1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 24 * Copyright (c) 2014 Integros [integros.com] 25 * Copyright (c) 2018 Datto Inc. 26 */ 27 28 /* Portions Copyright 2010 Robert Milkowski */ 29 30 #include <sys/zfs_context.h> 31 #include <sys/spa.h> 32 #include <sys/spa_impl.h> 33 #include <sys/dmu.h> 34 #include <sys/zap.h> 35 #include <sys/arc.h> 36 #include <sys/stat.h> 37 #include <sys/zil.h> 38 #include <sys/zil_impl.h> 39 #include <sys/dsl_dataset.h> 40 #include <sys/vdev_impl.h> 41 #include <sys/dmu_tx.h> 42 #include <sys/dsl_pool.h> 43 #include <sys/metaslab.h> 44 #include <sys/trace_zfs.h> 45 #include <sys/abd.h> 46 47 /* 48 * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system 49 * calls that change the file system. Each itx has enough information to 50 * be able to replay them after a system crash, power loss, or 51 * equivalent failure mode. These are stored in memory until either: 52 * 53 * 1. they are committed to the pool by the DMU transaction group 54 * (txg), at which point they can be discarded; or 55 * 2. they are committed to the on-disk ZIL for the dataset being 56 * modified (e.g. due to an fsync, O_DSYNC, or other synchronous 57 * requirement). 58 * 59 * In the event of a crash or power loss, the itxs contained by each 60 * dataset's on-disk ZIL will be replayed when that dataset is first 61 * instantiated (e.g. if the dataset is a normal filesystem, when it is 62 * first mounted). 63 * 64 * As hinted at above, there is one ZIL per dataset (both the in-memory 65 * representation, and the on-disk representation). The on-disk format 66 * consists of 3 parts: 67 * 68 * - a single, per-dataset, ZIL header; which points to a chain of 69 * - zero or more ZIL blocks; each of which contains 70 * - zero or more ZIL records 71 * 72 * A ZIL record holds the information necessary to replay a single 73 * system call transaction. A ZIL block can hold many ZIL records, and 74 * the blocks are chained together, similarly to a singly linked list. 75 * 76 * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL 77 * block in the chain, and the ZIL header points to the first block in 78 * the chain. 79 * 80 * Note, there is not a fixed place in the pool to hold these ZIL 81 * blocks; they are dynamically allocated and freed as needed from the 82 * blocks available on the pool, though they can be preferentially 83 * allocated from a dedicated "log" vdev. 84 */ 85 86 /* 87 * This controls the amount of time that a ZIL block (lwb) will remain 88 * "open" when it isn't "full", and it has a thread waiting for it to be 89 * committed to stable storage. Please refer to the zil_commit_waiter() 90 * function (and the comments within it) for more details. 91 */ 92 static int zfs_commit_timeout_pct = 5; 93 94 /* 95 * See zil.h for more information about these fields. 96 */ 97 static zil_stats_t zil_stats = { 98 { "zil_commit_count", KSTAT_DATA_UINT64 }, 99 { "zil_commit_writer_count", KSTAT_DATA_UINT64 }, 100 { "zil_itx_count", KSTAT_DATA_UINT64 }, 101 { "zil_itx_indirect_count", KSTAT_DATA_UINT64 }, 102 { "zil_itx_indirect_bytes", KSTAT_DATA_UINT64 }, 103 { "zil_itx_copied_count", KSTAT_DATA_UINT64 }, 104 { "zil_itx_copied_bytes", KSTAT_DATA_UINT64 }, 105 { "zil_itx_needcopy_count", KSTAT_DATA_UINT64 }, 106 { "zil_itx_needcopy_bytes", KSTAT_DATA_UINT64 }, 107 { "zil_itx_metaslab_normal_count", KSTAT_DATA_UINT64 }, 108 { "zil_itx_metaslab_normal_bytes", KSTAT_DATA_UINT64 }, 109 { "zil_itx_metaslab_slog_count", KSTAT_DATA_UINT64 }, 110 { "zil_itx_metaslab_slog_bytes", KSTAT_DATA_UINT64 }, 111 }; 112 113 static kstat_t *zil_ksp; 114 115 /* 116 * Disable intent logging replay. This global ZIL switch affects all pools. 117 */ 118 int zil_replay_disable = 0; 119 120 /* 121 * Disable the DKIOCFLUSHWRITECACHE commands that are normally sent to 122 * the disk(s) by the ZIL after an LWB write has completed. Setting this 123 * will cause ZIL corruption on power loss if a volatile out-of-order 124 * write cache is enabled. 125 */ 126 static int zil_nocacheflush = 0; 127 128 /* 129 * Limit SLOG write size per commit executed with synchronous priority. 130 * Any writes above that will be executed with lower (asynchronous) priority 131 * to limit potential SLOG device abuse by single active ZIL writer. 132 */ 133 static unsigned long zil_slog_bulk = 768 * 1024; 134 135 static kmem_cache_t *zil_lwb_cache; 136 static kmem_cache_t *zil_zcw_cache; 137 138 #define LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \ 139 sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused)) 140 141 static int 142 zil_bp_compare(const void *x1, const void *x2) 143 { 144 const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva; 145 const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva; 146 147 int cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2)); 148 if (likely(cmp)) 149 return (cmp); 150 151 return (TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2))); 152 } 153 154 static void 155 zil_bp_tree_init(zilog_t *zilog) 156 { 157 avl_create(&zilog->zl_bp_tree, zil_bp_compare, 158 sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node)); 159 } 160 161 static void 162 zil_bp_tree_fini(zilog_t *zilog) 163 { 164 avl_tree_t *t = &zilog->zl_bp_tree; 165 zil_bp_node_t *zn; 166 void *cookie = NULL; 167 168 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL) 169 kmem_free(zn, sizeof (zil_bp_node_t)); 170 171 avl_destroy(t); 172 } 173 174 int 175 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp) 176 { 177 avl_tree_t *t = &zilog->zl_bp_tree; 178 const dva_t *dva; 179 zil_bp_node_t *zn; 180 avl_index_t where; 181 182 if (BP_IS_EMBEDDED(bp)) 183 return (0); 184 185 dva = BP_IDENTITY(bp); 186 187 if (avl_find(t, dva, &where) != NULL) 188 return (SET_ERROR(EEXIST)); 189 190 zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP); 191 zn->zn_dva = *dva; 192 avl_insert(t, zn, where); 193 194 return (0); 195 } 196 197 static zil_header_t * 198 zil_header_in_syncing_context(zilog_t *zilog) 199 { 200 return ((zil_header_t *)zilog->zl_header); 201 } 202 203 static void 204 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp) 205 { 206 zio_cksum_t *zc = &bp->blk_cksum; 207 208 (void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_0], 209 sizeof (zc->zc_word[ZIL_ZC_GUID_0])); 210 (void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_1], 211 sizeof (zc->zc_word[ZIL_ZC_GUID_1])); 212 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os); 213 zc->zc_word[ZIL_ZC_SEQ] = 1ULL; 214 } 215 216 /* 217 * Read a log block and make sure it's valid. 218 */ 219 static int 220 zil_read_log_block(zilog_t *zilog, boolean_t decrypt, const blkptr_t *bp, 221 blkptr_t *nbp, void *dst, char **end) 222 { 223 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL; 224 arc_flags_t aflags = ARC_FLAG_WAIT; 225 arc_buf_t *abuf = NULL; 226 zbookmark_phys_t zb; 227 int error; 228 229 if (zilog->zl_header->zh_claim_txg == 0) 230 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; 231 232 if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) 233 zio_flags |= ZIO_FLAG_SPECULATIVE; 234 235 if (!decrypt) 236 zio_flags |= ZIO_FLAG_RAW; 237 238 SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET], 239 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); 240 241 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, 242 &abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); 243 244 if (error == 0) { 245 zio_cksum_t cksum = bp->blk_cksum; 246 247 /* 248 * Validate the checksummed log block. 249 * 250 * Sequence numbers should be... sequential. The checksum 251 * verifier for the next block should be bp's checksum plus 1. 252 * 253 * Also check the log chain linkage and size used. 254 */ 255 cksum.zc_word[ZIL_ZC_SEQ]++; 256 257 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { 258 zil_chain_t *zilc = abuf->b_data; 259 char *lr = (char *)(zilc + 1); 260 uint64_t len = zilc->zc_nused - sizeof (zil_chain_t); 261 262 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum, 263 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) { 264 error = SET_ERROR(ECKSUM); 265 } else { 266 ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE); 267 bcopy(lr, dst, len); 268 *end = (char *)dst + len; 269 *nbp = zilc->zc_next_blk; 270 } 271 } else { 272 char *lr = abuf->b_data; 273 uint64_t size = BP_GET_LSIZE(bp); 274 zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1; 275 276 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum, 277 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) || 278 (zilc->zc_nused > (size - sizeof (*zilc)))) { 279 error = SET_ERROR(ECKSUM); 280 } else { 281 ASSERT3U(zilc->zc_nused, <=, 282 SPA_OLD_MAXBLOCKSIZE); 283 bcopy(lr, dst, zilc->zc_nused); 284 *end = (char *)dst + zilc->zc_nused; 285 *nbp = zilc->zc_next_blk; 286 } 287 } 288 289 arc_buf_destroy(abuf, &abuf); 290 } 291 292 return (error); 293 } 294 295 /* 296 * Read a TX_WRITE log data block. 297 */ 298 static int 299 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf) 300 { 301 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL; 302 const blkptr_t *bp = &lr->lr_blkptr; 303 arc_flags_t aflags = ARC_FLAG_WAIT; 304 arc_buf_t *abuf = NULL; 305 zbookmark_phys_t zb; 306 int error; 307 308 if (BP_IS_HOLE(bp)) { 309 if (wbuf != NULL) 310 bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length)); 311 return (0); 312 } 313 314 if (zilog->zl_header->zh_claim_txg == 0) 315 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; 316 317 /* 318 * If we are not using the resulting data, we are just checking that 319 * it hasn't been corrupted so we don't need to waste CPU time 320 * decompressing and decrypting it. 321 */ 322 if (wbuf == NULL) 323 zio_flags |= ZIO_FLAG_RAW; 324 325 SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid, 326 ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp)); 327 328 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf, 329 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); 330 331 if (error == 0) { 332 if (wbuf != NULL) 333 bcopy(abuf->b_data, wbuf, arc_buf_size(abuf)); 334 arc_buf_destroy(abuf, &abuf); 335 } 336 337 return (error); 338 } 339 340 /* 341 * Parse the intent log, and call parse_func for each valid record within. 342 */ 343 int 344 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func, 345 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg, 346 boolean_t decrypt) 347 { 348 const zil_header_t *zh = zilog->zl_header; 349 boolean_t claimed = !!zh->zh_claim_txg; 350 uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX; 351 uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX; 352 uint64_t max_blk_seq = 0; 353 uint64_t max_lr_seq = 0; 354 uint64_t blk_count = 0; 355 uint64_t lr_count = 0; 356 blkptr_t blk, next_blk; 357 char *lrbuf, *lrp; 358 int error = 0; 359 360 bzero(&next_blk, sizeof (blkptr_t)); 361 362 /* 363 * Old logs didn't record the maximum zh_claim_lr_seq. 364 */ 365 if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) 366 claim_lr_seq = UINT64_MAX; 367 368 /* 369 * Starting at the block pointed to by zh_log we read the log chain. 370 * For each block in the chain we strongly check that block to 371 * ensure its validity. We stop when an invalid block is found. 372 * For each block pointer in the chain we call parse_blk_func(). 373 * For each record in each valid block we call parse_lr_func(). 374 * If the log has been claimed, stop if we encounter a sequence 375 * number greater than the highest claimed sequence number. 376 */ 377 lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE); 378 zil_bp_tree_init(zilog); 379 380 for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) { 381 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; 382 int reclen; 383 char *end = NULL; 384 385 if (blk_seq > claim_blk_seq) 386 break; 387 388 error = parse_blk_func(zilog, &blk, arg, txg); 389 if (error != 0) 390 break; 391 ASSERT3U(max_blk_seq, <, blk_seq); 392 max_blk_seq = blk_seq; 393 blk_count++; 394 395 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq) 396 break; 397 398 error = zil_read_log_block(zilog, decrypt, &blk, &next_blk, 399 lrbuf, &end); 400 if (error != 0) 401 break; 402 403 for (lrp = lrbuf; lrp < end; lrp += reclen) { 404 lr_t *lr = (lr_t *)lrp; 405 reclen = lr->lrc_reclen; 406 ASSERT3U(reclen, >=, sizeof (lr_t)); 407 if (lr->lrc_seq > claim_lr_seq) 408 goto done; 409 410 error = parse_lr_func(zilog, lr, arg, txg); 411 if (error != 0) 412 goto done; 413 ASSERT3U(max_lr_seq, <, lr->lrc_seq); 414 max_lr_seq = lr->lrc_seq; 415 lr_count++; 416 } 417 } 418 done: 419 zilog->zl_parse_error = error; 420 zilog->zl_parse_blk_seq = max_blk_seq; 421 zilog->zl_parse_lr_seq = max_lr_seq; 422 zilog->zl_parse_blk_count = blk_count; 423 zilog->zl_parse_lr_count = lr_count; 424 425 ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) || 426 (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq) || 427 (decrypt && error == EIO)); 428 429 zil_bp_tree_fini(zilog); 430 zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE); 431 432 return (error); 433 } 434 435 static int 436 zil_clear_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx, 437 uint64_t first_txg) 438 { 439 (void) tx; 440 ASSERT(!BP_IS_HOLE(bp)); 441 442 /* 443 * As we call this function from the context of a rewind to a 444 * checkpoint, each ZIL block whose txg is later than the txg 445 * that we rewind to is invalid. Thus, we return -1 so 446 * zil_parse() doesn't attempt to read it. 447 */ 448 if (bp->blk_birth >= first_txg) 449 return (-1); 450 451 if (zil_bp_tree_add(zilog, bp) != 0) 452 return (0); 453 454 zio_free(zilog->zl_spa, first_txg, bp); 455 return (0); 456 } 457 458 static int 459 zil_noop_log_record(zilog_t *zilog, const lr_t *lrc, void *tx, 460 uint64_t first_txg) 461 { 462 (void) zilog, (void) lrc, (void) tx, (void) first_txg; 463 return (0); 464 } 465 466 static int 467 zil_claim_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx, 468 uint64_t first_txg) 469 { 470 /* 471 * Claim log block if not already committed and not already claimed. 472 * If tx == NULL, just verify that the block is claimable. 473 */ 474 if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg || 475 zil_bp_tree_add(zilog, bp) != 0) 476 return (0); 477 478 return (zio_wait(zio_claim(NULL, zilog->zl_spa, 479 tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL, 480 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB))); 481 } 482 483 static int 484 zil_claim_log_record(zilog_t *zilog, const lr_t *lrc, void *tx, 485 uint64_t first_txg) 486 { 487 lr_write_t *lr = (lr_write_t *)lrc; 488 int error; 489 490 if (lrc->lrc_txtype != TX_WRITE) 491 return (0); 492 493 /* 494 * If the block is not readable, don't claim it. This can happen 495 * in normal operation when a log block is written to disk before 496 * some of the dmu_sync() blocks it points to. In this case, the 497 * transaction cannot have been committed to anyone (we would have 498 * waited for all writes to be stable first), so it is semantically 499 * correct to declare this the end of the log. 500 */ 501 if (lr->lr_blkptr.blk_birth >= first_txg) { 502 error = zil_read_log_data(zilog, lr, NULL); 503 if (error != 0) 504 return (error); 505 } 506 507 return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg)); 508 } 509 510 static int 511 zil_free_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx, 512 uint64_t claim_txg) 513 { 514 (void) claim_txg; 515 516 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp); 517 518 return (0); 519 } 520 521 static int 522 zil_free_log_record(zilog_t *zilog, const lr_t *lrc, void *tx, 523 uint64_t claim_txg) 524 { 525 lr_write_t *lr = (lr_write_t *)lrc; 526 blkptr_t *bp = &lr->lr_blkptr; 527 528 /* 529 * If we previously claimed it, we need to free it. 530 */ 531 if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE && 532 bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 && 533 !BP_IS_HOLE(bp)) 534 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp); 535 536 return (0); 537 } 538 539 static int 540 zil_lwb_vdev_compare(const void *x1, const void *x2) 541 { 542 const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev; 543 const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev; 544 545 return (TREE_CMP(v1, v2)); 546 } 547 548 static lwb_t * 549 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg, 550 boolean_t fastwrite) 551 { 552 lwb_t *lwb; 553 554 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); 555 lwb->lwb_zilog = zilog; 556 lwb->lwb_blk = *bp; 557 lwb->lwb_fastwrite = fastwrite; 558 lwb->lwb_slog = slog; 559 lwb->lwb_state = LWB_STATE_CLOSED; 560 lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp)); 561 lwb->lwb_max_txg = txg; 562 lwb->lwb_write_zio = NULL; 563 lwb->lwb_root_zio = NULL; 564 lwb->lwb_tx = NULL; 565 lwb->lwb_issued_timestamp = 0; 566 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { 567 lwb->lwb_nused = sizeof (zil_chain_t); 568 lwb->lwb_sz = BP_GET_LSIZE(bp); 569 } else { 570 lwb->lwb_nused = 0; 571 lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t); 572 } 573 574 mutex_enter(&zilog->zl_lock); 575 list_insert_tail(&zilog->zl_lwb_list, lwb); 576 mutex_exit(&zilog->zl_lock); 577 578 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock)); 579 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree)); 580 VERIFY(list_is_empty(&lwb->lwb_waiters)); 581 VERIFY(list_is_empty(&lwb->lwb_itxs)); 582 583 return (lwb); 584 } 585 586 static void 587 zil_free_lwb(zilog_t *zilog, lwb_t *lwb) 588 { 589 ASSERT(MUTEX_HELD(&zilog->zl_lock)); 590 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock)); 591 VERIFY(list_is_empty(&lwb->lwb_waiters)); 592 VERIFY(list_is_empty(&lwb->lwb_itxs)); 593 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree)); 594 ASSERT3P(lwb->lwb_write_zio, ==, NULL); 595 ASSERT3P(lwb->lwb_root_zio, ==, NULL); 596 ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa)); 597 ASSERT(lwb->lwb_state == LWB_STATE_CLOSED || 598 lwb->lwb_state == LWB_STATE_FLUSH_DONE); 599 600 /* 601 * Clear the zilog's field to indicate this lwb is no longer 602 * valid, and prevent use-after-free errors. 603 */ 604 if (zilog->zl_last_lwb_opened == lwb) 605 zilog->zl_last_lwb_opened = NULL; 606 607 kmem_cache_free(zil_lwb_cache, lwb); 608 } 609 610 /* 611 * Called when we create in-memory log transactions so that we know 612 * to cleanup the itxs at the end of spa_sync(). 613 */ 614 static void 615 zilog_dirty(zilog_t *zilog, uint64_t txg) 616 { 617 dsl_pool_t *dp = zilog->zl_dmu_pool; 618 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 619 620 ASSERT(spa_writeable(zilog->zl_spa)); 621 622 if (ds->ds_is_snapshot) 623 panic("dirtying snapshot!"); 624 625 if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) { 626 /* up the hold count until we can be written out */ 627 dmu_buf_add_ref(ds->ds_dbuf, zilog); 628 629 zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg); 630 } 631 } 632 633 /* 634 * Determine if the zil is dirty in the specified txg. Callers wanting to 635 * ensure that the dirty state does not change must hold the itxg_lock for 636 * the specified txg. Holding the lock will ensure that the zil cannot be 637 * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current 638 * state. 639 */ 640 static boolean_t __maybe_unused 641 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg) 642 { 643 dsl_pool_t *dp = zilog->zl_dmu_pool; 644 645 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK)) 646 return (B_TRUE); 647 return (B_FALSE); 648 } 649 650 /* 651 * Determine if the zil is dirty. The zil is considered dirty if it has 652 * any pending itx records that have not been cleaned by zil_clean(). 653 */ 654 static boolean_t 655 zilog_is_dirty(zilog_t *zilog) 656 { 657 dsl_pool_t *dp = zilog->zl_dmu_pool; 658 659 for (int t = 0; t < TXG_SIZE; t++) { 660 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t)) 661 return (B_TRUE); 662 } 663 return (B_FALSE); 664 } 665 666 /* 667 * Its called in zil_commit context (zil_process_commit_list()/zil_create()). 668 * It activates SPA_FEATURE_ZILSAXATTR feature, if its enabled. 669 * Check dsl_dataset_feature_is_active to avoid txg_wait_synced() on every 670 * zil_commit. 671 */ 672 static void 673 zil_commit_activate_saxattr_feature(zilog_t *zilog) 674 { 675 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 676 uint64_t txg = 0; 677 dmu_tx_t *tx = NULL; 678 679 if (spa_feature_is_enabled(zilog->zl_spa, 680 SPA_FEATURE_ZILSAXATTR) && 681 dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL && 682 !dsl_dataset_feature_is_active(ds, 683 SPA_FEATURE_ZILSAXATTR)) { 684 tx = dmu_tx_create(zilog->zl_os); 685 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 686 dsl_dataset_dirty(ds, tx); 687 txg = dmu_tx_get_txg(tx); 688 689 mutex_enter(&ds->ds_lock); 690 ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] = 691 (void *)B_TRUE; 692 mutex_exit(&ds->ds_lock); 693 dmu_tx_commit(tx); 694 txg_wait_synced(zilog->zl_dmu_pool, txg); 695 } 696 } 697 698 /* 699 * Create an on-disk intent log. 700 */ 701 static lwb_t * 702 zil_create(zilog_t *zilog) 703 { 704 const zil_header_t *zh = zilog->zl_header; 705 lwb_t *lwb = NULL; 706 uint64_t txg = 0; 707 dmu_tx_t *tx = NULL; 708 blkptr_t blk; 709 int error = 0; 710 boolean_t fastwrite = FALSE; 711 boolean_t slog = FALSE; 712 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 713 714 715 /* 716 * Wait for any previous destroy to complete. 717 */ 718 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 719 720 ASSERT(zh->zh_claim_txg == 0); 721 ASSERT(zh->zh_replay_seq == 0); 722 723 blk = zh->zh_log; 724 725 /* 726 * Allocate an initial log block if: 727 * - there isn't one already 728 * - the existing block is the wrong endianness 729 */ 730 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) { 731 tx = dmu_tx_create(zilog->zl_os); 732 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 733 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 734 txg = dmu_tx_get_txg(tx); 735 736 if (!BP_IS_HOLE(&blk)) { 737 zio_free(zilog->zl_spa, txg, &blk); 738 BP_ZERO(&blk); 739 } 740 741 error = zio_alloc_zil(zilog->zl_spa, zilog->zl_os, txg, &blk, 742 ZIL_MIN_BLKSZ, &slog); 743 fastwrite = TRUE; 744 745 if (error == 0) 746 zil_init_log_chain(zilog, &blk); 747 } 748 749 /* 750 * Allocate a log write block (lwb) for the first log block. 751 */ 752 if (error == 0) 753 lwb = zil_alloc_lwb(zilog, &blk, slog, txg, fastwrite); 754 755 /* 756 * If we just allocated the first log block, commit our transaction 757 * and wait for zil_sync() to stuff the block pointer into zh_log. 758 * (zh is part of the MOS, so we cannot modify it in open context.) 759 */ 760 if (tx != NULL) { 761 /* 762 * If "zilsaxattr" feature is enabled on zpool, then activate 763 * it now when we're creating the ZIL chain. We can't wait with 764 * this until we write the first xattr log record because we 765 * need to wait for the feature activation to sync out. 766 */ 767 if (spa_feature_is_enabled(zilog->zl_spa, 768 SPA_FEATURE_ZILSAXATTR) && dmu_objset_type(zilog->zl_os) != 769 DMU_OST_ZVOL) { 770 mutex_enter(&ds->ds_lock); 771 ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] = 772 (void *)B_TRUE; 773 mutex_exit(&ds->ds_lock); 774 } 775 776 dmu_tx_commit(tx); 777 txg_wait_synced(zilog->zl_dmu_pool, txg); 778 } else { 779 /* 780 * This branch covers the case where we enable the feature on a 781 * zpool that has existing ZIL headers. 782 */ 783 zil_commit_activate_saxattr_feature(zilog); 784 } 785 IMPLY(spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) && 786 dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL, 787 dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR)); 788 789 ASSERT(error != 0 || bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0); 790 IMPLY(error == 0, lwb != NULL); 791 792 return (lwb); 793 } 794 795 /* 796 * In one tx, free all log blocks and clear the log header. If keep_first 797 * is set, then we're replaying a log with no content. We want to keep the 798 * first block, however, so that the first synchronous transaction doesn't 799 * require a txg_wait_synced() in zil_create(). We don't need to 800 * txg_wait_synced() here either when keep_first is set, because both 801 * zil_create() and zil_destroy() will wait for any in-progress destroys 802 * to complete. 803 */ 804 void 805 zil_destroy(zilog_t *zilog, boolean_t keep_first) 806 { 807 const zil_header_t *zh = zilog->zl_header; 808 lwb_t *lwb; 809 dmu_tx_t *tx; 810 uint64_t txg; 811 812 /* 813 * Wait for any previous destroy to complete. 814 */ 815 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 816 817 zilog->zl_old_header = *zh; /* debugging aid */ 818 819 if (BP_IS_HOLE(&zh->zh_log)) 820 return; 821 822 tx = dmu_tx_create(zilog->zl_os); 823 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 824 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 825 txg = dmu_tx_get_txg(tx); 826 827 mutex_enter(&zilog->zl_lock); 828 829 ASSERT3U(zilog->zl_destroy_txg, <, txg); 830 zilog->zl_destroy_txg = txg; 831 zilog->zl_keep_first = keep_first; 832 833 if (!list_is_empty(&zilog->zl_lwb_list)) { 834 ASSERT(zh->zh_claim_txg == 0); 835 VERIFY(!keep_first); 836 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 837 if (lwb->lwb_fastwrite) 838 metaslab_fastwrite_unmark(zilog->zl_spa, 839 &lwb->lwb_blk); 840 841 list_remove(&zilog->zl_lwb_list, lwb); 842 if (lwb->lwb_buf != NULL) 843 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 844 zio_free(zilog->zl_spa, txg, &lwb->lwb_blk); 845 zil_free_lwb(zilog, lwb); 846 } 847 } else if (!keep_first) { 848 zil_destroy_sync(zilog, tx); 849 } 850 mutex_exit(&zilog->zl_lock); 851 852 dmu_tx_commit(tx); 853 } 854 855 void 856 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx) 857 { 858 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 859 (void) zil_parse(zilog, zil_free_log_block, 860 zil_free_log_record, tx, zilog->zl_header->zh_claim_txg, B_FALSE); 861 } 862 863 int 864 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg) 865 { 866 dmu_tx_t *tx = txarg; 867 zilog_t *zilog; 868 uint64_t first_txg; 869 zil_header_t *zh; 870 objset_t *os; 871 int error; 872 873 error = dmu_objset_own_obj(dp, ds->ds_object, 874 DMU_OST_ANY, B_FALSE, B_FALSE, FTAG, &os); 875 if (error != 0) { 876 /* 877 * EBUSY indicates that the objset is inconsistent, in which 878 * case it can not have a ZIL. 879 */ 880 if (error != EBUSY) { 881 cmn_err(CE_WARN, "can't open objset for %llu, error %u", 882 (unsigned long long)ds->ds_object, error); 883 } 884 885 return (0); 886 } 887 888 zilog = dmu_objset_zil(os); 889 zh = zil_header_in_syncing_context(zilog); 890 ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa)); 891 first_txg = spa_min_claim_txg(zilog->zl_spa); 892 893 /* 894 * If the spa_log_state is not set to be cleared, check whether 895 * the current uberblock is a checkpoint one and if the current 896 * header has been claimed before moving on. 897 * 898 * If the current uberblock is a checkpointed uberblock then 899 * one of the following scenarios took place: 900 * 901 * 1] We are currently rewinding to the checkpoint of the pool. 902 * 2] We crashed in the middle of a checkpoint rewind but we 903 * did manage to write the checkpointed uberblock to the 904 * vdev labels, so when we tried to import the pool again 905 * the checkpointed uberblock was selected from the import 906 * procedure. 907 * 908 * In both cases we want to zero out all the ZIL blocks, except 909 * the ones that have been claimed at the time of the checkpoint 910 * (their zh_claim_txg != 0). The reason is that these blocks 911 * may be corrupted since we may have reused their locations on 912 * disk after we took the checkpoint. 913 * 914 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier 915 * when we first figure out whether the current uberblock is 916 * checkpointed or not. Unfortunately, that would discard all 917 * the logs, including the ones that are claimed, and we would 918 * leak space. 919 */ 920 if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR || 921 (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 && 922 zh->zh_claim_txg == 0)) { 923 if (!BP_IS_HOLE(&zh->zh_log)) { 924 (void) zil_parse(zilog, zil_clear_log_block, 925 zil_noop_log_record, tx, first_txg, B_FALSE); 926 } 927 BP_ZERO(&zh->zh_log); 928 if (os->os_encrypted) 929 os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE; 930 dsl_dataset_dirty(dmu_objset_ds(os), tx); 931 dmu_objset_disown(os, B_FALSE, FTAG); 932 return (0); 933 } 934 935 /* 936 * If we are not rewinding and opening the pool normally, then 937 * the min_claim_txg should be equal to the first txg of the pool. 938 */ 939 ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa)); 940 941 /* 942 * Claim all log blocks if we haven't already done so, and remember 943 * the highest claimed sequence number. This ensures that if we can 944 * read only part of the log now (e.g. due to a missing device), 945 * but we can read the entire log later, we will not try to replay 946 * or destroy beyond the last block we successfully claimed. 947 */ 948 ASSERT3U(zh->zh_claim_txg, <=, first_txg); 949 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) { 950 (void) zil_parse(zilog, zil_claim_log_block, 951 zil_claim_log_record, tx, first_txg, B_FALSE); 952 zh->zh_claim_txg = first_txg; 953 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq; 954 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq; 955 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1) 956 zh->zh_flags |= ZIL_REPLAY_NEEDED; 957 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID; 958 if (os->os_encrypted) 959 os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE; 960 dsl_dataset_dirty(dmu_objset_ds(os), tx); 961 } 962 963 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1)); 964 dmu_objset_disown(os, B_FALSE, FTAG); 965 return (0); 966 } 967 968 /* 969 * Check the log by walking the log chain. 970 * Checksum errors are ok as they indicate the end of the chain. 971 * Any other error (no device or read failure) returns an error. 972 */ 973 int 974 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx) 975 { 976 (void) dp; 977 zilog_t *zilog; 978 objset_t *os; 979 blkptr_t *bp; 980 int error; 981 982 ASSERT(tx == NULL); 983 984 error = dmu_objset_from_ds(ds, &os); 985 if (error != 0) { 986 cmn_err(CE_WARN, "can't open objset %llu, error %d", 987 (unsigned long long)ds->ds_object, error); 988 return (0); 989 } 990 991 zilog = dmu_objset_zil(os); 992 bp = (blkptr_t *)&zilog->zl_header->zh_log; 993 994 if (!BP_IS_HOLE(bp)) { 995 vdev_t *vd; 996 boolean_t valid = B_TRUE; 997 998 /* 999 * Check the first block and determine if it's on a log device 1000 * which may have been removed or faulted prior to loading this 1001 * pool. If so, there's no point in checking the rest of the 1002 * log as its content should have already been synced to the 1003 * pool. 1004 */ 1005 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER); 1006 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0])); 1007 if (vd->vdev_islog && vdev_is_dead(vd)) 1008 valid = vdev_log_state_valid(vd); 1009 spa_config_exit(os->os_spa, SCL_STATE, FTAG); 1010 1011 if (!valid) 1012 return (0); 1013 1014 /* 1015 * Check whether the current uberblock is checkpointed (e.g. 1016 * we are rewinding) and whether the current header has been 1017 * claimed or not. If it hasn't then skip verifying it. We 1018 * do this because its ZIL blocks may be part of the pool's 1019 * state before the rewind, which is no longer valid. 1020 */ 1021 zil_header_t *zh = zil_header_in_syncing_context(zilog); 1022 if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 && 1023 zh->zh_claim_txg == 0) 1024 return (0); 1025 } 1026 1027 /* 1028 * Because tx == NULL, zil_claim_log_block() will not actually claim 1029 * any blocks, but just determine whether it is possible to do so. 1030 * In addition to checking the log chain, zil_claim_log_block() 1031 * will invoke zio_claim() with a done func of spa_claim_notify(), 1032 * which will update spa_max_claim_txg. See spa_load() for details. 1033 */ 1034 error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx, 1035 zilog->zl_header->zh_claim_txg ? -1ULL : 1036 spa_min_claim_txg(os->os_spa), B_FALSE); 1037 1038 return ((error == ECKSUM || error == ENOENT) ? 0 : error); 1039 } 1040 1041 /* 1042 * When an itx is "skipped", this function is used to properly mark the 1043 * waiter as "done, and signal any thread(s) waiting on it. An itx can 1044 * be skipped (and not committed to an lwb) for a variety of reasons, 1045 * one of them being that the itx was committed via spa_sync(), prior to 1046 * it being committed to an lwb; this can happen if a thread calling 1047 * zil_commit() is racing with spa_sync(). 1048 */ 1049 static void 1050 zil_commit_waiter_skip(zil_commit_waiter_t *zcw) 1051 { 1052 mutex_enter(&zcw->zcw_lock); 1053 ASSERT3B(zcw->zcw_done, ==, B_FALSE); 1054 zcw->zcw_done = B_TRUE; 1055 cv_broadcast(&zcw->zcw_cv); 1056 mutex_exit(&zcw->zcw_lock); 1057 } 1058 1059 /* 1060 * This function is used when the given waiter is to be linked into an 1061 * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb. 1062 * At this point, the waiter will no longer be referenced by the itx, 1063 * and instead, will be referenced by the lwb. 1064 */ 1065 static void 1066 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb) 1067 { 1068 /* 1069 * The lwb_waiters field of the lwb is protected by the zilog's 1070 * zl_lock, thus it must be held when calling this function. 1071 */ 1072 ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_lock)); 1073 1074 mutex_enter(&zcw->zcw_lock); 1075 ASSERT(!list_link_active(&zcw->zcw_node)); 1076 ASSERT3P(zcw->zcw_lwb, ==, NULL); 1077 ASSERT3P(lwb, !=, NULL); 1078 ASSERT(lwb->lwb_state == LWB_STATE_OPENED || 1079 lwb->lwb_state == LWB_STATE_ISSUED || 1080 lwb->lwb_state == LWB_STATE_WRITE_DONE); 1081 1082 list_insert_tail(&lwb->lwb_waiters, zcw); 1083 zcw->zcw_lwb = lwb; 1084 mutex_exit(&zcw->zcw_lock); 1085 } 1086 1087 /* 1088 * This function is used when zio_alloc_zil() fails to allocate a ZIL 1089 * block, and the given waiter must be linked to the "nolwb waiters" 1090 * list inside of zil_process_commit_list(). 1091 */ 1092 static void 1093 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb) 1094 { 1095 mutex_enter(&zcw->zcw_lock); 1096 ASSERT(!list_link_active(&zcw->zcw_node)); 1097 ASSERT3P(zcw->zcw_lwb, ==, NULL); 1098 list_insert_tail(nolwb, zcw); 1099 mutex_exit(&zcw->zcw_lock); 1100 } 1101 1102 void 1103 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp) 1104 { 1105 avl_tree_t *t = &lwb->lwb_vdev_tree; 1106 avl_index_t where; 1107 zil_vdev_node_t *zv, zvsearch; 1108 int ndvas = BP_GET_NDVAS(bp); 1109 int i; 1110 1111 if (zil_nocacheflush) 1112 return; 1113 1114 mutex_enter(&lwb->lwb_vdev_lock); 1115 for (i = 0; i < ndvas; i++) { 1116 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]); 1117 if (avl_find(t, &zvsearch, &where) == NULL) { 1118 zv = kmem_alloc(sizeof (*zv), KM_SLEEP); 1119 zv->zv_vdev = zvsearch.zv_vdev; 1120 avl_insert(t, zv, where); 1121 } 1122 } 1123 mutex_exit(&lwb->lwb_vdev_lock); 1124 } 1125 1126 static void 1127 zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb) 1128 { 1129 avl_tree_t *src = &lwb->lwb_vdev_tree; 1130 avl_tree_t *dst = &nlwb->lwb_vdev_tree; 1131 void *cookie = NULL; 1132 zil_vdev_node_t *zv; 1133 1134 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE); 1135 ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE); 1136 ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE); 1137 1138 /* 1139 * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does 1140 * not need the protection of lwb_vdev_lock (it will only be modified 1141 * while holding zilog->zl_lock) as its writes and those of its 1142 * children have all completed. The younger 'nlwb' may be waiting on 1143 * future writes to additional vdevs. 1144 */ 1145 mutex_enter(&nlwb->lwb_vdev_lock); 1146 /* 1147 * Tear down the 'lwb' vdev tree, ensuring that entries which do not 1148 * exist in 'nlwb' are moved to it, freeing any would-be duplicates. 1149 */ 1150 while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) { 1151 avl_index_t where; 1152 1153 if (avl_find(dst, zv, &where) == NULL) { 1154 avl_insert(dst, zv, where); 1155 } else { 1156 kmem_free(zv, sizeof (*zv)); 1157 } 1158 } 1159 mutex_exit(&nlwb->lwb_vdev_lock); 1160 } 1161 1162 void 1163 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg) 1164 { 1165 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg); 1166 } 1167 1168 /* 1169 * This function is a called after all vdevs associated with a given lwb 1170 * write have completed their DKIOCFLUSHWRITECACHE command; or as soon 1171 * as the lwb write completes, if "zil_nocacheflush" is set. Further, 1172 * all "previous" lwb's will have completed before this function is 1173 * called; i.e. this function is called for all previous lwbs before 1174 * it's called for "this" lwb (enforced via zio the dependencies 1175 * configured in zil_lwb_set_zio_dependency()). 1176 * 1177 * The intention is for this function to be called as soon as the 1178 * contents of an lwb are considered "stable" on disk, and will survive 1179 * any sudden loss of power. At this point, any threads waiting for the 1180 * lwb to reach this state are signalled, and the "waiter" structures 1181 * are marked "done". 1182 */ 1183 static void 1184 zil_lwb_flush_vdevs_done(zio_t *zio) 1185 { 1186 lwb_t *lwb = zio->io_private; 1187 zilog_t *zilog = lwb->lwb_zilog; 1188 dmu_tx_t *tx = lwb->lwb_tx; 1189 zil_commit_waiter_t *zcw; 1190 itx_t *itx; 1191 1192 spa_config_exit(zilog->zl_spa, SCL_STATE, lwb); 1193 1194 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 1195 1196 mutex_enter(&zilog->zl_lock); 1197 1198 /* 1199 * Ensure the lwb buffer pointer is cleared before releasing the 1200 * txg. If we have had an allocation failure and the txg is 1201 * waiting to sync then we want zil_sync() to remove the lwb so 1202 * that it's not picked up as the next new one in 1203 * zil_process_commit_list(). zil_sync() will only remove the 1204 * lwb if lwb_buf is null. 1205 */ 1206 lwb->lwb_buf = NULL; 1207 lwb->lwb_tx = NULL; 1208 1209 ASSERT3U(lwb->lwb_issued_timestamp, >, 0); 1210 zilog->zl_last_lwb_latency = gethrtime() - lwb->lwb_issued_timestamp; 1211 1212 lwb->lwb_root_zio = NULL; 1213 1214 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE); 1215 lwb->lwb_state = LWB_STATE_FLUSH_DONE; 1216 1217 if (zilog->zl_last_lwb_opened == lwb) { 1218 /* 1219 * Remember the highest committed log sequence number 1220 * for ztest. We only update this value when all the log 1221 * writes succeeded, because ztest wants to ASSERT that 1222 * it got the whole log chain. 1223 */ 1224 zilog->zl_commit_lr_seq = zilog->zl_lr_seq; 1225 } 1226 1227 while ((itx = list_head(&lwb->lwb_itxs)) != NULL) { 1228 list_remove(&lwb->lwb_itxs, itx); 1229 zil_itx_destroy(itx); 1230 } 1231 1232 while ((zcw = list_head(&lwb->lwb_waiters)) != NULL) { 1233 mutex_enter(&zcw->zcw_lock); 1234 1235 ASSERT(list_link_active(&zcw->zcw_node)); 1236 list_remove(&lwb->lwb_waiters, zcw); 1237 1238 ASSERT3P(zcw->zcw_lwb, ==, lwb); 1239 zcw->zcw_lwb = NULL; 1240 /* 1241 * We expect any ZIO errors from child ZIOs to have been 1242 * propagated "up" to this specific LWB's root ZIO, in 1243 * order for this error handling to work correctly. This 1244 * includes ZIO errors from either this LWB's write or 1245 * flush, as well as any errors from other dependent LWBs 1246 * (e.g. a root LWB ZIO that might be a child of this LWB). 1247 * 1248 * With that said, it's important to note that LWB flush 1249 * errors are not propagated up to the LWB root ZIO. 1250 * This is incorrect behavior, and results in VDEV flush 1251 * errors not being handled correctly here. See the 1252 * comment above the call to "zio_flush" for details. 1253 */ 1254 1255 zcw->zcw_zio_error = zio->io_error; 1256 1257 ASSERT3B(zcw->zcw_done, ==, B_FALSE); 1258 zcw->zcw_done = B_TRUE; 1259 cv_broadcast(&zcw->zcw_cv); 1260 1261 mutex_exit(&zcw->zcw_lock); 1262 } 1263 1264 mutex_exit(&zilog->zl_lock); 1265 1266 /* 1267 * Now that we've written this log block, we have a stable pointer 1268 * to the next block in the chain, so it's OK to let the txg in 1269 * which we allocated the next block sync. 1270 */ 1271 dmu_tx_commit(tx); 1272 } 1273 1274 /* 1275 * This is called when an lwb's write zio completes. The callback's 1276 * purpose is to issue the DKIOCFLUSHWRITECACHE commands for the vdevs 1277 * in the lwb's lwb_vdev_tree. The tree will contain the vdevs involved 1278 * in writing out this specific lwb's data, and in the case that cache 1279 * flushes have been deferred, vdevs involved in writing the data for 1280 * previous lwbs. The writes corresponding to all the vdevs in the 1281 * lwb_vdev_tree will have completed by the time this is called, due to 1282 * the zio dependencies configured in zil_lwb_set_zio_dependency(), 1283 * which takes deferred flushes into account. The lwb will be "done" 1284 * once zil_lwb_flush_vdevs_done() is called, which occurs in the zio 1285 * completion callback for the lwb's root zio. 1286 */ 1287 static void 1288 zil_lwb_write_done(zio_t *zio) 1289 { 1290 lwb_t *lwb = zio->io_private; 1291 spa_t *spa = zio->io_spa; 1292 zilog_t *zilog = lwb->lwb_zilog; 1293 avl_tree_t *t = &lwb->lwb_vdev_tree; 1294 void *cookie = NULL; 1295 zil_vdev_node_t *zv; 1296 lwb_t *nlwb; 1297 1298 ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0); 1299 1300 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 1301 ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG); 1302 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 1303 ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER); 1304 ASSERT(!BP_IS_GANG(zio->io_bp)); 1305 ASSERT(!BP_IS_HOLE(zio->io_bp)); 1306 ASSERT(BP_GET_FILL(zio->io_bp) == 0); 1307 1308 abd_free(zio->io_abd); 1309 1310 mutex_enter(&zilog->zl_lock); 1311 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED); 1312 lwb->lwb_state = LWB_STATE_WRITE_DONE; 1313 lwb->lwb_write_zio = NULL; 1314 lwb->lwb_fastwrite = FALSE; 1315 nlwb = list_next(&zilog->zl_lwb_list, lwb); 1316 mutex_exit(&zilog->zl_lock); 1317 1318 if (avl_numnodes(t) == 0) 1319 return; 1320 1321 /* 1322 * If there was an IO error, we're not going to call zio_flush() 1323 * on these vdevs, so we simply empty the tree and free the 1324 * nodes. We avoid calling zio_flush() since there isn't any 1325 * good reason for doing so, after the lwb block failed to be 1326 * written out. 1327 * 1328 * Additionally, we don't perform any further error handling at 1329 * this point (e.g. setting "zcw_zio_error" appropriately), as 1330 * we expect that to occur in "zil_lwb_flush_vdevs_done" (thus, 1331 * we expect any error seen here, to have been propagated to 1332 * that function). 1333 */ 1334 if (zio->io_error != 0) { 1335 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) 1336 kmem_free(zv, sizeof (*zv)); 1337 return; 1338 } 1339 1340 /* 1341 * If this lwb does not have any threads waiting for it to 1342 * complete, we want to defer issuing the DKIOCFLUSHWRITECACHE 1343 * command to the vdevs written to by "this" lwb, and instead 1344 * rely on the "next" lwb to handle the DKIOCFLUSHWRITECACHE 1345 * command for those vdevs. Thus, we merge the vdev tree of 1346 * "this" lwb with the vdev tree of the "next" lwb in the list, 1347 * and assume the "next" lwb will handle flushing the vdevs (or 1348 * deferring the flush(s) again). 1349 * 1350 * This is a useful performance optimization, especially for 1351 * workloads with lots of async write activity and few sync 1352 * write and/or fsync activity, as it has the potential to 1353 * coalesce multiple flush commands to a vdev into one. 1354 */ 1355 if (list_head(&lwb->lwb_waiters) == NULL && nlwb != NULL) { 1356 zil_lwb_flush_defer(lwb, nlwb); 1357 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree)); 1358 return; 1359 } 1360 1361 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) { 1362 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev); 1363 if (vd != NULL) { 1364 /* 1365 * The "ZIO_FLAG_DONT_PROPAGATE" is currently 1366 * always used within "zio_flush". This means, 1367 * any errors when flushing the vdev(s), will 1368 * (unfortunately) not be handled correctly, 1369 * since these "zio_flush" errors will not be 1370 * propagated up to "zil_lwb_flush_vdevs_done". 1371 */ 1372 zio_flush(lwb->lwb_root_zio, vd); 1373 } 1374 kmem_free(zv, sizeof (*zv)); 1375 } 1376 } 1377 1378 static void 1379 zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb) 1380 { 1381 lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened; 1382 1383 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1384 ASSERT(MUTEX_HELD(&zilog->zl_lock)); 1385 1386 /* 1387 * The zilog's "zl_last_lwb_opened" field is used to build the 1388 * lwb/zio dependency chain, which is used to preserve the 1389 * ordering of lwb completions that is required by the semantics 1390 * of the ZIL. Each new lwb zio becomes a parent of the 1391 * "previous" lwb zio, such that the new lwb's zio cannot 1392 * complete until the "previous" lwb's zio completes. 1393 * 1394 * This is required by the semantics of zil_commit(); the commit 1395 * waiters attached to the lwbs will be woken in the lwb zio's 1396 * completion callback, so this zio dependency graph ensures the 1397 * waiters are woken in the correct order (the same order the 1398 * lwbs were created). 1399 */ 1400 if (last_lwb_opened != NULL && 1401 last_lwb_opened->lwb_state != LWB_STATE_FLUSH_DONE) { 1402 ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED || 1403 last_lwb_opened->lwb_state == LWB_STATE_ISSUED || 1404 last_lwb_opened->lwb_state == LWB_STATE_WRITE_DONE); 1405 1406 ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL); 1407 zio_add_child(lwb->lwb_root_zio, 1408 last_lwb_opened->lwb_root_zio); 1409 1410 /* 1411 * If the previous lwb's write hasn't already completed, 1412 * we also want to order the completion of the lwb write 1413 * zios (above, we only order the completion of the lwb 1414 * root zios). This is required because of how we can 1415 * defer the DKIOCFLUSHWRITECACHE commands for each lwb. 1416 * 1417 * When the DKIOCFLUSHWRITECACHE commands are deferred, 1418 * the previous lwb will rely on this lwb to flush the 1419 * vdevs written to by that previous lwb. Thus, we need 1420 * to ensure this lwb doesn't issue the flush until 1421 * after the previous lwb's write completes. We ensure 1422 * this ordering by setting the zio parent/child 1423 * relationship here. 1424 * 1425 * Without this relationship on the lwb's write zio, 1426 * it's possible for this lwb's write to complete prior 1427 * to the previous lwb's write completing; and thus, the 1428 * vdevs for the previous lwb would be flushed prior to 1429 * that lwb's data being written to those vdevs (the 1430 * vdevs are flushed in the lwb write zio's completion 1431 * handler, zil_lwb_write_done()). 1432 */ 1433 if (last_lwb_opened->lwb_state != LWB_STATE_WRITE_DONE) { 1434 ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED || 1435 last_lwb_opened->lwb_state == LWB_STATE_ISSUED); 1436 1437 ASSERT3P(last_lwb_opened->lwb_write_zio, !=, NULL); 1438 zio_add_child(lwb->lwb_write_zio, 1439 last_lwb_opened->lwb_write_zio); 1440 } 1441 } 1442 } 1443 1444 1445 /* 1446 * This function's purpose is to "open" an lwb such that it is ready to 1447 * accept new itxs being committed to it. To do this, the lwb's zio 1448 * structures are created, and linked to the lwb. This function is 1449 * idempotent; if the passed in lwb has already been opened, this 1450 * function is essentially a no-op. 1451 */ 1452 static void 1453 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb) 1454 { 1455 zbookmark_phys_t zb; 1456 zio_priority_t prio; 1457 1458 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1459 ASSERT3P(lwb, !=, NULL); 1460 EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED); 1461 EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED); 1462 1463 SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1464 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, 1465 lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]); 1466 1467 /* Lock so zil_sync() doesn't fastwrite_unmark after zio is created */ 1468 mutex_enter(&zilog->zl_lock); 1469 if (lwb->lwb_root_zio == NULL) { 1470 abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf, 1471 BP_GET_LSIZE(&lwb->lwb_blk)); 1472 1473 if (!lwb->lwb_fastwrite) { 1474 metaslab_fastwrite_mark(zilog->zl_spa, &lwb->lwb_blk); 1475 lwb->lwb_fastwrite = 1; 1476 } 1477 1478 if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk) 1479 prio = ZIO_PRIORITY_SYNC_WRITE; 1480 else 1481 prio = ZIO_PRIORITY_ASYNC_WRITE; 1482 1483 lwb->lwb_root_zio = zio_root(zilog->zl_spa, 1484 zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL); 1485 ASSERT3P(lwb->lwb_root_zio, !=, NULL); 1486 1487 lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio, 1488 zilog->zl_spa, 0, &lwb->lwb_blk, lwb_abd, 1489 BP_GET_LSIZE(&lwb->lwb_blk), zil_lwb_write_done, lwb, 1490 prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_FASTWRITE, &zb); 1491 ASSERT3P(lwb->lwb_write_zio, !=, NULL); 1492 1493 lwb->lwb_state = LWB_STATE_OPENED; 1494 1495 zil_lwb_set_zio_dependency(zilog, lwb); 1496 zilog->zl_last_lwb_opened = lwb; 1497 } 1498 mutex_exit(&zilog->zl_lock); 1499 1500 ASSERT3P(lwb->lwb_root_zio, !=, NULL); 1501 ASSERT3P(lwb->lwb_write_zio, !=, NULL); 1502 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED); 1503 } 1504 1505 /* 1506 * Define a limited set of intent log block sizes. 1507 * 1508 * These must be a multiple of 4KB. Note only the amount used (again 1509 * aligned to 4KB) actually gets written. However, we can't always just 1510 * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted. 1511 */ 1512 static const struct { 1513 uint64_t limit; 1514 uint64_t blksz; 1515 } zil_block_buckets[] = { 1516 { 4096, 4096 }, /* non TX_WRITE */ 1517 { 8192 + 4096, 8192 + 4096 }, /* database */ 1518 { 32768 + 4096, 32768 + 4096 }, /* NFS writes */ 1519 { 65536 + 4096, 65536 + 4096 }, /* 64KB writes */ 1520 { 131072, 131072 }, /* < 128KB writes */ 1521 { 131072 +4096, 65536 + 4096 }, /* 128KB writes */ 1522 { UINT64_MAX, SPA_OLD_MAXBLOCKSIZE}, /* > 128KB writes */ 1523 }; 1524 1525 /* 1526 * Maximum block size used by the ZIL. This is picked up when the ZIL is 1527 * initialized. Otherwise this should not be used directly; see 1528 * zl_max_block_size instead. 1529 */ 1530 static int zil_maxblocksize = SPA_OLD_MAXBLOCKSIZE; 1531 1532 /* 1533 * Start a log block write and advance to the next log block. 1534 * Calls are serialized. 1535 */ 1536 static lwb_t * 1537 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb) 1538 { 1539 lwb_t *nlwb = NULL; 1540 zil_chain_t *zilc; 1541 spa_t *spa = zilog->zl_spa; 1542 blkptr_t *bp; 1543 dmu_tx_t *tx; 1544 uint64_t txg; 1545 uint64_t zil_blksz, wsz; 1546 int i, error; 1547 boolean_t slog; 1548 1549 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1550 ASSERT3P(lwb->lwb_root_zio, !=, NULL); 1551 ASSERT3P(lwb->lwb_write_zio, !=, NULL); 1552 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED); 1553 1554 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) { 1555 zilc = (zil_chain_t *)lwb->lwb_buf; 1556 bp = &zilc->zc_next_blk; 1557 } else { 1558 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz); 1559 bp = &zilc->zc_next_blk; 1560 } 1561 1562 ASSERT(lwb->lwb_nused <= lwb->lwb_sz); 1563 1564 /* 1565 * Allocate the next block and save its address in this block 1566 * before writing it in order to establish the log chain. 1567 * Note that if the allocation of nlwb synced before we wrote 1568 * the block that points at it (lwb), we'd leak it if we crashed. 1569 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done(). 1570 * We dirty the dataset to ensure that zil_sync() will be called 1571 * to clean up in the event of allocation failure or I/O failure. 1572 */ 1573 1574 tx = dmu_tx_create(zilog->zl_os); 1575 1576 /* 1577 * Since we are not going to create any new dirty data, and we 1578 * can even help with clearing the existing dirty data, we 1579 * should not be subject to the dirty data based delays. We 1580 * use TXG_NOTHROTTLE to bypass the delay mechanism. 1581 */ 1582 VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE)); 1583 1584 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 1585 txg = dmu_tx_get_txg(tx); 1586 1587 lwb->lwb_tx = tx; 1588 1589 /* 1590 * Log blocks are pre-allocated. Here we select the size of the next 1591 * block, based on size used in the last block. 1592 * - first find the smallest bucket that will fit the block from a 1593 * limited set of block sizes. This is because it's faster to write 1594 * blocks allocated from the same metaslab as they are adjacent or 1595 * close. 1596 * - next find the maximum from the new suggested size and an array of 1597 * previous sizes. This lessens a picket fence effect of wrongly 1598 * guessing the size if we have a stream of say 2k, 64k, 2k, 64k 1599 * requests. 1600 * 1601 * Note we only write what is used, but we can't just allocate 1602 * the maximum block size because we can exhaust the available 1603 * pool log space. 1604 */ 1605 zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t); 1606 for (i = 0; zil_blksz > zil_block_buckets[i].limit; i++) 1607 continue; 1608 zil_blksz = MIN(zil_block_buckets[i].blksz, zilog->zl_max_block_size); 1609 zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz; 1610 for (i = 0; i < ZIL_PREV_BLKS; i++) 1611 zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]); 1612 zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1); 1613 1614 BP_ZERO(bp); 1615 error = zio_alloc_zil(spa, zilog->zl_os, txg, bp, zil_blksz, &slog); 1616 if (slog) { 1617 ZIL_STAT_BUMP(zil_itx_metaslab_slog_count); 1618 ZIL_STAT_INCR(zil_itx_metaslab_slog_bytes, lwb->lwb_nused); 1619 } else { 1620 ZIL_STAT_BUMP(zil_itx_metaslab_normal_count); 1621 ZIL_STAT_INCR(zil_itx_metaslab_normal_bytes, lwb->lwb_nused); 1622 } 1623 if (error == 0) { 1624 ASSERT3U(bp->blk_birth, ==, txg); 1625 bp->blk_cksum = lwb->lwb_blk.blk_cksum; 1626 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++; 1627 1628 /* 1629 * Allocate a new log write block (lwb). 1630 */ 1631 nlwb = zil_alloc_lwb(zilog, bp, slog, txg, TRUE); 1632 } 1633 1634 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) { 1635 /* For Slim ZIL only write what is used. */ 1636 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t); 1637 ASSERT3U(wsz, <=, lwb->lwb_sz); 1638 zio_shrink(lwb->lwb_write_zio, wsz); 1639 1640 } else { 1641 wsz = lwb->lwb_sz; 1642 } 1643 1644 zilc->zc_pad = 0; 1645 zilc->zc_nused = lwb->lwb_nused; 1646 zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum; 1647 1648 /* 1649 * clear unused data for security 1650 */ 1651 bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused); 1652 1653 spa_config_enter(zilog->zl_spa, SCL_STATE, lwb, RW_READER); 1654 1655 zil_lwb_add_block(lwb, &lwb->lwb_blk); 1656 lwb->lwb_issued_timestamp = gethrtime(); 1657 lwb->lwb_state = LWB_STATE_ISSUED; 1658 1659 zio_nowait(lwb->lwb_root_zio); 1660 zio_nowait(lwb->lwb_write_zio); 1661 1662 /* 1663 * If there was an allocation failure then nlwb will be null which 1664 * forces a txg_wait_synced(). 1665 */ 1666 return (nlwb); 1667 } 1668 1669 /* 1670 * Maximum amount of write data that can be put into single log block. 1671 */ 1672 uint64_t 1673 zil_max_log_data(zilog_t *zilog) 1674 { 1675 return (zilog->zl_max_block_size - 1676 sizeof (zil_chain_t) - sizeof (lr_write_t)); 1677 } 1678 1679 /* 1680 * Maximum amount of log space we agree to waste to reduce number of 1681 * WR_NEED_COPY chunks to reduce zl_get_data() overhead (~12%). 1682 */ 1683 static inline uint64_t 1684 zil_max_waste_space(zilog_t *zilog) 1685 { 1686 return (zil_max_log_data(zilog) / 8); 1687 } 1688 1689 /* 1690 * Maximum amount of write data for WR_COPIED. For correctness, consumers 1691 * must fall back to WR_NEED_COPY if we can't fit the entire record into one 1692 * maximum sized log block, because each WR_COPIED record must fit in a 1693 * single log block. For space efficiency, we want to fit two records into a 1694 * max-sized log block. 1695 */ 1696 uint64_t 1697 zil_max_copied_data(zilog_t *zilog) 1698 { 1699 return ((zilog->zl_max_block_size - sizeof (zil_chain_t)) / 2 - 1700 sizeof (lr_write_t)); 1701 } 1702 1703 static lwb_t * 1704 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb) 1705 { 1706 lr_t *lrcb, *lrc; 1707 lr_write_t *lrwb, *lrw; 1708 char *lr_buf; 1709 uint64_t dlen, dnow, dpad, lwb_sp, reclen, txg, max_log_data; 1710 1711 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1712 ASSERT3P(lwb, !=, NULL); 1713 ASSERT3P(lwb->lwb_buf, !=, NULL); 1714 1715 zil_lwb_write_open(zilog, lwb); 1716 1717 lrc = &itx->itx_lr; 1718 lrw = (lr_write_t *)lrc; 1719 1720 /* 1721 * A commit itx doesn't represent any on-disk state; instead 1722 * it's simply used as a place holder on the commit list, and 1723 * provides a mechanism for attaching a "commit waiter" onto the 1724 * correct lwb (such that the waiter can be signalled upon 1725 * completion of that lwb). Thus, we don't process this itx's 1726 * log record if it's a commit itx (these itx's don't have log 1727 * records), and instead link the itx's waiter onto the lwb's 1728 * list of waiters. 1729 * 1730 * For more details, see the comment above zil_commit(). 1731 */ 1732 if (lrc->lrc_txtype == TX_COMMIT) { 1733 mutex_enter(&zilog->zl_lock); 1734 zil_commit_waiter_link_lwb(itx->itx_private, lwb); 1735 itx->itx_private = NULL; 1736 mutex_exit(&zilog->zl_lock); 1737 return (lwb); 1738 } 1739 1740 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) { 1741 dlen = P2ROUNDUP_TYPED( 1742 lrw->lr_length, sizeof (uint64_t), uint64_t); 1743 dpad = dlen - lrw->lr_length; 1744 } else { 1745 dlen = dpad = 0; 1746 } 1747 reclen = lrc->lrc_reclen; 1748 zilog->zl_cur_used += (reclen + dlen); 1749 txg = lrc->lrc_txg; 1750 1751 ASSERT3U(zilog->zl_cur_used, <, UINT64_MAX - (reclen + dlen)); 1752 1753 cont: 1754 /* 1755 * If this record won't fit in the current log block, start a new one. 1756 * For WR_NEED_COPY optimize layout for minimal number of chunks. 1757 */ 1758 lwb_sp = lwb->lwb_sz - lwb->lwb_nused; 1759 max_log_data = zil_max_log_data(zilog); 1760 if (reclen > lwb_sp || (reclen + dlen > lwb_sp && 1761 lwb_sp < zil_max_waste_space(zilog) && 1762 (dlen % max_log_data == 0 || 1763 lwb_sp < reclen + dlen % max_log_data))) { 1764 lwb = zil_lwb_write_issue(zilog, lwb); 1765 if (lwb == NULL) 1766 return (NULL); 1767 zil_lwb_write_open(zilog, lwb); 1768 ASSERT(LWB_EMPTY(lwb)); 1769 lwb_sp = lwb->lwb_sz - lwb->lwb_nused; 1770 1771 /* 1772 * There must be enough space in the new, empty log block to 1773 * hold reclen. For WR_COPIED, we need to fit the whole 1774 * record in one block, and reclen is the header size + the 1775 * data size. For WR_NEED_COPY, we can create multiple 1776 * records, splitting the data into multiple blocks, so we 1777 * only need to fit one word of data per block; in this case 1778 * reclen is just the header size (no data). 1779 */ 1780 ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp); 1781 } 1782 1783 dnow = MIN(dlen, lwb_sp - reclen); 1784 lr_buf = lwb->lwb_buf + lwb->lwb_nused; 1785 bcopy(lrc, lr_buf, reclen); 1786 lrcb = (lr_t *)lr_buf; /* Like lrc, but inside lwb. */ 1787 lrwb = (lr_write_t *)lrcb; /* Like lrw, but inside lwb. */ 1788 1789 ZIL_STAT_BUMP(zil_itx_count); 1790 1791 /* 1792 * If it's a write, fetch the data or get its blkptr as appropriate. 1793 */ 1794 if (lrc->lrc_txtype == TX_WRITE) { 1795 if (txg > spa_freeze_txg(zilog->zl_spa)) 1796 txg_wait_synced(zilog->zl_dmu_pool, txg); 1797 if (itx->itx_wr_state == WR_COPIED) { 1798 ZIL_STAT_BUMP(zil_itx_copied_count); 1799 ZIL_STAT_INCR(zil_itx_copied_bytes, lrw->lr_length); 1800 } else { 1801 char *dbuf; 1802 int error; 1803 1804 if (itx->itx_wr_state == WR_NEED_COPY) { 1805 dbuf = lr_buf + reclen; 1806 lrcb->lrc_reclen += dnow; 1807 if (lrwb->lr_length > dnow) 1808 lrwb->lr_length = dnow; 1809 lrw->lr_offset += dnow; 1810 lrw->lr_length -= dnow; 1811 ZIL_STAT_BUMP(zil_itx_needcopy_count); 1812 ZIL_STAT_INCR(zil_itx_needcopy_bytes, dnow); 1813 } else { 1814 ASSERT3S(itx->itx_wr_state, ==, WR_INDIRECT); 1815 dbuf = NULL; 1816 ZIL_STAT_BUMP(zil_itx_indirect_count); 1817 ZIL_STAT_INCR(zil_itx_indirect_bytes, 1818 lrw->lr_length); 1819 } 1820 1821 /* 1822 * We pass in the "lwb_write_zio" rather than 1823 * "lwb_root_zio" so that the "lwb_write_zio" 1824 * becomes the parent of any zio's created by 1825 * the "zl_get_data" callback. The vdevs are 1826 * flushed after the "lwb_write_zio" completes, 1827 * so we want to make sure that completion 1828 * callback waits for these additional zio's, 1829 * such that the vdevs used by those zio's will 1830 * be included in the lwb's vdev tree, and those 1831 * vdevs will be properly flushed. If we passed 1832 * in "lwb_root_zio" here, then these additional 1833 * vdevs may not be flushed; e.g. if these zio's 1834 * completed after "lwb_write_zio" completed. 1835 */ 1836 error = zilog->zl_get_data(itx->itx_private, 1837 itx->itx_gen, lrwb, dbuf, lwb, 1838 lwb->lwb_write_zio); 1839 if (dbuf != NULL && error == 0 && dnow == dlen) 1840 /* Zero any padding bytes in the last block. */ 1841 bzero((char *)dbuf + lrwb->lr_length, dpad); 1842 1843 if (error == EIO) { 1844 txg_wait_synced(zilog->zl_dmu_pool, txg); 1845 return (lwb); 1846 } 1847 if (error != 0) { 1848 ASSERT(error == ENOENT || error == EEXIST || 1849 error == EALREADY); 1850 return (lwb); 1851 } 1852 } 1853 } 1854 1855 /* 1856 * We're actually making an entry, so update lrc_seq to be the 1857 * log record sequence number. Note that this is generally not 1858 * equal to the itx sequence number because not all transactions 1859 * are synchronous, and sometimes spa_sync() gets there first. 1860 */ 1861 lrcb->lrc_seq = ++zilog->zl_lr_seq; 1862 lwb->lwb_nused += reclen + dnow; 1863 1864 zil_lwb_add_txg(lwb, txg); 1865 1866 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz); 1867 ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t))); 1868 1869 dlen -= dnow; 1870 if (dlen > 0) { 1871 zilog->zl_cur_used += reclen; 1872 goto cont; 1873 } 1874 1875 return (lwb); 1876 } 1877 1878 itx_t * 1879 zil_itx_create(uint64_t txtype, size_t olrsize) 1880 { 1881 size_t itxsize, lrsize; 1882 itx_t *itx; 1883 1884 lrsize = P2ROUNDUP_TYPED(olrsize, sizeof (uint64_t), size_t); 1885 itxsize = offsetof(itx_t, itx_lr) + lrsize; 1886 1887 itx = zio_data_buf_alloc(itxsize); 1888 itx->itx_lr.lrc_txtype = txtype; 1889 itx->itx_lr.lrc_reclen = lrsize; 1890 itx->itx_lr.lrc_seq = 0; /* defensive */ 1891 bzero((char *)&itx->itx_lr + olrsize, lrsize - olrsize); 1892 itx->itx_sync = B_TRUE; /* default is synchronous */ 1893 itx->itx_callback = NULL; 1894 itx->itx_callback_data = NULL; 1895 itx->itx_size = itxsize; 1896 1897 return (itx); 1898 } 1899 1900 void 1901 zil_itx_destroy(itx_t *itx) 1902 { 1903 IMPLY(itx->itx_lr.lrc_txtype == TX_COMMIT, itx->itx_callback == NULL); 1904 IMPLY(itx->itx_callback != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT); 1905 1906 if (itx->itx_callback != NULL) 1907 itx->itx_callback(itx->itx_callback_data); 1908 1909 zio_data_buf_free(itx, itx->itx_size); 1910 } 1911 1912 /* 1913 * Free up the sync and async itxs. The itxs_t has already been detached 1914 * so no locks are needed. 1915 */ 1916 static void 1917 zil_itxg_clean(void *arg) 1918 { 1919 itx_t *itx; 1920 list_t *list; 1921 avl_tree_t *t; 1922 void *cookie; 1923 itxs_t *itxs = arg; 1924 itx_async_node_t *ian; 1925 1926 list = &itxs->i_sync_list; 1927 while ((itx = list_head(list)) != NULL) { 1928 /* 1929 * In the general case, commit itxs will not be found 1930 * here, as they'll be committed to an lwb via 1931 * zil_lwb_commit(), and free'd in that function. Having 1932 * said that, it is still possible for commit itxs to be 1933 * found here, due to the following race: 1934 * 1935 * - a thread calls zil_commit() which assigns the 1936 * commit itx to a per-txg i_sync_list 1937 * - zil_itxg_clean() is called (e.g. via spa_sync()) 1938 * while the waiter is still on the i_sync_list 1939 * 1940 * There's nothing to prevent syncing the txg while the 1941 * waiter is on the i_sync_list. This normally doesn't 1942 * happen because spa_sync() is slower than zil_commit(), 1943 * but if zil_commit() calls txg_wait_synced() (e.g. 1944 * because zil_create() or zil_commit_writer_stall() is 1945 * called) we will hit this case. 1946 */ 1947 if (itx->itx_lr.lrc_txtype == TX_COMMIT) 1948 zil_commit_waiter_skip(itx->itx_private); 1949 1950 list_remove(list, itx); 1951 zil_itx_destroy(itx); 1952 } 1953 1954 cookie = NULL; 1955 t = &itxs->i_async_tree; 1956 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { 1957 list = &ian->ia_list; 1958 while ((itx = list_head(list)) != NULL) { 1959 list_remove(list, itx); 1960 /* commit itxs should never be on the async lists. */ 1961 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT); 1962 zil_itx_destroy(itx); 1963 } 1964 list_destroy(list); 1965 kmem_free(ian, sizeof (itx_async_node_t)); 1966 } 1967 avl_destroy(t); 1968 1969 kmem_free(itxs, sizeof (itxs_t)); 1970 } 1971 1972 static int 1973 zil_aitx_compare(const void *x1, const void *x2) 1974 { 1975 const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid; 1976 const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid; 1977 1978 return (TREE_CMP(o1, o2)); 1979 } 1980 1981 /* 1982 * Remove all async itx with the given oid. 1983 */ 1984 void 1985 zil_remove_async(zilog_t *zilog, uint64_t oid) 1986 { 1987 uint64_t otxg, txg; 1988 itx_async_node_t *ian; 1989 avl_tree_t *t; 1990 avl_index_t where; 1991 list_t clean_list; 1992 itx_t *itx; 1993 1994 ASSERT(oid != 0); 1995 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node)); 1996 1997 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 1998 otxg = ZILTEST_TXG; 1999 else 2000 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 2001 2002 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 2003 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 2004 2005 mutex_enter(&itxg->itxg_lock); 2006 if (itxg->itxg_txg != txg) { 2007 mutex_exit(&itxg->itxg_lock); 2008 continue; 2009 } 2010 2011 /* 2012 * Locate the object node and append its list. 2013 */ 2014 t = &itxg->itxg_itxs->i_async_tree; 2015 ian = avl_find(t, &oid, &where); 2016 if (ian != NULL) 2017 list_move_tail(&clean_list, &ian->ia_list); 2018 mutex_exit(&itxg->itxg_lock); 2019 } 2020 while ((itx = list_head(&clean_list)) != NULL) { 2021 list_remove(&clean_list, itx); 2022 /* commit itxs should never be on the async lists. */ 2023 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT); 2024 zil_itx_destroy(itx); 2025 } 2026 list_destroy(&clean_list); 2027 } 2028 2029 void 2030 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx) 2031 { 2032 uint64_t txg; 2033 itxg_t *itxg; 2034 itxs_t *itxs, *clean = NULL; 2035 2036 /* 2037 * Ensure the data of a renamed file is committed before the rename. 2038 */ 2039 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME) 2040 zil_async_to_sync(zilog, itx->itx_oid); 2041 2042 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) 2043 txg = ZILTEST_TXG; 2044 else 2045 txg = dmu_tx_get_txg(tx); 2046 2047 itxg = &zilog->zl_itxg[txg & TXG_MASK]; 2048 mutex_enter(&itxg->itxg_lock); 2049 itxs = itxg->itxg_itxs; 2050 if (itxg->itxg_txg != txg) { 2051 if (itxs != NULL) { 2052 /* 2053 * The zil_clean callback hasn't got around to cleaning 2054 * this itxg. Save the itxs for release below. 2055 * This should be rare. 2056 */ 2057 zfs_dbgmsg("zil_itx_assign: missed itx cleanup for " 2058 "txg %llu", (u_longlong_t)itxg->itxg_txg); 2059 clean = itxg->itxg_itxs; 2060 } 2061 itxg->itxg_txg = txg; 2062 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), 2063 KM_SLEEP); 2064 2065 list_create(&itxs->i_sync_list, sizeof (itx_t), 2066 offsetof(itx_t, itx_node)); 2067 avl_create(&itxs->i_async_tree, zil_aitx_compare, 2068 sizeof (itx_async_node_t), 2069 offsetof(itx_async_node_t, ia_node)); 2070 } 2071 if (itx->itx_sync) { 2072 list_insert_tail(&itxs->i_sync_list, itx); 2073 } else { 2074 avl_tree_t *t = &itxs->i_async_tree; 2075 uint64_t foid = 2076 LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid); 2077 itx_async_node_t *ian; 2078 avl_index_t where; 2079 2080 ian = avl_find(t, &foid, &where); 2081 if (ian == NULL) { 2082 ian = kmem_alloc(sizeof (itx_async_node_t), 2083 KM_SLEEP); 2084 list_create(&ian->ia_list, sizeof (itx_t), 2085 offsetof(itx_t, itx_node)); 2086 ian->ia_foid = foid; 2087 avl_insert(t, ian, where); 2088 } 2089 list_insert_tail(&ian->ia_list, itx); 2090 } 2091 2092 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx); 2093 2094 /* 2095 * We don't want to dirty the ZIL using ZILTEST_TXG, because 2096 * zil_clean() will never be called using ZILTEST_TXG. Thus, we 2097 * need to be careful to always dirty the ZIL using the "real" 2098 * TXG (not itxg_txg) even when the SPA is frozen. 2099 */ 2100 zilog_dirty(zilog, dmu_tx_get_txg(tx)); 2101 mutex_exit(&itxg->itxg_lock); 2102 2103 /* Release the old itxs now we've dropped the lock */ 2104 if (clean != NULL) 2105 zil_itxg_clean(clean); 2106 } 2107 2108 /* 2109 * If there are any in-memory intent log transactions which have now been 2110 * synced then start up a taskq to free them. We should only do this after we 2111 * have written out the uberblocks (i.e. txg has been committed) so that 2112 * don't inadvertently clean out in-memory log records that would be required 2113 * by zil_commit(). 2114 */ 2115 void 2116 zil_clean(zilog_t *zilog, uint64_t synced_txg) 2117 { 2118 itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK]; 2119 itxs_t *clean_me; 2120 2121 ASSERT3U(synced_txg, <, ZILTEST_TXG); 2122 2123 mutex_enter(&itxg->itxg_lock); 2124 if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) { 2125 mutex_exit(&itxg->itxg_lock); 2126 return; 2127 } 2128 ASSERT3U(itxg->itxg_txg, <=, synced_txg); 2129 ASSERT3U(itxg->itxg_txg, !=, 0); 2130 clean_me = itxg->itxg_itxs; 2131 itxg->itxg_itxs = NULL; 2132 itxg->itxg_txg = 0; 2133 mutex_exit(&itxg->itxg_lock); 2134 /* 2135 * Preferably start a task queue to free up the old itxs but 2136 * if taskq_dispatch can't allocate resources to do that then 2137 * free it in-line. This should be rare. Note, using TQ_SLEEP 2138 * created a bad performance problem. 2139 */ 2140 ASSERT3P(zilog->zl_dmu_pool, !=, NULL); 2141 ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL); 2142 taskqid_t id = taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq, 2143 zil_itxg_clean, clean_me, TQ_NOSLEEP); 2144 if (id == TASKQID_INVALID) 2145 zil_itxg_clean(clean_me); 2146 } 2147 2148 /* 2149 * This function will traverse the queue of itxs that need to be 2150 * committed, and move them onto the ZIL's zl_itx_commit_list. 2151 */ 2152 static void 2153 zil_get_commit_list(zilog_t *zilog) 2154 { 2155 uint64_t otxg, txg; 2156 list_t *commit_list = &zilog->zl_itx_commit_list; 2157 2158 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2159 2160 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 2161 otxg = ZILTEST_TXG; 2162 else 2163 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 2164 2165 /* 2166 * This is inherently racy, since there is nothing to prevent 2167 * the last synced txg from changing. That's okay since we'll 2168 * only commit things in the future. 2169 */ 2170 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 2171 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 2172 2173 mutex_enter(&itxg->itxg_lock); 2174 if (itxg->itxg_txg != txg) { 2175 mutex_exit(&itxg->itxg_lock); 2176 continue; 2177 } 2178 2179 /* 2180 * If we're adding itx records to the zl_itx_commit_list, 2181 * then the zil better be dirty in this "txg". We can assert 2182 * that here since we're holding the itxg_lock which will 2183 * prevent spa_sync from cleaning it. Once we add the itxs 2184 * to the zl_itx_commit_list we must commit it to disk even 2185 * if it's unnecessary (i.e. the txg was synced). 2186 */ 2187 ASSERT(zilog_is_dirty_in_txg(zilog, txg) || 2188 spa_freeze_txg(zilog->zl_spa) != UINT64_MAX); 2189 list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list); 2190 2191 mutex_exit(&itxg->itxg_lock); 2192 } 2193 } 2194 2195 /* 2196 * Move the async itxs for a specified object to commit into sync lists. 2197 */ 2198 void 2199 zil_async_to_sync(zilog_t *zilog, uint64_t foid) 2200 { 2201 uint64_t otxg, txg; 2202 itx_async_node_t *ian; 2203 avl_tree_t *t; 2204 avl_index_t where; 2205 2206 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 2207 otxg = ZILTEST_TXG; 2208 else 2209 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 2210 2211 /* 2212 * This is inherently racy, since there is nothing to prevent 2213 * the last synced txg from changing. 2214 */ 2215 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 2216 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 2217 2218 mutex_enter(&itxg->itxg_lock); 2219 if (itxg->itxg_txg != txg) { 2220 mutex_exit(&itxg->itxg_lock); 2221 continue; 2222 } 2223 2224 /* 2225 * If a foid is specified then find that node and append its 2226 * list. Otherwise walk the tree appending all the lists 2227 * to the sync list. We add to the end rather than the 2228 * beginning to ensure the create has happened. 2229 */ 2230 t = &itxg->itxg_itxs->i_async_tree; 2231 if (foid != 0) { 2232 ian = avl_find(t, &foid, &where); 2233 if (ian != NULL) { 2234 list_move_tail(&itxg->itxg_itxs->i_sync_list, 2235 &ian->ia_list); 2236 } 2237 } else { 2238 void *cookie = NULL; 2239 2240 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { 2241 list_move_tail(&itxg->itxg_itxs->i_sync_list, 2242 &ian->ia_list); 2243 list_destroy(&ian->ia_list); 2244 kmem_free(ian, sizeof (itx_async_node_t)); 2245 } 2246 } 2247 mutex_exit(&itxg->itxg_lock); 2248 } 2249 } 2250 2251 /* 2252 * This function will prune commit itxs that are at the head of the 2253 * commit list (it won't prune past the first non-commit itx), and 2254 * either: a) attach them to the last lwb that's still pending 2255 * completion, or b) skip them altogether. 2256 * 2257 * This is used as a performance optimization to prevent commit itxs 2258 * from generating new lwbs when it's unnecessary to do so. 2259 */ 2260 static void 2261 zil_prune_commit_list(zilog_t *zilog) 2262 { 2263 itx_t *itx; 2264 2265 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2266 2267 while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) { 2268 lr_t *lrc = &itx->itx_lr; 2269 if (lrc->lrc_txtype != TX_COMMIT) 2270 break; 2271 2272 mutex_enter(&zilog->zl_lock); 2273 2274 lwb_t *last_lwb = zilog->zl_last_lwb_opened; 2275 if (last_lwb == NULL || 2276 last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) { 2277 /* 2278 * All of the itxs this waiter was waiting on 2279 * must have already completed (or there were 2280 * never any itx's for it to wait on), so it's 2281 * safe to skip this waiter and mark it done. 2282 */ 2283 zil_commit_waiter_skip(itx->itx_private); 2284 } else { 2285 zil_commit_waiter_link_lwb(itx->itx_private, last_lwb); 2286 itx->itx_private = NULL; 2287 } 2288 2289 mutex_exit(&zilog->zl_lock); 2290 2291 list_remove(&zilog->zl_itx_commit_list, itx); 2292 zil_itx_destroy(itx); 2293 } 2294 2295 IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT); 2296 } 2297 2298 static void 2299 zil_commit_writer_stall(zilog_t *zilog) 2300 { 2301 /* 2302 * When zio_alloc_zil() fails to allocate the next lwb block on 2303 * disk, we must call txg_wait_synced() to ensure all of the 2304 * lwbs in the zilog's zl_lwb_list are synced and then freed (in 2305 * zil_sync()), such that any subsequent ZIL writer (i.e. a call 2306 * to zil_process_commit_list()) will have to call zil_create(), 2307 * and start a new ZIL chain. 2308 * 2309 * Since zil_alloc_zil() failed, the lwb that was previously 2310 * issued does not have a pointer to the "next" lwb on disk. 2311 * Thus, if another ZIL writer thread was to allocate the "next" 2312 * on-disk lwb, that block could be leaked in the event of a 2313 * crash (because the previous lwb on-disk would not point to 2314 * it). 2315 * 2316 * We must hold the zilog's zl_issuer_lock while we do this, to 2317 * ensure no new threads enter zil_process_commit_list() until 2318 * all lwb's in the zl_lwb_list have been synced and freed 2319 * (which is achieved via the txg_wait_synced() call). 2320 */ 2321 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2322 txg_wait_synced(zilog->zl_dmu_pool, 0); 2323 ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL); 2324 } 2325 2326 /* 2327 * This function will traverse the commit list, creating new lwbs as 2328 * needed, and committing the itxs from the commit list to these newly 2329 * created lwbs. Additionally, as a new lwb is created, the previous 2330 * lwb will be issued to the zio layer to be written to disk. 2331 */ 2332 static void 2333 zil_process_commit_list(zilog_t *zilog) 2334 { 2335 spa_t *spa = zilog->zl_spa; 2336 list_t nolwb_itxs; 2337 list_t nolwb_waiters; 2338 lwb_t *lwb; 2339 itx_t *itx; 2340 2341 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2342 2343 /* 2344 * Return if there's nothing to commit before we dirty the fs by 2345 * calling zil_create(). 2346 */ 2347 if (list_head(&zilog->zl_itx_commit_list) == NULL) 2348 return; 2349 2350 list_create(&nolwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node)); 2351 list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t), 2352 offsetof(zil_commit_waiter_t, zcw_node)); 2353 2354 lwb = list_tail(&zilog->zl_lwb_list); 2355 if (lwb == NULL) { 2356 lwb = zil_create(zilog); 2357 } else { 2358 /* 2359 * Activate SPA_FEATURE_ZILSAXATTR for the cases where ZIL will 2360 * have already been created (zl_lwb_list not empty). 2361 */ 2362 zil_commit_activate_saxattr_feature(zilog); 2363 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED); 2364 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE); 2365 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE); 2366 } 2367 2368 while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) { 2369 lr_t *lrc = &itx->itx_lr; 2370 uint64_t txg = lrc->lrc_txg; 2371 2372 ASSERT3U(txg, !=, 0); 2373 2374 if (lrc->lrc_txtype == TX_COMMIT) { 2375 DTRACE_PROBE2(zil__process__commit__itx, 2376 zilog_t *, zilog, itx_t *, itx); 2377 } else { 2378 DTRACE_PROBE2(zil__process__normal__itx, 2379 zilog_t *, zilog, itx_t *, itx); 2380 } 2381 2382 list_remove(&zilog->zl_itx_commit_list, itx); 2383 2384 boolean_t synced = txg <= spa_last_synced_txg(spa); 2385 boolean_t frozen = txg > spa_freeze_txg(spa); 2386 2387 /* 2388 * If the txg of this itx has already been synced out, then 2389 * we don't need to commit this itx to an lwb. This is 2390 * because the data of this itx will have already been 2391 * written to the main pool. This is inherently racy, and 2392 * it's still ok to commit an itx whose txg has already 2393 * been synced; this will result in a write that's 2394 * unnecessary, but will do no harm. 2395 * 2396 * With that said, we always want to commit TX_COMMIT itxs 2397 * to an lwb, regardless of whether or not that itx's txg 2398 * has been synced out. We do this to ensure any OPENED lwb 2399 * will always have at least one zil_commit_waiter_t linked 2400 * to the lwb. 2401 * 2402 * As a counter-example, if we skipped TX_COMMIT itx's 2403 * whose txg had already been synced, the following 2404 * situation could occur if we happened to be racing with 2405 * spa_sync: 2406 * 2407 * 1. We commit a non-TX_COMMIT itx to an lwb, where the 2408 * itx's txg is 10 and the last synced txg is 9. 2409 * 2. spa_sync finishes syncing out txg 10. 2410 * 3. We move to the next itx in the list, it's a TX_COMMIT 2411 * whose txg is 10, so we skip it rather than committing 2412 * it to the lwb used in (1). 2413 * 2414 * If the itx that is skipped in (3) is the last TX_COMMIT 2415 * itx in the commit list, than it's possible for the lwb 2416 * used in (1) to remain in the OPENED state indefinitely. 2417 * 2418 * To prevent the above scenario from occurring, ensuring 2419 * that once an lwb is OPENED it will transition to ISSUED 2420 * and eventually DONE, we always commit TX_COMMIT itx's to 2421 * an lwb here, even if that itx's txg has already been 2422 * synced. 2423 * 2424 * Finally, if the pool is frozen, we _always_ commit the 2425 * itx. The point of freezing the pool is to prevent data 2426 * from being written to the main pool via spa_sync, and 2427 * instead rely solely on the ZIL to persistently store the 2428 * data; i.e. when the pool is frozen, the last synced txg 2429 * value can't be trusted. 2430 */ 2431 if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) { 2432 if (lwb != NULL) { 2433 lwb = zil_lwb_commit(zilog, itx, lwb); 2434 2435 if (lwb == NULL) 2436 list_insert_tail(&nolwb_itxs, itx); 2437 else 2438 list_insert_tail(&lwb->lwb_itxs, itx); 2439 } else { 2440 if (lrc->lrc_txtype == TX_COMMIT) { 2441 zil_commit_waiter_link_nolwb( 2442 itx->itx_private, &nolwb_waiters); 2443 } 2444 2445 list_insert_tail(&nolwb_itxs, itx); 2446 } 2447 } else { 2448 ASSERT3S(lrc->lrc_txtype, !=, TX_COMMIT); 2449 zil_itx_destroy(itx); 2450 } 2451 } 2452 2453 if (lwb == NULL) { 2454 /* 2455 * This indicates zio_alloc_zil() failed to allocate the 2456 * "next" lwb on-disk. When this happens, we must stall 2457 * the ZIL write pipeline; see the comment within 2458 * zil_commit_writer_stall() for more details. 2459 */ 2460 zil_commit_writer_stall(zilog); 2461 2462 /* 2463 * Additionally, we have to signal and mark the "nolwb" 2464 * waiters as "done" here, since without an lwb, we 2465 * can't do this via zil_lwb_flush_vdevs_done() like 2466 * normal. 2467 */ 2468 zil_commit_waiter_t *zcw; 2469 while ((zcw = list_head(&nolwb_waiters)) != NULL) { 2470 zil_commit_waiter_skip(zcw); 2471 list_remove(&nolwb_waiters, zcw); 2472 } 2473 2474 /* 2475 * And finally, we have to destroy the itx's that 2476 * couldn't be committed to an lwb; this will also call 2477 * the itx's callback if one exists for the itx. 2478 */ 2479 while ((itx = list_head(&nolwb_itxs)) != NULL) { 2480 list_remove(&nolwb_itxs, itx); 2481 zil_itx_destroy(itx); 2482 } 2483 } else { 2484 ASSERT(list_is_empty(&nolwb_waiters)); 2485 ASSERT3P(lwb, !=, NULL); 2486 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED); 2487 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE); 2488 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE); 2489 2490 /* 2491 * At this point, the ZIL block pointed at by the "lwb" 2492 * variable is in one of the following states: "closed" 2493 * or "open". 2494 * 2495 * If it's "closed", then no itxs have been committed to 2496 * it, so there's no point in issuing its zio (i.e. it's 2497 * "empty"). 2498 * 2499 * If it's "open", then it contains one or more itxs that 2500 * eventually need to be committed to stable storage. In 2501 * this case we intentionally do not issue the lwb's zio 2502 * to disk yet, and instead rely on one of the following 2503 * two mechanisms for issuing the zio: 2504 * 2505 * 1. Ideally, there will be more ZIL activity occurring 2506 * on the system, such that this function will be 2507 * immediately called again (not necessarily by the same 2508 * thread) and this lwb's zio will be issued via 2509 * zil_lwb_commit(). This way, the lwb is guaranteed to 2510 * be "full" when it is issued to disk, and we'll make 2511 * use of the lwb's size the best we can. 2512 * 2513 * 2. If there isn't sufficient ZIL activity occurring on 2514 * the system, such that this lwb's zio isn't issued via 2515 * zil_lwb_commit(), zil_commit_waiter() will issue the 2516 * lwb's zio. If this occurs, the lwb is not guaranteed 2517 * to be "full" by the time its zio is issued, and means 2518 * the size of the lwb was "too large" given the amount 2519 * of ZIL activity occurring on the system at that time. 2520 * 2521 * We do this for a couple of reasons: 2522 * 2523 * 1. To try and reduce the number of IOPs needed to 2524 * write the same number of itxs. If an lwb has space 2525 * available in its buffer for more itxs, and more itxs 2526 * will be committed relatively soon (relative to the 2527 * latency of performing a write), then it's beneficial 2528 * to wait for these "next" itxs. This way, more itxs 2529 * can be committed to stable storage with fewer writes. 2530 * 2531 * 2. To try and use the largest lwb block size that the 2532 * incoming rate of itxs can support. Again, this is to 2533 * try and pack as many itxs into as few lwbs as 2534 * possible, without significantly impacting the latency 2535 * of each individual itx. 2536 */ 2537 } 2538 } 2539 2540 /* 2541 * This function is responsible for ensuring the passed in commit waiter 2542 * (and associated commit itx) is committed to an lwb. If the waiter is 2543 * not already committed to an lwb, all itxs in the zilog's queue of 2544 * itxs will be processed. The assumption is the passed in waiter's 2545 * commit itx will found in the queue just like the other non-commit 2546 * itxs, such that when the entire queue is processed, the waiter will 2547 * have been committed to an lwb. 2548 * 2549 * The lwb associated with the passed in waiter is not guaranteed to 2550 * have been issued by the time this function completes. If the lwb is 2551 * not issued, we rely on future calls to zil_commit_writer() to issue 2552 * the lwb, or the timeout mechanism found in zil_commit_waiter(). 2553 */ 2554 static void 2555 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw) 2556 { 2557 ASSERT(!MUTEX_HELD(&zilog->zl_lock)); 2558 ASSERT(spa_writeable(zilog->zl_spa)); 2559 2560 mutex_enter(&zilog->zl_issuer_lock); 2561 2562 if (zcw->zcw_lwb != NULL || zcw->zcw_done) { 2563 /* 2564 * It's possible that, while we were waiting to acquire 2565 * the "zl_issuer_lock", another thread committed this 2566 * waiter to an lwb. If that occurs, we bail out early, 2567 * without processing any of the zilog's queue of itxs. 2568 * 2569 * On certain workloads and system configurations, the 2570 * "zl_issuer_lock" can become highly contended. In an 2571 * attempt to reduce this contention, we immediately drop 2572 * the lock if the waiter has already been processed. 2573 * 2574 * We've measured this optimization to reduce CPU spent 2575 * contending on this lock by up to 5%, using a system 2576 * with 32 CPUs, low latency storage (~50 usec writes), 2577 * and 1024 threads performing sync writes. 2578 */ 2579 goto out; 2580 } 2581 2582 ZIL_STAT_BUMP(zil_commit_writer_count); 2583 2584 zil_get_commit_list(zilog); 2585 zil_prune_commit_list(zilog); 2586 zil_process_commit_list(zilog); 2587 2588 out: 2589 mutex_exit(&zilog->zl_issuer_lock); 2590 } 2591 2592 static void 2593 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw) 2594 { 2595 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock)); 2596 ASSERT(MUTEX_HELD(&zcw->zcw_lock)); 2597 ASSERT3B(zcw->zcw_done, ==, B_FALSE); 2598 2599 lwb_t *lwb = zcw->zcw_lwb; 2600 ASSERT3P(lwb, !=, NULL); 2601 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED); 2602 2603 /* 2604 * If the lwb has already been issued by another thread, we can 2605 * immediately return since there's no work to be done (the 2606 * point of this function is to issue the lwb). Additionally, we 2607 * do this prior to acquiring the zl_issuer_lock, to avoid 2608 * acquiring it when it's not necessary to do so. 2609 */ 2610 if (lwb->lwb_state == LWB_STATE_ISSUED || 2611 lwb->lwb_state == LWB_STATE_WRITE_DONE || 2612 lwb->lwb_state == LWB_STATE_FLUSH_DONE) 2613 return; 2614 2615 /* 2616 * In order to call zil_lwb_write_issue() we must hold the 2617 * zilog's "zl_issuer_lock". We can't simply acquire that lock, 2618 * since we're already holding the commit waiter's "zcw_lock", 2619 * and those two locks are acquired in the opposite order 2620 * elsewhere. 2621 */ 2622 mutex_exit(&zcw->zcw_lock); 2623 mutex_enter(&zilog->zl_issuer_lock); 2624 mutex_enter(&zcw->zcw_lock); 2625 2626 /* 2627 * Since we just dropped and re-acquired the commit waiter's 2628 * lock, we have to re-check to see if the waiter was marked 2629 * "done" during that process. If the waiter was marked "done", 2630 * the "lwb" pointer is no longer valid (it can be free'd after 2631 * the waiter is marked "done"), so without this check we could 2632 * wind up with a use-after-free error below. 2633 */ 2634 if (zcw->zcw_done) 2635 goto out; 2636 2637 ASSERT3P(lwb, ==, zcw->zcw_lwb); 2638 2639 /* 2640 * We've already checked this above, but since we hadn't acquired 2641 * the zilog's zl_issuer_lock, we have to perform this check a 2642 * second time while holding the lock. 2643 * 2644 * We don't need to hold the zl_lock since the lwb cannot transition 2645 * from OPENED to ISSUED while we hold the zl_issuer_lock. The lwb 2646 * _can_ transition from ISSUED to DONE, but it's OK to race with 2647 * that transition since we treat the lwb the same, whether it's in 2648 * the ISSUED or DONE states. 2649 * 2650 * The important thing, is we treat the lwb differently depending on 2651 * if it's ISSUED or OPENED, and block any other threads that might 2652 * attempt to issue this lwb. For that reason we hold the 2653 * zl_issuer_lock when checking the lwb_state; we must not call 2654 * zil_lwb_write_issue() if the lwb had already been issued. 2655 * 2656 * See the comment above the lwb_state_t structure definition for 2657 * more details on the lwb states, and locking requirements. 2658 */ 2659 if (lwb->lwb_state == LWB_STATE_ISSUED || 2660 lwb->lwb_state == LWB_STATE_WRITE_DONE || 2661 lwb->lwb_state == LWB_STATE_FLUSH_DONE) 2662 goto out; 2663 2664 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED); 2665 2666 /* 2667 * As described in the comments above zil_commit_waiter() and 2668 * zil_process_commit_list(), we need to issue this lwb's zio 2669 * since we've reached the commit waiter's timeout and it still 2670 * hasn't been issued. 2671 */ 2672 lwb_t *nlwb = zil_lwb_write_issue(zilog, lwb); 2673 2674 IMPLY(nlwb != NULL, lwb->lwb_state != LWB_STATE_OPENED); 2675 2676 /* 2677 * Since the lwb's zio hadn't been issued by the time this thread 2678 * reached its timeout, we reset the zilog's "zl_cur_used" field 2679 * to influence the zil block size selection algorithm. 2680 * 2681 * By having to issue the lwb's zio here, it means the size of the 2682 * lwb was too large, given the incoming throughput of itxs. By 2683 * setting "zl_cur_used" to zero, we communicate this fact to the 2684 * block size selection algorithm, so it can take this information 2685 * into account, and potentially select a smaller size for the 2686 * next lwb block that is allocated. 2687 */ 2688 zilog->zl_cur_used = 0; 2689 2690 if (nlwb == NULL) { 2691 /* 2692 * When zil_lwb_write_issue() returns NULL, this 2693 * indicates zio_alloc_zil() failed to allocate the 2694 * "next" lwb on-disk. When this occurs, the ZIL write 2695 * pipeline must be stalled; see the comment within the 2696 * zil_commit_writer_stall() function for more details. 2697 * 2698 * We must drop the commit waiter's lock prior to 2699 * calling zil_commit_writer_stall() or else we can wind 2700 * up with the following deadlock: 2701 * 2702 * - This thread is waiting for the txg to sync while 2703 * holding the waiter's lock; txg_wait_synced() is 2704 * used within txg_commit_writer_stall(). 2705 * 2706 * - The txg can't sync because it is waiting for this 2707 * lwb's zio callback to call dmu_tx_commit(). 2708 * 2709 * - The lwb's zio callback can't call dmu_tx_commit() 2710 * because it's blocked trying to acquire the waiter's 2711 * lock, which occurs prior to calling dmu_tx_commit() 2712 */ 2713 mutex_exit(&zcw->zcw_lock); 2714 zil_commit_writer_stall(zilog); 2715 mutex_enter(&zcw->zcw_lock); 2716 } 2717 2718 out: 2719 mutex_exit(&zilog->zl_issuer_lock); 2720 ASSERT(MUTEX_HELD(&zcw->zcw_lock)); 2721 } 2722 2723 /* 2724 * This function is responsible for performing the following two tasks: 2725 * 2726 * 1. its primary responsibility is to block until the given "commit 2727 * waiter" is considered "done". 2728 * 2729 * 2. its secondary responsibility is to issue the zio for the lwb that 2730 * the given "commit waiter" is waiting on, if this function has 2731 * waited "long enough" and the lwb is still in the "open" state. 2732 * 2733 * Given a sufficient amount of itxs being generated and written using 2734 * the ZIL, the lwb's zio will be issued via the zil_lwb_commit() 2735 * function. If this does not occur, this secondary responsibility will 2736 * ensure the lwb is issued even if there is not other synchronous 2737 * activity on the system. 2738 * 2739 * For more details, see zil_process_commit_list(); more specifically, 2740 * the comment at the bottom of that function. 2741 */ 2742 static void 2743 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw) 2744 { 2745 ASSERT(!MUTEX_HELD(&zilog->zl_lock)); 2746 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock)); 2747 ASSERT(spa_writeable(zilog->zl_spa)); 2748 2749 mutex_enter(&zcw->zcw_lock); 2750 2751 /* 2752 * The timeout is scaled based on the lwb latency to avoid 2753 * significantly impacting the latency of each individual itx. 2754 * For more details, see the comment at the bottom of the 2755 * zil_process_commit_list() function. 2756 */ 2757 int pct = MAX(zfs_commit_timeout_pct, 1); 2758 hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100; 2759 hrtime_t wakeup = gethrtime() + sleep; 2760 boolean_t timedout = B_FALSE; 2761 2762 while (!zcw->zcw_done) { 2763 ASSERT(MUTEX_HELD(&zcw->zcw_lock)); 2764 2765 lwb_t *lwb = zcw->zcw_lwb; 2766 2767 /* 2768 * Usually, the waiter will have a non-NULL lwb field here, 2769 * but it's possible for it to be NULL as a result of 2770 * zil_commit() racing with spa_sync(). 2771 * 2772 * When zil_clean() is called, it's possible for the itxg 2773 * list (which may be cleaned via a taskq) to contain 2774 * commit itxs. When this occurs, the commit waiters linked 2775 * off of these commit itxs will not be committed to an 2776 * lwb. Additionally, these commit waiters will not be 2777 * marked done until zil_commit_waiter_skip() is called via 2778 * zil_itxg_clean(). 2779 * 2780 * Thus, it's possible for this commit waiter (i.e. the 2781 * "zcw" variable) to be found in this "in between" state; 2782 * where it's "zcw_lwb" field is NULL, and it hasn't yet 2783 * been skipped, so it's "zcw_done" field is still B_FALSE. 2784 */ 2785 IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED); 2786 2787 if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) { 2788 ASSERT3B(timedout, ==, B_FALSE); 2789 2790 /* 2791 * If the lwb hasn't been issued yet, then we 2792 * need to wait with a timeout, in case this 2793 * function needs to issue the lwb after the 2794 * timeout is reached; responsibility (2) from 2795 * the comment above this function. 2796 */ 2797 int rc = cv_timedwait_hires(&zcw->zcw_cv, 2798 &zcw->zcw_lock, wakeup, USEC2NSEC(1), 2799 CALLOUT_FLAG_ABSOLUTE); 2800 2801 if (rc != -1 || zcw->zcw_done) 2802 continue; 2803 2804 timedout = B_TRUE; 2805 zil_commit_waiter_timeout(zilog, zcw); 2806 2807 if (!zcw->zcw_done) { 2808 /* 2809 * If the commit waiter has already been 2810 * marked "done", it's possible for the 2811 * waiter's lwb structure to have already 2812 * been freed. Thus, we can only reliably 2813 * make these assertions if the waiter 2814 * isn't done. 2815 */ 2816 ASSERT3P(lwb, ==, zcw->zcw_lwb); 2817 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED); 2818 } 2819 } else { 2820 /* 2821 * If the lwb isn't open, then it must have already 2822 * been issued. In that case, there's no need to 2823 * use a timeout when waiting for the lwb to 2824 * complete. 2825 * 2826 * Additionally, if the lwb is NULL, the waiter 2827 * will soon be signaled and marked done via 2828 * zil_clean() and zil_itxg_clean(), so no timeout 2829 * is required. 2830 */ 2831 2832 IMPLY(lwb != NULL, 2833 lwb->lwb_state == LWB_STATE_ISSUED || 2834 lwb->lwb_state == LWB_STATE_WRITE_DONE || 2835 lwb->lwb_state == LWB_STATE_FLUSH_DONE); 2836 cv_wait(&zcw->zcw_cv, &zcw->zcw_lock); 2837 } 2838 } 2839 2840 mutex_exit(&zcw->zcw_lock); 2841 } 2842 2843 static zil_commit_waiter_t * 2844 zil_alloc_commit_waiter(void) 2845 { 2846 zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP); 2847 2848 cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL); 2849 mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL); 2850 list_link_init(&zcw->zcw_node); 2851 zcw->zcw_lwb = NULL; 2852 zcw->zcw_done = B_FALSE; 2853 zcw->zcw_zio_error = 0; 2854 2855 return (zcw); 2856 } 2857 2858 static void 2859 zil_free_commit_waiter(zil_commit_waiter_t *zcw) 2860 { 2861 ASSERT(!list_link_active(&zcw->zcw_node)); 2862 ASSERT3P(zcw->zcw_lwb, ==, NULL); 2863 ASSERT3B(zcw->zcw_done, ==, B_TRUE); 2864 mutex_destroy(&zcw->zcw_lock); 2865 cv_destroy(&zcw->zcw_cv); 2866 kmem_cache_free(zil_zcw_cache, zcw); 2867 } 2868 2869 /* 2870 * This function is used to create a TX_COMMIT itx and assign it. This 2871 * way, it will be linked into the ZIL's list of synchronous itxs, and 2872 * then later committed to an lwb (or skipped) when 2873 * zil_process_commit_list() is called. 2874 */ 2875 static void 2876 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw) 2877 { 2878 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os); 2879 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 2880 2881 itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t)); 2882 itx->itx_sync = B_TRUE; 2883 itx->itx_private = zcw; 2884 2885 zil_itx_assign(zilog, itx, tx); 2886 2887 dmu_tx_commit(tx); 2888 } 2889 2890 /* 2891 * Commit ZFS Intent Log transactions (itxs) to stable storage. 2892 * 2893 * When writing ZIL transactions to the on-disk representation of the 2894 * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple 2895 * itxs can be committed to a single lwb. Once a lwb is written and 2896 * committed to stable storage (i.e. the lwb is written, and vdevs have 2897 * been flushed), each itx that was committed to that lwb is also 2898 * considered to be committed to stable storage. 2899 * 2900 * When an itx is committed to an lwb, the log record (lr_t) contained 2901 * by the itx is copied into the lwb's zio buffer, and once this buffer 2902 * is written to disk, it becomes an on-disk ZIL block. 2903 * 2904 * As itxs are generated, they're inserted into the ZIL's queue of 2905 * uncommitted itxs. The semantics of zil_commit() are such that it will 2906 * block until all itxs that were in the queue when it was called, are 2907 * committed to stable storage. 2908 * 2909 * If "foid" is zero, this means all "synchronous" and "asynchronous" 2910 * itxs, for all objects in the dataset, will be committed to stable 2911 * storage prior to zil_commit() returning. If "foid" is non-zero, all 2912 * "synchronous" itxs for all objects, but only "asynchronous" itxs 2913 * that correspond to the foid passed in, will be committed to stable 2914 * storage prior to zil_commit() returning. 2915 * 2916 * Generally speaking, when zil_commit() is called, the consumer doesn't 2917 * actually care about _all_ of the uncommitted itxs. Instead, they're 2918 * simply trying to waiting for a specific itx to be committed to disk, 2919 * but the interface(s) for interacting with the ZIL don't allow such 2920 * fine-grained communication. A better interface would allow a consumer 2921 * to create and assign an itx, and then pass a reference to this itx to 2922 * zil_commit(); such that zil_commit() would return as soon as that 2923 * specific itx was committed to disk (instead of waiting for _all_ 2924 * itxs to be committed). 2925 * 2926 * When a thread calls zil_commit() a special "commit itx" will be 2927 * generated, along with a corresponding "waiter" for this commit itx. 2928 * zil_commit() will wait on this waiter's CV, such that when the waiter 2929 * is marked done, and signaled, zil_commit() will return. 2930 * 2931 * This commit itx is inserted into the queue of uncommitted itxs. This 2932 * provides an easy mechanism for determining which itxs were in the 2933 * queue prior to zil_commit() having been called, and which itxs were 2934 * added after zil_commit() was called. 2935 * 2936 * The commit it is special; it doesn't have any on-disk representation. 2937 * When a commit itx is "committed" to an lwb, the waiter associated 2938 * with it is linked onto the lwb's list of waiters. Then, when that lwb 2939 * completes, each waiter on the lwb's list is marked done and signaled 2940 * -- allowing the thread waiting on the waiter to return from zil_commit(). 2941 * 2942 * It's important to point out a few critical factors that allow us 2943 * to make use of the commit itxs, commit waiters, per-lwb lists of 2944 * commit waiters, and zio completion callbacks like we're doing: 2945 * 2946 * 1. The list of waiters for each lwb is traversed, and each commit 2947 * waiter is marked "done" and signaled, in the zio completion 2948 * callback of the lwb's zio[*]. 2949 * 2950 * * Actually, the waiters are signaled in the zio completion 2951 * callback of the root zio for the DKIOCFLUSHWRITECACHE commands 2952 * that are sent to the vdevs upon completion of the lwb zio. 2953 * 2954 * 2. When the itxs are inserted into the ZIL's queue of uncommitted 2955 * itxs, the order in which they are inserted is preserved[*]; as 2956 * itxs are added to the queue, they are added to the tail of 2957 * in-memory linked lists. 2958 * 2959 * When committing the itxs to lwbs (to be written to disk), they 2960 * are committed in the same order in which the itxs were added to 2961 * the uncommitted queue's linked list(s); i.e. the linked list of 2962 * itxs to commit is traversed from head to tail, and each itx is 2963 * committed to an lwb in that order. 2964 * 2965 * * To clarify: 2966 * 2967 * - the order of "sync" itxs is preserved w.r.t. other 2968 * "sync" itxs, regardless of the corresponding objects. 2969 * - the order of "async" itxs is preserved w.r.t. other 2970 * "async" itxs corresponding to the same object. 2971 * - the order of "async" itxs is *not* preserved w.r.t. other 2972 * "async" itxs corresponding to different objects. 2973 * - the order of "sync" itxs w.r.t. "async" itxs (or vice 2974 * versa) is *not* preserved, even for itxs that correspond 2975 * to the same object. 2976 * 2977 * For more details, see: zil_itx_assign(), zil_async_to_sync(), 2978 * zil_get_commit_list(), and zil_process_commit_list(). 2979 * 2980 * 3. The lwbs represent a linked list of blocks on disk. Thus, any 2981 * lwb cannot be considered committed to stable storage, until its 2982 * "previous" lwb is also committed to stable storage. This fact, 2983 * coupled with the fact described above, means that itxs are 2984 * committed in (roughly) the order in which they were generated. 2985 * This is essential because itxs are dependent on prior itxs. 2986 * Thus, we *must not* deem an itx as being committed to stable 2987 * storage, until *all* prior itxs have also been committed to 2988 * stable storage. 2989 * 2990 * To enforce this ordering of lwb zio's, while still leveraging as 2991 * much of the underlying storage performance as possible, we rely 2992 * on two fundamental concepts: 2993 * 2994 * 1. The creation and issuance of lwb zio's is protected by 2995 * the zilog's "zl_issuer_lock", which ensures only a single 2996 * thread is creating and/or issuing lwb's at a time 2997 * 2. The "previous" lwb is a child of the "current" lwb 2998 * (leveraging the zio parent-child dependency graph) 2999 * 3000 * By relying on this parent-child zio relationship, we can have 3001 * many lwb zio's concurrently issued to the underlying storage, 3002 * but the order in which they complete will be the same order in 3003 * which they were created. 3004 */ 3005 void 3006 zil_commit(zilog_t *zilog, uint64_t foid) 3007 { 3008 /* 3009 * We should never attempt to call zil_commit on a snapshot for 3010 * a couple of reasons: 3011 * 3012 * 1. A snapshot may never be modified, thus it cannot have any 3013 * in-flight itxs that would have modified the dataset. 3014 * 3015 * 2. By design, when zil_commit() is called, a commit itx will 3016 * be assigned to this zilog; as a result, the zilog will be 3017 * dirtied. We must not dirty the zilog of a snapshot; there's 3018 * checks in the code that enforce this invariant, and will 3019 * cause a panic if it's not upheld. 3020 */ 3021 ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE); 3022 3023 if (zilog->zl_sync == ZFS_SYNC_DISABLED) 3024 return; 3025 3026 if (!spa_writeable(zilog->zl_spa)) { 3027 /* 3028 * If the SPA is not writable, there should never be any 3029 * pending itxs waiting to be committed to disk. If that 3030 * weren't true, we'd skip writing those itxs out, and 3031 * would break the semantics of zil_commit(); thus, we're 3032 * verifying that truth before we return to the caller. 3033 */ 3034 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3035 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL); 3036 for (int i = 0; i < TXG_SIZE; i++) 3037 ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL); 3038 return; 3039 } 3040 3041 /* 3042 * If the ZIL is suspended, we don't want to dirty it by calling 3043 * zil_commit_itx_assign() below, nor can we write out 3044 * lwbs like would be done in zil_commit_write(). Thus, we 3045 * simply rely on txg_wait_synced() to maintain the necessary 3046 * semantics, and avoid calling those functions altogether. 3047 */ 3048 if (zilog->zl_suspend > 0) { 3049 txg_wait_synced(zilog->zl_dmu_pool, 0); 3050 return; 3051 } 3052 3053 zil_commit_impl(zilog, foid); 3054 } 3055 3056 void 3057 zil_commit_impl(zilog_t *zilog, uint64_t foid) 3058 { 3059 ZIL_STAT_BUMP(zil_commit_count); 3060 3061 /* 3062 * Move the "async" itxs for the specified foid to the "sync" 3063 * queues, such that they will be later committed (or skipped) 3064 * to an lwb when zil_process_commit_list() is called. 3065 * 3066 * Since these "async" itxs must be committed prior to this 3067 * call to zil_commit returning, we must perform this operation 3068 * before we call zil_commit_itx_assign(). 3069 */ 3070 zil_async_to_sync(zilog, foid); 3071 3072 /* 3073 * We allocate a new "waiter" structure which will initially be 3074 * linked to the commit itx using the itx's "itx_private" field. 3075 * Since the commit itx doesn't represent any on-disk state, 3076 * when it's committed to an lwb, rather than copying the its 3077 * lr_t into the lwb's buffer, the commit itx's "waiter" will be 3078 * added to the lwb's list of waiters. Then, when the lwb is 3079 * committed to stable storage, each waiter in the lwb's list of 3080 * waiters will be marked "done", and signalled. 3081 * 3082 * We must create the waiter and assign the commit itx prior to 3083 * calling zil_commit_writer(), or else our specific commit itx 3084 * is not guaranteed to be committed to an lwb prior to calling 3085 * zil_commit_waiter(). 3086 */ 3087 zil_commit_waiter_t *zcw = zil_alloc_commit_waiter(); 3088 zil_commit_itx_assign(zilog, zcw); 3089 3090 zil_commit_writer(zilog, zcw); 3091 zil_commit_waiter(zilog, zcw); 3092 3093 if (zcw->zcw_zio_error != 0) { 3094 /* 3095 * If there was an error writing out the ZIL blocks that 3096 * this thread is waiting on, then we fallback to 3097 * relying on spa_sync() to write out the data this 3098 * thread is waiting on. Obviously this has performance 3099 * implications, but the expectation is for this to be 3100 * an exceptional case, and shouldn't occur often. 3101 */ 3102 DTRACE_PROBE2(zil__commit__io__error, 3103 zilog_t *, zilog, zil_commit_waiter_t *, zcw); 3104 txg_wait_synced(zilog->zl_dmu_pool, 0); 3105 } 3106 3107 zil_free_commit_waiter(zcw); 3108 } 3109 3110 /* 3111 * Called in syncing context to free committed log blocks and update log header. 3112 */ 3113 void 3114 zil_sync(zilog_t *zilog, dmu_tx_t *tx) 3115 { 3116 zil_header_t *zh = zil_header_in_syncing_context(zilog); 3117 uint64_t txg = dmu_tx_get_txg(tx); 3118 spa_t *spa = zilog->zl_spa; 3119 uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK]; 3120 lwb_t *lwb; 3121 3122 /* 3123 * We don't zero out zl_destroy_txg, so make sure we don't try 3124 * to destroy it twice. 3125 */ 3126 if (spa_sync_pass(spa) != 1) 3127 return; 3128 3129 mutex_enter(&zilog->zl_lock); 3130 3131 ASSERT(zilog->zl_stop_sync == 0); 3132 3133 if (*replayed_seq != 0) { 3134 ASSERT(zh->zh_replay_seq < *replayed_seq); 3135 zh->zh_replay_seq = *replayed_seq; 3136 *replayed_seq = 0; 3137 } 3138 3139 if (zilog->zl_destroy_txg == txg) { 3140 blkptr_t blk = zh->zh_log; 3141 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 3142 3143 ASSERT(list_head(&zilog->zl_lwb_list) == NULL); 3144 3145 bzero(zh, sizeof (zil_header_t)); 3146 bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq)); 3147 3148 if (zilog->zl_keep_first) { 3149 /* 3150 * If this block was part of log chain that couldn't 3151 * be claimed because a device was missing during 3152 * zil_claim(), but that device later returns, 3153 * then this block could erroneously appear valid. 3154 * To guard against this, assign a new GUID to the new 3155 * log chain so it doesn't matter what blk points to. 3156 */ 3157 zil_init_log_chain(zilog, &blk); 3158 zh->zh_log = blk; 3159 } else { 3160 /* 3161 * A destroyed ZIL chain can't contain any TX_SETSAXATTR 3162 * records. So, deactivate the feature for this dataset. 3163 * We activate it again when we start a new ZIL chain. 3164 */ 3165 if (dsl_dataset_feature_is_active(ds, 3166 SPA_FEATURE_ZILSAXATTR)) 3167 dsl_dataset_deactivate_feature(ds, 3168 SPA_FEATURE_ZILSAXATTR, tx); 3169 } 3170 } 3171 3172 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 3173 zh->zh_log = lwb->lwb_blk; 3174 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg) 3175 break; 3176 list_remove(&zilog->zl_lwb_list, lwb); 3177 zio_free(spa, txg, &lwb->lwb_blk); 3178 zil_free_lwb(zilog, lwb); 3179 3180 /* 3181 * If we don't have anything left in the lwb list then 3182 * we've had an allocation failure and we need to zero 3183 * out the zil_header blkptr so that we don't end 3184 * up freeing the same block twice. 3185 */ 3186 if (list_head(&zilog->zl_lwb_list) == NULL) 3187 BP_ZERO(&zh->zh_log); 3188 } 3189 3190 /* 3191 * Remove fastwrite on any blocks that have been pre-allocated for 3192 * the next commit. This prevents fastwrite counter pollution by 3193 * unused, long-lived LWBs. 3194 */ 3195 for (; lwb != NULL; lwb = list_next(&zilog->zl_lwb_list, lwb)) { 3196 if (lwb->lwb_fastwrite && !lwb->lwb_write_zio) { 3197 metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk); 3198 lwb->lwb_fastwrite = 0; 3199 } 3200 } 3201 3202 mutex_exit(&zilog->zl_lock); 3203 } 3204 3205 static int 3206 zil_lwb_cons(void *vbuf, void *unused, int kmflag) 3207 { 3208 (void) unused, (void) kmflag; 3209 lwb_t *lwb = vbuf; 3210 list_create(&lwb->lwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node)); 3211 list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t), 3212 offsetof(zil_commit_waiter_t, zcw_node)); 3213 avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare, 3214 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node)); 3215 mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL); 3216 return (0); 3217 } 3218 3219 static void 3220 zil_lwb_dest(void *vbuf, void *unused) 3221 { 3222 (void) unused; 3223 lwb_t *lwb = vbuf; 3224 mutex_destroy(&lwb->lwb_vdev_lock); 3225 avl_destroy(&lwb->lwb_vdev_tree); 3226 list_destroy(&lwb->lwb_waiters); 3227 list_destroy(&lwb->lwb_itxs); 3228 } 3229 3230 void 3231 zil_init(void) 3232 { 3233 zil_lwb_cache = kmem_cache_create("zil_lwb_cache", 3234 sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0); 3235 3236 zil_zcw_cache = kmem_cache_create("zil_zcw_cache", 3237 sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 3238 3239 zil_ksp = kstat_create("zfs", 0, "zil", "misc", 3240 KSTAT_TYPE_NAMED, sizeof (zil_stats) / sizeof (kstat_named_t), 3241 KSTAT_FLAG_VIRTUAL); 3242 3243 if (zil_ksp != NULL) { 3244 zil_ksp->ks_data = &zil_stats; 3245 kstat_install(zil_ksp); 3246 } 3247 } 3248 3249 void 3250 zil_fini(void) 3251 { 3252 kmem_cache_destroy(zil_zcw_cache); 3253 kmem_cache_destroy(zil_lwb_cache); 3254 3255 if (zil_ksp != NULL) { 3256 kstat_delete(zil_ksp); 3257 zil_ksp = NULL; 3258 } 3259 } 3260 3261 void 3262 zil_set_sync(zilog_t *zilog, uint64_t sync) 3263 { 3264 zilog->zl_sync = sync; 3265 } 3266 3267 void 3268 zil_set_logbias(zilog_t *zilog, uint64_t logbias) 3269 { 3270 zilog->zl_logbias = logbias; 3271 } 3272 3273 zilog_t * 3274 zil_alloc(objset_t *os, zil_header_t *zh_phys) 3275 { 3276 zilog_t *zilog; 3277 3278 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP); 3279 3280 zilog->zl_header = zh_phys; 3281 zilog->zl_os = os; 3282 zilog->zl_spa = dmu_objset_spa(os); 3283 zilog->zl_dmu_pool = dmu_objset_pool(os); 3284 zilog->zl_destroy_txg = TXG_INITIAL - 1; 3285 zilog->zl_logbias = dmu_objset_logbias(os); 3286 zilog->zl_sync = dmu_objset_syncprop(os); 3287 zilog->zl_dirty_max_txg = 0; 3288 zilog->zl_last_lwb_opened = NULL; 3289 zilog->zl_last_lwb_latency = 0; 3290 zilog->zl_max_block_size = zil_maxblocksize; 3291 3292 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL); 3293 mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL); 3294 3295 for (int i = 0; i < TXG_SIZE; i++) { 3296 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL, 3297 MUTEX_DEFAULT, NULL); 3298 } 3299 3300 list_create(&zilog->zl_lwb_list, sizeof (lwb_t), 3301 offsetof(lwb_t, lwb_node)); 3302 3303 list_create(&zilog->zl_itx_commit_list, sizeof (itx_t), 3304 offsetof(itx_t, itx_node)); 3305 3306 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL); 3307 3308 return (zilog); 3309 } 3310 3311 void 3312 zil_free(zilog_t *zilog) 3313 { 3314 int i; 3315 3316 zilog->zl_stop_sync = 1; 3317 3318 ASSERT0(zilog->zl_suspend); 3319 ASSERT0(zilog->zl_suspending); 3320 3321 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3322 list_destroy(&zilog->zl_lwb_list); 3323 3324 ASSERT(list_is_empty(&zilog->zl_itx_commit_list)); 3325 list_destroy(&zilog->zl_itx_commit_list); 3326 3327 for (i = 0; i < TXG_SIZE; i++) { 3328 /* 3329 * It's possible for an itx to be generated that doesn't dirty 3330 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean() 3331 * callback to remove the entry. We remove those here. 3332 * 3333 * Also free up the ziltest itxs. 3334 */ 3335 if (zilog->zl_itxg[i].itxg_itxs) 3336 zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs); 3337 mutex_destroy(&zilog->zl_itxg[i].itxg_lock); 3338 } 3339 3340 mutex_destroy(&zilog->zl_issuer_lock); 3341 mutex_destroy(&zilog->zl_lock); 3342 3343 cv_destroy(&zilog->zl_cv_suspend); 3344 3345 kmem_free(zilog, sizeof (zilog_t)); 3346 } 3347 3348 /* 3349 * Open an intent log. 3350 */ 3351 zilog_t * 3352 zil_open(objset_t *os, zil_get_data_t *get_data) 3353 { 3354 zilog_t *zilog = dmu_objset_zil(os); 3355 3356 ASSERT3P(zilog->zl_get_data, ==, NULL); 3357 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL); 3358 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3359 3360 zilog->zl_get_data = get_data; 3361 3362 return (zilog); 3363 } 3364 3365 /* 3366 * Close an intent log. 3367 */ 3368 void 3369 zil_close(zilog_t *zilog) 3370 { 3371 lwb_t *lwb; 3372 uint64_t txg; 3373 3374 if (!dmu_objset_is_snapshot(zilog->zl_os)) { 3375 zil_commit(zilog, 0); 3376 } else { 3377 ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL); 3378 ASSERT0(zilog->zl_dirty_max_txg); 3379 ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE); 3380 } 3381 3382 mutex_enter(&zilog->zl_lock); 3383 lwb = list_tail(&zilog->zl_lwb_list); 3384 if (lwb == NULL) 3385 txg = zilog->zl_dirty_max_txg; 3386 else 3387 txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg); 3388 mutex_exit(&zilog->zl_lock); 3389 3390 /* 3391 * We need to use txg_wait_synced() to wait long enough for the 3392 * ZIL to be clean, and to wait for all pending lwbs to be 3393 * written out. 3394 */ 3395 if (txg != 0) 3396 txg_wait_synced(zilog->zl_dmu_pool, txg); 3397 3398 if (zilog_is_dirty(zilog)) 3399 zfs_dbgmsg("zil (%px) is dirty, txg %llu", zilog, 3400 (u_longlong_t)txg); 3401 if (txg < spa_freeze_txg(zilog->zl_spa)) 3402 VERIFY(!zilog_is_dirty(zilog)); 3403 3404 zilog->zl_get_data = NULL; 3405 3406 /* 3407 * We should have only one lwb left on the list; remove it now. 3408 */ 3409 mutex_enter(&zilog->zl_lock); 3410 lwb = list_head(&zilog->zl_lwb_list); 3411 if (lwb != NULL) { 3412 ASSERT3P(lwb, ==, list_tail(&zilog->zl_lwb_list)); 3413 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED); 3414 3415 if (lwb->lwb_fastwrite) 3416 metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk); 3417 3418 list_remove(&zilog->zl_lwb_list, lwb); 3419 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 3420 zil_free_lwb(zilog, lwb); 3421 } 3422 mutex_exit(&zilog->zl_lock); 3423 } 3424 3425 static char *suspend_tag = "zil suspending"; 3426 3427 /* 3428 * Suspend an intent log. While in suspended mode, we still honor 3429 * synchronous semantics, but we rely on txg_wait_synced() to do it. 3430 * On old version pools, we suspend the log briefly when taking a 3431 * snapshot so that it will have an empty intent log. 3432 * 3433 * Long holds are not really intended to be used the way we do here -- 3434 * held for such a short time. A concurrent caller of dsl_dataset_long_held() 3435 * could fail. Therefore we take pains to only put a long hold if it is 3436 * actually necessary. Fortunately, it will only be necessary if the 3437 * objset is currently mounted (or the ZVOL equivalent). In that case it 3438 * will already have a long hold, so we are not really making things any worse. 3439 * 3440 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or 3441 * zvol_state_t), and use their mechanism to prevent their hold from being 3442 * dropped (e.g. VFS_HOLD()). However, that would be even more pain for 3443 * very little gain. 3444 * 3445 * if cookiep == NULL, this does both the suspend & resume. 3446 * Otherwise, it returns with the dataset "long held", and the cookie 3447 * should be passed into zil_resume(). 3448 */ 3449 int 3450 zil_suspend(const char *osname, void **cookiep) 3451 { 3452 objset_t *os; 3453 zilog_t *zilog; 3454 const zil_header_t *zh; 3455 int error; 3456 3457 error = dmu_objset_hold(osname, suspend_tag, &os); 3458 if (error != 0) 3459 return (error); 3460 zilog = dmu_objset_zil(os); 3461 3462 mutex_enter(&zilog->zl_lock); 3463 zh = zilog->zl_header; 3464 3465 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */ 3466 mutex_exit(&zilog->zl_lock); 3467 dmu_objset_rele(os, suspend_tag); 3468 return (SET_ERROR(EBUSY)); 3469 } 3470 3471 /* 3472 * Don't put a long hold in the cases where we can avoid it. This 3473 * is when there is no cookie so we are doing a suspend & resume 3474 * (i.e. called from zil_vdev_offline()), and there's nothing to do 3475 * for the suspend because it's already suspended, or there's no ZIL. 3476 */ 3477 if (cookiep == NULL && !zilog->zl_suspending && 3478 (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) { 3479 mutex_exit(&zilog->zl_lock); 3480 dmu_objset_rele(os, suspend_tag); 3481 return (0); 3482 } 3483 3484 dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag); 3485 dsl_pool_rele(dmu_objset_pool(os), suspend_tag); 3486 3487 zilog->zl_suspend++; 3488 3489 if (zilog->zl_suspend > 1) { 3490 /* 3491 * Someone else is already suspending it. 3492 * Just wait for them to finish. 3493 */ 3494 3495 while (zilog->zl_suspending) 3496 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock); 3497 mutex_exit(&zilog->zl_lock); 3498 3499 if (cookiep == NULL) 3500 zil_resume(os); 3501 else 3502 *cookiep = os; 3503 return (0); 3504 } 3505 3506 /* 3507 * If there is no pointer to an on-disk block, this ZIL must not 3508 * be active (e.g. filesystem not mounted), so there's nothing 3509 * to clean up. 3510 */ 3511 if (BP_IS_HOLE(&zh->zh_log)) { 3512 ASSERT(cookiep != NULL); /* fast path already handled */ 3513 3514 *cookiep = os; 3515 mutex_exit(&zilog->zl_lock); 3516 return (0); 3517 } 3518 3519 /* 3520 * The ZIL has work to do. Ensure that the associated encryption 3521 * key will remain mapped while we are committing the log by 3522 * grabbing a reference to it. If the key isn't loaded we have no 3523 * choice but to return an error until the wrapping key is loaded. 3524 */ 3525 if (os->os_encrypted && 3526 dsl_dataset_create_key_mapping(dmu_objset_ds(os)) != 0) { 3527 zilog->zl_suspend--; 3528 mutex_exit(&zilog->zl_lock); 3529 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag); 3530 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag); 3531 return (SET_ERROR(EACCES)); 3532 } 3533 3534 zilog->zl_suspending = B_TRUE; 3535 mutex_exit(&zilog->zl_lock); 3536 3537 /* 3538 * We need to use zil_commit_impl to ensure we wait for all 3539 * LWB_STATE_OPENED and LWB_STATE_ISSUED lwbs to be committed 3540 * to disk before proceeding. If we used zil_commit instead, it 3541 * would just call txg_wait_synced(), because zl_suspend is set. 3542 * txg_wait_synced() doesn't wait for these lwb's to be 3543 * LWB_STATE_FLUSH_DONE before returning. 3544 */ 3545 zil_commit_impl(zilog, 0); 3546 3547 /* 3548 * Now that we've ensured all lwb's are LWB_STATE_FLUSH_DONE, we 3549 * use txg_wait_synced() to ensure the data from the zilog has 3550 * migrated to the main pool before calling zil_destroy(). 3551 */ 3552 txg_wait_synced(zilog->zl_dmu_pool, 0); 3553 3554 zil_destroy(zilog, B_FALSE); 3555 3556 mutex_enter(&zilog->zl_lock); 3557 zilog->zl_suspending = B_FALSE; 3558 cv_broadcast(&zilog->zl_cv_suspend); 3559 mutex_exit(&zilog->zl_lock); 3560 3561 if (os->os_encrypted) 3562 dsl_dataset_remove_key_mapping(dmu_objset_ds(os)); 3563 3564 if (cookiep == NULL) 3565 zil_resume(os); 3566 else 3567 *cookiep = os; 3568 return (0); 3569 } 3570 3571 void 3572 zil_resume(void *cookie) 3573 { 3574 objset_t *os = cookie; 3575 zilog_t *zilog = dmu_objset_zil(os); 3576 3577 mutex_enter(&zilog->zl_lock); 3578 ASSERT(zilog->zl_suspend != 0); 3579 zilog->zl_suspend--; 3580 mutex_exit(&zilog->zl_lock); 3581 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag); 3582 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag); 3583 } 3584 3585 typedef struct zil_replay_arg { 3586 zil_replay_func_t *const *zr_replay; 3587 void *zr_arg; 3588 boolean_t zr_byteswap; 3589 char *zr_lr; 3590 } zil_replay_arg_t; 3591 3592 static int 3593 zil_replay_error(zilog_t *zilog, const lr_t *lr, int error) 3594 { 3595 char name[ZFS_MAX_DATASET_NAME_LEN]; 3596 3597 zilog->zl_replaying_seq--; /* didn't actually replay this one */ 3598 3599 dmu_objset_name(zilog->zl_os, name); 3600 3601 cmn_err(CE_WARN, "ZFS replay transaction error %d, " 3602 "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name, 3603 (u_longlong_t)lr->lrc_seq, 3604 (u_longlong_t)(lr->lrc_txtype & ~TX_CI), 3605 (lr->lrc_txtype & TX_CI) ? "CI" : ""); 3606 3607 return (error); 3608 } 3609 3610 static int 3611 zil_replay_log_record(zilog_t *zilog, const lr_t *lr, void *zra, 3612 uint64_t claim_txg) 3613 { 3614 zil_replay_arg_t *zr = zra; 3615 const zil_header_t *zh = zilog->zl_header; 3616 uint64_t reclen = lr->lrc_reclen; 3617 uint64_t txtype = lr->lrc_txtype; 3618 int error = 0; 3619 3620 zilog->zl_replaying_seq = lr->lrc_seq; 3621 3622 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */ 3623 return (0); 3624 3625 if (lr->lrc_txg < claim_txg) /* already committed */ 3626 return (0); 3627 3628 /* Strip case-insensitive bit, still present in log record */ 3629 txtype &= ~TX_CI; 3630 3631 if (txtype == 0 || txtype >= TX_MAX_TYPE) 3632 return (zil_replay_error(zilog, lr, EINVAL)); 3633 3634 /* 3635 * If this record type can be logged out of order, the object 3636 * (lr_foid) may no longer exist. That's legitimate, not an error. 3637 */ 3638 if (TX_OOO(txtype)) { 3639 error = dmu_object_info(zilog->zl_os, 3640 LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL); 3641 if (error == ENOENT || error == EEXIST) 3642 return (0); 3643 } 3644 3645 /* 3646 * Make a copy of the data so we can revise and extend it. 3647 */ 3648 bcopy(lr, zr->zr_lr, reclen); 3649 3650 /* 3651 * If this is a TX_WRITE with a blkptr, suck in the data. 3652 */ 3653 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) { 3654 error = zil_read_log_data(zilog, (lr_write_t *)lr, 3655 zr->zr_lr + reclen); 3656 if (error != 0) 3657 return (zil_replay_error(zilog, lr, error)); 3658 } 3659 3660 /* 3661 * The log block containing this lr may have been byteswapped 3662 * so that we can easily examine common fields like lrc_txtype. 3663 * However, the log is a mix of different record types, and only the 3664 * replay vectors know how to byteswap their records. Therefore, if 3665 * the lr was byteswapped, undo it before invoking the replay vector. 3666 */ 3667 if (zr->zr_byteswap) 3668 byteswap_uint64_array(zr->zr_lr, reclen); 3669 3670 /* 3671 * We must now do two things atomically: replay this log record, 3672 * and update the log header sequence number to reflect the fact that 3673 * we did so. At the end of each replay function the sequence number 3674 * is updated if we are in replay mode. 3675 */ 3676 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap); 3677 if (error != 0) { 3678 /* 3679 * The DMU's dnode layer doesn't see removes until the txg 3680 * commits, so a subsequent claim can spuriously fail with 3681 * EEXIST. So if we receive any error we try syncing out 3682 * any removes then retry the transaction. Note that we 3683 * specify B_FALSE for byteswap now, so we don't do it twice. 3684 */ 3685 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0); 3686 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE); 3687 if (error != 0) 3688 return (zil_replay_error(zilog, lr, error)); 3689 } 3690 return (0); 3691 } 3692 3693 static int 3694 zil_incr_blks(zilog_t *zilog, const blkptr_t *bp, void *arg, uint64_t claim_txg) 3695 { 3696 (void) bp, (void) arg, (void) claim_txg; 3697 3698 zilog->zl_replay_blks++; 3699 3700 return (0); 3701 } 3702 3703 /* 3704 * If this dataset has a non-empty intent log, replay it and destroy it. 3705 */ 3706 void 3707 zil_replay(objset_t *os, void *arg, 3708 zil_replay_func_t *const replay_func[TX_MAX_TYPE]) 3709 { 3710 zilog_t *zilog = dmu_objset_zil(os); 3711 const zil_header_t *zh = zilog->zl_header; 3712 zil_replay_arg_t zr; 3713 3714 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) { 3715 zil_destroy(zilog, B_TRUE); 3716 return; 3717 } 3718 3719 zr.zr_replay = replay_func; 3720 zr.zr_arg = arg; 3721 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log); 3722 zr.zr_lr = vmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP); 3723 3724 /* 3725 * Wait for in-progress removes to sync before starting replay. 3726 */ 3727 txg_wait_synced(zilog->zl_dmu_pool, 0); 3728 3729 zilog->zl_replay = B_TRUE; 3730 zilog->zl_replay_time = ddi_get_lbolt(); 3731 ASSERT(zilog->zl_replay_blks == 0); 3732 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr, 3733 zh->zh_claim_txg, B_TRUE); 3734 vmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE); 3735 3736 zil_destroy(zilog, B_FALSE); 3737 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 3738 zilog->zl_replay = B_FALSE; 3739 } 3740 3741 boolean_t 3742 zil_replaying(zilog_t *zilog, dmu_tx_t *tx) 3743 { 3744 if (zilog->zl_sync == ZFS_SYNC_DISABLED) 3745 return (B_TRUE); 3746 3747 if (zilog->zl_replay) { 3748 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 3749 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] = 3750 zilog->zl_replaying_seq; 3751 return (B_TRUE); 3752 } 3753 3754 return (B_FALSE); 3755 } 3756 3757 int 3758 zil_reset(const char *osname, void *arg) 3759 { 3760 (void) arg; 3761 3762 int error = zil_suspend(osname, NULL); 3763 /* EACCES means crypto key not loaded */ 3764 if ((error == EACCES) || (error == EBUSY)) 3765 return (SET_ERROR(error)); 3766 if (error != 0) 3767 return (SET_ERROR(EEXIST)); 3768 return (0); 3769 } 3770 3771 EXPORT_SYMBOL(zil_alloc); 3772 EXPORT_SYMBOL(zil_free); 3773 EXPORT_SYMBOL(zil_open); 3774 EXPORT_SYMBOL(zil_close); 3775 EXPORT_SYMBOL(zil_replay); 3776 EXPORT_SYMBOL(zil_replaying); 3777 EXPORT_SYMBOL(zil_destroy); 3778 EXPORT_SYMBOL(zil_destroy_sync); 3779 EXPORT_SYMBOL(zil_itx_create); 3780 EXPORT_SYMBOL(zil_itx_destroy); 3781 EXPORT_SYMBOL(zil_itx_assign); 3782 EXPORT_SYMBOL(zil_commit); 3783 EXPORT_SYMBOL(zil_claim); 3784 EXPORT_SYMBOL(zil_check_log_chain); 3785 EXPORT_SYMBOL(zil_sync); 3786 EXPORT_SYMBOL(zil_clean); 3787 EXPORT_SYMBOL(zil_suspend); 3788 EXPORT_SYMBOL(zil_resume); 3789 EXPORT_SYMBOL(zil_lwb_add_block); 3790 EXPORT_SYMBOL(zil_bp_tree_add); 3791 EXPORT_SYMBOL(zil_set_sync); 3792 EXPORT_SYMBOL(zil_set_logbias); 3793 3794 ZFS_MODULE_PARAM(zfs, zfs_, commit_timeout_pct, INT, ZMOD_RW, 3795 "ZIL block open timeout percentage"); 3796 3797 ZFS_MODULE_PARAM(zfs_zil, zil_, replay_disable, INT, ZMOD_RW, 3798 "Disable intent logging replay"); 3799 3800 ZFS_MODULE_PARAM(zfs_zil, zil_, nocacheflush, INT, ZMOD_RW, 3801 "Disable ZIL cache flushes"); 3802 3803 ZFS_MODULE_PARAM(zfs_zil, zil_, slog_bulk, ULONG, ZMOD_RW, 3804 "Limit in bytes slog sync writes per commit"); 3805 3806 ZFS_MODULE_PARAM(zfs_zil, zil_, maxblocksize, INT, ZMOD_RW, 3807 "Limit in bytes of ZIL log block size"); 3808