1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 24 * Copyright (c) 2014 Integros [integros.com] 25 * Copyright (c) 2018 Datto Inc. 26 */ 27 28 /* Portions Copyright 2010 Robert Milkowski */ 29 30 #include <sys/zfs_context.h> 31 #include <sys/spa.h> 32 #include <sys/spa_impl.h> 33 #include <sys/dmu.h> 34 #include <sys/zap.h> 35 #include <sys/arc.h> 36 #include <sys/stat.h> 37 #include <sys/zil.h> 38 #include <sys/zil_impl.h> 39 #include <sys/dsl_dataset.h> 40 #include <sys/vdev_impl.h> 41 #include <sys/dmu_tx.h> 42 #include <sys/dsl_pool.h> 43 #include <sys/metaslab.h> 44 #include <sys/trace_zfs.h> 45 #include <sys/abd.h> 46 #include <sys/brt.h> 47 #include <sys/wmsum.h> 48 49 /* 50 * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system 51 * calls that change the file system. Each itx has enough information to 52 * be able to replay them after a system crash, power loss, or 53 * equivalent failure mode. These are stored in memory until either: 54 * 55 * 1. they are committed to the pool by the DMU transaction group 56 * (txg), at which point they can be discarded; or 57 * 2. they are committed to the on-disk ZIL for the dataset being 58 * modified (e.g. due to an fsync, O_DSYNC, or other synchronous 59 * requirement). 60 * 61 * In the event of a crash or power loss, the itxs contained by each 62 * dataset's on-disk ZIL will be replayed when that dataset is first 63 * instantiated (e.g. if the dataset is a normal filesystem, when it is 64 * first mounted). 65 * 66 * As hinted at above, there is one ZIL per dataset (both the in-memory 67 * representation, and the on-disk representation). The on-disk format 68 * consists of 3 parts: 69 * 70 * - a single, per-dataset, ZIL header; which points to a chain of 71 * - zero or more ZIL blocks; each of which contains 72 * - zero or more ZIL records 73 * 74 * A ZIL record holds the information necessary to replay a single 75 * system call transaction. A ZIL block can hold many ZIL records, and 76 * the blocks are chained together, similarly to a singly linked list. 77 * 78 * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL 79 * block in the chain, and the ZIL header points to the first block in 80 * the chain. 81 * 82 * Note, there is not a fixed place in the pool to hold these ZIL 83 * blocks; they are dynamically allocated and freed as needed from the 84 * blocks available on the pool, though they can be preferentially 85 * allocated from a dedicated "log" vdev. 86 */ 87 88 /* 89 * This controls the amount of time that a ZIL block (lwb) will remain 90 * "open" when it isn't "full", and it has a thread waiting for it to be 91 * committed to stable storage. Please refer to the zil_commit_waiter() 92 * function (and the comments within it) for more details. 93 */ 94 static uint_t zfs_commit_timeout_pct = 5; 95 96 /* 97 * Minimal time we care to delay commit waiting for more ZIL records. 98 * At least FreeBSD kernel can't sleep for less than 2us at its best. 99 * So requests to sleep for less then 5us is a waste of CPU time with 100 * a risk of significant log latency increase due to oversleep. 101 */ 102 static uint64_t zil_min_commit_timeout = 5000; 103 104 /* 105 * See zil.h for more information about these fields. 106 */ 107 static zil_kstat_values_t zil_stats = { 108 { "zil_commit_count", KSTAT_DATA_UINT64 }, 109 { "zil_commit_writer_count", KSTAT_DATA_UINT64 }, 110 { "zil_itx_count", KSTAT_DATA_UINT64 }, 111 { "zil_itx_indirect_count", KSTAT_DATA_UINT64 }, 112 { "zil_itx_indirect_bytes", KSTAT_DATA_UINT64 }, 113 { "zil_itx_copied_count", KSTAT_DATA_UINT64 }, 114 { "zil_itx_copied_bytes", KSTAT_DATA_UINT64 }, 115 { "zil_itx_needcopy_count", KSTAT_DATA_UINT64 }, 116 { "zil_itx_needcopy_bytes", KSTAT_DATA_UINT64 }, 117 { "zil_itx_metaslab_normal_count", KSTAT_DATA_UINT64 }, 118 { "zil_itx_metaslab_normal_bytes", KSTAT_DATA_UINT64 }, 119 { "zil_itx_metaslab_normal_write", KSTAT_DATA_UINT64 }, 120 { "zil_itx_metaslab_normal_alloc", KSTAT_DATA_UINT64 }, 121 { "zil_itx_metaslab_slog_count", KSTAT_DATA_UINT64 }, 122 { "zil_itx_metaslab_slog_bytes", KSTAT_DATA_UINT64 }, 123 { "zil_itx_metaslab_slog_write", KSTAT_DATA_UINT64 }, 124 { "zil_itx_metaslab_slog_alloc", KSTAT_DATA_UINT64 }, 125 }; 126 127 static zil_sums_t zil_sums_global; 128 static kstat_t *zil_kstats_global; 129 130 /* 131 * Disable intent logging replay. This global ZIL switch affects all pools. 132 */ 133 int zil_replay_disable = 0; 134 135 /* 136 * Disable the DKIOCFLUSHWRITECACHE commands that are normally sent to 137 * the disk(s) by the ZIL after an LWB write has completed. Setting this 138 * will cause ZIL corruption on power loss if a volatile out-of-order 139 * write cache is enabled. 140 */ 141 static int zil_nocacheflush = 0; 142 143 /* 144 * Limit SLOG write size per commit executed with synchronous priority. 145 * Any writes above that will be executed with lower (asynchronous) priority 146 * to limit potential SLOG device abuse by single active ZIL writer. 147 */ 148 static uint64_t zil_slog_bulk = 768 * 1024; 149 150 static kmem_cache_t *zil_lwb_cache; 151 static kmem_cache_t *zil_zcw_cache; 152 153 static void zil_lwb_commit(zilog_t *zilog, lwb_t *lwb, itx_t *itx); 154 static itx_t *zil_itx_clone(itx_t *oitx); 155 156 static int 157 zil_bp_compare(const void *x1, const void *x2) 158 { 159 const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva; 160 const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva; 161 162 int cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2)); 163 if (likely(cmp)) 164 return (cmp); 165 166 return (TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2))); 167 } 168 169 static void 170 zil_bp_tree_init(zilog_t *zilog) 171 { 172 avl_create(&zilog->zl_bp_tree, zil_bp_compare, 173 sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node)); 174 } 175 176 static void 177 zil_bp_tree_fini(zilog_t *zilog) 178 { 179 avl_tree_t *t = &zilog->zl_bp_tree; 180 zil_bp_node_t *zn; 181 void *cookie = NULL; 182 183 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL) 184 kmem_free(zn, sizeof (zil_bp_node_t)); 185 186 avl_destroy(t); 187 } 188 189 int 190 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp) 191 { 192 avl_tree_t *t = &zilog->zl_bp_tree; 193 const dva_t *dva; 194 zil_bp_node_t *zn; 195 avl_index_t where; 196 197 if (BP_IS_EMBEDDED(bp)) 198 return (0); 199 200 dva = BP_IDENTITY(bp); 201 202 if (avl_find(t, dva, &where) != NULL) 203 return (SET_ERROR(EEXIST)); 204 205 zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP); 206 zn->zn_dva = *dva; 207 avl_insert(t, zn, where); 208 209 return (0); 210 } 211 212 static zil_header_t * 213 zil_header_in_syncing_context(zilog_t *zilog) 214 { 215 return ((zil_header_t *)zilog->zl_header); 216 } 217 218 static void 219 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp) 220 { 221 zio_cksum_t *zc = &bp->blk_cksum; 222 223 (void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_0], 224 sizeof (zc->zc_word[ZIL_ZC_GUID_0])); 225 (void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_1], 226 sizeof (zc->zc_word[ZIL_ZC_GUID_1])); 227 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os); 228 zc->zc_word[ZIL_ZC_SEQ] = 1ULL; 229 } 230 231 static int 232 zil_kstats_global_update(kstat_t *ksp, int rw) 233 { 234 zil_kstat_values_t *zs = ksp->ks_data; 235 ASSERT3P(&zil_stats, ==, zs); 236 237 if (rw == KSTAT_WRITE) { 238 return (SET_ERROR(EACCES)); 239 } 240 241 zil_kstat_values_update(zs, &zil_sums_global); 242 243 return (0); 244 } 245 246 /* 247 * Read a log block and make sure it's valid. 248 */ 249 static int 250 zil_read_log_block(zilog_t *zilog, boolean_t decrypt, const blkptr_t *bp, 251 blkptr_t *nbp, char **begin, char **end, arc_buf_t **abuf) 252 { 253 zio_flag_t zio_flags = ZIO_FLAG_CANFAIL; 254 arc_flags_t aflags = ARC_FLAG_WAIT; 255 zbookmark_phys_t zb; 256 int error; 257 258 if (zilog->zl_header->zh_claim_txg == 0) 259 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; 260 261 if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) 262 zio_flags |= ZIO_FLAG_SPECULATIVE; 263 264 if (!decrypt) 265 zio_flags |= ZIO_FLAG_RAW; 266 267 SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET], 268 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); 269 270 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, 271 abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); 272 273 if (error == 0) { 274 zio_cksum_t cksum = bp->blk_cksum; 275 276 /* 277 * Validate the checksummed log block. 278 * 279 * Sequence numbers should be... sequential. The checksum 280 * verifier for the next block should be bp's checksum plus 1. 281 * 282 * Also check the log chain linkage and size used. 283 */ 284 cksum.zc_word[ZIL_ZC_SEQ]++; 285 286 uint64_t size = BP_GET_LSIZE(bp); 287 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { 288 zil_chain_t *zilc = (*abuf)->b_data; 289 char *lr = (char *)(zilc + 1); 290 291 if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum, 292 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) || 293 zilc->zc_nused < sizeof (*zilc) || 294 zilc->zc_nused > size) { 295 error = SET_ERROR(ECKSUM); 296 } else { 297 *begin = lr; 298 *end = lr + zilc->zc_nused - sizeof (*zilc); 299 *nbp = zilc->zc_next_blk; 300 } 301 } else { 302 char *lr = (*abuf)->b_data; 303 zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1; 304 305 if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum, 306 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) || 307 (zilc->zc_nused > (size - sizeof (*zilc)))) { 308 error = SET_ERROR(ECKSUM); 309 } else { 310 *begin = lr; 311 *end = lr + zilc->zc_nused; 312 *nbp = zilc->zc_next_blk; 313 } 314 } 315 } 316 317 return (error); 318 } 319 320 /* 321 * Read a TX_WRITE log data block. 322 */ 323 static int 324 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf) 325 { 326 zio_flag_t zio_flags = ZIO_FLAG_CANFAIL; 327 const blkptr_t *bp = &lr->lr_blkptr; 328 arc_flags_t aflags = ARC_FLAG_WAIT; 329 arc_buf_t *abuf = NULL; 330 zbookmark_phys_t zb; 331 int error; 332 333 if (BP_IS_HOLE(bp)) { 334 if (wbuf != NULL) 335 memset(wbuf, 0, MAX(BP_GET_LSIZE(bp), lr->lr_length)); 336 return (0); 337 } 338 339 if (zilog->zl_header->zh_claim_txg == 0) 340 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; 341 342 /* 343 * If we are not using the resulting data, we are just checking that 344 * it hasn't been corrupted so we don't need to waste CPU time 345 * decompressing and decrypting it. 346 */ 347 if (wbuf == NULL) 348 zio_flags |= ZIO_FLAG_RAW; 349 350 ASSERT3U(BP_GET_LSIZE(bp), !=, 0); 351 SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid, 352 ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp)); 353 354 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf, 355 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); 356 357 if (error == 0) { 358 if (wbuf != NULL) 359 memcpy(wbuf, abuf->b_data, arc_buf_size(abuf)); 360 arc_buf_destroy(abuf, &abuf); 361 } 362 363 return (error); 364 } 365 366 void 367 zil_sums_init(zil_sums_t *zs) 368 { 369 wmsum_init(&zs->zil_commit_count, 0); 370 wmsum_init(&zs->zil_commit_writer_count, 0); 371 wmsum_init(&zs->zil_itx_count, 0); 372 wmsum_init(&zs->zil_itx_indirect_count, 0); 373 wmsum_init(&zs->zil_itx_indirect_bytes, 0); 374 wmsum_init(&zs->zil_itx_copied_count, 0); 375 wmsum_init(&zs->zil_itx_copied_bytes, 0); 376 wmsum_init(&zs->zil_itx_needcopy_count, 0); 377 wmsum_init(&zs->zil_itx_needcopy_bytes, 0); 378 wmsum_init(&zs->zil_itx_metaslab_normal_count, 0); 379 wmsum_init(&zs->zil_itx_metaslab_normal_bytes, 0); 380 wmsum_init(&zs->zil_itx_metaslab_normal_write, 0); 381 wmsum_init(&zs->zil_itx_metaslab_normal_alloc, 0); 382 wmsum_init(&zs->zil_itx_metaslab_slog_count, 0); 383 wmsum_init(&zs->zil_itx_metaslab_slog_bytes, 0); 384 wmsum_init(&zs->zil_itx_metaslab_slog_write, 0); 385 wmsum_init(&zs->zil_itx_metaslab_slog_alloc, 0); 386 } 387 388 void 389 zil_sums_fini(zil_sums_t *zs) 390 { 391 wmsum_fini(&zs->zil_commit_count); 392 wmsum_fini(&zs->zil_commit_writer_count); 393 wmsum_fini(&zs->zil_itx_count); 394 wmsum_fini(&zs->zil_itx_indirect_count); 395 wmsum_fini(&zs->zil_itx_indirect_bytes); 396 wmsum_fini(&zs->zil_itx_copied_count); 397 wmsum_fini(&zs->zil_itx_copied_bytes); 398 wmsum_fini(&zs->zil_itx_needcopy_count); 399 wmsum_fini(&zs->zil_itx_needcopy_bytes); 400 wmsum_fini(&zs->zil_itx_metaslab_normal_count); 401 wmsum_fini(&zs->zil_itx_metaslab_normal_bytes); 402 wmsum_fini(&zs->zil_itx_metaslab_normal_write); 403 wmsum_fini(&zs->zil_itx_metaslab_normal_alloc); 404 wmsum_fini(&zs->zil_itx_metaslab_slog_count); 405 wmsum_fini(&zs->zil_itx_metaslab_slog_bytes); 406 wmsum_fini(&zs->zil_itx_metaslab_slog_write); 407 wmsum_fini(&zs->zil_itx_metaslab_slog_alloc); 408 } 409 410 void 411 zil_kstat_values_update(zil_kstat_values_t *zs, zil_sums_t *zil_sums) 412 { 413 zs->zil_commit_count.value.ui64 = 414 wmsum_value(&zil_sums->zil_commit_count); 415 zs->zil_commit_writer_count.value.ui64 = 416 wmsum_value(&zil_sums->zil_commit_writer_count); 417 zs->zil_itx_count.value.ui64 = 418 wmsum_value(&zil_sums->zil_itx_count); 419 zs->zil_itx_indirect_count.value.ui64 = 420 wmsum_value(&zil_sums->zil_itx_indirect_count); 421 zs->zil_itx_indirect_bytes.value.ui64 = 422 wmsum_value(&zil_sums->zil_itx_indirect_bytes); 423 zs->zil_itx_copied_count.value.ui64 = 424 wmsum_value(&zil_sums->zil_itx_copied_count); 425 zs->zil_itx_copied_bytes.value.ui64 = 426 wmsum_value(&zil_sums->zil_itx_copied_bytes); 427 zs->zil_itx_needcopy_count.value.ui64 = 428 wmsum_value(&zil_sums->zil_itx_needcopy_count); 429 zs->zil_itx_needcopy_bytes.value.ui64 = 430 wmsum_value(&zil_sums->zil_itx_needcopy_bytes); 431 zs->zil_itx_metaslab_normal_count.value.ui64 = 432 wmsum_value(&zil_sums->zil_itx_metaslab_normal_count); 433 zs->zil_itx_metaslab_normal_bytes.value.ui64 = 434 wmsum_value(&zil_sums->zil_itx_metaslab_normal_bytes); 435 zs->zil_itx_metaslab_normal_write.value.ui64 = 436 wmsum_value(&zil_sums->zil_itx_metaslab_normal_write); 437 zs->zil_itx_metaslab_normal_alloc.value.ui64 = 438 wmsum_value(&zil_sums->zil_itx_metaslab_normal_alloc); 439 zs->zil_itx_metaslab_slog_count.value.ui64 = 440 wmsum_value(&zil_sums->zil_itx_metaslab_slog_count); 441 zs->zil_itx_metaslab_slog_bytes.value.ui64 = 442 wmsum_value(&zil_sums->zil_itx_metaslab_slog_bytes); 443 zs->zil_itx_metaslab_slog_write.value.ui64 = 444 wmsum_value(&zil_sums->zil_itx_metaslab_slog_write); 445 zs->zil_itx_metaslab_slog_alloc.value.ui64 = 446 wmsum_value(&zil_sums->zil_itx_metaslab_slog_alloc); 447 } 448 449 /* 450 * Parse the intent log, and call parse_func for each valid record within. 451 */ 452 int 453 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func, 454 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg, 455 boolean_t decrypt) 456 { 457 const zil_header_t *zh = zilog->zl_header; 458 boolean_t claimed = !!zh->zh_claim_txg; 459 uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX; 460 uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX; 461 uint64_t max_blk_seq = 0; 462 uint64_t max_lr_seq = 0; 463 uint64_t blk_count = 0; 464 uint64_t lr_count = 0; 465 blkptr_t blk, next_blk = {{{{0}}}}; 466 int error = 0; 467 468 /* 469 * Old logs didn't record the maximum zh_claim_lr_seq. 470 */ 471 if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) 472 claim_lr_seq = UINT64_MAX; 473 474 /* 475 * Starting at the block pointed to by zh_log we read the log chain. 476 * For each block in the chain we strongly check that block to 477 * ensure its validity. We stop when an invalid block is found. 478 * For each block pointer in the chain we call parse_blk_func(). 479 * For each record in each valid block we call parse_lr_func(). 480 * If the log has been claimed, stop if we encounter a sequence 481 * number greater than the highest claimed sequence number. 482 */ 483 zil_bp_tree_init(zilog); 484 485 for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) { 486 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; 487 int reclen; 488 char *lrp, *end; 489 arc_buf_t *abuf = NULL; 490 491 if (blk_seq > claim_blk_seq) 492 break; 493 494 error = parse_blk_func(zilog, &blk, arg, txg); 495 if (error != 0) 496 break; 497 ASSERT3U(max_blk_seq, <, blk_seq); 498 max_blk_seq = blk_seq; 499 blk_count++; 500 501 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq) 502 break; 503 504 error = zil_read_log_block(zilog, decrypt, &blk, &next_blk, 505 &lrp, &end, &abuf); 506 if (error != 0) { 507 if (abuf) 508 arc_buf_destroy(abuf, &abuf); 509 if (claimed) { 510 char name[ZFS_MAX_DATASET_NAME_LEN]; 511 512 dmu_objset_name(zilog->zl_os, name); 513 514 cmn_err(CE_WARN, "ZFS read log block error %d, " 515 "dataset %s, seq 0x%llx\n", error, name, 516 (u_longlong_t)blk_seq); 517 } 518 break; 519 } 520 521 for (; lrp < end; lrp += reclen) { 522 lr_t *lr = (lr_t *)lrp; 523 reclen = lr->lrc_reclen; 524 ASSERT3U(reclen, >=, sizeof (lr_t)); 525 if (lr->lrc_seq > claim_lr_seq) { 526 arc_buf_destroy(abuf, &abuf); 527 goto done; 528 } 529 530 error = parse_lr_func(zilog, lr, arg, txg); 531 if (error != 0) { 532 arc_buf_destroy(abuf, &abuf); 533 goto done; 534 } 535 ASSERT3U(max_lr_seq, <, lr->lrc_seq); 536 max_lr_seq = lr->lrc_seq; 537 lr_count++; 538 } 539 arc_buf_destroy(abuf, &abuf); 540 } 541 done: 542 zilog->zl_parse_error = error; 543 zilog->zl_parse_blk_seq = max_blk_seq; 544 zilog->zl_parse_lr_seq = max_lr_seq; 545 zilog->zl_parse_blk_count = blk_count; 546 zilog->zl_parse_lr_count = lr_count; 547 548 zil_bp_tree_fini(zilog); 549 550 return (error); 551 } 552 553 static int 554 zil_clear_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx, 555 uint64_t first_txg) 556 { 557 (void) tx; 558 ASSERT(!BP_IS_HOLE(bp)); 559 560 /* 561 * As we call this function from the context of a rewind to a 562 * checkpoint, each ZIL block whose txg is later than the txg 563 * that we rewind to is invalid. Thus, we return -1 so 564 * zil_parse() doesn't attempt to read it. 565 */ 566 if (bp->blk_birth >= first_txg) 567 return (-1); 568 569 if (zil_bp_tree_add(zilog, bp) != 0) 570 return (0); 571 572 zio_free(zilog->zl_spa, first_txg, bp); 573 return (0); 574 } 575 576 static int 577 zil_noop_log_record(zilog_t *zilog, const lr_t *lrc, void *tx, 578 uint64_t first_txg) 579 { 580 (void) zilog, (void) lrc, (void) tx, (void) first_txg; 581 return (0); 582 } 583 584 static int 585 zil_claim_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx, 586 uint64_t first_txg) 587 { 588 /* 589 * Claim log block if not already committed and not already claimed. 590 * If tx == NULL, just verify that the block is claimable. 591 */ 592 if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg || 593 zil_bp_tree_add(zilog, bp) != 0) 594 return (0); 595 596 return (zio_wait(zio_claim(NULL, zilog->zl_spa, 597 tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL, 598 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB))); 599 } 600 601 static int 602 zil_claim_write(zilog_t *zilog, const lr_t *lrc, void *tx, uint64_t first_txg) 603 { 604 lr_write_t *lr = (lr_write_t *)lrc; 605 int error; 606 607 ASSERT(lrc->lrc_txtype == TX_WRITE); 608 609 /* 610 * If the block is not readable, don't claim it. This can happen 611 * in normal operation when a log block is written to disk before 612 * some of the dmu_sync() blocks it points to. In this case, the 613 * transaction cannot have been committed to anyone (we would have 614 * waited for all writes to be stable first), so it is semantically 615 * correct to declare this the end of the log. 616 */ 617 if (lr->lr_blkptr.blk_birth >= first_txg) { 618 error = zil_read_log_data(zilog, lr, NULL); 619 if (error != 0) 620 return (error); 621 } 622 623 return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg)); 624 } 625 626 static int 627 zil_claim_clone_range(zilog_t *zilog, const lr_t *lrc, void *tx) 628 { 629 const lr_clone_range_t *lr = (const lr_clone_range_t *)lrc; 630 const blkptr_t *bp; 631 spa_t *spa; 632 uint_t ii; 633 634 ASSERT(lrc->lrc_txtype == TX_CLONE_RANGE); 635 636 if (tx == NULL) { 637 return (0); 638 } 639 640 /* 641 * XXX: Do we need to byteswap lr? 642 */ 643 644 spa = zilog->zl_spa; 645 646 for (ii = 0; ii < lr->lr_nbps; ii++) { 647 bp = &lr->lr_bps[ii]; 648 649 /* 650 * When data in embedded into BP there is no need to create 651 * BRT entry as there is no data block. Just copy the BP as 652 * it contains the data. 653 */ 654 if (!BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) { 655 brt_pending_add(spa, bp, tx); 656 } 657 } 658 659 return (0); 660 } 661 662 static int 663 zil_claim_log_record(zilog_t *zilog, const lr_t *lrc, void *tx, 664 uint64_t first_txg) 665 { 666 667 switch (lrc->lrc_txtype) { 668 case TX_WRITE: 669 return (zil_claim_write(zilog, lrc, tx, first_txg)); 670 case TX_CLONE_RANGE: 671 return (zil_claim_clone_range(zilog, lrc, tx)); 672 default: 673 return (0); 674 } 675 } 676 677 static int 678 zil_free_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx, 679 uint64_t claim_txg) 680 { 681 (void) claim_txg; 682 683 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp); 684 685 return (0); 686 } 687 688 static int 689 zil_free_write(zilog_t *zilog, const lr_t *lrc, void *tx, uint64_t claim_txg) 690 { 691 lr_write_t *lr = (lr_write_t *)lrc; 692 blkptr_t *bp = &lr->lr_blkptr; 693 694 ASSERT(lrc->lrc_txtype == TX_WRITE); 695 696 /* 697 * If we previously claimed it, we need to free it. 698 */ 699 if (bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 && 700 !BP_IS_HOLE(bp)) { 701 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp); 702 } 703 704 return (0); 705 } 706 707 static int 708 zil_free_clone_range(zilog_t *zilog, const lr_t *lrc, void *tx) 709 { 710 const lr_clone_range_t *lr = (const lr_clone_range_t *)lrc; 711 const blkptr_t *bp; 712 spa_t *spa; 713 uint_t ii; 714 715 ASSERT(lrc->lrc_txtype == TX_CLONE_RANGE); 716 717 if (tx == NULL) { 718 return (0); 719 } 720 721 spa = zilog->zl_spa; 722 723 for (ii = 0; ii < lr->lr_nbps; ii++) { 724 bp = &lr->lr_bps[ii]; 725 726 if (!BP_IS_HOLE(bp)) { 727 zio_free(spa, dmu_tx_get_txg(tx), bp); 728 } 729 } 730 731 return (0); 732 } 733 734 static int 735 zil_free_log_record(zilog_t *zilog, const lr_t *lrc, void *tx, 736 uint64_t claim_txg) 737 { 738 739 if (claim_txg == 0) { 740 return (0); 741 } 742 743 switch (lrc->lrc_txtype) { 744 case TX_WRITE: 745 return (zil_free_write(zilog, lrc, tx, claim_txg)); 746 case TX_CLONE_RANGE: 747 return (zil_free_clone_range(zilog, lrc, tx)); 748 default: 749 return (0); 750 } 751 } 752 753 static int 754 zil_lwb_vdev_compare(const void *x1, const void *x2) 755 { 756 const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev; 757 const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev; 758 759 return (TREE_CMP(v1, v2)); 760 } 761 762 static lwb_t * 763 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg, 764 boolean_t fastwrite) 765 { 766 lwb_t *lwb; 767 768 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); 769 lwb->lwb_zilog = zilog; 770 lwb->lwb_blk = *bp; 771 lwb->lwb_fastwrite = fastwrite; 772 lwb->lwb_slog = slog; 773 lwb->lwb_indirect = B_FALSE; 774 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { 775 lwb->lwb_nused = lwb->lwb_nfilled = sizeof (zil_chain_t); 776 lwb->lwb_sz = BP_GET_LSIZE(bp); 777 } else { 778 lwb->lwb_nused = lwb->lwb_nfilled = 0; 779 lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t); 780 } 781 lwb->lwb_state = LWB_STATE_CLOSED; 782 lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp)); 783 lwb->lwb_write_zio = NULL; 784 lwb->lwb_root_zio = NULL; 785 lwb->lwb_issued_timestamp = 0; 786 lwb->lwb_issued_txg = 0; 787 lwb->lwb_max_txg = txg; 788 789 mutex_enter(&zilog->zl_lock); 790 list_insert_tail(&zilog->zl_lwb_list, lwb); 791 mutex_exit(&zilog->zl_lock); 792 793 return (lwb); 794 } 795 796 static void 797 zil_free_lwb(zilog_t *zilog, lwb_t *lwb) 798 { 799 ASSERT(MUTEX_HELD(&zilog->zl_lock)); 800 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock)); 801 ASSERT(list_is_empty(&lwb->lwb_waiters)); 802 ASSERT(list_is_empty(&lwb->lwb_itxs)); 803 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree)); 804 ASSERT3P(lwb->lwb_write_zio, ==, NULL); 805 ASSERT3P(lwb->lwb_root_zio, ==, NULL); 806 ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa)); 807 ASSERT(lwb->lwb_state == LWB_STATE_CLOSED || 808 lwb->lwb_state == LWB_STATE_FLUSH_DONE); 809 810 /* 811 * Clear the zilog's field to indicate this lwb is no longer 812 * valid, and prevent use-after-free errors. 813 */ 814 if (zilog->zl_last_lwb_opened == lwb) 815 zilog->zl_last_lwb_opened = NULL; 816 817 kmem_cache_free(zil_lwb_cache, lwb); 818 } 819 820 /* 821 * Called when we create in-memory log transactions so that we know 822 * to cleanup the itxs at the end of spa_sync(). 823 */ 824 static void 825 zilog_dirty(zilog_t *zilog, uint64_t txg) 826 { 827 dsl_pool_t *dp = zilog->zl_dmu_pool; 828 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 829 830 ASSERT(spa_writeable(zilog->zl_spa)); 831 832 if (ds->ds_is_snapshot) 833 panic("dirtying snapshot!"); 834 835 if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) { 836 /* up the hold count until we can be written out */ 837 dmu_buf_add_ref(ds->ds_dbuf, zilog); 838 839 zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg); 840 } 841 } 842 843 /* 844 * Determine if the zil is dirty in the specified txg. Callers wanting to 845 * ensure that the dirty state does not change must hold the itxg_lock for 846 * the specified txg. Holding the lock will ensure that the zil cannot be 847 * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current 848 * state. 849 */ 850 static boolean_t __maybe_unused 851 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg) 852 { 853 dsl_pool_t *dp = zilog->zl_dmu_pool; 854 855 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK)) 856 return (B_TRUE); 857 return (B_FALSE); 858 } 859 860 /* 861 * Determine if the zil is dirty. The zil is considered dirty if it has 862 * any pending itx records that have not been cleaned by zil_clean(). 863 */ 864 static boolean_t 865 zilog_is_dirty(zilog_t *zilog) 866 { 867 dsl_pool_t *dp = zilog->zl_dmu_pool; 868 869 for (int t = 0; t < TXG_SIZE; t++) { 870 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t)) 871 return (B_TRUE); 872 } 873 return (B_FALSE); 874 } 875 876 /* 877 * Its called in zil_commit context (zil_process_commit_list()/zil_create()). 878 * It activates SPA_FEATURE_ZILSAXATTR feature, if its enabled. 879 * Check dsl_dataset_feature_is_active to avoid txg_wait_synced() on every 880 * zil_commit. 881 */ 882 static void 883 zil_commit_activate_saxattr_feature(zilog_t *zilog) 884 { 885 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 886 uint64_t txg = 0; 887 dmu_tx_t *tx = NULL; 888 889 if (spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) && 890 dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL && 891 !dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR)) { 892 tx = dmu_tx_create(zilog->zl_os); 893 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 894 dsl_dataset_dirty(ds, tx); 895 txg = dmu_tx_get_txg(tx); 896 897 mutex_enter(&ds->ds_lock); 898 ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] = 899 (void *)B_TRUE; 900 mutex_exit(&ds->ds_lock); 901 dmu_tx_commit(tx); 902 txg_wait_synced(zilog->zl_dmu_pool, txg); 903 } 904 } 905 906 /* 907 * Create an on-disk intent log. 908 */ 909 static lwb_t * 910 zil_create(zilog_t *zilog) 911 { 912 const zil_header_t *zh = zilog->zl_header; 913 lwb_t *lwb = NULL; 914 uint64_t txg = 0; 915 dmu_tx_t *tx = NULL; 916 blkptr_t blk; 917 int error = 0; 918 boolean_t fastwrite = FALSE; 919 boolean_t slog = FALSE; 920 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 921 922 923 /* 924 * Wait for any previous destroy to complete. 925 */ 926 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 927 928 ASSERT(zh->zh_claim_txg == 0); 929 ASSERT(zh->zh_replay_seq == 0); 930 931 blk = zh->zh_log; 932 933 /* 934 * Allocate an initial log block if: 935 * - there isn't one already 936 * - the existing block is the wrong endianness 937 */ 938 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) { 939 tx = dmu_tx_create(zilog->zl_os); 940 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 941 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 942 txg = dmu_tx_get_txg(tx); 943 944 if (!BP_IS_HOLE(&blk)) { 945 zio_free(zilog->zl_spa, txg, &blk); 946 BP_ZERO(&blk); 947 } 948 949 error = zio_alloc_zil(zilog->zl_spa, zilog->zl_os, txg, &blk, 950 ZIL_MIN_BLKSZ, &slog); 951 fastwrite = TRUE; 952 953 if (error == 0) 954 zil_init_log_chain(zilog, &blk); 955 } 956 957 /* 958 * Allocate a log write block (lwb) for the first log block. 959 */ 960 if (error == 0) 961 lwb = zil_alloc_lwb(zilog, &blk, slog, txg, fastwrite); 962 963 /* 964 * If we just allocated the first log block, commit our transaction 965 * and wait for zil_sync() to stuff the block pointer into zh_log. 966 * (zh is part of the MOS, so we cannot modify it in open context.) 967 */ 968 if (tx != NULL) { 969 /* 970 * If "zilsaxattr" feature is enabled on zpool, then activate 971 * it now when we're creating the ZIL chain. We can't wait with 972 * this until we write the first xattr log record because we 973 * need to wait for the feature activation to sync out. 974 */ 975 if (spa_feature_is_enabled(zilog->zl_spa, 976 SPA_FEATURE_ZILSAXATTR) && dmu_objset_type(zilog->zl_os) != 977 DMU_OST_ZVOL) { 978 mutex_enter(&ds->ds_lock); 979 ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] = 980 (void *)B_TRUE; 981 mutex_exit(&ds->ds_lock); 982 } 983 984 dmu_tx_commit(tx); 985 txg_wait_synced(zilog->zl_dmu_pool, txg); 986 } else { 987 /* 988 * This branch covers the case where we enable the feature on a 989 * zpool that has existing ZIL headers. 990 */ 991 zil_commit_activate_saxattr_feature(zilog); 992 } 993 IMPLY(spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) && 994 dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL, 995 dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR)); 996 997 ASSERT(error != 0 || memcmp(&blk, &zh->zh_log, sizeof (blk)) == 0); 998 IMPLY(error == 0, lwb != NULL); 999 1000 return (lwb); 1001 } 1002 1003 /* 1004 * In one tx, free all log blocks and clear the log header. If keep_first 1005 * is set, then we're replaying a log with no content. We want to keep the 1006 * first block, however, so that the first synchronous transaction doesn't 1007 * require a txg_wait_synced() in zil_create(). We don't need to 1008 * txg_wait_synced() here either when keep_first is set, because both 1009 * zil_create() and zil_destroy() will wait for any in-progress destroys 1010 * to complete. 1011 * Return B_TRUE if there were any entries to replay. 1012 */ 1013 boolean_t 1014 zil_destroy(zilog_t *zilog, boolean_t keep_first) 1015 { 1016 const zil_header_t *zh = zilog->zl_header; 1017 lwb_t *lwb; 1018 dmu_tx_t *tx; 1019 uint64_t txg; 1020 1021 /* 1022 * Wait for any previous destroy to complete. 1023 */ 1024 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 1025 1026 zilog->zl_old_header = *zh; /* debugging aid */ 1027 1028 if (BP_IS_HOLE(&zh->zh_log)) 1029 return (B_FALSE); 1030 1031 tx = dmu_tx_create(zilog->zl_os); 1032 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 1033 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 1034 txg = dmu_tx_get_txg(tx); 1035 1036 mutex_enter(&zilog->zl_lock); 1037 1038 ASSERT3U(zilog->zl_destroy_txg, <, txg); 1039 zilog->zl_destroy_txg = txg; 1040 zilog->zl_keep_first = keep_first; 1041 1042 if (!list_is_empty(&zilog->zl_lwb_list)) { 1043 ASSERT(zh->zh_claim_txg == 0); 1044 VERIFY(!keep_first); 1045 while ((lwb = list_remove_head(&zilog->zl_lwb_list)) != NULL) { 1046 if (lwb->lwb_fastwrite) 1047 metaslab_fastwrite_unmark(zilog->zl_spa, 1048 &lwb->lwb_blk); 1049 if (lwb->lwb_buf != NULL) 1050 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 1051 zio_free(zilog->zl_spa, txg, &lwb->lwb_blk); 1052 zil_free_lwb(zilog, lwb); 1053 } 1054 } else if (!keep_first) { 1055 zil_destroy_sync(zilog, tx); 1056 } 1057 mutex_exit(&zilog->zl_lock); 1058 1059 dmu_tx_commit(tx); 1060 1061 return (B_TRUE); 1062 } 1063 1064 void 1065 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx) 1066 { 1067 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 1068 (void) zil_parse(zilog, zil_free_log_block, 1069 zil_free_log_record, tx, zilog->zl_header->zh_claim_txg, B_FALSE); 1070 } 1071 1072 int 1073 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg) 1074 { 1075 dmu_tx_t *tx = txarg; 1076 zilog_t *zilog; 1077 uint64_t first_txg; 1078 zil_header_t *zh; 1079 objset_t *os; 1080 int error; 1081 1082 error = dmu_objset_own_obj(dp, ds->ds_object, 1083 DMU_OST_ANY, B_FALSE, B_FALSE, FTAG, &os); 1084 if (error != 0) { 1085 /* 1086 * EBUSY indicates that the objset is inconsistent, in which 1087 * case it can not have a ZIL. 1088 */ 1089 if (error != EBUSY) { 1090 cmn_err(CE_WARN, "can't open objset for %llu, error %u", 1091 (unsigned long long)ds->ds_object, error); 1092 } 1093 1094 return (0); 1095 } 1096 1097 zilog = dmu_objset_zil(os); 1098 zh = zil_header_in_syncing_context(zilog); 1099 ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa)); 1100 first_txg = spa_min_claim_txg(zilog->zl_spa); 1101 1102 /* 1103 * If the spa_log_state is not set to be cleared, check whether 1104 * the current uberblock is a checkpoint one and if the current 1105 * header has been claimed before moving on. 1106 * 1107 * If the current uberblock is a checkpointed uberblock then 1108 * one of the following scenarios took place: 1109 * 1110 * 1] We are currently rewinding to the checkpoint of the pool. 1111 * 2] We crashed in the middle of a checkpoint rewind but we 1112 * did manage to write the checkpointed uberblock to the 1113 * vdev labels, so when we tried to import the pool again 1114 * the checkpointed uberblock was selected from the import 1115 * procedure. 1116 * 1117 * In both cases we want to zero out all the ZIL blocks, except 1118 * the ones that have been claimed at the time of the checkpoint 1119 * (their zh_claim_txg != 0). The reason is that these blocks 1120 * may be corrupted since we may have reused their locations on 1121 * disk after we took the checkpoint. 1122 * 1123 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier 1124 * when we first figure out whether the current uberblock is 1125 * checkpointed or not. Unfortunately, that would discard all 1126 * the logs, including the ones that are claimed, and we would 1127 * leak space. 1128 */ 1129 if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR || 1130 (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 && 1131 zh->zh_claim_txg == 0)) { 1132 if (!BP_IS_HOLE(&zh->zh_log)) { 1133 (void) zil_parse(zilog, zil_clear_log_block, 1134 zil_noop_log_record, tx, first_txg, B_FALSE); 1135 } 1136 BP_ZERO(&zh->zh_log); 1137 if (os->os_encrypted) 1138 os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE; 1139 dsl_dataset_dirty(dmu_objset_ds(os), tx); 1140 dmu_objset_disown(os, B_FALSE, FTAG); 1141 return (0); 1142 } 1143 1144 /* 1145 * If we are not rewinding and opening the pool normally, then 1146 * the min_claim_txg should be equal to the first txg of the pool. 1147 */ 1148 ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa)); 1149 1150 /* 1151 * Claim all log blocks if we haven't already done so, and remember 1152 * the highest claimed sequence number. This ensures that if we can 1153 * read only part of the log now (e.g. due to a missing device), 1154 * but we can read the entire log later, we will not try to replay 1155 * or destroy beyond the last block we successfully claimed. 1156 */ 1157 ASSERT3U(zh->zh_claim_txg, <=, first_txg); 1158 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) { 1159 (void) zil_parse(zilog, zil_claim_log_block, 1160 zil_claim_log_record, tx, first_txg, B_FALSE); 1161 zh->zh_claim_txg = first_txg; 1162 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq; 1163 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq; 1164 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1) 1165 zh->zh_flags |= ZIL_REPLAY_NEEDED; 1166 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID; 1167 if (os->os_encrypted) 1168 os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE; 1169 dsl_dataset_dirty(dmu_objset_ds(os), tx); 1170 } 1171 1172 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1)); 1173 dmu_objset_disown(os, B_FALSE, FTAG); 1174 return (0); 1175 } 1176 1177 /* 1178 * Check the log by walking the log chain. 1179 * Checksum errors are ok as they indicate the end of the chain. 1180 * Any other error (no device or read failure) returns an error. 1181 */ 1182 int 1183 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx) 1184 { 1185 (void) dp; 1186 zilog_t *zilog; 1187 objset_t *os; 1188 blkptr_t *bp; 1189 int error; 1190 1191 ASSERT(tx == NULL); 1192 1193 error = dmu_objset_from_ds(ds, &os); 1194 if (error != 0) { 1195 cmn_err(CE_WARN, "can't open objset %llu, error %d", 1196 (unsigned long long)ds->ds_object, error); 1197 return (0); 1198 } 1199 1200 zilog = dmu_objset_zil(os); 1201 bp = (blkptr_t *)&zilog->zl_header->zh_log; 1202 1203 if (!BP_IS_HOLE(bp)) { 1204 vdev_t *vd; 1205 boolean_t valid = B_TRUE; 1206 1207 /* 1208 * Check the first block and determine if it's on a log device 1209 * which may have been removed or faulted prior to loading this 1210 * pool. If so, there's no point in checking the rest of the 1211 * log as its content should have already been synced to the 1212 * pool. 1213 */ 1214 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER); 1215 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0])); 1216 if (vd->vdev_islog && vdev_is_dead(vd)) 1217 valid = vdev_log_state_valid(vd); 1218 spa_config_exit(os->os_spa, SCL_STATE, FTAG); 1219 1220 if (!valid) 1221 return (0); 1222 1223 /* 1224 * Check whether the current uberblock is checkpointed (e.g. 1225 * we are rewinding) and whether the current header has been 1226 * claimed or not. If it hasn't then skip verifying it. We 1227 * do this because its ZIL blocks may be part of the pool's 1228 * state before the rewind, which is no longer valid. 1229 */ 1230 zil_header_t *zh = zil_header_in_syncing_context(zilog); 1231 if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 && 1232 zh->zh_claim_txg == 0) 1233 return (0); 1234 } 1235 1236 /* 1237 * Because tx == NULL, zil_claim_log_block() will not actually claim 1238 * any blocks, but just determine whether it is possible to do so. 1239 * In addition to checking the log chain, zil_claim_log_block() 1240 * will invoke zio_claim() with a done func of spa_claim_notify(), 1241 * which will update spa_max_claim_txg. See spa_load() for details. 1242 */ 1243 error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx, 1244 zilog->zl_header->zh_claim_txg ? -1ULL : 1245 spa_min_claim_txg(os->os_spa), B_FALSE); 1246 1247 return ((error == ECKSUM || error == ENOENT) ? 0 : error); 1248 } 1249 1250 /* 1251 * When an itx is "skipped", this function is used to properly mark the 1252 * waiter as "done, and signal any thread(s) waiting on it. An itx can 1253 * be skipped (and not committed to an lwb) for a variety of reasons, 1254 * one of them being that the itx was committed via spa_sync(), prior to 1255 * it being committed to an lwb; this can happen if a thread calling 1256 * zil_commit() is racing with spa_sync(). 1257 */ 1258 static void 1259 zil_commit_waiter_skip(zil_commit_waiter_t *zcw) 1260 { 1261 mutex_enter(&zcw->zcw_lock); 1262 ASSERT3B(zcw->zcw_done, ==, B_FALSE); 1263 zcw->zcw_done = B_TRUE; 1264 cv_broadcast(&zcw->zcw_cv); 1265 mutex_exit(&zcw->zcw_lock); 1266 } 1267 1268 /* 1269 * This function is used when the given waiter is to be linked into an 1270 * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb. 1271 * At this point, the waiter will no longer be referenced by the itx, 1272 * and instead, will be referenced by the lwb. 1273 */ 1274 static void 1275 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb) 1276 { 1277 /* 1278 * The lwb_waiters field of the lwb is protected by the zilog's 1279 * zl_lock, thus it must be held when calling this function. 1280 */ 1281 ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_lock)); 1282 1283 mutex_enter(&zcw->zcw_lock); 1284 ASSERT(!list_link_active(&zcw->zcw_node)); 1285 ASSERT3P(zcw->zcw_lwb, ==, NULL); 1286 ASSERT3P(lwb, !=, NULL); 1287 ASSERT(lwb->lwb_state == LWB_STATE_OPENED || 1288 lwb->lwb_state == LWB_STATE_ISSUED || 1289 lwb->lwb_state == LWB_STATE_WRITE_DONE); 1290 1291 list_insert_tail(&lwb->lwb_waiters, zcw); 1292 zcw->zcw_lwb = lwb; 1293 mutex_exit(&zcw->zcw_lock); 1294 } 1295 1296 /* 1297 * This function is used when zio_alloc_zil() fails to allocate a ZIL 1298 * block, and the given waiter must be linked to the "nolwb waiters" 1299 * list inside of zil_process_commit_list(). 1300 */ 1301 static void 1302 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb) 1303 { 1304 mutex_enter(&zcw->zcw_lock); 1305 ASSERT(!list_link_active(&zcw->zcw_node)); 1306 ASSERT3P(zcw->zcw_lwb, ==, NULL); 1307 list_insert_tail(nolwb, zcw); 1308 mutex_exit(&zcw->zcw_lock); 1309 } 1310 1311 void 1312 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp) 1313 { 1314 avl_tree_t *t = &lwb->lwb_vdev_tree; 1315 avl_index_t where; 1316 zil_vdev_node_t *zv, zvsearch; 1317 int ndvas = BP_GET_NDVAS(bp); 1318 int i; 1319 1320 if (zil_nocacheflush) 1321 return; 1322 1323 mutex_enter(&lwb->lwb_vdev_lock); 1324 for (i = 0; i < ndvas; i++) { 1325 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]); 1326 if (avl_find(t, &zvsearch, &where) == NULL) { 1327 zv = kmem_alloc(sizeof (*zv), KM_SLEEP); 1328 zv->zv_vdev = zvsearch.zv_vdev; 1329 avl_insert(t, zv, where); 1330 } 1331 } 1332 mutex_exit(&lwb->lwb_vdev_lock); 1333 } 1334 1335 static void 1336 zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb) 1337 { 1338 avl_tree_t *src = &lwb->lwb_vdev_tree; 1339 avl_tree_t *dst = &nlwb->lwb_vdev_tree; 1340 void *cookie = NULL; 1341 zil_vdev_node_t *zv; 1342 1343 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE); 1344 ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE); 1345 ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE); 1346 1347 /* 1348 * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does 1349 * not need the protection of lwb_vdev_lock (it will only be modified 1350 * while holding zilog->zl_lock) as its writes and those of its 1351 * children have all completed. The younger 'nlwb' may be waiting on 1352 * future writes to additional vdevs. 1353 */ 1354 mutex_enter(&nlwb->lwb_vdev_lock); 1355 /* 1356 * Tear down the 'lwb' vdev tree, ensuring that entries which do not 1357 * exist in 'nlwb' are moved to it, freeing any would-be duplicates. 1358 */ 1359 while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) { 1360 avl_index_t where; 1361 1362 if (avl_find(dst, zv, &where) == NULL) { 1363 avl_insert(dst, zv, where); 1364 } else { 1365 kmem_free(zv, sizeof (*zv)); 1366 } 1367 } 1368 mutex_exit(&nlwb->lwb_vdev_lock); 1369 } 1370 1371 void 1372 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg) 1373 { 1374 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg); 1375 } 1376 1377 /* 1378 * This function is a called after all vdevs associated with a given lwb 1379 * write have completed their DKIOCFLUSHWRITECACHE command; or as soon 1380 * as the lwb write completes, if "zil_nocacheflush" is set. Further, 1381 * all "previous" lwb's will have completed before this function is 1382 * called; i.e. this function is called for all previous lwbs before 1383 * it's called for "this" lwb (enforced via zio the dependencies 1384 * configured in zil_lwb_set_zio_dependency()). 1385 * 1386 * The intention is for this function to be called as soon as the 1387 * contents of an lwb are considered "stable" on disk, and will survive 1388 * any sudden loss of power. At this point, any threads waiting for the 1389 * lwb to reach this state are signalled, and the "waiter" structures 1390 * are marked "done". 1391 */ 1392 static void 1393 zil_lwb_flush_vdevs_done(zio_t *zio) 1394 { 1395 lwb_t *lwb = zio->io_private; 1396 zilog_t *zilog = lwb->lwb_zilog; 1397 zil_commit_waiter_t *zcw; 1398 itx_t *itx; 1399 uint64_t txg; 1400 list_t itxs, waiters; 1401 1402 spa_config_exit(zilog->zl_spa, SCL_STATE, lwb); 1403 1404 list_create(&itxs, sizeof (itx_t), offsetof(itx_t, itx_node)); 1405 list_create(&waiters, sizeof (zil_commit_waiter_t), 1406 offsetof(zil_commit_waiter_t, zcw_node)); 1407 1408 hrtime_t t = gethrtime() - lwb->lwb_issued_timestamp; 1409 1410 mutex_enter(&zilog->zl_lock); 1411 1412 zilog->zl_last_lwb_latency = (zilog->zl_last_lwb_latency * 7 + t) / 8; 1413 1414 lwb->lwb_root_zio = NULL; 1415 1416 if (zilog->zl_last_lwb_opened == lwb) { 1417 /* 1418 * Remember the highest committed log sequence number 1419 * for ztest. We only update this value when all the log 1420 * writes succeeded, because ztest wants to ASSERT that 1421 * it got the whole log chain. 1422 */ 1423 zilog->zl_commit_lr_seq = zilog->zl_lr_seq; 1424 } 1425 1426 list_move_tail(&itxs, &lwb->lwb_itxs); 1427 list_move_tail(&waiters, &lwb->lwb_waiters); 1428 1429 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE); 1430 lwb->lwb_state = LWB_STATE_FLUSH_DONE; 1431 1432 mutex_exit(&zilog->zl_lock); 1433 1434 while ((itx = list_remove_head(&itxs)) != NULL) 1435 zil_itx_destroy(itx); 1436 list_destroy(&itxs); 1437 1438 while ((zcw = list_remove_head(&waiters)) != NULL) { 1439 mutex_enter(&zcw->zcw_lock); 1440 1441 zcw->zcw_lwb = NULL; 1442 /* 1443 * We expect any ZIO errors from child ZIOs to have been 1444 * propagated "up" to this specific LWB's root ZIO, in 1445 * order for this error handling to work correctly. This 1446 * includes ZIO errors from either this LWB's write or 1447 * flush, as well as any errors from other dependent LWBs 1448 * (e.g. a root LWB ZIO that might be a child of this LWB). 1449 * 1450 * With that said, it's important to note that LWB flush 1451 * errors are not propagated up to the LWB root ZIO. 1452 * This is incorrect behavior, and results in VDEV flush 1453 * errors not being handled correctly here. See the 1454 * comment above the call to "zio_flush" for details. 1455 */ 1456 1457 zcw->zcw_zio_error = zio->io_error; 1458 1459 ASSERT3B(zcw->zcw_done, ==, B_FALSE); 1460 zcw->zcw_done = B_TRUE; 1461 cv_broadcast(&zcw->zcw_cv); 1462 1463 mutex_exit(&zcw->zcw_lock); 1464 } 1465 list_destroy(&waiters); 1466 1467 mutex_enter(&zilog->zl_lwb_io_lock); 1468 txg = lwb->lwb_issued_txg; 1469 ASSERT3U(zilog->zl_lwb_inflight[txg & TXG_MASK], >, 0); 1470 zilog->zl_lwb_inflight[txg & TXG_MASK]--; 1471 if (zilog->zl_lwb_inflight[txg & TXG_MASK] == 0) 1472 cv_broadcast(&zilog->zl_lwb_io_cv); 1473 mutex_exit(&zilog->zl_lwb_io_lock); 1474 } 1475 1476 /* 1477 * Wait for the completion of all issued write/flush of that txg provided. 1478 * It guarantees zil_lwb_flush_vdevs_done() is called and returned. 1479 */ 1480 static void 1481 zil_lwb_flush_wait_all(zilog_t *zilog, uint64_t txg) 1482 { 1483 ASSERT3U(txg, ==, spa_syncing_txg(zilog->zl_spa)); 1484 1485 mutex_enter(&zilog->zl_lwb_io_lock); 1486 while (zilog->zl_lwb_inflight[txg & TXG_MASK] > 0) 1487 cv_wait(&zilog->zl_lwb_io_cv, &zilog->zl_lwb_io_lock); 1488 mutex_exit(&zilog->zl_lwb_io_lock); 1489 1490 #ifdef ZFS_DEBUG 1491 mutex_enter(&zilog->zl_lock); 1492 mutex_enter(&zilog->zl_lwb_io_lock); 1493 lwb_t *lwb = list_head(&zilog->zl_lwb_list); 1494 while (lwb != NULL && lwb->lwb_max_txg <= txg) { 1495 if (lwb->lwb_issued_txg <= txg) { 1496 ASSERT(lwb->lwb_state != LWB_STATE_ISSUED); 1497 ASSERT(lwb->lwb_state != LWB_STATE_WRITE_DONE); 1498 IMPLY(lwb->lwb_issued_txg > 0, 1499 lwb->lwb_state == LWB_STATE_FLUSH_DONE); 1500 } 1501 IMPLY(lwb->lwb_state == LWB_STATE_WRITE_DONE || 1502 lwb->lwb_state == LWB_STATE_FLUSH_DONE, 1503 lwb->lwb_buf == NULL); 1504 lwb = list_next(&zilog->zl_lwb_list, lwb); 1505 } 1506 mutex_exit(&zilog->zl_lwb_io_lock); 1507 mutex_exit(&zilog->zl_lock); 1508 #endif 1509 } 1510 1511 /* 1512 * This is called when an lwb's write zio completes. The callback's 1513 * purpose is to issue the DKIOCFLUSHWRITECACHE commands for the vdevs 1514 * in the lwb's lwb_vdev_tree. The tree will contain the vdevs involved 1515 * in writing out this specific lwb's data, and in the case that cache 1516 * flushes have been deferred, vdevs involved in writing the data for 1517 * previous lwbs. The writes corresponding to all the vdevs in the 1518 * lwb_vdev_tree will have completed by the time this is called, due to 1519 * the zio dependencies configured in zil_lwb_set_zio_dependency(), 1520 * which takes deferred flushes into account. The lwb will be "done" 1521 * once zil_lwb_flush_vdevs_done() is called, which occurs in the zio 1522 * completion callback for the lwb's root zio. 1523 */ 1524 static void 1525 zil_lwb_write_done(zio_t *zio) 1526 { 1527 lwb_t *lwb = zio->io_private; 1528 spa_t *spa = zio->io_spa; 1529 zilog_t *zilog = lwb->lwb_zilog; 1530 avl_tree_t *t = &lwb->lwb_vdev_tree; 1531 void *cookie = NULL; 1532 zil_vdev_node_t *zv; 1533 lwb_t *nlwb; 1534 1535 ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0); 1536 1537 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 1538 ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG); 1539 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 1540 ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER); 1541 ASSERT(!BP_IS_GANG(zio->io_bp)); 1542 ASSERT(!BP_IS_HOLE(zio->io_bp)); 1543 ASSERT(BP_GET_FILL(zio->io_bp) == 0); 1544 1545 abd_free(zio->io_abd); 1546 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 1547 lwb->lwb_buf = NULL; 1548 1549 mutex_enter(&zilog->zl_lock); 1550 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED); 1551 lwb->lwb_state = LWB_STATE_WRITE_DONE; 1552 lwb->lwb_write_zio = NULL; 1553 lwb->lwb_fastwrite = FALSE; 1554 nlwb = list_next(&zilog->zl_lwb_list, lwb); 1555 mutex_exit(&zilog->zl_lock); 1556 1557 if (avl_numnodes(t) == 0) 1558 return; 1559 1560 /* 1561 * If there was an IO error, we're not going to call zio_flush() 1562 * on these vdevs, so we simply empty the tree and free the 1563 * nodes. We avoid calling zio_flush() since there isn't any 1564 * good reason for doing so, after the lwb block failed to be 1565 * written out. 1566 * 1567 * Additionally, we don't perform any further error handling at 1568 * this point (e.g. setting "zcw_zio_error" appropriately), as 1569 * we expect that to occur in "zil_lwb_flush_vdevs_done" (thus, 1570 * we expect any error seen here, to have been propagated to 1571 * that function). 1572 */ 1573 if (zio->io_error != 0) { 1574 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) 1575 kmem_free(zv, sizeof (*zv)); 1576 return; 1577 } 1578 1579 /* 1580 * If this lwb does not have any threads waiting for it to 1581 * complete, we want to defer issuing the DKIOCFLUSHWRITECACHE 1582 * command to the vdevs written to by "this" lwb, and instead 1583 * rely on the "next" lwb to handle the DKIOCFLUSHWRITECACHE 1584 * command for those vdevs. Thus, we merge the vdev tree of 1585 * "this" lwb with the vdev tree of the "next" lwb in the list, 1586 * and assume the "next" lwb will handle flushing the vdevs (or 1587 * deferring the flush(s) again). 1588 * 1589 * This is a useful performance optimization, especially for 1590 * workloads with lots of async write activity and few sync 1591 * write and/or fsync activity, as it has the potential to 1592 * coalesce multiple flush commands to a vdev into one. 1593 */ 1594 if (list_is_empty(&lwb->lwb_waiters) && nlwb != NULL) { 1595 zil_lwb_flush_defer(lwb, nlwb); 1596 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree)); 1597 return; 1598 } 1599 1600 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) { 1601 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev); 1602 if (vd != NULL && !vd->vdev_nowritecache) { 1603 /* 1604 * The "ZIO_FLAG_DONT_PROPAGATE" is currently 1605 * always used within "zio_flush". This means, 1606 * any errors when flushing the vdev(s), will 1607 * (unfortunately) not be handled correctly, 1608 * since these "zio_flush" errors will not be 1609 * propagated up to "zil_lwb_flush_vdevs_done". 1610 */ 1611 zio_flush(lwb->lwb_root_zio, vd); 1612 } 1613 kmem_free(zv, sizeof (*zv)); 1614 } 1615 } 1616 1617 static void 1618 zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb) 1619 { 1620 lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened; 1621 1622 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1623 ASSERT(MUTEX_HELD(&zilog->zl_lock)); 1624 1625 /* 1626 * The zilog's "zl_last_lwb_opened" field is used to build the 1627 * lwb/zio dependency chain, which is used to preserve the 1628 * ordering of lwb completions that is required by the semantics 1629 * of the ZIL. Each new lwb zio becomes a parent of the 1630 * "previous" lwb zio, such that the new lwb's zio cannot 1631 * complete until the "previous" lwb's zio completes. 1632 * 1633 * This is required by the semantics of zil_commit(); the commit 1634 * waiters attached to the lwbs will be woken in the lwb zio's 1635 * completion callback, so this zio dependency graph ensures the 1636 * waiters are woken in the correct order (the same order the 1637 * lwbs were created). 1638 */ 1639 if (last_lwb_opened != NULL && 1640 last_lwb_opened->lwb_state != LWB_STATE_FLUSH_DONE) { 1641 ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED || 1642 last_lwb_opened->lwb_state == LWB_STATE_ISSUED || 1643 last_lwb_opened->lwb_state == LWB_STATE_WRITE_DONE); 1644 1645 ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL); 1646 zio_add_child(lwb->lwb_root_zio, 1647 last_lwb_opened->lwb_root_zio); 1648 1649 /* 1650 * If the previous lwb's write hasn't already completed, 1651 * we also want to order the completion of the lwb write 1652 * zios (above, we only order the completion of the lwb 1653 * root zios). This is required because of how we can 1654 * defer the DKIOCFLUSHWRITECACHE commands for each lwb. 1655 * 1656 * When the DKIOCFLUSHWRITECACHE commands are deferred, 1657 * the previous lwb will rely on this lwb to flush the 1658 * vdevs written to by that previous lwb. Thus, we need 1659 * to ensure this lwb doesn't issue the flush until 1660 * after the previous lwb's write completes. We ensure 1661 * this ordering by setting the zio parent/child 1662 * relationship here. 1663 * 1664 * Without this relationship on the lwb's write zio, 1665 * it's possible for this lwb's write to complete prior 1666 * to the previous lwb's write completing; and thus, the 1667 * vdevs for the previous lwb would be flushed prior to 1668 * that lwb's data being written to those vdevs (the 1669 * vdevs are flushed in the lwb write zio's completion 1670 * handler, zil_lwb_write_done()). 1671 */ 1672 if (last_lwb_opened->lwb_state != LWB_STATE_WRITE_DONE) { 1673 ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED || 1674 last_lwb_opened->lwb_state == LWB_STATE_ISSUED); 1675 1676 ASSERT3P(last_lwb_opened->lwb_write_zio, !=, NULL); 1677 zio_add_child(lwb->lwb_write_zio, 1678 last_lwb_opened->lwb_write_zio); 1679 } 1680 } 1681 } 1682 1683 1684 /* 1685 * This function's purpose is to "open" an lwb such that it is ready to 1686 * accept new itxs being committed to it. To do this, the lwb's zio 1687 * structures are created, and linked to the lwb. This function is 1688 * idempotent; if the passed in lwb has already been opened, this 1689 * function is essentially a no-op. 1690 */ 1691 static void 1692 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb) 1693 { 1694 zbookmark_phys_t zb; 1695 zio_priority_t prio; 1696 1697 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1698 ASSERT3P(lwb, !=, NULL); 1699 EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED); 1700 EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED); 1701 1702 if (lwb->lwb_root_zio != NULL) 1703 return; 1704 1705 lwb->lwb_root_zio = zio_root(zilog->zl_spa, 1706 zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL); 1707 1708 abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf, 1709 BP_GET_LSIZE(&lwb->lwb_blk)); 1710 1711 if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk) 1712 prio = ZIO_PRIORITY_SYNC_WRITE; 1713 else 1714 prio = ZIO_PRIORITY_ASYNC_WRITE; 1715 1716 SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1717 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, 1718 lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]); 1719 1720 /* Lock so zil_sync() doesn't fastwrite_unmark after zio is created */ 1721 mutex_enter(&zilog->zl_lock); 1722 if (!lwb->lwb_fastwrite) { 1723 metaslab_fastwrite_mark(zilog->zl_spa, &lwb->lwb_blk); 1724 lwb->lwb_fastwrite = 1; 1725 } 1726 1727 lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio, zilog->zl_spa, 0, 1728 &lwb->lwb_blk, lwb_abd, BP_GET_LSIZE(&lwb->lwb_blk), 1729 zil_lwb_write_done, lwb, prio, 1730 ZIO_FLAG_CANFAIL | ZIO_FLAG_FASTWRITE, &zb); 1731 1732 lwb->lwb_state = LWB_STATE_OPENED; 1733 1734 zil_lwb_set_zio_dependency(zilog, lwb); 1735 zilog->zl_last_lwb_opened = lwb; 1736 mutex_exit(&zilog->zl_lock); 1737 } 1738 1739 /* 1740 * Define a limited set of intent log block sizes. 1741 * 1742 * These must be a multiple of 4KB. Note only the amount used (again 1743 * aligned to 4KB) actually gets written. However, we can't always just 1744 * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted. 1745 */ 1746 static const struct { 1747 uint64_t limit; 1748 uint64_t blksz; 1749 } zil_block_buckets[] = { 1750 { 4096, 4096 }, /* non TX_WRITE */ 1751 { 8192 + 4096, 8192 + 4096 }, /* database */ 1752 { 32768 + 4096, 32768 + 4096 }, /* NFS writes */ 1753 { 65536 + 4096, 65536 + 4096 }, /* 64KB writes */ 1754 { 131072, 131072 }, /* < 128KB writes */ 1755 { 131072 +4096, 65536 + 4096 }, /* 128KB writes */ 1756 { UINT64_MAX, SPA_OLD_MAXBLOCKSIZE}, /* > 128KB writes */ 1757 }; 1758 1759 /* 1760 * Maximum block size used by the ZIL. This is picked up when the ZIL is 1761 * initialized. Otherwise this should not be used directly; see 1762 * zl_max_block_size instead. 1763 */ 1764 static uint_t zil_maxblocksize = SPA_OLD_MAXBLOCKSIZE; 1765 1766 /* 1767 * Close the log block for being issued and allocate the next one. 1768 * Has to be called under zl_issuer_lock to chain more lwbs. 1769 */ 1770 static lwb_t * 1771 zil_lwb_write_close(zilog_t *zilog, lwb_t *lwb) 1772 { 1773 lwb_t *nlwb = NULL; 1774 zil_chain_t *zilc; 1775 spa_t *spa = zilog->zl_spa; 1776 blkptr_t *bp; 1777 dmu_tx_t *tx; 1778 uint64_t txg; 1779 uint64_t zil_blksz; 1780 int i, error; 1781 boolean_t slog; 1782 1783 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1784 ASSERT3P(lwb->lwb_root_zio, !=, NULL); 1785 ASSERT3P(lwb->lwb_write_zio, !=, NULL); 1786 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED); 1787 1788 /* 1789 * If this lwb includes indirect writes, we have to commit before 1790 * creating the transaction, otherwise we may end up in dead lock. 1791 */ 1792 if (lwb->lwb_indirect) { 1793 for (itx_t *itx = list_head(&lwb->lwb_itxs); itx; 1794 itx = list_next(&lwb->lwb_itxs, itx)) 1795 zil_lwb_commit(zilog, lwb, itx); 1796 lwb->lwb_nused = lwb->lwb_nfilled; 1797 } 1798 1799 /* 1800 * Allocate the next block and save its address in this block 1801 * before writing it in order to establish the log chain. 1802 */ 1803 1804 tx = dmu_tx_create(zilog->zl_os); 1805 1806 /* 1807 * Since we are not going to create any new dirty data, and we 1808 * can even help with clearing the existing dirty data, we 1809 * should not be subject to the dirty data based delays. We 1810 * use TXG_NOTHROTTLE to bypass the delay mechanism. 1811 */ 1812 VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE)); 1813 1814 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 1815 txg = dmu_tx_get_txg(tx); 1816 1817 mutex_enter(&zilog->zl_lwb_io_lock); 1818 lwb->lwb_issued_txg = txg; 1819 zilog->zl_lwb_inflight[txg & TXG_MASK]++; 1820 zilog->zl_lwb_max_issued_txg = MAX(txg, zilog->zl_lwb_max_issued_txg); 1821 mutex_exit(&zilog->zl_lwb_io_lock); 1822 1823 /* 1824 * Log blocks are pre-allocated. Here we select the size of the next 1825 * block, based on size used in the last block. 1826 * - first find the smallest bucket that will fit the block from a 1827 * limited set of block sizes. This is because it's faster to write 1828 * blocks allocated from the same metaslab as they are adjacent or 1829 * close. 1830 * - next find the maximum from the new suggested size and an array of 1831 * previous sizes. This lessens a picket fence effect of wrongly 1832 * guessing the size if we have a stream of say 2k, 64k, 2k, 64k 1833 * requests. 1834 * 1835 * Note we only write what is used, but we can't just allocate 1836 * the maximum block size because we can exhaust the available 1837 * pool log space. 1838 */ 1839 zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t); 1840 for (i = 0; zil_blksz > zil_block_buckets[i].limit; i++) 1841 continue; 1842 zil_blksz = MIN(zil_block_buckets[i].blksz, zilog->zl_max_block_size); 1843 zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz; 1844 for (i = 0; i < ZIL_PREV_BLKS; i++) 1845 zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]); 1846 DTRACE_PROBE3(zil__block__size, zilog_t *, zilog, 1847 uint64_t, zil_blksz, 1848 uint64_t, zilog->zl_prev_blks[zilog->zl_prev_rotor]); 1849 zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1); 1850 1851 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) 1852 zilc = (zil_chain_t *)lwb->lwb_buf; 1853 else 1854 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz); 1855 bp = &zilc->zc_next_blk; 1856 BP_ZERO(bp); 1857 error = zio_alloc_zil(spa, zilog->zl_os, txg, bp, zil_blksz, &slog); 1858 if (error == 0) { 1859 ASSERT3U(bp->blk_birth, ==, txg); 1860 bp->blk_cksum = lwb->lwb_blk.blk_cksum; 1861 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++; 1862 1863 /* 1864 * Allocate a new log write block (lwb). 1865 */ 1866 nlwb = zil_alloc_lwb(zilog, bp, slog, txg, TRUE); 1867 } 1868 1869 lwb->lwb_state = LWB_STATE_ISSUED; 1870 1871 dmu_tx_commit(tx); 1872 1873 /* 1874 * If there was an allocation failure then nlwb will be null which 1875 * forces a txg_wait_synced(). 1876 */ 1877 return (nlwb); 1878 } 1879 1880 /* 1881 * Finalize previously closed block and issue the write zio. 1882 * Does not require locking. 1883 */ 1884 static void 1885 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb) 1886 { 1887 zil_chain_t *zilc; 1888 int wsz; 1889 1890 /* Actually fill the lwb with the data if not yet. */ 1891 if (!lwb->lwb_indirect) { 1892 for (itx_t *itx = list_head(&lwb->lwb_itxs); itx; 1893 itx = list_next(&lwb->lwb_itxs, itx)) 1894 zil_lwb_commit(zilog, lwb, itx); 1895 lwb->lwb_nused = lwb->lwb_nfilled; 1896 } 1897 1898 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) { 1899 /* For Slim ZIL only write what is used. */ 1900 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, int); 1901 ASSERT3S(wsz, <=, lwb->lwb_sz); 1902 zio_shrink(lwb->lwb_write_zio, wsz); 1903 wsz = lwb->lwb_write_zio->io_size; 1904 1905 zilc = (zil_chain_t *)lwb->lwb_buf; 1906 } else { 1907 wsz = lwb->lwb_sz; 1908 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz); 1909 } 1910 zilc->zc_pad = 0; 1911 zilc->zc_nused = lwb->lwb_nused; 1912 zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum; 1913 1914 /* 1915 * clear unused data for security 1916 */ 1917 memset(lwb->lwb_buf + lwb->lwb_nused, 0, wsz - lwb->lwb_nused); 1918 1919 if (lwb->lwb_slog) { 1920 ZIL_STAT_BUMP(zilog, zil_itx_metaslab_slog_count); 1921 ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_bytes, 1922 lwb->lwb_nused); 1923 ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_write, 1924 wsz); 1925 ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_alloc, 1926 BP_GET_LSIZE(&lwb->lwb_blk)); 1927 } else { 1928 ZIL_STAT_BUMP(zilog, zil_itx_metaslab_normal_count); 1929 ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_bytes, 1930 lwb->lwb_nused); 1931 ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_write, 1932 wsz); 1933 ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_alloc, 1934 BP_GET_LSIZE(&lwb->lwb_blk)); 1935 } 1936 spa_config_enter(zilog->zl_spa, SCL_STATE, lwb, RW_READER); 1937 zil_lwb_add_block(lwb, &lwb->lwb_blk); 1938 lwb->lwb_issued_timestamp = gethrtime(); 1939 zio_nowait(lwb->lwb_root_zio); 1940 zio_nowait(lwb->lwb_write_zio); 1941 } 1942 1943 /* 1944 * Maximum amount of data that can be put into single log block. 1945 */ 1946 uint64_t 1947 zil_max_log_data(zilog_t *zilog, size_t hdrsize) 1948 { 1949 return (zilog->zl_max_block_size - sizeof (zil_chain_t) - hdrsize); 1950 } 1951 1952 /* 1953 * Maximum amount of log space we agree to waste to reduce number of 1954 * WR_NEED_COPY chunks to reduce zl_get_data() overhead (~12%). 1955 */ 1956 static inline uint64_t 1957 zil_max_waste_space(zilog_t *zilog) 1958 { 1959 return (zil_max_log_data(zilog, sizeof (lr_write_t)) / 8); 1960 } 1961 1962 /* 1963 * Maximum amount of write data for WR_COPIED. For correctness, consumers 1964 * must fall back to WR_NEED_COPY if we can't fit the entire record into one 1965 * maximum sized log block, because each WR_COPIED record must fit in a 1966 * single log block. For space efficiency, we want to fit two records into a 1967 * max-sized log block. 1968 */ 1969 uint64_t 1970 zil_max_copied_data(zilog_t *zilog) 1971 { 1972 return ((zilog->zl_max_block_size - sizeof (zil_chain_t)) / 2 - 1973 sizeof (lr_write_t)); 1974 } 1975 1976 /* 1977 * Estimate space needed in the lwb for the itx. Allocate more lwbs or 1978 * split the itx as needed, but don't touch the actual transaction data. 1979 * Has to be called under zl_issuer_lock to call zil_lwb_write_close() 1980 * to chain more lwbs. 1981 */ 1982 static lwb_t * 1983 zil_lwb_assign(zilog_t *zilog, lwb_t *lwb, itx_t *itx, list_t *ilwbs) 1984 { 1985 itx_t *citx; 1986 lr_t *lr, *clr; 1987 lr_write_t *lrw; 1988 uint64_t dlen, dnow, lwb_sp, reclen, max_log_data; 1989 1990 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1991 ASSERT3P(lwb, !=, NULL); 1992 ASSERT3P(lwb->lwb_buf, !=, NULL); 1993 1994 zil_lwb_write_open(zilog, lwb); 1995 1996 lr = &itx->itx_lr; 1997 lrw = (lr_write_t *)lr; 1998 1999 /* 2000 * A commit itx doesn't represent any on-disk state; instead 2001 * it's simply used as a place holder on the commit list, and 2002 * provides a mechanism for attaching a "commit waiter" onto the 2003 * correct lwb (such that the waiter can be signalled upon 2004 * completion of that lwb). Thus, we don't process this itx's 2005 * log record if it's a commit itx (these itx's don't have log 2006 * records), and instead link the itx's waiter onto the lwb's 2007 * list of waiters. 2008 * 2009 * For more details, see the comment above zil_commit(). 2010 */ 2011 if (lr->lrc_txtype == TX_COMMIT) { 2012 mutex_enter(&zilog->zl_lock); 2013 zil_commit_waiter_link_lwb(itx->itx_private, lwb); 2014 itx->itx_private = NULL; 2015 mutex_exit(&zilog->zl_lock); 2016 list_insert_tail(&lwb->lwb_itxs, itx); 2017 return (lwb); 2018 } 2019 2020 if (lr->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) { 2021 dlen = P2ROUNDUP_TYPED( 2022 lrw->lr_length, sizeof (uint64_t), uint64_t); 2023 } else { 2024 dlen = 0; 2025 } 2026 reclen = lr->lrc_reclen; 2027 zilog->zl_cur_used += (reclen + dlen); 2028 2029 cont: 2030 /* 2031 * If this record won't fit in the current log block, start a new one. 2032 * For WR_NEED_COPY optimize layout for minimal number of chunks. 2033 */ 2034 lwb_sp = lwb->lwb_sz - lwb->lwb_nused; 2035 max_log_data = zil_max_log_data(zilog, sizeof (lr_write_t)); 2036 if (reclen > lwb_sp || (reclen + dlen > lwb_sp && 2037 lwb_sp < zil_max_waste_space(zilog) && 2038 (dlen % max_log_data == 0 || 2039 lwb_sp < reclen + dlen % max_log_data))) { 2040 list_insert_tail(ilwbs, lwb); 2041 lwb = zil_lwb_write_close(zilog, lwb); 2042 if (lwb == NULL) 2043 return (NULL); 2044 zil_lwb_write_open(zilog, lwb); 2045 lwb_sp = lwb->lwb_sz - lwb->lwb_nused; 2046 2047 /* 2048 * There must be enough space in the new, empty log block to 2049 * hold reclen. For WR_COPIED, we need to fit the whole 2050 * record in one block, and reclen is the header size + the 2051 * data size. For WR_NEED_COPY, we can create multiple 2052 * records, splitting the data into multiple blocks, so we 2053 * only need to fit one word of data per block; in this case 2054 * reclen is just the header size (no data). 2055 */ 2056 ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp); 2057 } 2058 2059 dnow = MIN(dlen, lwb_sp - reclen); 2060 if (dlen > dnow) { 2061 ASSERT3U(lr->lrc_txtype, ==, TX_WRITE); 2062 ASSERT3U(itx->itx_wr_state, ==, WR_NEED_COPY); 2063 citx = zil_itx_clone(itx); 2064 clr = &citx->itx_lr; 2065 lr_write_t *clrw = (lr_write_t *)clr; 2066 clrw->lr_length = dnow; 2067 lrw->lr_offset += dnow; 2068 lrw->lr_length -= dnow; 2069 } else { 2070 citx = itx; 2071 clr = lr; 2072 } 2073 2074 /* 2075 * We're actually making an entry, so update lrc_seq to be the 2076 * log record sequence number. Note that this is generally not 2077 * equal to the itx sequence number because not all transactions 2078 * are synchronous, and sometimes spa_sync() gets there first. 2079 */ 2080 clr->lrc_seq = ++zilog->zl_lr_seq; 2081 2082 lwb->lwb_nused += reclen + dnow; 2083 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz); 2084 ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t))); 2085 2086 zil_lwb_add_txg(lwb, lr->lrc_txg); 2087 list_insert_tail(&lwb->lwb_itxs, citx); 2088 2089 dlen -= dnow; 2090 if (dlen > 0) { 2091 zilog->zl_cur_used += reclen; 2092 goto cont; 2093 } 2094 2095 /* 2096 * We have to really issue all queued LWBs before we may have to 2097 * wait for a txg sync. Otherwise we may end up in a dead lock. 2098 */ 2099 if (lr->lrc_txtype == TX_WRITE) { 2100 boolean_t frozen = lr->lrc_txg > spa_freeze_txg(zilog->zl_spa); 2101 if (frozen || itx->itx_wr_state == WR_INDIRECT) { 2102 lwb_t *tlwb; 2103 while ((tlwb = list_remove_head(ilwbs)) != NULL) 2104 zil_lwb_write_issue(zilog, tlwb); 2105 } 2106 if (itx->itx_wr_state == WR_INDIRECT) 2107 lwb->lwb_indirect = B_TRUE; 2108 if (frozen) 2109 txg_wait_synced(zilog->zl_dmu_pool, lr->lrc_txg); 2110 } 2111 2112 return (lwb); 2113 } 2114 2115 /* 2116 * Fill the actual transaction data into the lwb, following zil_lwb_assign(). 2117 * Does not require locking. 2118 */ 2119 static void 2120 zil_lwb_commit(zilog_t *zilog, lwb_t *lwb, itx_t *itx) 2121 { 2122 lr_t *lr, *lrb; 2123 lr_write_t *lrw, *lrwb; 2124 char *lr_buf; 2125 uint64_t dlen, reclen; 2126 2127 lr = &itx->itx_lr; 2128 lrw = (lr_write_t *)lr; 2129 2130 if (lr->lrc_txtype == TX_COMMIT) 2131 return; 2132 2133 if (lr->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) { 2134 dlen = P2ROUNDUP_TYPED( 2135 lrw->lr_length, sizeof (uint64_t), uint64_t); 2136 } else { 2137 dlen = 0; 2138 } 2139 reclen = lr->lrc_reclen; 2140 ASSERT3U(reclen + dlen, <=, lwb->lwb_nused - lwb->lwb_nfilled); 2141 2142 lr_buf = lwb->lwb_buf + lwb->lwb_nfilled; 2143 memcpy(lr_buf, lr, reclen); 2144 lrb = (lr_t *)lr_buf; /* Like lr, but inside lwb. */ 2145 lrwb = (lr_write_t *)lrb; /* Like lrw, but inside lwb. */ 2146 2147 ZIL_STAT_BUMP(zilog, zil_itx_count); 2148 2149 /* 2150 * If it's a write, fetch the data or get its blkptr as appropriate. 2151 */ 2152 if (lr->lrc_txtype == TX_WRITE) { 2153 if (itx->itx_wr_state == WR_COPIED) { 2154 ZIL_STAT_BUMP(zilog, zil_itx_copied_count); 2155 ZIL_STAT_INCR(zilog, zil_itx_copied_bytes, 2156 lrw->lr_length); 2157 } else { 2158 char *dbuf; 2159 int error; 2160 2161 if (itx->itx_wr_state == WR_NEED_COPY) { 2162 dbuf = lr_buf + reclen; 2163 lrb->lrc_reclen += dlen; 2164 ZIL_STAT_BUMP(zilog, zil_itx_needcopy_count); 2165 ZIL_STAT_INCR(zilog, zil_itx_needcopy_bytes, 2166 dlen); 2167 } else { 2168 ASSERT3S(itx->itx_wr_state, ==, WR_INDIRECT); 2169 dbuf = NULL; 2170 ZIL_STAT_BUMP(zilog, zil_itx_indirect_count); 2171 ZIL_STAT_INCR(zilog, zil_itx_indirect_bytes, 2172 lrw->lr_length); 2173 } 2174 2175 /* 2176 * We pass in the "lwb_write_zio" rather than 2177 * "lwb_root_zio" so that the "lwb_write_zio" 2178 * becomes the parent of any zio's created by 2179 * the "zl_get_data" callback. The vdevs are 2180 * flushed after the "lwb_write_zio" completes, 2181 * so we want to make sure that completion 2182 * callback waits for these additional zio's, 2183 * such that the vdevs used by those zio's will 2184 * be included in the lwb's vdev tree, and those 2185 * vdevs will be properly flushed. If we passed 2186 * in "lwb_root_zio" here, then these additional 2187 * vdevs may not be flushed; e.g. if these zio's 2188 * completed after "lwb_write_zio" completed. 2189 */ 2190 error = zilog->zl_get_data(itx->itx_private, 2191 itx->itx_gen, lrwb, dbuf, lwb, 2192 lwb->lwb_write_zio); 2193 if (dbuf != NULL && error == 0) { 2194 /* Zero any padding bytes in the last block. */ 2195 memset((char *)dbuf + lrwb->lr_length, 0, 2196 dlen - lrwb->lr_length); 2197 } 2198 2199 /* 2200 * Typically, the only return values we should see from 2201 * ->zl_get_data() are 0, EIO, ENOENT, EEXIST or 2202 * EALREADY. However, it is also possible to see other 2203 * error values such as ENOSPC or EINVAL from 2204 * dmu_read() -> dnode_hold() -> dnode_hold_impl() or 2205 * ENXIO as well as a multitude of others from the 2206 * block layer through dmu_buf_hold() -> dbuf_read() 2207 * -> zio_wait(), as well as through dmu_read() -> 2208 * dnode_hold() -> dnode_hold_impl() -> dbuf_read() -> 2209 * zio_wait(). When these errors happen, we can assume 2210 * that neither an immediate write nor an indirect 2211 * write occurred, so we need to fall back to 2212 * txg_wait_synced(). This is unusual, so we print to 2213 * dmesg whenever one of these errors occurs. 2214 */ 2215 switch (error) { 2216 case 0: 2217 break; 2218 default: 2219 cmn_err(CE_WARN, "zil_lwb_commit() received " 2220 "unexpected error %d from ->zl_get_data()" 2221 ". Falling back to txg_wait_synced().", 2222 error); 2223 zfs_fallthrough; 2224 case EIO: 2225 if (lwb->lwb_indirect) { 2226 txg_wait_synced(zilog->zl_dmu_pool, 2227 lr->lrc_txg); 2228 } else { 2229 lwb->lwb_write_zio->io_error = error; 2230 } 2231 zfs_fallthrough; 2232 case ENOENT: 2233 zfs_fallthrough; 2234 case EEXIST: 2235 zfs_fallthrough; 2236 case EALREADY: 2237 return; 2238 } 2239 } 2240 } 2241 2242 lwb->lwb_nfilled += reclen + dlen; 2243 ASSERT3S(lwb->lwb_nfilled, <=, lwb->lwb_nused); 2244 ASSERT0(P2PHASE(lwb->lwb_nfilled, sizeof (uint64_t))); 2245 } 2246 2247 itx_t * 2248 zil_itx_create(uint64_t txtype, size_t olrsize) 2249 { 2250 size_t itxsize, lrsize; 2251 itx_t *itx; 2252 2253 lrsize = P2ROUNDUP_TYPED(olrsize, sizeof (uint64_t), size_t); 2254 itxsize = offsetof(itx_t, itx_lr) + lrsize; 2255 2256 itx = zio_data_buf_alloc(itxsize); 2257 itx->itx_lr.lrc_txtype = txtype; 2258 itx->itx_lr.lrc_reclen = lrsize; 2259 itx->itx_lr.lrc_seq = 0; /* defensive */ 2260 memset((char *)&itx->itx_lr + olrsize, 0, lrsize - olrsize); 2261 itx->itx_sync = B_TRUE; /* default is synchronous */ 2262 itx->itx_callback = NULL; 2263 itx->itx_callback_data = NULL; 2264 itx->itx_size = itxsize; 2265 2266 return (itx); 2267 } 2268 2269 static itx_t * 2270 zil_itx_clone(itx_t *oitx) 2271 { 2272 itx_t *itx = zio_data_buf_alloc(oitx->itx_size); 2273 memcpy(itx, oitx, oitx->itx_size); 2274 itx->itx_callback = NULL; 2275 itx->itx_callback_data = NULL; 2276 return (itx); 2277 } 2278 2279 void 2280 zil_itx_destroy(itx_t *itx) 2281 { 2282 IMPLY(itx->itx_lr.lrc_txtype == TX_COMMIT, itx->itx_callback == NULL); 2283 IMPLY(itx->itx_callback != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT); 2284 2285 if (itx->itx_callback != NULL) 2286 itx->itx_callback(itx->itx_callback_data); 2287 2288 zio_data_buf_free(itx, itx->itx_size); 2289 } 2290 2291 /* 2292 * Free up the sync and async itxs. The itxs_t has already been detached 2293 * so no locks are needed. 2294 */ 2295 static void 2296 zil_itxg_clean(void *arg) 2297 { 2298 itx_t *itx; 2299 list_t *list; 2300 avl_tree_t *t; 2301 void *cookie; 2302 itxs_t *itxs = arg; 2303 itx_async_node_t *ian; 2304 2305 list = &itxs->i_sync_list; 2306 while ((itx = list_remove_head(list)) != NULL) { 2307 /* 2308 * In the general case, commit itxs will not be found 2309 * here, as they'll be committed to an lwb via 2310 * zil_lwb_assign(), and free'd in that function. Having 2311 * said that, it is still possible for commit itxs to be 2312 * found here, due to the following race: 2313 * 2314 * - a thread calls zil_commit() which assigns the 2315 * commit itx to a per-txg i_sync_list 2316 * - zil_itxg_clean() is called (e.g. via spa_sync()) 2317 * while the waiter is still on the i_sync_list 2318 * 2319 * There's nothing to prevent syncing the txg while the 2320 * waiter is on the i_sync_list. This normally doesn't 2321 * happen because spa_sync() is slower than zil_commit(), 2322 * but if zil_commit() calls txg_wait_synced() (e.g. 2323 * because zil_create() or zil_commit_writer_stall() is 2324 * called) we will hit this case. 2325 */ 2326 if (itx->itx_lr.lrc_txtype == TX_COMMIT) 2327 zil_commit_waiter_skip(itx->itx_private); 2328 2329 zil_itx_destroy(itx); 2330 } 2331 2332 cookie = NULL; 2333 t = &itxs->i_async_tree; 2334 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { 2335 list = &ian->ia_list; 2336 while ((itx = list_remove_head(list)) != NULL) { 2337 /* commit itxs should never be on the async lists. */ 2338 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT); 2339 zil_itx_destroy(itx); 2340 } 2341 list_destroy(list); 2342 kmem_free(ian, sizeof (itx_async_node_t)); 2343 } 2344 avl_destroy(t); 2345 2346 kmem_free(itxs, sizeof (itxs_t)); 2347 } 2348 2349 static int 2350 zil_aitx_compare(const void *x1, const void *x2) 2351 { 2352 const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid; 2353 const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid; 2354 2355 return (TREE_CMP(o1, o2)); 2356 } 2357 2358 /* 2359 * Remove all async itx with the given oid. 2360 */ 2361 void 2362 zil_remove_async(zilog_t *zilog, uint64_t oid) 2363 { 2364 uint64_t otxg, txg; 2365 itx_async_node_t *ian; 2366 avl_tree_t *t; 2367 avl_index_t where; 2368 list_t clean_list; 2369 itx_t *itx; 2370 2371 ASSERT(oid != 0); 2372 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node)); 2373 2374 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 2375 otxg = ZILTEST_TXG; 2376 else 2377 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 2378 2379 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 2380 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 2381 2382 mutex_enter(&itxg->itxg_lock); 2383 if (itxg->itxg_txg != txg) { 2384 mutex_exit(&itxg->itxg_lock); 2385 continue; 2386 } 2387 2388 /* 2389 * Locate the object node and append its list. 2390 */ 2391 t = &itxg->itxg_itxs->i_async_tree; 2392 ian = avl_find(t, &oid, &where); 2393 if (ian != NULL) 2394 list_move_tail(&clean_list, &ian->ia_list); 2395 mutex_exit(&itxg->itxg_lock); 2396 } 2397 while ((itx = list_remove_head(&clean_list)) != NULL) { 2398 /* commit itxs should never be on the async lists. */ 2399 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT); 2400 zil_itx_destroy(itx); 2401 } 2402 list_destroy(&clean_list); 2403 } 2404 2405 void 2406 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx) 2407 { 2408 uint64_t txg; 2409 itxg_t *itxg; 2410 itxs_t *itxs, *clean = NULL; 2411 2412 /* 2413 * Ensure the data of a renamed file is committed before the rename. 2414 */ 2415 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME) 2416 zil_async_to_sync(zilog, itx->itx_oid); 2417 2418 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) 2419 txg = ZILTEST_TXG; 2420 else 2421 txg = dmu_tx_get_txg(tx); 2422 2423 itxg = &zilog->zl_itxg[txg & TXG_MASK]; 2424 mutex_enter(&itxg->itxg_lock); 2425 itxs = itxg->itxg_itxs; 2426 if (itxg->itxg_txg != txg) { 2427 if (itxs != NULL) { 2428 /* 2429 * The zil_clean callback hasn't got around to cleaning 2430 * this itxg. Save the itxs for release below. 2431 * This should be rare. 2432 */ 2433 zfs_dbgmsg("zil_itx_assign: missed itx cleanup for " 2434 "txg %llu", (u_longlong_t)itxg->itxg_txg); 2435 clean = itxg->itxg_itxs; 2436 } 2437 itxg->itxg_txg = txg; 2438 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), 2439 KM_SLEEP); 2440 2441 list_create(&itxs->i_sync_list, sizeof (itx_t), 2442 offsetof(itx_t, itx_node)); 2443 avl_create(&itxs->i_async_tree, zil_aitx_compare, 2444 sizeof (itx_async_node_t), 2445 offsetof(itx_async_node_t, ia_node)); 2446 } 2447 if (itx->itx_sync) { 2448 list_insert_tail(&itxs->i_sync_list, itx); 2449 } else { 2450 avl_tree_t *t = &itxs->i_async_tree; 2451 uint64_t foid = 2452 LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid); 2453 itx_async_node_t *ian; 2454 avl_index_t where; 2455 2456 ian = avl_find(t, &foid, &where); 2457 if (ian == NULL) { 2458 ian = kmem_alloc(sizeof (itx_async_node_t), 2459 KM_SLEEP); 2460 list_create(&ian->ia_list, sizeof (itx_t), 2461 offsetof(itx_t, itx_node)); 2462 ian->ia_foid = foid; 2463 avl_insert(t, ian, where); 2464 } 2465 list_insert_tail(&ian->ia_list, itx); 2466 } 2467 2468 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx); 2469 2470 /* 2471 * We don't want to dirty the ZIL using ZILTEST_TXG, because 2472 * zil_clean() will never be called using ZILTEST_TXG. Thus, we 2473 * need to be careful to always dirty the ZIL using the "real" 2474 * TXG (not itxg_txg) even when the SPA is frozen. 2475 */ 2476 zilog_dirty(zilog, dmu_tx_get_txg(tx)); 2477 mutex_exit(&itxg->itxg_lock); 2478 2479 /* Release the old itxs now we've dropped the lock */ 2480 if (clean != NULL) 2481 zil_itxg_clean(clean); 2482 } 2483 2484 /* 2485 * If there are any in-memory intent log transactions which have now been 2486 * synced then start up a taskq to free them. We should only do this after we 2487 * have written out the uberblocks (i.e. txg has been committed) so that 2488 * don't inadvertently clean out in-memory log records that would be required 2489 * by zil_commit(). 2490 */ 2491 void 2492 zil_clean(zilog_t *zilog, uint64_t synced_txg) 2493 { 2494 itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK]; 2495 itxs_t *clean_me; 2496 2497 ASSERT3U(synced_txg, <, ZILTEST_TXG); 2498 2499 mutex_enter(&itxg->itxg_lock); 2500 if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) { 2501 mutex_exit(&itxg->itxg_lock); 2502 return; 2503 } 2504 ASSERT3U(itxg->itxg_txg, <=, synced_txg); 2505 ASSERT3U(itxg->itxg_txg, !=, 0); 2506 clean_me = itxg->itxg_itxs; 2507 itxg->itxg_itxs = NULL; 2508 itxg->itxg_txg = 0; 2509 mutex_exit(&itxg->itxg_lock); 2510 /* 2511 * Preferably start a task queue to free up the old itxs but 2512 * if taskq_dispatch can't allocate resources to do that then 2513 * free it in-line. This should be rare. Note, using TQ_SLEEP 2514 * created a bad performance problem. 2515 */ 2516 ASSERT3P(zilog->zl_dmu_pool, !=, NULL); 2517 ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL); 2518 taskqid_t id = taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq, 2519 zil_itxg_clean, clean_me, TQ_NOSLEEP); 2520 if (id == TASKQID_INVALID) 2521 zil_itxg_clean(clean_me); 2522 } 2523 2524 /* 2525 * This function will traverse the queue of itxs that need to be 2526 * committed, and move them onto the ZIL's zl_itx_commit_list. 2527 */ 2528 static void 2529 zil_get_commit_list(zilog_t *zilog) 2530 { 2531 uint64_t otxg, txg; 2532 list_t *commit_list = &zilog->zl_itx_commit_list; 2533 2534 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2535 2536 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 2537 otxg = ZILTEST_TXG; 2538 else 2539 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 2540 2541 /* 2542 * This is inherently racy, since there is nothing to prevent 2543 * the last synced txg from changing. That's okay since we'll 2544 * only commit things in the future. 2545 */ 2546 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 2547 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 2548 2549 mutex_enter(&itxg->itxg_lock); 2550 if (itxg->itxg_txg != txg) { 2551 mutex_exit(&itxg->itxg_lock); 2552 continue; 2553 } 2554 2555 /* 2556 * If we're adding itx records to the zl_itx_commit_list, 2557 * then the zil better be dirty in this "txg". We can assert 2558 * that here since we're holding the itxg_lock which will 2559 * prevent spa_sync from cleaning it. Once we add the itxs 2560 * to the zl_itx_commit_list we must commit it to disk even 2561 * if it's unnecessary (i.e. the txg was synced). 2562 */ 2563 ASSERT(zilog_is_dirty_in_txg(zilog, txg) || 2564 spa_freeze_txg(zilog->zl_spa) != UINT64_MAX); 2565 list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list); 2566 2567 mutex_exit(&itxg->itxg_lock); 2568 } 2569 } 2570 2571 /* 2572 * Move the async itxs for a specified object to commit into sync lists. 2573 */ 2574 void 2575 zil_async_to_sync(zilog_t *zilog, uint64_t foid) 2576 { 2577 uint64_t otxg, txg; 2578 itx_async_node_t *ian; 2579 avl_tree_t *t; 2580 avl_index_t where; 2581 2582 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 2583 otxg = ZILTEST_TXG; 2584 else 2585 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 2586 2587 /* 2588 * This is inherently racy, since there is nothing to prevent 2589 * the last synced txg from changing. 2590 */ 2591 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 2592 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 2593 2594 mutex_enter(&itxg->itxg_lock); 2595 if (itxg->itxg_txg != txg) { 2596 mutex_exit(&itxg->itxg_lock); 2597 continue; 2598 } 2599 2600 /* 2601 * If a foid is specified then find that node and append its 2602 * list. Otherwise walk the tree appending all the lists 2603 * to the sync list. We add to the end rather than the 2604 * beginning to ensure the create has happened. 2605 */ 2606 t = &itxg->itxg_itxs->i_async_tree; 2607 if (foid != 0) { 2608 ian = avl_find(t, &foid, &where); 2609 if (ian != NULL) { 2610 list_move_tail(&itxg->itxg_itxs->i_sync_list, 2611 &ian->ia_list); 2612 } 2613 } else { 2614 void *cookie = NULL; 2615 2616 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { 2617 list_move_tail(&itxg->itxg_itxs->i_sync_list, 2618 &ian->ia_list); 2619 list_destroy(&ian->ia_list); 2620 kmem_free(ian, sizeof (itx_async_node_t)); 2621 } 2622 } 2623 mutex_exit(&itxg->itxg_lock); 2624 } 2625 } 2626 2627 /* 2628 * This function will prune commit itxs that are at the head of the 2629 * commit list (it won't prune past the first non-commit itx), and 2630 * either: a) attach them to the last lwb that's still pending 2631 * completion, or b) skip them altogether. 2632 * 2633 * This is used as a performance optimization to prevent commit itxs 2634 * from generating new lwbs when it's unnecessary to do so. 2635 */ 2636 static void 2637 zil_prune_commit_list(zilog_t *zilog) 2638 { 2639 itx_t *itx; 2640 2641 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2642 2643 while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) { 2644 lr_t *lrc = &itx->itx_lr; 2645 if (lrc->lrc_txtype != TX_COMMIT) 2646 break; 2647 2648 mutex_enter(&zilog->zl_lock); 2649 2650 lwb_t *last_lwb = zilog->zl_last_lwb_opened; 2651 if (last_lwb == NULL || 2652 last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) { 2653 /* 2654 * All of the itxs this waiter was waiting on 2655 * must have already completed (or there were 2656 * never any itx's for it to wait on), so it's 2657 * safe to skip this waiter and mark it done. 2658 */ 2659 zil_commit_waiter_skip(itx->itx_private); 2660 } else { 2661 zil_commit_waiter_link_lwb(itx->itx_private, last_lwb); 2662 itx->itx_private = NULL; 2663 } 2664 2665 mutex_exit(&zilog->zl_lock); 2666 2667 list_remove(&zilog->zl_itx_commit_list, itx); 2668 zil_itx_destroy(itx); 2669 } 2670 2671 IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT); 2672 } 2673 2674 static void 2675 zil_commit_writer_stall(zilog_t *zilog) 2676 { 2677 /* 2678 * When zio_alloc_zil() fails to allocate the next lwb block on 2679 * disk, we must call txg_wait_synced() to ensure all of the 2680 * lwbs in the zilog's zl_lwb_list are synced and then freed (in 2681 * zil_sync()), such that any subsequent ZIL writer (i.e. a call 2682 * to zil_process_commit_list()) will have to call zil_create(), 2683 * and start a new ZIL chain. 2684 * 2685 * Since zil_alloc_zil() failed, the lwb that was previously 2686 * issued does not have a pointer to the "next" lwb on disk. 2687 * Thus, if another ZIL writer thread was to allocate the "next" 2688 * on-disk lwb, that block could be leaked in the event of a 2689 * crash (because the previous lwb on-disk would not point to 2690 * it). 2691 * 2692 * We must hold the zilog's zl_issuer_lock while we do this, to 2693 * ensure no new threads enter zil_process_commit_list() until 2694 * all lwb's in the zl_lwb_list have been synced and freed 2695 * (which is achieved via the txg_wait_synced() call). 2696 */ 2697 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2698 txg_wait_synced(zilog->zl_dmu_pool, 0); 2699 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 2700 } 2701 2702 /* 2703 * This function will traverse the commit list, creating new lwbs as 2704 * needed, and committing the itxs from the commit list to these newly 2705 * created lwbs. Additionally, as a new lwb is created, the previous 2706 * lwb will be issued to the zio layer to be written to disk. 2707 */ 2708 static void 2709 zil_process_commit_list(zilog_t *zilog, zil_commit_waiter_t *zcw, list_t *ilwbs) 2710 { 2711 spa_t *spa = zilog->zl_spa; 2712 list_t nolwb_itxs; 2713 list_t nolwb_waiters; 2714 lwb_t *lwb, *plwb; 2715 itx_t *itx; 2716 boolean_t first = B_TRUE; 2717 2718 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2719 2720 /* 2721 * Return if there's nothing to commit before we dirty the fs by 2722 * calling zil_create(). 2723 */ 2724 if (list_is_empty(&zilog->zl_itx_commit_list)) 2725 return; 2726 2727 list_create(&nolwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node)); 2728 list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t), 2729 offsetof(zil_commit_waiter_t, zcw_node)); 2730 2731 lwb = list_tail(&zilog->zl_lwb_list); 2732 if (lwb == NULL) { 2733 lwb = zil_create(zilog); 2734 } else { 2735 /* 2736 * Activate SPA_FEATURE_ZILSAXATTR for the cases where ZIL will 2737 * have already been created (zl_lwb_list not empty). 2738 */ 2739 zil_commit_activate_saxattr_feature(zilog); 2740 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED); 2741 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE); 2742 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE); 2743 first = (lwb->lwb_state != LWB_STATE_OPENED) && 2744 ((plwb = list_prev(&zilog->zl_lwb_list, lwb)) == NULL || 2745 plwb->lwb_state == LWB_STATE_FLUSH_DONE); 2746 } 2747 2748 while ((itx = list_remove_head(&zilog->zl_itx_commit_list)) != NULL) { 2749 lr_t *lrc = &itx->itx_lr; 2750 uint64_t txg = lrc->lrc_txg; 2751 2752 ASSERT3U(txg, !=, 0); 2753 2754 if (lrc->lrc_txtype == TX_COMMIT) { 2755 DTRACE_PROBE2(zil__process__commit__itx, 2756 zilog_t *, zilog, itx_t *, itx); 2757 } else { 2758 DTRACE_PROBE2(zil__process__normal__itx, 2759 zilog_t *, zilog, itx_t *, itx); 2760 } 2761 2762 boolean_t synced = txg <= spa_last_synced_txg(spa); 2763 boolean_t frozen = txg > spa_freeze_txg(spa); 2764 2765 /* 2766 * If the txg of this itx has already been synced out, then 2767 * we don't need to commit this itx to an lwb. This is 2768 * because the data of this itx will have already been 2769 * written to the main pool. This is inherently racy, and 2770 * it's still ok to commit an itx whose txg has already 2771 * been synced; this will result in a write that's 2772 * unnecessary, but will do no harm. 2773 * 2774 * With that said, we always want to commit TX_COMMIT itxs 2775 * to an lwb, regardless of whether or not that itx's txg 2776 * has been synced out. We do this to ensure any OPENED lwb 2777 * will always have at least one zil_commit_waiter_t linked 2778 * to the lwb. 2779 * 2780 * As a counter-example, if we skipped TX_COMMIT itx's 2781 * whose txg had already been synced, the following 2782 * situation could occur if we happened to be racing with 2783 * spa_sync: 2784 * 2785 * 1. We commit a non-TX_COMMIT itx to an lwb, where the 2786 * itx's txg is 10 and the last synced txg is 9. 2787 * 2. spa_sync finishes syncing out txg 10. 2788 * 3. We move to the next itx in the list, it's a TX_COMMIT 2789 * whose txg is 10, so we skip it rather than committing 2790 * it to the lwb used in (1). 2791 * 2792 * If the itx that is skipped in (3) is the last TX_COMMIT 2793 * itx in the commit list, than it's possible for the lwb 2794 * used in (1) to remain in the OPENED state indefinitely. 2795 * 2796 * To prevent the above scenario from occurring, ensuring 2797 * that once an lwb is OPENED it will transition to ISSUED 2798 * and eventually DONE, we always commit TX_COMMIT itx's to 2799 * an lwb here, even if that itx's txg has already been 2800 * synced. 2801 * 2802 * Finally, if the pool is frozen, we _always_ commit the 2803 * itx. The point of freezing the pool is to prevent data 2804 * from being written to the main pool via spa_sync, and 2805 * instead rely solely on the ZIL to persistently store the 2806 * data; i.e. when the pool is frozen, the last synced txg 2807 * value can't be trusted. 2808 */ 2809 if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) { 2810 if (lwb != NULL) { 2811 lwb = zil_lwb_assign(zilog, lwb, itx, ilwbs); 2812 if (lwb == NULL) { 2813 list_insert_tail(&nolwb_itxs, itx); 2814 } else if ((zcw->zcw_lwb != NULL && 2815 zcw->zcw_lwb != lwb) || zcw->zcw_done) { 2816 /* 2817 * Our lwb is done, leave the rest of 2818 * itx list to somebody else who care. 2819 */ 2820 first = B_FALSE; 2821 break; 2822 } 2823 } else { 2824 if (lrc->lrc_txtype == TX_COMMIT) { 2825 zil_commit_waiter_link_nolwb( 2826 itx->itx_private, &nolwb_waiters); 2827 } 2828 list_insert_tail(&nolwb_itxs, itx); 2829 } 2830 } else { 2831 ASSERT3S(lrc->lrc_txtype, !=, TX_COMMIT); 2832 zil_itx_destroy(itx); 2833 } 2834 } 2835 2836 if (lwb == NULL) { 2837 /* 2838 * This indicates zio_alloc_zil() failed to allocate the 2839 * "next" lwb on-disk. When this happens, we must stall 2840 * the ZIL write pipeline; see the comment within 2841 * zil_commit_writer_stall() for more details. 2842 */ 2843 while ((lwb = list_remove_head(ilwbs)) != NULL) 2844 zil_lwb_write_issue(zilog, lwb); 2845 zil_commit_writer_stall(zilog); 2846 2847 /* 2848 * Additionally, we have to signal and mark the "nolwb" 2849 * waiters as "done" here, since without an lwb, we 2850 * can't do this via zil_lwb_flush_vdevs_done() like 2851 * normal. 2852 */ 2853 zil_commit_waiter_t *zcw; 2854 while ((zcw = list_remove_head(&nolwb_waiters)) != NULL) 2855 zil_commit_waiter_skip(zcw); 2856 2857 /* 2858 * And finally, we have to destroy the itx's that 2859 * couldn't be committed to an lwb; this will also call 2860 * the itx's callback if one exists for the itx. 2861 */ 2862 while ((itx = list_remove_head(&nolwb_itxs)) != NULL) 2863 zil_itx_destroy(itx); 2864 } else { 2865 ASSERT(list_is_empty(&nolwb_waiters)); 2866 ASSERT3P(lwb, !=, NULL); 2867 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED); 2868 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE); 2869 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE); 2870 2871 /* 2872 * At this point, the ZIL block pointed at by the "lwb" 2873 * variable is in one of the following states: "closed" 2874 * or "open". 2875 * 2876 * If it's "closed", then no itxs have been committed to 2877 * it, so there's no point in issuing its zio (i.e. it's 2878 * "empty"). 2879 * 2880 * If it's "open", then it contains one or more itxs that 2881 * eventually need to be committed to stable storage. In 2882 * this case we intentionally do not issue the lwb's zio 2883 * to disk yet, and instead rely on one of the following 2884 * two mechanisms for issuing the zio: 2885 * 2886 * 1. Ideally, there will be more ZIL activity occurring 2887 * on the system, such that this function will be 2888 * immediately called again (not necessarily by the same 2889 * thread) and this lwb's zio will be issued via 2890 * zil_lwb_assign(). This way, the lwb is guaranteed to 2891 * be "full" when it is issued to disk, and we'll make 2892 * use of the lwb's size the best we can. 2893 * 2894 * 2. If there isn't sufficient ZIL activity occurring on 2895 * the system, such that this lwb's zio isn't issued via 2896 * zil_lwb_assign(), zil_commit_waiter() will issue the 2897 * lwb's zio. If this occurs, the lwb is not guaranteed 2898 * to be "full" by the time its zio is issued, and means 2899 * the size of the lwb was "too large" given the amount 2900 * of ZIL activity occurring on the system at that time. 2901 * 2902 * We do this for a couple of reasons: 2903 * 2904 * 1. To try and reduce the number of IOPs needed to 2905 * write the same number of itxs. If an lwb has space 2906 * available in its buffer for more itxs, and more itxs 2907 * will be committed relatively soon (relative to the 2908 * latency of performing a write), then it's beneficial 2909 * to wait for these "next" itxs. This way, more itxs 2910 * can be committed to stable storage with fewer writes. 2911 * 2912 * 2. To try and use the largest lwb block size that the 2913 * incoming rate of itxs can support. Again, this is to 2914 * try and pack as many itxs into as few lwbs as 2915 * possible, without significantly impacting the latency 2916 * of each individual itx. 2917 * 2918 * If we had no already running or open LWBs, it can be 2919 * the workload is single-threaded. And if the ZIL write 2920 * latency is very small or if the LWB is almost full, it 2921 * may be cheaper to bypass the delay. 2922 */ 2923 if (lwb->lwb_state == LWB_STATE_OPENED && first) { 2924 hrtime_t sleep = zilog->zl_last_lwb_latency * 2925 zfs_commit_timeout_pct / 100; 2926 if (sleep < zil_min_commit_timeout || 2927 lwb->lwb_sz - lwb->lwb_nused < lwb->lwb_sz / 8) { 2928 list_insert_tail(ilwbs, lwb); 2929 lwb = zil_lwb_write_close(zilog, lwb); 2930 zilog->zl_cur_used = 0; 2931 if (lwb == NULL) { 2932 while ((lwb = list_remove_head(ilwbs)) 2933 != NULL) 2934 zil_lwb_write_issue(zilog, lwb); 2935 zil_commit_writer_stall(zilog); 2936 } 2937 } 2938 } 2939 } 2940 } 2941 2942 /* 2943 * This function is responsible for ensuring the passed in commit waiter 2944 * (and associated commit itx) is committed to an lwb. If the waiter is 2945 * not already committed to an lwb, all itxs in the zilog's queue of 2946 * itxs will be processed. The assumption is the passed in waiter's 2947 * commit itx will found in the queue just like the other non-commit 2948 * itxs, such that when the entire queue is processed, the waiter will 2949 * have been committed to an lwb. 2950 * 2951 * The lwb associated with the passed in waiter is not guaranteed to 2952 * have been issued by the time this function completes. If the lwb is 2953 * not issued, we rely on future calls to zil_commit_writer() to issue 2954 * the lwb, or the timeout mechanism found in zil_commit_waiter(). 2955 */ 2956 static void 2957 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw) 2958 { 2959 list_t ilwbs; 2960 lwb_t *lwb; 2961 2962 ASSERT(!MUTEX_HELD(&zilog->zl_lock)); 2963 ASSERT(spa_writeable(zilog->zl_spa)); 2964 2965 list_create(&ilwbs, sizeof (lwb_t), offsetof(lwb_t, lwb_issue_node)); 2966 mutex_enter(&zilog->zl_issuer_lock); 2967 2968 if (zcw->zcw_lwb != NULL || zcw->zcw_done) { 2969 /* 2970 * It's possible that, while we were waiting to acquire 2971 * the "zl_issuer_lock", another thread committed this 2972 * waiter to an lwb. If that occurs, we bail out early, 2973 * without processing any of the zilog's queue of itxs. 2974 * 2975 * On certain workloads and system configurations, the 2976 * "zl_issuer_lock" can become highly contended. In an 2977 * attempt to reduce this contention, we immediately drop 2978 * the lock if the waiter has already been processed. 2979 * 2980 * We've measured this optimization to reduce CPU spent 2981 * contending on this lock by up to 5%, using a system 2982 * with 32 CPUs, low latency storage (~50 usec writes), 2983 * and 1024 threads performing sync writes. 2984 */ 2985 goto out; 2986 } 2987 2988 ZIL_STAT_BUMP(zilog, zil_commit_writer_count); 2989 2990 zil_get_commit_list(zilog); 2991 zil_prune_commit_list(zilog); 2992 zil_process_commit_list(zilog, zcw, &ilwbs); 2993 2994 out: 2995 mutex_exit(&zilog->zl_issuer_lock); 2996 while ((lwb = list_remove_head(&ilwbs)) != NULL) 2997 zil_lwb_write_issue(zilog, lwb); 2998 list_destroy(&ilwbs); 2999 } 3000 3001 static void 3002 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw) 3003 { 3004 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock)); 3005 ASSERT(MUTEX_HELD(&zcw->zcw_lock)); 3006 ASSERT3B(zcw->zcw_done, ==, B_FALSE); 3007 3008 lwb_t *lwb = zcw->zcw_lwb; 3009 ASSERT3P(lwb, !=, NULL); 3010 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED); 3011 3012 /* 3013 * If the lwb has already been issued by another thread, we can 3014 * immediately return since there's no work to be done (the 3015 * point of this function is to issue the lwb). Additionally, we 3016 * do this prior to acquiring the zl_issuer_lock, to avoid 3017 * acquiring it when it's not necessary to do so. 3018 */ 3019 if (lwb->lwb_state == LWB_STATE_ISSUED || 3020 lwb->lwb_state == LWB_STATE_WRITE_DONE || 3021 lwb->lwb_state == LWB_STATE_FLUSH_DONE) 3022 return; 3023 3024 /* 3025 * In order to call zil_lwb_write_close() we must hold the 3026 * zilog's "zl_issuer_lock". We can't simply acquire that lock, 3027 * since we're already holding the commit waiter's "zcw_lock", 3028 * and those two locks are acquired in the opposite order 3029 * elsewhere. 3030 */ 3031 mutex_exit(&zcw->zcw_lock); 3032 mutex_enter(&zilog->zl_issuer_lock); 3033 mutex_enter(&zcw->zcw_lock); 3034 3035 /* 3036 * Since we just dropped and re-acquired the commit waiter's 3037 * lock, we have to re-check to see if the waiter was marked 3038 * "done" during that process. If the waiter was marked "done", 3039 * the "lwb" pointer is no longer valid (it can be free'd after 3040 * the waiter is marked "done"), so without this check we could 3041 * wind up with a use-after-free error below. 3042 */ 3043 if (zcw->zcw_done) { 3044 lwb = NULL; 3045 goto out; 3046 } 3047 3048 ASSERT3P(lwb, ==, zcw->zcw_lwb); 3049 3050 /* 3051 * We've already checked this above, but since we hadn't acquired 3052 * the zilog's zl_issuer_lock, we have to perform this check a 3053 * second time while holding the lock. 3054 * 3055 * We don't need to hold the zl_lock since the lwb cannot transition 3056 * from OPENED to ISSUED while we hold the zl_issuer_lock. The lwb 3057 * _can_ transition from ISSUED to DONE, but it's OK to race with 3058 * that transition since we treat the lwb the same, whether it's in 3059 * the ISSUED or DONE states. 3060 * 3061 * The important thing, is we treat the lwb differently depending on 3062 * if it's ISSUED or OPENED, and block any other threads that might 3063 * attempt to issue this lwb. For that reason we hold the 3064 * zl_issuer_lock when checking the lwb_state; we must not call 3065 * zil_lwb_write_close() if the lwb had already been issued. 3066 * 3067 * See the comment above the lwb_state_t structure definition for 3068 * more details on the lwb states, and locking requirements. 3069 */ 3070 if (lwb->lwb_state == LWB_STATE_ISSUED || 3071 lwb->lwb_state == LWB_STATE_WRITE_DONE || 3072 lwb->lwb_state == LWB_STATE_FLUSH_DONE) { 3073 lwb = NULL; 3074 goto out; 3075 } 3076 3077 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED); 3078 3079 /* 3080 * As described in the comments above zil_commit_waiter() and 3081 * zil_process_commit_list(), we need to issue this lwb's zio 3082 * since we've reached the commit waiter's timeout and it still 3083 * hasn't been issued. 3084 */ 3085 lwb_t *nlwb = zil_lwb_write_close(zilog, lwb); 3086 3087 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED); 3088 3089 /* 3090 * Since the lwb's zio hadn't been issued by the time this thread 3091 * reached its timeout, we reset the zilog's "zl_cur_used" field 3092 * to influence the zil block size selection algorithm. 3093 * 3094 * By having to issue the lwb's zio here, it means the size of the 3095 * lwb was too large, given the incoming throughput of itxs. By 3096 * setting "zl_cur_used" to zero, we communicate this fact to the 3097 * block size selection algorithm, so it can take this information 3098 * into account, and potentially select a smaller size for the 3099 * next lwb block that is allocated. 3100 */ 3101 zilog->zl_cur_used = 0; 3102 3103 if (nlwb == NULL) { 3104 /* 3105 * When zil_lwb_write_close() returns NULL, this 3106 * indicates zio_alloc_zil() failed to allocate the 3107 * "next" lwb on-disk. When this occurs, the ZIL write 3108 * pipeline must be stalled; see the comment within the 3109 * zil_commit_writer_stall() function for more details. 3110 * 3111 * We must drop the commit waiter's lock prior to 3112 * calling zil_commit_writer_stall() or else we can wind 3113 * up with the following deadlock: 3114 * 3115 * - This thread is waiting for the txg to sync while 3116 * holding the waiter's lock; txg_wait_synced() is 3117 * used within txg_commit_writer_stall(). 3118 * 3119 * - The txg can't sync because it is waiting for this 3120 * lwb's zio callback to call dmu_tx_commit(). 3121 * 3122 * - The lwb's zio callback can't call dmu_tx_commit() 3123 * because it's blocked trying to acquire the waiter's 3124 * lock, which occurs prior to calling dmu_tx_commit() 3125 */ 3126 mutex_exit(&zcw->zcw_lock); 3127 zil_lwb_write_issue(zilog, lwb); 3128 lwb = NULL; 3129 zil_commit_writer_stall(zilog); 3130 mutex_enter(&zcw->zcw_lock); 3131 } 3132 3133 out: 3134 mutex_exit(&zilog->zl_issuer_lock); 3135 if (lwb) 3136 zil_lwb_write_issue(zilog, lwb); 3137 ASSERT(MUTEX_HELD(&zcw->zcw_lock)); 3138 } 3139 3140 /* 3141 * This function is responsible for performing the following two tasks: 3142 * 3143 * 1. its primary responsibility is to block until the given "commit 3144 * waiter" is considered "done". 3145 * 3146 * 2. its secondary responsibility is to issue the zio for the lwb that 3147 * the given "commit waiter" is waiting on, if this function has 3148 * waited "long enough" and the lwb is still in the "open" state. 3149 * 3150 * Given a sufficient amount of itxs being generated and written using 3151 * the ZIL, the lwb's zio will be issued via the zil_lwb_assign() 3152 * function. If this does not occur, this secondary responsibility will 3153 * ensure the lwb is issued even if there is not other synchronous 3154 * activity on the system. 3155 * 3156 * For more details, see zil_process_commit_list(); more specifically, 3157 * the comment at the bottom of that function. 3158 */ 3159 static void 3160 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw) 3161 { 3162 ASSERT(!MUTEX_HELD(&zilog->zl_lock)); 3163 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock)); 3164 ASSERT(spa_writeable(zilog->zl_spa)); 3165 3166 mutex_enter(&zcw->zcw_lock); 3167 3168 /* 3169 * The timeout is scaled based on the lwb latency to avoid 3170 * significantly impacting the latency of each individual itx. 3171 * For more details, see the comment at the bottom of the 3172 * zil_process_commit_list() function. 3173 */ 3174 int pct = MAX(zfs_commit_timeout_pct, 1); 3175 hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100; 3176 hrtime_t wakeup = gethrtime() + sleep; 3177 boolean_t timedout = B_FALSE; 3178 3179 while (!zcw->zcw_done) { 3180 ASSERT(MUTEX_HELD(&zcw->zcw_lock)); 3181 3182 lwb_t *lwb = zcw->zcw_lwb; 3183 3184 /* 3185 * Usually, the waiter will have a non-NULL lwb field here, 3186 * but it's possible for it to be NULL as a result of 3187 * zil_commit() racing with spa_sync(). 3188 * 3189 * When zil_clean() is called, it's possible for the itxg 3190 * list (which may be cleaned via a taskq) to contain 3191 * commit itxs. When this occurs, the commit waiters linked 3192 * off of these commit itxs will not be committed to an 3193 * lwb. Additionally, these commit waiters will not be 3194 * marked done until zil_commit_waiter_skip() is called via 3195 * zil_itxg_clean(). 3196 * 3197 * Thus, it's possible for this commit waiter (i.e. the 3198 * "zcw" variable) to be found in this "in between" state; 3199 * where it's "zcw_lwb" field is NULL, and it hasn't yet 3200 * been skipped, so it's "zcw_done" field is still B_FALSE. 3201 */ 3202 IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED); 3203 3204 if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) { 3205 ASSERT3B(timedout, ==, B_FALSE); 3206 3207 /* 3208 * If the lwb hasn't been issued yet, then we 3209 * need to wait with a timeout, in case this 3210 * function needs to issue the lwb after the 3211 * timeout is reached; responsibility (2) from 3212 * the comment above this function. 3213 */ 3214 int rc = cv_timedwait_hires(&zcw->zcw_cv, 3215 &zcw->zcw_lock, wakeup, USEC2NSEC(1), 3216 CALLOUT_FLAG_ABSOLUTE); 3217 3218 if (rc != -1 || zcw->zcw_done) 3219 continue; 3220 3221 timedout = B_TRUE; 3222 zil_commit_waiter_timeout(zilog, zcw); 3223 3224 if (!zcw->zcw_done) { 3225 /* 3226 * If the commit waiter has already been 3227 * marked "done", it's possible for the 3228 * waiter's lwb structure to have already 3229 * been freed. Thus, we can only reliably 3230 * make these assertions if the waiter 3231 * isn't done. 3232 */ 3233 ASSERT3P(lwb, ==, zcw->zcw_lwb); 3234 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED); 3235 } 3236 } else { 3237 /* 3238 * If the lwb isn't open, then it must have already 3239 * been issued. In that case, there's no need to 3240 * use a timeout when waiting for the lwb to 3241 * complete. 3242 * 3243 * Additionally, if the lwb is NULL, the waiter 3244 * will soon be signaled and marked done via 3245 * zil_clean() and zil_itxg_clean(), so no timeout 3246 * is required. 3247 */ 3248 3249 IMPLY(lwb != NULL, 3250 lwb->lwb_state == LWB_STATE_ISSUED || 3251 lwb->lwb_state == LWB_STATE_WRITE_DONE || 3252 lwb->lwb_state == LWB_STATE_FLUSH_DONE); 3253 cv_wait(&zcw->zcw_cv, &zcw->zcw_lock); 3254 } 3255 } 3256 3257 mutex_exit(&zcw->zcw_lock); 3258 } 3259 3260 static zil_commit_waiter_t * 3261 zil_alloc_commit_waiter(void) 3262 { 3263 zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP); 3264 3265 cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL); 3266 mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL); 3267 list_link_init(&zcw->zcw_node); 3268 zcw->zcw_lwb = NULL; 3269 zcw->zcw_done = B_FALSE; 3270 zcw->zcw_zio_error = 0; 3271 3272 return (zcw); 3273 } 3274 3275 static void 3276 zil_free_commit_waiter(zil_commit_waiter_t *zcw) 3277 { 3278 ASSERT(!list_link_active(&zcw->zcw_node)); 3279 ASSERT3P(zcw->zcw_lwb, ==, NULL); 3280 ASSERT3B(zcw->zcw_done, ==, B_TRUE); 3281 mutex_destroy(&zcw->zcw_lock); 3282 cv_destroy(&zcw->zcw_cv); 3283 kmem_cache_free(zil_zcw_cache, zcw); 3284 } 3285 3286 /* 3287 * This function is used to create a TX_COMMIT itx and assign it. This 3288 * way, it will be linked into the ZIL's list of synchronous itxs, and 3289 * then later committed to an lwb (or skipped) when 3290 * zil_process_commit_list() is called. 3291 */ 3292 static void 3293 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw) 3294 { 3295 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os); 3296 3297 /* 3298 * Since we are not going to create any new dirty data, and we 3299 * can even help with clearing the existing dirty data, we 3300 * should not be subject to the dirty data based delays. We 3301 * use TXG_NOTHROTTLE to bypass the delay mechanism. 3302 */ 3303 VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE)); 3304 3305 itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t)); 3306 itx->itx_sync = B_TRUE; 3307 itx->itx_private = zcw; 3308 3309 zil_itx_assign(zilog, itx, tx); 3310 3311 dmu_tx_commit(tx); 3312 } 3313 3314 /* 3315 * Commit ZFS Intent Log transactions (itxs) to stable storage. 3316 * 3317 * When writing ZIL transactions to the on-disk representation of the 3318 * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple 3319 * itxs can be committed to a single lwb. Once a lwb is written and 3320 * committed to stable storage (i.e. the lwb is written, and vdevs have 3321 * been flushed), each itx that was committed to that lwb is also 3322 * considered to be committed to stable storage. 3323 * 3324 * When an itx is committed to an lwb, the log record (lr_t) contained 3325 * by the itx is copied into the lwb's zio buffer, and once this buffer 3326 * is written to disk, it becomes an on-disk ZIL block. 3327 * 3328 * As itxs are generated, they're inserted into the ZIL's queue of 3329 * uncommitted itxs. The semantics of zil_commit() are such that it will 3330 * block until all itxs that were in the queue when it was called, are 3331 * committed to stable storage. 3332 * 3333 * If "foid" is zero, this means all "synchronous" and "asynchronous" 3334 * itxs, for all objects in the dataset, will be committed to stable 3335 * storage prior to zil_commit() returning. If "foid" is non-zero, all 3336 * "synchronous" itxs for all objects, but only "asynchronous" itxs 3337 * that correspond to the foid passed in, will be committed to stable 3338 * storage prior to zil_commit() returning. 3339 * 3340 * Generally speaking, when zil_commit() is called, the consumer doesn't 3341 * actually care about _all_ of the uncommitted itxs. Instead, they're 3342 * simply trying to waiting for a specific itx to be committed to disk, 3343 * but the interface(s) for interacting with the ZIL don't allow such 3344 * fine-grained communication. A better interface would allow a consumer 3345 * to create and assign an itx, and then pass a reference to this itx to 3346 * zil_commit(); such that zil_commit() would return as soon as that 3347 * specific itx was committed to disk (instead of waiting for _all_ 3348 * itxs to be committed). 3349 * 3350 * When a thread calls zil_commit() a special "commit itx" will be 3351 * generated, along with a corresponding "waiter" for this commit itx. 3352 * zil_commit() will wait on this waiter's CV, such that when the waiter 3353 * is marked done, and signaled, zil_commit() will return. 3354 * 3355 * This commit itx is inserted into the queue of uncommitted itxs. This 3356 * provides an easy mechanism for determining which itxs were in the 3357 * queue prior to zil_commit() having been called, and which itxs were 3358 * added after zil_commit() was called. 3359 * 3360 * The commit itx is special; it doesn't have any on-disk representation. 3361 * When a commit itx is "committed" to an lwb, the waiter associated 3362 * with it is linked onto the lwb's list of waiters. Then, when that lwb 3363 * completes, each waiter on the lwb's list is marked done and signaled 3364 * -- allowing the thread waiting on the waiter to return from zil_commit(). 3365 * 3366 * It's important to point out a few critical factors that allow us 3367 * to make use of the commit itxs, commit waiters, per-lwb lists of 3368 * commit waiters, and zio completion callbacks like we're doing: 3369 * 3370 * 1. The list of waiters for each lwb is traversed, and each commit 3371 * waiter is marked "done" and signaled, in the zio completion 3372 * callback of the lwb's zio[*]. 3373 * 3374 * * Actually, the waiters are signaled in the zio completion 3375 * callback of the root zio for the DKIOCFLUSHWRITECACHE commands 3376 * that are sent to the vdevs upon completion of the lwb zio. 3377 * 3378 * 2. When the itxs are inserted into the ZIL's queue of uncommitted 3379 * itxs, the order in which they are inserted is preserved[*]; as 3380 * itxs are added to the queue, they are added to the tail of 3381 * in-memory linked lists. 3382 * 3383 * When committing the itxs to lwbs (to be written to disk), they 3384 * are committed in the same order in which the itxs were added to 3385 * the uncommitted queue's linked list(s); i.e. the linked list of 3386 * itxs to commit is traversed from head to tail, and each itx is 3387 * committed to an lwb in that order. 3388 * 3389 * * To clarify: 3390 * 3391 * - the order of "sync" itxs is preserved w.r.t. other 3392 * "sync" itxs, regardless of the corresponding objects. 3393 * - the order of "async" itxs is preserved w.r.t. other 3394 * "async" itxs corresponding to the same object. 3395 * - the order of "async" itxs is *not* preserved w.r.t. other 3396 * "async" itxs corresponding to different objects. 3397 * - the order of "sync" itxs w.r.t. "async" itxs (or vice 3398 * versa) is *not* preserved, even for itxs that correspond 3399 * to the same object. 3400 * 3401 * For more details, see: zil_itx_assign(), zil_async_to_sync(), 3402 * zil_get_commit_list(), and zil_process_commit_list(). 3403 * 3404 * 3. The lwbs represent a linked list of blocks on disk. Thus, any 3405 * lwb cannot be considered committed to stable storage, until its 3406 * "previous" lwb is also committed to stable storage. This fact, 3407 * coupled with the fact described above, means that itxs are 3408 * committed in (roughly) the order in which they were generated. 3409 * This is essential because itxs are dependent on prior itxs. 3410 * Thus, we *must not* deem an itx as being committed to stable 3411 * storage, until *all* prior itxs have also been committed to 3412 * stable storage. 3413 * 3414 * To enforce this ordering of lwb zio's, while still leveraging as 3415 * much of the underlying storage performance as possible, we rely 3416 * on two fundamental concepts: 3417 * 3418 * 1. The creation and issuance of lwb zio's is protected by 3419 * the zilog's "zl_issuer_lock", which ensures only a single 3420 * thread is creating and/or issuing lwb's at a time 3421 * 2. The "previous" lwb is a child of the "current" lwb 3422 * (leveraging the zio parent-child dependency graph) 3423 * 3424 * By relying on this parent-child zio relationship, we can have 3425 * many lwb zio's concurrently issued to the underlying storage, 3426 * but the order in which they complete will be the same order in 3427 * which they were created. 3428 */ 3429 void 3430 zil_commit(zilog_t *zilog, uint64_t foid) 3431 { 3432 /* 3433 * We should never attempt to call zil_commit on a snapshot for 3434 * a couple of reasons: 3435 * 3436 * 1. A snapshot may never be modified, thus it cannot have any 3437 * in-flight itxs that would have modified the dataset. 3438 * 3439 * 2. By design, when zil_commit() is called, a commit itx will 3440 * be assigned to this zilog; as a result, the zilog will be 3441 * dirtied. We must not dirty the zilog of a snapshot; there's 3442 * checks in the code that enforce this invariant, and will 3443 * cause a panic if it's not upheld. 3444 */ 3445 ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE); 3446 3447 if (zilog->zl_sync == ZFS_SYNC_DISABLED) 3448 return; 3449 3450 if (!spa_writeable(zilog->zl_spa)) { 3451 /* 3452 * If the SPA is not writable, there should never be any 3453 * pending itxs waiting to be committed to disk. If that 3454 * weren't true, we'd skip writing those itxs out, and 3455 * would break the semantics of zil_commit(); thus, we're 3456 * verifying that truth before we return to the caller. 3457 */ 3458 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3459 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL); 3460 for (int i = 0; i < TXG_SIZE; i++) 3461 ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL); 3462 return; 3463 } 3464 3465 /* 3466 * If the ZIL is suspended, we don't want to dirty it by calling 3467 * zil_commit_itx_assign() below, nor can we write out 3468 * lwbs like would be done in zil_commit_write(). Thus, we 3469 * simply rely on txg_wait_synced() to maintain the necessary 3470 * semantics, and avoid calling those functions altogether. 3471 */ 3472 if (zilog->zl_suspend > 0) { 3473 txg_wait_synced(zilog->zl_dmu_pool, 0); 3474 return; 3475 } 3476 3477 zil_commit_impl(zilog, foid); 3478 } 3479 3480 void 3481 zil_commit_impl(zilog_t *zilog, uint64_t foid) 3482 { 3483 ZIL_STAT_BUMP(zilog, zil_commit_count); 3484 3485 /* 3486 * Move the "async" itxs for the specified foid to the "sync" 3487 * queues, such that they will be later committed (or skipped) 3488 * to an lwb when zil_process_commit_list() is called. 3489 * 3490 * Since these "async" itxs must be committed prior to this 3491 * call to zil_commit returning, we must perform this operation 3492 * before we call zil_commit_itx_assign(). 3493 */ 3494 zil_async_to_sync(zilog, foid); 3495 3496 /* 3497 * We allocate a new "waiter" structure which will initially be 3498 * linked to the commit itx using the itx's "itx_private" field. 3499 * Since the commit itx doesn't represent any on-disk state, 3500 * when it's committed to an lwb, rather than copying the its 3501 * lr_t into the lwb's buffer, the commit itx's "waiter" will be 3502 * added to the lwb's list of waiters. Then, when the lwb is 3503 * committed to stable storage, each waiter in the lwb's list of 3504 * waiters will be marked "done", and signalled. 3505 * 3506 * We must create the waiter and assign the commit itx prior to 3507 * calling zil_commit_writer(), or else our specific commit itx 3508 * is not guaranteed to be committed to an lwb prior to calling 3509 * zil_commit_waiter(). 3510 */ 3511 zil_commit_waiter_t *zcw = zil_alloc_commit_waiter(); 3512 zil_commit_itx_assign(zilog, zcw); 3513 3514 zil_commit_writer(zilog, zcw); 3515 zil_commit_waiter(zilog, zcw); 3516 3517 if (zcw->zcw_zio_error != 0) { 3518 /* 3519 * If there was an error writing out the ZIL blocks that 3520 * this thread is waiting on, then we fallback to 3521 * relying on spa_sync() to write out the data this 3522 * thread is waiting on. Obviously this has performance 3523 * implications, but the expectation is for this to be 3524 * an exceptional case, and shouldn't occur often. 3525 */ 3526 DTRACE_PROBE2(zil__commit__io__error, 3527 zilog_t *, zilog, zil_commit_waiter_t *, zcw); 3528 txg_wait_synced(zilog->zl_dmu_pool, 0); 3529 } 3530 3531 zil_free_commit_waiter(zcw); 3532 } 3533 3534 /* 3535 * Called in syncing context to free committed log blocks and update log header. 3536 */ 3537 void 3538 zil_sync(zilog_t *zilog, dmu_tx_t *tx) 3539 { 3540 zil_header_t *zh = zil_header_in_syncing_context(zilog); 3541 uint64_t txg = dmu_tx_get_txg(tx); 3542 spa_t *spa = zilog->zl_spa; 3543 uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK]; 3544 lwb_t *lwb; 3545 3546 /* 3547 * We don't zero out zl_destroy_txg, so make sure we don't try 3548 * to destroy it twice. 3549 */ 3550 if (spa_sync_pass(spa) != 1) 3551 return; 3552 3553 zil_lwb_flush_wait_all(zilog, txg); 3554 3555 mutex_enter(&zilog->zl_lock); 3556 3557 ASSERT(zilog->zl_stop_sync == 0); 3558 3559 if (*replayed_seq != 0) { 3560 ASSERT(zh->zh_replay_seq < *replayed_seq); 3561 zh->zh_replay_seq = *replayed_seq; 3562 *replayed_seq = 0; 3563 } 3564 3565 if (zilog->zl_destroy_txg == txg) { 3566 blkptr_t blk = zh->zh_log; 3567 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 3568 3569 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3570 3571 memset(zh, 0, sizeof (zil_header_t)); 3572 memset(zilog->zl_replayed_seq, 0, 3573 sizeof (zilog->zl_replayed_seq)); 3574 3575 if (zilog->zl_keep_first) { 3576 /* 3577 * If this block was part of log chain that couldn't 3578 * be claimed because a device was missing during 3579 * zil_claim(), but that device later returns, 3580 * then this block could erroneously appear valid. 3581 * To guard against this, assign a new GUID to the new 3582 * log chain so it doesn't matter what blk points to. 3583 */ 3584 zil_init_log_chain(zilog, &blk); 3585 zh->zh_log = blk; 3586 } else { 3587 /* 3588 * A destroyed ZIL chain can't contain any TX_SETSAXATTR 3589 * records. So, deactivate the feature for this dataset. 3590 * We activate it again when we start a new ZIL chain. 3591 */ 3592 if (dsl_dataset_feature_is_active(ds, 3593 SPA_FEATURE_ZILSAXATTR)) 3594 dsl_dataset_deactivate_feature(ds, 3595 SPA_FEATURE_ZILSAXATTR, tx); 3596 } 3597 } 3598 3599 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 3600 zh->zh_log = lwb->lwb_blk; 3601 if (lwb->lwb_state != LWB_STATE_FLUSH_DONE || 3602 lwb->lwb_max_txg > txg) 3603 break; 3604 list_remove(&zilog->zl_lwb_list, lwb); 3605 zio_free(spa, txg, &lwb->lwb_blk); 3606 zil_free_lwb(zilog, lwb); 3607 3608 /* 3609 * If we don't have anything left in the lwb list then 3610 * we've had an allocation failure and we need to zero 3611 * out the zil_header blkptr so that we don't end 3612 * up freeing the same block twice. 3613 */ 3614 if (list_is_empty(&zilog->zl_lwb_list)) 3615 BP_ZERO(&zh->zh_log); 3616 } 3617 3618 /* 3619 * Remove fastwrite on any blocks that have been pre-allocated for 3620 * the next commit. This prevents fastwrite counter pollution by 3621 * unused, long-lived LWBs. 3622 */ 3623 for (; lwb != NULL; lwb = list_next(&zilog->zl_lwb_list, lwb)) { 3624 if (lwb->lwb_fastwrite && !lwb->lwb_write_zio) { 3625 metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk); 3626 lwb->lwb_fastwrite = 0; 3627 } 3628 } 3629 3630 mutex_exit(&zilog->zl_lock); 3631 } 3632 3633 static int 3634 zil_lwb_cons(void *vbuf, void *unused, int kmflag) 3635 { 3636 (void) unused, (void) kmflag; 3637 lwb_t *lwb = vbuf; 3638 list_create(&lwb->lwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node)); 3639 list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t), 3640 offsetof(zil_commit_waiter_t, zcw_node)); 3641 avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare, 3642 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node)); 3643 mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL); 3644 return (0); 3645 } 3646 3647 static void 3648 zil_lwb_dest(void *vbuf, void *unused) 3649 { 3650 (void) unused; 3651 lwb_t *lwb = vbuf; 3652 mutex_destroy(&lwb->lwb_vdev_lock); 3653 avl_destroy(&lwb->lwb_vdev_tree); 3654 list_destroy(&lwb->lwb_waiters); 3655 list_destroy(&lwb->lwb_itxs); 3656 } 3657 3658 void 3659 zil_init(void) 3660 { 3661 zil_lwb_cache = kmem_cache_create("zil_lwb_cache", 3662 sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0); 3663 3664 zil_zcw_cache = kmem_cache_create("zil_zcw_cache", 3665 sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 3666 3667 zil_sums_init(&zil_sums_global); 3668 zil_kstats_global = kstat_create("zfs", 0, "zil", "misc", 3669 KSTAT_TYPE_NAMED, sizeof (zil_stats) / sizeof (kstat_named_t), 3670 KSTAT_FLAG_VIRTUAL); 3671 3672 if (zil_kstats_global != NULL) { 3673 zil_kstats_global->ks_data = &zil_stats; 3674 zil_kstats_global->ks_update = zil_kstats_global_update; 3675 zil_kstats_global->ks_private = NULL; 3676 kstat_install(zil_kstats_global); 3677 } 3678 } 3679 3680 void 3681 zil_fini(void) 3682 { 3683 kmem_cache_destroy(zil_zcw_cache); 3684 kmem_cache_destroy(zil_lwb_cache); 3685 3686 if (zil_kstats_global != NULL) { 3687 kstat_delete(zil_kstats_global); 3688 zil_kstats_global = NULL; 3689 } 3690 3691 zil_sums_fini(&zil_sums_global); 3692 } 3693 3694 void 3695 zil_set_sync(zilog_t *zilog, uint64_t sync) 3696 { 3697 zilog->zl_sync = sync; 3698 } 3699 3700 void 3701 zil_set_logbias(zilog_t *zilog, uint64_t logbias) 3702 { 3703 zilog->zl_logbias = logbias; 3704 } 3705 3706 zilog_t * 3707 zil_alloc(objset_t *os, zil_header_t *zh_phys) 3708 { 3709 zilog_t *zilog; 3710 3711 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP); 3712 3713 zilog->zl_header = zh_phys; 3714 zilog->zl_os = os; 3715 zilog->zl_spa = dmu_objset_spa(os); 3716 zilog->zl_dmu_pool = dmu_objset_pool(os); 3717 zilog->zl_destroy_txg = TXG_INITIAL - 1; 3718 zilog->zl_logbias = dmu_objset_logbias(os); 3719 zilog->zl_sync = dmu_objset_syncprop(os); 3720 zilog->zl_dirty_max_txg = 0; 3721 zilog->zl_last_lwb_opened = NULL; 3722 zilog->zl_last_lwb_latency = 0; 3723 zilog->zl_max_block_size = zil_maxblocksize; 3724 3725 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL); 3726 mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL); 3727 mutex_init(&zilog->zl_lwb_io_lock, NULL, MUTEX_DEFAULT, NULL); 3728 3729 for (int i = 0; i < TXG_SIZE; i++) { 3730 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL, 3731 MUTEX_DEFAULT, NULL); 3732 } 3733 3734 list_create(&zilog->zl_lwb_list, sizeof (lwb_t), 3735 offsetof(lwb_t, lwb_node)); 3736 3737 list_create(&zilog->zl_itx_commit_list, sizeof (itx_t), 3738 offsetof(itx_t, itx_node)); 3739 3740 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL); 3741 cv_init(&zilog->zl_lwb_io_cv, NULL, CV_DEFAULT, NULL); 3742 3743 return (zilog); 3744 } 3745 3746 void 3747 zil_free(zilog_t *zilog) 3748 { 3749 int i; 3750 3751 zilog->zl_stop_sync = 1; 3752 3753 ASSERT0(zilog->zl_suspend); 3754 ASSERT0(zilog->zl_suspending); 3755 3756 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3757 list_destroy(&zilog->zl_lwb_list); 3758 3759 ASSERT(list_is_empty(&zilog->zl_itx_commit_list)); 3760 list_destroy(&zilog->zl_itx_commit_list); 3761 3762 for (i = 0; i < TXG_SIZE; i++) { 3763 /* 3764 * It's possible for an itx to be generated that doesn't dirty 3765 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean() 3766 * callback to remove the entry. We remove those here. 3767 * 3768 * Also free up the ziltest itxs. 3769 */ 3770 if (zilog->zl_itxg[i].itxg_itxs) 3771 zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs); 3772 mutex_destroy(&zilog->zl_itxg[i].itxg_lock); 3773 } 3774 3775 mutex_destroy(&zilog->zl_issuer_lock); 3776 mutex_destroy(&zilog->zl_lock); 3777 mutex_destroy(&zilog->zl_lwb_io_lock); 3778 3779 cv_destroy(&zilog->zl_cv_suspend); 3780 cv_destroy(&zilog->zl_lwb_io_cv); 3781 3782 kmem_free(zilog, sizeof (zilog_t)); 3783 } 3784 3785 /* 3786 * Open an intent log. 3787 */ 3788 zilog_t * 3789 zil_open(objset_t *os, zil_get_data_t *get_data, zil_sums_t *zil_sums) 3790 { 3791 zilog_t *zilog = dmu_objset_zil(os); 3792 3793 ASSERT3P(zilog->zl_get_data, ==, NULL); 3794 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL); 3795 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3796 3797 zilog->zl_get_data = get_data; 3798 zilog->zl_sums = zil_sums; 3799 3800 return (zilog); 3801 } 3802 3803 /* 3804 * Close an intent log. 3805 */ 3806 void 3807 zil_close(zilog_t *zilog) 3808 { 3809 lwb_t *lwb; 3810 uint64_t txg; 3811 3812 if (!dmu_objset_is_snapshot(zilog->zl_os)) { 3813 zil_commit(zilog, 0); 3814 } else { 3815 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3816 ASSERT0(zilog->zl_dirty_max_txg); 3817 ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE); 3818 } 3819 3820 mutex_enter(&zilog->zl_lock); 3821 lwb = list_tail(&zilog->zl_lwb_list); 3822 if (lwb == NULL) 3823 txg = zilog->zl_dirty_max_txg; 3824 else 3825 txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg); 3826 mutex_exit(&zilog->zl_lock); 3827 3828 /* 3829 * zl_lwb_max_issued_txg may be larger than lwb_max_txg. It depends 3830 * on the time when the dmu_tx transaction is assigned in 3831 * zil_lwb_write_close(). 3832 */ 3833 mutex_enter(&zilog->zl_lwb_io_lock); 3834 txg = MAX(zilog->zl_lwb_max_issued_txg, txg); 3835 mutex_exit(&zilog->zl_lwb_io_lock); 3836 3837 /* 3838 * We need to use txg_wait_synced() to wait until that txg is synced. 3839 * zil_sync() will guarantee all lwbs up to that txg have been 3840 * written out, flushed, and cleaned. 3841 */ 3842 if (txg != 0) 3843 txg_wait_synced(zilog->zl_dmu_pool, txg); 3844 3845 if (zilog_is_dirty(zilog)) 3846 zfs_dbgmsg("zil (%px) is dirty, txg %llu", zilog, 3847 (u_longlong_t)txg); 3848 if (txg < spa_freeze_txg(zilog->zl_spa)) 3849 VERIFY(!zilog_is_dirty(zilog)); 3850 3851 zilog->zl_get_data = NULL; 3852 3853 /* 3854 * We should have only one lwb left on the list; remove it now. 3855 */ 3856 mutex_enter(&zilog->zl_lock); 3857 lwb = list_remove_head(&zilog->zl_lwb_list); 3858 if (lwb != NULL) { 3859 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3860 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED); 3861 3862 if (lwb->lwb_fastwrite) 3863 metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk); 3864 3865 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 3866 zil_free_lwb(zilog, lwb); 3867 } 3868 mutex_exit(&zilog->zl_lock); 3869 } 3870 3871 static const char *suspend_tag = "zil suspending"; 3872 3873 /* 3874 * Suspend an intent log. While in suspended mode, we still honor 3875 * synchronous semantics, but we rely on txg_wait_synced() to do it. 3876 * On old version pools, we suspend the log briefly when taking a 3877 * snapshot so that it will have an empty intent log. 3878 * 3879 * Long holds are not really intended to be used the way we do here -- 3880 * held for such a short time. A concurrent caller of dsl_dataset_long_held() 3881 * could fail. Therefore we take pains to only put a long hold if it is 3882 * actually necessary. Fortunately, it will only be necessary if the 3883 * objset is currently mounted (or the ZVOL equivalent). In that case it 3884 * will already have a long hold, so we are not really making things any worse. 3885 * 3886 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or 3887 * zvol_state_t), and use their mechanism to prevent their hold from being 3888 * dropped (e.g. VFS_HOLD()). However, that would be even more pain for 3889 * very little gain. 3890 * 3891 * if cookiep == NULL, this does both the suspend & resume. 3892 * Otherwise, it returns with the dataset "long held", and the cookie 3893 * should be passed into zil_resume(). 3894 */ 3895 int 3896 zil_suspend(const char *osname, void **cookiep) 3897 { 3898 objset_t *os; 3899 zilog_t *zilog; 3900 const zil_header_t *zh; 3901 int error; 3902 3903 error = dmu_objset_hold(osname, suspend_tag, &os); 3904 if (error != 0) 3905 return (error); 3906 zilog = dmu_objset_zil(os); 3907 3908 mutex_enter(&zilog->zl_lock); 3909 zh = zilog->zl_header; 3910 3911 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */ 3912 mutex_exit(&zilog->zl_lock); 3913 dmu_objset_rele(os, suspend_tag); 3914 return (SET_ERROR(EBUSY)); 3915 } 3916 3917 /* 3918 * Don't put a long hold in the cases where we can avoid it. This 3919 * is when there is no cookie so we are doing a suspend & resume 3920 * (i.e. called from zil_vdev_offline()), and there's nothing to do 3921 * for the suspend because it's already suspended, or there's no ZIL. 3922 */ 3923 if (cookiep == NULL && !zilog->zl_suspending && 3924 (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) { 3925 mutex_exit(&zilog->zl_lock); 3926 dmu_objset_rele(os, suspend_tag); 3927 return (0); 3928 } 3929 3930 dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag); 3931 dsl_pool_rele(dmu_objset_pool(os), suspend_tag); 3932 3933 zilog->zl_suspend++; 3934 3935 if (zilog->zl_suspend > 1) { 3936 /* 3937 * Someone else is already suspending it. 3938 * Just wait for them to finish. 3939 */ 3940 3941 while (zilog->zl_suspending) 3942 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock); 3943 mutex_exit(&zilog->zl_lock); 3944 3945 if (cookiep == NULL) 3946 zil_resume(os); 3947 else 3948 *cookiep = os; 3949 return (0); 3950 } 3951 3952 /* 3953 * If there is no pointer to an on-disk block, this ZIL must not 3954 * be active (e.g. filesystem not mounted), so there's nothing 3955 * to clean up. 3956 */ 3957 if (BP_IS_HOLE(&zh->zh_log)) { 3958 ASSERT(cookiep != NULL); /* fast path already handled */ 3959 3960 *cookiep = os; 3961 mutex_exit(&zilog->zl_lock); 3962 return (0); 3963 } 3964 3965 /* 3966 * The ZIL has work to do. Ensure that the associated encryption 3967 * key will remain mapped while we are committing the log by 3968 * grabbing a reference to it. If the key isn't loaded we have no 3969 * choice but to return an error until the wrapping key is loaded. 3970 */ 3971 if (os->os_encrypted && 3972 dsl_dataset_create_key_mapping(dmu_objset_ds(os)) != 0) { 3973 zilog->zl_suspend--; 3974 mutex_exit(&zilog->zl_lock); 3975 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag); 3976 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag); 3977 return (SET_ERROR(EACCES)); 3978 } 3979 3980 zilog->zl_suspending = B_TRUE; 3981 mutex_exit(&zilog->zl_lock); 3982 3983 /* 3984 * We need to use zil_commit_impl to ensure we wait for all 3985 * LWB_STATE_OPENED and LWB_STATE_ISSUED lwbs to be committed 3986 * to disk before proceeding. If we used zil_commit instead, it 3987 * would just call txg_wait_synced(), because zl_suspend is set. 3988 * txg_wait_synced() doesn't wait for these lwb's to be 3989 * LWB_STATE_FLUSH_DONE before returning. 3990 */ 3991 zil_commit_impl(zilog, 0); 3992 3993 /* 3994 * Now that we've ensured all lwb's are LWB_STATE_FLUSH_DONE, we 3995 * use txg_wait_synced() to ensure the data from the zilog has 3996 * migrated to the main pool before calling zil_destroy(). 3997 */ 3998 txg_wait_synced(zilog->zl_dmu_pool, 0); 3999 4000 zil_destroy(zilog, B_FALSE); 4001 4002 mutex_enter(&zilog->zl_lock); 4003 zilog->zl_suspending = B_FALSE; 4004 cv_broadcast(&zilog->zl_cv_suspend); 4005 mutex_exit(&zilog->zl_lock); 4006 4007 if (os->os_encrypted) 4008 dsl_dataset_remove_key_mapping(dmu_objset_ds(os)); 4009 4010 if (cookiep == NULL) 4011 zil_resume(os); 4012 else 4013 *cookiep = os; 4014 return (0); 4015 } 4016 4017 void 4018 zil_resume(void *cookie) 4019 { 4020 objset_t *os = cookie; 4021 zilog_t *zilog = dmu_objset_zil(os); 4022 4023 mutex_enter(&zilog->zl_lock); 4024 ASSERT(zilog->zl_suspend != 0); 4025 zilog->zl_suspend--; 4026 mutex_exit(&zilog->zl_lock); 4027 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag); 4028 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag); 4029 } 4030 4031 typedef struct zil_replay_arg { 4032 zil_replay_func_t *const *zr_replay; 4033 void *zr_arg; 4034 boolean_t zr_byteswap; 4035 char *zr_lr; 4036 } zil_replay_arg_t; 4037 4038 static int 4039 zil_replay_error(zilog_t *zilog, const lr_t *lr, int error) 4040 { 4041 char name[ZFS_MAX_DATASET_NAME_LEN]; 4042 4043 zilog->zl_replaying_seq--; /* didn't actually replay this one */ 4044 4045 dmu_objset_name(zilog->zl_os, name); 4046 4047 cmn_err(CE_WARN, "ZFS replay transaction error %d, " 4048 "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name, 4049 (u_longlong_t)lr->lrc_seq, 4050 (u_longlong_t)(lr->lrc_txtype & ~TX_CI), 4051 (lr->lrc_txtype & TX_CI) ? "CI" : ""); 4052 4053 return (error); 4054 } 4055 4056 static int 4057 zil_replay_log_record(zilog_t *zilog, const lr_t *lr, void *zra, 4058 uint64_t claim_txg) 4059 { 4060 zil_replay_arg_t *zr = zra; 4061 const zil_header_t *zh = zilog->zl_header; 4062 uint64_t reclen = lr->lrc_reclen; 4063 uint64_t txtype = lr->lrc_txtype; 4064 int error = 0; 4065 4066 zilog->zl_replaying_seq = lr->lrc_seq; 4067 4068 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */ 4069 return (0); 4070 4071 if (lr->lrc_txg < claim_txg) /* already committed */ 4072 return (0); 4073 4074 /* Strip case-insensitive bit, still present in log record */ 4075 txtype &= ~TX_CI; 4076 4077 if (txtype == 0 || txtype >= TX_MAX_TYPE) 4078 return (zil_replay_error(zilog, lr, EINVAL)); 4079 4080 /* 4081 * If this record type can be logged out of order, the object 4082 * (lr_foid) may no longer exist. That's legitimate, not an error. 4083 */ 4084 if (TX_OOO(txtype)) { 4085 error = dmu_object_info(zilog->zl_os, 4086 LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL); 4087 if (error == ENOENT || error == EEXIST) 4088 return (0); 4089 } 4090 4091 /* 4092 * Make a copy of the data so we can revise and extend it. 4093 */ 4094 memcpy(zr->zr_lr, lr, reclen); 4095 4096 /* 4097 * If this is a TX_WRITE with a blkptr, suck in the data. 4098 */ 4099 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) { 4100 error = zil_read_log_data(zilog, (lr_write_t *)lr, 4101 zr->zr_lr + reclen); 4102 if (error != 0) 4103 return (zil_replay_error(zilog, lr, error)); 4104 } 4105 4106 /* 4107 * The log block containing this lr may have been byteswapped 4108 * so that we can easily examine common fields like lrc_txtype. 4109 * However, the log is a mix of different record types, and only the 4110 * replay vectors know how to byteswap their records. Therefore, if 4111 * the lr was byteswapped, undo it before invoking the replay vector. 4112 */ 4113 if (zr->zr_byteswap) 4114 byteswap_uint64_array(zr->zr_lr, reclen); 4115 4116 /* 4117 * We must now do two things atomically: replay this log record, 4118 * and update the log header sequence number to reflect the fact that 4119 * we did so. At the end of each replay function the sequence number 4120 * is updated if we are in replay mode. 4121 */ 4122 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap); 4123 if (error != 0) { 4124 /* 4125 * The DMU's dnode layer doesn't see removes until the txg 4126 * commits, so a subsequent claim can spuriously fail with 4127 * EEXIST. So if we receive any error we try syncing out 4128 * any removes then retry the transaction. Note that we 4129 * specify B_FALSE for byteswap now, so we don't do it twice. 4130 */ 4131 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0); 4132 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE); 4133 if (error != 0) 4134 return (zil_replay_error(zilog, lr, error)); 4135 } 4136 return (0); 4137 } 4138 4139 static int 4140 zil_incr_blks(zilog_t *zilog, const blkptr_t *bp, void *arg, uint64_t claim_txg) 4141 { 4142 (void) bp, (void) arg, (void) claim_txg; 4143 4144 zilog->zl_replay_blks++; 4145 4146 return (0); 4147 } 4148 4149 /* 4150 * If this dataset has a non-empty intent log, replay it and destroy it. 4151 * Return B_TRUE if there were any entries to replay. 4152 */ 4153 boolean_t 4154 zil_replay(objset_t *os, void *arg, 4155 zil_replay_func_t *const replay_func[TX_MAX_TYPE]) 4156 { 4157 zilog_t *zilog = dmu_objset_zil(os); 4158 const zil_header_t *zh = zilog->zl_header; 4159 zil_replay_arg_t zr; 4160 4161 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) { 4162 return (zil_destroy(zilog, B_TRUE)); 4163 } 4164 4165 zr.zr_replay = replay_func; 4166 zr.zr_arg = arg; 4167 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log); 4168 zr.zr_lr = vmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP); 4169 4170 /* 4171 * Wait for in-progress removes to sync before starting replay. 4172 */ 4173 txg_wait_synced(zilog->zl_dmu_pool, 0); 4174 4175 zilog->zl_replay = B_TRUE; 4176 zilog->zl_replay_time = ddi_get_lbolt(); 4177 ASSERT(zilog->zl_replay_blks == 0); 4178 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr, 4179 zh->zh_claim_txg, B_TRUE); 4180 vmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE); 4181 4182 zil_destroy(zilog, B_FALSE); 4183 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 4184 zilog->zl_replay = B_FALSE; 4185 4186 return (B_TRUE); 4187 } 4188 4189 boolean_t 4190 zil_replaying(zilog_t *zilog, dmu_tx_t *tx) 4191 { 4192 if (zilog->zl_sync == ZFS_SYNC_DISABLED) 4193 return (B_TRUE); 4194 4195 if (zilog->zl_replay) { 4196 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 4197 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] = 4198 zilog->zl_replaying_seq; 4199 return (B_TRUE); 4200 } 4201 4202 return (B_FALSE); 4203 } 4204 4205 int 4206 zil_reset(const char *osname, void *arg) 4207 { 4208 (void) arg; 4209 4210 int error = zil_suspend(osname, NULL); 4211 /* EACCES means crypto key not loaded */ 4212 if ((error == EACCES) || (error == EBUSY)) 4213 return (SET_ERROR(error)); 4214 if (error != 0) 4215 return (SET_ERROR(EEXIST)); 4216 return (0); 4217 } 4218 4219 EXPORT_SYMBOL(zil_alloc); 4220 EXPORT_SYMBOL(zil_free); 4221 EXPORT_SYMBOL(zil_open); 4222 EXPORT_SYMBOL(zil_close); 4223 EXPORT_SYMBOL(zil_replay); 4224 EXPORT_SYMBOL(zil_replaying); 4225 EXPORT_SYMBOL(zil_destroy); 4226 EXPORT_SYMBOL(zil_destroy_sync); 4227 EXPORT_SYMBOL(zil_itx_create); 4228 EXPORT_SYMBOL(zil_itx_destroy); 4229 EXPORT_SYMBOL(zil_itx_assign); 4230 EXPORT_SYMBOL(zil_commit); 4231 EXPORT_SYMBOL(zil_claim); 4232 EXPORT_SYMBOL(zil_check_log_chain); 4233 EXPORT_SYMBOL(zil_sync); 4234 EXPORT_SYMBOL(zil_clean); 4235 EXPORT_SYMBOL(zil_suspend); 4236 EXPORT_SYMBOL(zil_resume); 4237 EXPORT_SYMBOL(zil_lwb_add_block); 4238 EXPORT_SYMBOL(zil_bp_tree_add); 4239 EXPORT_SYMBOL(zil_set_sync); 4240 EXPORT_SYMBOL(zil_set_logbias); 4241 EXPORT_SYMBOL(zil_sums_init); 4242 EXPORT_SYMBOL(zil_sums_fini); 4243 EXPORT_SYMBOL(zil_kstat_values_update); 4244 4245 ZFS_MODULE_PARAM(zfs, zfs_, commit_timeout_pct, UINT, ZMOD_RW, 4246 "ZIL block open timeout percentage"); 4247 4248 ZFS_MODULE_PARAM(zfs_zil, zil_, min_commit_timeout, U64, ZMOD_RW, 4249 "Minimum delay we care for ZIL block commit"); 4250 4251 ZFS_MODULE_PARAM(zfs_zil, zil_, replay_disable, INT, ZMOD_RW, 4252 "Disable intent logging replay"); 4253 4254 ZFS_MODULE_PARAM(zfs_zil, zil_, nocacheflush, INT, ZMOD_RW, 4255 "Disable ZIL cache flushes"); 4256 4257 ZFS_MODULE_PARAM(zfs_zil, zil_, slog_bulk, U64, ZMOD_RW, 4258 "Limit in bytes slog sync writes per commit"); 4259 4260 ZFS_MODULE_PARAM(zfs_zil, zil_, maxblocksize, UINT, ZMOD_RW, 4261 "Limit in bytes of ZIL log block size"); 4262