ((itx = list_remove_head(&clean_list)) != NULL) {
2535 		/* commit itxs should never be on the async lists. */
2536 		ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
2537 		zil_itx_destroy(itx);
2538 	}
2539 	list_destroy(&clean_list);
2540 }
2541 
2542 void
2543 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
2544 {
2545 	uint64_t txg;
2546 	itxg_t *itxg;
2547 	itxs_t *itxs, *clean = NULL;
2548 
2549 	/*
2550 	 * Ensure the data of a renamed file is committed before the rename.
2551 	 */
2552 	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
2553 		zil_async_to_sync(zilog, itx->itx_oid);
2554 
2555 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
2556 		txg = ZILTEST_TXG;
2557 	else
2558 		txg = dmu_tx_get_txg(tx);
2559 
2560 	itxg = &zilog->zl_itxg[txg & TXG_MASK];
2561 	mutex_enter(&itxg->itxg_lock);
2562 	itxs = itxg->itxg_itxs;
2563 	if (itxg->itxg_txg != txg) {
2564 		if (itxs != NULL) {
2565 			/*
2566 			 * The zil_clean callback hasn't got around to cleaning
2567 			 * this itxg. Save the itxs for release below.
2568 			 * This should be rare.
2569 			 */
2570 			zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
2571 			    "txg %llu", (u_longlong_t)itxg->itxg_txg);
2572 			clean = itxg->itxg_itxs;
2573 		}
2574 		itxg->itxg_txg = txg;
2575 		itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t),
2576 		    KM_SLEEP);
2577 
2578 		list_create(&itxs->i_sync_list, sizeof (itx_t),
2579 		    offsetof(itx_t, itx_node));
2580 		avl_create(&itxs->i_async_tree, zil_aitx_compare,
2581 		    sizeof (itx_async_node_t),
2582 		    offsetof(itx_async_node_t, ia_node));
2583 	}
2584 	if (itx->itx_sync) {
2585 		list_insert_tail(&itxs->i_sync_list, itx);
2586 	} else {
2587 		avl_tree_t *t = &itxs->i_async_tree;
2588 		uint64_t foid =
2589 		    LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid);
2590 		itx_async_node_t *ian;
2591 		avl_index_t where;
2592 
2593 		ian = avl_find(t, &foid, &where);
2594 		if (ian == NULL) {
2595 			ian = kmem_alloc(sizeof (itx_async_node_t),
2596 			    KM_SLEEP);
2597 			list_create(&ian->ia_list, sizeof (itx_t),
2598 			    offsetof(itx_t, itx_node));
2599 			ian->ia_foid = foid;
2600 			avl_insert(t, ian, where);
2601 		}
2602 		list_insert_tail(&ian->ia_list, itx);
2603 	}
2604 
2605 	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
2606 
2607 	/*
2608 	 * We don't want to dirty the ZIL using ZILTEST_TXG, because
2609 	 * zil_clean() will never be called using ZILTEST_TXG. Thus, we
2610 	 * need to be careful to always dirty the ZIL using the "real"
2611 	 * TXG (not itxg_txg) even when the SPA is frozen.
2612 	 */
2613 	zilog_dirty(zilog, dmu_tx_get_txg(tx));
2614 	mutex_exit(&itxg->itxg_lock);
2615 
2616 	/* Release the old itxs now we've dropped the lock */
2617 	if (clean != NULL)
2618 		zil_itxg_clean(clean);
2619 }
2620 
2621 /*
2622  * If there are any in-memory intent log transactions which have now been
2623  * synced then start up a taskq to free them. We should only do this after we
2624  * have written out the uberblocks (i.e. txg has been committed) so that
2625  * don't inadvertently clean out in-memory log records that would be required
2626  * by zil_commit().
2627  */
2628 void
2629 zil_clean(zilog_t *zilog, uint64_t synced_txg)
2630 {
2631 	itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
2632 	itxs_t *clean_me;
2633 
2634 	ASSERT3U(synced_txg, <, ZILTEST_TXG);
2635 
2636 	mutex_enter(&itxg->itxg_lock);
2637 	if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
2638 		mutex_exit(&itxg->itxg_lock);
2639 		return;
2640 	}
2641 	ASSERT3U(itxg->itxg_txg, <=, synced_txg);
2642 	ASSERT3U(itxg->itxg_txg, !=, 0);
2643 	clean_me = itxg->itxg_itxs;
2644 	itxg->itxg_itxs = NULL;
2645 	itxg->itxg_txg = 0;
2646 	mutex_exit(&itxg->itxg_lock);
2647 	/*
2648 	 * Preferably start a task queue to free up the old itxs but
2649 	 * if taskq_dispatch can't allocate resources to do that then
2650 	 * free it in-line. This should be rare. Note, using TQ_SLEEP
2651 	 * created a bad performance problem.
2652 	 */
2653 	ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
2654 	ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
2655 	taskqid_t id = taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
2656 	    zil_itxg_clean, clean_me, TQ_NOSLEEP);
2657 	if (id == TASKQID_INVALID)
2658 		zil_itxg_clean(clean_me);
2659 }
2660 
2661 /*
2662  * This function will traverse the queue of itxs that need to be
2663  * committed, and move them onto the ZIL's zl_itx_commit_list.
2664  */
2665 static uint64_t
2666 zil_get_commit_list(zilog_t *zilog)
2667 {
2668 	uint64_t otxg, txg, wtxg = 0;
2669 	list_t *commit_list = &zilog->zl_itx_commit_list;
2670 
2671 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2672 
2673 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2674 		otxg = ZILTEST_TXG;
2675 	else
2676 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2677 
2678 	/*
2679 	 * This is inherently racy, since there is nothing to prevent
2680 	 * the last synced txg from changing. That's okay since we'll
2681 	 * only commit things in the future.
2682 	 */
2683 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2684 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2685 
2686 		mutex_enter(&itxg->itxg_lock);
2687 		if (itxg->itxg_txg != txg) {
2688 			mutex_exit(&itxg->itxg_lock);
2689 			continue;
2690 		}
2691 
2692 		/*
2693 		 * If we're adding itx records to the zl_itx_commit_list,
2694 		 * then the zil better be dirty in this "txg". We can assert
2695 		 * that here since we're holding the itxg_lock which will
2696 		 * prevent spa_sync from cleaning it. Once we add the itxs
2697 		 * to the zl_itx_commit_list we must commit it to disk even
2698 		 * if it's unnecessary (i.e. the txg was synced).
2699 		 */
2700 		ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
2701 		    spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
2702 		list_t *sync_list = &itxg->itxg_itxs->i_sync_list;
2703 		itx_t *itx = NULL;
2704 		if (unlikely(zilog->zl_suspend > 0)) {
2705 			/*
2706 			 * ZIL was just suspended, but we lost the race.
2707 			 * Allow all earlier itxs to be committed, but ask
2708 			 * caller to do txg_wait_synced(txg) for any new.
2709 			 */
2710 			if (!list_is_empty(sync_list))
2711 				wtxg = MAX(wtxg, txg);
2712 		} else {
2713 			itx = list_head(sync_list);
2714 			list_move_tail(commit_list, sync_list);
2715 		}
2716 
2717 		mutex_exit(&itxg->itxg_lock);
2718 
2719 		while (itx != NULL) {
2720 			uint64_t s = zil_itx_full_size(itx);
2721 			zilog->zl_cur_size += s;
2722 			zilog->zl_cur_left += s;
2723 			s = zil_itx_record_size(itx);
2724 			zilog->zl_cur_max = MAX(zilog->zl_cur_max, s);
2725 			itx = list_next(commit_list, itx);
2726 		}
2727 	}
2728 	return (wtxg);
2729 }
2730 
2731 /*
2732  * Move the async itxs for a specified object to commit into sync lists.
2733  */
2734 void
2735 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
2736 {
2737 	uint64_t otxg, txg;
2738 	itx_async_node_t *ian, ian_search;
2739 	avl_tree_t *t;
2740 	avl_index_t where;
2741 
2742 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2743 		otxg = ZILTEST_TXG;
2744 	else
2745 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2746 
2747 	/*
2748 	 * This is inherently racy, since there is nothing to prevent
2749 	 * the last synced txg from changing.
2750 	 */
2751 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2752 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2753 
2754 		mutex_enter(&itxg->itxg_lock);
2755 		if (itxg->itxg_txg != txg) {
2756 			mutex_exit(&itxg->itxg_lock);
2757 			continue;
2758 		}
2759 
2760 		/*
2761 		 * If a foid is specified then find that node and append its
2762 		 * list. Otherwise walk the tree appending all the lists
2763 		 * to the sync list. We add to the end rather than the
2764 		 * beginning to ensure the create has happened.
2765 		 */
2766 		t = &itxg->itxg_itxs->i_async_tree;
2767 		if (foid != 0) {
2768 			ian_search.ia_foid = foid;
2769 			ian = avl_find(t, &ian_search, &where);
2770 			if (ian != NULL) {
2771 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
2772 				    &ian->ia_list);
2773 			}
2774 		} else {
2775 			void *cookie = NULL;
2776 
2777 			while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
2778 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
2779 				    &ian->ia_list);
2780 				list_destroy(&ian->ia_list);
2781 				kmem_free(ian, sizeof (itx_async_node_t));
2782 			}
2783 		}
2784 		mutex_exit(&itxg->itxg_lock);
2785 	}
2786 }
2787 
2788 /*
2789  * This function will prune commit itxs that are at the head of the
2790  * commit list (it won't prune past the first non-commit itx), and
2791  * either: a) attach them to the last lwb that's still pending
2792  * completion, or b) skip them altogether.
2793  *
2794  * This is used as a performance optimization to prevent commit itxs
2795  * from generating new lwbs when it's unnecessary to do so.
2796  */
2797 static void
2798 zil_prune_commit_list(zilog_t *zilog)
2799 {
2800 	itx_t *itx;
2801 
2802 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2803 
2804 	while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) {
2805 		lr_t *lrc = &itx->itx_lr;
2806 		if (lrc->lrc_txtype != TX_COMMIT)
2807 			break;
2808 
2809 		mutex_enter(&zilog->zl_lock);
2810 
2811 		lwb_t *last_lwb = zilog->zl_last_lwb_opened;
2812 		if (last_lwb == NULL ||
2813 		    last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) {
2814 			/*
2815 			 * All of the itxs this waiter was waiting on
2816 			 * must have already completed (or there were
2817 			 * never any itx's for it to wait on), so it's
2818 			 * safe to skip this waiter and mark it done.
2819 			 */
2820 			zil_commit_waiter_skip(itx->itx_private);
2821 		} else {
2822 			zil_commit_waiter_link_lwb(itx->itx_private, last_lwb);
2823 		}
2824 
2825 		mutex_exit(&zilog->zl_lock);
2826 
2827 		list_remove(&zilog->zl_itx_commit_list, itx);
2828 		zil_itx_destroy(itx);
2829 	}
2830 
2831 	IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
2832 }
2833 
2834 static void
2835 zil_commit_writer_stall(zilog_t *zilog)
2836 {
2837 	/*
2838 	 * When zio_alloc_zil() fails to allocate the next lwb block on
2839 	 * disk, we must call txg_wait_synced() to ensure all of the
2840 	 * lwbs in the zilog's zl_lwb_list are synced and then freed (in
2841 	 * zil_sync()), such that any subsequent ZIL writer (i.e. a call
2842 	 * to zil_process_commit_list()) will have to call zil_create(),
2843 	 * and start a new ZIL chain.
2844 	 *
2845 	 * Since zil_alloc_zil() failed, the lwb that was previously
2846 	 * issued does not have a pointer to the "next" lwb on disk.
2847 	 * Thus, if another ZIL writer thread was to allocate the "next"
2848 	 * on-disk lwb, that block could be leaked in the event of a
2849 	 * crash (because the previous lwb on-disk would not point to
2850 	 * it).
2851 	 *
2852 	 * We must hold the zilog's zl_issuer_lock while we do this, to
2853 	 * ensure no new threads enter zil_process_commit_list() until
2854 	 * all lwb's in the zl_lwb_list have been synced and freed
2855 	 * (which is achieved via the txg_wait_synced() call).
2856 	 */
2857 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2858 	ZIL_STAT_BUMP(zilog, zil_commit_stall_count);
2859 	txg_wait_synced(zilog->zl_dmu_pool, 0);
2860 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
2861 }
2862 
2863 static void
2864 zil_burst_done(zilog_t *zilog)
2865 {
2866 	if (!list_is_empty(&zilog->zl_itx_commit_list) ||
2867 	    zilog->zl_cur_size == 0)
2868 		return;
2869 
2870 	if (zilog->zl_parallel)
2871 		zilog->zl_parallel--;
2872 
2873 	uint_t r = (zilog->zl_prev_rotor + 1) & (ZIL_BURSTS - 1);
2874 	zilog->zl_prev_rotor = r;
2875 	zilog->zl_prev_opt[r] = zil_lwb_plan(zilog, zilog->zl_cur_size,
2876 	    &zilog->zl_prev_min[r]);
2877 
2878 	zilog->zl_cur_size = 0;
2879 	zilog->zl_cur_max = 0;
2880 	zilog->zl_cur_left = 0;
2881 }
2882 
2883 /*
2884  * This function will traverse the commit list, creating new lwbs as
2885  * needed, and committing the itxs from the commit list to these newly
2886  * created lwbs. Additionally, as a new lwb is created, the previous
2887  * lwb will be issued to the zio layer to be written to disk.
2888  */
2889 static void
2890 zil_process_commit_list(zilog_t *zilog, zil_commit_waiter_t *zcw, list_t *ilwbs)
2891 {
2892 	spa_t *spa = zilog->zl_spa;
2893 	list_t nolwb_itxs;
2894 	list_t nolwb_waiters;
2895 	lwb_t *lwb, *plwb;
2896 	itx_t *itx;
2897 
2898 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2899 
2900 	/*
2901 	 * Return if there's nothing to commit before we dirty the fs by
2902 	 * calling zil_create().
2903 	 */
2904 	if (list_is_empty(&zilog->zl_itx_commit_list))
2905 		return;
2906 
2907 	list_create(&nolwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
2908 	list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t),
2909 	    offsetof(zil_commit_waiter_t, zcw_node));
2910 
2911 	lwb = list_tail(&zilog->zl_lwb_list);
2912 	if (lwb == NULL) {
2913 		lwb = zil_create(zilog);
2914 	} else {
2915 		/*
2916 		 * Activate SPA_FEATURE_ZILSAXATTR for the cases where ZIL will
2917 		 * have already been created (zl_lwb_list not empty).
2918 		 */
2919 		zil_commit_activate_saxattr_feature(zilog);
2920 		ASSERT(lwb->lwb_state == LWB_STATE_NEW ||
2921 		    lwb->lwb_state == LWB_STATE_OPENED);
2922 
2923 		/*
2924 		 * If the lwb is still opened, it means the workload is really
2925 		 * multi-threaded and we won the chance of write aggregation.
2926 		 * If it is not opened yet, but previous lwb is still not
2927 		 * flushed, it still means the workload is multi-threaded, but
2928 		 * there was too much time between the commits to aggregate, so
2929 		 * we try aggregation next times, but without too much hopes.
2930 		 */
2931 		if (lwb->lwb_state == LWB_STATE_OPENED) {
2932 			zilog->zl_parallel = ZIL_BURSTS;
2933 		} else if ((plwb = list_prev(&zilog->zl_lwb_list, lwb))
2934 		    != NULL && plwb->lwb_state != LWB_STATE_FLUSH_DONE) {
2935 			zilog->zl_parallel = MAX(zilog->zl_parallel,
2936 			    ZIL_BURSTS / 2);
2937 		}
2938 	}
2939 
2940 	while ((itx = list_remove_head(&zilog->zl_itx_commit_list)) != NULL) {
2941 		lr_t *lrc = &itx->itx_lr;
2942 		uint64_t txg = lrc->lrc_txg;
2943 
2944 		ASSERT3U(txg, !=, 0);
2945 
2946 		if (lrc->lrc_txtype == TX_COMMIT) {
2947 			DTRACE_PROBE2(zil__process__commit__itx,
2948 			    zilog_t *, zilog, itx_t *, itx);
2949 		} else {
2950 			DTRACE_PROBE2(zil__process__normal__itx,
2951 			    zilog_t *, zilog, itx_t *, itx);
2952 		}
2953 
2954 		boolean_t synced = txg <= spa_last_synced_txg(spa);
2955 		boolean_t frozen = txg > spa_freeze_txg(spa);
2956 
2957 		/*
2958 		 * If the txg of this itx has already been synced out, then
2959 		 * we don't need to commit this itx to an lwb. This is
2960 		 * because the data of this itx will have already been
2961 		 * written to the main pool. This is inherently racy, and
2962 		 * it's still ok to commit an itx whose txg has already
2963 		 * been synced; this will result in a write that's
2964 		 * unnecessary, but will do no harm.
2965 		 *
2966 		 * With that said, we always want to commit TX_COMMIT itxs
2967 		 * to an lwb, regardless of whether or not that itx's txg
2968 		 * has been synced out. We do this to ensure any OPENED lwb
2969 		 * will always have at least one zil_commit_waiter_t linked
2970 		 * to the lwb.
2971 		 *
2972 		 * As a counter-example, if we skipped TX_COMMIT itx's
2973 		 * whose txg had already been synced, the following
2974 		 * situation could occur if we happened to be racing with
2975 		 * spa_sync:
2976 		 *
2977 		 * 1. We commit a non-TX_COMMIT itx to an lwb, where the
2978 		 *    itx's txg is 10 and the last synced txg is 9.
2979 		 * 2. spa_sync finishes syncing out txg 10.
2980 		 * 3. We move to the next itx in the list, it's a TX_COMMIT
2981 		 *    whose txg is 10, so we skip it rather than committing
2982 		 *    it to the lwb used in (1).
2983 		 *
2984 		 * If the itx that is skipped in (3) is the last TX_COMMIT
2985 		 * itx in the commit list, than it's possible for the lwb
2986 		 * used in (1) to remain in the OPENED state indefinitely.
2987 		 *
2988 		 * To prevent the above scenario from occurring, ensuring
2989 		 * that once an lwb is OPENED it will transition to ISSUED
2990 		 * and eventually DONE, we always commit TX_COMMIT itx's to
2991 		 * an lwb here, even if that itx's txg has already been
2992 		 * synced.
2993 		 *
2994 		 * Finally, if the pool is frozen, we _always_ commit the
2995 		 * itx.  The point of freezing the pool is to prevent data
2996 		 * from being written to the main pool via spa_sync, and
2997 		 * instead rely solely on the ZIL to persistently store the
2998 		 * data; i.e.  when the pool is frozen, the last synced txg
2999 		 * value can't be trusted.
3000 		 */
3001 		if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) {
3002 			if (lwb != NULL) {
3003 				lwb = zil_lwb_assign(zilog, lwb, itx, ilwbs);
3004 				if (lwb == NULL) {
3005 					list_insert_tail(&nolwb_itxs, itx);
3006 				} else if ((zcw->zcw_lwb != NULL &&
3007 				    zcw->zcw_lwb != lwb) || zcw->zcw_done) {
3008 					/*
3009 					 * Our lwb is done, leave the rest of
3010 					 * itx list to somebody else who care.
3011 					 */
3012 					zilog->zl_parallel = ZIL_BURSTS;
3013 					zilog->zl_cur_left -=
3014 					    zil_itx_full_size(itx);
3015 					break;
3016 				}
3017 			} else {
3018 				if (lrc->lrc_txtype == TX_COMMIT) {
3019 					zil_commit_waiter_link_nolwb(
3020 					    itx->itx_private, &nolwb_waiters);
3021 				}
3022 				list_insert_tail(&nolwb_itxs, itx);
3023 			}
3024 			zilog->zl_cur_left -= zil_itx_full_size(itx);
3025 		} else {
3026 			ASSERT3S(lrc->lrc_txtype, !=, TX_COMMIT);
3027 			zilog->zl_cur_left -= zil_itx_full_size(itx);
3028 			zil_itx_destroy(itx);
3029 		}
3030 	}
3031 
3032 	if (lwb == NULL) {
3033 		/*
3034 		 * This indicates zio_alloc_zil() failed to allocate the
3035 		 * "next" lwb on-disk. When this happens, we must stall
3036 		 * the ZIL write pipeline; see the comment within
3037 		 * zil_commit_writer_stall() for more details.
3038 		 */
3039 		while ((lwb = list_remove_head(ilwbs)) != NULL)
3040 			zil_lwb_write_issue(zilog, lwb);
3041 		zil_commit_writer_stall(zilog);
3042 
3043 		/*
3044 		 * Additionally, we have to signal and mark the "nolwb"
3045 		 * waiters as "done" here, since without an lwb, we
3046 		 * can't do this via zil_lwb_flush_vdevs_done() like
3047 		 * normal.
3048 		 */
3049 		zil_commit_waiter_t *zcw;
3050 		while ((zcw = list_remove_head(&nolwb_waiters)) != NULL)
3051 			zil_commit_waiter_skip(zcw);
3052 
3053 		/*
3054 		 * And finally, we have to destroy the itx's that
3055 		 * couldn't be committed to an lwb; this will also call
3056 		 * the itx's callback if one exists for the itx.
3057 		 */
3058 		while ((itx = list_remove_head(&nolwb_itxs)) != NULL)
3059 			zil_itx_destroy(itx);
3060 	} else {
3061 		ASSERT(list_is_empty(&nolwb_waiters));
3062 		ASSERT3P(lwb, !=, NULL);
3063 		ASSERT(lwb->lwb_state == LWB_STATE_NEW ||
3064 		    lwb->lwb_state == LWB_STATE_OPENED);
3065 
3066 		/*
3067 		 * At this point, the ZIL block pointed at by the "lwb"
3068 		 * variable is in "new" or "opened" state.
3069 		 *
3070 		 * If it's "new", then no itxs have been committed to it, so
3071 		 * there's no point in issuing its zio (i.e. it's "empty").
3072 		 *
3073 		 * If it's "opened", then it contains one or more itxs that
3074 		 * eventually need to be committed to stable storage. In
3075 		 * this case we intentionally do not issue the lwb's zio
3076 		 * to disk yet, and instead rely on one of the following
3077 		 * two mechanisms for issuing the zio:
3078 		 *
3079 		 * 1. Ideally, there will be more ZIL activity occurring on
3080 		 * the system, such that this function will be immediately
3081 		 * called again by different thread and this lwb will be
3082 		 * closed by zil_lwb_assign().  This way, the lwb will be
3083 		 * "full" when it is issued to disk, and we'll make use of
3084 		 * the lwb's size the best we can.
3085 		 *
3086 		 * 2. If there isn't sufficient ZIL activity occurring on
3087 		 * the system, zil_commit_waiter() will close it and issue
3088 		 * the zio.  If this occurs, the lwb is not guaranteed
3089 		 * to be "full" by the time its zio is issued, and means
3090 		 * the size of the lwb was "too large" given the amount
3091 		 * of ZIL activity occurring on the system at that time.
3092 		 *
3093 		 * We do this for a couple of reasons:
3094 		 *
3095 		 * 1. To try and reduce the number of IOPs needed to
3096 		 * write the same number of itxs. If an lwb has space
3097 		 * available in its buffer for more itxs, and more itxs
3098 		 * will be committed relatively soon (relative to the
3099 		 * latency of performing a write), then it's beneficial
3100 		 * to wait for these "next" itxs. This way, more itxs
3101 		 * can be committed to stable storage with fewer writes.
3102 		 *
3103 		 * 2. To try and use the largest lwb block size that the
3104 		 * incoming rate of itxs can support. Again, this is to
3105 		 * try and pack as many itxs into as few lwbs as
3106 		 * possible, without significantly impacting the latency
3107 		 * of each individual itx.
3108 		 */
3109 		if (lwb->lwb_state == LWB_STATE_OPENED && !zilog->zl_parallel) {
3110 			zil_burst_done(zilog);
3111 			list_insert_tail(ilwbs, lwb);
3112 			lwb = zil_lwb_write_close(zilog, lwb, LWB_STATE_NEW);
3113 			if (lwb == NULL) {
3114 				while ((lwb = list_remove_head(ilwbs)) != NULL)
3115 					zil_lwb_write_issue(zilog, lwb);
3116 				zil_commit_writer_stall(zilog);
3117 			}
3118 		}
3119 	}
3120 }
3121 
3122 /*
3123  * This function is responsible for ensuring the passed in commit waiter
3124  * (and associated commit itx) is committed to an lwb. If the waiter is
3125  * not already committed to an lwb, all itxs in the zilog's queue of
3126  * itxs will be processed. The assumption is the passed in waiter's
3127  * commit itx will found in the queue just like the other non-commit
3128  * itxs, such that when the entire queue is processed, the waiter will
3129  * have been committed to an lwb.
3130  *
3131  * The lwb associated with the passed in waiter is not guaranteed to
3132  * have been issued by the time this function completes. If the lwb is
3133  * not issued, we rely on future calls to zil_commit_writer() to issue
3134  * the lwb, or the timeout mechanism found in zil_commit_waiter().
3135  */
3136 static uint64_t
3137 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw)
3138 {
3139 	list_t ilwbs;
3140 	lwb_t *lwb;
3141 	uint64_t wtxg = 0;
3142 
3143 	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
3144 	ASSERT(spa_writeable(zilog->zl_spa));
3145 
3146 	list_create(&ilwbs, sizeof (lwb_t), offsetof(lwb_t, lwb_issue_node));
3147 	mutex_enter(&zilog->zl_issuer_lock);
3148 
3149 	if (zcw->zcw_lwb != NULL || zcw->zcw_done) {
3150 		/*
3151 		 * It's possible that, while we were waiting to acquire
3152 		 * the "zl_issuer_lock", another thread committed this
3153 		 * waiter to an lwb. If that occurs, we bail out early,
3154 		 * without processing any of the zilog's queue of itxs.
3155 		 *
3156 		 * On certain workloads and system configurations, the
3157 		 * "zl_issuer_lock" can become highly contended. In an
3158 		 * attempt to reduce this contention, we immediately drop
3159 		 * the lock if the waiter has already been processed.
3160 		 *
3161 		 * We've measured this optimization to reduce CPU spent
3162 		 * contending on this lock by up to 5%, using a system
3163 		 * with 32 CPUs, low latency storage (~50 usec writes),
3164 		 * and 1024 threads performing sync writes.
3165 		 */
3166 		goto out;
3167 	}
3168 
3169 	ZIL_STAT_BUMP(zilog, zil_commit_writer_count);
3170 
3171 	wtxg = zil_get_commit_list(zilog);
3172 	zil_prune_commit_list(zilog);
3173 	zil_process_commit_list(zilog, zcw, &ilwbs);
3174 
3175 out:
3176 	mutex_exit(&zilog->zl_issuer_lock);
3177 	while ((lwb = list_remove_head(&ilwbs)) != NULL)
3178 		zil_lwb_write_issue(zilog, lwb);
3179 	list_destroy(&ilwbs);
3180 	return (wtxg);
3181 }
3182 
3183 static void
3184 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw)
3185 {
3186 	ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
3187 	ASSERT(MUTEX_HELD(&zcw->zcw_lock));
3188 	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
3189 
3190 	lwb_t *lwb = zcw->zcw_lwb;
3191 	ASSERT3P(lwb, !=, NULL);
3192 	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_NEW);
3193 
3194 	/*
3195 	 * If the lwb has already been issued by another thread, we can
3196 	 * immediately return since there's no work to be done (the
3197 	 * point of this function is to issue the lwb). Additionally, we
3198 	 * do this prior to acquiring the zl_issuer_lock, to avoid
3199 	 * acquiring it when it's not necessary to do so.
3200 	 */
3201 	if (lwb->lwb_state != LWB_STATE_OPENED)
3202 		return;
3203 
3204 	/*
3205 	 * In order to call zil_lwb_write_close() we must hold the
3206 	 * zilog's "zl_issuer_lock". We can't simply acquire that lock,
3207 	 * since we're already holding the commit waiter's "zcw_lock",
3208 	 * and those two locks are acquired in the opposite order
3209 	 * elsewhere.
3210 	 */
3211 	mutex_exit(&zcw->zcw_lock);
3212 	mutex_enter(&zilog->zl_issuer_lock);
3213 	mutex_enter(&zcw->zcw_lock);
3214 
3215 	/*
3216 	 * Since we just dropped and re-acquired the commit waiter's
3217 	 * lock, we have to re-check to see if the waiter was marked
3218 	 * "done" during that process. If the waiter was marked "done",
3219 	 * the "lwb" pointer is no longer valid (it can be free'd after
3220 	 * the waiter is marked "done"), so without this check we could
3221 	 * wind up with a use-after-free error below.
3222 	 */
3223 	if (zcw->zcw_done) {
3224 		mutex_exit(&zilog->zl_issuer_lock);
3225 		return;
3226 	}
3227 
3228 	ASSERT3P(lwb, ==, zcw->zcw_lwb);
3229 
3230 	/*
3231 	 * We've already checked this above, but since we hadn't acquired
3232 	 * the zilog's zl_issuer_lock, we have to perform this check a
3233 	 * second time while holding the lock.
3234 	 *
3235 	 * We don't need to hold the zl_lock since the lwb cannot transition
3236 	 * from OPENED to CLOSED while we hold the zl_issuer_lock. The lwb
3237 	 * _can_ transition from CLOSED to DONE, but it's OK to race with
3238 	 * that transition since we treat the lwb the same, whether it's in
3239 	 * the CLOSED, ISSUED or DONE states.
3240 	 *
3241 	 * The important thing, is we treat the lwb differently depending on
3242 	 * if it's OPENED or CLOSED, and block any other threads that might
3243 	 * attempt to close/issue this lwb. For that reason we hold the
3244 	 * zl_issuer_lock when checking the lwb_state; we must not call
3245 	 * zil_lwb_write_close() if the lwb had already been closed/issued.
3246 	 *
3247 	 * See the comment above the lwb_state_t structure definition for
3248 	 * more details on the lwb states, and locking requirements.
3249 	 */
3250 	if (lwb->lwb_state != LWB_STATE_OPENED) {
3251 		mutex_exit(&zilog->zl_issuer_lock);
3252 		return;
3253 	}
3254 
3255 	/*
3256 	 * We do not need zcw_lock once we hold zl_issuer_lock and know lwb
3257 	 * is still open.  But we have to drop it to avoid a deadlock in case
3258 	 * callback of zio issued by zil_lwb_write_issue() try to get it,
3259 	 * while zil_lwb_write_issue() is blocked on attempt to issue next
3260 	 * lwb it found in LWB_STATE_READY state.
3261 	 */
3262 	mutex_exit(&zcw->zcw_lock);
3263 
3264 	/*
3265 	 * As described in the comments above zil_commit_waiter() and
3266 	 * zil_process_commit_list(), we need to issue this lwb's zio
3267 	 * since we've reached the commit waiter's timeout and it still
3268 	 * hasn't been issued.
3269 	 */
3270 	zil_burst_done(zilog);
3271 	lwb_t *nlwb = zil_lwb_write_close(zilog, lwb, LWB_STATE_NEW);
3272 
3273 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_CLOSED);
3274 
3275 	if (nlwb == NULL) {
3276 		/*
3277 		 * When zil_lwb_write_close() returns NULL, this
3278 		 * indicates zio_alloc_zil() failed to allocate the
3279 		 * "next" lwb on-disk. When this occurs, the ZIL write
3280 		 * pipeline must be stalled; see the comment within the
3281 		 * zil_commit_writer_stall() function for more details.
3282 		 */
3283 		zil_lwb_write_issue(zilog, lwb);
3284 		zil_commit_writer_stall(zilog);
3285 		mutex_exit(&zilog->zl_issuer_lock);
3286 	} else {
3287 		mutex_exit(&zilog->zl_issuer_lock);
3288 		zil_lwb_write_issue(zilog, lwb);
3289 	}
3290 	mutex_enter(&zcw->zcw_lock);
3291 }
3292 
3293 /*
3294  * This function is responsible for performing the following two tasks:
3295  *
3296  * 1. its primary responsibility is to block until the given "commit
3297  *    waiter" is considered "done".
3298  *
3299  * 2. its secondary responsibility is to issue the zio for the lwb that
3300  *    the given "commit waiter" is waiting on, if this function has
3301  *    waited "long enough" and the lwb is still in the "open" state.
3302  *
3303  * Given a sufficient amount of itxs being generated and written using
3304  * the ZIL, the lwb's zio will be issued via the zil_lwb_assign()
3305  * function. If this does not occur, this secondary responsibility will
3306  * ensure the lwb is issued even if there is not other synchronous
3307  * activity on the system.
3308  *
3309  * For more details, see zil_process_commit_list(); more specifically,
3310  * the comment at the bottom of that function.
3311  */
3312 static void
3313 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw)
3314 {
3315 	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
3316 	ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
3317 	ASSERT(spa_writeable(zilog->zl_spa));
3318 
3319 	mutex_enter(&zcw->zcw_lock);
3320 
3321 	/*
3322 	 * The timeout is scaled based on the lwb latency to avoid
3323 	 * significantly impacting the latency of each individual itx.
3324 	 * For more details, see the comment at the bottom of the
3325 	 * zil_process_commit_list() function.
3326 	 */
3327 	int pct = MAX(zfs_commit_timeout_pct, 1);
3328 	hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100;
3329 	hrtime_t wakeup = gethrtime() + sleep;
3330 	boolean_t timedout = B_FALSE;
3331 
3332 	while (!zcw->zcw_done) {
3333 		ASSERT(MUTEX_HELD(&zcw->zcw_lock));
3334 
3335 		lwb_t *lwb = zcw->zcw_lwb;
3336 
3337 		/*
3338 		 * Usually, the waiter will have a non-NULL lwb field here,
3339 		 * but it's possible for it to be NULL as a result of
3340 		 * zil_commit() racing with spa_sync().
3341 		 *
3342 		 * When zil_clean() is called, it's possible for the itxg
3343 		 * list (which may be cleaned via a taskq) to contain
3344 		 * commit itxs. When this occurs, the commit waiters linked
3345 		 * off of these commit itxs will not be committed to an
3346 		 * lwb.  Additionally, these commit waiters will not be
3347 		 * marked done until zil_commit_waiter_skip() is called via
3348 		 * zil_itxg_clean().
3349 		 *
3350 		 * Thus, it's possible for this commit waiter (i.e. the
3351 		 * "zcw" variable) to be found in this "in between" state;
3352 		 * where it's "zcw_lwb" field is NULL, and it hasn't yet
3353 		 * been skipped, so it's "zcw_done" field is still B_FALSE.
3354 		 */
3355 		IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_NEW);
3356 
3357 		if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) {
3358 			ASSERT3B(timedout, ==, B_FALSE);
3359 
3360 			/*
3361 			 * If the lwb hasn't been issued yet, then we
3362 			 * need to wait with a timeout, in case this
3363 			 * function needs to issue the lwb after the
3364 			 * timeout is reached; responsibility (2) from
3365 			 * the comment above this function.
3366 			 */
3367 			int rc = cv_timedwait_hires(&zcw->zcw_cv,
3368 			    &zcw->zcw_lock, wakeup, USEC2NSEC(1),
3369 			    CALLOUT_FLAG_ABSOLUTE);
3370 
3371 			if (rc != -1 || zcw->zcw_done)
3372 				continue;
3373 
3374 			timedout = B_TRUE;
3375 			zil_commit_waiter_timeout(zilog, zcw);
3376 
3377 			if (!zcw->zcw_done) {
3378 				/*
3379 				 * If the commit waiter has already been
3380 				 * marked "done", it's possible for the
3381 				 * waiter's lwb structure to have already
3382 				 * been freed.  Thus, we can only reliably
3383 				 * make these assertions if the waiter
3384 				 * isn't done.
3385 				 */
3386 				ASSERT3P(lwb, ==, zcw->zcw_lwb);
3387 				ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
3388 			}
3389 		} else {
3390 			/*
3391 			 * If the lwb isn't open, then it must have already
3392 			 * been issued. In that case, there's no need to
3393 			 * use a timeout when waiting for the lwb to
3394 			 * complete.
3395 			 *
3396 			 * Additionally, if the lwb is NULL, the waiter
3397 			 * will soon be signaled and marked done via
3398 			 * zil_clean() and zil_itxg_clean(), so no timeout
3399 			 * is required.
3400 			 */
3401 
3402 			IMPLY(lwb != NULL,
3403 			    lwb->lwb_state == LWB_STATE_CLOSED ||
3404 			    lwb->lwb_state == LWB_STATE_READY ||
3405 			    lwb->lwb_state == LWB_STATE_ISSUED ||
3406 			    lwb->lwb_state == LWB_STATE_WRITE_DONE ||
3407 			    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
3408 			cv_wait(&zcw->zcw_cv, &zcw->zcw_lock);
3409 		}
3410 	}
3411 
3412 	mutex_exit(&zcw->zcw_lock);
3413 }
3414 
3415 static zil_commit_waiter_t *
3416 zil_alloc_commit_waiter(void)
3417 {
3418 	zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP);
3419 
3420 	cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL);
3421 	mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL);
3422 	list_link_init(&zcw->zcw_node);
3423 	zcw->zcw_lwb = NULL;
3424 	zcw->zcw_done = B_FALSE;
3425 	zcw->zcw_zio_error = 0;
3426 
3427 	return (zcw);
3428 }
3429 
3430 static void
3431 zil_free_commit_waiter(zil_commit_waiter_t *zcw)
3432 {
3433 	ASSERT(!list_link_active(&zcw->zcw_node));
3434 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
3435 	ASSERT3B(zcw->zcw_done, ==, B_TRUE);
3436 	mutex_destroy(&zcw->zcw_lock);
3437 	cv_destroy(&zcw->zcw_cv);
3438 	kmem_cache_free(zil_zcw_cache, zcw);
3439 }
3440 
3441 /*
3442  * This function is used to create a TX_COMMIT itx and assign it. This
3443  * way, it will be linked into the ZIL's list of synchronous itxs, and
3444  * then later committed to an lwb (or skipped) when
3445  * zil_process_commit_list() is called.
3446  */
3447 static void
3448 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw)
3449 {
3450 	dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
3451 
3452 	/*
3453 	 * Since we are not going to create any new dirty data, and we
3454 	 * can even help with clearing the existing dirty data, we
3455 	 * should not be subject to the dirty data based delays. We
3456 	 * use TXG_NOTHROTTLE to bypass the delay mechanism.
3457 	 */
3458 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));
3459 
3460 	itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t));
3461 	itx->itx_sync = B_TRUE;
3462 	itx->itx_private = zcw;
3463 
3464 	zil_itx_assign(zilog, itx, tx);
3465 
3466 	dmu_tx_commit(tx);
3467 }
3468 
3469 /*
3470  * Commit ZFS Intent Log transactions (itxs) to stable storage.
3471  *
3472  * When writing ZIL transactions to the on-disk representation of the
3473  * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple
3474  * itxs can be committed to a single lwb. Once a lwb is written and
3475  * committed to stable storage (i.e. the lwb is written, and vdevs have
3476  * been flushed), each itx that was committed to that lwb is also
3477  * considered to be committed to stable storage.
3478  *
3479  * When an itx is committed to an lwb, the log record (lr_t) contained
3480  * by the itx is copied into the lwb's zio buffer, and once this buffer
3481  * is written to disk, it becomes an on-disk ZIL block.
3482  *
3483  * As itxs are generated, they're inserted into the ZIL's queue of
3484  * uncommitted itxs. The semantics of zil_commit() are such that it will
3485  * block until all itxs that were in the queue when it was called, are
3486  * committed to stable storage.
3487  *
3488  * If "foid" is zero, this means all "synchronous" and "asynchronous"
3489  * itxs, for all objects in the dataset, will be committed to stable
3490  * storage prior to zil_commit() returning. If "foid" is non-zero, all
3491  * "synchronous" itxs for all objects, but only "asynchronous" itxs
3492  * that correspond to the foid passed in, will be committed to stable
3493  * storage prior to zil_commit() returning.
3494  *
3495  * Generally speaking, when zil_commit() is called, the consumer doesn't
3496  * actually care about _all_ of the uncommitted itxs. Instead, they're
3497  * simply trying to waiting for a specific itx to be committed to disk,
3498  * but the interface(s) for interacting with the ZIL don't allow such
3499  * fine-grained communication. A better interface would allow a consumer
3500  * to create and assign an itx, and then pass a reference to this itx to
3501  * zil_commit(); such that zil_commit() would return as soon as that
3502  * specific itx was committed to disk (instead of waiting for _all_
3503  * itxs to be committed).
3504  *
3505  * When a thread calls zil_commit() a special "commit itx" will be
3506  * generated, along with a corresponding "waiter" for this commit itx.
3507  * zil_commit() will wait on this waiter's CV, such that when the waiter
3508  * is marked done, and signaled, zil_commit() will return.
3509  *
3510  * This commit itx is inserted into the queue of uncommitted itxs. This
3511  * provides an easy mechanism for determining which itxs were in the
3512  * queue prior to zil_commit() having been called, and which itxs were
3513  * added after zil_commit() was called.
3514  *
3515  * The commit itx is special; it doesn't have any on-disk representation.
3516  * When a commit itx is "committed" to an lwb, the waiter associated
3517  * with it is linked onto the lwb's list of waiters. Then, when that lwb
3518  * completes, each waiter on the lwb's list is marked done and signaled
3519  * -- allowing the thread waiting on the waiter to return from zil_commit().
3520  *
3521  * It's important to point out a few critical factors that allow us
3522  * to make use of the commit itxs, commit waiters, per-lwb lists of
3523  * commit waiters, and zio completion callbacks like we're doing:
3524  *
3525  *   1. The list of waiters for each lwb is traversed, and each commit
3526  *      waiter is marked "done" and signaled, in the zio completion
3527  *      callback of the lwb's zio[*].
3528  *
3529  *      * Actually, the waiters are signaled in the zio completion
3530  *        callback of the root zio for the flush commands that are sent to
3531  *        the vdevs upon completion of the lwb zio.
3532  *
3533  *   2. When the itxs are inserted into the ZIL's queue of uncommitted
3534  *      itxs, the order in which they are inserted is preserved[*]; as
3535  *      itxs are added to the queue, they are added to the tail of
3536  *      in-memory linked lists.
3537  *
3538  *      When committing the itxs to lwbs (to be written to disk), they
3539  *      are committed in the same order in which the itxs were added to
3540  *      the uncommitted queue's linked list(s); i.e. the linked list of
3541  *      itxs to commit is traversed from head to tail, and each itx is
3542  *      committed to an lwb in that order.
3543  *
3544  *      * To clarify:
3545  *
3546  *        - the order of "sync" itxs is preserved w.r.t. other
3547  *          "sync" itxs, regardless of the corresponding objects.
3548  *        - the order of "async" itxs is preserved w.r.t. other
3549  *          "async" itxs corresponding to the same object.
3550  *        - the order of "async" itxs is *not* preserved w.r.t. other
3551  *          "async" itxs corresponding to different objects.
3552  *        - the order of "sync" itxs w.r.t. "async" itxs (or vice
3553  *          versa) is *not* preserved, even for itxs that correspond
3554  *          to the same object.
3555  *
3556  *      For more details, see: zil_itx_assign(), zil_async_to_sync(),
3557  *      zil_get_commit_list(), and zil_process_commit_list().
3558  *
3559  *   3. The lwbs represent a linked list of blocks on disk. Thus, any
3560  *      lwb cannot be considered committed to stable storage, until its
3561  *      "previous" lwb is also committed to stable storage. This fact,
3562  *      coupled with the fact described above, means that itxs are
3563  *      committed in (roughly) the order in which they were generated.
3564  *      This is essential because itxs are dependent on prior itxs.
3565  *      Thus, we *must not* deem an itx as being committed to stable
3566  *      storage, until *all* prior itxs have also been committed to
3567  *      stable storage.
3568  *
3569  *      To enforce this ordering of lwb zio's, while still leveraging as
3570  *      much of the underlying storage performance as possible, we rely
3571  *      on two fundamental concepts:
3572  *
3573  *          1. The creation and issuance of lwb zio's is protected by
3574  *             the zilog's "zl_issuer_lock", which ensures only a single
3575  *             thread is creating and/or issuing lwb's at a time
3576  *          2. The "previous" lwb is a child of the "current" lwb
3577  *             (leveraging the zio parent-child dependency graph)
3578  *
3579  *      By relying on this parent-child zio relationship, we can have
3580  *      many lwb zio's concurrently issued to the underlying storage,
3581  *      but the order in which they complete will be the same order in
3582  *      which they were created.
3583  */
3584 void
3585 zil_commit(zilog_t *zilog, uint64_t foid)
3586 {
3587 	/*
3588 	 * We should never attempt to call zil_commit on a snapshot for
3589 	 * a couple of reasons:
3590 	 *
3591 	 * 1. A snapshot may never be modified, thus it cannot have any
3592 	 *    in-flight itxs that would have modified the dataset.
3593 	 *
3594 	 * 2. By design, when zil_commit() is called, a commit itx will
3595 	 *    be assigned to this zilog; as a result, the zilog will be
3596 	 *    dirtied. We must not dirty the zilog of a snapshot; there's
3597 	 *    checks in the code that enforce this invariant, and will
3598 	 *    cause a panic if it's not upheld.
3599 	 */
3600 	ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE);
3601 
3602 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3603 		return;
3604 
3605 	if (!spa_writeable(zilog->zl_spa)) {
3606 		/*
3607 		 * If the SPA is not writable, there should never be any
3608 		 * pending itxs waiting to be committed to disk. If that
3609 		 * weren't true, we'd skip writing those itxs out, and
3610 		 * would break the semantics of zil_commit(); thus, we're
3611 		 * verifying that truth before we return to the caller.
3612 		 */
3613 		ASSERT(list_is_empty(&zilog->zl_lwb_list));
3614 		ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
3615 		for (int i = 0; i < TXG_SIZE; i++)
3616 			ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL);
3617 		return;
3618 	}
3619 
3620 	/*
3621 	 * If the ZIL is suspended, we don't want to dirty it by calling
3622 	 * zil_commit_itx_assign() below, nor can we write out
3623 	 * lwbs like would be done in zil_commit_write(). Thus, we
3624 	 * simply rely on txg_wait_synced() to maintain the necessary
3625 	 * semantics, and avoid calling those functions altogether.
3626 	 */
3627 	if (zilog->zl_suspend > 0) {
3628 		ZIL_STAT_BUMP(zilog, zil_commit_suspend_count);
3629 		txg_wait_synced(zilog->zl_dmu_pool, 0);
3630 		return;
3631 	}
3632 
3633 	zil_commit_impl(zilog, foid);
3634 }
3635 
3636 void
3637 zil_commit_impl(zilog_t *zilog, uint64_t foid)
3638 {
3639 	ZIL_STAT_BUMP(zilog, zil_commit_count);
3640 
3641 	/*
3642 	 * Move the "async" itxs for the specified foid to the "sync"
3643 	 * queues, such that they will be later committed (or skipped)
3644 	 * to an lwb when zil_process_commit_list() is called.
3645 	 *
3646 	 * Since these "async" itxs must be committed prior to this
3647 	 * call to zil_commit returning, we must perform this operation
3648 	 * before we call zil_commit_itx_assign().
3649 	 */
3650 	zil_async_to_sync(zilog, foid);
3651 
3652 	/*
3653 	 * We allocate a new "waiter" structure which will initially be
3654 	 * linked to the commit itx using the itx's "itx_private" field.
3655 	 * Since the commit itx doesn't represent any on-disk state,
3656 	 * when it's committed to an lwb, rather than copying the its
3657 	 * lr_t into the lwb's buffer, the commit itx's "waiter" will be
3658 	 * added to the lwb's list of waiters. Then, when the lwb is
3659 	 * committed to stable storage, each waiter in the lwb's list of
3660 	 * waiters will be marked "done", and signalled.
3661 	 *
3662 	 * We must create the waiter and assign the commit itx prior to
3663 	 * calling zil_commit_writer(), or else our specific commit itx
3664 	 * is not guaranteed to be committed to an lwb prior to calling
3665 	 * zil_commit_waiter().
3666 	 */
3667 	zil_commit_waiter_t *zcw = zil_alloc_commit_waiter();
3668 	zil_commit_itx_assign(zilog, zcw);
3669 
3670 	uint64_t wtxg = zil_commit_writer(zilog, zcw);
3671 	zil_commit_waiter(zilog, zcw);
3672 
3673 	if (zcw->zcw_zio_error != 0) {
3674 		/*
3675 		 * If there was an error writing out the ZIL blocks that
3676 		 * this thread is waiting on, then we fallback to
3677 		 * relying on spa_sync() to write out the data this
3678 		 * thread is waiting on. Obviously this has performance
3679 		 * implications, but the expectation is for this to be
3680 		 * an exceptional case, and shouldn't occur often.
3681 		 */
3682 		ZIL_STAT_BUMP(zilog, zil_commit_error_count);
3683 		DTRACE_PROBE2(zil__commit__io__error,
3684 		    zilog_t *, zilog, zil_commit_waiter_t *, zcw);
3685 		txg_wait_synced(zilog->zl_dmu_pool, 0);
3686 	} else if (wtxg != 0) {
3687 		ZIL_STAT_BUMP(zilog, zil_commit_suspend_count);
3688 		txg_wait_synced(zilog->zl_dmu_pool, wtxg);
3689 	}
3690 
3691 	zil_free_commit_waiter(zcw);
3692 }
3693 
3694 /*
3695  * Called in syncing context to free committed log blocks and update log header.
3696  */
3697 void
3698 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
3699 {
3700 	zil_header_t *zh = zil_header_in_syncing_context(zilog);
3701 	uint64_t txg = dmu_tx_get_txg(tx);
3702 	spa_t *spa = zilog->zl_spa;
3703 	uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
3704 	lwb_t *lwb;
3705 
3706 	/*
3707 	 * We don't zero out zl_destroy_txg, so make sure we don't try
3708 	 * to destroy it twice.
3709 	 */
3710 	if (spa_sync_pass(spa) != 1)
3711 		return;
3712 
3713 	zil_lwb_flush_wait_all(zilog, txg);
3714 
3715 	mutex_enter(&zilog->zl_lock);
3716 
3717 	ASSERT(zilog->zl_stop_sync == 0);
3718 
3719 	if (*replayed_seq != 0) {
3720 		ASSERT(zh->zh_replay_seq < *replayed_seq);
3721 		zh->zh_replay_seq = *replayed_seq;
3722 		*replayed_seq = 0;
3723 	}
3724 
3725 	if (zilog->zl_destroy_txg == txg) {
3726 		blkptr_t blk = zh->zh_log;
3727 		dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
3728 
3729 		ASSERT(list_is_empty(&zilog->zl_lwb_list));
3730 
3731 		memset(zh, 0, sizeof (zil_header_t));
3732 		memset(zilog->zl_replayed_seq, 0,
3733 		    sizeof (zilog->zl_replayed_seq));
3734 
3735 		if (zilog->zl_keep_first) {
3736 			/*
3737 			 * If this block was part of log chain that couldn't
3738 			 * be claimed because a device was missing during
3739 			 * zil_claim(), but that device later returns,
3740 			 * then this block could erroneously appear valid.
3741 			 * To guard against this, assign a new GUID to the new
3742 			 * log chain so it doesn't matter what blk points to.
3743 			 */
3744 			zil_init_log_chain(zilog, &blk);
3745 			zh->zh_log = blk;
3746 		} else {
3747 			/*
3748 			 * A destroyed ZIL chain can't contain any TX_SETSAXATTR
3749 			 * records. So, deactivate the feature for this dataset.
3750 			 * We activate it again when we start a new ZIL chain.
3751 			 */
3752 			if (dsl_dataset_feature_is_active(ds,
3753 			    SPA_FEATURE_ZILSAXATTR))
3754 				dsl_dataset_deactivate_feature(ds,
3755 				    SPA_FEATURE_ZILSAXATTR, tx);
3756 		}
3757 	}
3758 
3759 	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
3760 		zh->zh_log = lwb->lwb_blk;
3761 		if (lwb->lwb_state != LWB_STATE_FLUSH_DONE ||
3762 		    lwb->lwb_alloc_txg > txg || lwb->lwb_max_txg > txg)
3763 			break;
3764 		list_remove(&zilog->zl_lwb_list, lwb);
3765 		if (!BP_IS_HOLE(&lwb->lwb_blk))
3766 			zio_free(spa, txg, &lwb->lwb_blk);
3767 		zil_free_lwb(zilog, lwb);
3768 
3769 		/*
3770 		 * If we don't have anything left in the lwb list then
3771 		 * we've had an allocation failure and we need to zero
3772 		 * out the zil_header blkptr so that we don't end
3773 		 * up freeing the same block twice.
3774 		 */
3775 		if (list_is_empty(&zilog->zl_lwb_list))
3776 			BP_ZERO(&zh->zh_log);
3777 	}
3778 
3779 	mutex_exit(&zilog->zl_lock);
3780 }
3781 
3782 static int
3783 zil_lwb_cons(void *vbuf, void *unused, int kmflag)
3784 {
3785 	(void) unused, (void) kmflag;
3786 	lwb_t *lwb = vbuf;
3787 	list_create(&lwb->lwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
3788 	list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t),
3789 	    offsetof(zil_commit_waiter_t, zcw_node));
3790 	avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare,
3791 	    sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
3792 	mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
3793 	return (0);
3794 }
3795 
3796 static void
3797 zil_lwb_dest(void *vbuf, void *unused)
3798 {
3799 	(void) unused;
3800 	lwb_t *lwb = vbuf;
3801 	mutex_destroy(&lwb->lwb_vdev_lock);
3802 	avl_destroy(&lwb->lwb_vdev_tree);
3803 	list_destroy(&lwb->lwb_waiters);
3804 	list_destroy(&lwb->lwb_itxs);
3805 }
3806 
3807 void
3808 zil_init(void)
3809 {
3810 	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
3811 	    sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0);
3812 
3813 	zil_zcw_cache = kmem_cache_create("zil_zcw_cache",
3814 	    sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
3815 
3816 	zil_sums_init(&zil_sums_global);
3817 	zil_kstats_global = kstat_create("zfs", 0, "zil", "misc",
3818 	    KSTAT_TYPE_NAMED, sizeof (zil_stats) / sizeof (kstat_named_t),
3819 	    KSTAT_FLAG_VIRTUAL);
3820 
3821 	if (zil_kstats_global != NULL) {
3822 		zil_kstats_global->ks_data = &zil_stats;
3823 		zil_kstats_global->ks_update = zil_kstats_global_update;
3824 		zil_kstats_global->ks_private = NULL;
3825 		kstat_install(zil_kstats_global);
3826 	}
3827 }
3828 
3829 void
3830 zil_fini(void)
3831 {
3832 	kmem_cache_destroy(zil_zcw_cache);
3833 	kmem_cache_destroy(zil_lwb_cache);
3834 
3835 	if (zil_kstats_global != NULL) {
3836 		kstat_delete(zil_kstats_global);
3837 		zil_kstats_global = NULL;
3838 	}
3839 
3840 	zil_sums_fini(&zil_sums_global);
3841 }
3842 
3843 void
3844 zil_set_sync(zilog_t *zilog, uint64_t sync)
3845 {
3846 	zilog->zl_sync = sync;
3847 }
3848 
3849 void
3850 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
3851 {
3852 	zilog->zl_logbias = logbias;
3853 }
3854 
3855 zilog_t *
3856 zil_alloc(objset_t *os, zil_header_t *zh_phys)
3857 {
3858 	zilog_t *zilog;
3859 
3860 	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
3861 
3862 	zilog->zl_header = zh_phys;
3863 	zilog->zl_os = os;
3864 	zilog->zl_spa = dmu_objset_spa(os);
3865 	zilog->zl_dmu_pool = dmu_objset_pool(os);
3866 	zilog->zl_destroy_txg = TXG_INITIAL - 1;
3867 	zilog->zl_logbias = dmu_objset_logbias(os);
3868 	zilog->zl_sync = dmu_objset_syncprop(os);
3869 	zilog->zl_dirty_max_txg = 0;
3870 	zilog->zl_last_lwb_opened = NULL;
3871 	zilog->zl_last_lwb_latency = 0;
3872 	zilog->zl_max_block_size = MIN(MAX(P2ALIGN_TYPED(zil_maxblocksize,
3873 	    ZIL_MIN_BLKSZ, uint64_t), ZIL_MIN_BLKSZ),
3874 	    spa_maxblocksize(dmu_objset_spa(os)));
3875 
3876 	mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
3877 	mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL);
3878 	mutex_init(&zilog->zl_lwb_io_lock, NULL, MUTEX_DEFAULT, NULL);
3879 
3880 	for (int i = 0; i < TXG_SIZE; i++) {
3881 		mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
3882 		    MUTEX_DEFAULT, NULL);
3883 	}
3884 
3885 	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
3886 	    offsetof(lwb_t, lwb_node));
3887 
3888 	list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
3889 	    offsetof(itx_t, itx_node));
3890 
3891 	cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
3892 	cv_init(&zilog->zl_lwb_io_cv, NULL, CV_DEFAULT, NULL);
3893 
3894 	for (int i = 0; i < ZIL_BURSTS; i++) {
3895 		zilog->zl_prev_opt[i] = zilog->zl_max_block_size -
3896 		    sizeof (zil_chain_t);
3897 	}
3898 
3899 	return (zilog);
3900 }
3901 
3902 void
3903 zil_free(zilog_t *zilog)
3904 {
3905 	int i;
3906 
3907 	zilog->zl_stop_sync = 1;
3908 
3909 	ASSERT0(zilog->zl_suspend);
3910 	ASSERT0(zilog->zl_suspending);
3911 
3912 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
3913 	list_destroy(&zilog->zl_lwb_list);
3914 
3915 	ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
3916 	list_destroy(&zilog->zl_itx_commit_list);
3917 
3918 	for (i = 0; i < TXG_SIZE; i++) {
3919 		/*
3920 		 * It's possible for an itx to be generated that doesn't dirty
3921 		 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
3922 		 * callback to remove the entry. We remove those here.
3923 		 *
3924 		 * Also free up the ziltest itxs.
3925 		 */
3926 		if (zilog->zl_itxg[i].itxg_itxs)
3927 			zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
3928 		mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
3929 	}
3930 
3931 	mutex_destroy(&zilog->zl_issuer_lock);
3932 	mutex_destroy(&zilog->zl_lock);
3933 	mutex_destroy(&zilog->zl_lwb_io_lock);
3934 
3935 	cv_destroy(&zilog->zl_cv_suspend);
3936 	cv_destroy(&zilog->zl_lwb_io_cv);
3937 
3938 	kmem_free(zilog, sizeof (zilog_t));
3939 }
3940 
3941 /*
3942  * Open an intent log.
3943  */
3944 zilog_t *
3945 zil_open(objset_t *os, zil_get_data_t *get_data, zil_sums_t *zil_sums)
3946 {
3947 	zilog_t *zilog = dmu_objset_zil(os);
3948 
3949 	ASSERT3P(zilog->zl_get_data, ==, NULL);
3950 	ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
3951 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
3952 
3953 	zilog->zl_get_data = get_data;
3954 	zilog->zl_sums = zil_sums;
3955 
3956 	return (zilog);
3957 }
3958 
3959 /*
3960  * Close an intent log.
3961  */
3962 void
3963 zil_close(zilog_t *zilog)
3964 {
3965 	lwb_t *lwb;
3966 	uint64_t txg;
3967 
3968 	if (!dmu_objset_is_snapshot(zilog->zl_os)) {
3969 		zil_commit(zilog, 0);
3970 	} else {
3971 		ASSERT(list_is_empty(&zilog->zl_lwb_list));
3972 		ASSERT0(zilog->zl_dirty_max_txg);
3973 		ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE);
3974 	}
3975 
3976 	mutex_enter(&zilog->zl_lock);
3977 	txg = zilog->zl_dirty_max_txg;
3978 	lwb = list_tail(&zilog->zl_lwb_list);
3979 	if (lwb != NULL) {
3980 		txg = MAX(txg, lwb->lwb_alloc_txg);
3981 		txg = MAX(txg, lwb->lwb_max_txg);
3982 	}
3983 	mutex_exit(&zilog->zl_lock);
3984 
3985 	/*
3986 	 * zl_lwb_max_issued_txg may be larger than lwb_max_txg. It depends
3987 	 * on the time when the dmu_tx transaction is assigned in
3988 	 * zil_lwb_write_issue().
3989 	 */
3990 	mutex_enter(&zilog->zl_lwb_io_lock);
3991 	txg = MAX(zilog->zl_lwb_max_issued_txg, txg);
3992 	mutex_exit(&zilog->zl_lwb_io_lock);
3993 
3994 	/*
3995 	 * We need to use txg_wait_synced() to wait until that txg is synced.
3996 	 * zil_sync() will guarantee all lwbs up to that txg have been
3997 	 * written out, flushed, and cleaned.
3998 	 */
3999 	if (txg != 0)
4000 		txg_wait_synced(zilog->zl_dmu_pool, txg);
4001 
4002 	if (zilog_is_dirty(zilog))
4003 		zfs_dbgmsg("zil (%px) is dirty, txg %llu", zilog,
4004 		    (u_longlong_t)txg);
4005 	if (txg < spa_freeze_txg(zilog->zl_spa))
4006 		VERIFY(!zilog_is_dirty(zilog));
4007 
4008 	zilog->zl_get_data = NULL;
4009 
4010 	/*
4011 	 * We should have only one lwb left on the list; remove it now.
4012 	 */
4013 	mutex_enter(&zilog->zl_lock);
4014 	lwb = list_remove_head(&zilog->zl_lwb_list);
4015 	if (lwb != NULL) {
4016 		ASSERT(list_is_empty(&zilog->zl_lwb_list));
4017 		ASSERT3S(lwb->lwb_state, ==, LWB_STATE_NEW);
4018 		zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
4019 		zil_free_lwb(zilog, lwb);
4020 	}
4021 	mutex_exit(&zilog->zl_lock);
4022 }
4023 
4024 static const char *suspend_tag = "zil suspending";
4025 
4026 /*
4027  * Suspend an intent log.  While in suspended mode, we still honor
4028  * synchronous semantics, but we rely on txg_wait_synced() to do it.
4029  * On old version pools, we suspend the log briefly when taking a
4030  * snapshot so that it will have an empty intent log.
4031  *
4032  * Long holds are not really intended to be used the way we do here --
4033  * held for such a short time.  A concurrent caller of dsl_dataset_long_held()
4034  * could fail.  Therefore we take pains to only put a long hold if it is
4035  * actually necessary.  Fortunately, it will only be necessary if the
4036  * objset is currently mounted (or the ZVOL equivalent).  In that case it
4037  * will already have a long hold, so we are not really making things any worse.
4038  *
4039  * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
4040  * zvol_state_t), and use their mechanism to prevent their hold from being
4041  * dropped (e.g. VFS_HOLD()).  However, that would be even more pain for
4042  * very little gain.
4043  *
4044  * if cookiep == NULL, this does both the suspend & resume.
4045  * Otherwise, it returns with the dataset "long held", and the cookie
4046  * should be passed into zil_resume().
4047  */
4048 int
4049 zil_suspend(const char *osname, void **cookiep)
4050 {
4051 	objset_t *os;
4052 	zilog_t *zilog;
4053 	const zil_header_t *zh;
4054 	int error;
4055 
4056 	error = dmu_objset_hold(osname, suspend_tag, &os);
4057 	if (error != 0)
4058 		return (error);
4059 	zilog = dmu_objset_zil(os);
4060 
4061 	mutex_enter(&zilog->zl_lock);
4062 	zh = zilog->zl_header;
4063 
4064 	if (zh->zh_flags & ZIL_REPLAY_NEEDED) {		/* unplayed log */
4065 		mutex_exit(&zilog->zl_lock);
4066 		dmu_objset_rele(os, suspend_tag);
4067 		return (SET_ERROR(EBUSY));
4068 	}
4069 
4070 	/*
4071 	 * Don't put a long hold in the cases where we can avoid it.  This
4072 	 * is when there is no cookie so we are doing a suspend & resume
4073 	 * (i.e. called from zil_vdev_offline()), and there's nothing to do
4074 	 * for the suspend because it's already suspended, or there's no ZIL.
4075 	 */
4076 	if (cookiep == NULL && !zilog->zl_suspending &&
4077 	    (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
4078 		mutex_exit(&zilog->zl_lock);
4079 		dmu_objset_rele(os, suspend_tag);
4080 		return (0);
4081 	}
4082 
4083 	dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
4084 	dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
4085 
4086 	zilog->zl_suspend++;
4087 
4088 	if (zilog->zl_suspend > 1) {
4089 		/*
4090 		 * Someone else is already suspending it.
4091 		 * Just wait for them to finish.
4092 		 */
4093 
4094 		while (zilog->zl_suspending)
4095 			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
4096 		mutex_exit(&zilog->zl_lock);
4097 
4098 		if (cookiep == NULL)
4099 			zil_resume(os);
4100 		else
4101 			*cookiep = os;
4102 		return (0);
4103 	}
4104 
4105 	/*
4106 	 * If there is no pointer to an on-disk block, this ZIL must not
4107 	 * be active (e.g. filesystem not mounted), so there's nothing
4108 	 * to clean up.
4109 	 */
4110 	if (BP_IS_HOLE(&zh->zh_log)) {
4111 		ASSERT(cookiep != NULL); /* fast path already handled */
4112 
4113 		*cookiep = os;
4114 		mutex_exit(&zilog->zl_lock);
4115 		return (0);
4116 	}
4117 
4118 	/*
4119 	 * The ZIL has work to do. Ensure that the associated encryption
4120 	 * key will remain mapped while we are committing the log by
4121 	 * grabbing a reference to it. If the key isn't loaded we have no
4122 	 * choice but to return an error until the wrapping key is loaded.
4123 	 */
4124 	if (os->os_encrypted &&
4125 	    dsl_dataset_create_key_mapping(dmu_objset_ds(os)) != 0) {
4126 		zilog->zl_suspend--;
4127 		mutex_exit(&zilog->zl_lock);
4128 		dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
4129 		dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
4130 		return (SET_ERROR(EACCES));
4131 	}
4132 
4133 	zilog->zl_suspending = B_TRUE;
4134 	mutex_exit(&zilog->zl_lock);
4135 
4136 	/*
4137 	 * We need to use zil_commit_impl to ensure we wait for all
4138 	 * LWB_STATE_OPENED, _CLOSED and _READY lwbs to be committed
4139 	 * to disk before proceeding. If we used zil_commit instead, it
4140 	 * would just call txg_wait_synced(), because zl_suspend is set.
4141 	 * txg_wait_synced() doesn't wait for these lwb's to be
4142 	 * LWB_STATE_FLUSH_DONE before returning.
4143 	 */
4144 	zil_commit_impl(zilog, 0);
4145 
4146 	/*
4147 	 * Now that we've ensured all lwb's are LWB_STATE_FLUSH_DONE, we
4148 	 * use txg_wait_synced() to ensure the data from the zilog has
4149 	 * migrated to the main pool before calling zil_destroy().
4150 	 */
4151 	txg_wait_synced(zilog->zl_dmu_pool, 0);
4152 
4153 	zil_destroy(zilog, B_FALSE);
4154 
4155 	mutex_enter(&zilog->zl_lock);
4156 	zilog->zl_suspending = B_FALSE;
4157 	cv_broadcast(&zilog->zl_cv_suspend);
4158 	mutex_exit(&zilog->zl_lock);
4159 
4160 	if (os->os_encrypted)
4161 		dsl_dataset_remove_key_mapping(dmu_objset_ds(os));
4162 
4163 	if (cookiep == NULL)
4164 		zil_resume(os);
4165 	else
4166 		*cookiep = os;
4167 	return (0);
4168 }
4169 
4170 void
4171 zil_resume(void *cookie)
4172 {
4173 	objset_t *os = cookie;
4174 	zilog_t *zilog = dmu_objset_zil(os);
4175 
4176 	mutex_enter(&zilog->zl_lock);
4177 	ASSERT(zilog->zl_suspend != 0);
4178 	zilog->zl_suspend--;
4179 	mutex_exit(&zilog->zl_lock);
4180 	dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
4181 	dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
4182 }
4183 
4184 typedef struct zil_replay_arg {
4185 	zil_replay_func_t *const *zr_replay;
4186 	void		*zr_arg;
4187 	boolean_t	zr_byteswap;
4188 	char		*zr_lr;
4189 } zil_replay_arg_t;
4190 
4191 static int
4192 zil_replay_error(zilog_t *zilog, const lr_t *lr, int error)
4193 {
4194 	char name[ZFS_MAX_DATASET_NAME_LEN];
4195 
4196 	zilog->zl_replaying_seq--;	/* didn't actually replay this one */
4197 
4198 	dmu_objset_name(zilog->zl_os, name);
4199 
4200 	cmn_err(CE_WARN, "ZFS replay transaction error %d, "
4201 	    "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
4202 	    (u_longlong_t)lr->lrc_seq,
4203 	    (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
4204 	    (lr->lrc_txtype & TX_CI) ? "CI" : "");
4205 
4206 	return (error);
4207 }
4208 
4209 static int
4210 zil_replay_log_record(zilog_t *zilog, const lr_t *lr, void *zra,
4211     uint64_t claim_txg)
4212 {
4213 	zil_replay_arg_t *zr = zra;
4214 	const zil_header_t *zh = zilog->zl_header;
4215 	uint64_t reclen = lr->lrc_reclen;
4216 	uint64_t txtype = lr->lrc_txtype;
4217 	int error = 0;
4218 
4219 	zilog->zl_replaying_seq = lr->lrc_seq;
4220 
4221 	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
4222 		return (0);
4223 
4224 	if (lr->lrc_txg < claim_txg)		/* already committed */
4225 		return (0);
4226 
4227 	/* Strip case-insensitive bit, still present in log record */
4228 	txtype &= ~TX_CI;
4229 
4230 	if (txtype == 0 || txtype >= TX_MAX_TYPE)
4231 		return (zil_replay_error(zilog, lr, EINVAL));
4232 
4233 	/*
4234 	 * If this record type can be logged out of order, the object
4235 	 * (lr_foid) may no longer exist.  That's legitimate, not an error.
4236 	 */
4237 	if (TX_OOO(txtype)) {
4238 		error = dmu_object_info(zilog->zl_os,
4239 		    LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL);
4240 		if (error == ENOENT || error == EEXIST)
4241 			return (0);
4242 	}
4243 
4244 	/*
4245 	 * Make a copy of the data so we can revise and extend it.
4246 	 */
4247 	memcpy(zr->zr_lr, lr, reclen);
4248 
4249 	/*
4250 	 * If this is a TX_WRITE with a blkptr, suck in the data.
4251 	 */
4252 	if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
4253 		error = zil_read_log_data(zilog, (lr_write_t *)lr,
4254 		    zr->zr_lr + reclen);
4255 		if (error != 0)
4256 			return (zil_replay_error(zilog, lr, error));
4257 	}
4258 
4259 	/*
4260 	 * The log block containing this lr may have been byteswapped
4261 	 * so that we can easily examine common fields like lrc_txtype.
4262 	 * However, the log is a mix of different record types, and only the
4263 	 * replay vectors know how to byteswap their records.  Therefore, if
4264 	 * the lr was byteswapped, undo it before invoking the replay vector.
4265 	 */
4266 	if (zr->zr_byteswap)
4267 		byteswap_uint64_array(zr->zr_lr, reclen);
4268 
4269 	/*
4270 	 * We must now do two things atomically: replay this log record,
4271 	 * and update the log header sequence number to reflect the fact that
4272 	 * we did so. At the end of each replay function the sequence number
4273 	 * is updated if we are in replay mode.
4274 	 */
4275 	error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
4276 	if (error != 0) {
4277 		/*
4278 		 * The DMU's dnode layer doesn't see removes until the txg
4279 		 * commits, so a subsequent claim can spuriously fail with
4280 		 * EEXIST. So if we receive any error we try syncing out
4281 		 * any removes then retry the transaction.  Note that we
4282 		 * specify B_FALSE for byteswap now, so we don't do it twice.
4283 		 */
4284 		txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
4285 		error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
4286 		if (error != 0)
4287 			return (zil_replay_error(zilog, lr, error));
4288 	}
4289 	return (0);
4290 }
4291 
4292 static int
4293 zil_incr_blks(zilog_t *zilog, const blkptr_t *bp, void *arg, uint64_t claim_txg)
4294 {
4295 	(void) bp, (void) arg, (void) claim_txg;
4296 
4297 	zilog->zl_replay_blks++;
4298 
4299 	return (0);
4300 }
4301 
4302 /*
4303  * If this dataset has a non-empty intent log, replay it and destroy it.
4304  * Return B_TRUE if there were any entries to replay.
4305  */
4306 boolean_t
4307 zil_replay(objset_t *os, void *arg,
4308     zil_replay_func_t *const replay_func[TX_MAX_TYPE])
4309 {
4310 	zilog_t *zilog = dmu_objset_zil(os);
4311 	const zil_header_t *zh = zilog->zl_header;
4312 	zil_replay_arg_t zr;
4313 
4314 	if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
4315 		return (zil_destroy(zilog, B_TRUE));
4316 	}
4317 
4318 	zr.zr_replay = replay_func;
4319 	zr.zr_arg = arg;
4320 	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
4321 	zr.zr_lr = vmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
4322 
4323 	/*
4324 	 * Wait for in-progress removes to sync before starting replay.
4325 	 */
4326 	txg_wait_synced(zilog->zl_dmu_pool, 0);
4327 
4328 	zilog->zl_replay = B_TRUE;
4329 	zilog->zl_replay_time = ddi_get_lbolt();
4330 	ASSERT(zilog->zl_replay_blks == 0);
4331 	(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
4332 	    zh->zh_claim_txg, B_TRUE);
4333 	vmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
4334 
4335 	zil_destroy(zilog, B_FALSE);
4336 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
4337 	zilog->zl_replay = B_FALSE;
4338 
4339 	return (B_TRUE);
4340 }
4341 
4342 boolean_t
4343 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
4344 {
4345 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
4346 		return (B_TRUE);
4347 
4348 	if (zilog->zl_replay) {
4349 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
4350 		zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
4351 		    zilog->zl_replaying_seq;
4352 		return (B_TRUE);
4353 	}
4354 
4355 	return (B_FALSE);
4356 }
4357 
4358 int
4359 zil_reset(const char *osname, void *arg)
4360 {
4361 	(void) arg;
4362 
4363 	int error = zil_suspend(osname, NULL);
4364 	/* EACCES means crypto key not loaded */
4365 	if ((error == EACCES) || (error == EBUSY))
4366 		return (SET_ERROR(error));
4367 	if (error != 0)
4368 		return (SET_ERROR(EEXIST));
4369 	return (0);
4370 }
4371 
4372 EXPORT_SYMBOL(zil_alloc);
4373 EXPORT_SYMBOL(zil_free);
4374 EXPORT_SYMBOL(zil_open);
4375 EXPORT_SYMBOL(zil_close);
4376 EXPORT_SYMBOL(zil_replay);
4377 EXPORT_SYMBOL(zil_replaying);
4378 EXPORT_SYMBOL(zil_destroy);
4379 EXPORT_SYMBOL(zil_destroy_sync);
4380 EXPORT_SYMBOL(zil_itx_create);
4381 EXPORT_SYMBOL(zil_itx_destroy);
4382 EXPORT_SYMBOL(zil_itx_assign);
4383 EXPORT_SYMBOL(zil_commit);
4384 EXPORT_SYMBOL(zil_claim);
4385 EXPORT_SYMBOL(zil_check_log_chain);
4386 EXPORT_SYMBOL(zil_sync);
4387 EXPORT_SYMBOL(zil_clean);
4388 EXPORT_SYMBOL(zil_suspend);
4389 EXPORT_SYMBOL(zil_resume);
4390 EXPORT_SYMBOL(zil_lwb_add_block);
4391 EXPORT_SYMBOL(zil_bp_tree_add);
4392 EXPORT_SYMBOL(zil_set_sync);
4393 EXPORT_SYMBOL(zil_set_logbias);
4394 EXPORT_SYMBOL(zil_sums_init);
4395 EXPORT_SYMBOL(zil_sums_fini);
4396 EXPORT_SYMBOL(zil_kstat_values_update);
4397 
4398 ZFS_MODULE_PARAM(zfs, zfs_, commit_timeout_pct, UINT, ZMOD_RW,
4399 	"ZIL block open timeout percentage");
4400 
4401 ZFS_MODULE_PARAM(zfs_zil, zil_, replay_disable, INT, ZMOD_RW,
4402 	"Disable intent logging replay");
4403 
4404 ZFS_MODULE_PARAM(zfs_zil, zil_, nocacheflush, INT, ZMOD_RW,
4405 	"Disable ZIL cache flushes");
4406 
4407 ZFS_MODULE_PARAM(zfs_zil, zil_, slog_bulk, U64, ZMOD_RW,
4408 	"Limit in bytes slog sync writes per commit");
4409 
4410 ZFS_MODULE_PARAM(zfs_zil, zil_, maxblocksize, UINT, ZMOD_RW,
4411 	"Limit in bytes of ZIL log block size");
4412 
4413 ZFS_MODULE_PARAM(zfs_zil, zil_, maxcopied, UINT, ZMOD_RW,
4414 	"Limit in bytes WR_COPIED size");
4415