xref: /freebsd/sys/contrib/openzfs/module/zfs/zil.c (revision cfd6422a5217410fbd66f7a7a8a64d9d85e61229)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24  * Copyright (c) 2014 Integros [integros.com]
25  * Copyright (c) 2018 Datto Inc.
26  */
27 
28 /* Portions Copyright 2010 Robert Milkowski */
29 
30 #include <sys/zfs_context.h>
31 #include <sys/spa.h>
32 #include <sys/spa_impl.h>
33 #include <sys/dmu.h>
34 #include <sys/zap.h>
35 #include <sys/arc.h>
36 #include <sys/stat.h>
37 #include <sys/zil.h>
38 #include <sys/zil_impl.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/vdev_impl.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/dsl_pool.h>
43 #include <sys/metaslab.h>
44 #include <sys/trace_zfs.h>
45 #include <sys/abd.h>
46 
47 /*
48  * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system
49  * calls that change the file system. Each itx has enough information to
50  * be able to replay them after a system crash, power loss, or
51  * equivalent failure mode. These are stored in memory until either:
52  *
53  *   1. they are committed to the pool by the DMU transaction group
54  *      (txg), at which point they can be discarded; or
55  *   2. they are committed to the on-disk ZIL for the dataset being
56  *      modified (e.g. due to an fsync, O_DSYNC, or other synchronous
57  *      requirement).
58  *
59  * In the event of a crash or power loss, the itxs contained by each
60  * dataset's on-disk ZIL will be replayed when that dataset is first
61  * instantiated (e.g. if the dataset is a normal filesystem, when it is
62  * first mounted).
63  *
64  * As hinted at above, there is one ZIL per dataset (both the in-memory
65  * representation, and the on-disk representation). The on-disk format
66  * consists of 3 parts:
67  *
68  * 	- a single, per-dataset, ZIL header; which points to a chain of
69  * 	- zero or more ZIL blocks; each of which contains
70  * 	- zero or more ZIL records
71  *
72  * A ZIL record holds the information necessary to replay a single
73  * system call transaction. A ZIL block can hold many ZIL records, and
74  * the blocks are chained together, similarly to a singly linked list.
75  *
76  * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL
77  * block in the chain, and the ZIL header points to the first block in
78  * the chain.
79  *
80  * Note, there is not a fixed place in the pool to hold these ZIL
81  * blocks; they are dynamically allocated and freed as needed from the
82  * blocks available on the pool, though they can be preferentially
83  * allocated from a dedicated "log" vdev.
84  */
85 
86 /*
87  * This controls the amount of time that a ZIL block (lwb) will remain
88  * "open" when it isn't "full", and it has a thread waiting for it to be
89  * committed to stable storage. Please refer to the zil_commit_waiter()
90  * function (and the comments within it) for more details.
91  */
92 int zfs_commit_timeout_pct = 5;
93 
94 /*
95  * See zil.h for more information about these fields.
96  */
97 zil_stats_t zil_stats = {
98 	{ "zil_commit_count",			KSTAT_DATA_UINT64 },
99 	{ "zil_commit_writer_count",		KSTAT_DATA_UINT64 },
100 	{ "zil_itx_count",			KSTAT_DATA_UINT64 },
101 	{ "zil_itx_indirect_count",		KSTAT_DATA_UINT64 },
102 	{ "zil_itx_indirect_bytes",		KSTAT_DATA_UINT64 },
103 	{ "zil_itx_copied_count",		KSTAT_DATA_UINT64 },
104 	{ "zil_itx_copied_bytes",		KSTAT_DATA_UINT64 },
105 	{ "zil_itx_needcopy_count",		KSTAT_DATA_UINT64 },
106 	{ "zil_itx_needcopy_bytes",		KSTAT_DATA_UINT64 },
107 	{ "zil_itx_metaslab_normal_count",	KSTAT_DATA_UINT64 },
108 	{ "zil_itx_metaslab_normal_bytes",	KSTAT_DATA_UINT64 },
109 	{ "zil_itx_metaslab_slog_count",	KSTAT_DATA_UINT64 },
110 	{ "zil_itx_metaslab_slog_bytes",	KSTAT_DATA_UINT64 },
111 };
112 
113 static kstat_t *zil_ksp;
114 
115 /*
116  * Disable intent logging replay.  This global ZIL switch affects all pools.
117  */
118 int zil_replay_disable = 0;
119 
120 /*
121  * Disable the DKIOCFLUSHWRITECACHE commands that are normally sent to
122  * the disk(s) by the ZIL after an LWB write has completed. Setting this
123  * will cause ZIL corruption on power loss if a volatile out-of-order
124  * write cache is enabled.
125  */
126 int zil_nocacheflush = 0;
127 
128 /*
129  * Limit SLOG write size per commit executed with synchronous priority.
130  * Any writes above that will be executed with lower (asynchronous) priority
131  * to limit potential SLOG device abuse by single active ZIL writer.
132  */
133 unsigned long zil_slog_bulk = 768 * 1024;
134 
135 static kmem_cache_t *zil_lwb_cache;
136 static kmem_cache_t *zil_zcw_cache;
137 
138 #define	LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
139     sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
140 
141 static int
142 zil_bp_compare(const void *x1, const void *x2)
143 {
144 	const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
145 	const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
146 
147 	int cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2));
148 	if (likely(cmp))
149 		return (cmp);
150 
151 	return (TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2)));
152 }
153 
154 static void
155 zil_bp_tree_init(zilog_t *zilog)
156 {
157 	avl_create(&zilog->zl_bp_tree, zil_bp_compare,
158 	    sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
159 }
160 
161 static void
162 zil_bp_tree_fini(zilog_t *zilog)
163 {
164 	avl_tree_t *t = &zilog->zl_bp_tree;
165 	zil_bp_node_t *zn;
166 	void *cookie = NULL;
167 
168 	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
169 		kmem_free(zn, sizeof (zil_bp_node_t));
170 
171 	avl_destroy(t);
172 }
173 
174 int
175 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
176 {
177 	avl_tree_t *t = &zilog->zl_bp_tree;
178 	const dva_t *dva;
179 	zil_bp_node_t *zn;
180 	avl_index_t where;
181 
182 	if (BP_IS_EMBEDDED(bp))
183 		return (0);
184 
185 	dva = BP_IDENTITY(bp);
186 
187 	if (avl_find(t, dva, &where) != NULL)
188 		return (SET_ERROR(EEXIST));
189 
190 	zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
191 	zn->zn_dva = *dva;
192 	avl_insert(t, zn, where);
193 
194 	return (0);
195 }
196 
197 static zil_header_t *
198 zil_header_in_syncing_context(zilog_t *zilog)
199 {
200 	return ((zil_header_t *)zilog->zl_header);
201 }
202 
203 static void
204 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
205 {
206 	zio_cksum_t *zc = &bp->blk_cksum;
207 
208 	zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
209 	zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
210 	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
211 	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
212 }
213 
214 /*
215  * Read a log block and make sure it's valid.
216  */
217 static int
218 zil_read_log_block(zilog_t *zilog, boolean_t decrypt, const blkptr_t *bp,
219     blkptr_t *nbp, void *dst, char **end)
220 {
221 	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
222 	arc_flags_t aflags = ARC_FLAG_WAIT;
223 	arc_buf_t *abuf = NULL;
224 	zbookmark_phys_t zb;
225 	int error;
226 
227 	if (zilog->zl_header->zh_claim_txg == 0)
228 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
229 
230 	if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
231 		zio_flags |= ZIO_FLAG_SPECULATIVE;
232 
233 	if (!decrypt)
234 		zio_flags |= ZIO_FLAG_RAW;
235 
236 	SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
237 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
238 
239 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func,
240 	    &abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
241 
242 	if (error == 0) {
243 		zio_cksum_t cksum = bp->blk_cksum;
244 
245 		/*
246 		 * Validate the checksummed log block.
247 		 *
248 		 * Sequence numbers should be... sequential.  The checksum
249 		 * verifier for the next block should be bp's checksum plus 1.
250 		 *
251 		 * Also check the log chain linkage and size used.
252 		 */
253 		cksum.zc_word[ZIL_ZC_SEQ]++;
254 
255 		if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
256 			zil_chain_t *zilc = abuf->b_data;
257 			char *lr = (char *)(zilc + 1);
258 			uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
259 
260 			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
261 			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
262 				error = SET_ERROR(ECKSUM);
263 			} else {
264 				ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
265 				bcopy(lr, dst, len);
266 				*end = (char *)dst + len;
267 				*nbp = zilc->zc_next_blk;
268 			}
269 		} else {
270 			char *lr = abuf->b_data;
271 			uint64_t size = BP_GET_LSIZE(bp);
272 			zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
273 
274 			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
275 			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
276 			    (zilc->zc_nused > (size - sizeof (*zilc)))) {
277 				error = SET_ERROR(ECKSUM);
278 			} else {
279 				ASSERT3U(zilc->zc_nused, <=,
280 				    SPA_OLD_MAXBLOCKSIZE);
281 				bcopy(lr, dst, zilc->zc_nused);
282 				*end = (char *)dst + zilc->zc_nused;
283 				*nbp = zilc->zc_next_blk;
284 			}
285 		}
286 
287 		arc_buf_destroy(abuf, &abuf);
288 	}
289 
290 	return (error);
291 }
292 
293 /*
294  * Read a TX_WRITE log data block.
295  */
296 static int
297 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
298 {
299 	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
300 	const blkptr_t *bp = &lr->lr_blkptr;
301 	arc_flags_t aflags = ARC_FLAG_WAIT;
302 	arc_buf_t *abuf = NULL;
303 	zbookmark_phys_t zb;
304 	int error;
305 
306 	if (BP_IS_HOLE(bp)) {
307 		if (wbuf != NULL)
308 			bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
309 		return (0);
310 	}
311 
312 	if (zilog->zl_header->zh_claim_txg == 0)
313 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
314 
315 	/*
316 	 * If we are not using the resulting data, we are just checking that
317 	 * it hasn't been corrupted so we don't need to waste CPU time
318 	 * decompressing and decrypting it.
319 	 */
320 	if (wbuf == NULL)
321 		zio_flags |= ZIO_FLAG_RAW;
322 
323 	SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
324 	    ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
325 
326 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
327 	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
328 
329 	if (error == 0) {
330 		if (wbuf != NULL)
331 			bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
332 		arc_buf_destroy(abuf, &abuf);
333 	}
334 
335 	return (error);
336 }
337 
338 /*
339  * Parse the intent log, and call parse_func for each valid record within.
340  */
341 int
342 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
343     zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg,
344     boolean_t decrypt)
345 {
346 	const zil_header_t *zh = zilog->zl_header;
347 	boolean_t claimed = !!zh->zh_claim_txg;
348 	uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
349 	uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
350 	uint64_t max_blk_seq = 0;
351 	uint64_t max_lr_seq = 0;
352 	uint64_t blk_count = 0;
353 	uint64_t lr_count = 0;
354 	blkptr_t blk, next_blk;
355 	char *lrbuf, *lrp;
356 	int error = 0;
357 
358 	bzero(&next_blk, sizeof (blkptr_t));
359 
360 	/*
361 	 * Old logs didn't record the maximum zh_claim_lr_seq.
362 	 */
363 	if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
364 		claim_lr_seq = UINT64_MAX;
365 
366 	/*
367 	 * Starting at the block pointed to by zh_log we read the log chain.
368 	 * For each block in the chain we strongly check that block to
369 	 * ensure its validity.  We stop when an invalid block is found.
370 	 * For each block pointer in the chain we call parse_blk_func().
371 	 * For each record in each valid block we call parse_lr_func().
372 	 * If the log has been claimed, stop if we encounter a sequence
373 	 * number greater than the highest claimed sequence number.
374 	 */
375 	lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
376 	zil_bp_tree_init(zilog);
377 
378 	for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
379 		uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
380 		int reclen;
381 		char *end = NULL;
382 
383 		if (blk_seq > claim_blk_seq)
384 			break;
385 
386 		error = parse_blk_func(zilog, &blk, arg, txg);
387 		if (error != 0)
388 			break;
389 		ASSERT3U(max_blk_seq, <, blk_seq);
390 		max_blk_seq = blk_seq;
391 		blk_count++;
392 
393 		if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
394 			break;
395 
396 		error = zil_read_log_block(zilog, decrypt, &blk, &next_blk,
397 		    lrbuf, &end);
398 		if (error != 0)
399 			break;
400 
401 		for (lrp = lrbuf; lrp < end; lrp += reclen) {
402 			lr_t *lr = (lr_t *)lrp;
403 			reclen = lr->lrc_reclen;
404 			ASSERT3U(reclen, >=, sizeof (lr_t));
405 			if (lr->lrc_seq > claim_lr_seq)
406 				goto done;
407 
408 			error = parse_lr_func(zilog, lr, arg, txg);
409 			if (error != 0)
410 				goto done;
411 			ASSERT3U(max_lr_seq, <, lr->lrc_seq);
412 			max_lr_seq = lr->lrc_seq;
413 			lr_count++;
414 		}
415 	}
416 done:
417 	zilog->zl_parse_error = error;
418 	zilog->zl_parse_blk_seq = max_blk_seq;
419 	zilog->zl_parse_lr_seq = max_lr_seq;
420 	zilog->zl_parse_blk_count = blk_count;
421 	zilog->zl_parse_lr_count = lr_count;
422 
423 	ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
424 	    (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq) ||
425 	    (decrypt && error == EIO));
426 
427 	zil_bp_tree_fini(zilog);
428 	zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
429 
430 	return (error);
431 }
432 
433 /* ARGSUSED */
434 static int
435 zil_clear_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
436     uint64_t first_txg)
437 {
438 	ASSERT(!BP_IS_HOLE(bp));
439 
440 	/*
441 	 * As we call this function from the context of a rewind to a
442 	 * checkpoint, each ZIL block whose txg is later than the txg
443 	 * that we rewind to is invalid. Thus, we return -1 so
444 	 * zil_parse() doesn't attempt to read it.
445 	 */
446 	if (bp->blk_birth >= first_txg)
447 		return (-1);
448 
449 	if (zil_bp_tree_add(zilog, bp) != 0)
450 		return (0);
451 
452 	zio_free(zilog->zl_spa, first_txg, bp);
453 	return (0);
454 }
455 
456 /* ARGSUSED */
457 static int
458 zil_noop_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
459     uint64_t first_txg)
460 {
461 	return (0);
462 }
463 
464 static int
465 zil_claim_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
466     uint64_t first_txg)
467 {
468 	/*
469 	 * Claim log block if not already committed and not already claimed.
470 	 * If tx == NULL, just verify that the block is claimable.
471 	 */
472 	if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
473 	    zil_bp_tree_add(zilog, bp) != 0)
474 		return (0);
475 
476 	return (zio_wait(zio_claim(NULL, zilog->zl_spa,
477 	    tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
478 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
479 }
480 
481 static int
482 zil_claim_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
483     uint64_t first_txg)
484 {
485 	lr_write_t *lr = (lr_write_t *)lrc;
486 	int error;
487 
488 	if (lrc->lrc_txtype != TX_WRITE)
489 		return (0);
490 
491 	/*
492 	 * If the block is not readable, don't claim it.  This can happen
493 	 * in normal operation when a log block is written to disk before
494 	 * some of the dmu_sync() blocks it points to.  In this case, the
495 	 * transaction cannot have been committed to anyone (we would have
496 	 * waited for all writes to be stable first), so it is semantically
497 	 * correct to declare this the end of the log.
498 	 */
499 	if (lr->lr_blkptr.blk_birth >= first_txg) {
500 		error = zil_read_log_data(zilog, lr, NULL);
501 		if (error != 0)
502 			return (error);
503 	}
504 
505 	return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
506 }
507 
508 /* ARGSUSED */
509 static int
510 zil_free_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
511     uint64_t claim_txg)
512 {
513 	zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
514 
515 	return (0);
516 }
517 
518 static int
519 zil_free_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
520     uint64_t claim_txg)
521 {
522 	lr_write_t *lr = (lr_write_t *)lrc;
523 	blkptr_t *bp = &lr->lr_blkptr;
524 
525 	/*
526 	 * If we previously claimed it, we need to free it.
527 	 */
528 	if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
529 	    bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
530 	    !BP_IS_HOLE(bp))
531 		zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
532 
533 	return (0);
534 }
535 
536 static int
537 zil_lwb_vdev_compare(const void *x1, const void *x2)
538 {
539 	const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
540 	const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
541 
542 	return (TREE_CMP(v1, v2));
543 }
544 
545 static lwb_t *
546 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg,
547     boolean_t fastwrite)
548 {
549 	lwb_t *lwb;
550 
551 	lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
552 	lwb->lwb_zilog = zilog;
553 	lwb->lwb_blk = *bp;
554 	lwb->lwb_fastwrite = fastwrite;
555 	lwb->lwb_slog = slog;
556 	lwb->lwb_state = LWB_STATE_CLOSED;
557 	lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
558 	lwb->lwb_max_txg = txg;
559 	lwb->lwb_write_zio = NULL;
560 	lwb->lwb_root_zio = NULL;
561 	lwb->lwb_tx = NULL;
562 	lwb->lwb_issued_timestamp = 0;
563 	if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
564 		lwb->lwb_nused = sizeof (zil_chain_t);
565 		lwb->lwb_sz = BP_GET_LSIZE(bp);
566 	} else {
567 		lwb->lwb_nused = 0;
568 		lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
569 	}
570 
571 	mutex_enter(&zilog->zl_lock);
572 	list_insert_tail(&zilog->zl_lwb_list, lwb);
573 	mutex_exit(&zilog->zl_lock);
574 
575 	ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
576 	ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
577 	VERIFY(list_is_empty(&lwb->lwb_waiters));
578 	VERIFY(list_is_empty(&lwb->lwb_itxs));
579 
580 	return (lwb);
581 }
582 
583 static void
584 zil_free_lwb(zilog_t *zilog, lwb_t *lwb)
585 {
586 	ASSERT(MUTEX_HELD(&zilog->zl_lock));
587 	ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
588 	VERIFY(list_is_empty(&lwb->lwb_waiters));
589 	VERIFY(list_is_empty(&lwb->lwb_itxs));
590 	ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
591 	ASSERT3P(lwb->lwb_write_zio, ==, NULL);
592 	ASSERT3P(lwb->lwb_root_zio, ==, NULL);
593 	ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa));
594 	ASSERT(lwb->lwb_state == LWB_STATE_CLOSED ||
595 	    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
596 
597 	/*
598 	 * Clear the zilog's field to indicate this lwb is no longer
599 	 * valid, and prevent use-after-free errors.
600 	 */
601 	if (zilog->zl_last_lwb_opened == lwb)
602 		zilog->zl_last_lwb_opened = NULL;
603 
604 	kmem_cache_free(zil_lwb_cache, lwb);
605 }
606 
607 /*
608  * Called when we create in-memory log transactions so that we know
609  * to cleanup the itxs at the end of spa_sync().
610  */
611 static void
612 zilog_dirty(zilog_t *zilog, uint64_t txg)
613 {
614 	dsl_pool_t *dp = zilog->zl_dmu_pool;
615 	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
616 
617 	ASSERT(spa_writeable(zilog->zl_spa));
618 
619 	if (ds->ds_is_snapshot)
620 		panic("dirtying snapshot!");
621 
622 	if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
623 		/* up the hold count until we can be written out */
624 		dmu_buf_add_ref(ds->ds_dbuf, zilog);
625 
626 		zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg);
627 	}
628 }
629 
630 /*
631  * Determine if the zil is dirty in the specified txg. Callers wanting to
632  * ensure that the dirty state does not change must hold the itxg_lock for
633  * the specified txg. Holding the lock will ensure that the zil cannot be
634  * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
635  * state.
636  */
637 static boolean_t __maybe_unused
638 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
639 {
640 	dsl_pool_t *dp = zilog->zl_dmu_pool;
641 
642 	if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
643 		return (B_TRUE);
644 	return (B_FALSE);
645 }
646 
647 /*
648  * Determine if the zil is dirty. The zil is considered dirty if it has
649  * any pending itx records that have not been cleaned by zil_clean().
650  */
651 static boolean_t
652 zilog_is_dirty(zilog_t *zilog)
653 {
654 	dsl_pool_t *dp = zilog->zl_dmu_pool;
655 
656 	for (int t = 0; t < TXG_SIZE; t++) {
657 		if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
658 			return (B_TRUE);
659 	}
660 	return (B_FALSE);
661 }
662 
663 /*
664  * Create an on-disk intent log.
665  */
666 static lwb_t *
667 zil_create(zilog_t *zilog)
668 {
669 	const zil_header_t *zh = zilog->zl_header;
670 	lwb_t *lwb = NULL;
671 	uint64_t txg = 0;
672 	dmu_tx_t *tx = NULL;
673 	blkptr_t blk;
674 	int error = 0;
675 	boolean_t fastwrite = FALSE;
676 	boolean_t slog = FALSE;
677 
678 	/*
679 	 * Wait for any previous destroy to complete.
680 	 */
681 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
682 
683 	ASSERT(zh->zh_claim_txg == 0);
684 	ASSERT(zh->zh_replay_seq == 0);
685 
686 	blk = zh->zh_log;
687 
688 	/*
689 	 * Allocate an initial log block if:
690 	 *    - there isn't one already
691 	 *    - the existing block is the wrong endianness
692 	 */
693 	if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
694 		tx = dmu_tx_create(zilog->zl_os);
695 		VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
696 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
697 		txg = dmu_tx_get_txg(tx);
698 
699 		if (!BP_IS_HOLE(&blk)) {
700 			zio_free(zilog->zl_spa, txg, &blk);
701 			BP_ZERO(&blk);
702 		}
703 
704 		error = zio_alloc_zil(zilog->zl_spa, zilog->zl_os, txg, &blk,
705 		    ZIL_MIN_BLKSZ, &slog);
706 		fastwrite = TRUE;
707 
708 		if (error == 0)
709 			zil_init_log_chain(zilog, &blk);
710 	}
711 
712 	/*
713 	 * Allocate a log write block (lwb) for the first log block.
714 	 */
715 	if (error == 0)
716 		lwb = zil_alloc_lwb(zilog, &blk, slog, txg, fastwrite);
717 
718 	/*
719 	 * If we just allocated the first log block, commit our transaction
720 	 * and wait for zil_sync() to stuff the block pointer into zh_log.
721 	 * (zh is part of the MOS, so we cannot modify it in open context.)
722 	 */
723 	if (tx != NULL) {
724 		dmu_tx_commit(tx);
725 		txg_wait_synced(zilog->zl_dmu_pool, txg);
726 	}
727 
728 	ASSERT(error != 0 || bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
729 	IMPLY(error == 0, lwb != NULL);
730 
731 	return (lwb);
732 }
733 
734 /*
735  * In one tx, free all log blocks and clear the log header. If keep_first
736  * is set, then we're replaying a log with no content. We want to keep the
737  * first block, however, so that the first synchronous transaction doesn't
738  * require a txg_wait_synced() in zil_create(). We don't need to
739  * txg_wait_synced() here either when keep_first is set, because both
740  * zil_create() and zil_destroy() will wait for any in-progress destroys
741  * to complete.
742  */
743 void
744 zil_destroy(zilog_t *zilog, boolean_t keep_first)
745 {
746 	const zil_header_t *zh = zilog->zl_header;
747 	lwb_t *lwb;
748 	dmu_tx_t *tx;
749 	uint64_t txg;
750 
751 	/*
752 	 * Wait for any previous destroy to complete.
753 	 */
754 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
755 
756 	zilog->zl_old_header = *zh;		/* debugging aid */
757 
758 	if (BP_IS_HOLE(&zh->zh_log))
759 		return;
760 
761 	tx = dmu_tx_create(zilog->zl_os);
762 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
763 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
764 	txg = dmu_tx_get_txg(tx);
765 
766 	mutex_enter(&zilog->zl_lock);
767 
768 	ASSERT3U(zilog->zl_destroy_txg, <, txg);
769 	zilog->zl_destroy_txg = txg;
770 	zilog->zl_keep_first = keep_first;
771 
772 	if (!list_is_empty(&zilog->zl_lwb_list)) {
773 		ASSERT(zh->zh_claim_txg == 0);
774 		VERIFY(!keep_first);
775 		while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
776 			if (lwb->lwb_fastwrite)
777 				metaslab_fastwrite_unmark(zilog->zl_spa,
778 				    &lwb->lwb_blk);
779 
780 			list_remove(&zilog->zl_lwb_list, lwb);
781 			if (lwb->lwb_buf != NULL)
782 				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
783 			zio_free(zilog->zl_spa, txg, &lwb->lwb_blk);
784 			zil_free_lwb(zilog, lwb);
785 		}
786 	} else if (!keep_first) {
787 		zil_destroy_sync(zilog, tx);
788 	}
789 	mutex_exit(&zilog->zl_lock);
790 
791 	dmu_tx_commit(tx);
792 }
793 
794 void
795 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
796 {
797 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
798 	(void) zil_parse(zilog, zil_free_log_block,
799 	    zil_free_log_record, tx, zilog->zl_header->zh_claim_txg, B_FALSE);
800 }
801 
802 int
803 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
804 {
805 	dmu_tx_t *tx = txarg;
806 	zilog_t *zilog;
807 	uint64_t first_txg;
808 	zil_header_t *zh;
809 	objset_t *os;
810 	int error;
811 
812 	error = dmu_objset_own_obj(dp, ds->ds_object,
813 	    DMU_OST_ANY, B_FALSE, B_FALSE, FTAG, &os);
814 	if (error != 0) {
815 		/*
816 		 * EBUSY indicates that the objset is inconsistent, in which
817 		 * case it can not have a ZIL.
818 		 */
819 		if (error != EBUSY) {
820 			cmn_err(CE_WARN, "can't open objset for %llu, error %u",
821 			    (unsigned long long)ds->ds_object, error);
822 		}
823 
824 		return (0);
825 	}
826 
827 	zilog = dmu_objset_zil(os);
828 	zh = zil_header_in_syncing_context(zilog);
829 	ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa));
830 	first_txg = spa_min_claim_txg(zilog->zl_spa);
831 
832 	/*
833 	 * If the spa_log_state is not set to be cleared, check whether
834 	 * the current uberblock is a checkpoint one and if the current
835 	 * header has been claimed before moving on.
836 	 *
837 	 * If the current uberblock is a checkpointed uberblock then
838 	 * one of the following scenarios took place:
839 	 *
840 	 * 1] We are currently rewinding to the checkpoint of the pool.
841 	 * 2] We crashed in the middle of a checkpoint rewind but we
842 	 *    did manage to write the checkpointed uberblock to the
843 	 *    vdev labels, so when we tried to import the pool again
844 	 *    the checkpointed uberblock was selected from the import
845 	 *    procedure.
846 	 *
847 	 * In both cases we want to zero out all the ZIL blocks, except
848 	 * the ones that have been claimed at the time of the checkpoint
849 	 * (their zh_claim_txg != 0). The reason is that these blocks
850 	 * may be corrupted since we may have reused their locations on
851 	 * disk after we took the checkpoint.
852 	 *
853 	 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier
854 	 * when we first figure out whether the current uberblock is
855 	 * checkpointed or not. Unfortunately, that would discard all
856 	 * the logs, including the ones that are claimed, and we would
857 	 * leak space.
858 	 */
859 	if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR ||
860 	    (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
861 	    zh->zh_claim_txg == 0)) {
862 		if (!BP_IS_HOLE(&zh->zh_log)) {
863 			(void) zil_parse(zilog, zil_clear_log_block,
864 			    zil_noop_log_record, tx, first_txg, B_FALSE);
865 		}
866 		BP_ZERO(&zh->zh_log);
867 		if (os->os_encrypted)
868 			os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
869 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
870 		dmu_objset_disown(os, B_FALSE, FTAG);
871 		return (0);
872 	}
873 
874 	/*
875 	 * If we are not rewinding and opening the pool normally, then
876 	 * the min_claim_txg should be equal to the first txg of the pool.
877 	 */
878 	ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa));
879 
880 	/*
881 	 * Claim all log blocks if we haven't already done so, and remember
882 	 * the highest claimed sequence number.  This ensures that if we can
883 	 * read only part of the log now (e.g. due to a missing device),
884 	 * but we can read the entire log later, we will not try to replay
885 	 * or destroy beyond the last block we successfully claimed.
886 	 */
887 	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
888 	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
889 		(void) zil_parse(zilog, zil_claim_log_block,
890 		    zil_claim_log_record, tx, first_txg, B_FALSE);
891 		zh->zh_claim_txg = first_txg;
892 		zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
893 		zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
894 		if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
895 			zh->zh_flags |= ZIL_REPLAY_NEEDED;
896 		zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
897 		if (os->os_encrypted)
898 			os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
899 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
900 	}
901 
902 	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
903 	dmu_objset_disown(os, B_FALSE, FTAG);
904 	return (0);
905 }
906 
907 /*
908  * Check the log by walking the log chain.
909  * Checksum errors are ok as they indicate the end of the chain.
910  * Any other error (no device or read failure) returns an error.
911  */
912 /* ARGSUSED */
913 int
914 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
915 {
916 	zilog_t *zilog;
917 	objset_t *os;
918 	blkptr_t *bp;
919 	int error;
920 
921 	ASSERT(tx == NULL);
922 
923 	error = dmu_objset_from_ds(ds, &os);
924 	if (error != 0) {
925 		cmn_err(CE_WARN, "can't open objset %llu, error %d",
926 		    (unsigned long long)ds->ds_object, error);
927 		return (0);
928 	}
929 
930 	zilog = dmu_objset_zil(os);
931 	bp = (blkptr_t *)&zilog->zl_header->zh_log;
932 
933 	if (!BP_IS_HOLE(bp)) {
934 		vdev_t *vd;
935 		boolean_t valid = B_TRUE;
936 
937 		/*
938 		 * Check the first block and determine if it's on a log device
939 		 * which may have been removed or faulted prior to loading this
940 		 * pool.  If so, there's no point in checking the rest of the
941 		 * log as its content should have already been synced to the
942 		 * pool.
943 		 */
944 		spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
945 		vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
946 		if (vd->vdev_islog && vdev_is_dead(vd))
947 			valid = vdev_log_state_valid(vd);
948 		spa_config_exit(os->os_spa, SCL_STATE, FTAG);
949 
950 		if (!valid)
951 			return (0);
952 
953 		/*
954 		 * Check whether the current uberblock is checkpointed (e.g.
955 		 * we are rewinding) and whether the current header has been
956 		 * claimed or not. If it hasn't then skip verifying it. We
957 		 * do this because its ZIL blocks may be part of the pool's
958 		 * state before the rewind, which is no longer valid.
959 		 */
960 		zil_header_t *zh = zil_header_in_syncing_context(zilog);
961 		if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
962 		    zh->zh_claim_txg == 0)
963 			return (0);
964 	}
965 
966 	/*
967 	 * Because tx == NULL, zil_claim_log_block() will not actually claim
968 	 * any blocks, but just determine whether it is possible to do so.
969 	 * In addition to checking the log chain, zil_claim_log_block()
970 	 * will invoke zio_claim() with a done func of spa_claim_notify(),
971 	 * which will update spa_max_claim_txg.  See spa_load() for details.
972 	 */
973 	error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
974 	    zilog->zl_header->zh_claim_txg ? -1ULL :
975 	    spa_min_claim_txg(os->os_spa), B_FALSE);
976 
977 	return ((error == ECKSUM || error == ENOENT) ? 0 : error);
978 }
979 
980 /*
981  * When an itx is "skipped", this function is used to properly mark the
982  * waiter as "done, and signal any thread(s) waiting on it. An itx can
983  * be skipped (and not committed to an lwb) for a variety of reasons,
984  * one of them being that the itx was committed via spa_sync(), prior to
985  * it being committed to an lwb; this can happen if a thread calling
986  * zil_commit() is racing with spa_sync().
987  */
988 static void
989 zil_commit_waiter_skip(zil_commit_waiter_t *zcw)
990 {
991 	mutex_enter(&zcw->zcw_lock);
992 	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
993 	zcw->zcw_done = B_TRUE;
994 	cv_broadcast(&zcw->zcw_cv);
995 	mutex_exit(&zcw->zcw_lock);
996 }
997 
998 /*
999  * This function is used when the given waiter is to be linked into an
1000  * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb.
1001  * At this point, the waiter will no longer be referenced by the itx,
1002  * and instead, will be referenced by the lwb.
1003  */
1004 static void
1005 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb)
1006 {
1007 	/*
1008 	 * The lwb_waiters field of the lwb is protected by the zilog's
1009 	 * zl_lock, thus it must be held when calling this function.
1010 	 */
1011 	ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_lock));
1012 
1013 	mutex_enter(&zcw->zcw_lock);
1014 	ASSERT(!list_link_active(&zcw->zcw_node));
1015 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
1016 	ASSERT3P(lwb, !=, NULL);
1017 	ASSERT(lwb->lwb_state == LWB_STATE_OPENED ||
1018 	    lwb->lwb_state == LWB_STATE_ISSUED ||
1019 	    lwb->lwb_state == LWB_STATE_WRITE_DONE);
1020 
1021 	list_insert_tail(&lwb->lwb_waiters, zcw);
1022 	zcw->zcw_lwb = lwb;
1023 	mutex_exit(&zcw->zcw_lock);
1024 }
1025 
1026 /*
1027  * This function is used when zio_alloc_zil() fails to allocate a ZIL
1028  * block, and the given waiter must be linked to the "nolwb waiters"
1029  * list inside of zil_process_commit_list().
1030  */
1031 static void
1032 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb)
1033 {
1034 	mutex_enter(&zcw->zcw_lock);
1035 	ASSERT(!list_link_active(&zcw->zcw_node));
1036 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
1037 	list_insert_tail(nolwb, zcw);
1038 	mutex_exit(&zcw->zcw_lock);
1039 }
1040 
1041 void
1042 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp)
1043 {
1044 	avl_tree_t *t = &lwb->lwb_vdev_tree;
1045 	avl_index_t where;
1046 	zil_vdev_node_t *zv, zvsearch;
1047 	int ndvas = BP_GET_NDVAS(bp);
1048 	int i;
1049 
1050 	if (zil_nocacheflush)
1051 		return;
1052 
1053 	mutex_enter(&lwb->lwb_vdev_lock);
1054 	for (i = 0; i < ndvas; i++) {
1055 		zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
1056 		if (avl_find(t, &zvsearch, &where) == NULL) {
1057 			zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
1058 			zv->zv_vdev = zvsearch.zv_vdev;
1059 			avl_insert(t, zv, where);
1060 		}
1061 	}
1062 	mutex_exit(&lwb->lwb_vdev_lock);
1063 }
1064 
1065 static void
1066 zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb)
1067 {
1068 	avl_tree_t *src = &lwb->lwb_vdev_tree;
1069 	avl_tree_t *dst = &nlwb->lwb_vdev_tree;
1070 	void *cookie = NULL;
1071 	zil_vdev_node_t *zv;
1072 
1073 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1074 	ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
1075 	ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1076 
1077 	/*
1078 	 * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does
1079 	 * not need the protection of lwb_vdev_lock (it will only be modified
1080 	 * while holding zilog->zl_lock) as its writes and those of its
1081 	 * children have all completed.  The younger 'nlwb' may be waiting on
1082 	 * future writes to additional vdevs.
1083 	 */
1084 	mutex_enter(&nlwb->lwb_vdev_lock);
1085 	/*
1086 	 * Tear down the 'lwb' vdev tree, ensuring that entries which do not
1087 	 * exist in 'nlwb' are moved to it, freeing any would-be duplicates.
1088 	 */
1089 	while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) {
1090 		avl_index_t where;
1091 
1092 		if (avl_find(dst, zv, &where) == NULL) {
1093 			avl_insert(dst, zv, where);
1094 		} else {
1095 			kmem_free(zv, sizeof (*zv));
1096 		}
1097 	}
1098 	mutex_exit(&nlwb->lwb_vdev_lock);
1099 }
1100 
1101 void
1102 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg)
1103 {
1104 	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1105 }
1106 
1107 /*
1108  * This function is a called after all vdevs associated with a given lwb
1109  * write have completed their DKIOCFLUSHWRITECACHE command; or as soon
1110  * as the lwb write completes, if "zil_nocacheflush" is set. Further,
1111  * all "previous" lwb's will have completed before this function is
1112  * called; i.e. this function is called for all previous lwbs before
1113  * it's called for "this" lwb (enforced via zio the dependencies
1114  * configured in zil_lwb_set_zio_dependency()).
1115  *
1116  * The intention is for this function to be called as soon as the
1117  * contents of an lwb are considered "stable" on disk, and will survive
1118  * any sudden loss of power. At this point, any threads waiting for the
1119  * lwb to reach this state are signalled, and the "waiter" structures
1120  * are marked "done".
1121  */
1122 static void
1123 zil_lwb_flush_vdevs_done(zio_t *zio)
1124 {
1125 	lwb_t *lwb = zio->io_private;
1126 	zilog_t *zilog = lwb->lwb_zilog;
1127 	dmu_tx_t *tx = lwb->lwb_tx;
1128 	zil_commit_waiter_t *zcw;
1129 	itx_t *itx;
1130 
1131 	spa_config_exit(zilog->zl_spa, SCL_STATE, lwb);
1132 
1133 	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1134 
1135 	mutex_enter(&zilog->zl_lock);
1136 
1137 	/*
1138 	 * Ensure the lwb buffer pointer is cleared before releasing the
1139 	 * txg. If we have had an allocation failure and the txg is
1140 	 * waiting to sync then we want zil_sync() to remove the lwb so
1141 	 * that it's not picked up as the next new one in
1142 	 * zil_process_commit_list(). zil_sync() will only remove the
1143 	 * lwb if lwb_buf is null.
1144 	 */
1145 	lwb->lwb_buf = NULL;
1146 	lwb->lwb_tx = NULL;
1147 
1148 	ASSERT3U(lwb->lwb_issued_timestamp, >, 0);
1149 	zilog->zl_last_lwb_latency = gethrtime() - lwb->lwb_issued_timestamp;
1150 
1151 	lwb->lwb_root_zio = NULL;
1152 
1153 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1154 	lwb->lwb_state = LWB_STATE_FLUSH_DONE;
1155 
1156 	if (zilog->zl_last_lwb_opened == lwb) {
1157 		/*
1158 		 * Remember the highest committed log sequence number
1159 		 * for ztest. We only update this value when all the log
1160 		 * writes succeeded, because ztest wants to ASSERT that
1161 		 * it got the whole log chain.
1162 		 */
1163 		zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1164 	}
1165 
1166 	while ((itx = list_head(&lwb->lwb_itxs)) != NULL) {
1167 		list_remove(&lwb->lwb_itxs, itx);
1168 		zil_itx_destroy(itx);
1169 	}
1170 
1171 	while ((zcw = list_head(&lwb->lwb_waiters)) != NULL) {
1172 		mutex_enter(&zcw->zcw_lock);
1173 
1174 		ASSERT(list_link_active(&zcw->zcw_node));
1175 		list_remove(&lwb->lwb_waiters, zcw);
1176 
1177 		ASSERT3P(zcw->zcw_lwb, ==, lwb);
1178 		zcw->zcw_lwb = NULL;
1179 
1180 		zcw->zcw_zio_error = zio->io_error;
1181 
1182 		ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1183 		zcw->zcw_done = B_TRUE;
1184 		cv_broadcast(&zcw->zcw_cv);
1185 
1186 		mutex_exit(&zcw->zcw_lock);
1187 	}
1188 
1189 	mutex_exit(&zilog->zl_lock);
1190 
1191 	/*
1192 	 * Now that we've written this log block, we have a stable pointer
1193 	 * to the next block in the chain, so it's OK to let the txg in
1194 	 * which we allocated the next block sync.
1195 	 */
1196 	dmu_tx_commit(tx);
1197 }
1198 
1199 /*
1200  * This is called when an lwb's write zio completes. The callback's
1201  * purpose is to issue the DKIOCFLUSHWRITECACHE commands for the vdevs
1202  * in the lwb's lwb_vdev_tree. The tree will contain the vdevs involved
1203  * in writing out this specific lwb's data, and in the case that cache
1204  * flushes have been deferred, vdevs involved in writing the data for
1205  * previous lwbs. The writes corresponding to all the vdevs in the
1206  * lwb_vdev_tree will have completed by the time this is called, due to
1207  * the zio dependencies configured in zil_lwb_set_zio_dependency(),
1208  * which takes deferred flushes into account. The lwb will be "done"
1209  * once zil_lwb_flush_vdevs_done() is called, which occurs in the zio
1210  * completion callback for the lwb's root zio.
1211  */
1212 static void
1213 zil_lwb_write_done(zio_t *zio)
1214 {
1215 	lwb_t *lwb = zio->io_private;
1216 	spa_t *spa = zio->io_spa;
1217 	zilog_t *zilog = lwb->lwb_zilog;
1218 	avl_tree_t *t = &lwb->lwb_vdev_tree;
1219 	void *cookie = NULL;
1220 	zil_vdev_node_t *zv;
1221 	lwb_t *nlwb;
1222 
1223 	ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0);
1224 
1225 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1226 	ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
1227 	ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
1228 	ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
1229 	ASSERT(!BP_IS_GANG(zio->io_bp));
1230 	ASSERT(!BP_IS_HOLE(zio->io_bp));
1231 	ASSERT(BP_GET_FILL(zio->io_bp) == 0);
1232 
1233 	abd_put(zio->io_abd);
1234 
1235 	mutex_enter(&zilog->zl_lock);
1236 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED);
1237 	lwb->lwb_state = LWB_STATE_WRITE_DONE;
1238 	lwb->lwb_write_zio = NULL;
1239 	lwb->lwb_fastwrite = FALSE;
1240 	nlwb = list_next(&zilog->zl_lwb_list, lwb);
1241 	mutex_exit(&zilog->zl_lock);
1242 
1243 	if (avl_numnodes(t) == 0)
1244 		return;
1245 
1246 	/*
1247 	 * If there was an IO error, we're not going to call zio_flush()
1248 	 * on these vdevs, so we simply empty the tree and free the
1249 	 * nodes. We avoid calling zio_flush() since there isn't any
1250 	 * good reason for doing so, after the lwb block failed to be
1251 	 * written out.
1252 	 */
1253 	if (zio->io_error != 0) {
1254 		while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
1255 			kmem_free(zv, sizeof (*zv));
1256 		return;
1257 	}
1258 
1259 	/*
1260 	 * If this lwb does not have any threads waiting for it to
1261 	 * complete, we want to defer issuing the DKIOCFLUSHWRITECACHE
1262 	 * command to the vdevs written to by "this" lwb, and instead
1263 	 * rely on the "next" lwb to handle the DKIOCFLUSHWRITECACHE
1264 	 * command for those vdevs. Thus, we merge the vdev tree of
1265 	 * "this" lwb with the vdev tree of the "next" lwb in the list,
1266 	 * and assume the "next" lwb will handle flushing the vdevs (or
1267 	 * deferring the flush(s) again).
1268 	 *
1269 	 * This is a useful performance optimization, especially for
1270 	 * workloads with lots of async write activity and few sync
1271 	 * write and/or fsync activity, as it has the potential to
1272 	 * coalesce multiple flush commands to a vdev into one.
1273 	 */
1274 	if (list_head(&lwb->lwb_waiters) == NULL && nlwb != NULL) {
1275 		zil_lwb_flush_defer(lwb, nlwb);
1276 		ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
1277 		return;
1278 	}
1279 
1280 	while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
1281 		vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
1282 		if (vd != NULL)
1283 			zio_flush(lwb->lwb_root_zio, vd);
1284 		kmem_free(zv, sizeof (*zv));
1285 	}
1286 }
1287 
1288 static void
1289 zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb)
1290 {
1291 	lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened;
1292 
1293 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1294 	ASSERT(MUTEX_HELD(&zilog->zl_lock));
1295 
1296 	/*
1297 	 * The zilog's "zl_last_lwb_opened" field is used to build the
1298 	 * lwb/zio dependency chain, which is used to preserve the
1299 	 * ordering of lwb completions that is required by the semantics
1300 	 * of the ZIL. Each new lwb zio becomes a parent of the
1301 	 * "previous" lwb zio, such that the new lwb's zio cannot
1302 	 * complete until the "previous" lwb's zio completes.
1303 	 *
1304 	 * This is required by the semantics of zil_commit(); the commit
1305 	 * waiters attached to the lwbs will be woken in the lwb zio's
1306 	 * completion callback, so this zio dependency graph ensures the
1307 	 * waiters are woken in the correct order (the same order the
1308 	 * lwbs were created).
1309 	 */
1310 	if (last_lwb_opened != NULL &&
1311 	    last_lwb_opened->lwb_state != LWB_STATE_FLUSH_DONE) {
1312 		ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1313 		    last_lwb_opened->lwb_state == LWB_STATE_ISSUED ||
1314 		    last_lwb_opened->lwb_state == LWB_STATE_WRITE_DONE);
1315 
1316 		ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL);
1317 		zio_add_child(lwb->lwb_root_zio,
1318 		    last_lwb_opened->lwb_root_zio);
1319 
1320 		/*
1321 		 * If the previous lwb's write hasn't already completed,
1322 		 * we also want to order the completion of the lwb write
1323 		 * zios (above, we only order the completion of the lwb
1324 		 * root zios). This is required because of how we can
1325 		 * defer the DKIOCFLUSHWRITECACHE commands for each lwb.
1326 		 *
1327 		 * When the DKIOCFLUSHWRITECACHE commands are deferred,
1328 		 * the previous lwb will rely on this lwb to flush the
1329 		 * vdevs written to by that previous lwb. Thus, we need
1330 		 * to ensure this lwb doesn't issue the flush until
1331 		 * after the previous lwb's write completes. We ensure
1332 		 * this ordering by setting the zio parent/child
1333 		 * relationship here.
1334 		 *
1335 		 * Without this relationship on the lwb's write zio,
1336 		 * it's possible for this lwb's write to complete prior
1337 		 * to the previous lwb's write completing; and thus, the
1338 		 * vdevs for the previous lwb would be flushed prior to
1339 		 * that lwb's data being written to those vdevs (the
1340 		 * vdevs are flushed in the lwb write zio's completion
1341 		 * handler, zil_lwb_write_done()).
1342 		 */
1343 		if (last_lwb_opened->lwb_state != LWB_STATE_WRITE_DONE) {
1344 			ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1345 			    last_lwb_opened->lwb_state == LWB_STATE_ISSUED);
1346 
1347 			ASSERT3P(last_lwb_opened->lwb_write_zio, !=, NULL);
1348 			zio_add_child(lwb->lwb_write_zio,
1349 			    last_lwb_opened->lwb_write_zio);
1350 		}
1351 	}
1352 }
1353 
1354 
1355 /*
1356  * This function's purpose is to "open" an lwb such that it is ready to
1357  * accept new itxs being committed to it. To do this, the lwb's zio
1358  * structures are created, and linked to the lwb. This function is
1359  * idempotent; if the passed in lwb has already been opened, this
1360  * function is essentially a no-op.
1361  */
1362 static void
1363 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb)
1364 {
1365 	zbookmark_phys_t zb;
1366 	zio_priority_t prio;
1367 
1368 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1369 	ASSERT3P(lwb, !=, NULL);
1370 	EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED);
1371 	EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED);
1372 
1373 	SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1374 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
1375 	    lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
1376 
1377 	/* Lock so zil_sync() doesn't fastwrite_unmark after zio is created */
1378 	mutex_enter(&zilog->zl_lock);
1379 	if (lwb->lwb_root_zio == NULL) {
1380 		abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf,
1381 		    BP_GET_LSIZE(&lwb->lwb_blk));
1382 
1383 		if (!lwb->lwb_fastwrite) {
1384 			metaslab_fastwrite_mark(zilog->zl_spa, &lwb->lwb_blk);
1385 			lwb->lwb_fastwrite = 1;
1386 		}
1387 
1388 		if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk)
1389 			prio = ZIO_PRIORITY_SYNC_WRITE;
1390 		else
1391 			prio = ZIO_PRIORITY_ASYNC_WRITE;
1392 
1393 		lwb->lwb_root_zio = zio_root(zilog->zl_spa,
1394 		    zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL);
1395 		ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1396 
1397 		lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio,
1398 		    zilog->zl_spa, 0, &lwb->lwb_blk, lwb_abd,
1399 		    BP_GET_LSIZE(&lwb->lwb_blk), zil_lwb_write_done, lwb,
1400 		    prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE |
1401 		    ZIO_FLAG_FASTWRITE, &zb);
1402 		ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1403 
1404 		lwb->lwb_state = LWB_STATE_OPENED;
1405 
1406 		zil_lwb_set_zio_dependency(zilog, lwb);
1407 		zilog->zl_last_lwb_opened = lwb;
1408 	}
1409 	mutex_exit(&zilog->zl_lock);
1410 
1411 	ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1412 	ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1413 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1414 }
1415 
1416 /*
1417  * Define a limited set of intent log block sizes.
1418  *
1419  * These must be a multiple of 4KB. Note only the amount used (again
1420  * aligned to 4KB) actually gets written. However, we can't always just
1421  * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
1422  */
1423 struct {
1424 	uint64_t	limit;
1425 	uint64_t	blksz;
1426 } zil_block_buckets[] = {
1427 	{ 4096,		4096 },			/* non TX_WRITE */
1428 	{ 8192 + 4096,	8192 + 4096 },		/* database */
1429 	{ 32768 + 4096,	32768 + 4096 },		/* NFS writes */
1430 	{ 65536 + 4096,	65536 + 4096 },		/* 64KB writes */
1431 	{ 131072,	131072 },		/* < 128KB writes */
1432 	{ 131072 +4096,	65536 + 4096 },		/* 128KB writes */
1433 	{ UINT64_MAX,	SPA_OLD_MAXBLOCKSIZE},	/* > 128KB writes */
1434 };
1435 
1436 /*
1437  * Maximum block size used by the ZIL.  This is picked up when the ZIL is
1438  * initialized.  Otherwise this should not be used directly; see
1439  * zl_max_block_size instead.
1440  */
1441 int zil_maxblocksize = SPA_OLD_MAXBLOCKSIZE;
1442 
1443 /*
1444  * Start a log block write and advance to the next log block.
1445  * Calls are serialized.
1446  */
1447 static lwb_t *
1448 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb)
1449 {
1450 	lwb_t *nlwb = NULL;
1451 	zil_chain_t *zilc;
1452 	spa_t *spa = zilog->zl_spa;
1453 	blkptr_t *bp;
1454 	dmu_tx_t *tx;
1455 	uint64_t txg;
1456 	uint64_t zil_blksz, wsz;
1457 	int i, error;
1458 	boolean_t slog;
1459 
1460 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1461 	ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1462 	ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1463 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1464 
1465 	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1466 		zilc = (zil_chain_t *)lwb->lwb_buf;
1467 		bp = &zilc->zc_next_blk;
1468 	} else {
1469 		zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
1470 		bp = &zilc->zc_next_blk;
1471 	}
1472 
1473 	ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
1474 
1475 	/*
1476 	 * Allocate the next block and save its address in this block
1477 	 * before writing it in order to establish the log chain.
1478 	 * Note that if the allocation of nlwb synced before we wrote
1479 	 * the block that points at it (lwb), we'd leak it if we crashed.
1480 	 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
1481 	 * We dirty the dataset to ensure that zil_sync() will be called
1482 	 * to clean up in the event of allocation failure or I/O failure.
1483 	 */
1484 
1485 	tx = dmu_tx_create(zilog->zl_os);
1486 
1487 	/*
1488 	 * Since we are not going to create any new dirty data, and we
1489 	 * can even help with clearing the existing dirty data, we
1490 	 * should not be subject to the dirty data based delays. We
1491 	 * use TXG_NOTHROTTLE to bypass the delay mechanism.
1492 	 */
1493 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));
1494 
1495 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1496 	txg = dmu_tx_get_txg(tx);
1497 
1498 	lwb->lwb_tx = tx;
1499 
1500 	/*
1501 	 * Log blocks are pre-allocated. Here we select the size of the next
1502 	 * block, based on size used in the last block.
1503 	 * - first find the smallest bucket that will fit the block from a
1504 	 *   limited set of block sizes. This is because it's faster to write
1505 	 *   blocks allocated from the same metaslab as they are adjacent or
1506 	 *   close.
1507 	 * - next find the maximum from the new suggested size and an array of
1508 	 *   previous sizes. This lessens a picket fence effect of wrongly
1509 	 *   guessing the size if we have a stream of say 2k, 64k, 2k, 64k
1510 	 *   requests.
1511 	 *
1512 	 * Note we only write what is used, but we can't just allocate
1513 	 * the maximum block size because we can exhaust the available
1514 	 * pool log space.
1515 	 */
1516 	zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1517 	for (i = 0; zil_blksz > zil_block_buckets[i].limit; i++)
1518 		continue;
1519 	zil_blksz = MIN(zil_block_buckets[i].blksz, zilog->zl_max_block_size);
1520 	zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1521 	for (i = 0; i < ZIL_PREV_BLKS; i++)
1522 		zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1523 	zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1524 
1525 	BP_ZERO(bp);
1526 	error = zio_alloc_zil(spa, zilog->zl_os, txg, bp, zil_blksz, &slog);
1527 	if (slog) {
1528 		ZIL_STAT_BUMP(zil_itx_metaslab_slog_count);
1529 		ZIL_STAT_INCR(zil_itx_metaslab_slog_bytes, lwb->lwb_nused);
1530 	} else {
1531 		ZIL_STAT_BUMP(zil_itx_metaslab_normal_count);
1532 		ZIL_STAT_INCR(zil_itx_metaslab_normal_bytes, lwb->lwb_nused);
1533 	}
1534 	if (error == 0) {
1535 		ASSERT3U(bp->blk_birth, ==, txg);
1536 		bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1537 		bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1538 
1539 		/*
1540 		 * Allocate a new log write block (lwb).
1541 		 */
1542 		nlwb = zil_alloc_lwb(zilog, bp, slog, txg, TRUE);
1543 	}
1544 
1545 	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1546 		/* For Slim ZIL only write what is used. */
1547 		wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1548 		ASSERT3U(wsz, <=, lwb->lwb_sz);
1549 		zio_shrink(lwb->lwb_write_zio, wsz);
1550 
1551 	} else {
1552 		wsz = lwb->lwb_sz;
1553 	}
1554 
1555 	zilc->zc_pad = 0;
1556 	zilc->zc_nused = lwb->lwb_nused;
1557 	zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1558 
1559 	/*
1560 	 * clear unused data for security
1561 	 */
1562 	bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
1563 
1564 	spa_config_enter(zilog->zl_spa, SCL_STATE, lwb, RW_READER);
1565 
1566 	zil_lwb_add_block(lwb, &lwb->lwb_blk);
1567 	lwb->lwb_issued_timestamp = gethrtime();
1568 	lwb->lwb_state = LWB_STATE_ISSUED;
1569 
1570 	zio_nowait(lwb->lwb_root_zio);
1571 	zio_nowait(lwb->lwb_write_zio);
1572 
1573 	/*
1574 	 * If there was an allocation failure then nlwb will be null which
1575 	 * forces a txg_wait_synced().
1576 	 */
1577 	return (nlwb);
1578 }
1579 
1580 /*
1581  * Maximum amount of write data that can be put into single log block.
1582  */
1583 uint64_t
1584 zil_max_log_data(zilog_t *zilog)
1585 {
1586 	return (zilog->zl_max_block_size -
1587 	    sizeof (zil_chain_t) - sizeof (lr_write_t));
1588 }
1589 
1590 /*
1591  * Maximum amount of log space we agree to waste to reduce number of
1592  * WR_NEED_COPY chunks to reduce zl_get_data() overhead (~12%).
1593  */
1594 static inline uint64_t
1595 zil_max_waste_space(zilog_t *zilog)
1596 {
1597 	return (zil_max_log_data(zilog) / 8);
1598 }
1599 
1600 /*
1601  * Maximum amount of write data for WR_COPIED.  For correctness, consumers
1602  * must fall back to WR_NEED_COPY if we can't fit the entire record into one
1603  * maximum sized log block, because each WR_COPIED record must fit in a
1604  * single log block.  For space efficiency, we want to fit two records into a
1605  * max-sized log block.
1606  */
1607 uint64_t
1608 zil_max_copied_data(zilog_t *zilog)
1609 {
1610 	return ((zilog->zl_max_block_size - sizeof (zil_chain_t)) / 2 -
1611 	    sizeof (lr_write_t));
1612 }
1613 
1614 static lwb_t *
1615 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1616 {
1617 	lr_t *lrcb, *lrc;
1618 	lr_write_t *lrwb, *lrw;
1619 	char *lr_buf;
1620 	uint64_t dlen, dnow, lwb_sp, reclen, txg, max_log_data;
1621 
1622 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1623 	ASSERT3P(lwb, !=, NULL);
1624 	ASSERT3P(lwb->lwb_buf, !=, NULL);
1625 
1626 	zil_lwb_write_open(zilog, lwb);
1627 
1628 	lrc = &itx->itx_lr;
1629 	lrw = (lr_write_t *)lrc;
1630 
1631 	/*
1632 	 * A commit itx doesn't represent any on-disk state; instead
1633 	 * it's simply used as a place holder on the commit list, and
1634 	 * provides a mechanism for attaching a "commit waiter" onto the
1635 	 * correct lwb (such that the waiter can be signalled upon
1636 	 * completion of that lwb). Thus, we don't process this itx's
1637 	 * log record if it's a commit itx (these itx's don't have log
1638 	 * records), and instead link the itx's waiter onto the lwb's
1639 	 * list of waiters.
1640 	 *
1641 	 * For more details, see the comment above zil_commit().
1642 	 */
1643 	if (lrc->lrc_txtype == TX_COMMIT) {
1644 		mutex_enter(&zilog->zl_lock);
1645 		zil_commit_waiter_link_lwb(itx->itx_private, lwb);
1646 		itx->itx_private = NULL;
1647 		mutex_exit(&zilog->zl_lock);
1648 		return (lwb);
1649 	}
1650 
1651 	if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
1652 		dlen = P2ROUNDUP_TYPED(
1653 		    lrw->lr_length, sizeof (uint64_t), uint64_t);
1654 	} else {
1655 		dlen = 0;
1656 	}
1657 	reclen = lrc->lrc_reclen;
1658 	zilog->zl_cur_used += (reclen + dlen);
1659 	txg = lrc->lrc_txg;
1660 
1661 	ASSERT3U(zilog->zl_cur_used, <, UINT64_MAX - (reclen + dlen));
1662 
1663 cont:
1664 	/*
1665 	 * If this record won't fit in the current log block, start a new one.
1666 	 * For WR_NEED_COPY optimize layout for minimal number of chunks.
1667 	 */
1668 	lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1669 	max_log_data = zil_max_log_data(zilog);
1670 	if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
1671 	    lwb_sp < zil_max_waste_space(zilog) &&
1672 	    (dlen % max_log_data == 0 ||
1673 	    lwb_sp < reclen + dlen % max_log_data))) {
1674 		lwb = zil_lwb_write_issue(zilog, lwb);
1675 		if (lwb == NULL)
1676 			return (NULL);
1677 		zil_lwb_write_open(zilog, lwb);
1678 		ASSERT(LWB_EMPTY(lwb));
1679 		lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1680 
1681 		/*
1682 		 * There must be enough space in the new, empty log block to
1683 		 * hold reclen.  For WR_COPIED, we need to fit the whole
1684 		 * record in one block, and reclen is the header size + the
1685 		 * data size. For WR_NEED_COPY, we can create multiple
1686 		 * records, splitting the data into multiple blocks, so we
1687 		 * only need to fit one word of data per block; in this case
1688 		 * reclen is just the header size (no data).
1689 		 */
1690 		ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
1691 	}
1692 
1693 	dnow = MIN(dlen, lwb_sp - reclen);
1694 	lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1695 	bcopy(lrc, lr_buf, reclen);
1696 	lrcb = (lr_t *)lr_buf;		/* Like lrc, but inside lwb. */
1697 	lrwb = (lr_write_t *)lrcb;	/* Like lrw, but inside lwb. */
1698 
1699 	ZIL_STAT_BUMP(zil_itx_count);
1700 
1701 	/*
1702 	 * If it's a write, fetch the data or get its blkptr as appropriate.
1703 	 */
1704 	if (lrc->lrc_txtype == TX_WRITE) {
1705 		if (txg > spa_freeze_txg(zilog->zl_spa))
1706 			txg_wait_synced(zilog->zl_dmu_pool, txg);
1707 		if (itx->itx_wr_state == WR_COPIED) {
1708 			ZIL_STAT_BUMP(zil_itx_copied_count);
1709 			ZIL_STAT_INCR(zil_itx_copied_bytes, lrw->lr_length);
1710 		} else {
1711 			char *dbuf;
1712 			int error;
1713 
1714 			if (itx->itx_wr_state == WR_NEED_COPY) {
1715 				dbuf = lr_buf + reclen;
1716 				lrcb->lrc_reclen += dnow;
1717 				if (lrwb->lr_length > dnow)
1718 					lrwb->lr_length = dnow;
1719 				lrw->lr_offset += dnow;
1720 				lrw->lr_length -= dnow;
1721 				ZIL_STAT_BUMP(zil_itx_needcopy_count);
1722 				ZIL_STAT_INCR(zil_itx_needcopy_bytes, dnow);
1723 			} else {
1724 				ASSERT3S(itx->itx_wr_state, ==, WR_INDIRECT);
1725 				dbuf = NULL;
1726 				ZIL_STAT_BUMP(zil_itx_indirect_count);
1727 				ZIL_STAT_INCR(zil_itx_indirect_bytes,
1728 				    lrw->lr_length);
1729 			}
1730 
1731 			/*
1732 			 * We pass in the "lwb_write_zio" rather than
1733 			 * "lwb_root_zio" so that the "lwb_write_zio"
1734 			 * becomes the parent of any zio's created by
1735 			 * the "zl_get_data" callback. The vdevs are
1736 			 * flushed after the "lwb_write_zio" completes,
1737 			 * so we want to make sure that completion
1738 			 * callback waits for these additional zio's,
1739 			 * such that the vdevs used by those zio's will
1740 			 * be included in the lwb's vdev tree, and those
1741 			 * vdevs will be properly flushed. If we passed
1742 			 * in "lwb_root_zio" here, then these additional
1743 			 * vdevs may not be flushed; e.g. if these zio's
1744 			 * completed after "lwb_write_zio" completed.
1745 			 */
1746 			error = zilog->zl_get_data(itx->itx_private,
1747 			    lrwb, dbuf, lwb, lwb->lwb_write_zio);
1748 
1749 			if (error == EIO) {
1750 				txg_wait_synced(zilog->zl_dmu_pool, txg);
1751 				return (lwb);
1752 			}
1753 			if (error != 0) {
1754 				ASSERT(error == ENOENT || error == EEXIST ||
1755 				    error == EALREADY);
1756 				return (lwb);
1757 			}
1758 		}
1759 	}
1760 
1761 	/*
1762 	 * We're actually making an entry, so update lrc_seq to be the
1763 	 * log record sequence number.  Note that this is generally not
1764 	 * equal to the itx sequence number because not all transactions
1765 	 * are synchronous, and sometimes spa_sync() gets there first.
1766 	 */
1767 	lrcb->lrc_seq = ++zilog->zl_lr_seq;
1768 	lwb->lwb_nused += reclen + dnow;
1769 
1770 	zil_lwb_add_txg(lwb, txg);
1771 
1772 	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1773 	ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1774 
1775 	dlen -= dnow;
1776 	if (dlen > 0) {
1777 		zilog->zl_cur_used += reclen;
1778 		goto cont;
1779 	}
1780 
1781 	return (lwb);
1782 }
1783 
1784 itx_t *
1785 zil_itx_create(uint64_t txtype, size_t lrsize)
1786 {
1787 	size_t itxsize;
1788 	itx_t *itx;
1789 
1790 	lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
1791 	itxsize = offsetof(itx_t, itx_lr) + lrsize;
1792 
1793 	itx = zio_data_buf_alloc(itxsize);
1794 	itx->itx_lr.lrc_txtype = txtype;
1795 	itx->itx_lr.lrc_reclen = lrsize;
1796 	itx->itx_lr.lrc_seq = 0;	/* defensive */
1797 	itx->itx_sync = B_TRUE;		/* default is synchronous */
1798 	itx->itx_callback = NULL;
1799 	itx->itx_callback_data = NULL;
1800 	itx->itx_size = itxsize;
1801 
1802 	return (itx);
1803 }
1804 
1805 void
1806 zil_itx_destroy(itx_t *itx)
1807 {
1808 	IMPLY(itx->itx_lr.lrc_txtype == TX_COMMIT, itx->itx_callback == NULL);
1809 	IMPLY(itx->itx_callback != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
1810 
1811 	if (itx->itx_callback != NULL)
1812 		itx->itx_callback(itx->itx_callback_data);
1813 
1814 	zio_data_buf_free(itx, itx->itx_size);
1815 }
1816 
1817 /*
1818  * Free up the sync and async itxs. The itxs_t has already been detached
1819  * so no locks are needed.
1820  */
1821 static void
1822 zil_itxg_clean(itxs_t *itxs)
1823 {
1824 	itx_t *itx;
1825 	list_t *list;
1826 	avl_tree_t *t;
1827 	void *cookie;
1828 	itx_async_node_t *ian;
1829 
1830 	list = &itxs->i_sync_list;
1831 	while ((itx = list_head(list)) != NULL) {
1832 		/*
1833 		 * In the general case, commit itxs will not be found
1834 		 * here, as they'll be committed to an lwb via
1835 		 * zil_lwb_commit(), and free'd in that function. Having
1836 		 * said that, it is still possible for commit itxs to be
1837 		 * found here, due to the following race:
1838 		 *
1839 		 *	- a thread calls zil_commit() which assigns the
1840 		 *	  commit itx to a per-txg i_sync_list
1841 		 *	- zil_itxg_clean() is called (e.g. via spa_sync())
1842 		 *	  while the waiter is still on the i_sync_list
1843 		 *
1844 		 * There's nothing to prevent syncing the txg while the
1845 		 * waiter is on the i_sync_list. This normally doesn't
1846 		 * happen because spa_sync() is slower than zil_commit(),
1847 		 * but if zil_commit() calls txg_wait_synced() (e.g.
1848 		 * because zil_create() or zil_commit_writer_stall() is
1849 		 * called) we will hit this case.
1850 		 */
1851 		if (itx->itx_lr.lrc_txtype == TX_COMMIT)
1852 			zil_commit_waiter_skip(itx->itx_private);
1853 
1854 		list_remove(list, itx);
1855 		zil_itx_destroy(itx);
1856 	}
1857 
1858 	cookie = NULL;
1859 	t = &itxs->i_async_tree;
1860 	while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1861 		list = &ian->ia_list;
1862 		while ((itx = list_head(list)) != NULL) {
1863 			list_remove(list, itx);
1864 			/* commit itxs should never be on the async lists. */
1865 			ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
1866 			zil_itx_destroy(itx);
1867 		}
1868 		list_destroy(list);
1869 		kmem_free(ian, sizeof (itx_async_node_t));
1870 	}
1871 	avl_destroy(t);
1872 
1873 	kmem_free(itxs, sizeof (itxs_t));
1874 }
1875 
1876 static int
1877 zil_aitx_compare(const void *x1, const void *x2)
1878 {
1879 	const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1880 	const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1881 
1882 	return (TREE_CMP(o1, o2));
1883 }
1884 
1885 /*
1886  * Remove all async itx with the given oid.
1887  */
1888 void
1889 zil_remove_async(zilog_t *zilog, uint64_t oid)
1890 {
1891 	uint64_t otxg, txg;
1892 	itx_async_node_t *ian;
1893 	avl_tree_t *t;
1894 	avl_index_t where;
1895 	list_t clean_list;
1896 	itx_t *itx;
1897 
1898 	ASSERT(oid != 0);
1899 	list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1900 
1901 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1902 		otxg = ZILTEST_TXG;
1903 	else
1904 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1905 
1906 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1907 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1908 
1909 		mutex_enter(&itxg->itxg_lock);
1910 		if (itxg->itxg_txg != txg) {
1911 			mutex_exit(&itxg->itxg_lock);
1912 			continue;
1913 		}
1914 
1915 		/*
1916 		 * Locate the object node and append its list.
1917 		 */
1918 		t = &itxg->itxg_itxs->i_async_tree;
1919 		ian = avl_find(t, &oid, &where);
1920 		if (ian != NULL)
1921 			list_move_tail(&clean_list, &ian->ia_list);
1922 		mutex_exit(&itxg->itxg_lock);
1923 	}
1924 	while ((itx = list_head(&clean_list)) != NULL) {
1925 		list_remove(&clean_list, itx);
1926 		/* commit itxs should never be on the async lists. */
1927 		ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
1928 		zil_itx_destroy(itx);
1929 	}
1930 	list_destroy(&clean_list);
1931 }
1932 
1933 void
1934 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1935 {
1936 	uint64_t txg;
1937 	itxg_t *itxg;
1938 	itxs_t *itxs, *clean = NULL;
1939 
1940 	/*
1941 	 * Ensure the data of a renamed file is committed before the rename.
1942 	 */
1943 	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1944 		zil_async_to_sync(zilog, itx->itx_oid);
1945 
1946 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1947 		txg = ZILTEST_TXG;
1948 	else
1949 		txg = dmu_tx_get_txg(tx);
1950 
1951 	itxg = &zilog->zl_itxg[txg & TXG_MASK];
1952 	mutex_enter(&itxg->itxg_lock);
1953 	itxs = itxg->itxg_itxs;
1954 	if (itxg->itxg_txg != txg) {
1955 		if (itxs != NULL) {
1956 			/*
1957 			 * The zil_clean callback hasn't got around to cleaning
1958 			 * this itxg. Save the itxs for release below.
1959 			 * This should be rare.
1960 			 */
1961 			zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
1962 			    "txg %llu", itxg->itxg_txg);
1963 			clean = itxg->itxg_itxs;
1964 		}
1965 		itxg->itxg_txg = txg;
1966 		itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t),
1967 		    KM_SLEEP);
1968 
1969 		list_create(&itxs->i_sync_list, sizeof (itx_t),
1970 		    offsetof(itx_t, itx_node));
1971 		avl_create(&itxs->i_async_tree, zil_aitx_compare,
1972 		    sizeof (itx_async_node_t),
1973 		    offsetof(itx_async_node_t, ia_node));
1974 	}
1975 	if (itx->itx_sync) {
1976 		list_insert_tail(&itxs->i_sync_list, itx);
1977 	} else {
1978 		avl_tree_t *t = &itxs->i_async_tree;
1979 		uint64_t foid =
1980 		    LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid);
1981 		itx_async_node_t *ian;
1982 		avl_index_t where;
1983 
1984 		ian = avl_find(t, &foid, &where);
1985 		if (ian == NULL) {
1986 			ian = kmem_alloc(sizeof (itx_async_node_t),
1987 			    KM_SLEEP);
1988 			list_create(&ian->ia_list, sizeof (itx_t),
1989 			    offsetof(itx_t, itx_node));
1990 			ian->ia_foid = foid;
1991 			avl_insert(t, ian, where);
1992 		}
1993 		list_insert_tail(&ian->ia_list, itx);
1994 	}
1995 
1996 	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1997 
1998 	/*
1999 	 * We don't want to dirty the ZIL using ZILTEST_TXG, because
2000 	 * zil_clean() will never be called using ZILTEST_TXG. Thus, we
2001 	 * need to be careful to always dirty the ZIL using the "real"
2002 	 * TXG (not itxg_txg) even when the SPA is frozen.
2003 	 */
2004 	zilog_dirty(zilog, dmu_tx_get_txg(tx));
2005 	mutex_exit(&itxg->itxg_lock);
2006 
2007 	/* Release the old itxs now we've dropped the lock */
2008 	if (clean != NULL)
2009 		zil_itxg_clean(clean);
2010 }
2011 
2012 /*
2013  * If there are any in-memory intent log transactions which have now been
2014  * synced then start up a taskq to free them. We should only do this after we
2015  * have written out the uberblocks (i.e. txg has been committed) so that
2016  * don't inadvertently clean out in-memory log records that would be required
2017  * by zil_commit().
2018  */
2019 void
2020 zil_clean(zilog_t *zilog, uint64_t synced_txg)
2021 {
2022 	itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
2023 	itxs_t *clean_me;
2024 
2025 	ASSERT3U(synced_txg, <, ZILTEST_TXG);
2026 
2027 	mutex_enter(&itxg->itxg_lock);
2028 	if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
2029 		mutex_exit(&itxg->itxg_lock);
2030 		return;
2031 	}
2032 	ASSERT3U(itxg->itxg_txg, <=, synced_txg);
2033 	ASSERT3U(itxg->itxg_txg, !=, 0);
2034 	clean_me = itxg->itxg_itxs;
2035 	itxg->itxg_itxs = NULL;
2036 	itxg->itxg_txg = 0;
2037 	mutex_exit(&itxg->itxg_lock);
2038 	/*
2039 	 * Preferably start a task queue to free up the old itxs but
2040 	 * if taskq_dispatch can't allocate resources to do that then
2041 	 * free it in-line. This should be rare. Note, using TQ_SLEEP
2042 	 * created a bad performance problem.
2043 	 */
2044 	ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
2045 	ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
2046 	taskqid_t id = taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
2047 	    (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP);
2048 	if (id == TASKQID_INVALID)
2049 		zil_itxg_clean(clean_me);
2050 }
2051 
2052 /*
2053  * This function will traverse the queue of itxs that need to be
2054  * committed, and move them onto the ZIL's zl_itx_commit_list.
2055  */
2056 static void
2057 zil_get_commit_list(zilog_t *zilog)
2058 {
2059 	uint64_t otxg, txg;
2060 	list_t *commit_list = &zilog->zl_itx_commit_list;
2061 
2062 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2063 
2064 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2065 		otxg = ZILTEST_TXG;
2066 	else
2067 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2068 
2069 	/*
2070 	 * This is inherently racy, since there is nothing to prevent
2071 	 * the last synced txg from changing. That's okay since we'll
2072 	 * only commit things in the future.
2073 	 */
2074 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2075 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2076 
2077 		mutex_enter(&itxg->itxg_lock);
2078 		if (itxg->itxg_txg != txg) {
2079 			mutex_exit(&itxg->itxg_lock);
2080 			continue;
2081 		}
2082 
2083 		/*
2084 		 * If we're adding itx records to the zl_itx_commit_list,
2085 		 * then the zil better be dirty in this "txg". We can assert
2086 		 * that here since we're holding the itxg_lock which will
2087 		 * prevent spa_sync from cleaning it. Once we add the itxs
2088 		 * to the zl_itx_commit_list we must commit it to disk even
2089 		 * if it's unnecessary (i.e. the txg was synced).
2090 		 */
2091 		ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
2092 		    spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
2093 		list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
2094 
2095 		mutex_exit(&itxg->itxg_lock);
2096 	}
2097 }
2098 
2099 /*
2100  * Move the async itxs for a specified object to commit into sync lists.
2101  */
2102 void
2103 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
2104 {
2105 	uint64_t otxg, txg;
2106 	itx_async_node_t *ian;
2107 	avl_tree_t *t;
2108 	avl_index_t where;
2109 
2110 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2111 		otxg = ZILTEST_TXG;
2112 	else
2113 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2114 
2115 	/*
2116 	 * This is inherently racy, since there is nothing to prevent
2117 	 * the last synced txg from changing.
2118 	 */
2119 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2120 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2121 
2122 		mutex_enter(&itxg->itxg_lock);
2123 		if (itxg->itxg_txg != txg) {
2124 			mutex_exit(&itxg->itxg_lock);
2125 			continue;
2126 		}
2127 
2128 		/*
2129 		 * If a foid is specified then find that node and append its
2130 		 * list. Otherwise walk the tree appending all the lists
2131 		 * to the sync list. We add to the end rather than the
2132 		 * beginning to ensure the create has happened.
2133 		 */
2134 		t = &itxg->itxg_itxs->i_async_tree;
2135 		if (foid != 0) {
2136 			ian = avl_find(t, &foid, &where);
2137 			if (ian != NULL) {
2138 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
2139 				    &ian->ia_list);
2140 			}
2141 		} else {
2142 			void *cookie = NULL;
2143 
2144 			while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
2145 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
2146 				    &ian->ia_list);
2147 				list_destroy(&ian->ia_list);
2148 				kmem_free(ian, sizeof (itx_async_node_t));
2149 			}
2150 		}
2151 		mutex_exit(&itxg->itxg_lock);
2152 	}
2153 }
2154 
2155 /*
2156  * This function will prune commit itxs that are at the head of the
2157  * commit list (it won't prune past the first non-commit itx), and
2158  * either: a) attach them to the last lwb that's still pending
2159  * completion, or b) skip them altogether.
2160  *
2161  * This is used as a performance optimization to prevent commit itxs
2162  * from generating new lwbs when it's unnecessary to do so.
2163  */
2164 static void
2165 zil_prune_commit_list(zilog_t *zilog)
2166 {
2167 	itx_t *itx;
2168 
2169 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2170 
2171 	while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) {
2172 		lr_t *lrc = &itx->itx_lr;
2173 		if (lrc->lrc_txtype != TX_COMMIT)
2174 			break;
2175 
2176 		mutex_enter(&zilog->zl_lock);
2177 
2178 		lwb_t *last_lwb = zilog->zl_last_lwb_opened;
2179 		if (last_lwb == NULL ||
2180 		    last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) {
2181 			/*
2182 			 * All of the itxs this waiter was waiting on
2183 			 * must have already completed (or there were
2184 			 * never any itx's for it to wait on), so it's
2185 			 * safe to skip this waiter and mark it done.
2186 			 */
2187 			zil_commit_waiter_skip(itx->itx_private);
2188 		} else {
2189 			zil_commit_waiter_link_lwb(itx->itx_private, last_lwb);
2190 			itx->itx_private = NULL;
2191 		}
2192 
2193 		mutex_exit(&zilog->zl_lock);
2194 
2195 		list_remove(&zilog->zl_itx_commit_list, itx);
2196 		zil_itx_destroy(itx);
2197 	}
2198 
2199 	IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
2200 }
2201 
2202 static void
2203 zil_commit_writer_stall(zilog_t *zilog)
2204 {
2205 	/*
2206 	 * When zio_alloc_zil() fails to allocate the next lwb block on
2207 	 * disk, we must call txg_wait_synced() to ensure all of the
2208 	 * lwbs in the zilog's zl_lwb_list are synced and then freed (in
2209 	 * zil_sync()), such that any subsequent ZIL writer (i.e. a call
2210 	 * to zil_process_commit_list()) will have to call zil_create(),
2211 	 * and start a new ZIL chain.
2212 	 *
2213 	 * Since zil_alloc_zil() failed, the lwb that was previously
2214 	 * issued does not have a pointer to the "next" lwb on disk.
2215 	 * Thus, if another ZIL writer thread was to allocate the "next"
2216 	 * on-disk lwb, that block could be leaked in the event of a
2217 	 * crash (because the previous lwb on-disk would not point to
2218 	 * it).
2219 	 *
2220 	 * We must hold the zilog's zl_issuer_lock while we do this, to
2221 	 * ensure no new threads enter zil_process_commit_list() until
2222 	 * all lwb's in the zl_lwb_list have been synced and freed
2223 	 * (which is achieved via the txg_wait_synced() call).
2224 	 */
2225 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2226 	txg_wait_synced(zilog->zl_dmu_pool, 0);
2227 	ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
2228 }
2229 
2230 /*
2231  * This function will traverse the commit list, creating new lwbs as
2232  * needed, and committing the itxs from the commit list to these newly
2233  * created lwbs. Additionally, as a new lwb is created, the previous
2234  * lwb will be issued to the zio layer to be written to disk.
2235  */
2236 static void
2237 zil_process_commit_list(zilog_t *zilog)
2238 {
2239 	spa_t *spa = zilog->zl_spa;
2240 	list_t nolwb_itxs;
2241 	list_t nolwb_waiters;
2242 	lwb_t *lwb;
2243 	itx_t *itx;
2244 
2245 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2246 
2247 	/*
2248 	 * Return if there's nothing to commit before we dirty the fs by
2249 	 * calling zil_create().
2250 	 */
2251 	if (list_head(&zilog->zl_itx_commit_list) == NULL)
2252 		return;
2253 
2254 	list_create(&nolwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
2255 	list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t),
2256 	    offsetof(zil_commit_waiter_t, zcw_node));
2257 
2258 	lwb = list_tail(&zilog->zl_lwb_list);
2259 	if (lwb == NULL) {
2260 		lwb = zil_create(zilog);
2261 	} else {
2262 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2263 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
2264 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
2265 	}
2266 
2267 	while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) {
2268 		lr_t *lrc = &itx->itx_lr;
2269 		uint64_t txg = lrc->lrc_txg;
2270 
2271 		ASSERT3U(txg, !=, 0);
2272 
2273 		if (lrc->lrc_txtype == TX_COMMIT) {
2274 			DTRACE_PROBE2(zil__process__commit__itx,
2275 			    zilog_t *, zilog, itx_t *, itx);
2276 		} else {
2277 			DTRACE_PROBE2(zil__process__normal__itx,
2278 			    zilog_t *, zilog, itx_t *, itx);
2279 		}
2280 
2281 		list_remove(&zilog->zl_itx_commit_list, itx);
2282 
2283 		boolean_t synced = txg <= spa_last_synced_txg(spa);
2284 		boolean_t frozen = txg > spa_freeze_txg(spa);
2285 
2286 		/*
2287 		 * If the txg of this itx has already been synced out, then
2288 		 * we don't need to commit this itx to an lwb. This is
2289 		 * because the data of this itx will have already been
2290 		 * written to the main pool. This is inherently racy, and
2291 		 * it's still ok to commit an itx whose txg has already
2292 		 * been synced; this will result in a write that's
2293 		 * unnecessary, but will do no harm.
2294 		 *
2295 		 * With that said, we always want to commit TX_COMMIT itxs
2296 		 * to an lwb, regardless of whether or not that itx's txg
2297 		 * has been synced out. We do this to ensure any OPENED lwb
2298 		 * will always have at least one zil_commit_waiter_t linked
2299 		 * to the lwb.
2300 		 *
2301 		 * As a counter-example, if we skipped TX_COMMIT itx's
2302 		 * whose txg had already been synced, the following
2303 		 * situation could occur if we happened to be racing with
2304 		 * spa_sync:
2305 		 *
2306 		 * 1. We commit a non-TX_COMMIT itx to an lwb, where the
2307 		 *    itx's txg is 10 and the last synced txg is 9.
2308 		 * 2. spa_sync finishes syncing out txg 10.
2309 		 * 3. We move to the next itx in the list, it's a TX_COMMIT
2310 		 *    whose txg is 10, so we skip it rather than committing
2311 		 *    it to the lwb used in (1).
2312 		 *
2313 		 * If the itx that is skipped in (3) is the last TX_COMMIT
2314 		 * itx in the commit list, than it's possible for the lwb
2315 		 * used in (1) to remain in the OPENED state indefinitely.
2316 		 *
2317 		 * To prevent the above scenario from occurring, ensuring
2318 		 * that once an lwb is OPENED it will transition to ISSUED
2319 		 * and eventually DONE, we always commit TX_COMMIT itx's to
2320 		 * an lwb here, even if that itx's txg has already been
2321 		 * synced.
2322 		 *
2323 		 * Finally, if the pool is frozen, we _always_ commit the
2324 		 * itx.  The point of freezing the pool is to prevent data
2325 		 * from being written to the main pool via spa_sync, and
2326 		 * instead rely solely on the ZIL to persistently store the
2327 		 * data; i.e.  when the pool is frozen, the last synced txg
2328 		 * value can't be trusted.
2329 		 */
2330 		if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) {
2331 			if (lwb != NULL) {
2332 				lwb = zil_lwb_commit(zilog, itx, lwb);
2333 
2334 				if (lwb == NULL)
2335 					list_insert_tail(&nolwb_itxs, itx);
2336 				else
2337 					list_insert_tail(&lwb->lwb_itxs, itx);
2338 			} else {
2339 				if (lrc->lrc_txtype == TX_COMMIT) {
2340 					zil_commit_waiter_link_nolwb(
2341 					    itx->itx_private, &nolwb_waiters);
2342 				}
2343 
2344 				list_insert_tail(&nolwb_itxs, itx);
2345 			}
2346 		} else {
2347 			ASSERT3S(lrc->lrc_txtype, !=, TX_COMMIT);
2348 			zil_itx_destroy(itx);
2349 		}
2350 	}
2351 
2352 	if (lwb == NULL) {
2353 		/*
2354 		 * This indicates zio_alloc_zil() failed to allocate the
2355 		 * "next" lwb on-disk. When this happens, we must stall
2356 		 * the ZIL write pipeline; see the comment within
2357 		 * zil_commit_writer_stall() for more details.
2358 		 */
2359 		zil_commit_writer_stall(zilog);
2360 
2361 		/*
2362 		 * Additionally, we have to signal and mark the "nolwb"
2363 		 * waiters as "done" here, since without an lwb, we
2364 		 * can't do this via zil_lwb_flush_vdevs_done() like
2365 		 * normal.
2366 		 */
2367 		zil_commit_waiter_t *zcw;
2368 		while ((zcw = list_head(&nolwb_waiters)) != NULL) {
2369 			zil_commit_waiter_skip(zcw);
2370 			list_remove(&nolwb_waiters, zcw);
2371 		}
2372 
2373 		/*
2374 		 * And finally, we have to destroy the itx's that
2375 		 * couldn't be committed to an lwb; this will also call
2376 		 * the itx's callback if one exists for the itx.
2377 		 */
2378 		while ((itx = list_head(&nolwb_itxs)) != NULL) {
2379 			list_remove(&nolwb_itxs, itx);
2380 			zil_itx_destroy(itx);
2381 		}
2382 	} else {
2383 		ASSERT(list_is_empty(&nolwb_waiters));
2384 		ASSERT3P(lwb, !=, NULL);
2385 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2386 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
2387 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
2388 
2389 		/*
2390 		 * At this point, the ZIL block pointed at by the "lwb"
2391 		 * variable is in one of the following states: "closed"
2392 		 * or "open".
2393 		 *
2394 		 * If it's "closed", then no itxs have been committed to
2395 		 * it, so there's no point in issuing its zio (i.e. it's
2396 		 * "empty").
2397 		 *
2398 		 * If it's "open", then it contains one or more itxs that
2399 		 * eventually need to be committed to stable storage. In
2400 		 * this case we intentionally do not issue the lwb's zio
2401 		 * to disk yet, and instead rely on one of the following
2402 		 * two mechanisms for issuing the zio:
2403 		 *
2404 		 * 1. Ideally, there will be more ZIL activity occurring
2405 		 * on the system, such that this function will be
2406 		 * immediately called again (not necessarily by the same
2407 		 * thread) and this lwb's zio will be issued via
2408 		 * zil_lwb_commit(). This way, the lwb is guaranteed to
2409 		 * be "full" when it is issued to disk, and we'll make
2410 		 * use of the lwb's size the best we can.
2411 		 *
2412 		 * 2. If there isn't sufficient ZIL activity occurring on
2413 		 * the system, such that this lwb's zio isn't issued via
2414 		 * zil_lwb_commit(), zil_commit_waiter() will issue the
2415 		 * lwb's zio. If this occurs, the lwb is not guaranteed
2416 		 * to be "full" by the time its zio is issued, and means
2417 		 * the size of the lwb was "too large" given the amount
2418 		 * of ZIL activity occurring on the system at that time.
2419 		 *
2420 		 * We do this for a couple of reasons:
2421 		 *
2422 		 * 1. To try and reduce the number of IOPs needed to
2423 		 * write the same number of itxs. If an lwb has space
2424 		 * available in its buffer for more itxs, and more itxs
2425 		 * will be committed relatively soon (relative to the
2426 		 * latency of performing a write), then it's beneficial
2427 		 * to wait for these "next" itxs. This way, more itxs
2428 		 * can be committed to stable storage with fewer writes.
2429 		 *
2430 		 * 2. To try and use the largest lwb block size that the
2431 		 * incoming rate of itxs can support. Again, this is to
2432 		 * try and pack as many itxs into as few lwbs as
2433 		 * possible, without significantly impacting the latency
2434 		 * of each individual itx.
2435 		 */
2436 	}
2437 }
2438 
2439 /*
2440  * This function is responsible for ensuring the passed in commit waiter
2441  * (and associated commit itx) is committed to an lwb. If the waiter is
2442  * not already committed to an lwb, all itxs in the zilog's queue of
2443  * itxs will be processed. The assumption is the passed in waiter's
2444  * commit itx will found in the queue just like the other non-commit
2445  * itxs, such that when the entire queue is processed, the waiter will
2446  * have been committed to an lwb.
2447  *
2448  * The lwb associated with the passed in waiter is not guaranteed to
2449  * have been issued by the time this function completes. If the lwb is
2450  * not issued, we rely on future calls to zil_commit_writer() to issue
2451  * the lwb, or the timeout mechanism found in zil_commit_waiter().
2452  */
2453 static void
2454 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw)
2455 {
2456 	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2457 	ASSERT(spa_writeable(zilog->zl_spa));
2458 
2459 	mutex_enter(&zilog->zl_issuer_lock);
2460 
2461 	if (zcw->zcw_lwb != NULL || zcw->zcw_done) {
2462 		/*
2463 		 * It's possible that, while we were waiting to acquire
2464 		 * the "zl_issuer_lock", another thread committed this
2465 		 * waiter to an lwb. If that occurs, we bail out early,
2466 		 * without processing any of the zilog's queue of itxs.
2467 		 *
2468 		 * On certain workloads and system configurations, the
2469 		 * "zl_issuer_lock" can become highly contended. In an
2470 		 * attempt to reduce this contention, we immediately drop
2471 		 * the lock if the waiter has already been processed.
2472 		 *
2473 		 * We've measured this optimization to reduce CPU spent
2474 		 * contending on this lock by up to 5%, using a system
2475 		 * with 32 CPUs, low latency storage (~50 usec writes),
2476 		 * and 1024 threads performing sync writes.
2477 		 */
2478 		goto out;
2479 	}
2480 
2481 	ZIL_STAT_BUMP(zil_commit_writer_count);
2482 
2483 	zil_get_commit_list(zilog);
2484 	zil_prune_commit_list(zilog);
2485 	zil_process_commit_list(zilog);
2486 
2487 out:
2488 	mutex_exit(&zilog->zl_issuer_lock);
2489 }
2490 
2491 static void
2492 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw)
2493 {
2494 	ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2495 	ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2496 	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
2497 
2498 	lwb_t *lwb = zcw->zcw_lwb;
2499 	ASSERT3P(lwb, !=, NULL);
2500 	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED);
2501 
2502 	/*
2503 	 * If the lwb has already been issued by another thread, we can
2504 	 * immediately return since there's no work to be done (the
2505 	 * point of this function is to issue the lwb). Additionally, we
2506 	 * do this prior to acquiring the zl_issuer_lock, to avoid
2507 	 * acquiring it when it's not necessary to do so.
2508 	 */
2509 	if (lwb->lwb_state == LWB_STATE_ISSUED ||
2510 	    lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2511 	    lwb->lwb_state == LWB_STATE_FLUSH_DONE)
2512 		return;
2513 
2514 	/*
2515 	 * In order to call zil_lwb_write_issue() we must hold the
2516 	 * zilog's "zl_issuer_lock". We can't simply acquire that lock,
2517 	 * since we're already holding the commit waiter's "zcw_lock",
2518 	 * and those two locks are acquired in the opposite order
2519 	 * elsewhere.
2520 	 */
2521 	mutex_exit(&zcw->zcw_lock);
2522 	mutex_enter(&zilog->zl_issuer_lock);
2523 	mutex_enter(&zcw->zcw_lock);
2524 
2525 	/*
2526 	 * Since we just dropped and re-acquired the commit waiter's
2527 	 * lock, we have to re-check to see if the waiter was marked
2528 	 * "done" during that process. If the waiter was marked "done",
2529 	 * the "lwb" pointer is no longer valid (it can be free'd after
2530 	 * the waiter is marked "done"), so without this check we could
2531 	 * wind up with a use-after-free error below.
2532 	 */
2533 	if (zcw->zcw_done)
2534 		goto out;
2535 
2536 	ASSERT3P(lwb, ==, zcw->zcw_lwb);
2537 
2538 	/*
2539 	 * We've already checked this above, but since we hadn't acquired
2540 	 * the zilog's zl_issuer_lock, we have to perform this check a
2541 	 * second time while holding the lock.
2542 	 *
2543 	 * We don't need to hold the zl_lock since the lwb cannot transition
2544 	 * from OPENED to ISSUED while we hold the zl_issuer_lock. The lwb
2545 	 * _can_ transition from ISSUED to DONE, but it's OK to race with
2546 	 * that transition since we treat the lwb the same, whether it's in
2547 	 * the ISSUED or DONE states.
2548 	 *
2549 	 * The important thing, is we treat the lwb differently depending on
2550 	 * if it's ISSUED or OPENED, and block any other threads that might
2551 	 * attempt to issue this lwb. For that reason we hold the
2552 	 * zl_issuer_lock when checking the lwb_state; we must not call
2553 	 * zil_lwb_write_issue() if the lwb had already been issued.
2554 	 *
2555 	 * See the comment above the lwb_state_t structure definition for
2556 	 * more details on the lwb states, and locking requirements.
2557 	 */
2558 	if (lwb->lwb_state == LWB_STATE_ISSUED ||
2559 	    lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2560 	    lwb->lwb_state == LWB_STATE_FLUSH_DONE)
2561 		goto out;
2562 
2563 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
2564 
2565 	/*
2566 	 * As described in the comments above zil_commit_waiter() and
2567 	 * zil_process_commit_list(), we need to issue this lwb's zio
2568 	 * since we've reached the commit waiter's timeout and it still
2569 	 * hasn't been issued.
2570 	 */
2571 	lwb_t *nlwb = zil_lwb_write_issue(zilog, lwb);
2572 
2573 	IMPLY(nlwb != NULL, lwb->lwb_state != LWB_STATE_OPENED);
2574 
2575 	/*
2576 	 * Since the lwb's zio hadn't been issued by the time this thread
2577 	 * reached its timeout, we reset the zilog's "zl_cur_used" field
2578 	 * to influence the zil block size selection algorithm.
2579 	 *
2580 	 * By having to issue the lwb's zio here, it means the size of the
2581 	 * lwb was too large, given the incoming throughput of itxs.  By
2582 	 * setting "zl_cur_used" to zero, we communicate this fact to the
2583 	 * block size selection algorithm, so it can take this information
2584 	 * into account, and potentially select a smaller size for the
2585 	 * next lwb block that is allocated.
2586 	 */
2587 	zilog->zl_cur_used = 0;
2588 
2589 	if (nlwb == NULL) {
2590 		/*
2591 		 * When zil_lwb_write_issue() returns NULL, this
2592 		 * indicates zio_alloc_zil() failed to allocate the
2593 		 * "next" lwb on-disk. When this occurs, the ZIL write
2594 		 * pipeline must be stalled; see the comment within the
2595 		 * zil_commit_writer_stall() function for more details.
2596 		 *
2597 		 * We must drop the commit waiter's lock prior to
2598 		 * calling zil_commit_writer_stall() or else we can wind
2599 		 * up with the following deadlock:
2600 		 *
2601 		 * - This thread is waiting for the txg to sync while
2602 		 *   holding the waiter's lock; txg_wait_synced() is
2603 		 *   used within txg_commit_writer_stall().
2604 		 *
2605 		 * - The txg can't sync because it is waiting for this
2606 		 *   lwb's zio callback to call dmu_tx_commit().
2607 		 *
2608 		 * - The lwb's zio callback can't call dmu_tx_commit()
2609 		 *   because it's blocked trying to acquire the waiter's
2610 		 *   lock, which occurs prior to calling dmu_tx_commit()
2611 		 */
2612 		mutex_exit(&zcw->zcw_lock);
2613 		zil_commit_writer_stall(zilog);
2614 		mutex_enter(&zcw->zcw_lock);
2615 	}
2616 
2617 out:
2618 	mutex_exit(&zilog->zl_issuer_lock);
2619 	ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2620 }
2621 
2622 /*
2623  * This function is responsible for performing the following two tasks:
2624  *
2625  * 1. its primary responsibility is to block until the given "commit
2626  *    waiter" is considered "done".
2627  *
2628  * 2. its secondary responsibility is to issue the zio for the lwb that
2629  *    the given "commit waiter" is waiting on, if this function has
2630  *    waited "long enough" and the lwb is still in the "open" state.
2631  *
2632  * Given a sufficient amount of itxs being generated and written using
2633  * the ZIL, the lwb's zio will be issued via the zil_lwb_commit()
2634  * function. If this does not occur, this secondary responsibility will
2635  * ensure the lwb is issued even if there is not other synchronous
2636  * activity on the system.
2637  *
2638  * For more details, see zil_process_commit_list(); more specifically,
2639  * the comment at the bottom of that function.
2640  */
2641 static void
2642 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw)
2643 {
2644 	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2645 	ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2646 	ASSERT(spa_writeable(zilog->zl_spa));
2647 
2648 	mutex_enter(&zcw->zcw_lock);
2649 
2650 	/*
2651 	 * The timeout is scaled based on the lwb latency to avoid
2652 	 * significantly impacting the latency of each individual itx.
2653 	 * For more details, see the comment at the bottom of the
2654 	 * zil_process_commit_list() function.
2655 	 */
2656 	int pct = MAX(zfs_commit_timeout_pct, 1);
2657 	hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100;
2658 	hrtime_t wakeup = gethrtime() + sleep;
2659 	boolean_t timedout = B_FALSE;
2660 
2661 	while (!zcw->zcw_done) {
2662 		ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2663 
2664 		lwb_t *lwb = zcw->zcw_lwb;
2665 
2666 		/*
2667 		 * Usually, the waiter will have a non-NULL lwb field here,
2668 		 * but it's possible for it to be NULL as a result of
2669 		 * zil_commit() racing with spa_sync().
2670 		 *
2671 		 * When zil_clean() is called, it's possible for the itxg
2672 		 * list (which may be cleaned via a taskq) to contain
2673 		 * commit itxs. When this occurs, the commit waiters linked
2674 		 * off of these commit itxs will not be committed to an
2675 		 * lwb.  Additionally, these commit waiters will not be
2676 		 * marked done until zil_commit_waiter_skip() is called via
2677 		 * zil_itxg_clean().
2678 		 *
2679 		 * Thus, it's possible for this commit waiter (i.e. the
2680 		 * "zcw" variable) to be found in this "in between" state;
2681 		 * where it's "zcw_lwb" field is NULL, and it hasn't yet
2682 		 * been skipped, so it's "zcw_done" field is still B_FALSE.
2683 		 */
2684 		IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED);
2685 
2686 		if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) {
2687 			ASSERT3B(timedout, ==, B_FALSE);
2688 
2689 			/*
2690 			 * If the lwb hasn't been issued yet, then we
2691 			 * need to wait with a timeout, in case this
2692 			 * function needs to issue the lwb after the
2693 			 * timeout is reached; responsibility (2) from
2694 			 * the comment above this function.
2695 			 */
2696 			int rc = cv_timedwait_hires(&zcw->zcw_cv,
2697 			    &zcw->zcw_lock, wakeup, USEC2NSEC(1),
2698 			    CALLOUT_FLAG_ABSOLUTE);
2699 
2700 			if (rc != -1 || zcw->zcw_done)
2701 				continue;
2702 
2703 			timedout = B_TRUE;
2704 			zil_commit_waiter_timeout(zilog, zcw);
2705 
2706 			if (!zcw->zcw_done) {
2707 				/*
2708 				 * If the commit waiter has already been
2709 				 * marked "done", it's possible for the
2710 				 * waiter's lwb structure to have already
2711 				 * been freed.  Thus, we can only reliably
2712 				 * make these assertions if the waiter
2713 				 * isn't done.
2714 				 */
2715 				ASSERT3P(lwb, ==, zcw->zcw_lwb);
2716 				ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
2717 			}
2718 		} else {
2719 			/*
2720 			 * If the lwb isn't open, then it must have already
2721 			 * been issued. In that case, there's no need to
2722 			 * use a timeout when waiting for the lwb to
2723 			 * complete.
2724 			 *
2725 			 * Additionally, if the lwb is NULL, the waiter
2726 			 * will soon be signaled and marked done via
2727 			 * zil_clean() and zil_itxg_clean(), so no timeout
2728 			 * is required.
2729 			 */
2730 
2731 			IMPLY(lwb != NULL,
2732 			    lwb->lwb_state == LWB_STATE_ISSUED ||
2733 			    lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2734 			    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
2735 			cv_wait(&zcw->zcw_cv, &zcw->zcw_lock);
2736 		}
2737 	}
2738 
2739 	mutex_exit(&zcw->zcw_lock);
2740 }
2741 
2742 static zil_commit_waiter_t *
2743 zil_alloc_commit_waiter(void)
2744 {
2745 	zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP);
2746 
2747 	cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL);
2748 	mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL);
2749 	list_link_init(&zcw->zcw_node);
2750 	zcw->zcw_lwb = NULL;
2751 	zcw->zcw_done = B_FALSE;
2752 	zcw->zcw_zio_error = 0;
2753 
2754 	return (zcw);
2755 }
2756 
2757 static void
2758 zil_free_commit_waiter(zil_commit_waiter_t *zcw)
2759 {
2760 	ASSERT(!list_link_active(&zcw->zcw_node));
2761 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
2762 	ASSERT3B(zcw->zcw_done, ==, B_TRUE);
2763 	mutex_destroy(&zcw->zcw_lock);
2764 	cv_destroy(&zcw->zcw_cv);
2765 	kmem_cache_free(zil_zcw_cache, zcw);
2766 }
2767 
2768 /*
2769  * This function is used to create a TX_COMMIT itx and assign it. This
2770  * way, it will be linked into the ZIL's list of synchronous itxs, and
2771  * then later committed to an lwb (or skipped) when
2772  * zil_process_commit_list() is called.
2773  */
2774 static void
2775 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw)
2776 {
2777 	dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
2778 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
2779 
2780 	itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t));
2781 	itx->itx_sync = B_TRUE;
2782 	itx->itx_private = zcw;
2783 
2784 	zil_itx_assign(zilog, itx, tx);
2785 
2786 	dmu_tx_commit(tx);
2787 }
2788 
2789 /*
2790  * Commit ZFS Intent Log transactions (itxs) to stable storage.
2791  *
2792  * When writing ZIL transactions to the on-disk representation of the
2793  * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple
2794  * itxs can be committed to a single lwb. Once a lwb is written and
2795  * committed to stable storage (i.e. the lwb is written, and vdevs have
2796  * been flushed), each itx that was committed to that lwb is also
2797  * considered to be committed to stable storage.
2798  *
2799  * When an itx is committed to an lwb, the log record (lr_t) contained
2800  * by the itx is copied into the lwb's zio buffer, and once this buffer
2801  * is written to disk, it becomes an on-disk ZIL block.
2802  *
2803  * As itxs are generated, they're inserted into the ZIL's queue of
2804  * uncommitted itxs. The semantics of zil_commit() are such that it will
2805  * block until all itxs that were in the queue when it was called, are
2806  * committed to stable storage.
2807  *
2808  * If "foid" is zero, this means all "synchronous" and "asynchronous"
2809  * itxs, for all objects in the dataset, will be committed to stable
2810  * storage prior to zil_commit() returning. If "foid" is non-zero, all
2811  * "synchronous" itxs for all objects, but only "asynchronous" itxs
2812  * that correspond to the foid passed in, will be committed to stable
2813  * storage prior to zil_commit() returning.
2814  *
2815  * Generally speaking, when zil_commit() is called, the consumer doesn't
2816  * actually care about _all_ of the uncommitted itxs. Instead, they're
2817  * simply trying to waiting for a specific itx to be committed to disk,
2818  * but the interface(s) for interacting with the ZIL don't allow such
2819  * fine-grained communication. A better interface would allow a consumer
2820  * to create and assign an itx, and then pass a reference to this itx to
2821  * zil_commit(); such that zil_commit() would return as soon as that
2822  * specific itx was committed to disk (instead of waiting for _all_
2823  * itxs to be committed).
2824  *
2825  * When a thread calls zil_commit() a special "commit itx" will be
2826  * generated, along with a corresponding "waiter" for this commit itx.
2827  * zil_commit() will wait on this waiter's CV, such that when the waiter
2828  * is marked done, and signaled, zil_commit() will return.
2829  *
2830  * This commit itx is inserted into the queue of uncommitted itxs. This
2831  * provides an easy mechanism for determining which itxs were in the
2832  * queue prior to zil_commit() having been called, and which itxs were
2833  * added after zil_commit() was called.
2834  *
2835  * The commit it is special; it doesn't have any on-disk representation.
2836  * When a commit itx is "committed" to an lwb, the waiter associated
2837  * with it is linked onto the lwb's list of waiters. Then, when that lwb
2838  * completes, each waiter on the lwb's list is marked done and signaled
2839  * -- allowing the thread waiting on the waiter to return from zil_commit().
2840  *
2841  * It's important to point out a few critical factors that allow us
2842  * to make use of the commit itxs, commit waiters, per-lwb lists of
2843  * commit waiters, and zio completion callbacks like we're doing:
2844  *
2845  *   1. The list of waiters for each lwb is traversed, and each commit
2846  *      waiter is marked "done" and signaled, in the zio completion
2847  *      callback of the lwb's zio[*].
2848  *
2849  *      * Actually, the waiters are signaled in the zio completion
2850  *        callback of the root zio for the DKIOCFLUSHWRITECACHE commands
2851  *        that are sent to the vdevs upon completion of the lwb zio.
2852  *
2853  *   2. When the itxs are inserted into the ZIL's queue of uncommitted
2854  *      itxs, the order in which they are inserted is preserved[*]; as
2855  *      itxs are added to the queue, they are added to the tail of
2856  *      in-memory linked lists.
2857  *
2858  *      When committing the itxs to lwbs (to be written to disk), they
2859  *      are committed in the same order in which the itxs were added to
2860  *      the uncommitted queue's linked list(s); i.e. the linked list of
2861  *      itxs to commit is traversed from head to tail, and each itx is
2862  *      committed to an lwb in that order.
2863  *
2864  *      * To clarify:
2865  *
2866  *        - the order of "sync" itxs is preserved w.r.t. other
2867  *          "sync" itxs, regardless of the corresponding objects.
2868  *        - the order of "async" itxs is preserved w.r.t. other
2869  *          "async" itxs corresponding to the same object.
2870  *        - the order of "async" itxs is *not* preserved w.r.t. other
2871  *          "async" itxs corresponding to different objects.
2872  *        - the order of "sync" itxs w.r.t. "async" itxs (or vice
2873  *          versa) is *not* preserved, even for itxs that correspond
2874  *          to the same object.
2875  *
2876  *      For more details, see: zil_itx_assign(), zil_async_to_sync(),
2877  *      zil_get_commit_list(), and zil_process_commit_list().
2878  *
2879  *   3. The lwbs represent a linked list of blocks on disk. Thus, any
2880  *      lwb cannot be considered committed to stable storage, until its
2881  *      "previous" lwb is also committed to stable storage. This fact,
2882  *      coupled with the fact described above, means that itxs are
2883  *      committed in (roughly) the order in which they were generated.
2884  *      This is essential because itxs are dependent on prior itxs.
2885  *      Thus, we *must not* deem an itx as being committed to stable
2886  *      storage, until *all* prior itxs have also been committed to
2887  *      stable storage.
2888  *
2889  *      To enforce this ordering of lwb zio's, while still leveraging as
2890  *      much of the underlying storage performance as possible, we rely
2891  *      on two fundamental concepts:
2892  *
2893  *          1. The creation and issuance of lwb zio's is protected by
2894  *             the zilog's "zl_issuer_lock", which ensures only a single
2895  *             thread is creating and/or issuing lwb's at a time
2896  *          2. The "previous" lwb is a child of the "current" lwb
2897  *             (leveraging the zio parent-child dependency graph)
2898  *
2899  *      By relying on this parent-child zio relationship, we can have
2900  *      many lwb zio's concurrently issued to the underlying storage,
2901  *      but the order in which they complete will be the same order in
2902  *      which they were created.
2903  */
2904 void
2905 zil_commit(zilog_t *zilog, uint64_t foid)
2906 {
2907 	/*
2908 	 * We should never attempt to call zil_commit on a snapshot for
2909 	 * a couple of reasons:
2910 	 *
2911 	 * 1. A snapshot may never be modified, thus it cannot have any
2912 	 *    in-flight itxs that would have modified the dataset.
2913 	 *
2914 	 * 2. By design, when zil_commit() is called, a commit itx will
2915 	 *    be assigned to this zilog; as a result, the zilog will be
2916 	 *    dirtied. We must not dirty the zilog of a snapshot; there's
2917 	 *    checks in the code that enforce this invariant, and will
2918 	 *    cause a panic if it's not upheld.
2919 	 */
2920 	ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE);
2921 
2922 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2923 		return;
2924 
2925 	if (!spa_writeable(zilog->zl_spa)) {
2926 		/*
2927 		 * If the SPA is not writable, there should never be any
2928 		 * pending itxs waiting to be committed to disk. If that
2929 		 * weren't true, we'd skip writing those itxs out, and
2930 		 * would break the semantics of zil_commit(); thus, we're
2931 		 * verifying that truth before we return to the caller.
2932 		 */
2933 		ASSERT(list_is_empty(&zilog->zl_lwb_list));
2934 		ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
2935 		for (int i = 0; i < TXG_SIZE; i++)
2936 			ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL);
2937 		return;
2938 	}
2939 
2940 	/*
2941 	 * If the ZIL is suspended, we don't want to dirty it by calling
2942 	 * zil_commit_itx_assign() below, nor can we write out
2943 	 * lwbs like would be done in zil_commit_write(). Thus, we
2944 	 * simply rely on txg_wait_synced() to maintain the necessary
2945 	 * semantics, and avoid calling those functions altogether.
2946 	 */
2947 	if (zilog->zl_suspend > 0) {
2948 		txg_wait_synced(zilog->zl_dmu_pool, 0);
2949 		return;
2950 	}
2951 
2952 	zil_commit_impl(zilog, foid);
2953 }
2954 
2955 void
2956 zil_commit_impl(zilog_t *zilog, uint64_t foid)
2957 {
2958 	ZIL_STAT_BUMP(zil_commit_count);
2959 
2960 	/*
2961 	 * Move the "async" itxs for the specified foid to the "sync"
2962 	 * queues, such that they will be later committed (or skipped)
2963 	 * to an lwb when zil_process_commit_list() is called.
2964 	 *
2965 	 * Since these "async" itxs must be committed prior to this
2966 	 * call to zil_commit returning, we must perform this operation
2967 	 * before we call zil_commit_itx_assign().
2968 	 */
2969 	zil_async_to_sync(zilog, foid);
2970 
2971 	/*
2972 	 * We allocate a new "waiter" structure which will initially be
2973 	 * linked to the commit itx using the itx's "itx_private" field.
2974 	 * Since the commit itx doesn't represent any on-disk state,
2975 	 * when it's committed to an lwb, rather than copying the its
2976 	 * lr_t into the lwb's buffer, the commit itx's "waiter" will be
2977 	 * added to the lwb's list of waiters. Then, when the lwb is
2978 	 * committed to stable storage, each waiter in the lwb's list of
2979 	 * waiters will be marked "done", and signalled.
2980 	 *
2981 	 * We must create the waiter and assign the commit itx prior to
2982 	 * calling zil_commit_writer(), or else our specific commit itx
2983 	 * is not guaranteed to be committed to an lwb prior to calling
2984 	 * zil_commit_waiter().
2985 	 */
2986 	zil_commit_waiter_t *zcw = zil_alloc_commit_waiter();
2987 	zil_commit_itx_assign(zilog, zcw);
2988 
2989 	zil_commit_writer(zilog, zcw);
2990 	zil_commit_waiter(zilog, zcw);
2991 
2992 	if (zcw->zcw_zio_error != 0) {
2993 		/*
2994 		 * If there was an error writing out the ZIL blocks that
2995 		 * this thread is waiting on, then we fallback to
2996 		 * relying on spa_sync() to write out the data this
2997 		 * thread is waiting on. Obviously this has performance
2998 		 * implications, but the expectation is for this to be
2999 		 * an exceptional case, and shouldn't occur often.
3000 		 */
3001 		DTRACE_PROBE2(zil__commit__io__error,
3002 		    zilog_t *, zilog, zil_commit_waiter_t *, zcw);
3003 		txg_wait_synced(zilog->zl_dmu_pool, 0);
3004 	}
3005 
3006 	zil_free_commit_waiter(zcw);
3007 }
3008 
3009 /*
3010  * Called in syncing context to free committed log blocks and update log header.
3011  */
3012 void
3013 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
3014 {
3015 	zil_header_t *zh = zil_header_in_syncing_context(zilog);
3016 	uint64_t txg = dmu_tx_get_txg(tx);
3017 	spa_t *spa = zilog->zl_spa;
3018 	uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
3019 	lwb_t *lwb;
3020 
3021 	/*
3022 	 * We don't zero out zl_destroy_txg, so make sure we don't try
3023 	 * to destroy it twice.
3024 	 */
3025 	if (spa_sync_pass(spa) != 1)
3026 		return;
3027 
3028 	mutex_enter(&zilog->zl_lock);
3029 
3030 	ASSERT(zilog->zl_stop_sync == 0);
3031 
3032 	if (*replayed_seq != 0) {
3033 		ASSERT(zh->zh_replay_seq < *replayed_seq);
3034 		zh->zh_replay_seq = *replayed_seq;
3035 		*replayed_seq = 0;
3036 	}
3037 
3038 	if (zilog->zl_destroy_txg == txg) {
3039 		blkptr_t blk = zh->zh_log;
3040 
3041 		ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
3042 
3043 		bzero(zh, sizeof (zil_header_t));
3044 		bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
3045 
3046 		if (zilog->zl_keep_first) {
3047 			/*
3048 			 * If this block was part of log chain that couldn't
3049 			 * be claimed because a device was missing during
3050 			 * zil_claim(), but that device later returns,
3051 			 * then this block could erroneously appear valid.
3052 			 * To guard against this, assign a new GUID to the new
3053 			 * log chain so it doesn't matter what blk points to.
3054 			 */
3055 			zil_init_log_chain(zilog, &blk);
3056 			zh->zh_log = blk;
3057 		}
3058 	}
3059 
3060 	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
3061 		zh->zh_log = lwb->lwb_blk;
3062 		if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
3063 			break;
3064 		list_remove(&zilog->zl_lwb_list, lwb);
3065 		zio_free(spa, txg, &lwb->lwb_blk);
3066 		zil_free_lwb(zilog, lwb);
3067 
3068 		/*
3069 		 * If we don't have anything left in the lwb list then
3070 		 * we've had an allocation failure and we need to zero
3071 		 * out the zil_header blkptr so that we don't end
3072 		 * up freeing the same block twice.
3073 		 */
3074 		if (list_head(&zilog->zl_lwb_list) == NULL)
3075 			BP_ZERO(&zh->zh_log);
3076 	}
3077 
3078 	/*
3079 	 * Remove fastwrite on any blocks that have been pre-allocated for
3080 	 * the next commit. This prevents fastwrite counter pollution by
3081 	 * unused, long-lived LWBs.
3082 	 */
3083 	for (; lwb != NULL; lwb = list_next(&zilog->zl_lwb_list, lwb)) {
3084 		if (lwb->lwb_fastwrite && !lwb->lwb_write_zio) {
3085 			metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk);
3086 			lwb->lwb_fastwrite = 0;
3087 		}
3088 	}
3089 
3090 	mutex_exit(&zilog->zl_lock);
3091 }
3092 
3093 /* ARGSUSED */
3094 static int
3095 zil_lwb_cons(void *vbuf, void *unused, int kmflag)
3096 {
3097 	lwb_t *lwb = vbuf;
3098 	list_create(&lwb->lwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
3099 	list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t),
3100 	    offsetof(zil_commit_waiter_t, zcw_node));
3101 	avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare,
3102 	    sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
3103 	mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
3104 	return (0);
3105 }
3106 
3107 /* ARGSUSED */
3108 static void
3109 zil_lwb_dest(void *vbuf, void *unused)
3110 {
3111 	lwb_t *lwb = vbuf;
3112 	mutex_destroy(&lwb->lwb_vdev_lock);
3113 	avl_destroy(&lwb->lwb_vdev_tree);
3114 	list_destroy(&lwb->lwb_waiters);
3115 	list_destroy(&lwb->lwb_itxs);
3116 }
3117 
3118 void
3119 zil_init(void)
3120 {
3121 	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
3122 	    sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0);
3123 
3124 	zil_zcw_cache = kmem_cache_create("zil_zcw_cache",
3125 	    sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
3126 
3127 	zil_ksp = kstat_create("zfs", 0, "zil", "misc",
3128 	    KSTAT_TYPE_NAMED, sizeof (zil_stats) / sizeof (kstat_named_t),
3129 	    KSTAT_FLAG_VIRTUAL);
3130 
3131 	if (zil_ksp != NULL) {
3132 		zil_ksp->ks_data = &zil_stats;
3133 		kstat_install(zil_ksp);
3134 	}
3135 }
3136 
3137 void
3138 zil_fini(void)
3139 {
3140 	kmem_cache_destroy(zil_zcw_cache);
3141 	kmem_cache_destroy(zil_lwb_cache);
3142 
3143 	if (zil_ksp != NULL) {
3144 		kstat_delete(zil_ksp);
3145 		zil_ksp = NULL;
3146 	}
3147 }
3148 
3149 void
3150 zil_set_sync(zilog_t *zilog, uint64_t sync)
3151 {
3152 	zilog->zl_sync = sync;
3153 }
3154 
3155 void
3156 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
3157 {
3158 	zilog->zl_logbias = logbias;
3159 }
3160 
3161 zilog_t *
3162 zil_alloc(objset_t *os, zil_header_t *zh_phys)
3163 {
3164 	zilog_t *zilog;
3165 
3166 	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
3167 
3168 	zilog->zl_header = zh_phys;
3169 	zilog->zl_os = os;
3170 	zilog->zl_spa = dmu_objset_spa(os);
3171 	zilog->zl_dmu_pool = dmu_objset_pool(os);
3172 	zilog->zl_destroy_txg = TXG_INITIAL - 1;
3173 	zilog->zl_logbias = dmu_objset_logbias(os);
3174 	zilog->zl_sync = dmu_objset_syncprop(os);
3175 	zilog->zl_dirty_max_txg = 0;
3176 	zilog->zl_last_lwb_opened = NULL;
3177 	zilog->zl_last_lwb_latency = 0;
3178 	zilog->zl_max_block_size = zil_maxblocksize;
3179 
3180 	mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
3181 	mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL);
3182 
3183 	for (int i = 0; i < TXG_SIZE; i++) {
3184 		mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
3185 		    MUTEX_DEFAULT, NULL);
3186 	}
3187 
3188 	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
3189 	    offsetof(lwb_t, lwb_node));
3190 
3191 	list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
3192 	    offsetof(itx_t, itx_node));
3193 
3194 	cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
3195 
3196 	return (zilog);
3197 }
3198 
3199 void
3200 zil_free(zilog_t *zilog)
3201 {
3202 	int i;
3203 
3204 	zilog->zl_stop_sync = 1;
3205 
3206 	ASSERT0(zilog->zl_suspend);
3207 	ASSERT0(zilog->zl_suspending);
3208 
3209 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
3210 	list_destroy(&zilog->zl_lwb_list);
3211 
3212 	ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
3213 	list_destroy(&zilog->zl_itx_commit_list);
3214 
3215 	for (i = 0; i < TXG_SIZE; i++) {
3216 		/*
3217 		 * It's possible for an itx to be generated that doesn't dirty
3218 		 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
3219 		 * callback to remove the entry. We remove those here.
3220 		 *
3221 		 * Also free up the ziltest itxs.
3222 		 */
3223 		if (zilog->zl_itxg[i].itxg_itxs)
3224 			zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
3225 		mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
3226 	}
3227 
3228 	mutex_destroy(&zilog->zl_issuer_lock);
3229 	mutex_destroy(&zilog->zl_lock);
3230 
3231 	cv_destroy(&zilog->zl_cv_suspend);
3232 
3233 	kmem_free(zilog, sizeof (zilog_t));
3234 }
3235 
3236 /*
3237  * Open an intent log.
3238  */
3239 zilog_t *
3240 zil_open(objset_t *os, zil_get_data_t *get_data)
3241 {
3242 	zilog_t *zilog = dmu_objset_zil(os);
3243 
3244 	ASSERT3P(zilog->zl_get_data, ==, NULL);
3245 	ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
3246 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
3247 
3248 	zilog->zl_get_data = get_data;
3249 
3250 	return (zilog);
3251 }
3252 
3253 /*
3254  * Close an intent log.
3255  */
3256 void
3257 zil_close(zilog_t *zilog)
3258 {
3259 	lwb_t *lwb;
3260 	uint64_t txg;
3261 
3262 	if (!dmu_objset_is_snapshot(zilog->zl_os)) {
3263 		zil_commit(zilog, 0);
3264 	} else {
3265 		ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
3266 		ASSERT0(zilog->zl_dirty_max_txg);
3267 		ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE);
3268 	}
3269 
3270 	mutex_enter(&zilog->zl_lock);
3271 	lwb = list_tail(&zilog->zl_lwb_list);
3272 	if (lwb == NULL)
3273 		txg = zilog->zl_dirty_max_txg;
3274 	else
3275 		txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg);
3276 	mutex_exit(&zilog->zl_lock);
3277 
3278 	/*
3279 	 * We need to use txg_wait_synced() to wait long enough for the
3280 	 * ZIL to be clean, and to wait for all pending lwbs to be
3281 	 * written out.
3282 	 */
3283 	if (txg != 0)
3284 		txg_wait_synced(zilog->zl_dmu_pool, txg);
3285 
3286 	if (zilog_is_dirty(zilog))
3287 		zfs_dbgmsg("zil (%px) is dirty, txg %llu", zilog, txg);
3288 	if (txg < spa_freeze_txg(zilog->zl_spa))
3289 		VERIFY(!zilog_is_dirty(zilog));
3290 
3291 	zilog->zl_get_data = NULL;
3292 
3293 	/*
3294 	 * We should have only one lwb left on the list; remove it now.
3295 	 */
3296 	mutex_enter(&zilog->zl_lock);
3297 	lwb = list_head(&zilog->zl_lwb_list);
3298 	if (lwb != NULL) {
3299 		ASSERT3P(lwb, ==, list_tail(&zilog->zl_lwb_list));
3300 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
3301 
3302 		if (lwb->lwb_fastwrite)
3303 			metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk);
3304 
3305 		list_remove(&zilog->zl_lwb_list, lwb);
3306 		zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
3307 		zil_free_lwb(zilog, lwb);
3308 	}
3309 	mutex_exit(&zilog->zl_lock);
3310 }
3311 
3312 static char *suspend_tag = "zil suspending";
3313 
3314 /*
3315  * Suspend an intent log.  While in suspended mode, we still honor
3316  * synchronous semantics, but we rely on txg_wait_synced() to do it.
3317  * On old version pools, we suspend the log briefly when taking a
3318  * snapshot so that it will have an empty intent log.
3319  *
3320  * Long holds are not really intended to be used the way we do here --
3321  * held for such a short time.  A concurrent caller of dsl_dataset_long_held()
3322  * could fail.  Therefore we take pains to only put a long hold if it is
3323  * actually necessary.  Fortunately, it will only be necessary if the
3324  * objset is currently mounted (or the ZVOL equivalent).  In that case it
3325  * will already have a long hold, so we are not really making things any worse.
3326  *
3327  * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
3328  * zvol_state_t), and use their mechanism to prevent their hold from being
3329  * dropped (e.g. VFS_HOLD()).  However, that would be even more pain for
3330  * very little gain.
3331  *
3332  * if cookiep == NULL, this does both the suspend & resume.
3333  * Otherwise, it returns with the dataset "long held", and the cookie
3334  * should be passed into zil_resume().
3335  */
3336 int
3337 zil_suspend(const char *osname, void **cookiep)
3338 {
3339 	objset_t *os;
3340 	zilog_t *zilog;
3341 	const zil_header_t *zh;
3342 	int error;
3343 
3344 	error = dmu_objset_hold(osname, suspend_tag, &os);
3345 	if (error != 0)
3346 		return (error);
3347 	zilog = dmu_objset_zil(os);
3348 
3349 	mutex_enter(&zilog->zl_lock);
3350 	zh = zilog->zl_header;
3351 
3352 	if (zh->zh_flags & ZIL_REPLAY_NEEDED) {		/* unplayed log */
3353 		mutex_exit(&zilog->zl_lock);
3354 		dmu_objset_rele(os, suspend_tag);
3355 		return (SET_ERROR(EBUSY));
3356 	}
3357 
3358 	/*
3359 	 * Don't put a long hold in the cases where we can avoid it.  This
3360 	 * is when there is no cookie so we are doing a suspend & resume
3361 	 * (i.e. called from zil_vdev_offline()), and there's nothing to do
3362 	 * for the suspend because it's already suspended, or there's no ZIL.
3363 	 */
3364 	if (cookiep == NULL && !zilog->zl_suspending &&
3365 	    (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
3366 		mutex_exit(&zilog->zl_lock);
3367 		dmu_objset_rele(os, suspend_tag);
3368 		return (0);
3369 	}
3370 
3371 	dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
3372 	dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
3373 
3374 	zilog->zl_suspend++;
3375 
3376 	if (zilog->zl_suspend > 1) {
3377 		/*
3378 		 * Someone else is already suspending it.
3379 		 * Just wait for them to finish.
3380 		 */
3381 
3382 		while (zilog->zl_suspending)
3383 			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
3384 		mutex_exit(&zilog->zl_lock);
3385 
3386 		if (cookiep == NULL)
3387 			zil_resume(os);
3388 		else
3389 			*cookiep = os;
3390 		return (0);
3391 	}
3392 
3393 	/*
3394 	 * If there is no pointer to an on-disk block, this ZIL must not
3395 	 * be active (e.g. filesystem not mounted), so there's nothing
3396 	 * to clean up.
3397 	 */
3398 	if (BP_IS_HOLE(&zh->zh_log)) {
3399 		ASSERT(cookiep != NULL); /* fast path already handled */
3400 
3401 		*cookiep = os;
3402 		mutex_exit(&zilog->zl_lock);
3403 		return (0);
3404 	}
3405 
3406 	/*
3407 	 * The ZIL has work to do. Ensure that the associated encryption
3408 	 * key will remain mapped while we are committing the log by
3409 	 * grabbing a reference to it. If the key isn't loaded we have no
3410 	 * choice but to return an error until the wrapping key is loaded.
3411 	 */
3412 	if (os->os_encrypted &&
3413 	    dsl_dataset_create_key_mapping(dmu_objset_ds(os)) != 0) {
3414 		zilog->zl_suspend--;
3415 		mutex_exit(&zilog->zl_lock);
3416 		dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3417 		dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3418 		return (SET_ERROR(EACCES));
3419 	}
3420 
3421 	zilog->zl_suspending = B_TRUE;
3422 	mutex_exit(&zilog->zl_lock);
3423 
3424 	/*
3425 	 * We need to use zil_commit_impl to ensure we wait for all
3426 	 * LWB_STATE_OPENED and LWB_STATE_ISSUED lwbs to be committed
3427 	 * to disk before proceeding. If we used zil_commit instead, it
3428 	 * would just call txg_wait_synced(), because zl_suspend is set.
3429 	 * txg_wait_synced() doesn't wait for these lwb's to be
3430 	 * LWB_STATE_FLUSH_DONE before returning.
3431 	 */
3432 	zil_commit_impl(zilog, 0);
3433 
3434 	/*
3435 	 * Now that we've ensured all lwb's are LWB_STATE_FLUSH_DONE, we
3436 	 * use txg_wait_synced() to ensure the data from the zilog has
3437 	 * migrated to the main pool before calling zil_destroy().
3438 	 */
3439 	txg_wait_synced(zilog->zl_dmu_pool, 0);
3440 
3441 	zil_destroy(zilog, B_FALSE);
3442 
3443 	mutex_enter(&zilog->zl_lock);
3444 	zilog->zl_suspending = B_FALSE;
3445 	cv_broadcast(&zilog->zl_cv_suspend);
3446 	mutex_exit(&zilog->zl_lock);
3447 
3448 	if (os->os_encrypted)
3449 		dsl_dataset_remove_key_mapping(dmu_objset_ds(os));
3450 
3451 	if (cookiep == NULL)
3452 		zil_resume(os);
3453 	else
3454 		*cookiep = os;
3455 	return (0);
3456 }
3457 
3458 void
3459 zil_resume(void *cookie)
3460 {
3461 	objset_t *os = cookie;
3462 	zilog_t *zilog = dmu_objset_zil(os);
3463 
3464 	mutex_enter(&zilog->zl_lock);
3465 	ASSERT(zilog->zl_suspend != 0);
3466 	zilog->zl_suspend--;
3467 	mutex_exit(&zilog->zl_lock);
3468 	dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3469 	dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3470 }
3471 
3472 typedef struct zil_replay_arg {
3473 	zil_replay_func_t **zr_replay;
3474 	void		*zr_arg;
3475 	boolean_t	zr_byteswap;
3476 	char		*zr_lr;
3477 } zil_replay_arg_t;
3478 
3479 static int
3480 zil_replay_error(zilog_t *zilog, const lr_t *lr, int error)
3481 {
3482 	char name[ZFS_MAX_DATASET_NAME_LEN];
3483 
3484 	zilog->zl_replaying_seq--;	/* didn't actually replay this one */
3485 
3486 	dmu_objset_name(zilog->zl_os, name);
3487 
3488 	cmn_err(CE_WARN, "ZFS replay transaction error %d, "
3489 	    "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
3490 	    (u_longlong_t)lr->lrc_seq,
3491 	    (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
3492 	    (lr->lrc_txtype & TX_CI) ? "CI" : "");
3493 
3494 	return (error);
3495 }
3496 
3497 static int
3498 zil_replay_log_record(zilog_t *zilog, const lr_t *lr, void *zra,
3499     uint64_t claim_txg)
3500 {
3501 	zil_replay_arg_t *zr = zra;
3502 	const zil_header_t *zh = zilog->zl_header;
3503 	uint64_t reclen = lr->lrc_reclen;
3504 	uint64_t txtype = lr->lrc_txtype;
3505 	int error = 0;
3506 
3507 	zilog->zl_replaying_seq = lr->lrc_seq;
3508 
3509 	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
3510 		return (0);
3511 
3512 	if (lr->lrc_txg < claim_txg)		/* already committed */
3513 		return (0);
3514 
3515 	/* Strip case-insensitive bit, still present in log record */
3516 	txtype &= ~TX_CI;
3517 
3518 	if (txtype == 0 || txtype >= TX_MAX_TYPE)
3519 		return (zil_replay_error(zilog, lr, EINVAL));
3520 
3521 	/*
3522 	 * If this record type can be logged out of order, the object
3523 	 * (lr_foid) may no longer exist.  That's legitimate, not an error.
3524 	 */
3525 	if (TX_OOO(txtype)) {
3526 		error = dmu_object_info(zilog->zl_os,
3527 		    LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL);
3528 		if (error == ENOENT || error == EEXIST)
3529 			return (0);
3530 	}
3531 
3532 	/*
3533 	 * Make a copy of the data so we can revise and extend it.
3534 	 */
3535 	bcopy(lr, zr->zr_lr, reclen);
3536 
3537 	/*
3538 	 * If this is a TX_WRITE with a blkptr, suck in the data.
3539 	 */
3540 	if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
3541 		error = zil_read_log_data(zilog, (lr_write_t *)lr,
3542 		    zr->zr_lr + reclen);
3543 		if (error != 0)
3544 			return (zil_replay_error(zilog, lr, error));
3545 	}
3546 
3547 	/*
3548 	 * The log block containing this lr may have been byteswapped
3549 	 * so that we can easily examine common fields like lrc_txtype.
3550 	 * However, the log is a mix of different record types, and only the
3551 	 * replay vectors know how to byteswap their records.  Therefore, if
3552 	 * the lr was byteswapped, undo it before invoking the replay vector.
3553 	 */
3554 	if (zr->zr_byteswap)
3555 		byteswap_uint64_array(zr->zr_lr, reclen);
3556 
3557 	/*
3558 	 * We must now do two things atomically: replay this log record,
3559 	 * and update the log header sequence number to reflect the fact that
3560 	 * we did so. At the end of each replay function the sequence number
3561 	 * is updated if we are in replay mode.
3562 	 */
3563 	error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
3564 	if (error != 0) {
3565 		/*
3566 		 * The DMU's dnode layer doesn't see removes until the txg
3567 		 * commits, so a subsequent claim can spuriously fail with
3568 		 * EEXIST. So if we receive any error we try syncing out
3569 		 * any removes then retry the transaction.  Note that we
3570 		 * specify B_FALSE for byteswap now, so we don't do it twice.
3571 		 */
3572 		txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
3573 		error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
3574 		if (error != 0)
3575 			return (zil_replay_error(zilog, lr, error));
3576 	}
3577 	return (0);
3578 }
3579 
3580 /* ARGSUSED */
3581 static int
3582 zil_incr_blks(zilog_t *zilog, const blkptr_t *bp, void *arg, uint64_t claim_txg)
3583 {
3584 	zilog->zl_replay_blks++;
3585 
3586 	return (0);
3587 }
3588 
3589 /*
3590  * If this dataset has a non-empty intent log, replay it and destroy it.
3591  */
3592 void
3593 zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
3594 {
3595 	zilog_t *zilog = dmu_objset_zil(os);
3596 	const zil_header_t *zh = zilog->zl_header;
3597 	zil_replay_arg_t zr;
3598 
3599 	if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
3600 		zil_destroy(zilog, B_TRUE);
3601 		return;
3602 	}
3603 
3604 	zr.zr_replay = replay_func;
3605 	zr.zr_arg = arg;
3606 	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
3607 	zr.zr_lr = vmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
3608 
3609 	/*
3610 	 * Wait for in-progress removes to sync before starting replay.
3611 	 */
3612 	txg_wait_synced(zilog->zl_dmu_pool, 0);
3613 
3614 	zilog->zl_replay = B_TRUE;
3615 	zilog->zl_replay_time = ddi_get_lbolt();
3616 	ASSERT(zilog->zl_replay_blks == 0);
3617 	(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
3618 	    zh->zh_claim_txg, B_TRUE);
3619 	vmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
3620 
3621 	zil_destroy(zilog, B_FALSE);
3622 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
3623 	zilog->zl_replay = B_FALSE;
3624 }
3625 
3626 boolean_t
3627 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
3628 {
3629 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3630 		return (B_TRUE);
3631 
3632 	if (zilog->zl_replay) {
3633 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
3634 		zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
3635 		    zilog->zl_replaying_seq;
3636 		return (B_TRUE);
3637 	}
3638 
3639 	return (B_FALSE);
3640 }
3641 
3642 /* ARGSUSED */
3643 int
3644 zil_reset(const char *osname, void *arg)
3645 {
3646 	int error;
3647 
3648 	error = zil_suspend(osname, NULL);
3649 	/* EACCES means crypto key not loaded */
3650 	if ((error == EACCES) || (error == EBUSY))
3651 		return (SET_ERROR(error));
3652 	if (error != 0)
3653 		return (SET_ERROR(EEXIST));
3654 	return (0);
3655 }
3656 
3657 EXPORT_SYMBOL(zil_alloc);
3658 EXPORT_SYMBOL(zil_free);
3659 EXPORT_SYMBOL(zil_open);
3660 EXPORT_SYMBOL(zil_close);
3661 EXPORT_SYMBOL(zil_replay);
3662 EXPORT_SYMBOL(zil_replaying);
3663 EXPORT_SYMBOL(zil_destroy);
3664 EXPORT_SYMBOL(zil_destroy_sync);
3665 EXPORT_SYMBOL(zil_itx_create);
3666 EXPORT_SYMBOL(zil_itx_destroy);
3667 EXPORT_SYMBOL(zil_itx_assign);
3668 EXPORT_SYMBOL(zil_commit);
3669 EXPORT_SYMBOL(zil_claim);
3670 EXPORT_SYMBOL(zil_check_log_chain);
3671 EXPORT_SYMBOL(zil_sync);
3672 EXPORT_SYMBOL(zil_clean);
3673 EXPORT_SYMBOL(zil_suspend);
3674 EXPORT_SYMBOL(zil_resume);
3675 EXPORT_SYMBOL(zil_lwb_add_block);
3676 EXPORT_SYMBOL(zil_bp_tree_add);
3677 EXPORT_SYMBOL(zil_set_sync);
3678 EXPORT_SYMBOL(zil_set_logbias);
3679 
3680 /* BEGIN CSTYLED */
3681 ZFS_MODULE_PARAM(zfs, zfs_, commit_timeout_pct, INT, ZMOD_RW,
3682 	"ZIL block open timeout percentage");
3683 
3684 ZFS_MODULE_PARAM(zfs_zil, zil_, replay_disable, INT, ZMOD_RW,
3685 	"Disable intent logging replay");
3686 
3687 ZFS_MODULE_PARAM(zfs_zil, zil_, nocacheflush, INT, ZMOD_RW,
3688 	"Disable ZIL cache flushes");
3689 
3690 ZFS_MODULE_PARAM(zfs_zil, zil_, slog_bulk, ULONG, ZMOD_RW,
3691 	"Limit in bytes slog sync writes per commit");
3692 
3693 ZFS_MODULE_PARAM(zfs_zil, zil_, maxblocksize, INT, ZMOD_RW,
3694 	"Limit in bytes of ZIL log block size");
3695 /* END CSTYLED */
3696