1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 24 * Copyright (c) 2014 Integros [integros.com] 25 * Copyright (c) 2018 Datto Inc. 26 */ 27 28 /* Portions Copyright 2010 Robert Milkowski */ 29 30 #include <sys/zfs_context.h> 31 #include <sys/spa.h> 32 #include <sys/spa_impl.h> 33 #include <sys/dmu.h> 34 #include <sys/zap.h> 35 #include <sys/arc.h> 36 #include <sys/stat.h> 37 #include <sys/zil.h> 38 #include <sys/zil_impl.h> 39 #include <sys/dsl_dataset.h> 40 #include <sys/vdev_impl.h> 41 #include <sys/dmu_tx.h> 42 #include <sys/dsl_pool.h> 43 #include <sys/metaslab.h> 44 #include <sys/trace_zfs.h> 45 #include <sys/abd.h> 46 #include <sys/brt.h> 47 #include <sys/wmsum.h> 48 49 /* 50 * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system 51 * calls that change the file system. Each itx has enough information to 52 * be able to replay them after a system crash, power loss, or 53 * equivalent failure mode. These are stored in memory until either: 54 * 55 * 1. they are committed to the pool by the DMU transaction group 56 * (txg), at which point they can be discarded; or 57 * 2. they are committed to the on-disk ZIL for the dataset being 58 * modified (e.g. due to an fsync, O_DSYNC, or other synchronous 59 * requirement). 60 * 61 * In the event of a crash or power loss, the itxs contained by each 62 * dataset's on-disk ZIL will be replayed when that dataset is first 63 * instantiated (e.g. if the dataset is a normal filesystem, when it is 64 * first mounted). 65 * 66 * As hinted at above, there is one ZIL per dataset (both the in-memory 67 * representation, and the on-disk representation). The on-disk format 68 * consists of 3 parts: 69 * 70 * - a single, per-dataset, ZIL header; which points to a chain of 71 * - zero or more ZIL blocks; each of which contains 72 * - zero or more ZIL records 73 * 74 * A ZIL record holds the information necessary to replay a single 75 * system call transaction. A ZIL block can hold many ZIL records, and 76 * the blocks are chained together, similarly to a singly linked list. 77 * 78 * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL 79 * block in the chain, and the ZIL header points to the first block in 80 * the chain. 81 * 82 * Note, there is not a fixed place in the pool to hold these ZIL 83 * blocks; they are dynamically allocated and freed as needed from the 84 * blocks available on the pool, though they can be preferentially 85 * allocated from a dedicated "log" vdev. 86 */ 87 88 /* 89 * This controls the amount of time that a ZIL block (lwb) will remain 90 * "open" when it isn't "full", and it has a thread waiting for it to be 91 * committed to stable storage. Please refer to the zil_commit_waiter() 92 * function (and the comments within it) for more details. 93 */ 94 static uint_t zfs_commit_timeout_pct = 5; 95 96 /* 97 * Minimal time we care to delay commit waiting for more ZIL records. 98 * At least FreeBSD kernel can't sleep for less than 2us at its best. 99 * So requests to sleep for less then 5us is a waste of CPU time with 100 * a risk of significant log latency increase due to oversleep. 101 */ 102 static uint64_t zil_min_commit_timeout = 5000; 103 104 /* 105 * See zil.h for more information about these fields. 106 */ 107 static zil_kstat_values_t zil_stats = { 108 { "zil_commit_count", KSTAT_DATA_UINT64 }, 109 { "zil_commit_writer_count", KSTAT_DATA_UINT64 }, 110 { "zil_itx_count", KSTAT_DATA_UINT64 }, 111 { "zil_itx_indirect_count", KSTAT_DATA_UINT64 }, 112 { "zil_itx_indirect_bytes", KSTAT_DATA_UINT64 }, 113 { "zil_itx_copied_count", KSTAT_DATA_UINT64 }, 114 { "zil_itx_copied_bytes", KSTAT_DATA_UINT64 }, 115 { "zil_itx_needcopy_count", KSTAT_DATA_UINT64 }, 116 { "zil_itx_needcopy_bytes", KSTAT_DATA_UINT64 }, 117 { "zil_itx_metaslab_normal_count", KSTAT_DATA_UINT64 }, 118 { "zil_itx_metaslab_normal_bytes", KSTAT_DATA_UINT64 }, 119 { "zil_itx_metaslab_normal_write", KSTAT_DATA_UINT64 }, 120 { "zil_itx_metaslab_normal_alloc", KSTAT_DATA_UINT64 }, 121 { "zil_itx_metaslab_slog_count", KSTAT_DATA_UINT64 }, 122 { "zil_itx_metaslab_slog_bytes", KSTAT_DATA_UINT64 }, 123 { "zil_itx_metaslab_slog_write", KSTAT_DATA_UINT64 }, 124 { "zil_itx_metaslab_slog_alloc", KSTAT_DATA_UINT64 }, 125 }; 126 127 static zil_sums_t zil_sums_global; 128 static kstat_t *zil_kstats_global; 129 130 /* 131 * Disable intent logging replay. This global ZIL switch affects all pools. 132 */ 133 int zil_replay_disable = 0; 134 135 /* 136 * Disable the DKIOCFLUSHWRITECACHE commands that are normally sent to 137 * the disk(s) by the ZIL after an LWB write has completed. Setting this 138 * will cause ZIL corruption on power loss if a volatile out-of-order 139 * write cache is enabled. 140 */ 141 static int zil_nocacheflush = 0; 142 143 /* 144 * Limit SLOG write size per commit executed with synchronous priority. 145 * Any writes above that will be executed with lower (asynchronous) priority 146 * to limit potential SLOG device abuse by single active ZIL writer. 147 */ 148 static uint64_t zil_slog_bulk = 768 * 1024; 149 150 static kmem_cache_t *zil_lwb_cache; 151 static kmem_cache_t *zil_zcw_cache; 152 153 static void zil_lwb_commit(zilog_t *zilog, lwb_t *lwb, itx_t *itx); 154 static itx_t *zil_itx_clone(itx_t *oitx); 155 156 static int 157 zil_bp_compare(const void *x1, const void *x2) 158 { 159 const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva; 160 const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva; 161 162 int cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2)); 163 if (likely(cmp)) 164 return (cmp); 165 166 return (TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2))); 167 } 168 169 static void 170 zil_bp_tree_init(zilog_t *zilog) 171 { 172 avl_create(&zilog->zl_bp_tree, zil_bp_compare, 173 sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node)); 174 } 175 176 static void 177 zil_bp_tree_fini(zilog_t *zilog) 178 { 179 avl_tree_t *t = &zilog->zl_bp_tree; 180 zil_bp_node_t *zn; 181 void *cookie = NULL; 182 183 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL) 184 kmem_free(zn, sizeof (zil_bp_node_t)); 185 186 avl_destroy(t); 187 } 188 189 int 190 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp) 191 { 192 avl_tree_t *t = &zilog->zl_bp_tree; 193 const dva_t *dva; 194 zil_bp_node_t *zn; 195 avl_index_t where; 196 197 if (BP_IS_EMBEDDED(bp)) 198 return (0); 199 200 dva = BP_IDENTITY(bp); 201 202 if (avl_find(t, dva, &where) != NULL) 203 return (SET_ERROR(EEXIST)); 204 205 zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP); 206 zn->zn_dva = *dva; 207 avl_insert(t, zn, where); 208 209 return (0); 210 } 211 212 static zil_header_t * 213 zil_header_in_syncing_context(zilog_t *zilog) 214 { 215 return ((zil_header_t *)zilog->zl_header); 216 } 217 218 static void 219 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp) 220 { 221 zio_cksum_t *zc = &bp->blk_cksum; 222 223 (void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_0], 224 sizeof (zc->zc_word[ZIL_ZC_GUID_0])); 225 (void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_1], 226 sizeof (zc->zc_word[ZIL_ZC_GUID_1])); 227 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os); 228 zc->zc_word[ZIL_ZC_SEQ] = 1ULL; 229 } 230 231 static int 232 zil_kstats_global_update(kstat_t *ksp, int rw) 233 { 234 zil_kstat_values_t *zs = ksp->ks_data; 235 ASSERT3P(&zil_stats, ==, zs); 236 237 if (rw == KSTAT_WRITE) { 238 return (SET_ERROR(EACCES)); 239 } 240 241 zil_kstat_values_update(zs, &zil_sums_global); 242 243 return (0); 244 } 245 246 /* 247 * Read a log block and make sure it's valid. 248 */ 249 static int 250 zil_read_log_block(zilog_t *zilog, boolean_t decrypt, const blkptr_t *bp, 251 blkptr_t *nbp, char **begin, char **end, arc_buf_t **abuf) 252 { 253 zio_flag_t zio_flags = ZIO_FLAG_CANFAIL; 254 arc_flags_t aflags = ARC_FLAG_WAIT; 255 zbookmark_phys_t zb; 256 int error; 257 258 if (zilog->zl_header->zh_claim_txg == 0) 259 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; 260 261 if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) 262 zio_flags |= ZIO_FLAG_SPECULATIVE; 263 264 if (!decrypt) 265 zio_flags |= ZIO_FLAG_RAW; 266 267 SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET], 268 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); 269 270 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, 271 abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); 272 273 if (error == 0) { 274 zio_cksum_t cksum = bp->blk_cksum; 275 276 /* 277 * Validate the checksummed log block. 278 * 279 * Sequence numbers should be... sequential. The checksum 280 * verifier for the next block should be bp's checksum plus 1. 281 * 282 * Also check the log chain linkage and size used. 283 */ 284 cksum.zc_word[ZIL_ZC_SEQ]++; 285 286 uint64_t size = BP_GET_LSIZE(bp); 287 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { 288 zil_chain_t *zilc = (*abuf)->b_data; 289 char *lr = (char *)(zilc + 1); 290 291 if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum, 292 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) || 293 zilc->zc_nused < sizeof (*zilc) || 294 zilc->zc_nused > size) { 295 error = SET_ERROR(ECKSUM); 296 } else { 297 *begin = lr; 298 *end = lr + zilc->zc_nused - sizeof (*zilc); 299 *nbp = zilc->zc_next_blk; 300 } 301 } else { 302 char *lr = (*abuf)->b_data; 303 zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1; 304 305 if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum, 306 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) || 307 (zilc->zc_nused > (size - sizeof (*zilc)))) { 308 error = SET_ERROR(ECKSUM); 309 } else { 310 *begin = lr; 311 *end = lr + zilc->zc_nused; 312 *nbp = zilc->zc_next_blk; 313 } 314 } 315 } 316 317 return (error); 318 } 319 320 /* 321 * Read a TX_WRITE log data block. 322 */ 323 static int 324 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf) 325 { 326 zio_flag_t zio_flags = ZIO_FLAG_CANFAIL; 327 const blkptr_t *bp = &lr->lr_blkptr; 328 arc_flags_t aflags = ARC_FLAG_WAIT; 329 arc_buf_t *abuf = NULL; 330 zbookmark_phys_t zb; 331 int error; 332 333 if (BP_IS_HOLE(bp)) { 334 if (wbuf != NULL) 335 memset(wbuf, 0, MAX(BP_GET_LSIZE(bp), lr->lr_length)); 336 return (0); 337 } 338 339 if (zilog->zl_header->zh_claim_txg == 0) 340 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; 341 342 /* 343 * If we are not using the resulting data, we are just checking that 344 * it hasn't been corrupted so we don't need to waste CPU time 345 * decompressing and decrypting it. 346 */ 347 if (wbuf == NULL) 348 zio_flags |= ZIO_FLAG_RAW; 349 350 ASSERT3U(BP_GET_LSIZE(bp), !=, 0); 351 SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid, 352 ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp)); 353 354 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf, 355 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); 356 357 if (error == 0) { 358 if (wbuf != NULL) 359 memcpy(wbuf, abuf->b_data, arc_buf_size(abuf)); 360 arc_buf_destroy(abuf, &abuf); 361 } 362 363 return (error); 364 } 365 366 void 367 zil_sums_init(zil_sums_t *zs) 368 { 369 wmsum_init(&zs->zil_commit_count, 0); 370 wmsum_init(&zs->zil_commit_writer_count, 0); 371 wmsum_init(&zs->zil_itx_count, 0); 372 wmsum_init(&zs->zil_itx_indirect_count, 0); 373 wmsum_init(&zs->zil_itx_indirect_bytes, 0); 374 wmsum_init(&zs->zil_itx_copied_count, 0); 375 wmsum_init(&zs->zil_itx_copied_bytes, 0); 376 wmsum_init(&zs->zil_itx_needcopy_count, 0); 377 wmsum_init(&zs->zil_itx_needcopy_bytes, 0); 378 wmsum_init(&zs->zil_itx_metaslab_normal_count, 0); 379 wmsum_init(&zs->zil_itx_metaslab_normal_bytes, 0); 380 wmsum_init(&zs->zil_itx_metaslab_normal_write, 0); 381 wmsum_init(&zs->zil_itx_metaslab_normal_alloc, 0); 382 wmsum_init(&zs->zil_itx_metaslab_slog_count, 0); 383 wmsum_init(&zs->zil_itx_metaslab_slog_bytes, 0); 384 wmsum_init(&zs->zil_itx_metaslab_slog_write, 0); 385 wmsum_init(&zs->zil_itx_metaslab_slog_alloc, 0); 386 } 387 388 void 389 zil_sums_fini(zil_sums_t *zs) 390 { 391 wmsum_fini(&zs->zil_commit_count); 392 wmsum_fini(&zs->zil_commit_writer_count); 393 wmsum_fini(&zs->zil_itx_count); 394 wmsum_fini(&zs->zil_itx_indirect_count); 395 wmsum_fini(&zs->zil_itx_indirect_bytes); 396 wmsum_fini(&zs->zil_itx_copied_count); 397 wmsum_fini(&zs->zil_itx_copied_bytes); 398 wmsum_fini(&zs->zil_itx_needcopy_count); 399 wmsum_fini(&zs->zil_itx_needcopy_bytes); 400 wmsum_fini(&zs->zil_itx_metaslab_normal_count); 401 wmsum_fini(&zs->zil_itx_metaslab_normal_bytes); 402 wmsum_fini(&zs->zil_itx_metaslab_normal_write); 403 wmsum_fini(&zs->zil_itx_metaslab_normal_alloc); 404 wmsum_fini(&zs->zil_itx_metaslab_slog_count); 405 wmsum_fini(&zs->zil_itx_metaslab_slog_bytes); 406 wmsum_fini(&zs->zil_itx_metaslab_slog_write); 407 wmsum_fini(&zs->zil_itx_metaslab_slog_alloc); 408 } 409 410 void 411 zil_kstat_values_update(zil_kstat_values_t *zs, zil_sums_t *zil_sums) 412 { 413 zs->zil_commit_count.value.ui64 = 414 wmsum_value(&zil_sums->zil_commit_count); 415 zs->zil_commit_writer_count.value.ui64 = 416 wmsum_value(&zil_sums->zil_commit_writer_count); 417 zs->zil_itx_count.value.ui64 = 418 wmsum_value(&zil_sums->zil_itx_count); 419 zs->zil_itx_indirect_count.value.ui64 = 420 wmsum_value(&zil_sums->zil_itx_indirect_count); 421 zs->zil_itx_indirect_bytes.value.ui64 = 422 wmsum_value(&zil_sums->zil_itx_indirect_bytes); 423 zs->zil_itx_copied_count.value.ui64 = 424 wmsum_value(&zil_sums->zil_itx_copied_count); 425 zs->zil_itx_copied_bytes.value.ui64 = 426 wmsum_value(&zil_sums->zil_itx_copied_bytes); 427 zs->zil_itx_needcopy_count.value.ui64 = 428 wmsum_value(&zil_sums->zil_itx_needcopy_count); 429 zs->zil_itx_needcopy_bytes.value.ui64 = 430 wmsum_value(&zil_sums->zil_itx_needcopy_bytes); 431 zs->zil_itx_metaslab_normal_count.value.ui64 = 432 wmsum_value(&zil_sums->zil_itx_metaslab_normal_count); 433 zs->zil_itx_metaslab_normal_bytes.value.ui64 = 434 wmsum_value(&zil_sums->zil_itx_metaslab_normal_bytes); 435 zs->zil_itx_metaslab_normal_write.value.ui64 = 436 wmsum_value(&zil_sums->zil_itx_metaslab_normal_write); 437 zs->zil_itx_metaslab_normal_alloc.value.ui64 = 438 wmsum_value(&zil_sums->zil_itx_metaslab_normal_alloc); 439 zs->zil_itx_metaslab_slog_count.value.ui64 = 440 wmsum_value(&zil_sums->zil_itx_metaslab_slog_count); 441 zs->zil_itx_metaslab_slog_bytes.value.ui64 = 442 wmsum_value(&zil_sums->zil_itx_metaslab_slog_bytes); 443 zs->zil_itx_metaslab_slog_write.value.ui64 = 444 wmsum_value(&zil_sums->zil_itx_metaslab_slog_write); 445 zs->zil_itx_metaslab_slog_alloc.value.ui64 = 446 wmsum_value(&zil_sums->zil_itx_metaslab_slog_alloc); 447 } 448 449 /* 450 * Parse the intent log, and call parse_func for each valid record within. 451 */ 452 int 453 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func, 454 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg, 455 boolean_t decrypt) 456 { 457 const zil_header_t *zh = zilog->zl_header; 458 boolean_t claimed = !!zh->zh_claim_txg; 459 uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX; 460 uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX; 461 uint64_t max_blk_seq = 0; 462 uint64_t max_lr_seq = 0; 463 uint64_t blk_count = 0; 464 uint64_t lr_count = 0; 465 blkptr_t blk, next_blk = {{{{0}}}}; 466 int error = 0; 467 468 /* 469 * Old logs didn't record the maximum zh_claim_lr_seq. 470 */ 471 if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) 472 claim_lr_seq = UINT64_MAX; 473 474 /* 475 * Starting at the block pointed to by zh_log we read the log chain. 476 * For each block in the chain we strongly check that block to 477 * ensure its validity. We stop when an invalid block is found. 478 * For each block pointer in the chain we call parse_blk_func(). 479 * For each record in each valid block we call parse_lr_func(). 480 * If the log has been claimed, stop if we encounter a sequence 481 * number greater than the highest claimed sequence number. 482 */ 483 zil_bp_tree_init(zilog); 484 485 for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) { 486 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; 487 int reclen; 488 char *lrp, *end; 489 arc_buf_t *abuf = NULL; 490 491 if (blk_seq > claim_blk_seq) 492 break; 493 494 error = parse_blk_func(zilog, &blk, arg, txg); 495 if (error != 0) 496 break; 497 ASSERT3U(max_blk_seq, <, blk_seq); 498 max_blk_seq = blk_seq; 499 blk_count++; 500 501 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq) 502 break; 503 504 error = zil_read_log_block(zilog, decrypt, &blk, &next_blk, 505 &lrp, &end, &abuf); 506 if (error != 0) { 507 if (abuf) 508 arc_buf_destroy(abuf, &abuf); 509 if (claimed) { 510 char name[ZFS_MAX_DATASET_NAME_LEN]; 511 512 dmu_objset_name(zilog->zl_os, name); 513 514 cmn_err(CE_WARN, "ZFS read log block error %d, " 515 "dataset %s, seq 0x%llx\n", error, name, 516 (u_longlong_t)blk_seq); 517 } 518 break; 519 } 520 521 for (; lrp < end; lrp += reclen) { 522 lr_t *lr = (lr_t *)lrp; 523 reclen = lr->lrc_reclen; 524 ASSERT3U(reclen, >=, sizeof (lr_t)); 525 if (lr->lrc_seq > claim_lr_seq) 526 goto done; 527 528 error = parse_lr_func(zilog, lr, arg, txg); 529 if (error != 0) 530 goto done; 531 ASSERT3U(max_lr_seq, <, lr->lrc_seq); 532 max_lr_seq = lr->lrc_seq; 533 lr_count++; 534 } 535 arc_buf_destroy(abuf, &abuf); 536 } 537 done: 538 zilog->zl_parse_error = error; 539 zilog->zl_parse_blk_seq = max_blk_seq; 540 zilog->zl_parse_lr_seq = max_lr_seq; 541 zilog->zl_parse_blk_count = blk_count; 542 zilog->zl_parse_lr_count = lr_count; 543 544 zil_bp_tree_fini(zilog); 545 546 return (error); 547 } 548 549 static int 550 zil_clear_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx, 551 uint64_t first_txg) 552 { 553 (void) tx; 554 ASSERT(!BP_IS_HOLE(bp)); 555 556 /* 557 * As we call this function from the context of a rewind to a 558 * checkpoint, each ZIL block whose txg is later than the txg 559 * that we rewind to is invalid. Thus, we return -1 so 560 * zil_parse() doesn't attempt to read it. 561 */ 562 if (bp->blk_birth >= first_txg) 563 return (-1); 564 565 if (zil_bp_tree_add(zilog, bp) != 0) 566 return (0); 567 568 zio_free(zilog->zl_spa, first_txg, bp); 569 return (0); 570 } 571 572 static int 573 zil_noop_log_record(zilog_t *zilog, const lr_t *lrc, void *tx, 574 uint64_t first_txg) 575 { 576 (void) zilog, (void) lrc, (void) tx, (void) first_txg; 577 return (0); 578 } 579 580 static int 581 zil_claim_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx, 582 uint64_t first_txg) 583 { 584 /* 585 * Claim log block if not already committed and not already claimed. 586 * If tx == NULL, just verify that the block is claimable. 587 */ 588 if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg || 589 zil_bp_tree_add(zilog, bp) != 0) 590 return (0); 591 592 return (zio_wait(zio_claim(NULL, zilog->zl_spa, 593 tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL, 594 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB))); 595 } 596 597 static int 598 zil_claim_write(zilog_t *zilog, const lr_t *lrc, void *tx, uint64_t first_txg) 599 { 600 lr_write_t *lr = (lr_write_t *)lrc; 601 int error; 602 603 ASSERT(lrc->lrc_txtype == TX_WRITE); 604 605 /* 606 * If the block is not readable, don't claim it. This can happen 607 * in normal operation when a log block is written to disk before 608 * some of the dmu_sync() blocks it points to. In this case, the 609 * transaction cannot have been committed to anyone (we would have 610 * waited for all writes to be stable first), so it is semantically 611 * correct to declare this the end of the log. 612 */ 613 if (lr->lr_blkptr.blk_birth >= first_txg) { 614 error = zil_read_log_data(zilog, lr, NULL); 615 if (error != 0) 616 return (error); 617 } 618 619 return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg)); 620 } 621 622 static int 623 zil_claim_clone_range(zilog_t *zilog, const lr_t *lrc, void *tx) 624 { 625 const lr_clone_range_t *lr = (const lr_clone_range_t *)lrc; 626 const blkptr_t *bp; 627 spa_t *spa; 628 uint_t ii; 629 630 ASSERT(lrc->lrc_txtype == TX_CLONE_RANGE); 631 632 if (tx == NULL) { 633 return (0); 634 } 635 636 /* 637 * XXX: Do we need to byteswap lr? 638 */ 639 640 spa = zilog->zl_spa; 641 642 for (ii = 0; ii < lr->lr_nbps; ii++) { 643 bp = &lr->lr_bps[ii]; 644 645 /* 646 * When data in embedded into BP there is no need to create 647 * BRT entry as there is no data block. Just copy the BP as 648 * it contains the data. 649 */ 650 if (!BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) { 651 brt_pending_add(spa, bp, tx); 652 } 653 } 654 655 return (0); 656 } 657 658 static int 659 zil_claim_log_record(zilog_t *zilog, const lr_t *lrc, void *tx, 660 uint64_t first_txg) 661 { 662 663 switch (lrc->lrc_txtype) { 664 case TX_WRITE: 665 return (zil_claim_write(zilog, lrc, tx, first_txg)); 666 case TX_CLONE_RANGE: 667 return (zil_claim_clone_range(zilog, lrc, tx)); 668 default: 669 return (0); 670 } 671 } 672 673 static int 674 zil_free_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx, 675 uint64_t claim_txg) 676 { 677 (void) claim_txg; 678 679 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp); 680 681 return (0); 682 } 683 684 static int 685 zil_free_write(zilog_t *zilog, const lr_t *lrc, void *tx, uint64_t claim_txg) 686 { 687 lr_write_t *lr = (lr_write_t *)lrc; 688 blkptr_t *bp = &lr->lr_blkptr; 689 690 ASSERT(lrc->lrc_txtype == TX_WRITE); 691 692 /* 693 * If we previously claimed it, we need to free it. 694 */ 695 if (bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 && 696 !BP_IS_HOLE(bp)) { 697 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp); 698 } 699 700 return (0); 701 } 702 703 static int 704 zil_free_clone_range(zilog_t *zilog, const lr_t *lrc, void *tx) 705 { 706 const lr_clone_range_t *lr = (const lr_clone_range_t *)lrc; 707 const blkptr_t *bp; 708 spa_t *spa; 709 uint_t ii; 710 711 ASSERT(lrc->lrc_txtype == TX_CLONE_RANGE); 712 713 if (tx == NULL) { 714 return (0); 715 } 716 717 spa = zilog->zl_spa; 718 719 for (ii = 0; ii < lr->lr_nbps; ii++) { 720 bp = &lr->lr_bps[ii]; 721 722 if (!BP_IS_HOLE(bp)) { 723 zio_free(spa, dmu_tx_get_txg(tx), bp); 724 } 725 } 726 727 return (0); 728 } 729 730 static int 731 zil_free_log_record(zilog_t *zilog, const lr_t *lrc, void *tx, 732 uint64_t claim_txg) 733 { 734 735 if (claim_txg == 0) { 736 return (0); 737 } 738 739 switch (lrc->lrc_txtype) { 740 case TX_WRITE: 741 return (zil_free_write(zilog, lrc, tx, claim_txg)); 742 case TX_CLONE_RANGE: 743 return (zil_free_clone_range(zilog, lrc, tx)); 744 default: 745 return (0); 746 } 747 } 748 749 static int 750 zil_lwb_vdev_compare(const void *x1, const void *x2) 751 { 752 const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev; 753 const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev; 754 755 return (TREE_CMP(v1, v2)); 756 } 757 758 static lwb_t * 759 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg, 760 boolean_t fastwrite) 761 { 762 lwb_t *lwb; 763 764 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); 765 lwb->lwb_zilog = zilog; 766 lwb->lwb_blk = *bp; 767 lwb->lwb_fastwrite = fastwrite; 768 lwb->lwb_slog = slog; 769 lwb->lwb_indirect = B_FALSE; 770 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { 771 lwb->lwb_nused = lwb->lwb_nfilled = sizeof (zil_chain_t); 772 lwb->lwb_sz = BP_GET_LSIZE(bp); 773 } else { 774 lwb->lwb_nused = lwb->lwb_nfilled = 0; 775 lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t); 776 } 777 lwb->lwb_state = LWB_STATE_CLOSED; 778 lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp)); 779 lwb->lwb_write_zio = NULL; 780 lwb->lwb_root_zio = NULL; 781 lwb->lwb_issued_timestamp = 0; 782 lwb->lwb_issued_txg = 0; 783 lwb->lwb_max_txg = txg; 784 785 mutex_enter(&zilog->zl_lock); 786 list_insert_tail(&zilog->zl_lwb_list, lwb); 787 mutex_exit(&zilog->zl_lock); 788 789 return (lwb); 790 } 791 792 static void 793 zil_free_lwb(zilog_t *zilog, lwb_t *lwb) 794 { 795 ASSERT(MUTEX_HELD(&zilog->zl_lock)); 796 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock)); 797 ASSERT(list_is_empty(&lwb->lwb_waiters)); 798 ASSERT(list_is_empty(&lwb->lwb_itxs)); 799 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree)); 800 ASSERT3P(lwb->lwb_write_zio, ==, NULL); 801 ASSERT3P(lwb->lwb_root_zio, ==, NULL); 802 ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa)); 803 ASSERT(lwb->lwb_state == LWB_STATE_CLOSED || 804 lwb->lwb_state == LWB_STATE_FLUSH_DONE); 805 806 /* 807 * Clear the zilog's field to indicate this lwb is no longer 808 * valid, and prevent use-after-free errors. 809 */ 810 if (zilog->zl_last_lwb_opened == lwb) 811 zilog->zl_last_lwb_opened = NULL; 812 813 kmem_cache_free(zil_lwb_cache, lwb); 814 } 815 816 /* 817 * Called when we create in-memory log transactions so that we know 818 * to cleanup the itxs at the end of spa_sync(). 819 */ 820 static void 821 zilog_dirty(zilog_t *zilog, uint64_t txg) 822 { 823 dsl_pool_t *dp = zilog->zl_dmu_pool; 824 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 825 826 ASSERT(spa_writeable(zilog->zl_spa)); 827 828 if (ds->ds_is_snapshot) 829 panic("dirtying snapshot!"); 830 831 if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) { 832 /* up the hold count until we can be written out */ 833 dmu_buf_add_ref(ds->ds_dbuf, zilog); 834 835 zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg); 836 } 837 } 838 839 /* 840 * Determine if the zil is dirty in the specified txg. Callers wanting to 841 * ensure that the dirty state does not change must hold the itxg_lock for 842 * the specified txg. Holding the lock will ensure that the zil cannot be 843 * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current 844 * state. 845 */ 846 static boolean_t __maybe_unused 847 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg) 848 { 849 dsl_pool_t *dp = zilog->zl_dmu_pool; 850 851 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK)) 852 return (B_TRUE); 853 return (B_FALSE); 854 } 855 856 /* 857 * Determine if the zil is dirty. The zil is considered dirty if it has 858 * any pending itx records that have not been cleaned by zil_clean(). 859 */ 860 static boolean_t 861 zilog_is_dirty(zilog_t *zilog) 862 { 863 dsl_pool_t *dp = zilog->zl_dmu_pool; 864 865 for (int t = 0; t < TXG_SIZE; t++) { 866 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t)) 867 return (B_TRUE); 868 } 869 return (B_FALSE); 870 } 871 872 /* 873 * Its called in zil_commit context (zil_process_commit_list()/zil_create()). 874 * It activates SPA_FEATURE_ZILSAXATTR feature, if its enabled. 875 * Check dsl_dataset_feature_is_active to avoid txg_wait_synced() on every 876 * zil_commit. 877 */ 878 static void 879 zil_commit_activate_saxattr_feature(zilog_t *zilog) 880 { 881 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 882 uint64_t txg = 0; 883 dmu_tx_t *tx = NULL; 884 885 if (spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) && 886 dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL && 887 !dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR)) { 888 tx = dmu_tx_create(zilog->zl_os); 889 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 890 dsl_dataset_dirty(ds, tx); 891 txg = dmu_tx_get_txg(tx); 892 893 mutex_enter(&ds->ds_lock); 894 ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] = 895 (void *)B_TRUE; 896 mutex_exit(&ds->ds_lock); 897 dmu_tx_commit(tx); 898 txg_wait_synced(zilog->zl_dmu_pool, txg); 899 } 900 } 901 902 /* 903 * Create an on-disk intent log. 904 */ 905 static lwb_t * 906 zil_create(zilog_t *zilog) 907 { 908 const zil_header_t *zh = zilog->zl_header; 909 lwb_t *lwb = NULL; 910 uint64_t txg = 0; 911 dmu_tx_t *tx = NULL; 912 blkptr_t blk; 913 int error = 0; 914 boolean_t fastwrite = FALSE; 915 boolean_t slog = FALSE; 916 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 917 918 919 /* 920 * Wait for any previous destroy to complete. 921 */ 922 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 923 924 ASSERT(zh->zh_claim_txg == 0); 925 ASSERT(zh->zh_replay_seq == 0); 926 927 blk = zh->zh_log; 928 929 /* 930 * Allocate an initial log block if: 931 * - there isn't one already 932 * - the existing block is the wrong endianness 933 */ 934 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) { 935 tx = dmu_tx_create(zilog->zl_os); 936 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 937 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 938 txg = dmu_tx_get_txg(tx); 939 940 if (!BP_IS_HOLE(&blk)) { 941 zio_free(zilog->zl_spa, txg, &blk); 942 BP_ZERO(&blk); 943 } 944 945 error = zio_alloc_zil(zilog->zl_spa, zilog->zl_os, txg, &blk, 946 ZIL_MIN_BLKSZ, &slog); 947 fastwrite = TRUE; 948 949 if (error == 0) 950 zil_init_log_chain(zilog, &blk); 951 } 952 953 /* 954 * Allocate a log write block (lwb) for the first log block. 955 */ 956 if (error == 0) 957 lwb = zil_alloc_lwb(zilog, &blk, slog, txg, fastwrite); 958 959 /* 960 * If we just allocated the first log block, commit our transaction 961 * and wait for zil_sync() to stuff the block pointer into zh_log. 962 * (zh is part of the MOS, so we cannot modify it in open context.) 963 */ 964 if (tx != NULL) { 965 /* 966 * If "zilsaxattr" feature is enabled on zpool, then activate 967 * it now when we're creating the ZIL chain. We can't wait with 968 * this until we write the first xattr log record because we 969 * need to wait for the feature activation to sync out. 970 */ 971 if (spa_feature_is_enabled(zilog->zl_spa, 972 SPA_FEATURE_ZILSAXATTR) && dmu_objset_type(zilog->zl_os) != 973 DMU_OST_ZVOL) { 974 mutex_enter(&ds->ds_lock); 975 ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] = 976 (void *)B_TRUE; 977 mutex_exit(&ds->ds_lock); 978 } 979 980 dmu_tx_commit(tx); 981 txg_wait_synced(zilog->zl_dmu_pool, txg); 982 } else { 983 /* 984 * This branch covers the case where we enable the feature on a 985 * zpool that has existing ZIL headers. 986 */ 987 zil_commit_activate_saxattr_feature(zilog); 988 } 989 IMPLY(spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) && 990 dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL, 991 dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR)); 992 993 ASSERT(error != 0 || memcmp(&blk, &zh->zh_log, sizeof (blk)) == 0); 994 IMPLY(error == 0, lwb != NULL); 995 996 return (lwb); 997 } 998 999 /* 1000 * In one tx, free all log blocks and clear the log header. If keep_first 1001 * is set, then we're replaying a log with no content. We want to keep the 1002 * first block, however, so that the first synchronous transaction doesn't 1003 * require a txg_wait_synced() in zil_create(). We don't need to 1004 * txg_wait_synced() here either when keep_first is set, because both 1005 * zil_create() and zil_destroy() will wait for any in-progress destroys 1006 * to complete. 1007 * Return B_TRUE if there were any entries to replay. 1008 */ 1009 boolean_t 1010 zil_destroy(zilog_t *zilog, boolean_t keep_first) 1011 { 1012 const zil_header_t *zh = zilog->zl_header; 1013 lwb_t *lwb; 1014 dmu_tx_t *tx; 1015 uint64_t txg; 1016 1017 /* 1018 * Wait for any previous destroy to complete. 1019 */ 1020 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 1021 1022 zilog->zl_old_header = *zh; /* debugging aid */ 1023 1024 if (BP_IS_HOLE(&zh->zh_log)) 1025 return (B_FALSE); 1026 1027 tx = dmu_tx_create(zilog->zl_os); 1028 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 1029 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 1030 txg = dmu_tx_get_txg(tx); 1031 1032 mutex_enter(&zilog->zl_lock); 1033 1034 ASSERT3U(zilog->zl_destroy_txg, <, txg); 1035 zilog->zl_destroy_txg = txg; 1036 zilog->zl_keep_first = keep_first; 1037 1038 if (!list_is_empty(&zilog->zl_lwb_list)) { 1039 ASSERT(zh->zh_claim_txg == 0); 1040 VERIFY(!keep_first); 1041 while ((lwb = list_remove_head(&zilog->zl_lwb_list)) != NULL) { 1042 if (lwb->lwb_fastwrite) 1043 metaslab_fastwrite_unmark(zilog->zl_spa, 1044 &lwb->lwb_blk); 1045 if (lwb->lwb_buf != NULL) 1046 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 1047 zio_free(zilog->zl_spa, txg, &lwb->lwb_blk); 1048 zil_free_lwb(zilog, lwb); 1049 } 1050 } else if (!keep_first) { 1051 zil_destroy_sync(zilog, tx); 1052 } 1053 mutex_exit(&zilog->zl_lock); 1054 1055 dmu_tx_commit(tx); 1056 1057 return (B_TRUE); 1058 } 1059 1060 void 1061 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx) 1062 { 1063 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 1064 (void) zil_parse(zilog, zil_free_log_block, 1065 zil_free_log_record, tx, zilog->zl_header->zh_claim_txg, B_FALSE); 1066 } 1067 1068 int 1069 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg) 1070 { 1071 dmu_tx_t *tx = txarg; 1072 zilog_t *zilog; 1073 uint64_t first_txg; 1074 zil_header_t *zh; 1075 objset_t *os; 1076 int error; 1077 1078 error = dmu_objset_own_obj(dp, ds->ds_object, 1079 DMU_OST_ANY, B_FALSE, B_FALSE, FTAG, &os); 1080 if (error != 0) { 1081 /* 1082 * EBUSY indicates that the objset is inconsistent, in which 1083 * case it can not have a ZIL. 1084 */ 1085 if (error != EBUSY) { 1086 cmn_err(CE_WARN, "can't open objset for %llu, error %u", 1087 (unsigned long long)ds->ds_object, error); 1088 } 1089 1090 return (0); 1091 } 1092 1093 zilog = dmu_objset_zil(os); 1094 zh = zil_header_in_syncing_context(zilog); 1095 ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa)); 1096 first_txg = spa_min_claim_txg(zilog->zl_spa); 1097 1098 /* 1099 * If the spa_log_state is not set to be cleared, check whether 1100 * the current uberblock is a checkpoint one and if the current 1101 * header has been claimed before moving on. 1102 * 1103 * If the current uberblock is a checkpointed uberblock then 1104 * one of the following scenarios took place: 1105 * 1106 * 1] We are currently rewinding to the checkpoint of the pool. 1107 * 2] We crashed in the middle of a checkpoint rewind but we 1108 * did manage to write the checkpointed uberblock to the 1109 * vdev labels, so when we tried to import the pool again 1110 * the checkpointed uberblock was selected from the import 1111 * procedure. 1112 * 1113 * In both cases we want to zero out all the ZIL blocks, except 1114 * the ones that have been claimed at the time of the checkpoint 1115 * (their zh_claim_txg != 0). The reason is that these blocks 1116 * may be corrupted since we may have reused their locations on 1117 * disk after we took the checkpoint. 1118 * 1119 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier 1120 * when we first figure out whether the current uberblock is 1121 * checkpointed or not. Unfortunately, that would discard all 1122 * the logs, including the ones that are claimed, and we would 1123 * leak space. 1124 */ 1125 if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR || 1126 (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 && 1127 zh->zh_claim_txg == 0)) { 1128 if (!BP_IS_HOLE(&zh->zh_log)) { 1129 (void) zil_parse(zilog, zil_clear_log_block, 1130 zil_noop_log_record, tx, first_txg, B_FALSE); 1131 } 1132 BP_ZERO(&zh->zh_log); 1133 if (os->os_encrypted) 1134 os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE; 1135 dsl_dataset_dirty(dmu_objset_ds(os), tx); 1136 dmu_objset_disown(os, B_FALSE, FTAG); 1137 return (0); 1138 } 1139 1140 /* 1141 * If we are not rewinding and opening the pool normally, then 1142 * the min_claim_txg should be equal to the first txg of the pool. 1143 */ 1144 ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa)); 1145 1146 /* 1147 * Claim all log blocks if we haven't already done so, and remember 1148 * the highest claimed sequence number. This ensures that if we can 1149 * read only part of the log now (e.g. due to a missing device), 1150 * but we can read the entire log later, we will not try to replay 1151 * or destroy beyond the last block we successfully claimed. 1152 */ 1153 ASSERT3U(zh->zh_claim_txg, <=, first_txg); 1154 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) { 1155 (void) zil_parse(zilog, zil_claim_log_block, 1156 zil_claim_log_record, tx, first_txg, B_FALSE); 1157 zh->zh_claim_txg = first_txg; 1158 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq; 1159 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq; 1160 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1) 1161 zh->zh_flags |= ZIL_REPLAY_NEEDED; 1162 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID; 1163 if (os->os_encrypted) 1164 os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE; 1165 dsl_dataset_dirty(dmu_objset_ds(os), tx); 1166 } 1167 1168 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1)); 1169 dmu_objset_disown(os, B_FALSE, FTAG); 1170 return (0); 1171 } 1172 1173 /* 1174 * Check the log by walking the log chain. 1175 * Checksum errors are ok as they indicate the end of the chain. 1176 * Any other error (no device or read failure) returns an error. 1177 */ 1178 int 1179 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx) 1180 { 1181 (void) dp; 1182 zilog_t *zilog; 1183 objset_t *os; 1184 blkptr_t *bp; 1185 int error; 1186 1187 ASSERT(tx == NULL); 1188 1189 error = dmu_objset_from_ds(ds, &os); 1190 if (error != 0) { 1191 cmn_err(CE_WARN, "can't open objset %llu, error %d", 1192 (unsigned long long)ds->ds_object, error); 1193 return (0); 1194 } 1195 1196 zilog = dmu_objset_zil(os); 1197 bp = (blkptr_t *)&zilog->zl_header->zh_log; 1198 1199 if (!BP_IS_HOLE(bp)) { 1200 vdev_t *vd; 1201 boolean_t valid = B_TRUE; 1202 1203 /* 1204 * Check the first block and determine if it's on a log device 1205 * which may have been removed or faulted prior to loading this 1206 * pool. If so, there's no point in checking the rest of the 1207 * log as its content should have already been synced to the 1208 * pool. 1209 */ 1210 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER); 1211 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0])); 1212 if (vd->vdev_islog && vdev_is_dead(vd)) 1213 valid = vdev_log_state_valid(vd); 1214 spa_config_exit(os->os_spa, SCL_STATE, FTAG); 1215 1216 if (!valid) 1217 return (0); 1218 1219 /* 1220 * Check whether the current uberblock is checkpointed (e.g. 1221 * we are rewinding) and whether the current header has been 1222 * claimed or not. If it hasn't then skip verifying it. We 1223 * do this because its ZIL blocks may be part of the pool's 1224 * state before the rewind, which is no longer valid. 1225 */ 1226 zil_header_t *zh = zil_header_in_syncing_context(zilog); 1227 if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 && 1228 zh->zh_claim_txg == 0) 1229 return (0); 1230 } 1231 1232 /* 1233 * Because tx == NULL, zil_claim_log_block() will not actually claim 1234 * any blocks, but just determine whether it is possible to do so. 1235 * In addition to checking the log chain, zil_claim_log_block() 1236 * will invoke zio_claim() with a done func of spa_claim_notify(), 1237 * which will update spa_max_claim_txg. See spa_load() for details. 1238 */ 1239 error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx, 1240 zilog->zl_header->zh_claim_txg ? -1ULL : 1241 spa_min_claim_txg(os->os_spa), B_FALSE); 1242 1243 return ((error == ECKSUM || error == ENOENT) ? 0 : error); 1244 } 1245 1246 /* 1247 * When an itx is "skipped", this function is used to properly mark the 1248 * waiter as "done, and signal any thread(s) waiting on it. An itx can 1249 * be skipped (and not committed to an lwb) for a variety of reasons, 1250 * one of them being that the itx was committed via spa_sync(), prior to 1251 * it being committed to an lwb; this can happen if a thread calling 1252 * zil_commit() is racing with spa_sync(). 1253 */ 1254 static void 1255 zil_commit_waiter_skip(zil_commit_waiter_t *zcw) 1256 { 1257 mutex_enter(&zcw->zcw_lock); 1258 ASSERT3B(zcw->zcw_done, ==, B_FALSE); 1259 zcw->zcw_done = B_TRUE; 1260 cv_broadcast(&zcw->zcw_cv); 1261 mutex_exit(&zcw->zcw_lock); 1262 } 1263 1264 /* 1265 * This function is used when the given waiter is to be linked into an 1266 * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb. 1267 * At this point, the waiter will no longer be referenced by the itx, 1268 * and instead, will be referenced by the lwb. 1269 */ 1270 static void 1271 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb) 1272 { 1273 /* 1274 * The lwb_waiters field of the lwb is protected by the zilog's 1275 * zl_lock, thus it must be held when calling this function. 1276 */ 1277 ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_lock)); 1278 1279 mutex_enter(&zcw->zcw_lock); 1280 ASSERT(!list_link_active(&zcw->zcw_node)); 1281 ASSERT3P(zcw->zcw_lwb, ==, NULL); 1282 ASSERT3P(lwb, !=, NULL); 1283 ASSERT(lwb->lwb_state == LWB_STATE_OPENED || 1284 lwb->lwb_state == LWB_STATE_ISSUED || 1285 lwb->lwb_state == LWB_STATE_WRITE_DONE); 1286 1287 list_insert_tail(&lwb->lwb_waiters, zcw); 1288 zcw->zcw_lwb = lwb; 1289 mutex_exit(&zcw->zcw_lock); 1290 } 1291 1292 /* 1293 * This function is used when zio_alloc_zil() fails to allocate a ZIL 1294 * block, and the given waiter must be linked to the "nolwb waiters" 1295 * list inside of zil_process_commit_list(). 1296 */ 1297 static void 1298 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb) 1299 { 1300 mutex_enter(&zcw->zcw_lock); 1301 ASSERT(!list_link_active(&zcw->zcw_node)); 1302 ASSERT3P(zcw->zcw_lwb, ==, NULL); 1303 list_insert_tail(nolwb, zcw); 1304 mutex_exit(&zcw->zcw_lock); 1305 } 1306 1307 void 1308 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp) 1309 { 1310 avl_tree_t *t = &lwb->lwb_vdev_tree; 1311 avl_index_t where; 1312 zil_vdev_node_t *zv, zvsearch; 1313 int ndvas = BP_GET_NDVAS(bp); 1314 int i; 1315 1316 if (zil_nocacheflush) 1317 return; 1318 1319 mutex_enter(&lwb->lwb_vdev_lock); 1320 for (i = 0; i < ndvas; i++) { 1321 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]); 1322 if (avl_find(t, &zvsearch, &where) == NULL) { 1323 zv = kmem_alloc(sizeof (*zv), KM_SLEEP); 1324 zv->zv_vdev = zvsearch.zv_vdev; 1325 avl_insert(t, zv, where); 1326 } 1327 } 1328 mutex_exit(&lwb->lwb_vdev_lock); 1329 } 1330 1331 static void 1332 zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb) 1333 { 1334 avl_tree_t *src = &lwb->lwb_vdev_tree; 1335 avl_tree_t *dst = &nlwb->lwb_vdev_tree; 1336 void *cookie = NULL; 1337 zil_vdev_node_t *zv; 1338 1339 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE); 1340 ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE); 1341 ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE); 1342 1343 /* 1344 * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does 1345 * not need the protection of lwb_vdev_lock (it will only be modified 1346 * while holding zilog->zl_lock) as its writes and those of its 1347 * children have all completed. The younger 'nlwb' may be waiting on 1348 * future writes to additional vdevs. 1349 */ 1350 mutex_enter(&nlwb->lwb_vdev_lock); 1351 /* 1352 * Tear down the 'lwb' vdev tree, ensuring that entries which do not 1353 * exist in 'nlwb' are moved to it, freeing any would-be duplicates. 1354 */ 1355 while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) { 1356 avl_index_t where; 1357 1358 if (avl_find(dst, zv, &where) == NULL) { 1359 avl_insert(dst, zv, where); 1360 } else { 1361 kmem_free(zv, sizeof (*zv)); 1362 } 1363 } 1364 mutex_exit(&nlwb->lwb_vdev_lock); 1365 } 1366 1367 void 1368 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg) 1369 { 1370 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg); 1371 } 1372 1373 /* 1374 * This function is a called after all vdevs associated with a given lwb 1375 * write have completed their DKIOCFLUSHWRITECACHE command; or as soon 1376 * as the lwb write completes, if "zil_nocacheflush" is set. Further, 1377 * all "previous" lwb's will have completed before this function is 1378 * called; i.e. this function is called for all previous lwbs before 1379 * it's called for "this" lwb (enforced via zio the dependencies 1380 * configured in zil_lwb_set_zio_dependency()). 1381 * 1382 * The intention is for this function to be called as soon as the 1383 * contents of an lwb are considered "stable" on disk, and will survive 1384 * any sudden loss of power. At this point, any threads waiting for the 1385 * lwb to reach this state are signalled, and the "waiter" structures 1386 * are marked "done". 1387 */ 1388 static void 1389 zil_lwb_flush_vdevs_done(zio_t *zio) 1390 { 1391 lwb_t *lwb = zio->io_private; 1392 zilog_t *zilog = lwb->lwb_zilog; 1393 zil_commit_waiter_t *zcw; 1394 itx_t *itx; 1395 uint64_t txg; 1396 list_t itxs, waiters; 1397 1398 spa_config_exit(zilog->zl_spa, SCL_STATE, lwb); 1399 1400 list_create(&itxs, sizeof (itx_t), offsetof(itx_t, itx_node)); 1401 list_create(&waiters, sizeof (zil_commit_waiter_t), 1402 offsetof(zil_commit_waiter_t, zcw_node)); 1403 1404 hrtime_t t = gethrtime() - lwb->lwb_issued_timestamp; 1405 1406 mutex_enter(&zilog->zl_lock); 1407 1408 zilog->zl_last_lwb_latency = (zilog->zl_last_lwb_latency * 7 + t) / 8; 1409 1410 lwb->lwb_root_zio = NULL; 1411 1412 if (zilog->zl_last_lwb_opened == lwb) { 1413 /* 1414 * Remember the highest committed log sequence number 1415 * for ztest. We only update this value when all the log 1416 * writes succeeded, because ztest wants to ASSERT that 1417 * it got the whole log chain. 1418 */ 1419 zilog->zl_commit_lr_seq = zilog->zl_lr_seq; 1420 } 1421 1422 list_move_tail(&itxs, &lwb->lwb_itxs); 1423 list_move_tail(&waiters, &lwb->lwb_waiters); 1424 1425 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE); 1426 lwb->lwb_state = LWB_STATE_FLUSH_DONE; 1427 1428 mutex_exit(&zilog->zl_lock); 1429 1430 while ((itx = list_remove_head(&itxs)) != NULL) 1431 zil_itx_destroy(itx); 1432 list_destroy(&itxs); 1433 1434 while ((zcw = list_remove_head(&waiters)) != NULL) { 1435 mutex_enter(&zcw->zcw_lock); 1436 1437 zcw->zcw_lwb = NULL; 1438 /* 1439 * We expect any ZIO errors from child ZIOs to have been 1440 * propagated "up" to this specific LWB's root ZIO, in 1441 * order for this error handling to work correctly. This 1442 * includes ZIO errors from either this LWB's write or 1443 * flush, as well as any errors from other dependent LWBs 1444 * (e.g. a root LWB ZIO that might be a child of this LWB). 1445 * 1446 * With that said, it's important to note that LWB flush 1447 * errors are not propagated up to the LWB root ZIO. 1448 * This is incorrect behavior, and results in VDEV flush 1449 * errors not being handled correctly here. See the 1450 * comment above the call to "zio_flush" for details. 1451 */ 1452 1453 zcw->zcw_zio_error = zio->io_error; 1454 1455 ASSERT3B(zcw->zcw_done, ==, B_FALSE); 1456 zcw->zcw_done = B_TRUE; 1457 cv_broadcast(&zcw->zcw_cv); 1458 1459 mutex_exit(&zcw->zcw_lock); 1460 } 1461 list_destroy(&waiters); 1462 1463 mutex_enter(&zilog->zl_lwb_io_lock); 1464 txg = lwb->lwb_issued_txg; 1465 ASSERT3U(zilog->zl_lwb_inflight[txg & TXG_MASK], >, 0); 1466 zilog->zl_lwb_inflight[txg & TXG_MASK]--; 1467 if (zilog->zl_lwb_inflight[txg & TXG_MASK] == 0) 1468 cv_broadcast(&zilog->zl_lwb_io_cv); 1469 mutex_exit(&zilog->zl_lwb_io_lock); 1470 } 1471 1472 /* 1473 * Wait for the completion of all issued write/flush of that txg provided. 1474 * It guarantees zil_lwb_flush_vdevs_done() is called and returned. 1475 */ 1476 static void 1477 zil_lwb_flush_wait_all(zilog_t *zilog, uint64_t txg) 1478 { 1479 ASSERT3U(txg, ==, spa_syncing_txg(zilog->zl_spa)); 1480 1481 mutex_enter(&zilog->zl_lwb_io_lock); 1482 while (zilog->zl_lwb_inflight[txg & TXG_MASK] > 0) 1483 cv_wait(&zilog->zl_lwb_io_cv, &zilog->zl_lwb_io_lock); 1484 mutex_exit(&zilog->zl_lwb_io_lock); 1485 1486 #ifdef ZFS_DEBUG 1487 mutex_enter(&zilog->zl_lock); 1488 mutex_enter(&zilog->zl_lwb_io_lock); 1489 lwb_t *lwb = list_head(&zilog->zl_lwb_list); 1490 while (lwb != NULL && lwb->lwb_max_txg <= txg) { 1491 if (lwb->lwb_issued_txg <= txg) { 1492 ASSERT(lwb->lwb_state != LWB_STATE_ISSUED); 1493 ASSERT(lwb->lwb_state != LWB_STATE_WRITE_DONE); 1494 IMPLY(lwb->lwb_issued_txg > 0, 1495 lwb->lwb_state == LWB_STATE_FLUSH_DONE); 1496 } 1497 IMPLY(lwb->lwb_state == LWB_STATE_WRITE_DONE || 1498 lwb->lwb_state == LWB_STATE_FLUSH_DONE, 1499 lwb->lwb_buf == NULL); 1500 lwb = list_next(&zilog->zl_lwb_list, lwb); 1501 } 1502 mutex_exit(&zilog->zl_lwb_io_lock); 1503 mutex_exit(&zilog->zl_lock); 1504 #endif 1505 } 1506 1507 /* 1508 * This is called when an lwb's write zio completes. The callback's 1509 * purpose is to issue the DKIOCFLUSHWRITECACHE commands for the vdevs 1510 * in the lwb's lwb_vdev_tree. The tree will contain the vdevs involved 1511 * in writing out this specific lwb's data, and in the case that cache 1512 * flushes have been deferred, vdevs involved in writing the data for 1513 * previous lwbs. The writes corresponding to all the vdevs in the 1514 * lwb_vdev_tree will have completed by the time this is called, due to 1515 * the zio dependencies configured in zil_lwb_set_zio_dependency(), 1516 * which takes deferred flushes into account. The lwb will be "done" 1517 * once zil_lwb_flush_vdevs_done() is called, which occurs in the zio 1518 * completion callback for the lwb's root zio. 1519 */ 1520 static void 1521 zil_lwb_write_done(zio_t *zio) 1522 { 1523 lwb_t *lwb = zio->io_private; 1524 spa_t *spa = zio->io_spa; 1525 zilog_t *zilog = lwb->lwb_zilog; 1526 avl_tree_t *t = &lwb->lwb_vdev_tree; 1527 void *cookie = NULL; 1528 zil_vdev_node_t *zv; 1529 lwb_t *nlwb; 1530 1531 ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0); 1532 1533 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 1534 ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG); 1535 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 1536 ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER); 1537 ASSERT(!BP_IS_GANG(zio->io_bp)); 1538 ASSERT(!BP_IS_HOLE(zio->io_bp)); 1539 ASSERT(BP_GET_FILL(zio->io_bp) == 0); 1540 1541 abd_free(zio->io_abd); 1542 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 1543 lwb->lwb_buf = NULL; 1544 1545 mutex_enter(&zilog->zl_lock); 1546 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED); 1547 lwb->lwb_state = LWB_STATE_WRITE_DONE; 1548 lwb->lwb_write_zio = NULL; 1549 lwb->lwb_fastwrite = FALSE; 1550 nlwb = list_next(&zilog->zl_lwb_list, lwb); 1551 mutex_exit(&zilog->zl_lock); 1552 1553 if (avl_numnodes(t) == 0) 1554 return; 1555 1556 /* 1557 * If there was an IO error, we're not going to call zio_flush() 1558 * on these vdevs, so we simply empty the tree and free the 1559 * nodes. We avoid calling zio_flush() since there isn't any 1560 * good reason for doing so, after the lwb block failed to be 1561 * written out. 1562 * 1563 * Additionally, we don't perform any further error handling at 1564 * this point (e.g. setting "zcw_zio_error" appropriately), as 1565 * we expect that to occur in "zil_lwb_flush_vdevs_done" (thus, 1566 * we expect any error seen here, to have been propagated to 1567 * that function). 1568 */ 1569 if (zio->io_error != 0) { 1570 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) 1571 kmem_free(zv, sizeof (*zv)); 1572 return; 1573 } 1574 1575 /* 1576 * If this lwb does not have any threads waiting for it to 1577 * complete, we want to defer issuing the DKIOCFLUSHWRITECACHE 1578 * command to the vdevs written to by "this" lwb, and instead 1579 * rely on the "next" lwb to handle the DKIOCFLUSHWRITECACHE 1580 * command for those vdevs. Thus, we merge the vdev tree of 1581 * "this" lwb with the vdev tree of the "next" lwb in the list, 1582 * and assume the "next" lwb will handle flushing the vdevs (or 1583 * deferring the flush(s) again). 1584 * 1585 * This is a useful performance optimization, especially for 1586 * workloads with lots of async write activity and few sync 1587 * write and/or fsync activity, as it has the potential to 1588 * coalesce multiple flush commands to a vdev into one. 1589 */ 1590 if (list_is_empty(&lwb->lwb_waiters) && nlwb != NULL) { 1591 zil_lwb_flush_defer(lwb, nlwb); 1592 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree)); 1593 return; 1594 } 1595 1596 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) { 1597 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev); 1598 if (vd != NULL && !vd->vdev_nowritecache) { 1599 /* 1600 * The "ZIO_FLAG_DONT_PROPAGATE" is currently 1601 * always used within "zio_flush". This means, 1602 * any errors when flushing the vdev(s), will 1603 * (unfortunately) not be handled correctly, 1604 * since these "zio_flush" errors will not be 1605 * propagated up to "zil_lwb_flush_vdevs_done". 1606 */ 1607 zio_flush(lwb->lwb_root_zio, vd); 1608 } 1609 kmem_free(zv, sizeof (*zv)); 1610 } 1611 } 1612 1613 static void 1614 zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb) 1615 { 1616 lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened; 1617 1618 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1619 ASSERT(MUTEX_HELD(&zilog->zl_lock)); 1620 1621 /* 1622 * The zilog's "zl_last_lwb_opened" field is used to build the 1623 * lwb/zio dependency chain, which is used to preserve the 1624 * ordering of lwb completions that is required by the semantics 1625 * of the ZIL. Each new lwb zio becomes a parent of the 1626 * "previous" lwb zio, such that the new lwb's zio cannot 1627 * complete until the "previous" lwb's zio completes. 1628 * 1629 * This is required by the semantics of zil_commit(); the commit 1630 * waiters attached to the lwbs will be woken in the lwb zio's 1631 * completion callback, so this zio dependency graph ensures the 1632 * waiters are woken in the correct order (the same order the 1633 * lwbs were created). 1634 */ 1635 if (last_lwb_opened != NULL && 1636 last_lwb_opened->lwb_state != LWB_STATE_FLUSH_DONE) { 1637 ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED || 1638 last_lwb_opened->lwb_state == LWB_STATE_ISSUED || 1639 last_lwb_opened->lwb_state == LWB_STATE_WRITE_DONE); 1640 1641 ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL); 1642 zio_add_child(lwb->lwb_root_zio, 1643 last_lwb_opened->lwb_root_zio); 1644 1645 /* 1646 * If the previous lwb's write hasn't already completed, 1647 * we also want to order the completion of the lwb write 1648 * zios (above, we only order the completion of the lwb 1649 * root zios). This is required because of how we can 1650 * defer the DKIOCFLUSHWRITECACHE commands for each lwb. 1651 * 1652 * When the DKIOCFLUSHWRITECACHE commands are deferred, 1653 * the previous lwb will rely on this lwb to flush the 1654 * vdevs written to by that previous lwb. Thus, we need 1655 * to ensure this lwb doesn't issue the flush until 1656 * after the previous lwb's write completes. We ensure 1657 * this ordering by setting the zio parent/child 1658 * relationship here. 1659 * 1660 * Without this relationship on the lwb's write zio, 1661 * it's possible for this lwb's write to complete prior 1662 * to the previous lwb's write completing; and thus, the 1663 * vdevs for the previous lwb would be flushed prior to 1664 * that lwb's data being written to those vdevs (the 1665 * vdevs are flushed in the lwb write zio's completion 1666 * handler, zil_lwb_write_done()). 1667 */ 1668 if (last_lwb_opened->lwb_state != LWB_STATE_WRITE_DONE) { 1669 ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED || 1670 last_lwb_opened->lwb_state == LWB_STATE_ISSUED); 1671 1672 ASSERT3P(last_lwb_opened->lwb_write_zio, !=, NULL); 1673 zio_add_child(lwb->lwb_write_zio, 1674 last_lwb_opened->lwb_write_zio); 1675 } 1676 } 1677 } 1678 1679 1680 /* 1681 * This function's purpose is to "open" an lwb such that it is ready to 1682 * accept new itxs being committed to it. To do this, the lwb's zio 1683 * structures are created, and linked to the lwb. This function is 1684 * idempotent; if the passed in lwb has already been opened, this 1685 * function is essentially a no-op. 1686 */ 1687 static void 1688 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb) 1689 { 1690 zbookmark_phys_t zb; 1691 zio_priority_t prio; 1692 1693 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1694 ASSERT3P(lwb, !=, NULL); 1695 EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED); 1696 EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED); 1697 1698 if (lwb->lwb_root_zio != NULL) 1699 return; 1700 1701 lwb->lwb_root_zio = zio_root(zilog->zl_spa, 1702 zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL); 1703 1704 abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf, 1705 BP_GET_LSIZE(&lwb->lwb_blk)); 1706 1707 if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk) 1708 prio = ZIO_PRIORITY_SYNC_WRITE; 1709 else 1710 prio = ZIO_PRIORITY_ASYNC_WRITE; 1711 1712 SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1713 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, 1714 lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]); 1715 1716 /* Lock so zil_sync() doesn't fastwrite_unmark after zio is created */ 1717 mutex_enter(&zilog->zl_lock); 1718 if (!lwb->lwb_fastwrite) { 1719 metaslab_fastwrite_mark(zilog->zl_spa, &lwb->lwb_blk); 1720 lwb->lwb_fastwrite = 1; 1721 } 1722 1723 lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio, zilog->zl_spa, 0, 1724 &lwb->lwb_blk, lwb_abd, BP_GET_LSIZE(&lwb->lwb_blk), 1725 zil_lwb_write_done, lwb, prio, 1726 ZIO_FLAG_CANFAIL | ZIO_FLAG_FASTWRITE, &zb); 1727 1728 lwb->lwb_state = LWB_STATE_OPENED; 1729 1730 zil_lwb_set_zio_dependency(zilog, lwb); 1731 zilog->zl_last_lwb_opened = lwb; 1732 mutex_exit(&zilog->zl_lock); 1733 } 1734 1735 /* 1736 * Define a limited set of intent log block sizes. 1737 * 1738 * These must be a multiple of 4KB. Note only the amount used (again 1739 * aligned to 4KB) actually gets written. However, we can't always just 1740 * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted. 1741 */ 1742 static const struct { 1743 uint64_t limit; 1744 uint64_t blksz; 1745 } zil_block_buckets[] = { 1746 { 4096, 4096 }, /* non TX_WRITE */ 1747 { 8192 + 4096, 8192 + 4096 }, /* database */ 1748 { 32768 + 4096, 32768 + 4096 }, /* NFS writes */ 1749 { 65536 + 4096, 65536 + 4096 }, /* 64KB writes */ 1750 { 131072, 131072 }, /* < 128KB writes */ 1751 { 131072 +4096, 65536 + 4096 }, /* 128KB writes */ 1752 { UINT64_MAX, SPA_OLD_MAXBLOCKSIZE}, /* > 128KB writes */ 1753 }; 1754 1755 /* 1756 * Maximum block size used by the ZIL. This is picked up when the ZIL is 1757 * initialized. Otherwise this should not be used directly; see 1758 * zl_max_block_size instead. 1759 */ 1760 static uint_t zil_maxblocksize = SPA_OLD_MAXBLOCKSIZE; 1761 1762 /* 1763 * Close the log block for being issued and allocate the next one. 1764 * Has to be called under zl_issuer_lock to chain more lwbs. 1765 */ 1766 static lwb_t * 1767 zil_lwb_write_close(zilog_t *zilog, lwb_t *lwb) 1768 { 1769 lwb_t *nlwb = NULL; 1770 zil_chain_t *zilc; 1771 spa_t *spa = zilog->zl_spa; 1772 blkptr_t *bp; 1773 dmu_tx_t *tx; 1774 uint64_t txg; 1775 uint64_t zil_blksz; 1776 int i, error; 1777 boolean_t slog; 1778 1779 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1780 ASSERT3P(lwb->lwb_root_zio, !=, NULL); 1781 ASSERT3P(lwb->lwb_write_zio, !=, NULL); 1782 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED); 1783 1784 /* 1785 * If this lwb includes indirect writes, we have to commit before 1786 * creating the transaction, otherwise we may end up in dead lock. 1787 */ 1788 if (lwb->lwb_indirect) { 1789 for (itx_t *itx = list_head(&lwb->lwb_itxs); itx; 1790 itx = list_next(&lwb->lwb_itxs, itx)) 1791 zil_lwb_commit(zilog, lwb, itx); 1792 lwb->lwb_nused = lwb->lwb_nfilled; 1793 } 1794 1795 /* 1796 * Allocate the next block and save its address in this block 1797 * before writing it in order to establish the log chain. 1798 */ 1799 1800 tx = dmu_tx_create(zilog->zl_os); 1801 1802 /* 1803 * Since we are not going to create any new dirty data, and we 1804 * can even help with clearing the existing dirty data, we 1805 * should not be subject to the dirty data based delays. We 1806 * use TXG_NOTHROTTLE to bypass the delay mechanism. 1807 */ 1808 VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE)); 1809 1810 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 1811 txg = dmu_tx_get_txg(tx); 1812 1813 mutex_enter(&zilog->zl_lwb_io_lock); 1814 lwb->lwb_issued_txg = txg; 1815 zilog->zl_lwb_inflight[txg & TXG_MASK]++; 1816 zilog->zl_lwb_max_issued_txg = MAX(txg, zilog->zl_lwb_max_issued_txg); 1817 mutex_exit(&zilog->zl_lwb_io_lock); 1818 1819 /* 1820 * Log blocks are pre-allocated. Here we select the size of the next 1821 * block, based on size used in the last block. 1822 * - first find the smallest bucket that will fit the block from a 1823 * limited set of block sizes. This is because it's faster to write 1824 * blocks allocated from the same metaslab as they are adjacent or 1825 * close. 1826 * - next find the maximum from the new suggested size and an array of 1827 * previous sizes. This lessens a picket fence effect of wrongly 1828 * guessing the size if we have a stream of say 2k, 64k, 2k, 64k 1829 * requests. 1830 * 1831 * Note we only write what is used, but we can't just allocate 1832 * the maximum block size because we can exhaust the available 1833 * pool log space. 1834 */ 1835 zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t); 1836 for (i = 0; zil_blksz > zil_block_buckets[i].limit; i++) 1837 continue; 1838 zil_blksz = MIN(zil_block_buckets[i].blksz, zilog->zl_max_block_size); 1839 zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz; 1840 for (i = 0; i < ZIL_PREV_BLKS; i++) 1841 zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]); 1842 DTRACE_PROBE3(zil__block__size, zilog_t *, zilog, 1843 uint64_t, zil_blksz, 1844 uint64_t, zilog->zl_prev_blks[zilog->zl_prev_rotor]); 1845 zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1); 1846 1847 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) 1848 zilc = (zil_chain_t *)lwb->lwb_buf; 1849 else 1850 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz); 1851 bp = &zilc->zc_next_blk; 1852 BP_ZERO(bp); 1853 error = zio_alloc_zil(spa, zilog->zl_os, txg, bp, zil_blksz, &slog); 1854 if (error == 0) { 1855 ASSERT3U(bp->blk_birth, ==, txg); 1856 bp->blk_cksum = lwb->lwb_blk.blk_cksum; 1857 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++; 1858 1859 /* 1860 * Allocate a new log write block (lwb). 1861 */ 1862 nlwb = zil_alloc_lwb(zilog, bp, slog, txg, TRUE); 1863 } 1864 1865 lwb->lwb_state = LWB_STATE_ISSUED; 1866 1867 dmu_tx_commit(tx); 1868 1869 /* 1870 * If there was an allocation failure then nlwb will be null which 1871 * forces a txg_wait_synced(). 1872 */ 1873 return (nlwb); 1874 } 1875 1876 /* 1877 * Finalize previously closed block and issue the write zio. 1878 * Does not require locking. 1879 */ 1880 static void 1881 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb) 1882 { 1883 zil_chain_t *zilc; 1884 int wsz; 1885 1886 /* Actually fill the lwb with the data if not yet. */ 1887 if (!lwb->lwb_indirect) { 1888 for (itx_t *itx = list_head(&lwb->lwb_itxs); itx; 1889 itx = list_next(&lwb->lwb_itxs, itx)) 1890 zil_lwb_commit(zilog, lwb, itx); 1891 lwb->lwb_nused = lwb->lwb_nfilled; 1892 } 1893 1894 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) { 1895 /* For Slim ZIL only write what is used. */ 1896 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, int); 1897 ASSERT3S(wsz, <=, lwb->lwb_sz); 1898 zio_shrink(lwb->lwb_write_zio, wsz); 1899 wsz = lwb->lwb_write_zio->io_size; 1900 1901 zilc = (zil_chain_t *)lwb->lwb_buf; 1902 } else { 1903 wsz = lwb->lwb_sz; 1904 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz); 1905 } 1906 zilc->zc_pad = 0; 1907 zilc->zc_nused = lwb->lwb_nused; 1908 zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum; 1909 1910 /* 1911 * clear unused data for security 1912 */ 1913 memset(lwb->lwb_buf + lwb->lwb_nused, 0, wsz - lwb->lwb_nused); 1914 1915 if (lwb->lwb_slog) { 1916 ZIL_STAT_BUMP(zilog, zil_itx_metaslab_slog_count); 1917 ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_bytes, 1918 lwb->lwb_nused); 1919 ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_write, 1920 wsz); 1921 ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_alloc, 1922 BP_GET_LSIZE(&lwb->lwb_blk)); 1923 } else { 1924 ZIL_STAT_BUMP(zilog, zil_itx_metaslab_normal_count); 1925 ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_bytes, 1926 lwb->lwb_nused); 1927 ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_write, 1928 wsz); 1929 ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_alloc, 1930 BP_GET_LSIZE(&lwb->lwb_blk)); 1931 } 1932 spa_config_enter(zilog->zl_spa, SCL_STATE, lwb, RW_READER); 1933 zil_lwb_add_block(lwb, &lwb->lwb_blk); 1934 lwb->lwb_issued_timestamp = gethrtime(); 1935 zio_nowait(lwb->lwb_root_zio); 1936 zio_nowait(lwb->lwb_write_zio); 1937 } 1938 1939 /* 1940 * Maximum amount of data that can be put into single log block. 1941 */ 1942 uint64_t 1943 zil_max_log_data(zilog_t *zilog, size_t hdrsize) 1944 { 1945 return (zilog->zl_max_block_size - sizeof (zil_chain_t) - hdrsize); 1946 } 1947 1948 /* 1949 * Maximum amount of log space we agree to waste to reduce number of 1950 * WR_NEED_COPY chunks to reduce zl_get_data() overhead (~12%). 1951 */ 1952 static inline uint64_t 1953 zil_max_waste_space(zilog_t *zilog) 1954 { 1955 return (zil_max_log_data(zilog, sizeof (lr_write_t)) / 8); 1956 } 1957 1958 /* 1959 * Maximum amount of write data for WR_COPIED. For correctness, consumers 1960 * must fall back to WR_NEED_COPY if we can't fit the entire record into one 1961 * maximum sized log block, because each WR_COPIED record must fit in a 1962 * single log block. For space efficiency, we want to fit two records into a 1963 * max-sized log block. 1964 */ 1965 uint64_t 1966 zil_max_copied_data(zilog_t *zilog) 1967 { 1968 return ((zilog->zl_max_block_size - sizeof (zil_chain_t)) / 2 - 1969 sizeof (lr_write_t)); 1970 } 1971 1972 /* 1973 * Estimate space needed in the lwb for the itx. Allocate more lwbs or 1974 * split the itx as needed, but don't touch the actual transaction data. 1975 * Has to be called under zl_issuer_lock to call zil_lwb_write_close() 1976 * to chain more lwbs. 1977 */ 1978 static lwb_t * 1979 zil_lwb_assign(zilog_t *zilog, lwb_t *lwb, itx_t *itx, list_t *ilwbs) 1980 { 1981 itx_t *citx; 1982 lr_t *lr, *clr; 1983 lr_write_t *lrw; 1984 uint64_t dlen, dnow, lwb_sp, reclen, max_log_data; 1985 1986 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1987 ASSERT3P(lwb, !=, NULL); 1988 ASSERT3P(lwb->lwb_buf, !=, NULL); 1989 1990 zil_lwb_write_open(zilog, lwb); 1991 1992 lr = &itx->itx_lr; 1993 lrw = (lr_write_t *)lr; 1994 1995 /* 1996 * A commit itx doesn't represent any on-disk state; instead 1997 * it's simply used as a place holder on the commit list, and 1998 * provides a mechanism for attaching a "commit waiter" onto the 1999 * correct lwb (such that the waiter can be signalled upon 2000 * completion of that lwb). Thus, we don't process this itx's 2001 * log record if it's a commit itx (these itx's don't have log 2002 * records), and instead link the itx's waiter onto the lwb's 2003 * list of waiters. 2004 * 2005 * For more details, see the comment above zil_commit(). 2006 */ 2007 if (lr->lrc_txtype == TX_COMMIT) { 2008 mutex_enter(&zilog->zl_lock); 2009 zil_commit_waiter_link_lwb(itx->itx_private, lwb); 2010 itx->itx_private = NULL; 2011 mutex_exit(&zilog->zl_lock); 2012 list_insert_tail(&lwb->lwb_itxs, itx); 2013 return (lwb); 2014 } 2015 2016 if (lr->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) { 2017 dlen = P2ROUNDUP_TYPED( 2018 lrw->lr_length, sizeof (uint64_t), uint64_t); 2019 } else { 2020 dlen = 0; 2021 } 2022 reclen = lr->lrc_reclen; 2023 zilog->zl_cur_used += (reclen + dlen); 2024 2025 cont: 2026 /* 2027 * If this record won't fit in the current log block, start a new one. 2028 * For WR_NEED_COPY optimize layout for minimal number of chunks. 2029 */ 2030 lwb_sp = lwb->lwb_sz - lwb->lwb_nused; 2031 max_log_data = zil_max_log_data(zilog, sizeof (lr_write_t)); 2032 if (reclen > lwb_sp || (reclen + dlen > lwb_sp && 2033 lwb_sp < zil_max_waste_space(zilog) && 2034 (dlen % max_log_data == 0 || 2035 lwb_sp < reclen + dlen % max_log_data))) { 2036 list_insert_tail(ilwbs, lwb); 2037 lwb = zil_lwb_write_close(zilog, lwb); 2038 if (lwb == NULL) 2039 return (NULL); 2040 zil_lwb_write_open(zilog, lwb); 2041 lwb_sp = lwb->lwb_sz - lwb->lwb_nused; 2042 2043 /* 2044 * There must be enough space in the new, empty log block to 2045 * hold reclen. For WR_COPIED, we need to fit the whole 2046 * record in one block, and reclen is the header size + the 2047 * data size. For WR_NEED_COPY, we can create multiple 2048 * records, splitting the data into multiple blocks, so we 2049 * only need to fit one word of data per block; in this case 2050 * reclen is just the header size (no data). 2051 */ 2052 ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp); 2053 } 2054 2055 dnow = MIN(dlen, lwb_sp - reclen); 2056 if (dlen > dnow) { 2057 ASSERT3U(lr->lrc_txtype, ==, TX_WRITE); 2058 ASSERT3U(itx->itx_wr_state, ==, WR_NEED_COPY); 2059 citx = zil_itx_clone(itx); 2060 clr = &citx->itx_lr; 2061 lr_write_t *clrw = (lr_write_t *)clr; 2062 clrw->lr_length = dnow; 2063 lrw->lr_offset += dnow; 2064 lrw->lr_length -= dnow; 2065 } else { 2066 citx = itx; 2067 clr = lr; 2068 } 2069 2070 /* 2071 * We're actually making an entry, so update lrc_seq to be the 2072 * log record sequence number. Note that this is generally not 2073 * equal to the itx sequence number because not all transactions 2074 * are synchronous, and sometimes spa_sync() gets there first. 2075 */ 2076 clr->lrc_seq = ++zilog->zl_lr_seq; 2077 2078 lwb->lwb_nused += reclen + dnow; 2079 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz); 2080 ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t))); 2081 2082 zil_lwb_add_txg(lwb, lr->lrc_txg); 2083 list_insert_tail(&lwb->lwb_itxs, citx); 2084 2085 dlen -= dnow; 2086 if (dlen > 0) { 2087 zilog->zl_cur_used += reclen; 2088 goto cont; 2089 } 2090 2091 /* 2092 * We have to really issue all queued LWBs before we may have to 2093 * wait for a txg sync. Otherwise we may end up in a dead lock. 2094 */ 2095 if (lr->lrc_txtype == TX_WRITE) { 2096 boolean_t frozen = lr->lrc_txg > spa_freeze_txg(zilog->zl_spa); 2097 if (frozen || itx->itx_wr_state == WR_INDIRECT) { 2098 lwb_t *tlwb; 2099 while ((tlwb = list_remove_head(ilwbs)) != NULL) 2100 zil_lwb_write_issue(zilog, tlwb); 2101 } 2102 if (itx->itx_wr_state == WR_INDIRECT) 2103 lwb->lwb_indirect = B_TRUE; 2104 if (frozen) 2105 txg_wait_synced(zilog->zl_dmu_pool, lr->lrc_txg); 2106 } 2107 2108 return (lwb); 2109 } 2110 2111 /* 2112 * Fill the actual transaction data into the lwb, following zil_lwb_assign(). 2113 * Does not require locking. 2114 */ 2115 static void 2116 zil_lwb_commit(zilog_t *zilog, lwb_t *lwb, itx_t *itx) 2117 { 2118 lr_t *lr, *lrb; 2119 lr_write_t *lrw, *lrwb; 2120 char *lr_buf; 2121 uint64_t dlen, reclen; 2122 2123 lr = &itx->itx_lr; 2124 lrw = (lr_write_t *)lr; 2125 2126 if (lr->lrc_txtype == TX_COMMIT) 2127 return; 2128 2129 if (lr->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) { 2130 dlen = P2ROUNDUP_TYPED( 2131 lrw->lr_length, sizeof (uint64_t), uint64_t); 2132 } else { 2133 dlen = 0; 2134 } 2135 reclen = lr->lrc_reclen; 2136 ASSERT3U(reclen + dlen, <=, lwb->lwb_nused - lwb->lwb_nfilled); 2137 2138 lr_buf = lwb->lwb_buf + lwb->lwb_nfilled; 2139 memcpy(lr_buf, lr, reclen); 2140 lrb = (lr_t *)lr_buf; /* Like lr, but inside lwb. */ 2141 lrwb = (lr_write_t *)lrb; /* Like lrw, but inside lwb. */ 2142 2143 ZIL_STAT_BUMP(zilog, zil_itx_count); 2144 2145 /* 2146 * If it's a write, fetch the data or get its blkptr as appropriate. 2147 */ 2148 if (lr->lrc_txtype == TX_WRITE) { 2149 if (itx->itx_wr_state == WR_COPIED) { 2150 ZIL_STAT_BUMP(zilog, zil_itx_copied_count); 2151 ZIL_STAT_INCR(zilog, zil_itx_copied_bytes, 2152 lrw->lr_length); 2153 } else { 2154 char *dbuf; 2155 int error; 2156 2157 if (itx->itx_wr_state == WR_NEED_COPY) { 2158 dbuf = lr_buf + reclen; 2159 lrb->lrc_reclen += dlen; 2160 ZIL_STAT_BUMP(zilog, zil_itx_needcopy_count); 2161 ZIL_STAT_INCR(zilog, zil_itx_needcopy_bytes, 2162 dlen); 2163 } else { 2164 ASSERT3S(itx->itx_wr_state, ==, WR_INDIRECT); 2165 dbuf = NULL; 2166 ZIL_STAT_BUMP(zilog, zil_itx_indirect_count); 2167 ZIL_STAT_INCR(zilog, zil_itx_indirect_bytes, 2168 lrw->lr_length); 2169 } 2170 2171 /* 2172 * We pass in the "lwb_write_zio" rather than 2173 * "lwb_root_zio" so that the "lwb_write_zio" 2174 * becomes the parent of any zio's created by 2175 * the "zl_get_data" callback. The vdevs are 2176 * flushed after the "lwb_write_zio" completes, 2177 * so we want to make sure that completion 2178 * callback waits for these additional zio's, 2179 * such that the vdevs used by those zio's will 2180 * be included in the lwb's vdev tree, and those 2181 * vdevs will be properly flushed. If we passed 2182 * in "lwb_root_zio" here, then these additional 2183 * vdevs may not be flushed; e.g. if these zio's 2184 * completed after "lwb_write_zio" completed. 2185 */ 2186 error = zilog->zl_get_data(itx->itx_private, 2187 itx->itx_gen, lrwb, dbuf, lwb, 2188 lwb->lwb_write_zio); 2189 if (dbuf != NULL && error == 0) { 2190 /* Zero any padding bytes in the last block. */ 2191 memset((char *)dbuf + lrwb->lr_length, 0, 2192 dlen - lrwb->lr_length); 2193 } 2194 2195 /* 2196 * Typically, the only return values we should see from 2197 * ->zl_get_data() are 0, EIO, ENOENT, EEXIST or 2198 * EALREADY. However, it is also possible to see other 2199 * error values such as ENOSPC or EINVAL from 2200 * dmu_read() -> dnode_hold() -> dnode_hold_impl() or 2201 * ENXIO as well as a multitude of others from the 2202 * block layer through dmu_buf_hold() -> dbuf_read() 2203 * -> zio_wait(), as well as through dmu_read() -> 2204 * dnode_hold() -> dnode_hold_impl() -> dbuf_read() -> 2205 * zio_wait(). When these errors happen, we can assume 2206 * that neither an immediate write nor an indirect 2207 * write occurred, so we need to fall back to 2208 * txg_wait_synced(). This is unusual, so we print to 2209 * dmesg whenever one of these errors occurs. 2210 */ 2211 switch (error) { 2212 case 0: 2213 break; 2214 default: 2215 cmn_err(CE_WARN, "zil_lwb_commit() received " 2216 "unexpected error %d from ->zl_get_data()" 2217 ". Falling back to txg_wait_synced().", 2218 error); 2219 zfs_fallthrough; 2220 case EIO: 2221 if (lwb->lwb_indirect) { 2222 txg_wait_synced(zilog->zl_dmu_pool, 2223 lr->lrc_txg); 2224 } else { 2225 lwb->lwb_write_zio->io_error = error; 2226 } 2227 zfs_fallthrough; 2228 case ENOENT: 2229 zfs_fallthrough; 2230 case EEXIST: 2231 zfs_fallthrough; 2232 case EALREADY: 2233 return; 2234 } 2235 } 2236 } 2237 2238 lwb->lwb_nfilled += reclen + dlen; 2239 ASSERT3S(lwb->lwb_nfilled, <=, lwb->lwb_nused); 2240 ASSERT0(P2PHASE(lwb->lwb_nfilled, sizeof (uint64_t))); 2241 } 2242 2243 itx_t * 2244 zil_itx_create(uint64_t txtype, size_t olrsize) 2245 { 2246 size_t itxsize, lrsize; 2247 itx_t *itx; 2248 2249 lrsize = P2ROUNDUP_TYPED(olrsize, sizeof (uint64_t), size_t); 2250 itxsize = offsetof(itx_t, itx_lr) + lrsize; 2251 2252 itx = zio_data_buf_alloc(itxsize); 2253 itx->itx_lr.lrc_txtype = txtype; 2254 itx->itx_lr.lrc_reclen = lrsize; 2255 itx->itx_lr.lrc_seq = 0; /* defensive */ 2256 memset((char *)&itx->itx_lr + olrsize, 0, lrsize - olrsize); 2257 itx->itx_sync = B_TRUE; /* default is synchronous */ 2258 itx->itx_callback = NULL; 2259 itx->itx_callback_data = NULL; 2260 itx->itx_size = itxsize; 2261 2262 return (itx); 2263 } 2264 2265 static itx_t * 2266 zil_itx_clone(itx_t *oitx) 2267 { 2268 itx_t *itx = zio_data_buf_alloc(oitx->itx_size); 2269 memcpy(itx, oitx, oitx->itx_size); 2270 itx->itx_callback = NULL; 2271 itx->itx_callback_data = NULL; 2272 return (itx); 2273 } 2274 2275 void 2276 zil_itx_destroy(itx_t *itx) 2277 { 2278 IMPLY(itx->itx_lr.lrc_txtype == TX_COMMIT, itx->itx_callback == NULL); 2279 IMPLY(itx->itx_callback != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT); 2280 2281 if (itx->itx_callback != NULL) 2282 itx->itx_callback(itx->itx_callback_data); 2283 2284 zio_data_buf_free(itx, itx->itx_size); 2285 } 2286 2287 /* 2288 * Free up the sync and async itxs. The itxs_t has already been detached 2289 * so no locks are needed. 2290 */ 2291 static void 2292 zil_itxg_clean(void *arg) 2293 { 2294 itx_t *itx; 2295 list_t *list; 2296 avl_tree_t *t; 2297 void *cookie; 2298 itxs_t *itxs = arg; 2299 itx_async_node_t *ian; 2300 2301 list = &itxs->i_sync_list; 2302 while ((itx = list_remove_head(list)) != NULL) { 2303 /* 2304 * In the general case, commit itxs will not be found 2305 * here, as they'll be committed to an lwb via 2306 * zil_lwb_assign(), and free'd in that function. Having 2307 * said that, it is still possible for commit itxs to be 2308 * found here, due to the following race: 2309 * 2310 * - a thread calls zil_commit() which assigns the 2311 * commit itx to a per-txg i_sync_list 2312 * - zil_itxg_clean() is called (e.g. via spa_sync()) 2313 * while the waiter is still on the i_sync_list 2314 * 2315 * There's nothing to prevent syncing the txg while the 2316 * waiter is on the i_sync_list. This normally doesn't 2317 * happen because spa_sync() is slower than zil_commit(), 2318 * but if zil_commit() calls txg_wait_synced() (e.g. 2319 * because zil_create() or zil_commit_writer_stall() is 2320 * called) we will hit this case. 2321 */ 2322 if (itx->itx_lr.lrc_txtype == TX_COMMIT) 2323 zil_commit_waiter_skip(itx->itx_private); 2324 2325 zil_itx_destroy(itx); 2326 } 2327 2328 cookie = NULL; 2329 t = &itxs->i_async_tree; 2330 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { 2331 list = &ian->ia_list; 2332 while ((itx = list_remove_head(list)) != NULL) { 2333 /* commit itxs should never be on the async lists. */ 2334 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT); 2335 zil_itx_destroy(itx); 2336 } 2337 list_destroy(list); 2338 kmem_free(ian, sizeof (itx_async_node_t)); 2339 } 2340 avl_destroy(t); 2341 2342 kmem_free(itxs, sizeof (itxs_t)); 2343 } 2344 2345 static int 2346 zil_aitx_compare(const void *x1, const void *x2) 2347 { 2348 const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid; 2349 const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid; 2350 2351 return (TREE_CMP(o1, o2)); 2352 } 2353 2354 /* 2355 * Remove all async itx with the given oid. 2356 */ 2357 void 2358 zil_remove_async(zilog_t *zilog, uint64_t oid) 2359 { 2360 uint64_t otxg, txg; 2361 itx_async_node_t *ian; 2362 avl_tree_t *t; 2363 avl_index_t where; 2364 list_t clean_list; 2365 itx_t *itx; 2366 2367 ASSERT(oid != 0); 2368 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node)); 2369 2370 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 2371 otxg = ZILTEST_TXG; 2372 else 2373 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 2374 2375 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 2376 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 2377 2378 mutex_enter(&itxg->itxg_lock); 2379 if (itxg->itxg_txg != txg) { 2380 mutex_exit(&itxg->itxg_lock); 2381 continue; 2382 } 2383 2384 /* 2385 * Locate the object node and append its list. 2386 */ 2387 t = &itxg->itxg_itxs->i_async_tree; 2388 ian = avl_find(t, &oid, &where); 2389 if (ian != NULL) 2390 list_move_tail(&clean_list, &ian->ia_list); 2391 mutex_exit(&itxg->itxg_lock); 2392 } 2393 while ((itx = list_remove_head(&clean_list)) != NULL) { 2394 /* commit itxs should never be on the async lists. */ 2395 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT); 2396 zil_itx_destroy(itx); 2397 } 2398 list_destroy(&clean_list); 2399 } 2400 2401 void 2402 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx) 2403 { 2404 uint64_t txg; 2405 itxg_t *itxg; 2406 itxs_t *itxs, *clean = NULL; 2407 2408 /* 2409 * Ensure the data of a renamed file is committed before the rename. 2410 */ 2411 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME) 2412 zil_async_to_sync(zilog, itx->itx_oid); 2413 2414 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) 2415 txg = ZILTEST_TXG; 2416 else 2417 txg = dmu_tx_get_txg(tx); 2418 2419 itxg = &zilog->zl_itxg[txg & TXG_MASK]; 2420 mutex_enter(&itxg->itxg_lock); 2421 itxs = itxg->itxg_itxs; 2422 if (itxg->itxg_txg != txg) { 2423 if (itxs != NULL) { 2424 /* 2425 * The zil_clean callback hasn't got around to cleaning 2426 * this itxg. Save the itxs for release below. 2427 * This should be rare. 2428 */ 2429 zfs_dbgmsg("zil_itx_assign: missed itx cleanup for " 2430 "txg %llu", (u_longlong_t)itxg->itxg_txg); 2431 clean = itxg->itxg_itxs; 2432 } 2433 itxg->itxg_txg = txg; 2434 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), 2435 KM_SLEEP); 2436 2437 list_create(&itxs->i_sync_list, sizeof (itx_t), 2438 offsetof(itx_t, itx_node)); 2439 avl_create(&itxs->i_async_tree, zil_aitx_compare, 2440 sizeof (itx_async_node_t), 2441 offsetof(itx_async_node_t, ia_node)); 2442 } 2443 if (itx->itx_sync) { 2444 list_insert_tail(&itxs->i_sync_list, itx); 2445 } else { 2446 avl_tree_t *t = &itxs->i_async_tree; 2447 uint64_t foid = 2448 LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid); 2449 itx_async_node_t *ian; 2450 avl_index_t where; 2451 2452 ian = avl_find(t, &foid, &where); 2453 if (ian == NULL) { 2454 ian = kmem_alloc(sizeof (itx_async_node_t), 2455 KM_SLEEP); 2456 list_create(&ian->ia_list, sizeof (itx_t), 2457 offsetof(itx_t, itx_node)); 2458 ian->ia_foid = foid; 2459 avl_insert(t, ian, where); 2460 } 2461 list_insert_tail(&ian->ia_list, itx); 2462 } 2463 2464 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx); 2465 2466 /* 2467 * We don't want to dirty the ZIL using ZILTEST_TXG, because 2468 * zil_clean() will never be called using ZILTEST_TXG. Thus, we 2469 * need to be careful to always dirty the ZIL using the "real" 2470 * TXG (not itxg_txg) even when the SPA is frozen. 2471 */ 2472 zilog_dirty(zilog, dmu_tx_get_txg(tx)); 2473 mutex_exit(&itxg->itxg_lock); 2474 2475 /* Release the old itxs now we've dropped the lock */ 2476 if (clean != NULL) 2477 zil_itxg_clean(clean); 2478 } 2479 2480 /* 2481 * If there are any in-memory intent log transactions which have now been 2482 * synced then start up a taskq to free them. We should only do this after we 2483 * have written out the uberblocks (i.e. txg has been committed) so that 2484 * don't inadvertently clean out in-memory log records that would be required 2485 * by zil_commit(). 2486 */ 2487 void 2488 zil_clean(zilog_t *zilog, uint64_t synced_txg) 2489 { 2490 itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK]; 2491 itxs_t *clean_me; 2492 2493 ASSERT3U(synced_txg, <, ZILTEST_TXG); 2494 2495 mutex_enter(&itxg->itxg_lock); 2496 if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) { 2497 mutex_exit(&itxg->itxg_lock); 2498 return; 2499 } 2500 ASSERT3U(itxg->itxg_txg, <=, synced_txg); 2501 ASSERT3U(itxg->itxg_txg, !=, 0); 2502 clean_me = itxg->itxg_itxs; 2503 itxg->itxg_itxs = NULL; 2504 itxg->itxg_txg = 0; 2505 mutex_exit(&itxg->itxg_lock); 2506 /* 2507 * Preferably start a task queue to free up the old itxs but 2508 * if taskq_dispatch can't allocate resources to do that then 2509 * free it in-line. This should be rare. Note, using TQ_SLEEP 2510 * created a bad performance problem. 2511 */ 2512 ASSERT3P(zilog->zl_dmu_pool, !=, NULL); 2513 ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL); 2514 taskqid_t id = taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq, 2515 zil_itxg_clean, clean_me, TQ_NOSLEEP); 2516 if (id == TASKQID_INVALID) 2517 zil_itxg_clean(clean_me); 2518 } 2519 2520 /* 2521 * This function will traverse the queue of itxs that need to be 2522 * committed, and move them onto the ZIL's zl_itx_commit_list. 2523 */ 2524 static void 2525 zil_get_commit_list(zilog_t *zilog) 2526 { 2527 uint64_t otxg, txg; 2528 list_t *commit_list = &zilog->zl_itx_commit_list; 2529 2530 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2531 2532 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 2533 otxg = ZILTEST_TXG; 2534 else 2535 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 2536 2537 /* 2538 * This is inherently racy, since there is nothing to prevent 2539 * the last synced txg from changing. That's okay since we'll 2540 * only commit things in the future. 2541 */ 2542 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 2543 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 2544 2545 mutex_enter(&itxg->itxg_lock); 2546 if (itxg->itxg_txg != txg) { 2547 mutex_exit(&itxg->itxg_lock); 2548 continue; 2549 } 2550 2551 /* 2552 * If we're adding itx records to the zl_itx_commit_list, 2553 * then the zil better be dirty in this "txg". We can assert 2554 * that here since we're holding the itxg_lock which will 2555 * prevent spa_sync from cleaning it. Once we add the itxs 2556 * to the zl_itx_commit_list we must commit it to disk even 2557 * if it's unnecessary (i.e. the txg was synced). 2558 */ 2559 ASSERT(zilog_is_dirty_in_txg(zilog, txg) || 2560 spa_freeze_txg(zilog->zl_spa) != UINT64_MAX); 2561 list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list); 2562 2563 mutex_exit(&itxg->itxg_lock); 2564 } 2565 } 2566 2567 /* 2568 * Move the async itxs for a specified object to commit into sync lists. 2569 */ 2570 void 2571 zil_async_to_sync(zilog_t *zilog, uint64_t foid) 2572 { 2573 uint64_t otxg, txg; 2574 itx_async_node_t *ian; 2575 avl_tree_t *t; 2576 avl_index_t where; 2577 2578 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 2579 otxg = ZILTEST_TXG; 2580 else 2581 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 2582 2583 /* 2584 * This is inherently racy, since there is nothing to prevent 2585 * the last synced txg from changing. 2586 */ 2587 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 2588 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 2589 2590 mutex_enter(&itxg->itxg_lock); 2591 if (itxg->itxg_txg != txg) { 2592 mutex_exit(&itxg->itxg_lock); 2593 continue; 2594 } 2595 2596 /* 2597 * If a foid is specified then find that node and append its 2598 * list. Otherwise walk the tree appending all the lists 2599 * to the sync list. We add to the end rather than the 2600 * beginning to ensure the create has happened. 2601 */ 2602 t = &itxg->itxg_itxs->i_async_tree; 2603 if (foid != 0) { 2604 ian = avl_find(t, &foid, &where); 2605 if (ian != NULL) { 2606 list_move_tail(&itxg->itxg_itxs->i_sync_list, 2607 &ian->ia_list); 2608 } 2609 } else { 2610 void *cookie = NULL; 2611 2612 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { 2613 list_move_tail(&itxg->itxg_itxs->i_sync_list, 2614 &ian->ia_list); 2615 list_destroy(&ian->ia_list); 2616 kmem_free(ian, sizeof (itx_async_node_t)); 2617 } 2618 } 2619 mutex_exit(&itxg->itxg_lock); 2620 } 2621 } 2622 2623 /* 2624 * This function will prune commit itxs that are at the head of the 2625 * commit list (it won't prune past the first non-commit itx), and 2626 * either: a) attach them to the last lwb that's still pending 2627 * completion, or b) skip them altogether. 2628 * 2629 * This is used as a performance optimization to prevent commit itxs 2630 * from generating new lwbs when it's unnecessary to do so. 2631 */ 2632 static void 2633 zil_prune_commit_list(zilog_t *zilog) 2634 { 2635 itx_t *itx; 2636 2637 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2638 2639 while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) { 2640 lr_t *lrc = &itx->itx_lr; 2641 if (lrc->lrc_txtype != TX_COMMIT) 2642 break; 2643 2644 mutex_enter(&zilog->zl_lock); 2645 2646 lwb_t *last_lwb = zilog->zl_last_lwb_opened; 2647 if (last_lwb == NULL || 2648 last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) { 2649 /* 2650 * All of the itxs this waiter was waiting on 2651 * must have already completed (or there were 2652 * never any itx's for it to wait on), so it's 2653 * safe to skip this waiter and mark it done. 2654 */ 2655 zil_commit_waiter_skip(itx->itx_private); 2656 } else { 2657 zil_commit_waiter_link_lwb(itx->itx_private, last_lwb); 2658 itx->itx_private = NULL; 2659 } 2660 2661 mutex_exit(&zilog->zl_lock); 2662 2663 list_remove(&zilog->zl_itx_commit_list, itx); 2664 zil_itx_destroy(itx); 2665 } 2666 2667 IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT); 2668 } 2669 2670 static void 2671 zil_commit_writer_stall(zilog_t *zilog) 2672 { 2673 /* 2674 * When zio_alloc_zil() fails to allocate the next lwb block on 2675 * disk, we must call txg_wait_synced() to ensure all of the 2676 * lwbs in the zilog's zl_lwb_list are synced and then freed (in 2677 * zil_sync()), such that any subsequent ZIL writer (i.e. a call 2678 * to zil_process_commit_list()) will have to call zil_create(), 2679 * and start a new ZIL chain. 2680 * 2681 * Since zil_alloc_zil() failed, the lwb that was previously 2682 * issued does not have a pointer to the "next" lwb on disk. 2683 * Thus, if another ZIL writer thread was to allocate the "next" 2684 * on-disk lwb, that block could be leaked in the event of a 2685 * crash (because the previous lwb on-disk would not point to 2686 * it). 2687 * 2688 * We must hold the zilog's zl_issuer_lock while we do this, to 2689 * ensure no new threads enter zil_process_commit_list() until 2690 * all lwb's in the zl_lwb_list have been synced and freed 2691 * (which is achieved via the txg_wait_synced() call). 2692 */ 2693 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2694 txg_wait_synced(zilog->zl_dmu_pool, 0); 2695 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 2696 } 2697 2698 /* 2699 * This function will traverse the commit list, creating new lwbs as 2700 * needed, and committing the itxs from the commit list to these newly 2701 * created lwbs. Additionally, as a new lwb is created, the previous 2702 * lwb will be issued to the zio layer to be written to disk. 2703 */ 2704 static void 2705 zil_process_commit_list(zilog_t *zilog, zil_commit_waiter_t *zcw, list_t *ilwbs) 2706 { 2707 spa_t *spa = zilog->zl_spa; 2708 list_t nolwb_itxs; 2709 list_t nolwb_waiters; 2710 lwb_t *lwb, *plwb; 2711 itx_t *itx; 2712 boolean_t first = B_TRUE; 2713 2714 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2715 2716 /* 2717 * Return if there's nothing to commit before we dirty the fs by 2718 * calling zil_create(). 2719 */ 2720 if (list_is_empty(&zilog->zl_itx_commit_list)) 2721 return; 2722 2723 list_create(&nolwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node)); 2724 list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t), 2725 offsetof(zil_commit_waiter_t, zcw_node)); 2726 2727 lwb = list_tail(&zilog->zl_lwb_list); 2728 if (lwb == NULL) { 2729 lwb = zil_create(zilog); 2730 } else { 2731 /* 2732 * Activate SPA_FEATURE_ZILSAXATTR for the cases where ZIL will 2733 * have already been created (zl_lwb_list not empty). 2734 */ 2735 zil_commit_activate_saxattr_feature(zilog); 2736 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED); 2737 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE); 2738 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE); 2739 first = (lwb->lwb_state != LWB_STATE_OPENED) && 2740 ((plwb = list_prev(&zilog->zl_lwb_list, lwb)) == NULL || 2741 plwb->lwb_state == LWB_STATE_FLUSH_DONE); 2742 } 2743 2744 while ((itx = list_remove_head(&zilog->zl_itx_commit_list)) != NULL) { 2745 lr_t *lrc = &itx->itx_lr; 2746 uint64_t txg = lrc->lrc_txg; 2747 2748 ASSERT3U(txg, !=, 0); 2749 2750 if (lrc->lrc_txtype == TX_COMMIT) { 2751 DTRACE_PROBE2(zil__process__commit__itx, 2752 zilog_t *, zilog, itx_t *, itx); 2753 } else { 2754 DTRACE_PROBE2(zil__process__normal__itx, 2755 zilog_t *, zilog, itx_t *, itx); 2756 } 2757 2758 boolean_t synced = txg <= spa_last_synced_txg(spa); 2759 boolean_t frozen = txg > spa_freeze_txg(spa); 2760 2761 /* 2762 * If the txg of this itx has already been synced out, then 2763 * we don't need to commit this itx to an lwb. This is 2764 * because the data of this itx will have already been 2765 * written to the main pool. This is inherently racy, and 2766 * it's still ok to commit an itx whose txg has already 2767 * been synced; this will result in a write that's 2768 * unnecessary, but will do no harm. 2769 * 2770 * With that said, we always want to commit TX_COMMIT itxs 2771 * to an lwb, regardless of whether or not that itx's txg 2772 * has been synced out. We do this to ensure any OPENED lwb 2773 * will always have at least one zil_commit_waiter_t linked 2774 * to the lwb. 2775 * 2776 * As a counter-example, if we skipped TX_COMMIT itx's 2777 * whose txg had already been synced, the following 2778 * situation could occur if we happened to be racing with 2779 * spa_sync: 2780 * 2781 * 1. We commit a non-TX_COMMIT itx to an lwb, where the 2782 * itx's txg is 10 and the last synced txg is 9. 2783 * 2. spa_sync finishes syncing out txg 10. 2784 * 3. We move to the next itx in the list, it's a TX_COMMIT 2785 * whose txg is 10, so we skip it rather than committing 2786 * it to the lwb used in (1). 2787 * 2788 * If the itx that is skipped in (3) is the last TX_COMMIT 2789 * itx in the commit list, than it's possible for the lwb 2790 * used in (1) to remain in the OPENED state indefinitely. 2791 * 2792 * To prevent the above scenario from occurring, ensuring 2793 * that once an lwb is OPENED it will transition to ISSUED 2794 * and eventually DONE, we always commit TX_COMMIT itx's to 2795 * an lwb here, even if that itx's txg has already been 2796 * synced. 2797 * 2798 * Finally, if the pool is frozen, we _always_ commit the 2799 * itx. The point of freezing the pool is to prevent data 2800 * from being written to the main pool via spa_sync, and 2801 * instead rely solely on the ZIL to persistently store the 2802 * data; i.e. when the pool is frozen, the last synced txg 2803 * value can't be trusted. 2804 */ 2805 if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) { 2806 if (lwb != NULL) { 2807 lwb = zil_lwb_assign(zilog, lwb, itx, ilwbs); 2808 if (lwb == NULL) { 2809 list_insert_tail(&nolwb_itxs, itx); 2810 } else if ((zcw->zcw_lwb != NULL && 2811 zcw->zcw_lwb != lwb) || zcw->zcw_done) { 2812 /* 2813 * Our lwb is done, leave the rest of 2814 * itx list to somebody else who care. 2815 */ 2816 first = B_FALSE; 2817 break; 2818 } 2819 } else { 2820 if (lrc->lrc_txtype == TX_COMMIT) { 2821 zil_commit_waiter_link_nolwb( 2822 itx->itx_private, &nolwb_waiters); 2823 } 2824 list_insert_tail(&nolwb_itxs, itx); 2825 } 2826 } else { 2827 ASSERT3S(lrc->lrc_txtype, !=, TX_COMMIT); 2828 zil_itx_destroy(itx); 2829 } 2830 } 2831 2832 if (lwb == NULL) { 2833 /* 2834 * This indicates zio_alloc_zil() failed to allocate the 2835 * "next" lwb on-disk. When this happens, we must stall 2836 * the ZIL write pipeline; see the comment within 2837 * zil_commit_writer_stall() for more details. 2838 */ 2839 while ((lwb = list_remove_head(ilwbs)) != NULL) 2840 zil_lwb_write_issue(zilog, lwb); 2841 zil_commit_writer_stall(zilog); 2842 2843 /* 2844 * Additionally, we have to signal and mark the "nolwb" 2845 * waiters as "done" here, since without an lwb, we 2846 * can't do this via zil_lwb_flush_vdevs_done() like 2847 * normal. 2848 */ 2849 zil_commit_waiter_t *zcw; 2850 while ((zcw = list_remove_head(&nolwb_waiters)) != NULL) 2851 zil_commit_waiter_skip(zcw); 2852 2853 /* 2854 * And finally, we have to destroy the itx's that 2855 * couldn't be committed to an lwb; this will also call 2856 * the itx's callback if one exists for the itx. 2857 */ 2858 while ((itx = list_remove_head(&nolwb_itxs)) != NULL) 2859 zil_itx_destroy(itx); 2860 } else { 2861 ASSERT(list_is_empty(&nolwb_waiters)); 2862 ASSERT3P(lwb, !=, NULL); 2863 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED); 2864 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE); 2865 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE); 2866 2867 /* 2868 * At this point, the ZIL block pointed at by the "lwb" 2869 * variable is in one of the following states: "closed" 2870 * or "open". 2871 * 2872 * If it's "closed", then no itxs have been committed to 2873 * it, so there's no point in issuing its zio (i.e. it's 2874 * "empty"). 2875 * 2876 * If it's "open", then it contains one or more itxs that 2877 * eventually need to be committed to stable storage. In 2878 * this case we intentionally do not issue the lwb's zio 2879 * to disk yet, and instead rely on one of the following 2880 * two mechanisms for issuing the zio: 2881 * 2882 * 1. Ideally, there will be more ZIL activity occurring 2883 * on the system, such that this function will be 2884 * immediately called again (not necessarily by the same 2885 * thread) and this lwb's zio will be issued via 2886 * zil_lwb_assign(). This way, the lwb is guaranteed to 2887 * be "full" when it is issued to disk, and we'll make 2888 * use of the lwb's size the best we can. 2889 * 2890 * 2. If there isn't sufficient ZIL activity occurring on 2891 * the system, such that this lwb's zio isn't issued via 2892 * zil_lwb_assign(), zil_commit_waiter() will issue the 2893 * lwb's zio. If this occurs, the lwb is not guaranteed 2894 * to be "full" by the time its zio is issued, and means 2895 * the size of the lwb was "too large" given the amount 2896 * of ZIL activity occurring on the system at that time. 2897 * 2898 * We do this for a couple of reasons: 2899 * 2900 * 1. To try and reduce the number of IOPs needed to 2901 * write the same number of itxs. If an lwb has space 2902 * available in its buffer for more itxs, and more itxs 2903 * will be committed relatively soon (relative to the 2904 * latency of performing a write), then it's beneficial 2905 * to wait for these "next" itxs. This way, more itxs 2906 * can be committed to stable storage with fewer writes. 2907 * 2908 * 2. To try and use the largest lwb block size that the 2909 * incoming rate of itxs can support. Again, this is to 2910 * try and pack as many itxs into as few lwbs as 2911 * possible, without significantly impacting the latency 2912 * of each individual itx. 2913 * 2914 * If we had no already running or open LWBs, it can be 2915 * the workload is single-threaded. And if the ZIL write 2916 * latency is very small or if the LWB is almost full, it 2917 * may be cheaper to bypass the delay. 2918 */ 2919 if (lwb->lwb_state == LWB_STATE_OPENED && first) { 2920 hrtime_t sleep = zilog->zl_last_lwb_latency * 2921 zfs_commit_timeout_pct / 100; 2922 if (sleep < zil_min_commit_timeout || 2923 lwb->lwb_sz - lwb->lwb_nused < lwb->lwb_sz / 8) { 2924 list_insert_tail(ilwbs, lwb); 2925 lwb = zil_lwb_write_close(zilog, lwb); 2926 zilog->zl_cur_used = 0; 2927 if (lwb == NULL) { 2928 while ((lwb = list_remove_head(ilwbs)) 2929 != NULL) 2930 zil_lwb_write_issue(zilog, lwb); 2931 zil_commit_writer_stall(zilog); 2932 } 2933 } 2934 } 2935 } 2936 } 2937 2938 /* 2939 * This function is responsible for ensuring the passed in commit waiter 2940 * (and associated commit itx) is committed to an lwb. If the waiter is 2941 * not already committed to an lwb, all itxs in the zilog's queue of 2942 * itxs will be processed. The assumption is the passed in waiter's 2943 * commit itx will found in the queue just like the other non-commit 2944 * itxs, such that when the entire queue is processed, the waiter will 2945 * have been committed to an lwb. 2946 * 2947 * The lwb associated with the passed in waiter is not guaranteed to 2948 * have been issued by the time this function completes. If the lwb is 2949 * not issued, we rely on future calls to zil_commit_writer() to issue 2950 * the lwb, or the timeout mechanism found in zil_commit_waiter(). 2951 */ 2952 static void 2953 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw) 2954 { 2955 list_t ilwbs; 2956 lwb_t *lwb; 2957 2958 ASSERT(!MUTEX_HELD(&zilog->zl_lock)); 2959 ASSERT(spa_writeable(zilog->zl_spa)); 2960 2961 list_create(&ilwbs, sizeof (lwb_t), offsetof(lwb_t, lwb_issue_node)); 2962 mutex_enter(&zilog->zl_issuer_lock); 2963 2964 if (zcw->zcw_lwb != NULL || zcw->zcw_done) { 2965 /* 2966 * It's possible that, while we were waiting to acquire 2967 * the "zl_issuer_lock", another thread committed this 2968 * waiter to an lwb. If that occurs, we bail out early, 2969 * without processing any of the zilog's queue of itxs. 2970 * 2971 * On certain workloads and system configurations, the 2972 * "zl_issuer_lock" can become highly contended. In an 2973 * attempt to reduce this contention, we immediately drop 2974 * the lock if the waiter has already been processed. 2975 * 2976 * We've measured this optimization to reduce CPU spent 2977 * contending on this lock by up to 5%, using a system 2978 * with 32 CPUs, low latency storage (~50 usec writes), 2979 * and 1024 threads performing sync writes. 2980 */ 2981 goto out; 2982 } 2983 2984 ZIL_STAT_BUMP(zilog, zil_commit_writer_count); 2985 2986 zil_get_commit_list(zilog); 2987 zil_prune_commit_list(zilog); 2988 zil_process_commit_list(zilog, zcw, &ilwbs); 2989 2990 out: 2991 mutex_exit(&zilog->zl_issuer_lock); 2992 while ((lwb = list_remove_head(&ilwbs)) != NULL) 2993 zil_lwb_write_issue(zilog, lwb); 2994 list_destroy(&ilwbs); 2995 } 2996 2997 static void 2998 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw) 2999 { 3000 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock)); 3001 ASSERT(MUTEX_HELD(&zcw->zcw_lock)); 3002 ASSERT3B(zcw->zcw_done, ==, B_FALSE); 3003 3004 lwb_t *lwb = zcw->zcw_lwb; 3005 ASSERT3P(lwb, !=, NULL); 3006 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED); 3007 3008 /* 3009 * If the lwb has already been issued by another thread, we can 3010 * immediately return since there's no work to be done (the 3011 * point of this function is to issue the lwb). Additionally, we 3012 * do this prior to acquiring the zl_issuer_lock, to avoid 3013 * acquiring it when it's not necessary to do so. 3014 */ 3015 if (lwb->lwb_state == LWB_STATE_ISSUED || 3016 lwb->lwb_state == LWB_STATE_WRITE_DONE || 3017 lwb->lwb_state == LWB_STATE_FLUSH_DONE) 3018 return; 3019 3020 /* 3021 * In order to call zil_lwb_write_close() we must hold the 3022 * zilog's "zl_issuer_lock". We can't simply acquire that lock, 3023 * since we're already holding the commit waiter's "zcw_lock", 3024 * and those two locks are acquired in the opposite order 3025 * elsewhere. 3026 */ 3027 mutex_exit(&zcw->zcw_lock); 3028 mutex_enter(&zilog->zl_issuer_lock); 3029 mutex_enter(&zcw->zcw_lock); 3030 3031 /* 3032 * Since we just dropped and re-acquired the commit waiter's 3033 * lock, we have to re-check to see if the waiter was marked 3034 * "done" during that process. If the waiter was marked "done", 3035 * the "lwb" pointer is no longer valid (it can be free'd after 3036 * the waiter is marked "done"), so without this check we could 3037 * wind up with a use-after-free error below. 3038 */ 3039 if (zcw->zcw_done) { 3040 lwb = NULL; 3041 goto out; 3042 } 3043 3044 ASSERT3P(lwb, ==, zcw->zcw_lwb); 3045 3046 /* 3047 * We've already checked this above, but since we hadn't acquired 3048 * the zilog's zl_issuer_lock, we have to perform this check a 3049 * second time while holding the lock. 3050 * 3051 * We don't need to hold the zl_lock since the lwb cannot transition 3052 * from OPENED to ISSUED while we hold the zl_issuer_lock. The lwb 3053 * _can_ transition from ISSUED to DONE, but it's OK to race with 3054 * that transition since we treat the lwb the same, whether it's in 3055 * the ISSUED or DONE states. 3056 * 3057 * The important thing, is we treat the lwb differently depending on 3058 * if it's ISSUED or OPENED, and block any other threads that might 3059 * attempt to issue this lwb. For that reason we hold the 3060 * zl_issuer_lock when checking the lwb_state; we must not call 3061 * zil_lwb_write_close() if the lwb had already been issued. 3062 * 3063 * See the comment above the lwb_state_t structure definition for 3064 * more details on the lwb states, and locking requirements. 3065 */ 3066 if (lwb->lwb_state == LWB_STATE_ISSUED || 3067 lwb->lwb_state == LWB_STATE_WRITE_DONE || 3068 lwb->lwb_state == LWB_STATE_FLUSH_DONE) { 3069 lwb = NULL; 3070 goto out; 3071 } 3072 3073 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED); 3074 3075 /* 3076 * As described in the comments above zil_commit_waiter() and 3077 * zil_process_commit_list(), we need to issue this lwb's zio 3078 * since we've reached the commit waiter's timeout and it still 3079 * hasn't been issued. 3080 */ 3081 lwb_t *nlwb = zil_lwb_write_close(zilog, lwb); 3082 3083 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED); 3084 3085 /* 3086 * Since the lwb's zio hadn't been issued by the time this thread 3087 * reached its timeout, we reset the zilog's "zl_cur_used" field 3088 * to influence the zil block size selection algorithm. 3089 * 3090 * By having to issue the lwb's zio here, it means the size of the 3091 * lwb was too large, given the incoming throughput of itxs. By 3092 * setting "zl_cur_used" to zero, we communicate this fact to the 3093 * block size selection algorithm, so it can take this information 3094 * into account, and potentially select a smaller size for the 3095 * next lwb block that is allocated. 3096 */ 3097 zilog->zl_cur_used = 0; 3098 3099 if (nlwb == NULL) { 3100 /* 3101 * When zil_lwb_write_close() returns NULL, this 3102 * indicates zio_alloc_zil() failed to allocate the 3103 * "next" lwb on-disk. When this occurs, the ZIL write 3104 * pipeline must be stalled; see the comment within the 3105 * zil_commit_writer_stall() function for more details. 3106 * 3107 * We must drop the commit waiter's lock prior to 3108 * calling zil_commit_writer_stall() or else we can wind 3109 * up with the following deadlock: 3110 * 3111 * - This thread is waiting for the txg to sync while 3112 * holding the waiter's lock; txg_wait_synced() is 3113 * used within txg_commit_writer_stall(). 3114 * 3115 * - The txg can't sync because it is waiting for this 3116 * lwb's zio callback to call dmu_tx_commit(). 3117 * 3118 * - The lwb's zio callback can't call dmu_tx_commit() 3119 * because it's blocked trying to acquire the waiter's 3120 * lock, which occurs prior to calling dmu_tx_commit() 3121 */ 3122 mutex_exit(&zcw->zcw_lock); 3123 zil_lwb_write_issue(zilog, lwb); 3124 lwb = NULL; 3125 zil_commit_writer_stall(zilog); 3126 mutex_enter(&zcw->zcw_lock); 3127 } 3128 3129 out: 3130 mutex_exit(&zilog->zl_issuer_lock); 3131 if (lwb) 3132 zil_lwb_write_issue(zilog, lwb); 3133 ASSERT(MUTEX_HELD(&zcw->zcw_lock)); 3134 } 3135 3136 /* 3137 * This function is responsible for performing the following two tasks: 3138 * 3139 * 1. its primary responsibility is to block until the given "commit 3140 * waiter" is considered "done". 3141 * 3142 * 2. its secondary responsibility is to issue the zio for the lwb that 3143 * the given "commit waiter" is waiting on, if this function has 3144 * waited "long enough" and the lwb is still in the "open" state. 3145 * 3146 * Given a sufficient amount of itxs being generated and written using 3147 * the ZIL, the lwb's zio will be issued via the zil_lwb_assign() 3148 * function. If this does not occur, this secondary responsibility will 3149 * ensure the lwb is issued even if there is not other synchronous 3150 * activity on the system. 3151 * 3152 * For more details, see zil_process_commit_list(); more specifically, 3153 * the comment at the bottom of that function. 3154 */ 3155 static void 3156 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw) 3157 { 3158 ASSERT(!MUTEX_HELD(&zilog->zl_lock)); 3159 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock)); 3160 ASSERT(spa_writeable(zilog->zl_spa)); 3161 3162 mutex_enter(&zcw->zcw_lock); 3163 3164 /* 3165 * The timeout is scaled based on the lwb latency to avoid 3166 * significantly impacting the latency of each individual itx. 3167 * For more details, see the comment at the bottom of the 3168 * zil_process_commit_list() function. 3169 */ 3170 int pct = MAX(zfs_commit_timeout_pct, 1); 3171 hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100; 3172 hrtime_t wakeup = gethrtime() + sleep; 3173 boolean_t timedout = B_FALSE; 3174 3175 while (!zcw->zcw_done) { 3176 ASSERT(MUTEX_HELD(&zcw->zcw_lock)); 3177 3178 lwb_t *lwb = zcw->zcw_lwb; 3179 3180 /* 3181 * Usually, the waiter will have a non-NULL lwb field here, 3182 * but it's possible for it to be NULL as a result of 3183 * zil_commit() racing with spa_sync(). 3184 * 3185 * When zil_clean() is called, it's possible for the itxg 3186 * list (which may be cleaned via a taskq) to contain 3187 * commit itxs. When this occurs, the commit waiters linked 3188 * off of these commit itxs will not be committed to an 3189 * lwb. Additionally, these commit waiters will not be 3190 * marked done until zil_commit_waiter_skip() is called via 3191 * zil_itxg_clean(). 3192 * 3193 * Thus, it's possible for this commit waiter (i.e. the 3194 * "zcw" variable) to be found in this "in between" state; 3195 * where it's "zcw_lwb" field is NULL, and it hasn't yet 3196 * been skipped, so it's "zcw_done" field is still B_FALSE. 3197 */ 3198 IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED); 3199 3200 if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) { 3201 ASSERT3B(timedout, ==, B_FALSE); 3202 3203 /* 3204 * If the lwb hasn't been issued yet, then we 3205 * need to wait with a timeout, in case this 3206 * function needs to issue the lwb after the 3207 * timeout is reached; responsibility (2) from 3208 * the comment above this function. 3209 */ 3210 int rc = cv_timedwait_hires(&zcw->zcw_cv, 3211 &zcw->zcw_lock, wakeup, USEC2NSEC(1), 3212 CALLOUT_FLAG_ABSOLUTE); 3213 3214 if (rc != -1 || zcw->zcw_done) 3215 continue; 3216 3217 timedout = B_TRUE; 3218 zil_commit_waiter_timeout(zilog, zcw); 3219 3220 if (!zcw->zcw_done) { 3221 /* 3222 * If the commit waiter has already been 3223 * marked "done", it's possible for the 3224 * waiter's lwb structure to have already 3225 * been freed. Thus, we can only reliably 3226 * make these assertions if the waiter 3227 * isn't done. 3228 */ 3229 ASSERT3P(lwb, ==, zcw->zcw_lwb); 3230 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED); 3231 } 3232 } else { 3233 /* 3234 * If the lwb isn't open, then it must have already 3235 * been issued. In that case, there's no need to 3236 * use a timeout when waiting for the lwb to 3237 * complete. 3238 * 3239 * Additionally, if the lwb is NULL, the waiter 3240 * will soon be signaled and marked done via 3241 * zil_clean() and zil_itxg_clean(), so no timeout 3242 * is required. 3243 */ 3244 3245 IMPLY(lwb != NULL, 3246 lwb->lwb_state == LWB_STATE_ISSUED || 3247 lwb->lwb_state == LWB_STATE_WRITE_DONE || 3248 lwb->lwb_state == LWB_STATE_FLUSH_DONE); 3249 cv_wait(&zcw->zcw_cv, &zcw->zcw_lock); 3250 } 3251 } 3252 3253 mutex_exit(&zcw->zcw_lock); 3254 } 3255 3256 static zil_commit_waiter_t * 3257 zil_alloc_commit_waiter(void) 3258 { 3259 zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP); 3260 3261 cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL); 3262 mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL); 3263 list_link_init(&zcw->zcw_node); 3264 zcw->zcw_lwb = NULL; 3265 zcw->zcw_done = B_FALSE; 3266 zcw->zcw_zio_error = 0; 3267 3268 return (zcw); 3269 } 3270 3271 static void 3272 zil_free_commit_waiter(zil_commit_waiter_t *zcw) 3273 { 3274 ASSERT(!list_link_active(&zcw->zcw_node)); 3275 ASSERT3P(zcw->zcw_lwb, ==, NULL); 3276 ASSERT3B(zcw->zcw_done, ==, B_TRUE); 3277 mutex_destroy(&zcw->zcw_lock); 3278 cv_destroy(&zcw->zcw_cv); 3279 kmem_cache_free(zil_zcw_cache, zcw); 3280 } 3281 3282 /* 3283 * This function is used to create a TX_COMMIT itx and assign it. This 3284 * way, it will be linked into the ZIL's list of synchronous itxs, and 3285 * then later committed to an lwb (or skipped) when 3286 * zil_process_commit_list() is called. 3287 */ 3288 static void 3289 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw) 3290 { 3291 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os); 3292 3293 /* 3294 * Since we are not going to create any new dirty data, and we 3295 * can even help with clearing the existing dirty data, we 3296 * should not be subject to the dirty data based delays. We 3297 * use TXG_NOTHROTTLE to bypass the delay mechanism. 3298 */ 3299 VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE)); 3300 3301 itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t)); 3302 itx->itx_sync = B_TRUE; 3303 itx->itx_private = zcw; 3304 3305 zil_itx_assign(zilog, itx, tx); 3306 3307 dmu_tx_commit(tx); 3308 } 3309 3310 /* 3311 * Commit ZFS Intent Log transactions (itxs) to stable storage. 3312 * 3313 * When writing ZIL transactions to the on-disk representation of the 3314 * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple 3315 * itxs can be committed to a single lwb. Once a lwb is written and 3316 * committed to stable storage (i.e. the lwb is written, and vdevs have 3317 * been flushed), each itx that was committed to that lwb is also 3318 * considered to be committed to stable storage. 3319 * 3320 * When an itx is committed to an lwb, the log record (lr_t) contained 3321 * by the itx is copied into the lwb's zio buffer, and once this buffer 3322 * is written to disk, it becomes an on-disk ZIL block. 3323 * 3324 * As itxs are generated, they're inserted into the ZIL's queue of 3325 * uncommitted itxs. The semantics of zil_commit() are such that it will 3326 * block until all itxs that were in the queue when it was called, are 3327 * committed to stable storage. 3328 * 3329 * If "foid" is zero, this means all "synchronous" and "asynchronous" 3330 * itxs, for all objects in the dataset, will be committed to stable 3331 * storage prior to zil_commit() returning. If "foid" is non-zero, all 3332 * "synchronous" itxs for all objects, but only "asynchronous" itxs 3333 * that correspond to the foid passed in, will be committed to stable 3334 * storage prior to zil_commit() returning. 3335 * 3336 * Generally speaking, when zil_commit() is called, the consumer doesn't 3337 * actually care about _all_ of the uncommitted itxs. Instead, they're 3338 * simply trying to waiting for a specific itx to be committed to disk, 3339 * but the interface(s) for interacting with the ZIL don't allow such 3340 * fine-grained communication. A better interface would allow a consumer 3341 * to create and assign an itx, and then pass a reference to this itx to 3342 * zil_commit(); such that zil_commit() would return as soon as that 3343 * specific itx was committed to disk (instead of waiting for _all_ 3344 * itxs to be committed). 3345 * 3346 * When a thread calls zil_commit() a special "commit itx" will be 3347 * generated, along with a corresponding "waiter" for this commit itx. 3348 * zil_commit() will wait on this waiter's CV, such that when the waiter 3349 * is marked done, and signaled, zil_commit() will return. 3350 * 3351 * This commit itx is inserted into the queue of uncommitted itxs. This 3352 * provides an easy mechanism for determining which itxs were in the 3353 * queue prior to zil_commit() having been called, and which itxs were 3354 * added after zil_commit() was called. 3355 * 3356 * The commit itx is special; it doesn't have any on-disk representation. 3357 * When a commit itx is "committed" to an lwb, the waiter associated 3358 * with it is linked onto the lwb's list of waiters. Then, when that lwb 3359 * completes, each waiter on the lwb's list is marked done and signaled 3360 * -- allowing the thread waiting on the waiter to return from zil_commit(). 3361 * 3362 * It's important to point out a few critical factors that allow us 3363 * to make use of the commit itxs, commit waiters, per-lwb lists of 3364 * commit waiters, and zio completion callbacks like we're doing: 3365 * 3366 * 1. The list of waiters for each lwb is traversed, and each commit 3367 * waiter is marked "done" and signaled, in the zio completion 3368 * callback of the lwb's zio[*]. 3369 * 3370 * * Actually, the waiters are signaled in the zio completion 3371 * callback of the root zio for the DKIOCFLUSHWRITECACHE commands 3372 * that are sent to the vdevs upon completion of the lwb zio. 3373 * 3374 * 2. When the itxs are inserted into the ZIL's queue of uncommitted 3375 * itxs, the order in which they are inserted is preserved[*]; as 3376 * itxs are added to the queue, they are added to the tail of 3377 * in-memory linked lists. 3378 * 3379 * When committing the itxs to lwbs (to be written to disk), they 3380 * are committed in the same order in which the itxs were added to 3381 * the uncommitted queue's linked list(s); i.e. the linked list of 3382 * itxs to commit is traversed from head to tail, and each itx is 3383 * committed to an lwb in that order. 3384 * 3385 * * To clarify: 3386 * 3387 * - the order of "sync" itxs is preserved w.r.t. other 3388 * "sync" itxs, regardless of the corresponding objects. 3389 * - the order of "async" itxs is preserved w.r.t. other 3390 * "async" itxs corresponding to the same object. 3391 * - the order of "async" itxs is *not* preserved w.r.t. other 3392 * "async" itxs corresponding to different objects. 3393 * - the order of "sync" itxs w.r.t. "async" itxs (or vice 3394 * versa) is *not* preserved, even for itxs that correspond 3395 * to the same object. 3396 * 3397 * For more details, see: zil_itx_assign(), zil_async_to_sync(), 3398 * zil_get_commit_list(), and zil_process_commit_list(). 3399 * 3400 * 3. The lwbs represent a linked list of blocks on disk. Thus, any 3401 * lwb cannot be considered committed to stable storage, until its 3402 * "previous" lwb is also committed to stable storage. This fact, 3403 * coupled with the fact described above, means that itxs are 3404 * committed in (roughly) the order in which they were generated. 3405 * This is essential because itxs are dependent on prior itxs. 3406 * Thus, we *must not* deem an itx as being committed to stable 3407 * storage, until *all* prior itxs have also been committed to 3408 * stable storage. 3409 * 3410 * To enforce this ordering of lwb zio's, while still leveraging as 3411 * much of the underlying storage performance as possible, we rely 3412 * on two fundamental concepts: 3413 * 3414 * 1. The creation and issuance of lwb zio's is protected by 3415 * the zilog's "zl_issuer_lock", which ensures only a single 3416 * thread is creating and/or issuing lwb's at a time 3417 * 2. The "previous" lwb is a child of the "current" lwb 3418 * (leveraging the zio parent-child dependency graph) 3419 * 3420 * By relying on this parent-child zio relationship, we can have 3421 * many lwb zio's concurrently issued to the underlying storage, 3422 * but the order in which they complete will be the same order in 3423 * which they were created. 3424 */ 3425 void 3426 zil_commit(zilog_t *zilog, uint64_t foid) 3427 { 3428 /* 3429 * We should never attempt to call zil_commit on a snapshot for 3430 * a couple of reasons: 3431 * 3432 * 1. A snapshot may never be modified, thus it cannot have any 3433 * in-flight itxs that would have modified the dataset. 3434 * 3435 * 2. By design, when zil_commit() is called, a commit itx will 3436 * be assigned to this zilog; as a result, the zilog will be 3437 * dirtied. We must not dirty the zilog of a snapshot; there's 3438 * checks in the code that enforce this invariant, and will 3439 * cause a panic if it's not upheld. 3440 */ 3441 ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE); 3442 3443 if (zilog->zl_sync == ZFS_SYNC_DISABLED) 3444 return; 3445 3446 if (!spa_writeable(zilog->zl_spa)) { 3447 /* 3448 * If the SPA is not writable, there should never be any 3449 * pending itxs waiting to be committed to disk. If that 3450 * weren't true, we'd skip writing those itxs out, and 3451 * would break the semantics of zil_commit(); thus, we're 3452 * verifying that truth before we return to the caller. 3453 */ 3454 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3455 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL); 3456 for (int i = 0; i < TXG_SIZE; i++) 3457 ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL); 3458 return; 3459 } 3460 3461 /* 3462 * If the ZIL is suspended, we don't want to dirty it by calling 3463 * zil_commit_itx_assign() below, nor can we write out 3464 * lwbs like would be done in zil_commit_write(). Thus, we 3465 * simply rely on txg_wait_synced() to maintain the necessary 3466 * semantics, and avoid calling those functions altogether. 3467 */ 3468 if (zilog->zl_suspend > 0) { 3469 txg_wait_synced(zilog->zl_dmu_pool, 0); 3470 return; 3471 } 3472 3473 zil_commit_impl(zilog, foid); 3474 } 3475 3476 void 3477 zil_commit_impl(zilog_t *zilog, uint64_t foid) 3478 { 3479 ZIL_STAT_BUMP(zilog, zil_commit_count); 3480 3481 /* 3482 * Move the "async" itxs for the specified foid to the "sync" 3483 * queues, such that they will be later committed (or skipped) 3484 * to an lwb when zil_process_commit_list() is called. 3485 * 3486 * Since these "async" itxs must be committed prior to this 3487 * call to zil_commit returning, we must perform this operation 3488 * before we call zil_commit_itx_assign(). 3489 */ 3490 zil_async_to_sync(zilog, foid); 3491 3492 /* 3493 * We allocate a new "waiter" structure which will initially be 3494 * linked to the commit itx using the itx's "itx_private" field. 3495 * Since the commit itx doesn't represent any on-disk state, 3496 * when it's committed to an lwb, rather than copying the its 3497 * lr_t into the lwb's buffer, the commit itx's "waiter" will be 3498 * added to the lwb's list of waiters. Then, when the lwb is 3499 * committed to stable storage, each waiter in the lwb's list of 3500 * waiters will be marked "done", and signalled. 3501 * 3502 * We must create the waiter and assign the commit itx prior to 3503 * calling zil_commit_writer(), or else our specific commit itx 3504 * is not guaranteed to be committed to an lwb prior to calling 3505 * zil_commit_waiter(). 3506 */ 3507 zil_commit_waiter_t *zcw = zil_alloc_commit_waiter(); 3508 zil_commit_itx_assign(zilog, zcw); 3509 3510 zil_commit_writer(zilog, zcw); 3511 zil_commit_waiter(zilog, zcw); 3512 3513 if (zcw->zcw_zio_error != 0) { 3514 /* 3515 * If there was an error writing out the ZIL blocks that 3516 * this thread is waiting on, then we fallback to 3517 * relying on spa_sync() to write out the data this 3518 * thread is waiting on. Obviously this has performance 3519 * implications, but the expectation is for this to be 3520 * an exceptional case, and shouldn't occur often. 3521 */ 3522 DTRACE_PROBE2(zil__commit__io__error, 3523 zilog_t *, zilog, zil_commit_waiter_t *, zcw); 3524 txg_wait_synced(zilog->zl_dmu_pool, 0); 3525 } 3526 3527 zil_free_commit_waiter(zcw); 3528 } 3529 3530 /* 3531 * Called in syncing context to free committed log blocks and update log header. 3532 */ 3533 void 3534 zil_sync(zilog_t *zilog, dmu_tx_t *tx) 3535 { 3536 zil_header_t *zh = zil_header_in_syncing_context(zilog); 3537 uint64_t txg = dmu_tx_get_txg(tx); 3538 spa_t *spa = zilog->zl_spa; 3539 uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK]; 3540 lwb_t *lwb; 3541 3542 /* 3543 * We don't zero out zl_destroy_txg, so make sure we don't try 3544 * to destroy it twice. 3545 */ 3546 if (spa_sync_pass(spa) != 1) 3547 return; 3548 3549 zil_lwb_flush_wait_all(zilog, txg); 3550 3551 mutex_enter(&zilog->zl_lock); 3552 3553 ASSERT(zilog->zl_stop_sync == 0); 3554 3555 if (*replayed_seq != 0) { 3556 ASSERT(zh->zh_replay_seq < *replayed_seq); 3557 zh->zh_replay_seq = *replayed_seq; 3558 *replayed_seq = 0; 3559 } 3560 3561 if (zilog->zl_destroy_txg == txg) { 3562 blkptr_t blk = zh->zh_log; 3563 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 3564 3565 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3566 3567 memset(zh, 0, sizeof (zil_header_t)); 3568 memset(zilog->zl_replayed_seq, 0, 3569 sizeof (zilog->zl_replayed_seq)); 3570 3571 if (zilog->zl_keep_first) { 3572 /* 3573 * If this block was part of log chain that couldn't 3574 * be claimed because a device was missing during 3575 * zil_claim(), but that device later returns, 3576 * then this block could erroneously appear valid. 3577 * To guard against this, assign a new GUID to the new 3578 * log chain so it doesn't matter what blk points to. 3579 */ 3580 zil_init_log_chain(zilog, &blk); 3581 zh->zh_log = blk; 3582 } else { 3583 /* 3584 * A destroyed ZIL chain can't contain any TX_SETSAXATTR 3585 * records. So, deactivate the feature for this dataset. 3586 * We activate it again when we start a new ZIL chain. 3587 */ 3588 if (dsl_dataset_feature_is_active(ds, 3589 SPA_FEATURE_ZILSAXATTR)) 3590 dsl_dataset_deactivate_feature(ds, 3591 SPA_FEATURE_ZILSAXATTR, tx); 3592 } 3593 } 3594 3595 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 3596 zh->zh_log = lwb->lwb_blk; 3597 if (lwb->lwb_state != LWB_STATE_FLUSH_DONE || 3598 lwb->lwb_max_txg > txg) 3599 break; 3600 list_remove(&zilog->zl_lwb_list, lwb); 3601 zio_free(spa, txg, &lwb->lwb_blk); 3602 zil_free_lwb(zilog, lwb); 3603 3604 /* 3605 * If we don't have anything left in the lwb list then 3606 * we've had an allocation failure and we need to zero 3607 * out the zil_header blkptr so that we don't end 3608 * up freeing the same block twice. 3609 */ 3610 if (list_is_empty(&zilog->zl_lwb_list)) 3611 BP_ZERO(&zh->zh_log); 3612 } 3613 3614 /* 3615 * Remove fastwrite on any blocks that have been pre-allocated for 3616 * the next commit. This prevents fastwrite counter pollution by 3617 * unused, long-lived LWBs. 3618 */ 3619 for (; lwb != NULL; lwb = list_next(&zilog->zl_lwb_list, lwb)) { 3620 if (lwb->lwb_fastwrite && !lwb->lwb_write_zio) { 3621 metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk); 3622 lwb->lwb_fastwrite = 0; 3623 } 3624 } 3625 3626 mutex_exit(&zilog->zl_lock); 3627 } 3628 3629 static int 3630 zil_lwb_cons(void *vbuf, void *unused, int kmflag) 3631 { 3632 (void) unused, (void) kmflag; 3633 lwb_t *lwb = vbuf; 3634 list_create(&lwb->lwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node)); 3635 list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t), 3636 offsetof(zil_commit_waiter_t, zcw_node)); 3637 avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare, 3638 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node)); 3639 mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL); 3640 return (0); 3641 } 3642 3643 static void 3644 zil_lwb_dest(void *vbuf, void *unused) 3645 { 3646 (void) unused; 3647 lwb_t *lwb = vbuf; 3648 mutex_destroy(&lwb->lwb_vdev_lock); 3649 avl_destroy(&lwb->lwb_vdev_tree); 3650 list_destroy(&lwb->lwb_waiters); 3651 list_destroy(&lwb->lwb_itxs); 3652 } 3653 3654 void 3655 zil_init(void) 3656 { 3657 zil_lwb_cache = kmem_cache_create("zil_lwb_cache", 3658 sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0); 3659 3660 zil_zcw_cache = kmem_cache_create("zil_zcw_cache", 3661 sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 3662 3663 zil_sums_init(&zil_sums_global); 3664 zil_kstats_global = kstat_create("zfs", 0, "zil", "misc", 3665 KSTAT_TYPE_NAMED, sizeof (zil_stats) / sizeof (kstat_named_t), 3666 KSTAT_FLAG_VIRTUAL); 3667 3668 if (zil_kstats_global != NULL) { 3669 zil_kstats_global->ks_data = &zil_stats; 3670 zil_kstats_global->ks_update = zil_kstats_global_update; 3671 zil_kstats_global->ks_private = NULL; 3672 kstat_install(zil_kstats_global); 3673 } 3674 } 3675 3676 void 3677 zil_fini(void) 3678 { 3679 kmem_cache_destroy(zil_zcw_cache); 3680 kmem_cache_destroy(zil_lwb_cache); 3681 3682 if (zil_kstats_global != NULL) { 3683 kstat_delete(zil_kstats_global); 3684 zil_kstats_global = NULL; 3685 } 3686 3687 zil_sums_fini(&zil_sums_global); 3688 } 3689 3690 void 3691 zil_set_sync(zilog_t *zilog, uint64_t sync) 3692 { 3693 zilog->zl_sync = sync; 3694 } 3695 3696 void 3697 zil_set_logbias(zilog_t *zilog, uint64_t logbias) 3698 { 3699 zilog->zl_logbias = logbias; 3700 } 3701 3702 zilog_t * 3703 zil_alloc(objset_t *os, zil_header_t *zh_phys) 3704 { 3705 zilog_t *zilog; 3706 3707 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP); 3708 3709 zilog->zl_header = zh_phys; 3710 zilog->zl_os = os; 3711 zilog->zl_spa = dmu_objset_spa(os); 3712 zilog->zl_dmu_pool = dmu_objset_pool(os); 3713 zilog->zl_destroy_txg = TXG_INITIAL - 1; 3714 zilog->zl_logbias = dmu_objset_logbias(os); 3715 zilog->zl_sync = dmu_objset_syncprop(os); 3716 zilog->zl_dirty_max_txg = 0; 3717 zilog->zl_last_lwb_opened = NULL; 3718 zilog->zl_last_lwb_latency = 0; 3719 zilog->zl_max_block_size = zil_maxblocksize; 3720 3721 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL); 3722 mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL); 3723 mutex_init(&zilog->zl_lwb_io_lock, NULL, MUTEX_DEFAULT, NULL); 3724 3725 for (int i = 0; i < TXG_SIZE; i++) { 3726 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL, 3727 MUTEX_DEFAULT, NULL); 3728 } 3729 3730 list_create(&zilog->zl_lwb_list, sizeof (lwb_t), 3731 offsetof(lwb_t, lwb_node)); 3732 3733 list_create(&zilog->zl_itx_commit_list, sizeof (itx_t), 3734 offsetof(itx_t, itx_node)); 3735 3736 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL); 3737 cv_init(&zilog->zl_lwb_io_cv, NULL, CV_DEFAULT, NULL); 3738 3739 return (zilog); 3740 } 3741 3742 void 3743 zil_free(zilog_t *zilog) 3744 { 3745 int i; 3746 3747 zilog->zl_stop_sync = 1; 3748 3749 ASSERT0(zilog->zl_suspend); 3750 ASSERT0(zilog->zl_suspending); 3751 3752 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3753 list_destroy(&zilog->zl_lwb_list); 3754 3755 ASSERT(list_is_empty(&zilog->zl_itx_commit_list)); 3756 list_destroy(&zilog->zl_itx_commit_list); 3757 3758 for (i = 0; i < TXG_SIZE; i++) { 3759 /* 3760 * It's possible for an itx to be generated that doesn't dirty 3761 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean() 3762 * callback to remove the entry. We remove those here. 3763 * 3764 * Also free up the ziltest itxs. 3765 */ 3766 if (zilog->zl_itxg[i].itxg_itxs) 3767 zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs); 3768 mutex_destroy(&zilog->zl_itxg[i].itxg_lock); 3769 } 3770 3771 mutex_destroy(&zilog->zl_issuer_lock); 3772 mutex_destroy(&zilog->zl_lock); 3773 mutex_destroy(&zilog->zl_lwb_io_lock); 3774 3775 cv_destroy(&zilog->zl_cv_suspend); 3776 cv_destroy(&zilog->zl_lwb_io_cv); 3777 3778 kmem_free(zilog, sizeof (zilog_t)); 3779 } 3780 3781 /* 3782 * Open an intent log. 3783 */ 3784 zilog_t * 3785 zil_open(objset_t *os, zil_get_data_t *get_data, zil_sums_t *zil_sums) 3786 { 3787 zilog_t *zilog = dmu_objset_zil(os); 3788 3789 ASSERT3P(zilog->zl_get_data, ==, NULL); 3790 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL); 3791 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3792 3793 zilog->zl_get_data = get_data; 3794 zilog->zl_sums = zil_sums; 3795 3796 return (zilog); 3797 } 3798 3799 /* 3800 * Close an intent log. 3801 */ 3802 void 3803 zil_close(zilog_t *zilog) 3804 { 3805 lwb_t *lwb; 3806 uint64_t txg; 3807 3808 if (!dmu_objset_is_snapshot(zilog->zl_os)) { 3809 zil_commit(zilog, 0); 3810 } else { 3811 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3812 ASSERT0(zilog->zl_dirty_max_txg); 3813 ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE); 3814 } 3815 3816 mutex_enter(&zilog->zl_lock); 3817 lwb = list_tail(&zilog->zl_lwb_list); 3818 if (lwb == NULL) 3819 txg = zilog->zl_dirty_max_txg; 3820 else 3821 txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg); 3822 mutex_exit(&zilog->zl_lock); 3823 3824 /* 3825 * zl_lwb_max_issued_txg may be larger than lwb_max_txg. It depends 3826 * on the time when the dmu_tx transaction is assigned in 3827 * zil_lwb_write_close(). 3828 */ 3829 mutex_enter(&zilog->zl_lwb_io_lock); 3830 txg = MAX(zilog->zl_lwb_max_issued_txg, txg); 3831 mutex_exit(&zilog->zl_lwb_io_lock); 3832 3833 /* 3834 * We need to use txg_wait_synced() to wait until that txg is synced. 3835 * zil_sync() will guarantee all lwbs up to that txg have been 3836 * written out, flushed, and cleaned. 3837 */ 3838 if (txg != 0) 3839 txg_wait_synced(zilog->zl_dmu_pool, txg); 3840 3841 if (zilog_is_dirty(zilog)) 3842 zfs_dbgmsg("zil (%px) is dirty, txg %llu", zilog, 3843 (u_longlong_t)txg); 3844 if (txg < spa_freeze_txg(zilog->zl_spa)) 3845 VERIFY(!zilog_is_dirty(zilog)); 3846 3847 zilog->zl_get_data = NULL; 3848 3849 /* 3850 * We should have only one lwb left on the list; remove it now. 3851 */ 3852 mutex_enter(&zilog->zl_lock); 3853 lwb = list_remove_head(&zilog->zl_lwb_list); 3854 if (lwb != NULL) { 3855 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3856 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED); 3857 3858 if (lwb->lwb_fastwrite) 3859 metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk); 3860 3861 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 3862 zil_free_lwb(zilog, lwb); 3863 } 3864 mutex_exit(&zilog->zl_lock); 3865 } 3866 3867 static const char *suspend_tag = "zil suspending"; 3868 3869 /* 3870 * Suspend an intent log. While in suspended mode, we still honor 3871 * synchronous semantics, but we rely on txg_wait_synced() to do it. 3872 * On old version pools, we suspend the log briefly when taking a 3873 * snapshot so that it will have an empty intent log. 3874 * 3875 * Long holds are not really intended to be used the way we do here -- 3876 * held for such a short time. A concurrent caller of dsl_dataset_long_held() 3877 * could fail. Therefore we take pains to only put a long hold if it is 3878 * actually necessary. Fortunately, it will only be necessary if the 3879 * objset is currently mounted (or the ZVOL equivalent). In that case it 3880 * will already have a long hold, so we are not really making things any worse. 3881 * 3882 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or 3883 * zvol_state_t), and use their mechanism to prevent their hold from being 3884 * dropped (e.g. VFS_HOLD()). However, that would be even more pain for 3885 * very little gain. 3886 * 3887 * if cookiep == NULL, this does both the suspend & resume. 3888 * Otherwise, it returns with the dataset "long held", and the cookie 3889 * should be passed into zil_resume(). 3890 */ 3891 int 3892 zil_suspend(const char *osname, void **cookiep) 3893 { 3894 objset_t *os; 3895 zilog_t *zilog; 3896 const zil_header_t *zh; 3897 int error; 3898 3899 error = dmu_objset_hold(osname, suspend_tag, &os); 3900 if (error != 0) 3901 return (error); 3902 zilog = dmu_objset_zil(os); 3903 3904 mutex_enter(&zilog->zl_lock); 3905 zh = zilog->zl_header; 3906 3907 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */ 3908 mutex_exit(&zilog->zl_lock); 3909 dmu_objset_rele(os, suspend_tag); 3910 return (SET_ERROR(EBUSY)); 3911 } 3912 3913 /* 3914 * Don't put a long hold in the cases where we can avoid it. This 3915 * is when there is no cookie so we are doing a suspend & resume 3916 * (i.e. called from zil_vdev_offline()), and there's nothing to do 3917 * for the suspend because it's already suspended, or there's no ZIL. 3918 */ 3919 if (cookiep == NULL && !zilog->zl_suspending && 3920 (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) { 3921 mutex_exit(&zilog->zl_lock); 3922 dmu_objset_rele(os, suspend_tag); 3923 return (0); 3924 } 3925 3926 dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag); 3927 dsl_pool_rele(dmu_objset_pool(os), suspend_tag); 3928 3929 zilog->zl_suspend++; 3930 3931 if (zilog->zl_suspend > 1) { 3932 /* 3933 * Someone else is already suspending it. 3934 * Just wait for them to finish. 3935 */ 3936 3937 while (zilog->zl_suspending) 3938 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock); 3939 mutex_exit(&zilog->zl_lock); 3940 3941 if (cookiep == NULL) 3942 zil_resume(os); 3943 else 3944 *cookiep = os; 3945 return (0); 3946 } 3947 3948 /* 3949 * If there is no pointer to an on-disk block, this ZIL must not 3950 * be active (e.g. filesystem not mounted), so there's nothing 3951 * to clean up. 3952 */ 3953 if (BP_IS_HOLE(&zh->zh_log)) { 3954 ASSERT(cookiep != NULL); /* fast path already handled */ 3955 3956 *cookiep = os; 3957 mutex_exit(&zilog->zl_lock); 3958 return (0); 3959 } 3960 3961 /* 3962 * The ZIL has work to do. Ensure that the associated encryption 3963 * key will remain mapped while we are committing the log by 3964 * grabbing a reference to it. If the key isn't loaded we have no 3965 * choice but to return an error until the wrapping key is loaded. 3966 */ 3967 if (os->os_encrypted && 3968 dsl_dataset_create_key_mapping(dmu_objset_ds(os)) != 0) { 3969 zilog->zl_suspend--; 3970 mutex_exit(&zilog->zl_lock); 3971 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag); 3972 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag); 3973 return (SET_ERROR(EACCES)); 3974 } 3975 3976 zilog->zl_suspending = B_TRUE; 3977 mutex_exit(&zilog->zl_lock); 3978 3979 /* 3980 * We need to use zil_commit_impl to ensure we wait for all 3981 * LWB_STATE_OPENED and LWB_STATE_ISSUED lwbs to be committed 3982 * to disk before proceeding. If we used zil_commit instead, it 3983 * would just call txg_wait_synced(), because zl_suspend is set. 3984 * txg_wait_synced() doesn't wait for these lwb's to be 3985 * LWB_STATE_FLUSH_DONE before returning. 3986 */ 3987 zil_commit_impl(zilog, 0); 3988 3989 /* 3990 * Now that we've ensured all lwb's are LWB_STATE_FLUSH_DONE, we 3991 * use txg_wait_synced() to ensure the data from the zilog has 3992 * migrated to the main pool before calling zil_destroy(). 3993 */ 3994 txg_wait_synced(zilog->zl_dmu_pool, 0); 3995 3996 zil_destroy(zilog, B_FALSE); 3997 3998 mutex_enter(&zilog->zl_lock); 3999 zilog->zl_suspending = B_FALSE; 4000 cv_broadcast(&zilog->zl_cv_suspend); 4001 mutex_exit(&zilog->zl_lock); 4002 4003 if (os->os_encrypted) 4004 dsl_dataset_remove_key_mapping(dmu_objset_ds(os)); 4005 4006 if (cookiep == NULL) 4007 zil_resume(os); 4008 else 4009 *cookiep = os; 4010 return (0); 4011 } 4012 4013 void 4014 zil_resume(void *cookie) 4015 { 4016 objset_t *os = cookie; 4017 zilog_t *zilog = dmu_objset_zil(os); 4018 4019 mutex_enter(&zilog->zl_lock); 4020 ASSERT(zilog->zl_suspend != 0); 4021 zilog->zl_suspend--; 4022 mutex_exit(&zilog->zl_lock); 4023 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag); 4024 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag); 4025 } 4026 4027 typedef struct zil_replay_arg { 4028 zil_replay_func_t *const *zr_replay; 4029 void *zr_arg; 4030 boolean_t zr_byteswap; 4031 char *zr_lr; 4032 } zil_replay_arg_t; 4033 4034 static int 4035 zil_replay_error(zilog_t *zilog, const lr_t *lr, int error) 4036 { 4037 char name[ZFS_MAX_DATASET_NAME_LEN]; 4038 4039 zilog->zl_replaying_seq--; /* didn't actually replay this one */ 4040 4041 dmu_objset_name(zilog->zl_os, name); 4042 4043 cmn_err(CE_WARN, "ZFS replay transaction error %d, " 4044 "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name, 4045 (u_longlong_t)lr->lrc_seq, 4046 (u_longlong_t)(lr->lrc_txtype & ~TX_CI), 4047 (lr->lrc_txtype & TX_CI) ? "CI" : ""); 4048 4049 return (error); 4050 } 4051 4052 static int 4053 zil_replay_log_record(zilog_t *zilog, const lr_t *lr, void *zra, 4054 uint64_t claim_txg) 4055 { 4056 zil_replay_arg_t *zr = zra; 4057 const zil_header_t *zh = zilog->zl_header; 4058 uint64_t reclen = lr->lrc_reclen; 4059 uint64_t txtype = lr->lrc_txtype; 4060 int error = 0; 4061 4062 zilog->zl_replaying_seq = lr->lrc_seq; 4063 4064 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */ 4065 return (0); 4066 4067 if (lr->lrc_txg < claim_txg) /* already committed */ 4068 return (0); 4069 4070 /* Strip case-insensitive bit, still present in log record */ 4071 txtype &= ~TX_CI; 4072 4073 if (txtype == 0 || txtype >= TX_MAX_TYPE) 4074 return (zil_replay_error(zilog, lr, EINVAL)); 4075 4076 /* 4077 * If this record type can be logged out of order, the object 4078 * (lr_foid) may no longer exist. That's legitimate, not an error. 4079 */ 4080 if (TX_OOO(txtype)) { 4081 error = dmu_object_info(zilog->zl_os, 4082 LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL); 4083 if (error == ENOENT || error == EEXIST) 4084 return (0); 4085 } 4086 4087 /* 4088 * Make a copy of the data so we can revise and extend it. 4089 */ 4090 memcpy(zr->zr_lr, lr, reclen); 4091 4092 /* 4093 * If this is a TX_WRITE with a blkptr, suck in the data. 4094 */ 4095 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) { 4096 error = zil_read_log_data(zilog, (lr_write_t *)lr, 4097 zr->zr_lr + reclen); 4098 if (error != 0) 4099 return (zil_replay_error(zilog, lr, error)); 4100 } 4101 4102 /* 4103 * The log block containing this lr may have been byteswapped 4104 * so that we can easily examine common fields like lrc_txtype. 4105 * However, the log is a mix of different record types, and only the 4106 * replay vectors know how to byteswap their records. Therefore, if 4107 * the lr was byteswapped, undo it before invoking the replay vector. 4108 */ 4109 if (zr->zr_byteswap) 4110 byteswap_uint64_array(zr->zr_lr, reclen); 4111 4112 /* 4113 * We must now do two things atomically: replay this log record, 4114 * and update the log header sequence number to reflect the fact that 4115 * we did so. At the end of each replay function the sequence number 4116 * is updated if we are in replay mode. 4117 */ 4118 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap); 4119 if (error != 0) { 4120 /* 4121 * The DMU's dnode layer doesn't see removes until the txg 4122 * commits, so a subsequent claim can spuriously fail with 4123 * EEXIST. So if we receive any error we try syncing out 4124 * any removes then retry the transaction. Note that we 4125 * specify B_FALSE for byteswap now, so we don't do it twice. 4126 */ 4127 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0); 4128 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE); 4129 if (error != 0) 4130 return (zil_replay_error(zilog, lr, error)); 4131 } 4132 return (0); 4133 } 4134 4135 static int 4136 zil_incr_blks(zilog_t *zilog, const blkptr_t *bp, void *arg, uint64_t claim_txg) 4137 { 4138 (void) bp, (void) arg, (void) claim_txg; 4139 4140 zilog->zl_replay_blks++; 4141 4142 return (0); 4143 } 4144 4145 /* 4146 * If this dataset has a non-empty intent log, replay it and destroy it. 4147 * Return B_TRUE if there were any entries to replay. 4148 */ 4149 boolean_t 4150 zil_replay(objset_t *os, void *arg, 4151 zil_replay_func_t *const replay_func[TX_MAX_TYPE]) 4152 { 4153 zilog_t *zilog = dmu_objset_zil(os); 4154 const zil_header_t *zh = zilog->zl_header; 4155 zil_replay_arg_t zr; 4156 4157 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) { 4158 return (zil_destroy(zilog, B_TRUE)); 4159 } 4160 4161 zr.zr_replay = replay_func; 4162 zr.zr_arg = arg; 4163 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log); 4164 zr.zr_lr = vmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP); 4165 4166 /* 4167 * Wait for in-progress removes to sync before starting replay. 4168 */ 4169 txg_wait_synced(zilog->zl_dmu_pool, 0); 4170 4171 zilog->zl_replay = B_TRUE; 4172 zilog->zl_replay_time = ddi_get_lbolt(); 4173 ASSERT(zilog->zl_replay_blks == 0); 4174 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr, 4175 zh->zh_claim_txg, B_TRUE); 4176 vmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE); 4177 4178 zil_destroy(zilog, B_FALSE); 4179 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 4180 zilog->zl_replay = B_FALSE; 4181 4182 return (B_TRUE); 4183 } 4184 4185 boolean_t 4186 zil_replaying(zilog_t *zilog, dmu_tx_t *tx) 4187 { 4188 if (zilog->zl_sync == ZFS_SYNC_DISABLED) 4189 return (B_TRUE); 4190 4191 if (zilog->zl_replay) { 4192 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 4193 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] = 4194 zilog->zl_replaying_seq; 4195 return (B_TRUE); 4196 } 4197 4198 return (B_FALSE); 4199 } 4200 4201 int 4202 zil_reset(const char *osname, void *arg) 4203 { 4204 (void) arg; 4205 4206 int error = zil_suspend(osname, NULL); 4207 /* EACCES means crypto key not loaded */ 4208 if ((error == EACCES) || (error == EBUSY)) 4209 return (SET_ERROR(error)); 4210 if (error != 0) 4211 return (SET_ERROR(EEXIST)); 4212 return (0); 4213 } 4214 4215 EXPORT_SYMBOL(zil_alloc); 4216 EXPORT_SYMBOL(zil_free); 4217 EXPORT_SYMBOL(zil_open); 4218 EXPORT_SYMBOL(zil_close); 4219 EXPORT_SYMBOL(zil_replay); 4220 EXPORT_SYMBOL(zil_replaying); 4221 EXPORT_SYMBOL(zil_destroy); 4222 EXPORT_SYMBOL(zil_destroy_sync); 4223 EXPORT_SYMBOL(zil_itx_create); 4224 EXPORT_SYMBOL(zil_itx_destroy); 4225 EXPORT_SYMBOL(zil_itx_assign); 4226 EXPORT_SYMBOL(zil_commit); 4227 EXPORT_SYMBOL(zil_claim); 4228 EXPORT_SYMBOL(zil_check_log_chain); 4229 EXPORT_SYMBOL(zil_sync); 4230 EXPORT_SYMBOL(zil_clean); 4231 EXPORT_SYMBOL(zil_suspend); 4232 EXPORT_SYMBOL(zil_resume); 4233 EXPORT_SYMBOL(zil_lwb_add_block); 4234 EXPORT_SYMBOL(zil_bp_tree_add); 4235 EXPORT_SYMBOL(zil_set_sync); 4236 EXPORT_SYMBOL(zil_set_logbias); 4237 EXPORT_SYMBOL(zil_sums_init); 4238 EXPORT_SYMBOL(zil_sums_fini); 4239 EXPORT_SYMBOL(zil_kstat_values_update); 4240 4241 ZFS_MODULE_PARAM(zfs, zfs_, commit_timeout_pct, UINT, ZMOD_RW, 4242 "ZIL block open timeout percentage"); 4243 4244 ZFS_MODULE_PARAM(zfs_zil, zil_, min_commit_timeout, U64, ZMOD_RW, 4245 "Minimum delay we care for ZIL block commit"); 4246 4247 ZFS_MODULE_PARAM(zfs_zil, zil_, replay_disable, INT, ZMOD_RW, 4248 "Disable intent logging replay"); 4249 4250 ZFS_MODULE_PARAM(zfs_zil, zil_, nocacheflush, INT, ZMOD_RW, 4251 "Disable ZIL cache flushes"); 4252 4253 ZFS_MODULE_PARAM(zfs_zil, zil_, slog_bulk, U64, ZMOD_RW, 4254 "Limit in bytes slog sync writes per commit"); 4255 4256 ZFS_MODULE_PARAM(zfs_zil, zil_, maxblocksize, UINT, ZMOD_RW, 4257 "Limit in bytes of ZIL log block size"); 4258