xref: /freebsd/sys/contrib/openzfs/module/zfs/zil.c (revision 82c57e2a75c7134b70eb2138ff6bbc6e55bef130)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24  * Copyright (c) 2014 Integros [integros.com]
25  * Copyright (c) 2018 Datto Inc.
26  */
27 
28 /* Portions Copyright 2010 Robert Milkowski */
29 
30 #include <sys/zfs_context.h>
31 #include <sys/spa.h>
32 #include <sys/spa_impl.h>
33 #include <sys/dmu.h>
34 #include <sys/zap.h>
35 #include <sys/arc.h>
36 #include <sys/stat.h>
37 #include <sys/zil.h>
38 #include <sys/zil_impl.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/vdev_impl.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/dsl_pool.h>
43 #include <sys/metaslab.h>
44 #include <sys/trace_zfs.h>
45 #include <sys/abd.h>
46 #include <sys/brt.h>
47 #include <sys/wmsum.h>
48 
49 /*
50  * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system
51  * calls that change the file system. Each itx has enough information to
52  * be able to replay them after a system crash, power loss, or
53  * equivalent failure mode. These are stored in memory until either:
54  *
55  *   1. they are committed to the pool by the DMU transaction group
56  *      (txg), at which point they can be discarded; or
57  *   2. they are committed to the on-disk ZIL for the dataset being
58  *      modified (e.g. due to an fsync, O_DSYNC, or other synchronous
59  *      requirement).
60  *
61  * In the event of a crash or power loss, the itxs contained by each
62  * dataset's on-disk ZIL will be replayed when that dataset is first
63  * instantiated (e.g. if the dataset is a normal filesystem, when it is
64  * first mounted).
65  *
66  * As hinted at above, there is one ZIL per dataset (both the in-memory
67  * representation, and the on-disk representation). The on-disk format
68  * consists of 3 parts:
69  *
70  * 	- a single, per-dataset, ZIL header; which points to a chain of
71  * 	- zero or more ZIL blocks; each of which contains
72  * 	- zero or more ZIL records
73  *
74  * A ZIL record holds the information necessary to replay a single
75  * system call transaction. A ZIL block can hold many ZIL records, and
76  * the blocks are chained together, similarly to a singly linked list.
77  *
78  * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL
79  * block in the chain, and the ZIL header points to the first block in
80  * the chain.
81  *
82  * Note, there is not a fixed place in the pool to hold these ZIL
83  * blocks; they are dynamically allocated and freed as needed from the
84  * blocks available on the pool, though they can be preferentially
85  * allocated from a dedicated "log" vdev.
86  */
87 
88 /*
89  * This controls the amount of time that a ZIL block (lwb) will remain
90  * "open" when it isn't "full", and it has a thread waiting for it to be
91  * committed to stable storage. Please refer to the zil_commit_waiter()
92  * function (and the comments within it) for more details.
93  */
94 static uint_t zfs_commit_timeout_pct = 5;
95 
96 /*
97  * Minimal time we care to delay commit waiting for more ZIL records.
98  * At least FreeBSD kernel can't sleep for less than 2us at its best.
99  * So requests to sleep for less then 5us is a waste of CPU time with
100  * a risk of significant log latency increase due to oversleep.
101  */
102 static uint64_t zil_min_commit_timeout = 5000;
103 
104 /*
105  * See zil.h for more information about these fields.
106  */
107 static zil_kstat_values_t zil_stats = {
108 	{ "zil_commit_count",			KSTAT_DATA_UINT64 },
109 	{ "zil_commit_writer_count",		KSTAT_DATA_UINT64 },
110 	{ "zil_itx_count",			KSTAT_DATA_UINT64 },
111 	{ "zil_itx_indirect_count",		KSTAT_DATA_UINT64 },
112 	{ "zil_itx_indirect_bytes",		KSTAT_DATA_UINT64 },
113 	{ "zil_itx_copied_count",		KSTAT_DATA_UINT64 },
114 	{ "zil_itx_copied_bytes",		KSTAT_DATA_UINT64 },
115 	{ "zil_itx_needcopy_count",		KSTAT_DATA_UINT64 },
116 	{ "zil_itx_needcopy_bytes",		KSTAT_DATA_UINT64 },
117 	{ "zil_itx_metaslab_normal_count",	KSTAT_DATA_UINT64 },
118 	{ "zil_itx_metaslab_normal_bytes",	KSTAT_DATA_UINT64 },
119 	{ "zil_itx_metaslab_normal_write",	KSTAT_DATA_UINT64 },
120 	{ "zil_itx_metaslab_normal_alloc",	KSTAT_DATA_UINT64 },
121 	{ "zil_itx_metaslab_slog_count",	KSTAT_DATA_UINT64 },
122 	{ "zil_itx_metaslab_slog_bytes",	KSTAT_DATA_UINT64 },
123 	{ "zil_itx_metaslab_slog_write",	KSTAT_DATA_UINT64 },
124 	{ "zil_itx_metaslab_slog_alloc",	KSTAT_DATA_UINT64 },
125 };
126 
127 static zil_sums_t zil_sums_global;
128 static kstat_t *zil_kstats_global;
129 
130 /*
131  * Disable intent logging replay.  This global ZIL switch affects all pools.
132  */
133 int zil_replay_disable = 0;
134 
135 /*
136  * Disable the DKIOCFLUSHWRITECACHE commands that are normally sent to
137  * the disk(s) by the ZIL after an LWB write has completed. Setting this
138  * will cause ZIL corruption on power loss if a volatile out-of-order
139  * write cache is enabled.
140  */
141 static int zil_nocacheflush = 0;
142 
143 /*
144  * Limit SLOG write size per commit executed with synchronous priority.
145  * Any writes above that will be executed with lower (asynchronous) priority
146  * to limit potential SLOG device abuse by single active ZIL writer.
147  */
148 static uint64_t zil_slog_bulk = 768 * 1024;
149 
150 static kmem_cache_t *zil_lwb_cache;
151 static kmem_cache_t *zil_zcw_cache;
152 
153 static void zil_lwb_commit(zilog_t *zilog, lwb_t *lwb, itx_t *itx);
154 static itx_t *zil_itx_clone(itx_t *oitx);
155 
156 static int
157 zil_bp_compare(const void *x1, const void *x2)
158 {
159 	const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
160 	const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
161 
162 	int cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2));
163 	if (likely(cmp))
164 		return (cmp);
165 
166 	return (TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2)));
167 }
168 
169 static void
170 zil_bp_tree_init(zilog_t *zilog)
171 {
172 	avl_create(&zilog->zl_bp_tree, zil_bp_compare,
173 	    sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
174 }
175 
176 static void
177 zil_bp_tree_fini(zilog_t *zilog)
178 {
179 	avl_tree_t *t = &zilog->zl_bp_tree;
180 	zil_bp_node_t *zn;
181 	void *cookie = NULL;
182 
183 	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
184 		kmem_free(zn, sizeof (zil_bp_node_t));
185 
186 	avl_destroy(t);
187 }
188 
189 int
190 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
191 {
192 	avl_tree_t *t = &zilog->zl_bp_tree;
193 	const dva_t *dva;
194 	zil_bp_node_t *zn;
195 	avl_index_t where;
196 
197 	if (BP_IS_EMBEDDED(bp))
198 		return (0);
199 
200 	dva = BP_IDENTITY(bp);
201 
202 	if (avl_find(t, dva, &where) != NULL)
203 		return (SET_ERROR(EEXIST));
204 
205 	zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
206 	zn->zn_dva = *dva;
207 	avl_insert(t, zn, where);
208 
209 	return (0);
210 }
211 
212 static zil_header_t *
213 zil_header_in_syncing_context(zilog_t *zilog)
214 {
215 	return ((zil_header_t *)zilog->zl_header);
216 }
217 
218 static void
219 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
220 {
221 	zio_cksum_t *zc = &bp->blk_cksum;
222 
223 	(void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_0],
224 	    sizeof (zc->zc_word[ZIL_ZC_GUID_0]));
225 	(void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_1],
226 	    sizeof (zc->zc_word[ZIL_ZC_GUID_1]));
227 	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
228 	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
229 }
230 
231 static int
232 zil_kstats_global_update(kstat_t *ksp, int rw)
233 {
234 	zil_kstat_values_t *zs = ksp->ks_data;
235 	ASSERT3P(&zil_stats, ==, zs);
236 
237 	if (rw == KSTAT_WRITE) {
238 		return (SET_ERROR(EACCES));
239 	}
240 
241 	zil_kstat_values_update(zs, &zil_sums_global);
242 
243 	return (0);
244 }
245 
246 /*
247  * Read a log block and make sure it's valid.
248  */
249 static int
250 zil_read_log_block(zilog_t *zilog, boolean_t decrypt, const blkptr_t *bp,
251     blkptr_t *nbp, char **begin, char **end, arc_buf_t **abuf)
252 {
253 	zio_flag_t zio_flags = ZIO_FLAG_CANFAIL;
254 	arc_flags_t aflags = ARC_FLAG_WAIT;
255 	zbookmark_phys_t zb;
256 	int error;
257 
258 	if (zilog->zl_header->zh_claim_txg == 0)
259 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
260 
261 	if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
262 		zio_flags |= ZIO_FLAG_SPECULATIVE;
263 
264 	if (!decrypt)
265 		zio_flags |= ZIO_FLAG_RAW;
266 
267 	SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
268 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
269 
270 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func,
271 	    abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
272 
273 	if (error == 0) {
274 		zio_cksum_t cksum = bp->blk_cksum;
275 
276 		/*
277 		 * Validate the checksummed log block.
278 		 *
279 		 * Sequence numbers should be... sequential.  The checksum
280 		 * verifier for the next block should be bp's checksum plus 1.
281 		 *
282 		 * Also check the log chain linkage and size used.
283 		 */
284 		cksum.zc_word[ZIL_ZC_SEQ]++;
285 
286 		uint64_t size = BP_GET_LSIZE(bp);
287 		if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
288 			zil_chain_t *zilc = (*abuf)->b_data;
289 			char *lr = (char *)(zilc + 1);
290 
291 			if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
292 			    sizeof (cksum)) ||
293 			    zilc->zc_nused < sizeof (*zilc) ||
294 			    zilc->zc_nused > size) {
295 				error = SET_ERROR(ECKSUM);
296 			} else {
297 				*begin = lr;
298 				*end = lr + zilc->zc_nused - sizeof (*zilc);
299 				*nbp = zilc->zc_next_blk;
300 			}
301 		} else {
302 			char *lr = (*abuf)->b_data;
303 			zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
304 
305 			if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
306 			    sizeof (cksum)) ||
307 			    (zilc->zc_nused > (size - sizeof (*zilc)))) {
308 				error = SET_ERROR(ECKSUM);
309 			} else {
310 				*begin = lr;
311 				*end = lr + zilc->zc_nused;
312 				*nbp = zilc->zc_next_blk;
313 			}
314 		}
315 	}
316 
317 	return (error);
318 }
319 
320 /*
321  * Read a TX_WRITE log data block.
322  */
323 static int
324 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
325 {
326 	zio_flag_t zio_flags = ZIO_FLAG_CANFAIL;
327 	const blkptr_t *bp = &lr->lr_blkptr;
328 	arc_flags_t aflags = ARC_FLAG_WAIT;
329 	arc_buf_t *abuf = NULL;
330 	zbookmark_phys_t zb;
331 	int error;
332 
333 	if (BP_IS_HOLE(bp)) {
334 		if (wbuf != NULL)
335 			memset(wbuf, 0, MAX(BP_GET_LSIZE(bp), lr->lr_length));
336 		return (0);
337 	}
338 
339 	if (zilog->zl_header->zh_claim_txg == 0)
340 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
341 
342 	/*
343 	 * If we are not using the resulting data, we are just checking that
344 	 * it hasn't been corrupted so we don't need to waste CPU time
345 	 * decompressing and decrypting it.
346 	 */
347 	if (wbuf == NULL)
348 		zio_flags |= ZIO_FLAG_RAW;
349 
350 	ASSERT3U(BP_GET_LSIZE(bp), !=, 0);
351 	SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
352 	    ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
353 
354 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
355 	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
356 
357 	if (error == 0) {
358 		if (wbuf != NULL)
359 			memcpy(wbuf, abuf->b_data, arc_buf_size(abuf));
360 		arc_buf_destroy(abuf, &abuf);
361 	}
362 
363 	return (error);
364 }
365 
366 void
367 zil_sums_init(zil_sums_t *zs)
368 {
369 	wmsum_init(&zs->zil_commit_count, 0);
370 	wmsum_init(&zs->zil_commit_writer_count, 0);
371 	wmsum_init(&zs->zil_itx_count, 0);
372 	wmsum_init(&zs->zil_itx_indirect_count, 0);
373 	wmsum_init(&zs->zil_itx_indirect_bytes, 0);
374 	wmsum_init(&zs->zil_itx_copied_count, 0);
375 	wmsum_init(&zs->zil_itx_copied_bytes, 0);
376 	wmsum_init(&zs->zil_itx_needcopy_count, 0);
377 	wmsum_init(&zs->zil_itx_needcopy_bytes, 0);
378 	wmsum_init(&zs->zil_itx_metaslab_normal_count, 0);
379 	wmsum_init(&zs->zil_itx_metaslab_normal_bytes, 0);
380 	wmsum_init(&zs->zil_itx_metaslab_normal_write, 0);
381 	wmsum_init(&zs->zil_itx_metaslab_normal_alloc, 0);
382 	wmsum_init(&zs->zil_itx_metaslab_slog_count, 0);
383 	wmsum_init(&zs->zil_itx_metaslab_slog_bytes, 0);
384 	wmsum_init(&zs->zil_itx_metaslab_slog_write, 0);
385 	wmsum_init(&zs->zil_itx_metaslab_slog_alloc, 0);
386 }
387 
388 void
389 zil_sums_fini(zil_sums_t *zs)
390 {
391 	wmsum_fini(&zs->zil_commit_count);
392 	wmsum_fini(&zs->zil_commit_writer_count);
393 	wmsum_fini(&zs->zil_itx_count);
394 	wmsum_fini(&zs->zil_itx_indirect_count);
395 	wmsum_fini(&zs->zil_itx_indirect_bytes);
396 	wmsum_fini(&zs->zil_itx_copied_count);
397 	wmsum_fini(&zs->zil_itx_copied_bytes);
398 	wmsum_fini(&zs->zil_itx_needcopy_count);
399 	wmsum_fini(&zs->zil_itx_needcopy_bytes);
400 	wmsum_fini(&zs->zil_itx_metaslab_normal_count);
401 	wmsum_fini(&zs->zil_itx_metaslab_normal_bytes);
402 	wmsum_fini(&zs->zil_itx_metaslab_normal_write);
403 	wmsum_fini(&zs->zil_itx_metaslab_normal_alloc);
404 	wmsum_fini(&zs->zil_itx_metaslab_slog_count);
405 	wmsum_fini(&zs->zil_itx_metaslab_slog_bytes);
406 	wmsum_fini(&zs->zil_itx_metaslab_slog_write);
407 	wmsum_fini(&zs->zil_itx_metaslab_slog_alloc);
408 }
409 
410 void
411 zil_kstat_values_update(zil_kstat_values_t *zs, zil_sums_t *zil_sums)
412 {
413 	zs->zil_commit_count.value.ui64 =
414 	    wmsum_value(&zil_sums->zil_commit_count);
415 	zs->zil_commit_writer_count.value.ui64 =
416 	    wmsum_value(&zil_sums->zil_commit_writer_count);
417 	zs->zil_itx_count.value.ui64 =
418 	    wmsum_value(&zil_sums->zil_itx_count);
419 	zs->zil_itx_indirect_count.value.ui64 =
420 	    wmsum_value(&zil_sums->zil_itx_indirect_count);
421 	zs->zil_itx_indirect_bytes.value.ui64 =
422 	    wmsum_value(&zil_sums->zil_itx_indirect_bytes);
423 	zs->zil_itx_copied_count.value.ui64 =
424 	    wmsum_value(&zil_sums->zil_itx_copied_count);
425 	zs->zil_itx_copied_bytes.value.ui64 =
426 	    wmsum_value(&zil_sums->zil_itx_copied_bytes);
427 	zs->zil_itx_needcopy_count.value.ui64 =
428 	    wmsum_value(&zil_sums->zil_itx_needcopy_count);
429 	zs->zil_itx_needcopy_bytes.value.ui64 =
430 	    wmsum_value(&zil_sums->zil_itx_needcopy_bytes);
431 	zs->zil_itx_metaslab_normal_count.value.ui64 =
432 	    wmsum_value(&zil_sums->zil_itx_metaslab_normal_count);
433 	zs->zil_itx_metaslab_normal_bytes.value.ui64 =
434 	    wmsum_value(&zil_sums->zil_itx_metaslab_normal_bytes);
435 	zs->zil_itx_metaslab_normal_write.value.ui64 =
436 	    wmsum_value(&zil_sums->zil_itx_metaslab_normal_write);
437 	zs->zil_itx_metaslab_normal_alloc.value.ui64 =
438 	    wmsum_value(&zil_sums->zil_itx_metaslab_normal_alloc);
439 	zs->zil_itx_metaslab_slog_count.value.ui64 =
440 	    wmsum_value(&zil_sums->zil_itx_metaslab_slog_count);
441 	zs->zil_itx_metaslab_slog_bytes.value.ui64 =
442 	    wmsum_value(&zil_sums->zil_itx_metaslab_slog_bytes);
443 	zs->zil_itx_metaslab_slog_write.value.ui64 =
444 	    wmsum_value(&zil_sums->zil_itx_metaslab_slog_write);
445 	zs->zil_itx_metaslab_slog_alloc.value.ui64 =
446 	    wmsum_value(&zil_sums->zil_itx_metaslab_slog_alloc);
447 }
448 
449 /*
450  * Parse the intent log, and call parse_func for each valid record within.
451  */
452 int
453 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
454     zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg,
455     boolean_t decrypt)
456 {
457 	const zil_header_t *zh = zilog->zl_header;
458 	boolean_t claimed = !!zh->zh_claim_txg;
459 	uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
460 	uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
461 	uint64_t max_blk_seq = 0;
462 	uint64_t max_lr_seq = 0;
463 	uint64_t blk_count = 0;
464 	uint64_t lr_count = 0;
465 	blkptr_t blk, next_blk = {{{{0}}}};
466 	int error = 0;
467 
468 	/*
469 	 * Old logs didn't record the maximum zh_claim_lr_seq.
470 	 */
471 	if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
472 		claim_lr_seq = UINT64_MAX;
473 
474 	/*
475 	 * Starting at the block pointed to by zh_log we read the log chain.
476 	 * For each block in the chain we strongly check that block to
477 	 * ensure its validity.  We stop when an invalid block is found.
478 	 * For each block pointer in the chain we call parse_blk_func().
479 	 * For each record in each valid block we call parse_lr_func().
480 	 * If the log has been claimed, stop if we encounter a sequence
481 	 * number greater than the highest claimed sequence number.
482 	 */
483 	zil_bp_tree_init(zilog);
484 
485 	for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
486 		uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
487 		int reclen;
488 		char *lrp, *end;
489 		arc_buf_t *abuf = NULL;
490 
491 		if (blk_seq > claim_blk_seq)
492 			break;
493 
494 		error = parse_blk_func(zilog, &blk, arg, txg);
495 		if (error != 0)
496 			break;
497 		ASSERT3U(max_blk_seq, <, blk_seq);
498 		max_blk_seq = blk_seq;
499 		blk_count++;
500 
501 		if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
502 			break;
503 
504 		error = zil_read_log_block(zilog, decrypt, &blk, &next_blk,
505 		    &lrp, &end, &abuf);
506 		if (error != 0) {
507 			if (abuf)
508 				arc_buf_destroy(abuf, &abuf);
509 			if (claimed) {
510 				char name[ZFS_MAX_DATASET_NAME_LEN];
511 
512 				dmu_objset_name(zilog->zl_os, name);
513 
514 				cmn_err(CE_WARN, "ZFS read log block error %d, "
515 				    "dataset %s, seq 0x%llx\n", error, name,
516 				    (u_longlong_t)blk_seq);
517 			}
518 			break;
519 		}
520 
521 		for (; lrp < end; lrp += reclen) {
522 			lr_t *lr = (lr_t *)lrp;
523 			reclen = lr->lrc_reclen;
524 			ASSERT3U(reclen, >=, sizeof (lr_t));
525 			if (lr->lrc_seq > claim_lr_seq) {
526 				arc_buf_destroy(abuf, &abuf);
527 				goto done;
528 			}
529 
530 			error = parse_lr_func(zilog, lr, arg, txg);
531 			if (error != 0) {
532 				arc_buf_destroy(abuf, &abuf);
533 				goto done;
534 			}
535 			ASSERT3U(max_lr_seq, <, lr->lrc_seq);
536 			max_lr_seq = lr->lrc_seq;
537 			lr_count++;
538 		}
539 		arc_buf_destroy(abuf, &abuf);
540 	}
541 done:
542 	zilog->zl_parse_error = error;
543 	zilog->zl_parse_blk_seq = max_blk_seq;
544 	zilog->zl_parse_lr_seq = max_lr_seq;
545 	zilog->zl_parse_blk_count = blk_count;
546 	zilog->zl_parse_lr_count = lr_count;
547 
548 	zil_bp_tree_fini(zilog);
549 
550 	return (error);
551 }
552 
553 static int
554 zil_clear_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
555     uint64_t first_txg)
556 {
557 	(void) tx;
558 	ASSERT(!BP_IS_HOLE(bp));
559 
560 	/*
561 	 * As we call this function from the context of a rewind to a
562 	 * checkpoint, each ZIL block whose txg is later than the txg
563 	 * that we rewind to is invalid. Thus, we return -1 so
564 	 * zil_parse() doesn't attempt to read it.
565 	 */
566 	if (bp->blk_birth >= first_txg)
567 		return (-1);
568 
569 	if (zil_bp_tree_add(zilog, bp) != 0)
570 		return (0);
571 
572 	zio_free(zilog->zl_spa, first_txg, bp);
573 	return (0);
574 }
575 
576 static int
577 zil_noop_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
578     uint64_t first_txg)
579 {
580 	(void) zilog, (void) lrc, (void) tx, (void) first_txg;
581 	return (0);
582 }
583 
584 static int
585 zil_claim_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
586     uint64_t first_txg)
587 {
588 	/*
589 	 * Claim log block if not already committed and not already claimed.
590 	 * If tx == NULL, just verify that the block is claimable.
591 	 */
592 	if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
593 	    zil_bp_tree_add(zilog, bp) != 0)
594 		return (0);
595 
596 	return (zio_wait(zio_claim(NULL, zilog->zl_spa,
597 	    tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
598 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
599 }
600 
601 static int
602 zil_claim_write(zilog_t *zilog, const lr_t *lrc, void *tx, uint64_t first_txg)
603 {
604 	lr_write_t *lr = (lr_write_t *)lrc;
605 	int error;
606 
607 	ASSERT(lrc->lrc_txtype == TX_WRITE);
608 
609 	/*
610 	 * If the block is not readable, don't claim it.  This can happen
611 	 * in normal operation when a log block is written to disk before
612 	 * some of the dmu_sync() blocks it points to.  In this case, the
613 	 * transaction cannot have been committed to anyone (we would have
614 	 * waited for all writes to be stable first), so it is semantically
615 	 * correct to declare this the end of the log.
616 	 */
617 	if (lr->lr_blkptr.blk_birth >= first_txg) {
618 		error = zil_read_log_data(zilog, lr, NULL);
619 		if (error != 0)
620 			return (error);
621 	}
622 
623 	return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
624 }
625 
626 static int
627 zil_claim_clone_range(zilog_t *zilog, const lr_t *lrc, void *tx)
628 {
629 	const lr_clone_range_t *lr = (const lr_clone_range_t *)lrc;
630 	const blkptr_t *bp;
631 	spa_t *spa;
632 	uint_t ii;
633 
634 	ASSERT(lrc->lrc_txtype == TX_CLONE_RANGE);
635 
636 	if (tx == NULL) {
637 		return (0);
638 	}
639 
640 	/*
641 	 * XXX: Do we need to byteswap lr?
642 	 */
643 
644 	spa = zilog->zl_spa;
645 
646 	for (ii = 0; ii < lr->lr_nbps; ii++) {
647 		bp = &lr->lr_bps[ii];
648 
649 		/*
650 		 * When data in embedded into BP there is no need to create
651 		 * BRT entry as there is no data block. Just copy the BP as
652 		 * it contains the data.
653 		 */
654 		if (!BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) {
655 			brt_pending_add(spa, bp, tx);
656 		}
657 	}
658 
659 	return (0);
660 }
661 
662 static int
663 zil_claim_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
664     uint64_t first_txg)
665 {
666 
667 	switch (lrc->lrc_txtype) {
668 	case TX_WRITE:
669 		return (zil_claim_write(zilog, lrc, tx, first_txg));
670 	case TX_CLONE_RANGE:
671 		return (zil_claim_clone_range(zilog, lrc, tx));
672 	default:
673 		return (0);
674 	}
675 }
676 
677 static int
678 zil_free_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
679     uint64_t claim_txg)
680 {
681 	(void) claim_txg;
682 
683 	zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
684 
685 	return (0);
686 }
687 
688 static int
689 zil_free_write(zilog_t *zilog, const lr_t *lrc, void *tx, uint64_t claim_txg)
690 {
691 	lr_write_t *lr = (lr_write_t *)lrc;
692 	blkptr_t *bp = &lr->lr_blkptr;
693 
694 	ASSERT(lrc->lrc_txtype == TX_WRITE);
695 
696 	/*
697 	 * If we previously claimed it, we need to free it.
698 	 */
699 	if (bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
700 	    !BP_IS_HOLE(bp)) {
701 		zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
702 	}
703 
704 	return (0);
705 }
706 
707 static int
708 zil_free_clone_range(zilog_t *zilog, const lr_t *lrc, void *tx)
709 {
710 	const lr_clone_range_t *lr = (const lr_clone_range_t *)lrc;
711 	const blkptr_t *bp;
712 	spa_t *spa;
713 	uint_t ii;
714 
715 	ASSERT(lrc->lrc_txtype == TX_CLONE_RANGE);
716 
717 	if (tx == NULL) {
718 		return (0);
719 	}
720 
721 	spa = zilog->zl_spa;
722 
723 	for (ii = 0; ii < lr->lr_nbps; ii++) {
724 		bp = &lr->lr_bps[ii];
725 
726 		if (!BP_IS_HOLE(bp)) {
727 			zio_free(spa, dmu_tx_get_txg(tx), bp);
728 		}
729 	}
730 
731 	return (0);
732 }
733 
734 static int
735 zil_free_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
736     uint64_t claim_txg)
737 {
738 
739 	if (claim_txg == 0) {
740 		return (0);
741 	}
742 
743 	switch (lrc->lrc_txtype) {
744 	case TX_WRITE:
745 		return (zil_free_write(zilog, lrc, tx, claim_txg));
746 	case TX_CLONE_RANGE:
747 		return (zil_free_clone_range(zilog, lrc, tx));
748 	default:
749 		return (0);
750 	}
751 }
752 
753 static int
754 zil_lwb_vdev_compare(const void *x1, const void *x2)
755 {
756 	const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
757 	const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
758 
759 	return (TREE_CMP(v1, v2));
760 }
761 
762 /*
763  * Allocate a new lwb.  We may already have a block pointer for it, in which
764  * case we get size and version from there.  Or we may not yet, in which case
765  * we choose them here and later make the block allocation match.
766  */
767 static lwb_t *
768 zil_alloc_lwb(zilog_t *zilog, int sz, blkptr_t *bp, boolean_t slog,
769     uint64_t txg, lwb_state_t state)
770 {
771 	lwb_t *lwb;
772 
773 	lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
774 	lwb->lwb_zilog = zilog;
775 	if (bp) {
776 		lwb->lwb_blk = *bp;
777 		lwb->lwb_slim = (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2);
778 		sz = BP_GET_LSIZE(bp);
779 	} else {
780 		BP_ZERO(&lwb->lwb_blk);
781 		lwb->lwb_slim = (spa_version(zilog->zl_spa) >=
782 		    SPA_VERSION_SLIM_ZIL);
783 	}
784 	lwb->lwb_slog = slog;
785 	lwb->lwb_error = 0;
786 	if (lwb->lwb_slim) {
787 		lwb->lwb_nmax = sz;
788 		lwb->lwb_nused = lwb->lwb_nfilled = sizeof (zil_chain_t);
789 	} else {
790 		lwb->lwb_nmax = sz - sizeof (zil_chain_t);
791 		lwb->lwb_nused = lwb->lwb_nfilled = 0;
792 	}
793 	lwb->lwb_sz = sz;
794 	lwb->lwb_state = state;
795 	lwb->lwb_buf = zio_buf_alloc(sz);
796 	lwb->lwb_child_zio = NULL;
797 	lwb->lwb_write_zio = NULL;
798 	lwb->lwb_root_zio = NULL;
799 	lwb->lwb_issued_timestamp = 0;
800 	lwb->lwb_issued_txg = 0;
801 	lwb->lwb_alloc_txg = txg;
802 	lwb->lwb_max_txg = 0;
803 
804 	mutex_enter(&zilog->zl_lock);
805 	list_insert_tail(&zilog->zl_lwb_list, lwb);
806 	if (state != LWB_STATE_NEW)
807 		zilog->zl_last_lwb_opened = lwb;
808 	mutex_exit(&zilog->zl_lock);
809 
810 	return (lwb);
811 }
812 
813 static void
814 zil_free_lwb(zilog_t *zilog, lwb_t *lwb)
815 {
816 	ASSERT(MUTEX_HELD(&zilog->zl_lock));
817 	ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
818 	VERIFY(list_is_empty(&lwb->lwb_waiters));
819 	VERIFY(list_is_empty(&lwb->lwb_itxs));
820 	ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
821 	ASSERT3P(lwb->lwb_child_zio, ==, NULL);
822 	ASSERT3P(lwb->lwb_write_zio, ==, NULL);
823 	ASSERT3P(lwb->lwb_root_zio, ==, NULL);
824 	ASSERT3U(lwb->lwb_alloc_txg, <=, spa_syncing_txg(zilog->zl_spa));
825 	ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa));
826 	ASSERT(lwb->lwb_state == LWB_STATE_NEW ||
827 	    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
828 
829 	/*
830 	 * Clear the zilog's field to indicate this lwb is no longer
831 	 * valid, and prevent use-after-free errors.
832 	 */
833 	if (zilog->zl_last_lwb_opened == lwb)
834 		zilog->zl_last_lwb_opened = NULL;
835 
836 	kmem_cache_free(zil_lwb_cache, lwb);
837 }
838 
839 /*
840  * Called when we create in-memory log transactions so that we know
841  * to cleanup the itxs at the end of spa_sync().
842  */
843 static void
844 zilog_dirty(zilog_t *zilog, uint64_t txg)
845 {
846 	dsl_pool_t *dp = zilog->zl_dmu_pool;
847 	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
848 
849 	ASSERT(spa_writeable(zilog->zl_spa));
850 
851 	if (ds->ds_is_snapshot)
852 		panic("dirtying snapshot!");
853 
854 	if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
855 		/* up the hold count until we can be written out */
856 		dmu_buf_add_ref(ds->ds_dbuf, zilog);
857 
858 		zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg);
859 	}
860 }
861 
862 /*
863  * Determine if the zil is dirty in the specified txg. Callers wanting to
864  * ensure that the dirty state does not change must hold the itxg_lock for
865  * the specified txg. Holding the lock will ensure that the zil cannot be
866  * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
867  * state.
868  */
869 static boolean_t __maybe_unused
870 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
871 {
872 	dsl_pool_t *dp = zilog->zl_dmu_pool;
873 
874 	if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
875 		return (B_TRUE);
876 	return (B_FALSE);
877 }
878 
879 /*
880  * Determine if the zil is dirty. The zil is considered dirty if it has
881  * any pending itx records that have not been cleaned by zil_clean().
882  */
883 static boolean_t
884 zilog_is_dirty(zilog_t *zilog)
885 {
886 	dsl_pool_t *dp = zilog->zl_dmu_pool;
887 
888 	for (int t = 0; t < TXG_SIZE; t++) {
889 		if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
890 			return (B_TRUE);
891 	}
892 	return (B_FALSE);
893 }
894 
895 /*
896  * Its called in zil_commit context (zil_process_commit_list()/zil_create()).
897  * It activates SPA_FEATURE_ZILSAXATTR feature, if its enabled.
898  * Check dsl_dataset_feature_is_active to avoid txg_wait_synced() on every
899  * zil_commit.
900  */
901 static void
902 zil_commit_activate_saxattr_feature(zilog_t *zilog)
903 {
904 	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
905 	uint64_t txg = 0;
906 	dmu_tx_t *tx = NULL;
907 
908 	if (spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) &&
909 	    dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL &&
910 	    !dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR)) {
911 		tx = dmu_tx_create(zilog->zl_os);
912 		VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
913 		dsl_dataset_dirty(ds, tx);
914 		txg = dmu_tx_get_txg(tx);
915 
916 		mutex_enter(&ds->ds_lock);
917 		ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] =
918 		    (void *)B_TRUE;
919 		mutex_exit(&ds->ds_lock);
920 		dmu_tx_commit(tx);
921 		txg_wait_synced(zilog->zl_dmu_pool, txg);
922 	}
923 }
924 
925 /*
926  * Create an on-disk intent log.
927  */
928 static lwb_t *
929 zil_create(zilog_t *zilog)
930 {
931 	const zil_header_t *zh = zilog->zl_header;
932 	lwb_t *lwb = NULL;
933 	uint64_t txg = 0;
934 	dmu_tx_t *tx = NULL;
935 	blkptr_t blk;
936 	int error = 0;
937 	boolean_t slog = FALSE;
938 	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
939 
940 
941 	/*
942 	 * Wait for any previous destroy to complete.
943 	 */
944 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
945 
946 	ASSERT(zh->zh_claim_txg == 0);
947 	ASSERT(zh->zh_replay_seq == 0);
948 
949 	blk = zh->zh_log;
950 
951 	/*
952 	 * Allocate an initial log block if:
953 	 *    - there isn't one already
954 	 *    - the existing block is the wrong endianness
955 	 */
956 	if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
957 		tx = dmu_tx_create(zilog->zl_os);
958 		VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
959 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
960 		txg = dmu_tx_get_txg(tx);
961 
962 		if (!BP_IS_HOLE(&blk)) {
963 			zio_free(zilog->zl_spa, txg, &blk);
964 			BP_ZERO(&blk);
965 		}
966 
967 		error = zio_alloc_zil(zilog->zl_spa, zilog->zl_os, txg, &blk,
968 		    ZIL_MIN_BLKSZ, &slog);
969 		if (error == 0)
970 			zil_init_log_chain(zilog, &blk);
971 	}
972 
973 	/*
974 	 * Allocate a log write block (lwb) for the first log block.
975 	 */
976 	if (error == 0)
977 		lwb = zil_alloc_lwb(zilog, 0, &blk, slog, txg, LWB_STATE_NEW);
978 
979 	/*
980 	 * If we just allocated the first log block, commit our transaction
981 	 * and wait for zil_sync() to stuff the block pointer into zh_log.
982 	 * (zh is part of the MOS, so we cannot modify it in open context.)
983 	 */
984 	if (tx != NULL) {
985 		/*
986 		 * If "zilsaxattr" feature is enabled on zpool, then activate
987 		 * it now when we're creating the ZIL chain. We can't wait with
988 		 * this until we write the first xattr log record because we
989 		 * need to wait for the feature activation to sync out.
990 		 */
991 		if (spa_feature_is_enabled(zilog->zl_spa,
992 		    SPA_FEATURE_ZILSAXATTR) && dmu_objset_type(zilog->zl_os) !=
993 		    DMU_OST_ZVOL) {
994 			mutex_enter(&ds->ds_lock);
995 			ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] =
996 			    (void *)B_TRUE;
997 			mutex_exit(&ds->ds_lock);
998 		}
999 
1000 		dmu_tx_commit(tx);
1001 		txg_wait_synced(zilog->zl_dmu_pool, txg);
1002 	} else {
1003 		/*
1004 		 * This branch covers the case where we enable the feature on a
1005 		 * zpool that has existing ZIL headers.
1006 		 */
1007 		zil_commit_activate_saxattr_feature(zilog);
1008 	}
1009 	IMPLY(spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) &&
1010 	    dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL,
1011 	    dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR));
1012 
1013 	ASSERT(error != 0 || memcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
1014 	IMPLY(error == 0, lwb != NULL);
1015 
1016 	return (lwb);
1017 }
1018 
1019 /*
1020  * In one tx, free all log blocks and clear the log header. If keep_first
1021  * is set, then we're replaying a log with no content. We want to keep the
1022  * first block, however, so that the first synchronous transaction doesn't
1023  * require a txg_wait_synced() in zil_create(). We don't need to
1024  * txg_wait_synced() here either when keep_first is set, because both
1025  * zil_create() and zil_destroy() will wait for any in-progress destroys
1026  * to complete.
1027  * Return B_TRUE if there were any entries to replay.
1028  */
1029 boolean_t
1030 zil_destroy(zilog_t *zilog, boolean_t keep_first)
1031 {
1032 	const zil_header_t *zh = zilog->zl_header;
1033 	lwb_t *lwb;
1034 	dmu_tx_t *tx;
1035 	uint64_t txg;
1036 
1037 	/*
1038 	 * Wait for any previous destroy to complete.
1039 	 */
1040 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
1041 
1042 	zilog->zl_old_header = *zh;		/* debugging aid */
1043 
1044 	if (BP_IS_HOLE(&zh->zh_log))
1045 		return (B_FALSE);
1046 
1047 	tx = dmu_tx_create(zilog->zl_os);
1048 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1049 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1050 	txg = dmu_tx_get_txg(tx);
1051 
1052 	mutex_enter(&zilog->zl_lock);
1053 
1054 	ASSERT3U(zilog->zl_destroy_txg, <, txg);
1055 	zilog->zl_destroy_txg = txg;
1056 	zilog->zl_keep_first = keep_first;
1057 
1058 	if (!list_is_empty(&zilog->zl_lwb_list)) {
1059 		ASSERT(zh->zh_claim_txg == 0);
1060 		VERIFY(!keep_first);
1061 		while ((lwb = list_remove_head(&zilog->zl_lwb_list)) != NULL) {
1062 			if (lwb->lwb_buf != NULL)
1063 				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1064 			if (!BP_IS_HOLE(&lwb->lwb_blk))
1065 				zio_free(zilog->zl_spa, txg, &lwb->lwb_blk);
1066 			zil_free_lwb(zilog, lwb);
1067 		}
1068 	} else if (!keep_first) {
1069 		zil_destroy_sync(zilog, tx);
1070 	}
1071 	mutex_exit(&zilog->zl_lock);
1072 
1073 	dmu_tx_commit(tx);
1074 
1075 	return (B_TRUE);
1076 }
1077 
1078 void
1079 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
1080 {
1081 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
1082 	(void) zil_parse(zilog, zil_free_log_block,
1083 	    zil_free_log_record, tx, zilog->zl_header->zh_claim_txg, B_FALSE);
1084 }
1085 
1086 int
1087 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
1088 {
1089 	dmu_tx_t *tx = txarg;
1090 	zilog_t *zilog;
1091 	uint64_t first_txg;
1092 	zil_header_t *zh;
1093 	objset_t *os;
1094 	int error;
1095 
1096 	error = dmu_objset_own_obj(dp, ds->ds_object,
1097 	    DMU_OST_ANY, B_FALSE, B_FALSE, FTAG, &os);
1098 	if (error != 0) {
1099 		/*
1100 		 * EBUSY indicates that the objset is inconsistent, in which
1101 		 * case it can not have a ZIL.
1102 		 */
1103 		if (error != EBUSY) {
1104 			cmn_err(CE_WARN, "can't open objset for %llu, error %u",
1105 			    (unsigned long long)ds->ds_object, error);
1106 		}
1107 
1108 		return (0);
1109 	}
1110 
1111 	zilog = dmu_objset_zil(os);
1112 	zh = zil_header_in_syncing_context(zilog);
1113 	ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa));
1114 	first_txg = spa_min_claim_txg(zilog->zl_spa);
1115 
1116 	/*
1117 	 * If the spa_log_state is not set to be cleared, check whether
1118 	 * the current uberblock is a checkpoint one and if the current
1119 	 * header has been claimed before moving on.
1120 	 *
1121 	 * If the current uberblock is a checkpointed uberblock then
1122 	 * one of the following scenarios took place:
1123 	 *
1124 	 * 1] We are currently rewinding to the checkpoint of the pool.
1125 	 * 2] We crashed in the middle of a checkpoint rewind but we
1126 	 *    did manage to write the checkpointed uberblock to the
1127 	 *    vdev labels, so when we tried to import the pool again
1128 	 *    the checkpointed uberblock was selected from the import
1129 	 *    procedure.
1130 	 *
1131 	 * In both cases we want to zero out all the ZIL blocks, except
1132 	 * the ones that have been claimed at the time of the checkpoint
1133 	 * (their zh_claim_txg != 0). The reason is that these blocks
1134 	 * may be corrupted since we may have reused their locations on
1135 	 * disk after we took the checkpoint.
1136 	 *
1137 	 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier
1138 	 * when we first figure out whether the current uberblock is
1139 	 * checkpointed or not. Unfortunately, that would discard all
1140 	 * the logs, including the ones that are claimed, and we would
1141 	 * leak space.
1142 	 */
1143 	if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR ||
1144 	    (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
1145 	    zh->zh_claim_txg == 0)) {
1146 		if (!BP_IS_HOLE(&zh->zh_log)) {
1147 			(void) zil_parse(zilog, zil_clear_log_block,
1148 			    zil_noop_log_record, tx, first_txg, B_FALSE);
1149 		}
1150 		BP_ZERO(&zh->zh_log);
1151 		if (os->os_encrypted)
1152 			os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
1153 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
1154 		dmu_objset_disown(os, B_FALSE, FTAG);
1155 		return (0);
1156 	}
1157 
1158 	/*
1159 	 * If we are not rewinding and opening the pool normally, then
1160 	 * the min_claim_txg should be equal to the first txg of the pool.
1161 	 */
1162 	ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa));
1163 
1164 	/*
1165 	 * Claim all log blocks if we haven't already done so, and remember
1166 	 * the highest claimed sequence number.  This ensures that if we can
1167 	 * read only part of the log now (e.g. due to a missing device),
1168 	 * but we can read the entire log later, we will not try to replay
1169 	 * or destroy beyond the last block we successfully claimed.
1170 	 */
1171 	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
1172 	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
1173 		(void) zil_parse(zilog, zil_claim_log_block,
1174 		    zil_claim_log_record, tx, first_txg, B_FALSE);
1175 		zh->zh_claim_txg = first_txg;
1176 		zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
1177 		zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
1178 		if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
1179 			zh->zh_flags |= ZIL_REPLAY_NEEDED;
1180 		zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
1181 		if (os->os_encrypted)
1182 			os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
1183 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
1184 	}
1185 
1186 	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
1187 	dmu_objset_disown(os, B_FALSE, FTAG);
1188 	return (0);
1189 }
1190 
1191 /*
1192  * Check the log by walking the log chain.
1193  * Checksum errors are ok as they indicate the end of the chain.
1194  * Any other error (no device or read failure) returns an error.
1195  */
1196 int
1197 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
1198 {
1199 	(void) dp;
1200 	zilog_t *zilog;
1201 	objset_t *os;
1202 	blkptr_t *bp;
1203 	int error;
1204 
1205 	ASSERT(tx == NULL);
1206 
1207 	error = dmu_objset_from_ds(ds, &os);
1208 	if (error != 0) {
1209 		cmn_err(CE_WARN, "can't open objset %llu, error %d",
1210 		    (unsigned long long)ds->ds_object, error);
1211 		return (0);
1212 	}
1213 
1214 	zilog = dmu_objset_zil(os);
1215 	bp = (blkptr_t *)&zilog->zl_header->zh_log;
1216 
1217 	if (!BP_IS_HOLE(bp)) {
1218 		vdev_t *vd;
1219 		boolean_t valid = B_TRUE;
1220 
1221 		/*
1222 		 * Check the first block and determine if it's on a log device
1223 		 * which may have been removed or faulted prior to loading this
1224 		 * pool.  If so, there's no point in checking the rest of the
1225 		 * log as its content should have already been synced to the
1226 		 * pool.
1227 		 */
1228 		spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
1229 		vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
1230 		if (vd->vdev_islog && vdev_is_dead(vd))
1231 			valid = vdev_log_state_valid(vd);
1232 		spa_config_exit(os->os_spa, SCL_STATE, FTAG);
1233 
1234 		if (!valid)
1235 			return (0);
1236 
1237 		/*
1238 		 * Check whether the current uberblock is checkpointed (e.g.
1239 		 * we are rewinding) and whether the current header has been
1240 		 * claimed or not. If it hasn't then skip verifying it. We
1241 		 * do this because its ZIL blocks may be part of the pool's
1242 		 * state before the rewind, which is no longer valid.
1243 		 */
1244 		zil_header_t *zh = zil_header_in_syncing_context(zilog);
1245 		if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
1246 		    zh->zh_claim_txg == 0)
1247 			return (0);
1248 	}
1249 
1250 	/*
1251 	 * Because tx == NULL, zil_claim_log_block() will not actually claim
1252 	 * any blocks, but just determine whether it is possible to do so.
1253 	 * In addition to checking the log chain, zil_claim_log_block()
1254 	 * will invoke zio_claim() with a done func of spa_claim_notify(),
1255 	 * which will update spa_max_claim_txg.  See spa_load() for details.
1256 	 */
1257 	error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
1258 	    zilog->zl_header->zh_claim_txg ? -1ULL :
1259 	    spa_min_claim_txg(os->os_spa), B_FALSE);
1260 
1261 	return ((error == ECKSUM || error == ENOENT) ? 0 : error);
1262 }
1263 
1264 /*
1265  * When an itx is "skipped", this function is used to properly mark the
1266  * waiter as "done, and signal any thread(s) waiting on it. An itx can
1267  * be skipped (and not committed to an lwb) for a variety of reasons,
1268  * one of them being that the itx was committed via spa_sync(), prior to
1269  * it being committed to an lwb; this can happen if a thread calling
1270  * zil_commit() is racing with spa_sync().
1271  */
1272 static void
1273 zil_commit_waiter_skip(zil_commit_waiter_t *zcw)
1274 {
1275 	mutex_enter(&zcw->zcw_lock);
1276 	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1277 	zcw->zcw_done = B_TRUE;
1278 	cv_broadcast(&zcw->zcw_cv);
1279 	mutex_exit(&zcw->zcw_lock);
1280 }
1281 
1282 /*
1283  * This function is used when the given waiter is to be linked into an
1284  * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb.
1285  * At this point, the waiter will no longer be referenced by the itx,
1286  * and instead, will be referenced by the lwb.
1287  */
1288 static void
1289 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb)
1290 {
1291 	/*
1292 	 * The lwb_waiters field of the lwb is protected by the zilog's
1293 	 * zl_issuer_lock while the lwb is open and zl_lock otherwise.
1294 	 * zl_issuer_lock also protects leaving the open state.
1295 	 * zcw_lwb setting is protected by zl_issuer_lock and state !=
1296 	 * flush_done, which transition is protected by zl_lock.
1297 	 */
1298 	ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_issuer_lock));
1299 	IMPLY(lwb->lwb_state != LWB_STATE_OPENED,
1300 	    MUTEX_HELD(&lwb->lwb_zilog->zl_lock));
1301 	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_NEW);
1302 	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1303 
1304 	ASSERT(!list_link_active(&zcw->zcw_node));
1305 	list_insert_tail(&lwb->lwb_waiters, zcw);
1306 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
1307 	zcw->zcw_lwb = lwb;
1308 }
1309 
1310 /*
1311  * This function is used when zio_alloc_zil() fails to allocate a ZIL
1312  * block, and the given waiter must be linked to the "nolwb waiters"
1313  * list inside of zil_process_commit_list().
1314  */
1315 static void
1316 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb)
1317 {
1318 	ASSERT(!list_link_active(&zcw->zcw_node));
1319 	list_insert_tail(nolwb, zcw);
1320 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
1321 }
1322 
1323 void
1324 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp)
1325 {
1326 	avl_tree_t *t = &lwb->lwb_vdev_tree;
1327 	avl_index_t where;
1328 	zil_vdev_node_t *zv, zvsearch;
1329 	int ndvas = BP_GET_NDVAS(bp);
1330 	int i;
1331 
1332 	if (zil_nocacheflush)
1333 		return;
1334 
1335 	mutex_enter(&lwb->lwb_vdev_lock);
1336 	for (i = 0; i < ndvas; i++) {
1337 		zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
1338 		if (avl_find(t, &zvsearch, &where) == NULL) {
1339 			zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
1340 			zv->zv_vdev = zvsearch.zv_vdev;
1341 			avl_insert(t, zv, where);
1342 		}
1343 	}
1344 	mutex_exit(&lwb->lwb_vdev_lock);
1345 }
1346 
1347 static void
1348 zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb)
1349 {
1350 	avl_tree_t *src = &lwb->lwb_vdev_tree;
1351 	avl_tree_t *dst = &nlwb->lwb_vdev_tree;
1352 	void *cookie = NULL;
1353 	zil_vdev_node_t *zv;
1354 
1355 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1356 	ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
1357 	ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1358 
1359 	/*
1360 	 * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does
1361 	 * not need the protection of lwb_vdev_lock (it will only be modified
1362 	 * while holding zilog->zl_lock) as its writes and those of its
1363 	 * children have all completed.  The younger 'nlwb' may be waiting on
1364 	 * future writes to additional vdevs.
1365 	 */
1366 	mutex_enter(&nlwb->lwb_vdev_lock);
1367 	/*
1368 	 * Tear down the 'lwb' vdev tree, ensuring that entries which do not
1369 	 * exist in 'nlwb' are moved to it, freeing any would-be duplicates.
1370 	 */
1371 	while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) {
1372 		avl_index_t where;
1373 
1374 		if (avl_find(dst, zv, &where) == NULL) {
1375 			avl_insert(dst, zv, where);
1376 		} else {
1377 			kmem_free(zv, sizeof (*zv));
1378 		}
1379 	}
1380 	mutex_exit(&nlwb->lwb_vdev_lock);
1381 }
1382 
1383 void
1384 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg)
1385 {
1386 	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1387 }
1388 
1389 /*
1390  * This function is a called after all vdevs associated with a given lwb
1391  * write have completed their DKIOCFLUSHWRITECACHE command; or as soon
1392  * as the lwb write completes, if "zil_nocacheflush" is set. Further,
1393  * all "previous" lwb's will have completed before this function is
1394  * called; i.e. this function is called for all previous lwbs before
1395  * it's called for "this" lwb (enforced via zio the dependencies
1396  * configured in zil_lwb_set_zio_dependency()).
1397  *
1398  * The intention is for this function to be called as soon as the
1399  * contents of an lwb are considered "stable" on disk, and will survive
1400  * any sudden loss of power. At this point, any threads waiting for the
1401  * lwb to reach this state are signalled, and the "waiter" structures
1402  * are marked "done".
1403  */
1404 static void
1405 zil_lwb_flush_vdevs_done(zio_t *zio)
1406 {
1407 	lwb_t *lwb = zio->io_private;
1408 	zilog_t *zilog = lwb->lwb_zilog;
1409 	zil_commit_waiter_t *zcw;
1410 	itx_t *itx;
1411 	uint64_t txg;
1412 	list_t itxs, waiters;
1413 
1414 	spa_config_exit(zilog->zl_spa, SCL_STATE, lwb);
1415 
1416 	list_create(&itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
1417 	list_create(&waiters, sizeof (zil_commit_waiter_t),
1418 	    offsetof(zil_commit_waiter_t, zcw_node));
1419 
1420 	hrtime_t t = gethrtime() - lwb->lwb_issued_timestamp;
1421 
1422 	mutex_enter(&zilog->zl_lock);
1423 
1424 	zilog->zl_last_lwb_latency = (zilog->zl_last_lwb_latency * 7 + t) / 8;
1425 
1426 	lwb->lwb_root_zio = NULL;
1427 
1428 	if (zilog->zl_last_lwb_opened == lwb) {
1429 		/*
1430 		 * Remember the highest committed log sequence number
1431 		 * for ztest. We only update this value when all the log
1432 		 * writes succeeded, because ztest wants to ASSERT that
1433 		 * it got the whole log chain.
1434 		 */
1435 		zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1436 	}
1437 
1438 	list_move_tail(&itxs, &lwb->lwb_itxs);
1439 	list_move_tail(&waiters, &lwb->lwb_waiters);
1440 	txg = lwb->lwb_issued_txg;
1441 
1442 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1443 	lwb->lwb_state = LWB_STATE_FLUSH_DONE;
1444 
1445 	mutex_exit(&zilog->zl_lock);
1446 
1447 	while ((itx = list_remove_head(&itxs)) != NULL)
1448 		zil_itx_destroy(itx);
1449 	list_destroy(&itxs);
1450 
1451 	while ((zcw = list_remove_head(&waiters)) != NULL) {
1452 		mutex_enter(&zcw->zcw_lock);
1453 
1454 		zcw->zcw_lwb = NULL;
1455 		/*
1456 		 * We expect any ZIO errors from child ZIOs to have been
1457 		 * propagated "up" to this specific LWB's root ZIO, in
1458 		 * order for this error handling to work correctly. This
1459 		 * includes ZIO errors from either this LWB's write or
1460 		 * flush, as well as any errors from other dependent LWBs
1461 		 * (e.g. a root LWB ZIO that might be a child of this LWB).
1462 		 *
1463 		 * With that said, it's important to note that LWB flush
1464 		 * errors are not propagated up to the LWB root ZIO.
1465 		 * This is incorrect behavior, and results in VDEV flush
1466 		 * errors not being handled correctly here. See the
1467 		 * comment above the call to "zio_flush" for details.
1468 		 */
1469 
1470 		zcw->zcw_zio_error = zio->io_error;
1471 
1472 		ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1473 		zcw->zcw_done = B_TRUE;
1474 		cv_broadcast(&zcw->zcw_cv);
1475 
1476 		mutex_exit(&zcw->zcw_lock);
1477 	}
1478 	list_destroy(&waiters);
1479 
1480 	mutex_enter(&zilog->zl_lwb_io_lock);
1481 	ASSERT3U(zilog->zl_lwb_inflight[txg & TXG_MASK], >, 0);
1482 	zilog->zl_lwb_inflight[txg & TXG_MASK]--;
1483 	if (zilog->zl_lwb_inflight[txg & TXG_MASK] == 0)
1484 		cv_broadcast(&zilog->zl_lwb_io_cv);
1485 	mutex_exit(&zilog->zl_lwb_io_lock);
1486 }
1487 
1488 /*
1489  * Wait for the completion of all issued write/flush of that txg provided.
1490  * It guarantees zil_lwb_flush_vdevs_done() is called and returned.
1491  */
1492 static void
1493 zil_lwb_flush_wait_all(zilog_t *zilog, uint64_t txg)
1494 {
1495 	ASSERT3U(txg, ==, spa_syncing_txg(zilog->zl_spa));
1496 
1497 	mutex_enter(&zilog->zl_lwb_io_lock);
1498 	while (zilog->zl_lwb_inflight[txg & TXG_MASK] > 0)
1499 		cv_wait(&zilog->zl_lwb_io_cv, &zilog->zl_lwb_io_lock);
1500 	mutex_exit(&zilog->zl_lwb_io_lock);
1501 
1502 #ifdef ZFS_DEBUG
1503 	mutex_enter(&zilog->zl_lock);
1504 	mutex_enter(&zilog->zl_lwb_io_lock);
1505 	lwb_t *lwb = list_head(&zilog->zl_lwb_list);
1506 	while (lwb != NULL) {
1507 		if (lwb->lwb_issued_txg <= txg) {
1508 			ASSERT(lwb->lwb_state != LWB_STATE_ISSUED);
1509 			ASSERT(lwb->lwb_state != LWB_STATE_WRITE_DONE);
1510 			IMPLY(lwb->lwb_issued_txg > 0,
1511 			    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
1512 		}
1513 		IMPLY(lwb->lwb_state == LWB_STATE_WRITE_DONE ||
1514 		    lwb->lwb_state == LWB_STATE_FLUSH_DONE,
1515 		    lwb->lwb_buf == NULL);
1516 		lwb = list_next(&zilog->zl_lwb_list, lwb);
1517 	}
1518 	mutex_exit(&zilog->zl_lwb_io_lock);
1519 	mutex_exit(&zilog->zl_lock);
1520 #endif
1521 }
1522 
1523 /*
1524  * This is called when an lwb's write zio completes. The callback's
1525  * purpose is to issue the DKIOCFLUSHWRITECACHE commands for the vdevs
1526  * in the lwb's lwb_vdev_tree. The tree will contain the vdevs involved
1527  * in writing out this specific lwb's data, and in the case that cache
1528  * flushes have been deferred, vdevs involved in writing the data for
1529  * previous lwbs. The writes corresponding to all the vdevs in the
1530  * lwb_vdev_tree will have completed by the time this is called, due to
1531  * the zio dependencies configured in zil_lwb_set_zio_dependency(),
1532  * which takes deferred flushes into account. The lwb will be "done"
1533  * once zil_lwb_flush_vdevs_done() is called, which occurs in the zio
1534  * completion callback for the lwb's root zio.
1535  */
1536 static void
1537 zil_lwb_write_done(zio_t *zio)
1538 {
1539 	lwb_t *lwb = zio->io_private;
1540 	spa_t *spa = zio->io_spa;
1541 	zilog_t *zilog = lwb->lwb_zilog;
1542 	avl_tree_t *t = &lwb->lwb_vdev_tree;
1543 	void *cookie = NULL;
1544 	zil_vdev_node_t *zv;
1545 	lwb_t *nlwb;
1546 
1547 	ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0);
1548 
1549 	abd_free(zio->io_abd);
1550 	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1551 	lwb->lwb_buf = NULL;
1552 
1553 	mutex_enter(&zilog->zl_lock);
1554 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED);
1555 	lwb->lwb_state = LWB_STATE_WRITE_DONE;
1556 	lwb->lwb_child_zio = NULL;
1557 	lwb->lwb_write_zio = NULL;
1558 	nlwb = list_next(&zilog->zl_lwb_list, lwb);
1559 	mutex_exit(&zilog->zl_lock);
1560 
1561 	if (avl_numnodes(t) == 0)
1562 		return;
1563 
1564 	/*
1565 	 * If there was an IO error, we're not going to call zio_flush()
1566 	 * on these vdevs, so we simply empty the tree and free the
1567 	 * nodes. We avoid calling zio_flush() since there isn't any
1568 	 * good reason for doing so, after the lwb block failed to be
1569 	 * written out.
1570 	 *
1571 	 * Additionally, we don't perform any further error handling at
1572 	 * this point (e.g. setting "zcw_zio_error" appropriately), as
1573 	 * we expect that to occur in "zil_lwb_flush_vdevs_done" (thus,
1574 	 * we expect any error seen here, to have been propagated to
1575 	 * that function).
1576 	 */
1577 	if (zio->io_error != 0) {
1578 		while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
1579 			kmem_free(zv, sizeof (*zv));
1580 		return;
1581 	}
1582 
1583 	/*
1584 	 * If this lwb does not have any threads waiting for it to
1585 	 * complete, we want to defer issuing the DKIOCFLUSHWRITECACHE
1586 	 * command to the vdevs written to by "this" lwb, and instead
1587 	 * rely on the "next" lwb to handle the DKIOCFLUSHWRITECACHE
1588 	 * command for those vdevs. Thus, we merge the vdev tree of
1589 	 * "this" lwb with the vdev tree of the "next" lwb in the list,
1590 	 * and assume the "next" lwb will handle flushing the vdevs (or
1591 	 * deferring the flush(s) again).
1592 	 *
1593 	 * This is a useful performance optimization, especially for
1594 	 * workloads with lots of async write activity and few sync
1595 	 * write and/or fsync activity, as it has the potential to
1596 	 * coalesce multiple flush commands to a vdev into one.
1597 	 */
1598 	if (list_is_empty(&lwb->lwb_waiters) && nlwb != NULL) {
1599 		zil_lwb_flush_defer(lwb, nlwb);
1600 		ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
1601 		return;
1602 	}
1603 
1604 	while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
1605 		vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
1606 		if (vd != NULL && !vd->vdev_nowritecache) {
1607 			/*
1608 			 * The "ZIO_FLAG_DONT_PROPAGATE" is currently
1609 			 * always used within "zio_flush". This means,
1610 			 * any errors when flushing the vdev(s), will
1611 			 * (unfortunately) not be handled correctly,
1612 			 * since these "zio_flush" errors will not be
1613 			 * propagated up to "zil_lwb_flush_vdevs_done".
1614 			 */
1615 			zio_flush(lwb->lwb_root_zio, vd);
1616 		}
1617 		kmem_free(zv, sizeof (*zv));
1618 	}
1619 }
1620 
1621 /*
1622  * Build the zio dependency chain, which is used to preserve the ordering of
1623  * lwb completions that is required by the semantics of the ZIL. Each new lwb
1624  * zio becomes a parent of the previous lwb zio, such that the new lwb's zio
1625  * cannot complete until the previous lwb's zio completes.
1626  *
1627  * This is required by the semantics of zil_commit(): the commit waiters
1628  * attached to the lwbs will be woken in the lwb zio's completion callback,
1629  * so this zio dependency graph ensures the waiters are woken in the correct
1630  * order (the same order the lwbs were created).
1631  */
1632 static void
1633 zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb)
1634 {
1635 	ASSERT(MUTEX_HELD(&zilog->zl_lock));
1636 
1637 	lwb_t *prev_lwb = list_prev(&zilog->zl_lwb_list, lwb);
1638 	if (prev_lwb == NULL ||
1639 	    prev_lwb->lwb_state == LWB_STATE_FLUSH_DONE)
1640 		return;
1641 
1642 	/*
1643 	 * If the previous lwb's write hasn't already completed, we also want
1644 	 * to order the completion of the lwb write zios (above, we only order
1645 	 * the completion of the lwb root zios). This is required because of
1646 	 * how we can defer the DKIOCFLUSHWRITECACHE commands for each lwb.
1647 	 *
1648 	 * When the DKIOCFLUSHWRITECACHE commands are deferred, the previous
1649 	 * lwb will rely on this lwb to flush the vdevs written to by that
1650 	 * previous lwb. Thus, we need to ensure this lwb doesn't issue the
1651 	 * flush until after the previous lwb's write completes. We ensure
1652 	 * this ordering by setting the zio parent/child relationship here.
1653 	 *
1654 	 * Without this relationship on the lwb's write zio, it's possible
1655 	 * for this lwb's write to complete prior to the previous lwb's write
1656 	 * completing; and thus, the vdevs for the previous lwb would be
1657 	 * flushed prior to that lwb's data being written to those vdevs (the
1658 	 * vdevs are flushed in the lwb write zio's completion handler,
1659 	 * zil_lwb_write_done()).
1660 	 */
1661 	if (prev_lwb->lwb_state == LWB_STATE_ISSUED) {
1662 		ASSERT3P(prev_lwb->lwb_write_zio, !=, NULL);
1663 		zio_add_child(lwb->lwb_write_zio, prev_lwb->lwb_write_zio);
1664 	} else {
1665 		ASSERT3S(prev_lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1666 	}
1667 
1668 	ASSERT3P(prev_lwb->lwb_root_zio, !=, NULL);
1669 	zio_add_child(lwb->lwb_root_zio, prev_lwb->lwb_root_zio);
1670 }
1671 
1672 
1673 /*
1674  * This function's purpose is to "open" an lwb such that it is ready to
1675  * accept new itxs being committed to it. This function is idempotent; if
1676  * the passed in lwb has already been opened, it is essentially a no-op.
1677  */
1678 static void
1679 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb)
1680 {
1681 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1682 
1683 	if (lwb->lwb_state != LWB_STATE_NEW) {
1684 		ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1685 		return;
1686 	}
1687 
1688 	mutex_enter(&zilog->zl_lock);
1689 	lwb->lwb_state = LWB_STATE_OPENED;
1690 	zilog->zl_last_lwb_opened = lwb;
1691 	mutex_exit(&zilog->zl_lock);
1692 }
1693 
1694 /*
1695  * Define a limited set of intent log block sizes.
1696  *
1697  * These must be a multiple of 4KB. Note only the amount used (again
1698  * aligned to 4KB) actually gets written. However, we can't always just
1699  * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
1700  */
1701 static const struct {
1702 	uint64_t	limit;
1703 	uint64_t	blksz;
1704 } zil_block_buckets[] = {
1705 	{ 4096,		4096 },			/* non TX_WRITE */
1706 	{ 8192 + 4096,	8192 + 4096 },		/* database */
1707 	{ 32768 + 4096,	32768 + 4096 },		/* NFS writes */
1708 	{ 65536 + 4096,	65536 + 4096 },		/* 64KB writes */
1709 	{ 131072,	131072 },		/* < 128KB writes */
1710 	{ 131072 +4096,	65536 + 4096 },		/* 128KB writes */
1711 	{ UINT64_MAX,	SPA_OLD_MAXBLOCKSIZE},	/* > 128KB writes */
1712 };
1713 
1714 /*
1715  * Maximum block size used by the ZIL.  This is picked up when the ZIL is
1716  * initialized.  Otherwise this should not be used directly; see
1717  * zl_max_block_size instead.
1718  */
1719 static uint_t zil_maxblocksize = SPA_OLD_MAXBLOCKSIZE;
1720 
1721 /*
1722  * Close the log block for being issued and allocate the next one.
1723  * Has to be called under zl_issuer_lock to chain more lwbs.
1724  */
1725 static lwb_t *
1726 zil_lwb_write_close(zilog_t *zilog, lwb_t *lwb, lwb_state_t state)
1727 {
1728 	int i;
1729 
1730 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1731 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1732 	lwb->lwb_state = LWB_STATE_CLOSED;
1733 
1734 	/*
1735 	 * If there was an allocation failure then returned NULL will trigger
1736 	 * zil_commit_writer_stall() at the caller.  This is inherently racy,
1737 	 * since allocation may not have happened yet.
1738 	 */
1739 	if (lwb->lwb_error != 0)
1740 		return (NULL);
1741 
1742 	/*
1743 	 * Log blocks are pre-allocated. Here we select the size of the next
1744 	 * block, based on size used in the last block.
1745 	 * - first find the smallest bucket that will fit the block from a
1746 	 *   limited set of block sizes. This is because it's faster to write
1747 	 *   blocks allocated from the same metaslab as they are adjacent or
1748 	 *   close.
1749 	 * - next find the maximum from the new suggested size and an array of
1750 	 *   previous sizes. This lessens a picket fence effect of wrongly
1751 	 *   guessing the size if we have a stream of say 2k, 64k, 2k, 64k
1752 	 *   requests.
1753 	 *
1754 	 * Note we only write what is used, but we can't just allocate
1755 	 * the maximum block size because we can exhaust the available
1756 	 * pool log space.
1757 	 */
1758 	uint64_t zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1759 	for (i = 0; zil_blksz > zil_block_buckets[i].limit; i++)
1760 		continue;
1761 	zil_blksz = MIN(zil_block_buckets[i].blksz, zilog->zl_max_block_size);
1762 	zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1763 	for (i = 0; i < ZIL_PREV_BLKS; i++)
1764 		zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1765 	DTRACE_PROBE3(zil__block__size, zilog_t *, zilog,
1766 	    uint64_t, zil_blksz,
1767 	    uint64_t, zilog->zl_prev_blks[zilog->zl_prev_rotor]);
1768 	zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1769 
1770 	return (zil_alloc_lwb(zilog, zil_blksz, NULL, 0, 0, state));
1771 }
1772 
1773 /*
1774  * Finalize previously closed block and issue the write zio.
1775  */
1776 static void
1777 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb)
1778 {
1779 	spa_t *spa = zilog->zl_spa;
1780 	zil_chain_t *zilc;
1781 	boolean_t slog;
1782 	zbookmark_phys_t zb;
1783 	zio_priority_t prio;
1784 	int error;
1785 
1786 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_CLOSED);
1787 
1788 	/* Actually fill the lwb with the data. */
1789 	for (itx_t *itx = list_head(&lwb->lwb_itxs); itx;
1790 	    itx = list_next(&lwb->lwb_itxs, itx))
1791 		zil_lwb_commit(zilog, lwb, itx);
1792 	lwb->lwb_nused = lwb->lwb_nfilled;
1793 
1794 	lwb->lwb_root_zio = zio_root(spa, zil_lwb_flush_vdevs_done, lwb,
1795 	    ZIO_FLAG_CANFAIL);
1796 
1797 	/*
1798 	 * The lwb is now ready to be issued, but it can be only if it already
1799 	 * got its block pointer allocated or the allocation has failed.
1800 	 * Otherwise leave it as-is, relying on some other thread to issue it
1801 	 * after allocating its block pointer via calling zil_lwb_write_issue()
1802 	 * for the previous lwb(s) in the chain.
1803 	 */
1804 	mutex_enter(&zilog->zl_lock);
1805 	lwb->lwb_state = LWB_STATE_READY;
1806 	if (BP_IS_HOLE(&lwb->lwb_blk) && lwb->lwb_error == 0) {
1807 		mutex_exit(&zilog->zl_lock);
1808 		return;
1809 	}
1810 	mutex_exit(&zilog->zl_lock);
1811 
1812 next_lwb:
1813 	if (lwb->lwb_slim)
1814 		zilc = (zil_chain_t *)lwb->lwb_buf;
1815 	else
1816 		zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_nmax);
1817 	int wsz = lwb->lwb_sz;
1818 	if (lwb->lwb_error == 0) {
1819 		abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf, lwb->lwb_sz);
1820 		if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk)
1821 			prio = ZIO_PRIORITY_SYNC_WRITE;
1822 		else
1823 			prio = ZIO_PRIORITY_ASYNC_WRITE;
1824 		SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1825 		    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
1826 		    lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
1827 		lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio, spa, 0,
1828 		    &lwb->lwb_blk, lwb_abd, lwb->lwb_sz, zil_lwb_write_done,
1829 		    lwb, prio, ZIO_FLAG_CANFAIL, &zb);
1830 		zil_lwb_add_block(lwb, &lwb->lwb_blk);
1831 
1832 		if (lwb->lwb_slim) {
1833 			/* For Slim ZIL only write what is used. */
1834 			wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ,
1835 			    int);
1836 			ASSERT3S(wsz, <=, lwb->lwb_sz);
1837 			zio_shrink(lwb->lwb_write_zio, wsz);
1838 			wsz = lwb->lwb_write_zio->io_size;
1839 		}
1840 		memset(lwb->lwb_buf + lwb->lwb_nused, 0, wsz - lwb->lwb_nused);
1841 		zilc->zc_pad = 0;
1842 		zilc->zc_nused = lwb->lwb_nused;
1843 		zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1844 	} else {
1845 		/*
1846 		 * We can't write the lwb if there was an allocation failure,
1847 		 * so create a null zio instead just to maintain dependencies.
1848 		 */
1849 		lwb->lwb_write_zio = zio_null(lwb->lwb_root_zio, spa, NULL,
1850 		    zil_lwb_write_done, lwb, ZIO_FLAG_CANFAIL);
1851 		lwb->lwb_write_zio->io_error = lwb->lwb_error;
1852 	}
1853 	if (lwb->lwb_child_zio)
1854 		zio_add_child(lwb->lwb_write_zio, lwb->lwb_child_zio);
1855 
1856 	/*
1857 	 * Open transaction to allocate the next block pointer.
1858 	 */
1859 	dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
1860 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));
1861 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1862 	uint64_t txg = dmu_tx_get_txg(tx);
1863 
1864 	/*
1865 	 * Allocate next the block pointer unless we are already in error.
1866 	 */
1867 	lwb_t *nlwb = list_next(&zilog->zl_lwb_list, lwb);
1868 	blkptr_t *bp = &zilc->zc_next_blk;
1869 	BP_ZERO(bp);
1870 	error = lwb->lwb_error;
1871 	if (error == 0) {
1872 		error = zio_alloc_zil(spa, zilog->zl_os, txg, bp, nlwb->lwb_sz,
1873 		    &slog);
1874 	}
1875 	if (error == 0) {
1876 		ASSERT3U(bp->blk_birth, ==, txg);
1877 		BP_SET_CHECKSUM(bp, nlwb->lwb_slim ? ZIO_CHECKSUM_ZILOG2 :
1878 		    ZIO_CHECKSUM_ZILOG);
1879 		bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1880 		bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1881 	}
1882 
1883 	/*
1884 	 * Reduce TXG open time by incrementing inflight counter and committing
1885 	 * the transaciton.  zil_sync() will wait for it to return to zero.
1886 	 */
1887 	mutex_enter(&zilog->zl_lwb_io_lock);
1888 	lwb->lwb_issued_txg = txg;
1889 	zilog->zl_lwb_inflight[txg & TXG_MASK]++;
1890 	zilog->zl_lwb_max_issued_txg = MAX(txg, zilog->zl_lwb_max_issued_txg);
1891 	mutex_exit(&zilog->zl_lwb_io_lock);
1892 	dmu_tx_commit(tx);
1893 
1894 	spa_config_enter(spa, SCL_STATE, lwb, RW_READER);
1895 
1896 	/*
1897 	 * We've completed all potentially blocking operations.  Update the
1898 	 * nlwb and allow it proceed without possible lock order reversals.
1899 	 */
1900 	mutex_enter(&zilog->zl_lock);
1901 	zil_lwb_set_zio_dependency(zilog, lwb);
1902 	lwb->lwb_state = LWB_STATE_ISSUED;
1903 
1904 	if (nlwb) {
1905 		nlwb->lwb_blk = *bp;
1906 		nlwb->lwb_error = error;
1907 		nlwb->lwb_slog = slog;
1908 		nlwb->lwb_alloc_txg = txg;
1909 		if (nlwb->lwb_state != LWB_STATE_READY)
1910 			nlwb = NULL;
1911 	}
1912 	mutex_exit(&zilog->zl_lock);
1913 
1914 	if (lwb->lwb_slog) {
1915 		ZIL_STAT_BUMP(zilog, zil_itx_metaslab_slog_count);
1916 		ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_bytes,
1917 		    lwb->lwb_nused);
1918 		ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_write,
1919 		    wsz);
1920 		ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_alloc,
1921 		    BP_GET_LSIZE(&lwb->lwb_blk));
1922 	} else {
1923 		ZIL_STAT_BUMP(zilog, zil_itx_metaslab_normal_count);
1924 		ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_bytes,
1925 		    lwb->lwb_nused);
1926 		ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_write,
1927 		    wsz);
1928 		ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_alloc,
1929 		    BP_GET_LSIZE(&lwb->lwb_blk));
1930 	}
1931 	lwb->lwb_issued_timestamp = gethrtime();
1932 	zio_nowait(lwb->lwb_root_zio);
1933 	zio_nowait(lwb->lwb_write_zio);
1934 	if (lwb->lwb_child_zio)
1935 		zio_nowait(lwb->lwb_child_zio);
1936 
1937 	/*
1938 	 * If nlwb was ready when we gave it the block pointer,
1939 	 * it is on us to issue it and possibly following ones.
1940 	 */
1941 	lwb = nlwb;
1942 	if (lwb)
1943 		goto next_lwb;
1944 }
1945 
1946 /*
1947  * Maximum amount of data that can be put into single log block.
1948  */
1949 uint64_t
1950 zil_max_log_data(zilog_t *zilog, size_t hdrsize)
1951 {
1952 	return (zilog->zl_max_block_size - sizeof (zil_chain_t) - hdrsize);
1953 }
1954 
1955 /*
1956  * Maximum amount of log space we agree to waste to reduce number of
1957  * WR_NEED_COPY chunks to reduce zl_get_data() overhead (~12%).
1958  */
1959 static inline uint64_t
1960 zil_max_waste_space(zilog_t *zilog)
1961 {
1962 	return (zil_max_log_data(zilog, sizeof (lr_write_t)) / 8);
1963 }
1964 
1965 /*
1966  * Maximum amount of write data for WR_COPIED.  For correctness, consumers
1967  * must fall back to WR_NEED_COPY if we can't fit the entire record into one
1968  * maximum sized log block, because each WR_COPIED record must fit in a
1969  * single log block.  For space efficiency, we want to fit two records into a
1970  * max-sized log block.
1971  */
1972 uint64_t
1973 zil_max_copied_data(zilog_t *zilog)
1974 {
1975 	return ((zilog->zl_max_block_size - sizeof (zil_chain_t)) / 2 -
1976 	    sizeof (lr_write_t));
1977 }
1978 
1979 /*
1980  * Estimate space needed in the lwb for the itx.  Allocate more lwbs or
1981  * split the itx as needed, but don't touch the actual transaction data.
1982  * Has to be called under zl_issuer_lock to call zil_lwb_write_close()
1983  * to chain more lwbs.
1984  */
1985 static lwb_t *
1986 zil_lwb_assign(zilog_t *zilog, lwb_t *lwb, itx_t *itx, list_t *ilwbs)
1987 {
1988 	itx_t *citx;
1989 	lr_t *lr, *clr;
1990 	lr_write_t *lrw;
1991 	uint64_t dlen, dnow, lwb_sp, reclen, max_log_data;
1992 
1993 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1994 	ASSERT3P(lwb, !=, NULL);
1995 	ASSERT3P(lwb->lwb_buf, !=, NULL);
1996 
1997 	zil_lwb_write_open(zilog, lwb);
1998 
1999 	lr = &itx->itx_lr;
2000 	lrw = (lr_write_t *)lr;
2001 
2002 	/*
2003 	 * A commit itx doesn't represent any on-disk state; instead
2004 	 * it's simply used as a place holder on the commit list, and
2005 	 * provides a mechanism for attaching a "commit waiter" onto the
2006 	 * correct lwb (such that the waiter can be signalled upon
2007 	 * completion of that lwb). Thus, we don't process this itx's
2008 	 * log record if it's a commit itx (these itx's don't have log
2009 	 * records), and instead link the itx's waiter onto the lwb's
2010 	 * list of waiters.
2011 	 *
2012 	 * For more details, see the comment above zil_commit().
2013 	 */
2014 	if (lr->lrc_txtype == TX_COMMIT) {
2015 		zil_commit_waiter_link_lwb(itx->itx_private, lwb);
2016 		list_insert_tail(&lwb->lwb_itxs, itx);
2017 		return (lwb);
2018 	}
2019 
2020 	if (lr->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
2021 		dlen = P2ROUNDUP_TYPED(
2022 		    lrw->lr_length, sizeof (uint64_t), uint64_t);
2023 	} else {
2024 		dlen = 0;
2025 	}
2026 	reclen = lr->lrc_reclen;
2027 	zilog->zl_cur_used += (reclen + dlen);
2028 
2029 cont:
2030 	/*
2031 	 * If this record won't fit in the current log block, start a new one.
2032 	 * For WR_NEED_COPY optimize layout for minimal number of chunks.
2033 	 */
2034 	lwb_sp = lwb->lwb_nmax - lwb->lwb_nused;
2035 	max_log_data = zil_max_log_data(zilog, sizeof (lr_write_t));
2036 	if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
2037 	    lwb_sp < zil_max_waste_space(zilog) &&
2038 	    (dlen % max_log_data == 0 ||
2039 	    lwb_sp < reclen + dlen % max_log_data))) {
2040 		list_insert_tail(ilwbs, lwb);
2041 		lwb = zil_lwb_write_close(zilog, lwb, LWB_STATE_OPENED);
2042 		if (lwb == NULL)
2043 			return (NULL);
2044 		lwb_sp = lwb->lwb_nmax - lwb->lwb_nused;
2045 
2046 		/*
2047 		 * There must be enough space in the new, empty log block to
2048 		 * hold reclen.  For WR_COPIED, we need to fit the whole
2049 		 * record in one block, and reclen is the header size + the
2050 		 * data size. For WR_NEED_COPY, we can create multiple
2051 		 * records, splitting the data into multiple blocks, so we
2052 		 * only need to fit one word of data per block; in this case
2053 		 * reclen is just the header size (no data).
2054 		 */
2055 		ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
2056 	}
2057 
2058 	dnow = MIN(dlen, lwb_sp - reclen);
2059 	if (dlen > dnow) {
2060 		ASSERT3U(lr->lrc_txtype, ==, TX_WRITE);
2061 		ASSERT3U(itx->itx_wr_state, ==, WR_NEED_COPY);
2062 		citx = zil_itx_clone(itx);
2063 		clr = &citx->itx_lr;
2064 		lr_write_t *clrw = (lr_write_t *)clr;
2065 		clrw->lr_length = dnow;
2066 		lrw->lr_offset += dnow;
2067 		lrw->lr_length -= dnow;
2068 	} else {
2069 		citx = itx;
2070 		clr = lr;
2071 	}
2072 
2073 	/*
2074 	 * We're actually making an entry, so update lrc_seq to be the
2075 	 * log record sequence number.  Note that this is generally not
2076 	 * equal to the itx sequence number because not all transactions
2077 	 * are synchronous, and sometimes spa_sync() gets there first.
2078 	 */
2079 	clr->lrc_seq = ++zilog->zl_lr_seq;
2080 
2081 	lwb->lwb_nused += reclen + dnow;
2082 	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_nmax);
2083 	ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
2084 
2085 	zil_lwb_add_txg(lwb, lr->lrc_txg);
2086 	list_insert_tail(&lwb->lwb_itxs, citx);
2087 
2088 	dlen -= dnow;
2089 	if (dlen > 0) {
2090 		zilog->zl_cur_used += reclen;
2091 		goto cont;
2092 	}
2093 
2094 	if (lr->lrc_txtype == TX_WRITE &&
2095 	    lr->lrc_txg > spa_freeze_txg(zilog->zl_spa))
2096 		txg_wait_synced(zilog->zl_dmu_pool, lr->lrc_txg);
2097 
2098 	return (lwb);
2099 }
2100 
2101 /*
2102  * Fill the actual transaction data into the lwb, following zil_lwb_assign().
2103  * Does not require locking.
2104  */
2105 static void
2106 zil_lwb_commit(zilog_t *zilog, lwb_t *lwb, itx_t *itx)
2107 {
2108 	lr_t *lr, *lrb;
2109 	lr_write_t *lrw, *lrwb;
2110 	char *lr_buf;
2111 	uint64_t dlen, reclen;
2112 
2113 	lr = &itx->itx_lr;
2114 	lrw = (lr_write_t *)lr;
2115 
2116 	if (lr->lrc_txtype == TX_COMMIT)
2117 		return;
2118 
2119 	if (lr->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
2120 		dlen = P2ROUNDUP_TYPED(
2121 		    lrw->lr_length, sizeof (uint64_t), uint64_t);
2122 	} else {
2123 		dlen = 0;
2124 	}
2125 	reclen = lr->lrc_reclen;
2126 	ASSERT3U(reclen + dlen, <=, lwb->lwb_nused - lwb->lwb_nfilled);
2127 
2128 	lr_buf = lwb->lwb_buf + lwb->lwb_nfilled;
2129 	memcpy(lr_buf, lr, reclen);
2130 	lrb = (lr_t *)lr_buf;		/* Like lr, but inside lwb. */
2131 	lrwb = (lr_write_t *)lrb;	/* Like lrw, but inside lwb. */
2132 
2133 	ZIL_STAT_BUMP(zilog, zil_itx_count);
2134 
2135 	/*
2136 	 * If it's a write, fetch the data or get its blkptr as appropriate.
2137 	 */
2138 	if (lr->lrc_txtype == TX_WRITE) {
2139 		if (itx->itx_wr_state == WR_COPIED) {
2140 			ZIL_STAT_BUMP(zilog, zil_itx_copied_count);
2141 			ZIL_STAT_INCR(zilog, zil_itx_copied_bytes,
2142 			    lrw->lr_length);
2143 		} else {
2144 			char *dbuf;
2145 			int error;
2146 
2147 			if (itx->itx_wr_state == WR_NEED_COPY) {
2148 				dbuf = lr_buf + reclen;
2149 				lrb->lrc_reclen += dlen;
2150 				ZIL_STAT_BUMP(zilog, zil_itx_needcopy_count);
2151 				ZIL_STAT_INCR(zilog, zil_itx_needcopy_bytes,
2152 				    dlen);
2153 			} else {
2154 				ASSERT3S(itx->itx_wr_state, ==, WR_INDIRECT);
2155 				dbuf = NULL;
2156 				ZIL_STAT_BUMP(zilog, zil_itx_indirect_count);
2157 				ZIL_STAT_INCR(zilog, zil_itx_indirect_bytes,
2158 				    lrw->lr_length);
2159 				if (lwb->lwb_child_zio == NULL) {
2160 					lwb->lwb_child_zio = zio_root(
2161 					    zilog->zl_spa, NULL, NULL,
2162 					    ZIO_FLAG_CANFAIL);
2163 				}
2164 			}
2165 
2166 			/*
2167 			 * The "lwb_child_zio" we pass in will become a child of
2168 			 * "lwb_write_zio", when one is created, so one will be
2169 			 * a parent of any zio's created by the "zl_get_data".
2170 			 * This way "lwb_write_zio" will first wait for children
2171 			 * block pointers before own writing, and then for their
2172 			 * writing completion before the vdev cache flushing.
2173 			 */
2174 			error = zilog->zl_get_data(itx->itx_private,
2175 			    itx->itx_gen, lrwb, dbuf, lwb,
2176 			    lwb->lwb_child_zio);
2177 			if (dbuf != NULL && error == 0) {
2178 				/* Zero any padding bytes in the last block. */
2179 				memset((char *)dbuf + lrwb->lr_length, 0,
2180 				    dlen - lrwb->lr_length);
2181 			}
2182 
2183 			/*
2184 			 * Typically, the only return values we should see from
2185 			 * ->zl_get_data() are 0, EIO, ENOENT, EEXIST or
2186 			 *  EALREADY. However, it is also possible to see other
2187 			 *  error values such as ENOSPC or EINVAL from
2188 			 *  dmu_read() -> dnode_hold() -> dnode_hold_impl() or
2189 			 *  ENXIO as well as a multitude of others from the
2190 			 *  block layer through dmu_buf_hold() -> dbuf_read()
2191 			 *  -> zio_wait(), as well as through dmu_read() ->
2192 			 *  dnode_hold() -> dnode_hold_impl() -> dbuf_read() ->
2193 			 *  zio_wait(). When these errors happen, we can assume
2194 			 *  that neither an immediate write nor an indirect
2195 			 *  write occurred, so we need to fall back to
2196 			 *  txg_wait_synced(). This is unusual, so we print to
2197 			 *  dmesg whenever one of these errors occurs.
2198 			 */
2199 			switch (error) {
2200 			case 0:
2201 				break;
2202 			default:
2203 				cmn_err(CE_WARN, "zil_lwb_commit() received "
2204 				    "unexpected error %d from ->zl_get_data()"
2205 				    ". Falling back to txg_wait_synced().",
2206 				    error);
2207 				zfs_fallthrough;
2208 			case EIO:
2209 				txg_wait_synced(zilog->zl_dmu_pool,
2210 				    lr->lrc_txg);
2211 				zfs_fallthrough;
2212 			case ENOENT:
2213 				zfs_fallthrough;
2214 			case EEXIST:
2215 				zfs_fallthrough;
2216 			case EALREADY:
2217 				return;
2218 			}
2219 		}
2220 	}
2221 
2222 	lwb->lwb_nfilled += reclen + dlen;
2223 	ASSERT3S(lwb->lwb_nfilled, <=, lwb->lwb_nused);
2224 	ASSERT0(P2PHASE(lwb->lwb_nfilled, sizeof (uint64_t)));
2225 }
2226 
2227 itx_t *
2228 zil_itx_create(uint64_t txtype, size_t olrsize)
2229 {
2230 	size_t itxsize, lrsize;
2231 	itx_t *itx;
2232 
2233 	lrsize = P2ROUNDUP_TYPED(olrsize, sizeof (uint64_t), size_t);
2234 	itxsize = offsetof(itx_t, itx_lr) + lrsize;
2235 
2236 	itx = zio_data_buf_alloc(itxsize);
2237 	itx->itx_lr.lrc_txtype = txtype;
2238 	itx->itx_lr.lrc_reclen = lrsize;
2239 	itx->itx_lr.lrc_seq = 0;	/* defensive */
2240 	memset((char *)&itx->itx_lr + olrsize, 0, lrsize - olrsize);
2241 	itx->itx_sync = B_TRUE;		/* default is synchronous */
2242 	itx->itx_callback = NULL;
2243 	itx->itx_callback_data = NULL;
2244 	itx->itx_size = itxsize;
2245 
2246 	return (itx);
2247 }
2248 
2249 static itx_t *
2250 zil_itx_clone(itx_t *oitx)
2251 {
2252 	itx_t *itx = zio_data_buf_alloc(oitx->itx_size);
2253 	memcpy(itx, oitx, oitx->itx_size);
2254 	itx->itx_callback = NULL;
2255 	itx->itx_callback_data = NULL;
2256 	return (itx);
2257 }
2258 
2259 void
2260 zil_itx_destroy(itx_t *itx)
2261 {
2262 	IMPLY(itx->itx_lr.lrc_txtype == TX_COMMIT, itx->itx_callback == NULL);
2263 	IMPLY(itx->itx_callback != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
2264 
2265 	if (itx->itx_callback != NULL)
2266 		itx->itx_callback(itx->itx_callback_data);
2267 
2268 	zio_data_buf_free(itx, itx->itx_size);
2269 }
2270 
2271 /*
2272  * Free up the sync and async itxs. The itxs_t has already been detached
2273  * so no locks are needed.
2274  */
2275 static void
2276 zil_itxg_clean(void *arg)
2277 {
2278 	itx_t *itx;
2279 	list_t *list;
2280 	avl_tree_t *t;
2281 	void *cookie;
2282 	itxs_t *itxs = arg;
2283 	itx_async_node_t *ian;
2284 
2285 	list = &itxs->i_sync_list;
2286 	while ((itx = list_remove_head(list)) != NULL) {
2287 		/*
2288 		 * In the general case, commit itxs will not be found
2289 		 * here, as they'll be committed to an lwb via
2290 		 * zil_lwb_assign(), and free'd in that function. Having
2291 		 * said that, it is still possible for commit itxs to be
2292 		 * found here, due to the following race:
2293 		 *
2294 		 *	- a thread calls zil_commit() which assigns the
2295 		 *	  commit itx to a per-txg i_sync_list
2296 		 *	- zil_itxg_clean() is called (e.g. via spa_sync())
2297 		 *	  while the waiter is still on the i_sync_list
2298 		 *
2299 		 * There's nothing to prevent syncing the txg while the
2300 		 * waiter is on the i_sync_list. This normally doesn't
2301 		 * happen because spa_sync() is slower than zil_commit(),
2302 		 * but if zil_commit() calls txg_wait_synced() (e.g.
2303 		 * because zil_create() or zil_commit_writer_stall() is
2304 		 * called) we will hit this case.
2305 		 */
2306 		if (itx->itx_lr.lrc_txtype == TX_COMMIT)
2307 			zil_commit_waiter_skip(itx->itx_private);
2308 
2309 		zil_itx_destroy(itx);
2310 	}
2311 
2312 	cookie = NULL;
2313 	t = &itxs->i_async_tree;
2314 	while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
2315 		list = &ian->ia_list;
2316 		while ((itx = list_remove_head(list)) != NULL) {
2317 			/* commit itxs should never be on the async lists. */
2318 			ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
2319 			zil_itx_destroy(itx);
2320 		}
2321 		list_destroy(list);
2322 		kmem_free(ian, sizeof (itx_async_node_t));
2323 	}
2324 	avl_destroy(t);
2325 
2326 	kmem_free(itxs, sizeof (itxs_t));
2327 }
2328 
2329 static int
2330 zil_aitx_compare(const void *x1, const void *x2)
2331 {
2332 	const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
2333 	const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
2334 
2335 	return (TREE_CMP(o1, o2));
2336 }
2337 
2338 /*
2339  * Remove all async itx with the given oid.
2340  */
2341 void
2342 zil_remove_async(zilog_t *zilog, uint64_t oid)
2343 {
2344 	uint64_t otxg, txg;
2345 	itx_async_node_t *ian;
2346 	avl_tree_t *t;
2347 	avl_index_t where;
2348 	list_t clean_list;
2349 	itx_t *itx;
2350 
2351 	ASSERT(oid != 0);
2352 	list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
2353 
2354 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2355 		otxg = ZILTEST_TXG;
2356 	else
2357 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2358 
2359 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2360 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2361 
2362 		mutex_enter(&itxg->itxg_lock);
2363 		if (itxg->itxg_txg != txg) {
2364 			mutex_exit(&itxg->itxg_lock);
2365 			continue;
2366 		}
2367 
2368 		/*
2369 		 * Locate the object node and append its list.
2370 		 */
2371 		t = &itxg->itxg_itxs->i_async_tree;
2372 		ian = avl_find(t, &oid, &where);
2373 		if (ian != NULL)
2374 			list_move_tail(&clean_list, &ian->ia_list);
2375 		mutex_exit(&itxg->itxg_lock);
2376 	}
2377 	while ((itx = list_remove_head(&clean_list)) != NULL) {
2378 		/* commit itxs should never be on the async lists. */
2379 		ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
2380 		zil_itx_destroy(itx);
2381 	}
2382 	list_destroy(&clean_list);
2383 }
2384 
2385 void
2386 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
2387 {
2388 	uint64_t txg;
2389 	itxg_t *itxg;
2390 	itxs_t *itxs, *clean = NULL;
2391 
2392 	/*
2393 	 * Ensure the data of a renamed file is committed before the rename.
2394 	 */
2395 	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
2396 		zil_async_to_sync(zilog, itx->itx_oid);
2397 
2398 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
2399 		txg = ZILTEST_TXG;
2400 	else
2401 		txg = dmu_tx_get_txg(tx);
2402 
2403 	itxg = &zilog->zl_itxg[txg & TXG_MASK];
2404 	mutex_enter(&itxg->itxg_lock);
2405 	itxs = itxg->itxg_itxs;
2406 	if (itxg->itxg_txg != txg) {
2407 		if (itxs != NULL) {
2408 			/*
2409 			 * The zil_clean callback hasn't got around to cleaning
2410 			 * this itxg. Save the itxs for release below.
2411 			 * This should be rare.
2412 			 */
2413 			zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
2414 			    "txg %llu", (u_longlong_t)itxg->itxg_txg);
2415 			clean = itxg->itxg_itxs;
2416 		}
2417 		itxg->itxg_txg = txg;
2418 		itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t),
2419 		    KM_SLEEP);
2420 
2421 		list_create(&itxs->i_sync_list, sizeof (itx_t),
2422 		    offsetof(itx_t, itx_node));
2423 		avl_create(&itxs->i_async_tree, zil_aitx_compare,
2424 		    sizeof (itx_async_node_t),
2425 		    offsetof(itx_async_node_t, ia_node));
2426 	}
2427 	if (itx->itx_sync) {
2428 		list_insert_tail(&itxs->i_sync_list, itx);
2429 	} else {
2430 		avl_tree_t *t = &itxs->i_async_tree;
2431 		uint64_t foid =
2432 		    LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid);
2433 		itx_async_node_t *ian;
2434 		avl_index_t where;
2435 
2436 		ian = avl_find(t, &foid, &where);
2437 		if (ian == NULL) {
2438 			ian = kmem_alloc(sizeof (itx_async_node_t),
2439 			    KM_SLEEP);
2440 			list_create(&ian->ia_list, sizeof (itx_t),
2441 			    offsetof(itx_t, itx_node));
2442 			ian->ia_foid = foid;
2443 			avl_insert(t, ian, where);
2444 		}
2445 		list_insert_tail(&ian->ia_list, itx);
2446 	}
2447 
2448 	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
2449 
2450 	/*
2451 	 * We don't want to dirty the ZIL using ZILTEST_TXG, because
2452 	 * zil_clean() will never be called using ZILTEST_TXG. Thus, we
2453 	 * need to be careful to always dirty the ZIL using the "real"
2454 	 * TXG (not itxg_txg) even when the SPA is frozen.
2455 	 */
2456 	zilog_dirty(zilog, dmu_tx_get_txg(tx));
2457 	mutex_exit(&itxg->itxg_lock);
2458 
2459 	/* Release the old itxs now we've dropped the lock */
2460 	if (clean != NULL)
2461 		zil_itxg_clean(clean);
2462 }
2463 
2464 /*
2465  * If there are any in-memory intent log transactions which have now been
2466  * synced then start up a taskq to free them. We should only do this after we
2467  * have written out the uberblocks (i.e. txg has been committed) so that
2468  * don't inadvertently clean out in-memory log records that would be required
2469  * by zil_commit().
2470  */
2471 void
2472 zil_clean(zilog_t *zilog, uint64_t synced_txg)
2473 {
2474 	itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
2475 	itxs_t *clean_me;
2476 
2477 	ASSERT3U(synced_txg, <, ZILTEST_TXG);
2478 
2479 	mutex_enter(&itxg->itxg_lock);
2480 	if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
2481 		mutex_exit(&itxg->itxg_lock);
2482 		return;
2483 	}
2484 	ASSERT3U(itxg->itxg_txg, <=, synced_txg);
2485 	ASSERT3U(itxg->itxg_txg, !=, 0);
2486 	clean_me = itxg->itxg_itxs;
2487 	itxg->itxg_itxs = NULL;
2488 	itxg->itxg_txg = 0;
2489 	mutex_exit(&itxg->itxg_lock);
2490 	/*
2491 	 * Preferably start a task queue to free up the old itxs but
2492 	 * if taskq_dispatch can't allocate resources to do that then
2493 	 * free it in-line. This should be rare. Note, using TQ_SLEEP
2494 	 * created a bad performance problem.
2495 	 */
2496 	ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
2497 	ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
2498 	taskqid_t id = taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
2499 	    zil_itxg_clean, clean_me, TQ_NOSLEEP);
2500 	if (id == TASKQID_INVALID)
2501 		zil_itxg_clean(clean_me);
2502 }
2503 
2504 /*
2505  * This function will traverse the queue of itxs that need to be
2506  * committed, and move them onto the ZIL's zl_itx_commit_list.
2507  */
2508 static uint64_t
2509 zil_get_commit_list(zilog_t *zilog)
2510 {
2511 	uint64_t otxg, txg, wtxg = 0;
2512 	list_t *commit_list = &zilog->zl_itx_commit_list;
2513 
2514 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2515 
2516 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2517 		otxg = ZILTEST_TXG;
2518 	else
2519 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2520 
2521 	/*
2522 	 * This is inherently racy, since there is nothing to prevent
2523 	 * the last synced txg from changing. That's okay since we'll
2524 	 * only commit things in the future.
2525 	 */
2526 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2527 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2528 
2529 		mutex_enter(&itxg->itxg_lock);
2530 		if (itxg->itxg_txg != txg) {
2531 			mutex_exit(&itxg->itxg_lock);
2532 			continue;
2533 		}
2534 
2535 		/*
2536 		 * If we're adding itx records to the zl_itx_commit_list,
2537 		 * then the zil better be dirty in this "txg". We can assert
2538 		 * that here since we're holding the itxg_lock which will
2539 		 * prevent spa_sync from cleaning it. Once we add the itxs
2540 		 * to the zl_itx_commit_list we must commit it to disk even
2541 		 * if it's unnecessary (i.e. the txg was synced).
2542 		 */
2543 		ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
2544 		    spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
2545 		list_t *sync_list = &itxg->itxg_itxs->i_sync_list;
2546 		if (unlikely(zilog->zl_suspend > 0)) {
2547 			/*
2548 			 * ZIL was just suspended, but we lost the race.
2549 			 * Allow all earlier itxs to be committed, but ask
2550 			 * caller to do txg_wait_synced(txg) for any new.
2551 			 */
2552 			if (!list_is_empty(sync_list))
2553 				wtxg = MAX(wtxg, txg);
2554 		} else {
2555 			list_move_tail(commit_list, sync_list);
2556 		}
2557 
2558 		mutex_exit(&itxg->itxg_lock);
2559 	}
2560 	return (wtxg);
2561 }
2562 
2563 /*
2564  * Move the async itxs for a specified object to commit into sync lists.
2565  */
2566 void
2567 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
2568 {
2569 	uint64_t otxg, txg;
2570 	itx_async_node_t *ian;
2571 	avl_tree_t *t;
2572 	avl_index_t where;
2573 
2574 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2575 		otxg = ZILTEST_TXG;
2576 	else
2577 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2578 
2579 	/*
2580 	 * This is inherently racy, since there is nothing to prevent
2581 	 * the last synced txg from changing.
2582 	 */
2583 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2584 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2585 
2586 		mutex_enter(&itxg->itxg_lock);
2587 		if (itxg->itxg_txg != txg) {
2588 			mutex_exit(&itxg->itxg_lock);
2589 			continue;
2590 		}
2591 
2592 		/*
2593 		 * If a foid is specified then find that node and append its
2594 		 * list. Otherwise walk the tree appending all the lists
2595 		 * to the sync list. We add to the end rather than the
2596 		 * beginning to ensure the create has happened.
2597 		 */
2598 		t = &itxg->itxg_itxs->i_async_tree;
2599 		if (foid != 0) {
2600 			ian = avl_find(t, &foid, &where);
2601 			if (ian != NULL) {
2602 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
2603 				    &ian->ia_list);
2604 			}
2605 		} else {
2606 			void *cookie = NULL;
2607 
2608 			while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
2609 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
2610 				    &ian->ia_list);
2611 				list_destroy(&ian->ia_list);
2612 				kmem_free(ian, sizeof (itx_async_node_t));
2613 			}
2614 		}
2615 		mutex_exit(&itxg->itxg_lock);
2616 	}
2617 }
2618 
2619 /*
2620  * This function will prune commit itxs that are at the head of the
2621  * commit list (it won't prune past the first non-commit itx), and
2622  * either: a) attach them to the last lwb that's still pending
2623  * completion, or b) skip them altogether.
2624  *
2625  * This is used as a performance optimization to prevent commit itxs
2626  * from generating new lwbs when it's unnecessary to do so.
2627  */
2628 static void
2629 zil_prune_commit_list(zilog_t *zilog)
2630 {
2631 	itx_t *itx;
2632 
2633 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2634 
2635 	while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) {
2636 		lr_t *lrc = &itx->itx_lr;
2637 		if (lrc->lrc_txtype != TX_COMMIT)
2638 			break;
2639 
2640 		mutex_enter(&zilog->zl_lock);
2641 
2642 		lwb_t *last_lwb = zilog->zl_last_lwb_opened;
2643 		if (last_lwb == NULL ||
2644 		    last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) {
2645 			/*
2646 			 * All of the itxs this waiter was waiting on
2647 			 * must have already completed (or there were
2648 			 * never any itx's for it to wait on), so it's
2649 			 * safe to skip this waiter and mark it done.
2650 			 */
2651 			zil_commit_waiter_skip(itx->itx_private);
2652 		} else {
2653 			zil_commit_waiter_link_lwb(itx->itx_private, last_lwb);
2654 		}
2655 
2656 		mutex_exit(&zilog->zl_lock);
2657 
2658 		list_remove(&zilog->zl_itx_commit_list, itx);
2659 		zil_itx_destroy(itx);
2660 	}
2661 
2662 	IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
2663 }
2664 
2665 static void
2666 zil_commit_writer_stall(zilog_t *zilog)
2667 {
2668 	/*
2669 	 * When zio_alloc_zil() fails to allocate the next lwb block on
2670 	 * disk, we must call txg_wait_synced() to ensure all of the
2671 	 * lwbs in the zilog's zl_lwb_list are synced and then freed (in
2672 	 * zil_sync()), such that any subsequent ZIL writer (i.e. a call
2673 	 * to zil_process_commit_list()) will have to call zil_create(),
2674 	 * and start a new ZIL chain.
2675 	 *
2676 	 * Since zil_alloc_zil() failed, the lwb that was previously
2677 	 * issued does not have a pointer to the "next" lwb on disk.
2678 	 * Thus, if another ZIL writer thread was to allocate the "next"
2679 	 * on-disk lwb, that block could be leaked in the event of a
2680 	 * crash (because the previous lwb on-disk would not point to
2681 	 * it).
2682 	 *
2683 	 * We must hold the zilog's zl_issuer_lock while we do this, to
2684 	 * ensure no new threads enter zil_process_commit_list() until
2685 	 * all lwb's in the zl_lwb_list have been synced and freed
2686 	 * (which is achieved via the txg_wait_synced() call).
2687 	 */
2688 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2689 	txg_wait_synced(zilog->zl_dmu_pool, 0);
2690 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
2691 }
2692 
2693 /*
2694  * This function will traverse the commit list, creating new lwbs as
2695  * needed, and committing the itxs from the commit list to these newly
2696  * created lwbs. Additionally, as a new lwb is created, the previous
2697  * lwb will be issued to the zio layer to be written to disk.
2698  */
2699 static void
2700 zil_process_commit_list(zilog_t *zilog, zil_commit_waiter_t *zcw, list_t *ilwbs)
2701 {
2702 	spa_t *spa = zilog->zl_spa;
2703 	list_t nolwb_itxs;
2704 	list_t nolwb_waiters;
2705 	lwb_t *lwb, *plwb;
2706 	itx_t *itx;
2707 	boolean_t first = B_TRUE;
2708 
2709 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2710 
2711 	/*
2712 	 * Return if there's nothing to commit before we dirty the fs by
2713 	 * calling zil_create().
2714 	 */
2715 	if (list_is_empty(&zilog->zl_itx_commit_list))
2716 		return;
2717 
2718 	list_create(&nolwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
2719 	list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t),
2720 	    offsetof(zil_commit_waiter_t, zcw_node));
2721 
2722 	lwb = list_tail(&zilog->zl_lwb_list);
2723 	if (lwb == NULL) {
2724 		lwb = zil_create(zilog);
2725 	} else {
2726 		/*
2727 		 * Activate SPA_FEATURE_ZILSAXATTR for the cases where ZIL will
2728 		 * have already been created (zl_lwb_list not empty).
2729 		 */
2730 		zil_commit_activate_saxattr_feature(zilog);
2731 		ASSERT(lwb->lwb_state == LWB_STATE_NEW ||
2732 		    lwb->lwb_state == LWB_STATE_OPENED);
2733 		first = (lwb->lwb_state == LWB_STATE_NEW) &&
2734 		    ((plwb = list_prev(&zilog->zl_lwb_list, lwb)) == NULL ||
2735 		    plwb->lwb_state == LWB_STATE_FLUSH_DONE);
2736 	}
2737 
2738 	while ((itx = list_remove_head(&zilog->zl_itx_commit_list)) != NULL) {
2739 		lr_t *lrc = &itx->itx_lr;
2740 		uint64_t txg = lrc->lrc_txg;
2741 
2742 		ASSERT3U(txg, !=, 0);
2743 
2744 		if (lrc->lrc_txtype == TX_COMMIT) {
2745 			DTRACE_PROBE2(zil__process__commit__itx,
2746 			    zilog_t *, zilog, itx_t *, itx);
2747 		} else {
2748 			DTRACE_PROBE2(zil__process__normal__itx,
2749 			    zilog_t *, zilog, itx_t *, itx);
2750 		}
2751 
2752 		boolean_t synced = txg <= spa_last_synced_txg(spa);
2753 		boolean_t frozen = txg > spa_freeze_txg(spa);
2754 
2755 		/*
2756 		 * If the txg of this itx has already been synced out, then
2757 		 * we don't need to commit this itx to an lwb. This is
2758 		 * because the data of this itx will have already been
2759 		 * written to the main pool. This is inherently racy, and
2760 		 * it's still ok to commit an itx whose txg has already
2761 		 * been synced; this will result in a write that's
2762 		 * unnecessary, but will do no harm.
2763 		 *
2764 		 * With that said, we always want to commit TX_COMMIT itxs
2765 		 * to an lwb, regardless of whether or not that itx's txg
2766 		 * has been synced out. We do this to ensure any OPENED lwb
2767 		 * will always have at least one zil_commit_waiter_t linked
2768 		 * to the lwb.
2769 		 *
2770 		 * As a counter-example, if we skipped TX_COMMIT itx's
2771 		 * whose txg had already been synced, the following
2772 		 * situation could occur if we happened to be racing with
2773 		 * spa_sync:
2774 		 *
2775 		 * 1. We commit a non-TX_COMMIT itx to an lwb, where the
2776 		 *    itx's txg is 10 and the last synced txg is 9.
2777 		 * 2. spa_sync finishes syncing out txg 10.
2778 		 * 3. We move to the next itx in the list, it's a TX_COMMIT
2779 		 *    whose txg is 10, so we skip it rather than committing
2780 		 *    it to the lwb used in (1).
2781 		 *
2782 		 * If the itx that is skipped in (3) is the last TX_COMMIT
2783 		 * itx in the commit list, than it's possible for the lwb
2784 		 * used in (1) to remain in the OPENED state indefinitely.
2785 		 *
2786 		 * To prevent the above scenario from occurring, ensuring
2787 		 * that once an lwb is OPENED it will transition to ISSUED
2788 		 * and eventually DONE, we always commit TX_COMMIT itx's to
2789 		 * an lwb here, even if that itx's txg has already been
2790 		 * synced.
2791 		 *
2792 		 * Finally, if the pool is frozen, we _always_ commit the
2793 		 * itx.  The point of freezing the pool is to prevent data
2794 		 * from being written to the main pool via spa_sync, and
2795 		 * instead rely solely on the ZIL to persistently store the
2796 		 * data; i.e.  when the pool is frozen, the last synced txg
2797 		 * value can't be trusted.
2798 		 */
2799 		if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) {
2800 			if (lwb != NULL) {
2801 				lwb = zil_lwb_assign(zilog, lwb, itx, ilwbs);
2802 				if (lwb == NULL) {
2803 					list_insert_tail(&nolwb_itxs, itx);
2804 				} else if ((zcw->zcw_lwb != NULL &&
2805 				    zcw->zcw_lwb != lwb) || zcw->zcw_done) {
2806 					/*
2807 					 * Our lwb is done, leave the rest of
2808 					 * itx list to somebody else who care.
2809 					 */
2810 					first = B_FALSE;
2811 					break;
2812 				}
2813 			} else {
2814 				if (lrc->lrc_txtype == TX_COMMIT) {
2815 					zil_commit_waiter_link_nolwb(
2816 					    itx->itx_private, &nolwb_waiters);
2817 				}
2818 				list_insert_tail(&nolwb_itxs, itx);
2819 			}
2820 		} else {
2821 			ASSERT3S(lrc->lrc_txtype, !=, TX_COMMIT);
2822 			zil_itx_destroy(itx);
2823 		}
2824 	}
2825 
2826 	if (lwb == NULL) {
2827 		/*
2828 		 * This indicates zio_alloc_zil() failed to allocate the
2829 		 * "next" lwb on-disk. When this happens, we must stall
2830 		 * the ZIL write pipeline; see the comment within
2831 		 * zil_commit_writer_stall() for more details.
2832 		 */
2833 		while ((lwb = list_remove_head(ilwbs)) != NULL)
2834 			zil_lwb_write_issue(zilog, lwb);
2835 		zil_commit_writer_stall(zilog);
2836 
2837 		/*
2838 		 * Additionally, we have to signal and mark the "nolwb"
2839 		 * waiters as "done" here, since without an lwb, we
2840 		 * can't do this via zil_lwb_flush_vdevs_done() like
2841 		 * normal.
2842 		 */
2843 		zil_commit_waiter_t *zcw;
2844 		while ((zcw = list_remove_head(&nolwb_waiters)) != NULL)
2845 			zil_commit_waiter_skip(zcw);
2846 
2847 		/*
2848 		 * And finally, we have to destroy the itx's that
2849 		 * couldn't be committed to an lwb; this will also call
2850 		 * the itx's callback if one exists for the itx.
2851 		 */
2852 		while ((itx = list_remove_head(&nolwb_itxs)) != NULL)
2853 			zil_itx_destroy(itx);
2854 	} else {
2855 		ASSERT(list_is_empty(&nolwb_waiters));
2856 		ASSERT3P(lwb, !=, NULL);
2857 		ASSERT(lwb->lwb_state == LWB_STATE_NEW ||
2858 		    lwb->lwb_state == LWB_STATE_OPENED);
2859 
2860 		/*
2861 		 * At this point, the ZIL block pointed at by the "lwb"
2862 		 * variable is in "new" or "opened" state.
2863 		 *
2864 		 * If it's "new", then no itxs have been committed to it, so
2865 		 * there's no point in issuing its zio (i.e. it's "empty").
2866 		 *
2867 		 * If it's "opened", then it contains one or more itxs that
2868 		 * eventually need to be committed to stable storage. In
2869 		 * this case we intentionally do not issue the lwb's zio
2870 		 * to disk yet, and instead rely on one of the following
2871 		 * two mechanisms for issuing the zio:
2872 		 *
2873 		 * 1. Ideally, there will be more ZIL activity occurring on
2874 		 * the system, such that this function will be immediately
2875 		 * called again by different thread and this lwb will be
2876 		 * closed by zil_lwb_assign().  This way, the lwb will be
2877 		 * "full" when it is issued to disk, and we'll make use of
2878 		 * the lwb's size the best we can.
2879 		 *
2880 		 * 2. If there isn't sufficient ZIL activity occurring on
2881 		 * the system, zil_commit_waiter() will close it and issue
2882 		 * the zio.  If this occurs, the lwb is not guaranteed
2883 		 * to be "full" by the time its zio is issued, and means
2884 		 * the size of the lwb was "too large" given the amount
2885 		 * of ZIL activity occurring on the system at that time.
2886 		 *
2887 		 * We do this for a couple of reasons:
2888 		 *
2889 		 * 1. To try and reduce the number of IOPs needed to
2890 		 * write the same number of itxs. If an lwb has space
2891 		 * available in its buffer for more itxs, and more itxs
2892 		 * will be committed relatively soon (relative to the
2893 		 * latency of performing a write), then it's beneficial
2894 		 * to wait for these "next" itxs. This way, more itxs
2895 		 * can be committed to stable storage with fewer writes.
2896 		 *
2897 		 * 2. To try and use the largest lwb block size that the
2898 		 * incoming rate of itxs can support. Again, this is to
2899 		 * try and pack as many itxs into as few lwbs as
2900 		 * possible, without significantly impacting the latency
2901 		 * of each individual itx.
2902 		 *
2903 		 * If we had no already running or open LWBs, it can be
2904 		 * the workload is single-threaded.  And if the ZIL write
2905 		 * latency is very small or if the LWB is almost full, it
2906 		 * may be cheaper to bypass the delay.
2907 		 */
2908 		if (lwb->lwb_state == LWB_STATE_OPENED && first) {
2909 			hrtime_t sleep = zilog->zl_last_lwb_latency *
2910 			    zfs_commit_timeout_pct / 100;
2911 			if (sleep < zil_min_commit_timeout ||
2912 			    lwb->lwb_nmax - lwb->lwb_nused <
2913 			    lwb->lwb_nmax / 8) {
2914 				list_insert_tail(ilwbs, lwb);
2915 				lwb = zil_lwb_write_close(zilog, lwb,
2916 				    LWB_STATE_NEW);
2917 				zilog->zl_cur_used = 0;
2918 				if (lwb == NULL) {
2919 					while ((lwb = list_remove_head(ilwbs))
2920 					    != NULL)
2921 						zil_lwb_write_issue(zilog, lwb);
2922 					zil_commit_writer_stall(zilog);
2923 				}
2924 			}
2925 		}
2926 	}
2927 }
2928 
2929 /*
2930  * This function is responsible for ensuring the passed in commit waiter
2931  * (and associated commit itx) is committed to an lwb. If the waiter is
2932  * not already committed to an lwb, all itxs in the zilog's queue of
2933  * itxs will be processed. The assumption is the passed in waiter's
2934  * commit itx will found in the queue just like the other non-commit
2935  * itxs, such that when the entire queue is processed, the waiter will
2936  * have been committed to an lwb.
2937  *
2938  * The lwb associated with the passed in waiter is not guaranteed to
2939  * have been issued by the time this function completes. If the lwb is
2940  * not issued, we rely on future calls to zil_commit_writer() to issue
2941  * the lwb, or the timeout mechanism found in zil_commit_waiter().
2942  */
2943 static uint64_t
2944 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw)
2945 {
2946 	list_t ilwbs;
2947 	lwb_t *lwb;
2948 	uint64_t wtxg = 0;
2949 
2950 	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2951 	ASSERT(spa_writeable(zilog->zl_spa));
2952 
2953 	list_create(&ilwbs, sizeof (lwb_t), offsetof(lwb_t, lwb_issue_node));
2954 	mutex_enter(&zilog->zl_issuer_lock);
2955 
2956 	if (zcw->zcw_lwb != NULL || zcw->zcw_done) {
2957 		/*
2958 		 * It's possible that, while we were waiting to acquire
2959 		 * the "zl_issuer_lock", another thread committed this
2960 		 * waiter to an lwb. If that occurs, we bail out early,
2961 		 * without processing any of the zilog's queue of itxs.
2962 		 *
2963 		 * On certain workloads and system configurations, the
2964 		 * "zl_issuer_lock" can become highly contended. In an
2965 		 * attempt to reduce this contention, we immediately drop
2966 		 * the lock if the waiter has already been processed.
2967 		 *
2968 		 * We've measured this optimization to reduce CPU spent
2969 		 * contending on this lock by up to 5%, using a system
2970 		 * with 32 CPUs, low latency storage (~50 usec writes),
2971 		 * and 1024 threads performing sync writes.
2972 		 */
2973 		goto out;
2974 	}
2975 
2976 	ZIL_STAT_BUMP(zilog, zil_commit_writer_count);
2977 
2978 	wtxg = zil_get_commit_list(zilog);
2979 	zil_prune_commit_list(zilog);
2980 	zil_process_commit_list(zilog, zcw, &ilwbs);
2981 
2982 out:
2983 	mutex_exit(&zilog->zl_issuer_lock);
2984 	while ((lwb = list_remove_head(&ilwbs)) != NULL)
2985 		zil_lwb_write_issue(zilog, lwb);
2986 	list_destroy(&ilwbs);
2987 	return (wtxg);
2988 }
2989 
2990 static void
2991 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw)
2992 {
2993 	ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2994 	ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2995 	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
2996 
2997 	lwb_t *lwb = zcw->zcw_lwb;
2998 	ASSERT3P(lwb, !=, NULL);
2999 	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_NEW);
3000 
3001 	/*
3002 	 * If the lwb has already been issued by another thread, we can
3003 	 * immediately return since there's no work to be done (the
3004 	 * point of this function is to issue the lwb). Additionally, we
3005 	 * do this prior to acquiring the zl_issuer_lock, to avoid
3006 	 * acquiring it when it's not necessary to do so.
3007 	 */
3008 	if (lwb->lwb_state != LWB_STATE_OPENED)
3009 		return;
3010 
3011 	/*
3012 	 * In order to call zil_lwb_write_close() we must hold the
3013 	 * zilog's "zl_issuer_lock". We can't simply acquire that lock,
3014 	 * since we're already holding the commit waiter's "zcw_lock",
3015 	 * and those two locks are acquired in the opposite order
3016 	 * elsewhere.
3017 	 */
3018 	mutex_exit(&zcw->zcw_lock);
3019 	mutex_enter(&zilog->zl_issuer_lock);
3020 	mutex_enter(&zcw->zcw_lock);
3021 
3022 	/*
3023 	 * Since we just dropped and re-acquired the commit waiter's
3024 	 * lock, we have to re-check to see if the waiter was marked
3025 	 * "done" during that process. If the waiter was marked "done",
3026 	 * the "lwb" pointer is no longer valid (it can be free'd after
3027 	 * the waiter is marked "done"), so without this check we could
3028 	 * wind up with a use-after-free error below.
3029 	 */
3030 	if (zcw->zcw_done) {
3031 		mutex_exit(&zilog->zl_issuer_lock);
3032 		return;
3033 	}
3034 
3035 	ASSERT3P(lwb, ==, zcw->zcw_lwb);
3036 
3037 	/*
3038 	 * We've already checked this above, but since we hadn't acquired
3039 	 * the zilog's zl_issuer_lock, we have to perform this check a
3040 	 * second time while holding the lock.
3041 	 *
3042 	 * We don't need to hold the zl_lock since the lwb cannot transition
3043 	 * from OPENED to CLOSED while we hold the zl_issuer_lock. The lwb
3044 	 * _can_ transition from CLOSED to DONE, but it's OK to race with
3045 	 * that transition since we treat the lwb the same, whether it's in
3046 	 * the CLOSED, ISSUED or DONE states.
3047 	 *
3048 	 * The important thing, is we treat the lwb differently depending on
3049 	 * if it's OPENED or CLOSED, and block any other threads that might
3050 	 * attempt to close/issue this lwb. For that reason we hold the
3051 	 * zl_issuer_lock when checking the lwb_state; we must not call
3052 	 * zil_lwb_write_close() if the lwb had already been closed/issued.
3053 	 *
3054 	 * See the comment above the lwb_state_t structure definition for
3055 	 * more details on the lwb states, and locking requirements.
3056 	 */
3057 	if (lwb->lwb_state != LWB_STATE_OPENED) {
3058 		mutex_exit(&zilog->zl_issuer_lock);
3059 		return;
3060 	}
3061 
3062 	/*
3063 	 * We do not need zcw_lock once we hold zl_issuer_lock and know lwb
3064 	 * is still open.  But we have to drop it to avoid a deadlock in case
3065 	 * callback of zio issued by zil_lwb_write_issue() try to get it,
3066 	 * while zil_lwb_write_issue() is blocked on attempt to issue next
3067 	 * lwb it found in LWB_STATE_READY state.
3068 	 */
3069 	mutex_exit(&zcw->zcw_lock);
3070 
3071 	/*
3072 	 * As described in the comments above zil_commit_waiter() and
3073 	 * zil_process_commit_list(), we need to issue this lwb's zio
3074 	 * since we've reached the commit waiter's timeout and it still
3075 	 * hasn't been issued.
3076 	 */
3077 	lwb_t *nlwb = zil_lwb_write_close(zilog, lwb, LWB_STATE_NEW);
3078 
3079 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_CLOSED);
3080 
3081 	/*
3082 	 * Since the lwb's zio hadn't been issued by the time this thread
3083 	 * reached its timeout, we reset the zilog's "zl_cur_used" field
3084 	 * to influence the zil block size selection algorithm.
3085 	 *
3086 	 * By having to issue the lwb's zio here, it means the size of the
3087 	 * lwb was too large, given the incoming throughput of itxs.  By
3088 	 * setting "zl_cur_used" to zero, we communicate this fact to the
3089 	 * block size selection algorithm, so it can take this information
3090 	 * into account, and potentially select a smaller size for the
3091 	 * next lwb block that is allocated.
3092 	 */
3093 	zilog->zl_cur_used = 0;
3094 
3095 	if (nlwb == NULL) {
3096 		/*
3097 		 * When zil_lwb_write_close() returns NULL, this
3098 		 * indicates zio_alloc_zil() failed to allocate the
3099 		 * "next" lwb on-disk. When this occurs, the ZIL write
3100 		 * pipeline must be stalled; see the comment within the
3101 		 * zil_commit_writer_stall() function for more details.
3102 		 */
3103 		zil_lwb_write_issue(zilog, lwb);
3104 		zil_commit_writer_stall(zilog);
3105 		mutex_exit(&zilog->zl_issuer_lock);
3106 	} else {
3107 		mutex_exit(&zilog->zl_issuer_lock);
3108 		zil_lwb_write_issue(zilog, lwb);
3109 	}
3110 	mutex_enter(&zcw->zcw_lock);
3111 }
3112 
3113 /*
3114  * This function is responsible for performing the following two tasks:
3115  *
3116  * 1. its primary responsibility is to block until the given "commit
3117  *    waiter" is considered "done".
3118  *
3119  * 2. its secondary responsibility is to issue the zio for the lwb that
3120  *    the given "commit waiter" is waiting on, if this function has
3121  *    waited "long enough" and the lwb is still in the "open" state.
3122  *
3123  * Given a sufficient amount of itxs being generated and written using
3124  * the ZIL, the lwb's zio will be issued via the zil_lwb_assign()
3125  * function. If this does not occur, this secondary responsibility will
3126  * ensure the lwb is issued even if there is not other synchronous
3127  * activity on the system.
3128  *
3129  * For more details, see zil_process_commit_list(); more specifically,
3130  * the comment at the bottom of that function.
3131  */
3132 static void
3133 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw)
3134 {
3135 	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
3136 	ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
3137 	ASSERT(spa_writeable(zilog->zl_spa));
3138 
3139 	mutex_enter(&zcw->zcw_lock);
3140 
3141 	/*
3142 	 * The timeout is scaled based on the lwb latency to avoid
3143 	 * significantly impacting the latency of each individual itx.
3144 	 * For more details, see the comment at the bottom of the
3145 	 * zil_process_commit_list() function.
3146 	 */
3147 	int pct = MAX(zfs_commit_timeout_pct, 1);
3148 	hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100;
3149 	hrtime_t wakeup = gethrtime() + sleep;
3150 	boolean_t timedout = B_FALSE;
3151 
3152 	while (!zcw->zcw_done) {
3153 		ASSERT(MUTEX_HELD(&zcw->zcw_lock));
3154 
3155 		lwb_t *lwb = zcw->zcw_lwb;
3156 
3157 		/*
3158 		 * Usually, the waiter will have a non-NULL lwb field here,
3159 		 * but it's possible for it to be NULL as a result of
3160 		 * zil_commit() racing with spa_sync().
3161 		 *
3162 		 * When zil_clean() is called, it's possible for the itxg
3163 		 * list (which may be cleaned via a taskq) to contain
3164 		 * commit itxs. When this occurs, the commit waiters linked
3165 		 * off of these commit itxs will not be committed to an
3166 		 * lwb.  Additionally, these commit waiters will not be
3167 		 * marked done until zil_commit_waiter_skip() is called via
3168 		 * zil_itxg_clean().
3169 		 *
3170 		 * Thus, it's possible for this commit waiter (i.e. the
3171 		 * "zcw" variable) to be found in this "in between" state;
3172 		 * where it's "zcw_lwb" field is NULL, and it hasn't yet
3173 		 * been skipped, so it's "zcw_done" field is still B_FALSE.
3174 		 */
3175 		IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_NEW);
3176 
3177 		if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) {
3178 			ASSERT3B(timedout, ==, B_FALSE);
3179 
3180 			/*
3181 			 * If the lwb hasn't been issued yet, then we
3182 			 * need to wait with a timeout, in case this
3183 			 * function needs to issue the lwb after the
3184 			 * timeout is reached; responsibility (2) from
3185 			 * the comment above this function.
3186 			 */
3187 			int rc = cv_timedwait_hires(&zcw->zcw_cv,
3188 			    &zcw->zcw_lock, wakeup, USEC2NSEC(1),
3189 			    CALLOUT_FLAG_ABSOLUTE);
3190 
3191 			if (rc != -1 || zcw->zcw_done)
3192 				continue;
3193 
3194 			timedout = B_TRUE;
3195 			zil_commit_waiter_timeout(zilog, zcw);
3196 
3197 			if (!zcw->zcw_done) {
3198 				/*
3199 				 * If the commit waiter has already been
3200 				 * marked "done", it's possible for the
3201 				 * waiter's lwb structure to have already
3202 				 * been freed.  Thus, we can only reliably
3203 				 * make these assertions if the waiter
3204 				 * isn't done.
3205 				 */
3206 				ASSERT3P(lwb, ==, zcw->zcw_lwb);
3207 				ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
3208 			}
3209 		} else {
3210 			/*
3211 			 * If the lwb isn't open, then it must have already
3212 			 * been issued. In that case, there's no need to
3213 			 * use a timeout when waiting for the lwb to
3214 			 * complete.
3215 			 *
3216 			 * Additionally, if the lwb is NULL, the waiter
3217 			 * will soon be signaled and marked done via
3218 			 * zil_clean() and zil_itxg_clean(), so no timeout
3219 			 * is required.
3220 			 */
3221 
3222 			IMPLY(lwb != NULL,
3223 			    lwb->lwb_state == LWB_STATE_CLOSED ||
3224 			    lwb->lwb_state == LWB_STATE_READY ||
3225 			    lwb->lwb_state == LWB_STATE_ISSUED ||
3226 			    lwb->lwb_state == LWB_STATE_WRITE_DONE ||
3227 			    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
3228 			cv_wait(&zcw->zcw_cv, &zcw->zcw_lock);
3229 		}
3230 	}
3231 
3232 	mutex_exit(&zcw->zcw_lock);
3233 }
3234 
3235 static zil_commit_waiter_t *
3236 zil_alloc_commit_waiter(void)
3237 {
3238 	zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP);
3239 
3240 	cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL);
3241 	mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL);
3242 	list_link_init(&zcw->zcw_node);
3243 	zcw->zcw_lwb = NULL;
3244 	zcw->zcw_done = B_FALSE;
3245 	zcw->zcw_zio_error = 0;
3246 
3247 	return (zcw);
3248 }
3249 
3250 static void
3251 zil_free_commit_waiter(zil_commit_waiter_t *zcw)
3252 {
3253 	ASSERT(!list_link_active(&zcw->zcw_node));
3254 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
3255 	ASSERT3B(zcw->zcw_done, ==, B_TRUE);
3256 	mutex_destroy(&zcw->zcw_lock);
3257 	cv_destroy(&zcw->zcw_cv);
3258 	kmem_cache_free(zil_zcw_cache, zcw);
3259 }
3260 
3261 /*
3262  * This function is used to create a TX_COMMIT itx and assign it. This
3263  * way, it will be linked into the ZIL's list of synchronous itxs, and
3264  * then later committed to an lwb (or skipped) when
3265  * zil_process_commit_list() is called.
3266  */
3267 static void
3268 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw)
3269 {
3270 	dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
3271 
3272 	/*
3273 	 * Since we are not going to create any new dirty data, and we
3274 	 * can even help with clearing the existing dirty data, we
3275 	 * should not be subject to the dirty data based delays. We
3276 	 * use TXG_NOTHROTTLE to bypass the delay mechanism.
3277 	 */
3278 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));
3279 
3280 	itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t));
3281 	itx->itx_sync = B_TRUE;
3282 	itx->itx_private = zcw;
3283 
3284 	zil_itx_assign(zilog, itx, tx);
3285 
3286 	dmu_tx_commit(tx);
3287 }
3288 
3289 /*
3290  * Commit ZFS Intent Log transactions (itxs) to stable storage.
3291  *
3292  * When writing ZIL transactions to the on-disk representation of the
3293  * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple
3294  * itxs can be committed to a single lwb. Once a lwb is written and
3295  * committed to stable storage (i.e. the lwb is written, and vdevs have
3296  * been flushed), each itx that was committed to that lwb is also
3297  * considered to be committed to stable storage.
3298  *
3299  * When an itx is committed to an lwb, the log record (lr_t) contained
3300  * by the itx is copied into the lwb's zio buffer, and once this buffer
3301  * is written to disk, it becomes an on-disk ZIL block.
3302  *
3303  * As itxs are generated, they're inserted into the ZIL's queue of
3304  * uncommitted itxs. The semantics of zil_commit() are such that it will
3305  * block until all itxs that were in the queue when it was called, are
3306  * committed to stable storage.
3307  *
3308  * If "foid" is zero, this means all "synchronous" and "asynchronous"
3309  * itxs, for all objects in the dataset, will be committed to stable
3310  * storage prior to zil_commit() returning. If "foid" is non-zero, all
3311  * "synchronous" itxs for all objects, but only "asynchronous" itxs
3312  * that correspond to the foid passed in, will be committed to stable
3313  * storage prior to zil_commit() returning.
3314  *
3315  * Generally speaking, when zil_commit() is called, the consumer doesn't
3316  * actually care about _all_ of the uncommitted itxs. Instead, they're
3317  * simply trying to waiting for a specific itx to be committed to disk,
3318  * but the interface(s) for interacting with the ZIL don't allow such
3319  * fine-grained communication. A better interface would allow a consumer
3320  * to create and assign an itx, and then pass a reference to this itx to
3321  * zil_commit(); such that zil_commit() would return as soon as that
3322  * specific itx was committed to disk (instead of waiting for _all_
3323  * itxs to be committed).
3324  *
3325  * When a thread calls zil_commit() a special "commit itx" will be
3326  * generated, along with a corresponding "waiter" for this commit itx.
3327  * zil_commit() will wait on this waiter's CV, such that when the waiter
3328  * is marked done, and signaled, zil_commit() will return.
3329  *
3330  * This commit itx is inserted into the queue of uncommitted itxs. This
3331  * provides an easy mechanism for determining which itxs were in the
3332  * queue prior to zil_commit() having been called, and which itxs were
3333  * added after zil_commit() was called.
3334  *
3335  * The commit itx is special; it doesn't have any on-disk representation.
3336  * When a commit itx is "committed" to an lwb, the waiter associated
3337  * with it is linked onto the lwb's list of waiters. Then, when that lwb
3338  * completes, each waiter on the lwb's list is marked done and signaled
3339  * -- allowing the thread waiting on the waiter to return from zil_commit().
3340  *
3341  * It's important to point out a few critical factors that allow us
3342  * to make use of the commit itxs, commit waiters, per-lwb lists of
3343  * commit waiters, and zio completion callbacks like we're doing:
3344  *
3345  *   1. The list of waiters for each lwb is traversed, and each commit
3346  *      waiter is marked "done" and signaled, in the zio completion
3347  *      callback of the lwb's zio[*].
3348  *
3349  *      * Actually, the waiters are signaled in the zio completion
3350  *        callback of the root zio for the DKIOCFLUSHWRITECACHE commands
3351  *        that are sent to the vdevs upon completion of the lwb zio.
3352  *
3353  *   2. When the itxs are inserted into the ZIL's queue of uncommitted
3354  *      itxs, the order in which they are inserted is preserved[*]; as
3355  *      itxs are added to the queue, they are added to the tail of
3356  *      in-memory linked lists.
3357  *
3358  *      When committing the itxs to lwbs (to be written to disk), they
3359  *      are committed in the same order in which the itxs were added to
3360  *      the uncommitted queue's linked list(s); i.e. the linked list of
3361  *      itxs to commit is traversed from head to tail, and each itx is
3362  *      committed to an lwb in that order.
3363  *
3364  *      * To clarify:
3365  *
3366  *        - the order of "sync" itxs is preserved w.r.t. other
3367  *          "sync" itxs, regardless of the corresponding objects.
3368  *        - the order of "async" itxs is preserved w.r.t. other
3369  *          "async" itxs corresponding to the same object.
3370  *        - the order of "async" itxs is *not* preserved w.r.t. other
3371  *          "async" itxs corresponding to different objects.
3372  *        - the order of "sync" itxs w.r.t. "async" itxs (or vice
3373  *          versa) is *not* preserved, even for itxs that correspond
3374  *          to the same object.
3375  *
3376  *      For more details, see: zil_itx_assign(), zil_async_to_sync(),
3377  *      zil_get_commit_list(), and zil_process_commit_list().
3378  *
3379  *   3. The lwbs represent a linked list of blocks on disk. Thus, any
3380  *      lwb cannot be considered committed to stable storage, until its
3381  *      "previous" lwb is also committed to stable storage. This fact,
3382  *      coupled with the fact described above, means that itxs are
3383  *      committed in (roughly) the order in which they were generated.
3384  *      This is essential because itxs are dependent on prior itxs.
3385  *      Thus, we *must not* deem an itx as being committed to stable
3386  *      storage, until *all* prior itxs have also been committed to
3387  *      stable storage.
3388  *
3389  *      To enforce this ordering of lwb zio's, while still leveraging as
3390  *      much of the underlying storage performance as possible, we rely
3391  *      on two fundamental concepts:
3392  *
3393  *          1. The creation and issuance of lwb zio's is protected by
3394  *             the zilog's "zl_issuer_lock", which ensures only a single
3395  *             thread is creating and/or issuing lwb's at a time
3396  *          2. The "previous" lwb is a child of the "current" lwb
3397  *             (leveraging the zio parent-child dependency graph)
3398  *
3399  *      By relying on this parent-child zio relationship, we can have
3400  *      many lwb zio's concurrently issued to the underlying storage,
3401  *      but the order in which they complete will be the same order in
3402  *      which they were created.
3403  */
3404 void
3405 zil_commit(zilog_t *zilog, uint64_t foid)
3406 {
3407 	/*
3408 	 * We should never attempt to call zil_commit on a snapshot for
3409 	 * a couple of reasons:
3410 	 *
3411 	 * 1. A snapshot may never be modified, thus it cannot have any
3412 	 *    in-flight itxs that would have modified the dataset.
3413 	 *
3414 	 * 2. By design, when zil_commit() is called, a commit itx will
3415 	 *    be assigned to this zilog; as a result, the zilog will be
3416 	 *    dirtied. We must not dirty the zilog of a snapshot; there's
3417 	 *    checks in the code that enforce this invariant, and will
3418 	 *    cause a panic if it's not upheld.
3419 	 */
3420 	ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE);
3421 
3422 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3423 		return;
3424 
3425 	if (!spa_writeable(zilog->zl_spa)) {
3426 		/*
3427 		 * If the SPA is not writable, there should never be any
3428 		 * pending itxs waiting to be committed to disk. If that
3429 		 * weren't true, we'd skip writing those itxs out, and
3430 		 * would break the semantics of zil_commit(); thus, we're
3431 		 * verifying that truth before we return to the caller.
3432 		 */
3433 		ASSERT(list_is_empty(&zilog->zl_lwb_list));
3434 		ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
3435 		for (int i = 0; i < TXG_SIZE; i++)
3436 			ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL);
3437 		return;
3438 	}
3439 
3440 	/*
3441 	 * If the ZIL is suspended, we don't want to dirty it by calling
3442 	 * zil_commit_itx_assign() below, nor can we write out
3443 	 * lwbs like would be done in zil_commit_write(). Thus, we
3444 	 * simply rely on txg_wait_synced() to maintain the necessary
3445 	 * semantics, and avoid calling those functions altogether.
3446 	 */
3447 	if (zilog->zl_suspend > 0) {
3448 		txg_wait_synced(zilog->zl_dmu_pool, 0);
3449 		return;
3450 	}
3451 
3452 	zil_commit_impl(zilog, foid);
3453 }
3454 
3455 void
3456 zil_commit_impl(zilog_t *zilog, uint64_t foid)
3457 {
3458 	ZIL_STAT_BUMP(zilog, zil_commit_count);
3459 
3460 	/*
3461 	 * Move the "async" itxs for the specified foid to the "sync"
3462 	 * queues, such that they will be later committed (or skipped)
3463 	 * to an lwb when zil_process_commit_list() is called.
3464 	 *
3465 	 * Since these "async" itxs must be committed prior to this
3466 	 * call to zil_commit returning, we must perform this operation
3467 	 * before we call zil_commit_itx_assign().
3468 	 */
3469 	zil_async_to_sync(zilog, foid);
3470 
3471 	/*
3472 	 * We allocate a new "waiter" structure which will initially be
3473 	 * linked to the commit itx using the itx's "itx_private" field.
3474 	 * Since the commit itx doesn't represent any on-disk state,
3475 	 * when it's committed to an lwb, rather than copying the its
3476 	 * lr_t into the lwb's buffer, the commit itx's "waiter" will be
3477 	 * added to the lwb's list of waiters. Then, when the lwb is
3478 	 * committed to stable storage, each waiter in the lwb's list of
3479 	 * waiters will be marked "done", and signalled.
3480 	 *
3481 	 * We must create the waiter and assign the commit itx prior to
3482 	 * calling zil_commit_writer(), or else our specific commit itx
3483 	 * is not guaranteed to be committed to an lwb prior to calling
3484 	 * zil_commit_waiter().
3485 	 */
3486 	zil_commit_waiter_t *zcw = zil_alloc_commit_waiter();
3487 	zil_commit_itx_assign(zilog, zcw);
3488 
3489 	uint64_t wtxg = zil_commit_writer(zilog, zcw);
3490 	zil_commit_waiter(zilog, zcw);
3491 
3492 	if (zcw->zcw_zio_error != 0) {
3493 		/*
3494 		 * If there was an error writing out the ZIL blocks that
3495 		 * this thread is waiting on, then we fallback to
3496 		 * relying on spa_sync() to write out the data this
3497 		 * thread is waiting on. Obviously this has performance
3498 		 * implications, but the expectation is for this to be
3499 		 * an exceptional case, and shouldn't occur often.
3500 		 */
3501 		DTRACE_PROBE2(zil__commit__io__error,
3502 		    zilog_t *, zilog, zil_commit_waiter_t *, zcw);
3503 		txg_wait_synced(zilog->zl_dmu_pool, 0);
3504 	} else if (wtxg != 0) {
3505 		txg_wait_synced(zilog->zl_dmu_pool, wtxg);
3506 	}
3507 
3508 	zil_free_commit_waiter(zcw);
3509 }
3510 
3511 /*
3512  * Called in syncing context to free committed log blocks and update log header.
3513  */
3514 void
3515 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
3516 {
3517 	zil_header_t *zh = zil_header_in_syncing_context(zilog);
3518 	uint64_t txg = dmu_tx_get_txg(tx);
3519 	spa_t *spa = zilog->zl_spa;
3520 	uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
3521 	lwb_t *lwb;
3522 
3523 	/*
3524 	 * We don't zero out zl_destroy_txg, so make sure we don't try
3525 	 * to destroy it twice.
3526 	 */
3527 	if (spa_sync_pass(spa) != 1)
3528 		return;
3529 
3530 	zil_lwb_flush_wait_all(zilog, txg);
3531 
3532 	mutex_enter(&zilog->zl_lock);
3533 
3534 	ASSERT(zilog->zl_stop_sync == 0);
3535 
3536 	if (*replayed_seq != 0) {
3537 		ASSERT(zh->zh_replay_seq < *replayed_seq);
3538 		zh->zh_replay_seq = *replayed_seq;
3539 		*replayed_seq = 0;
3540 	}
3541 
3542 	if (zilog->zl_destroy_txg == txg) {
3543 		blkptr_t blk = zh->zh_log;
3544 		dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
3545 
3546 		ASSERT(list_is_empty(&zilog->zl_lwb_list));
3547 
3548 		memset(zh, 0, sizeof (zil_header_t));
3549 		memset(zilog->zl_replayed_seq, 0,
3550 		    sizeof (zilog->zl_replayed_seq));
3551 
3552 		if (zilog->zl_keep_first) {
3553 			/*
3554 			 * If this block was part of log chain that couldn't
3555 			 * be claimed because a device was missing during
3556 			 * zil_claim(), but that device later returns,
3557 			 * then this block could erroneously appear valid.
3558 			 * To guard against this, assign a new GUID to the new
3559 			 * log chain so it doesn't matter what blk points to.
3560 			 */
3561 			zil_init_log_chain(zilog, &blk);
3562 			zh->zh_log = blk;
3563 		} else {
3564 			/*
3565 			 * A destroyed ZIL chain can't contain any TX_SETSAXATTR
3566 			 * records. So, deactivate the feature for this dataset.
3567 			 * We activate it again when we start a new ZIL chain.
3568 			 */
3569 			if (dsl_dataset_feature_is_active(ds,
3570 			    SPA_FEATURE_ZILSAXATTR))
3571 				dsl_dataset_deactivate_feature(ds,
3572 				    SPA_FEATURE_ZILSAXATTR, tx);
3573 		}
3574 	}
3575 
3576 	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
3577 		zh->zh_log = lwb->lwb_blk;
3578 		if (lwb->lwb_state != LWB_STATE_FLUSH_DONE ||
3579 		    lwb->lwb_alloc_txg > txg || lwb->lwb_max_txg > txg)
3580 			break;
3581 		list_remove(&zilog->zl_lwb_list, lwb);
3582 		if (!BP_IS_HOLE(&lwb->lwb_blk))
3583 			zio_free(spa, txg, &lwb->lwb_blk);
3584 		zil_free_lwb(zilog, lwb);
3585 
3586 		/*
3587 		 * If we don't have anything left in the lwb list then
3588 		 * we've had an allocation failure and we need to zero
3589 		 * out the zil_header blkptr so that we don't end
3590 		 * up freeing the same block twice.
3591 		 */
3592 		if (list_is_empty(&zilog->zl_lwb_list))
3593 			BP_ZERO(&zh->zh_log);
3594 	}
3595 
3596 	mutex_exit(&zilog->zl_lock);
3597 }
3598 
3599 static int
3600 zil_lwb_cons(void *vbuf, void *unused, int kmflag)
3601 {
3602 	(void) unused, (void) kmflag;
3603 	lwb_t *lwb = vbuf;
3604 	list_create(&lwb->lwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
3605 	list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t),
3606 	    offsetof(zil_commit_waiter_t, zcw_node));
3607 	avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare,
3608 	    sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
3609 	mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
3610 	return (0);
3611 }
3612 
3613 static void
3614 zil_lwb_dest(void *vbuf, void *unused)
3615 {
3616 	(void) unused;
3617 	lwb_t *lwb = vbuf;
3618 	mutex_destroy(&lwb->lwb_vdev_lock);
3619 	avl_destroy(&lwb->lwb_vdev_tree);
3620 	list_destroy(&lwb->lwb_waiters);
3621 	list_destroy(&lwb->lwb_itxs);
3622 }
3623 
3624 void
3625 zil_init(void)
3626 {
3627 	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
3628 	    sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0);
3629 
3630 	zil_zcw_cache = kmem_cache_create("zil_zcw_cache",
3631 	    sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
3632 
3633 	zil_sums_init(&zil_sums_global);
3634 	zil_kstats_global = kstat_create("zfs", 0, "zil", "misc",
3635 	    KSTAT_TYPE_NAMED, sizeof (zil_stats) / sizeof (kstat_named_t),
3636 	    KSTAT_FLAG_VIRTUAL);
3637 
3638 	if (zil_kstats_global != NULL) {
3639 		zil_kstats_global->ks_data = &zil_stats;
3640 		zil_kstats_global->ks_update = zil_kstats_global_update;
3641 		zil_kstats_global->ks_private = NULL;
3642 		kstat_install(zil_kstats_global);
3643 	}
3644 }
3645 
3646 void
3647 zil_fini(void)
3648 {
3649 	kmem_cache_destroy(zil_zcw_cache);
3650 	kmem_cache_destroy(zil_lwb_cache);
3651 
3652 	if (zil_kstats_global != NULL) {
3653 		kstat_delete(zil_kstats_global);
3654 		zil_kstats_global = NULL;
3655 	}
3656 
3657 	zil_sums_fini(&zil_sums_global);
3658 }
3659 
3660 void
3661 zil_set_sync(zilog_t *zilog, uint64_t sync)
3662 {
3663 	zilog->zl_sync = sync;
3664 }
3665 
3666 void
3667 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
3668 {
3669 	zilog->zl_logbias = logbias;
3670 }
3671 
3672 zilog_t *
3673 zil_alloc(objset_t *os, zil_header_t *zh_phys)
3674 {
3675 	zilog_t *zilog;
3676 
3677 	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
3678 
3679 	zilog->zl_header = zh_phys;
3680 	zilog->zl_os = os;
3681 	zilog->zl_spa = dmu_objset_spa(os);
3682 	zilog->zl_dmu_pool = dmu_objset_pool(os);
3683 	zilog->zl_destroy_txg = TXG_INITIAL - 1;
3684 	zilog->zl_logbias = dmu_objset_logbias(os);
3685 	zilog->zl_sync = dmu_objset_syncprop(os);
3686 	zilog->zl_dirty_max_txg = 0;
3687 	zilog->zl_last_lwb_opened = NULL;
3688 	zilog->zl_last_lwb_latency = 0;
3689 	zilog->zl_max_block_size = zil_maxblocksize;
3690 
3691 	mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
3692 	mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL);
3693 	mutex_init(&zilog->zl_lwb_io_lock, NULL, MUTEX_DEFAULT, NULL);
3694 
3695 	for (int i = 0; i < TXG_SIZE; i++) {
3696 		mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
3697 		    MUTEX_DEFAULT, NULL);
3698 	}
3699 
3700 	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
3701 	    offsetof(lwb_t, lwb_node));
3702 
3703 	list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
3704 	    offsetof(itx_t, itx_node));
3705 
3706 	cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
3707 	cv_init(&zilog->zl_lwb_io_cv, NULL, CV_DEFAULT, NULL);
3708 
3709 	return (zilog);
3710 }
3711 
3712 void
3713 zil_free(zilog_t *zilog)
3714 {
3715 	int i;
3716 
3717 	zilog->zl_stop_sync = 1;
3718 
3719 	ASSERT0(zilog->zl_suspend);
3720 	ASSERT0(zilog->zl_suspending);
3721 
3722 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
3723 	list_destroy(&zilog->zl_lwb_list);
3724 
3725 	ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
3726 	list_destroy(&zilog->zl_itx_commit_list);
3727 
3728 	for (i = 0; i < TXG_SIZE; i++) {
3729 		/*
3730 		 * It's possible for an itx to be generated that doesn't dirty
3731 		 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
3732 		 * callback to remove the entry. We remove those here.
3733 		 *
3734 		 * Also free up the ziltest itxs.
3735 		 */
3736 		if (zilog->zl_itxg[i].itxg_itxs)
3737 			zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
3738 		mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
3739 	}
3740 
3741 	mutex_destroy(&zilog->zl_issuer_lock);
3742 	mutex_destroy(&zilog->zl_lock);
3743 	mutex_destroy(&zilog->zl_lwb_io_lock);
3744 
3745 	cv_destroy(&zilog->zl_cv_suspend);
3746 	cv_destroy(&zilog->zl_lwb_io_cv);
3747 
3748 	kmem_free(zilog, sizeof (zilog_t));
3749 }
3750 
3751 /*
3752  * Open an intent log.
3753  */
3754 zilog_t *
3755 zil_open(objset_t *os, zil_get_data_t *get_data, zil_sums_t *zil_sums)
3756 {
3757 	zilog_t *zilog = dmu_objset_zil(os);
3758 
3759 	ASSERT3P(zilog->zl_get_data, ==, NULL);
3760 	ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
3761 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
3762 
3763 	zilog->zl_get_data = get_data;
3764 	zilog->zl_sums = zil_sums;
3765 
3766 	return (zilog);
3767 }
3768 
3769 /*
3770  * Close an intent log.
3771  */
3772 void
3773 zil_close(zilog_t *zilog)
3774 {
3775 	lwb_t *lwb;
3776 	uint64_t txg;
3777 
3778 	if (!dmu_objset_is_snapshot(zilog->zl_os)) {
3779 		zil_commit(zilog, 0);
3780 	} else {
3781 		ASSERT(list_is_empty(&zilog->zl_lwb_list));
3782 		ASSERT0(zilog->zl_dirty_max_txg);
3783 		ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE);
3784 	}
3785 
3786 	mutex_enter(&zilog->zl_lock);
3787 	txg = zilog->zl_dirty_max_txg;
3788 	lwb = list_tail(&zilog->zl_lwb_list);
3789 	if (lwb != NULL) {
3790 		txg = MAX(txg, lwb->lwb_alloc_txg);
3791 		txg = MAX(txg, lwb->lwb_max_txg);
3792 	}
3793 	mutex_exit(&zilog->zl_lock);
3794 
3795 	/*
3796 	 * zl_lwb_max_issued_txg may be larger than lwb_max_txg. It depends
3797 	 * on the time when the dmu_tx transaction is assigned in
3798 	 * zil_lwb_write_issue().
3799 	 */
3800 	mutex_enter(&zilog->zl_lwb_io_lock);
3801 	txg = MAX(zilog->zl_lwb_max_issued_txg, txg);
3802 	mutex_exit(&zilog->zl_lwb_io_lock);
3803 
3804 	/*
3805 	 * We need to use txg_wait_synced() to wait until that txg is synced.
3806 	 * zil_sync() will guarantee all lwbs up to that txg have been
3807 	 * written out, flushed, and cleaned.
3808 	 */
3809 	if (txg != 0)
3810 		txg_wait_synced(zilog->zl_dmu_pool, txg);
3811 
3812 	if (zilog_is_dirty(zilog))
3813 		zfs_dbgmsg("zil (%px) is dirty, txg %llu", zilog,
3814 		    (u_longlong_t)txg);
3815 	if (txg < spa_freeze_txg(zilog->zl_spa))
3816 		VERIFY(!zilog_is_dirty(zilog));
3817 
3818 	zilog->zl_get_data = NULL;
3819 
3820 	/*
3821 	 * We should have only one lwb left on the list; remove it now.
3822 	 */
3823 	mutex_enter(&zilog->zl_lock);
3824 	lwb = list_remove_head(&zilog->zl_lwb_list);
3825 	if (lwb != NULL) {
3826 		ASSERT(list_is_empty(&zilog->zl_lwb_list));
3827 		ASSERT3S(lwb->lwb_state, ==, LWB_STATE_NEW);
3828 		zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
3829 		zil_free_lwb(zilog, lwb);
3830 	}
3831 	mutex_exit(&zilog->zl_lock);
3832 }
3833 
3834 static const char *suspend_tag = "zil suspending";
3835 
3836 /*
3837  * Suspend an intent log.  While in suspended mode, we still honor
3838  * synchronous semantics, but we rely on txg_wait_synced() to do it.
3839  * On old version pools, we suspend the log briefly when taking a
3840  * snapshot so that it will have an empty intent log.
3841  *
3842  * Long holds are not really intended to be used the way we do here --
3843  * held for such a short time.  A concurrent caller of dsl_dataset_long_held()
3844  * could fail.  Therefore we take pains to only put a long hold if it is
3845  * actually necessary.  Fortunately, it will only be necessary if the
3846  * objset is currently mounted (or the ZVOL equivalent).  In that case it
3847  * will already have a long hold, so we are not really making things any worse.
3848  *
3849  * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
3850  * zvol_state_t), and use their mechanism to prevent their hold from being
3851  * dropped (e.g. VFS_HOLD()).  However, that would be even more pain for
3852  * very little gain.
3853  *
3854  * if cookiep == NULL, this does both the suspend & resume.
3855  * Otherwise, it returns with the dataset "long held", and the cookie
3856  * should be passed into zil_resume().
3857  */
3858 int
3859 zil_suspend(const char *osname, void **cookiep)
3860 {
3861 	objset_t *os;
3862 	zilog_t *zilog;
3863 	const zil_header_t *zh;
3864 	int error;
3865 
3866 	error = dmu_objset_hold(osname, suspend_tag, &os);
3867 	if (error != 0)
3868 		return (error);
3869 	zilog = dmu_objset_zil(os);
3870 
3871 	mutex_enter(&zilog->zl_lock);
3872 	zh = zilog->zl_header;
3873 
3874 	if (zh->zh_flags & ZIL_REPLAY_NEEDED) {		/* unplayed log */
3875 		mutex_exit(&zilog->zl_lock);
3876 		dmu_objset_rele(os, suspend_tag);
3877 		return (SET_ERROR(EBUSY));
3878 	}
3879 
3880 	/*
3881 	 * Don't put a long hold in the cases where we can avoid it.  This
3882 	 * is when there is no cookie so we are doing a suspend & resume
3883 	 * (i.e. called from zil_vdev_offline()), and there's nothing to do
3884 	 * for the suspend because it's already suspended, or there's no ZIL.
3885 	 */
3886 	if (cookiep == NULL && !zilog->zl_suspending &&
3887 	    (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
3888 		mutex_exit(&zilog->zl_lock);
3889 		dmu_objset_rele(os, suspend_tag);
3890 		return (0);
3891 	}
3892 
3893 	dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
3894 	dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
3895 
3896 	zilog->zl_suspend++;
3897 
3898 	if (zilog->zl_suspend > 1) {
3899 		/*
3900 		 * Someone else is already suspending it.
3901 		 * Just wait for them to finish.
3902 		 */
3903 
3904 		while (zilog->zl_suspending)
3905 			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
3906 		mutex_exit(&zilog->zl_lock);
3907 
3908 		if (cookiep == NULL)
3909 			zil_resume(os);
3910 		else
3911 			*cookiep = os;
3912 		return (0);
3913 	}
3914 
3915 	/*
3916 	 * If there is no pointer to an on-disk block, this ZIL must not
3917 	 * be active (e.g. filesystem not mounted), so there's nothing
3918 	 * to clean up.
3919 	 */
3920 	if (BP_IS_HOLE(&zh->zh_log)) {
3921 		ASSERT(cookiep != NULL); /* fast path already handled */
3922 
3923 		*cookiep = os;
3924 		mutex_exit(&zilog->zl_lock);
3925 		return (0);
3926 	}
3927 
3928 	/*
3929 	 * The ZIL has work to do. Ensure that the associated encryption
3930 	 * key will remain mapped while we are committing the log by
3931 	 * grabbing a reference to it. If the key isn't loaded we have no
3932 	 * choice but to return an error until the wrapping key is loaded.
3933 	 */
3934 	if (os->os_encrypted &&
3935 	    dsl_dataset_create_key_mapping(dmu_objset_ds(os)) != 0) {
3936 		zilog->zl_suspend--;
3937 		mutex_exit(&zilog->zl_lock);
3938 		dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3939 		dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3940 		return (SET_ERROR(EACCES));
3941 	}
3942 
3943 	zilog->zl_suspending = B_TRUE;
3944 	mutex_exit(&zilog->zl_lock);
3945 
3946 	/*
3947 	 * We need to use zil_commit_impl to ensure we wait for all
3948 	 * LWB_STATE_OPENED, _CLOSED and _READY lwbs to be committed
3949 	 * to disk before proceeding. If we used zil_commit instead, it
3950 	 * would just call txg_wait_synced(), because zl_suspend is set.
3951 	 * txg_wait_synced() doesn't wait for these lwb's to be
3952 	 * LWB_STATE_FLUSH_DONE before returning.
3953 	 */
3954 	zil_commit_impl(zilog, 0);
3955 
3956 	/*
3957 	 * Now that we've ensured all lwb's are LWB_STATE_FLUSH_DONE, we
3958 	 * use txg_wait_synced() to ensure the data from the zilog has
3959 	 * migrated to the main pool before calling zil_destroy().
3960 	 */
3961 	txg_wait_synced(zilog->zl_dmu_pool, 0);
3962 
3963 	zil_destroy(zilog, B_FALSE);
3964 
3965 	mutex_enter(&zilog->zl_lock);
3966 	zilog->zl_suspending = B_FALSE;
3967 	cv_broadcast(&zilog->zl_cv_suspend);
3968 	mutex_exit(&zilog->zl_lock);
3969 
3970 	if (os->os_encrypted)
3971 		dsl_dataset_remove_key_mapping(dmu_objset_ds(os));
3972 
3973 	if (cookiep == NULL)
3974 		zil_resume(os);
3975 	else
3976 		*cookiep = os;
3977 	return (0);
3978 }
3979 
3980 void
3981 zil_resume(void *cookie)
3982 {
3983 	objset_t *os = cookie;
3984 	zilog_t *zilog = dmu_objset_zil(os);
3985 
3986 	mutex_enter(&zilog->zl_lock);
3987 	ASSERT(zilog->zl_suspend != 0);
3988 	zilog->zl_suspend--;
3989 	mutex_exit(&zilog->zl_lock);
3990 	dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3991 	dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3992 }
3993 
3994 typedef struct zil_replay_arg {
3995 	zil_replay_func_t *const *zr_replay;
3996 	void		*zr_arg;
3997 	boolean_t	zr_byteswap;
3998 	char		*zr_lr;
3999 } zil_replay_arg_t;
4000 
4001 static int
4002 zil_replay_error(zilog_t *zilog, const lr_t *lr, int error)
4003 {
4004 	char name[ZFS_MAX_DATASET_NAME_LEN];
4005 
4006 	zilog->zl_replaying_seq--;	/* didn't actually replay this one */
4007 
4008 	dmu_objset_name(zilog->zl_os, name);
4009 
4010 	cmn_err(CE_WARN, "ZFS replay transaction error %d, "
4011 	    "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
4012 	    (u_longlong_t)lr->lrc_seq,
4013 	    (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
4014 	    (lr->lrc_txtype & TX_CI) ? "CI" : "");
4015 
4016 	return (error);
4017 }
4018 
4019 static int
4020 zil_replay_log_record(zilog_t *zilog, const lr_t *lr, void *zra,
4021     uint64_t claim_txg)
4022 {
4023 	zil_replay_arg_t *zr = zra;
4024 	const zil_header_t *zh = zilog->zl_header;
4025 	uint64_t reclen = lr->lrc_reclen;
4026 	uint64_t txtype = lr->lrc_txtype;
4027 	int error = 0;
4028 
4029 	zilog->zl_replaying_seq = lr->lrc_seq;
4030 
4031 	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
4032 		return (0);
4033 
4034 	if (lr->lrc_txg < claim_txg)		/* already committed */
4035 		return (0);
4036 
4037 	/* Strip case-insensitive bit, still present in log record */
4038 	txtype &= ~TX_CI;
4039 
4040 	if (txtype == 0 || txtype >= TX_MAX_TYPE)
4041 		return (zil_replay_error(zilog, lr, EINVAL));
4042 
4043 	/*
4044 	 * If this record type can be logged out of order, the object
4045 	 * (lr_foid) may no longer exist.  That's legitimate, not an error.
4046 	 */
4047 	if (TX_OOO(txtype)) {
4048 		error = dmu_object_info(zilog->zl_os,
4049 		    LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL);
4050 		if (error == ENOENT || error == EEXIST)
4051 			return (0);
4052 	}
4053 
4054 	/*
4055 	 * Make a copy of the data so we can revise and extend it.
4056 	 */
4057 	memcpy(zr->zr_lr, lr, reclen);
4058 
4059 	/*
4060 	 * If this is a TX_WRITE with a blkptr, suck in the data.
4061 	 */
4062 	if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
4063 		error = zil_read_log_data(zilog, (lr_write_t *)lr,
4064 		    zr->zr_lr + reclen);
4065 		if (error != 0)
4066 			return (zil_replay_error(zilog, lr, error));
4067 	}
4068 
4069 	/*
4070 	 * The log block containing this lr may have been byteswapped
4071 	 * so that we can easily examine common fields like lrc_txtype.
4072 	 * However, the log is a mix of different record types, and only the
4073 	 * replay vectors know how to byteswap their records.  Therefore, if
4074 	 * the lr was byteswapped, undo it before invoking the replay vector.
4075 	 */
4076 	if (zr->zr_byteswap)
4077 		byteswap_uint64_array(zr->zr_lr, reclen);
4078 
4079 	/*
4080 	 * We must now do two things atomically: replay this log record,
4081 	 * and update the log header sequence number to reflect the fact that
4082 	 * we did so. At the end of each replay function the sequence number
4083 	 * is updated if we are in replay mode.
4084 	 */
4085 	error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
4086 	if (error != 0) {
4087 		/*
4088 		 * The DMU's dnode layer doesn't see removes until the txg
4089 		 * commits, so a subsequent claim can spuriously fail with
4090 		 * EEXIST. So if we receive any error we try syncing out
4091 		 * any removes then retry the transaction.  Note that we
4092 		 * specify B_FALSE for byteswap now, so we don't do it twice.
4093 		 */
4094 		txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
4095 		error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
4096 		if (error != 0)
4097 			return (zil_replay_error(zilog, lr, error));
4098 	}
4099 	return (0);
4100 }
4101 
4102 static int
4103 zil_incr_blks(zilog_t *zilog, const blkptr_t *bp, void *arg, uint64_t claim_txg)
4104 {
4105 	(void) bp, (void) arg, (void) claim_txg;
4106 
4107 	zilog->zl_replay_blks++;
4108 
4109 	return (0);
4110 }
4111 
4112 /*
4113  * If this dataset has a non-empty intent log, replay it and destroy it.
4114  * Return B_TRUE if there were any entries to replay.
4115  */
4116 boolean_t
4117 zil_replay(objset_t *os, void *arg,
4118     zil_replay_func_t *const replay_func[TX_MAX_TYPE])
4119 {
4120 	zilog_t *zilog = dmu_objset_zil(os);
4121 	const zil_header_t *zh = zilog->zl_header;
4122 	zil_replay_arg_t zr;
4123 
4124 	if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
4125 		return (zil_destroy(zilog, B_TRUE));
4126 	}
4127 
4128 	zr.zr_replay = replay_func;
4129 	zr.zr_arg = arg;
4130 	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
4131 	zr.zr_lr = vmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
4132 
4133 	/*
4134 	 * Wait for in-progress removes to sync before starting replay.
4135 	 */
4136 	txg_wait_synced(zilog->zl_dmu_pool, 0);
4137 
4138 	zilog->zl_replay = B_TRUE;
4139 	zilog->zl_replay_time = ddi_get_lbolt();
4140 	ASSERT(zilog->zl_replay_blks == 0);
4141 	(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
4142 	    zh->zh_claim_txg, B_TRUE);
4143 	vmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
4144 
4145 	zil_destroy(zilog, B_FALSE);
4146 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
4147 	zilog->zl_replay = B_FALSE;
4148 
4149 	return (B_TRUE);
4150 }
4151 
4152 boolean_t
4153 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
4154 {
4155 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
4156 		return (B_TRUE);
4157 
4158 	if (zilog->zl_replay) {
4159 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
4160 		zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
4161 		    zilog->zl_replaying_seq;
4162 		return (B_TRUE);
4163 	}
4164 
4165 	return (B_FALSE);
4166 }
4167 
4168 int
4169 zil_reset(const char *osname, void *arg)
4170 {
4171 	(void) arg;
4172 
4173 	int error = zil_suspend(osname, NULL);
4174 	/* EACCES means crypto key not loaded */
4175 	if ((error == EACCES) || (error == EBUSY))
4176 		return (SET_ERROR(error));
4177 	if (error != 0)
4178 		return (SET_ERROR(EEXIST));
4179 	return (0);
4180 }
4181 
4182 EXPORT_SYMBOL(zil_alloc);
4183 EXPORT_SYMBOL(zil_free);
4184 EXPORT_SYMBOL(zil_open);
4185 EXPORT_SYMBOL(zil_close);
4186 EXPORT_SYMBOL(zil_replay);
4187 EXPORT_SYMBOL(zil_replaying);
4188 EXPORT_SYMBOL(zil_destroy);
4189 EXPORT_SYMBOL(zil_destroy_sync);
4190 EXPORT_SYMBOL(zil_itx_create);
4191 EXPORT_SYMBOL(zil_itx_destroy);
4192 EXPORT_SYMBOL(zil_itx_assign);
4193 EXPORT_SYMBOL(zil_commit);
4194 EXPORT_SYMBOL(zil_claim);
4195 EXPORT_SYMBOL(zil_check_log_chain);
4196 EXPORT_SYMBOL(zil_sync);
4197 EXPORT_SYMBOL(zil_clean);
4198 EXPORT_SYMBOL(zil_suspend);
4199 EXPORT_SYMBOL(zil_resume);
4200 EXPORT_SYMBOL(zil_lwb_add_block);
4201 EXPORT_SYMBOL(zil_bp_tree_add);
4202 EXPORT_SYMBOL(zil_set_sync);
4203 EXPORT_SYMBOL(zil_set_logbias);
4204 EXPORT_SYMBOL(zil_sums_init);
4205 EXPORT_SYMBOL(zil_sums_fini);
4206 EXPORT_SYMBOL(zil_kstat_values_update);
4207 
4208 ZFS_MODULE_PARAM(zfs, zfs_, commit_timeout_pct, UINT, ZMOD_RW,
4209 	"ZIL block open timeout percentage");
4210 
4211 ZFS_MODULE_PARAM(zfs_zil, zil_, min_commit_timeout, U64, ZMOD_RW,
4212 	"Minimum delay we care for ZIL block commit");
4213 
4214 ZFS_MODULE_PARAM(zfs_zil, zil_, replay_disable, INT, ZMOD_RW,
4215 	"Disable intent logging replay");
4216 
4217 ZFS_MODULE_PARAM(zfs_zil, zil_, nocacheflush, INT, ZMOD_RW,
4218 	"Disable ZIL cache flushes");
4219 
4220 ZFS_MODULE_PARAM(zfs_zil, zil_, slog_bulk, U64, ZMOD_RW,
4221 	"Limit in bytes slog sync writes per commit");
4222 
4223 ZFS_MODULE_PARAM(zfs_zil, zil_, maxblocksize, UINT, ZMOD_RW,
4224 	"Limit in bytes of ZIL log block size");
4225