xref: /freebsd/sys/contrib/openzfs/module/zfs/zil.c (revision e1c4c8dd8d2d10b6104f06856a77bd5b4813a801)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24  * Copyright (c) 2014 Integros [integros.com]
25  * Copyright (c) 2018 Datto Inc.
26  */
27 
28 /* Portions Copyright 2010 Robert Milkowski */
29 
30 #include <sys/zfs_context.h>
31 #include <sys/spa.h>
32 #include <sys/spa_impl.h>
33 #include <sys/dmu.h>
34 #include <sys/zap.h>
35 #include <sys/arc.h>
36 #include <sys/stat.h>
37 #include <sys/zil.h>
38 #include <sys/zil_impl.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/vdev_impl.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/dsl_pool.h>
43 #include <sys/metaslab.h>
44 #include <sys/trace_zfs.h>
45 #include <sys/abd.h>
46 #include <sys/brt.h>
47 #include <sys/wmsum.h>
48 
49 /*
50  * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system
51  * calls that change the file system. Each itx has enough information to
52  * be able to replay them after a system crash, power loss, or
53  * equivalent failure mode. These are stored in memory until either:
54  *
55  *   1. they are committed to the pool by the DMU transaction group
56  *      (txg), at which point they can be discarded; or
57  *   2. they are committed to the on-disk ZIL for the dataset being
58  *      modified (e.g. due to an fsync, O_DSYNC, or other synchronous
59  *      requirement).
60  *
61  * In the event of a crash or power loss, the itxs contained by each
62  * dataset's on-disk ZIL will be replayed when that dataset is first
63  * instantiated (e.g. if the dataset is a normal filesystem, when it is
64  * first mounted).
65  *
66  * As hinted at above, there is one ZIL per dataset (both the in-memory
67  * representation, and the on-disk representation). The on-disk format
68  * consists of 3 parts:
69  *
70  * 	- a single, per-dataset, ZIL header; which points to a chain of
71  * 	- zero or more ZIL blocks; each of which contains
72  * 	- zero or more ZIL records
73  *
74  * A ZIL record holds the information necessary to replay a single
75  * system call transaction. A ZIL block can hold many ZIL records, and
76  * the blocks are chained together, similarly to a singly linked list.
77  *
78  * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL
79  * block in the chain, and the ZIL header points to the first block in
80  * the chain.
81  *
82  * Note, there is not a fixed place in the pool to hold these ZIL
83  * blocks; they are dynamically allocated and freed as needed from the
84  * blocks available on the pool, though they can be preferentially
85  * allocated from a dedicated "log" vdev.
86  */
87 
88 /*
89  * This controls the amount of time that a ZIL block (lwb) will remain
90  * "open" when it isn't "full", and it has a thread waiting for it to be
91  * committed to stable storage. Please refer to the zil_commit_waiter()
92  * function (and the comments within it) for more details.
93  */
94 static uint_t zfs_commit_timeout_pct = 10;
95 
96 /*
97  * See zil.h for more information about these fields.
98  */
99 static zil_kstat_values_t zil_stats = {
100 	{ "zil_commit_count",			KSTAT_DATA_UINT64 },
101 	{ "zil_commit_writer_count",		KSTAT_DATA_UINT64 },
102 	{ "zil_itx_count",			KSTAT_DATA_UINT64 },
103 	{ "zil_itx_indirect_count",		KSTAT_DATA_UINT64 },
104 	{ "zil_itx_indirect_bytes",		KSTAT_DATA_UINT64 },
105 	{ "zil_itx_copied_count",		KSTAT_DATA_UINT64 },
106 	{ "zil_itx_copied_bytes",		KSTAT_DATA_UINT64 },
107 	{ "zil_itx_needcopy_count",		KSTAT_DATA_UINT64 },
108 	{ "zil_itx_needcopy_bytes",		KSTAT_DATA_UINT64 },
109 	{ "zil_itx_metaslab_normal_count",	KSTAT_DATA_UINT64 },
110 	{ "zil_itx_metaslab_normal_bytes",	KSTAT_DATA_UINT64 },
111 	{ "zil_itx_metaslab_normal_write",	KSTAT_DATA_UINT64 },
112 	{ "zil_itx_metaslab_normal_alloc",	KSTAT_DATA_UINT64 },
113 	{ "zil_itx_metaslab_slog_count",	KSTAT_DATA_UINT64 },
114 	{ "zil_itx_metaslab_slog_bytes",	KSTAT_DATA_UINT64 },
115 	{ "zil_itx_metaslab_slog_write",	KSTAT_DATA_UINT64 },
116 	{ "zil_itx_metaslab_slog_alloc",	KSTAT_DATA_UINT64 },
117 };
118 
119 static zil_sums_t zil_sums_global;
120 static kstat_t *zil_kstats_global;
121 
122 /*
123  * Disable intent logging replay.  This global ZIL switch affects all pools.
124  */
125 int zil_replay_disable = 0;
126 
127 /*
128  * Disable the DKIOCFLUSHWRITECACHE commands that are normally sent to
129  * the disk(s) by the ZIL after an LWB write has completed. Setting this
130  * will cause ZIL corruption on power loss if a volatile out-of-order
131  * write cache is enabled.
132  */
133 static int zil_nocacheflush = 0;
134 
135 /*
136  * Limit SLOG write size per commit executed with synchronous priority.
137  * Any writes above that will be executed with lower (asynchronous) priority
138  * to limit potential SLOG device abuse by single active ZIL writer.
139  */
140 static uint64_t zil_slog_bulk = 64 * 1024 * 1024;
141 
142 static kmem_cache_t *zil_lwb_cache;
143 static kmem_cache_t *zil_zcw_cache;
144 
145 static void zil_lwb_commit(zilog_t *zilog, lwb_t *lwb, itx_t *itx);
146 static itx_t *zil_itx_clone(itx_t *oitx);
147 static uint64_t zil_max_waste_space(zilog_t *zilog);
148 
149 static int
150 zil_bp_compare(const void *x1, const void *x2)
151 {
152 	const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
153 	const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
154 
155 	int cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2));
156 	if (likely(cmp))
157 		return (cmp);
158 
159 	return (TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2)));
160 }
161 
162 static void
163 zil_bp_tree_init(zilog_t *zilog)
164 {
165 	avl_create(&zilog->zl_bp_tree, zil_bp_compare,
166 	    sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
167 }
168 
169 static void
170 zil_bp_tree_fini(zilog_t *zilog)
171 {
172 	avl_tree_t *t = &zilog->zl_bp_tree;
173 	zil_bp_node_t *zn;
174 	void *cookie = NULL;
175 
176 	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
177 		kmem_free(zn, sizeof (zil_bp_node_t));
178 
179 	avl_destroy(t);
180 }
181 
182 int
183 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
184 {
185 	avl_tree_t *t = &zilog->zl_bp_tree;
186 	const dva_t *dva;
187 	zil_bp_node_t *zn;
188 	avl_index_t where;
189 
190 	if (BP_IS_EMBEDDED(bp))
191 		return (0);
192 
193 	dva = BP_IDENTITY(bp);
194 
195 	if (avl_find(t, dva, &where) != NULL)
196 		return (SET_ERROR(EEXIST));
197 
198 	zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
199 	zn->zn_dva = *dva;
200 	avl_insert(t, zn, where);
201 
202 	return (0);
203 }
204 
205 static zil_header_t *
206 zil_header_in_syncing_context(zilog_t *zilog)
207 {
208 	return ((zil_header_t *)zilog->zl_header);
209 }
210 
211 static void
212 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
213 {
214 	zio_cksum_t *zc = &bp->blk_cksum;
215 
216 	(void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_0],
217 	    sizeof (zc->zc_word[ZIL_ZC_GUID_0]));
218 	(void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_1],
219 	    sizeof (zc->zc_word[ZIL_ZC_GUID_1]));
220 	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
221 	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
222 }
223 
224 static int
225 zil_kstats_global_update(kstat_t *ksp, int rw)
226 {
227 	zil_kstat_values_t *zs = ksp->ks_data;
228 	ASSERT3P(&zil_stats, ==, zs);
229 
230 	if (rw == KSTAT_WRITE) {
231 		return (SET_ERROR(EACCES));
232 	}
233 
234 	zil_kstat_values_update(zs, &zil_sums_global);
235 
236 	return (0);
237 }
238 
239 /*
240  * Read a log block and make sure it's valid.
241  */
242 static int
243 zil_read_log_block(zilog_t *zilog, boolean_t decrypt, const blkptr_t *bp,
244     blkptr_t *nbp, char **begin, char **end, arc_buf_t **abuf)
245 {
246 	zio_flag_t zio_flags = ZIO_FLAG_CANFAIL;
247 	arc_flags_t aflags = ARC_FLAG_WAIT;
248 	zbookmark_phys_t zb;
249 	int error;
250 
251 	if (zilog->zl_header->zh_claim_txg == 0)
252 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
253 
254 	if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
255 		zio_flags |= ZIO_FLAG_SPECULATIVE;
256 
257 	if (!decrypt)
258 		zio_flags |= ZIO_FLAG_RAW;
259 
260 	SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
261 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
262 
263 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func,
264 	    abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
265 
266 	if (error == 0) {
267 		zio_cksum_t cksum = bp->blk_cksum;
268 
269 		/*
270 		 * Validate the checksummed log block.
271 		 *
272 		 * Sequence numbers should be... sequential.  The checksum
273 		 * verifier for the next block should be bp's checksum plus 1.
274 		 *
275 		 * Also check the log chain linkage and size used.
276 		 */
277 		cksum.zc_word[ZIL_ZC_SEQ]++;
278 
279 		uint64_t size = BP_GET_LSIZE(bp);
280 		if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
281 			zil_chain_t *zilc = (*abuf)->b_data;
282 			char *lr = (char *)(zilc + 1);
283 
284 			if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
285 			    sizeof (cksum)) ||
286 			    zilc->zc_nused < sizeof (*zilc) ||
287 			    zilc->zc_nused > size) {
288 				error = SET_ERROR(ECKSUM);
289 			} else {
290 				*begin = lr;
291 				*end = lr + zilc->zc_nused - sizeof (*zilc);
292 				*nbp = zilc->zc_next_blk;
293 			}
294 		} else {
295 			char *lr = (*abuf)->b_data;
296 			zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
297 
298 			if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
299 			    sizeof (cksum)) ||
300 			    (zilc->zc_nused > (size - sizeof (*zilc)))) {
301 				error = SET_ERROR(ECKSUM);
302 			} else {
303 				*begin = lr;
304 				*end = lr + zilc->zc_nused;
305 				*nbp = zilc->zc_next_blk;
306 			}
307 		}
308 	}
309 
310 	return (error);
311 }
312 
313 /*
314  * Read a TX_WRITE log data block.
315  */
316 static int
317 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
318 {
319 	zio_flag_t zio_flags = ZIO_FLAG_CANFAIL;
320 	const blkptr_t *bp = &lr->lr_blkptr;
321 	arc_flags_t aflags = ARC_FLAG_WAIT;
322 	arc_buf_t *abuf = NULL;
323 	zbookmark_phys_t zb;
324 	int error;
325 
326 	if (BP_IS_HOLE(bp)) {
327 		if (wbuf != NULL)
328 			memset(wbuf, 0, MAX(BP_GET_LSIZE(bp), lr->lr_length));
329 		return (0);
330 	}
331 
332 	if (zilog->zl_header->zh_claim_txg == 0)
333 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
334 
335 	/*
336 	 * If we are not using the resulting data, we are just checking that
337 	 * it hasn't been corrupted so we don't need to waste CPU time
338 	 * decompressing and decrypting it.
339 	 */
340 	if (wbuf == NULL)
341 		zio_flags |= ZIO_FLAG_RAW;
342 
343 	ASSERT3U(BP_GET_LSIZE(bp), !=, 0);
344 	SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
345 	    ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
346 
347 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
348 	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
349 
350 	if (error == 0) {
351 		if (wbuf != NULL)
352 			memcpy(wbuf, abuf->b_data, arc_buf_size(abuf));
353 		arc_buf_destroy(abuf, &abuf);
354 	}
355 
356 	return (error);
357 }
358 
359 void
360 zil_sums_init(zil_sums_t *zs)
361 {
362 	wmsum_init(&zs->zil_commit_count, 0);
363 	wmsum_init(&zs->zil_commit_writer_count, 0);
364 	wmsum_init(&zs->zil_itx_count, 0);
365 	wmsum_init(&zs->zil_itx_indirect_count, 0);
366 	wmsum_init(&zs->zil_itx_indirect_bytes, 0);
367 	wmsum_init(&zs->zil_itx_copied_count, 0);
368 	wmsum_init(&zs->zil_itx_copied_bytes, 0);
369 	wmsum_init(&zs->zil_itx_needcopy_count, 0);
370 	wmsum_init(&zs->zil_itx_needcopy_bytes, 0);
371 	wmsum_init(&zs->zil_itx_metaslab_normal_count, 0);
372 	wmsum_init(&zs->zil_itx_metaslab_normal_bytes, 0);
373 	wmsum_init(&zs->zil_itx_metaslab_normal_write, 0);
374 	wmsum_init(&zs->zil_itx_metaslab_normal_alloc, 0);
375 	wmsum_init(&zs->zil_itx_metaslab_slog_count, 0);
376 	wmsum_init(&zs->zil_itx_metaslab_slog_bytes, 0);
377 	wmsum_init(&zs->zil_itx_metaslab_slog_write, 0);
378 	wmsum_init(&zs->zil_itx_metaslab_slog_alloc, 0);
379 }
380 
381 void
382 zil_sums_fini(zil_sums_t *zs)
383 {
384 	wmsum_fini(&zs->zil_commit_count);
385 	wmsum_fini(&zs->zil_commit_writer_count);
386 	wmsum_fini(&zs->zil_itx_count);
387 	wmsum_fini(&zs->zil_itx_indirect_count);
388 	wmsum_fini(&zs->zil_itx_indirect_bytes);
389 	wmsum_fini(&zs->zil_itx_copied_count);
390 	wmsum_fini(&zs->zil_itx_copied_bytes);
391 	wmsum_fini(&zs->zil_itx_needcopy_count);
392 	wmsum_fini(&zs->zil_itx_needcopy_bytes);
393 	wmsum_fini(&zs->zil_itx_metaslab_normal_count);
394 	wmsum_fini(&zs->zil_itx_metaslab_normal_bytes);
395 	wmsum_fini(&zs->zil_itx_metaslab_normal_write);
396 	wmsum_fini(&zs->zil_itx_metaslab_normal_alloc);
397 	wmsum_fini(&zs->zil_itx_metaslab_slog_count);
398 	wmsum_fini(&zs->zil_itx_metaslab_slog_bytes);
399 	wmsum_fini(&zs->zil_itx_metaslab_slog_write);
400 	wmsum_fini(&zs->zil_itx_metaslab_slog_alloc);
401 }
402 
403 void
404 zil_kstat_values_update(zil_kstat_values_t *zs, zil_sums_t *zil_sums)
405 {
406 	zs->zil_commit_count.value.ui64 =
407 	    wmsum_value(&zil_sums->zil_commit_count);
408 	zs->zil_commit_writer_count.value.ui64 =
409 	    wmsum_value(&zil_sums->zil_commit_writer_count);
410 	zs->zil_itx_count.value.ui64 =
411 	    wmsum_value(&zil_sums->zil_itx_count);
412 	zs->zil_itx_indirect_count.value.ui64 =
413 	    wmsum_value(&zil_sums->zil_itx_indirect_count);
414 	zs->zil_itx_indirect_bytes.value.ui64 =
415 	    wmsum_value(&zil_sums->zil_itx_indirect_bytes);
416 	zs->zil_itx_copied_count.value.ui64 =
417 	    wmsum_value(&zil_sums->zil_itx_copied_count);
418 	zs->zil_itx_copied_bytes.value.ui64 =
419 	    wmsum_value(&zil_sums->zil_itx_copied_bytes);
420 	zs->zil_itx_needcopy_count.value.ui64 =
421 	    wmsum_value(&zil_sums->zil_itx_needcopy_count);
422 	zs->zil_itx_needcopy_bytes.value.ui64 =
423 	    wmsum_value(&zil_sums->zil_itx_needcopy_bytes);
424 	zs->zil_itx_metaslab_normal_count.value.ui64 =
425 	    wmsum_value(&zil_sums->zil_itx_metaslab_normal_count);
426 	zs->zil_itx_metaslab_normal_bytes.value.ui64 =
427 	    wmsum_value(&zil_sums->zil_itx_metaslab_normal_bytes);
428 	zs->zil_itx_metaslab_normal_write.value.ui64 =
429 	    wmsum_value(&zil_sums->zil_itx_metaslab_normal_write);
430 	zs->zil_itx_metaslab_normal_alloc.value.ui64 =
431 	    wmsum_value(&zil_sums->zil_itx_metaslab_normal_alloc);
432 	zs->zil_itx_metaslab_slog_count.value.ui64 =
433 	    wmsum_value(&zil_sums->zil_itx_metaslab_slog_count);
434 	zs->zil_itx_metaslab_slog_bytes.value.ui64 =
435 	    wmsum_value(&zil_sums->zil_itx_metaslab_slog_bytes);
436 	zs->zil_itx_metaslab_slog_write.value.ui64 =
437 	    wmsum_value(&zil_sums->zil_itx_metaslab_slog_write);
438 	zs->zil_itx_metaslab_slog_alloc.value.ui64 =
439 	    wmsum_value(&zil_sums->zil_itx_metaslab_slog_alloc);
440 }
441 
442 /*
443  * Parse the intent log, and call parse_func for each valid record within.
444  */
445 int
446 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
447     zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg,
448     boolean_t decrypt)
449 {
450 	const zil_header_t *zh = zilog->zl_header;
451 	boolean_t claimed = !!zh->zh_claim_txg;
452 	uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
453 	uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
454 	uint64_t max_blk_seq = 0;
455 	uint64_t max_lr_seq = 0;
456 	uint64_t blk_count = 0;
457 	uint64_t lr_count = 0;
458 	blkptr_t blk, next_blk = {{{{0}}}};
459 	int error = 0;
460 
461 	/*
462 	 * Old logs didn't record the maximum zh_claim_lr_seq.
463 	 */
464 	if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
465 		claim_lr_seq = UINT64_MAX;
466 
467 	/*
468 	 * Starting at the block pointed to by zh_log we read the log chain.
469 	 * For each block in the chain we strongly check that block to
470 	 * ensure its validity.  We stop when an invalid block is found.
471 	 * For each block pointer in the chain we call parse_blk_func().
472 	 * For each record in each valid block we call parse_lr_func().
473 	 * If the log has been claimed, stop if we encounter a sequence
474 	 * number greater than the highest claimed sequence number.
475 	 */
476 	zil_bp_tree_init(zilog);
477 
478 	for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
479 		uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
480 		int reclen;
481 		char *lrp, *end;
482 		arc_buf_t *abuf = NULL;
483 
484 		if (blk_seq > claim_blk_seq)
485 			break;
486 
487 		error = parse_blk_func(zilog, &blk, arg, txg);
488 		if (error != 0)
489 			break;
490 		ASSERT3U(max_blk_seq, <, blk_seq);
491 		max_blk_seq = blk_seq;
492 		blk_count++;
493 
494 		if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
495 			break;
496 
497 		error = zil_read_log_block(zilog, decrypt, &blk, &next_blk,
498 		    &lrp, &end, &abuf);
499 		if (error != 0) {
500 			if (abuf)
501 				arc_buf_destroy(abuf, &abuf);
502 			if (claimed) {
503 				char name[ZFS_MAX_DATASET_NAME_LEN];
504 
505 				dmu_objset_name(zilog->zl_os, name);
506 
507 				cmn_err(CE_WARN, "ZFS read log block error %d, "
508 				    "dataset %s, seq 0x%llx\n", error, name,
509 				    (u_longlong_t)blk_seq);
510 			}
511 			break;
512 		}
513 
514 		for (; lrp < end; lrp += reclen) {
515 			lr_t *lr = (lr_t *)lrp;
516 			reclen = lr->lrc_reclen;
517 			ASSERT3U(reclen, >=, sizeof (lr_t));
518 			ASSERT3U(reclen, <=, end - lrp);
519 			if (lr->lrc_seq > claim_lr_seq) {
520 				arc_buf_destroy(abuf, &abuf);
521 				goto done;
522 			}
523 
524 			error = parse_lr_func(zilog, lr, arg, txg);
525 			if (error != 0) {
526 				arc_buf_destroy(abuf, &abuf);
527 				goto done;
528 			}
529 			ASSERT3U(max_lr_seq, <, lr->lrc_seq);
530 			max_lr_seq = lr->lrc_seq;
531 			lr_count++;
532 		}
533 		arc_buf_destroy(abuf, &abuf);
534 	}
535 done:
536 	zilog->zl_parse_error = error;
537 	zilog->zl_parse_blk_seq = max_blk_seq;
538 	zilog->zl_parse_lr_seq = max_lr_seq;
539 	zilog->zl_parse_blk_count = blk_count;
540 	zilog->zl_parse_lr_count = lr_count;
541 
542 	zil_bp_tree_fini(zilog);
543 
544 	return (error);
545 }
546 
547 static int
548 zil_clear_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
549     uint64_t first_txg)
550 {
551 	(void) tx;
552 	ASSERT(!BP_IS_HOLE(bp));
553 
554 	/*
555 	 * As we call this function from the context of a rewind to a
556 	 * checkpoint, each ZIL block whose txg is later than the txg
557 	 * that we rewind to is invalid. Thus, we return -1 so
558 	 * zil_parse() doesn't attempt to read it.
559 	 */
560 	if (BP_GET_LOGICAL_BIRTH(bp) >= first_txg)
561 		return (-1);
562 
563 	if (zil_bp_tree_add(zilog, bp) != 0)
564 		return (0);
565 
566 	zio_free(zilog->zl_spa, first_txg, bp);
567 	return (0);
568 }
569 
570 static int
571 zil_noop_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
572     uint64_t first_txg)
573 {
574 	(void) zilog, (void) lrc, (void) tx, (void) first_txg;
575 	return (0);
576 }
577 
578 static int
579 zil_claim_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
580     uint64_t first_txg)
581 {
582 	/*
583 	 * Claim log block if not already committed and not already claimed.
584 	 * If tx == NULL, just verify that the block is claimable.
585 	 */
586 	if (BP_IS_HOLE(bp) || BP_GET_LOGICAL_BIRTH(bp) < first_txg ||
587 	    zil_bp_tree_add(zilog, bp) != 0)
588 		return (0);
589 
590 	return (zio_wait(zio_claim(NULL, zilog->zl_spa,
591 	    tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
592 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
593 }
594 
595 static int
596 zil_claim_write(zilog_t *zilog, const lr_t *lrc, void *tx, uint64_t first_txg)
597 {
598 	lr_write_t *lr = (lr_write_t *)lrc;
599 	int error;
600 
601 	ASSERT3U(lrc->lrc_reclen, >=, sizeof (*lr));
602 
603 	/*
604 	 * If the block is not readable, don't claim it.  This can happen
605 	 * in normal operation when a log block is written to disk before
606 	 * some of the dmu_sync() blocks it points to.  In this case, the
607 	 * transaction cannot have been committed to anyone (we would have
608 	 * waited for all writes to be stable first), so it is semantically
609 	 * correct to declare this the end of the log.
610 	 */
611 	if (BP_GET_LOGICAL_BIRTH(&lr->lr_blkptr) >= first_txg) {
612 		error = zil_read_log_data(zilog, lr, NULL);
613 		if (error != 0)
614 			return (error);
615 	}
616 
617 	return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
618 }
619 
620 static int
621 zil_claim_clone_range(zilog_t *zilog, const lr_t *lrc, void *tx,
622     uint64_t first_txg)
623 {
624 	const lr_clone_range_t *lr = (const lr_clone_range_t *)lrc;
625 	const blkptr_t *bp;
626 	spa_t *spa = zilog->zl_spa;
627 	uint_t ii;
628 
629 	ASSERT3U(lrc->lrc_reclen, >=, sizeof (*lr));
630 	ASSERT3U(lrc->lrc_reclen, >=, offsetof(lr_clone_range_t,
631 	    lr_bps[lr->lr_nbps]));
632 
633 	if (tx == NULL) {
634 		return (0);
635 	}
636 
637 	/*
638 	 * XXX: Do we need to byteswap lr?
639 	 */
640 
641 	for (ii = 0; ii < lr->lr_nbps; ii++) {
642 		bp = &lr->lr_bps[ii];
643 
644 		/*
645 		 * When data is embedded into the BP there is no need to create
646 		 * BRT entry as there is no data block.  Just copy the BP as it
647 		 * contains the data.
648 		 */
649 		if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
650 			continue;
651 
652 		/*
653 		 * We can not handle block pointers from the future, since they
654 		 * are not yet allocated.  It should not normally happen, but
655 		 * just in case lets be safe and just stop here now instead of
656 		 * corrupting the pool.
657 		 */
658 		if (BP_GET_BIRTH(bp) >= first_txg)
659 			return (SET_ERROR(ENOENT));
660 
661 		/*
662 		 * Assert the block is really allocated before we reference it.
663 		 */
664 		metaslab_check_free(spa, bp);
665 	}
666 
667 	for (ii = 0; ii < lr->lr_nbps; ii++) {
668 		bp = &lr->lr_bps[ii];
669 		if (!BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp))
670 			brt_pending_add(spa, bp, tx);
671 	}
672 
673 	return (0);
674 }
675 
676 static int
677 zil_claim_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
678     uint64_t first_txg)
679 {
680 
681 	switch (lrc->lrc_txtype) {
682 	case TX_WRITE:
683 		return (zil_claim_write(zilog, lrc, tx, first_txg));
684 	case TX_CLONE_RANGE:
685 		return (zil_claim_clone_range(zilog, lrc, tx, first_txg));
686 	default:
687 		return (0);
688 	}
689 }
690 
691 static int
692 zil_free_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
693     uint64_t claim_txg)
694 {
695 	(void) claim_txg;
696 
697 	zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
698 
699 	return (0);
700 }
701 
702 static int
703 zil_free_write(zilog_t *zilog, const lr_t *lrc, void *tx, uint64_t claim_txg)
704 {
705 	lr_write_t *lr = (lr_write_t *)lrc;
706 	blkptr_t *bp = &lr->lr_blkptr;
707 
708 	ASSERT3U(lrc->lrc_reclen, >=, sizeof (*lr));
709 
710 	/*
711 	 * If we previously claimed it, we need to free it.
712 	 */
713 	if (BP_GET_LOGICAL_BIRTH(bp) >= claim_txg &&
714 	    zil_bp_tree_add(zilog, bp) == 0 && !BP_IS_HOLE(bp)) {
715 		zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
716 	}
717 
718 	return (0);
719 }
720 
721 static int
722 zil_free_clone_range(zilog_t *zilog, const lr_t *lrc, void *tx)
723 {
724 	const lr_clone_range_t *lr = (const lr_clone_range_t *)lrc;
725 	const blkptr_t *bp;
726 	spa_t *spa;
727 	uint_t ii;
728 
729 	ASSERT3U(lrc->lrc_reclen, >=, sizeof (*lr));
730 	ASSERT3U(lrc->lrc_reclen, >=, offsetof(lr_clone_range_t,
731 	    lr_bps[lr->lr_nbps]));
732 
733 	if (tx == NULL) {
734 		return (0);
735 	}
736 
737 	spa = zilog->zl_spa;
738 
739 	for (ii = 0; ii < lr->lr_nbps; ii++) {
740 		bp = &lr->lr_bps[ii];
741 
742 		if (!BP_IS_HOLE(bp)) {
743 			zio_free(spa, dmu_tx_get_txg(tx), bp);
744 		}
745 	}
746 
747 	return (0);
748 }
749 
750 static int
751 zil_free_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
752     uint64_t claim_txg)
753 {
754 
755 	if (claim_txg == 0) {
756 		return (0);
757 	}
758 
759 	switch (lrc->lrc_txtype) {
760 	case TX_WRITE:
761 		return (zil_free_write(zilog, lrc, tx, claim_txg));
762 	case TX_CLONE_RANGE:
763 		return (zil_free_clone_range(zilog, lrc, tx));
764 	default:
765 		return (0);
766 	}
767 }
768 
769 static int
770 zil_lwb_vdev_compare(const void *x1, const void *x2)
771 {
772 	const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
773 	const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
774 
775 	return (TREE_CMP(v1, v2));
776 }
777 
778 /*
779  * Allocate a new lwb.  We may already have a block pointer for it, in which
780  * case we get size and version from there.  Or we may not yet, in which case
781  * we choose them here and later make the block allocation match.
782  */
783 static lwb_t *
784 zil_alloc_lwb(zilog_t *zilog, int sz, blkptr_t *bp, boolean_t slog,
785     uint64_t txg, lwb_state_t state)
786 {
787 	lwb_t *lwb;
788 
789 	lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
790 	lwb->lwb_zilog = zilog;
791 	if (bp) {
792 		lwb->lwb_blk = *bp;
793 		lwb->lwb_slim = (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2);
794 		sz = BP_GET_LSIZE(bp);
795 	} else {
796 		BP_ZERO(&lwb->lwb_blk);
797 		lwb->lwb_slim = (spa_version(zilog->zl_spa) >=
798 		    SPA_VERSION_SLIM_ZIL);
799 	}
800 	lwb->lwb_slog = slog;
801 	lwb->lwb_error = 0;
802 	if (lwb->lwb_slim) {
803 		lwb->lwb_nmax = sz;
804 		lwb->lwb_nused = lwb->lwb_nfilled = sizeof (zil_chain_t);
805 	} else {
806 		lwb->lwb_nmax = sz - sizeof (zil_chain_t);
807 		lwb->lwb_nused = lwb->lwb_nfilled = 0;
808 	}
809 	lwb->lwb_sz = sz;
810 	lwb->lwb_state = state;
811 	lwb->lwb_buf = zio_buf_alloc(sz);
812 	lwb->lwb_child_zio = NULL;
813 	lwb->lwb_write_zio = NULL;
814 	lwb->lwb_root_zio = NULL;
815 	lwb->lwb_issued_timestamp = 0;
816 	lwb->lwb_issued_txg = 0;
817 	lwb->lwb_alloc_txg = txg;
818 	lwb->lwb_max_txg = 0;
819 
820 	mutex_enter(&zilog->zl_lock);
821 	list_insert_tail(&zilog->zl_lwb_list, lwb);
822 	if (state != LWB_STATE_NEW)
823 		zilog->zl_last_lwb_opened = lwb;
824 	mutex_exit(&zilog->zl_lock);
825 
826 	return (lwb);
827 }
828 
829 static void
830 zil_free_lwb(zilog_t *zilog, lwb_t *lwb)
831 {
832 	ASSERT(MUTEX_HELD(&zilog->zl_lock));
833 	ASSERT(lwb->lwb_state == LWB_STATE_NEW ||
834 	    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
835 	ASSERT3P(lwb->lwb_child_zio, ==, NULL);
836 	ASSERT3P(lwb->lwb_write_zio, ==, NULL);
837 	ASSERT3P(lwb->lwb_root_zio, ==, NULL);
838 	ASSERT3U(lwb->lwb_alloc_txg, <=, spa_syncing_txg(zilog->zl_spa));
839 	ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa));
840 	VERIFY(list_is_empty(&lwb->lwb_itxs));
841 	VERIFY(list_is_empty(&lwb->lwb_waiters));
842 	ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
843 	ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
844 
845 	/*
846 	 * Clear the zilog's field to indicate this lwb is no longer
847 	 * valid, and prevent use-after-free errors.
848 	 */
849 	if (zilog->zl_last_lwb_opened == lwb)
850 		zilog->zl_last_lwb_opened = NULL;
851 
852 	kmem_cache_free(zil_lwb_cache, lwb);
853 }
854 
855 /*
856  * Called when we create in-memory log transactions so that we know
857  * to cleanup the itxs at the end of spa_sync().
858  */
859 static void
860 zilog_dirty(zilog_t *zilog, uint64_t txg)
861 {
862 	dsl_pool_t *dp = zilog->zl_dmu_pool;
863 	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
864 
865 	ASSERT(spa_writeable(zilog->zl_spa));
866 
867 	if (ds->ds_is_snapshot)
868 		panic("dirtying snapshot!");
869 
870 	if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
871 		/* up the hold count until we can be written out */
872 		dmu_buf_add_ref(ds->ds_dbuf, zilog);
873 
874 		zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg);
875 	}
876 }
877 
878 /*
879  * Determine if the zil is dirty in the specified txg. Callers wanting to
880  * ensure that the dirty state does not change must hold the itxg_lock for
881  * the specified txg. Holding the lock will ensure that the zil cannot be
882  * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
883  * state.
884  */
885 static boolean_t __maybe_unused
886 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
887 {
888 	dsl_pool_t *dp = zilog->zl_dmu_pool;
889 
890 	if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
891 		return (B_TRUE);
892 	return (B_FALSE);
893 }
894 
895 /*
896  * Determine if the zil is dirty. The zil is considered dirty if it has
897  * any pending itx records that have not been cleaned by zil_clean().
898  */
899 static boolean_t
900 zilog_is_dirty(zilog_t *zilog)
901 {
902 	dsl_pool_t *dp = zilog->zl_dmu_pool;
903 
904 	for (int t = 0; t < TXG_SIZE; t++) {
905 		if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
906 			return (B_TRUE);
907 	}
908 	return (B_FALSE);
909 }
910 
911 /*
912  * Its called in zil_commit context (zil_process_commit_list()/zil_create()).
913  * It activates SPA_FEATURE_ZILSAXATTR feature, if its enabled.
914  * Check dsl_dataset_feature_is_active to avoid txg_wait_synced() on every
915  * zil_commit.
916  */
917 static void
918 zil_commit_activate_saxattr_feature(zilog_t *zilog)
919 {
920 	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
921 	uint64_t txg = 0;
922 	dmu_tx_t *tx = NULL;
923 
924 	if (spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) &&
925 	    dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL &&
926 	    !dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR)) {
927 		tx = dmu_tx_create(zilog->zl_os);
928 		VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
929 		dsl_dataset_dirty(ds, tx);
930 		txg = dmu_tx_get_txg(tx);
931 
932 		mutex_enter(&ds->ds_lock);
933 		ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] =
934 		    (void *)B_TRUE;
935 		mutex_exit(&ds->ds_lock);
936 		dmu_tx_commit(tx);
937 		txg_wait_synced(zilog->zl_dmu_pool, txg);
938 	}
939 }
940 
941 /*
942  * Create an on-disk intent log.
943  */
944 static lwb_t *
945 zil_create(zilog_t *zilog)
946 {
947 	const zil_header_t *zh = zilog->zl_header;
948 	lwb_t *lwb = NULL;
949 	uint64_t txg = 0;
950 	dmu_tx_t *tx = NULL;
951 	blkptr_t blk;
952 	int error = 0;
953 	boolean_t slog = FALSE;
954 	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
955 
956 
957 	/*
958 	 * Wait for any previous destroy to complete.
959 	 */
960 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
961 
962 	ASSERT(zh->zh_claim_txg == 0);
963 	ASSERT(zh->zh_replay_seq == 0);
964 
965 	blk = zh->zh_log;
966 
967 	/*
968 	 * Allocate an initial log block if:
969 	 *    - there isn't one already
970 	 *    - the existing block is the wrong endianness
971 	 */
972 	if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
973 		tx = dmu_tx_create(zilog->zl_os);
974 		VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
975 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
976 		txg = dmu_tx_get_txg(tx);
977 
978 		if (!BP_IS_HOLE(&blk)) {
979 			zio_free(zilog->zl_spa, txg, &blk);
980 			BP_ZERO(&blk);
981 		}
982 
983 		error = zio_alloc_zil(zilog->zl_spa, zilog->zl_os, txg, &blk,
984 		    ZIL_MIN_BLKSZ, &slog);
985 		if (error == 0)
986 			zil_init_log_chain(zilog, &blk);
987 	}
988 
989 	/*
990 	 * Allocate a log write block (lwb) for the first log block.
991 	 */
992 	if (error == 0)
993 		lwb = zil_alloc_lwb(zilog, 0, &blk, slog, txg, LWB_STATE_NEW);
994 
995 	/*
996 	 * If we just allocated the first log block, commit our transaction
997 	 * and wait for zil_sync() to stuff the block pointer into zh_log.
998 	 * (zh is part of the MOS, so we cannot modify it in open context.)
999 	 */
1000 	if (tx != NULL) {
1001 		/*
1002 		 * If "zilsaxattr" feature is enabled on zpool, then activate
1003 		 * it now when we're creating the ZIL chain. We can't wait with
1004 		 * this until we write the first xattr log record because we
1005 		 * need to wait for the feature activation to sync out.
1006 		 */
1007 		if (spa_feature_is_enabled(zilog->zl_spa,
1008 		    SPA_FEATURE_ZILSAXATTR) && dmu_objset_type(zilog->zl_os) !=
1009 		    DMU_OST_ZVOL) {
1010 			mutex_enter(&ds->ds_lock);
1011 			ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] =
1012 			    (void *)B_TRUE;
1013 			mutex_exit(&ds->ds_lock);
1014 		}
1015 
1016 		dmu_tx_commit(tx);
1017 		txg_wait_synced(zilog->zl_dmu_pool, txg);
1018 	} else {
1019 		/*
1020 		 * This branch covers the case where we enable the feature on a
1021 		 * zpool that has existing ZIL headers.
1022 		 */
1023 		zil_commit_activate_saxattr_feature(zilog);
1024 	}
1025 	IMPLY(spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) &&
1026 	    dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL,
1027 	    dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR));
1028 
1029 	ASSERT(error != 0 || memcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
1030 	IMPLY(error == 0, lwb != NULL);
1031 
1032 	return (lwb);
1033 }
1034 
1035 /*
1036  * In one tx, free all log blocks and clear the log header. If keep_first
1037  * is set, then we're replaying a log with no content. We want to keep the
1038  * first block, however, so that the first synchronous transaction doesn't
1039  * require a txg_wait_synced() in zil_create(). We don't need to
1040  * txg_wait_synced() here either when keep_first is set, because both
1041  * zil_create() and zil_destroy() will wait for any in-progress destroys
1042  * to complete.
1043  * Return B_TRUE if there were any entries to replay.
1044  */
1045 boolean_t
1046 zil_destroy(zilog_t *zilog, boolean_t keep_first)
1047 {
1048 	const zil_header_t *zh = zilog->zl_header;
1049 	lwb_t *lwb;
1050 	dmu_tx_t *tx;
1051 	uint64_t txg;
1052 
1053 	/*
1054 	 * Wait for any previous destroy to complete.
1055 	 */
1056 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
1057 
1058 	zilog->zl_old_header = *zh;		/* debugging aid */
1059 
1060 	if (BP_IS_HOLE(&zh->zh_log))
1061 		return (B_FALSE);
1062 
1063 	tx = dmu_tx_create(zilog->zl_os);
1064 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1065 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1066 	txg = dmu_tx_get_txg(tx);
1067 
1068 	mutex_enter(&zilog->zl_lock);
1069 
1070 	ASSERT3U(zilog->zl_destroy_txg, <, txg);
1071 	zilog->zl_destroy_txg = txg;
1072 	zilog->zl_keep_first = keep_first;
1073 
1074 	if (!list_is_empty(&zilog->zl_lwb_list)) {
1075 		ASSERT(zh->zh_claim_txg == 0);
1076 		VERIFY(!keep_first);
1077 		while ((lwb = list_remove_head(&zilog->zl_lwb_list)) != NULL) {
1078 			if (lwb->lwb_buf != NULL)
1079 				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1080 			if (!BP_IS_HOLE(&lwb->lwb_blk))
1081 				zio_free(zilog->zl_spa, txg, &lwb->lwb_blk);
1082 			zil_free_lwb(zilog, lwb);
1083 		}
1084 	} else if (!keep_first) {
1085 		zil_destroy_sync(zilog, tx);
1086 	}
1087 	mutex_exit(&zilog->zl_lock);
1088 
1089 	dmu_tx_commit(tx);
1090 
1091 	return (B_TRUE);
1092 }
1093 
1094 void
1095 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
1096 {
1097 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
1098 	(void) zil_parse(zilog, zil_free_log_block,
1099 	    zil_free_log_record, tx, zilog->zl_header->zh_claim_txg, B_FALSE);
1100 }
1101 
1102 int
1103 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
1104 {
1105 	dmu_tx_t *tx = txarg;
1106 	zilog_t *zilog;
1107 	uint64_t first_txg;
1108 	zil_header_t *zh;
1109 	objset_t *os;
1110 	int error;
1111 
1112 	error = dmu_objset_own_obj(dp, ds->ds_object,
1113 	    DMU_OST_ANY, B_FALSE, B_FALSE, FTAG, &os);
1114 	if (error != 0) {
1115 		/*
1116 		 * EBUSY indicates that the objset is inconsistent, in which
1117 		 * case it can not have a ZIL.
1118 		 */
1119 		if (error != EBUSY) {
1120 			cmn_err(CE_WARN, "can't open objset for %llu, error %u",
1121 			    (unsigned long long)ds->ds_object, error);
1122 		}
1123 
1124 		return (0);
1125 	}
1126 
1127 	zilog = dmu_objset_zil(os);
1128 	zh = zil_header_in_syncing_context(zilog);
1129 	ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa));
1130 	first_txg = spa_min_claim_txg(zilog->zl_spa);
1131 
1132 	/*
1133 	 * If the spa_log_state is not set to be cleared, check whether
1134 	 * the current uberblock is a checkpoint one and if the current
1135 	 * header has been claimed before moving on.
1136 	 *
1137 	 * If the current uberblock is a checkpointed uberblock then
1138 	 * one of the following scenarios took place:
1139 	 *
1140 	 * 1] We are currently rewinding to the checkpoint of the pool.
1141 	 * 2] We crashed in the middle of a checkpoint rewind but we
1142 	 *    did manage to write the checkpointed uberblock to the
1143 	 *    vdev labels, so when we tried to import the pool again
1144 	 *    the checkpointed uberblock was selected from the import
1145 	 *    procedure.
1146 	 *
1147 	 * In both cases we want to zero out all the ZIL blocks, except
1148 	 * the ones that have been claimed at the time of the checkpoint
1149 	 * (their zh_claim_txg != 0). The reason is that these blocks
1150 	 * may be corrupted since we may have reused their locations on
1151 	 * disk after we took the checkpoint.
1152 	 *
1153 	 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier
1154 	 * when we first figure out whether the current uberblock is
1155 	 * checkpointed or not. Unfortunately, that would discard all
1156 	 * the logs, including the ones that are claimed, and we would
1157 	 * leak space.
1158 	 */
1159 	if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR ||
1160 	    (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
1161 	    zh->zh_claim_txg == 0)) {
1162 		if (!BP_IS_HOLE(&zh->zh_log)) {
1163 			(void) zil_parse(zilog, zil_clear_log_block,
1164 			    zil_noop_log_record, tx, first_txg, B_FALSE);
1165 		}
1166 		BP_ZERO(&zh->zh_log);
1167 		if (os->os_encrypted)
1168 			os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
1169 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
1170 		dmu_objset_disown(os, B_FALSE, FTAG);
1171 		return (0);
1172 	}
1173 
1174 	/*
1175 	 * If we are not rewinding and opening the pool normally, then
1176 	 * the min_claim_txg should be equal to the first txg of the pool.
1177 	 */
1178 	ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa));
1179 
1180 	/*
1181 	 * Claim all log blocks if we haven't already done so, and remember
1182 	 * the highest claimed sequence number.  This ensures that if we can
1183 	 * read only part of the log now (e.g. due to a missing device),
1184 	 * but we can read the entire log later, we will not try to replay
1185 	 * or destroy beyond the last block we successfully claimed.
1186 	 */
1187 	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
1188 	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
1189 		(void) zil_parse(zilog, zil_claim_log_block,
1190 		    zil_claim_log_record, tx, first_txg, B_FALSE);
1191 		zh->zh_claim_txg = first_txg;
1192 		zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
1193 		zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
1194 		if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
1195 			zh->zh_flags |= ZIL_REPLAY_NEEDED;
1196 		zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
1197 		if (os->os_encrypted)
1198 			os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
1199 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
1200 	}
1201 
1202 	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
1203 	dmu_objset_disown(os, B_FALSE, FTAG);
1204 	return (0);
1205 }
1206 
1207 /*
1208  * Check the log by walking the log chain.
1209  * Checksum errors are ok as they indicate the end of the chain.
1210  * Any other error (no device or read failure) returns an error.
1211  */
1212 int
1213 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
1214 {
1215 	(void) dp;
1216 	zilog_t *zilog;
1217 	objset_t *os;
1218 	blkptr_t *bp;
1219 	int error;
1220 
1221 	ASSERT(tx == NULL);
1222 
1223 	error = dmu_objset_from_ds(ds, &os);
1224 	if (error != 0) {
1225 		cmn_err(CE_WARN, "can't open objset %llu, error %d",
1226 		    (unsigned long long)ds->ds_object, error);
1227 		return (0);
1228 	}
1229 
1230 	zilog = dmu_objset_zil(os);
1231 	bp = (blkptr_t *)&zilog->zl_header->zh_log;
1232 
1233 	if (!BP_IS_HOLE(bp)) {
1234 		vdev_t *vd;
1235 		boolean_t valid = B_TRUE;
1236 
1237 		/*
1238 		 * Check the first block and determine if it's on a log device
1239 		 * which may have been removed or faulted prior to loading this
1240 		 * pool.  If so, there's no point in checking the rest of the
1241 		 * log as its content should have already been synced to the
1242 		 * pool.
1243 		 */
1244 		spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
1245 		vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
1246 		if (vd->vdev_islog && vdev_is_dead(vd))
1247 			valid = vdev_log_state_valid(vd);
1248 		spa_config_exit(os->os_spa, SCL_STATE, FTAG);
1249 
1250 		if (!valid)
1251 			return (0);
1252 
1253 		/*
1254 		 * Check whether the current uberblock is checkpointed (e.g.
1255 		 * we are rewinding) and whether the current header has been
1256 		 * claimed or not. If it hasn't then skip verifying it. We
1257 		 * do this because its ZIL blocks may be part of the pool's
1258 		 * state before the rewind, which is no longer valid.
1259 		 */
1260 		zil_header_t *zh = zil_header_in_syncing_context(zilog);
1261 		if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
1262 		    zh->zh_claim_txg == 0)
1263 			return (0);
1264 	}
1265 
1266 	/*
1267 	 * Because tx == NULL, zil_claim_log_block() will not actually claim
1268 	 * any blocks, but just determine whether it is possible to do so.
1269 	 * In addition to checking the log chain, zil_claim_log_block()
1270 	 * will invoke zio_claim() with a done func of spa_claim_notify(),
1271 	 * which will update spa_max_claim_txg.  See spa_load() for details.
1272 	 */
1273 	error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
1274 	    zilog->zl_header->zh_claim_txg ? -1ULL :
1275 	    spa_min_claim_txg(os->os_spa), B_FALSE);
1276 
1277 	return ((error == ECKSUM || error == ENOENT) ? 0 : error);
1278 }
1279 
1280 /*
1281  * When an itx is "skipped", this function is used to properly mark the
1282  * waiter as "done, and signal any thread(s) waiting on it. An itx can
1283  * be skipped (and not committed to an lwb) for a variety of reasons,
1284  * one of them being that the itx was committed via spa_sync(), prior to
1285  * it being committed to an lwb; this can happen if a thread calling
1286  * zil_commit() is racing with spa_sync().
1287  */
1288 static void
1289 zil_commit_waiter_skip(zil_commit_waiter_t *zcw)
1290 {
1291 	mutex_enter(&zcw->zcw_lock);
1292 	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1293 	zcw->zcw_done = B_TRUE;
1294 	cv_broadcast(&zcw->zcw_cv);
1295 	mutex_exit(&zcw->zcw_lock);
1296 }
1297 
1298 /*
1299  * This function is used when the given waiter is to be linked into an
1300  * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb.
1301  * At this point, the waiter will no longer be referenced by the itx,
1302  * and instead, will be referenced by the lwb.
1303  */
1304 static void
1305 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb)
1306 {
1307 	/*
1308 	 * The lwb_waiters field of the lwb is protected by the zilog's
1309 	 * zl_issuer_lock while the lwb is open and zl_lock otherwise.
1310 	 * zl_issuer_lock also protects leaving the open state.
1311 	 * zcw_lwb setting is protected by zl_issuer_lock and state !=
1312 	 * flush_done, which transition is protected by zl_lock.
1313 	 */
1314 	ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_issuer_lock));
1315 	IMPLY(lwb->lwb_state != LWB_STATE_OPENED,
1316 	    MUTEX_HELD(&lwb->lwb_zilog->zl_lock));
1317 	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_NEW);
1318 	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1319 
1320 	ASSERT(!list_link_active(&zcw->zcw_node));
1321 	list_insert_tail(&lwb->lwb_waiters, zcw);
1322 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
1323 	zcw->zcw_lwb = lwb;
1324 }
1325 
1326 /*
1327  * This function is used when zio_alloc_zil() fails to allocate a ZIL
1328  * block, and the given waiter must be linked to the "nolwb waiters"
1329  * list inside of zil_process_commit_list().
1330  */
1331 static void
1332 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb)
1333 {
1334 	ASSERT(!list_link_active(&zcw->zcw_node));
1335 	list_insert_tail(nolwb, zcw);
1336 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
1337 }
1338 
1339 void
1340 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp)
1341 {
1342 	avl_tree_t *t = &lwb->lwb_vdev_tree;
1343 	avl_index_t where;
1344 	zil_vdev_node_t *zv, zvsearch;
1345 	int ndvas = BP_GET_NDVAS(bp);
1346 	int i;
1347 
1348 	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
1349 	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1350 
1351 	if (zil_nocacheflush)
1352 		return;
1353 
1354 	mutex_enter(&lwb->lwb_vdev_lock);
1355 	for (i = 0; i < ndvas; i++) {
1356 		zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
1357 		if (avl_find(t, &zvsearch, &where) == NULL) {
1358 			zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
1359 			zv->zv_vdev = zvsearch.zv_vdev;
1360 			avl_insert(t, zv, where);
1361 		}
1362 	}
1363 	mutex_exit(&lwb->lwb_vdev_lock);
1364 }
1365 
1366 static void
1367 zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb)
1368 {
1369 	avl_tree_t *src = &lwb->lwb_vdev_tree;
1370 	avl_tree_t *dst = &nlwb->lwb_vdev_tree;
1371 	void *cookie = NULL;
1372 	zil_vdev_node_t *zv;
1373 
1374 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1375 	ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
1376 	ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1377 
1378 	/*
1379 	 * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does
1380 	 * not need the protection of lwb_vdev_lock (it will only be modified
1381 	 * while holding zilog->zl_lock) as its writes and those of its
1382 	 * children have all completed.  The younger 'nlwb' may be waiting on
1383 	 * future writes to additional vdevs.
1384 	 */
1385 	mutex_enter(&nlwb->lwb_vdev_lock);
1386 	/*
1387 	 * Tear down the 'lwb' vdev tree, ensuring that entries which do not
1388 	 * exist in 'nlwb' are moved to it, freeing any would-be duplicates.
1389 	 */
1390 	while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) {
1391 		avl_index_t where;
1392 
1393 		if (avl_find(dst, zv, &where) == NULL) {
1394 			avl_insert(dst, zv, where);
1395 		} else {
1396 			kmem_free(zv, sizeof (*zv));
1397 		}
1398 	}
1399 	mutex_exit(&nlwb->lwb_vdev_lock);
1400 }
1401 
1402 void
1403 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg)
1404 {
1405 	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1406 }
1407 
1408 /*
1409  * This function is a called after all vdevs associated with a given lwb
1410  * write have completed their DKIOCFLUSHWRITECACHE command; or as soon
1411  * as the lwb write completes, if "zil_nocacheflush" is set. Further,
1412  * all "previous" lwb's will have completed before this function is
1413  * called; i.e. this function is called for all previous lwbs before
1414  * it's called for "this" lwb (enforced via zio the dependencies
1415  * configured in zil_lwb_set_zio_dependency()).
1416  *
1417  * The intention is for this function to be called as soon as the
1418  * contents of an lwb are considered "stable" on disk, and will survive
1419  * any sudden loss of power. At this point, any threads waiting for the
1420  * lwb to reach this state are signalled, and the "waiter" structures
1421  * are marked "done".
1422  */
1423 static void
1424 zil_lwb_flush_vdevs_done(zio_t *zio)
1425 {
1426 	lwb_t *lwb = zio->io_private;
1427 	zilog_t *zilog = lwb->lwb_zilog;
1428 	zil_commit_waiter_t *zcw;
1429 	itx_t *itx;
1430 
1431 	spa_config_exit(zilog->zl_spa, SCL_STATE, lwb);
1432 
1433 	hrtime_t t = gethrtime() - lwb->lwb_issued_timestamp;
1434 
1435 	mutex_enter(&zilog->zl_lock);
1436 
1437 	zilog->zl_last_lwb_latency = (zilog->zl_last_lwb_latency * 7 + t) / 8;
1438 
1439 	lwb->lwb_root_zio = NULL;
1440 
1441 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1442 	lwb->lwb_state = LWB_STATE_FLUSH_DONE;
1443 
1444 	if (zilog->zl_last_lwb_opened == lwb) {
1445 		/*
1446 		 * Remember the highest committed log sequence number
1447 		 * for ztest. We only update this value when all the log
1448 		 * writes succeeded, because ztest wants to ASSERT that
1449 		 * it got the whole log chain.
1450 		 */
1451 		zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1452 	}
1453 
1454 	while ((itx = list_remove_head(&lwb->lwb_itxs)) != NULL)
1455 		zil_itx_destroy(itx);
1456 
1457 	while ((zcw = list_remove_head(&lwb->lwb_waiters)) != NULL) {
1458 		mutex_enter(&zcw->zcw_lock);
1459 
1460 		ASSERT3P(zcw->zcw_lwb, ==, lwb);
1461 		zcw->zcw_lwb = NULL;
1462 		/*
1463 		 * We expect any ZIO errors from child ZIOs to have been
1464 		 * propagated "up" to this specific LWB's root ZIO, in
1465 		 * order for this error handling to work correctly. This
1466 		 * includes ZIO errors from either this LWB's write or
1467 		 * flush, as well as any errors from other dependent LWBs
1468 		 * (e.g. a root LWB ZIO that might be a child of this LWB).
1469 		 *
1470 		 * With that said, it's important to note that LWB flush
1471 		 * errors are not propagated up to the LWB root ZIO.
1472 		 * This is incorrect behavior, and results in VDEV flush
1473 		 * errors not being handled correctly here. See the
1474 		 * comment above the call to "zio_flush" for details.
1475 		 */
1476 
1477 		zcw->zcw_zio_error = zio->io_error;
1478 
1479 		ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1480 		zcw->zcw_done = B_TRUE;
1481 		cv_broadcast(&zcw->zcw_cv);
1482 
1483 		mutex_exit(&zcw->zcw_lock);
1484 	}
1485 
1486 	uint64_t txg = lwb->lwb_issued_txg;
1487 
1488 	/* Once we drop the lock, lwb may be freed by zil_sync(). */
1489 	mutex_exit(&zilog->zl_lock);
1490 
1491 	mutex_enter(&zilog->zl_lwb_io_lock);
1492 	ASSERT3U(zilog->zl_lwb_inflight[txg & TXG_MASK], >, 0);
1493 	zilog->zl_lwb_inflight[txg & TXG_MASK]--;
1494 	if (zilog->zl_lwb_inflight[txg & TXG_MASK] == 0)
1495 		cv_broadcast(&zilog->zl_lwb_io_cv);
1496 	mutex_exit(&zilog->zl_lwb_io_lock);
1497 }
1498 
1499 /*
1500  * Wait for the completion of all issued write/flush of that txg provided.
1501  * It guarantees zil_lwb_flush_vdevs_done() is called and returned.
1502  */
1503 static void
1504 zil_lwb_flush_wait_all(zilog_t *zilog, uint64_t txg)
1505 {
1506 	ASSERT3U(txg, ==, spa_syncing_txg(zilog->zl_spa));
1507 
1508 	mutex_enter(&zilog->zl_lwb_io_lock);
1509 	while (zilog->zl_lwb_inflight[txg & TXG_MASK] > 0)
1510 		cv_wait(&zilog->zl_lwb_io_cv, &zilog->zl_lwb_io_lock);
1511 	mutex_exit(&zilog->zl_lwb_io_lock);
1512 
1513 #ifdef ZFS_DEBUG
1514 	mutex_enter(&zilog->zl_lock);
1515 	mutex_enter(&zilog->zl_lwb_io_lock);
1516 	lwb_t *lwb = list_head(&zilog->zl_lwb_list);
1517 	while (lwb != NULL) {
1518 		if (lwb->lwb_issued_txg <= txg) {
1519 			ASSERT(lwb->lwb_state != LWB_STATE_ISSUED);
1520 			ASSERT(lwb->lwb_state != LWB_STATE_WRITE_DONE);
1521 			IMPLY(lwb->lwb_issued_txg > 0,
1522 			    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
1523 		}
1524 		IMPLY(lwb->lwb_state == LWB_STATE_WRITE_DONE ||
1525 		    lwb->lwb_state == LWB_STATE_FLUSH_DONE,
1526 		    lwb->lwb_buf == NULL);
1527 		lwb = list_next(&zilog->zl_lwb_list, lwb);
1528 	}
1529 	mutex_exit(&zilog->zl_lwb_io_lock);
1530 	mutex_exit(&zilog->zl_lock);
1531 #endif
1532 }
1533 
1534 /*
1535  * This is called when an lwb's write zio completes. The callback's
1536  * purpose is to issue the DKIOCFLUSHWRITECACHE commands for the vdevs
1537  * in the lwb's lwb_vdev_tree. The tree will contain the vdevs involved
1538  * in writing out this specific lwb's data, and in the case that cache
1539  * flushes have been deferred, vdevs involved in writing the data for
1540  * previous lwbs. The writes corresponding to all the vdevs in the
1541  * lwb_vdev_tree will have completed by the time this is called, due to
1542  * the zio dependencies configured in zil_lwb_set_zio_dependency(),
1543  * which takes deferred flushes into account. The lwb will be "done"
1544  * once zil_lwb_flush_vdevs_done() is called, which occurs in the zio
1545  * completion callback for the lwb's root zio.
1546  */
1547 static void
1548 zil_lwb_write_done(zio_t *zio)
1549 {
1550 	lwb_t *lwb = zio->io_private;
1551 	spa_t *spa = zio->io_spa;
1552 	zilog_t *zilog = lwb->lwb_zilog;
1553 	avl_tree_t *t = &lwb->lwb_vdev_tree;
1554 	void *cookie = NULL;
1555 	zil_vdev_node_t *zv;
1556 	lwb_t *nlwb;
1557 
1558 	ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0);
1559 
1560 	abd_free(zio->io_abd);
1561 	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1562 	lwb->lwb_buf = NULL;
1563 
1564 	mutex_enter(&zilog->zl_lock);
1565 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED);
1566 	lwb->lwb_state = LWB_STATE_WRITE_DONE;
1567 	lwb->lwb_child_zio = NULL;
1568 	lwb->lwb_write_zio = NULL;
1569 
1570 	/*
1571 	 * If nlwb is not yet issued, zil_lwb_set_zio_dependency() is not
1572 	 * called for it yet, and when it will be, it won't be able to make
1573 	 * its write ZIO a parent this ZIO.  In such case we can not defer
1574 	 * our flushes or below may be a race between the done callbacks.
1575 	 */
1576 	nlwb = list_next(&zilog->zl_lwb_list, lwb);
1577 	if (nlwb && nlwb->lwb_state != LWB_STATE_ISSUED)
1578 		nlwb = NULL;
1579 	mutex_exit(&zilog->zl_lock);
1580 
1581 	if (avl_numnodes(t) == 0)
1582 		return;
1583 
1584 	/*
1585 	 * If there was an IO error, we're not going to call zio_flush()
1586 	 * on these vdevs, so we simply empty the tree and free the
1587 	 * nodes. We avoid calling zio_flush() since there isn't any
1588 	 * good reason for doing so, after the lwb block failed to be
1589 	 * written out.
1590 	 *
1591 	 * Additionally, we don't perform any further error handling at
1592 	 * this point (e.g. setting "zcw_zio_error" appropriately), as
1593 	 * we expect that to occur in "zil_lwb_flush_vdevs_done" (thus,
1594 	 * we expect any error seen here, to have been propagated to
1595 	 * that function).
1596 	 */
1597 	if (zio->io_error != 0) {
1598 		while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
1599 			kmem_free(zv, sizeof (*zv));
1600 		return;
1601 	}
1602 
1603 	/*
1604 	 * If this lwb does not have any threads waiting for it to
1605 	 * complete, we want to defer issuing the DKIOCFLUSHWRITECACHE
1606 	 * command to the vdevs written to by "this" lwb, and instead
1607 	 * rely on the "next" lwb to handle the DKIOCFLUSHWRITECACHE
1608 	 * command for those vdevs. Thus, we merge the vdev tree of
1609 	 * "this" lwb with the vdev tree of the "next" lwb in the list,
1610 	 * and assume the "next" lwb will handle flushing the vdevs (or
1611 	 * deferring the flush(s) again).
1612 	 *
1613 	 * This is a useful performance optimization, especially for
1614 	 * workloads with lots of async write activity and few sync
1615 	 * write and/or fsync activity, as it has the potential to
1616 	 * coalesce multiple flush commands to a vdev into one.
1617 	 */
1618 	if (list_is_empty(&lwb->lwb_waiters) && nlwb != NULL) {
1619 		zil_lwb_flush_defer(lwb, nlwb);
1620 		ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
1621 		return;
1622 	}
1623 
1624 	while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
1625 		vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
1626 		if (vd != NULL) {
1627 			/*
1628 			 * The "ZIO_FLAG_DONT_PROPAGATE" is currently
1629 			 * always used within "zio_flush". This means,
1630 			 * any errors when flushing the vdev(s), will
1631 			 * (unfortunately) not be handled correctly,
1632 			 * since these "zio_flush" errors will not be
1633 			 * propagated up to "zil_lwb_flush_vdevs_done".
1634 			 */
1635 			zio_flush(lwb->lwb_root_zio, vd);
1636 		}
1637 		kmem_free(zv, sizeof (*zv));
1638 	}
1639 }
1640 
1641 /*
1642  * Build the zio dependency chain, which is used to preserve the ordering of
1643  * lwb completions that is required by the semantics of the ZIL. Each new lwb
1644  * zio becomes a parent of the previous lwb zio, such that the new lwb's zio
1645  * cannot complete until the previous lwb's zio completes.
1646  *
1647  * This is required by the semantics of zil_commit(): the commit waiters
1648  * attached to the lwbs will be woken in the lwb zio's completion callback,
1649  * so this zio dependency graph ensures the waiters are woken in the correct
1650  * order (the same order the lwbs were created).
1651  */
1652 static void
1653 zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb)
1654 {
1655 	ASSERT(MUTEX_HELD(&zilog->zl_lock));
1656 
1657 	lwb_t *prev_lwb = list_prev(&zilog->zl_lwb_list, lwb);
1658 	if (prev_lwb == NULL ||
1659 	    prev_lwb->lwb_state == LWB_STATE_FLUSH_DONE)
1660 		return;
1661 
1662 	/*
1663 	 * If the previous lwb's write hasn't already completed, we also want
1664 	 * to order the completion of the lwb write zios (above, we only order
1665 	 * the completion of the lwb root zios). This is required because of
1666 	 * how we can defer the DKIOCFLUSHWRITECACHE commands for each lwb.
1667 	 *
1668 	 * When the DKIOCFLUSHWRITECACHE commands are deferred, the previous
1669 	 * lwb will rely on this lwb to flush the vdevs written to by that
1670 	 * previous lwb. Thus, we need to ensure this lwb doesn't issue the
1671 	 * flush until after the previous lwb's write completes. We ensure
1672 	 * this ordering by setting the zio parent/child relationship here.
1673 	 *
1674 	 * Without this relationship on the lwb's write zio, it's possible
1675 	 * for this lwb's write to complete prior to the previous lwb's write
1676 	 * completing; and thus, the vdevs for the previous lwb would be
1677 	 * flushed prior to that lwb's data being written to those vdevs (the
1678 	 * vdevs are flushed in the lwb write zio's completion handler,
1679 	 * zil_lwb_write_done()).
1680 	 */
1681 	if (prev_lwb->lwb_state == LWB_STATE_ISSUED) {
1682 		ASSERT3P(prev_lwb->lwb_write_zio, !=, NULL);
1683 		zio_add_child(lwb->lwb_write_zio, prev_lwb->lwb_write_zio);
1684 	} else {
1685 		ASSERT3S(prev_lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1686 	}
1687 
1688 	ASSERT3P(prev_lwb->lwb_root_zio, !=, NULL);
1689 	zio_add_child(lwb->lwb_root_zio, prev_lwb->lwb_root_zio);
1690 }
1691 
1692 
1693 /*
1694  * This function's purpose is to "open" an lwb such that it is ready to
1695  * accept new itxs being committed to it. This function is idempotent; if
1696  * the passed in lwb has already been opened, it is essentially a no-op.
1697  */
1698 static void
1699 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb)
1700 {
1701 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1702 
1703 	if (lwb->lwb_state != LWB_STATE_NEW) {
1704 		ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1705 		return;
1706 	}
1707 
1708 	mutex_enter(&zilog->zl_lock);
1709 	lwb->lwb_state = LWB_STATE_OPENED;
1710 	zilog->zl_last_lwb_opened = lwb;
1711 	mutex_exit(&zilog->zl_lock);
1712 }
1713 
1714 /*
1715  * Maximum block size used by the ZIL.  This is picked up when the ZIL is
1716  * initialized.  Otherwise this should not be used directly; see
1717  * zl_max_block_size instead.
1718  */
1719 static uint_t zil_maxblocksize = SPA_OLD_MAXBLOCKSIZE;
1720 
1721 /*
1722  * Plan splitting of the provided burst size between several blocks.
1723  */
1724 static uint_t
1725 zil_lwb_plan(zilog_t *zilog, uint64_t size, uint_t *minsize)
1726 {
1727 	uint_t md = zilog->zl_max_block_size - sizeof (zil_chain_t);
1728 
1729 	if (size <= md) {
1730 		/*
1731 		 * Small bursts are written as-is in one block.
1732 		 */
1733 		*minsize = size;
1734 		return (size);
1735 	} else if (size > 8 * md) {
1736 		/*
1737 		 * Big bursts use maximum blocks.  The first block size
1738 		 * is hard to predict, but it does not really matter.
1739 		 */
1740 		*minsize = 0;
1741 		return (md);
1742 	}
1743 
1744 	/*
1745 	 * Medium bursts try to divide evenly to better utilize several SLOG
1746 	 * VDEVs.  The first block size we predict assuming the worst case of
1747 	 * maxing out others.  Fall back to using maximum blocks if due to
1748 	 * large records or wasted space we can not predict anything better.
1749 	 */
1750 	uint_t s = size;
1751 	uint_t n = DIV_ROUND_UP(s, md - sizeof (lr_write_t));
1752 	uint_t chunk = DIV_ROUND_UP(s, n);
1753 	uint_t waste = zil_max_waste_space(zilog);
1754 	waste = MAX(waste, zilog->zl_cur_max);
1755 	if (chunk <= md - waste) {
1756 		*minsize = MAX(s - (md - waste) * (n - 1), waste);
1757 		return (chunk);
1758 	} else {
1759 		*minsize = 0;
1760 		return (md);
1761 	}
1762 }
1763 
1764 /*
1765  * Try to predict next block size based on previous history.  Make prediction
1766  * sufficient for 7 of 8 previous bursts.  Don't try to save if the saving is
1767  * less then 50%, extra writes may cost more, but we don't want single spike
1768  * to badly affect our predictions.
1769  */
1770 static uint_t
1771 zil_lwb_predict(zilog_t *zilog)
1772 {
1773 	uint_t m, o;
1774 
1775 	/* If we are in the middle of a burst, take it into account also. */
1776 	if (zilog->zl_cur_size > 0) {
1777 		o = zil_lwb_plan(zilog, zilog->zl_cur_size, &m);
1778 	} else {
1779 		o = UINT_MAX;
1780 		m = 0;
1781 	}
1782 
1783 	/* Find minimum optimal size.  We don't need to go below that. */
1784 	for (int i = 0; i < ZIL_BURSTS; i++)
1785 		o = MIN(o, zilog->zl_prev_opt[i]);
1786 
1787 	/* Find two biggest minimal first block sizes above the optimal. */
1788 	uint_t m1 = MAX(m, o), m2 = o;
1789 	for (int i = 0; i < ZIL_BURSTS; i++) {
1790 		m = zilog->zl_prev_min[i];
1791 		if (m >= m1) {
1792 			m2 = m1;
1793 			m1 = m;
1794 		} else if (m > m2) {
1795 			m2 = m;
1796 		}
1797 	}
1798 
1799 	/*
1800 	 * If second minimum size gives 50% saving -- use it.  It may cost us
1801 	 * one additional write later, but the space saving is just too big.
1802 	 */
1803 	return ((m1 < m2 * 2) ? m1 : m2);
1804 }
1805 
1806 /*
1807  * Close the log block for being issued and allocate the next one.
1808  * Has to be called under zl_issuer_lock to chain more lwbs.
1809  */
1810 static lwb_t *
1811 zil_lwb_write_close(zilog_t *zilog, lwb_t *lwb, lwb_state_t state)
1812 {
1813 	uint64_t blksz, plan, plan2;
1814 
1815 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1816 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1817 	lwb->lwb_state = LWB_STATE_CLOSED;
1818 
1819 	/*
1820 	 * If there was an allocation failure then returned NULL will trigger
1821 	 * zil_commit_writer_stall() at the caller.  This is inherently racy,
1822 	 * since allocation may not have happened yet.
1823 	 */
1824 	if (lwb->lwb_error != 0)
1825 		return (NULL);
1826 
1827 	/*
1828 	 * Log blocks are pre-allocated.  Here we select the size of the next
1829 	 * block, based on what's left of this burst and the previous history.
1830 	 * While we try to only write used part of the block, we can't just
1831 	 * always allocate the maximum block size because we can exhaust all
1832 	 * available pool log space, so we try to be reasonable.
1833 	 */
1834 	if (zilog->zl_cur_left > 0) {
1835 		/*
1836 		 * We are in the middle of a burst and know how much is left.
1837 		 * But if workload is multi-threaded there may be more soon.
1838 		 * Try to predict what can it be and plan for the worst case.
1839 		 */
1840 		uint_t m;
1841 		plan = zil_lwb_plan(zilog, zilog->zl_cur_left, &m);
1842 		if (zilog->zl_parallel) {
1843 			plan2 = zil_lwb_plan(zilog, zilog->zl_cur_left +
1844 			    zil_lwb_predict(zilog), &m);
1845 			if (plan < plan2)
1846 				plan = plan2;
1847 		}
1848 	} else {
1849 		/*
1850 		 * The previous burst is done and we can only predict what
1851 		 * will come next.
1852 		 */
1853 		plan = zil_lwb_predict(zilog);
1854 	}
1855 	blksz = plan + sizeof (zil_chain_t);
1856 	blksz = P2ROUNDUP_TYPED(blksz, ZIL_MIN_BLKSZ, uint64_t);
1857 	blksz = MIN(blksz, zilog->zl_max_block_size);
1858 	DTRACE_PROBE3(zil__block__size, zilog_t *, zilog, uint64_t, blksz,
1859 	    uint64_t, plan);
1860 
1861 	return (zil_alloc_lwb(zilog, blksz, NULL, 0, 0, state));
1862 }
1863 
1864 /*
1865  * Finalize previously closed block and issue the write zio.
1866  */
1867 static void
1868 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb)
1869 {
1870 	spa_t *spa = zilog->zl_spa;
1871 	zil_chain_t *zilc;
1872 	boolean_t slog;
1873 	zbookmark_phys_t zb;
1874 	zio_priority_t prio;
1875 	int error;
1876 
1877 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_CLOSED);
1878 
1879 	/* Actually fill the lwb with the data. */
1880 	for (itx_t *itx = list_head(&lwb->lwb_itxs); itx;
1881 	    itx = list_next(&lwb->lwb_itxs, itx))
1882 		zil_lwb_commit(zilog, lwb, itx);
1883 	lwb->lwb_nused = lwb->lwb_nfilled;
1884 	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_nmax);
1885 
1886 	lwb->lwb_root_zio = zio_root(spa, zil_lwb_flush_vdevs_done, lwb,
1887 	    ZIO_FLAG_CANFAIL);
1888 
1889 	/*
1890 	 * The lwb is now ready to be issued, but it can be only if it already
1891 	 * got its block pointer allocated or the allocation has failed.
1892 	 * Otherwise leave it as-is, relying on some other thread to issue it
1893 	 * after allocating its block pointer via calling zil_lwb_write_issue()
1894 	 * for the previous lwb(s) in the chain.
1895 	 */
1896 	mutex_enter(&zilog->zl_lock);
1897 	lwb->lwb_state = LWB_STATE_READY;
1898 	if (BP_IS_HOLE(&lwb->lwb_blk) && lwb->lwb_error == 0) {
1899 		mutex_exit(&zilog->zl_lock);
1900 		return;
1901 	}
1902 	mutex_exit(&zilog->zl_lock);
1903 
1904 next_lwb:
1905 	if (lwb->lwb_slim)
1906 		zilc = (zil_chain_t *)lwb->lwb_buf;
1907 	else
1908 		zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_nmax);
1909 	int wsz = lwb->lwb_sz;
1910 	if (lwb->lwb_error == 0) {
1911 		abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf, lwb->lwb_sz);
1912 		if (!lwb->lwb_slog || zilog->zl_cur_size <= zil_slog_bulk)
1913 			prio = ZIO_PRIORITY_SYNC_WRITE;
1914 		else
1915 			prio = ZIO_PRIORITY_ASYNC_WRITE;
1916 		SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1917 		    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
1918 		    lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
1919 		lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio, spa, 0,
1920 		    &lwb->lwb_blk, lwb_abd, lwb->lwb_sz, zil_lwb_write_done,
1921 		    lwb, prio, ZIO_FLAG_CANFAIL, &zb);
1922 		zil_lwb_add_block(lwb, &lwb->lwb_blk);
1923 
1924 		if (lwb->lwb_slim) {
1925 			/* For Slim ZIL only write what is used. */
1926 			wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ,
1927 			    int);
1928 			ASSERT3S(wsz, <=, lwb->lwb_sz);
1929 			zio_shrink(lwb->lwb_write_zio, wsz);
1930 			wsz = lwb->lwb_write_zio->io_size;
1931 		}
1932 		memset(lwb->lwb_buf + lwb->lwb_nused, 0, wsz - lwb->lwb_nused);
1933 		zilc->zc_pad = 0;
1934 		zilc->zc_nused = lwb->lwb_nused;
1935 		zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1936 	} else {
1937 		/*
1938 		 * We can't write the lwb if there was an allocation failure,
1939 		 * so create a null zio instead just to maintain dependencies.
1940 		 */
1941 		lwb->lwb_write_zio = zio_null(lwb->lwb_root_zio, spa, NULL,
1942 		    zil_lwb_write_done, lwb, ZIO_FLAG_CANFAIL);
1943 		lwb->lwb_write_zio->io_error = lwb->lwb_error;
1944 	}
1945 	if (lwb->lwb_child_zio)
1946 		zio_add_child(lwb->lwb_write_zio, lwb->lwb_child_zio);
1947 
1948 	/*
1949 	 * Open transaction to allocate the next block pointer.
1950 	 */
1951 	dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
1952 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));
1953 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1954 	uint64_t txg = dmu_tx_get_txg(tx);
1955 
1956 	/*
1957 	 * Allocate next the block pointer unless we are already in error.
1958 	 */
1959 	lwb_t *nlwb = list_next(&zilog->zl_lwb_list, lwb);
1960 	blkptr_t *bp = &zilc->zc_next_blk;
1961 	BP_ZERO(bp);
1962 	error = lwb->lwb_error;
1963 	if (error == 0) {
1964 		error = zio_alloc_zil(spa, zilog->zl_os, txg, bp, nlwb->lwb_sz,
1965 		    &slog);
1966 	}
1967 	if (error == 0) {
1968 		ASSERT3U(BP_GET_LOGICAL_BIRTH(bp), ==, txg);
1969 		BP_SET_CHECKSUM(bp, nlwb->lwb_slim ? ZIO_CHECKSUM_ZILOG2 :
1970 		    ZIO_CHECKSUM_ZILOG);
1971 		bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1972 		bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1973 	}
1974 
1975 	/*
1976 	 * Reduce TXG open time by incrementing inflight counter and committing
1977 	 * the transaciton.  zil_sync() will wait for it to return to zero.
1978 	 */
1979 	mutex_enter(&zilog->zl_lwb_io_lock);
1980 	lwb->lwb_issued_txg = txg;
1981 	zilog->zl_lwb_inflight[txg & TXG_MASK]++;
1982 	zilog->zl_lwb_max_issued_txg = MAX(txg, zilog->zl_lwb_max_issued_txg);
1983 	mutex_exit(&zilog->zl_lwb_io_lock);
1984 	dmu_tx_commit(tx);
1985 
1986 	spa_config_enter(spa, SCL_STATE, lwb, RW_READER);
1987 
1988 	/*
1989 	 * We've completed all potentially blocking operations.  Update the
1990 	 * nlwb and allow it proceed without possible lock order reversals.
1991 	 */
1992 	mutex_enter(&zilog->zl_lock);
1993 	zil_lwb_set_zio_dependency(zilog, lwb);
1994 	lwb->lwb_state = LWB_STATE_ISSUED;
1995 
1996 	if (nlwb) {
1997 		nlwb->lwb_blk = *bp;
1998 		nlwb->lwb_error = error;
1999 		nlwb->lwb_slog = slog;
2000 		nlwb->lwb_alloc_txg = txg;
2001 		if (nlwb->lwb_state != LWB_STATE_READY)
2002 			nlwb = NULL;
2003 	}
2004 	mutex_exit(&zilog->zl_lock);
2005 
2006 	if (lwb->lwb_slog) {
2007 		ZIL_STAT_BUMP(zilog, zil_itx_metaslab_slog_count);
2008 		ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_bytes,
2009 		    lwb->lwb_nused);
2010 		ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_write,
2011 		    wsz);
2012 		ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_alloc,
2013 		    BP_GET_LSIZE(&lwb->lwb_blk));
2014 	} else {
2015 		ZIL_STAT_BUMP(zilog, zil_itx_metaslab_normal_count);
2016 		ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_bytes,
2017 		    lwb->lwb_nused);
2018 		ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_write,
2019 		    wsz);
2020 		ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_alloc,
2021 		    BP_GET_LSIZE(&lwb->lwb_blk));
2022 	}
2023 	lwb->lwb_issued_timestamp = gethrtime();
2024 	if (lwb->lwb_child_zio)
2025 		zio_nowait(lwb->lwb_child_zio);
2026 	zio_nowait(lwb->lwb_write_zio);
2027 	zio_nowait(lwb->lwb_root_zio);
2028 
2029 	/*
2030 	 * If nlwb was ready when we gave it the block pointer,
2031 	 * it is on us to issue it and possibly following ones.
2032 	 */
2033 	lwb = nlwb;
2034 	if (lwb)
2035 		goto next_lwb;
2036 }
2037 
2038 /*
2039  * Maximum amount of data that can be put into single log block.
2040  */
2041 uint64_t
2042 zil_max_log_data(zilog_t *zilog, size_t hdrsize)
2043 {
2044 	return (zilog->zl_max_block_size - sizeof (zil_chain_t) - hdrsize);
2045 }
2046 
2047 /*
2048  * Maximum amount of log space we agree to waste to reduce number of
2049  * WR_NEED_COPY chunks to reduce zl_get_data() overhead (~6%).
2050  */
2051 static inline uint64_t
2052 zil_max_waste_space(zilog_t *zilog)
2053 {
2054 	return (zil_max_log_data(zilog, sizeof (lr_write_t)) / 16);
2055 }
2056 
2057 /*
2058  * Maximum amount of write data for WR_COPIED.  For correctness, consumers
2059  * must fall back to WR_NEED_COPY if we can't fit the entire record into one
2060  * maximum sized log block, because each WR_COPIED record must fit in a
2061  * single log block.  Below that it is a tradeoff of additional memory copy
2062  * and possibly worse log space efficiency vs additional range lock/unlock.
2063  */
2064 static uint_t zil_maxcopied = 7680;
2065 
2066 uint64_t
2067 zil_max_copied_data(zilog_t *zilog)
2068 {
2069 	uint64_t max_data = zil_max_log_data(zilog, sizeof (lr_write_t));
2070 	return (MIN(max_data, zil_maxcopied));
2071 }
2072 
2073 static uint64_t
2074 zil_itx_record_size(itx_t *itx)
2075 {
2076 	lr_t *lr = &itx->itx_lr;
2077 
2078 	if (lr->lrc_txtype == TX_COMMIT)
2079 		return (0);
2080 	ASSERT3U(lr->lrc_reclen, >=, sizeof (lr_t));
2081 	return (lr->lrc_reclen);
2082 }
2083 
2084 static uint64_t
2085 zil_itx_data_size(itx_t *itx)
2086 {
2087 	lr_t *lr = &itx->itx_lr;
2088 	lr_write_t *lrw = (lr_write_t *)lr;
2089 
2090 	if (lr->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
2091 		ASSERT3U(lr->lrc_reclen, ==, sizeof (lr_write_t));
2092 		return (P2ROUNDUP_TYPED(lrw->lr_length, sizeof (uint64_t),
2093 		    uint64_t));
2094 	}
2095 	return (0);
2096 }
2097 
2098 static uint64_t
2099 zil_itx_full_size(itx_t *itx)
2100 {
2101 	lr_t *lr = &itx->itx_lr;
2102 
2103 	if (lr->lrc_txtype == TX_COMMIT)
2104 		return (0);
2105 	ASSERT3U(lr->lrc_reclen, >=, sizeof (lr_t));
2106 	return (lr->lrc_reclen + zil_itx_data_size(itx));
2107 }
2108 
2109 /*
2110  * Estimate space needed in the lwb for the itx.  Allocate more lwbs or
2111  * split the itx as needed, but don't touch the actual transaction data.
2112  * Has to be called under zl_issuer_lock to call zil_lwb_write_close()
2113  * to chain more lwbs.
2114  */
2115 static lwb_t *
2116 zil_lwb_assign(zilog_t *zilog, lwb_t *lwb, itx_t *itx, list_t *ilwbs)
2117 {
2118 	itx_t *citx;
2119 	lr_t *lr, *clr;
2120 	lr_write_t *lrw;
2121 	uint64_t dlen, dnow, lwb_sp, reclen, max_log_data;
2122 
2123 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2124 	ASSERT3P(lwb, !=, NULL);
2125 	ASSERT3P(lwb->lwb_buf, !=, NULL);
2126 
2127 	zil_lwb_write_open(zilog, lwb);
2128 
2129 	lr = &itx->itx_lr;
2130 	lrw = (lr_write_t *)lr;
2131 
2132 	/*
2133 	 * A commit itx doesn't represent any on-disk state; instead
2134 	 * it's simply used as a place holder on the commit list, and
2135 	 * provides a mechanism for attaching a "commit waiter" onto the
2136 	 * correct lwb (such that the waiter can be signalled upon
2137 	 * completion of that lwb). Thus, we don't process this itx's
2138 	 * log record if it's a commit itx (these itx's don't have log
2139 	 * records), and instead link the itx's waiter onto the lwb's
2140 	 * list of waiters.
2141 	 *
2142 	 * For more details, see the comment above zil_commit().
2143 	 */
2144 	if (lr->lrc_txtype == TX_COMMIT) {
2145 		zil_commit_waiter_link_lwb(itx->itx_private, lwb);
2146 		list_insert_tail(&lwb->lwb_itxs, itx);
2147 		return (lwb);
2148 	}
2149 
2150 	reclen = lr->lrc_reclen;
2151 	ASSERT3U(reclen, >=, sizeof (lr_t));
2152 	ASSERT3U(reclen, <=, zil_max_log_data(zilog, 0));
2153 	dlen = zil_itx_data_size(itx);
2154 
2155 cont:
2156 	/*
2157 	 * If this record won't fit in the current log block, start a new one.
2158 	 * For WR_NEED_COPY optimize layout for minimal number of chunks.
2159 	 */
2160 	lwb_sp = lwb->lwb_nmax - lwb->lwb_nused;
2161 	max_log_data = zil_max_log_data(zilog, sizeof (lr_write_t));
2162 	if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
2163 	    lwb_sp < zil_max_waste_space(zilog) &&
2164 	    (dlen % max_log_data == 0 ||
2165 	    lwb_sp < reclen + dlen % max_log_data))) {
2166 		list_insert_tail(ilwbs, lwb);
2167 		lwb = zil_lwb_write_close(zilog, lwb, LWB_STATE_OPENED);
2168 		if (lwb == NULL)
2169 			return (NULL);
2170 		lwb_sp = lwb->lwb_nmax - lwb->lwb_nused;
2171 	}
2172 
2173 	/*
2174 	 * There must be enough space in the log block to hold reclen.
2175 	 * For WR_COPIED, we need to fit the whole record in one block,
2176 	 * and reclen is the write record header size + the data size.
2177 	 * For WR_NEED_COPY, we can create multiple records, splitting
2178 	 * the data into multiple blocks, so we only need to fit one
2179 	 * word of data per block; in this case reclen is just the header
2180 	 * size (no data).
2181 	 */
2182 	ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
2183 
2184 	dnow = MIN(dlen, lwb_sp - reclen);
2185 	if (dlen > dnow) {
2186 		ASSERT3U(lr->lrc_txtype, ==, TX_WRITE);
2187 		ASSERT3U(itx->itx_wr_state, ==, WR_NEED_COPY);
2188 		citx = zil_itx_clone(itx);
2189 		clr = &citx->itx_lr;
2190 		lr_write_t *clrw = (lr_write_t *)clr;
2191 		clrw->lr_length = dnow;
2192 		lrw->lr_offset += dnow;
2193 		lrw->lr_length -= dnow;
2194 		zilog->zl_cur_left -= dnow;
2195 	} else {
2196 		citx = itx;
2197 		clr = lr;
2198 	}
2199 
2200 	/*
2201 	 * We're actually making an entry, so update lrc_seq to be the
2202 	 * log record sequence number.  Note that this is generally not
2203 	 * equal to the itx sequence number because not all transactions
2204 	 * are synchronous, and sometimes spa_sync() gets there first.
2205 	 */
2206 	clr->lrc_seq = ++zilog->zl_lr_seq;
2207 
2208 	lwb->lwb_nused += reclen + dnow;
2209 	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_nmax);
2210 	ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
2211 
2212 	zil_lwb_add_txg(lwb, lr->lrc_txg);
2213 	list_insert_tail(&lwb->lwb_itxs, citx);
2214 
2215 	dlen -= dnow;
2216 	if (dlen > 0)
2217 		goto cont;
2218 
2219 	if (lr->lrc_txtype == TX_WRITE &&
2220 	    lr->lrc_txg > spa_freeze_txg(zilog->zl_spa))
2221 		txg_wait_synced(zilog->zl_dmu_pool, lr->lrc_txg);
2222 
2223 	return (lwb);
2224 }
2225 
2226 /*
2227  * Fill the actual transaction data into the lwb, following zil_lwb_assign().
2228  * Does not require locking.
2229  */
2230 static void
2231 zil_lwb_commit(zilog_t *zilog, lwb_t *lwb, itx_t *itx)
2232 {
2233 	lr_t *lr, *lrb;
2234 	lr_write_t *lrw, *lrwb;
2235 	char *lr_buf;
2236 	uint64_t dlen, reclen;
2237 
2238 	lr = &itx->itx_lr;
2239 	lrw = (lr_write_t *)lr;
2240 
2241 	if (lr->lrc_txtype == TX_COMMIT)
2242 		return;
2243 
2244 	reclen = lr->lrc_reclen;
2245 	dlen = zil_itx_data_size(itx);
2246 	ASSERT3U(reclen + dlen, <=, lwb->lwb_nused - lwb->lwb_nfilled);
2247 
2248 	lr_buf = lwb->lwb_buf + lwb->lwb_nfilled;
2249 	memcpy(lr_buf, lr, reclen);
2250 	lrb = (lr_t *)lr_buf;		/* Like lr, but inside lwb. */
2251 	lrwb = (lr_write_t *)lrb;	/* Like lrw, but inside lwb. */
2252 
2253 	ZIL_STAT_BUMP(zilog, zil_itx_count);
2254 
2255 	/*
2256 	 * If it's a write, fetch the data or get its blkptr as appropriate.
2257 	 */
2258 	if (lr->lrc_txtype == TX_WRITE) {
2259 		if (itx->itx_wr_state == WR_COPIED) {
2260 			ZIL_STAT_BUMP(zilog, zil_itx_copied_count);
2261 			ZIL_STAT_INCR(zilog, zil_itx_copied_bytes,
2262 			    lrw->lr_length);
2263 		} else {
2264 			char *dbuf;
2265 			int error;
2266 
2267 			if (itx->itx_wr_state == WR_NEED_COPY) {
2268 				dbuf = lr_buf + reclen;
2269 				lrb->lrc_reclen += dlen;
2270 				ZIL_STAT_BUMP(zilog, zil_itx_needcopy_count);
2271 				ZIL_STAT_INCR(zilog, zil_itx_needcopy_bytes,
2272 				    dlen);
2273 			} else {
2274 				ASSERT3S(itx->itx_wr_state, ==, WR_INDIRECT);
2275 				dbuf = NULL;
2276 				ZIL_STAT_BUMP(zilog, zil_itx_indirect_count);
2277 				ZIL_STAT_INCR(zilog, zil_itx_indirect_bytes,
2278 				    lrw->lr_length);
2279 				if (lwb->lwb_child_zio == NULL) {
2280 					lwb->lwb_child_zio = zio_null(NULL,
2281 					    zilog->zl_spa, NULL, NULL, NULL,
2282 					    ZIO_FLAG_CANFAIL);
2283 				}
2284 			}
2285 
2286 			/*
2287 			 * The "lwb_child_zio" we pass in will become a child of
2288 			 * "lwb_write_zio", when one is created, so one will be
2289 			 * a parent of any zio's created by the "zl_get_data".
2290 			 * This way "lwb_write_zio" will first wait for children
2291 			 * block pointers before own writing, and then for their
2292 			 * writing completion before the vdev cache flushing.
2293 			 */
2294 			error = zilog->zl_get_data(itx->itx_private,
2295 			    itx->itx_gen, lrwb, dbuf, lwb,
2296 			    lwb->lwb_child_zio);
2297 			if (dbuf != NULL && error == 0) {
2298 				/* Zero any padding bytes in the last block. */
2299 				memset((char *)dbuf + lrwb->lr_length, 0,
2300 				    dlen - lrwb->lr_length);
2301 			}
2302 
2303 			/*
2304 			 * Typically, the only return values we should see from
2305 			 * ->zl_get_data() are 0, EIO, ENOENT, EEXIST or
2306 			 *  EALREADY. However, it is also possible to see other
2307 			 *  error values such as ENOSPC or EINVAL from
2308 			 *  dmu_read() -> dnode_hold() -> dnode_hold_impl() or
2309 			 *  ENXIO as well as a multitude of others from the
2310 			 *  block layer through dmu_buf_hold() -> dbuf_read()
2311 			 *  -> zio_wait(), as well as through dmu_read() ->
2312 			 *  dnode_hold() -> dnode_hold_impl() -> dbuf_read() ->
2313 			 *  zio_wait(). When these errors happen, we can assume
2314 			 *  that neither an immediate write nor an indirect
2315 			 *  write occurred, so we need to fall back to
2316 			 *  txg_wait_synced(). This is unusual, so we print to
2317 			 *  dmesg whenever one of these errors occurs.
2318 			 */
2319 			switch (error) {
2320 			case 0:
2321 				break;
2322 			default:
2323 				cmn_err(CE_WARN, "zil_lwb_commit() received "
2324 				    "unexpected error %d from ->zl_get_data()"
2325 				    ". Falling back to txg_wait_synced().",
2326 				    error);
2327 				zfs_fallthrough;
2328 			case EIO:
2329 				txg_wait_synced(zilog->zl_dmu_pool,
2330 				    lr->lrc_txg);
2331 				zfs_fallthrough;
2332 			case ENOENT:
2333 				zfs_fallthrough;
2334 			case EEXIST:
2335 				zfs_fallthrough;
2336 			case EALREADY:
2337 				return;
2338 			}
2339 		}
2340 	}
2341 
2342 	lwb->lwb_nfilled += reclen + dlen;
2343 	ASSERT3S(lwb->lwb_nfilled, <=, lwb->lwb_nused);
2344 	ASSERT0(P2PHASE(lwb->lwb_nfilled, sizeof (uint64_t)));
2345 }
2346 
2347 itx_t *
2348 zil_itx_create(uint64_t txtype, size_t olrsize)
2349 {
2350 	size_t itxsize, lrsize;
2351 	itx_t *itx;
2352 
2353 	ASSERT3U(olrsize, >=, sizeof (lr_t));
2354 	lrsize = P2ROUNDUP_TYPED(olrsize, sizeof (uint64_t), size_t);
2355 	ASSERT3U(lrsize, >=, olrsize);
2356 	itxsize = offsetof(itx_t, itx_lr) + lrsize;
2357 
2358 	itx = zio_data_buf_alloc(itxsize);
2359 	itx->itx_lr.lrc_txtype = txtype;
2360 	itx->itx_lr.lrc_reclen = lrsize;
2361 	itx->itx_lr.lrc_seq = 0;	/* defensive */
2362 	memset((char *)&itx->itx_lr + olrsize, 0, lrsize - olrsize);
2363 	itx->itx_sync = B_TRUE;		/* default is synchronous */
2364 	itx->itx_callback = NULL;
2365 	itx->itx_callback_data = NULL;
2366 	itx->itx_size = itxsize;
2367 
2368 	return (itx);
2369 }
2370 
2371 static itx_t *
2372 zil_itx_clone(itx_t *oitx)
2373 {
2374 	ASSERT3U(oitx->itx_size, >=, sizeof (itx_t));
2375 	ASSERT3U(oitx->itx_size, ==,
2376 	    offsetof(itx_t, itx_lr) + oitx->itx_lr.lrc_reclen);
2377 
2378 	itx_t *itx = zio_data_buf_alloc(oitx->itx_size);
2379 	memcpy(itx, oitx, oitx->itx_size);
2380 	itx->itx_callback = NULL;
2381 	itx->itx_callback_data = NULL;
2382 	return (itx);
2383 }
2384 
2385 void
2386 zil_itx_destroy(itx_t *itx)
2387 {
2388 	ASSERT3U(itx->itx_size, >=, sizeof (itx_t));
2389 	ASSERT3U(itx->itx_lr.lrc_reclen, ==,
2390 	    itx->itx_size - offsetof(itx_t, itx_lr));
2391 	IMPLY(itx->itx_lr.lrc_txtype == TX_COMMIT, itx->itx_callback == NULL);
2392 	IMPLY(itx->itx_callback != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
2393 
2394 	if (itx->itx_callback != NULL)
2395 		itx->itx_callback(itx->itx_callback_data);
2396 
2397 	zio_data_buf_free(itx, itx->itx_size);
2398 }
2399 
2400 /*
2401  * Free up the sync and async itxs. The itxs_t has already been detached
2402  * so no locks are needed.
2403  */
2404 static void
2405 zil_itxg_clean(void *arg)
2406 {
2407 	itx_t *itx;
2408 	list_t *list;
2409 	avl_tree_t *t;
2410 	void *cookie;
2411 	itxs_t *itxs = arg;
2412 	itx_async_node_t *ian;
2413 
2414 	list = &itxs->i_sync_list;
2415 	while ((itx = list_remove_head(list)) != NULL) {
2416 		/*
2417 		 * In the general case, commit itxs will not be found
2418 		 * here, as they'll be committed to an lwb via
2419 		 * zil_lwb_assign(), and free'd in that function. Having
2420 		 * said that, it is still possible for commit itxs to be
2421 		 * found here, due to the following race:
2422 		 *
2423 		 *	- a thread calls zil_commit() which assigns the
2424 		 *	  commit itx to a per-txg i_sync_list
2425 		 *	- zil_itxg_clean() is called (e.g. via spa_sync())
2426 		 *	  while the waiter is still on the i_sync_list
2427 		 *
2428 		 * There's nothing to prevent syncing the txg while the
2429 		 * waiter is on the i_sync_list. This normally doesn't
2430 		 * happen because spa_sync() is slower than zil_commit(),
2431 		 * but if zil_commit() calls txg_wait_synced() (e.g.
2432 		 * because zil_create() or zil_commit_writer_stall() is
2433 		 * called) we will hit this case.
2434 		 */
2435 		if (itx->itx_lr.lrc_txtype == TX_COMMIT)
2436 			zil_commit_waiter_skip(itx->itx_private);
2437 
2438 		zil_itx_destroy(itx);
2439 	}
2440 
2441 	cookie = NULL;
2442 	t = &itxs->i_async_tree;
2443 	while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
2444 		list = &ian->ia_list;
2445 		while ((itx = list_remove_head(list)) != NULL) {
2446 			/* commit itxs should never be on the async lists. */
2447 			ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
2448 			zil_itx_destroy(itx);
2449 		}
2450 		list_destroy(list);
2451 		kmem_free(ian, sizeof (itx_async_node_t));
2452 	}
2453 	avl_destroy(t);
2454 
2455 	kmem_free(itxs, sizeof (itxs_t));
2456 }
2457 
2458 static int
2459 zil_aitx_compare(const void *x1, const void *x2)
2460 {
2461 	const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
2462 	const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
2463 
2464 	return (TREE_CMP(o1, o2));
2465 }
2466 
2467 /*
2468  * Remove all async itx with the given oid.
2469  */
2470 void
2471 zil_remove_async(zilog_t *zilog, uint64_t oid)
2472 {
2473 	uint64_t otxg, txg;
2474 	itx_async_node_t *ian, ian_search;
2475 	avl_tree_t *t;
2476 	avl_index_t where;
2477 	list_t clean_list;
2478 	itx_t *itx;
2479 
2480 	ASSERT(oid != 0);
2481 	list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
2482 
2483 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2484 		otxg = ZILTEST_TXG;
2485 	else
2486 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2487 
2488 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2489 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2490 
2491 		mutex_enter(&itxg->itxg_lock);
2492 		if (itxg->itxg_txg != txg) {
2493 			mutex_exit(&itxg->itxg_lock);
2494 			continue;
2495 		}
2496 
2497 		/*
2498 		 * Locate the object node and append its list.
2499 		 */
2500 		t = &itxg->itxg_itxs->i_async_tree;
2501 		ian_search.ia_foid = oid;
2502 		ian = avl_find(t, &ian_search, &where);
2503 		if (ian != NULL)
2504 			list_move_tail(&clean_list, &ian->ia_list);
2505 		mutex_exit(&itxg->itxg_lock);
2506 	}
2507 	while ((itx = list_remove_head(&clean_list)) != NULL) {
2508 		/* commit itxs should never be on the async lists. */
2509 		ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
2510 		zil_itx_destroy(itx);
2511 	}
2512 	list_destroy(&clean_list);
2513 }
2514 
2515 void
2516 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
2517 {
2518 	uint64_t txg;
2519 	itxg_t *itxg;
2520 	itxs_t *itxs, *clean = NULL;
2521 
2522 	/*
2523 	 * Ensure the data of a renamed file is committed before the rename.
2524 	 */
2525 	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
2526 		zil_async_to_sync(zilog, itx->itx_oid);
2527 
2528 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
2529 		txg = ZILTEST_TXG;
2530 	else
2531 		txg = dmu_tx_get_txg(tx);
2532 
2533 	itxg = &zilog->zl_itxg[txg & TXG_MASK];
2534 	mutex_enter(&itxg->itxg_lock);
2535 	itxs = itxg->itxg_itxs;
2536 	if (itxg->itxg_txg != txg) {
2537 		if (itxs != NULL) {
2538 			/*
2539 			 * The zil_clean callback hasn't got around to cleaning
2540 			 * this itxg. Save the itxs for release below.
2541 			 * This should be rare.
2542 			 */
2543 			zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
2544 			    "txg %llu", (u_longlong_t)itxg->itxg_txg);
2545 			clean = itxg->itxg_itxs;
2546 		}
2547 		itxg->itxg_txg = txg;
2548 		itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t),
2549 		    KM_SLEEP);
2550 
2551 		list_create(&itxs->i_sync_list, sizeof (itx_t),
2552 		    offsetof(itx_t, itx_node));
2553 		avl_create(&itxs->i_async_tree, zil_aitx_compare,
2554 		    sizeof (itx_async_node_t),
2555 		    offsetof(itx_async_node_t, ia_node));
2556 	}
2557 	if (itx->itx_sync) {
2558 		list_insert_tail(&itxs->i_sync_list, itx);
2559 	} else {
2560 		avl_tree_t *t = &itxs->i_async_tree;
2561 		uint64_t foid =
2562 		    LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid);
2563 		itx_async_node_t *ian;
2564 		avl_index_t where;
2565 
2566 		ian = avl_find(t, &foid, &where);
2567 		if (ian == NULL) {
2568 			ian = kmem_alloc(sizeof (itx_async_node_t),
2569 			    KM_SLEEP);
2570 			list_create(&ian->ia_list, sizeof (itx_t),
2571 			    offsetof(itx_t, itx_node));
2572 			ian->ia_foid = foid;
2573 			avl_insert(t, ian, where);
2574 		}
2575 		list_insert_tail(&ian->ia_list, itx);
2576 	}
2577 
2578 	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
2579 
2580 	/*
2581 	 * We don't want to dirty the ZIL using ZILTEST_TXG, because
2582 	 * zil_clean() will never be called using ZILTEST_TXG. Thus, we
2583 	 * need to be careful to always dirty the ZIL using the "real"
2584 	 * TXG (not itxg_txg) even when the SPA is frozen.
2585 	 */
2586 	zilog_dirty(zilog, dmu_tx_get_txg(tx));
2587 	mutex_exit(&itxg->itxg_lock);
2588 
2589 	/* Release the old itxs now we've dropped the lock */
2590 	if (clean != NULL)
2591 		zil_itxg_clean(clean);
2592 }
2593 
2594 /*
2595  * If there are any in-memory intent log transactions which have now been
2596  * synced then start up a taskq to free them. We should only do this after we
2597  * have written out the uberblocks (i.e. txg has been committed) so that
2598  * don't inadvertently clean out in-memory log records that would be required
2599  * by zil_commit().
2600  */
2601 void
2602 zil_clean(zilog_t *zilog, uint64_t synced_txg)
2603 {
2604 	itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
2605 	itxs_t *clean_me;
2606 
2607 	ASSERT3U(synced_txg, <, ZILTEST_TXG);
2608 
2609 	mutex_enter(&itxg->itxg_lock);
2610 	if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
2611 		mutex_exit(&itxg->itxg_lock);
2612 		return;
2613 	}
2614 	ASSERT3U(itxg->itxg_txg, <=, synced_txg);
2615 	ASSERT3U(itxg->itxg_txg, !=, 0);
2616 	clean_me = itxg->itxg_itxs;
2617 	itxg->itxg_itxs = NULL;
2618 	itxg->itxg_txg = 0;
2619 	mutex_exit(&itxg->itxg_lock);
2620 	/*
2621 	 * Preferably start a task queue to free up the old itxs but
2622 	 * if taskq_dispatch can't allocate resources to do that then
2623 	 * free it in-line. This should be rare. Note, using TQ_SLEEP
2624 	 * created a bad performance problem.
2625 	 */
2626 	ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
2627 	ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
2628 	taskqid_t id = taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
2629 	    zil_itxg_clean, clean_me, TQ_NOSLEEP);
2630 	if (id == TASKQID_INVALID)
2631 		zil_itxg_clean(clean_me);
2632 }
2633 
2634 /*
2635  * This function will traverse the queue of itxs that need to be
2636  * committed, and move them onto the ZIL's zl_itx_commit_list.
2637  */
2638 static uint64_t
2639 zil_get_commit_list(zilog_t *zilog)
2640 {
2641 	uint64_t otxg, txg, wtxg = 0;
2642 	list_t *commit_list = &zilog->zl_itx_commit_list;
2643 
2644 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2645 
2646 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2647 		otxg = ZILTEST_TXG;
2648 	else
2649 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2650 
2651 	/*
2652 	 * This is inherently racy, since there is nothing to prevent
2653 	 * the last synced txg from changing. That's okay since we'll
2654 	 * only commit things in the future.
2655 	 */
2656 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2657 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2658 
2659 		mutex_enter(&itxg->itxg_lock);
2660 		if (itxg->itxg_txg != txg) {
2661 			mutex_exit(&itxg->itxg_lock);
2662 			continue;
2663 		}
2664 
2665 		/*
2666 		 * If we're adding itx records to the zl_itx_commit_list,
2667 		 * then the zil better be dirty in this "txg". We can assert
2668 		 * that here since we're holding the itxg_lock which will
2669 		 * prevent spa_sync from cleaning it. Once we add the itxs
2670 		 * to the zl_itx_commit_list we must commit it to disk even
2671 		 * if it's unnecessary (i.e. the txg was synced).
2672 		 */
2673 		ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
2674 		    spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
2675 		list_t *sync_list = &itxg->itxg_itxs->i_sync_list;
2676 		itx_t *itx = NULL;
2677 		if (unlikely(zilog->zl_suspend > 0)) {
2678 			/*
2679 			 * ZIL was just suspended, but we lost the race.
2680 			 * Allow all earlier itxs to be committed, but ask
2681 			 * caller to do txg_wait_synced(txg) for any new.
2682 			 */
2683 			if (!list_is_empty(sync_list))
2684 				wtxg = MAX(wtxg, txg);
2685 		} else {
2686 			itx = list_head(sync_list);
2687 			list_move_tail(commit_list, sync_list);
2688 		}
2689 
2690 		mutex_exit(&itxg->itxg_lock);
2691 
2692 		while (itx != NULL) {
2693 			uint64_t s = zil_itx_full_size(itx);
2694 			zilog->zl_cur_size += s;
2695 			zilog->zl_cur_left += s;
2696 			s = zil_itx_record_size(itx);
2697 			zilog->zl_cur_max = MAX(zilog->zl_cur_max, s);
2698 			itx = list_next(commit_list, itx);
2699 		}
2700 	}
2701 	return (wtxg);
2702 }
2703 
2704 /*
2705  * Move the async itxs for a specified object to commit into sync lists.
2706  */
2707 void
2708 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
2709 {
2710 	uint64_t otxg, txg;
2711 	itx_async_node_t *ian, ian_search;
2712 	avl_tree_t *t;
2713 	avl_index_t where;
2714 
2715 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2716 		otxg = ZILTEST_TXG;
2717 	else
2718 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2719 
2720 	/*
2721 	 * This is inherently racy, since there is nothing to prevent
2722 	 * the last synced txg from changing.
2723 	 */
2724 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2725 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2726 
2727 		mutex_enter(&itxg->itxg_lock);
2728 		if (itxg->itxg_txg != txg) {
2729 			mutex_exit(&itxg->itxg_lock);
2730 			continue;
2731 		}
2732 
2733 		/*
2734 		 * If a foid is specified then find that node and append its
2735 		 * list. Otherwise walk the tree appending all the lists
2736 		 * to the sync list. We add to the end rather than the
2737 		 * beginning to ensure the create has happened.
2738 		 */
2739 		t = &itxg->itxg_itxs->i_async_tree;
2740 		if (foid != 0) {
2741 			ian_search.ia_foid = foid;
2742 			ian = avl_find(t, &ian_search, &where);
2743 			if (ian != NULL) {
2744 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
2745 				    &ian->ia_list);
2746 			}
2747 		} else {
2748 			void *cookie = NULL;
2749 
2750 			while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
2751 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
2752 				    &ian->ia_list);
2753 				list_destroy(&ian->ia_list);
2754 				kmem_free(ian, sizeof (itx_async_node_t));
2755 			}
2756 		}
2757 		mutex_exit(&itxg->itxg_lock);
2758 	}
2759 }
2760 
2761 /*
2762  * This function will prune commit itxs that are at the head of the
2763  * commit list (it won't prune past the first non-commit itx), and
2764  * either: a) attach them to the last lwb that's still pending
2765  * completion, or b) skip them altogether.
2766  *
2767  * This is used as a performance optimization to prevent commit itxs
2768  * from generating new lwbs when it's unnecessary to do so.
2769  */
2770 static void
2771 zil_prune_commit_list(zilog_t *zilog)
2772 {
2773 	itx_t *itx;
2774 
2775 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2776 
2777 	while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) {
2778 		lr_t *lrc = &itx->itx_lr;
2779 		if (lrc->lrc_txtype != TX_COMMIT)
2780 			break;
2781 
2782 		mutex_enter(&zilog->zl_lock);
2783 
2784 		lwb_t *last_lwb = zilog->zl_last_lwb_opened;
2785 		if (last_lwb == NULL ||
2786 		    last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) {
2787 			/*
2788 			 * All of the itxs this waiter was waiting on
2789 			 * must have already completed (or there were
2790 			 * never any itx's for it to wait on), so it's
2791 			 * safe to skip this waiter and mark it done.
2792 			 */
2793 			zil_commit_waiter_skip(itx->itx_private);
2794 		} else {
2795 			zil_commit_waiter_link_lwb(itx->itx_private, last_lwb);
2796 		}
2797 
2798 		mutex_exit(&zilog->zl_lock);
2799 
2800 		list_remove(&zilog->zl_itx_commit_list, itx);
2801 		zil_itx_destroy(itx);
2802 	}
2803 
2804 	IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
2805 }
2806 
2807 static void
2808 zil_commit_writer_stall(zilog_t *zilog)
2809 {
2810 	/*
2811 	 * When zio_alloc_zil() fails to allocate the next lwb block on
2812 	 * disk, we must call txg_wait_synced() to ensure all of the
2813 	 * lwbs in the zilog's zl_lwb_list are synced and then freed (in
2814 	 * zil_sync()), such that any subsequent ZIL writer (i.e. a call
2815 	 * to zil_process_commit_list()) will have to call zil_create(),
2816 	 * and start a new ZIL chain.
2817 	 *
2818 	 * Since zil_alloc_zil() failed, the lwb that was previously
2819 	 * issued does not have a pointer to the "next" lwb on disk.
2820 	 * Thus, if another ZIL writer thread was to allocate the "next"
2821 	 * on-disk lwb, that block could be leaked in the event of a
2822 	 * crash (because the previous lwb on-disk would not point to
2823 	 * it).
2824 	 *
2825 	 * We must hold the zilog's zl_issuer_lock while we do this, to
2826 	 * ensure no new threads enter zil_process_commit_list() until
2827 	 * all lwb's in the zl_lwb_list have been synced and freed
2828 	 * (which is achieved via the txg_wait_synced() call).
2829 	 */
2830 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2831 	txg_wait_synced(zilog->zl_dmu_pool, 0);
2832 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
2833 }
2834 
2835 static void
2836 zil_burst_done(zilog_t *zilog)
2837 {
2838 	if (!list_is_empty(&zilog->zl_itx_commit_list) ||
2839 	    zilog->zl_cur_size == 0)
2840 		return;
2841 
2842 	if (zilog->zl_parallel)
2843 		zilog->zl_parallel--;
2844 
2845 	uint_t r = (zilog->zl_prev_rotor + 1) & (ZIL_BURSTS - 1);
2846 	zilog->zl_prev_rotor = r;
2847 	zilog->zl_prev_opt[r] = zil_lwb_plan(zilog, zilog->zl_cur_size,
2848 	    &zilog->zl_prev_min[r]);
2849 
2850 	zilog->zl_cur_size = 0;
2851 	zilog->zl_cur_max = 0;
2852 	zilog->zl_cur_left = 0;
2853 }
2854 
2855 /*
2856  * This function will traverse the commit list, creating new lwbs as
2857  * needed, and committing the itxs from the commit list to these newly
2858  * created lwbs. Additionally, as a new lwb is created, the previous
2859  * lwb will be issued to the zio layer to be written to disk.
2860  */
2861 static void
2862 zil_process_commit_list(zilog_t *zilog, zil_commit_waiter_t *zcw, list_t *ilwbs)
2863 {
2864 	spa_t *spa = zilog->zl_spa;
2865 	list_t nolwb_itxs;
2866 	list_t nolwb_waiters;
2867 	lwb_t *lwb, *plwb;
2868 	itx_t *itx;
2869 
2870 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2871 
2872 	/*
2873 	 * Return if there's nothing to commit before we dirty the fs by
2874 	 * calling zil_create().
2875 	 */
2876 	if (list_is_empty(&zilog->zl_itx_commit_list))
2877 		return;
2878 
2879 	list_create(&nolwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
2880 	list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t),
2881 	    offsetof(zil_commit_waiter_t, zcw_node));
2882 
2883 	lwb = list_tail(&zilog->zl_lwb_list);
2884 	if (lwb == NULL) {
2885 		lwb = zil_create(zilog);
2886 	} else {
2887 		/*
2888 		 * Activate SPA_FEATURE_ZILSAXATTR for the cases where ZIL will
2889 		 * have already been created (zl_lwb_list not empty).
2890 		 */
2891 		zil_commit_activate_saxattr_feature(zilog);
2892 		ASSERT(lwb->lwb_state == LWB_STATE_NEW ||
2893 		    lwb->lwb_state == LWB_STATE_OPENED);
2894 
2895 		/*
2896 		 * If the lwb is still opened, it means the workload is really
2897 		 * multi-threaded and we won the chance of write aggregation.
2898 		 * If it is not opened yet, but previous lwb is still not
2899 		 * flushed, it still means the workload is multi-threaded, but
2900 		 * there was too much time between the commits to aggregate, so
2901 		 * we try aggregation next times, but without too much hopes.
2902 		 */
2903 		if (lwb->lwb_state == LWB_STATE_OPENED) {
2904 			zilog->zl_parallel = ZIL_BURSTS;
2905 		} else if ((plwb = list_prev(&zilog->zl_lwb_list, lwb))
2906 		    != NULL && plwb->lwb_state != LWB_STATE_FLUSH_DONE) {
2907 			zilog->zl_parallel = MAX(zilog->zl_parallel,
2908 			    ZIL_BURSTS / 2);
2909 		}
2910 	}
2911 
2912 	while ((itx = list_remove_head(&zilog->zl_itx_commit_list)) != NULL) {
2913 		lr_t *lrc = &itx->itx_lr;
2914 		uint64_t txg = lrc->lrc_txg;
2915 
2916 		ASSERT3U(txg, !=, 0);
2917 
2918 		if (lrc->lrc_txtype == TX_COMMIT) {
2919 			DTRACE_PROBE2(zil__process__commit__itx,
2920 			    zilog_t *, zilog, itx_t *, itx);
2921 		} else {
2922 			DTRACE_PROBE2(zil__process__normal__itx,
2923 			    zilog_t *, zilog, itx_t *, itx);
2924 		}
2925 
2926 		boolean_t synced = txg <= spa_last_synced_txg(spa);
2927 		boolean_t frozen = txg > spa_freeze_txg(spa);
2928 
2929 		/*
2930 		 * If the txg of this itx has already been synced out, then
2931 		 * we don't need to commit this itx to an lwb. This is
2932 		 * because the data of this itx will have already been
2933 		 * written to the main pool. This is inherently racy, and
2934 		 * it's still ok to commit an itx whose txg has already
2935 		 * been synced; this will result in a write that's
2936 		 * unnecessary, but will do no harm.
2937 		 *
2938 		 * With that said, we always want to commit TX_COMMIT itxs
2939 		 * to an lwb, regardless of whether or not that itx's txg
2940 		 * has been synced out. We do this to ensure any OPENED lwb
2941 		 * will always have at least one zil_commit_waiter_t linked
2942 		 * to the lwb.
2943 		 *
2944 		 * As a counter-example, if we skipped TX_COMMIT itx's
2945 		 * whose txg had already been synced, the following
2946 		 * situation could occur if we happened to be racing with
2947 		 * spa_sync:
2948 		 *
2949 		 * 1. We commit a non-TX_COMMIT itx to an lwb, where the
2950 		 *    itx's txg is 10 and the last synced txg is 9.
2951 		 * 2. spa_sync finishes syncing out txg 10.
2952 		 * 3. We move to the next itx in the list, it's a TX_COMMIT
2953 		 *    whose txg is 10, so we skip it rather than committing
2954 		 *    it to the lwb used in (1).
2955 		 *
2956 		 * If the itx that is skipped in (3) is the last TX_COMMIT
2957 		 * itx in the commit list, than it's possible for the lwb
2958 		 * used in (1) to remain in the OPENED state indefinitely.
2959 		 *
2960 		 * To prevent the above scenario from occurring, ensuring
2961 		 * that once an lwb is OPENED it will transition to ISSUED
2962 		 * and eventually DONE, we always commit TX_COMMIT itx's to
2963 		 * an lwb here, even if that itx's txg has already been
2964 		 * synced.
2965 		 *
2966 		 * Finally, if the pool is frozen, we _always_ commit the
2967 		 * itx.  The point of freezing the pool is to prevent data
2968 		 * from being written to the main pool via spa_sync, and
2969 		 * instead rely solely on the ZIL to persistently store the
2970 		 * data; i.e.  when the pool is frozen, the last synced txg
2971 		 * value can't be trusted.
2972 		 */
2973 		if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) {
2974 			if (lwb != NULL) {
2975 				lwb = zil_lwb_assign(zilog, lwb, itx, ilwbs);
2976 				if (lwb == NULL) {
2977 					list_insert_tail(&nolwb_itxs, itx);
2978 				} else if ((zcw->zcw_lwb != NULL &&
2979 				    zcw->zcw_lwb != lwb) || zcw->zcw_done) {
2980 					/*
2981 					 * Our lwb is done, leave the rest of
2982 					 * itx list to somebody else who care.
2983 					 */
2984 					zilog->zl_parallel = ZIL_BURSTS;
2985 					zilog->zl_cur_left -=
2986 					    zil_itx_full_size(itx);
2987 					break;
2988 				}
2989 			} else {
2990 				if (lrc->lrc_txtype == TX_COMMIT) {
2991 					zil_commit_waiter_link_nolwb(
2992 					    itx->itx_private, &nolwb_waiters);
2993 				}
2994 				list_insert_tail(&nolwb_itxs, itx);
2995 			}
2996 			zilog->zl_cur_left -= zil_itx_full_size(itx);
2997 		} else {
2998 			ASSERT3S(lrc->lrc_txtype, !=, TX_COMMIT);
2999 			zilog->zl_cur_left -= zil_itx_full_size(itx);
3000 			zil_itx_destroy(itx);
3001 		}
3002 	}
3003 
3004 	if (lwb == NULL) {
3005 		/*
3006 		 * This indicates zio_alloc_zil() failed to allocate the
3007 		 * "next" lwb on-disk. When this happens, we must stall
3008 		 * the ZIL write pipeline; see the comment within
3009 		 * zil_commit_writer_stall() for more details.
3010 		 */
3011 		while ((lwb = list_remove_head(ilwbs)) != NULL)
3012 			zil_lwb_write_issue(zilog, lwb);
3013 		zil_commit_writer_stall(zilog);
3014 
3015 		/*
3016 		 * Additionally, we have to signal and mark the "nolwb"
3017 		 * waiters as "done" here, since without an lwb, we
3018 		 * can't do this via zil_lwb_flush_vdevs_done() like
3019 		 * normal.
3020 		 */
3021 		zil_commit_waiter_t *zcw;
3022 		while ((zcw = list_remove_head(&nolwb_waiters)) != NULL)
3023 			zil_commit_waiter_skip(zcw);
3024 
3025 		/*
3026 		 * And finally, we have to destroy the itx's that
3027 		 * couldn't be committed to an lwb; this will also call
3028 		 * the itx's callback if one exists for the itx.
3029 		 */
3030 		while ((itx = list_remove_head(&nolwb_itxs)) != NULL)
3031 			zil_itx_destroy(itx);
3032 	} else {
3033 		ASSERT(list_is_empty(&nolwb_waiters));
3034 		ASSERT3P(lwb, !=, NULL);
3035 		ASSERT(lwb->lwb_state == LWB_STATE_NEW ||
3036 		    lwb->lwb_state == LWB_STATE_OPENED);
3037 
3038 		/*
3039 		 * At this point, the ZIL block pointed at by the "lwb"
3040 		 * variable is in "new" or "opened" state.
3041 		 *
3042 		 * If it's "new", then no itxs have been committed to it, so
3043 		 * there's no point in issuing its zio (i.e. it's "empty").
3044 		 *
3045 		 * If it's "opened", then it contains one or more itxs that
3046 		 * eventually need to be committed to stable storage. In
3047 		 * this case we intentionally do not issue the lwb's zio
3048 		 * to disk yet, and instead rely on one of the following
3049 		 * two mechanisms for issuing the zio:
3050 		 *
3051 		 * 1. Ideally, there will be more ZIL activity occurring on
3052 		 * the system, such that this function will be immediately
3053 		 * called again by different thread and this lwb will be
3054 		 * closed by zil_lwb_assign().  This way, the lwb will be
3055 		 * "full" when it is issued to disk, and we'll make use of
3056 		 * the lwb's size the best we can.
3057 		 *
3058 		 * 2. If there isn't sufficient ZIL activity occurring on
3059 		 * the system, zil_commit_waiter() will close it and issue
3060 		 * the zio.  If this occurs, the lwb is not guaranteed
3061 		 * to be "full" by the time its zio is issued, and means
3062 		 * the size of the lwb was "too large" given the amount
3063 		 * of ZIL activity occurring on the system at that time.
3064 		 *
3065 		 * We do this for a couple of reasons:
3066 		 *
3067 		 * 1. To try and reduce the number of IOPs needed to
3068 		 * write the same number of itxs. If an lwb has space
3069 		 * available in its buffer for more itxs, and more itxs
3070 		 * will be committed relatively soon (relative to the
3071 		 * latency of performing a write), then it's beneficial
3072 		 * to wait for these "next" itxs. This way, more itxs
3073 		 * can be committed to stable storage with fewer writes.
3074 		 *
3075 		 * 2. To try and use the largest lwb block size that the
3076 		 * incoming rate of itxs can support. Again, this is to
3077 		 * try and pack as many itxs into as few lwbs as
3078 		 * possible, without significantly impacting the latency
3079 		 * of each individual itx.
3080 		 */
3081 		if (lwb->lwb_state == LWB_STATE_OPENED && !zilog->zl_parallel) {
3082 			zil_burst_done(zilog);
3083 			list_insert_tail(ilwbs, lwb);
3084 			lwb = zil_lwb_write_close(zilog, lwb, LWB_STATE_NEW);
3085 			if (lwb == NULL) {
3086 				while ((lwb = list_remove_head(ilwbs)) != NULL)
3087 					zil_lwb_write_issue(zilog, lwb);
3088 				zil_commit_writer_stall(zilog);
3089 			}
3090 		}
3091 	}
3092 }
3093 
3094 /*
3095  * This function is responsible for ensuring the passed in commit waiter
3096  * (and associated commit itx) is committed to an lwb. If the waiter is
3097  * not already committed to an lwb, all itxs in the zilog's queue of
3098  * itxs will be processed. The assumption is the passed in waiter's
3099  * commit itx will found in the queue just like the other non-commit
3100  * itxs, such that when the entire queue is processed, the waiter will
3101  * have been committed to an lwb.
3102  *
3103  * The lwb associated with the passed in waiter is not guaranteed to
3104  * have been issued by the time this function completes. If the lwb is
3105  * not issued, we rely on future calls to zil_commit_writer() to issue
3106  * the lwb, or the timeout mechanism found in zil_commit_waiter().
3107  */
3108 static uint64_t
3109 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw)
3110 {
3111 	list_t ilwbs;
3112 	lwb_t *lwb;
3113 	uint64_t wtxg = 0;
3114 
3115 	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
3116 	ASSERT(spa_writeable(zilog->zl_spa));
3117 
3118 	list_create(&ilwbs, sizeof (lwb_t), offsetof(lwb_t, lwb_issue_node));
3119 	mutex_enter(&zilog->zl_issuer_lock);
3120 
3121 	if (zcw->zcw_lwb != NULL || zcw->zcw_done) {
3122 		/*
3123 		 * It's possible that, while we were waiting to acquire
3124 		 * the "zl_issuer_lock", another thread committed this
3125 		 * waiter to an lwb. If that occurs, we bail out early,
3126 		 * without processing any of the zilog's queue of itxs.
3127 		 *
3128 		 * On certain workloads and system configurations, the
3129 		 * "zl_issuer_lock" can become highly contended. In an
3130 		 * attempt to reduce this contention, we immediately drop
3131 		 * the lock if the waiter has already been processed.
3132 		 *
3133 		 * We've measured this optimization to reduce CPU spent
3134 		 * contending on this lock by up to 5%, using a system
3135 		 * with 32 CPUs, low latency storage (~50 usec writes),
3136 		 * and 1024 threads performing sync writes.
3137 		 */
3138 		goto out;
3139 	}
3140 
3141 	ZIL_STAT_BUMP(zilog, zil_commit_writer_count);
3142 
3143 	wtxg = zil_get_commit_list(zilog);
3144 	zil_prune_commit_list(zilog);
3145 	zil_process_commit_list(zilog, zcw, &ilwbs);
3146 
3147 out:
3148 	mutex_exit(&zilog->zl_issuer_lock);
3149 	while ((lwb = list_remove_head(&ilwbs)) != NULL)
3150 		zil_lwb_write_issue(zilog, lwb);
3151 	list_destroy(&ilwbs);
3152 	return (wtxg);
3153 }
3154 
3155 static void
3156 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw)
3157 {
3158 	ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
3159 	ASSERT(MUTEX_HELD(&zcw->zcw_lock));
3160 	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
3161 
3162 	lwb_t *lwb = zcw->zcw_lwb;
3163 	ASSERT3P(lwb, !=, NULL);
3164 	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_NEW);
3165 
3166 	/*
3167 	 * If the lwb has already been issued by another thread, we can
3168 	 * immediately return since there's no work to be done (the
3169 	 * point of this function is to issue the lwb). Additionally, we
3170 	 * do this prior to acquiring the zl_issuer_lock, to avoid
3171 	 * acquiring it when it's not necessary to do so.
3172 	 */
3173 	if (lwb->lwb_state != LWB_STATE_OPENED)
3174 		return;
3175 
3176 	/*
3177 	 * In order to call zil_lwb_write_close() we must hold the
3178 	 * zilog's "zl_issuer_lock". We can't simply acquire that lock,
3179 	 * since we're already holding the commit waiter's "zcw_lock",
3180 	 * and those two locks are acquired in the opposite order
3181 	 * elsewhere.
3182 	 */
3183 	mutex_exit(&zcw->zcw_lock);
3184 	mutex_enter(&zilog->zl_issuer_lock);
3185 	mutex_enter(&zcw->zcw_lock);
3186 
3187 	/*
3188 	 * Since we just dropped and re-acquired the commit waiter's
3189 	 * lock, we have to re-check to see if the waiter was marked
3190 	 * "done" during that process. If the waiter was marked "done",
3191 	 * the "lwb" pointer is no longer valid (it can be free'd after
3192 	 * the waiter is marked "done"), so without this check we could
3193 	 * wind up with a use-after-free error below.
3194 	 */
3195 	if (zcw->zcw_done) {
3196 		mutex_exit(&zilog->zl_issuer_lock);
3197 		return;
3198 	}
3199 
3200 	ASSERT3P(lwb, ==, zcw->zcw_lwb);
3201 
3202 	/*
3203 	 * We've already checked this above, but since we hadn't acquired
3204 	 * the zilog's zl_issuer_lock, we have to perform this check a
3205 	 * second time while holding the lock.
3206 	 *
3207 	 * We don't need to hold the zl_lock since the lwb cannot transition
3208 	 * from OPENED to CLOSED while we hold the zl_issuer_lock. The lwb
3209 	 * _can_ transition from CLOSED to DONE, but it's OK to race with
3210 	 * that transition since we treat the lwb the same, whether it's in
3211 	 * the CLOSED, ISSUED or DONE states.
3212 	 *
3213 	 * The important thing, is we treat the lwb differently depending on
3214 	 * if it's OPENED or CLOSED, and block any other threads that might
3215 	 * attempt to close/issue this lwb. For that reason we hold the
3216 	 * zl_issuer_lock when checking the lwb_state; we must not call
3217 	 * zil_lwb_write_close() if the lwb had already been closed/issued.
3218 	 *
3219 	 * See the comment above the lwb_state_t structure definition for
3220 	 * more details on the lwb states, and locking requirements.
3221 	 */
3222 	if (lwb->lwb_state != LWB_STATE_OPENED) {
3223 		mutex_exit(&zilog->zl_issuer_lock);
3224 		return;
3225 	}
3226 
3227 	/*
3228 	 * We do not need zcw_lock once we hold zl_issuer_lock and know lwb
3229 	 * is still open.  But we have to drop it to avoid a deadlock in case
3230 	 * callback of zio issued by zil_lwb_write_issue() try to get it,
3231 	 * while zil_lwb_write_issue() is blocked on attempt to issue next
3232 	 * lwb it found in LWB_STATE_READY state.
3233 	 */
3234 	mutex_exit(&zcw->zcw_lock);
3235 
3236 	/*
3237 	 * As described in the comments above zil_commit_waiter() and
3238 	 * zil_process_commit_list(), we need to issue this lwb's zio
3239 	 * since we've reached the commit waiter's timeout and it still
3240 	 * hasn't been issued.
3241 	 */
3242 	zil_burst_done(zilog);
3243 	lwb_t *nlwb = zil_lwb_write_close(zilog, lwb, LWB_STATE_NEW);
3244 
3245 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_CLOSED);
3246 
3247 	if (nlwb == NULL) {
3248 		/*
3249 		 * When zil_lwb_write_close() returns NULL, this
3250 		 * indicates zio_alloc_zil() failed to allocate the
3251 		 * "next" lwb on-disk. When this occurs, the ZIL write
3252 		 * pipeline must be stalled; see the comment within the
3253 		 * zil_commit_writer_stall() function for more details.
3254 		 */
3255 		zil_lwb_write_issue(zilog, lwb);
3256 		zil_commit_writer_stall(zilog);
3257 		mutex_exit(&zilog->zl_issuer_lock);
3258 	} else {
3259 		mutex_exit(&zilog->zl_issuer_lock);
3260 		zil_lwb_write_issue(zilog, lwb);
3261 	}
3262 	mutex_enter(&zcw->zcw_lock);
3263 }
3264 
3265 /*
3266  * This function is responsible for performing the following two tasks:
3267  *
3268  * 1. its primary responsibility is to block until the given "commit
3269  *    waiter" is considered "done".
3270  *
3271  * 2. its secondary responsibility is to issue the zio for the lwb that
3272  *    the given "commit waiter" is waiting on, if this function has
3273  *    waited "long enough" and the lwb is still in the "open" state.
3274  *
3275  * Given a sufficient amount of itxs being generated and written using
3276  * the ZIL, the lwb's zio will be issued via the zil_lwb_assign()
3277  * function. If this does not occur, this secondary responsibility will
3278  * ensure the lwb is issued even if there is not other synchronous
3279  * activity on the system.
3280  *
3281  * For more details, see zil_process_commit_list(); more specifically,
3282  * the comment at the bottom of that function.
3283  */
3284 static void
3285 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw)
3286 {
3287 	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
3288 	ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
3289 	ASSERT(spa_writeable(zilog->zl_spa));
3290 
3291 	mutex_enter(&zcw->zcw_lock);
3292 
3293 	/*
3294 	 * The timeout is scaled based on the lwb latency to avoid
3295 	 * significantly impacting the latency of each individual itx.
3296 	 * For more details, see the comment at the bottom of the
3297 	 * zil_process_commit_list() function.
3298 	 */
3299 	int pct = MAX(zfs_commit_timeout_pct, 1);
3300 	hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100;
3301 	hrtime_t wakeup = gethrtime() + sleep;
3302 	boolean_t timedout = B_FALSE;
3303 
3304 	while (!zcw->zcw_done) {
3305 		ASSERT(MUTEX_HELD(&zcw->zcw_lock));
3306 
3307 		lwb_t *lwb = zcw->zcw_lwb;
3308 
3309 		/*
3310 		 * Usually, the waiter will have a non-NULL lwb field here,
3311 		 * but it's possible for it to be NULL as a result of
3312 		 * zil_commit() racing with spa_sync().
3313 		 *
3314 		 * When zil_clean() is called, it's possible for the itxg
3315 		 * list (which may be cleaned via a taskq) to contain
3316 		 * commit itxs. When this occurs, the commit waiters linked
3317 		 * off of these commit itxs will not be committed to an
3318 		 * lwb.  Additionally, these commit waiters will not be
3319 		 * marked done until zil_commit_waiter_skip() is called via
3320 		 * zil_itxg_clean().
3321 		 *
3322 		 * Thus, it's possible for this commit waiter (i.e. the
3323 		 * "zcw" variable) to be found in this "in between" state;
3324 		 * where it's "zcw_lwb" field is NULL, and it hasn't yet
3325 		 * been skipped, so it's "zcw_done" field is still B_FALSE.
3326 		 */
3327 		IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_NEW);
3328 
3329 		if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) {
3330 			ASSERT3B(timedout, ==, B_FALSE);
3331 
3332 			/*
3333 			 * If the lwb hasn't been issued yet, then we
3334 			 * need to wait with a timeout, in case this
3335 			 * function needs to issue the lwb after the
3336 			 * timeout is reached; responsibility (2) from
3337 			 * the comment above this function.
3338 			 */
3339 			int rc = cv_timedwait_hires(&zcw->zcw_cv,
3340 			    &zcw->zcw_lock, wakeup, USEC2NSEC(1),
3341 			    CALLOUT_FLAG_ABSOLUTE);
3342 
3343 			if (rc != -1 || zcw->zcw_done)
3344 				continue;
3345 
3346 			timedout = B_TRUE;
3347 			zil_commit_waiter_timeout(zilog, zcw);
3348 
3349 			if (!zcw->zcw_done) {
3350 				/*
3351 				 * If the commit waiter has already been
3352 				 * marked "done", it's possible for the
3353 				 * waiter's lwb structure to have already
3354 				 * been freed.  Thus, we can only reliably
3355 				 * make these assertions if the waiter
3356 				 * isn't done.
3357 				 */
3358 				ASSERT3P(lwb, ==, zcw->zcw_lwb);
3359 				ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
3360 			}
3361 		} else {
3362 			/*
3363 			 * If the lwb isn't open, then it must have already
3364 			 * been issued. In that case, there's no need to
3365 			 * use a timeout when waiting for the lwb to
3366 			 * complete.
3367 			 *
3368 			 * Additionally, if the lwb is NULL, the waiter
3369 			 * will soon be signaled and marked done via
3370 			 * zil_clean() and zil_itxg_clean(), so no timeout
3371 			 * is required.
3372 			 */
3373 
3374 			IMPLY(lwb != NULL,
3375 			    lwb->lwb_state == LWB_STATE_CLOSED ||
3376 			    lwb->lwb_state == LWB_STATE_READY ||
3377 			    lwb->lwb_state == LWB_STATE_ISSUED ||
3378 			    lwb->lwb_state == LWB_STATE_WRITE_DONE ||
3379 			    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
3380 			cv_wait(&zcw->zcw_cv, &zcw->zcw_lock);
3381 		}
3382 	}
3383 
3384 	mutex_exit(&zcw->zcw_lock);
3385 }
3386 
3387 static zil_commit_waiter_t *
3388 zil_alloc_commit_waiter(void)
3389 {
3390 	zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP);
3391 
3392 	cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL);
3393 	mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL);
3394 	list_link_init(&zcw->zcw_node);
3395 	zcw->zcw_lwb = NULL;
3396 	zcw->zcw_done = B_FALSE;
3397 	zcw->zcw_zio_error = 0;
3398 
3399 	return (zcw);
3400 }
3401 
3402 static void
3403 zil_free_commit_waiter(zil_commit_waiter_t *zcw)
3404 {
3405 	ASSERT(!list_link_active(&zcw->zcw_node));
3406 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
3407 	ASSERT3B(zcw->zcw_done, ==, B_TRUE);
3408 	mutex_destroy(&zcw->zcw_lock);
3409 	cv_destroy(&zcw->zcw_cv);
3410 	kmem_cache_free(zil_zcw_cache, zcw);
3411 }
3412 
3413 /*
3414  * This function is used to create a TX_COMMIT itx and assign it. This
3415  * way, it will be linked into the ZIL's list of synchronous itxs, and
3416  * then later committed to an lwb (or skipped) when
3417  * zil_process_commit_list() is called.
3418  */
3419 static void
3420 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw)
3421 {
3422 	dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
3423 
3424 	/*
3425 	 * Since we are not going to create any new dirty data, and we
3426 	 * can even help with clearing the existing dirty data, we
3427 	 * should not be subject to the dirty data based delays. We
3428 	 * use TXG_NOTHROTTLE to bypass the delay mechanism.
3429 	 */
3430 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));
3431 
3432 	itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t));
3433 	itx->itx_sync = B_TRUE;
3434 	itx->itx_private = zcw;
3435 
3436 	zil_itx_assign(zilog, itx, tx);
3437 
3438 	dmu_tx_commit(tx);
3439 }
3440 
3441 /*
3442  * Commit ZFS Intent Log transactions (itxs) to stable storage.
3443  *
3444  * When writing ZIL transactions to the on-disk representation of the
3445  * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple
3446  * itxs can be committed to a single lwb. Once a lwb is written and
3447  * committed to stable storage (i.e. the lwb is written, and vdevs have
3448  * been flushed), each itx that was committed to that lwb is also
3449  * considered to be committed to stable storage.
3450  *
3451  * When an itx is committed to an lwb, the log record (lr_t) contained
3452  * by the itx is copied into the lwb's zio buffer, and once this buffer
3453  * is written to disk, it becomes an on-disk ZIL block.
3454  *
3455  * As itxs are generated, they're inserted into the ZIL's queue of
3456  * uncommitted itxs. The semantics of zil_commit() are such that it will
3457  * block until all itxs that were in the queue when it was called, are
3458  * committed to stable storage.
3459  *
3460  * If "foid" is zero, this means all "synchronous" and "asynchronous"
3461  * itxs, for all objects in the dataset, will be committed to stable
3462  * storage prior to zil_commit() returning. If "foid" is non-zero, all
3463  * "synchronous" itxs for all objects, but only "asynchronous" itxs
3464  * that correspond to the foid passed in, will be committed to stable
3465  * storage prior to zil_commit() returning.
3466  *
3467  * Generally speaking, when zil_commit() is called, the consumer doesn't
3468  * actually care about _all_ of the uncommitted itxs. Instead, they're
3469  * simply trying to waiting for a specific itx to be committed to disk,
3470  * but the interface(s) for interacting with the ZIL don't allow such
3471  * fine-grained communication. A better interface would allow a consumer
3472  * to create and assign an itx, and then pass a reference to this itx to
3473  * zil_commit(); such that zil_commit() would return as soon as that
3474  * specific itx was committed to disk (instead of waiting for _all_
3475  * itxs to be committed).
3476  *
3477  * When a thread calls zil_commit() a special "commit itx" will be
3478  * generated, along with a corresponding "waiter" for this commit itx.
3479  * zil_commit() will wait on this waiter's CV, such that when the waiter
3480  * is marked done, and signaled, zil_commit() will return.
3481  *
3482  * This commit itx is inserted into the queue of uncommitted itxs. This
3483  * provides an easy mechanism for determining which itxs were in the
3484  * queue prior to zil_commit() having been called, and which itxs were
3485  * added after zil_commit() was called.
3486  *
3487  * The commit itx is special; it doesn't have any on-disk representation.
3488  * When a commit itx is "committed" to an lwb, the waiter associated
3489  * with it is linked onto the lwb's list of waiters. Then, when that lwb
3490  * completes, each waiter on the lwb's list is marked done and signaled
3491  * -- allowing the thread waiting on the waiter to return from zil_commit().
3492  *
3493  * It's important to point out a few critical factors that allow us
3494  * to make use of the commit itxs, commit waiters, per-lwb lists of
3495  * commit waiters, and zio completion callbacks like we're doing:
3496  *
3497  *   1. The list of waiters for each lwb is traversed, and each commit
3498  *      waiter is marked "done" and signaled, in the zio completion
3499  *      callback of the lwb's zio[*].
3500  *
3501  *      * Actually, the waiters are signaled in the zio completion
3502  *        callback of the root zio for the DKIOCFLUSHWRITECACHE commands
3503  *        that are sent to the vdevs upon completion of the lwb zio.
3504  *
3505  *   2. When the itxs are inserted into the ZIL's queue of uncommitted
3506  *      itxs, the order in which they are inserted is preserved[*]; as
3507  *      itxs are added to the queue, they are added to the tail of
3508  *      in-memory linked lists.
3509  *
3510  *      When committing the itxs to lwbs (to be written to disk), they
3511  *      are committed in the same order in which the itxs were added to
3512  *      the uncommitted queue's linked list(s); i.e. the linked list of
3513  *      itxs to commit is traversed from head to tail, and each itx is
3514  *      committed to an lwb in that order.
3515  *
3516  *      * To clarify:
3517  *
3518  *        - the order of "sync" itxs is preserved w.r.t. other
3519  *          "sync" itxs, regardless of the corresponding objects.
3520  *        - the order of "async" itxs is preserved w.r.t. other
3521  *          "async" itxs corresponding to the same object.
3522  *        - the order of "async" itxs is *not* preserved w.r.t. other
3523  *          "async" itxs corresponding to different objects.
3524  *        - the order of "sync" itxs w.r.t. "async" itxs (or vice
3525  *          versa) is *not* preserved, even for itxs that correspond
3526  *          to the same object.
3527  *
3528  *      For more details, see: zil_itx_assign(), zil_async_to_sync(),
3529  *      zil_get_commit_list(), and zil_process_commit_list().
3530  *
3531  *   3. The lwbs represent a linked list of blocks on disk. Thus, any
3532  *      lwb cannot be considered committed to stable storage, until its
3533  *      "previous" lwb is also committed to stable storage. This fact,
3534  *      coupled with the fact described above, means that itxs are
3535  *      committed in (roughly) the order in which they were generated.
3536  *      This is essential because itxs are dependent on prior itxs.
3537  *      Thus, we *must not* deem an itx as being committed to stable
3538  *      storage, until *all* prior itxs have also been committed to
3539  *      stable storage.
3540  *
3541  *      To enforce this ordering of lwb zio's, while still leveraging as
3542  *      much of the underlying storage performance as possible, we rely
3543  *      on two fundamental concepts:
3544  *
3545  *          1. The creation and issuance of lwb zio's is protected by
3546  *             the zilog's "zl_issuer_lock", which ensures only a single
3547  *             thread is creating and/or issuing lwb's at a time
3548  *          2. The "previous" lwb is a child of the "current" lwb
3549  *             (leveraging the zio parent-child dependency graph)
3550  *
3551  *      By relying on this parent-child zio relationship, we can have
3552  *      many lwb zio's concurrently issued to the underlying storage,
3553  *      but the order in which they complete will be the same order in
3554  *      which they were created.
3555  */
3556 void
3557 zil_commit(zilog_t *zilog, uint64_t foid)
3558 {
3559 	/*
3560 	 * We should never attempt to call zil_commit on a snapshot for
3561 	 * a couple of reasons:
3562 	 *
3563 	 * 1. A snapshot may never be modified, thus it cannot have any
3564 	 *    in-flight itxs that would have modified the dataset.
3565 	 *
3566 	 * 2. By design, when zil_commit() is called, a commit itx will
3567 	 *    be assigned to this zilog; as a result, the zilog will be
3568 	 *    dirtied. We must not dirty the zilog of a snapshot; there's
3569 	 *    checks in the code that enforce this invariant, and will
3570 	 *    cause a panic if it's not upheld.
3571 	 */
3572 	ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE);
3573 
3574 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3575 		return;
3576 
3577 	if (!spa_writeable(zilog->zl_spa)) {
3578 		/*
3579 		 * If the SPA is not writable, there should never be any
3580 		 * pending itxs waiting to be committed to disk. If that
3581 		 * weren't true, we'd skip writing those itxs out, and
3582 		 * would break the semantics of zil_commit(); thus, we're
3583 		 * verifying that truth before we return to the caller.
3584 		 */
3585 		ASSERT(list_is_empty(&zilog->zl_lwb_list));
3586 		ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
3587 		for (int i = 0; i < TXG_SIZE; i++)
3588 			ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL);
3589 		return;
3590 	}
3591 
3592 	/*
3593 	 * If the ZIL is suspended, we don't want to dirty it by calling
3594 	 * zil_commit_itx_assign() below, nor can we write out
3595 	 * lwbs like would be done in zil_commit_write(). Thus, we
3596 	 * simply rely on txg_wait_synced() to maintain the necessary
3597 	 * semantics, and avoid calling those functions altogether.
3598 	 */
3599 	if (zilog->zl_suspend > 0) {
3600 		txg_wait_synced(zilog->zl_dmu_pool, 0);
3601 		return;
3602 	}
3603 
3604 	zil_commit_impl(zilog, foid);
3605 }
3606 
3607 void
3608 zil_commit_impl(zilog_t *zilog, uint64_t foid)
3609 {
3610 	ZIL_STAT_BUMP(zilog, zil_commit_count);
3611 
3612 	/*
3613 	 * Move the "async" itxs for the specified foid to the "sync"
3614 	 * queues, such that they will be later committed (or skipped)
3615 	 * to an lwb when zil_process_commit_list() is called.
3616 	 *
3617 	 * Since these "async" itxs must be committed prior to this
3618 	 * call to zil_commit returning, we must perform this operation
3619 	 * before we call zil_commit_itx_assign().
3620 	 */
3621 	zil_async_to_sync(zilog, foid);
3622 
3623 	/*
3624 	 * We allocate a new "waiter" structure which will initially be
3625 	 * linked to the commit itx using the itx's "itx_private" field.
3626 	 * Since the commit itx doesn't represent any on-disk state,
3627 	 * when it's committed to an lwb, rather than copying the its
3628 	 * lr_t into the lwb's buffer, the commit itx's "waiter" will be
3629 	 * added to the lwb's list of waiters. Then, when the lwb is
3630 	 * committed to stable storage, each waiter in the lwb's list of
3631 	 * waiters will be marked "done", and signalled.
3632 	 *
3633 	 * We must create the waiter and assign the commit itx prior to
3634 	 * calling zil_commit_writer(), or else our specific commit itx
3635 	 * is not guaranteed to be committed to an lwb prior to calling
3636 	 * zil_commit_waiter().
3637 	 */
3638 	zil_commit_waiter_t *zcw = zil_alloc_commit_waiter();
3639 	zil_commit_itx_assign(zilog, zcw);
3640 
3641 	uint64_t wtxg = zil_commit_writer(zilog, zcw);
3642 	zil_commit_waiter(zilog, zcw);
3643 
3644 	if (zcw->zcw_zio_error != 0) {
3645 		/*
3646 		 * If there was an error writing out the ZIL blocks that
3647 		 * this thread is waiting on, then we fallback to
3648 		 * relying on spa_sync() to write out the data this
3649 		 * thread is waiting on. Obviously this has performance
3650 		 * implications, but the expectation is for this to be
3651 		 * an exceptional case, and shouldn't occur often.
3652 		 */
3653 		DTRACE_PROBE2(zil__commit__io__error,
3654 		    zilog_t *, zilog, zil_commit_waiter_t *, zcw);
3655 		txg_wait_synced(zilog->zl_dmu_pool, 0);
3656 	} else if (wtxg != 0) {
3657 		txg_wait_synced(zilog->zl_dmu_pool, wtxg);
3658 	}
3659 
3660 	zil_free_commit_waiter(zcw);
3661 }
3662 
3663 /*
3664  * Called in syncing context to free committed log blocks and update log header.
3665  */
3666 void
3667 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
3668 {
3669 	zil_header_t *zh = zil_header_in_syncing_context(zilog);
3670 	uint64_t txg = dmu_tx_get_txg(tx);
3671 	spa_t *spa = zilog->zl_spa;
3672 	uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
3673 	lwb_t *lwb;
3674 
3675 	/*
3676 	 * We don't zero out zl_destroy_txg, so make sure we don't try
3677 	 * to destroy it twice.
3678 	 */
3679 	if (spa_sync_pass(spa) != 1)
3680 		return;
3681 
3682 	zil_lwb_flush_wait_all(zilog, txg);
3683 
3684 	mutex_enter(&zilog->zl_lock);
3685 
3686 	ASSERT(zilog->zl_stop_sync == 0);
3687 
3688 	if (*replayed_seq != 0) {
3689 		ASSERT(zh->zh_replay_seq < *replayed_seq);
3690 		zh->zh_replay_seq = *replayed_seq;
3691 		*replayed_seq = 0;
3692 	}
3693 
3694 	if (zilog->zl_destroy_txg == txg) {
3695 		blkptr_t blk = zh->zh_log;
3696 		dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
3697 
3698 		ASSERT(list_is_empty(&zilog->zl_lwb_list));
3699 
3700 		memset(zh, 0, sizeof (zil_header_t));
3701 		memset(zilog->zl_replayed_seq, 0,
3702 		    sizeof (zilog->zl_replayed_seq));
3703 
3704 		if (zilog->zl_keep_first) {
3705 			/*
3706 			 * If this block was part of log chain that couldn't
3707 			 * be claimed because a device was missing during
3708 			 * zil_claim(), but that device later returns,
3709 			 * then this block could erroneously appear valid.
3710 			 * To guard against this, assign a new GUID to the new
3711 			 * log chain so it doesn't matter what blk points to.
3712 			 */
3713 			zil_init_log_chain(zilog, &blk);
3714 			zh->zh_log = blk;
3715 		} else {
3716 			/*
3717 			 * A destroyed ZIL chain can't contain any TX_SETSAXATTR
3718 			 * records. So, deactivate the feature for this dataset.
3719 			 * We activate it again when we start a new ZIL chain.
3720 			 */
3721 			if (dsl_dataset_feature_is_active(ds,
3722 			    SPA_FEATURE_ZILSAXATTR))
3723 				dsl_dataset_deactivate_feature(ds,
3724 				    SPA_FEATURE_ZILSAXATTR, tx);
3725 		}
3726 	}
3727 
3728 	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
3729 		zh->zh_log = lwb->lwb_blk;
3730 		if (lwb->lwb_state != LWB_STATE_FLUSH_DONE ||
3731 		    lwb->lwb_alloc_txg > txg || lwb->lwb_max_txg > txg)
3732 			break;
3733 		list_remove(&zilog->zl_lwb_list, lwb);
3734 		if (!BP_IS_HOLE(&lwb->lwb_blk))
3735 			zio_free(spa, txg, &lwb->lwb_blk);
3736 		zil_free_lwb(zilog, lwb);
3737 
3738 		/*
3739 		 * If we don't have anything left in the lwb list then
3740 		 * we've had an allocation failure and we need to zero
3741 		 * out the zil_header blkptr so that we don't end
3742 		 * up freeing the same block twice.
3743 		 */
3744 		if (list_is_empty(&zilog->zl_lwb_list))
3745 			BP_ZERO(&zh->zh_log);
3746 	}
3747 
3748 	mutex_exit(&zilog->zl_lock);
3749 }
3750 
3751 static int
3752 zil_lwb_cons(void *vbuf, void *unused, int kmflag)
3753 {
3754 	(void) unused, (void) kmflag;
3755 	lwb_t *lwb = vbuf;
3756 	list_create(&lwb->lwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
3757 	list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t),
3758 	    offsetof(zil_commit_waiter_t, zcw_node));
3759 	avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare,
3760 	    sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
3761 	mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
3762 	return (0);
3763 }
3764 
3765 static void
3766 zil_lwb_dest(void *vbuf, void *unused)
3767 {
3768 	(void) unused;
3769 	lwb_t *lwb = vbuf;
3770 	mutex_destroy(&lwb->lwb_vdev_lock);
3771 	avl_destroy(&lwb->lwb_vdev_tree);
3772 	list_destroy(&lwb->lwb_waiters);
3773 	list_destroy(&lwb->lwb_itxs);
3774 }
3775 
3776 void
3777 zil_init(void)
3778 {
3779 	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
3780 	    sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0);
3781 
3782 	zil_zcw_cache = kmem_cache_create("zil_zcw_cache",
3783 	    sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
3784 
3785 	zil_sums_init(&zil_sums_global);
3786 	zil_kstats_global = kstat_create("zfs", 0, "zil", "misc",
3787 	    KSTAT_TYPE_NAMED, sizeof (zil_stats) / sizeof (kstat_named_t),
3788 	    KSTAT_FLAG_VIRTUAL);
3789 
3790 	if (zil_kstats_global != NULL) {
3791 		zil_kstats_global->ks_data = &zil_stats;
3792 		zil_kstats_global->ks_update = zil_kstats_global_update;
3793 		zil_kstats_global->ks_private = NULL;
3794 		kstat_install(zil_kstats_global);
3795 	}
3796 }
3797 
3798 void
3799 zil_fini(void)
3800 {
3801 	kmem_cache_destroy(zil_zcw_cache);
3802 	kmem_cache_destroy(zil_lwb_cache);
3803 
3804 	if (zil_kstats_global != NULL) {
3805 		kstat_delete(zil_kstats_global);
3806 		zil_kstats_global = NULL;
3807 	}
3808 
3809 	zil_sums_fini(&zil_sums_global);
3810 }
3811 
3812 void
3813 zil_set_sync(zilog_t *zilog, uint64_t sync)
3814 {
3815 	zilog->zl_sync = sync;
3816 }
3817 
3818 void
3819 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
3820 {
3821 	zilog->zl_logbias = logbias;
3822 }
3823 
3824 zilog_t *
3825 zil_alloc(objset_t *os, zil_header_t *zh_phys)
3826 {
3827 	zilog_t *zilog;
3828 
3829 	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
3830 
3831 	zilog->zl_header = zh_phys;
3832 	zilog->zl_os = os;
3833 	zilog->zl_spa = dmu_objset_spa(os);
3834 	zilog->zl_dmu_pool = dmu_objset_pool(os);
3835 	zilog->zl_destroy_txg = TXG_INITIAL - 1;
3836 	zilog->zl_logbias = dmu_objset_logbias(os);
3837 	zilog->zl_sync = dmu_objset_syncprop(os);
3838 	zilog->zl_dirty_max_txg = 0;
3839 	zilog->zl_last_lwb_opened = NULL;
3840 	zilog->zl_last_lwb_latency = 0;
3841 	zilog->zl_max_block_size = MIN(MAX(P2ALIGN_TYPED(zil_maxblocksize,
3842 	    ZIL_MIN_BLKSZ, uint64_t), ZIL_MIN_BLKSZ),
3843 	    spa_maxblocksize(dmu_objset_spa(os)));
3844 
3845 	mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
3846 	mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL);
3847 	mutex_init(&zilog->zl_lwb_io_lock, NULL, MUTEX_DEFAULT, NULL);
3848 
3849 	for (int i = 0; i < TXG_SIZE; i++) {
3850 		mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
3851 		    MUTEX_DEFAULT, NULL);
3852 	}
3853 
3854 	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
3855 	    offsetof(lwb_t, lwb_node));
3856 
3857 	list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
3858 	    offsetof(itx_t, itx_node));
3859 
3860 	cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
3861 	cv_init(&zilog->zl_lwb_io_cv, NULL, CV_DEFAULT, NULL);
3862 
3863 	for (int i = 0; i < ZIL_BURSTS; i++) {
3864 		zilog->zl_prev_opt[i] = zilog->zl_max_block_size -
3865 		    sizeof (zil_chain_t);
3866 	}
3867 
3868 	return (zilog);
3869 }
3870 
3871 void
3872 zil_free(zilog_t *zilog)
3873 {
3874 	int i;
3875 
3876 	zilog->zl_stop_sync = 1;
3877 
3878 	ASSERT0(zilog->zl_suspend);
3879 	ASSERT0(zilog->zl_suspending);
3880 
3881 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
3882 	list_destroy(&zilog->zl_lwb_list);
3883 
3884 	ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
3885 	list_destroy(&zilog->zl_itx_commit_list);
3886 
3887 	for (i = 0; i < TXG_SIZE; i++) {
3888 		/*
3889 		 * It's possible for an itx to be generated that doesn't dirty
3890 		 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
3891 		 * callback to remove the entry. We remove those here.
3892 		 *
3893 		 * Also free up the ziltest itxs.
3894 		 */
3895 		if (zilog->zl_itxg[i].itxg_itxs)
3896 			zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
3897 		mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
3898 	}
3899 
3900 	mutex_destroy(&zilog->zl_issuer_lock);
3901 	mutex_destroy(&zilog->zl_lock);
3902 	mutex_destroy(&zilog->zl_lwb_io_lock);
3903 
3904 	cv_destroy(&zilog->zl_cv_suspend);
3905 	cv_destroy(&zilog->zl_lwb_io_cv);
3906 
3907 	kmem_free(zilog, sizeof (zilog_t));
3908 }
3909 
3910 /*
3911  * Open an intent log.
3912  */
3913 zilog_t *
3914 zil_open(objset_t *os, zil_get_data_t *get_data, zil_sums_t *zil_sums)
3915 {
3916 	zilog_t *zilog = dmu_objset_zil(os);
3917 
3918 	ASSERT3P(zilog->zl_get_data, ==, NULL);
3919 	ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
3920 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
3921 
3922 	zilog->zl_get_data = get_data;
3923 	zilog->zl_sums = zil_sums;
3924 
3925 	return (zilog);
3926 }
3927 
3928 /*
3929  * Close an intent log.
3930  */
3931 void
3932 zil_close(zilog_t *zilog)
3933 {
3934 	lwb_t *lwb;
3935 	uint64_t txg;
3936 
3937 	if (!dmu_objset_is_snapshot(zilog->zl_os)) {
3938 		zil_commit(zilog, 0);
3939 	} else {
3940 		ASSERT(list_is_empty(&zilog->zl_lwb_list));
3941 		ASSERT0(zilog->zl_dirty_max_txg);
3942 		ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE);
3943 	}
3944 
3945 	mutex_enter(&zilog->zl_lock);
3946 	txg = zilog->zl_dirty_max_txg;
3947 	lwb = list_tail(&zilog->zl_lwb_list);
3948 	if (lwb != NULL) {
3949 		txg = MAX(txg, lwb->lwb_alloc_txg);
3950 		txg = MAX(txg, lwb->lwb_max_txg);
3951 	}
3952 	mutex_exit(&zilog->zl_lock);
3953 
3954 	/*
3955 	 * zl_lwb_max_issued_txg may be larger than lwb_max_txg. It depends
3956 	 * on the time when the dmu_tx transaction is assigned in
3957 	 * zil_lwb_write_issue().
3958 	 */
3959 	mutex_enter(&zilog->zl_lwb_io_lock);
3960 	txg = MAX(zilog->zl_lwb_max_issued_txg, txg);
3961 	mutex_exit(&zilog->zl_lwb_io_lock);
3962 
3963 	/*
3964 	 * We need to use txg_wait_synced() to wait until that txg is synced.
3965 	 * zil_sync() will guarantee all lwbs up to that txg have been
3966 	 * written out, flushed, and cleaned.
3967 	 */
3968 	if (txg != 0)
3969 		txg_wait_synced(zilog->zl_dmu_pool, txg);
3970 
3971 	if (zilog_is_dirty(zilog))
3972 		zfs_dbgmsg("zil (%px) is dirty, txg %llu", zilog,
3973 		    (u_longlong_t)txg);
3974 	if (txg < spa_freeze_txg(zilog->zl_spa))
3975 		VERIFY(!zilog_is_dirty(zilog));
3976 
3977 	zilog->zl_get_data = NULL;
3978 
3979 	/*
3980 	 * We should have only one lwb left on the list; remove it now.
3981 	 */
3982 	mutex_enter(&zilog->zl_lock);
3983 	lwb = list_remove_head(&zilog->zl_lwb_list);
3984 	if (lwb != NULL) {
3985 		ASSERT(list_is_empty(&zilog->zl_lwb_list));
3986 		ASSERT3S(lwb->lwb_state, ==, LWB_STATE_NEW);
3987 		zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
3988 		zil_free_lwb(zilog, lwb);
3989 	}
3990 	mutex_exit(&zilog->zl_lock);
3991 }
3992 
3993 static const char *suspend_tag = "zil suspending";
3994 
3995 /*
3996  * Suspend an intent log.  While in suspended mode, we still honor
3997  * synchronous semantics, but we rely on txg_wait_synced() to do it.
3998  * On old version pools, we suspend the log briefly when taking a
3999  * snapshot so that it will have an empty intent log.
4000  *
4001  * Long holds are not really intended to be used the way we do here --
4002  * held for such a short time.  A concurrent caller of dsl_dataset_long_held()
4003  * could fail.  Therefore we take pains to only put a long hold if it is
4004  * actually necessary.  Fortunately, it will only be necessary if the
4005  * objset is currently mounted (or the ZVOL equivalent).  In that case it
4006  * will already have a long hold, so we are not really making things any worse.
4007  *
4008  * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
4009  * zvol_state_t), and use their mechanism to prevent their hold from being
4010  * dropped (e.g. VFS_HOLD()).  However, that would be even more pain for
4011  * very little gain.
4012  *
4013  * if cookiep == NULL, this does both the suspend & resume.
4014  * Otherwise, it returns with the dataset "long held", and the cookie
4015  * should be passed into zil_resume().
4016  */
4017 int
4018 zil_suspend(const char *osname, void **cookiep)
4019 {
4020 	objset_t *os;
4021 	zilog_t *zilog;
4022 	const zil_header_t *zh;
4023 	int error;
4024 
4025 	error = dmu_objset_hold(osname, suspend_tag, &os);
4026 	if (error != 0)
4027 		return (error);
4028 	zilog = dmu_objset_zil(os);
4029 
4030 	mutex_enter(&zilog->zl_lock);
4031 	zh = zilog->zl_header;
4032 
4033 	if (zh->zh_flags & ZIL_REPLAY_NEEDED) {		/* unplayed log */
4034 		mutex_exit(&zilog->zl_lock);
4035 		dmu_objset_rele(os, suspend_tag);
4036 		return (SET_ERROR(EBUSY));
4037 	}
4038 
4039 	/*
4040 	 * Don't put a long hold in the cases where we can avoid it.  This
4041 	 * is when there is no cookie so we are doing a suspend & resume
4042 	 * (i.e. called from zil_vdev_offline()), and there's nothing to do
4043 	 * for the suspend because it's already suspended, or there's no ZIL.
4044 	 */
4045 	if (cookiep == NULL && !zilog->zl_suspending &&
4046 	    (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
4047 		mutex_exit(&zilog->zl_lock);
4048 		dmu_objset_rele(os, suspend_tag);
4049 		return (0);
4050 	}
4051 
4052 	dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
4053 	dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
4054 
4055 	zilog->zl_suspend++;
4056 
4057 	if (zilog->zl_suspend > 1) {
4058 		/*
4059 		 * Someone else is already suspending it.
4060 		 * Just wait for them to finish.
4061 		 */
4062 
4063 		while (zilog->zl_suspending)
4064 			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
4065 		mutex_exit(&zilog->zl_lock);
4066 
4067 		if (cookiep == NULL)
4068 			zil_resume(os);
4069 		else
4070 			*cookiep = os;
4071 		return (0);
4072 	}
4073 
4074 	/*
4075 	 * If there is no pointer to an on-disk block, this ZIL must not
4076 	 * be active (e.g. filesystem not mounted), so there's nothing
4077 	 * to clean up.
4078 	 */
4079 	if (BP_IS_HOLE(&zh->zh_log)) {
4080 		ASSERT(cookiep != NULL); /* fast path already handled */
4081 
4082 		*cookiep = os;
4083 		mutex_exit(&zilog->zl_lock);
4084 		return (0);
4085 	}
4086 
4087 	/*
4088 	 * The ZIL has work to do. Ensure that the associated encryption
4089 	 * key will remain mapped while we are committing the log by
4090 	 * grabbing a reference to it. If the key isn't loaded we have no
4091 	 * choice but to return an error until the wrapping key is loaded.
4092 	 */
4093 	if (os->os_encrypted &&
4094 	    dsl_dataset_create_key_mapping(dmu_objset_ds(os)) != 0) {
4095 		zilog->zl_suspend--;
4096 		mutex_exit(&zilog->zl_lock);
4097 		dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
4098 		dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
4099 		return (SET_ERROR(EACCES));
4100 	}
4101 
4102 	zilog->zl_suspending = B_TRUE;
4103 	mutex_exit(&zilog->zl_lock);
4104 
4105 	/*
4106 	 * We need to use zil_commit_impl to ensure we wait for all
4107 	 * LWB_STATE_OPENED, _CLOSED and _READY lwbs to be committed
4108 	 * to disk before proceeding. If we used zil_commit instead, it
4109 	 * would just call txg_wait_synced(), because zl_suspend is set.
4110 	 * txg_wait_synced() doesn't wait for these lwb's to be
4111 	 * LWB_STATE_FLUSH_DONE before returning.
4112 	 */
4113 	zil_commit_impl(zilog, 0);
4114 
4115 	/*
4116 	 * Now that we've ensured all lwb's are LWB_STATE_FLUSH_DONE, we
4117 	 * use txg_wait_synced() to ensure the data from the zilog has
4118 	 * migrated to the main pool before calling zil_destroy().
4119 	 */
4120 	txg_wait_synced(zilog->zl_dmu_pool, 0);
4121 
4122 	zil_destroy(zilog, B_FALSE);
4123 
4124 	mutex_enter(&zilog->zl_lock);
4125 	zilog->zl_suspending = B_FALSE;
4126 	cv_broadcast(&zilog->zl_cv_suspend);
4127 	mutex_exit(&zilog->zl_lock);
4128 
4129 	if (os->os_encrypted)
4130 		dsl_dataset_remove_key_mapping(dmu_objset_ds(os));
4131 
4132 	if (cookiep == NULL)
4133 		zil_resume(os);
4134 	else
4135 		*cookiep = os;
4136 	return (0);
4137 }
4138 
4139 void
4140 zil_resume(void *cookie)
4141 {
4142 	objset_t *os = cookie;
4143 	zilog_t *zilog = dmu_objset_zil(os);
4144 
4145 	mutex_enter(&zilog->zl_lock);
4146 	ASSERT(zilog->zl_suspend != 0);
4147 	zilog->zl_suspend--;
4148 	mutex_exit(&zilog->zl_lock);
4149 	dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
4150 	dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
4151 }
4152 
4153 typedef struct zil_replay_arg {
4154 	zil_replay_func_t *const *zr_replay;
4155 	void		*zr_arg;
4156 	boolean_t	zr_byteswap;
4157 	char		*zr_lr;
4158 } zil_replay_arg_t;
4159 
4160 static int
4161 zil_replay_error(zilog_t *zilog, const lr_t *lr, int error)
4162 {
4163 	char name[ZFS_MAX_DATASET_NAME_LEN];
4164 
4165 	zilog->zl_replaying_seq--;	/* didn't actually replay this one */
4166 
4167 	dmu_objset_name(zilog->zl_os, name);
4168 
4169 	cmn_err(CE_WARN, "ZFS replay transaction error %d, "
4170 	    "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
4171 	    (u_longlong_t)lr->lrc_seq,
4172 	    (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
4173 	    (lr->lrc_txtype & TX_CI) ? "CI" : "");
4174 
4175 	return (error);
4176 }
4177 
4178 static int
4179 zil_replay_log_record(zilog_t *zilog, const lr_t *lr, void *zra,
4180     uint64_t claim_txg)
4181 {
4182 	zil_replay_arg_t *zr = zra;
4183 	const zil_header_t *zh = zilog->zl_header;
4184 	uint64_t reclen = lr->lrc_reclen;
4185 	uint64_t txtype = lr->lrc_txtype;
4186 	int error = 0;
4187 
4188 	zilog->zl_replaying_seq = lr->lrc_seq;
4189 
4190 	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
4191 		return (0);
4192 
4193 	if (lr->lrc_txg < claim_txg)		/* already committed */
4194 		return (0);
4195 
4196 	/* Strip case-insensitive bit, still present in log record */
4197 	txtype &= ~TX_CI;
4198 
4199 	if (txtype == 0 || txtype >= TX_MAX_TYPE)
4200 		return (zil_replay_error(zilog, lr, EINVAL));
4201 
4202 	/*
4203 	 * If this record type can be logged out of order, the object
4204 	 * (lr_foid) may no longer exist.  That's legitimate, not an error.
4205 	 */
4206 	if (TX_OOO(txtype)) {
4207 		error = dmu_object_info(zilog->zl_os,
4208 		    LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL);
4209 		if (error == ENOENT || error == EEXIST)
4210 			return (0);
4211 	}
4212 
4213 	/*
4214 	 * Make a copy of the data so we can revise and extend it.
4215 	 */
4216 	memcpy(zr->zr_lr, lr, reclen);
4217 
4218 	/*
4219 	 * If this is a TX_WRITE with a blkptr, suck in the data.
4220 	 */
4221 	if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
4222 		error = zil_read_log_data(zilog, (lr_write_t *)lr,
4223 		    zr->zr_lr + reclen);
4224 		if (error != 0)
4225 			return (zil_replay_error(zilog, lr, error));
4226 	}
4227 
4228 	/*
4229 	 * The log block containing this lr may have been byteswapped
4230 	 * so that we can easily examine common fields like lrc_txtype.
4231 	 * However, the log is a mix of different record types, and only the
4232 	 * replay vectors know how to byteswap their records.  Therefore, if
4233 	 * the lr was byteswapped, undo it before invoking the replay vector.
4234 	 */
4235 	if (zr->zr_byteswap)
4236 		byteswap_uint64_array(zr->zr_lr, reclen);
4237 
4238 	/*
4239 	 * We must now do two things atomically: replay this log record,
4240 	 * and update the log header sequence number to reflect the fact that
4241 	 * we did so. At the end of each replay function the sequence number
4242 	 * is updated if we are in replay mode.
4243 	 */
4244 	error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
4245 	if (error != 0) {
4246 		/*
4247 		 * The DMU's dnode layer doesn't see removes until the txg
4248 		 * commits, so a subsequent claim can spuriously fail with
4249 		 * EEXIST. So if we receive any error we try syncing out
4250 		 * any removes then retry the transaction.  Note that we
4251 		 * specify B_FALSE for byteswap now, so we don't do it twice.
4252 		 */
4253 		txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
4254 		error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
4255 		if (error != 0)
4256 			return (zil_replay_error(zilog, lr, error));
4257 	}
4258 	return (0);
4259 }
4260 
4261 static int
4262 zil_incr_blks(zilog_t *zilog, const blkptr_t *bp, void *arg, uint64_t claim_txg)
4263 {
4264 	(void) bp, (void) arg, (void) claim_txg;
4265 
4266 	zilog->zl_replay_blks++;
4267 
4268 	return (0);
4269 }
4270 
4271 /*
4272  * If this dataset has a non-empty intent log, replay it and destroy it.
4273  * Return B_TRUE if there were any entries to replay.
4274  */
4275 boolean_t
4276 zil_replay(objset_t *os, void *arg,
4277     zil_replay_func_t *const replay_func[TX_MAX_TYPE])
4278 {
4279 	zilog_t *zilog = dmu_objset_zil(os);
4280 	const zil_header_t *zh = zilog->zl_header;
4281 	zil_replay_arg_t zr;
4282 
4283 	if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
4284 		return (zil_destroy(zilog, B_TRUE));
4285 	}
4286 
4287 	zr.zr_replay = replay_func;
4288 	zr.zr_arg = arg;
4289 	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
4290 	zr.zr_lr = vmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
4291 
4292 	/*
4293 	 * Wait for in-progress removes to sync before starting replay.
4294 	 */
4295 	txg_wait_synced(zilog->zl_dmu_pool, 0);
4296 
4297 	zilog->zl_replay = B_TRUE;
4298 	zilog->zl_replay_time = ddi_get_lbolt();
4299 	ASSERT(zilog->zl_replay_blks == 0);
4300 	(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
4301 	    zh->zh_claim_txg, B_TRUE);
4302 	vmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
4303 
4304 	zil_destroy(zilog, B_FALSE);
4305 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
4306 	zilog->zl_replay = B_FALSE;
4307 
4308 	return (B_TRUE);
4309 }
4310 
4311 boolean_t
4312 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
4313 {
4314 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
4315 		return (B_TRUE);
4316 
4317 	if (zilog->zl_replay) {
4318 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
4319 		zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
4320 		    zilog->zl_replaying_seq;
4321 		return (B_TRUE);
4322 	}
4323 
4324 	return (B_FALSE);
4325 }
4326 
4327 int
4328 zil_reset(const char *osname, void *arg)
4329 {
4330 	(void) arg;
4331 
4332 	int error = zil_suspend(osname, NULL);
4333 	/* EACCES means crypto key not loaded */
4334 	if ((error == EACCES) || (error == EBUSY))
4335 		return (SET_ERROR(error));
4336 	if (error != 0)
4337 		return (SET_ERROR(EEXIST));
4338 	return (0);
4339 }
4340 
4341 EXPORT_SYMBOL(zil_alloc);
4342 EXPORT_SYMBOL(zil_free);
4343 EXPORT_SYMBOL(zil_open);
4344 EXPORT_SYMBOL(zil_close);
4345 EXPORT_SYMBOL(zil_replay);
4346 EXPORT_SYMBOL(zil_replaying);
4347 EXPORT_SYMBOL(zil_destroy);
4348 EXPORT_SYMBOL(zil_destroy_sync);
4349 EXPORT_SYMBOL(zil_itx_create);
4350 EXPORT_SYMBOL(zil_itx_destroy);
4351 EXPORT_SYMBOL(zil_itx_assign);
4352 EXPORT_SYMBOL(zil_commit);
4353 EXPORT_SYMBOL(zil_claim);
4354 EXPORT_SYMBOL(zil_check_log_chain);
4355 EXPORT_SYMBOL(zil_sync);
4356 EXPORT_SYMBOL(zil_clean);
4357 EXPORT_SYMBOL(zil_suspend);
4358 EXPORT_SYMBOL(zil_resume);
4359 EXPORT_SYMBOL(zil_lwb_add_block);
4360 EXPORT_SYMBOL(zil_bp_tree_add);
4361 EXPORT_SYMBOL(zil_set_sync);
4362 EXPORT_SYMBOL(zil_set_logbias);
4363 EXPORT_SYMBOL(zil_sums_init);
4364 EXPORT_SYMBOL(zil_sums_fini);
4365 EXPORT_SYMBOL(zil_kstat_values_update);
4366 
4367 ZFS_MODULE_PARAM(zfs, zfs_, commit_timeout_pct, UINT, ZMOD_RW,
4368 	"ZIL block open timeout percentage");
4369 
4370 ZFS_MODULE_PARAM(zfs_zil, zil_, replay_disable, INT, ZMOD_RW,
4371 	"Disable intent logging replay");
4372 
4373 ZFS_MODULE_PARAM(zfs_zil, zil_, nocacheflush, INT, ZMOD_RW,
4374 	"Disable ZIL cache flushes");
4375 
4376 ZFS_MODULE_PARAM(zfs_zil, zil_, slog_bulk, U64, ZMOD_RW,
4377 	"Limit in bytes slog sync writes per commit");
4378 
4379 ZFS_MODULE_PARAM(zfs_zil, zil_, maxblocksize, UINT, ZMOD_RW,
4380 	"Limit in bytes of ZIL log block size");
4381 
4382 ZFS_MODULE_PARAM(zfs_zil, zil_, maxcopied, UINT, ZMOD_RW,
4383 	"Limit in bytes WR_COPIED size");
4384