1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 24 * Copyright (c) 2014 Integros [integros.com] 25 * Copyright (c) 2018 Datto Inc. 26 */ 27 28 /* Portions Copyright 2010 Robert Milkowski */ 29 30 #include <sys/zfs_context.h> 31 #include <sys/spa.h> 32 #include <sys/spa_impl.h> 33 #include <sys/dmu.h> 34 #include <sys/zap.h> 35 #include <sys/arc.h> 36 #include <sys/stat.h> 37 #include <sys/zil.h> 38 #include <sys/zil_impl.h> 39 #include <sys/dsl_dataset.h> 40 #include <sys/vdev_impl.h> 41 #include <sys/dmu_tx.h> 42 #include <sys/dsl_pool.h> 43 #include <sys/metaslab.h> 44 #include <sys/trace_zfs.h> 45 #include <sys/abd.h> 46 #include <sys/wmsum.h> 47 48 /* 49 * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system 50 * calls that change the file system. Each itx has enough information to 51 * be able to replay them after a system crash, power loss, or 52 * equivalent failure mode. These are stored in memory until either: 53 * 54 * 1. they are committed to the pool by the DMU transaction group 55 * (txg), at which point they can be discarded; or 56 * 2. they are committed to the on-disk ZIL for the dataset being 57 * modified (e.g. due to an fsync, O_DSYNC, or other synchronous 58 * requirement). 59 * 60 * In the event of a crash or power loss, the itxs contained by each 61 * dataset's on-disk ZIL will be replayed when that dataset is first 62 * instantiated (e.g. if the dataset is a normal filesystem, when it is 63 * first mounted). 64 * 65 * As hinted at above, there is one ZIL per dataset (both the in-memory 66 * representation, and the on-disk representation). The on-disk format 67 * consists of 3 parts: 68 * 69 * - a single, per-dataset, ZIL header; which points to a chain of 70 * - zero or more ZIL blocks; each of which contains 71 * - zero or more ZIL records 72 * 73 * A ZIL record holds the information necessary to replay a single 74 * system call transaction. A ZIL block can hold many ZIL records, and 75 * the blocks are chained together, similarly to a singly linked list. 76 * 77 * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL 78 * block in the chain, and the ZIL header points to the first block in 79 * the chain. 80 * 81 * Note, there is not a fixed place in the pool to hold these ZIL 82 * blocks; they are dynamically allocated and freed as needed from the 83 * blocks available on the pool, though they can be preferentially 84 * allocated from a dedicated "log" vdev. 85 */ 86 87 /* 88 * This controls the amount of time that a ZIL block (lwb) will remain 89 * "open" when it isn't "full", and it has a thread waiting for it to be 90 * committed to stable storage. Please refer to the zil_commit_waiter() 91 * function (and the comments within it) for more details. 92 */ 93 static uint_t zfs_commit_timeout_pct = 5; 94 95 /* 96 * Minimal time we care to delay commit waiting for more ZIL records. 97 * At least FreeBSD kernel can't sleep for less than 2us at its best. 98 * So requests to sleep for less then 5us is a waste of CPU time with 99 * a risk of significant log latency increase due to oversleep. 100 */ 101 static uint64_t zil_min_commit_timeout = 5000; 102 103 /* 104 * See zil.h for more information about these fields. 105 */ 106 static zil_kstat_values_t zil_stats = { 107 { "zil_commit_count", KSTAT_DATA_UINT64 }, 108 { "zil_commit_writer_count", KSTAT_DATA_UINT64 }, 109 { "zil_itx_count", KSTAT_DATA_UINT64 }, 110 { "zil_itx_indirect_count", KSTAT_DATA_UINT64 }, 111 { "zil_itx_indirect_bytes", KSTAT_DATA_UINT64 }, 112 { "zil_itx_copied_count", KSTAT_DATA_UINT64 }, 113 { "zil_itx_copied_bytes", KSTAT_DATA_UINT64 }, 114 { "zil_itx_needcopy_count", KSTAT_DATA_UINT64 }, 115 { "zil_itx_needcopy_bytes", KSTAT_DATA_UINT64 }, 116 { "zil_itx_metaslab_normal_count", KSTAT_DATA_UINT64 }, 117 { "zil_itx_metaslab_normal_bytes", KSTAT_DATA_UINT64 }, 118 { "zil_itx_metaslab_slog_count", KSTAT_DATA_UINT64 }, 119 { "zil_itx_metaslab_slog_bytes", KSTAT_DATA_UINT64 }, 120 }; 121 122 static zil_sums_t zil_sums_global; 123 static kstat_t *zil_kstats_global; 124 125 /* 126 * Disable intent logging replay. This global ZIL switch affects all pools. 127 */ 128 int zil_replay_disable = 0; 129 130 /* 131 * Disable the DKIOCFLUSHWRITECACHE commands that are normally sent to 132 * the disk(s) by the ZIL after an LWB write has completed. Setting this 133 * will cause ZIL corruption on power loss if a volatile out-of-order 134 * write cache is enabled. 135 */ 136 static int zil_nocacheflush = 0; 137 138 /* 139 * Limit SLOG write size per commit executed with synchronous priority. 140 * Any writes above that will be executed with lower (asynchronous) priority 141 * to limit potential SLOG device abuse by single active ZIL writer. 142 */ 143 static uint64_t zil_slog_bulk = 768 * 1024; 144 145 static kmem_cache_t *zil_lwb_cache; 146 static kmem_cache_t *zil_zcw_cache; 147 148 #define LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \ 149 sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused)) 150 151 static int 152 zil_bp_compare(const void *x1, const void *x2) 153 { 154 const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva; 155 const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva; 156 157 int cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2)); 158 if (likely(cmp)) 159 return (cmp); 160 161 return (TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2))); 162 } 163 164 static void 165 zil_bp_tree_init(zilog_t *zilog) 166 { 167 avl_create(&zilog->zl_bp_tree, zil_bp_compare, 168 sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node)); 169 } 170 171 static void 172 zil_bp_tree_fini(zilog_t *zilog) 173 { 174 avl_tree_t *t = &zilog->zl_bp_tree; 175 zil_bp_node_t *zn; 176 void *cookie = NULL; 177 178 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL) 179 kmem_free(zn, sizeof (zil_bp_node_t)); 180 181 avl_destroy(t); 182 } 183 184 int 185 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp) 186 { 187 avl_tree_t *t = &zilog->zl_bp_tree; 188 const dva_t *dva; 189 zil_bp_node_t *zn; 190 avl_index_t where; 191 192 if (BP_IS_EMBEDDED(bp)) 193 return (0); 194 195 dva = BP_IDENTITY(bp); 196 197 if (avl_find(t, dva, &where) != NULL) 198 return (SET_ERROR(EEXIST)); 199 200 zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP); 201 zn->zn_dva = *dva; 202 avl_insert(t, zn, where); 203 204 return (0); 205 } 206 207 static zil_header_t * 208 zil_header_in_syncing_context(zilog_t *zilog) 209 { 210 return ((zil_header_t *)zilog->zl_header); 211 } 212 213 static void 214 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp) 215 { 216 zio_cksum_t *zc = &bp->blk_cksum; 217 218 (void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_0], 219 sizeof (zc->zc_word[ZIL_ZC_GUID_0])); 220 (void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_1], 221 sizeof (zc->zc_word[ZIL_ZC_GUID_1])); 222 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os); 223 zc->zc_word[ZIL_ZC_SEQ] = 1ULL; 224 } 225 226 static int 227 zil_kstats_global_update(kstat_t *ksp, int rw) 228 { 229 zil_kstat_values_t *zs = ksp->ks_data; 230 ASSERT3P(&zil_stats, ==, zs); 231 232 if (rw == KSTAT_WRITE) { 233 return (SET_ERROR(EACCES)); 234 } 235 236 zil_kstat_values_update(zs, &zil_sums_global); 237 238 return (0); 239 } 240 241 /* 242 * Read a log block and make sure it's valid. 243 */ 244 static int 245 zil_read_log_block(zilog_t *zilog, boolean_t decrypt, const blkptr_t *bp, 246 blkptr_t *nbp, void *dst, char **end) 247 { 248 zio_flag_t zio_flags = ZIO_FLAG_CANFAIL; 249 arc_flags_t aflags = ARC_FLAG_WAIT; 250 arc_buf_t *abuf = NULL; 251 zbookmark_phys_t zb; 252 int error; 253 254 if (zilog->zl_header->zh_claim_txg == 0) 255 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; 256 257 if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) 258 zio_flags |= ZIO_FLAG_SPECULATIVE; 259 260 if (!decrypt) 261 zio_flags |= ZIO_FLAG_RAW; 262 263 SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET], 264 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); 265 266 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, 267 &abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); 268 269 if (error == 0) { 270 zio_cksum_t cksum = bp->blk_cksum; 271 272 /* 273 * Validate the checksummed log block. 274 * 275 * Sequence numbers should be... sequential. The checksum 276 * verifier for the next block should be bp's checksum plus 1. 277 * 278 * Also check the log chain linkage and size used. 279 */ 280 cksum.zc_word[ZIL_ZC_SEQ]++; 281 282 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { 283 zil_chain_t *zilc = abuf->b_data; 284 char *lr = (char *)(zilc + 1); 285 uint64_t len = zilc->zc_nused - sizeof (zil_chain_t); 286 287 if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum, 288 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) { 289 error = SET_ERROR(ECKSUM); 290 } else { 291 ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE); 292 memcpy(dst, lr, len); 293 *end = (char *)dst + len; 294 *nbp = zilc->zc_next_blk; 295 } 296 } else { 297 char *lr = abuf->b_data; 298 uint64_t size = BP_GET_LSIZE(bp); 299 zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1; 300 301 if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum, 302 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) || 303 (zilc->zc_nused > (size - sizeof (*zilc)))) { 304 error = SET_ERROR(ECKSUM); 305 } else { 306 ASSERT3U(zilc->zc_nused, <=, 307 SPA_OLD_MAXBLOCKSIZE); 308 memcpy(dst, lr, zilc->zc_nused); 309 *end = (char *)dst + zilc->zc_nused; 310 *nbp = zilc->zc_next_blk; 311 } 312 } 313 314 arc_buf_destroy(abuf, &abuf); 315 } 316 317 return (error); 318 } 319 320 /* 321 * Read a TX_WRITE log data block. 322 */ 323 static int 324 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf) 325 { 326 zio_flag_t zio_flags = ZIO_FLAG_CANFAIL; 327 const blkptr_t *bp = &lr->lr_blkptr; 328 arc_flags_t aflags = ARC_FLAG_WAIT; 329 arc_buf_t *abuf = NULL; 330 zbookmark_phys_t zb; 331 int error; 332 333 if (BP_IS_HOLE(bp)) { 334 if (wbuf != NULL) 335 memset(wbuf, 0, MAX(BP_GET_LSIZE(bp), lr->lr_length)); 336 return (0); 337 } 338 339 if (zilog->zl_header->zh_claim_txg == 0) 340 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; 341 342 /* 343 * If we are not using the resulting data, we are just checking that 344 * it hasn't been corrupted so we don't need to waste CPU time 345 * decompressing and decrypting it. 346 */ 347 if (wbuf == NULL) 348 zio_flags |= ZIO_FLAG_RAW; 349 350 ASSERT3U(BP_GET_LSIZE(bp), !=, 0); 351 SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid, 352 ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp)); 353 354 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf, 355 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); 356 357 if (error == 0) { 358 if (wbuf != NULL) 359 memcpy(wbuf, abuf->b_data, arc_buf_size(abuf)); 360 arc_buf_destroy(abuf, &abuf); 361 } 362 363 return (error); 364 } 365 366 void 367 zil_sums_init(zil_sums_t *zs) 368 { 369 wmsum_init(&zs->zil_commit_count, 0); 370 wmsum_init(&zs->zil_commit_writer_count, 0); 371 wmsum_init(&zs->zil_itx_count, 0); 372 wmsum_init(&zs->zil_itx_indirect_count, 0); 373 wmsum_init(&zs->zil_itx_indirect_bytes, 0); 374 wmsum_init(&zs->zil_itx_copied_count, 0); 375 wmsum_init(&zs->zil_itx_copied_bytes, 0); 376 wmsum_init(&zs->zil_itx_needcopy_count, 0); 377 wmsum_init(&zs->zil_itx_needcopy_bytes, 0); 378 wmsum_init(&zs->zil_itx_metaslab_normal_count, 0); 379 wmsum_init(&zs->zil_itx_metaslab_normal_bytes, 0); 380 wmsum_init(&zs->zil_itx_metaslab_slog_count, 0); 381 wmsum_init(&zs->zil_itx_metaslab_slog_bytes, 0); 382 } 383 384 void 385 zil_sums_fini(zil_sums_t *zs) 386 { 387 wmsum_fini(&zs->zil_commit_count); 388 wmsum_fini(&zs->zil_commit_writer_count); 389 wmsum_fini(&zs->zil_itx_count); 390 wmsum_fini(&zs->zil_itx_indirect_count); 391 wmsum_fini(&zs->zil_itx_indirect_bytes); 392 wmsum_fini(&zs->zil_itx_copied_count); 393 wmsum_fini(&zs->zil_itx_copied_bytes); 394 wmsum_fini(&zs->zil_itx_needcopy_count); 395 wmsum_fini(&zs->zil_itx_needcopy_bytes); 396 wmsum_fini(&zs->zil_itx_metaslab_normal_count); 397 wmsum_fini(&zs->zil_itx_metaslab_normal_bytes); 398 wmsum_fini(&zs->zil_itx_metaslab_slog_count); 399 wmsum_fini(&zs->zil_itx_metaslab_slog_bytes); 400 } 401 402 void 403 zil_kstat_values_update(zil_kstat_values_t *zs, zil_sums_t *zil_sums) 404 { 405 zs->zil_commit_count.value.ui64 = 406 wmsum_value(&zil_sums->zil_commit_count); 407 zs->zil_commit_writer_count.value.ui64 = 408 wmsum_value(&zil_sums->zil_commit_writer_count); 409 zs->zil_itx_count.value.ui64 = 410 wmsum_value(&zil_sums->zil_itx_count); 411 zs->zil_itx_indirect_count.value.ui64 = 412 wmsum_value(&zil_sums->zil_itx_indirect_count); 413 zs->zil_itx_indirect_bytes.value.ui64 = 414 wmsum_value(&zil_sums->zil_itx_indirect_bytes); 415 zs->zil_itx_copied_count.value.ui64 = 416 wmsum_value(&zil_sums->zil_itx_copied_count); 417 zs->zil_itx_copied_bytes.value.ui64 = 418 wmsum_value(&zil_sums->zil_itx_copied_bytes); 419 zs->zil_itx_needcopy_count.value.ui64 = 420 wmsum_value(&zil_sums->zil_itx_needcopy_count); 421 zs->zil_itx_needcopy_bytes.value.ui64 = 422 wmsum_value(&zil_sums->zil_itx_needcopy_bytes); 423 zs->zil_itx_metaslab_normal_count.value.ui64 = 424 wmsum_value(&zil_sums->zil_itx_metaslab_normal_count); 425 zs->zil_itx_metaslab_normal_bytes.value.ui64 = 426 wmsum_value(&zil_sums->zil_itx_metaslab_normal_bytes); 427 zs->zil_itx_metaslab_slog_count.value.ui64 = 428 wmsum_value(&zil_sums->zil_itx_metaslab_slog_count); 429 zs->zil_itx_metaslab_slog_bytes.value.ui64 = 430 wmsum_value(&zil_sums->zil_itx_metaslab_slog_bytes); 431 } 432 433 /* 434 * Parse the intent log, and call parse_func for each valid record within. 435 */ 436 int 437 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func, 438 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg, 439 boolean_t decrypt) 440 { 441 const zil_header_t *zh = zilog->zl_header; 442 boolean_t claimed = !!zh->zh_claim_txg; 443 uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX; 444 uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX; 445 uint64_t max_blk_seq = 0; 446 uint64_t max_lr_seq = 0; 447 uint64_t blk_count = 0; 448 uint64_t lr_count = 0; 449 blkptr_t blk, next_blk = {{{{0}}}}; 450 char *lrbuf, *lrp; 451 int error = 0; 452 453 /* 454 * Old logs didn't record the maximum zh_claim_lr_seq. 455 */ 456 if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) 457 claim_lr_seq = UINT64_MAX; 458 459 /* 460 * Starting at the block pointed to by zh_log we read the log chain. 461 * For each block in the chain we strongly check that block to 462 * ensure its validity. We stop when an invalid block is found. 463 * For each block pointer in the chain we call parse_blk_func(). 464 * For each record in each valid block we call parse_lr_func(). 465 * If the log has been claimed, stop if we encounter a sequence 466 * number greater than the highest claimed sequence number. 467 */ 468 lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE); 469 zil_bp_tree_init(zilog); 470 471 for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) { 472 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; 473 int reclen; 474 char *end = NULL; 475 476 if (blk_seq > claim_blk_seq) 477 break; 478 479 error = parse_blk_func(zilog, &blk, arg, txg); 480 if (error != 0) 481 break; 482 ASSERT3U(max_blk_seq, <, blk_seq); 483 max_blk_seq = blk_seq; 484 blk_count++; 485 486 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq) 487 break; 488 489 error = zil_read_log_block(zilog, decrypt, &blk, &next_blk, 490 lrbuf, &end); 491 if (error != 0) { 492 if (claimed) { 493 char name[ZFS_MAX_DATASET_NAME_LEN]; 494 495 dmu_objset_name(zilog->zl_os, name); 496 497 cmn_err(CE_WARN, "ZFS read log block error %d, " 498 "dataset %s, seq 0x%llx\n", error, name, 499 (u_longlong_t)blk_seq); 500 } 501 break; 502 } 503 504 for (lrp = lrbuf; lrp < end; lrp += reclen) { 505 lr_t *lr = (lr_t *)lrp; 506 reclen = lr->lrc_reclen; 507 ASSERT3U(reclen, >=, sizeof (lr_t)); 508 if (lr->lrc_seq > claim_lr_seq) 509 goto done; 510 511 error = parse_lr_func(zilog, lr, arg, txg); 512 if (error != 0) 513 goto done; 514 ASSERT3U(max_lr_seq, <, lr->lrc_seq); 515 max_lr_seq = lr->lrc_seq; 516 lr_count++; 517 } 518 } 519 done: 520 zilog->zl_parse_error = error; 521 zilog->zl_parse_blk_seq = max_blk_seq; 522 zilog->zl_parse_lr_seq = max_lr_seq; 523 zilog->zl_parse_blk_count = blk_count; 524 zilog->zl_parse_lr_count = lr_count; 525 526 zil_bp_tree_fini(zilog); 527 zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE); 528 529 return (error); 530 } 531 532 static int 533 zil_clear_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx, 534 uint64_t first_txg) 535 { 536 (void) tx; 537 ASSERT(!BP_IS_HOLE(bp)); 538 539 /* 540 * As we call this function from the context of a rewind to a 541 * checkpoint, each ZIL block whose txg is later than the txg 542 * that we rewind to is invalid. Thus, we return -1 so 543 * zil_parse() doesn't attempt to read it. 544 */ 545 if (bp->blk_birth >= first_txg) 546 return (-1); 547 548 if (zil_bp_tree_add(zilog, bp) != 0) 549 return (0); 550 551 zio_free(zilog->zl_spa, first_txg, bp); 552 return (0); 553 } 554 555 static int 556 zil_noop_log_record(zilog_t *zilog, const lr_t *lrc, void *tx, 557 uint64_t first_txg) 558 { 559 (void) zilog, (void) lrc, (void) tx, (void) first_txg; 560 return (0); 561 } 562 563 static int 564 zil_claim_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx, 565 uint64_t first_txg) 566 { 567 /* 568 * Claim log block if not already committed and not already claimed. 569 * If tx == NULL, just verify that the block is claimable. 570 */ 571 if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg || 572 zil_bp_tree_add(zilog, bp) != 0) 573 return (0); 574 575 return (zio_wait(zio_claim(NULL, zilog->zl_spa, 576 tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL, 577 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB))); 578 } 579 580 static int 581 zil_claim_log_record(zilog_t *zilog, const lr_t *lrc, void *tx, 582 uint64_t first_txg) 583 { 584 lr_write_t *lr = (lr_write_t *)lrc; 585 int error; 586 587 if (lrc->lrc_txtype != TX_WRITE) 588 return (0); 589 590 /* 591 * If the block is not readable, don't claim it. This can happen 592 * in normal operation when a log block is written to disk before 593 * some of the dmu_sync() blocks it points to. In this case, the 594 * transaction cannot have been committed to anyone (we would have 595 * waited for all writes to be stable first), so it is semantically 596 * correct to declare this the end of the log. 597 */ 598 if (lr->lr_blkptr.blk_birth >= first_txg) { 599 error = zil_read_log_data(zilog, lr, NULL); 600 if (error != 0) 601 return (error); 602 } 603 604 return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg)); 605 } 606 607 static int 608 zil_free_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx, 609 uint64_t claim_txg) 610 { 611 (void) claim_txg; 612 613 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp); 614 615 return (0); 616 } 617 618 static int 619 zil_free_log_record(zilog_t *zilog, const lr_t *lrc, void *tx, 620 uint64_t claim_txg) 621 { 622 lr_write_t *lr = (lr_write_t *)lrc; 623 blkptr_t *bp = &lr->lr_blkptr; 624 625 /* 626 * If we previously claimed it, we need to free it. 627 */ 628 if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE && 629 bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 && 630 !BP_IS_HOLE(bp)) 631 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp); 632 633 return (0); 634 } 635 636 static int 637 zil_lwb_vdev_compare(const void *x1, const void *x2) 638 { 639 const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev; 640 const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev; 641 642 return (TREE_CMP(v1, v2)); 643 } 644 645 static lwb_t * 646 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg, 647 boolean_t fastwrite) 648 { 649 lwb_t *lwb; 650 651 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); 652 lwb->lwb_zilog = zilog; 653 lwb->lwb_blk = *bp; 654 lwb->lwb_fastwrite = fastwrite; 655 lwb->lwb_slog = slog; 656 lwb->lwb_state = LWB_STATE_CLOSED; 657 lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp)); 658 lwb->lwb_max_txg = txg; 659 lwb->lwb_write_zio = NULL; 660 lwb->lwb_root_zio = NULL; 661 lwb->lwb_issued_timestamp = 0; 662 lwb->lwb_issued_txg = 0; 663 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { 664 lwb->lwb_nused = sizeof (zil_chain_t); 665 lwb->lwb_sz = BP_GET_LSIZE(bp); 666 } else { 667 lwb->lwb_nused = 0; 668 lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t); 669 } 670 671 mutex_enter(&zilog->zl_lock); 672 list_insert_tail(&zilog->zl_lwb_list, lwb); 673 mutex_exit(&zilog->zl_lock); 674 675 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock)); 676 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree)); 677 VERIFY(list_is_empty(&lwb->lwb_waiters)); 678 VERIFY(list_is_empty(&lwb->lwb_itxs)); 679 680 return (lwb); 681 } 682 683 static void 684 zil_free_lwb(zilog_t *zilog, lwb_t *lwb) 685 { 686 ASSERT(MUTEX_HELD(&zilog->zl_lock)); 687 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock)); 688 VERIFY(list_is_empty(&lwb->lwb_waiters)); 689 VERIFY(list_is_empty(&lwb->lwb_itxs)); 690 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree)); 691 ASSERT3P(lwb->lwb_write_zio, ==, NULL); 692 ASSERT3P(lwb->lwb_root_zio, ==, NULL); 693 ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa)); 694 ASSERT(lwb->lwb_state == LWB_STATE_CLOSED || 695 lwb->lwb_state == LWB_STATE_FLUSH_DONE); 696 697 /* 698 * Clear the zilog's field to indicate this lwb is no longer 699 * valid, and prevent use-after-free errors. 700 */ 701 if (zilog->zl_last_lwb_opened == lwb) 702 zilog->zl_last_lwb_opened = NULL; 703 704 kmem_cache_free(zil_lwb_cache, lwb); 705 } 706 707 /* 708 * Called when we create in-memory log transactions so that we know 709 * to cleanup the itxs at the end of spa_sync(). 710 */ 711 static void 712 zilog_dirty(zilog_t *zilog, uint64_t txg) 713 { 714 dsl_pool_t *dp = zilog->zl_dmu_pool; 715 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 716 717 ASSERT(spa_writeable(zilog->zl_spa)); 718 719 if (ds->ds_is_snapshot) 720 panic("dirtying snapshot!"); 721 722 if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) { 723 /* up the hold count until we can be written out */ 724 dmu_buf_add_ref(ds->ds_dbuf, zilog); 725 726 zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg); 727 } 728 } 729 730 /* 731 * Determine if the zil is dirty in the specified txg. Callers wanting to 732 * ensure that the dirty state does not change must hold the itxg_lock for 733 * the specified txg. Holding the lock will ensure that the zil cannot be 734 * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current 735 * state. 736 */ 737 static boolean_t __maybe_unused 738 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg) 739 { 740 dsl_pool_t *dp = zilog->zl_dmu_pool; 741 742 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK)) 743 return (B_TRUE); 744 return (B_FALSE); 745 } 746 747 /* 748 * Determine if the zil is dirty. The zil is considered dirty if it has 749 * any pending itx records that have not been cleaned by zil_clean(). 750 */ 751 static boolean_t 752 zilog_is_dirty(zilog_t *zilog) 753 { 754 dsl_pool_t *dp = zilog->zl_dmu_pool; 755 756 for (int t = 0; t < TXG_SIZE; t++) { 757 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t)) 758 return (B_TRUE); 759 } 760 return (B_FALSE); 761 } 762 763 /* 764 * Its called in zil_commit context (zil_process_commit_list()/zil_create()). 765 * It activates SPA_FEATURE_ZILSAXATTR feature, if its enabled. 766 * Check dsl_dataset_feature_is_active to avoid txg_wait_synced() on every 767 * zil_commit. 768 */ 769 static void 770 zil_commit_activate_saxattr_feature(zilog_t *zilog) 771 { 772 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 773 uint64_t txg = 0; 774 dmu_tx_t *tx = NULL; 775 776 if (spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) && 777 dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL && 778 !dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR)) { 779 tx = dmu_tx_create(zilog->zl_os); 780 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 781 dsl_dataset_dirty(ds, tx); 782 txg = dmu_tx_get_txg(tx); 783 784 mutex_enter(&ds->ds_lock); 785 ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] = 786 (void *)B_TRUE; 787 mutex_exit(&ds->ds_lock); 788 dmu_tx_commit(tx); 789 txg_wait_synced(zilog->zl_dmu_pool, txg); 790 } 791 } 792 793 /* 794 * Create an on-disk intent log. 795 */ 796 static lwb_t * 797 zil_create(zilog_t *zilog) 798 { 799 const zil_header_t *zh = zilog->zl_header; 800 lwb_t *lwb = NULL; 801 uint64_t txg = 0; 802 dmu_tx_t *tx = NULL; 803 blkptr_t blk; 804 int error = 0; 805 boolean_t fastwrite = FALSE; 806 boolean_t slog = FALSE; 807 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 808 809 810 /* 811 * Wait for any previous destroy to complete. 812 */ 813 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 814 815 ASSERT(zh->zh_claim_txg == 0); 816 ASSERT(zh->zh_replay_seq == 0); 817 818 blk = zh->zh_log; 819 820 /* 821 * Allocate an initial log block if: 822 * - there isn't one already 823 * - the existing block is the wrong endianness 824 */ 825 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) { 826 tx = dmu_tx_create(zilog->zl_os); 827 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 828 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 829 txg = dmu_tx_get_txg(tx); 830 831 if (!BP_IS_HOLE(&blk)) { 832 zio_free(zilog->zl_spa, txg, &blk); 833 BP_ZERO(&blk); 834 } 835 836 error = zio_alloc_zil(zilog->zl_spa, zilog->zl_os, txg, &blk, 837 ZIL_MIN_BLKSZ, &slog); 838 fastwrite = TRUE; 839 840 if (error == 0) 841 zil_init_log_chain(zilog, &blk); 842 } 843 844 /* 845 * Allocate a log write block (lwb) for the first log block. 846 */ 847 if (error == 0) 848 lwb = zil_alloc_lwb(zilog, &blk, slog, txg, fastwrite); 849 850 /* 851 * If we just allocated the first log block, commit our transaction 852 * and wait for zil_sync() to stuff the block pointer into zh_log. 853 * (zh is part of the MOS, so we cannot modify it in open context.) 854 */ 855 if (tx != NULL) { 856 /* 857 * If "zilsaxattr" feature is enabled on zpool, then activate 858 * it now when we're creating the ZIL chain. We can't wait with 859 * this until we write the first xattr log record because we 860 * need to wait for the feature activation to sync out. 861 */ 862 if (spa_feature_is_enabled(zilog->zl_spa, 863 SPA_FEATURE_ZILSAXATTR) && dmu_objset_type(zilog->zl_os) != 864 DMU_OST_ZVOL) { 865 mutex_enter(&ds->ds_lock); 866 ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] = 867 (void *)B_TRUE; 868 mutex_exit(&ds->ds_lock); 869 } 870 871 dmu_tx_commit(tx); 872 txg_wait_synced(zilog->zl_dmu_pool, txg); 873 } else { 874 /* 875 * This branch covers the case where we enable the feature on a 876 * zpool that has existing ZIL headers. 877 */ 878 zil_commit_activate_saxattr_feature(zilog); 879 } 880 IMPLY(spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) && 881 dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL, 882 dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR)); 883 884 ASSERT(error != 0 || memcmp(&blk, &zh->zh_log, sizeof (blk)) == 0); 885 IMPLY(error == 0, lwb != NULL); 886 887 return (lwb); 888 } 889 890 /* 891 * In one tx, free all log blocks and clear the log header. If keep_first 892 * is set, then we're replaying a log with no content. We want to keep the 893 * first block, however, so that the first synchronous transaction doesn't 894 * require a txg_wait_synced() in zil_create(). We don't need to 895 * txg_wait_synced() here either when keep_first is set, because both 896 * zil_create() and zil_destroy() will wait for any in-progress destroys 897 * to complete. 898 * Return B_TRUE if there were any entries to replay. 899 */ 900 boolean_t 901 zil_destroy(zilog_t *zilog, boolean_t keep_first) 902 { 903 const zil_header_t *zh = zilog->zl_header; 904 lwb_t *lwb; 905 dmu_tx_t *tx; 906 uint64_t txg; 907 908 /* 909 * Wait for any previous destroy to complete. 910 */ 911 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 912 913 zilog->zl_old_header = *zh; /* debugging aid */ 914 915 if (BP_IS_HOLE(&zh->zh_log)) 916 return (B_FALSE); 917 918 tx = dmu_tx_create(zilog->zl_os); 919 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 920 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 921 txg = dmu_tx_get_txg(tx); 922 923 mutex_enter(&zilog->zl_lock); 924 925 ASSERT3U(zilog->zl_destroy_txg, <, txg); 926 zilog->zl_destroy_txg = txg; 927 zilog->zl_keep_first = keep_first; 928 929 if (!list_is_empty(&zilog->zl_lwb_list)) { 930 ASSERT(zh->zh_claim_txg == 0); 931 VERIFY(!keep_first); 932 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 933 if (lwb->lwb_fastwrite) 934 metaslab_fastwrite_unmark(zilog->zl_spa, 935 &lwb->lwb_blk); 936 937 list_remove(&zilog->zl_lwb_list, lwb); 938 if (lwb->lwb_buf != NULL) 939 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 940 zio_free(zilog->zl_spa, txg, &lwb->lwb_blk); 941 zil_free_lwb(zilog, lwb); 942 } 943 } else if (!keep_first) { 944 zil_destroy_sync(zilog, tx); 945 } 946 mutex_exit(&zilog->zl_lock); 947 948 dmu_tx_commit(tx); 949 950 return (B_TRUE); 951 } 952 953 void 954 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx) 955 { 956 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 957 (void) zil_parse(zilog, zil_free_log_block, 958 zil_free_log_record, tx, zilog->zl_header->zh_claim_txg, B_FALSE); 959 } 960 961 int 962 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg) 963 { 964 dmu_tx_t *tx = txarg; 965 zilog_t *zilog; 966 uint64_t first_txg; 967 zil_header_t *zh; 968 objset_t *os; 969 int error; 970 971 error = dmu_objset_own_obj(dp, ds->ds_object, 972 DMU_OST_ANY, B_FALSE, B_FALSE, FTAG, &os); 973 if (error != 0) { 974 /* 975 * EBUSY indicates that the objset is inconsistent, in which 976 * case it can not have a ZIL. 977 */ 978 if (error != EBUSY) { 979 cmn_err(CE_WARN, "can't open objset for %llu, error %u", 980 (unsigned long long)ds->ds_object, error); 981 } 982 983 return (0); 984 } 985 986 zilog = dmu_objset_zil(os); 987 zh = zil_header_in_syncing_context(zilog); 988 ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa)); 989 first_txg = spa_min_claim_txg(zilog->zl_spa); 990 991 /* 992 * If the spa_log_state is not set to be cleared, check whether 993 * the current uberblock is a checkpoint one and if the current 994 * header has been claimed before moving on. 995 * 996 * If the current uberblock is a checkpointed uberblock then 997 * one of the following scenarios took place: 998 * 999 * 1] We are currently rewinding to the checkpoint of the pool. 1000 * 2] We crashed in the middle of a checkpoint rewind but we 1001 * did manage to write the checkpointed uberblock to the 1002 * vdev labels, so when we tried to import the pool again 1003 * the checkpointed uberblock was selected from the import 1004 * procedure. 1005 * 1006 * In both cases we want to zero out all the ZIL blocks, except 1007 * the ones that have been claimed at the time of the checkpoint 1008 * (their zh_claim_txg != 0). The reason is that these blocks 1009 * may be corrupted since we may have reused their locations on 1010 * disk after we took the checkpoint. 1011 * 1012 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier 1013 * when we first figure out whether the current uberblock is 1014 * checkpointed or not. Unfortunately, that would discard all 1015 * the logs, including the ones that are claimed, and we would 1016 * leak space. 1017 */ 1018 if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR || 1019 (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 && 1020 zh->zh_claim_txg == 0)) { 1021 if (!BP_IS_HOLE(&zh->zh_log)) { 1022 (void) zil_parse(zilog, zil_clear_log_block, 1023 zil_noop_log_record, tx, first_txg, B_FALSE); 1024 } 1025 BP_ZERO(&zh->zh_log); 1026 if (os->os_encrypted) 1027 os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE; 1028 dsl_dataset_dirty(dmu_objset_ds(os), tx); 1029 dmu_objset_disown(os, B_FALSE, FTAG); 1030 return (0); 1031 } 1032 1033 /* 1034 * If we are not rewinding and opening the pool normally, then 1035 * the min_claim_txg should be equal to the first txg of the pool. 1036 */ 1037 ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa)); 1038 1039 /* 1040 * Claim all log blocks if we haven't already done so, and remember 1041 * the highest claimed sequence number. This ensures that if we can 1042 * read only part of the log now (e.g. due to a missing device), 1043 * but we can read the entire log later, we will not try to replay 1044 * or destroy beyond the last block we successfully claimed. 1045 */ 1046 ASSERT3U(zh->zh_claim_txg, <=, first_txg); 1047 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) { 1048 (void) zil_parse(zilog, zil_claim_log_block, 1049 zil_claim_log_record, tx, first_txg, B_FALSE); 1050 zh->zh_claim_txg = first_txg; 1051 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq; 1052 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq; 1053 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1) 1054 zh->zh_flags |= ZIL_REPLAY_NEEDED; 1055 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID; 1056 if (os->os_encrypted) 1057 os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE; 1058 dsl_dataset_dirty(dmu_objset_ds(os), tx); 1059 } 1060 1061 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1)); 1062 dmu_objset_disown(os, B_FALSE, FTAG); 1063 return (0); 1064 } 1065 1066 /* 1067 * Check the log by walking the log chain. 1068 * Checksum errors are ok as they indicate the end of the chain. 1069 * Any other error (no device or read failure) returns an error. 1070 */ 1071 int 1072 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx) 1073 { 1074 (void) dp; 1075 zilog_t *zilog; 1076 objset_t *os; 1077 blkptr_t *bp; 1078 int error; 1079 1080 ASSERT(tx == NULL); 1081 1082 error = dmu_objset_from_ds(ds, &os); 1083 if (error != 0) { 1084 cmn_err(CE_WARN, "can't open objset %llu, error %d", 1085 (unsigned long long)ds->ds_object, error); 1086 return (0); 1087 } 1088 1089 zilog = dmu_objset_zil(os); 1090 bp = (blkptr_t *)&zilog->zl_header->zh_log; 1091 1092 if (!BP_IS_HOLE(bp)) { 1093 vdev_t *vd; 1094 boolean_t valid = B_TRUE; 1095 1096 /* 1097 * Check the first block and determine if it's on a log device 1098 * which may have been removed or faulted prior to loading this 1099 * pool. If so, there's no point in checking the rest of the 1100 * log as its content should have already been synced to the 1101 * pool. 1102 */ 1103 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER); 1104 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0])); 1105 if (vd->vdev_islog && vdev_is_dead(vd)) 1106 valid = vdev_log_state_valid(vd); 1107 spa_config_exit(os->os_spa, SCL_STATE, FTAG); 1108 1109 if (!valid) 1110 return (0); 1111 1112 /* 1113 * Check whether the current uberblock is checkpointed (e.g. 1114 * we are rewinding) and whether the current header has been 1115 * claimed or not. If it hasn't then skip verifying it. We 1116 * do this because its ZIL blocks may be part of the pool's 1117 * state before the rewind, which is no longer valid. 1118 */ 1119 zil_header_t *zh = zil_header_in_syncing_context(zilog); 1120 if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 && 1121 zh->zh_claim_txg == 0) 1122 return (0); 1123 } 1124 1125 /* 1126 * Because tx == NULL, zil_claim_log_block() will not actually claim 1127 * any blocks, but just determine whether it is possible to do so. 1128 * In addition to checking the log chain, zil_claim_log_block() 1129 * will invoke zio_claim() with a done func of spa_claim_notify(), 1130 * which will update spa_max_claim_txg. See spa_load() for details. 1131 */ 1132 error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx, 1133 zilog->zl_header->zh_claim_txg ? -1ULL : 1134 spa_min_claim_txg(os->os_spa), B_FALSE); 1135 1136 return ((error == ECKSUM || error == ENOENT) ? 0 : error); 1137 } 1138 1139 /* 1140 * When an itx is "skipped", this function is used to properly mark the 1141 * waiter as "done, and signal any thread(s) waiting on it. An itx can 1142 * be skipped (and not committed to an lwb) for a variety of reasons, 1143 * one of them being that the itx was committed via spa_sync(), prior to 1144 * it being committed to an lwb; this can happen if a thread calling 1145 * zil_commit() is racing with spa_sync(). 1146 */ 1147 static void 1148 zil_commit_waiter_skip(zil_commit_waiter_t *zcw) 1149 { 1150 mutex_enter(&zcw->zcw_lock); 1151 ASSERT3B(zcw->zcw_done, ==, B_FALSE); 1152 zcw->zcw_done = B_TRUE; 1153 cv_broadcast(&zcw->zcw_cv); 1154 mutex_exit(&zcw->zcw_lock); 1155 } 1156 1157 /* 1158 * This function is used when the given waiter is to be linked into an 1159 * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb. 1160 * At this point, the waiter will no longer be referenced by the itx, 1161 * and instead, will be referenced by the lwb. 1162 */ 1163 static void 1164 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb) 1165 { 1166 /* 1167 * The lwb_waiters field of the lwb is protected by the zilog's 1168 * zl_lock, thus it must be held when calling this function. 1169 */ 1170 ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_lock)); 1171 1172 mutex_enter(&zcw->zcw_lock); 1173 ASSERT(!list_link_active(&zcw->zcw_node)); 1174 ASSERT3P(zcw->zcw_lwb, ==, NULL); 1175 ASSERT3P(lwb, !=, NULL); 1176 ASSERT(lwb->lwb_state == LWB_STATE_OPENED || 1177 lwb->lwb_state == LWB_STATE_ISSUED || 1178 lwb->lwb_state == LWB_STATE_WRITE_DONE); 1179 1180 list_insert_tail(&lwb->lwb_waiters, zcw); 1181 zcw->zcw_lwb = lwb; 1182 mutex_exit(&zcw->zcw_lock); 1183 } 1184 1185 /* 1186 * This function is used when zio_alloc_zil() fails to allocate a ZIL 1187 * block, and the given waiter must be linked to the "nolwb waiters" 1188 * list inside of zil_process_commit_list(). 1189 */ 1190 static void 1191 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb) 1192 { 1193 mutex_enter(&zcw->zcw_lock); 1194 ASSERT(!list_link_active(&zcw->zcw_node)); 1195 ASSERT3P(zcw->zcw_lwb, ==, NULL); 1196 list_insert_tail(nolwb, zcw); 1197 mutex_exit(&zcw->zcw_lock); 1198 } 1199 1200 void 1201 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp) 1202 { 1203 avl_tree_t *t = &lwb->lwb_vdev_tree; 1204 avl_index_t where; 1205 zil_vdev_node_t *zv, zvsearch; 1206 int ndvas = BP_GET_NDVAS(bp); 1207 int i; 1208 1209 if (zil_nocacheflush) 1210 return; 1211 1212 mutex_enter(&lwb->lwb_vdev_lock); 1213 for (i = 0; i < ndvas; i++) { 1214 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]); 1215 if (avl_find(t, &zvsearch, &where) == NULL) { 1216 zv = kmem_alloc(sizeof (*zv), KM_SLEEP); 1217 zv->zv_vdev = zvsearch.zv_vdev; 1218 avl_insert(t, zv, where); 1219 } 1220 } 1221 mutex_exit(&lwb->lwb_vdev_lock); 1222 } 1223 1224 static void 1225 zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb) 1226 { 1227 avl_tree_t *src = &lwb->lwb_vdev_tree; 1228 avl_tree_t *dst = &nlwb->lwb_vdev_tree; 1229 void *cookie = NULL; 1230 zil_vdev_node_t *zv; 1231 1232 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE); 1233 ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE); 1234 ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE); 1235 1236 /* 1237 * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does 1238 * not need the protection of lwb_vdev_lock (it will only be modified 1239 * while holding zilog->zl_lock) as its writes and those of its 1240 * children have all completed. The younger 'nlwb' may be waiting on 1241 * future writes to additional vdevs. 1242 */ 1243 mutex_enter(&nlwb->lwb_vdev_lock); 1244 /* 1245 * Tear down the 'lwb' vdev tree, ensuring that entries which do not 1246 * exist in 'nlwb' are moved to it, freeing any would-be duplicates. 1247 */ 1248 while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) { 1249 avl_index_t where; 1250 1251 if (avl_find(dst, zv, &where) == NULL) { 1252 avl_insert(dst, zv, where); 1253 } else { 1254 kmem_free(zv, sizeof (*zv)); 1255 } 1256 } 1257 mutex_exit(&nlwb->lwb_vdev_lock); 1258 } 1259 1260 void 1261 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg) 1262 { 1263 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg); 1264 } 1265 1266 /* 1267 * This function is a called after all vdevs associated with a given lwb 1268 * write have completed their DKIOCFLUSHWRITECACHE command; or as soon 1269 * as the lwb write completes, if "zil_nocacheflush" is set. Further, 1270 * all "previous" lwb's will have completed before this function is 1271 * called; i.e. this function is called for all previous lwbs before 1272 * it's called for "this" lwb (enforced via zio the dependencies 1273 * configured in zil_lwb_set_zio_dependency()). 1274 * 1275 * The intention is for this function to be called as soon as the 1276 * contents of an lwb are considered "stable" on disk, and will survive 1277 * any sudden loss of power. At this point, any threads waiting for the 1278 * lwb to reach this state are signalled, and the "waiter" structures 1279 * are marked "done". 1280 */ 1281 static void 1282 zil_lwb_flush_vdevs_done(zio_t *zio) 1283 { 1284 lwb_t *lwb = zio->io_private; 1285 zilog_t *zilog = lwb->lwb_zilog; 1286 zil_commit_waiter_t *zcw; 1287 itx_t *itx; 1288 uint64_t txg; 1289 1290 spa_config_exit(zilog->zl_spa, SCL_STATE, lwb); 1291 1292 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 1293 1294 mutex_enter(&zilog->zl_lock); 1295 1296 /* 1297 * If we have had an allocation failure and the txg is 1298 * waiting to sync then we want zil_sync() to remove the lwb so 1299 * that it's not picked up as the next new one in 1300 * zil_process_commit_list(). zil_sync() will only remove the 1301 * lwb if lwb_buf is null. 1302 */ 1303 lwb->lwb_buf = NULL; 1304 1305 ASSERT3U(lwb->lwb_issued_timestamp, >, 0); 1306 zilog->zl_last_lwb_latency = (zilog->zl_last_lwb_latency * 3 + 1307 gethrtime() - lwb->lwb_issued_timestamp) / 4; 1308 1309 lwb->lwb_root_zio = NULL; 1310 1311 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE); 1312 lwb->lwb_state = LWB_STATE_FLUSH_DONE; 1313 1314 if (zilog->zl_last_lwb_opened == lwb) { 1315 /* 1316 * Remember the highest committed log sequence number 1317 * for ztest. We only update this value when all the log 1318 * writes succeeded, because ztest wants to ASSERT that 1319 * it got the whole log chain. 1320 */ 1321 zilog->zl_commit_lr_seq = zilog->zl_lr_seq; 1322 } 1323 1324 while ((itx = list_head(&lwb->lwb_itxs)) != NULL) { 1325 list_remove(&lwb->lwb_itxs, itx); 1326 zil_itx_destroy(itx); 1327 } 1328 1329 while ((zcw = list_head(&lwb->lwb_waiters)) != NULL) { 1330 mutex_enter(&zcw->zcw_lock); 1331 1332 ASSERT(list_link_active(&zcw->zcw_node)); 1333 list_remove(&lwb->lwb_waiters, zcw); 1334 1335 ASSERT3P(zcw->zcw_lwb, ==, lwb); 1336 zcw->zcw_lwb = NULL; 1337 /* 1338 * We expect any ZIO errors from child ZIOs to have been 1339 * propagated "up" to this specific LWB's root ZIO, in 1340 * order for this error handling to work correctly. This 1341 * includes ZIO errors from either this LWB's write or 1342 * flush, as well as any errors from other dependent LWBs 1343 * (e.g. a root LWB ZIO that might be a child of this LWB). 1344 * 1345 * With that said, it's important to note that LWB flush 1346 * errors are not propagated up to the LWB root ZIO. 1347 * This is incorrect behavior, and results in VDEV flush 1348 * errors not being handled correctly here. See the 1349 * comment above the call to "zio_flush" for details. 1350 */ 1351 1352 zcw->zcw_zio_error = zio->io_error; 1353 1354 ASSERT3B(zcw->zcw_done, ==, B_FALSE); 1355 zcw->zcw_done = B_TRUE; 1356 cv_broadcast(&zcw->zcw_cv); 1357 1358 mutex_exit(&zcw->zcw_lock); 1359 } 1360 1361 mutex_exit(&zilog->zl_lock); 1362 1363 mutex_enter(&zilog->zl_lwb_io_lock); 1364 txg = lwb->lwb_issued_txg; 1365 ASSERT3U(zilog->zl_lwb_inflight[txg & TXG_MASK], >, 0); 1366 zilog->zl_lwb_inflight[txg & TXG_MASK]--; 1367 if (zilog->zl_lwb_inflight[txg & TXG_MASK] == 0) 1368 cv_broadcast(&zilog->zl_lwb_io_cv); 1369 mutex_exit(&zilog->zl_lwb_io_lock); 1370 } 1371 1372 /* 1373 * Wait for the completion of all issued write/flush of that txg provided. 1374 * It guarantees zil_lwb_flush_vdevs_done() is called and returned. 1375 */ 1376 static void 1377 zil_lwb_flush_wait_all(zilog_t *zilog, uint64_t txg) 1378 { 1379 ASSERT3U(txg, ==, spa_syncing_txg(zilog->zl_spa)); 1380 1381 mutex_enter(&zilog->zl_lwb_io_lock); 1382 while (zilog->zl_lwb_inflight[txg & TXG_MASK] > 0) 1383 cv_wait(&zilog->zl_lwb_io_cv, &zilog->zl_lwb_io_lock); 1384 mutex_exit(&zilog->zl_lwb_io_lock); 1385 1386 #ifdef ZFS_DEBUG 1387 mutex_enter(&zilog->zl_lock); 1388 mutex_enter(&zilog->zl_lwb_io_lock); 1389 lwb_t *lwb = list_head(&zilog->zl_lwb_list); 1390 while (lwb != NULL && lwb->lwb_max_txg <= txg) { 1391 if (lwb->lwb_issued_txg <= txg) { 1392 ASSERT(lwb->lwb_state != LWB_STATE_ISSUED); 1393 ASSERT(lwb->lwb_state != LWB_STATE_WRITE_DONE); 1394 IMPLY(lwb->lwb_issued_txg > 0, 1395 lwb->lwb_state == LWB_STATE_FLUSH_DONE); 1396 } 1397 IMPLY(lwb->lwb_state == LWB_STATE_FLUSH_DONE, 1398 lwb->lwb_buf == NULL); 1399 lwb = list_next(&zilog->zl_lwb_list, lwb); 1400 } 1401 mutex_exit(&zilog->zl_lwb_io_lock); 1402 mutex_exit(&zilog->zl_lock); 1403 #endif 1404 } 1405 1406 /* 1407 * This is called when an lwb's write zio completes. The callback's 1408 * purpose is to issue the DKIOCFLUSHWRITECACHE commands for the vdevs 1409 * in the lwb's lwb_vdev_tree. The tree will contain the vdevs involved 1410 * in writing out this specific lwb's data, and in the case that cache 1411 * flushes have been deferred, vdevs involved in writing the data for 1412 * previous lwbs. The writes corresponding to all the vdevs in the 1413 * lwb_vdev_tree will have completed by the time this is called, due to 1414 * the zio dependencies configured in zil_lwb_set_zio_dependency(), 1415 * which takes deferred flushes into account. The lwb will be "done" 1416 * once zil_lwb_flush_vdevs_done() is called, which occurs in the zio 1417 * completion callback for the lwb's root zio. 1418 */ 1419 static void 1420 zil_lwb_write_done(zio_t *zio) 1421 { 1422 lwb_t *lwb = zio->io_private; 1423 spa_t *spa = zio->io_spa; 1424 zilog_t *zilog = lwb->lwb_zilog; 1425 avl_tree_t *t = &lwb->lwb_vdev_tree; 1426 void *cookie = NULL; 1427 zil_vdev_node_t *zv; 1428 lwb_t *nlwb; 1429 1430 ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0); 1431 1432 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 1433 ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG); 1434 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 1435 ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER); 1436 ASSERT(!BP_IS_GANG(zio->io_bp)); 1437 ASSERT(!BP_IS_HOLE(zio->io_bp)); 1438 ASSERT(BP_GET_FILL(zio->io_bp) == 0); 1439 1440 abd_free(zio->io_abd); 1441 1442 mutex_enter(&zilog->zl_lock); 1443 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED); 1444 lwb->lwb_state = LWB_STATE_WRITE_DONE; 1445 lwb->lwb_write_zio = NULL; 1446 lwb->lwb_fastwrite = FALSE; 1447 nlwb = list_next(&zilog->zl_lwb_list, lwb); 1448 mutex_exit(&zilog->zl_lock); 1449 1450 if (avl_numnodes(t) == 0) 1451 return; 1452 1453 /* 1454 * If there was an IO error, we're not going to call zio_flush() 1455 * on these vdevs, so we simply empty the tree and free the 1456 * nodes. We avoid calling zio_flush() since there isn't any 1457 * good reason for doing so, after the lwb block failed to be 1458 * written out. 1459 * 1460 * Additionally, we don't perform any further error handling at 1461 * this point (e.g. setting "zcw_zio_error" appropriately), as 1462 * we expect that to occur in "zil_lwb_flush_vdevs_done" (thus, 1463 * we expect any error seen here, to have been propagated to 1464 * that function). 1465 */ 1466 if (zio->io_error != 0) { 1467 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) 1468 kmem_free(zv, sizeof (*zv)); 1469 return; 1470 } 1471 1472 /* 1473 * If this lwb does not have any threads waiting for it to 1474 * complete, we want to defer issuing the DKIOCFLUSHWRITECACHE 1475 * command to the vdevs written to by "this" lwb, and instead 1476 * rely on the "next" lwb to handle the DKIOCFLUSHWRITECACHE 1477 * command for those vdevs. Thus, we merge the vdev tree of 1478 * "this" lwb with the vdev tree of the "next" lwb in the list, 1479 * and assume the "next" lwb will handle flushing the vdevs (or 1480 * deferring the flush(s) again). 1481 * 1482 * This is a useful performance optimization, especially for 1483 * workloads with lots of async write activity and few sync 1484 * write and/or fsync activity, as it has the potential to 1485 * coalesce multiple flush commands to a vdev into one. 1486 */ 1487 if (list_head(&lwb->lwb_waiters) == NULL && nlwb != NULL) { 1488 zil_lwb_flush_defer(lwb, nlwb); 1489 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree)); 1490 return; 1491 } 1492 1493 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) { 1494 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev); 1495 if (vd != NULL) { 1496 /* 1497 * The "ZIO_FLAG_DONT_PROPAGATE" is currently 1498 * always used within "zio_flush". This means, 1499 * any errors when flushing the vdev(s), will 1500 * (unfortunately) not be handled correctly, 1501 * since these "zio_flush" errors will not be 1502 * propagated up to "zil_lwb_flush_vdevs_done". 1503 */ 1504 zio_flush(lwb->lwb_root_zio, vd); 1505 } 1506 kmem_free(zv, sizeof (*zv)); 1507 } 1508 } 1509 1510 static void 1511 zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb) 1512 { 1513 lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened; 1514 1515 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1516 ASSERT(MUTEX_HELD(&zilog->zl_lock)); 1517 1518 /* 1519 * The zilog's "zl_last_lwb_opened" field is used to build the 1520 * lwb/zio dependency chain, which is used to preserve the 1521 * ordering of lwb completions that is required by the semantics 1522 * of the ZIL. Each new lwb zio becomes a parent of the 1523 * "previous" lwb zio, such that the new lwb's zio cannot 1524 * complete until the "previous" lwb's zio completes. 1525 * 1526 * This is required by the semantics of zil_commit(); the commit 1527 * waiters attached to the lwbs will be woken in the lwb zio's 1528 * completion callback, so this zio dependency graph ensures the 1529 * waiters are woken in the correct order (the same order the 1530 * lwbs were created). 1531 */ 1532 if (last_lwb_opened != NULL && 1533 last_lwb_opened->lwb_state != LWB_STATE_FLUSH_DONE) { 1534 ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED || 1535 last_lwb_opened->lwb_state == LWB_STATE_ISSUED || 1536 last_lwb_opened->lwb_state == LWB_STATE_WRITE_DONE); 1537 1538 ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL); 1539 zio_add_child(lwb->lwb_root_zio, 1540 last_lwb_opened->lwb_root_zio); 1541 1542 /* 1543 * If the previous lwb's write hasn't already completed, 1544 * we also want to order the completion of the lwb write 1545 * zios (above, we only order the completion of the lwb 1546 * root zios). This is required because of how we can 1547 * defer the DKIOCFLUSHWRITECACHE commands for each lwb. 1548 * 1549 * When the DKIOCFLUSHWRITECACHE commands are deferred, 1550 * the previous lwb will rely on this lwb to flush the 1551 * vdevs written to by that previous lwb. Thus, we need 1552 * to ensure this lwb doesn't issue the flush until 1553 * after the previous lwb's write completes. We ensure 1554 * this ordering by setting the zio parent/child 1555 * relationship here. 1556 * 1557 * Without this relationship on the lwb's write zio, 1558 * it's possible for this lwb's write to complete prior 1559 * to the previous lwb's write completing; and thus, the 1560 * vdevs for the previous lwb would be flushed prior to 1561 * that lwb's data being written to those vdevs (the 1562 * vdevs are flushed in the lwb write zio's completion 1563 * handler, zil_lwb_write_done()). 1564 */ 1565 if (last_lwb_opened->lwb_state != LWB_STATE_WRITE_DONE) { 1566 ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED || 1567 last_lwb_opened->lwb_state == LWB_STATE_ISSUED); 1568 1569 ASSERT3P(last_lwb_opened->lwb_write_zio, !=, NULL); 1570 zio_add_child(lwb->lwb_write_zio, 1571 last_lwb_opened->lwb_write_zio); 1572 } 1573 } 1574 } 1575 1576 1577 /* 1578 * This function's purpose is to "open" an lwb such that it is ready to 1579 * accept new itxs being committed to it. To do this, the lwb's zio 1580 * structures are created, and linked to the lwb. This function is 1581 * idempotent; if the passed in lwb has already been opened, this 1582 * function is essentially a no-op. 1583 */ 1584 static void 1585 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb) 1586 { 1587 zbookmark_phys_t zb; 1588 zio_priority_t prio; 1589 1590 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1591 ASSERT3P(lwb, !=, NULL); 1592 EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED); 1593 EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED); 1594 1595 SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1596 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, 1597 lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]); 1598 1599 /* Lock so zil_sync() doesn't fastwrite_unmark after zio is created */ 1600 mutex_enter(&zilog->zl_lock); 1601 if (lwb->lwb_root_zio == NULL) { 1602 abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf, 1603 BP_GET_LSIZE(&lwb->lwb_blk)); 1604 1605 if (!lwb->lwb_fastwrite) { 1606 metaslab_fastwrite_mark(zilog->zl_spa, &lwb->lwb_blk); 1607 lwb->lwb_fastwrite = 1; 1608 } 1609 1610 if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk) 1611 prio = ZIO_PRIORITY_SYNC_WRITE; 1612 else 1613 prio = ZIO_PRIORITY_ASYNC_WRITE; 1614 1615 lwb->lwb_root_zio = zio_root(zilog->zl_spa, 1616 zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL); 1617 ASSERT3P(lwb->lwb_root_zio, !=, NULL); 1618 1619 lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio, 1620 zilog->zl_spa, 0, &lwb->lwb_blk, lwb_abd, 1621 BP_GET_LSIZE(&lwb->lwb_blk), zil_lwb_write_done, lwb, 1622 prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_FASTWRITE, &zb); 1623 ASSERT3P(lwb->lwb_write_zio, !=, NULL); 1624 1625 lwb->lwb_state = LWB_STATE_OPENED; 1626 1627 zil_lwb_set_zio_dependency(zilog, lwb); 1628 zilog->zl_last_lwb_opened = lwb; 1629 } 1630 mutex_exit(&zilog->zl_lock); 1631 1632 ASSERT3P(lwb->lwb_root_zio, !=, NULL); 1633 ASSERT3P(lwb->lwb_write_zio, !=, NULL); 1634 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED); 1635 } 1636 1637 /* 1638 * Define a limited set of intent log block sizes. 1639 * 1640 * These must be a multiple of 4KB. Note only the amount used (again 1641 * aligned to 4KB) actually gets written. However, we can't always just 1642 * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted. 1643 */ 1644 static const struct { 1645 uint64_t limit; 1646 uint64_t blksz; 1647 } zil_block_buckets[] = { 1648 { 4096, 4096 }, /* non TX_WRITE */ 1649 { 8192 + 4096, 8192 + 4096 }, /* database */ 1650 { 32768 + 4096, 32768 + 4096 }, /* NFS writes */ 1651 { 65536 + 4096, 65536 + 4096 }, /* 64KB writes */ 1652 { 131072, 131072 }, /* < 128KB writes */ 1653 { 131072 +4096, 65536 + 4096 }, /* 128KB writes */ 1654 { UINT64_MAX, SPA_OLD_MAXBLOCKSIZE}, /* > 128KB writes */ 1655 }; 1656 1657 /* 1658 * Maximum block size used by the ZIL. This is picked up when the ZIL is 1659 * initialized. Otherwise this should not be used directly; see 1660 * zl_max_block_size instead. 1661 */ 1662 static uint_t zil_maxblocksize = SPA_OLD_MAXBLOCKSIZE; 1663 1664 /* 1665 * Start a log block write and advance to the next log block. 1666 * Calls are serialized. 1667 */ 1668 static lwb_t * 1669 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb) 1670 { 1671 lwb_t *nlwb = NULL; 1672 zil_chain_t *zilc; 1673 spa_t *spa = zilog->zl_spa; 1674 blkptr_t *bp; 1675 dmu_tx_t *tx; 1676 uint64_t txg; 1677 uint64_t zil_blksz, wsz; 1678 int i, error; 1679 boolean_t slog; 1680 1681 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1682 ASSERT3P(lwb->lwb_root_zio, !=, NULL); 1683 ASSERT3P(lwb->lwb_write_zio, !=, NULL); 1684 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED); 1685 1686 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) { 1687 zilc = (zil_chain_t *)lwb->lwb_buf; 1688 bp = &zilc->zc_next_blk; 1689 } else { 1690 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz); 1691 bp = &zilc->zc_next_blk; 1692 } 1693 1694 ASSERT(lwb->lwb_nused <= lwb->lwb_sz); 1695 1696 /* 1697 * Allocate the next block and save its address in this block 1698 * before writing it in order to establish the log chain. 1699 */ 1700 1701 tx = dmu_tx_create(zilog->zl_os); 1702 1703 /* 1704 * Since we are not going to create any new dirty data, and we 1705 * can even help with clearing the existing dirty data, we 1706 * should not be subject to the dirty data based delays. We 1707 * use TXG_NOTHROTTLE to bypass the delay mechanism. 1708 */ 1709 VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE)); 1710 1711 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 1712 txg = dmu_tx_get_txg(tx); 1713 1714 mutex_enter(&zilog->zl_lwb_io_lock); 1715 lwb->lwb_issued_txg = txg; 1716 zilog->zl_lwb_inflight[txg & TXG_MASK]++; 1717 zilog->zl_lwb_max_issued_txg = MAX(txg, zilog->zl_lwb_max_issued_txg); 1718 mutex_exit(&zilog->zl_lwb_io_lock); 1719 1720 /* 1721 * Log blocks are pre-allocated. Here we select the size of the next 1722 * block, based on size used in the last block. 1723 * - first find the smallest bucket that will fit the block from a 1724 * limited set of block sizes. This is because it's faster to write 1725 * blocks allocated from the same metaslab as they are adjacent or 1726 * close. 1727 * - next find the maximum from the new suggested size and an array of 1728 * previous sizes. This lessens a picket fence effect of wrongly 1729 * guessing the size if we have a stream of say 2k, 64k, 2k, 64k 1730 * requests. 1731 * 1732 * Note we only write what is used, but we can't just allocate 1733 * the maximum block size because we can exhaust the available 1734 * pool log space. 1735 */ 1736 zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t); 1737 for (i = 0; zil_blksz > zil_block_buckets[i].limit; i++) 1738 continue; 1739 zil_blksz = MIN(zil_block_buckets[i].blksz, zilog->zl_max_block_size); 1740 zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz; 1741 for (i = 0; i < ZIL_PREV_BLKS; i++) 1742 zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]); 1743 zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1); 1744 1745 BP_ZERO(bp); 1746 error = zio_alloc_zil(spa, zilog->zl_os, txg, bp, zil_blksz, &slog); 1747 if (slog) { 1748 ZIL_STAT_BUMP(zilog, zil_itx_metaslab_slog_count); 1749 ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_bytes, 1750 lwb->lwb_nused); 1751 } else { 1752 ZIL_STAT_BUMP(zilog, zil_itx_metaslab_normal_count); 1753 ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_bytes, 1754 lwb->lwb_nused); 1755 } 1756 if (error == 0) { 1757 ASSERT3U(bp->blk_birth, ==, txg); 1758 bp->blk_cksum = lwb->lwb_blk.blk_cksum; 1759 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++; 1760 1761 /* 1762 * Allocate a new log write block (lwb). 1763 */ 1764 nlwb = zil_alloc_lwb(zilog, bp, slog, txg, TRUE); 1765 } 1766 1767 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) { 1768 /* For Slim ZIL only write what is used. */ 1769 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t); 1770 ASSERT3U(wsz, <=, lwb->lwb_sz); 1771 zio_shrink(lwb->lwb_write_zio, wsz); 1772 1773 } else { 1774 wsz = lwb->lwb_sz; 1775 } 1776 1777 zilc->zc_pad = 0; 1778 zilc->zc_nused = lwb->lwb_nused; 1779 zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum; 1780 1781 /* 1782 * clear unused data for security 1783 */ 1784 memset(lwb->lwb_buf + lwb->lwb_nused, 0, wsz - lwb->lwb_nused); 1785 1786 spa_config_enter(zilog->zl_spa, SCL_STATE, lwb, RW_READER); 1787 1788 zil_lwb_add_block(lwb, &lwb->lwb_blk); 1789 lwb->lwb_issued_timestamp = gethrtime(); 1790 lwb->lwb_state = LWB_STATE_ISSUED; 1791 1792 zio_nowait(lwb->lwb_root_zio); 1793 zio_nowait(lwb->lwb_write_zio); 1794 1795 dmu_tx_commit(tx); 1796 1797 /* 1798 * If there was an allocation failure then nlwb will be null which 1799 * forces a txg_wait_synced(). 1800 */ 1801 return (nlwb); 1802 } 1803 1804 /* 1805 * Maximum amount of write data that can be put into single log block. 1806 */ 1807 uint64_t 1808 zil_max_log_data(zilog_t *zilog) 1809 { 1810 return (zilog->zl_max_block_size - 1811 sizeof (zil_chain_t) - sizeof (lr_write_t)); 1812 } 1813 1814 /* 1815 * Maximum amount of log space we agree to waste to reduce number of 1816 * WR_NEED_COPY chunks to reduce zl_get_data() overhead (~12%). 1817 */ 1818 static inline uint64_t 1819 zil_max_waste_space(zilog_t *zilog) 1820 { 1821 return (zil_max_log_data(zilog) / 8); 1822 } 1823 1824 /* 1825 * Maximum amount of write data for WR_COPIED. For correctness, consumers 1826 * must fall back to WR_NEED_COPY if we can't fit the entire record into one 1827 * maximum sized log block, because each WR_COPIED record must fit in a 1828 * single log block. For space efficiency, we want to fit two records into a 1829 * max-sized log block. 1830 */ 1831 uint64_t 1832 zil_max_copied_data(zilog_t *zilog) 1833 { 1834 return ((zilog->zl_max_block_size - sizeof (zil_chain_t)) / 2 - 1835 sizeof (lr_write_t)); 1836 } 1837 1838 static lwb_t * 1839 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb) 1840 { 1841 lr_t *lrcb, *lrc; 1842 lr_write_t *lrwb, *lrw; 1843 char *lr_buf; 1844 uint64_t dlen, dnow, dpad, lwb_sp, reclen, txg, max_log_data; 1845 1846 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1847 ASSERT3P(lwb, !=, NULL); 1848 ASSERT3P(lwb->lwb_buf, !=, NULL); 1849 1850 zil_lwb_write_open(zilog, lwb); 1851 1852 lrc = &itx->itx_lr; 1853 lrw = (lr_write_t *)lrc; 1854 1855 /* 1856 * A commit itx doesn't represent any on-disk state; instead 1857 * it's simply used as a place holder on the commit list, and 1858 * provides a mechanism for attaching a "commit waiter" onto the 1859 * correct lwb (such that the waiter can be signalled upon 1860 * completion of that lwb). Thus, we don't process this itx's 1861 * log record if it's a commit itx (these itx's don't have log 1862 * records), and instead link the itx's waiter onto the lwb's 1863 * list of waiters. 1864 * 1865 * For more details, see the comment above zil_commit(). 1866 */ 1867 if (lrc->lrc_txtype == TX_COMMIT) { 1868 mutex_enter(&zilog->zl_lock); 1869 zil_commit_waiter_link_lwb(itx->itx_private, lwb); 1870 itx->itx_private = NULL; 1871 mutex_exit(&zilog->zl_lock); 1872 return (lwb); 1873 } 1874 1875 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) { 1876 dlen = P2ROUNDUP_TYPED( 1877 lrw->lr_length, sizeof (uint64_t), uint64_t); 1878 dpad = dlen - lrw->lr_length; 1879 } else { 1880 dlen = dpad = 0; 1881 } 1882 reclen = lrc->lrc_reclen; 1883 zilog->zl_cur_used += (reclen + dlen); 1884 txg = lrc->lrc_txg; 1885 1886 ASSERT3U(zilog->zl_cur_used, <, UINT64_MAX - (reclen + dlen)); 1887 1888 cont: 1889 /* 1890 * If this record won't fit in the current log block, start a new one. 1891 * For WR_NEED_COPY optimize layout for minimal number of chunks. 1892 */ 1893 lwb_sp = lwb->lwb_sz - lwb->lwb_nused; 1894 max_log_data = zil_max_log_data(zilog); 1895 if (reclen > lwb_sp || (reclen + dlen > lwb_sp && 1896 lwb_sp < zil_max_waste_space(zilog) && 1897 (dlen % max_log_data == 0 || 1898 lwb_sp < reclen + dlen % max_log_data))) { 1899 lwb = zil_lwb_write_issue(zilog, lwb); 1900 if (lwb == NULL) 1901 return (NULL); 1902 zil_lwb_write_open(zilog, lwb); 1903 ASSERT(LWB_EMPTY(lwb)); 1904 lwb_sp = lwb->lwb_sz - lwb->lwb_nused; 1905 1906 /* 1907 * There must be enough space in the new, empty log block to 1908 * hold reclen. For WR_COPIED, we need to fit the whole 1909 * record in one block, and reclen is the header size + the 1910 * data size. For WR_NEED_COPY, we can create multiple 1911 * records, splitting the data into multiple blocks, so we 1912 * only need to fit one word of data per block; in this case 1913 * reclen is just the header size (no data). 1914 */ 1915 ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp); 1916 } 1917 1918 dnow = MIN(dlen, lwb_sp - reclen); 1919 lr_buf = lwb->lwb_buf + lwb->lwb_nused; 1920 memcpy(lr_buf, lrc, reclen); 1921 lrcb = (lr_t *)lr_buf; /* Like lrc, but inside lwb. */ 1922 lrwb = (lr_write_t *)lrcb; /* Like lrw, but inside lwb. */ 1923 1924 ZIL_STAT_BUMP(zilog, zil_itx_count); 1925 1926 /* 1927 * If it's a write, fetch the data or get its blkptr as appropriate. 1928 */ 1929 if (lrc->lrc_txtype == TX_WRITE) { 1930 if (txg > spa_freeze_txg(zilog->zl_spa)) 1931 txg_wait_synced(zilog->zl_dmu_pool, txg); 1932 if (itx->itx_wr_state == WR_COPIED) { 1933 ZIL_STAT_BUMP(zilog, zil_itx_copied_count); 1934 ZIL_STAT_INCR(zilog, zil_itx_copied_bytes, 1935 lrw->lr_length); 1936 } else { 1937 char *dbuf; 1938 int error; 1939 1940 if (itx->itx_wr_state == WR_NEED_COPY) { 1941 dbuf = lr_buf + reclen; 1942 lrcb->lrc_reclen += dnow; 1943 if (lrwb->lr_length > dnow) 1944 lrwb->lr_length = dnow; 1945 lrw->lr_offset += dnow; 1946 lrw->lr_length -= dnow; 1947 ZIL_STAT_BUMP(zilog, zil_itx_needcopy_count); 1948 ZIL_STAT_INCR(zilog, zil_itx_needcopy_bytes, 1949 dnow); 1950 } else { 1951 ASSERT3S(itx->itx_wr_state, ==, WR_INDIRECT); 1952 dbuf = NULL; 1953 ZIL_STAT_BUMP(zilog, zil_itx_indirect_count); 1954 ZIL_STAT_INCR(zilog, zil_itx_indirect_bytes, 1955 lrw->lr_length); 1956 } 1957 1958 /* 1959 * We pass in the "lwb_write_zio" rather than 1960 * "lwb_root_zio" so that the "lwb_write_zio" 1961 * becomes the parent of any zio's created by 1962 * the "zl_get_data" callback. The vdevs are 1963 * flushed after the "lwb_write_zio" completes, 1964 * so we want to make sure that completion 1965 * callback waits for these additional zio's, 1966 * such that the vdevs used by those zio's will 1967 * be included in the lwb's vdev tree, and those 1968 * vdevs will be properly flushed. If we passed 1969 * in "lwb_root_zio" here, then these additional 1970 * vdevs may not be flushed; e.g. if these zio's 1971 * completed after "lwb_write_zio" completed. 1972 */ 1973 error = zilog->zl_get_data(itx->itx_private, 1974 itx->itx_gen, lrwb, dbuf, lwb, 1975 lwb->lwb_write_zio); 1976 if (dbuf != NULL && error == 0 && dnow == dlen) 1977 /* Zero any padding bytes in the last block. */ 1978 memset((char *)dbuf + lrwb->lr_length, 0, dpad); 1979 1980 if (error == EIO) { 1981 txg_wait_synced(zilog->zl_dmu_pool, txg); 1982 return (lwb); 1983 } 1984 if (error != 0) { 1985 ASSERT(error == ENOENT || error == EEXIST || 1986 error == EALREADY); 1987 return (lwb); 1988 } 1989 } 1990 } 1991 1992 /* 1993 * We're actually making an entry, so update lrc_seq to be the 1994 * log record sequence number. Note that this is generally not 1995 * equal to the itx sequence number because not all transactions 1996 * are synchronous, and sometimes spa_sync() gets there first. 1997 */ 1998 lrcb->lrc_seq = ++zilog->zl_lr_seq; 1999 lwb->lwb_nused += reclen + dnow; 2000 2001 zil_lwb_add_txg(lwb, txg); 2002 2003 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz); 2004 ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t))); 2005 2006 dlen -= dnow; 2007 if (dlen > 0) { 2008 zilog->zl_cur_used += reclen; 2009 goto cont; 2010 } 2011 2012 return (lwb); 2013 } 2014 2015 itx_t * 2016 zil_itx_create(uint64_t txtype, size_t olrsize) 2017 { 2018 size_t itxsize, lrsize; 2019 itx_t *itx; 2020 2021 lrsize = P2ROUNDUP_TYPED(olrsize, sizeof (uint64_t), size_t); 2022 itxsize = offsetof(itx_t, itx_lr) + lrsize; 2023 2024 itx = zio_data_buf_alloc(itxsize); 2025 itx->itx_lr.lrc_txtype = txtype; 2026 itx->itx_lr.lrc_reclen = lrsize; 2027 itx->itx_lr.lrc_seq = 0; /* defensive */ 2028 memset((char *)&itx->itx_lr + olrsize, 0, lrsize - olrsize); 2029 itx->itx_sync = B_TRUE; /* default is synchronous */ 2030 itx->itx_callback = NULL; 2031 itx->itx_callback_data = NULL; 2032 itx->itx_size = itxsize; 2033 2034 return (itx); 2035 } 2036 2037 void 2038 zil_itx_destroy(itx_t *itx) 2039 { 2040 IMPLY(itx->itx_lr.lrc_txtype == TX_COMMIT, itx->itx_callback == NULL); 2041 IMPLY(itx->itx_callback != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT); 2042 2043 if (itx->itx_callback != NULL) 2044 itx->itx_callback(itx->itx_callback_data); 2045 2046 zio_data_buf_free(itx, itx->itx_size); 2047 } 2048 2049 /* 2050 * Free up the sync and async itxs. The itxs_t has already been detached 2051 * so no locks are needed. 2052 */ 2053 static void 2054 zil_itxg_clean(void *arg) 2055 { 2056 itx_t *itx; 2057 list_t *list; 2058 avl_tree_t *t; 2059 void *cookie; 2060 itxs_t *itxs = arg; 2061 itx_async_node_t *ian; 2062 2063 list = &itxs->i_sync_list; 2064 while ((itx = list_head(list)) != NULL) { 2065 /* 2066 * In the general case, commit itxs will not be found 2067 * here, as they'll be committed to an lwb via 2068 * zil_lwb_commit(), and free'd in that function. Having 2069 * said that, it is still possible for commit itxs to be 2070 * found here, due to the following race: 2071 * 2072 * - a thread calls zil_commit() which assigns the 2073 * commit itx to a per-txg i_sync_list 2074 * - zil_itxg_clean() is called (e.g. via spa_sync()) 2075 * while the waiter is still on the i_sync_list 2076 * 2077 * There's nothing to prevent syncing the txg while the 2078 * waiter is on the i_sync_list. This normally doesn't 2079 * happen because spa_sync() is slower than zil_commit(), 2080 * but if zil_commit() calls txg_wait_synced() (e.g. 2081 * because zil_create() or zil_commit_writer_stall() is 2082 * called) we will hit this case. 2083 */ 2084 if (itx->itx_lr.lrc_txtype == TX_COMMIT) 2085 zil_commit_waiter_skip(itx->itx_private); 2086 2087 list_remove(list, itx); 2088 zil_itx_destroy(itx); 2089 } 2090 2091 cookie = NULL; 2092 t = &itxs->i_async_tree; 2093 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { 2094 list = &ian->ia_list; 2095 while ((itx = list_head(list)) != NULL) { 2096 list_remove(list, itx); 2097 /* commit itxs should never be on the async lists. */ 2098 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT); 2099 zil_itx_destroy(itx); 2100 } 2101 list_destroy(list); 2102 kmem_free(ian, sizeof (itx_async_node_t)); 2103 } 2104 avl_destroy(t); 2105 2106 kmem_free(itxs, sizeof (itxs_t)); 2107 } 2108 2109 static int 2110 zil_aitx_compare(const void *x1, const void *x2) 2111 { 2112 const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid; 2113 const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid; 2114 2115 return (TREE_CMP(o1, o2)); 2116 } 2117 2118 /* 2119 * Remove all async itx with the given oid. 2120 */ 2121 void 2122 zil_remove_async(zilog_t *zilog, uint64_t oid) 2123 { 2124 uint64_t otxg, txg; 2125 itx_async_node_t *ian; 2126 avl_tree_t *t; 2127 avl_index_t where; 2128 list_t clean_list; 2129 itx_t *itx; 2130 2131 ASSERT(oid != 0); 2132 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node)); 2133 2134 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 2135 otxg = ZILTEST_TXG; 2136 else 2137 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 2138 2139 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 2140 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 2141 2142 mutex_enter(&itxg->itxg_lock); 2143 if (itxg->itxg_txg != txg) { 2144 mutex_exit(&itxg->itxg_lock); 2145 continue; 2146 } 2147 2148 /* 2149 * Locate the object node and append its list. 2150 */ 2151 t = &itxg->itxg_itxs->i_async_tree; 2152 ian = avl_find(t, &oid, &where); 2153 if (ian != NULL) 2154 list_move_tail(&clean_list, &ian->ia_list); 2155 mutex_exit(&itxg->itxg_lock); 2156 } 2157 while ((itx = list_head(&clean_list)) != NULL) { 2158 list_remove(&clean_list, itx); 2159 /* commit itxs should never be on the async lists. */ 2160 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT); 2161 zil_itx_destroy(itx); 2162 } 2163 list_destroy(&clean_list); 2164 } 2165 2166 void 2167 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx) 2168 { 2169 uint64_t txg; 2170 itxg_t *itxg; 2171 itxs_t *itxs, *clean = NULL; 2172 2173 /* 2174 * Ensure the data of a renamed file is committed before the rename. 2175 */ 2176 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME) 2177 zil_async_to_sync(zilog, itx->itx_oid); 2178 2179 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) 2180 txg = ZILTEST_TXG; 2181 else 2182 txg = dmu_tx_get_txg(tx); 2183 2184 itxg = &zilog->zl_itxg[txg & TXG_MASK]; 2185 mutex_enter(&itxg->itxg_lock); 2186 itxs = itxg->itxg_itxs; 2187 if (itxg->itxg_txg != txg) { 2188 if (itxs != NULL) { 2189 /* 2190 * The zil_clean callback hasn't got around to cleaning 2191 * this itxg. Save the itxs for release below. 2192 * This should be rare. 2193 */ 2194 zfs_dbgmsg("zil_itx_assign: missed itx cleanup for " 2195 "txg %llu", (u_longlong_t)itxg->itxg_txg); 2196 clean = itxg->itxg_itxs; 2197 } 2198 itxg->itxg_txg = txg; 2199 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), 2200 KM_SLEEP); 2201 2202 list_create(&itxs->i_sync_list, sizeof (itx_t), 2203 offsetof(itx_t, itx_node)); 2204 avl_create(&itxs->i_async_tree, zil_aitx_compare, 2205 sizeof (itx_async_node_t), 2206 offsetof(itx_async_node_t, ia_node)); 2207 } 2208 if (itx->itx_sync) { 2209 list_insert_tail(&itxs->i_sync_list, itx); 2210 } else { 2211 avl_tree_t *t = &itxs->i_async_tree; 2212 uint64_t foid = 2213 LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid); 2214 itx_async_node_t *ian; 2215 avl_index_t where; 2216 2217 ian = avl_find(t, &foid, &where); 2218 if (ian == NULL) { 2219 ian = kmem_alloc(sizeof (itx_async_node_t), 2220 KM_SLEEP); 2221 list_create(&ian->ia_list, sizeof (itx_t), 2222 offsetof(itx_t, itx_node)); 2223 ian->ia_foid = foid; 2224 avl_insert(t, ian, where); 2225 } 2226 list_insert_tail(&ian->ia_list, itx); 2227 } 2228 2229 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx); 2230 2231 /* 2232 * We don't want to dirty the ZIL using ZILTEST_TXG, because 2233 * zil_clean() will never be called using ZILTEST_TXG. Thus, we 2234 * need to be careful to always dirty the ZIL using the "real" 2235 * TXG (not itxg_txg) even when the SPA is frozen. 2236 */ 2237 zilog_dirty(zilog, dmu_tx_get_txg(tx)); 2238 mutex_exit(&itxg->itxg_lock); 2239 2240 /* Release the old itxs now we've dropped the lock */ 2241 if (clean != NULL) 2242 zil_itxg_clean(clean); 2243 } 2244 2245 /* 2246 * If there are any in-memory intent log transactions which have now been 2247 * synced then start up a taskq to free them. We should only do this after we 2248 * have written out the uberblocks (i.e. txg has been committed) so that 2249 * don't inadvertently clean out in-memory log records that would be required 2250 * by zil_commit(). 2251 */ 2252 void 2253 zil_clean(zilog_t *zilog, uint64_t synced_txg) 2254 { 2255 itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK]; 2256 itxs_t *clean_me; 2257 2258 ASSERT3U(synced_txg, <, ZILTEST_TXG); 2259 2260 mutex_enter(&itxg->itxg_lock); 2261 if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) { 2262 mutex_exit(&itxg->itxg_lock); 2263 return; 2264 } 2265 ASSERT3U(itxg->itxg_txg, <=, synced_txg); 2266 ASSERT3U(itxg->itxg_txg, !=, 0); 2267 clean_me = itxg->itxg_itxs; 2268 itxg->itxg_itxs = NULL; 2269 itxg->itxg_txg = 0; 2270 mutex_exit(&itxg->itxg_lock); 2271 /* 2272 * Preferably start a task queue to free up the old itxs but 2273 * if taskq_dispatch can't allocate resources to do that then 2274 * free it in-line. This should be rare. Note, using TQ_SLEEP 2275 * created a bad performance problem. 2276 */ 2277 ASSERT3P(zilog->zl_dmu_pool, !=, NULL); 2278 ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL); 2279 taskqid_t id = taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq, 2280 zil_itxg_clean, clean_me, TQ_NOSLEEP); 2281 if (id == TASKQID_INVALID) 2282 zil_itxg_clean(clean_me); 2283 } 2284 2285 /* 2286 * This function will traverse the queue of itxs that need to be 2287 * committed, and move them onto the ZIL's zl_itx_commit_list. 2288 */ 2289 static void 2290 zil_get_commit_list(zilog_t *zilog) 2291 { 2292 uint64_t otxg, txg; 2293 list_t *commit_list = &zilog->zl_itx_commit_list; 2294 2295 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2296 2297 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 2298 otxg = ZILTEST_TXG; 2299 else 2300 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 2301 2302 /* 2303 * This is inherently racy, since there is nothing to prevent 2304 * the last synced txg from changing. That's okay since we'll 2305 * only commit things in the future. 2306 */ 2307 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 2308 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 2309 2310 mutex_enter(&itxg->itxg_lock); 2311 if (itxg->itxg_txg != txg) { 2312 mutex_exit(&itxg->itxg_lock); 2313 continue; 2314 } 2315 2316 /* 2317 * If we're adding itx records to the zl_itx_commit_list, 2318 * then the zil better be dirty in this "txg". We can assert 2319 * that here since we're holding the itxg_lock which will 2320 * prevent spa_sync from cleaning it. Once we add the itxs 2321 * to the zl_itx_commit_list we must commit it to disk even 2322 * if it's unnecessary (i.e. the txg was synced). 2323 */ 2324 ASSERT(zilog_is_dirty_in_txg(zilog, txg) || 2325 spa_freeze_txg(zilog->zl_spa) != UINT64_MAX); 2326 list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list); 2327 2328 mutex_exit(&itxg->itxg_lock); 2329 } 2330 } 2331 2332 /* 2333 * Move the async itxs for a specified object to commit into sync lists. 2334 */ 2335 void 2336 zil_async_to_sync(zilog_t *zilog, uint64_t foid) 2337 { 2338 uint64_t otxg, txg; 2339 itx_async_node_t *ian; 2340 avl_tree_t *t; 2341 avl_index_t where; 2342 2343 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 2344 otxg = ZILTEST_TXG; 2345 else 2346 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 2347 2348 /* 2349 * This is inherently racy, since there is nothing to prevent 2350 * the last synced txg from changing. 2351 */ 2352 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 2353 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 2354 2355 mutex_enter(&itxg->itxg_lock); 2356 if (itxg->itxg_txg != txg) { 2357 mutex_exit(&itxg->itxg_lock); 2358 continue; 2359 } 2360 2361 /* 2362 * If a foid is specified then find that node and append its 2363 * list. Otherwise walk the tree appending all the lists 2364 * to the sync list. We add to the end rather than the 2365 * beginning to ensure the create has happened. 2366 */ 2367 t = &itxg->itxg_itxs->i_async_tree; 2368 if (foid != 0) { 2369 ian = avl_find(t, &foid, &where); 2370 if (ian != NULL) { 2371 list_move_tail(&itxg->itxg_itxs->i_sync_list, 2372 &ian->ia_list); 2373 } 2374 } else { 2375 void *cookie = NULL; 2376 2377 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { 2378 list_move_tail(&itxg->itxg_itxs->i_sync_list, 2379 &ian->ia_list); 2380 list_destroy(&ian->ia_list); 2381 kmem_free(ian, sizeof (itx_async_node_t)); 2382 } 2383 } 2384 mutex_exit(&itxg->itxg_lock); 2385 } 2386 } 2387 2388 /* 2389 * This function will prune commit itxs that are at the head of the 2390 * commit list (it won't prune past the first non-commit itx), and 2391 * either: a) attach them to the last lwb that's still pending 2392 * completion, or b) skip them altogether. 2393 * 2394 * This is used as a performance optimization to prevent commit itxs 2395 * from generating new lwbs when it's unnecessary to do so. 2396 */ 2397 static void 2398 zil_prune_commit_list(zilog_t *zilog) 2399 { 2400 itx_t *itx; 2401 2402 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2403 2404 while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) { 2405 lr_t *lrc = &itx->itx_lr; 2406 if (lrc->lrc_txtype != TX_COMMIT) 2407 break; 2408 2409 mutex_enter(&zilog->zl_lock); 2410 2411 lwb_t *last_lwb = zilog->zl_last_lwb_opened; 2412 if (last_lwb == NULL || 2413 last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) { 2414 /* 2415 * All of the itxs this waiter was waiting on 2416 * must have already completed (or there were 2417 * never any itx's for it to wait on), so it's 2418 * safe to skip this waiter and mark it done. 2419 */ 2420 zil_commit_waiter_skip(itx->itx_private); 2421 } else { 2422 zil_commit_waiter_link_lwb(itx->itx_private, last_lwb); 2423 itx->itx_private = NULL; 2424 } 2425 2426 mutex_exit(&zilog->zl_lock); 2427 2428 list_remove(&zilog->zl_itx_commit_list, itx); 2429 zil_itx_destroy(itx); 2430 } 2431 2432 IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT); 2433 } 2434 2435 static void 2436 zil_commit_writer_stall(zilog_t *zilog) 2437 { 2438 /* 2439 * When zio_alloc_zil() fails to allocate the next lwb block on 2440 * disk, we must call txg_wait_synced() to ensure all of the 2441 * lwbs in the zilog's zl_lwb_list are synced and then freed (in 2442 * zil_sync()), such that any subsequent ZIL writer (i.e. a call 2443 * to zil_process_commit_list()) will have to call zil_create(), 2444 * and start a new ZIL chain. 2445 * 2446 * Since zil_alloc_zil() failed, the lwb that was previously 2447 * issued does not have a pointer to the "next" lwb on disk. 2448 * Thus, if another ZIL writer thread was to allocate the "next" 2449 * on-disk lwb, that block could be leaked in the event of a 2450 * crash (because the previous lwb on-disk would not point to 2451 * it). 2452 * 2453 * We must hold the zilog's zl_issuer_lock while we do this, to 2454 * ensure no new threads enter zil_process_commit_list() until 2455 * all lwb's in the zl_lwb_list have been synced and freed 2456 * (which is achieved via the txg_wait_synced() call). 2457 */ 2458 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2459 txg_wait_synced(zilog->zl_dmu_pool, 0); 2460 ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL); 2461 } 2462 2463 /* 2464 * This function will traverse the commit list, creating new lwbs as 2465 * needed, and committing the itxs from the commit list to these newly 2466 * created lwbs. Additionally, as a new lwb is created, the previous 2467 * lwb will be issued to the zio layer to be written to disk. 2468 */ 2469 static void 2470 zil_process_commit_list(zilog_t *zilog) 2471 { 2472 spa_t *spa = zilog->zl_spa; 2473 list_t nolwb_itxs; 2474 list_t nolwb_waiters; 2475 lwb_t *lwb, *plwb; 2476 itx_t *itx; 2477 boolean_t first = B_TRUE; 2478 2479 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2480 2481 /* 2482 * Return if there's nothing to commit before we dirty the fs by 2483 * calling zil_create(). 2484 */ 2485 if (list_head(&zilog->zl_itx_commit_list) == NULL) 2486 return; 2487 2488 list_create(&nolwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node)); 2489 list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t), 2490 offsetof(zil_commit_waiter_t, zcw_node)); 2491 2492 lwb = list_tail(&zilog->zl_lwb_list); 2493 if (lwb == NULL) { 2494 lwb = zil_create(zilog); 2495 } else { 2496 /* 2497 * Activate SPA_FEATURE_ZILSAXATTR for the cases where ZIL will 2498 * have already been created (zl_lwb_list not empty). 2499 */ 2500 zil_commit_activate_saxattr_feature(zilog); 2501 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED); 2502 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE); 2503 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE); 2504 first = (lwb->lwb_state != LWB_STATE_OPENED) && 2505 ((plwb = list_prev(&zilog->zl_lwb_list, lwb)) == NULL || 2506 plwb->lwb_state == LWB_STATE_FLUSH_DONE); 2507 } 2508 2509 while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) { 2510 lr_t *lrc = &itx->itx_lr; 2511 uint64_t txg = lrc->lrc_txg; 2512 2513 ASSERT3U(txg, !=, 0); 2514 2515 if (lrc->lrc_txtype == TX_COMMIT) { 2516 DTRACE_PROBE2(zil__process__commit__itx, 2517 zilog_t *, zilog, itx_t *, itx); 2518 } else { 2519 DTRACE_PROBE2(zil__process__normal__itx, 2520 zilog_t *, zilog, itx_t *, itx); 2521 } 2522 2523 list_remove(&zilog->zl_itx_commit_list, itx); 2524 2525 boolean_t synced = txg <= spa_last_synced_txg(spa); 2526 boolean_t frozen = txg > spa_freeze_txg(spa); 2527 2528 /* 2529 * If the txg of this itx has already been synced out, then 2530 * we don't need to commit this itx to an lwb. This is 2531 * because the data of this itx will have already been 2532 * written to the main pool. This is inherently racy, and 2533 * it's still ok to commit an itx whose txg has already 2534 * been synced; this will result in a write that's 2535 * unnecessary, but will do no harm. 2536 * 2537 * With that said, we always want to commit TX_COMMIT itxs 2538 * to an lwb, regardless of whether or not that itx's txg 2539 * has been synced out. We do this to ensure any OPENED lwb 2540 * will always have at least one zil_commit_waiter_t linked 2541 * to the lwb. 2542 * 2543 * As a counter-example, if we skipped TX_COMMIT itx's 2544 * whose txg had already been synced, the following 2545 * situation could occur if we happened to be racing with 2546 * spa_sync: 2547 * 2548 * 1. We commit a non-TX_COMMIT itx to an lwb, where the 2549 * itx's txg is 10 and the last synced txg is 9. 2550 * 2. spa_sync finishes syncing out txg 10. 2551 * 3. We move to the next itx in the list, it's a TX_COMMIT 2552 * whose txg is 10, so we skip it rather than committing 2553 * it to the lwb used in (1). 2554 * 2555 * If the itx that is skipped in (3) is the last TX_COMMIT 2556 * itx in the commit list, than it's possible for the lwb 2557 * used in (1) to remain in the OPENED state indefinitely. 2558 * 2559 * To prevent the above scenario from occurring, ensuring 2560 * that once an lwb is OPENED it will transition to ISSUED 2561 * and eventually DONE, we always commit TX_COMMIT itx's to 2562 * an lwb here, even if that itx's txg has already been 2563 * synced. 2564 * 2565 * Finally, if the pool is frozen, we _always_ commit the 2566 * itx. The point of freezing the pool is to prevent data 2567 * from being written to the main pool via spa_sync, and 2568 * instead rely solely on the ZIL to persistently store the 2569 * data; i.e. when the pool is frozen, the last synced txg 2570 * value can't be trusted. 2571 */ 2572 if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) { 2573 if (lwb != NULL) { 2574 lwb = zil_lwb_commit(zilog, itx, lwb); 2575 2576 if (lwb == NULL) 2577 list_insert_tail(&nolwb_itxs, itx); 2578 else 2579 list_insert_tail(&lwb->lwb_itxs, itx); 2580 } else { 2581 if (lrc->lrc_txtype == TX_COMMIT) { 2582 zil_commit_waiter_link_nolwb( 2583 itx->itx_private, &nolwb_waiters); 2584 } 2585 2586 list_insert_tail(&nolwb_itxs, itx); 2587 } 2588 } else { 2589 ASSERT3S(lrc->lrc_txtype, !=, TX_COMMIT); 2590 zil_itx_destroy(itx); 2591 } 2592 } 2593 2594 if (lwb == NULL) { 2595 /* 2596 * This indicates zio_alloc_zil() failed to allocate the 2597 * "next" lwb on-disk. When this happens, we must stall 2598 * the ZIL write pipeline; see the comment within 2599 * zil_commit_writer_stall() for more details. 2600 */ 2601 zil_commit_writer_stall(zilog); 2602 2603 /* 2604 * Additionally, we have to signal and mark the "nolwb" 2605 * waiters as "done" here, since without an lwb, we 2606 * can't do this via zil_lwb_flush_vdevs_done() like 2607 * normal. 2608 */ 2609 zil_commit_waiter_t *zcw; 2610 while ((zcw = list_head(&nolwb_waiters)) != NULL) { 2611 zil_commit_waiter_skip(zcw); 2612 list_remove(&nolwb_waiters, zcw); 2613 } 2614 2615 /* 2616 * And finally, we have to destroy the itx's that 2617 * couldn't be committed to an lwb; this will also call 2618 * the itx's callback if one exists for the itx. 2619 */ 2620 while ((itx = list_head(&nolwb_itxs)) != NULL) { 2621 list_remove(&nolwb_itxs, itx); 2622 zil_itx_destroy(itx); 2623 } 2624 } else { 2625 ASSERT(list_is_empty(&nolwb_waiters)); 2626 ASSERT3P(lwb, !=, NULL); 2627 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED); 2628 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE); 2629 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE); 2630 2631 /* 2632 * At this point, the ZIL block pointed at by the "lwb" 2633 * variable is in one of the following states: "closed" 2634 * or "open". 2635 * 2636 * If it's "closed", then no itxs have been committed to 2637 * it, so there's no point in issuing its zio (i.e. it's 2638 * "empty"). 2639 * 2640 * If it's "open", then it contains one or more itxs that 2641 * eventually need to be committed to stable storage. In 2642 * this case we intentionally do not issue the lwb's zio 2643 * to disk yet, and instead rely on one of the following 2644 * two mechanisms for issuing the zio: 2645 * 2646 * 1. Ideally, there will be more ZIL activity occurring 2647 * on the system, such that this function will be 2648 * immediately called again (not necessarily by the same 2649 * thread) and this lwb's zio will be issued via 2650 * zil_lwb_commit(). This way, the lwb is guaranteed to 2651 * be "full" when it is issued to disk, and we'll make 2652 * use of the lwb's size the best we can. 2653 * 2654 * 2. If there isn't sufficient ZIL activity occurring on 2655 * the system, such that this lwb's zio isn't issued via 2656 * zil_lwb_commit(), zil_commit_waiter() will issue the 2657 * lwb's zio. If this occurs, the lwb is not guaranteed 2658 * to be "full" by the time its zio is issued, and means 2659 * the size of the lwb was "too large" given the amount 2660 * of ZIL activity occurring on the system at that time. 2661 * 2662 * We do this for a couple of reasons: 2663 * 2664 * 1. To try and reduce the number of IOPs needed to 2665 * write the same number of itxs. If an lwb has space 2666 * available in its buffer for more itxs, and more itxs 2667 * will be committed relatively soon (relative to the 2668 * latency of performing a write), then it's beneficial 2669 * to wait for these "next" itxs. This way, more itxs 2670 * can be committed to stable storage with fewer writes. 2671 * 2672 * 2. To try and use the largest lwb block size that the 2673 * incoming rate of itxs can support. Again, this is to 2674 * try and pack as many itxs into as few lwbs as 2675 * possible, without significantly impacting the latency 2676 * of each individual itx. 2677 * 2678 * If we had no already running or open LWBs, it can be 2679 * the workload is single-threaded. And if the ZIL write 2680 * latency is very small or if the LWB is almost full, it 2681 * may be cheaper to bypass the delay. 2682 */ 2683 if (lwb->lwb_state == LWB_STATE_OPENED && first) { 2684 hrtime_t sleep = zilog->zl_last_lwb_latency * 2685 zfs_commit_timeout_pct / 100; 2686 if (sleep < zil_min_commit_timeout || 2687 lwb->lwb_sz - lwb->lwb_nused < lwb->lwb_sz / 8) { 2688 lwb = zil_lwb_write_issue(zilog, lwb); 2689 zilog->zl_cur_used = 0; 2690 if (lwb == NULL) 2691 zil_commit_writer_stall(zilog); 2692 } 2693 } 2694 } 2695 } 2696 2697 /* 2698 * This function is responsible for ensuring the passed in commit waiter 2699 * (and associated commit itx) is committed to an lwb. If the waiter is 2700 * not already committed to an lwb, all itxs in the zilog's queue of 2701 * itxs will be processed. The assumption is the passed in waiter's 2702 * commit itx will found in the queue just like the other non-commit 2703 * itxs, such that when the entire queue is processed, the waiter will 2704 * have been committed to an lwb. 2705 * 2706 * The lwb associated with the passed in waiter is not guaranteed to 2707 * have been issued by the time this function completes. If the lwb is 2708 * not issued, we rely on future calls to zil_commit_writer() to issue 2709 * the lwb, or the timeout mechanism found in zil_commit_waiter(). 2710 */ 2711 static void 2712 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw) 2713 { 2714 ASSERT(!MUTEX_HELD(&zilog->zl_lock)); 2715 ASSERT(spa_writeable(zilog->zl_spa)); 2716 2717 mutex_enter(&zilog->zl_issuer_lock); 2718 2719 if (zcw->zcw_lwb != NULL || zcw->zcw_done) { 2720 /* 2721 * It's possible that, while we were waiting to acquire 2722 * the "zl_issuer_lock", another thread committed this 2723 * waiter to an lwb. If that occurs, we bail out early, 2724 * without processing any of the zilog's queue of itxs. 2725 * 2726 * On certain workloads and system configurations, the 2727 * "zl_issuer_lock" can become highly contended. In an 2728 * attempt to reduce this contention, we immediately drop 2729 * the lock if the waiter has already been processed. 2730 * 2731 * We've measured this optimization to reduce CPU spent 2732 * contending on this lock by up to 5%, using a system 2733 * with 32 CPUs, low latency storage (~50 usec writes), 2734 * and 1024 threads performing sync writes. 2735 */ 2736 goto out; 2737 } 2738 2739 ZIL_STAT_BUMP(zilog, zil_commit_writer_count); 2740 2741 zil_get_commit_list(zilog); 2742 zil_prune_commit_list(zilog); 2743 zil_process_commit_list(zilog); 2744 2745 out: 2746 mutex_exit(&zilog->zl_issuer_lock); 2747 } 2748 2749 static void 2750 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw) 2751 { 2752 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock)); 2753 ASSERT(MUTEX_HELD(&zcw->zcw_lock)); 2754 ASSERT3B(zcw->zcw_done, ==, B_FALSE); 2755 2756 lwb_t *lwb = zcw->zcw_lwb; 2757 ASSERT3P(lwb, !=, NULL); 2758 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED); 2759 2760 /* 2761 * If the lwb has already been issued by another thread, we can 2762 * immediately return since there's no work to be done (the 2763 * point of this function is to issue the lwb). Additionally, we 2764 * do this prior to acquiring the zl_issuer_lock, to avoid 2765 * acquiring it when it's not necessary to do so. 2766 */ 2767 if (lwb->lwb_state == LWB_STATE_ISSUED || 2768 lwb->lwb_state == LWB_STATE_WRITE_DONE || 2769 lwb->lwb_state == LWB_STATE_FLUSH_DONE) 2770 return; 2771 2772 /* 2773 * In order to call zil_lwb_write_issue() we must hold the 2774 * zilog's "zl_issuer_lock". We can't simply acquire that lock, 2775 * since we're already holding the commit waiter's "zcw_lock", 2776 * and those two locks are acquired in the opposite order 2777 * elsewhere. 2778 */ 2779 mutex_exit(&zcw->zcw_lock); 2780 mutex_enter(&zilog->zl_issuer_lock); 2781 mutex_enter(&zcw->zcw_lock); 2782 2783 /* 2784 * Since we just dropped and re-acquired the commit waiter's 2785 * lock, we have to re-check to see if the waiter was marked 2786 * "done" during that process. If the waiter was marked "done", 2787 * the "lwb" pointer is no longer valid (it can be free'd after 2788 * the waiter is marked "done"), so without this check we could 2789 * wind up with a use-after-free error below. 2790 */ 2791 if (zcw->zcw_done) 2792 goto out; 2793 2794 ASSERT3P(lwb, ==, zcw->zcw_lwb); 2795 2796 /* 2797 * We've already checked this above, but since we hadn't acquired 2798 * the zilog's zl_issuer_lock, we have to perform this check a 2799 * second time while holding the lock. 2800 * 2801 * We don't need to hold the zl_lock since the lwb cannot transition 2802 * from OPENED to ISSUED while we hold the zl_issuer_lock. The lwb 2803 * _can_ transition from ISSUED to DONE, but it's OK to race with 2804 * that transition since we treat the lwb the same, whether it's in 2805 * the ISSUED or DONE states. 2806 * 2807 * The important thing, is we treat the lwb differently depending on 2808 * if it's ISSUED or OPENED, and block any other threads that might 2809 * attempt to issue this lwb. For that reason we hold the 2810 * zl_issuer_lock when checking the lwb_state; we must not call 2811 * zil_lwb_write_issue() if the lwb had already been issued. 2812 * 2813 * See the comment above the lwb_state_t structure definition for 2814 * more details on the lwb states, and locking requirements. 2815 */ 2816 if (lwb->lwb_state == LWB_STATE_ISSUED || 2817 lwb->lwb_state == LWB_STATE_WRITE_DONE || 2818 lwb->lwb_state == LWB_STATE_FLUSH_DONE) 2819 goto out; 2820 2821 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED); 2822 2823 /* 2824 * As described in the comments above zil_commit_waiter() and 2825 * zil_process_commit_list(), we need to issue this lwb's zio 2826 * since we've reached the commit waiter's timeout and it still 2827 * hasn't been issued. 2828 */ 2829 lwb_t *nlwb = zil_lwb_write_issue(zilog, lwb); 2830 2831 IMPLY(nlwb != NULL, lwb->lwb_state != LWB_STATE_OPENED); 2832 2833 /* 2834 * Since the lwb's zio hadn't been issued by the time this thread 2835 * reached its timeout, we reset the zilog's "zl_cur_used" field 2836 * to influence the zil block size selection algorithm. 2837 * 2838 * By having to issue the lwb's zio here, it means the size of the 2839 * lwb was too large, given the incoming throughput of itxs. By 2840 * setting "zl_cur_used" to zero, we communicate this fact to the 2841 * block size selection algorithm, so it can take this information 2842 * into account, and potentially select a smaller size for the 2843 * next lwb block that is allocated. 2844 */ 2845 zilog->zl_cur_used = 0; 2846 2847 if (nlwb == NULL) { 2848 /* 2849 * When zil_lwb_write_issue() returns NULL, this 2850 * indicates zio_alloc_zil() failed to allocate the 2851 * "next" lwb on-disk. When this occurs, the ZIL write 2852 * pipeline must be stalled; see the comment within the 2853 * zil_commit_writer_stall() function for more details. 2854 * 2855 * We must drop the commit waiter's lock prior to 2856 * calling zil_commit_writer_stall() or else we can wind 2857 * up with the following deadlock: 2858 * 2859 * - This thread is waiting for the txg to sync while 2860 * holding the waiter's lock; txg_wait_synced() is 2861 * used within txg_commit_writer_stall(). 2862 * 2863 * - The txg can't sync because it is waiting for this 2864 * lwb's zio callback to call dmu_tx_commit(). 2865 * 2866 * - The lwb's zio callback can't call dmu_tx_commit() 2867 * because it's blocked trying to acquire the waiter's 2868 * lock, which occurs prior to calling dmu_tx_commit() 2869 */ 2870 mutex_exit(&zcw->zcw_lock); 2871 zil_commit_writer_stall(zilog); 2872 mutex_enter(&zcw->zcw_lock); 2873 } 2874 2875 out: 2876 mutex_exit(&zilog->zl_issuer_lock); 2877 ASSERT(MUTEX_HELD(&zcw->zcw_lock)); 2878 } 2879 2880 /* 2881 * This function is responsible for performing the following two tasks: 2882 * 2883 * 1. its primary responsibility is to block until the given "commit 2884 * waiter" is considered "done". 2885 * 2886 * 2. its secondary responsibility is to issue the zio for the lwb that 2887 * the given "commit waiter" is waiting on, if this function has 2888 * waited "long enough" and the lwb is still in the "open" state. 2889 * 2890 * Given a sufficient amount of itxs being generated and written using 2891 * the ZIL, the lwb's zio will be issued via the zil_lwb_commit() 2892 * function. If this does not occur, this secondary responsibility will 2893 * ensure the lwb is issued even if there is not other synchronous 2894 * activity on the system. 2895 * 2896 * For more details, see zil_process_commit_list(); more specifically, 2897 * the comment at the bottom of that function. 2898 */ 2899 static void 2900 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw) 2901 { 2902 ASSERT(!MUTEX_HELD(&zilog->zl_lock)); 2903 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock)); 2904 ASSERT(spa_writeable(zilog->zl_spa)); 2905 2906 mutex_enter(&zcw->zcw_lock); 2907 2908 /* 2909 * The timeout is scaled based on the lwb latency to avoid 2910 * significantly impacting the latency of each individual itx. 2911 * For more details, see the comment at the bottom of the 2912 * zil_process_commit_list() function. 2913 */ 2914 int pct = MAX(zfs_commit_timeout_pct, 1); 2915 hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100; 2916 hrtime_t wakeup = gethrtime() + sleep; 2917 boolean_t timedout = B_FALSE; 2918 2919 while (!zcw->zcw_done) { 2920 ASSERT(MUTEX_HELD(&zcw->zcw_lock)); 2921 2922 lwb_t *lwb = zcw->zcw_lwb; 2923 2924 /* 2925 * Usually, the waiter will have a non-NULL lwb field here, 2926 * but it's possible for it to be NULL as a result of 2927 * zil_commit() racing with spa_sync(). 2928 * 2929 * When zil_clean() is called, it's possible for the itxg 2930 * list (which may be cleaned via a taskq) to contain 2931 * commit itxs. When this occurs, the commit waiters linked 2932 * off of these commit itxs will not be committed to an 2933 * lwb. Additionally, these commit waiters will not be 2934 * marked done until zil_commit_waiter_skip() is called via 2935 * zil_itxg_clean(). 2936 * 2937 * Thus, it's possible for this commit waiter (i.e. the 2938 * "zcw" variable) to be found in this "in between" state; 2939 * where it's "zcw_lwb" field is NULL, and it hasn't yet 2940 * been skipped, so it's "zcw_done" field is still B_FALSE. 2941 */ 2942 IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED); 2943 2944 if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) { 2945 ASSERT3B(timedout, ==, B_FALSE); 2946 2947 /* 2948 * If the lwb hasn't been issued yet, then we 2949 * need to wait with a timeout, in case this 2950 * function needs to issue the lwb after the 2951 * timeout is reached; responsibility (2) from 2952 * the comment above this function. 2953 */ 2954 int rc = cv_timedwait_hires(&zcw->zcw_cv, 2955 &zcw->zcw_lock, wakeup, USEC2NSEC(1), 2956 CALLOUT_FLAG_ABSOLUTE); 2957 2958 if (rc != -1 || zcw->zcw_done) 2959 continue; 2960 2961 timedout = B_TRUE; 2962 zil_commit_waiter_timeout(zilog, zcw); 2963 2964 if (!zcw->zcw_done) { 2965 /* 2966 * If the commit waiter has already been 2967 * marked "done", it's possible for the 2968 * waiter's lwb structure to have already 2969 * been freed. Thus, we can only reliably 2970 * make these assertions if the waiter 2971 * isn't done. 2972 */ 2973 ASSERT3P(lwb, ==, zcw->zcw_lwb); 2974 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED); 2975 } 2976 } else { 2977 /* 2978 * If the lwb isn't open, then it must have already 2979 * been issued. In that case, there's no need to 2980 * use a timeout when waiting for the lwb to 2981 * complete. 2982 * 2983 * Additionally, if the lwb is NULL, the waiter 2984 * will soon be signaled and marked done via 2985 * zil_clean() and zil_itxg_clean(), so no timeout 2986 * is required. 2987 */ 2988 2989 IMPLY(lwb != NULL, 2990 lwb->lwb_state == LWB_STATE_ISSUED || 2991 lwb->lwb_state == LWB_STATE_WRITE_DONE || 2992 lwb->lwb_state == LWB_STATE_FLUSH_DONE); 2993 cv_wait(&zcw->zcw_cv, &zcw->zcw_lock); 2994 } 2995 } 2996 2997 mutex_exit(&zcw->zcw_lock); 2998 } 2999 3000 static zil_commit_waiter_t * 3001 zil_alloc_commit_waiter(void) 3002 { 3003 zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP); 3004 3005 cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL); 3006 mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL); 3007 list_link_init(&zcw->zcw_node); 3008 zcw->zcw_lwb = NULL; 3009 zcw->zcw_done = B_FALSE; 3010 zcw->zcw_zio_error = 0; 3011 3012 return (zcw); 3013 } 3014 3015 static void 3016 zil_free_commit_waiter(zil_commit_waiter_t *zcw) 3017 { 3018 ASSERT(!list_link_active(&zcw->zcw_node)); 3019 ASSERT3P(zcw->zcw_lwb, ==, NULL); 3020 ASSERT3B(zcw->zcw_done, ==, B_TRUE); 3021 mutex_destroy(&zcw->zcw_lock); 3022 cv_destroy(&zcw->zcw_cv); 3023 kmem_cache_free(zil_zcw_cache, zcw); 3024 } 3025 3026 /* 3027 * This function is used to create a TX_COMMIT itx and assign it. This 3028 * way, it will be linked into the ZIL's list of synchronous itxs, and 3029 * then later committed to an lwb (or skipped) when 3030 * zil_process_commit_list() is called. 3031 */ 3032 static void 3033 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw) 3034 { 3035 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os); 3036 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 3037 3038 itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t)); 3039 itx->itx_sync = B_TRUE; 3040 itx->itx_private = zcw; 3041 3042 zil_itx_assign(zilog, itx, tx); 3043 3044 dmu_tx_commit(tx); 3045 } 3046 3047 /* 3048 * Commit ZFS Intent Log transactions (itxs) to stable storage. 3049 * 3050 * When writing ZIL transactions to the on-disk representation of the 3051 * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple 3052 * itxs can be committed to a single lwb. Once a lwb is written and 3053 * committed to stable storage (i.e. the lwb is written, and vdevs have 3054 * been flushed), each itx that was committed to that lwb is also 3055 * considered to be committed to stable storage. 3056 * 3057 * When an itx is committed to an lwb, the log record (lr_t) contained 3058 * by the itx is copied into the lwb's zio buffer, and once this buffer 3059 * is written to disk, it becomes an on-disk ZIL block. 3060 * 3061 * As itxs are generated, they're inserted into the ZIL's queue of 3062 * uncommitted itxs. The semantics of zil_commit() are such that it will 3063 * block until all itxs that were in the queue when it was called, are 3064 * committed to stable storage. 3065 * 3066 * If "foid" is zero, this means all "synchronous" and "asynchronous" 3067 * itxs, for all objects in the dataset, will be committed to stable 3068 * storage prior to zil_commit() returning. If "foid" is non-zero, all 3069 * "synchronous" itxs for all objects, but only "asynchronous" itxs 3070 * that correspond to the foid passed in, will be committed to stable 3071 * storage prior to zil_commit() returning. 3072 * 3073 * Generally speaking, when zil_commit() is called, the consumer doesn't 3074 * actually care about _all_ of the uncommitted itxs. Instead, they're 3075 * simply trying to waiting for a specific itx to be committed to disk, 3076 * but the interface(s) for interacting with the ZIL don't allow such 3077 * fine-grained communication. A better interface would allow a consumer 3078 * to create and assign an itx, and then pass a reference to this itx to 3079 * zil_commit(); such that zil_commit() would return as soon as that 3080 * specific itx was committed to disk (instead of waiting for _all_ 3081 * itxs to be committed). 3082 * 3083 * When a thread calls zil_commit() a special "commit itx" will be 3084 * generated, along with a corresponding "waiter" for this commit itx. 3085 * zil_commit() will wait on this waiter's CV, such that when the waiter 3086 * is marked done, and signaled, zil_commit() will return. 3087 * 3088 * This commit itx is inserted into the queue of uncommitted itxs. This 3089 * provides an easy mechanism for determining which itxs were in the 3090 * queue prior to zil_commit() having been called, and which itxs were 3091 * added after zil_commit() was called. 3092 * 3093 * The commit itx is special; it doesn't have any on-disk representation. 3094 * When a commit itx is "committed" to an lwb, the waiter associated 3095 * with it is linked onto the lwb's list of waiters. Then, when that lwb 3096 * completes, each waiter on the lwb's list is marked done and signaled 3097 * -- allowing the thread waiting on the waiter to return from zil_commit(). 3098 * 3099 * It's important to point out a few critical factors that allow us 3100 * to make use of the commit itxs, commit waiters, per-lwb lists of 3101 * commit waiters, and zio completion callbacks like we're doing: 3102 * 3103 * 1. The list of waiters for each lwb is traversed, and each commit 3104 * waiter is marked "done" and signaled, in the zio completion 3105 * callback of the lwb's zio[*]. 3106 * 3107 * * Actually, the waiters are signaled in the zio completion 3108 * callback of the root zio for the DKIOCFLUSHWRITECACHE commands 3109 * that are sent to the vdevs upon completion of the lwb zio. 3110 * 3111 * 2. When the itxs are inserted into the ZIL's queue of uncommitted 3112 * itxs, the order in which they are inserted is preserved[*]; as 3113 * itxs are added to the queue, they are added to the tail of 3114 * in-memory linked lists. 3115 * 3116 * When committing the itxs to lwbs (to be written to disk), they 3117 * are committed in the same order in which the itxs were added to 3118 * the uncommitted queue's linked list(s); i.e. the linked list of 3119 * itxs to commit is traversed from head to tail, and each itx is 3120 * committed to an lwb in that order. 3121 * 3122 * * To clarify: 3123 * 3124 * - the order of "sync" itxs is preserved w.r.t. other 3125 * "sync" itxs, regardless of the corresponding objects. 3126 * - the order of "async" itxs is preserved w.r.t. other 3127 * "async" itxs corresponding to the same object. 3128 * - the order of "async" itxs is *not* preserved w.r.t. other 3129 * "async" itxs corresponding to different objects. 3130 * - the order of "sync" itxs w.r.t. "async" itxs (or vice 3131 * versa) is *not* preserved, even for itxs that correspond 3132 * to the same object. 3133 * 3134 * For more details, see: zil_itx_assign(), zil_async_to_sync(), 3135 * zil_get_commit_list(), and zil_process_commit_list(). 3136 * 3137 * 3. The lwbs represent a linked list of blocks on disk. Thus, any 3138 * lwb cannot be considered committed to stable storage, until its 3139 * "previous" lwb is also committed to stable storage. This fact, 3140 * coupled with the fact described above, means that itxs are 3141 * committed in (roughly) the order in which they were generated. 3142 * This is essential because itxs are dependent on prior itxs. 3143 * Thus, we *must not* deem an itx as being committed to stable 3144 * storage, until *all* prior itxs have also been committed to 3145 * stable storage. 3146 * 3147 * To enforce this ordering of lwb zio's, while still leveraging as 3148 * much of the underlying storage performance as possible, we rely 3149 * on two fundamental concepts: 3150 * 3151 * 1. The creation and issuance of lwb zio's is protected by 3152 * the zilog's "zl_issuer_lock", which ensures only a single 3153 * thread is creating and/or issuing lwb's at a time 3154 * 2. The "previous" lwb is a child of the "current" lwb 3155 * (leveraging the zio parent-child dependency graph) 3156 * 3157 * By relying on this parent-child zio relationship, we can have 3158 * many lwb zio's concurrently issued to the underlying storage, 3159 * but the order in which they complete will be the same order in 3160 * which they were created. 3161 */ 3162 void 3163 zil_commit(zilog_t *zilog, uint64_t foid) 3164 { 3165 /* 3166 * We should never attempt to call zil_commit on a snapshot for 3167 * a couple of reasons: 3168 * 3169 * 1. A snapshot may never be modified, thus it cannot have any 3170 * in-flight itxs that would have modified the dataset. 3171 * 3172 * 2. By design, when zil_commit() is called, a commit itx will 3173 * be assigned to this zilog; as a result, the zilog will be 3174 * dirtied. We must not dirty the zilog of a snapshot; there's 3175 * checks in the code that enforce this invariant, and will 3176 * cause a panic if it's not upheld. 3177 */ 3178 ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE); 3179 3180 if (zilog->zl_sync == ZFS_SYNC_DISABLED) 3181 return; 3182 3183 if (!spa_writeable(zilog->zl_spa)) { 3184 /* 3185 * If the SPA is not writable, there should never be any 3186 * pending itxs waiting to be committed to disk. If that 3187 * weren't true, we'd skip writing those itxs out, and 3188 * would break the semantics of zil_commit(); thus, we're 3189 * verifying that truth before we return to the caller. 3190 */ 3191 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3192 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL); 3193 for (int i = 0; i < TXG_SIZE; i++) 3194 ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL); 3195 return; 3196 } 3197 3198 /* 3199 * If the ZIL is suspended, we don't want to dirty it by calling 3200 * zil_commit_itx_assign() below, nor can we write out 3201 * lwbs like would be done in zil_commit_write(). Thus, we 3202 * simply rely on txg_wait_synced() to maintain the necessary 3203 * semantics, and avoid calling those functions altogether. 3204 */ 3205 if (zilog->zl_suspend > 0) { 3206 txg_wait_synced(zilog->zl_dmu_pool, 0); 3207 return; 3208 } 3209 3210 zil_commit_impl(zilog, foid); 3211 } 3212 3213 void 3214 zil_commit_impl(zilog_t *zilog, uint64_t foid) 3215 { 3216 ZIL_STAT_BUMP(zilog, zil_commit_count); 3217 3218 /* 3219 * Move the "async" itxs for the specified foid to the "sync" 3220 * queues, such that they will be later committed (or skipped) 3221 * to an lwb when zil_process_commit_list() is called. 3222 * 3223 * Since these "async" itxs must be committed prior to this 3224 * call to zil_commit returning, we must perform this operation 3225 * before we call zil_commit_itx_assign(). 3226 */ 3227 zil_async_to_sync(zilog, foid); 3228 3229 /* 3230 * We allocate a new "waiter" structure which will initially be 3231 * linked to the commit itx using the itx's "itx_private" field. 3232 * Since the commit itx doesn't represent any on-disk state, 3233 * when it's committed to an lwb, rather than copying the its 3234 * lr_t into the lwb's buffer, the commit itx's "waiter" will be 3235 * added to the lwb's list of waiters. Then, when the lwb is 3236 * committed to stable storage, each waiter in the lwb's list of 3237 * waiters will be marked "done", and signalled. 3238 * 3239 * We must create the waiter and assign the commit itx prior to 3240 * calling zil_commit_writer(), or else our specific commit itx 3241 * is not guaranteed to be committed to an lwb prior to calling 3242 * zil_commit_waiter(). 3243 */ 3244 zil_commit_waiter_t *zcw = zil_alloc_commit_waiter(); 3245 zil_commit_itx_assign(zilog, zcw); 3246 3247 zil_commit_writer(zilog, zcw); 3248 zil_commit_waiter(zilog, zcw); 3249 3250 if (zcw->zcw_zio_error != 0) { 3251 /* 3252 * If there was an error writing out the ZIL blocks that 3253 * this thread is waiting on, then we fallback to 3254 * relying on spa_sync() to write out the data this 3255 * thread is waiting on. Obviously this has performance 3256 * implications, but the expectation is for this to be 3257 * an exceptional case, and shouldn't occur often. 3258 */ 3259 DTRACE_PROBE2(zil__commit__io__error, 3260 zilog_t *, zilog, zil_commit_waiter_t *, zcw); 3261 txg_wait_synced(zilog->zl_dmu_pool, 0); 3262 } 3263 3264 zil_free_commit_waiter(zcw); 3265 } 3266 3267 /* 3268 * Called in syncing context to free committed log blocks and update log header. 3269 */ 3270 void 3271 zil_sync(zilog_t *zilog, dmu_tx_t *tx) 3272 { 3273 zil_header_t *zh = zil_header_in_syncing_context(zilog); 3274 uint64_t txg = dmu_tx_get_txg(tx); 3275 spa_t *spa = zilog->zl_spa; 3276 uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK]; 3277 lwb_t *lwb; 3278 3279 /* 3280 * We don't zero out zl_destroy_txg, so make sure we don't try 3281 * to destroy it twice. 3282 */ 3283 if (spa_sync_pass(spa) != 1) 3284 return; 3285 3286 zil_lwb_flush_wait_all(zilog, txg); 3287 3288 mutex_enter(&zilog->zl_lock); 3289 3290 ASSERT(zilog->zl_stop_sync == 0); 3291 3292 if (*replayed_seq != 0) { 3293 ASSERT(zh->zh_replay_seq < *replayed_seq); 3294 zh->zh_replay_seq = *replayed_seq; 3295 *replayed_seq = 0; 3296 } 3297 3298 if (zilog->zl_destroy_txg == txg) { 3299 blkptr_t blk = zh->zh_log; 3300 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 3301 3302 ASSERT(list_head(&zilog->zl_lwb_list) == NULL); 3303 3304 memset(zh, 0, sizeof (zil_header_t)); 3305 memset(zilog->zl_replayed_seq, 0, 3306 sizeof (zilog->zl_replayed_seq)); 3307 3308 if (zilog->zl_keep_first) { 3309 /* 3310 * If this block was part of log chain that couldn't 3311 * be claimed because a device was missing during 3312 * zil_claim(), but that device later returns, 3313 * then this block could erroneously appear valid. 3314 * To guard against this, assign a new GUID to the new 3315 * log chain so it doesn't matter what blk points to. 3316 */ 3317 zil_init_log_chain(zilog, &blk); 3318 zh->zh_log = blk; 3319 } else { 3320 /* 3321 * A destroyed ZIL chain can't contain any TX_SETSAXATTR 3322 * records. So, deactivate the feature for this dataset. 3323 * We activate it again when we start a new ZIL chain. 3324 */ 3325 if (dsl_dataset_feature_is_active(ds, 3326 SPA_FEATURE_ZILSAXATTR)) 3327 dsl_dataset_deactivate_feature(ds, 3328 SPA_FEATURE_ZILSAXATTR, tx); 3329 } 3330 } 3331 3332 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 3333 zh->zh_log = lwb->lwb_blk; 3334 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg) 3335 break; 3336 list_remove(&zilog->zl_lwb_list, lwb); 3337 zio_free(spa, txg, &lwb->lwb_blk); 3338 zil_free_lwb(zilog, lwb); 3339 3340 /* 3341 * If we don't have anything left in the lwb list then 3342 * we've had an allocation failure and we need to zero 3343 * out the zil_header blkptr so that we don't end 3344 * up freeing the same block twice. 3345 */ 3346 if (list_head(&zilog->zl_lwb_list) == NULL) 3347 BP_ZERO(&zh->zh_log); 3348 } 3349 3350 /* 3351 * Remove fastwrite on any blocks that have been pre-allocated for 3352 * the next commit. This prevents fastwrite counter pollution by 3353 * unused, long-lived LWBs. 3354 */ 3355 for (; lwb != NULL; lwb = list_next(&zilog->zl_lwb_list, lwb)) { 3356 if (lwb->lwb_fastwrite && !lwb->lwb_write_zio) { 3357 metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk); 3358 lwb->lwb_fastwrite = 0; 3359 } 3360 } 3361 3362 mutex_exit(&zilog->zl_lock); 3363 } 3364 3365 static int 3366 zil_lwb_cons(void *vbuf, void *unused, int kmflag) 3367 { 3368 (void) unused, (void) kmflag; 3369 lwb_t *lwb = vbuf; 3370 list_create(&lwb->lwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node)); 3371 list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t), 3372 offsetof(zil_commit_waiter_t, zcw_node)); 3373 avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare, 3374 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node)); 3375 mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL); 3376 return (0); 3377 } 3378 3379 static void 3380 zil_lwb_dest(void *vbuf, void *unused) 3381 { 3382 (void) unused; 3383 lwb_t *lwb = vbuf; 3384 mutex_destroy(&lwb->lwb_vdev_lock); 3385 avl_destroy(&lwb->lwb_vdev_tree); 3386 list_destroy(&lwb->lwb_waiters); 3387 list_destroy(&lwb->lwb_itxs); 3388 } 3389 3390 void 3391 zil_init(void) 3392 { 3393 zil_lwb_cache = kmem_cache_create("zil_lwb_cache", 3394 sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0); 3395 3396 zil_zcw_cache = kmem_cache_create("zil_zcw_cache", 3397 sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 3398 3399 zil_sums_init(&zil_sums_global); 3400 zil_kstats_global = kstat_create("zfs", 0, "zil", "misc", 3401 KSTAT_TYPE_NAMED, sizeof (zil_stats) / sizeof (kstat_named_t), 3402 KSTAT_FLAG_VIRTUAL); 3403 3404 if (zil_kstats_global != NULL) { 3405 zil_kstats_global->ks_data = &zil_stats; 3406 zil_kstats_global->ks_update = zil_kstats_global_update; 3407 zil_kstats_global->ks_private = NULL; 3408 kstat_install(zil_kstats_global); 3409 } 3410 } 3411 3412 void 3413 zil_fini(void) 3414 { 3415 kmem_cache_destroy(zil_zcw_cache); 3416 kmem_cache_destroy(zil_lwb_cache); 3417 3418 if (zil_kstats_global != NULL) { 3419 kstat_delete(zil_kstats_global); 3420 zil_kstats_global = NULL; 3421 } 3422 3423 zil_sums_fini(&zil_sums_global); 3424 } 3425 3426 void 3427 zil_set_sync(zilog_t *zilog, uint64_t sync) 3428 { 3429 zilog->zl_sync = sync; 3430 } 3431 3432 void 3433 zil_set_logbias(zilog_t *zilog, uint64_t logbias) 3434 { 3435 zilog->zl_logbias = logbias; 3436 } 3437 3438 zilog_t * 3439 zil_alloc(objset_t *os, zil_header_t *zh_phys) 3440 { 3441 zilog_t *zilog; 3442 3443 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP); 3444 3445 zilog->zl_header = zh_phys; 3446 zilog->zl_os = os; 3447 zilog->zl_spa = dmu_objset_spa(os); 3448 zilog->zl_dmu_pool = dmu_objset_pool(os); 3449 zilog->zl_destroy_txg = TXG_INITIAL - 1; 3450 zilog->zl_logbias = dmu_objset_logbias(os); 3451 zilog->zl_sync = dmu_objset_syncprop(os); 3452 zilog->zl_dirty_max_txg = 0; 3453 zilog->zl_last_lwb_opened = NULL; 3454 zilog->zl_last_lwb_latency = 0; 3455 zilog->zl_max_block_size = zil_maxblocksize; 3456 3457 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL); 3458 mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL); 3459 mutex_init(&zilog->zl_lwb_io_lock, NULL, MUTEX_DEFAULT, NULL); 3460 3461 for (int i = 0; i < TXG_SIZE; i++) { 3462 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL, 3463 MUTEX_DEFAULT, NULL); 3464 } 3465 3466 list_create(&zilog->zl_lwb_list, sizeof (lwb_t), 3467 offsetof(lwb_t, lwb_node)); 3468 3469 list_create(&zilog->zl_itx_commit_list, sizeof (itx_t), 3470 offsetof(itx_t, itx_node)); 3471 3472 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL); 3473 cv_init(&zilog->zl_lwb_io_cv, NULL, CV_DEFAULT, NULL); 3474 3475 return (zilog); 3476 } 3477 3478 void 3479 zil_free(zilog_t *zilog) 3480 { 3481 int i; 3482 3483 zilog->zl_stop_sync = 1; 3484 3485 ASSERT0(zilog->zl_suspend); 3486 ASSERT0(zilog->zl_suspending); 3487 3488 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3489 list_destroy(&zilog->zl_lwb_list); 3490 3491 ASSERT(list_is_empty(&zilog->zl_itx_commit_list)); 3492 list_destroy(&zilog->zl_itx_commit_list); 3493 3494 for (i = 0; i < TXG_SIZE; i++) { 3495 /* 3496 * It's possible for an itx to be generated that doesn't dirty 3497 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean() 3498 * callback to remove the entry. We remove those here. 3499 * 3500 * Also free up the ziltest itxs. 3501 */ 3502 if (zilog->zl_itxg[i].itxg_itxs) 3503 zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs); 3504 mutex_destroy(&zilog->zl_itxg[i].itxg_lock); 3505 } 3506 3507 mutex_destroy(&zilog->zl_issuer_lock); 3508 mutex_destroy(&zilog->zl_lock); 3509 mutex_destroy(&zilog->zl_lwb_io_lock); 3510 3511 cv_destroy(&zilog->zl_cv_suspend); 3512 cv_destroy(&zilog->zl_lwb_io_cv); 3513 3514 kmem_free(zilog, sizeof (zilog_t)); 3515 } 3516 3517 /* 3518 * Open an intent log. 3519 */ 3520 zilog_t * 3521 zil_open(objset_t *os, zil_get_data_t *get_data, zil_sums_t *zil_sums) 3522 { 3523 zilog_t *zilog = dmu_objset_zil(os); 3524 3525 ASSERT3P(zilog->zl_get_data, ==, NULL); 3526 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL); 3527 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3528 3529 zilog->zl_get_data = get_data; 3530 zilog->zl_sums = zil_sums; 3531 3532 return (zilog); 3533 } 3534 3535 /* 3536 * Close an intent log. 3537 */ 3538 void 3539 zil_close(zilog_t *zilog) 3540 { 3541 lwb_t *lwb; 3542 uint64_t txg; 3543 3544 if (!dmu_objset_is_snapshot(zilog->zl_os)) { 3545 zil_commit(zilog, 0); 3546 } else { 3547 ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL); 3548 ASSERT0(zilog->zl_dirty_max_txg); 3549 ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE); 3550 } 3551 3552 mutex_enter(&zilog->zl_lock); 3553 lwb = list_tail(&zilog->zl_lwb_list); 3554 if (lwb == NULL) 3555 txg = zilog->zl_dirty_max_txg; 3556 else 3557 txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg); 3558 mutex_exit(&zilog->zl_lock); 3559 3560 /* 3561 * zl_lwb_max_issued_txg may be larger than lwb_max_txg. It depends 3562 * on the time when the dmu_tx transaction is assigned in 3563 * zil_lwb_write_issue(). 3564 */ 3565 mutex_enter(&zilog->zl_lwb_io_lock); 3566 txg = MAX(zilog->zl_lwb_max_issued_txg, txg); 3567 mutex_exit(&zilog->zl_lwb_io_lock); 3568 3569 /* 3570 * We need to use txg_wait_synced() to wait until that txg is synced. 3571 * zil_sync() will guarantee all lwbs up to that txg have been 3572 * written out, flushed, and cleaned. 3573 */ 3574 if (txg != 0) 3575 txg_wait_synced(zilog->zl_dmu_pool, txg); 3576 3577 if (zilog_is_dirty(zilog)) 3578 zfs_dbgmsg("zil (%px) is dirty, txg %llu", zilog, 3579 (u_longlong_t)txg); 3580 if (txg < spa_freeze_txg(zilog->zl_spa)) 3581 VERIFY(!zilog_is_dirty(zilog)); 3582 3583 zilog->zl_get_data = NULL; 3584 3585 /* 3586 * We should have only one lwb left on the list; remove it now. 3587 */ 3588 mutex_enter(&zilog->zl_lock); 3589 lwb = list_head(&zilog->zl_lwb_list); 3590 if (lwb != NULL) { 3591 ASSERT3P(lwb, ==, list_tail(&zilog->zl_lwb_list)); 3592 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED); 3593 3594 if (lwb->lwb_fastwrite) 3595 metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk); 3596 3597 list_remove(&zilog->zl_lwb_list, lwb); 3598 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 3599 zil_free_lwb(zilog, lwb); 3600 } 3601 mutex_exit(&zilog->zl_lock); 3602 } 3603 3604 static const char *suspend_tag = "zil suspending"; 3605 3606 /* 3607 * Suspend an intent log. While in suspended mode, we still honor 3608 * synchronous semantics, but we rely on txg_wait_synced() to do it. 3609 * On old version pools, we suspend the log briefly when taking a 3610 * snapshot so that it will have an empty intent log. 3611 * 3612 * Long holds are not really intended to be used the way we do here -- 3613 * held for such a short time. A concurrent caller of dsl_dataset_long_held() 3614 * could fail. Therefore we take pains to only put a long hold if it is 3615 * actually necessary. Fortunately, it will only be necessary if the 3616 * objset is currently mounted (or the ZVOL equivalent). In that case it 3617 * will already have a long hold, so we are not really making things any worse. 3618 * 3619 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or 3620 * zvol_state_t), and use their mechanism to prevent their hold from being 3621 * dropped (e.g. VFS_HOLD()). However, that would be even more pain for 3622 * very little gain. 3623 * 3624 * if cookiep == NULL, this does both the suspend & resume. 3625 * Otherwise, it returns with the dataset "long held", and the cookie 3626 * should be passed into zil_resume(). 3627 */ 3628 int 3629 zil_suspend(const char *osname, void **cookiep) 3630 { 3631 objset_t *os; 3632 zilog_t *zilog; 3633 const zil_header_t *zh; 3634 int error; 3635 3636 error = dmu_objset_hold(osname, suspend_tag, &os); 3637 if (error != 0) 3638 return (error); 3639 zilog = dmu_objset_zil(os); 3640 3641 mutex_enter(&zilog->zl_lock); 3642 zh = zilog->zl_header; 3643 3644 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */ 3645 mutex_exit(&zilog->zl_lock); 3646 dmu_objset_rele(os, suspend_tag); 3647 return (SET_ERROR(EBUSY)); 3648 } 3649 3650 /* 3651 * Don't put a long hold in the cases where we can avoid it. This 3652 * is when there is no cookie so we are doing a suspend & resume 3653 * (i.e. called from zil_vdev_offline()), and there's nothing to do 3654 * for the suspend because it's already suspended, or there's no ZIL. 3655 */ 3656 if (cookiep == NULL && !zilog->zl_suspending && 3657 (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) { 3658 mutex_exit(&zilog->zl_lock); 3659 dmu_objset_rele(os, suspend_tag); 3660 return (0); 3661 } 3662 3663 dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag); 3664 dsl_pool_rele(dmu_objset_pool(os), suspend_tag); 3665 3666 zilog->zl_suspend++; 3667 3668 if (zilog->zl_suspend > 1) { 3669 /* 3670 * Someone else is already suspending it. 3671 * Just wait for them to finish. 3672 */ 3673 3674 while (zilog->zl_suspending) 3675 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock); 3676 mutex_exit(&zilog->zl_lock); 3677 3678 if (cookiep == NULL) 3679 zil_resume(os); 3680 else 3681 *cookiep = os; 3682 return (0); 3683 } 3684 3685 /* 3686 * If there is no pointer to an on-disk block, this ZIL must not 3687 * be active (e.g. filesystem not mounted), so there's nothing 3688 * to clean up. 3689 */ 3690 if (BP_IS_HOLE(&zh->zh_log)) { 3691 ASSERT(cookiep != NULL); /* fast path already handled */ 3692 3693 *cookiep = os; 3694 mutex_exit(&zilog->zl_lock); 3695 return (0); 3696 } 3697 3698 /* 3699 * The ZIL has work to do. Ensure that the associated encryption 3700 * key will remain mapped while we are committing the log by 3701 * grabbing a reference to it. If the key isn't loaded we have no 3702 * choice but to return an error until the wrapping key is loaded. 3703 */ 3704 if (os->os_encrypted && 3705 dsl_dataset_create_key_mapping(dmu_objset_ds(os)) != 0) { 3706 zilog->zl_suspend--; 3707 mutex_exit(&zilog->zl_lock); 3708 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag); 3709 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag); 3710 return (SET_ERROR(EACCES)); 3711 } 3712 3713 zilog->zl_suspending = B_TRUE; 3714 mutex_exit(&zilog->zl_lock); 3715 3716 /* 3717 * We need to use zil_commit_impl to ensure we wait for all 3718 * LWB_STATE_OPENED and LWB_STATE_ISSUED lwbs to be committed 3719 * to disk before proceeding. If we used zil_commit instead, it 3720 * would just call txg_wait_synced(), because zl_suspend is set. 3721 * txg_wait_synced() doesn't wait for these lwb's to be 3722 * LWB_STATE_FLUSH_DONE before returning. 3723 */ 3724 zil_commit_impl(zilog, 0); 3725 3726 /* 3727 * Now that we've ensured all lwb's are LWB_STATE_FLUSH_DONE, we 3728 * use txg_wait_synced() to ensure the data from the zilog has 3729 * migrated to the main pool before calling zil_destroy(). 3730 */ 3731 txg_wait_synced(zilog->zl_dmu_pool, 0); 3732 3733 zil_destroy(zilog, B_FALSE); 3734 3735 mutex_enter(&zilog->zl_lock); 3736 zilog->zl_suspending = B_FALSE; 3737 cv_broadcast(&zilog->zl_cv_suspend); 3738 mutex_exit(&zilog->zl_lock); 3739 3740 if (os->os_encrypted) 3741 dsl_dataset_remove_key_mapping(dmu_objset_ds(os)); 3742 3743 if (cookiep == NULL) 3744 zil_resume(os); 3745 else 3746 *cookiep = os; 3747 return (0); 3748 } 3749 3750 void 3751 zil_resume(void *cookie) 3752 { 3753 objset_t *os = cookie; 3754 zilog_t *zilog = dmu_objset_zil(os); 3755 3756 mutex_enter(&zilog->zl_lock); 3757 ASSERT(zilog->zl_suspend != 0); 3758 zilog->zl_suspend--; 3759 mutex_exit(&zilog->zl_lock); 3760 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag); 3761 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag); 3762 } 3763 3764 typedef struct zil_replay_arg { 3765 zil_replay_func_t *const *zr_replay; 3766 void *zr_arg; 3767 boolean_t zr_byteswap; 3768 char *zr_lr; 3769 } zil_replay_arg_t; 3770 3771 static int 3772 zil_replay_error(zilog_t *zilog, const lr_t *lr, int error) 3773 { 3774 char name[ZFS_MAX_DATASET_NAME_LEN]; 3775 3776 zilog->zl_replaying_seq--; /* didn't actually replay this one */ 3777 3778 dmu_objset_name(zilog->zl_os, name); 3779 3780 cmn_err(CE_WARN, "ZFS replay transaction error %d, " 3781 "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name, 3782 (u_longlong_t)lr->lrc_seq, 3783 (u_longlong_t)(lr->lrc_txtype & ~TX_CI), 3784 (lr->lrc_txtype & TX_CI) ? "CI" : ""); 3785 3786 return (error); 3787 } 3788 3789 static int 3790 zil_replay_log_record(zilog_t *zilog, const lr_t *lr, void *zra, 3791 uint64_t claim_txg) 3792 { 3793 zil_replay_arg_t *zr = zra; 3794 const zil_header_t *zh = zilog->zl_header; 3795 uint64_t reclen = lr->lrc_reclen; 3796 uint64_t txtype = lr->lrc_txtype; 3797 int error = 0; 3798 3799 zilog->zl_replaying_seq = lr->lrc_seq; 3800 3801 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */ 3802 return (0); 3803 3804 if (lr->lrc_txg < claim_txg) /* already committed */ 3805 return (0); 3806 3807 /* Strip case-insensitive bit, still present in log record */ 3808 txtype &= ~TX_CI; 3809 3810 if (txtype == 0 || txtype >= TX_MAX_TYPE) 3811 return (zil_replay_error(zilog, lr, EINVAL)); 3812 3813 /* 3814 * If this record type can be logged out of order, the object 3815 * (lr_foid) may no longer exist. That's legitimate, not an error. 3816 */ 3817 if (TX_OOO(txtype)) { 3818 error = dmu_object_info(zilog->zl_os, 3819 LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL); 3820 if (error == ENOENT || error == EEXIST) 3821 return (0); 3822 } 3823 3824 /* 3825 * Make a copy of the data so we can revise and extend it. 3826 */ 3827 memcpy(zr->zr_lr, lr, reclen); 3828 3829 /* 3830 * If this is a TX_WRITE with a blkptr, suck in the data. 3831 */ 3832 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) { 3833 error = zil_read_log_data(zilog, (lr_write_t *)lr, 3834 zr->zr_lr + reclen); 3835 if (error != 0) 3836 return (zil_replay_error(zilog, lr, error)); 3837 } 3838 3839 /* 3840 * The log block containing this lr may have been byteswapped 3841 * so that we can easily examine common fields like lrc_txtype. 3842 * However, the log is a mix of different record types, and only the 3843 * replay vectors know how to byteswap their records. Therefore, if 3844 * the lr was byteswapped, undo it before invoking the replay vector. 3845 */ 3846 if (zr->zr_byteswap) 3847 byteswap_uint64_array(zr->zr_lr, reclen); 3848 3849 /* 3850 * We must now do two things atomically: replay this log record, 3851 * and update the log header sequence number to reflect the fact that 3852 * we did so. At the end of each replay function the sequence number 3853 * is updated if we are in replay mode. 3854 */ 3855 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap); 3856 if (error != 0) { 3857 /* 3858 * The DMU's dnode layer doesn't see removes until the txg 3859 * commits, so a subsequent claim can spuriously fail with 3860 * EEXIST. So if we receive any error we try syncing out 3861 * any removes then retry the transaction. Note that we 3862 * specify B_FALSE for byteswap now, so we don't do it twice. 3863 */ 3864 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0); 3865 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE); 3866 if (error != 0) 3867 return (zil_replay_error(zilog, lr, error)); 3868 } 3869 return (0); 3870 } 3871 3872 static int 3873 zil_incr_blks(zilog_t *zilog, const blkptr_t *bp, void *arg, uint64_t claim_txg) 3874 { 3875 (void) bp, (void) arg, (void) claim_txg; 3876 3877 zilog->zl_replay_blks++; 3878 3879 return (0); 3880 } 3881 3882 /* 3883 * If this dataset has a non-empty intent log, replay it and destroy it. 3884 * Return B_TRUE if there were any entries to replay. 3885 */ 3886 boolean_t 3887 zil_replay(objset_t *os, void *arg, 3888 zil_replay_func_t *const replay_func[TX_MAX_TYPE]) 3889 { 3890 zilog_t *zilog = dmu_objset_zil(os); 3891 const zil_header_t *zh = zilog->zl_header; 3892 zil_replay_arg_t zr; 3893 3894 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) { 3895 return (zil_destroy(zilog, B_TRUE)); 3896 } 3897 3898 zr.zr_replay = replay_func; 3899 zr.zr_arg = arg; 3900 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log); 3901 zr.zr_lr = vmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP); 3902 3903 /* 3904 * Wait for in-progress removes to sync before starting replay. 3905 */ 3906 txg_wait_synced(zilog->zl_dmu_pool, 0); 3907 3908 zilog->zl_replay = B_TRUE; 3909 zilog->zl_replay_time = ddi_get_lbolt(); 3910 ASSERT(zilog->zl_replay_blks == 0); 3911 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr, 3912 zh->zh_claim_txg, B_TRUE); 3913 vmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE); 3914 3915 zil_destroy(zilog, B_FALSE); 3916 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 3917 zilog->zl_replay = B_FALSE; 3918 3919 return (B_TRUE); 3920 } 3921 3922 boolean_t 3923 zil_replaying(zilog_t *zilog, dmu_tx_t *tx) 3924 { 3925 if (zilog->zl_sync == ZFS_SYNC_DISABLED) 3926 return (B_TRUE); 3927 3928 if (zilog->zl_replay) { 3929 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 3930 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] = 3931 zilog->zl_replaying_seq; 3932 return (B_TRUE); 3933 } 3934 3935 return (B_FALSE); 3936 } 3937 3938 int 3939 zil_reset(const char *osname, void *arg) 3940 { 3941 (void) arg; 3942 3943 int error = zil_suspend(osname, NULL); 3944 /* EACCES means crypto key not loaded */ 3945 if ((error == EACCES) || (error == EBUSY)) 3946 return (SET_ERROR(error)); 3947 if (error != 0) 3948 return (SET_ERROR(EEXIST)); 3949 return (0); 3950 } 3951 3952 EXPORT_SYMBOL(zil_alloc); 3953 EXPORT_SYMBOL(zil_free); 3954 EXPORT_SYMBOL(zil_open); 3955 EXPORT_SYMBOL(zil_close); 3956 EXPORT_SYMBOL(zil_replay); 3957 EXPORT_SYMBOL(zil_replaying); 3958 EXPORT_SYMBOL(zil_destroy); 3959 EXPORT_SYMBOL(zil_destroy_sync); 3960 EXPORT_SYMBOL(zil_itx_create); 3961 EXPORT_SYMBOL(zil_itx_destroy); 3962 EXPORT_SYMBOL(zil_itx_assign); 3963 EXPORT_SYMBOL(zil_commit); 3964 EXPORT_SYMBOL(zil_claim); 3965 EXPORT_SYMBOL(zil_check_log_chain); 3966 EXPORT_SYMBOL(zil_sync); 3967 EXPORT_SYMBOL(zil_clean); 3968 EXPORT_SYMBOL(zil_suspend); 3969 EXPORT_SYMBOL(zil_resume); 3970 EXPORT_SYMBOL(zil_lwb_add_block); 3971 EXPORT_SYMBOL(zil_bp_tree_add); 3972 EXPORT_SYMBOL(zil_set_sync); 3973 EXPORT_SYMBOL(zil_set_logbias); 3974 EXPORT_SYMBOL(zil_sums_init); 3975 EXPORT_SYMBOL(zil_sums_fini); 3976 EXPORT_SYMBOL(zil_kstat_values_update); 3977 3978 ZFS_MODULE_PARAM(zfs, zfs_, commit_timeout_pct, UINT, ZMOD_RW, 3979 "ZIL block open timeout percentage"); 3980 3981 ZFS_MODULE_PARAM(zfs_zil, zil_, min_commit_timeout, U64, ZMOD_RW, 3982 "Minimum delay we care for ZIL block commit"); 3983 3984 ZFS_MODULE_PARAM(zfs_zil, zil_, replay_disable, INT, ZMOD_RW, 3985 "Disable intent logging replay"); 3986 3987 ZFS_MODULE_PARAM(zfs_zil, zil_, nocacheflush, INT, ZMOD_RW, 3988 "Disable ZIL cache flushes"); 3989 3990 ZFS_MODULE_PARAM(zfs_zil, zil_, slog_bulk, U64, ZMOD_RW, 3991 "Limit in bytes slog sync writes per commit"); 3992 3993 ZFS_MODULE_PARAM(zfs_zil, zil_, maxblocksize, UINT, ZMOD_RW, 3994 "Limit in bytes of ZIL log block size"); 3995