xref: /freebsd/sys/contrib/openzfs/module/zfs/zil.c (revision b1c5f60ce87cc2f179dfb81de507d9b7bf59564c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24  * Copyright (c) 2014 Integros [integros.com]
25  * Copyright (c) 2018 Datto Inc.
26  */
27 
28 /* Portions Copyright 2010 Robert Milkowski */
29 
30 #include <sys/zfs_context.h>
31 #include <sys/spa.h>
32 #include <sys/spa_impl.h>
33 #include <sys/dmu.h>
34 #include <sys/zap.h>
35 #include <sys/arc.h>
36 #include <sys/stat.h>
37 #include <sys/zil.h>
38 #include <sys/zil_impl.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/vdev_impl.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/dsl_pool.h>
43 #include <sys/metaslab.h>
44 #include <sys/trace_zfs.h>
45 #include <sys/abd.h>
46 
47 /*
48  * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system
49  * calls that change the file system. Each itx has enough information to
50  * be able to replay them after a system crash, power loss, or
51  * equivalent failure mode. These are stored in memory until either:
52  *
53  *   1. they are committed to the pool by the DMU transaction group
54  *      (txg), at which point they can be discarded; or
55  *   2. they are committed to the on-disk ZIL for the dataset being
56  *      modified (e.g. due to an fsync, O_DSYNC, or other synchronous
57  *      requirement).
58  *
59  * In the event of a crash or power loss, the itxs contained by each
60  * dataset's on-disk ZIL will be replayed when that dataset is first
61  * instantiated (e.g. if the dataset is a normal filesystem, when it is
62  * first mounted).
63  *
64  * As hinted at above, there is one ZIL per dataset (both the in-memory
65  * representation, and the on-disk representation). The on-disk format
66  * consists of 3 parts:
67  *
68  * 	- a single, per-dataset, ZIL header; which points to a chain of
69  * 	- zero or more ZIL blocks; each of which contains
70  * 	- zero or more ZIL records
71  *
72  * A ZIL record holds the information necessary to replay a single
73  * system call transaction. A ZIL block can hold many ZIL records, and
74  * the blocks are chained together, similarly to a singly linked list.
75  *
76  * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL
77  * block in the chain, and the ZIL header points to the first block in
78  * the chain.
79  *
80  * Note, there is not a fixed place in the pool to hold these ZIL
81  * blocks; they are dynamically allocated and freed as needed from the
82  * blocks available on the pool, though they can be preferentially
83  * allocated from a dedicated "log" vdev.
84  */
85 
86 /*
87  * This controls the amount of time that a ZIL block (lwb) will remain
88  * "open" when it isn't "full", and it has a thread waiting for it to be
89  * committed to stable storage. Please refer to the zil_commit_waiter()
90  * function (and the comments within it) for more details.
91  */
92 static int zfs_commit_timeout_pct = 5;
93 
94 /*
95  * See zil.h for more information about these fields.
96  */
97 static zil_stats_t zil_stats = {
98 	{ "zil_commit_count",			KSTAT_DATA_UINT64 },
99 	{ "zil_commit_writer_count",		KSTAT_DATA_UINT64 },
100 	{ "zil_itx_count",			KSTAT_DATA_UINT64 },
101 	{ "zil_itx_indirect_count",		KSTAT_DATA_UINT64 },
102 	{ "zil_itx_indirect_bytes",		KSTAT_DATA_UINT64 },
103 	{ "zil_itx_copied_count",		KSTAT_DATA_UINT64 },
104 	{ "zil_itx_copied_bytes",		KSTAT_DATA_UINT64 },
105 	{ "zil_itx_needcopy_count",		KSTAT_DATA_UINT64 },
106 	{ "zil_itx_needcopy_bytes",		KSTAT_DATA_UINT64 },
107 	{ "zil_itx_metaslab_normal_count",	KSTAT_DATA_UINT64 },
108 	{ "zil_itx_metaslab_normal_bytes",	KSTAT_DATA_UINT64 },
109 	{ "zil_itx_metaslab_slog_count",	KSTAT_DATA_UINT64 },
110 	{ "zil_itx_metaslab_slog_bytes",	KSTAT_DATA_UINT64 },
111 };
112 
113 static kstat_t *zil_ksp;
114 
115 /*
116  * Disable intent logging replay.  This global ZIL switch affects all pools.
117  */
118 int zil_replay_disable = 0;
119 
120 /*
121  * Disable the DKIOCFLUSHWRITECACHE commands that are normally sent to
122  * the disk(s) by the ZIL after an LWB write has completed. Setting this
123  * will cause ZIL corruption on power loss if a volatile out-of-order
124  * write cache is enabled.
125  */
126 static int zil_nocacheflush = 0;
127 
128 /*
129  * Limit SLOG write size per commit executed with synchronous priority.
130  * Any writes above that will be executed with lower (asynchronous) priority
131  * to limit potential SLOG device abuse by single active ZIL writer.
132  */
133 static unsigned long zil_slog_bulk = 768 * 1024;
134 
135 static kmem_cache_t *zil_lwb_cache;
136 static kmem_cache_t *zil_zcw_cache;
137 
138 #define	LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
139     sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
140 
141 static int
142 zil_bp_compare(const void *x1, const void *x2)
143 {
144 	const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
145 	const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
146 
147 	int cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2));
148 	if (likely(cmp))
149 		return (cmp);
150 
151 	return (TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2)));
152 }
153 
154 static void
155 zil_bp_tree_init(zilog_t *zilog)
156 {
157 	avl_create(&zilog->zl_bp_tree, zil_bp_compare,
158 	    sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
159 }
160 
161 static void
162 zil_bp_tree_fini(zilog_t *zilog)
163 {
164 	avl_tree_t *t = &zilog->zl_bp_tree;
165 	zil_bp_node_t *zn;
166 	void *cookie = NULL;
167 
168 	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
169 		kmem_free(zn, sizeof (zil_bp_node_t));
170 
171 	avl_destroy(t);
172 }
173 
174 int
175 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
176 {
177 	avl_tree_t *t = &zilog->zl_bp_tree;
178 	const dva_t *dva;
179 	zil_bp_node_t *zn;
180 	avl_index_t where;
181 
182 	if (BP_IS_EMBEDDED(bp))
183 		return (0);
184 
185 	dva = BP_IDENTITY(bp);
186 
187 	if (avl_find(t, dva, &where) != NULL)
188 		return (SET_ERROR(EEXIST));
189 
190 	zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
191 	zn->zn_dva = *dva;
192 	avl_insert(t, zn, where);
193 
194 	return (0);
195 }
196 
197 static zil_header_t *
198 zil_header_in_syncing_context(zilog_t *zilog)
199 {
200 	return ((zil_header_t *)zilog->zl_header);
201 }
202 
203 static void
204 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
205 {
206 	zio_cksum_t *zc = &bp->blk_cksum;
207 
208 	(void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_0],
209 	    sizeof (zc->zc_word[ZIL_ZC_GUID_0]));
210 	(void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_1],
211 	    sizeof (zc->zc_word[ZIL_ZC_GUID_1]));
212 	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
213 	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
214 }
215 
216 /*
217  * Read a log block and make sure it's valid.
218  */
219 static int
220 zil_read_log_block(zilog_t *zilog, boolean_t decrypt, const blkptr_t *bp,
221     blkptr_t *nbp, void *dst, char **end)
222 {
223 	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
224 	arc_flags_t aflags = ARC_FLAG_WAIT;
225 	arc_buf_t *abuf = NULL;
226 	zbookmark_phys_t zb;
227 	int error;
228 
229 	if (zilog->zl_header->zh_claim_txg == 0)
230 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
231 
232 	if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
233 		zio_flags |= ZIO_FLAG_SPECULATIVE;
234 
235 	if (!decrypt)
236 		zio_flags |= ZIO_FLAG_RAW;
237 
238 	SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
239 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
240 
241 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func,
242 	    &abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
243 
244 	if (error == 0) {
245 		zio_cksum_t cksum = bp->blk_cksum;
246 
247 		/*
248 		 * Validate the checksummed log block.
249 		 *
250 		 * Sequence numbers should be... sequential.  The checksum
251 		 * verifier for the next block should be bp's checksum plus 1.
252 		 *
253 		 * Also check the log chain linkage and size used.
254 		 */
255 		cksum.zc_word[ZIL_ZC_SEQ]++;
256 
257 		if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
258 			zil_chain_t *zilc = abuf->b_data;
259 			char *lr = (char *)(zilc + 1);
260 			uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
261 
262 			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
263 			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
264 				error = SET_ERROR(ECKSUM);
265 			} else {
266 				ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
267 				bcopy(lr, dst, len);
268 				*end = (char *)dst + len;
269 				*nbp = zilc->zc_next_blk;
270 			}
271 		} else {
272 			char *lr = abuf->b_data;
273 			uint64_t size = BP_GET_LSIZE(bp);
274 			zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
275 
276 			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
277 			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
278 			    (zilc->zc_nused > (size - sizeof (*zilc)))) {
279 				error = SET_ERROR(ECKSUM);
280 			} else {
281 				ASSERT3U(zilc->zc_nused, <=,
282 				    SPA_OLD_MAXBLOCKSIZE);
283 				bcopy(lr, dst, zilc->zc_nused);
284 				*end = (char *)dst + zilc->zc_nused;
285 				*nbp = zilc->zc_next_blk;
286 			}
287 		}
288 
289 		arc_buf_destroy(abuf, &abuf);
290 	}
291 
292 	return (error);
293 }
294 
295 /*
296  * Read a TX_WRITE log data block.
297  */
298 static int
299 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
300 {
301 	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
302 	const blkptr_t *bp = &lr->lr_blkptr;
303 	arc_flags_t aflags = ARC_FLAG_WAIT;
304 	arc_buf_t *abuf = NULL;
305 	zbookmark_phys_t zb;
306 	int error;
307 
308 	if (BP_IS_HOLE(bp)) {
309 		if (wbuf != NULL)
310 			bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
311 		return (0);
312 	}
313 
314 	if (zilog->zl_header->zh_claim_txg == 0)
315 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
316 
317 	/*
318 	 * If we are not using the resulting data, we are just checking that
319 	 * it hasn't been corrupted so we don't need to waste CPU time
320 	 * decompressing and decrypting it.
321 	 */
322 	if (wbuf == NULL)
323 		zio_flags |= ZIO_FLAG_RAW;
324 
325 	SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
326 	    ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
327 
328 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
329 	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
330 
331 	if (error == 0) {
332 		if (wbuf != NULL)
333 			bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
334 		arc_buf_destroy(abuf, &abuf);
335 	}
336 
337 	return (error);
338 }
339 
340 /*
341  * Parse the intent log, and call parse_func for each valid record within.
342  */
343 int
344 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
345     zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg,
346     boolean_t decrypt)
347 {
348 	const zil_header_t *zh = zilog->zl_header;
349 	boolean_t claimed = !!zh->zh_claim_txg;
350 	uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
351 	uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
352 	uint64_t max_blk_seq = 0;
353 	uint64_t max_lr_seq = 0;
354 	uint64_t blk_count = 0;
355 	uint64_t lr_count = 0;
356 	blkptr_t blk, next_blk;
357 	char *lrbuf, *lrp;
358 	int error = 0;
359 
360 	bzero(&next_blk, sizeof (blkptr_t));
361 
362 	/*
363 	 * Old logs didn't record the maximum zh_claim_lr_seq.
364 	 */
365 	if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
366 		claim_lr_seq = UINT64_MAX;
367 
368 	/*
369 	 * Starting at the block pointed to by zh_log we read the log chain.
370 	 * For each block in the chain we strongly check that block to
371 	 * ensure its validity.  We stop when an invalid block is found.
372 	 * For each block pointer in the chain we call parse_blk_func().
373 	 * For each record in each valid block we call parse_lr_func().
374 	 * If the log has been claimed, stop if we encounter a sequence
375 	 * number greater than the highest claimed sequence number.
376 	 */
377 	lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
378 	zil_bp_tree_init(zilog);
379 
380 	for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
381 		uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
382 		int reclen;
383 		char *end = NULL;
384 
385 		if (blk_seq > claim_blk_seq)
386 			break;
387 
388 		error = parse_blk_func(zilog, &blk, arg, txg);
389 		if (error != 0)
390 			break;
391 		ASSERT3U(max_blk_seq, <, blk_seq);
392 		max_blk_seq = blk_seq;
393 		blk_count++;
394 
395 		if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
396 			break;
397 
398 		error = zil_read_log_block(zilog, decrypt, &blk, &next_blk,
399 		    lrbuf, &end);
400 		if (error != 0)
401 			break;
402 
403 		for (lrp = lrbuf; lrp < end; lrp += reclen) {
404 			lr_t *lr = (lr_t *)lrp;
405 			reclen = lr->lrc_reclen;
406 			ASSERT3U(reclen, >=, sizeof (lr_t));
407 			if (lr->lrc_seq > claim_lr_seq)
408 				goto done;
409 
410 			error = parse_lr_func(zilog, lr, arg, txg);
411 			if (error != 0)
412 				goto done;
413 			ASSERT3U(max_lr_seq, <, lr->lrc_seq);
414 			max_lr_seq = lr->lrc_seq;
415 			lr_count++;
416 		}
417 	}
418 done:
419 	zilog->zl_parse_error = error;
420 	zilog->zl_parse_blk_seq = max_blk_seq;
421 	zilog->zl_parse_lr_seq = max_lr_seq;
422 	zilog->zl_parse_blk_count = blk_count;
423 	zilog->zl_parse_lr_count = lr_count;
424 
425 	ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
426 	    (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq) ||
427 	    (decrypt && error == EIO));
428 
429 	zil_bp_tree_fini(zilog);
430 	zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
431 
432 	return (error);
433 }
434 
435 static int
436 zil_clear_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
437     uint64_t first_txg)
438 {
439 	(void) tx;
440 	ASSERT(!BP_IS_HOLE(bp));
441 
442 	/*
443 	 * As we call this function from the context of a rewind to a
444 	 * checkpoint, each ZIL block whose txg is later than the txg
445 	 * that we rewind to is invalid. Thus, we return -1 so
446 	 * zil_parse() doesn't attempt to read it.
447 	 */
448 	if (bp->blk_birth >= first_txg)
449 		return (-1);
450 
451 	if (zil_bp_tree_add(zilog, bp) != 0)
452 		return (0);
453 
454 	zio_free(zilog->zl_spa, first_txg, bp);
455 	return (0);
456 }
457 
458 static int
459 zil_noop_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
460     uint64_t first_txg)
461 {
462 	(void) zilog, (void) lrc, (void) tx, (void) first_txg;
463 	return (0);
464 }
465 
466 static int
467 zil_claim_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
468     uint64_t first_txg)
469 {
470 	/*
471 	 * Claim log block if not already committed and not already claimed.
472 	 * If tx == NULL, just verify that the block is claimable.
473 	 */
474 	if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
475 	    zil_bp_tree_add(zilog, bp) != 0)
476 		return (0);
477 
478 	return (zio_wait(zio_claim(NULL, zilog->zl_spa,
479 	    tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
480 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
481 }
482 
483 static int
484 zil_claim_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
485     uint64_t first_txg)
486 {
487 	lr_write_t *lr = (lr_write_t *)lrc;
488 	int error;
489 
490 	if (lrc->lrc_txtype != TX_WRITE)
491 		return (0);
492 
493 	/*
494 	 * If the block is not readable, don't claim it.  This can happen
495 	 * in normal operation when a log block is written to disk before
496 	 * some of the dmu_sync() blocks it points to.  In this case, the
497 	 * transaction cannot have been committed to anyone (we would have
498 	 * waited for all writes to be stable first), so it is semantically
499 	 * correct to declare this the end of the log.
500 	 */
501 	if (lr->lr_blkptr.blk_birth >= first_txg) {
502 		error = zil_read_log_data(zilog, lr, NULL);
503 		if (error != 0)
504 			return (error);
505 	}
506 
507 	return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
508 }
509 
510 static int
511 zil_free_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
512     uint64_t claim_txg)
513 {
514 	(void) claim_txg;
515 
516 	zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
517 
518 	return (0);
519 }
520 
521 static int
522 zil_free_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
523     uint64_t claim_txg)
524 {
525 	lr_write_t *lr = (lr_write_t *)lrc;
526 	blkptr_t *bp = &lr->lr_blkptr;
527 
528 	/*
529 	 * If we previously claimed it, we need to free it.
530 	 */
531 	if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
532 	    bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
533 	    !BP_IS_HOLE(bp))
534 		zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
535 
536 	return (0);
537 }
538 
539 static int
540 zil_lwb_vdev_compare(const void *x1, const void *x2)
541 {
542 	const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
543 	const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
544 
545 	return (TREE_CMP(v1, v2));
546 }
547 
548 static lwb_t *
549 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg,
550     boolean_t fastwrite)
551 {
552 	lwb_t *lwb;
553 
554 	lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
555 	lwb->lwb_zilog = zilog;
556 	lwb->lwb_blk = *bp;
557 	lwb->lwb_fastwrite = fastwrite;
558 	lwb->lwb_slog = slog;
559 	lwb->lwb_state = LWB_STATE_CLOSED;
560 	lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
561 	lwb->lwb_max_txg = txg;
562 	lwb->lwb_write_zio = NULL;
563 	lwb->lwb_root_zio = NULL;
564 	lwb->lwb_tx = NULL;
565 	lwb->lwb_issued_timestamp = 0;
566 	if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
567 		lwb->lwb_nused = sizeof (zil_chain_t);
568 		lwb->lwb_sz = BP_GET_LSIZE(bp);
569 	} else {
570 		lwb->lwb_nused = 0;
571 		lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
572 	}
573 
574 	mutex_enter(&zilog->zl_lock);
575 	list_insert_tail(&zilog->zl_lwb_list, lwb);
576 	mutex_exit(&zilog->zl_lock);
577 
578 	ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
579 	ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
580 	VERIFY(list_is_empty(&lwb->lwb_waiters));
581 	VERIFY(list_is_empty(&lwb->lwb_itxs));
582 
583 	return (lwb);
584 }
585 
586 static void
587 zil_free_lwb(zilog_t *zilog, lwb_t *lwb)
588 {
589 	ASSERT(MUTEX_HELD(&zilog->zl_lock));
590 	ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
591 	VERIFY(list_is_empty(&lwb->lwb_waiters));
592 	VERIFY(list_is_empty(&lwb->lwb_itxs));
593 	ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
594 	ASSERT3P(lwb->lwb_write_zio, ==, NULL);
595 	ASSERT3P(lwb->lwb_root_zio, ==, NULL);
596 	ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa));
597 	ASSERT(lwb->lwb_state == LWB_STATE_CLOSED ||
598 	    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
599 
600 	/*
601 	 * Clear the zilog's field to indicate this lwb is no longer
602 	 * valid, and prevent use-after-free errors.
603 	 */
604 	if (zilog->zl_last_lwb_opened == lwb)
605 		zilog->zl_last_lwb_opened = NULL;
606 
607 	kmem_cache_free(zil_lwb_cache, lwb);
608 }
609 
610 /*
611  * Called when we create in-memory log transactions so that we know
612  * to cleanup the itxs at the end of spa_sync().
613  */
614 static void
615 zilog_dirty(zilog_t *zilog, uint64_t txg)
616 {
617 	dsl_pool_t *dp = zilog->zl_dmu_pool;
618 	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
619 
620 	ASSERT(spa_writeable(zilog->zl_spa));
621 
622 	if (ds->ds_is_snapshot)
623 		panic("dirtying snapshot!");
624 
625 	if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
626 		/* up the hold count until we can be written out */
627 		dmu_buf_add_ref(ds->ds_dbuf, zilog);
628 
629 		zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg);
630 	}
631 }
632 
633 /*
634  * Determine if the zil is dirty in the specified txg. Callers wanting to
635  * ensure that the dirty state does not change must hold the itxg_lock for
636  * the specified txg. Holding the lock will ensure that the zil cannot be
637  * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
638  * state.
639  */
640 static boolean_t __maybe_unused
641 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
642 {
643 	dsl_pool_t *dp = zilog->zl_dmu_pool;
644 
645 	if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
646 		return (B_TRUE);
647 	return (B_FALSE);
648 }
649 
650 /*
651  * Determine if the zil is dirty. The zil is considered dirty if it has
652  * any pending itx records that have not been cleaned by zil_clean().
653  */
654 static boolean_t
655 zilog_is_dirty(zilog_t *zilog)
656 {
657 	dsl_pool_t *dp = zilog->zl_dmu_pool;
658 
659 	for (int t = 0; t < TXG_SIZE; t++) {
660 		if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
661 			return (B_TRUE);
662 	}
663 	return (B_FALSE);
664 }
665 
666 /*
667  * Its called in zil_commit context (zil_process_commit_list()/zil_create()).
668  * It activates SPA_FEATURE_ZILSAXATTR feature, if its enabled.
669  * Check dsl_dataset_feature_is_active to avoid txg_wait_synced() on every
670  * zil_commit.
671  */
672 static void
673 zil_commit_activate_saxattr_feature(zilog_t *zilog)
674 {
675 	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
676 	uint64_t txg = 0;
677 	dmu_tx_t *tx = NULL;
678 
679 	if (spa_feature_is_enabled(zilog->zl_spa,
680 	    SPA_FEATURE_ZILSAXATTR) &&
681 	    dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL &&
682 	    !dsl_dataset_feature_is_active(ds,
683 	    SPA_FEATURE_ZILSAXATTR)) {
684 		tx = dmu_tx_create(zilog->zl_os);
685 		VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
686 		dsl_dataset_dirty(ds, tx);
687 		txg = dmu_tx_get_txg(tx);
688 
689 		mutex_enter(&ds->ds_lock);
690 		ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] =
691 		    (void *)B_TRUE;
692 		mutex_exit(&ds->ds_lock);
693 		dmu_tx_commit(tx);
694 		txg_wait_synced(zilog->zl_dmu_pool, txg);
695 	}
696 }
697 
698 /*
699  * Create an on-disk intent log.
700  */
701 static lwb_t *
702 zil_create(zilog_t *zilog)
703 {
704 	const zil_header_t *zh = zilog->zl_header;
705 	lwb_t *lwb = NULL;
706 	uint64_t txg = 0;
707 	dmu_tx_t *tx = NULL;
708 	blkptr_t blk;
709 	int error = 0;
710 	boolean_t fastwrite = FALSE;
711 	boolean_t slog = FALSE;
712 	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
713 
714 
715 	/*
716 	 * Wait for any previous destroy to complete.
717 	 */
718 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
719 
720 	ASSERT(zh->zh_claim_txg == 0);
721 	ASSERT(zh->zh_replay_seq == 0);
722 
723 	blk = zh->zh_log;
724 
725 	/*
726 	 * Allocate an initial log block if:
727 	 *    - there isn't one already
728 	 *    - the existing block is the wrong endianness
729 	 */
730 	if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
731 		tx = dmu_tx_create(zilog->zl_os);
732 		VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
733 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
734 		txg = dmu_tx_get_txg(tx);
735 
736 		if (!BP_IS_HOLE(&blk)) {
737 			zio_free(zilog->zl_spa, txg, &blk);
738 			BP_ZERO(&blk);
739 		}
740 
741 		error = zio_alloc_zil(zilog->zl_spa, zilog->zl_os, txg, &blk,
742 		    ZIL_MIN_BLKSZ, &slog);
743 		fastwrite = TRUE;
744 
745 		if (error == 0)
746 			zil_init_log_chain(zilog, &blk);
747 	}
748 
749 	/*
750 	 * Allocate a log write block (lwb) for the first log block.
751 	 */
752 	if (error == 0)
753 		lwb = zil_alloc_lwb(zilog, &blk, slog, txg, fastwrite);
754 
755 	/*
756 	 * If we just allocated the first log block, commit our transaction
757 	 * and wait for zil_sync() to stuff the block pointer into zh_log.
758 	 * (zh is part of the MOS, so we cannot modify it in open context.)
759 	 */
760 	if (tx != NULL) {
761 		/*
762 		 * If "zilsaxattr" feature is enabled on zpool, then activate
763 		 * it now when we're creating the ZIL chain. We can't wait with
764 		 * this until we write the first xattr log record because we
765 		 * need to wait for the feature activation to sync out.
766 		 */
767 		if (spa_feature_is_enabled(zilog->zl_spa,
768 		    SPA_FEATURE_ZILSAXATTR) && dmu_objset_type(zilog->zl_os) !=
769 		    DMU_OST_ZVOL) {
770 			mutex_enter(&ds->ds_lock);
771 			ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] =
772 			    (void *)B_TRUE;
773 			mutex_exit(&ds->ds_lock);
774 		}
775 
776 		dmu_tx_commit(tx);
777 		txg_wait_synced(zilog->zl_dmu_pool, txg);
778 	} else {
779 		/*
780 		 * This branch covers the case where we enable the feature on a
781 		 * zpool that has existing ZIL headers.
782 		 */
783 		zil_commit_activate_saxattr_feature(zilog);
784 	}
785 	IMPLY(spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) &&
786 	    dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL,
787 	    dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR));
788 
789 	ASSERT(error != 0 || bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
790 	IMPLY(error == 0, lwb != NULL);
791 
792 	return (lwb);
793 }
794 
795 /*
796  * In one tx, free all log blocks and clear the log header. If keep_first
797  * is set, then we're replaying a log with no content. We want to keep the
798  * first block, however, so that the first synchronous transaction doesn't
799  * require a txg_wait_synced() in zil_create(). We don't need to
800  * txg_wait_synced() here either when keep_first is set, because both
801  * zil_create() and zil_destroy() will wait for any in-progress destroys
802  * to complete.
803  */
804 void
805 zil_destroy(zilog_t *zilog, boolean_t keep_first)
806 {
807 	const zil_header_t *zh = zilog->zl_header;
808 	lwb_t *lwb;
809 	dmu_tx_t *tx;
810 	uint64_t txg;
811 
812 	/*
813 	 * Wait for any previous destroy to complete.
814 	 */
815 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
816 
817 	zilog->zl_old_header = *zh;		/* debugging aid */
818 
819 	if (BP_IS_HOLE(&zh->zh_log))
820 		return;
821 
822 	tx = dmu_tx_create(zilog->zl_os);
823 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
824 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
825 	txg = dmu_tx_get_txg(tx);
826 
827 	mutex_enter(&zilog->zl_lock);
828 
829 	ASSERT3U(zilog->zl_destroy_txg, <, txg);
830 	zilog->zl_destroy_txg = txg;
831 	zilog->zl_keep_first = keep_first;
832 
833 	if (!list_is_empty(&zilog->zl_lwb_list)) {
834 		ASSERT(zh->zh_claim_txg == 0);
835 		VERIFY(!keep_first);
836 		while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
837 			if (lwb->lwb_fastwrite)
838 				metaslab_fastwrite_unmark(zilog->zl_spa,
839 				    &lwb->lwb_blk);
840 
841 			list_remove(&zilog->zl_lwb_list, lwb);
842 			if (lwb->lwb_buf != NULL)
843 				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
844 			zio_free(zilog->zl_spa, txg, &lwb->lwb_blk);
845 			zil_free_lwb(zilog, lwb);
846 		}
847 	} else if (!keep_first) {
848 		zil_destroy_sync(zilog, tx);
849 	}
850 	mutex_exit(&zilog->zl_lock);
851 
852 	dmu_tx_commit(tx);
853 }
854 
855 void
856 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
857 {
858 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
859 	(void) zil_parse(zilog, zil_free_log_block,
860 	    zil_free_log_record, tx, zilog->zl_header->zh_claim_txg, B_FALSE);
861 }
862 
863 int
864 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
865 {
866 	dmu_tx_t *tx = txarg;
867 	zilog_t *zilog;
868 	uint64_t first_txg;
869 	zil_header_t *zh;
870 	objset_t *os;
871 	int error;
872 
873 	error = dmu_objset_own_obj(dp, ds->ds_object,
874 	    DMU_OST_ANY, B_FALSE, B_FALSE, FTAG, &os);
875 	if (error != 0) {
876 		/*
877 		 * EBUSY indicates that the objset is inconsistent, in which
878 		 * case it can not have a ZIL.
879 		 */
880 		if (error != EBUSY) {
881 			cmn_err(CE_WARN, "can't open objset for %llu, error %u",
882 			    (unsigned long long)ds->ds_object, error);
883 		}
884 
885 		return (0);
886 	}
887 
888 	zilog = dmu_objset_zil(os);
889 	zh = zil_header_in_syncing_context(zilog);
890 	ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa));
891 	first_txg = spa_min_claim_txg(zilog->zl_spa);
892 
893 	/*
894 	 * If the spa_log_state is not set to be cleared, check whether
895 	 * the current uberblock is a checkpoint one and if the current
896 	 * header has been claimed before moving on.
897 	 *
898 	 * If the current uberblock is a checkpointed uberblock then
899 	 * one of the following scenarios took place:
900 	 *
901 	 * 1] We are currently rewinding to the checkpoint of the pool.
902 	 * 2] We crashed in the middle of a checkpoint rewind but we
903 	 *    did manage to write the checkpointed uberblock to the
904 	 *    vdev labels, so when we tried to import the pool again
905 	 *    the checkpointed uberblock was selected from the import
906 	 *    procedure.
907 	 *
908 	 * In both cases we want to zero out all the ZIL blocks, except
909 	 * the ones that have been claimed at the time of the checkpoint
910 	 * (their zh_claim_txg != 0). The reason is that these blocks
911 	 * may be corrupted since we may have reused their locations on
912 	 * disk after we took the checkpoint.
913 	 *
914 	 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier
915 	 * when we first figure out whether the current uberblock is
916 	 * checkpointed or not. Unfortunately, that would discard all
917 	 * the logs, including the ones that are claimed, and we would
918 	 * leak space.
919 	 */
920 	if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR ||
921 	    (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
922 	    zh->zh_claim_txg == 0)) {
923 		if (!BP_IS_HOLE(&zh->zh_log)) {
924 			(void) zil_parse(zilog, zil_clear_log_block,
925 			    zil_noop_log_record, tx, first_txg, B_FALSE);
926 		}
927 		BP_ZERO(&zh->zh_log);
928 		if (os->os_encrypted)
929 			os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
930 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
931 		dmu_objset_disown(os, B_FALSE, FTAG);
932 		return (0);
933 	}
934 
935 	/*
936 	 * If we are not rewinding and opening the pool normally, then
937 	 * the min_claim_txg should be equal to the first txg of the pool.
938 	 */
939 	ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa));
940 
941 	/*
942 	 * Claim all log blocks if we haven't already done so, and remember
943 	 * the highest claimed sequence number.  This ensures that if we can
944 	 * read only part of the log now (e.g. due to a missing device),
945 	 * but we can read the entire log later, we will not try to replay
946 	 * or destroy beyond the last block we successfully claimed.
947 	 */
948 	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
949 	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
950 		(void) zil_parse(zilog, zil_claim_log_block,
951 		    zil_claim_log_record, tx, first_txg, B_FALSE);
952 		zh->zh_claim_txg = first_txg;
953 		zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
954 		zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
955 		if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
956 			zh->zh_flags |= ZIL_REPLAY_NEEDED;
957 		zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
958 		if (os->os_encrypted)
959 			os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
960 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
961 	}
962 
963 	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
964 	dmu_objset_disown(os, B_FALSE, FTAG);
965 	return (0);
966 }
967 
968 /*
969  * Check the log by walking the log chain.
970  * Checksum errors are ok as they indicate the end of the chain.
971  * Any other error (no device or read failure) returns an error.
972  */
973 int
974 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
975 {
976 	(void) dp;
977 	zilog_t *zilog;
978 	objset_t *os;
979 	blkptr_t *bp;
980 	int error;
981 
982 	ASSERT(tx == NULL);
983 
984 	error = dmu_objset_from_ds(ds, &os);
985 	if (error != 0) {
986 		cmn_err(CE_WARN, "can't open objset %llu, error %d",
987 		    (unsigned long long)ds->ds_object, error);
988 		return (0);
989 	}
990 
991 	zilog = dmu_objset_zil(os);
992 	bp = (blkptr_t *)&zilog->zl_header->zh_log;
993 
994 	if (!BP_IS_HOLE(bp)) {
995 		vdev_t *vd;
996 		boolean_t valid = B_TRUE;
997 
998 		/*
999 		 * Check the first block and determine if it's on a log device
1000 		 * which may have been removed or faulted prior to loading this
1001 		 * pool.  If so, there's no point in checking the rest of the
1002 		 * log as its content should have already been synced to the
1003 		 * pool.
1004 		 */
1005 		spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
1006 		vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
1007 		if (vd->vdev_islog && vdev_is_dead(vd))
1008 			valid = vdev_log_state_valid(vd);
1009 		spa_config_exit(os->os_spa, SCL_STATE, FTAG);
1010 
1011 		if (!valid)
1012 			return (0);
1013 
1014 		/*
1015 		 * Check whether the current uberblock is checkpointed (e.g.
1016 		 * we are rewinding) and whether the current header has been
1017 		 * claimed or not. If it hasn't then skip verifying it. We
1018 		 * do this because its ZIL blocks may be part of the pool's
1019 		 * state before the rewind, which is no longer valid.
1020 		 */
1021 		zil_header_t *zh = zil_header_in_syncing_context(zilog);
1022 		if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
1023 		    zh->zh_claim_txg == 0)
1024 			return (0);
1025 	}
1026 
1027 	/*
1028 	 * Because tx == NULL, zil_claim_log_block() will not actually claim
1029 	 * any blocks, but just determine whether it is possible to do so.
1030 	 * In addition to checking the log chain, zil_claim_log_block()
1031 	 * will invoke zio_claim() with a done func of spa_claim_notify(),
1032 	 * which will update spa_max_claim_txg.  See spa_load() for details.
1033 	 */
1034 	error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
1035 	    zilog->zl_header->zh_claim_txg ? -1ULL :
1036 	    spa_min_claim_txg(os->os_spa), B_FALSE);
1037 
1038 	return ((error == ECKSUM || error == ENOENT) ? 0 : error);
1039 }
1040 
1041 /*
1042  * When an itx is "skipped", this function is used to properly mark the
1043  * waiter as "done, and signal any thread(s) waiting on it. An itx can
1044  * be skipped (and not committed to an lwb) for a variety of reasons,
1045  * one of them being that the itx was committed via spa_sync(), prior to
1046  * it being committed to an lwb; this can happen if a thread calling
1047  * zil_commit() is racing with spa_sync().
1048  */
1049 static void
1050 zil_commit_waiter_skip(zil_commit_waiter_t *zcw)
1051 {
1052 	mutex_enter(&zcw->zcw_lock);
1053 	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1054 	zcw->zcw_done = B_TRUE;
1055 	cv_broadcast(&zcw->zcw_cv);
1056 	mutex_exit(&zcw->zcw_lock);
1057 }
1058 
1059 /*
1060  * This function is used when the given waiter is to be linked into an
1061  * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb.
1062  * At this point, the waiter will no longer be referenced by the itx,
1063  * and instead, will be referenced by the lwb.
1064  */
1065 static void
1066 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb)
1067 {
1068 	/*
1069 	 * The lwb_waiters field of the lwb is protected by the zilog's
1070 	 * zl_lock, thus it must be held when calling this function.
1071 	 */
1072 	ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_lock));
1073 
1074 	mutex_enter(&zcw->zcw_lock);
1075 	ASSERT(!list_link_active(&zcw->zcw_node));
1076 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
1077 	ASSERT3P(lwb, !=, NULL);
1078 	ASSERT(lwb->lwb_state == LWB_STATE_OPENED ||
1079 	    lwb->lwb_state == LWB_STATE_ISSUED ||
1080 	    lwb->lwb_state == LWB_STATE_WRITE_DONE);
1081 
1082 	list_insert_tail(&lwb->lwb_waiters, zcw);
1083 	zcw->zcw_lwb = lwb;
1084 	mutex_exit(&zcw->zcw_lock);
1085 }
1086 
1087 /*
1088  * This function is used when zio_alloc_zil() fails to allocate a ZIL
1089  * block, and the given waiter must be linked to the "nolwb waiters"
1090  * list inside of zil_process_commit_list().
1091  */
1092 static void
1093 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb)
1094 {
1095 	mutex_enter(&zcw->zcw_lock);
1096 	ASSERT(!list_link_active(&zcw->zcw_node));
1097 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
1098 	list_insert_tail(nolwb, zcw);
1099 	mutex_exit(&zcw->zcw_lock);
1100 }
1101 
1102 void
1103 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp)
1104 {
1105 	avl_tree_t *t = &lwb->lwb_vdev_tree;
1106 	avl_index_t where;
1107 	zil_vdev_node_t *zv, zvsearch;
1108 	int ndvas = BP_GET_NDVAS(bp);
1109 	int i;
1110 
1111 	if (zil_nocacheflush)
1112 		return;
1113 
1114 	mutex_enter(&lwb->lwb_vdev_lock);
1115 	for (i = 0; i < ndvas; i++) {
1116 		zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
1117 		if (avl_find(t, &zvsearch, &where) == NULL) {
1118 			zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
1119 			zv->zv_vdev = zvsearch.zv_vdev;
1120 			avl_insert(t, zv, where);
1121 		}
1122 	}
1123 	mutex_exit(&lwb->lwb_vdev_lock);
1124 }
1125 
1126 static void
1127 zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb)
1128 {
1129 	avl_tree_t *src = &lwb->lwb_vdev_tree;
1130 	avl_tree_t *dst = &nlwb->lwb_vdev_tree;
1131 	void *cookie = NULL;
1132 	zil_vdev_node_t *zv;
1133 
1134 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1135 	ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
1136 	ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1137 
1138 	/*
1139 	 * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does
1140 	 * not need the protection of lwb_vdev_lock (it will only be modified
1141 	 * while holding zilog->zl_lock) as its writes and those of its
1142 	 * children have all completed.  The younger 'nlwb' may be waiting on
1143 	 * future writes to additional vdevs.
1144 	 */
1145 	mutex_enter(&nlwb->lwb_vdev_lock);
1146 	/*
1147 	 * Tear down the 'lwb' vdev tree, ensuring that entries which do not
1148 	 * exist in 'nlwb' are moved to it, freeing any would-be duplicates.
1149 	 */
1150 	while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) {
1151 		avl_index_t where;
1152 
1153 		if (avl_find(dst, zv, &where) == NULL) {
1154 			avl_insert(dst, zv, where);
1155 		} else {
1156 			kmem_free(zv, sizeof (*zv));
1157 		}
1158 	}
1159 	mutex_exit(&nlwb->lwb_vdev_lock);
1160 }
1161 
1162 void
1163 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg)
1164 {
1165 	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1166 }
1167 
1168 /*
1169  * This function is a called after all vdevs associated with a given lwb
1170  * write have completed their DKIOCFLUSHWRITECACHE command; or as soon
1171  * as the lwb write completes, if "zil_nocacheflush" is set. Further,
1172  * all "previous" lwb's will have completed before this function is
1173  * called; i.e. this function is called for all previous lwbs before
1174  * it's called for "this" lwb (enforced via zio the dependencies
1175  * configured in zil_lwb_set_zio_dependency()).
1176  *
1177  * The intention is for this function to be called as soon as the
1178  * contents of an lwb are considered "stable" on disk, and will survive
1179  * any sudden loss of power. At this point, any threads waiting for the
1180  * lwb to reach this state are signalled, and the "waiter" structures
1181  * are marked "done".
1182  */
1183 static void
1184 zil_lwb_flush_vdevs_done(zio_t *zio)
1185 {
1186 	lwb_t *lwb = zio->io_private;
1187 	zilog_t *zilog = lwb->lwb_zilog;
1188 	dmu_tx_t *tx = lwb->lwb_tx;
1189 	zil_commit_waiter_t *zcw;
1190 	itx_t *itx;
1191 
1192 	spa_config_exit(zilog->zl_spa, SCL_STATE, lwb);
1193 
1194 	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1195 
1196 	mutex_enter(&zilog->zl_lock);
1197 
1198 	/*
1199 	 * Ensure the lwb buffer pointer is cleared before releasing the
1200 	 * txg. If we have had an allocation failure and the txg is
1201 	 * waiting to sync then we want zil_sync() to remove the lwb so
1202 	 * that it's not picked up as the next new one in
1203 	 * zil_process_commit_list(). zil_sync() will only remove the
1204 	 * lwb if lwb_buf is null.
1205 	 */
1206 	lwb->lwb_buf = NULL;
1207 	lwb->lwb_tx = NULL;
1208 
1209 	ASSERT3U(lwb->lwb_issued_timestamp, >, 0);
1210 	zilog->zl_last_lwb_latency = gethrtime() - lwb->lwb_issued_timestamp;
1211 
1212 	lwb->lwb_root_zio = NULL;
1213 
1214 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1215 	lwb->lwb_state = LWB_STATE_FLUSH_DONE;
1216 
1217 	if (zilog->zl_last_lwb_opened == lwb) {
1218 		/*
1219 		 * Remember the highest committed log sequence number
1220 		 * for ztest. We only update this value when all the log
1221 		 * writes succeeded, because ztest wants to ASSERT that
1222 		 * it got the whole log chain.
1223 		 */
1224 		zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1225 	}
1226 
1227 	while ((itx = list_head(&lwb->lwb_itxs)) != NULL) {
1228 		list_remove(&lwb->lwb_itxs, itx);
1229 		zil_itx_destroy(itx);
1230 	}
1231 
1232 	while ((zcw = list_head(&lwb->lwb_waiters)) != NULL) {
1233 		mutex_enter(&zcw->zcw_lock);
1234 
1235 		ASSERT(list_link_active(&zcw->zcw_node));
1236 		list_remove(&lwb->lwb_waiters, zcw);
1237 
1238 		ASSERT3P(zcw->zcw_lwb, ==, lwb);
1239 		zcw->zcw_lwb = NULL;
1240 		/*
1241 		 * We expect any ZIO errors from child ZIOs to have been
1242 		 * propagated "up" to this specific LWB's root ZIO, in
1243 		 * order for this error handling to work correctly. This
1244 		 * includes ZIO errors from either this LWB's write or
1245 		 * flush, as well as any errors from other dependent LWBs
1246 		 * (e.g. a root LWB ZIO that might be a child of this LWB).
1247 		 *
1248 		 * With that said, it's important to note that LWB flush
1249 		 * errors are not propagated up to the LWB root ZIO.
1250 		 * This is incorrect behavior, and results in VDEV flush
1251 		 * errors not being handled correctly here. See the
1252 		 * comment above the call to "zio_flush" for details.
1253 		 */
1254 
1255 		zcw->zcw_zio_error = zio->io_error;
1256 
1257 		ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1258 		zcw->zcw_done = B_TRUE;
1259 		cv_broadcast(&zcw->zcw_cv);
1260 
1261 		mutex_exit(&zcw->zcw_lock);
1262 	}
1263 
1264 	mutex_exit(&zilog->zl_lock);
1265 
1266 	/*
1267 	 * Now that we've written this log block, we have a stable pointer
1268 	 * to the next block in the chain, so it's OK to let the txg in
1269 	 * which we allocated the next block sync.
1270 	 */
1271 	dmu_tx_commit(tx);
1272 }
1273 
1274 /*
1275  * This is called when an lwb's write zio completes. The callback's
1276  * purpose is to issue the DKIOCFLUSHWRITECACHE commands for the vdevs
1277  * in the lwb's lwb_vdev_tree. The tree will contain the vdevs involved
1278  * in writing out this specific lwb's data, and in the case that cache
1279  * flushes have been deferred, vdevs involved in writing the data for
1280  * previous lwbs. The writes corresponding to all the vdevs in the
1281  * lwb_vdev_tree will have completed by the time this is called, due to
1282  * the zio dependencies configured in zil_lwb_set_zio_dependency(),
1283  * which takes deferred flushes into account. The lwb will be "done"
1284  * once zil_lwb_flush_vdevs_done() is called, which occurs in the zio
1285  * completion callback for the lwb's root zio.
1286  */
1287 static void
1288 zil_lwb_write_done(zio_t *zio)
1289 {
1290 	lwb_t *lwb = zio->io_private;
1291 	spa_t *spa = zio->io_spa;
1292 	zilog_t *zilog = lwb->lwb_zilog;
1293 	avl_tree_t *t = &lwb->lwb_vdev_tree;
1294 	void *cookie = NULL;
1295 	zil_vdev_node_t *zv;
1296 	lwb_t *nlwb;
1297 
1298 	ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0);
1299 
1300 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1301 	ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
1302 	ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
1303 	ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
1304 	ASSERT(!BP_IS_GANG(zio->io_bp));
1305 	ASSERT(!BP_IS_HOLE(zio->io_bp));
1306 	ASSERT(BP_GET_FILL(zio->io_bp) == 0);
1307 
1308 	abd_free(zio->io_abd);
1309 
1310 	mutex_enter(&zilog->zl_lock);
1311 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED);
1312 	lwb->lwb_state = LWB_STATE_WRITE_DONE;
1313 	lwb->lwb_write_zio = NULL;
1314 	lwb->lwb_fastwrite = FALSE;
1315 	nlwb = list_next(&zilog->zl_lwb_list, lwb);
1316 	mutex_exit(&zilog->zl_lock);
1317 
1318 	if (avl_numnodes(t) == 0)
1319 		return;
1320 
1321 	/*
1322 	 * If there was an IO error, we're not going to call zio_flush()
1323 	 * on these vdevs, so we simply empty the tree and free the
1324 	 * nodes. We avoid calling zio_flush() since there isn't any
1325 	 * good reason for doing so, after the lwb block failed to be
1326 	 * written out.
1327 	 *
1328 	 * Additionally, we don't perform any further error handling at
1329 	 * this point (e.g. setting "zcw_zio_error" appropriately), as
1330 	 * we expect that to occur in "zil_lwb_flush_vdevs_done" (thus,
1331 	 * we expect any error seen here, to have been propagated to
1332 	 * that function).
1333 	 */
1334 	if (zio->io_error != 0) {
1335 		while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
1336 			kmem_free(zv, sizeof (*zv));
1337 		return;
1338 	}
1339 
1340 	/*
1341 	 * If this lwb does not have any threads waiting for it to
1342 	 * complete, we want to defer issuing the DKIOCFLUSHWRITECACHE
1343 	 * command to the vdevs written to by "this" lwb, and instead
1344 	 * rely on the "next" lwb to handle the DKIOCFLUSHWRITECACHE
1345 	 * command for those vdevs. Thus, we merge the vdev tree of
1346 	 * "this" lwb with the vdev tree of the "next" lwb in the list,
1347 	 * and assume the "next" lwb will handle flushing the vdevs (or
1348 	 * deferring the flush(s) again).
1349 	 *
1350 	 * This is a useful performance optimization, especially for
1351 	 * workloads with lots of async write activity and few sync
1352 	 * write and/or fsync activity, as it has the potential to
1353 	 * coalesce multiple flush commands to a vdev into one.
1354 	 */
1355 	if (list_head(&lwb->lwb_waiters) == NULL && nlwb != NULL) {
1356 		zil_lwb_flush_defer(lwb, nlwb);
1357 		ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
1358 		return;
1359 	}
1360 
1361 	while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
1362 		vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
1363 		if (vd != NULL) {
1364 			/*
1365 			 * The "ZIO_FLAG_DONT_PROPAGATE" is currently
1366 			 * always used within "zio_flush". This means,
1367 			 * any errors when flushing the vdev(s), will
1368 			 * (unfortunately) not be handled correctly,
1369 			 * since these "zio_flush" errors will not be
1370 			 * propagated up to "zil_lwb_flush_vdevs_done".
1371 			 */
1372 			zio_flush(lwb->lwb_root_zio, vd);
1373 		}
1374 		kmem_free(zv, sizeof (*zv));
1375 	}
1376 }
1377 
1378 static void
1379 zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb)
1380 {
1381 	lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened;
1382 
1383 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1384 	ASSERT(MUTEX_HELD(&zilog->zl_lock));
1385 
1386 	/*
1387 	 * The zilog's "zl_last_lwb_opened" field is used to build the
1388 	 * lwb/zio dependency chain, which is used to preserve the
1389 	 * ordering of lwb completions that is required by the semantics
1390 	 * of the ZIL. Each new lwb zio becomes a parent of the
1391 	 * "previous" lwb zio, such that the new lwb's zio cannot
1392 	 * complete until the "previous" lwb's zio completes.
1393 	 *
1394 	 * This is required by the semantics of zil_commit(); the commit
1395 	 * waiters attached to the lwbs will be woken in the lwb zio's
1396 	 * completion callback, so this zio dependency graph ensures the
1397 	 * waiters are woken in the correct order (the same order the
1398 	 * lwbs were created).
1399 	 */
1400 	if (last_lwb_opened != NULL &&
1401 	    last_lwb_opened->lwb_state != LWB_STATE_FLUSH_DONE) {
1402 		ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1403 		    last_lwb_opened->lwb_state == LWB_STATE_ISSUED ||
1404 		    last_lwb_opened->lwb_state == LWB_STATE_WRITE_DONE);
1405 
1406 		ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL);
1407 		zio_add_child(lwb->lwb_root_zio,
1408 		    last_lwb_opened->lwb_root_zio);
1409 
1410 		/*
1411 		 * If the previous lwb's write hasn't already completed,
1412 		 * we also want to order the completion of the lwb write
1413 		 * zios (above, we only order the completion of the lwb
1414 		 * root zios). This is required because of how we can
1415 		 * defer the DKIOCFLUSHWRITECACHE commands for each lwb.
1416 		 *
1417 		 * When the DKIOCFLUSHWRITECACHE commands are deferred,
1418 		 * the previous lwb will rely on this lwb to flush the
1419 		 * vdevs written to by that previous lwb. Thus, we need
1420 		 * to ensure this lwb doesn't issue the flush until
1421 		 * after the previous lwb's write completes. We ensure
1422 		 * this ordering by setting the zio parent/child
1423 		 * relationship here.
1424 		 *
1425 		 * Without this relationship on the lwb's write zio,
1426 		 * it's possible for this lwb's write to complete prior
1427 		 * to the previous lwb's write completing; and thus, the
1428 		 * vdevs for the previous lwb would be flushed prior to
1429 		 * that lwb's data being written to those vdevs (the
1430 		 * vdevs are flushed in the lwb write zio's completion
1431 		 * handler, zil_lwb_write_done()).
1432 		 */
1433 		if (last_lwb_opened->lwb_state != LWB_STATE_WRITE_DONE) {
1434 			ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1435 			    last_lwb_opened->lwb_state == LWB_STATE_ISSUED);
1436 
1437 			ASSERT3P(last_lwb_opened->lwb_write_zio, !=, NULL);
1438 			zio_add_child(lwb->lwb_write_zio,
1439 			    last_lwb_opened->lwb_write_zio);
1440 		}
1441 	}
1442 }
1443 
1444 
1445 /*
1446  * This function's purpose is to "open" an lwb such that it is ready to
1447  * accept new itxs being committed to it. To do this, the lwb's zio
1448  * structures are created, and linked to the lwb. This function is
1449  * idempotent; if the passed in lwb has already been opened, this
1450  * function is essentially a no-op.
1451  */
1452 static void
1453 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb)
1454 {
1455 	zbookmark_phys_t zb;
1456 	zio_priority_t prio;
1457 
1458 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1459 	ASSERT3P(lwb, !=, NULL);
1460 	EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED);
1461 	EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED);
1462 
1463 	SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1464 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
1465 	    lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
1466 
1467 	/* Lock so zil_sync() doesn't fastwrite_unmark after zio is created */
1468 	mutex_enter(&zilog->zl_lock);
1469 	if (lwb->lwb_root_zio == NULL) {
1470 		abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf,
1471 		    BP_GET_LSIZE(&lwb->lwb_blk));
1472 
1473 		if (!lwb->lwb_fastwrite) {
1474 			metaslab_fastwrite_mark(zilog->zl_spa, &lwb->lwb_blk);
1475 			lwb->lwb_fastwrite = 1;
1476 		}
1477 
1478 		if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk)
1479 			prio = ZIO_PRIORITY_SYNC_WRITE;
1480 		else
1481 			prio = ZIO_PRIORITY_ASYNC_WRITE;
1482 
1483 		lwb->lwb_root_zio = zio_root(zilog->zl_spa,
1484 		    zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL);
1485 		ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1486 
1487 		lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio,
1488 		    zilog->zl_spa, 0, &lwb->lwb_blk, lwb_abd,
1489 		    BP_GET_LSIZE(&lwb->lwb_blk), zil_lwb_write_done, lwb,
1490 		    prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_FASTWRITE, &zb);
1491 		ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1492 
1493 		lwb->lwb_state = LWB_STATE_OPENED;
1494 
1495 		zil_lwb_set_zio_dependency(zilog, lwb);
1496 		zilog->zl_last_lwb_opened = lwb;
1497 	}
1498 	mutex_exit(&zilog->zl_lock);
1499 
1500 	ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1501 	ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1502 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1503 }
1504 
1505 /*
1506  * Define a limited set of intent log block sizes.
1507  *
1508  * These must be a multiple of 4KB. Note only the amount used (again
1509  * aligned to 4KB) actually gets written. However, we can't always just
1510  * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
1511  */
1512 static const struct {
1513 	uint64_t	limit;
1514 	uint64_t	blksz;
1515 } zil_block_buckets[] = {
1516 	{ 4096,		4096 },			/* non TX_WRITE */
1517 	{ 8192 + 4096,	8192 + 4096 },		/* database */
1518 	{ 32768 + 4096,	32768 + 4096 },		/* NFS writes */
1519 	{ 65536 + 4096,	65536 + 4096 },		/* 64KB writes */
1520 	{ 131072,	131072 },		/* < 128KB writes */
1521 	{ 131072 +4096,	65536 + 4096 },		/* 128KB writes */
1522 	{ UINT64_MAX,	SPA_OLD_MAXBLOCKSIZE},	/* > 128KB writes */
1523 };
1524 
1525 /*
1526  * Maximum block size used by the ZIL.  This is picked up when the ZIL is
1527  * initialized.  Otherwise this should not be used directly; see
1528  * zl_max_block_size instead.
1529  */
1530 static int zil_maxblocksize = SPA_OLD_MAXBLOCKSIZE;
1531 
1532 /*
1533  * Start a log block write and advance to the next log block.
1534  * Calls are serialized.
1535  */
1536 static lwb_t *
1537 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb)
1538 {
1539 	lwb_t *nlwb = NULL;
1540 	zil_chain_t *zilc;
1541 	spa_t *spa = zilog->zl_spa;
1542 	blkptr_t *bp;
1543 	dmu_tx_t *tx;
1544 	uint64_t txg;
1545 	uint64_t zil_blksz, wsz;
1546 	int i, error;
1547 	boolean_t slog;
1548 
1549 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1550 	ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1551 	ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1552 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1553 
1554 	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1555 		zilc = (zil_chain_t *)lwb->lwb_buf;
1556 		bp = &zilc->zc_next_blk;
1557 	} else {
1558 		zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
1559 		bp = &zilc->zc_next_blk;
1560 	}
1561 
1562 	ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
1563 
1564 	/*
1565 	 * Allocate the next block and save its address in this block
1566 	 * before writing it in order to establish the log chain.
1567 	 * Note that if the allocation of nlwb synced before we wrote
1568 	 * the block that points at it (lwb), we'd leak it if we crashed.
1569 	 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
1570 	 * We dirty the dataset to ensure that zil_sync() will be called
1571 	 * to clean up in the event of allocation failure or I/O failure.
1572 	 */
1573 
1574 	tx = dmu_tx_create(zilog->zl_os);
1575 
1576 	/*
1577 	 * Since we are not going to create any new dirty data, and we
1578 	 * can even help with clearing the existing dirty data, we
1579 	 * should not be subject to the dirty data based delays. We
1580 	 * use TXG_NOTHROTTLE to bypass the delay mechanism.
1581 	 */
1582 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));
1583 
1584 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1585 	txg = dmu_tx_get_txg(tx);
1586 
1587 	lwb->lwb_tx = tx;
1588 
1589 	/*
1590 	 * Log blocks are pre-allocated. Here we select the size of the next
1591 	 * block, based on size used in the last block.
1592 	 * - first find the smallest bucket that will fit the block from a
1593 	 *   limited set of block sizes. This is because it's faster to write
1594 	 *   blocks allocated from the same metaslab as they are adjacent or
1595 	 *   close.
1596 	 * - next find the maximum from the new suggested size and an array of
1597 	 *   previous sizes. This lessens a picket fence effect of wrongly
1598 	 *   guessing the size if we have a stream of say 2k, 64k, 2k, 64k
1599 	 *   requests.
1600 	 *
1601 	 * Note we only write what is used, but we can't just allocate
1602 	 * the maximum block size because we can exhaust the available
1603 	 * pool log space.
1604 	 */
1605 	zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1606 	for (i = 0; zil_blksz > zil_block_buckets[i].limit; i++)
1607 		continue;
1608 	zil_blksz = MIN(zil_block_buckets[i].blksz, zilog->zl_max_block_size);
1609 	zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1610 	for (i = 0; i < ZIL_PREV_BLKS; i++)
1611 		zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1612 	zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1613 
1614 	BP_ZERO(bp);
1615 	error = zio_alloc_zil(spa, zilog->zl_os, txg, bp, zil_blksz, &slog);
1616 	if (slog) {
1617 		ZIL_STAT_BUMP(zil_itx_metaslab_slog_count);
1618 		ZIL_STAT_INCR(zil_itx_metaslab_slog_bytes, lwb->lwb_nused);
1619 	} else {
1620 		ZIL_STAT_BUMP(zil_itx_metaslab_normal_count);
1621 		ZIL_STAT_INCR(zil_itx_metaslab_normal_bytes, lwb->lwb_nused);
1622 	}
1623 	if (error == 0) {
1624 		ASSERT3U(bp->blk_birth, ==, txg);
1625 		bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1626 		bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1627 
1628 		/*
1629 		 * Allocate a new log write block (lwb).
1630 		 */
1631 		nlwb = zil_alloc_lwb(zilog, bp, slog, txg, TRUE);
1632 	}
1633 
1634 	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1635 		/* For Slim ZIL only write what is used. */
1636 		wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1637 		ASSERT3U(wsz, <=, lwb->lwb_sz);
1638 		zio_shrink(lwb->lwb_write_zio, wsz);
1639 
1640 	} else {
1641 		wsz = lwb->lwb_sz;
1642 	}
1643 
1644 	zilc->zc_pad = 0;
1645 	zilc->zc_nused = lwb->lwb_nused;
1646 	zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1647 
1648 	/*
1649 	 * clear unused data for security
1650 	 */
1651 	bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
1652 
1653 	spa_config_enter(zilog->zl_spa, SCL_STATE, lwb, RW_READER);
1654 
1655 	zil_lwb_add_block(lwb, &lwb->lwb_blk);
1656 	lwb->lwb_issued_timestamp = gethrtime();
1657 	lwb->lwb_state = LWB_STATE_ISSUED;
1658 
1659 	zio_nowait(lwb->lwb_root_zio);
1660 	zio_nowait(lwb->lwb_write_zio);
1661 
1662 	/*
1663 	 * If there was an allocation failure then nlwb will be null which
1664 	 * forces a txg_wait_synced().
1665 	 */
1666 	return (nlwb);
1667 }
1668 
1669 /*
1670  * Maximum amount of write data that can be put into single log block.
1671  */
1672 uint64_t
1673 zil_max_log_data(zilog_t *zilog)
1674 {
1675 	return (zilog->zl_max_block_size -
1676 	    sizeof (zil_chain_t) - sizeof (lr_write_t));
1677 }
1678 
1679 /*
1680  * Maximum amount of log space we agree to waste to reduce number of
1681  * WR_NEED_COPY chunks to reduce zl_get_data() overhead (~12%).
1682  */
1683 static inline uint64_t
1684 zil_max_waste_space(zilog_t *zilog)
1685 {
1686 	return (zil_max_log_data(zilog) / 8);
1687 }
1688 
1689 /*
1690  * Maximum amount of write data for WR_COPIED.  For correctness, consumers
1691  * must fall back to WR_NEED_COPY if we can't fit the entire record into one
1692  * maximum sized log block, because each WR_COPIED record must fit in a
1693  * single log block.  For space efficiency, we want to fit two records into a
1694  * max-sized log block.
1695  */
1696 uint64_t
1697 zil_max_copied_data(zilog_t *zilog)
1698 {
1699 	return ((zilog->zl_max_block_size - sizeof (zil_chain_t)) / 2 -
1700 	    sizeof (lr_write_t));
1701 }
1702 
1703 static lwb_t *
1704 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1705 {
1706 	lr_t *lrcb, *lrc;
1707 	lr_write_t *lrwb, *lrw;
1708 	char *lr_buf;
1709 	uint64_t dlen, dnow, dpad, lwb_sp, reclen, txg, max_log_data;
1710 
1711 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1712 	ASSERT3P(lwb, !=, NULL);
1713 	ASSERT3P(lwb->lwb_buf, !=, NULL);
1714 
1715 	zil_lwb_write_open(zilog, lwb);
1716 
1717 	lrc = &itx->itx_lr;
1718 	lrw = (lr_write_t *)lrc;
1719 
1720 	/*
1721 	 * A commit itx doesn't represent any on-disk state; instead
1722 	 * it's simply used as a place holder on the commit list, and
1723 	 * provides a mechanism for attaching a "commit waiter" onto the
1724 	 * correct lwb (such that the waiter can be signalled upon
1725 	 * completion of that lwb). Thus, we don't process this itx's
1726 	 * log record if it's a commit itx (these itx's don't have log
1727 	 * records), and instead link the itx's waiter onto the lwb's
1728 	 * list of waiters.
1729 	 *
1730 	 * For more details, see the comment above zil_commit().
1731 	 */
1732 	if (lrc->lrc_txtype == TX_COMMIT) {
1733 		mutex_enter(&zilog->zl_lock);
1734 		zil_commit_waiter_link_lwb(itx->itx_private, lwb);
1735 		itx->itx_private = NULL;
1736 		mutex_exit(&zilog->zl_lock);
1737 		return (lwb);
1738 	}
1739 
1740 	if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
1741 		dlen = P2ROUNDUP_TYPED(
1742 		    lrw->lr_length, sizeof (uint64_t), uint64_t);
1743 		dpad = dlen - lrw->lr_length;
1744 	} else {
1745 		dlen = dpad = 0;
1746 	}
1747 	reclen = lrc->lrc_reclen;
1748 	zilog->zl_cur_used += (reclen + dlen);
1749 	txg = lrc->lrc_txg;
1750 
1751 	ASSERT3U(zilog->zl_cur_used, <, UINT64_MAX - (reclen + dlen));
1752 
1753 cont:
1754 	/*
1755 	 * If this record won't fit in the current log block, start a new one.
1756 	 * For WR_NEED_COPY optimize layout for minimal number of chunks.
1757 	 */
1758 	lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1759 	max_log_data = zil_max_log_data(zilog);
1760 	if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
1761 	    lwb_sp < zil_max_waste_space(zilog) &&
1762 	    (dlen % max_log_data == 0 ||
1763 	    lwb_sp < reclen + dlen % max_log_data))) {
1764 		lwb = zil_lwb_write_issue(zilog, lwb);
1765 		if (lwb == NULL)
1766 			return (NULL);
1767 		zil_lwb_write_open(zilog, lwb);
1768 		ASSERT(LWB_EMPTY(lwb));
1769 		lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1770 
1771 		/*
1772 		 * There must be enough space in the new, empty log block to
1773 		 * hold reclen.  For WR_COPIED, we need to fit the whole
1774 		 * record in one block, and reclen is the header size + the
1775 		 * data size. For WR_NEED_COPY, we can create multiple
1776 		 * records, splitting the data into multiple blocks, so we
1777 		 * only need to fit one word of data per block; in this case
1778 		 * reclen is just the header size (no data).
1779 		 */
1780 		ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
1781 	}
1782 
1783 	dnow = MIN(dlen, lwb_sp - reclen);
1784 	lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1785 	bcopy(lrc, lr_buf, reclen);
1786 	lrcb = (lr_t *)lr_buf;		/* Like lrc, but inside lwb. */
1787 	lrwb = (lr_write_t *)lrcb;	/* Like lrw, but inside lwb. */
1788 
1789 	ZIL_STAT_BUMP(zil_itx_count);
1790 
1791 	/*
1792 	 * If it's a write, fetch the data or get its blkptr as appropriate.
1793 	 */
1794 	if (lrc->lrc_txtype == TX_WRITE) {
1795 		if (txg > spa_freeze_txg(zilog->zl_spa))
1796 			txg_wait_synced(zilog->zl_dmu_pool, txg);
1797 		if (itx->itx_wr_state == WR_COPIED) {
1798 			ZIL_STAT_BUMP(zil_itx_copied_count);
1799 			ZIL_STAT_INCR(zil_itx_copied_bytes, lrw->lr_length);
1800 		} else {
1801 			char *dbuf;
1802 			int error;
1803 
1804 			if (itx->itx_wr_state == WR_NEED_COPY) {
1805 				dbuf = lr_buf + reclen;
1806 				lrcb->lrc_reclen += dnow;
1807 				if (lrwb->lr_length > dnow)
1808 					lrwb->lr_length = dnow;
1809 				lrw->lr_offset += dnow;
1810 				lrw->lr_length -= dnow;
1811 				ZIL_STAT_BUMP(zil_itx_needcopy_count);
1812 				ZIL_STAT_INCR(zil_itx_needcopy_bytes, dnow);
1813 			} else {
1814 				ASSERT3S(itx->itx_wr_state, ==, WR_INDIRECT);
1815 				dbuf = NULL;
1816 				ZIL_STAT_BUMP(zil_itx_indirect_count);
1817 				ZIL_STAT_INCR(zil_itx_indirect_bytes,
1818 				    lrw->lr_length);
1819 			}
1820 
1821 			/*
1822 			 * We pass in the "lwb_write_zio" rather than
1823 			 * "lwb_root_zio" so that the "lwb_write_zio"
1824 			 * becomes the parent of any zio's created by
1825 			 * the "zl_get_data" callback. The vdevs are
1826 			 * flushed after the "lwb_write_zio" completes,
1827 			 * so we want to make sure that completion
1828 			 * callback waits for these additional zio's,
1829 			 * such that the vdevs used by those zio's will
1830 			 * be included in the lwb's vdev tree, and those
1831 			 * vdevs will be properly flushed. If we passed
1832 			 * in "lwb_root_zio" here, then these additional
1833 			 * vdevs may not be flushed; e.g. if these zio's
1834 			 * completed after "lwb_write_zio" completed.
1835 			 */
1836 			error = zilog->zl_get_data(itx->itx_private,
1837 			    itx->itx_gen, lrwb, dbuf, lwb,
1838 			    lwb->lwb_write_zio);
1839 			if (dbuf != NULL && error == 0 && dnow == dlen)
1840 				/* Zero any padding bytes in the last block. */
1841 				bzero((char *)dbuf + lrwb->lr_length, dpad);
1842 
1843 			if (error == EIO) {
1844 				txg_wait_synced(zilog->zl_dmu_pool, txg);
1845 				return (lwb);
1846 			}
1847 			if (error != 0) {
1848 				ASSERT(error == ENOENT || error == EEXIST ||
1849 				    error == EALREADY);
1850 				return (lwb);
1851 			}
1852 		}
1853 	}
1854 
1855 	/*
1856 	 * We're actually making an entry, so update lrc_seq to be the
1857 	 * log record sequence number.  Note that this is generally not
1858 	 * equal to the itx sequence number because not all transactions
1859 	 * are synchronous, and sometimes spa_sync() gets there first.
1860 	 */
1861 	lrcb->lrc_seq = ++zilog->zl_lr_seq;
1862 	lwb->lwb_nused += reclen + dnow;
1863 
1864 	zil_lwb_add_txg(lwb, txg);
1865 
1866 	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1867 	ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1868 
1869 	dlen -= dnow;
1870 	if (dlen > 0) {
1871 		zilog->zl_cur_used += reclen;
1872 		goto cont;
1873 	}
1874 
1875 	return (lwb);
1876 }
1877 
1878 itx_t *
1879 zil_itx_create(uint64_t txtype, size_t olrsize)
1880 {
1881 	size_t itxsize, lrsize;
1882 	itx_t *itx;
1883 
1884 	lrsize = P2ROUNDUP_TYPED(olrsize, sizeof (uint64_t), size_t);
1885 	itxsize = offsetof(itx_t, itx_lr) + lrsize;
1886 
1887 	itx = zio_data_buf_alloc(itxsize);
1888 	itx->itx_lr.lrc_txtype = txtype;
1889 	itx->itx_lr.lrc_reclen = lrsize;
1890 	itx->itx_lr.lrc_seq = 0;	/* defensive */
1891 	bzero((char *)&itx->itx_lr + olrsize, lrsize - olrsize);
1892 	itx->itx_sync = B_TRUE;		/* default is synchronous */
1893 	itx->itx_callback = NULL;
1894 	itx->itx_callback_data = NULL;
1895 	itx->itx_size = itxsize;
1896 
1897 	return (itx);
1898 }
1899 
1900 void
1901 zil_itx_destroy(itx_t *itx)
1902 {
1903 	IMPLY(itx->itx_lr.lrc_txtype == TX_COMMIT, itx->itx_callback == NULL);
1904 	IMPLY(itx->itx_callback != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
1905 
1906 	if (itx->itx_callback != NULL)
1907 		itx->itx_callback(itx->itx_callback_data);
1908 
1909 	zio_data_buf_free(itx, itx->itx_size);
1910 }
1911 
1912 /*
1913  * Free up the sync and async itxs. The itxs_t has already been detached
1914  * so no locks are needed.
1915  */
1916 static void
1917 zil_itxg_clean(void *arg)
1918 {
1919 	itx_t *itx;
1920 	list_t *list;
1921 	avl_tree_t *t;
1922 	void *cookie;
1923 	itxs_t *itxs = arg;
1924 	itx_async_node_t *ian;
1925 
1926 	list = &itxs->i_sync_list;
1927 	while ((itx = list_head(list)) != NULL) {
1928 		/*
1929 		 * In the general case, commit itxs will not be found
1930 		 * here, as they'll be committed to an lwb via
1931 		 * zil_lwb_commit(), and free'd in that function. Having
1932 		 * said that, it is still possible for commit itxs to be
1933 		 * found here, due to the following race:
1934 		 *
1935 		 *	- a thread calls zil_commit() which assigns the
1936 		 *	  commit itx to a per-txg i_sync_list
1937 		 *	- zil_itxg_clean() is called (e.g. via spa_sync())
1938 		 *	  while the waiter is still on the i_sync_list
1939 		 *
1940 		 * There's nothing to prevent syncing the txg while the
1941 		 * waiter is on the i_sync_list. This normally doesn't
1942 		 * happen because spa_sync() is slower than zil_commit(),
1943 		 * but if zil_commit() calls txg_wait_synced() (e.g.
1944 		 * because zil_create() or zil_commit_writer_stall() is
1945 		 * called) we will hit this case.
1946 		 */
1947 		if (itx->itx_lr.lrc_txtype == TX_COMMIT)
1948 			zil_commit_waiter_skip(itx->itx_private);
1949 
1950 		list_remove(list, itx);
1951 		zil_itx_destroy(itx);
1952 	}
1953 
1954 	cookie = NULL;
1955 	t = &itxs->i_async_tree;
1956 	while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1957 		list = &ian->ia_list;
1958 		while ((itx = list_head(list)) != NULL) {
1959 			list_remove(list, itx);
1960 			/* commit itxs should never be on the async lists. */
1961 			ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
1962 			zil_itx_destroy(itx);
1963 		}
1964 		list_destroy(list);
1965 		kmem_free(ian, sizeof (itx_async_node_t));
1966 	}
1967 	avl_destroy(t);
1968 
1969 	kmem_free(itxs, sizeof (itxs_t));
1970 }
1971 
1972 static int
1973 zil_aitx_compare(const void *x1, const void *x2)
1974 {
1975 	const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1976 	const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1977 
1978 	return (TREE_CMP(o1, o2));
1979 }
1980 
1981 /*
1982  * Remove all async itx with the given oid.
1983  */
1984 void
1985 zil_remove_async(zilog_t *zilog, uint64_t oid)
1986 {
1987 	uint64_t otxg, txg;
1988 	itx_async_node_t *ian;
1989 	avl_tree_t *t;
1990 	avl_index_t where;
1991 	list_t clean_list;
1992 	itx_t *itx;
1993 
1994 	ASSERT(oid != 0);
1995 	list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1996 
1997 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1998 		otxg = ZILTEST_TXG;
1999 	else
2000 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2001 
2002 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2003 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2004 
2005 		mutex_enter(&itxg->itxg_lock);
2006 		if (itxg->itxg_txg != txg) {
2007 			mutex_exit(&itxg->itxg_lock);
2008 			continue;
2009 		}
2010 
2011 		/*
2012 		 * Locate the object node and append its list.
2013 		 */
2014 		t = &itxg->itxg_itxs->i_async_tree;
2015 		ian = avl_find(t, &oid, &where);
2016 		if (ian != NULL)
2017 			list_move_tail(&clean_list, &ian->ia_list);
2018 		mutex_exit(&itxg->itxg_lock);
2019 	}
2020 	while ((itx = list_head(&clean_list)) != NULL) {
2021 		list_remove(&clean_list, itx);
2022 		/* commit itxs should never be on the async lists. */
2023 		ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
2024 		zil_itx_destroy(itx);
2025 	}
2026 	list_destroy(&clean_list);
2027 }
2028 
2029 void
2030 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
2031 {
2032 	uint64_t txg;
2033 	itxg_t *itxg;
2034 	itxs_t *itxs, *clean = NULL;
2035 
2036 	/*
2037 	 * Ensure the data of a renamed file is committed before the rename.
2038 	 */
2039 	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
2040 		zil_async_to_sync(zilog, itx->itx_oid);
2041 
2042 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
2043 		txg = ZILTEST_TXG;
2044 	else
2045 		txg = dmu_tx_get_txg(tx);
2046 
2047 	itxg = &zilog->zl_itxg[txg & TXG_MASK];
2048 	mutex_enter(&itxg->itxg_lock);
2049 	itxs = itxg->itxg_itxs;
2050 	if (itxg->itxg_txg != txg) {
2051 		if (itxs != NULL) {
2052 			/*
2053 			 * The zil_clean callback hasn't got around to cleaning
2054 			 * this itxg. Save the itxs for release below.
2055 			 * This should be rare.
2056 			 */
2057 			zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
2058 			    "txg %llu", (u_longlong_t)itxg->itxg_txg);
2059 			clean = itxg->itxg_itxs;
2060 		}
2061 		itxg->itxg_txg = txg;
2062 		itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t),
2063 		    KM_SLEEP);
2064 
2065 		list_create(&itxs->i_sync_list, sizeof (itx_t),
2066 		    offsetof(itx_t, itx_node));
2067 		avl_create(&itxs->i_async_tree, zil_aitx_compare,
2068 		    sizeof (itx_async_node_t),
2069 		    offsetof(itx_async_node_t, ia_node));
2070 	}
2071 	if (itx->itx_sync) {
2072 		list_insert_tail(&itxs->i_sync_list, itx);
2073 	} else {
2074 		avl_tree_t *t = &itxs->i_async_tree;
2075 		uint64_t foid =
2076 		    LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid);
2077 		itx_async_node_t *ian;
2078 		avl_index_t where;
2079 
2080 		ian = avl_find(t, &foid, &where);
2081 		if (ian == NULL) {
2082 			ian = kmem_alloc(sizeof (itx_async_node_t),
2083 			    KM_SLEEP);
2084 			list_create(&ian->ia_list, sizeof (itx_t),
2085 			    offsetof(itx_t, itx_node));
2086 			ian->ia_foid = foid;
2087 			avl_insert(t, ian, where);
2088 		}
2089 		list_insert_tail(&ian->ia_list, itx);
2090 	}
2091 
2092 	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
2093 
2094 	/*
2095 	 * We don't want to dirty the ZIL using ZILTEST_TXG, because
2096 	 * zil_clean() will never be called using ZILTEST_TXG. Thus, we
2097 	 * need to be careful to always dirty the ZIL using the "real"
2098 	 * TXG (not itxg_txg) even when the SPA is frozen.
2099 	 */
2100 	zilog_dirty(zilog, dmu_tx_get_txg(tx));
2101 	mutex_exit(&itxg->itxg_lock);
2102 
2103 	/* Release the old itxs now we've dropped the lock */
2104 	if (clean != NULL)
2105 		zil_itxg_clean(clean);
2106 }
2107 
2108 /*
2109  * If there are any in-memory intent log transactions which have now been
2110  * synced then start up a taskq to free them. We should only do this after we
2111  * have written out the uberblocks (i.e. txg has been committed) so that
2112  * don't inadvertently clean out in-memory log records that would be required
2113  * by zil_commit().
2114  */
2115 void
2116 zil_clean(zilog_t *zilog, uint64_t synced_txg)
2117 {
2118 	itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
2119 	itxs_t *clean_me;
2120 
2121 	ASSERT3U(synced_txg, <, ZILTEST_TXG);
2122 
2123 	mutex_enter(&itxg->itxg_lock);
2124 	if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
2125 		mutex_exit(&itxg->itxg_lock);
2126 		return;
2127 	}
2128 	ASSERT3U(itxg->itxg_txg, <=, synced_txg);
2129 	ASSERT3U(itxg->itxg_txg, !=, 0);
2130 	clean_me = itxg->itxg_itxs;
2131 	itxg->itxg_itxs = NULL;
2132 	itxg->itxg_txg = 0;
2133 	mutex_exit(&itxg->itxg_lock);
2134 	/*
2135 	 * Preferably start a task queue to free up the old itxs but
2136 	 * if taskq_dispatch can't allocate resources to do that then
2137 	 * free it in-line. This should be rare. Note, using TQ_SLEEP
2138 	 * created a bad performance problem.
2139 	 */
2140 	ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
2141 	ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
2142 	taskqid_t id = taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
2143 	    zil_itxg_clean, clean_me, TQ_NOSLEEP);
2144 	if (id == TASKQID_INVALID)
2145 		zil_itxg_clean(clean_me);
2146 }
2147 
2148 /*
2149  * This function will traverse the queue of itxs that need to be
2150  * committed, and move them onto the ZIL's zl_itx_commit_list.
2151  */
2152 static void
2153 zil_get_commit_list(zilog_t *zilog)
2154 {
2155 	uint64_t otxg, txg;
2156 	list_t *commit_list = &zilog->zl_itx_commit_list;
2157 
2158 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2159 
2160 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2161 		otxg = ZILTEST_TXG;
2162 	else
2163 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2164 
2165 	/*
2166 	 * This is inherently racy, since there is nothing to prevent
2167 	 * the last synced txg from changing. That's okay since we'll
2168 	 * only commit things in the future.
2169 	 */
2170 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2171 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2172 
2173 		mutex_enter(&itxg->itxg_lock);
2174 		if (itxg->itxg_txg != txg) {
2175 			mutex_exit(&itxg->itxg_lock);
2176 			continue;
2177 		}
2178 
2179 		/*
2180 		 * If we're adding itx records to the zl_itx_commit_list,
2181 		 * then the zil better be dirty in this "txg". We can assert
2182 		 * that here since we're holding the itxg_lock which will
2183 		 * prevent spa_sync from cleaning it. Once we add the itxs
2184 		 * to the zl_itx_commit_list we must commit it to disk even
2185 		 * if it's unnecessary (i.e. the txg was synced).
2186 		 */
2187 		ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
2188 		    spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
2189 		list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
2190 
2191 		mutex_exit(&itxg->itxg_lock);
2192 	}
2193 }
2194 
2195 /*
2196  * Move the async itxs for a specified object to commit into sync lists.
2197  */
2198 void
2199 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
2200 {
2201 	uint64_t otxg, txg;
2202 	itx_async_node_t *ian;
2203 	avl_tree_t *t;
2204 	avl_index_t where;
2205 
2206 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2207 		otxg = ZILTEST_TXG;
2208 	else
2209 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2210 
2211 	/*
2212 	 * This is inherently racy, since there is nothing to prevent
2213 	 * the last synced txg from changing.
2214 	 */
2215 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2216 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2217 
2218 		mutex_enter(&itxg->itxg_lock);
2219 		if (itxg->itxg_txg != txg) {
2220 			mutex_exit(&itxg->itxg_lock);
2221 			continue;
2222 		}
2223 
2224 		/*
2225 		 * If a foid is specified then find that node and append its
2226 		 * list. Otherwise walk the tree appending all the lists
2227 		 * to the sync list. We add to the end rather than the
2228 		 * beginning to ensure the create has happened.
2229 		 */
2230 		t = &itxg->itxg_itxs->i_async_tree;
2231 		if (foid != 0) {
2232 			ian = avl_find(t, &foid, &where);
2233 			if (ian != NULL) {
2234 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
2235 				    &ian->ia_list);
2236 			}
2237 		} else {
2238 			void *cookie = NULL;
2239 
2240 			while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
2241 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
2242 				    &ian->ia_list);
2243 				list_destroy(&ian->ia_list);
2244 				kmem_free(ian, sizeof (itx_async_node_t));
2245 			}
2246 		}
2247 		mutex_exit(&itxg->itxg_lock);
2248 	}
2249 }
2250 
2251 /*
2252  * This function will prune commit itxs that are at the head of the
2253  * commit list (it won't prune past the first non-commit itx), and
2254  * either: a) attach them to the last lwb that's still pending
2255  * completion, or b) skip them altogether.
2256  *
2257  * This is used as a performance optimization to prevent commit itxs
2258  * from generating new lwbs when it's unnecessary to do so.
2259  */
2260 static void
2261 zil_prune_commit_list(zilog_t *zilog)
2262 {
2263 	itx_t *itx;
2264 
2265 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2266 
2267 	while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) {
2268 		lr_t *lrc = &itx->itx_lr;
2269 		if (lrc->lrc_txtype != TX_COMMIT)
2270 			break;
2271 
2272 		mutex_enter(&zilog->zl_lock);
2273 
2274 		lwb_t *last_lwb = zilog->zl_last_lwb_opened;
2275 		if (last_lwb == NULL ||
2276 		    last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) {
2277 			/*
2278 			 * All of the itxs this waiter was waiting on
2279 			 * must have already completed (or there were
2280 			 * never any itx's for it to wait on), so it's
2281 			 * safe to skip this waiter and mark it done.
2282 			 */
2283 			zil_commit_waiter_skip(itx->itx_private);
2284 		} else {
2285 			zil_commit_waiter_link_lwb(itx->itx_private, last_lwb);
2286 			itx->itx_private = NULL;
2287 		}
2288 
2289 		mutex_exit(&zilog->zl_lock);
2290 
2291 		list_remove(&zilog->zl_itx_commit_list, itx);
2292 		zil_itx_destroy(itx);
2293 	}
2294 
2295 	IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
2296 }
2297 
2298 static void
2299 zil_commit_writer_stall(zilog_t *zilog)
2300 {
2301 	/*
2302 	 * When zio_alloc_zil() fails to allocate the next lwb block on
2303 	 * disk, we must call txg_wait_synced() to ensure all of the
2304 	 * lwbs in the zilog's zl_lwb_list are synced and then freed (in
2305 	 * zil_sync()), such that any subsequent ZIL writer (i.e. a call
2306 	 * to zil_process_commit_list()) will have to call zil_create(),
2307 	 * and start a new ZIL chain.
2308 	 *
2309 	 * Since zil_alloc_zil() failed, the lwb that was previously
2310 	 * issued does not have a pointer to the "next" lwb on disk.
2311 	 * Thus, if another ZIL writer thread was to allocate the "next"
2312 	 * on-disk lwb, that block could be leaked in the event of a
2313 	 * crash (because the previous lwb on-disk would not point to
2314 	 * it).
2315 	 *
2316 	 * We must hold the zilog's zl_issuer_lock while we do this, to
2317 	 * ensure no new threads enter zil_process_commit_list() until
2318 	 * all lwb's in the zl_lwb_list have been synced and freed
2319 	 * (which is achieved via the txg_wait_synced() call).
2320 	 */
2321 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2322 	txg_wait_synced(zilog->zl_dmu_pool, 0);
2323 	ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
2324 }
2325 
2326 /*
2327  * This function will traverse the commit list, creating new lwbs as
2328  * needed, and committing the itxs from the commit list to these newly
2329  * created lwbs. Additionally, as a new lwb is created, the previous
2330  * lwb will be issued to the zio layer to be written to disk.
2331  */
2332 static void
2333 zil_process_commit_list(zilog_t *zilog)
2334 {
2335 	spa_t *spa = zilog->zl_spa;
2336 	list_t nolwb_itxs;
2337 	list_t nolwb_waiters;
2338 	lwb_t *lwb;
2339 	itx_t *itx;
2340 
2341 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2342 
2343 	/*
2344 	 * Return if there's nothing to commit before we dirty the fs by
2345 	 * calling zil_create().
2346 	 */
2347 	if (list_head(&zilog->zl_itx_commit_list) == NULL)
2348 		return;
2349 
2350 	list_create(&nolwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
2351 	list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t),
2352 	    offsetof(zil_commit_waiter_t, zcw_node));
2353 
2354 	lwb = list_tail(&zilog->zl_lwb_list);
2355 	if (lwb == NULL) {
2356 		lwb = zil_create(zilog);
2357 	} else {
2358 		/*
2359 		 * Activate SPA_FEATURE_ZILSAXATTR for the cases where ZIL will
2360 		 * have already been created (zl_lwb_list not empty).
2361 		 */
2362 		zil_commit_activate_saxattr_feature(zilog);
2363 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2364 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
2365 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
2366 	}
2367 
2368 	while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) {
2369 		lr_t *lrc = &itx->itx_lr;
2370 		uint64_t txg = lrc->lrc_txg;
2371 
2372 		ASSERT3U(txg, !=, 0);
2373 
2374 		if (lrc->lrc_txtype == TX_COMMIT) {
2375 			DTRACE_PROBE2(zil__process__commit__itx,
2376 			    zilog_t *, zilog, itx_t *, itx);
2377 		} else {
2378 			DTRACE_PROBE2(zil__process__normal__itx,
2379 			    zilog_t *, zilog, itx_t *, itx);
2380 		}
2381 
2382 		list_remove(&zilog->zl_itx_commit_list, itx);
2383 
2384 		boolean_t synced = txg <= spa_last_synced_txg(spa);
2385 		boolean_t frozen = txg > spa_freeze_txg(spa);
2386 
2387 		/*
2388 		 * If the txg of this itx has already been synced out, then
2389 		 * we don't need to commit this itx to an lwb. This is
2390 		 * because the data of this itx will have already been
2391 		 * written to the main pool. This is inherently racy, and
2392 		 * it's still ok to commit an itx whose txg has already
2393 		 * been synced; this will result in a write that's
2394 		 * unnecessary, but will do no harm.
2395 		 *
2396 		 * With that said, we always want to commit TX_COMMIT itxs
2397 		 * to an lwb, regardless of whether or not that itx's txg
2398 		 * has been synced out. We do this to ensure any OPENED lwb
2399 		 * will always have at least one zil_commit_waiter_t linked
2400 		 * to the lwb.
2401 		 *
2402 		 * As a counter-example, if we skipped TX_COMMIT itx's
2403 		 * whose txg had already been synced, the following
2404 		 * situation could occur if we happened to be racing with
2405 		 * spa_sync:
2406 		 *
2407 		 * 1. We commit a non-TX_COMMIT itx to an lwb, where the
2408 		 *    itx's txg is 10 and the last synced txg is 9.
2409 		 * 2. spa_sync finishes syncing out txg 10.
2410 		 * 3. We move to the next itx in the list, it's a TX_COMMIT
2411 		 *    whose txg is 10, so we skip it rather than committing
2412 		 *    it to the lwb used in (1).
2413 		 *
2414 		 * If the itx that is skipped in (3) is the last TX_COMMIT
2415 		 * itx in the commit list, than it's possible for the lwb
2416 		 * used in (1) to remain in the OPENED state indefinitely.
2417 		 *
2418 		 * To prevent the above scenario from occurring, ensuring
2419 		 * that once an lwb is OPENED it will transition to ISSUED
2420 		 * and eventually DONE, we always commit TX_COMMIT itx's to
2421 		 * an lwb here, even if that itx's txg has already been
2422 		 * synced.
2423 		 *
2424 		 * Finally, if the pool is frozen, we _always_ commit the
2425 		 * itx.  The point of freezing the pool is to prevent data
2426 		 * from being written to the main pool via spa_sync, and
2427 		 * instead rely solely on the ZIL to persistently store the
2428 		 * data; i.e.  when the pool is frozen, the last synced txg
2429 		 * value can't be trusted.
2430 		 */
2431 		if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) {
2432 			if (lwb != NULL) {
2433 				lwb = zil_lwb_commit(zilog, itx, lwb);
2434 
2435 				if (lwb == NULL)
2436 					list_insert_tail(&nolwb_itxs, itx);
2437 				else
2438 					list_insert_tail(&lwb->lwb_itxs, itx);
2439 			} else {
2440 				if (lrc->lrc_txtype == TX_COMMIT) {
2441 					zil_commit_waiter_link_nolwb(
2442 					    itx->itx_private, &nolwb_waiters);
2443 				}
2444 
2445 				list_insert_tail(&nolwb_itxs, itx);
2446 			}
2447 		} else {
2448 			ASSERT3S(lrc->lrc_txtype, !=, TX_COMMIT);
2449 			zil_itx_destroy(itx);
2450 		}
2451 	}
2452 
2453 	if (lwb == NULL) {
2454 		/*
2455 		 * This indicates zio_alloc_zil() failed to allocate the
2456 		 * "next" lwb on-disk. When this happens, we must stall
2457 		 * the ZIL write pipeline; see the comment within
2458 		 * zil_commit_writer_stall() for more details.
2459 		 */
2460 		zil_commit_writer_stall(zilog);
2461 
2462 		/*
2463 		 * Additionally, we have to signal and mark the "nolwb"
2464 		 * waiters as "done" here, since without an lwb, we
2465 		 * can't do this via zil_lwb_flush_vdevs_done() like
2466 		 * normal.
2467 		 */
2468 		zil_commit_waiter_t *zcw;
2469 		while ((zcw = list_head(&nolwb_waiters)) != NULL) {
2470 			zil_commit_waiter_skip(zcw);
2471 			list_remove(&nolwb_waiters, zcw);
2472 		}
2473 
2474 		/*
2475 		 * And finally, we have to destroy the itx's that
2476 		 * couldn't be committed to an lwb; this will also call
2477 		 * the itx's callback if one exists for the itx.
2478 		 */
2479 		while ((itx = list_head(&nolwb_itxs)) != NULL) {
2480 			list_remove(&nolwb_itxs, itx);
2481 			zil_itx_destroy(itx);
2482 		}
2483 	} else {
2484 		ASSERT(list_is_empty(&nolwb_waiters));
2485 		ASSERT3P(lwb, !=, NULL);
2486 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2487 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
2488 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
2489 
2490 		/*
2491 		 * At this point, the ZIL block pointed at by the "lwb"
2492 		 * variable is in one of the following states: "closed"
2493 		 * or "open".
2494 		 *
2495 		 * If it's "closed", then no itxs have been committed to
2496 		 * it, so there's no point in issuing its zio (i.e. it's
2497 		 * "empty").
2498 		 *
2499 		 * If it's "open", then it contains one or more itxs that
2500 		 * eventually need to be committed to stable storage. In
2501 		 * this case we intentionally do not issue the lwb's zio
2502 		 * to disk yet, and instead rely on one of the following
2503 		 * two mechanisms for issuing the zio:
2504 		 *
2505 		 * 1. Ideally, there will be more ZIL activity occurring
2506 		 * on the system, such that this function will be
2507 		 * immediately called again (not necessarily by the same
2508 		 * thread) and this lwb's zio will be issued via
2509 		 * zil_lwb_commit(). This way, the lwb is guaranteed to
2510 		 * be "full" when it is issued to disk, and we'll make
2511 		 * use of the lwb's size the best we can.
2512 		 *
2513 		 * 2. If there isn't sufficient ZIL activity occurring on
2514 		 * the system, such that this lwb's zio isn't issued via
2515 		 * zil_lwb_commit(), zil_commit_waiter() will issue the
2516 		 * lwb's zio. If this occurs, the lwb is not guaranteed
2517 		 * to be "full" by the time its zio is issued, and means
2518 		 * the size of the lwb was "too large" given the amount
2519 		 * of ZIL activity occurring on the system at that time.
2520 		 *
2521 		 * We do this for a couple of reasons:
2522 		 *
2523 		 * 1. To try and reduce the number of IOPs needed to
2524 		 * write the same number of itxs. If an lwb has space
2525 		 * available in its buffer for more itxs, and more itxs
2526 		 * will be committed relatively soon (relative to the
2527 		 * latency of performing a write), then it's beneficial
2528 		 * to wait for these "next" itxs. This way, more itxs
2529 		 * can be committed to stable storage with fewer writes.
2530 		 *
2531 		 * 2. To try and use the largest lwb block size that the
2532 		 * incoming rate of itxs can support. Again, this is to
2533 		 * try and pack as many itxs into as few lwbs as
2534 		 * possible, without significantly impacting the latency
2535 		 * of each individual itx.
2536 		 */
2537 	}
2538 }
2539 
2540 /*
2541  * This function is responsible for ensuring the passed in commit waiter
2542  * (and associated commit itx) is committed to an lwb. If the waiter is
2543  * not already committed to an lwb, all itxs in the zilog's queue of
2544  * itxs will be processed. The assumption is the passed in waiter's
2545  * commit itx will found in the queue just like the other non-commit
2546  * itxs, such that when the entire queue is processed, the waiter will
2547  * have been committed to an lwb.
2548  *
2549  * The lwb associated with the passed in waiter is not guaranteed to
2550  * have been issued by the time this function completes. If the lwb is
2551  * not issued, we rely on future calls to zil_commit_writer() to issue
2552  * the lwb, or the timeout mechanism found in zil_commit_waiter().
2553  */
2554 static void
2555 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw)
2556 {
2557 	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2558 	ASSERT(spa_writeable(zilog->zl_spa));
2559 
2560 	mutex_enter(&zilog->zl_issuer_lock);
2561 
2562 	if (zcw->zcw_lwb != NULL || zcw->zcw_done) {
2563 		/*
2564 		 * It's possible that, while we were waiting to acquire
2565 		 * the "zl_issuer_lock", another thread committed this
2566 		 * waiter to an lwb. If that occurs, we bail out early,
2567 		 * without processing any of the zilog's queue of itxs.
2568 		 *
2569 		 * On certain workloads and system configurations, the
2570 		 * "zl_issuer_lock" can become highly contended. In an
2571 		 * attempt to reduce this contention, we immediately drop
2572 		 * the lock if the waiter has already been processed.
2573 		 *
2574 		 * We've measured this optimization to reduce CPU spent
2575 		 * contending on this lock by up to 5%, using a system
2576 		 * with 32 CPUs, low latency storage (~50 usec writes),
2577 		 * and 1024 threads performing sync writes.
2578 		 */
2579 		goto out;
2580 	}
2581 
2582 	ZIL_STAT_BUMP(zil_commit_writer_count);
2583 
2584 	zil_get_commit_list(zilog);
2585 	zil_prune_commit_list(zilog);
2586 	zil_process_commit_list(zilog);
2587 
2588 out:
2589 	mutex_exit(&zilog->zl_issuer_lock);
2590 }
2591 
2592 static void
2593 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw)
2594 {
2595 	ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2596 	ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2597 	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
2598 
2599 	lwb_t *lwb = zcw->zcw_lwb;
2600 	ASSERT3P(lwb, !=, NULL);
2601 	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED);
2602 
2603 	/*
2604 	 * If the lwb has already been issued by another thread, we can
2605 	 * immediately return since there's no work to be done (the
2606 	 * point of this function is to issue the lwb). Additionally, we
2607 	 * do this prior to acquiring the zl_issuer_lock, to avoid
2608 	 * acquiring it when it's not necessary to do so.
2609 	 */
2610 	if (lwb->lwb_state == LWB_STATE_ISSUED ||
2611 	    lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2612 	    lwb->lwb_state == LWB_STATE_FLUSH_DONE)
2613 		return;
2614 
2615 	/*
2616 	 * In order to call zil_lwb_write_issue() we must hold the
2617 	 * zilog's "zl_issuer_lock". We can't simply acquire that lock,
2618 	 * since we're already holding the commit waiter's "zcw_lock",
2619 	 * and those two locks are acquired in the opposite order
2620 	 * elsewhere.
2621 	 */
2622 	mutex_exit(&zcw->zcw_lock);
2623 	mutex_enter(&zilog->zl_issuer_lock);
2624 	mutex_enter(&zcw->zcw_lock);
2625 
2626 	/*
2627 	 * Since we just dropped and re-acquired the commit waiter's
2628 	 * lock, we have to re-check to see if the waiter was marked
2629 	 * "done" during that process. If the waiter was marked "done",
2630 	 * the "lwb" pointer is no longer valid (it can be free'd after
2631 	 * the waiter is marked "done"), so without this check we could
2632 	 * wind up with a use-after-free error below.
2633 	 */
2634 	if (zcw->zcw_done)
2635 		goto out;
2636 
2637 	ASSERT3P(lwb, ==, zcw->zcw_lwb);
2638 
2639 	/*
2640 	 * We've already checked this above, but since we hadn't acquired
2641 	 * the zilog's zl_issuer_lock, we have to perform this check a
2642 	 * second time while holding the lock.
2643 	 *
2644 	 * We don't need to hold the zl_lock since the lwb cannot transition
2645 	 * from OPENED to ISSUED while we hold the zl_issuer_lock. The lwb
2646 	 * _can_ transition from ISSUED to DONE, but it's OK to race with
2647 	 * that transition since we treat the lwb the same, whether it's in
2648 	 * the ISSUED or DONE states.
2649 	 *
2650 	 * The important thing, is we treat the lwb differently depending on
2651 	 * if it's ISSUED or OPENED, and block any other threads that might
2652 	 * attempt to issue this lwb. For that reason we hold the
2653 	 * zl_issuer_lock when checking the lwb_state; we must not call
2654 	 * zil_lwb_write_issue() if the lwb had already been issued.
2655 	 *
2656 	 * See the comment above the lwb_state_t structure definition for
2657 	 * more details on the lwb states, and locking requirements.
2658 	 */
2659 	if (lwb->lwb_state == LWB_STATE_ISSUED ||
2660 	    lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2661 	    lwb->lwb_state == LWB_STATE_FLUSH_DONE)
2662 		goto out;
2663 
2664 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
2665 
2666 	/*
2667 	 * As described in the comments above zil_commit_waiter() and
2668 	 * zil_process_commit_list(), we need to issue this lwb's zio
2669 	 * since we've reached the commit waiter's timeout and it still
2670 	 * hasn't been issued.
2671 	 */
2672 	lwb_t *nlwb = zil_lwb_write_issue(zilog, lwb);
2673 
2674 	IMPLY(nlwb != NULL, lwb->lwb_state != LWB_STATE_OPENED);
2675 
2676 	/*
2677 	 * Since the lwb's zio hadn't been issued by the time this thread
2678 	 * reached its timeout, we reset the zilog's "zl_cur_used" field
2679 	 * to influence the zil block size selection algorithm.
2680 	 *
2681 	 * By having to issue the lwb's zio here, it means the size of the
2682 	 * lwb was too large, given the incoming throughput of itxs.  By
2683 	 * setting "zl_cur_used" to zero, we communicate this fact to the
2684 	 * block size selection algorithm, so it can take this information
2685 	 * into account, and potentially select a smaller size for the
2686 	 * next lwb block that is allocated.
2687 	 */
2688 	zilog->zl_cur_used = 0;
2689 
2690 	if (nlwb == NULL) {
2691 		/*
2692 		 * When zil_lwb_write_issue() returns NULL, this
2693 		 * indicates zio_alloc_zil() failed to allocate the
2694 		 * "next" lwb on-disk. When this occurs, the ZIL write
2695 		 * pipeline must be stalled; see the comment within the
2696 		 * zil_commit_writer_stall() function for more details.
2697 		 *
2698 		 * We must drop the commit waiter's lock prior to
2699 		 * calling zil_commit_writer_stall() or else we can wind
2700 		 * up with the following deadlock:
2701 		 *
2702 		 * - This thread is waiting for the txg to sync while
2703 		 *   holding the waiter's lock; txg_wait_synced() is
2704 		 *   used within txg_commit_writer_stall().
2705 		 *
2706 		 * - The txg can't sync because it is waiting for this
2707 		 *   lwb's zio callback to call dmu_tx_commit().
2708 		 *
2709 		 * - The lwb's zio callback can't call dmu_tx_commit()
2710 		 *   because it's blocked trying to acquire the waiter's
2711 		 *   lock, which occurs prior to calling dmu_tx_commit()
2712 		 */
2713 		mutex_exit(&zcw->zcw_lock);
2714 		zil_commit_writer_stall(zilog);
2715 		mutex_enter(&zcw->zcw_lock);
2716 	}
2717 
2718 out:
2719 	mutex_exit(&zilog->zl_issuer_lock);
2720 	ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2721 }
2722 
2723 /*
2724  * This function is responsible for performing the following two tasks:
2725  *
2726  * 1. its primary responsibility is to block until the given "commit
2727  *    waiter" is considered "done".
2728  *
2729  * 2. its secondary responsibility is to issue the zio for the lwb that
2730  *    the given "commit waiter" is waiting on, if this function has
2731  *    waited "long enough" and the lwb is still in the "open" state.
2732  *
2733  * Given a sufficient amount of itxs being generated and written using
2734  * the ZIL, the lwb's zio will be issued via the zil_lwb_commit()
2735  * function. If this does not occur, this secondary responsibility will
2736  * ensure the lwb is issued even if there is not other synchronous
2737  * activity on the system.
2738  *
2739  * For more details, see zil_process_commit_list(); more specifically,
2740  * the comment at the bottom of that function.
2741  */
2742 static void
2743 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw)
2744 {
2745 	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2746 	ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2747 	ASSERT(spa_writeable(zilog->zl_spa));
2748 
2749 	mutex_enter(&zcw->zcw_lock);
2750 
2751 	/*
2752 	 * The timeout is scaled based on the lwb latency to avoid
2753 	 * significantly impacting the latency of each individual itx.
2754 	 * For more details, see the comment at the bottom of the
2755 	 * zil_process_commit_list() function.
2756 	 */
2757 	int pct = MAX(zfs_commit_timeout_pct, 1);
2758 	hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100;
2759 	hrtime_t wakeup = gethrtime() + sleep;
2760 	boolean_t timedout = B_FALSE;
2761 
2762 	while (!zcw->zcw_done) {
2763 		ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2764 
2765 		lwb_t *lwb = zcw->zcw_lwb;
2766 
2767 		/*
2768 		 * Usually, the waiter will have a non-NULL lwb field here,
2769 		 * but it's possible for it to be NULL as a result of
2770 		 * zil_commit() racing with spa_sync().
2771 		 *
2772 		 * When zil_clean() is called, it's possible for the itxg
2773 		 * list (which may be cleaned via a taskq) to contain
2774 		 * commit itxs. When this occurs, the commit waiters linked
2775 		 * off of these commit itxs will not be committed to an
2776 		 * lwb.  Additionally, these commit waiters will not be
2777 		 * marked done until zil_commit_waiter_skip() is called via
2778 		 * zil_itxg_clean().
2779 		 *
2780 		 * Thus, it's possible for this commit waiter (i.e. the
2781 		 * "zcw" variable) to be found in this "in between" state;
2782 		 * where it's "zcw_lwb" field is NULL, and it hasn't yet
2783 		 * been skipped, so it's "zcw_done" field is still B_FALSE.
2784 		 */
2785 		IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED);
2786 
2787 		if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) {
2788 			ASSERT3B(timedout, ==, B_FALSE);
2789 
2790 			/*
2791 			 * If the lwb hasn't been issued yet, then we
2792 			 * need to wait with a timeout, in case this
2793 			 * function needs to issue the lwb after the
2794 			 * timeout is reached; responsibility (2) from
2795 			 * the comment above this function.
2796 			 */
2797 			int rc = cv_timedwait_hires(&zcw->zcw_cv,
2798 			    &zcw->zcw_lock, wakeup, USEC2NSEC(1),
2799 			    CALLOUT_FLAG_ABSOLUTE);
2800 
2801 			if (rc != -1 || zcw->zcw_done)
2802 				continue;
2803 
2804 			timedout = B_TRUE;
2805 			zil_commit_waiter_timeout(zilog, zcw);
2806 
2807 			if (!zcw->zcw_done) {
2808 				/*
2809 				 * If the commit waiter has already been
2810 				 * marked "done", it's possible for the
2811 				 * waiter's lwb structure to have already
2812 				 * been freed.  Thus, we can only reliably
2813 				 * make these assertions if the waiter
2814 				 * isn't done.
2815 				 */
2816 				ASSERT3P(lwb, ==, zcw->zcw_lwb);
2817 				ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
2818 			}
2819 		} else {
2820 			/*
2821 			 * If the lwb isn't open, then it must have already
2822 			 * been issued. In that case, there's no need to
2823 			 * use a timeout when waiting for the lwb to
2824 			 * complete.
2825 			 *
2826 			 * Additionally, if the lwb is NULL, the waiter
2827 			 * will soon be signaled and marked done via
2828 			 * zil_clean() and zil_itxg_clean(), so no timeout
2829 			 * is required.
2830 			 */
2831 
2832 			IMPLY(lwb != NULL,
2833 			    lwb->lwb_state == LWB_STATE_ISSUED ||
2834 			    lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2835 			    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
2836 			cv_wait(&zcw->zcw_cv, &zcw->zcw_lock);
2837 		}
2838 	}
2839 
2840 	mutex_exit(&zcw->zcw_lock);
2841 }
2842 
2843 static zil_commit_waiter_t *
2844 zil_alloc_commit_waiter(void)
2845 {
2846 	zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP);
2847 
2848 	cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL);
2849 	mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL);
2850 	list_link_init(&zcw->zcw_node);
2851 	zcw->zcw_lwb = NULL;
2852 	zcw->zcw_done = B_FALSE;
2853 	zcw->zcw_zio_error = 0;
2854 
2855 	return (zcw);
2856 }
2857 
2858 static void
2859 zil_free_commit_waiter(zil_commit_waiter_t *zcw)
2860 {
2861 	ASSERT(!list_link_active(&zcw->zcw_node));
2862 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
2863 	ASSERT3B(zcw->zcw_done, ==, B_TRUE);
2864 	mutex_destroy(&zcw->zcw_lock);
2865 	cv_destroy(&zcw->zcw_cv);
2866 	kmem_cache_free(zil_zcw_cache, zcw);
2867 }
2868 
2869 /*
2870  * This function is used to create a TX_COMMIT itx and assign it. This
2871  * way, it will be linked into the ZIL's list of synchronous itxs, and
2872  * then later committed to an lwb (or skipped) when
2873  * zil_process_commit_list() is called.
2874  */
2875 static void
2876 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw)
2877 {
2878 	dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
2879 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
2880 
2881 	itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t));
2882 	itx->itx_sync = B_TRUE;
2883 	itx->itx_private = zcw;
2884 
2885 	zil_itx_assign(zilog, itx, tx);
2886 
2887 	dmu_tx_commit(tx);
2888 }
2889 
2890 /*
2891  * Commit ZFS Intent Log transactions (itxs) to stable storage.
2892  *
2893  * When writing ZIL transactions to the on-disk representation of the
2894  * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple
2895  * itxs can be committed to a single lwb. Once a lwb is written and
2896  * committed to stable storage (i.e. the lwb is written, and vdevs have
2897  * been flushed), each itx that was committed to that lwb is also
2898  * considered to be committed to stable storage.
2899  *
2900  * When an itx is committed to an lwb, the log record (lr_t) contained
2901  * by the itx is copied into the lwb's zio buffer, and once this buffer
2902  * is written to disk, it becomes an on-disk ZIL block.
2903  *
2904  * As itxs are generated, they're inserted into the ZIL's queue of
2905  * uncommitted itxs. The semantics of zil_commit() are such that it will
2906  * block until all itxs that were in the queue when it was called, are
2907  * committed to stable storage.
2908  *
2909  * If "foid" is zero, this means all "synchronous" and "asynchronous"
2910  * itxs, for all objects in the dataset, will be committed to stable
2911  * storage prior to zil_commit() returning. If "foid" is non-zero, all
2912  * "synchronous" itxs for all objects, but only "asynchronous" itxs
2913  * that correspond to the foid passed in, will be committed to stable
2914  * storage prior to zil_commit() returning.
2915  *
2916  * Generally speaking, when zil_commit() is called, the consumer doesn't
2917  * actually care about _all_ of the uncommitted itxs. Instead, they're
2918  * simply trying to waiting for a specific itx to be committed to disk,
2919  * but the interface(s) for interacting with the ZIL don't allow such
2920  * fine-grained communication. A better interface would allow a consumer
2921  * to create and assign an itx, and then pass a reference to this itx to
2922  * zil_commit(); such that zil_commit() would return as soon as that
2923  * specific itx was committed to disk (instead of waiting for _all_
2924  * itxs to be committed).
2925  *
2926  * When a thread calls zil_commit() a special "commit itx" will be
2927  * generated, along with a corresponding "waiter" for this commit itx.
2928  * zil_commit() will wait on this waiter's CV, such that when the waiter
2929  * is marked done, and signaled, zil_commit() will return.
2930  *
2931  * This commit itx is inserted into the queue of uncommitted itxs. This
2932  * provides an easy mechanism for determining which itxs were in the
2933  * queue prior to zil_commit() having been called, and which itxs were
2934  * added after zil_commit() was called.
2935  *
2936  * The commit it is special; it doesn't have any on-disk representation.
2937  * When a commit itx is "committed" to an lwb, the waiter associated
2938  * with it is linked onto the lwb's list of waiters. Then, when that lwb
2939  * completes, each waiter on the lwb's list is marked done and signaled
2940  * -- allowing the thread waiting on the waiter to return from zil_commit().
2941  *
2942  * It's important to point out a few critical factors that allow us
2943  * to make use of the commit itxs, commit waiters, per-lwb lists of
2944  * commit waiters, and zio completion callbacks like we're doing:
2945  *
2946  *   1. The list of waiters for each lwb is traversed, and each commit
2947  *      waiter is marked "done" and signaled, in the zio completion
2948  *      callback of the lwb's zio[*].
2949  *
2950  *      * Actually, the waiters are signaled in the zio completion
2951  *        callback of the root zio for the DKIOCFLUSHWRITECACHE commands
2952  *        that are sent to the vdevs upon completion of the lwb zio.
2953  *
2954  *   2. When the itxs are inserted into the ZIL's queue of uncommitted
2955  *      itxs, the order in which they are inserted is preserved[*]; as
2956  *      itxs are added to the queue, they are added to the tail of
2957  *      in-memory linked lists.
2958  *
2959  *      When committing the itxs to lwbs (to be written to disk), they
2960  *      are committed in the same order in which the itxs were added to
2961  *      the uncommitted queue's linked list(s); i.e. the linked list of
2962  *      itxs to commit is traversed from head to tail, and each itx is
2963  *      committed to an lwb in that order.
2964  *
2965  *      * To clarify:
2966  *
2967  *        - the order of "sync" itxs is preserved w.r.t. other
2968  *          "sync" itxs, regardless of the corresponding objects.
2969  *        - the order of "async" itxs is preserved w.r.t. other
2970  *          "async" itxs corresponding to the same object.
2971  *        - the order of "async" itxs is *not* preserved w.r.t. other
2972  *          "async" itxs corresponding to different objects.
2973  *        - the order of "sync" itxs w.r.t. "async" itxs (or vice
2974  *          versa) is *not* preserved, even for itxs that correspond
2975  *          to the same object.
2976  *
2977  *      For more details, see: zil_itx_assign(), zil_async_to_sync(),
2978  *      zil_get_commit_list(), and zil_process_commit_list().
2979  *
2980  *   3. The lwbs represent a linked list of blocks on disk. Thus, any
2981  *      lwb cannot be considered committed to stable storage, until its
2982  *      "previous" lwb is also committed to stable storage. This fact,
2983  *      coupled with the fact described above, means that itxs are
2984  *      committed in (roughly) the order in which they were generated.
2985  *      This is essential because itxs are dependent on prior itxs.
2986  *      Thus, we *must not* deem an itx as being committed to stable
2987  *      storage, until *all* prior itxs have also been committed to
2988  *      stable storage.
2989  *
2990  *      To enforce this ordering of lwb zio's, while still leveraging as
2991  *      much of the underlying storage performance as possible, we rely
2992  *      on two fundamental concepts:
2993  *
2994  *          1. The creation and issuance of lwb zio's is protected by
2995  *             the zilog's "zl_issuer_lock", which ensures only a single
2996  *             thread is creating and/or issuing lwb's at a time
2997  *          2. The "previous" lwb is a child of the "current" lwb
2998  *             (leveraging the zio parent-child dependency graph)
2999  *
3000  *      By relying on this parent-child zio relationship, we can have
3001  *      many lwb zio's concurrently issued to the underlying storage,
3002  *      but the order in which they complete will be the same order in
3003  *      which they were created.
3004  */
3005 void
3006 zil_commit(zilog_t *zilog, uint64_t foid)
3007 {
3008 	/*
3009 	 * We should never attempt to call zil_commit on a snapshot for
3010 	 * a couple of reasons:
3011 	 *
3012 	 * 1. A snapshot may never be modified, thus it cannot have any
3013 	 *    in-flight itxs that would have modified the dataset.
3014 	 *
3015 	 * 2. By design, when zil_commit() is called, a commit itx will
3016 	 *    be assigned to this zilog; as a result, the zilog will be
3017 	 *    dirtied. We must not dirty the zilog of a snapshot; there's
3018 	 *    checks in the code that enforce this invariant, and will
3019 	 *    cause a panic if it's not upheld.
3020 	 */
3021 	ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE);
3022 
3023 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3024 		return;
3025 
3026 	if (!spa_writeable(zilog->zl_spa)) {
3027 		/*
3028 		 * If the SPA is not writable, there should never be any
3029 		 * pending itxs waiting to be committed to disk. If that
3030 		 * weren't true, we'd skip writing those itxs out, and
3031 		 * would break the semantics of zil_commit(); thus, we're
3032 		 * verifying that truth before we return to the caller.
3033 		 */
3034 		ASSERT(list_is_empty(&zilog->zl_lwb_list));
3035 		ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
3036 		for (int i = 0; i < TXG_SIZE; i++)
3037 			ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL);
3038 		return;
3039 	}
3040 
3041 	/*
3042 	 * If the ZIL is suspended, we don't want to dirty it by calling
3043 	 * zil_commit_itx_assign() below, nor can we write out
3044 	 * lwbs like would be done in zil_commit_write(). Thus, we
3045 	 * simply rely on txg_wait_synced() to maintain the necessary
3046 	 * semantics, and avoid calling those functions altogether.
3047 	 */
3048 	if (zilog->zl_suspend > 0) {
3049 		txg_wait_synced(zilog->zl_dmu_pool, 0);
3050 		return;
3051 	}
3052 
3053 	zil_commit_impl(zilog, foid);
3054 }
3055 
3056 void
3057 zil_commit_impl(zilog_t *zilog, uint64_t foid)
3058 {
3059 	ZIL_STAT_BUMP(zil_commit_count);
3060 
3061 	/*
3062 	 * Move the "async" itxs for the specified foid to the "sync"
3063 	 * queues, such that they will be later committed (or skipped)
3064 	 * to an lwb when zil_process_commit_list() is called.
3065 	 *
3066 	 * Since these "async" itxs must be committed prior to this
3067 	 * call to zil_commit returning, we must perform this operation
3068 	 * before we call zil_commit_itx_assign().
3069 	 */
3070 	zil_async_to_sync(zilog, foid);
3071 
3072 	/*
3073 	 * We allocate a new "waiter" structure which will initially be
3074 	 * linked to the commit itx using the itx's "itx_private" field.
3075 	 * Since the commit itx doesn't represent any on-disk state,
3076 	 * when it's committed to an lwb, rather than copying the its
3077 	 * lr_t into the lwb's buffer, the commit itx's "waiter" will be
3078 	 * added to the lwb's list of waiters. Then, when the lwb is
3079 	 * committed to stable storage, each waiter in the lwb's list of
3080 	 * waiters will be marked "done", and signalled.
3081 	 *
3082 	 * We must create the waiter and assign the commit itx prior to
3083 	 * calling zil_commit_writer(), or else our specific commit itx
3084 	 * is not guaranteed to be committed to an lwb prior to calling
3085 	 * zil_commit_waiter().
3086 	 */
3087 	zil_commit_waiter_t *zcw = zil_alloc_commit_waiter();
3088 	zil_commit_itx_assign(zilog, zcw);
3089 
3090 	zil_commit_writer(zilog, zcw);
3091 	zil_commit_waiter(zilog, zcw);
3092 
3093 	if (zcw->zcw_zio_error != 0) {
3094 		/*
3095 		 * If there was an error writing out the ZIL blocks that
3096 		 * this thread is waiting on, then we fallback to
3097 		 * relying on spa_sync() to write out the data this
3098 		 * thread is waiting on. Obviously this has performance
3099 		 * implications, but the expectation is for this to be
3100 		 * an exceptional case, and shouldn't occur often.
3101 		 */
3102 		DTRACE_PROBE2(zil__commit__io__error,
3103 		    zilog_t *, zilog, zil_commit_waiter_t *, zcw);
3104 		txg_wait_synced(zilog->zl_dmu_pool, 0);
3105 	}
3106 
3107 	zil_free_commit_waiter(zcw);
3108 }
3109 
3110 /*
3111  * Called in syncing context to free committed log blocks and update log header.
3112  */
3113 void
3114 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
3115 {
3116 	zil_header_t *zh = zil_header_in_syncing_context(zilog);
3117 	uint64_t txg = dmu_tx_get_txg(tx);
3118 	spa_t *spa = zilog->zl_spa;
3119 	uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
3120 	lwb_t *lwb;
3121 
3122 	/*
3123 	 * We don't zero out zl_destroy_txg, so make sure we don't try
3124 	 * to destroy it twice.
3125 	 */
3126 	if (spa_sync_pass(spa) != 1)
3127 		return;
3128 
3129 	mutex_enter(&zilog->zl_lock);
3130 
3131 	ASSERT(zilog->zl_stop_sync == 0);
3132 
3133 	if (*replayed_seq != 0) {
3134 		ASSERT(zh->zh_replay_seq < *replayed_seq);
3135 		zh->zh_replay_seq = *replayed_seq;
3136 		*replayed_seq = 0;
3137 	}
3138 
3139 	if (zilog->zl_destroy_txg == txg) {
3140 		blkptr_t blk = zh->zh_log;
3141 		dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
3142 
3143 		ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
3144 
3145 		bzero(zh, sizeof (zil_header_t));
3146 		bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
3147 
3148 		if (zilog->zl_keep_first) {
3149 			/*
3150 			 * If this block was part of log chain that couldn't
3151 			 * be claimed because a device was missing during
3152 			 * zil_claim(), but that device later returns,
3153 			 * then this block could erroneously appear valid.
3154 			 * To guard against this, assign a new GUID to the new
3155 			 * log chain so it doesn't matter what blk points to.
3156 			 */
3157 			zil_init_log_chain(zilog, &blk);
3158 			zh->zh_log = blk;
3159 		} else {
3160 			/*
3161 			 * A destroyed ZIL chain can't contain any TX_SETSAXATTR
3162 			 * records. So, deactivate the feature for this dataset.
3163 			 * We activate it again when we start a new ZIL chain.
3164 			 */
3165 			if (dsl_dataset_feature_is_active(ds,
3166 			    SPA_FEATURE_ZILSAXATTR))
3167 				dsl_dataset_deactivate_feature(ds,
3168 				    SPA_FEATURE_ZILSAXATTR, tx);
3169 		}
3170 	}
3171 
3172 	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
3173 		zh->zh_log = lwb->lwb_blk;
3174 		if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
3175 			break;
3176 		list_remove(&zilog->zl_lwb_list, lwb);
3177 		zio_free(spa, txg, &lwb->lwb_blk);
3178 		zil_free_lwb(zilog, lwb);
3179 
3180 		/*
3181 		 * If we don't have anything left in the lwb list then
3182 		 * we've had an allocation failure and we need to zero
3183 		 * out the zil_header blkptr so that we don't end
3184 		 * up freeing the same block twice.
3185 		 */
3186 		if (list_head(&zilog->zl_lwb_list) == NULL)
3187 			BP_ZERO(&zh->zh_log);
3188 	}
3189 
3190 	/*
3191 	 * Remove fastwrite on any blocks that have been pre-allocated for
3192 	 * the next commit. This prevents fastwrite counter pollution by
3193 	 * unused, long-lived LWBs.
3194 	 */
3195 	for (; lwb != NULL; lwb = list_next(&zilog->zl_lwb_list, lwb)) {
3196 		if (lwb->lwb_fastwrite && !lwb->lwb_write_zio) {
3197 			metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk);
3198 			lwb->lwb_fastwrite = 0;
3199 		}
3200 	}
3201 
3202 	mutex_exit(&zilog->zl_lock);
3203 }
3204 
3205 static int
3206 zil_lwb_cons(void *vbuf, void *unused, int kmflag)
3207 {
3208 	(void) unused, (void) kmflag;
3209 	lwb_t *lwb = vbuf;
3210 	list_create(&lwb->lwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
3211 	list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t),
3212 	    offsetof(zil_commit_waiter_t, zcw_node));
3213 	avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare,
3214 	    sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
3215 	mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
3216 	return (0);
3217 }
3218 
3219 static void
3220 zil_lwb_dest(void *vbuf, void *unused)
3221 {
3222 	(void) unused;
3223 	lwb_t *lwb = vbuf;
3224 	mutex_destroy(&lwb->lwb_vdev_lock);
3225 	avl_destroy(&lwb->lwb_vdev_tree);
3226 	list_destroy(&lwb->lwb_waiters);
3227 	list_destroy(&lwb->lwb_itxs);
3228 }
3229 
3230 void
3231 zil_init(void)
3232 {
3233 	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
3234 	    sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0);
3235 
3236 	zil_zcw_cache = kmem_cache_create("zil_zcw_cache",
3237 	    sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
3238 
3239 	zil_ksp = kstat_create("zfs", 0, "zil", "misc",
3240 	    KSTAT_TYPE_NAMED, sizeof (zil_stats) / sizeof (kstat_named_t),
3241 	    KSTAT_FLAG_VIRTUAL);
3242 
3243 	if (zil_ksp != NULL) {
3244 		zil_ksp->ks_data = &zil_stats;
3245 		kstat_install(zil_ksp);
3246 	}
3247 }
3248 
3249 void
3250 zil_fini(void)
3251 {
3252 	kmem_cache_destroy(zil_zcw_cache);
3253 	kmem_cache_destroy(zil_lwb_cache);
3254 
3255 	if (zil_ksp != NULL) {
3256 		kstat_delete(zil_ksp);
3257 		zil_ksp = NULL;
3258 	}
3259 }
3260 
3261 void
3262 zil_set_sync(zilog_t *zilog, uint64_t sync)
3263 {
3264 	zilog->zl_sync = sync;
3265 }
3266 
3267 void
3268 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
3269 {
3270 	zilog->zl_logbias = logbias;
3271 }
3272 
3273 zilog_t *
3274 zil_alloc(objset_t *os, zil_header_t *zh_phys)
3275 {
3276 	zilog_t *zilog;
3277 
3278 	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
3279 
3280 	zilog->zl_header = zh_phys;
3281 	zilog->zl_os = os;
3282 	zilog->zl_spa = dmu_objset_spa(os);
3283 	zilog->zl_dmu_pool = dmu_objset_pool(os);
3284 	zilog->zl_destroy_txg = TXG_INITIAL - 1;
3285 	zilog->zl_logbias = dmu_objset_logbias(os);
3286 	zilog->zl_sync = dmu_objset_syncprop(os);
3287 	zilog->zl_dirty_max_txg = 0;
3288 	zilog->zl_last_lwb_opened = NULL;
3289 	zilog->zl_last_lwb_latency = 0;
3290 	zilog->zl_max_block_size = zil_maxblocksize;
3291 
3292 	mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
3293 	mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL);
3294 
3295 	for (int i = 0; i < TXG_SIZE; i++) {
3296 		mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
3297 		    MUTEX_DEFAULT, NULL);
3298 	}
3299 
3300 	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
3301 	    offsetof(lwb_t, lwb_node));
3302 
3303 	list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
3304 	    offsetof(itx_t, itx_node));
3305 
3306 	cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
3307 
3308 	return (zilog);
3309 }
3310 
3311 void
3312 zil_free(zilog_t *zilog)
3313 {
3314 	int i;
3315 
3316 	zilog->zl_stop_sync = 1;
3317 
3318 	ASSERT0(zilog->zl_suspend);
3319 	ASSERT0(zilog->zl_suspending);
3320 
3321 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
3322 	list_destroy(&zilog->zl_lwb_list);
3323 
3324 	ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
3325 	list_destroy(&zilog->zl_itx_commit_list);
3326 
3327 	for (i = 0; i < TXG_SIZE; i++) {
3328 		/*
3329 		 * It's possible for an itx to be generated that doesn't dirty
3330 		 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
3331 		 * callback to remove the entry. We remove those here.
3332 		 *
3333 		 * Also free up the ziltest itxs.
3334 		 */
3335 		if (zilog->zl_itxg[i].itxg_itxs)
3336 			zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
3337 		mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
3338 	}
3339 
3340 	mutex_destroy(&zilog->zl_issuer_lock);
3341 	mutex_destroy(&zilog->zl_lock);
3342 
3343 	cv_destroy(&zilog->zl_cv_suspend);
3344 
3345 	kmem_free(zilog, sizeof (zilog_t));
3346 }
3347 
3348 /*
3349  * Open an intent log.
3350  */
3351 zilog_t *
3352 zil_open(objset_t *os, zil_get_data_t *get_data)
3353 {
3354 	zilog_t *zilog = dmu_objset_zil(os);
3355 
3356 	ASSERT3P(zilog->zl_get_data, ==, NULL);
3357 	ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
3358 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
3359 
3360 	zilog->zl_get_data = get_data;
3361 
3362 	return (zilog);
3363 }
3364 
3365 /*
3366  * Close an intent log.
3367  */
3368 void
3369 zil_close(zilog_t *zilog)
3370 {
3371 	lwb_t *lwb;
3372 	uint64_t txg;
3373 
3374 	if (!dmu_objset_is_snapshot(zilog->zl_os)) {
3375 		zil_commit(zilog, 0);
3376 	} else {
3377 		ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
3378 		ASSERT0(zilog->zl_dirty_max_txg);
3379 		ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE);
3380 	}
3381 
3382 	mutex_enter(&zilog->zl_lock);
3383 	lwb = list_tail(&zilog->zl_lwb_list);
3384 	if (lwb == NULL)
3385 		txg = zilog->zl_dirty_max_txg;
3386 	else
3387 		txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg);
3388 	mutex_exit(&zilog->zl_lock);
3389 
3390 	/*
3391 	 * We need to use txg_wait_synced() to wait long enough for the
3392 	 * ZIL to be clean, and to wait for all pending lwbs to be
3393 	 * written out.
3394 	 */
3395 	if (txg != 0)
3396 		txg_wait_synced(zilog->zl_dmu_pool, txg);
3397 
3398 	if (zilog_is_dirty(zilog))
3399 		zfs_dbgmsg("zil (%px) is dirty, txg %llu", zilog,
3400 		    (u_longlong_t)txg);
3401 	if (txg < spa_freeze_txg(zilog->zl_spa))
3402 		VERIFY(!zilog_is_dirty(zilog));
3403 
3404 	zilog->zl_get_data = NULL;
3405 
3406 	/*
3407 	 * We should have only one lwb left on the list; remove it now.
3408 	 */
3409 	mutex_enter(&zilog->zl_lock);
3410 	lwb = list_head(&zilog->zl_lwb_list);
3411 	if (lwb != NULL) {
3412 		ASSERT3P(lwb, ==, list_tail(&zilog->zl_lwb_list));
3413 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
3414 
3415 		if (lwb->lwb_fastwrite)
3416 			metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk);
3417 
3418 		list_remove(&zilog->zl_lwb_list, lwb);
3419 		zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
3420 		zil_free_lwb(zilog, lwb);
3421 	}
3422 	mutex_exit(&zilog->zl_lock);
3423 }
3424 
3425 static char *suspend_tag = "zil suspending";
3426 
3427 /*
3428  * Suspend an intent log.  While in suspended mode, we still honor
3429  * synchronous semantics, but we rely on txg_wait_synced() to do it.
3430  * On old version pools, we suspend the log briefly when taking a
3431  * snapshot so that it will have an empty intent log.
3432  *
3433  * Long holds are not really intended to be used the way we do here --
3434  * held for such a short time.  A concurrent caller of dsl_dataset_long_held()
3435  * could fail.  Therefore we take pains to only put a long hold if it is
3436  * actually necessary.  Fortunately, it will only be necessary if the
3437  * objset is currently mounted (or the ZVOL equivalent).  In that case it
3438  * will already have a long hold, so we are not really making things any worse.
3439  *
3440  * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
3441  * zvol_state_t), and use their mechanism to prevent their hold from being
3442  * dropped (e.g. VFS_HOLD()).  However, that would be even more pain for
3443  * very little gain.
3444  *
3445  * if cookiep == NULL, this does both the suspend & resume.
3446  * Otherwise, it returns with the dataset "long held", and the cookie
3447  * should be passed into zil_resume().
3448  */
3449 int
3450 zil_suspend(const char *osname, void **cookiep)
3451 {
3452 	objset_t *os;
3453 	zilog_t *zilog;
3454 	const zil_header_t *zh;
3455 	int error;
3456 
3457 	error = dmu_objset_hold(osname, suspend_tag, &os);
3458 	if (error != 0)
3459 		return (error);
3460 	zilog = dmu_objset_zil(os);
3461 
3462 	mutex_enter(&zilog->zl_lock);
3463 	zh = zilog->zl_header;
3464 
3465 	if (zh->zh_flags & ZIL_REPLAY_NEEDED) {		/* unplayed log */
3466 		mutex_exit(&zilog->zl_lock);
3467 		dmu_objset_rele(os, suspend_tag);
3468 		return (SET_ERROR(EBUSY));
3469 	}
3470 
3471 	/*
3472 	 * Don't put a long hold in the cases where we can avoid it.  This
3473 	 * is when there is no cookie so we are doing a suspend & resume
3474 	 * (i.e. called from zil_vdev_offline()), and there's nothing to do
3475 	 * for the suspend because it's already suspended, or there's no ZIL.
3476 	 */
3477 	if (cookiep == NULL && !zilog->zl_suspending &&
3478 	    (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
3479 		mutex_exit(&zilog->zl_lock);
3480 		dmu_objset_rele(os, suspend_tag);
3481 		return (0);
3482 	}
3483 
3484 	dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
3485 	dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
3486 
3487 	zilog->zl_suspend++;
3488 
3489 	if (zilog->zl_suspend > 1) {
3490 		/*
3491 		 * Someone else is already suspending it.
3492 		 * Just wait for them to finish.
3493 		 */
3494 
3495 		while (zilog->zl_suspending)
3496 			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
3497 		mutex_exit(&zilog->zl_lock);
3498 
3499 		if (cookiep == NULL)
3500 			zil_resume(os);
3501 		else
3502 			*cookiep = os;
3503 		return (0);
3504 	}
3505 
3506 	/*
3507 	 * If there is no pointer to an on-disk block, this ZIL must not
3508 	 * be active (e.g. filesystem not mounted), so there's nothing
3509 	 * to clean up.
3510 	 */
3511 	if (BP_IS_HOLE(&zh->zh_log)) {
3512 		ASSERT(cookiep != NULL); /* fast path already handled */
3513 
3514 		*cookiep = os;
3515 		mutex_exit(&zilog->zl_lock);
3516 		return (0);
3517 	}
3518 
3519 	/*
3520 	 * The ZIL has work to do. Ensure that the associated encryption
3521 	 * key will remain mapped while we are committing the log by
3522 	 * grabbing a reference to it. If the key isn't loaded we have no
3523 	 * choice but to return an error until the wrapping key is loaded.
3524 	 */
3525 	if (os->os_encrypted &&
3526 	    dsl_dataset_create_key_mapping(dmu_objset_ds(os)) != 0) {
3527 		zilog->zl_suspend--;
3528 		mutex_exit(&zilog->zl_lock);
3529 		dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3530 		dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3531 		return (SET_ERROR(EACCES));
3532 	}
3533 
3534 	zilog->zl_suspending = B_TRUE;
3535 	mutex_exit(&zilog->zl_lock);
3536 
3537 	/*
3538 	 * We need to use zil_commit_impl to ensure we wait for all
3539 	 * LWB_STATE_OPENED and LWB_STATE_ISSUED lwbs to be committed
3540 	 * to disk before proceeding. If we used zil_commit instead, it
3541 	 * would just call txg_wait_synced(), because zl_suspend is set.
3542 	 * txg_wait_synced() doesn't wait for these lwb's to be
3543 	 * LWB_STATE_FLUSH_DONE before returning.
3544 	 */
3545 	zil_commit_impl(zilog, 0);
3546 
3547 	/*
3548 	 * Now that we've ensured all lwb's are LWB_STATE_FLUSH_DONE, we
3549 	 * use txg_wait_synced() to ensure the data from the zilog has
3550 	 * migrated to the main pool before calling zil_destroy().
3551 	 */
3552 	txg_wait_synced(zilog->zl_dmu_pool, 0);
3553 
3554 	zil_destroy(zilog, B_FALSE);
3555 
3556 	mutex_enter(&zilog->zl_lock);
3557 	zilog->zl_suspending = B_FALSE;
3558 	cv_broadcast(&zilog->zl_cv_suspend);
3559 	mutex_exit(&zilog->zl_lock);
3560 
3561 	if (os->os_encrypted)
3562 		dsl_dataset_remove_key_mapping(dmu_objset_ds(os));
3563 
3564 	if (cookiep == NULL)
3565 		zil_resume(os);
3566 	else
3567 		*cookiep = os;
3568 	return (0);
3569 }
3570 
3571 void
3572 zil_resume(void *cookie)
3573 {
3574 	objset_t *os = cookie;
3575 	zilog_t *zilog = dmu_objset_zil(os);
3576 
3577 	mutex_enter(&zilog->zl_lock);
3578 	ASSERT(zilog->zl_suspend != 0);
3579 	zilog->zl_suspend--;
3580 	mutex_exit(&zilog->zl_lock);
3581 	dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3582 	dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3583 }
3584 
3585 typedef struct zil_replay_arg {
3586 	zil_replay_func_t *const *zr_replay;
3587 	void		*zr_arg;
3588 	boolean_t	zr_byteswap;
3589 	char		*zr_lr;
3590 } zil_replay_arg_t;
3591 
3592 static int
3593 zil_replay_error(zilog_t *zilog, const lr_t *lr, int error)
3594 {
3595 	char name[ZFS_MAX_DATASET_NAME_LEN];
3596 
3597 	zilog->zl_replaying_seq--;	/* didn't actually replay this one */
3598 
3599 	dmu_objset_name(zilog->zl_os, name);
3600 
3601 	cmn_err(CE_WARN, "ZFS replay transaction error %d, "
3602 	    "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
3603 	    (u_longlong_t)lr->lrc_seq,
3604 	    (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
3605 	    (lr->lrc_txtype & TX_CI) ? "CI" : "");
3606 
3607 	return (error);
3608 }
3609 
3610 static int
3611 zil_replay_log_record(zilog_t *zilog, const lr_t *lr, void *zra,
3612     uint64_t claim_txg)
3613 {
3614 	zil_replay_arg_t *zr = zra;
3615 	const zil_header_t *zh = zilog->zl_header;
3616 	uint64_t reclen = lr->lrc_reclen;
3617 	uint64_t txtype = lr->lrc_txtype;
3618 	int error = 0;
3619 
3620 	zilog->zl_replaying_seq = lr->lrc_seq;
3621 
3622 	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
3623 		return (0);
3624 
3625 	if (lr->lrc_txg < claim_txg)		/* already committed */
3626 		return (0);
3627 
3628 	/* Strip case-insensitive bit, still present in log record */
3629 	txtype &= ~TX_CI;
3630 
3631 	if (txtype == 0 || txtype >= TX_MAX_TYPE)
3632 		return (zil_replay_error(zilog, lr, EINVAL));
3633 
3634 	/*
3635 	 * If this record type can be logged out of order, the object
3636 	 * (lr_foid) may no longer exist.  That's legitimate, not an error.
3637 	 */
3638 	if (TX_OOO(txtype)) {
3639 		error = dmu_object_info(zilog->zl_os,
3640 		    LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL);
3641 		if (error == ENOENT || error == EEXIST)
3642 			return (0);
3643 	}
3644 
3645 	/*
3646 	 * Make a copy of the data so we can revise and extend it.
3647 	 */
3648 	bcopy(lr, zr->zr_lr, reclen);
3649 
3650 	/*
3651 	 * If this is a TX_WRITE with a blkptr, suck in the data.
3652 	 */
3653 	if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
3654 		error = zil_read_log_data(zilog, (lr_write_t *)lr,
3655 		    zr->zr_lr + reclen);
3656 		if (error != 0)
3657 			return (zil_replay_error(zilog, lr, error));
3658 	}
3659 
3660 	/*
3661 	 * The log block containing this lr may have been byteswapped
3662 	 * so that we can easily examine common fields like lrc_txtype.
3663 	 * However, the log is a mix of different record types, and only the
3664 	 * replay vectors know how to byteswap their records.  Therefore, if
3665 	 * the lr was byteswapped, undo it before invoking the replay vector.
3666 	 */
3667 	if (zr->zr_byteswap)
3668 		byteswap_uint64_array(zr->zr_lr, reclen);
3669 
3670 	/*
3671 	 * We must now do two things atomically: replay this log record,
3672 	 * and update the log header sequence number to reflect the fact that
3673 	 * we did so. At the end of each replay function the sequence number
3674 	 * is updated if we are in replay mode.
3675 	 */
3676 	error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
3677 	if (error != 0) {
3678 		/*
3679 		 * The DMU's dnode layer doesn't see removes until the txg
3680 		 * commits, so a subsequent claim can spuriously fail with
3681 		 * EEXIST. So if we receive any error we try syncing out
3682 		 * any removes then retry the transaction.  Note that we
3683 		 * specify B_FALSE for byteswap now, so we don't do it twice.
3684 		 */
3685 		txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
3686 		error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
3687 		if (error != 0)
3688 			return (zil_replay_error(zilog, lr, error));
3689 	}
3690 	return (0);
3691 }
3692 
3693 static int
3694 zil_incr_blks(zilog_t *zilog, const blkptr_t *bp, void *arg, uint64_t claim_txg)
3695 {
3696 	(void) bp, (void) arg, (void) claim_txg;
3697 
3698 	zilog->zl_replay_blks++;
3699 
3700 	return (0);
3701 }
3702 
3703 /*
3704  * If this dataset has a non-empty intent log, replay it and destroy it.
3705  */
3706 void
3707 zil_replay(objset_t *os, void *arg,
3708     zil_replay_func_t *const replay_func[TX_MAX_TYPE])
3709 {
3710 	zilog_t *zilog = dmu_objset_zil(os);
3711 	const zil_header_t *zh = zilog->zl_header;
3712 	zil_replay_arg_t zr;
3713 
3714 	if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
3715 		zil_destroy(zilog, B_TRUE);
3716 		return;
3717 	}
3718 
3719 	zr.zr_replay = replay_func;
3720 	zr.zr_arg = arg;
3721 	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
3722 	zr.zr_lr = vmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
3723 
3724 	/*
3725 	 * Wait for in-progress removes to sync before starting replay.
3726 	 */
3727 	txg_wait_synced(zilog->zl_dmu_pool, 0);
3728 
3729 	zilog->zl_replay = B_TRUE;
3730 	zilog->zl_replay_time = ddi_get_lbolt();
3731 	ASSERT(zilog->zl_replay_blks == 0);
3732 	(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
3733 	    zh->zh_claim_txg, B_TRUE);
3734 	vmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
3735 
3736 	zil_destroy(zilog, B_FALSE);
3737 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
3738 	zilog->zl_replay = B_FALSE;
3739 }
3740 
3741 boolean_t
3742 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
3743 {
3744 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3745 		return (B_TRUE);
3746 
3747 	if (zilog->zl_replay) {
3748 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
3749 		zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
3750 		    zilog->zl_replaying_seq;
3751 		return (B_TRUE);
3752 	}
3753 
3754 	return (B_FALSE);
3755 }
3756 
3757 int
3758 zil_reset(const char *osname, void *arg)
3759 {
3760 	(void) arg;
3761 
3762 	int error = zil_suspend(osname, NULL);
3763 	/* EACCES means crypto key not loaded */
3764 	if ((error == EACCES) || (error == EBUSY))
3765 		return (SET_ERROR(error));
3766 	if (error != 0)
3767 		return (SET_ERROR(EEXIST));
3768 	return (0);
3769 }
3770 
3771 EXPORT_SYMBOL(zil_alloc);
3772 EXPORT_SYMBOL(zil_free);
3773 EXPORT_SYMBOL(zil_open);
3774 EXPORT_SYMBOL(zil_close);
3775 EXPORT_SYMBOL(zil_replay);
3776 EXPORT_SYMBOL(zil_replaying);
3777 EXPORT_SYMBOL(zil_destroy);
3778 EXPORT_SYMBOL(zil_destroy_sync);
3779 EXPORT_SYMBOL(zil_itx_create);
3780 EXPORT_SYMBOL(zil_itx_destroy);
3781 EXPORT_SYMBOL(zil_itx_assign);
3782 EXPORT_SYMBOL(zil_commit);
3783 EXPORT_SYMBOL(zil_claim);
3784 EXPORT_SYMBOL(zil_check_log_chain);
3785 EXPORT_SYMBOL(zil_sync);
3786 EXPORT_SYMBOL(zil_clean);
3787 EXPORT_SYMBOL(zil_suspend);
3788 EXPORT_SYMBOL(zil_resume);
3789 EXPORT_SYMBOL(zil_lwb_add_block);
3790 EXPORT_SYMBOL(zil_bp_tree_add);
3791 EXPORT_SYMBOL(zil_set_sync);
3792 EXPORT_SYMBOL(zil_set_logbias);
3793 
3794 ZFS_MODULE_PARAM(zfs, zfs_, commit_timeout_pct, INT, ZMOD_RW,
3795 	"ZIL block open timeout percentage");
3796 
3797 ZFS_MODULE_PARAM(zfs_zil, zil_, replay_disable, INT, ZMOD_RW,
3798 	"Disable intent logging replay");
3799 
3800 ZFS_MODULE_PARAM(zfs_zil, zil_, nocacheflush, INT, ZMOD_RW,
3801 	"Disable ZIL cache flushes");
3802 
3803 ZFS_MODULE_PARAM(zfs_zil, zil_, slog_bulk, ULONG, ZMOD_RW,
3804 	"Limit in bytes slog sync writes per commit");
3805 
3806 ZFS_MODULE_PARAM(zfs_zil, zil_, maxblocksize, INT, ZMOD_RW,
3807 	"Limit in bytes of ZIL log block size");
3808