xref: /freebsd/sys/contrib/openzfs/module/zfs/zil.c (revision bc5304a006238115291e7568583632889dffbab9)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24  * Copyright (c) 2014 Integros [integros.com]
25  * Copyright (c) 2018 Datto Inc.
26  */
27 
28 /* Portions Copyright 2010 Robert Milkowski */
29 
30 #include <sys/zfs_context.h>
31 #include <sys/spa.h>
32 #include <sys/spa_impl.h>
33 #include <sys/dmu.h>
34 #include <sys/zap.h>
35 #include <sys/arc.h>
36 #include <sys/stat.h>
37 #include <sys/zil.h>
38 #include <sys/zil_impl.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/vdev_impl.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/dsl_pool.h>
43 #include <sys/metaslab.h>
44 #include <sys/trace_zfs.h>
45 #include <sys/abd.h>
46 
47 /*
48  * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system
49  * calls that change the file system. Each itx has enough information to
50  * be able to replay them after a system crash, power loss, or
51  * equivalent failure mode. These are stored in memory until either:
52  *
53  *   1. they are committed to the pool by the DMU transaction group
54  *      (txg), at which point they can be discarded; or
55  *   2. they are committed to the on-disk ZIL for the dataset being
56  *      modified (e.g. due to an fsync, O_DSYNC, or other synchronous
57  *      requirement).
58  *
59  * In the event of a crash or power loss, the itxs contained by each
60  * dataset's on-disk ZIL will be replayed when that dataset is first
61  * instantiated (e.g. if the dataset is a normal filesystem, when it is
62  * first mounted).
63  *
64  * As hinted at above, there is one ZIL per dataset (both the in-memory
65  * representation, and the on-disk representation). The on-disk format
66  * consists of 3 parts:
67  *
68  * 	- a single, per-dataset, ZIL header; which points to a chain of
69  * 	- zero or more ZIL blocks; each of which contains
70  * 	- zero or more ZIL records
71  *
72  * A ZIL record holds the information necessary to replay a single
73  * system call transaction. A ZIL block can hold many ZIL records, and
74  * the blocks are chained together, similarly to a singly linked list.
75  *
76  * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL
77  * block in the chain, and the ZIL header points to the first block in
78  * the chain.
79  *
80  * Note, there is not a fixed place in the pool to hold these ZIL
81  * blocks; they are dynamically allocated and freed as needed from the
82  * blocks available on the pool, though they can be preferentially
83  * allocated from a dedicated "log" vdev.
84  */
85 
86 /*
87  * This controls the amount of time that a ZIL block (lwb) will remain
88  * "open" when it isn't "full", and it has a thread waiting for it to be
89  * committed to stable storage. Please refer to the zil_commit_waiter()
90  * function (and the comments within it) for more details.
91  */
92 int zfs_commit_timeout_pct = 5;
93 
94 /*
95  * See zil.h for more information about these fields.
96  */
97 zil_stats_t zil_stats = {
98 	{ "zil_commit_count",			KSTAT_DATA_UINT64 },
99 	{ "zil_commit_writer_count",		KSTAT_DATA_UINT64 },
100 	{ "zil_itx_count",			KSTAT_DATA_UINT64 },
101 	{ "zil_itx_indirect_count",		KSTAT_DATA_UINT64 },
102 	{ "zil_itx_indirect_bytes",		KSTAT_DATA_UINT64 },
103 	{ "zil_itx_copied_count",		KSTAT_DATA_UINT64 },
104 	{ "zil_itx_copied_bytes",		KSTAT_DATA_UINT64 },
105 	{ "zil_itx_needcopy_count",		KSTAT_DATA_UINT64 },
106 	{ "zil_itx_needcopy_bytes",		KSTAT_DATA_UINT64 },
107 	{ "zil_itx_metaslab_normal_count",	KSTAT_DATA_UINT64 },
108 	{ "zil_itx_metaslab_normal_bytes",	KSTAT_DATA_UINT64 },
109 	{ "zil_itx_metaslab_slog_count",	KSTAT_DATA_UINT64 },
110 	{ "zil_itx_metaslab_slog_bytes",	KSTAT_DATA_UINT64 },
111 };
112 
113 static kstat_t *zil_ksp;
114 
115 /*
116  * Disable intent logging replay.  This global ZIL switch affects all pools.
117  */
118 int zil_replay_disable = 0;
119 
120 /*
121  * Disable the DKIOCFLUSHWRITECACHE commands that are normally sent to
122  * the disk(s) by the ZIL after an LWB write has completed. Setting this
123  * will cause ZIL corruption on power loss if a volatile out-of-order
124  * write cache is enabled.
125  */
126 int zil_nocacheflush = 0;
127 
128 /*
129  * Limit SLOG write size per commit executed with synchronous priority.
130  * Any writes above that will be executed with lower (asynchronous) priority
131  * to limit potential SLOG device abuse by single active ZIL writer.
132  */
133 unsigned long zil_slog_bulk = 768 * 1024;
134 
135 static kmem_cache_t *zil_lwb_cache;
136 static kmem_cache_t *zil_zcw_cache;
137 
138 #define	LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
139     sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
140 
141 static int
142 zil_bp_compare(const void *x1, const void *x2)
143 {
144 	const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
145 	const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
146 
147 	int cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2));
148 	if (likely(cmp))
149 		return (cmp);
150 
151 	return (TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2)));
152 }
153 
154 static void
155 zil_bp_tree_init(zilog_t *zilog)
156 {
157 	avl_create(&zilog->zl_bp_tree, zil_bp_compare,
158 	    sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
159 }
160 
161 static void
162 zil_bp_tree_fini(zilog_t *zilog)
163 {
164 	avl_tree_t *t = &zilog->zl_bp_tree;
165 	zil_bp_node_t *zn;
166 	void *cookie = NULL;
167 
168 	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
169 		kmem_free(zn, sizeof (zil_bp_node_t));
170 
171 	avl_destroy(t);
172 }
173 
174 int
175 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
176 {
177 	avl_tree_t *t = &zilog->zl_bp_tree;
178 	const dva_t *dva;
179 	zil_bp_node_t *zn;
180 	avl_index_t where;
181 
182 	if (BP_IS_EMBEDDED(bp))
183 		return (0);
184 
185 	dva = BP_IDENTITY(bp);
186 
187 	if (avl_find(t, dva, &where) != NULL)
188 		return (SET_ERROR(EEXIST));
189 
190 	zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
191 	zn->zn_dva = *dva;
192 	avl_insert(t, zn, where);
193 
194 	return (0);
195 }
196 
197 static zil_header_t *
198 zil_header_in_syncing_context(zilog_t *zilog)
199 {
200 	return ((zil_header_t *)zilog->zl_header);
201 }
202 
203 static void
204 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
205 {
206 	zio_cksum_t *zc = &bp->blk_cksum;
207 
208 	(void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_0],
209 	    sizeof (zc->zc_word[ZIL_ZC_GUID_0]));
210 	(void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_1],
211 	    sizeof (zc->zc_word[ZIL_ZC_GUID_1]));
212 	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
213 	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
214 }
215 
216 /*
217  * Read a log block and make sure it's valid.
218  */
219 static int
220 zil_read_log_block(zilog_t *zilog, boolean_t decrypt, const blkptr_t *bp,
221     blkptr_t *nbp, void *dst, char **end)
222 {
223 	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
224 	arc_flags_t aflags = ARC_FLAG_WAIT;
225 	arc_buf_t *abuf = NULL;
226 	zbookmark_phys_t zb;
227 	int error;
228 
229 	if (zilog->zl_header->zh_claim_txg == 0)
230 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
231 
232 	if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
233 		zio_flags |= ZIO_FLAG_SPECULATIVE;
234 
235 	if (!decrypt)
236 		zio_flags |= ZIO_FLAG_RAW;
237 
238 	SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
239 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
240 
241 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func,
242 	    &abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
243 
244 	if (error == 0) {
245 		zio_cksum_t cksum = bp->blk_cksum;
246 
247 		/*
248 		 * Validate the checksummed log block.
249 		 *
250 		 * Sequence numbers should be... sequential.  The checksum
251 		 * verifier for the next block should be bp's checksum plus 1.
252 		 *
253 		 * Also check the log chain linkage and size used.
254 		 */
255 		cksum.zc_word[ZIL_ZC_SEQ]++;
256 
257 		if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
258 			zil_chain_t *zilc = abuf->b_data;
259 			char *lr = (char *)(zilc + 1);
260 			uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
261 
262 			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
263 			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
264 				error = SET_ERROR(ECKSUM);
265 			} else {
266 				ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
267 				bcopy(lr, dst, len);
268 				*end = (char *)dst + len;
269 				*nbp = zilc->zc_next_blk;
270 			}
271 		} else {
272 			char *lr = abuf->b_data;
273 			uint64_t size = BP_GET_LSIZE(bp);
274 			zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
275 
276 			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
277 			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
278 			    (zilc->zc_nused > (size - sizeof (*zilc)))) {
279 				error = SET_ERROR(ECKSUM);
280 			} else {
281 				ASSERT3U(zilc->zc_nused, <=,
282 				    SPA_OLD_MAXBLOCKSIZE);
283 				bcopy(lr, dst, zilc->zc_nused);
284 				*end = (char *)dst + zilc->zc_nused;
285 				*nbp = zilc->zc_next_blk;
286 			}
287 		}
288 
289 		arc_buf_destroy(abuf, &abuf);
290 	}
291 
292 	return (error);
293 }
294 
295 /*
296  * Read a TX_WRITE log data block.
297  */
298 static int
299 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
300 {
301 	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
302 	const blkptr_t *bp = &lr->lr_blkptr;
303 	arc_flags_t aflags = ARC_FLAG_WAIT;
304 	arc_buf_t *abuf = NULL;
305 	zbookmark_phys_t zb;
306 	int error;
307 
308 	if (BP_IS_HOLE(bp)) {
309 		if (wbuf != NULL)
310 			bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
311 		return (0);
312 	}
313 
314 	if (zilog->zl_header->zh_claim_txg == 0)
315 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
316 
317 	/*
318 	 * If we are not using the resulting data, we are just checking that
319 	 * it hasn't been corrupted so we don't need to waste CPU time
320 	 * decompressing and decrypting it.
321 	 */
322 	if (wbuf == NULL)
323 		zio_flags |= ZIO_FLAG_RAW;
324 
325 	SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
326 	    ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
327 
328 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
329 	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
330 
331 	if (error == 0) {
332 		if (wbuf != NULL)
333 			bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
334 		arc_buf_destroy(abuf, &abuf);
335 	}
336 
337 	return (error);
338 }
339 
340 /*
341  * Parse the intent log, and call parse_func for each valid record within.
342  */
343 int
344 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
345     zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg,
346     boolean_t decrypt)
347 {
348 	const zil_header_t *zh = zilog->zl_header;
349 	boolean_t claimed = !!zh->zh_claim_txg;
350 	uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
351 	uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
352 	uint64_t max_blk_seq = 0;
353 	uint64_t max_lr_seq = 0;
354 	uint64_t blk_count = 0;
355 	uint64_t lr_count = 0;
356 	blkptr_t blk, next_blk;
357 	char *lrbuf, *lrp;
358 	int error = 0;
359 
360 	bzero(&next_blk, sizeof (blkptr_t));
361 
362 	/*
363 	 * Old logs didn't record the maximum zh_claim_lr_seq.
364 	 */
365 	if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
366 		claim_lr_seq = UINT64_MAX;
367 
368 	/*
369 	 * Starting at the block pointed to by zh_log we read the log chain.
370 	 * For each block in the chain we strongly check that block to
371 	 * ensure its validity.  We stop when an invalid block is found.
372 	 * For each block pointer in the chain we call parse_blk_func().
373 	 * For each record in each valid block we call parse_lr_func().
374 	 * If the log has been claimed, stop if we encounter a sequence
375 	 * number greater than the highest claimed sequence number.
376 	 */
377 	lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
378 	zil_bp_tree_init(zilog);
379 
380 	for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
381 		uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
382 		int reclen;
383 		char *end = NULL;
384 
385 		if (blk_seq > claim_blk_seq)
386 			break;
387 
388 		error = parse_blk_func(zilog, &blk, arg, txg);
389 		if (error != 0)
390 			break;
391 		ASSERT3U(max_blk_seq, <, blk_seq);
392 		max_blk_seq = blk_seq;
393 		blk_count++;
394 
395 		if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
396 			break;
397 
398 		error = zil_read_log_block(zilog, decrypt, &blk, &next_blk,
399 		    lrbuf, &end);
400 		if (error != 0)
401 			break;
402 
403 		for (lrp = lrbuf; lrp < end; lrp += reclen) {
404 			lr_t *lr = (lr_t *)lrp;
405 			reclen = lr->lrc_reclen;
406 			ASSERT3U(reclen, >=, sizeof (lr_t));
407 			if (lr->lrc_seq > claim_lr_seq)
408 				goto done;
409 
410 			error = parse_lr_func(zilog, lr, arg, txg);
411 			if (error != 0)
412 				goto done;
413 			ASSERT3U(max_lr_seq, <, lr->lrc_seq);
414 			max_lr_seq = lr->lrc_seq;
415 			lr_count++;
416 		}
417 	}
418 done:
419 	zilog->zl_parse_error = error;
420 	zilog->zl_parse_blk_seq = max_blk_seq;
421 	zilog->zl_parse_lr_seq = max_lr_seq;
422 	zilog->zl_parse_blk_count = blk_count;
423 	zilog->zl_parse_lr_count = lr_count;
424 
425 	ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
426 	    (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq) ||
427 	    (decrypt && error == EIO));
428 
429 	zil_bp_tree_fini(zilog);
430 	zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
431 
432 	return (error);
433 }
434 
435 /* ARGSUSED */
436 static int
437 zil_clear_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
438     uint64_t first_txg)
439 {
440 	ASSERT(!BP_IS_HOLE(bp));
441 
442 	/*
443 	 * As we call this function from the context of a rewind to a
444 	 * checkpoint, each ZIL block whose txg is later than the txg
445 	 * that we rewind to is invalid. Thus, we return -1 so
446 	 * zil_parse() doesn't attempt to read it.
447 	 */
448 	if (bp->blk_birth >= first_txg)
449 		return (-1);
450 
451 	if (zil_bp_tree_add(zilog, bp) != 0)
452 		return (0);
453 
454 	zio_free(zilog->zl_spa, first_txg, bp);
455 	return (0);
456 }
457 
458 /* ARGSUSED */
459 static int
460 zil_noop_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
461     uint64_t first_txg)
462 {
463 	return (0);
464 }
465 
466 static int
467 zil_claim_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
468     uint64_t first_txg)
469 {
470 	/*
471 	 * Claim log block if not already committed and not already claimed.
472 	 * If tx == NULL, just verify that the block is claimable.
473 	 */
474 	if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
475 	    zil_bp_tree_add(zilog, bp) != 0)
476 		return (0);
477 
478 	return (zio_wait(zio_claim(NULL, zilog->zl_spa,
479 	    tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
480 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
481 }
482 
483 static int
484 zil_claim_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
485     uint64_t first_txg)
486 {
487 	lr_write_t *lr = (lr_write_t *)lrc;
488 	int error;
489 
490 	if (lrc->lrc_txtype != TX_WRITE)
491 		return (0);
492 
493 	/*
494 	 * If the block is not readable, don't claim it.  This can happen
495 	 * in normal operation when a log block is written to disk before
496 	 * some of the dmu_sync() blocks it points to.  In this case, the
497 	 * transaction cannot have been committed to anyone (we would have
498 	 * waited for all writes to be stable first), so it is semantically
499 	 * correct to declare this the end of the log.
500 	 */
501 	if (lr->lr_blkptr.blk_birth >= first_txg) {
502 		error = zil_read_log_data(zilog, lr, NULL);
503 		if (error != 0)
504 			return (error);
505 	}
506 
507 	return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
508 }
509 
510 /* ARGSUSED */
511 static int
512 zil_free_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
513     uint64_t claim_txg)
514 {
515 	zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
516 
517 	return (0);
518 }
519 
520 static int
521 zil_free_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
522     uint64_t claim_txg)
523 {
524 	lr_write_t *lr = (lr_write_t *)lrc;
525 	blkptr_t *bp = &lr->lr_blkptr;
526 
527 	/*
528 	 * If we previously claimed it, we need to free it.
529 	 */
530 	if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
531 	    bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
532 	    !BP_IS_HOLE(bp))
533 		zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
534 
535 	return (0);
536 }
537 
538 static int
539 zil_lwb_vdev_compare(const void *x1, const void *x2)
540 {
541 	const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
542 	const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
543 
544 	return (TREE_CMP(v1, v2));
545 }
546 
547 static lwb_t *
548 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg,
549     boolean_t fastwrite)
550 {
551 	lwb_t *lwb;
552 
553 	lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
554 	lwb->lwb_zilog = zilog;
555 	lwb->lwb_blk = *bp;
556 	lwb->lwb_fastwrite = fastwrite;
557 	lwb->lwb_slog = slog;
558 	lwb->lwb_state = LWB_STATE_CLOSED;
559 	lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
560 	lwb->lwb_max_txg = txg;
561 	lwb->lwb_write_zio = NULL;
562 	lwb->lwb_root_zio = NULL;
563 	lwb->lwb_tx = NULL;
564 	lwb->lwb_issued_timestamp = 0;
565 	if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
566 		lwb->lwb_nused = sizeof (zil_chain_t);
567 		lwb->lwb_sz = BP_GET_LSIZE(bp);
568 	} else {
569 		lwb->lwb_nused = 0;
570 		lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
571 	}
572 
573 	mutex_enter(&zilog->zl_lock);
574 	list_insert_tail(&zilog->zl_lwb_list, lwb);
575 	mutex_exit(&zilog->zl_lock);
576 
577 	ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
578 	ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
579 	VERIFY(list_is_empty(&lwb->lwb_waiters));
580 	VERIFY(list_is_empty(&lwb->lwb_itxs));
581 
582 	return (lwb);
583 }
584 
585 static void
586 zil_free_lwb(zilog_t *zilog, lwb_t *lwb)
587 {
588 	ASSERT(MUTEX_HELD(&zilog->zl_lock));
589 	ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
590 	VERIFY(list_is_empty(&lwb->lwb_waiters));
591 	VERIFY(list_is_empty(&lwb->lwb_itxs));
592 	ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
593 	ASSERT3P(lwb->lwb_write_zio, ==, NULL);
594 	ASSERT3P(lwb->lwb_root_zio, ==, NULL);
595 	ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa));
596 	ASSERT(lwb->lwb_state == LWB_STATE_CLOSED ||
597 	    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
598 
599 	/*
600 	 * Clear the zilog's field to indicate this lwb is no longer
601 	 * valid, and prevent use-after-free errors.
602 	 */
603 	if (zilog->zl_last_lwb_opened == lwb)
604 		zilog->zl_last_lwb_opened = NULL;
605 
606 	kmem_cache_free(zil_lwb_cache, lwb);
607 }
608 
609 /*
610  * Called when we create in-memory log transactions so that we know
611  * to cleanup the itxs at the end of spa_sync().
612  */
613 static void
614 zilog_dirty(zilog_t *zilog, uint64_t txg)
615 {
616 	dsl_pool_t *dp = zilog->zl_dmu_pool;
617 	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
618 
619 	ASSERT(spa_writeable(zilog->zl_spa));
620 
621 	if (ds->ds_is_snapshot)
622 		panic("dirtying snapshot!");
623 
624 	if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
625 		/* up the hold count until we can be written out */
626 		dmu_buf_add_ref(ds->ds_dbuf, zilog);
627 
628 		zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg);
629 	}
630 }
631 
632 /*
633  * Determine if the zil is dirty in the specified txg. Callers wanting to
634  * ensure that the dirty state does not change must hold the itxg_lock for
635  * the specified txg. Holding the lock will ensure that the zil cannot be
636  * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
637  * state.
638  */
639 static boolean_t __maybe_unused
640 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
641 {
642 	dsl_pool_t *dp = zilog->zl_dmu_pool;
643 
644 	if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
645 		return (B_TRUE);
646 	return (B_FALSE);
647 }
648 
649 /*
650  * Determine if the zil is dirty. The zil is considered dirty if it has
651  * any pending itx records that have not been cleaned by zil_clean().
652  */
653 static boolean_t
654 zilog_is_dirty(zilog_t *zilog)
655 {
656 	dsl_pool_t *dp = zilog->zl_dmu_pool;
657 
658 	for (int t = 0; t < TXG_SIZE; t++) {
659 		if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
660 			return (B_TRUE);
661 	}
662 	return (B_FALSE);
663 }
664 
665 /*
666  * Create an on-disk intent log.
667  */
668 static lwb_t *
669 zil_create(zilog_t *zilog)
670 {
671 	const zil_header_t *zh = zilog->zl_header;
672 	lwb_t *lwb = NULL;
673 	uint64_t txg = 0;
674 	dmu_tx_t *tx = NULL;
675 	blkptr_t blk;
676 	int error = 0;
677 	boolean_t fastwrite = FALSE;
678 	boolean_t slog = FALSE;
679 
680 	/*
681 	 * Wait for any previous destroy to complete.
682 	 */
683 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
684 
685 	ASSERT(zh->zh_claim_txg == 0);
686 	ASSERT(zh->zh_replay_seq == 0);
687 
688 	blk = zh->zh_log;
689 
690 	/*
691 	 * Allocate an initial log block if:
692 	 *    - there isn't one already
693 	 *    - the existing block is the wrong endianness
694 	 */
695 	if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
696 		tx = dmu_tx_create(zilog->zl_os);
697 		VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
698 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
699 		txg = dmu_tx_get_txg(tx);
700 
701 		if (!BP_IS_HOLE(&blk)) {
702 			zio_free(zilog->zl_spa, txg, &blk);
703 			BP_ZERO(&blk);
704 		}
705 
706 		error = zio_alloc_zil(zilog->zl_spa, zilog->zl_os, txg, &blk,
707 		    ZIL_MIN_BLKSZ, &slog);
708 		fastwrite = TRUE;
709 
710 		if (error == 0)
711 			zil_init_log_chain(zilog, &blk);
712 	}
713 
714 	/*
715 	 * Allocate a log write block (lwb) for the first log block.
716 	 */
717 	if (error == 0)
718 		lwb = zil_alloc_lwb(zilog, &blk, slog, txg, fastwrite);
719 
720 	/*
721 	 * If we just allocated the first log block, commit our transaction
722 	 * and wait for zil_sync() to stuff the block pointer into zh_log.
723 	 * (zh is part of the MOS, so we cannot modify it in open context.)
724 	 */
725 	if (tx != NULL) {
726 		dmu_tx_commit(tx);
727 		txg_wait_synced(zilog->zl_dmu_pool, txg);
728 	}
729 
730 	ASSERT(error != 0 || bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
731 	IMPLY(error == 0, lwb != NULL);
732 
733 	return (lwb);
734 }
735 
736 /*
737  * In one tx, free all log blocks and clear the log header. If keep_first
738  * is set, then we're replaying a log with no content. We want to keep the
739  * first block, however, so that the first synchronous transaction doesn't
740  * require a txg_wait_synced() in zil_create(). We don't need to
741  * txg_wait_synced() here either when keep_first is set, because both
742  * zil_create() and zil_destroy() will wait for any in-progress destroys
743  * to complete.
744  */
745 void
746 zil_destroy(zilog_t *zilog, boolean_t keep_first)
747 {
748 	const zil_header_t *zh = zilog->zl_header;
749 	lwb_t *lwb;
750 	dmu_tx_t *tx;
751 	uint64_t txg;
752 
753 	/*
754 	 * Wait for any previous destroy to complete.
755 	 */
756 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
757 
758 	zilog->zl_old_header = *zh;		/* debugging aid */
759 
760 	if (BP_IS_HOLE(&zh->zh_log))
761 		return;
762 
763 	tx = dmu_tx_create(zilog->zl_os);
764 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
765 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
766 	txg = dmu_tx_get_txg(tx);
767 
768 	mutex_enter(&zilog->zl_lock);
769 
770 	ASSERT3U(zilog->zl_destroy_txg, <, txg);
771 	zilog->zl_destroy_txg = txg;
772 	zilog->zl_keep_first = keep_first;
773 
774 	if (!list_is_empty(&zilog->zl_lwb_list)) {
775 		ASSERT(zh->zh_claim_txg == 0);
776 		VERIFY(!keep_first);
777 		while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
778 			if (lwb->lwb_fastwrite)
779 				metaslab_fastwrite_unmark(zilog->zl_spa,
780 				    &lwb->lwb_blk);
781 
782 			list_remove(&zilog->zl_lwb_list, lwb);
783 			if (lwb->lwb_buf != NULL)
784 				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
785 			zio_free(zilog->zl_spa, txg, &lwb->lwb_blk);
786 			zil_free_lwb(zilog, lwb);
787 		}
788 	} else if (!keep_first) {
789 		zil_destroy_sync(zilog, tx);
790 	}
791 	mutex_exit(&zilog->zl_lock);
792 
793 	dmu_tx_commit(tx);
794 }
795 
796 void
797 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
798 {
799 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
800 	(void) zil_parse(zilog, zil_free_log_block,
801 	    zil_free_log_record, tx, zilog->zl_header->zh_claim_txg, B_FALSE);
802 }
803 
804 int
805 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
806 {
807 	dmu_tx_t *tx = txarg;
808 	zilog_t *zilog;
809 	uint64_t first_txg;
810 	zil_header_t *zh;
811 	objset_t *os;
812 	int error;
813 
814 	error = dmu_objset_own_obj(dp, ds->ds_object,
815 	    DMU_OST_ANY, B_FALSE, B_FALSE, FTAG, &os);
816 	if (error != 0) {
817 		/*
818 		 * EBUSY indicates that the objset is inconsistent, in which
819 		 * case it can not have a ZIL.
820 		 */
821 		if (error != EBUSY) {
822 			cmn_err(CE_WARN, "can't open objset for %llu, error %u",
823 			    (unsigned long long)ds->ds_object, error);
824 		}
825 
826 		return (0);
827 	}
828 
829 	zilog = dmu_objset_zil(os);
830 	zh = zil_header_in_syncing_context(zilog);
831 	ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa));
832 	first_txg = spa_min_claim_txg(zilog->zl_spa);
833 
834 	/*
835 	 * If the spa_log_state is not set to be cleared, check whether
836 	 * the current uberblock is a checkpoint one and if the current
837 	 * header has been claimed before moving on.
838 	 *
839 	 * If the current uberblock is a checkpointed uberblock then
840 	 * one of the following scenarios took place:
841 	 *
842 	 * 1] We are currently rewinding to the checkpoint of the pool.
843 	 * 2] We crashed in the middle of a checkpoint rewind but we
844 	 *    did manage to write the checkpointed uberblock to the
845 	 *    vdev labels, so when we tried to import the pool again
846 	 *    the checkpointed uberblock was selected from the import
847 	 *    procedure.
848 	 *
849 	 * In both cases we want to zero out all the ZIL blocks, except
850 	 * the ones that have been claimed at the time of the checkpoint
851 	 * (their zh_claim_txg != 0). The reason is that these blocks
852 	 * may be corrupted since we may have reused their locations on
853 	 * disk after we took the checkpoint.
854 	 *
855 	 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier
856 	 * when we first figure out whether the current uberblock is
857 	 * checkpointed or not. Unfortunately, that would discard all
858 	 * the logs, including the ones that are claimed, and we would
859 	 * leak space.
860 	 */
861 	if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR ||
862 	    (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
863 	    zh->zh_claim_txg == 0)) {
864 		if (!BP_IS_HOLE(&zh->zh_log)) {
865 			(void) zil_parse(zilog, zil_clear_log_block,
866 			    zil_noop_log_record, tx, first_txg, B_FALSE);
867 		}
868 		BP_ZERO(&zh->zh_log);
869 		if (os->os_encrypted)
870 			os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
871 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
872 		dmu_objset_disown(os, B_FALSE, FTAG);
873 		return (0);
874 	}
875 
876 	/*
877 	 * If we are not rewinding and opening the pool normally, then
878 	 * the min_claim_txg should be equal to the first txg of the pool.
879 	 */
880 	ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa));
881 
882 	/*
883 	 * Claim all log blocks if we haven't already done so, and remember
884 	 * the highest claimed sequence number.  This ensures that if we can
885 	 * read only part of the log now (e.g. due to a missing device),
886 	 * but we can read the entire log later, we will not try to replay
887 	 * or destroy beyond the last block we successfully claimed.
888 	 */
889 	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
890 	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
891 		(void) zil_parse(zilog, zil_claim_log_block,
892 		    zil_claim_log_record, tx, first_txg, B_FALSE);
893 		zh->zh_claim_txg = first_txg;
894 		zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
895 		zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
896 		if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
897 			zh->zh_flags |= ZIL_REPLAY_NEEDED;
898 		zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
899 		if (os->os_encrypted)
900 			os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
901 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
902 	}
903 
904 	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
905 	dmu_objset_disown(os, B_FALSE, FTAG);
906 	return (0);
907 }
908 
909 /*
910  * Check the log by walking the log chain.
911  * Checksum errors are ok as they indicate the end of the chain.
912  * Any other error (no device or read failure) returns an error.
913  */
914 /* ARGSUSED */
915 int
916 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
917 {
918 	zilog_t *zilog;
919 	objset_t *os;
920 	blkptr_t *bp;
921 	int error;
922 
923 	ASSERT(tx == NULL);
924 
925 	error = dmu_objset_from_ds(ds, &os);
926 	if (error != 0) {
927 		cmn_err(CE_WARN, "can't open objset %llu, error %d",
928 		    (unsigned long long)ds->ds_object, error);
929 		return (0);
930 	}
931 
932 	zilog = dmu_objset_zil(os);
933 	bp = (blkptr_t *)&zilog->zl_header->zh_log;
934 
935 	if (!BP_IS_HOLE(bp)) {
936 		vdev_t *vd;
937 		boolean_t valid = B_TRUE;
938 
939 		/*
940 		 * Check the first block and determine if it's on a log device
941 		 * which may have been removed or faulted prior to loading this
942 		 * pool.  If so, there's no point in checking the rest of the
943 		 * log as its content should have already been synced to the
944 		 * pool.
945 		 */
946 		spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
947 		vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
948 		if (vd->vdev_islog && vdev_is_dead(vd))
949 			valid = vdev_log_state_valid(vd);
950 		spa_config_exit(os->os_spa, SCL_STATE, FTAG);
951 
952 		if (!valid)
953 			return (0);
954 
955 		/*
956 		 * Check whether the current uberblock is checkpointed (e.g.
957 		 * we are rewinding) and whether the current header has been
958 		 * claimed or not. If it hasn't then skip verifying it. We
959 		 * do this because its ZIL blocks may be part of the pool's
960 		 * state before the rewind, which is no longer valid.
961 		 */
962 		zil_header_t *zh = zil_header_in_syncing_context(zilog);
963 		if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
964 		    zh->zh_claim_txg == 0)
965 			return (0);
966 	}
967 
968 	/*
969 	 * Because tx == NULL, zil_claim_log_block() will not actually claim
970 	 * any blocks, but just determine whether it is possible to do so.
971 	 * In addition to checking the log chain, zil_claim_log_block()
972 	 * will invoke zio_claim() with a done func of spa_claim_notify(),
973 	 * which will update spa_max_claim_txg.  See spa_load() for details.
974 	 */
975 	error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
976 	    zilog->zl_header->zh_claim_txg ? -1ULL :
977 	    spa_min_claim_txg(os->os_spa), B_FALSE);
978 
979 	return ((error == ECKSUM || error == ENOENT) ? 0 : error);
980 }
981 
982 /*
983  * When an itx is "skipped", this function is used to properly mark the
984  * waiter as "done, and signal any thread(s) waiting on it. An itx can
985  * be skipped (and not committed to an lwb) for a variety of reasons,
986  * one of them being that the itx was committed via spa_sync(), prior to
987  * it being committed to an lwb; this can happen if a thread calling
988  * zil_commit() is racing with spa_sync().
989  */
990 static void
991 zil_commit_waiter_skip(zil_commit_waiter_t *zcw)
992 {
993 	mutex_enter(&zcw->zcw_lock);
994 	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
995 	zcw->zcw_done = B_TRUE;
996 	cv_broadcast(&zcw->zcw_cv);
997 	mutex_exit(&zcw->zcw_lock);
998 }
999 
1000 /*
1001  * This function is used when the given waiter is to be linked into an
1002  * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb.
1003  * At this point, the waiter will no longer be referenced by the itx,
1004  * and instead, will be referenced by the lwb.
1005  */
1006 static void
1007 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb)
1008 {
1009 	/*
1010 	 * The lwb_waiters field of the lwb is protected by the zilog's
1011 	 * zl_lock, thus it must be held when calling this function.
1012 	 */
1013 	ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_lock));
1014 
1015 	mutex_enter(&zcw->zcw_lock);
1016 	ASSERT(!list_link_active(&zcw->zcw_node));
1017 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
1018 	ASSERT3P(lwb, !=, NULL);
1019 	ASSERT(lwb->lwb_state == LWB_STATE_OPENED ||
1020 	    lwb->lwb_state == LWB_STATE_ISSUED ||
1021 	    lwb->lwb_state == LWB_STATE_WRITE_DONE);
1022 
1023 	list_insert_tail(&lwb->lwb_waiters, zcw);
1024 	zcw->zcw_lwb = lwb;
1025 	mutex_exit(&zcw->zcw_lock);
1026 }
1027 
1028 /*
1029  * This function is used when zio_alloc_zil() fails to allocate a ZIL
1030  * block, and the given waiter must be linked to the "nolwb waiters"
1031  * list inside of zil_process_commit_list().
1032  */
1033 static void
1034 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb)
1035 {
1036 	mutex_enter(&zcw->zcw_lock);
1037 	ASSERT(!list_link_active(&zcw->zcw_node));
1038 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
1039 	list_insert_tail(nolwb, zcw);
1040 	mutex_exit(&zcw->zcw_lock);
1041 }
1042 
1043 void
1044 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp)
1045 {
1046 	avl_tree_t *t = &lwb->lwb_vdev_tree;
1047 	avl_index_t where;
1048 	zil_vdev_node_t *zv, zvsearch;
1049 	int ndvas = BP_GET_NDVAS(bp);
1050 	int i;
1051 
1052 	if (zil_nocacheflush)
1053 		return;
1054 
1055 	mutex_enter(&lwb->lwb_vdev_lock);
1056 	for (i = 0; i < ndvas; i++) {
1057 		zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
1058 		if (avl_find(t, &zvsearch, &where) == NULL) {
1059 			zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
1060 			zv->zv_vdev = zvsearch.zv_vdev;
1061 			avl_insert(t, zv, where);
1062 		}
1063 	}
1064 	mutex_exit(&lwb->lwb_vdev_lock);
1065 }
1066 
1067 static void
1068 zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb)
1069 {
1070 	avl_tree_t *src = &lwb->lwb_vdev_tree;
1071 	avl_tree_t *dst = &nlwb->lwb_vdev_tree;
1072 	void *cookie = NULL;
1073 	zil_vdev_node_t *zv;
1074 
1075 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1076 	ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
1077 	ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1078 
1079 	/*
1080 	 * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does
1081 	 * not need the protection of lwb_vdev_lock (it will only be modified
1082 	 * while holding zilog->zl_lock) as its writes and those of its
1083 	 * children have all completed.  The younger 'nlwb' may be waiting on
1084 	 * future writes to additional vdevs.
1085 	 */
1086 	mutex_enter(&nlwb->lwb_vdev_lock);
1087 	/*
1088 	 * Tear down the 'lwb' vdev tree, ensuring that entries which do not
1089 	 * exist in 'nlwb' are moved to it, freeing any would-be duplicates.
1090 	 */
1091 	while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) {
1092 		avl_index_t where;
1093 
1094 		if (avl_find(dst, zv, &where) == NULL) {
1095 			avl_insert(dst, zv, where);
1096 		} else {
1097 			kmem_free(zv, sizeof (*zv));
1098 		}
1099 	}
1100 	mutex_exit(&nlwb->lwb_vdev_lock);
1101 }
1102 
1103 void
1104 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg)
1105 {
1106 	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1107 }
1108 
1109 /*
1110  * This function is a called after all vdevs associated with a given lwb
1111  * write have completed their DKIOCFLUSHWRITECACHE command; or as soon
1112  * as the lwb write completes, if "zil_nocacheflush" is set. Further,
1113  * all "previous" lwb's will have completed before this function is
1114  * called; i.e. this function is called for all previous lwbs before
1115  * it's called for "this" lwb (enforced via zio the dependencies
1116  * configured in zil_lwb_set_zio_dependency()).
1117  *
1118  * The intention is for this function to be called as soon as the
1119  * contents of an lwb are considered "stable" on disk, and will survive
1120  * any sudden loss of power. At this point, any threads waiting for the
1121  * lwb to reach this state are signalled, and the "waiter" structures
1122  * are marked "done".
1123  */
1124 static void
1125 zil_lwb_flush_vdevs_done(zio_t *zio)
1126 {
1127 	lwb_t *lwb = zio->io_private;
1128 	zilog_t *zilog = lwb->lwb_zilog;
1129 	dmu_tx_t *tx = lwb->lwb_tx;
1130 	zil_commit_waiter_t *zcw;
1131 	itx_t *itx;
1132 
1133 	spa_config_exit(zilog->zl_spa, SCL_STATE, lwb);
1134 
1135 	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1136 
1137 	mutex_enter(&zilog->zl_lock);
1138 
1139 	/*
1140 	 * Ensure the lwb buffer pointer is cleared before releasing the
1141 	 * txg. If we have had an allocation failure and the txg is
1142 	 * waiting to sync then we want zil_sync() to remove the lwb so
1143 	 * that it's not picked up as the next new one in
1144 	 * zil_process_commit_list(). zil_sync() will only remove the
1145 	 * lwb if lwb_buf is null.
1146 	 */
1147 	lwb->lwb_buf = NULL;
1148 	lwb->lwb_tx = NULL;
1149 
1150 	ASSERT3U(lwb->lwb_issued_timestamp, >, 0);
1151 	zilog->zl_last_lwb_latency = gethrtime() - lwb->lwb_issued_timestamp;
1152 
1153 	lwb->lwb_root_zio = NULL;
1154 
1155 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1156 	lwb->lwb_state = LWB_STATE_FLUSH_DONE;
1157 
1158 	if (zilog->zl_last_lwb_opened == lwb) {
1159 		/*
1160 		 * Remember the highest committed log sequence number
1161 		 * for ztest. We only update this value when all the log
1162 		 * writes succeeded, because ztest wants to ASSERT that
1163 		 * it got the whole log chain.
1164 		 */
1165 		zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1166 	}
1167 
1168 	while ((itx = list_head(&lwb->lwb_itxs)) != NULL) {
1169 		list_remove(&lwb->lwb_itxs, itx);
1170 		zil_itx_destroy(itx);
1171 	}
1172 
1173 	while ((zcw = list_head(&lwb->lwb_waiters)) != NULL) {
1174 		mutex_enter(&zcw->zcw_lock);
1175 
1176 		ASSERT(list_link_active(&zcw->zcw_node));
1177 		list_remove(&lwb->lwb_waiters, zcw);
1178 
1179 		ASSERT3P(zcw->zcw_lwb, ==, lwb);
1180 		zcw->zcw_lwb = NULL;
1181 
1182 		zcw->zcw_zio_error = zio->io_error;
1183 
1184 		ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1185 		zcw->zcw_done = B_TRUE;
1186 		cv_broadcast(&zcw->zcw_cv);
1187 
1188 		mutex_exit(&zcw->zcw_lock);
1189 	}
1190 
1191 	mutex_exit(&zilog->zl_lock);
1192 
1193 	/*
1194 	 * Now that we've written this log block, we have a stable pointer
1195 	 * to the next block in the chain, so it's OK to let the txg in
1196 	 * which we allocated the next block sync.
1197 	 */
1198 	dmu_tx_commit(tx);
1199 }
1200 
1201 /*
1202  * This is called when an lwb's write zio completes. The callback's
1203  * purpose is to issue the DKIOCFLUSHWRITECACHE commands for the vdevs
1204  * in the lwb's lwb_vdev_tree. The tree will contain the vdevs involved
1205  * in writing out this specific lwb's data, and in the case that cache
1206  * flushes have been deferred, vdevs involved in writing the data for
1207  * previous lwbs. The writes corresponding to all the vdevs in the
1208  * lwb_vdev_tree will have completed by the time this is called, due to
1209  * the zio dependencies configured in zil_lwb_set_zio_dependency(),
1210  * which takes deferred flushes into account. The lwb will be "done"
1211  * once zil_lwb_flush_vdevs_done() is called, which occurs in the zio
1212  * completion callback for the lwb's root zio.
1213  */
1214 static void
1215 zil_lwb_write_done(zio_t *zio)
1216 {
1217 	lwb_t *lwb = zio->io_private;
1218 	spa_t *spa = zio->io_spa;
1219 	zilog_t *zilog = lwb->lwb_zilog;
1220 	avl_tree_t *t = &lwb->lwb_vdev_tree;
1221 	void *cookie = NULL;
1222 	zil_vdev_node_t *zv;
1223 	lwb_t *nlwb;
1224 
1225 	ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0);
1226 
1227 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1228 	ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
1229 	ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
1230 	ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
1231 	ASSERT(!BP_IS_GANG(zio->io_bp));
1232 	ASSERT(!BP_IS_HOLE(zio->io_bp));
1233 	ASSERT(BP_GET_FILL(zio->io_bp) == 0);
1234 
1235 	abd_free(zio->io_abd);
1236 
1237 	mutex_enter(&zilog->zl_lock);
1238 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED);
1239 	lwb->lwb_state = LWB_STATE_WRITE_DONE;
1240 	lwb->lwb_write_zio = NULL;
1241 	lwb->lwb_fastwrite = FALSE;
1242 	nlwb = list_next(&zilog->zl_lwb_list, lwb);
1243 	mutex_exit(&zilog->zl_lock);
1244 
1245 	if (avl_numnodes(t) == 0)
1246 		return;
1247 
1248 	/*
1249 	 * If there was an IO error, we're not going to call zio_flush()
1250 	 * on these vdevs, so we simply empty the tree and free the
1251 	 * nodes. We avoid calling zio_flush() since there isn't any
1252 	 * good reason for doing so, after the lwb block failed to be
1253 	 * written out.
1254 	 */
1255 	if (zio->io_error != 0) {
1256 		while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
1257 			kmem_free(zv, sizeof (*zv));
1258 		return;
1259 	}
1260 
1261 	/*
1262 	 * If this lwb does not have any threads waiting for it to
1263 	 * complete, we want to defer issuing the DKIOCFLUSHWRITECACHE
1264 	 * command to the vdevs written to by "this" lwb, and instead
1265 	 * rely on the "next" lwb to handle the DKIOCFLUSHWRITECACHE
1266 	 * command for those vdevs. Thus, we merge the vdev tree of
1267 	 * "this" lwb with the vdev tree of the "next" lwb in the list,
1268 	 * and assume the "next" lwb will handle flushing the vdevs (or
1269 	 * deferring the flush(s) again).
1270 	 *
1271 	 * This is a useful performance optimization, especially for
1272 	 * workloads with lots of async write activity and few sync
1273 	 * write and/or fsync activity, as it has the potential to
1274 	 * coalesce multiple flush commands to a vdev into one.
1275 	 */
1276 	if (list_head(&lwb->lwb_waiters) == NULL && nlwb != NULL) {
1277 		zil_lwb_flush_defer(lwb, nlwb);
1278 		ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
1279 		return;
1280 	}
1281 
1282 	while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
1283 		vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
1284 		if (vd != NULL)
1285 			zio_flush(lwb->lwb_root_zio, vd);
1286 		kmem_free(zv, sizeof (*zv));
1287 	}
1288 }
1289 
1290 static void
1291 zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb)
1292 {
1293 	lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened;
1294 
1295 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1296 	ASSERT(MUTEX_HELD(&zilog->zl_lock));
1297 
1298 	/*
1299 	 * The zilog's "zl_last_lwb_opened" field is used to build the
1300 	 * lwb/zio dependency chain, which is used to preserve the
1301 	 * ordering of lwb completions that is required by the semantics
1302 	 * of the ZIL. Each new lwb zio becomes a parent of the
1303 	 * "previous" lwb zio, such that the new lwb's zio cannot
1304 	 * complete until the "previous" lwb's zio completes.
1305 	 *
1306 	 * This is required by the semantics of zil_commit(); the commit
1307 	 * waiters attached to the lwbs will be woken in the lwb zio's
1308 	 * completion callback, so this zio dependency graph ensures the
1309 	 * waiters are woken in the correct order (the same order the
1310 	 * lwbs were created).
1311 	 */
1312 	if (last_lwb_opened != NULL &&
1313 	    last_lwb_opened->lwb_state != LWB_STATE_FLUSH_DONE) {
1314 		ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1315 		    last_lwb_opened->lwb_state == LWB_STATE_ISSUED ||
1316 		    last_lwb_opened->lwb_state == LWB_STATE_WRITE_DONE);
1317 
1318 		ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL);
1319 		zio_add_child(lwb->lwb_root_zio,
1320 		    last_lwb_opened->lwb_root_zio);
1321 
1322 		/*
1323 		 * If the previous lwb's write hasn't already completed,
1324 		 * we also want to order the completion of the lwb write
1325 		 * zios (above, we only order the completion of the lwb
1326 		 * root zios). This is required because of how we can
1327 		 * defer the DKIOCFLUSHWRITECACHE commands for each lwb.
1328 		 *
1329 		 * When the DKIOCFLUSHWRITECACHE commands are deferred,
1330 		 * the previous lwb will rely on this lwb to flush the
1331 		 * vdevs written to by that previous lwb. Thus, we need
1332 		 * to ensure this lwb doesn't issue the flush until
1333 		 * after the previous lwb's write completes. We ensure
1334 		 * this ordering by setting the zio parent/child
1335 		 * relationship here.
1336 		 *
1337 		 * Without this relationship on the lwb's write zio,
1338 		 * it's possible for this lwb's write to complete prior
1339 		 * to the previous lwb's write completing; and thus, the
1340 		 * vdevs for the previous lwb would be flushed prior to
1341 		 * that lwb's data being written to those vdevs (the
1342 		 * vdevs are flushed in the lwb write zio's completion
1343 		 * handler, zil_lwb_write_done()).
1344 		 */
1345 		if (last_lwb_opened->lwb_state != LWB_STATE_WRITE_DONE) {
1346 			ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1347 			    last_lwb_opened->lwb_state == LWB_STATE_ISSUED);
1348 
1349 			ASSERT3P(last_lwb_opened->lwb_write_zio, !=, NULL);
1350 			zio_add_child(lwb->lwb_write_zio,
1351 			    last_lwb_opened->lwb_write_zio);
1352 		}
1353 	}
1354 }
1355 
1356 
1357 /*
1358  * This function's purpose is to "open" an lwb such that it is ready to
1359  * accept new itxs being committed to it. To do this, the lwb's zio
1360  * structures are created, and linked to the lwb. This function is
1361  * idempotent; if the passed in lwb has already been opened, this
1362  * function is essentially a no-op.
1363  */
1364 static void
1365 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb)
1366 {
1367 	zbookmark_phys_t zb;
1368 	zio_priority_t prio;
1369 
1370 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1371 	ASSERT3P(lwb, !=, NULL);
1372 	EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED);
1373 	EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED);
1374 
1375 	SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1376 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
1377 	    lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
1378 
1379 	/* Lock so zil_sync() doesn't fastwrite_unmark after zio is created */
1380 	mutex_enter(&zilog->zl_lock);
1381 	if (lwb->lwb_root_zio == NULL) {
1382 		abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf,
1383 		    BP_GET_LSIZE(&lwb->lwb_blk));
1384 
1385 		if (!lwb->lwb_fastwrite) {
1386 			metaslab_fastwrite_mark(zilog->zl_spa, &lwb->lwb_blk);
1387 			lwb->lwb_fastwrite = 1;
1388 		}
1389 
1390 		if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk)
1391 			prio = ZIO_PRIORITY_SYNC_WRITE;
1392 		else
1393 			prio = ZIO_PRIORITY_ASYNC_WRITE;
1394 
1395 		lwb->lwb_root_zio = zio_root(zilog->zl_spa,
1396 		    zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL);
1397 		ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1398 
1399 		lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio,
1400 		    zilog->zl_spa, 0, &lwb->lwb_blk, lwb_abd,
1401 		    BP_GET_LSIZE(&lwb->lwb_blk), zil_lwb_write_done, lwb,
1402 		    prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE |
1403 		    ZIO_FLAG_FASTWRITE, &zb);
1404 		ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1405 
1406 		lwb->lwb_state = LWB_STATE_OPENED;
1407 
1408 		zil_lwb_set_zio_dependency(zilog, lwb);
1409 		zilog->zl_last_lwb_opened = lwb;
1410 	}
1411 	mutex_exit(&zilog->zl_lock);
1412 
1413 	ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1414 	ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1415 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1416 }
1417 
1418 /*
1419  * Define a limited set of intent log block sizes.
1420  *
1421  * These must be a multiple of 4KB. Note only the amount used (again
1422  * aligned to 4KB) actually gets written. However, we can't always just
1423  * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
1424  */
1425 struct {
1426 	uint64_t	limit;
1427 	uint64_t	blksz;
1428 } zil_block_buckets[] = {
1429 	{ 4096,		4096 },			/* non TX_WRITE */
1430 	{ 8192 + 4096,	8192 + 4096 },		/* database */
1431 	{ 32768 + 4096,	32768 + 4096 },		/* NFS writes */
1432 	{ 65536 + 4096,	65536 + 4096 },		/* 64KB writes */
1433 	{ 131072,	131072 },		/* < 128KB writes */
1434 	{ 131072 +4096,	65536 + 4096 },		/* 128KB writes */
1435 	{ UINT64_MAX,	SPA_OLD_MAXBLOCKSIZE},	/* > 128KB writes */
1436 };
1437 
1438 /*
1439  * Maximum block size used by the ZIL.  This is picked up when the ZIL is
1440  * initialized.  Otherwise this should not be used directly; see
1441  * zl_max_block_size instead.
1442  */
1443 int zil_maxblocksize = SPA_OLD_MAXBLOCKSIZE;
1444 
1445 /*
1446  * Start a log block write and advance to the next log block.
1447  * Calls are serialized.
1448  */
1449 static lwb_t *
1450 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb)
1451 {
1452 	lwb_t *nlwb = NULL;
1453 	zil_chain_t *zilc;
1454 	spa_t *spa = zilog->zl_spa;
1455 	blkptr_t *bp;
1456 	dmu_tx_t *tx;
1457 	uint64_t txg;
1458 	uint64_t zil_blksz, wsz;
1459 	int i, error;
1460 	boolean_t slog;
1461 
1462 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1463 	ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1464 	ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1465 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1466 
1467 	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1468 		zilc = (zil_chain_t *)lwb->lwb_buf;
1469 		bp = &zilc->zc_next_blk;
1470 	} else {
1471 		zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
1472 		bp = &zilc->zc_next_blk;
1473 	}
1474 
1475 	ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
1476 
1477 	/*
1478 	 * Allocate the next block and save its address in this block
1479 	 * before writing it in order to establish the log chain.
1480 	 * Note that if the allocation of nlwb synced before we wrote
1481 	 * the block that points at it (lwb), we'd leak it if we crashed.
1482 	 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
1483 	 * We dirty the dataset to ensure that zil_sync() will be called
1484 	 * to clean up in the event of allocation failure or I/O failure.
1485 	 */
1486 
1487 	tx = dmu_tx_create(zilog->zl_os);
1488 
1489 	/*
1490 	 * Since we are not going to create any new dirty data, and we
1491 	 * can even help with clearing the existing dirty data, we
1492 	 * should not be subject to the dirty data based delays. We
1493 	 * use TXG_NOTHROTTLE to bypass the delay mechanism.
1494 	 */
1495 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));
1496 
1497 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1498 	txg = dmu_tx_get_txg(tx);
1499 
1500 	lwb->lwb_tx = tx;
1501 
1502 	/*
1503 	 * Log blocks are pre-allocated. Here we select the size of the next
1504 	 * block, based on size used in the last block.
1505 	 * - first find the smallest bucket that will fit the block from a
1506 	 *   limited set of block sizes. This is because it's faster to write
1507 	 *   blocks allocated from the same metaslab as they are adjacent or
1508 	 *   close.
1509 	 * - next find the maximum from the new suggested size and an array of
1510 	 *   previous sizes. This lessens a picket fence effect of wrongly
1511 	 *   guessing the size if we have a stream of say 2k, 64k, 2k, 64k
1512 	 *   requests.
1513 	 *
1514 	 * Note we only write what is used, but we can't just allocate
1515 	 * the maximum block size because we can exhaust the available
1516 	 * pool log space.
1517 	 */
1518 	zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1519 	for (i = 0; zil_blksz > zil_block_buckets[i].limit; i++)
1520 		continue;
1521 	zil_blksz = MIN(zil_block_buckets[i].blksz, zilog->zl_max_block_size);
1522 	zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1523 	for (i = 0; i < ZIL_PREV_BLKS; i++)
1524 		zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1525 	zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1526 
1527 	BP_ZERO(bp);
1528 	error = zio_alloc_zil(spa, zilog->zl_os, txg, bp, zil_blksz, &slog);
1529 	if (slog) {
1530 		ZIL_STAT_BUMP(zil_itx_metaslab_slog_count);
1531 		ZIL_STAT_INCR(zil_itx_metaslab_slog_bytes, lwb->lwb_nused);
1532 	} else {
1533 		ZIL_STAT_BUMP(zil_itx_metaslab_normal_count);
1534 		ZIL_STAT_INCR(zil_itx_metaslab_normal_bytes, lwb->lwb_nused);
1535 	}
1536 	if (error == 0) {
1537 		ASSERT3U(bp->blk_birth, ==, txg);
1538 		bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1539 		bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1540 
1541 		/*
1542 		 * Allocate a new log write block (lwb).
1543 		 */
1544 		nlwb = zil_alloc_lwb(zilog, bp, slog, txg, TRUE);
1545 	}
1546 
1547 	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1548 		/* For Slim ZIL only write what is used. */
1549 		wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1550 		ASSERT3U(wsz, <=, lwb->lwb_sz);
1551 		zio_shrink(lwb->lwb_write_zio, wsz);
1552 
1553 	} else {
1554 		wsz = lwb->lwb_sz;
1555 	}
1556 
1557 	zilc->zc_pad = 0;
1558 	zilc->zc_nused = lwb->lwb_nused;
1559 	zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1560 
1561 	/*
1562 	 * clear unused data for security
1563 	 */
1564 	bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
1565 
1566 	spa_config_enter(zilog->zl_spa, SCL_STATE, lwb, RW_READER);
1567 
1568 	zil_lwb_add_block(lwb, &lwb->lwb_blk);
1569 	lwb->lwb_issued_timestamp = gethrtime();
1570 	lwb->lwb_state = LWB_STATE_ISSUED;
1571 
1572 	zio_nowait(lwb->lwb_root_zio);
1573 	zio_nowait(lwb->lwb_write_zio);
1574 
1575 	/*
1576 	 * If there was an allocation failure then nlwb will be null which
1577 	 * forces a txg_wait_synced().
1578 	 */
1579 	return (nlwb);
1580 }
1581 
1582 /*
1583  * Maximum amount of write data that can be put into single log block.
1584  */
1585 uint64_t
1586 zil_max_log_data(zilog_t *zilog)
1587 {
1588 	return (zilog->zl_max_block_size -
1589 	    sizeof (zil_chain_t) - sizeof (lr_write_t));
1590 }
1591 
1592 /*
1593  * Maximum amount of log space we agree to waste to reduce number of
1594  * WR_NEED_COPY chunks to reduce zl_get_data() overhead (~12%).
1595  */
1596 static inline uint64_t
1597 zil_max_waste_space(zilog_t *zilog)
1598 {
1599 	return (zil_max_log_data(zilog) / 8);
1600 }
1601 
1602 /*
1603  * Maximum amount of write data for WR_COPIED.  For correctness, consumers
1604  * must fall back to WR_NEED_COPY if we can't fit the entire record into one
1605  * maximum sized log block, because each WR_COPIED record must fit in a
1606  * single log block.  For space efficiency, we want to fit two records into a
1607  * max-sized log block.
1608  */
1609 uint64_t
1610 zil_max_copied_data(zilog_t *zilog)
1611 {
1612 	return ((zilog->zl_max_block_size - sizeof (zil_chain_t)) / 2 -
1613 	    sizeof (lr_write_t));
1614 }
1615 
1616 static lwb_t *
1617 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1618 {
1619 	lr_t *lrcb, *lrc;
1620 	lr_write_t *lrwb, *lrw;
1621 	char *lr_buf;
1622 	uint64_t dlen, dnow, dpad, lwb_sp, reclen, txg, max_log_data;
1623 
1624 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1625 	ASSERT3P(lwb, !=, NULL);
1626 	ASSERT3P(lwb->lwb_buf, !=, NULL);
1627 
1628 	zil_lwb_write_open(zilog, lwb);
1629 
1630 	lrc = &itx->itx_lr;
1631 	lrw = (lr_write_t *)lrc;
1632 
1633 	/*
1634 	 * A commit itx doesn't represent any on-disk state; instead
1635 	 * it's simply used as a place holder on the commit list, and
1636 	 * provides a mechanism for attaching a "commit waiter" onto the
1637 	 * correct lwb (such that the waiter can be signalled upon
1638 	 * completion of that lwb). Thus, we don't process this itx's
1639 	 * log record if it's a commit itx (these itx's don't have log
1640 	 * records), and instead link the itx's waiter onto the lwb's
1641 	 * list of waiters.
1642 	 *
1643 	 * For more details, see the comment above zil_commit().
1644 	 */
1645 	if (lrc->lrc_txtype == TX_COMMIT) {
1646 		mutex_enter(&zilog->zl_lock);
1647 		zil_commit_waiter_link_lwb(itx->itx_private, lwb);
1648 		itx->itx_private = NULL;
1649 		mutex_exit(&zilog->zl_lock);
1650 		return (lwb);
1651 	}
1652 
1653 	if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
1654 		dlen = P2ROUNDUP_TYPED(
1655 		    lrw->lr_length, sizeof (uint64_t), uint64_t);
1656 		dpad = dlen - lrw->lr_length;
1657 	} else {
1658 		dlen = dpad = 0;
1659 	}
1660 	reclen = lrc->lrc_reclen;
1661 	zilog->zl_cur_used += (reclen + dlen);
1662 	txg = lrc->lrc_txg;
1663 
1664 	ASSERT3U(zilog->zl_cur_used, <, UINT64_MAX - (reclen + dlen));
1665 
1666 cont:
1667 	/*
1668 	 * If this record won't fit in the current log block, start a new one.
1669 	 * For WR_NEED_COPY optimize layout for minimal number of chunks.
1670 	 */
1671 	lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1672 	max_log_data = zil_max_log_data(zilog);
1673 	if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
1674 	    lwb_sp < zil_max_waste_space(zilog) &&
1675 	    (dlen % max_log_data == 0 ||
1676 	    lwb_sp < reclen + dlen % max_log_data))) {
1677 		lwb = zil_lwb_write_issue(zilog, lwb);
1678 		if (lwb == NULL)
1679 			return (NULL);
1680 		zil_lwb_write_open(zilog, lwb);
1681 		ASSERT(LWB_EMPTY(lwb));
1682 		lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1683 
1684 		/*
1685 		 * There must be enough space in the new, empty log block to
1686 		 * hold reclen.  For WR_COPIED, we need to fit the whole
1687 		 * record in one block, and reclen is the header size + the
1688 		 * data size. For WR_NEED_COPY, we can create multiple
1689 		 * records, splitting the data into multiple blocks, so we
1690 		 * only need to fit one word of data per block; in this case
1691 		 * reclen is just the header size (no data).
1692 		 */
1693 		ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
1694 	}
1695 
1696 	dnow = MIN(dlen, lwb_sp - reclen);
1697 	lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1698 	bcopy(lrc, lr_buf, reclen);
1699 	lrcb = (lr_t *)lr_buf;		/* Like lrc, but inside lwb. */
1700 	lrwb = (lr_write_t *)lrcb;	/* Like lrw, but inside lwb. */
1701 
1702 	ZIL_STAT_BUMP(zil_itx_count);
1703 
1704 	/*
1705 	 * If it's a write, fetch the data or get its blkptr as appropriate.
1706 	 */
1707 	if (lrc->lrc_txtype == TX_WRITE) {
1708 		if (txg > spa_freeze_txg(zilog->zl_spa))
1709 			txg_wait_synced(zilog->zl_dmu_pool, txg);
1710 		if (itx->itx_wr_state == WR_COPIED) {
1711 			ZIL_STAT_BUMP(zil_itx_copied_count);
1712 			ZIL_STAT_INCR(zil_itx_copied_bytes, lrw->lr_length);
1713 		} else {
1714 			char *dbuf;
1715 			int error;
1716 
1717 			if (itx->itx_wr_state == WR_NEED_COPY) {
1718 				dbuf = lr_buf + reclen;
1719 				lrcb->lrc_reclen += dnow;
1720 				if (lrwb->lr_length > dnow)
1721 					lrwb->lr_length = dnow;
1722 				lrw->lr_offset += dnow;
1723 				lrw->lr_length -= dnow;
1724 				ZIL_STAT_BUMP(zil_itx_needcopy_count);
1725 				ZIL_STAT_INCR(zil_itx_needcopy_bytes, dnow);
1726 			} else {
1727 				ASSERT3S(itx->itx_wr_state, ==, WR_INDIRECT);
1728 				dbuf = NULL;
1729 				ZIL_STAT_BUMP(zil_itx_indirect_count);
1730 				ZIL_STAT_INCR(zil_itx_indirect_bytes,
1731 				    lrw->lr_length);
1732 			}
1733 
1734 			/*
1735 			 * We pass in the "lwb_write_zio" rather than
1736 			 * "lwb_root_zio" so that the "lwb_write_zio"
1737 			 * becomes the parent of any zio's created by
1738 			 * the "zl_get_data" callback. The vdevs are
1739 			 * flushed after the "lwb_write_zio" completes,
1740 			 * so we want to make sure that completion
1741 			 * callback waits for these additional zio's,
1742 			 * such that the vdevs used by those zio's will
1743 			 * be included in the lwb's vdev tree, and those
1744 			 * vdevs will be properly flushed. If we passed
1745 			 * in "lwb_root_zio" here, then these additional
1746 			 * vdevs may not be flushed; e.g. if these zio's
1747 			 * completed after "lwb_write_zio" completed.
1748 			 */
1749 			error = zilog->zl_get_data(itx->itx_private,
1750 			    itx->itx_gen, lrwb, dbuf, lwb,
1751 			    lwb->lwb_write_zio);
1752 			if (dbuf != NULL && error == 0 && dnow == dlen)
1753 				/* Zero any padding bytes in the last block. */
1754 				bzero((char *)dbuf + lrwb->lr_length, dpad);
1755 
1756 			if (error == EIO) {
1757 				txg_wait_synced(zilog->zl_dmu_pool, txg);
1758 				return (lwb);
1759 			}
1760 			if (error != 0) {
1761 				ASSERT(error == ENOENT || error == EEXIST ||
1762 				    error == EALREADY);
1763 				return (lwb);
1764 			}
1765 		}
1766 	}
1767 
1768 	/*
1769 	 * We're actually making an entry, so update lrc_seq to be the
1770 	 * log record sequence number.  Note that this is generally not
1771 	 * equal to the itx sequence number because not all transactions
1772 	 * are synchronous, and sometimes spa_sync() gets there first.
1773 	 */
1774 	lrcb->lrc_seq = ++zilog->zl_lr_seq;
1775 	lwb->lwb_nused += reclen + dnow;
1776 
1777 	zil_lwb_add_txg(lwb, txg);
1778 
1779 	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1780 	ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1781 
1782 	dlen -= dnow;
1783 	if (dlen > 0) {
1784 		zilog->zl_cur_used += reclen;
1785 		goto cont;
1786 	}
1787 
1788 	return (lwb);
1789 }
1790 
1791 itx_t *
1792 zil_itx_create(uint64_t txtype, size_t olrsize)
1793 {
1794 	size_t itxsize, lrsize;
1795 	itx_t *itx;
1796 
1797 	lrsize = P2ROUNDUP_TYPED(olrsize, sizeof (uint64_t), size_t);
1798 	itxsize = offsetof(itx_t, itx_lr) + lrsize;
1799 
1800 	itx = zio_data_buf_alloc(itxsize);
1801 	itx->itx_lr.lrc_txtype = txtype;
1802 	itx->itx_lr.lrc_reclen = lrsize;
1803 	itx->itx_lr.lrc_seq = 0;	/* defensive */
1804 	bzero((char *)&itx->itx_lr + olrsize, lrsize - olrsize);
1805 	itx->itx_sync = B_TRUE;		/* default is synchronous */
1806 	itx->itx_callback = NULL;
1807 	itx->itx_callback_data = NULL;
1808 	itx->itx_size = itxsize;
1809 
1810 	return (itx);
1811 }
1812 
1813 void
1814 zil_itx_destroy(itx_t *itx)
1815 {
1816 	IMPLY(itx->itx_lr.lrc_txtype == TX_COMMIT, itx->itx_callback == NULL);
1817 	IMPLY(itx->itx_callback != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
1818 
1819 	if (itx->itx_callback != NULL)
1820 		itx->itx_callback(itx->itx_callback_data);
1821 
1822 	zio_data_buf_free(itx, itx->itx_size);
1823 }
1824 
1825 /*
1826  * Free up the sync and async itxs. The itxs_t has already been detached
1827  * so no locks are needed.
1828  */
1829 static void
1830 zil_itxg_clean(void *arg)
1831 {
1832 	itx_t *itx;
1833 	list_t *list;
1834 	avl_tree_t *t;
1835 	void *cookie;
1836 	itxs_t *itxs = arg;
1837 	itx_async_node_t *ian;
1838 
1839 	list = &itxs->i_sync_list;
1840 	while ((itx = list_head(list)) != NULL) {
1841 		/*
1842 		 * In the general case, commit itxs will not be found
1843 		 * here, as they'll be committed to an lwb via
1844 		 * zil_lwb_commit(), and free'd in that function. Having
1845 		 * said that, it is still possible for commit itxs to be
1846 		 * found here, due to the following race:
1847 		 *
1848 		 *	- a thread calls zil_commit() which assigns the
1849 		 *	  commit itx to a per-txg i_sync_list
1850 		 *	- zil_itxg_clean() is called (e.g. via spa_sync())
1851 		 *	  while the waiter is still on the i_sync_list
1852 		 *
1853 		 * There's nothing to prevent syncing the txg while the
1854 		 * waiter is on the i_sync_list. This normally doesn't
1855 		 * happen because spa_sync() is slower than zil_commit(),
1856 		 * but if zil_commit() calls txg_wait_synced() (e.g.
1857 		 * because zil_create() or zil_commit_writer_stall() is
1858 		 * called) we will hit this case.
1859 		 */
1860 		if (itx->itx_lr.lrc_txtype == TX_COMMIT)
1861 			zil_commit_waiter_skip(itx->itx_private);
1862 
1863 		list_remove(list, itx);
1864 		zil_itx_destroy(itx);
1865 	}
1866 
1867 	cookie = NULL;
1868 	t = &itxs->i_async_tree;
1869 	while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1870 		list = &ian->ia_list;
1871 		while ((itx = list_head(list)) != NULL) {
1872 			list_remove(list, itx);
1873 			/* commit itxs should never be on the async lists. */
1874 			ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
1875 			zil_itx_destroy(itx);
1876 		}
1877 		list_destroy(list);
1878 		kmem_free(ian, sizeof (itx_async_node_t));
1879 	}
1880 	avl_destroy(t);
1881 
1882 	kmem_free(itxs, sizeof (itxs_t));
1883 }
1884 
1885 static int
1886 zil_aitx_compare(const void *x1, const void *x2)
1887 {
1888 	const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1889 	const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1890 
1891 	return (TREE_CMP(o1, o2));
1892 }
1893 
1894 /*
1895  * Remove all async itx with the given oid.
1896  */
1897 void
1898 zil_remove_async(zilog_t *zilog, uint64_t oid)
1899 {
1900 	uint64_t otxg, txg;
1901 	itx_async_node_t *ian;
1902 	avl_tree_t *t;
1903 	avl_index_t where;
1904 	list_t clean_list;
1905 	itx_t *itx;
1906 
1907 	ASSERT(oid != 0);
1908 	list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1909 
1910 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1911 		otxg = ZILTEST_TXG;
1912 	else
1913 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1914 
1915 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1916 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1917 
1918 		mutex_enter(&itxg->itxg_lock);
1919 		if (itxg->itxg_txg != txg) {
1920 			mutex_exit(&itxg->itxg_lock);
1921 			continue;
1922 		}
1923 
1924 		/*
1925 		 * Locate the object node and append its list.
1926 		 */
1927 		t = &itxg->itxg_itxs->i_async_tree;
1928 		ian = avl_find(t, &oid, &where);
1929 		if (ian != NULL)
1930 			list_move_tail(&clean_list, &ian->ia_list);
1931 		mutex_exit(&itxg->itxg_lock);
1932 	}
1933 	while ((itx = list_head(&clean_list)) != NULL) {
1934 		list_remove(&clean_list, itx);
1935 		/* commit itxs should never be on the async lists. */
1936 		ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
1937 		zil_itx_destroy(itx);
1938 	}
1939 	list_destroy(&clean_list);
1940 }
1941 
1942 void
1943 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1944 {
1945 	uint64_t txg;
1946 	itxg_t *itxg;
1947 	itxs_t *itxs, *clean = NULL;
1948 
1949 	/*
1950 	 * Ensure the data of a renamed file is committed before the rename.
1951 	 */
1952 	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1953 		zil_async_to_sync(zilog, itx->itx_oid);
1954 
1955 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1956 		txg = ZILTEST_TXG;
1957 	else
1958 		txg = dmu_tx_get_txg(tx);
1959 
1960 	itxg = &zilog->zl_itxg[txg & TXG_MASK];
1961 	mutex_enter(&itxg->itxg_lock);
1962 	itxs = itxg->itxg_itxs;
1963 	if (itxg->itxg_txg != txg) {
1964 		if (itxs != NULL) {
1965 			/*
1966 			 * The zil_clean callback hasn't got around to cleaning
1967 			 * this itxg. Save the itxs for release below.
1968 			 * This should be rare.
1969 			 */
1970 			zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
1971 			    "txg %llu", (u_longlong_t)itxg->itxg_txg);
1972 			clean = itxg->itxg_itxs;
1973 		}
1974 		itxg->itxg_txg = txg;
1975 		itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t),
1976 		    KM_SLEEP);
1977 
1978 		list_create(&itxs->i_sync_list, sizeof (itx_t),
1979 		    offsetof(itx_t, itx_node));
1980 		avl_create(&itxs->i_async_tree, zil_aitx_compare,
1981 		    sizeof (itx_async_node_t),
1982 		    offsetof(itx_async_node_t, ia_node));
1983 	}
1984 	if (itx->itx_sync) {
1985 		list_insert_tail(&itxs->i_sync_list, itx);
1986 	} else {
1987 		avl_tree_t *t = &itxs->i_async_tree;
1988 		uint64_t foid =
1989 		    LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid);
1990 		itx_async_node_t *ian;
1991 		avl_index_t where;
1992 
1993 		ian = avl_find(t, &foid, &where);
1994 		if (ian == NULL) {
1995 			ian = kmem_alloc(sizeof (itx_async_node_t),
1996 			    KM_SLEEP);
1997 			list_create(&ian->ia_list, sizeof (itx_t),
1998 			    offsetof(itx_t, itx_node));
1999 			ian->ia_foid = foid;
2000 			avl_insert(t, ian, where);
2001 		}
2002 		list_insert_tail(&ian->ia_list, itx);
2003 	}
2004 
2005 	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
2006 
2007 	/*
2008 	 * We don't want to dirty the ZIL using ZILTEST_TXG, because
2009 	 * zil_clean() will never be called using ZILTEST_TXG. Thus, we
2010 	 * need to be careful to always dirty the ZIL using the "real"
2011 	 * TXG (not itxg_txg) even when the SPA is frozen.
2012 	 */
2013 	zilog_dirty(zilog, dmu_tx_get_txg(tx));
2014 	mutex_exit(&itxg->itxg_lock);
2015 
2016 	/* Release the old itxs now we've dropped the lock */
2017 	if (clean != NULL)
2018 		zil_itxg_clean(clean);
2019 }
2020 
2021 /*
2022  * If there are any in-memory intent log transactions which have now been
2023  * synced then start up a taskq to free them. We should only do this after we
2024  * have written out the uberblocks (i.e. txg has been committed) so that
2025  * don't inadvertently clean out in-memory log records that would be required
2026  * by zil_commit().
2027  */
2028 void
2029 zil_clean(zilog_t *zilog, uint64_t synced_txg)
2030 {
2031 	itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
2032 	itxs_t *clean_me;
2033 
2034 	ASSERT3U(synced_txg, <, ZILTEST_TXG);
2035 
2036 	mutex_enter(&itxg->itxg_lock);
2037 	if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
2038 		mutex_exit(&itxg->itxg_lock);
2039 		return;
2040 	}
2041 	ASSERT3U(itxg->itxg_txg, <=, synced_txg);
2042 	ASSERT3U(itxg->itxg_txg, !=, 0);
2043 	clean_me = itxg->itxg_itxs;
2044 	itxg->itxg_itxs = NULL;
2045 	itxg->itxg_txg = 0;
2046 	mutex_exit(&itxg->itxg_lock);
2047 	/*
2048 	 * Preferably start a task queue to free up the old itxs but
2049 	 * if taskq_dispatch can't allocate resources to do that then
2050 	 * free it in-line. This should be rare. Note, using TQ_SLEEP
2051 	 * created a bad performance problem.
2052 	 */
2053 	ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
2054 	ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
2055 	taskqid_t id = taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
2056 	    zil_itxg_clean, clean_me, TQ_NOSLEEP);
2057 	if (id == TASKQID_INVALID)
2058 		zil_itxg_clean(clean_me);
2059 }
2060 
2061 /*
2062  * This function will traverse the queue of itxs that need to be
2063  * committed, and move them onto the ZIL's zl_itx_commit_list.
2064  */
2065 static void
2066 zil_get_commit_list(zilog_t *zilog)
2067 {
2068 	uint64_t otxg, txg;
2069 	list_t *commit_list = &zilog->zl_itx_commit_list;
2070 
2071 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2072 
2073 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2074 		otxg = ZILTEST_TXG;
2075 	else
2076 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2077 
2078 	/*
2079 	 * This is inherently racy, since there is nothing to prevent
2080 	 * the last synced txg from changing. That's okay since we'll
2081 	 * only commit things in the future.
2082 	 */
2083 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2084 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2085 
2086 		mutex_enter(&itxg->itxg_lock);
2087 		if (itxg->itxg_txg != txg) {
2088 			mutex_exit(&itxg->itxg_lock);
2089 			continue;
2090 		}
2091 
2092 		/*
2093 		 * If we're adding itx records to the zl_itx_commit_list,
2094 		 * then the zil better be dirty in this "txg". We can assert
2095 		 * that here since we're holding the itxg_lock which will
2096 		 * prevent spa_sync from cleaning it. Once we add the itxs
2097 		 * to the zl_itx_commit_list we must commit it to disk even
2098 		 * if it's unnecessary (i.e. the txg was synced).
2099 		 */
2100 		ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
2101 		    spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
2102 		list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
2103 
2104 		mutex_exit(&itxg->itxg_lock);
2105 	}
2106 }
2107 
2108 /*
2109  * Move the async itxs for a specified object to commit into sync lists.
2110  */
2111 void
2112 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
2113 {
2114 	uint64_t otxg, txg;
2115 	itx_async_node_t *ian;
2116 	avl_tree_t *t;
2117 	avl_index_t where;
2118 
2119 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2120 		otxg = ZILTEST_TXG;
2121 	else
2122 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2123 
2124 	/*
2125 	 * This is inherently racy, since there is nothing to prevent
2126 	 * the last synced txg from changing.
2127 	 */
2128 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2129 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2130 
2131 		mutex_enter(&itxg->itxg_lock);
2132 		if (itxg->itxg_txg != txg) {
2133 			mutex_exit(&itxg->itxg_lock);
2134 			continue;
2135 		}
2136 
2137 		/*
2138 		 * If a foid is specified then find that node and append its
2139 		 * list. Otherwise walk the tree appending all the lists
2140 		 * to the sync list. We add to the end rather than the
2141 		 * beginning to ensure the create has happened.
2142 		 */
2143 		t = &itxg->itxg_itxs->i_async_tree;
2144 		if (foid != 0) {
2145 			ian = avl_find(t, &foid, &where);
2146 			if (ian != NULL) {
2147 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
2148 				    &ian->ia_list);
2149 			}
2150 		} else {
2151 			void *cookie = NULL;
2152 
2153 			while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
2154 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
2155 				    &ian->ia_list);
2156 				list_destroy(&ian->ia_list);
2157 				kmem_free(ian, sizeof (itx_async_node_t));
2158 			}
2159 		}
2160 		mutex_exit(&itxg->itxg_lock);
2161 	}
2162 }
2163 
2164 /*
2165  * This function will prune commit itxs that are at the head of the
2166  * commit list (it won't prune past the first non-commit itx), and
2167  * either: a) attach them to the last lwb that's still pending
2168  * completion, or b) skip them altogether.
2169  *
2170  * This is used as a performance optimization to prevent commit itxs
2171  * from generating new lwbs when it's unnecessary to do so.
2172  */
2173 static void
2174 zil_prune_commit_list(zilog_t *zilog)
2175 {
2176 	itx_t *itx;
2177 
2178 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2179 
2180 	while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) {
2181 		lr_t *lrc = &itx->itx_lr;
2182 		if (lrc->lrc_txtype != TX_COMMIT)
2183 			break;
2184 
2185 		mutex_enter(&zilog->zl_lock);
2186 
2187 		lwb_t *last_lwb = zilog->zl_last_lwb_opened;
2188 		if (last_lwb == NULL ||
2189 		    last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) {
2190 			/*
2191 			 * All of the itxs this waiter was waiting on
2192 			 * must have already completed (or there were
2193 			 * never any itx's for it to wait on), so it's
2194 			 * safe to skip this waiter and mark it done.
2195 			 */
2196 			zil_commit_waiter_skip(itx->itx_private);
2197 		} else {
2198 			zil_commit_waiter_link_lwb(itx->itx_private, last_lwb);
2199 			itx->itx_private = NULL;
2200 		}
2201 
2202 		mutex_exit(&zilog->zl_lock);
2203 
2204 		list_remove(&zilog->zl_itx_commit_list, itx);
2205 		zil_itx_destroy(itx);
2206 	}
2207 
2208 	IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
2209 }
2210 
2211 static void
2212 zil_commit_writer_stall(zilog_t *zilog)
2213 {
2214 	/*
2215 	 * When zio_alloc_zil() fails to allocate the next lwb block on
2216 	 * disk, we must call txg_wait_synced() to ensure all of the
2217 	 * lwbs in the zilog's zl_lwb_list are synced and then freed (in
2218 	 * zil_sync()), such that any subsequent ZIL writer (i.e. a call
2219 	 * to zil_process_commit_list()) will have to call zil_create(),
2220 	 * and start a new ZIL chain.
2221 	 *
2222 	 * Since zil_alloc_zil() failed, the lwb that was previously
2223 	 * issued does not have a pointer to the "next" lwb on disk.
2224 	 * Thus, if another ZIL writer thread was to allocate the "next"
2225 	 * on-disk lwb, that block could be leaked in the event of a
2226 	 * crash (because the previous lwb on-disk would not point to
2227 	 * it).
2228 	 *
2229 	 * We must hold the zilog's zl_issuer_lock while we do this, to
2230 	 * ensure no new threads enter zil_process_commit_list() until
2231 	 * all lwb's in the zl_lwb_list have been synced and freed
2232 	 * (which is achieved via the txg_wait_synced() call).
2233 	 */
2234 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2235 	txg_wait_synced(zilog->zl_dmu_pool, 0);
2236 	ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
2237 }
2238 
2239 /*
2240  * This function will traverse the commit list, creating new lwbs as
2241  * needed, and committing the itxs from the commit list to these newly
2242  * created lwbs. Additionally, as a new lwb is created, the previous
2243  * lwb will be issued to the zio layer to be written to disk.
2244  */
2245 static void
2246 zil_process_commit_list(zilog_t *zilog)
2247 {
2248 	spa_t *spa = zilog->zl_spa;
2249 	list_t nolwb_itxs;
2250 	list_t nolwb_waiters;
2251 	lwb_t *lwb;
2252 	itx_t *itx;
2253 
2254 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2255 
2256 	/*
2257 	 * Return if there's nothing to commit before we dirty the fs by
2258 	 * calling zil_create().
2259 	 */
2260 	if (list_head(&zilog->zl_itx_commit_list) == NULL)
2261 		return;
2262 
2263 	list_create(&nolwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
2264 	list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t),
2265 	    offsetof(zil_commit_waiter_t, zcw_node));
2266 
2267 	lwb = list_tail(&zilog->zl_lwb_list);
2268 	if (lwb == NULL) {
2269 		lwb = zil_create(zilog);
2270 	} else {
2271 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2272 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
2273 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
2274 	}
2275 
2276 	while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) {
2277 		lr_t *lrc = &itx->itx_lr;
2278 		uint64_t txg = lrc->lrc_txg;
2279 
2280 		ASSERT3U(txg, !=, 0);
2281 
2282 		if (lrc->lrc_txtype == TX_COMMIT) {
2283 			DTRACE_PROBE2(zil__process__commit__itx,
2284 			    zilog_t *, zilog, itx_t *, itx);
2285 		} else {
2286 			DTRACE_PROBE2(zil__process__normal__itx,
2287 			    zilog_t *, zilog, itx_t *, itx);
2288 		}
2289 
2290 		list_remove(&zilog->zl_itx_commit_list, itx);
2291 
2292 		boolean_t synced = txg <= spa_last_synced_txg(spa);
2293 		boolean_t frozen = txg > spa_freeze_txg(spa);
2294 
2295 		/*
2296 		 * If the txg of this itx has already been synced out, then
2297 		 * we don't need to commit this itx to an lwb. This is
2298 		 * because the data of this itx will have already been
2299 		 * written to the main pool. This is inherently racy, and
2300 		 * it's still ok to commit an itx whose txg has already
2301 		 * been synced; this will result in a write that's
2302 		 * unnecessary, but will do no harm.
2303 		 *
2304 		 * With that said, we always want to commit TX_COMMIT itxs
2305 		 * to an lwb, regardless of whether or not that itx's txg
2306 		 * has been synced out. We do this to ensure any OPENED lwb
2307 		 * will always have at least one zil_commit_waiter_t linked
2308 		 * to the lwb.
2309 		 *
2310 		 * As a counter-example, if we skipped TX_COMMIT itx's
2311 		 * whose txg had already been synced, the following
2312 		 * situation could occur if we happened to be racing with
2313 		 * spa_sync:
2314 		 *
2315 		 * 1. We commit a non-TX_COMMIT itx to an lwb, where the
2316 		 *    itx's txg is 10 and the last synced txg is 9.
2317 		 * 2. spa_sync finishes syncing out txg 10.
2318 		 * 3. We move to the next itx in the list, it's a TX_COMMIT
2319 		 *    whose txg is 10, so we skip it rather than committing
2320 		 *    it to the lwb used in (1).
2321 		 *
2322 		 * If the itx that is skipped in (3) is the last TX_COMMIT
2323 		 * itx in the commit list, than it's possible for the lwb
2324 		 * used in (1) to remain in the OPENED state indefinitely.
2325 		 *
2326 		 * To prevent the above scenario from occurring, ensuring
2327 		 * that once an lwb is OPENED it will transition to ISSUED
2328 		 * and eventually DONE, we always commit TX_COMMIT itx's to
2329 		 * an lwb here, even if that itx's txg has already been
2330 		 * synced.
2331 		 *
2332 		 * Finally, if the pool is frozen, we _always_ commit the
2333 		 * itx.  The point of freezing the pool is to prevent data
2334 		 * from being written to the main pool via spa_sync, and
2335 		 * instead rely solely on the ZIL to persistently store the
2336 		 * data; i.e.  when the pool is frozen, the last synced txg
2337 		 * value can't be trusted.
2338 		 */
2339 		if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) {
2340 			if (lwb != NULL) {
2341 				lwb = zil_lwb_commit(zilog, itx, lwb);
2342 
2343 				if (lwb == NULL)
2344 					list_insert_tail(&nolwb_itxs, itx);
2345 				else
2346 					list_insert_tail(&lwb->lwb_itxs, itx);
2347 			} else {
2348 				if (lrc->lrc_txtype == TX_COMMIT) {
2349 					zil_commit_waiter_link_nolwb(
2350 					    itx->itx_private, &nolwb_waiters);
2351 				}
2352 
2353 				list_insert_tail(&nolwb_itxs, itx);
2354 			}
2355 		} else {
2356 			ASSERT3S(lrc->lrc_txtype, !=, TX_COMMIT);
2357 			zil_itx_destroy(itx);
2358 		}
2359 	}
2360 
2361 	if (lwb == NULL) {
2362 		/*
2363 		 * This indicates zio_alloc_zil() failed to allocate the
2364 		 * "next" lwb on-disk. When this happens, we must stall
2365 		 * the ZIL write pipeline; see the comment within
2366 		 * zil_commit_writer_stall() for more details.
2367 		 */
2368 		zil_commit_writer_stall(zilog);
2369 
2370 		/*
2371 		 * Additionally, we have to signal and mark the "nolwb"
2372 		 * waiters as "done" here, since without an lwb, we
2373 		 * can't do this via zil_lwb_flush_vdevs_done() like
2374 		 * normal.
2375 		 */
2376 		zil_commit_waiter_t *zcw;
2377 		while ((zcw = list_head(&nolwb_waiters)) != NULL) {
2378 			zil_commit_waiter_skip(zcw);
2379 			list_remove(&nolwb_waiters, zcw);
2380 		}
2381 
2382 		/*
2383 		 * And finally, we have to destroy the itx's that
2384 		 * couldn't be committed to an lwb; this will also call
2385 		 * the itx's callback if one exists for the itx.
2386 		 */
2387 		while ((itx = list_head(&nolwb_itxs)) != NULL) {
2388 			list_remove(&nolwb_itxs, itx);
2389 			zil_itx_destroy(itx);
2390 		}
2391 	} else {
2392 		ASSERT(list_is_empty(&nolwb_waiters));
2393 		ASSERT3P(lwb, !=, NULL);
2394 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2395 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
2396 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
2397 
2398 		/*
2399 		 * At this point, the ZIL block pointed at by the "lwb"
2400 		 * variable is in one of the following states: "closed"
2401 		 * or "open".
2402 		 *
2403 		 * If it's "closed", then no itxs have been committed to
2404 		 * it, so there's no point in issuing its zio (i.e. it's
2405 		 * "empty").
2406 		 *
2407 		 * If it's "open", then it contains one or more itxs that
2408 		 * eventually need to be committed to stable storage. In
2409 		 * this case we intentionally do not issue the lwb's zio
2410 		 * to disk yet, and instead rely on one of the following
2411 		 * two mechanisms for issuing the zio:
2412 		 *
2413 		 * 1. Ideally, there will be more ZIL activity occurring
2414 		 * on the system, such that this function will be
2415 		 * immediately called again (not necessarily by the same
2416 		 * thread) and this lwb's zio will be issued via
2417 		 * zil_lwb_commit(). This way, the lwb is guaranteed to
2418 		 * be "full" when it is issued to disk, and we'll make
2419 		 * use of the lwb's size the best we can.
2420 		 *
2421 		 * 2. If there isn't sufficient ZIL activity occurring on
2422 		 * the system, such that this lwb's zio isn't issued via
2423 		 * zil_lwb_commit(), zil_commit_waiter() will issue the
2424 		 * lwb's zio. If this occurs, the lwb is not guaranteed
2425 		 * to be "full" by the time its zio is issued, and means
2426 		 * the size of the lwb was "too large" given the amount
2427 		 * of ZIL activity occurring on the system at that time.
2428 		 *
2429 		 * We do this for a couple of reasons:
2430 		 *
2431 		 * 1. To try and reduce the number of IOPs needed to
2432 		 * write the same number of itxs. If an lwb has space
2433 		 * available in its buffer for more itxs, and more itxs
2434 		 * will be committed relatively soon (relative to the
2435 		 * latency of performing a write), then it's beneficial
2436 		 * to wait for these "next" itxs. This way, more itxs
2437 		 * can be committed to stable storage with fewer writes.
2438 		 *
2439 		 * 2. To try and use the largest lwb block size that the
2440 		 * incoming rate of itxs can support. Again, this is to
2441 		 * try and pack as many itxs into as few lwbs as
2442 		 * possible, without significantly impacting the latency
2443 		 * of each individual itx.
2444 		 */
2445 	}
2446 }
2447 
2448 /*
2449  * This function is responsible for ensuring the passed in commit waiter
2450  * (and associated commit itx) is committed to an lwb. If the waiter is
2451  * not already committed to an lwb, all itxs in the zilog's queue of
2452  * itxs will be processed. The assumption is the passed in waiter's
2453  * commit itx will found in the queue just like the other non-commit
2454  * itxs, such that when the entire queue is processed, the waiter will
2455  * have been committed to an lwb.
2456  *
2457  * The lwb associated with the passed in waiter is not guaranteed to
2458  * have been issued by the time this function completes. If the lwb is
2459  * not issued, we rely on future calls to zil_commit_writer() to issue
2460  * the lwb, or the timeout mechanism found in zil_commit_waiter().
2461  */
2462 static void
2463 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw)
2464 {
2465 	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2466 	ASSERT(spa_writeable(zilog->zl_spa));
2467 
2468 	mutex_enter(&zilog->zl_issuer_lock);
2469 
2470 	if (zcw->zcw_lwb != NULL || zcw->zcw_done) {
2471 		/*
2472 		 * It's possible that, while we were waiting to acquire
2473 		 * the "zl_issuer_lock", another thread committed this
2474 		 * waiter to an lwb. If that occurs, we bail out early,
2475 		 * without processing any of the zilog's queue of itxs.
2476 		 *
2477 		 * On certain workloads and system configurations, the
2478 		 * "zl_issuer_lock" can become highly contended. In an
2479 		 * attempt to reduce this contention, we immediately drop
2480 		 * the lock if the waiter has already been processed.
2481 		 *
2482 		 * We've measured this optimization to reduce CPU spent
2483 		 * contending on this lock by up to 5%, using a system
2484 		 * with 32 CPUs, low latency storage (~50 usec writes),
2485 		 * and 1024 threads performing sync writes.
2486 		 */
2487 		goto out;
2488 	}
2489 
2490 	ZIL_STAT_BUMP(zil_commit_writer_count);
2491 
2492 	zil_get_commit_list(zilog);
2493 	zil_prune_commit_list(zilog);
2494 	zil_process_commit_list(zilog);
2495 
2496 out:
2497 	mutex_exit(&zilog->zl_issuer_lock);
2498 }
2499 
2500 static void
2501 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw)
2502 {
2503 	ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2504 	ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2505 	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
2506 
2507 	lwb_t *lwb = zcw->zcw_lwb;
2508 	ASSERT3P(lwb, !=, NULL);
2509 	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED);
2510 
2511 	/*
2512 	 * If the lwb has already been issued by another thread, we can
2513 	 * immediately return since there's no work to be done (the
2514 	 * point of this function is to issue the lwb). Additionally, we
2515 	 * do this prior to acquiring the zl_issuer_lock, to avoid
2516 	 * acquiring it when it's not necessary to do so.
2517 	 */
2518 	if (lwb->lwb_state == LWB_STATE_ISSUED ||
2519 	    lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2520 	    lwb->lwb_state == LWB_STATE_FLUSH_DONE)
2521 		return;
2522 
2523 	/*
2524 	 * In order to call zil_lwb_write_issue() we must hold the
2525 	 * zilog's "zl_issuer_lock". We can't simply acquire that lock,
2526 	 * since we're already holding the commit waiter's "zcw_lock",
2527 	 * and those two locks are acquired in the opposite order
2528 	 * elsewhere.
2529 	 */
2530 	mutex_exit(&zcw->zcw_lock);
2531 	mutex_enter(&zilog->zl_issuer_lock);
2532 	mutex_enter(&zcw->zcw_lock);
2533 
2534 	/*
2535 	 * Since we just dropped and re-acquired the commit waiter's
2536 	 * lock, we have to re-check to see if the waiter was marked
2537 	 * "done" during that process. If the waiter was marked "done",
2538 	 * the "lwb" pointer is no longer valid (it can be free'd after
2539 	 * the waiter is marked "done"), so without this check we could
2540 	 * wind up with a use-after-free error below.
2541 	 */
2542 	if (zcw->zcw_done)
2543 		goto out;
2544 
2545 	ASSERT3P(lwb, ==, zcw->zcw_lwb);
2546 
2547 	/*
2548 	 * We've already checked this above, but since we hadn't acquired
2549 	 * the zilog's zl_issuer_lock, we have to perform this check a
2550 	 * second time while holding the lock.
2551 	 *
2552 	 * We don't need to hold the zl_lock since the lwb cannot transition
2553 	 * from OPENED to ISSUED while we hold the zl_issuer_lock. The lwb
2554 	 * _can_ transition from ISSUED to DONE, but it's OK to race with
2555 	 * that transition since we treat the lwb the same, whether it's in
2556 	 * the ISSUED or DONE states.
2557 	 *
2558 	 * The important thing, is we treat the lwb differently depending on
2559 	 * if it's ISSUED or OPENED, and block any other threads that might
2560 	 * attempt to issue this lwb. For that reason we hold the
2561 	 * zl_issuer_lock when checking the lwb_state; we must not call
2562 	 * zil_lwb_write_issue() if the lwb had already been issued.
2563 	 *
2564 	 * See the comment above the lwb_state_t structure definition for
2565 	 * more details on the lwb states, and locking requirements.
2566 	 */
2567 	if (lwb->lwb_state == LWB_STATE_ISSUED ||
2568 	    lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2569 	    lwb->lwb_state == LWB_STATE_FLUSH_DONE)
2570 		goto out;
2571 
2572 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
2573 
2574 	/*
2575 	 * As described in the comments above zil_commit_waiter() and
2576 	 * zil_process_commit_list(), we need to issue this lwb's zio
2577 	 * since we've reached the commit waiter's timeout and it still
2578 	 * hasn't been issued.
2579 	 */
2580 	lwb_t *nlwb = zil_lwb_write_issue(zilog, lwb);
2581 
2582 	IMPLY(nlwb != NULL, lwb->lwb_state != LWB_STATE_OPENED);
2583 
2584 	/*
2585 	 * Since the lwb's zio hadn't been issued by the time this thread
2586 	 * reached its timeout, we reset the zilog's "zl_cur_used" field
2587 	 * to influence the zil block size selection algorithm.
2588 	 *
2589 	 * By having to issue the lwb's zio here, it means the size of the
2590 	 * lwb was too large, given the incoming throughput of itxs.  By
2591 	 * setting "zl_cur_used" to zero, we communicate this fact to the
2592 	 * block size selection algorithm, so it can take this information
2593 	 * into account, and potentially select a smaller size for the
2594 	 * next lwb block that is allocated.
2595 	 */
2596 	zilog->zl_cur_used = 0;
2597 
2598 	if (nlwb == NULL) {
2599 		/*
2600 		 * When zil_lwb_write_issue() returns NULL, this
2601 		 * indicates zio_alloc_zil() failed to allocate the
2602 		 * "next" lwb on-disk. When this occurs, the ZIL write
2603 		 * pipeline must be stalled; see the comment within the
2604 		 * zil_commit_writer_stall() function for more details.
2605 		 *
2606 		 * We must drop the commit waiter's lock prior to
2607 		 * calling zil_commit_writer_stall() or else we can wind
2608 		 * up with the following deadlock:
2609 		 *
2610 		 * - This thread is waiting for the txg to sync while
2611 		 *   holding the waiter's lock; txg_wait_synced() is
2612 		 *   used within txg_commit_writer_stall().
2613 		 *
2614 		 * - The txg can't sync because it is waiting for this
2615 		 *   lwb's zio callback to call dmu_tx_commit().
2616 		 *
2617 		 * - The lwb's zio callback can't call dmu_tx_commit()
2618 		 *   because it's blocked trying to acquire the waiter's
2619 		 *   lock, which occurs prior to calling dmu_tx_commit()
2620 		 */
2621 		mutex_exit(&zcw->zcw_lock);
2622 		zil_commit_writer_stall(zilog);
2623 		mutex_enter(&zcw->zcw_lock);
2624 	}
2625 
2626 out:
2627 	mutex_exit(&zilog->zl_issuer_lock);
2628 	ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2629 }
2630 
2631 /*
2632  * This function is responsible for performing the following two tasks:
2633  *
2634  * 1. its primary responsibility is to block until the given "commit
2635  *    waiter" is considered "done".
2636  *
2637  * 2. its secondary responsibility is to issue the zio for the lwb that
2638  *    the given "commit waiter" is waiting on, if this function has
2639  *    waited "long enough" and the lwb is still in the "open" state.
2640  *
2641  * Given a sufficient amount of itxs being generated and written using
2642  * the ZIL, the lwb's zio will be issued via the zil_lwb_commit()
2643  * function. If this does not occur, this secondary responsibility will
2644  * ensure the lwb is issued even if there is not other synchronous
2645  * activity on the system.
2646  *
2647  * For more details, see zil_process_commit_list(); more specifically,
2648  * the comment at the bottom of that function.
2649  */
2650 static void
2651 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw)
2652 {
2653 	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2654 	ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2655 	ASSERT(spa_writeable(zilog->zl_spa));
2656 
2657 	mutex_enter(&zcw->zcw_lock);
2658 
2659 	/*
2660 	 * The timeout is scaled based on the lwb latency to avoid
2661 	 * significantly impacting the latency of each individual itx.
2662 	 * For more details, see the comment at the bottom of the
2663 	 * zil_process_commit_list() function.
2664 	 */
2665 	int pct = MAX(zfs_commit_timeout_pct, 1);
2666 	hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100;
2667 	hrtime_t wakeup = gethrtime() + sleep;
2668 	boolean_t timedout = B_FALSE;
2669 
2670 	while (!zcw->zcw_done) {
2671 		ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2672 
2673 		lwb_t *lwb = zcw->zcw_lwb;
2674 
2675 		/*
2676 		 * Usually, the waiter will have a non-NULL lwb field here,
2677 		 * but it's possible for it to be NULL as a result of
2678 		 * zil_commit() racing with spa_sync().
2679 		 *
2680 		 * When zil_clean() is called, it's possible for the itxg
2681 		 * list (which may be cleaned via a taskq) to contain
2682 		 * commit itxs. When this occurs, the commit waiters linked
2683 		 * off of these commit itxs will not be committed to an
2684 		 * lwb.  Additionally, these commit waiters will not be
2685 		 * marked done until zil_commit_waiter_skip() is called via
2686 		 * zil_itxg_clean().
2687 		 *
2688 		 * Thus, it's possible for this commit waiter (i.e. the
2689 		 * "zcw" variable) to be found in this "in between" state;
2690 		 * where it's "zcw_lwb" field is NULL, and it hasn't yet
2691 		 * been skipped, so it's "zcw_done" field is still B_FALSE.
2692 		 */
2693 		IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED);
2694 
2695 		if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) {
2696 			ASSERT3B(timedout, ==, B_FALSE);
2697 
2698 			/*
2699 			 * If the lwb hasn't been issued yet, then we
2700 			 * need to wait with a timeout, in case this
2701 			 * function needs to issue the lwb after the
2702 			 * timeout is reached; responsibility (2) from
2703 			 * the comment above this function.
2704 			 */
2705 			int rc = cv_timedwait_hires(&zcw->zcw_cv,
2706 			    &zcw->zcw_lock, wakeup, USEC2NSEC(1),
2707 			    CALLOUT_FLAG_ABSOLUTE);
2708 
2709 			if (rc != -1 || zcw->zcw_done)
2710 				continue;
2711 
2712 			timedout = B_TRUE;
2713 			zil_commit_waiter_timeout(zilog, zcw);
2714 
2715 			if (!zcw->zcw_done) {
2716 				/*
2717 				 * If the commit waiter has already been
2718 				 * marked "done", it's possible for the
2719 				 * waiter's lwb structure to have already
2720 				 * been freed.  Thus, we can only reliably
2721 				 * make these assertions if the waiter
2722 				 * isn't done.
2723 				 */
2724 				ASSERT3P(lwb, ==, zcw->zcw_lwb);
2725 				ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
2726 			}
2727 		} else {
2728 			/*
2729 			 * If the lwb isn't open, then it must have already
2730 			 * been issued. In that case, there's no need to
2731 			 * use a timeout when waiting for the lwb to
2732 			 * complete.
2733 			 *
2734 			 * Additionally, if the lwb is NULL, the waiter
2735 			 * will soon be signaled and marked done via
2736 			 * zil_clean() and zil_itxg_clean(), so no timeout
2737 			 * is required.
2738 			 */
2739 
2740 			IMPLY(lwb != NULL,
2741 			    lwb->lwb_state == LWB_STATE_ISSUED ||
2742 			    lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2743 			    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
2744 			cv_wait(&zcw->zcw_cv, &zcw->zcw_lock);
2745 		}
2746 	}
2747 
2748 	mutex_exit(&zcw->zcw_lock);
2749 }
2750 
2751 static zil_commit_waiter_t *
2752 zil_alloc_commit_waiter(void)
2753 {
2754 	zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP);
2755 
2756 	cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL);
2757 	mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL);
2758 	list_link_init(&zcw->zcw_node);
2759 	zcw->zcw_lwb = NULL;
2760 	zcw->zcw_done = B_FALSE;
2761 	zcw->zcw_zio_error = 0;
2762 
2763 	return (zcw);
2764 }
2765 
2766 static void
2767 zil_free_commit_waiter(zil_commit_waiter_t *zcw)
2768 {
2769 	ASSERT(!list_link_active(&zcw->zcw_node));
2770 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
2771 	ASSERT3B(zcw->zcw_done, ==, B_TRUE);
2772 	mutex_destroy(&zcw->zcw_lock);
2773 	cv_destroy(&zcw->zcw_cv);
2774 	kmem_cache_free(zil_zcw_cache, zcw);
2775 }
2776 
2777 /*
2778  * This function is used to create a TX_COMMIT itx and assign it. This
2779  * way, it will be linked into the ZIL's list of synchronous itxs, and
2780  * then later committed to an lwb (or skipped) when
2781  * zil_process_commit_list() is called.
2782  */
2783 static void
2784 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw)
2785 {
2786 	dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
2787 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
2788 
2789 	itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t));
2790 	itx->itx_sync = B_TRUE;
2791 	itx->itx_private = zcw;
2792 
2793 	zil_itx_assign(zilog, itx, tx);
2794 
2795 	dmu_tx_commit(tx);
2796 }
2797 
2798 /*
2799  * Commit ZFS Intent Log transactions (itxs) to stable storage.
2800  *
2801  * When writing ZIL transactions to the on-disk representation of the
2802  * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple
2803  * itxs can be committed to a single lwb. Once a lwb is written and
2804  * committed to stable storage (i.e. the lwb is written, and vdevs have
2805  * been flushed), each itx that was committed to that lwb is also
2806  * considered to be committed to stable storage.
2807  *
2808  * When an itx is committed to an lwb, the log record (lr_t) contained
2809  * by the itx is copied into the lwb's zio buffer, and once this buffer
2810  * is written to disk, it becomes an on-disk ZIL block.
2811  *
2812  * As itxs are generated, they're inserted into the ZIL's queue of
2813  * uncommitted itxs. The semantics of zil_commit() are such that it will
2814  * block until all itxs that were in the queue when it was called, are
2815  * committed to stable storage.
2816  *
2817  * If "foid" is zero, this means all "synchronous" and "asynchronous"
2818  * itxs, for all objects in the dataset, will be committed to stable
2819  * storage prior to zil_commit() returning. If "foid" is non-zero, all
2820  * "synchronous" itxs for all objects, but only "asynchronous" itxs
2821  * that correspond to the foid passed in, will be committed to stable
2822  * storage prior to zil_commit() returning.
2823  *
2824  * Generally speaking, when zil_commit() is called, the consumer doesn't
2825  * actually care about _all_ of the uncommitted itxs. Instead, they're
2826  * simply trying to waiting for a specific itx to be committed to disk,
2827  * but the interface(s) for interacting with the ZIL don't allow such
2828  * fine-grained communication. A better interface would allow a consumer
2829  * to create and assign an itx, and then pass a reference to this itx to
2830  * zil_commit(); such that zil_commit() would return as soon as that
2831  * specific itx was committed to disk (instead of waiting for _all_
2832  * itxs to be committed).
2833  *
2834  * When a thread calls zil_commit() a special "commit itx" will be
2835  * generated, along with a corresponding "waiter" for this commit itx.
2836  * zil_commit() will wait on this waiter's CV, such that when the waiter
2837  * is marked done, and signaled, zil_commit() will return.
2838  *
2839  * This commit itx is inserted into the queue of uncommitted itxs. This
2840  * provides an easy mechanism for determining which itxs were in the
2841  * queue prior to zil_commit() having been called, and which itxs were
2842  * added after zil_commit() was called.
2843  *
2844  * The commit it is special; it doesn't have any on-disk representation.
2845  * When a commit itx is "committed" to an lwb, the waiter associated
2846  * with it is linked onto the lwb's list of waiters. Then, when that lwb
2847  * completes, each waiter on the lwb's list is marked done and signaled
2848  * -- allowing the thread waiting on the waiter to return from zil_commit().
2849  *
2850  * It's important to point out a few critical factors that allow us
2851  * to make use of the commit itxs, commit waiters, per-lwb lists of
2852  * commit waiters, and zio completion callbacks like we're doing:
2853  *
2854  *   1. The list of waiters for each lwb is traversed, and each commit
2855  *      waiter is marked "done" and signaled, in the zio completion
2856  *      callback of the lwb's zio[*].
2857  *
2858  *      * Actually, the waiters are signaled in the zio completion
2859  *        callback of the root zio for the DKIOCFLUSHWRITECACHE commands
2860  *        that are sent to the vdevs upon completion of the lwb zio.
2861  *
2862  *   2. When the itxs are inserted into the ZIL's queue of uncommitted
2863  *      itxs, the order in which they are inserted is preserved[*]; as
2864  *      itxs are added to the queue, they are added to the tail of
2865  *      in-memory linked lists.
2866  *
2867  *      When committing the itxs to lwbs (to be written to disk), they
2868  *      are committed in the same order in which the itxs were added to
2869  *      the uncommitted queue's linked list(s); i.e. the linked list of
2870  *      itxs to commit is traversed from head to tail, and each itx is
2871  *      committed to an lwb in that order.
2872  *
2873  *      * To clarify:
2874  *
2875  *        - the order of "sync" itxs is preserved w.r.t. other
2876  *          "sync" itxs, regardless of the corresponding objects.
2877  *        - the order of "async" itxs is preserved w.r.t. other
2878  *          "async" itxs corresponding to the same object.
2879  *        - the order of "async" itxs is *not* preserved w.r.t. other
2880  *          "async" itxs corresponding to different objects.
2881  *        - the order of "sync" itxs w.r.t. "async" itxs (or vice
2882  *          versa) is *not* preserved, even for itxs that correspond
2883  *          to the same object.
2884  *
2885  *      For more details, see: zil_itx_assign(), zil_async_to_sync(),
2886  *      zil_get_commit_list(), and zil_process_commit_list().
2887  *
2888  *   3. The lwbs represent a linked list of blocks on disk. Thus, any
2889  *      lwb cannot be considered committed to stable storage, until its
2890  *      "previous" lwb is also committed to stable storage. This fact,
2891  *      coupled with the fact described above, means that itxs are
2892  *      committed in (roughly) the order in which they were generated.
2893  *      This is essential because itxs are dependent on prior itxs.
2894  *      Thus, we *must not* deem an itx as being committed to stable
2895  *      storage, until *all* prior itxs have also been committed to
2896  *      stable storage.
2897  *
2898  *      To enforce this ordering of lwb zio's, while still leveraging as
2899  *      much of the underlying storage performance as possible, we rely
2900  *      on two fundamental concepts:
2901  *
2902  *          1. The creation and issuance of lwb zio's is protected by
2903  *             the zilog's "zl_issuer_lock", which ensures only a single
2904  *             thread is creating and/or issuing lwb's at a time
2905  *          2. The "previous" lwb is a child of the "current" lwb
2906  *             (leveraging the zio parent-child dependency graph)
2907  *
2908  *      By relying on this parent-child zio relationship, we can have
2909  *      many lwb zio's concurrently issued to the underlying storage,
2910  *      but the order in which they complete will be the same order in
2911  *      which they were created.
2912  */
2913 void
2914 zil_commit(zilog_t *zilog, uint64_t foid)
2915 {
2916 	/*
2917 	 * We should never attempt to call zil_commit on a snapshot for
2918 	 * a couple of reasons:
2919 	 *
2920 	 * 1. A snapshot may never be modified, thus it cannot have any
2921 	 *    in-flight itxs that would have modified the dataset.
2922 	 *
2923 	 * 2. By design, when zil_commit() is called, a commit itx will
2924 	 *    be assigned to this zilog; as a result, the zilog will be
2925 	 *    dirtied. We must not dirty the zilog of a snapshot; there's
2926 	 *    checks in the code that enforce this invariant, and will
2927 	 *    cause a panic if it's not upheld.
2928 	 */
2929 	ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE);
2930 
2931 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2932 		return;
2933 
2934 	if (!spa_writeable(zilog->zl_spa)) {
2935 		/*
2936 		 * If the SPA is not writable, there should never be any
2937 		 * pending itxs waiting to be committed to disk. If that
2938 		 * weren't true, we'd skip writing those itxs out, and
2939 		 * would break the semantics of zil_commit(); thus, we're
2940 		 * verifying that truth before we return to the caller.
2941 		 */
2942 		ASSERT(list_is_empty(&zilog->zl_lwb_list));
2943 		ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
2944 		for (int i = 0; i < TXG_SIZE; i++)
2945 			ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL);
2946 		return;
2947 	}
2948 
2949 	/*
2950 	 * If the ZIL is suspended, we don't want to dirty it by calling
2951 	 * zil_commit_itx_assign() below, nor can we write out
2952 	 * lwbs like would be done in zil_commit_write(). Thus, we
2953 	 * simply rely on txg_wait_synced() to maintain the necessary
2954 	 * semantics, and avoid calling those functions altogether.
2955 	 */
2956 	if (zilog->zl_suspend > 0) {
2957 		txg_wait_synced(zilog->zl_dmu_pool, 0);
2958 		return;
2959 	}
2960 
2961 	zil_commit_impl(zilog, foid);
2962 }
2963 
2964 void
2965 zil_commit_impl(zilog_t *zilog, uint64_t foid)
2966 {
2967 	ZIL_STAT_BUMP(zil_commit_count);
2968 
2969 	/*
2970 	 * Move the "async" itxs for the specified foid to the "sync"
2971 	 * queues, such that they will be later committed (or skipped)
2972 	 * to an lwb when zil_process_commit_list() is called.
2973 	 *
2974 	 * Since these "async" itxs must be committed prior to this
2975 	 * call to zil_commit returning, we must perform this operation
2976 	 * before we call zil_commit_itx_assign().
2977 	 */
2978 	zil_async_to_sync(zilog, foid);
2979 
2980 	/*
2981 	 * We allocate a new "waiter" structure which will initially be
2982 	 * linked to the commit itx using the itx's "itx_private" field.
2983 	 * Since the commit itx doesn't represent any on-disk state,
2984 	 * when it's committed to an lwb, rather than copying the its
2985 	 * lr_t into the lwb's buffer, the commit itx's "waiter" will be
2986 	 * added to the lwb's list of waiters. Then, when the lwb is
2987 	 * committed to stable storage, each waiter in the lwb's list of
2988 	 * waiters will be marked "done", and signalled.
2989 	 *
2990 	 * We must create the waiter and assign the commit itx prior to
2991 	 * calling zil_commit_writer(), or else our specific commit itx
2992 	 * is not guaranteed to be committed to an lwb prior to calling
2993 	 * zil_commit_waiter().
2994 	 */
2995 	zil_commit_waiter_t *zcw = zil_alloc_commit_waiter();
2996 	zil_commit_itx_assign(zilog, zcw);
2997 
2998 	zil_commit_writer(zilog, zcw);
2999 	zil_commit_waiter(zilog, zcw);
3000 
3001 	if (zcw->zcw_zio_error != 0) {
3002 		/*
3003 		 * If there was an error writing out the ZIL blocks that
3004 		 * this thread is waiting on, then we fallback to
3005 		 * relying on spa_sync() to write out the data this
3006 		 * thread is waiting on. Obviously this has performance
3007 		 * implications, but the expectation is for this to be
3008 		 * an exceptional case, and shouldn't occur often.
3009 		 */
3010 		DTRACE_PROBE2(zil__commit__io__error,
3011 		    zilog_t *, zilog, zil_commit_waiter_t *, zcw);
3012 		txg_wait_synced(zilog->zl_dmu_pool, 0);
3013 	}
3014 
3015 	zil_free_commit_waiter(zcw);
3016 }
3017 
3018 /*
3019  * Called in syncing context to free committed log blocks and update log header.
3020  */
3021 void
3022 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
3023 {
3024 	zil_header_t *zh = zil_header_in_syncing_context(zilog);
3025 	uint64_t txg = dmu_tx_get_txg(tx);
3026 	spa_t *spa = zilog->zl_spa;
3027 	uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
3028 	lwb_t *lwb;
3029 
3030 	/*
3031 	 * We don't zero out zl_destroy_txg, so make sure we don't try
3032 	 * to destroy it twice.
3033 	 */
3034 	if (spa_sync_pass(spa) != 1)
3035 		return;
3036 
3037 	mutex_enter(&zilog->zl_lock);
3038 
3039 	ASSERT(zilog->zl_stop_sync == 0);
3040 
3041 	if (*replayed_seq != 0) {
3042 		ASSERT(zh->zh_replay_seq < *replayed_seq);
3043 		zh->zh_replay_seq = *replayed_seq;
3044 		*replayed_seq = 0;
3045 	}
3046 
3047 	if (zilog->zl_destroy_txg == txg) {
3048 		blkptr_t blk = zh->zh_log;
3049 
3050 		ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
3051 
3052 		bzero(zh, sizeof (zil_header_t));
3053 		bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
3054 
3055 		if (zilog->zl_keep_first) {
3056 			/*
3057 			 * If this block was part of log chain that couldn't
3058 			 * be claimed because a device was missing during
3059 			 * zil_claim(), but that device later returns,
3060 			 * then this block could erroneously appear valid.
3061 			 * To guard against this, assign a new GUID to the new
3062 			 * log chain so it doesn't matter what blk points to.
3063 			 */
3064 			zil_init_log_chain(zilog, &blk);
3065 			zh->zh_log = blk;
3066 		}
3067 	}
3068 
3069 	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
3070 		zh->zh_log = lwb->lwb_blk;
3071 		if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
3072 			break;
3073 		list_remove(&zilog->zl_lwb_list, lwb);
3074 		zio_free(spa, txg, &lwb->lwb_blk);
3075 		zil_free_lwb(zilog, lwb);
3076 
3077 		/*
3078 		 * If we don't have anything left in the lwb list then
3079 		 * we've had an allocation failure and we need to zero
3080 		 * out the zil_header blkptr so that we don't end
3081 		 * up freeing the same block twice.
3082 		 */
3083 		if (list_head(&zilog->zl_lwb_list) == NULL)
3084 			BP_ZERO(&zh->zh_log);
3085 	}
3086 
3087 	/*
3088 	 * Remove fastwrite on any blocks that have been pre-allocated for
3089 	 * the next commit. This prevents fastwrite counter pollution by
3090 	 * unused, long-lived LWBs.
3091 	 */
3092 	for (; lwb != NULL; lwb = list_next(&zilog->zl_lwb_list, lwb)) {
3093 		if (lwb->lwb_fastwrite && !lwb->lwb_write_zio) {
3094 			metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk);
3095 			lwb->lwb_fastwrite = 0;
3096 		}
3097 	}
3098 
3099 	mutex_exit(&zilog->zl_lock);
3100 }
3101 
3102 /* ARGSUSED */
3103 static int
3104 zil_lwb_cons(void *vbuf, void *unused, int kmflag)
3105 {
3106 	lwb_t *lwb = vbuf;
3107 	list_create(&lwb->lwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
3108 	list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t),
3109 	    offsetof(zil_commit_waiter_t, zcw_node));
3110 	avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare,
3111 	    sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
3112 	mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
3113 	return (0);
3114 }
3115 
3116 /* ARGSUSED */
3117 static void
3118 zil_lwb_dest(void *vbuf, void *unused)
3119 {
3120 	lwb_t *lwb = vbuf;
3121 	mutex_destroy(&lwb->lwb_vdev_lock);
3122 	avl_destroy(&lwb->lwb_vdev_tree);
3123 	list_destroy(&lwb->lwb_waiters);
3124 	list_destroy(&lwb->lwb_itxs);
3125 }
3126 
3127 void
3128 zil_init(void)
3129 {
3130 	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
3131 	    sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0);
3132 
3133 	zil_zcw_cache = kmem_cache_create("zil_zcw_cache",
3134 	    sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
3135 
3136 	zil_ksp = kstat_create("zfs", 0, "zil", "misc",
3137 	    KSTAT_TYPE_NAMED, sizeof (zil_stats) / sizeof (kstat_named_t),
3138 	    KSTAT_FLAG_VIRTUAL);
3139 
3140 	if (zil_ksp != NULL) {
3141 		zil_ksp->ks_data = &zil_stats;
3142 		kstat_install(zil_ksp);
3143 	}
3144 }
3145 
3146 void
3147 zil_fini(void)
3148 {
3149 	kmem_cache_destroy(zil_zcw_cache);
3150 	kmem_cache_destroy(zil_lwb_cache);
3151 
3152 	if (zil_ksp != NULL) {
3153 		kstat_delete(zil_ksp);
3154 		zil_ksp = NULL;
3155 	}
3156 }
3157 
3158 void
3159 zil_set_sync(zilog_t *zilog, uint64_t sync)
3160 {
3161 	zilog->zl_sync = sync;
3162 }
3163 
3164 void
3165 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
3166 {
3167 	zilog->zl_logbias = logbias;
3168 }
3169 
3170 zilog_t *
3171 zil_alloc(objset_t *os, zil_header_t *zh_phys)
3172 {
3173 	zilog_t *zilog;
3174 
3175 	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
3176 
3177 	zilog->zl_header = zh_phys;
3178 	zilog->zl_os = os;
3179 	zilog->zl_spa = dmu_objset_spa(os);
3180 	zilog->zl_dmu_pool = dmu_objset_pool(os);
3181 	zilog->zl_destroy_txg = TXG_INITIAL - 1;
3182 	zilog->zl_logbias = dmu_objset_logbias(os);
3183 	zilog->zl_sync = dmu_objset_syncprop(os);
3184 	zilog->zl_dirty_max_txg = 0;
3185 	zilog->zl_last_lwb_opened = NULL;
3186 	zilog->zl_last_lwb_latency = 0;
3187 	zilog->zl_max_block_size = zil_maxblocksize;
3188 
3189 	mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
3190 	mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL);
3191 
3192 	for (int i = 0; i < TXG_SIZE; i++) {
3193 		mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
3194 		    MUTEX_DEFAULT, NULL);
3195 	}
3196 
3197 	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
3198 	    offsetof(lwb_t, lwb_node));
3199 
3200 	list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
3201 	    offsetof(itx_t, itx_node));
3202 
3203 	cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
3204 
3205 	return (zilog);
3206 }
3207 
3208 void
3209 zil_free(zilog_t *zilog)
3210 {
3211 	int i;
3212 
3213 	zilog->zl_stop_sync = 1;
3214 
3215 	ASSERT0(zilog->zl_suspend);
3216 	ASSERT0(zilog->zl_suspending);
3217 
3218 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
3219 	list_destroy(&zilog->zl_lwb_list);
3220 
3221 	ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
3222 	list_destroy(&zilog->zl_itx_commit_list);
3223 
3224 	for (i = 0; i < TXG_SIZE; i++) {
3225 		/*
3226 		 * It's possible for an itx to be generated that doesn't dirty
3227 		 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
3228 		 * callback to remove the entry. We remove those here.
3229 		 *
3230 		 * Also free up the ziltest itxs.
3231 		 */
3232 		if (zilog->zl_itxg[i].itxg_itxs)
3233 			zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
3234 		mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
3235 	}
3236 
3237 	mutex_destroy(&zilog->zl_issuer_lock);
3238 	mutex_destroy(&zilog->zl_lock);
3239 
3240 	cv_destroy(&zilog->zl_cv_suspend);
3241 
3242 	kmem_free(zilog, sizeof (zilog_t));
3243 }
3244 
3245 /*
3246  * Open an intent log.
3247  */
3248 zilog_t *
3249 zil_open(objset_t *os, zil_get_data_t *get_data)
3250 {
3251 	zilog_t *zilog = dmu_objset_zil(os);
3252 
3253 	ASSERT3P(zilog->zl_get_data, ==, NULL);
3254 	ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
3255 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
3256 
3257 	zilog->zl_get_data = get_data;
3258 
3259 	return (zilog);
3260 }
3261 
3262 /*
3263  * Close an intent log.
3264  */
3265 void
3266 zil_close(zilog_t *zilog)
3267 {
3268 	lwb_t *lwb;
3269 	uint64_t txg;
3270 
3271 	if (!dmu_objset_is_snapshot(zilog->zl_os)) {
3272 		zil_commit(zilog, 0);
3273 	} else {
3274 		ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
3275 		ASSERT0(zilog->zl_dirty_max_txg);
3276 		ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE);
3277 	}
3278 
3279 	mutex_enter(&zilog->zl_lock);
3280 	lwb = list_tail(&zilog->zl_lwb_list);
3281 	if (lwb == NULL)
3282 		txg = zilog->zl_dirty_max_txg;
3283 	else
3284 		txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg);
3285 	mutex_exit(&zilog->zl_lock);
3286 
3287 	/*
3288 	 * We need to use txg_wait_synced() to wait long enough for the
3289 	 * ZIL to be clean, and to wait for all pending lwbs to be
3290 	 * written out.
3291 	 */
3292 	if (txg != 0)
3293 		txg_wait_synced(zilog->zl_dmu_pool, txg);
3294 
3295 	if (zilog_is_dirty(zilog))
3296 		zfs_dbgmsg("zil (%px) is dirty, txg %llu", zilog,
3297 		    (u_longlong_t)txg);
3298 	if (txg < spa_freeze_txg(zilog->zl_spa))
3299 		VERIFY(!zilog_is_dirty(zilog));
3300 
3301 	zilog->zl_get_data = NULL;
3302 
3303 	/*
3304 	 * We should have only one lwb left on the list; remove it now.
3305 	 */
3306 	mutex_enter(&zilog->zl_lock);
3307 	lwb = list_head(&zilog->zl_lwb_list);
3308 	if (lwb != NULL) {
3309 		ASSERT3P(lwb, ==, list_tail(&zilog->zl_lwb_list));
3310 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
3311 
3312 		if (lwb->lwb_fastwrite)
3313 			metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk);
3314 
3315 		list_remove(&zilog->zl_lwb_list, lwb);
3316 		zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
3317 		zil_free_lwb(zilog, lwb);
3318 	}
3319 	mutex_exit(&zilog->zl_lock);
3320 }
3321 
3322 static char *suspend_tag = "zil suspending";
3323 
3324 /*
3325  * Suspend an intent log.  While in suspended mode, we still honor
3326  * synchronous semantics, but we rely on txg_wait_synced() to do it.
3327  * On old version pools, we suspend the log briefly when taking a
3328  * snapshot so that it will have an empty intent log.
3329  *
3330  * Long holds are not really intended to be used the way we do here --
3331  * held for such a short time.  A concurrent caller of dsl_dataset_long_held()
3332  * could fail.  Therefore we take pains to only put a long hold if it is
3333  * actually necessary.  Fortunately, it will only be necessary if the
3334  * objset is currently mounted (or the ZVOL equivalent).  In that case it
3335  * will already have a long hold, so we are not really making things any worse.
3336  *
3337  * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
3338  * zvol_state_t), and use their mechanism to prevent their hold from being
3339  * dropped (e.g. VFS_HOLD()).  However, that would be even more pain for
3340  * very little gain.
3341  *
3342  * if cookiep == NULL, this does both the suspend & resume.
3343  * Otherwise, it returns with the dataset "long held", and the cookie
3344  * should be passed into zil_resume().
3345  */
3346 int
3347 zil_suspend(const char *osname, void **cookiep)
3348 {
3349 	objset_t *os;
3350 	zilog_t *zilog;
3351 	const zil_header_t *zh;
3352 	int error;
3353 
3354 	error = dmu_objset_hold(osname, suspend_tag, &os);
3355 	if (error != 0)
3356 		return (error);
3357 	zilog = dmu_objset_zil(os);
3358 
3359 	mutex_enter(&zilog->zl_lock);
3360 	zh = zilog->zl_header;
3361 
3362 	if (zh->zh_flags & ZIL_REPLAY_NEEDED) {		/* unplayed log */
3363 		mutex_exit(&zilog->zl_lock);
3364 		dmu_objset_rele(os, suspend_tag);
3365 		return (SET_ERROR(EBUSY));
3366 	}
3367 
3368 	/*
3369 	 * Don't put a long hold in the cases where we can avoid it.  This
3370 	 * is when there is no cookie so we are doing a suspend & resume
3371 	 * (i.e. called from zil_vdev_offline()), and there's nothing to do
3372 	 * for the suspend because it's already suspended, or there's no ZIL.
3373 	 */
3374 	if (cookiep == NULL && !zilog->zl_suspending &&
3375 	    (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
3376 		mutex_exit(&zilog->zl_lock);
3377 		dmu_objset_rele(os, suspend_tag);
3378 		return (0);
3379 	}
3380 
3381 	dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
3382 	dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
3383 
3384 	zilog->zl_suspend++;
3385 
3386 	if (zilog->zl_suspend > 1) {
3387 		/*
3388 		 * Someone else is already suspending it.
3389 		 * Just wait for them to finish.
3390 		 */
3391 
3392 		while (zilog->zl_suspending)
3393 			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
3394 		mutex_exit(&zilog->zl_lock);
3395 
3396 		if (cookiep == NULL)
3397 			zil_resume(os);
3398 		else
3399 			*cookiep = os;
3400 		return (0);
3401 	}
3402 
3403 	/*
3404 	 * If there is no pointer to an on-disk block, this ZIL must not
3405 	 * be active (e.g. filesystem not mounted), so there's nothing
3406 	 * to clean up.
3407 	 */
3408 	if (BP_IS_HOLE(&zh->zh_log)) {
3409 		ASSERT(cookiep != NULL); /* fast path already handled */
3410 
3411 		*cookiep = os;
3412 		mutex_exit(&zilog->zl_lock);
3413 		return (0);
3414 	}
3415 
3416 	/*
3417 	 * The ZIL has work to do. Ensure that the associated encryption
3418 	 * key will remain mapped while we are committing the log by
3419 	 * grabbing a reference to it. If the key isn't loaded we have no
3420 	 * choice but to return an error until the wrapping key is loaded.
3421 	 */
3422 	if (os->os_encrypted &&
3423 	    dsl_dataset_create_key_mapping(dmu_objset_ds(os)) != 0) {
3424 		zilog->zl_suspend--;
3425 		mutex_exit(&zilog->zl_lock);
3426 		dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3427 		dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3428 		return (SET_ERROR(EACCES));
3429 	}
3430 
3431 	zilog->zl_suspending = B_TRUE;
3432 	mutex_exit(&zilog->zl_lock);
3433 
3434 	/*
3435 	 * We need to use zil_commit_impl to ensure we wait for all
3436 	 * LWB_STATE_OPENED and LWB_STATE_ISSUED lwbs to be committed
3437 	 * to disk before proceeding. If we used zil_commit instead, it
3438 	 * would just call txg_wait_synced(), because zl_suspend is set.
3439 	 * txg_wait_synced() doesn't wait for these lwb's to be
3440 	 * LWB_STATE_FLUSH_DONE before returning.
3441 	 */
3442 	zil_commit_impl(zilog, 0);
3443 
3444 	/*
3445 	 * Now that we've ensured all lwb's are LWB_STATE_FLUSH_DONE, we
3446 	 * use txg_wait_synced() to ensure the data from the zilog has
3447 	 * migrated to the main pool before calling zil_destroy().
3448 	 */
3449 	txg_wait_synced(zilog->zl_dmu_pool, 0);
3450 
3451 	zil_destroy(zilog, B_FALSE);
3452 
3453 	mutex_enter(&zilog->zl_lock);
3454 	zilog->zl_suspending = B_FALSE;
3455 	cv_broadcast(&zilog->zl_cv_suspend);
3456 	mutex_exit(&zilog->zl_lock);
3457 
3458 	if (os->os_encrypted)
3459 		dsl_dataset_remove_key_mapping(dmu_objset_ds(os));
3460 
3461 	if (cookiep == NULL)
3462 		zil_resume(os);
3463 	else
3464 		*cookiep = os;
3465 	return (0);
3466 }
3467 
3468 void
3469 zil_resume(void *cookie)
3470 {
3471 	objset_t *os = cookie;
3472 	zilog_t *zilog = dmu_objset_zil(os);
3473 
3474 	mutex_enter(&zilog->zl_lock);
3475 	ASSERT(zilog->zl_suspend != 0);
3476 	zilog->zl_suspend--;
3477 	mutex_exit(&zilog->zl_lock);
3478 	dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3479 	dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3480 }
3481 
3482 typedef struct zil_replay_arg {
3483 	zil_replay_func_t **zr_replay;
3484 	void		*zr_arg;
3485 	boolean_t	zr_byteswap;
3486 	char		*zr_lr;
3487 } zil_replay_arg_t;
3488 
3489 static int
3490 zil_replay_error(zilog_t *zilog, const lr_t *lr, int error)
3491 {
3492 	char name[ZFS_MAX_DATASET_NAME_LEN];
3493 
3494 	zilog->zl_replaying_seq--;	/* didn't actually replay this one */
3495 
3496 	dmu_objset_name(zilog->zl_os, name);
3497 
3498 	cmn_err(CE_WARN, "ZFS replay transaction error %d, "
3499 	    "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
3500 	    (u_longlong_t)lr->lrc_seq,
3501 	    (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
3502 	    (lr->lrc_txtype & TX_CI) ? "CI" : "");
3503 
3504 	return (error);
3505 }
3506 
3507 static int
3508 zil_replay_log_record(zilog_t *zilog, const lr_t *lr, void *zra,
3509     uint64_t claim_txg)
3510 {
3511 	zil_replay_arg_t *zr = zra;
3512 	const zil_header_t *zh = zilog->zl_header;
3513 	uint64_t reclen = lr->lrc_reclen;
3514 	uint64_t txtype = lr->lrc_txtype;
3515 	int error = 0;
3516 
3517 	zilog->zl_replaying_seq = lr->lrc_seq;
3518 
3519 	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
3520 		return (0);
3521 
3522 	if (lr->lrc_txg < claim_txg)		/* already committed */
3523 		return (0);
3524 
3525 	/* Strip case-insensitive bit, still present in log record */
3526 	txtype &= ~TX_CI;
3527 
3528 	if (txtype == 0 || txtype >= TX_MAX_TYPE)
3529 		return (zil_replay_error(zilog, lr, EINVAL));
3530 
3531 	/*
3532 	 * If this record type can be logged out of order, the object
3533 	 * (lr_foid) may no longer exist.  That's legitimate, not an error.
3534 	 */
3535 	if (TX_OOO(txtype)) {
3536 		error = dmu_object_info(zilog->zl_os,
3537 		    LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL);
3538 		if (error == ENOENT || error == EEXIST)
3539 			return (0);
3540 	}
3541 
3542 	/*
3543 	 * Make a copy of the data so we can revise and extend it.
3544 	 */
3545 	bcopy(lr, zr->zr_lr, reclen);
3546 
3547 	/*
3548 	 * If this is a TX_WRITE with a blkptr, suck in the data.
3549 	 */
3550 	if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
3551 		error = zil_read_log_data(zilog, (lr_write_t *)lr,
3552 		    zr->zr_lr + reclen);
3553 		if (error != 0)
3554 			return (zil_replay_error(zilog, lr, error));
3555 	}
3556 
3557 	/*
3558 	 * The log block containing this lr may have been byteswapped
3559 	 * so that we can easily examine common fields like lrc_txtype.
3560 	 * However, the log is a mix of different record types, and only the
3561 	 * replay vectors know how to byteswap their records.  Therefore, if
3562 	 * the lr was byteswapped, undo it before invoking the replay vector.
3563 	 */
3564 	if (zr->zr_byteswap)
3565 		byteswap_uint64_array(zr->zr_lr, reclen);
3566 
3567 	/*
3568 	 * We must now do two things atomically: replay this log record,
3569 	 * and update the log header sequence number to reflect the fact that
3570 	 * we did so. At the end of each replay function the sequence number
3571 	 * is updated if we are in replay mode.
3572 	 */
3573 	error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
3574 	if (error != 0) {
3575 		/*
3576 		 * The DMU's dnode layer doesn't see removes until the txg
3577 		 * commits, so a subsequent claim can spuriously fail with
3578 		 * EEXIST. So if we receive any error we try syncing out
3579 		 * any removes then retry the transaction.  Note that we
3580 		 * specify B_FALSE for byteswap now, so we don't do it twice.
3581 		 */
3582 		txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
3583 		error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
3584 		if (error != 0)
3585 			return (zil_replay_error(zilog, lr, error));
3586 	}
3587 	return (0);
3588 }
3589 
3590 /* ARGSUSED */
3591 static int
3592 zil_incr_blks(zilog_t *zilog, const blkptr_t *bp, void *arg, uint64_t claim_txg)
3593 {
3594 	zilog->zl_replay_blks++;
3595 
3596 	return (0);
3597 }
3598 
3599 /*
3600  * If this dataset has a non-empty intent log, replay it and destroy it.
3601  */
3602 void
3603 zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
3604 {
3605 	zilog_t *zilog = dmu_objset_zil(os);
3606 	const zil_header_t *zh = zilog->zl_header;
3607 	zil_replay_arg_t zr;
3608 
3609 	if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
3610 		zil_destroy(zilog, B_TRUE);
3611 		return;
3612 	}
3613 
3614 	zr.zr_replay = replay_func;
3615 	zr.zr_arg = arg;
3616 	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
3617 	zr.zr_lr = vmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
3618 
3619 	/*
3620 	 * Wait for in-progress removes to sync before starting replay.
3621 	 */
3622 	txg_wait_synced(zilog->zl_dmu_pool, 0);
3623 
3624 	zilog->zl_replay = B_TRUE;
3625 	zilog->zl_replay_time = ddi_get_lbolt();
3626 	ASSERT(zilog->zl_replay_blks == 0);
3627 	(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
3628 	    zh->zh_claim_txg, B_TRUE);
3629 	vmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
3630 
3631 	zil_destroy(zilog, B_FALSE);
3632 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
3633 	zilog->zl_replay = B_FALSE;
3634 }
3635 
3636 boolean_t
3637 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
3638 {
3639 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3640 		return (B_TRUE);
3641 
3642 	if (zilog->zl_replay) {
3643 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
3644 		zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
3645 		    zilog->zl_replaying_seq;
3646 		return (B_TRUE);
3647 	}
3648 
3649 	return (B_FALSE);
3650 }
3651 
3652 /* ARGSUSED */
3653 int
3654 zil_reset(const char *osname, void *arg)
3655 {
3656 	int error;
3657 
3658 	error = zil_suspend(osname, NULL);
3659 	/* EACCES means crypto key not loaded */
3660 	if ((error == EACCES) || (error == EBUSY))
3661 		return (SET_ERROR(error));
3662 	if (error != 0)
3663 		return (SET_ERROR(EEXIST));
3664 	return (0);
3665 }
3666 
3667 EXPORT_SYMBOL(zil_alloc);
3668 EXPORT_SYMBOL(zil_free);
3669 EXPORT_SYMBOL(zil_open);
3670 EXPORT_SYMBOL(zil_close);
3671 EXPORT_SYMBOL(zil_replay);
3672 EXPORT_SYMBOL(zil_replaying);
3673 EXPORT_SYMBOL(zil_destroy);
3674 EXPORT_SYMBOL(zil_destroy_sync);
3675 EXPORT_SYMBOL(zil_itx_create);
3676 EXPORT_SYMBOL(zil_itx_destroy);
3677 EXPORT_SYMBOL(zil_itx_assign);
3678 EXPORT_SYMBOL(zil_commit);
3679 EXPORT_SYMBOL(zil_claim);
3680 EXPORT_SYMBOL(zil_check_log_chain);
3681 EXPORT_SYMBOL(zil_sync);
3682 EXPORT_SYMBOL(zil_clean);
3683 EXPORT_SYMBOL(zil_suspend);
3684 EXPORT_SYMBOL(zil_resume);
3685 EXPORT_SYMBOL(zil_lwb_add_block);
3686 EXPORT_SYMBOL(zil_bp_tree_add);
3687 EXPORT_SYMBOL(zil_set_sync);
3688 EXPORT_SYMBOL(zil_set_logbias);
3689 
3690 /* BEGIN CSTYLED */
3691 ZFS_MODULE_PARAM(zfs, zfs_, commit_timeout_pct, INT, ZMOD_RW,
3692 	"ZIL block open timeout percentage");
3693 
3694 ZFS_MODULE_PARAM(zfs_zil, zil_, replay_disable, INT, ZMOD_RW,
3695 	"Disable intent logging replay");
3696 
3697 ZFS_MODULE_PARAM(zfs_zil, zil_, nocacheflush, INT, ZMOD_RW,
3698 	"Disable ZIL cache flushes");
3699 
3700 ZFS_MODULE_PARAM(zfs_zil, zil_, slog_bulk, ULONG, ZMOD_RW,
3701 	"Limit in bytes slog sync writes per commit");
3702 
3703 ZFS_MODULE_PARAM(zfs_zil, zil_, maxblocksize, INT, ZMOD_RW,
3704 	"Limit in bytes of ZIL log block size");
3705 /* END CSTYLED */
3706