xref: /freebsd/sys/contrib/openzfs/module/zfs/zil.c (revision 766145637dd5f1316c2ac4a20956e1b17bf8df42)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24  * Copyright (c) 2014 Integros [integros.com]
25  * Copyright (c) 2018 Datto Inc.
26  */
27 
28 /* Portions Copyright 2010 Robert Milkowski */
29 
30 #include <sys/zfs_context.h>
31 #include <sys/spa.h>
32 #include <sys/spa_impl.h>
33 #include <sys/dmu.h>
34 #include <sys/zap.h>
35 #include <sys/arc.h>
36 #include <sys/stat.h>
37 #include <sys/zil.h>
38 #include <sys/zil_impl.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/vdev_impl.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/dsl_pool.h>
43 #include <sys/metaslab.h>
44 #include <sys/trace_zfs.h>
45 #include <sys/abd.h>
46 #include <sys/wmsum.h>
47 
48 /*
49  * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system
50  * calls that change the file system. Each itx has enough information to
51  * be able to replay them after a system crash, power loss, or
52  * equivalent failure mode. These are stored in memory until either:
53  *
54  *   1. they are committed to the pool by the DMU transaction group
55  *      (txg), at which point they can be discarded; or
56  *   2. they are committed to the on-disk ZIL for the dataset being
57  *      modified (e.g. due to an fsync, O_DSYNC, or other synchronous
58  *      requirement).
59  *
60  * In the event of a crash or power loss, the itxs contained by each
61  * dataset's on-disk ZIL will be replayed when that dataset is first
62  * instantiated (e.g. if the dataset is a normal filesystem, when it is
63  * first mounted).
64  *
65  * As hinted at above, there is one ZIL per dataset (both the in-memory
66  * representation, and the on-disk representation). The on-disk format
67  * consists of 3 parts:
68  *
69  * 	- a single, per-dataset, ZIL header; which points to a chain of
70  * 	- zero or more ZIL blocks; each of which contains
71  * 	- zero or more ZIL records
72  *
73  * A ZIL record holds the information necessary to replay a single
74  * system call transaction. A ZIL block can hold many ZIL records, and
75  * the blocks are chained together, similarly to a singly linked list.
76  *
77  * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL
78  * block in the chain, and the ZIL header points to the first block in
79  * the chain.
80  *
81  * Note, there is not a fixed place in the pool to hold these ZIL
82  * blocks; they are dynamically allocated and freed as needed from the
83  * blocks available on the pool, though they can be preferentially
84  * allocated from a dedicated "log" vdev.
85  */
86 
87 /*
88  * This controls the amount of time that a ZIL block (lwb) will remain
89  * "open" when it isn't "full", and it has a thread waiting for it to be
90  * committed to stable storage. Please refer to the zil_commit_waiter()
91  * function (and the comments within it) for more details.
92  */
93 static uint_t zfs_commit_timeout_pct = 5;
94 
95 /*
96  * See zil.h for more information about these fields.
97  */
98 static zil_kstat_values_t zil_stats = {
99 	{ "zil_commit_count",			KSTAT_DATA_UINT64 },
100 	{ "zil_commit_writer_count",		KSTAT_DATA_UINT64 },
101 	{ "zil_itx_count",			KSTAT_DATA_UINT64 },
102 	{ "zil_itx_indirect_count",		KSTAT_DATA_UINT64 },
103 	{ "zil_itx_indirect_bytes",		KSTAT_DATA_UINT64 },
104 	{ "zil_itx_copied_count",		KSTAT_DATA_UINT64 },
105 	{ "zil_itx_copied_bytes",		KSTAT_DATA_UINT64 },
106 	{ "zil_itx_needcopy_count",		KSTAT_DATA_UINT64 },
107 	{ "zil_itx_needcopy_bytes",		KSTAT_DATA_UINT64 },
108 	{ "zil_itx_metaslab_normal_count",	KSTAT_DATA_UINT64 },
109 	{ "zil_itx_metaslab_normal_bytes",	KSTAT_DATA_UINT64 },
110 	{ "zil_itx_metaslab_slog_count",	KSTAT_DATA_UINT64 },
111 	{ "zil_itx_metaslab_slog_bytes",	KSTAT_DATA_UINT64 },
112 };
113 
114 static zil_sums_t zil_sums_global;
115 static kstat_t *zil_kstats_global;
116 
117 /*
118  * Disable intent logging replay.  This global ZIL switch affects all pools.
119  */
120 int zil_replay_disable = 0;
121 
122 /*
123  * Disable the DKIOCFLUSHWRITECACHE commands that are normally sent to
124  * the disk(s) by the ZIL after an LWB write has completed. Setting this
125  * will cause ZIL corruption on power loss if a volatile out-of-order
126  * write cache is enabled.
127  */
128 static int zil_nocacheflush = 0;
129 
130 /*
131  * Limit SLOG write size per commit executed with synchronous priority.
132  * Any writes above that will be executed with lower (asynchronous) priority
133  * to limit potential SLOG device abuse by single active ZIL writer.
134  */
135 static uint64_t zil_slog_bulk = 768 * 1024;
136 
137 static kmem_cache_t *zil_lwb_cache;
138 static kmem_cache_t *zil_zcw_cache;
139 
140 #define	LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
141     sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
142 
143 static int
144 zil_bp_compare(const void *x1, const void *x2)
145 {
146 	const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
147 	const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
148 
149 	int cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2));
150 	if (likely(cmp))
151 		return (cmp);
152 
153 	return (TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2)));
154 }
155 
156 static void
157 zil_bp_tree_init(zilog_t *zilog)
158 {
159 	avl_create(&zilog->zl_bp_tree, zil_bp_compare,
160 	    sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
161 }
162 
163 static void
164 zil_bp_tree_fini(zilog_t *zilog)
165 {
166 	avl_tree_t *t = &zilog->zl_bp_tree;
167 	zil_bp_node_t *zn;
168 	void *cookie = NULL;
169 
170 	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
171 		kmem_free(zn, sizeof (zil_bp_node_t));
172 
173 	avl_destroy(t);
174 }
175 
176 int
177 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
178 {
179 	avl_tree_t *t = &zilog->zl_bp_tree;
180 	const dva_t *dva;
181 	zil_bp_node_t *zn;
182 	avl_index_t where;
183 
184 	if (BP_IS_EMBEDDED(bp))
185 		return (0);
186 
187 	dva = BP_IDENTITY(bp);
188 
189 	if (avl_find(t, dva, &where) != NULL)
190 		return (SET_ERROR(EEXIST));
191 
192 	zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
193 	zn->zn_dva = *dva;
194 	avl_insert(t, zn, where);
195 
196 	return (0);
197 }
198 
199 static zil_header_t *
200 zil_header_in_syncing_context(zilog_t *zilog)
201 {
202 	return ((zil_header_t *)zilog->zl_header);
203 }
204 
205 static void
206 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
207 {
208 	zio_cksum_t *zc = &bp->blk_cksum;
209 
210 	(void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_0],
211 	    sizeof (zc->zc_word[ZIL_ZC_GUID_0]));
212 	(void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_1],
213 	    sizeof (zc->zc_word[ZIL_ZC_GUID_1]));
214 	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
215 	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
216 }
217 
218 static int
219 zil_kstats_global_update(kstat_t *ksp, int rw)
220 {
221 	zil_kstat_values_t *zs = ksp->ks_data;
222 	ASSERT3P(&zil_stats, ==, zs);
223 
224 	if (rw == KSTAT_WRITE) {
225 		return (SET_ERROR(EACCES));
226 	}
227 
228 	zil_kstat_values_update(zs, &zil_sums_global);
229 
230 	return (0);
231 }
232 
233 /*
234  * Read a log block and make sure it's valid.
235  */
236 static int
237 zil_read_log_block(zilog_t *zilog, boolean_t decrypt, const blkptr_t *bp,
238     blkptr_t *nbp, void *dst, char **end)
239 {
240 	zio_flag_t zio_flags = ZIO_FLAG_CANFAIL;
241 	arc_flags_t aflags = ARC_FLAG_WAIT;
242 	arc_buf_t *abuf = NULL;
243 	zbookmark_phys_t zb;
244 	int error;
245 
246 	if (zilog->zl_header->zh_claim_txg == 0)
247 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
248 
249 	if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
250 		zio_flags |= ZIO_FLAG_SPECULATIVE;
251 
252 	if (!decrypt)
253 		zio_flags |= ZIO_FLAG_RAW;
254 
255 	SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
256 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
257 
258 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func,
259 	    &abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
260 
261 	if (error == 0) {
262 		zio_cksum_t cksum = bp->blk_cksum;
263 
264 		/*
265 		 * Validate the checksummed log block.
266 		 *
267 		 * Sequence numbers should be... sequential.  The checksum
268 		 * verifier for the next block should be bp's checksum plus 1.
269 		 *
270 		 * Also check the log chain linkage and size used.
271 		 */
272 		cksum.zc_word[ZIL_ZC_SEQ]++;
273 
274 		if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
275 			zil_chain_t *zilc = abuf->b_data;
276 			char *lr = (char *)(zilc + 1);
277 			uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
278 
279 			if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
280 			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
281 				error = SET_ERROR(ECKSUM);
282 			} else {
283 				ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
284 				memcpy(dst, lr, len);
285 				*end = (char *)dst + len;
286 				*nbp = zilc->zc_next_blk;
287 			}
288 		} else {
289 			char *lr = abuf->b_data;
290 			uint64_t size = BP_GET_LSIZE(bp);
291 			zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
292 
293 			if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
294 			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
295 			    (zilc->zc_nused > (size - sizeof (*zilc)))) {
296 				error = SET_ERROR(ECKSUM);
297 			} else {
298 				ASSERT3U(zilc->zc_nused, <=,
299 				    SPA_OLD_MAXBLOCKSIZE);
300 				memcpy(dst, lr, zilc->zc_nused);
301 				*end = (char *)dst + zilc->zc_nused;
302 				*nbp = zilc->zc_next_blk;
303 			}
304 		}
305 
306 		arc_buf_destroy(abuf, &abuf);
307 	}
308 
309 	return (error);
310 }
311 
312 /*
313  * Read a TX_WRITE log data block.
314  */
315 static int
316 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
317 {
318 	zio_flag_t zio_flags = ZIO_FLAG_CANFAIL;
319 	const blkptr_t *bp = &lr->lr_blkptr;
320 	arc_flags_t aflags = ARC_FLAG_WAIT;
321 	arc_buf_t *abuf = NULL;
322 	zbookmark_phys_t zb;
323 	int error;
324 
325 	if (BP_IS_HOLE(bp)) {
326 		if (wbuf != NULL)
327 			memset(wbuf, 0, MAX(BP_GET_LSIZE(bp), lr->lr_length));
328 		return (0);
329 	}
330 
331 	if (zilog->zl_header->zh_claim_txg == 0)
332 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
333 
334 	/*
335 	 * If we are not using the resulting data, we are just checking that
336 	 * it hasn't been corrupted so we don't need to waste CPU time
337 	 * decompressing and decrypting it.
338 	 */
339 	if (wbuf == NULL)
340 		zio_flags |= ZIO_FLAG_RAW;
341 
342 	ASSERT3U(BP_GET_LSIZE(bp), !=, 0);
343 	SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
344 	    ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
345 
346 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
347 	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
348 
349 	if (error == 0) {
350 		if (wbuf != NULL)
351 			memcpy(wbuf, abuf->b_data, arc_buf_size(abuf));
352 		arc_buf_destroy(abuf, &abuf);
353 	}
354 
355 	return (error);
356 }
357 
358 void
359 zil_sums_init(zil_sums_t *zs)
360 {
361 	wmsum_init(&zs->zil_commit_count, 0);
362 	wmsum_init(&zs->zil_commit_writer_count, 0);
363 	wmsum_init(&zs->zil_itx_count, 0);
364 	wmsum_init(&zs->zil_itx_indirect_count, 0);
365 	wmsum_init(&zs->zil_itx_indirect_bytes, 0);
366 	wmsum_init(&zs->zil_itx_copied_count, 0);
367 	wmsum_init(&zs->zil_itx_copied_bytes, 0);
368 	wmsum_init(&zs->zil_itx_needcopy_count, 0);
369 	wmsum_init(&zs->zil_itx_needcopy_bytes, 0);
370 	wmsum_init(&zs->zil_itx_metaslab_normal_count, 0);
371 	wmsum_init(&zs->zil_itx_metaslab_normal_bytes, 0);
372 	wmsum_init(&zs->zil_itx_metaslab_slog_count, 0);
373 	wmsum_init(&zs->zil_itx_metaslab_slog_bytes, 0);
374 }
375 
376 void
377 zil_sums_fini(zil_sums_t *zs)
378 {
379 	wmsum_fini(&zs->zil_commit_count);
380 	wmsum_fini(&zs->zil_commit_writer_count);
381 	wmsum_fini(&zs->zil_itx_count);
382 	wmsum_fini(&zs->zil_itx_indirect_count);
383 	wmsum_fini(&zs->zil_itx_indirect_bytes);
384 	wmsum_fini(&zs->zil_itx_copied_count);
385 	wmsum_fini(&zs->zil_itx_copied_bytes);
386 	wmsum_fini(&zs->zil_itx_needcopy_count);
387 	wmsum_fini(&zs->zil_itx_needcopy_bytes);
388 	wmsum_fini(&zs->zil_itx_metaslab_normal_count);
389 	wmsum_fini(&zs->zil_itx_metaslab_normal_bytes);
390 	wmsum_fini(&zs->zil_itx_metaslab_slog_count);
391 	wmsum_fini(&zs->zil_itx_metaslab_slog_bytes);
392 }
393 
394 void
395 zil_kstat_values_update(zil_kstat_values_t *zs, zil_sums_t *zil_sums)
396 {
397 	zs->zil_commit_count.value.ui64 =
398 	    wmsum_value(&zil_sums->zil_commit_count);
399 	zs->zil_commit_writer_count.value.ui64 =
400 	    wmsum_value(&zil_sums->zil_commit_writer_count);
401 	zs->zil_itx_count.value.ui64 =
402 	    wmsum_value(&zil_sums->zil_itx_count);
403 	zs->zil_itx_indirect_count.value.ui64 =
404 	    wmsum_value(&zil_sums->zil_itx_indirect_count);
405 	zs->zil_itx_indirect_bytes.value.ui64 =
406 	    wmsum_value(&zil_sums->zil_itx_indirect_bytes);
407 	zs->zil_itx_copied_count.value.ui64 =
408 	    wmsum_value(&zil_sums->zil_itx_copied_count);
409 	zs->zil_itx_copied_bytes.value.ui64 =
410 	    wmsum_value(&zil_sums->zil_itx_copied_bytes);
411 	zs->zil_itx_needcopy_count.value.ui64 =
412 	    wmsum_value(&zil_sums->zil_itx_needcopy_count);
413 	zs->zil_itx_needcopy_bytes.value.ui64 =
414 	    wmsum_value(&zil_sums->zil_itx_needcopy_bytes);
415 	zs->zil_itx_metaslab_normal_count.value.ui64 =
416 	    wmsum_value(&zil_sums->zil_itx_metaslab_normal_count);
417 	zs->zil_itx_metaslab_normal_bytes.value.ui64 =
418 	    wmsum_value(&zil_sums->zil_itx_metaslab_normal_bytes);
419 	zs->zil_itx_metaslab_slog_count.value.ui64 =
420 	    wmsum_value(&zil_sums->zil_itx_metaslab_slog_count);
421 	zs->zil_itx_metaslab_slog_bytes.value.ui64 =
422 	    wmsum_value(&zil_sums->zil_itx_metaslab_slog_bytes);
423 }
424 
425 /*
426  * Parse the intent log, and call parse_func for each valid record within.
427  */
428 int
429 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
430     zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg,
431     boolean_t decrypt)
432 {
433 	const zil_header_t *zh = zilog->zl_header;
434 	boolean_t claimed = !!zh->zh_claim_txg;
435 	uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
436 	uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
437 	uint64_t max_blk_seq = 0;
438 	uint64_t max_lr_seq = 0;
439 	uint64_t blk_count = 0;
440 	uint64_t lr_count = 0;
441 	blkptr_t blk, next_blk = {{{{0}}}};
442 	char *lrbuf, *lrp;
443 	int error = 0;
444 
445 	/*
446 	 * Old logs didn't record the maximum zh_claim_lr_seq.
447 	 */
448 	if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
449 		claim_lr_seq = UINT64_MAX;
450 
451 	/*
452 	 * Starting at the block pointed to by zh_log we read the log chain.
453 	 * For each block in the chain we strongly check that block to
454 	 * ensure its validity.  We stop when an invalid block is found.
455 	 * For each block pointer in the chain we call parse_blk_func().
456 	 * For each record in each valid block we call parse_lr_func().
457 	 * If the log has been claimed, stop if we encounter a sequence
458 	 * number greater than the highest claimed sequence number.
459 	 */
460 	lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
461 	zil_bp_tree_init(zilog);
462 
463 	for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
464 		uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
465 		int reclen;
466 		char *end = NULL;
467 
468 		if (blk_seq > claim_blk_seq)
469 			break;
470 
471 		error = parse_blk_func(zilog, &blk, arg, txg);
472 		if (error != 0)
473 			break;
474 		ASSERT3U(max_blk_seq, <, blk_seq);
475 		max_blk_seq = blk_seq;
476 		blk_count++;
477 
478 		if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
479 			break;
480 
481 		error = zil_read_log_block(zilog, decrypt, &blk, &next_blk,
482 		    lrbuf, &end);
483 		if (error != 0) {
484 			if (claimed) {
485 				char name[ZFS_MAX_DATASET_NAME_LEN];
486 
487 				dmu_objset_name(zilog->zl_os, name);
488 
489 				cmn_err(CE_WARN, "ZFS read log block error %d, "
490 				    "dataset %s, seq 0x%llx\n", error, name,
491 				    (u_longlong_t)blk_seq);
492 			}
493 			break;
494 		}
495 
496 		for (lrp = lrbuf; lrp < end; lrp += reclen) {
497 			lr_t *lr = (lr_t *)lrp;
498 			reclen = lr->lrc_reclen;
499 			ASSERT3U(reclen, >=, sizeof (lr_t));
500 			if (lr->lrc_seq > claim_lr_seq)
501 				goto done;
502 
503 			error = parse_lr_func(zilog, lr, arg, txg);
504 			if (error != 0)
505 				goto done;
506 			ASSERT3U(max_lr_seq, <, lr->lrc_seq);
507 			max_lr_seq = lr->lrc_seq;
508 			lr_count++;
509 		}
510 	}
511 done:
512 	zilog->zl_parse_error = error;
513 	zilog->zl_parse_blk_seq = max_blk_seq;
514 	zilog->zl_parse_lr_seq = max_lr_seq;
515 	zilog->zl_parse_blk_count = blk_count;
516 	zilog->zl_parse_lr_count = lr_count;
517 
518 	zil_bp_tree_fini(zilog);
519 	zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
520 
521 	return (error);
522 }
523 
524 static int
525 zil_clear_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
526     uint64_t first_txg)
527 {
528 	(void) tx;
529 	ASSERT(!BP_IS_HOLE(bp));
530 
531 	/*
532 	 * As we call this function from the context of a rewind to a
533 	 * checkpoint, each ZIL block whose txg is later than the txg
534 	 * that we rewind to is invalid. Thus, we return -1 so
535 	 * zil_parse() doesn't attempt to read it.
536 	 */
537 	if (bp->blk_birth >= first_txg)
538 		return (-1);
539 
540 	if (zil_bp_tree_add(zilog, bp) != 0)
541 		return (0);
542 
543 	zio_free(zilog->zl_spa, first_txg, bp);
544 	return (0);
545 }
546 
547 static int
548 zil_noop_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
549     uint64_t first_txg)
550 {
551 	(void) zilog, (void) lrc, (void) tx, (void) first_txg;
552 	return (0);
553 }
554 
555 static int
556 zil_claim_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
557     uint64_t first_txg)
558 {
559 	/*
560 	 * Claim log block if not already committed and not already claimed.
561 	 * If tx == NULL, just verify that the block is claimable.
562 	 */
563 	if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
564 	    zil_bp_tree_add(zilog, bp) != 0)
565 		return (0);
566 
567 	return (zio_wait(zio_claim(NULL, zilog->zl_spa,
568 	    tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
569 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
570 }
571 
572 static int
573 zil_claim_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
574     uint64_t first_txg)
575 {
576 	lr_write_t *lr = (lr_write_t *)lrc;
577 	int error;
578 
579 	if (lrc->lrc_txtype != TX_WRITE)
580 		return (0);
581 
582 	/*
583 	 * If the block is not readable, don't claim it.  This can happen
584 	 * in normal operation when a log block is written to disk before
585 	 * some of the dmu_sync() blocks it points to.  In this case, the
586 	 * transaction cannot have been committed to anyone (we would have
587 	 * waited for all writes to be stable first), so it is semantically
588 	 * correct to declare this the end of the log.
589 	 */
590 	if (lr->lr_blkptr.blk_birth >= first_txg) {
591 		error = zil_read_log_data(zilog, lr, NULL);
592 		if (error != 0)
593 			return (error);
594 	}
595 
596 	return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
597 }
598 
599 static int
600 zil_free_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
601     uint64_t claim_txg)
602 {
603 	(void) claim_txg;
604 
605 	zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
606 
607 	return (0);
608 }
609 
610 static int
611 zil_free_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
612     uint64_t claim_txg)
613 {
614 	lr_write_t *lr = (lr_write_t *)lrc;
615 	blkptr_t *bp = &lr->lr_blkptr;
616 
617 	/*
618 	 * If we previously claimed it, we need to free it.
619 	 */
620 	if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
621 	    bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
622 	    !BP_IS_HOLE(bp))
623 		zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
624 
625 	return (0);
626 }
627 
628 static int
629 zil_lwb_vdev_compare(const void *x1, const void *x2)
630 {
631 	const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
632 	const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
633 
634 	return (TREE_CMP(v1, v2));
635 }
636 
637 static lwb_t *
638 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg,
639     boolean_t fastwrite)
640 {
641 	lwb_t *lwb;
642 
643 	lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
644 	lwb->lwb_zilog = zilog;
645 	lwb->lwb_blk = *bp;
646 	lwb->lwb_fastwrite = fastwrite;
647 	lwb->lwb_slog = slog;
648 	lwb->lwb_state = LWB_STATE_CLOSED;
649 	lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
650 	lwb->lwb_max_txg = txg;
651 	lwb->lwb_write_zio = NULL;
652 	lwb->lwb_root_zio = NULL;
653 	lwb->lwb_issued_timestamp = 0;
654 	lwb->lwb_issued_txg = 0;
655 	if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
656 		lwb->lwb_nused = sizeof (zil_chain_t);
657 		lwb->lwb_sz = BP_GET_LSIZE(bp);
658 	} else {
659 		lwb->lwb_nused = 0;
660 		lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
661 	}
662 
663 	mutex_enter(&zilog->zl_lock);
664 	list_insert_tail(&zilog->zl_lwb_list, lwb);
665 	mutex_exit(&zilog->zl_lock);
666 
667 	ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
668 	ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
669 	VERIFY(list_is_empty(&lwb->lwb_waiters));
670 	VERIFY(list_is_empty(&lwb->lwb_itxs));
671 
672 	return (lwb);
673 }
674 
675 static void
676 zil_free_lwb(zilog_t *zilog, lwb_t *lwb)
677 {
678 	ASSERT(MUTEX_HELD(&zilog->zl_lock));
679 	ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
680 	VERIFY(list_is_empty(&lwb->lwb_waiters));
681 	VERIFY(list_is_empty(&lwb->lwb_itxs));
682 	ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
683 	ASSERT3P(lwb->lwb_write_zio, ==, NULL);
684 	ASSERT3P(lwb->lwb_root_zio, ==, NULL);
685 	ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa));
686 	ASSERT(lwb->lwb_state == LWB_STATE_CLOSED ||
687 	    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
688 
689 	/*
690 	 * Clear the zilog's field to indicate this lwb is no longer
691 	 * valid, and prevent use-after-free errors.
692 	 */
693 	if (zilog->zl_last_lwb_opened == lwb)
694 		zilog->zl_last_lwb_opened = NULL;
695 
696 	kmem_cache_free(zil_lwb_cache, lwb);
697 }
698 
699 /*
700  * Called when we create in-memory log transactions so that we know
701  * to cleanup the itxs at the end of spa_sync().
702  */
703 static void
704 zilog_dirty(zilog_t *zilog, uint64_t txg)
705 {
706 	dsl_pool_t *dp = zilog->zl_dmu_pool;
707 	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
708 
709 	ASSERT(spa_writeable(zilog->zl_spa));
710 
711 	if (ds->ds_is_snapshot)
712 		panic("dirtying snapshot!");
713 
714 	if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
715 		/* up the hold count until we can be written out */
716 		dmu_buf_add_ref(ds->ds_dbuf, zilog);
717 
718 		zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg);
719 	}
720 }
721 
722 /*
723  * Determine if the zil is dirty in the specified txg. Callers wanting to
724  * ensure that the dirty state does not change must hold the itxg_lock for
725  * the specified txg. Holding the lock will ensure that the zil cannot be
726  * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
727  * state.
728  */
729 static boolean_t __maybe_unused
730 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
731 {
732 	dsl_pool_t *dp = zilog->zl_dmu_pool;
733 
734 	if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
735 		return (B_TRUE);
736 	return (B_FALSE);
737 }
738 
739 /*
740  * Determine if the zil is dirty. The zil is considered dirty if it has
741  * any pending itx records that have not been cleaned by zil_clean().
742  */
743 static boolean_t
744 zilog_is_dirty(zilog_t *zilog)
745 {
746 	dsl_pool_t *dp = zilog->zl_dmu_pool;
747 
748 	for (int t = 0; t < TXG_SIZE; t++) {
749 		if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
750 			return (B_TRUE);
751 	}
752 	return (B_FALSE);
753 }
754 
755 /*
756  * Its called in zil_commit context (zil_process_commit_list()/zil_create()).
757  * It activates SPA_FEATURE_ZILSAXATTR feature, if its enabled.
758  * Check dsl_dataset_feature_is_active to avoid txg_wait_synced() on every
759  * zil_commit.
760  */
761 static void
762 zil_commit_activate_saxattr_feature(zilog_t *zilog)
763 {
764 	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
765 	uint64_t txg = 0;
766 	dmu_tx_t *tx = NULL;
767 
768 	if (spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) &&
769 	    dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL &&
770 	    !dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR)) {
771 		tx = dmu_tx_create(zilog->zl_os);
772 		VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
773 		dsl_dataset_dirty(ds, tx);
774 		txg = dmu_tx_get_txg(tx);
775 
776 		mutex_enter(&ds->ds_lock);
777 		ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] =
778 		    (void *)B_TRUE;
779 		mutex_exit(&ds->ds_lock);
780 		dmu_tx_commit(tx);
781 		txg_wait_synced(zilog->zl_dmu_pool, txg);
782 	}
783 }
784 
785 /*
786  * Create an on-disk intent log.
787  */
788 static lwb_t *
789 zil_create(zilog_t *zilog)
790 {
791 	const zil_header_t *zh = zilog->zl_header;
792 	lwb_t *lwb = NULL;
793 	uint64_t txg = 0;
794 	dmu_tx_t *tx = NULL;
795 	blkptr_t blk;
796 	int error = 0;
797 	boolean_t fastwrite = FALSE;
798 	boolean_t slog = FALSE;
799 	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
800 
801 
802 	/*
803 	 * Wait for any previous destroy to complete.
804 	 */
805 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
806 
807 	ASSERT(zh->zh_claim_txg == 0);
808 	ASSERT(zh->zh_replay_seq == 0);
809 
810 	blk = zh->zh_log;
811 
812 	/*
813 	 * Allocate an initial log block if:
814 	 *    - there isn't one already
815 	 *    - the existing block is the wrong endianness
816 	 */
817 	if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
818 		tx = dmu_tx_create(zilog->zl_os);
819 		VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
820 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
821 		txg = dmu_tx_get_txg(tx);
822 
823 		if (!BP_IS_HOLE(&blk)) {
824 			zio_free(zilog->zl_spa, txg, &blk);
825 			BP_ZERO(&blk);
826 		}
827 
828 		error = zio_alloc_zil(zilog->zl_spa, zilog->zl_os, txg, &blk,
829 		    ZIL_MIN_BLKSZ, &slog);
830 		fastwrite = TRUE;
831 
832 		if (error == 0)
833 			zil_init_log_chain(zilog, &blk);
834 	}
835 
836 	/*
837 	 * Allocate a log write block (lwb) for the first log block.
838 	 */
839 	if (error == 0)
840 		lwb = zil_alloc_lwb(zilog, &blk, slog, txg, fastwrite);
841 
842 	/*
843 	 * If we just allocated the first log block, commit our transaction
844 	 * and wait for zil_sync() to stuff the block pointer into zh_log.
845 	 * (zh is part of the MOS, so we cannot modify it in open context.)
846 	 */
847 	if (tx != NULL) {
848 		/*
849 		 * If "zilsaxattr" feature is enabled on zpool, then activate
850 		 * it now when we're creating the ZIL chain. We can't wait with
851 		 * this until we write the first xattr log record because we
852 		 * need to wait for the feature activation to sync out.
853 		 */
854 		if (spa_feature_is_enabled(zilog->zl_spa,
855 		    SPA_FEATURE_ZILSAXATTR) && dmu_objset_type(zilog->zl_os) !=
856 		    DMU_OST_ZVOL) {
857 			mutex_enter(&ds->ds_lock);
858 			ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] =
859 			    (void *)B_TRUE;
860 			mutex_exit(&ds->ds_lock);
861 		}
862 
863 		dmu_tx_commit(tx);
864 		txg_wait_synced(zilog->zl_dmu_pool, txg);
865 	} else {
866 		/*
867 		 * This branch covers the case where we enable the feature on a
868 		 * zpool that has existing ZIL headers.
869 		 */
870 		zil_commit_activate_saxattr_feature(zilog);
871 	}
872 	IMPLY(spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) &&
873 	    dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL,
874 	    dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR));
875 
876 	ASSERT(error != 0 || memcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
877 	IMPLY(error == 0, lwb != NULL);
878 
879 	return (lwb);
880 }
881 
882 /*
883  * In one tx, free all log blocks and clear the log header. If keep_first
884  * is set, then we're replaying a log with no content. We want to keep the
885  * first block, however, so that the first synchronous transaction doesn't
886  * require a txg_wait_synced() in zil_create(). We don't need to
887  * txg_wait_synced() here either when keep_first is set, because both
888  * zil_create() and zil_destroy() will wait for any in-progress destroys
889  * to complete.
890  * Return B_TRUE if there were any entries to replay.
891  */
892 boolean_t
893 zil_destroy(zilog_t *zilog, boolean_t keep_first)
894 {
895 	const zil_header_t *zh = zilog->zl_header;
896 	lwb_t *lwb;
897 	dmu_tx_t *tx;
898 	uint64_t txg;
899 
900 	/*
901 	 * Wait for any previous destroy to complete.
902 	 */
903 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
904 
905 	zilog->zl_old_header = *zh;		/* debugging aid */
906 
907 	if (BP_IS_HOLE(&zh->zh_log))
908 		return (B_FALSE);
909 
910 	tx = dmu_tx_create(zilog->zl_os);
911 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
912 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
913 	txg = dmu_tx_get_txg(tx);
914 
915 	mutex_enter(&zilog->zl_lock);
916 
917 	ASSERT3U(zilog->zl_destroy_txg, <, txg);
918 	zilog->zl_destroy_txg = txg;
919 	zilog->zl_keep_first = keep_first;
920 
921 	if (!list_is_empty(&zilog->zl_lwb_list)) {
922 		ASSERT(zh->zh_claim_txg == 0);
923 		VERIFY(!keep_first);
924 		while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
925 			if (lwb->lwb_fastwrite)
926 				metaslab_fastwrite_unmark(zilog->zl_spa,
927 				    &lwb->lwb_blk);
928 
929 			list_remove(&zilog->zl_lwb_list, lwb);
930 			if (lwb->lwb_buf != NULL)
931 				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
932 			zio_free(zilog->zl_spa, txg, &lwb->lwb_blk);
933 			zil_free_lwb(zilog, lwb);
934 		}
935 	} else if (!keep_first) {
936 		zil_destroy_sync(zilog, tx);
937 	}
938 	mutex_exit(&zilog->zl_lock);
939 
940 	dmu_tx_commit(tx);
941 
942 	return (B_TRUE);
943 }
944 
945 void
946 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
947 {
948 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
949 	(void) zil_parse(zilog, zil_free_log_block,
950 	    zil_free_log_record, tx, zilog->zl_header->zh_claim_txg, B_FALSE);
951 }
952 
953 int
954 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
955 {
956 	dmu_tx_t *tx = txarg;
957 	zilog_t *zilog;
958 	uint64_t first_txg;
959 	zil_header_t *zh;
960 	objset_t *os;
961 	int error;
962 
963 	error = dmu_objset_own_obj(dp, ds->ds_object,
964 	    DMU_OST_ANY, B_FALSE, B_FALSE, FTAG, &os);
965 	if (error != 0) {
966 		/*
967 		 * EBUSY indicates that the objset is inconsistent, in which
968 		 * case it can not have a ZIL.
969 		 */
970 		if (error != EBUSY) {
971 			cmn_err(CE_WARN, "can't open objset for %llu, error %u",
972 			    (unsigned long long)ds->ds_object, error);
973 		}
974 
975 		return (0);
976 	}
977 
978 	zilog = dmu_objset_zil(os);
979 	zh = zil_header_in_syncing_context(zilog);
980 	ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa));
981 	first_txg = spa_min_claim_txg(zilog->zl_spa);
982 
983 	/*
984 	 * If the spa_log_state is not set to be cleared, check whether
985 	 * the current uberblock is a checkpoint one and if the current
986 	 * header has been claimed before moving on.
987 	 *
988 	 * If the current uberblock is a checkpointed uberblock then
989 	 * one of the following scenarios took place:
990 	 *
991 	 * 1] We are currently rewinding to the checkpoint of the pool.
992 	 * 2] We crashed in the middle of a checkpoint rewind but we
993 	 *    did manage to write the checkpointed uberblock to the
994 	 *    vdev labels, so when we tried to import the pool again
995 	 *    the checkpointed uberblock was selected from the import
996 	 *    procedure.
997 	 *
998 	 * In both cases we want to zero out all the ZIL blocks, except
999 	 * the ones that have been claimed at the time of the checkpoint
1000 	 * (their zh_claim_txg != 0). The reason is that these blocks
1001 	 * may be corrupted since we may have reused their locations on
1002 	 * disk after we took the checkpoint.
1003 	 *
1004 	 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier
1005 	 * when we first figure out whether the current uberblock is
1006 	 * checkpointed or not. Unfortunately, that would discard all
1007 	 * the logs, including the ones that are claimed, and we would
1008 	 * leak space.
1009 	 */
1010 	if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR ||
1011 	    (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
1012 	    zh->zh_claim_txg == 0)) {
1013 		if (!BP_IS_HOLE(&zh->zh_log)) {
1014 			(void) zil_parse(zilog, zil_clear_log_block,
1015 			    zil_noop_log_record, tx, first_txg, B_FALSE);
1016 		}
1017 		BP_ZERO(&zh->zh_log);
1018 		if (os->os_encrypted)
1019 			os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
1020 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
1021 		dmu_objset_disown(os, B_FALSE, FTAG);
1022 		return (0);
1023 	}
1024 
1025 	/*
1026 	 * If we are not rewinding and opening the pool normally, then
1027 	 * the min_claim_txg should be equal to the first txg of the pool.
1028 	 */
1029 	ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa));
1030 
1031 	/*
1032 	 * Claim all log blocks if we haven't already done so, and remember
1033 	 * the highest claimed sequence number.  This ensures that if we can
1034 	 * read only part of the log now (e.g. due to a missing device),
1035 	 * but we can read the entire log later, we will not try to replay
1036 	 * or destroy beyond the last block we successfully claimed.
1037 	 */
1038 	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
1039 	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
1040 		(void) zil_parse(zilog, zil_claim_log_block,
1041 		    zil_claim_log_record, tx, first_txg, B_FALSE);
1042 		zh->zh_claim_txg = first_txg;
1043 		zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
1044 		zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
1045 		if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
1046 			zh->zh_flags |= ZIL_REPLAY_NEEDED;
1047 		zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
1048 		if (os->os_encrypted)
1049 			os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
1050 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
1051 	}
1052 
1053 	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
1054 	dmu_objset_disown(os, B_FALSE, FTAG);
1055 	return (0);
1056 }
1057 
1058 /*
1059  * Check the log by walking the log chain.
1060  * Checksum errors are ok as they indicate the end of the chain.
1061  * Any other error (no device or read failure) returns an error.
1062  */
1063 int
1064 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
1065 {
1066 	(void) dp;
1067 	zilog_t *zilog;
1068 	objset_t *os;
1069 	blkptr_t *bp;
1070 	int error;
1071 
1072 	ASSERT(tx == NULL);
1073 
1074 	error = dmu_objset_from_ds(ds, &os);
1075 	if (error != 0) {
1076 		cmn_err(CE_WARN, "can't open objset %llu, error %d",
1077 		    (unsigned long long)ds->ds_object, error);
1078 		return (0);
1079 	}
1080 
1081 	zilog = dmu_objset_zil(os);
1082 	bp = (blkptr_t *)&zilog->zl_header->zh_log;
1083 
1084 	if (!BP_IS_HOLE(bp)) {
1085 		vdev_t *vd;
1086 		boolean_t valid = B_TRUE;
1087 
1088 		/*
1089 		 * Check the first block and determine if it's on a log device
1090 		 * which may have been removed or faulted prior to loading this
1091 		 * pool.  If so, there's no point in checking the rest of the
1092 		 * log as its content should have already been synced to the
1093 		 * pool.
1094 		 */
1095 		spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
1096 		vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
1097 		if (vd->vdev_islog && vdev_is_dead(vd))
1098 			valid = vdev_log_state_valid(vd);
1099 		spa_config_exit(os->os_spa, SCL_STATE, FTAG);
1100 
1101 		if (!valid)
1102 			return (0);
1103 
1104 		/*
1105 		 * Check whether the current uberblock is checkpointed (e.g.
1106 		 * we are rewinding) and whether the current header has been
1107 		 * claimed or not. If it hasn't then skip verifying it. We
1108 		 * do this because its ZIL blocks may be part of the pool's
1109 		 * state before the rewind, which is no longer valid.
1110 		 */
1111 		zil_header_t *zh = zil_header_in_syncing_context(zilog);
1112 		if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
1113 		    zh->zh_claim_txg == 0)
1114 			return (0);
1115 	}
1116 
1117 	/*
1118 	 * Because tx == NULL, zil_claim_log_block() will not actually claim
1119 	 * any blocks, but just determine whether it is possible to do so.
1120 	 * In addition to checking the log chain, zil_claim_log_block()
1121 	 * will invoke zio_claim() with a done func of spa_claim_notify(),
1122 	 * which will update spa_max_claim_txg.  See spa_load() for details.
1123 	 */
1124 	error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
1125 	    zilog->zl_header->zh_claim_txg ? -1ULL :
1126 	    spa_min_claim_txg(os->os_spa), B_FALSE);
1127 
1128 	return ((error == ECKSUM || error == ENOENT) ? 0 : error);
1129 }
1130 
1131 /*
1132  * When an itx is "skipped", this function is used to properly mark the
1133  * waiter as "done, and signal any thread(s) waiting on it. An itx can
1134  * be skipped (and not committed to an lwb) for a variety of reasons,
1135  * one of them being that the itx was committed via spa_sync(), prior to
1136  * it being committed to an lwb; this can happen if a thread calling
1137  * zil_commit() is racing with spa_sync().
1138  */
1139 static void
1140 zil_commit_waiter_skip(zil_commit_waiter_t *zcw)
1141 {
1142 	mutex_enter(&zcw->zcw_lock);
1143 	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1144 	zcw->zcw_done = B_TRUE;
1145 	cv_broadcast(&zcw->zcw_cv);
1146 	mutex_exit(&zcw->zcw_lock);
1147 }
1148 
1149 /*
1150  * This function is used when the given waiter is to be linked into an
1151  * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb.
1152  * At this point, the waiter will no longer be referenced by the itx,
1153  * and instead, will be referenced by the lwb.
1154  */
1155 static void
1156 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb)
1157 {
1158 	/*
1159 	 * The lwb_waiters field of the lwb is protected by the zilog's
1160 	 * zl_lock, thus it must be held when calling this function.
1161 	 */
1162 	ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_lock));
1163 
1164 	mutex_enter(&zcw->zcw_lock);
1165 	ASSERT(!list_link_active(&zcw->zcw_node));
1166 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
1167 	ASSERT3P(lwb, !=, NULL);
1168 	ASSERT(lwb->lwb_state == LWB_STATE_OPENED ||
1169 	    lwb->lwb_state == LWB_STATE_ISSUED ||
1170 	    lwb->lwb_state == LWB_STATE_WRITE_DONE);
1171 
1172 	list_insert_tail(&lwb->lwb_waiters, zcw);
1173 	zcw->zcw_lwb = lwb;
1174 	mutex_exit(&zcw->zcw_lock);
1175 }
1176 
1177 /*
1178  * This function is used when zio_alloc_zil() fails to allocate a ZIL
1179  * block, and the given waiter must be linked to the "nolwb waiters"
1180  * list inside of zil_process_commit_list().
1181  */
1182 static void
1183 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb)
1184 {
1185 	mutex_enter(&zcw->zcw_lock);
1186 	ASSERT(!list_link_active(&zcw->zcw_node));
1187 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
1188 	list_insert_tail(nolwb, zcw);
1189 	mutex_exit(&zcw->zcw_lock);
1190 }
1191 
1192 void
1193 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp)
1194 {
1195 	avl_tree_t *t = &lwb->lwb_vdev_tree;
1196 	avl_index_t where;
1197 	zil_vdev_node_t *zv, zvsearch;
1198 	int ndvas = BP_GET_NDVAS(bp);
1199 	int i;
1200 
1201 	if (zil_nocacheflush)
1202 		return;
1203 
1204 	mutex_enter(&lwb->lwb_vdev_lock);
1205 	for (i = 0; i < ndvas; i++) {
1206 		zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
1207 		if (avl_find(t, &zvsearch, &where) == NULL) {
1208 			zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
1209 			zv->zv_vdev = zvsearch.zv_vdev;
1210 			avl_insert(t, zv, where);
1211 		}
1212 	}
1213 	mutex_exit(&lwb->lwb_vdev_lock);
1214 }
1215 
1216 static void
1217 zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb)
1218 {
1219 	avl_tree_t *src = &lwb->lwb_vdev_tree;
1220 	avl_tree_t *dst = &nlwb->lwb_vdev_tree;
1221 	void *cookie = NULL;
1222 	zil_vdev_node_t *zv;
1223 
1224 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1225 	ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
1226 	ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1227 
1228 	/*
1229 	 * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does
1230 	 * not need the protection of lwb_vdev_lock (it will only be modified
1231 	 * while holding zilog->zl_lock) as its writes and those of its
1232 	 * children have all completed.  The younger 'nlwb' may be waiting on
1233 	 * future writes to additional vdevs.
1234 	 */
1235 	mutex_enter(&nlwb->lwb_vdev_lock);
1236 	/*
1237 	 * Tear down the 'lwb' vdev tree, ensuring that entries which do not
1238 	 * exist in 'nlwb' are moved to it, freeing any would-be duplicates.
1239 	 */
1240 	while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) {
1241 		avl_index_t where;
1242 
1243 		if (avl_find(dst, zv, &where) == NULL) {
1244 			avl_insert(dst, zv, where);
1245 		} else {
1246 			kmem_free(zv, sizeof (*zv));
1247 		}
1248 	}
1249 	mutex_exit(&nlwb->lwb_vdev_lock);
1250 }
1251 
1252 void
1253 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg)
1254 {
1255 	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1256 }
1257 
1258 /*
1259  * This function is a called after all vdevs associated with a given lwb
1260  * write have completed their DKIOCFLUSHWRITECACHE command; or as soon
1261  * as the lwb write completes, if "zil_nocacheflush" is set. Further,
1262  * all "previous" lwb's will have completed before this function is
1263  * called; i.e. this function is called for all previous lwbs before
1264  * it's called for "this" lwb (enforced via zio the dependencies
1265  * configured in zil_lwb_set_zio_dependency()).
1266  *
1267  * The intention is for this function to be called as soon as the
1268  * contents of an lwb are considered "stable" on disk, and will survive
1269  * any sudden loss of power. At this point, any threads waiting for the
1270  * lwb to reach this state are signalled, and the "waiter" structures
1271  * are marked "done".
1272  */
1273 static void
1274 zil_lwb_flush_vdevs_done(zio_t *zio)
1275 {
1276 	lwb_t *lwb = zio->io_private;
1277 	zilog_t *zilog = lwb->lwb_zilog;
1278 	zil_commit_waiter_t *zcw;
1279 	itx_t *itx;
1280 	uint64_t txg;
1281 
1282 	spa_config_exit(zilog->zl_spa, SCL_STATE, lwb);
1283 
1284 	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1285 
1286 	mutex_enter(&zilog->zl_lock);
1287 
1288 	/*
1289 	 * If we have had an allocation failure and the txg is
1290 	 * waiting to sync then we want zil_sync() to remove the lwb so
1291 	 * that it's not picked up as the next new one in
1292 	 * zil_process_commit_list(). zil_sync() will only remove the
1293 	 * lwb if lwb_buf is null.
1294 	 */
1295 	lwb->lwb_buf = NULL;
1296 
1297 	ASSERT3U(lwb->lwb_issued_timestamp, >, 0);
1298 	zilog->zl_last_lwb_latency = gethrtime() - lwb->lwb_issued_timestamp;
1299 
1300 	lwb->lwb_root_zio = NULL;
1301 
1302 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1303 	lwb->lwb_state = LWB_STATE_FLUSH_DONE;
1304 
1305 	if (zilog->zl_last_lwb_opened == lwb) {
1306 		/*
1307 		 * Remember the highest committed log sequence number
1308 		 * for ztest. We only update this value when all the log
1309 		 * writes succeeded, because ztest wants to ASSERT that
1310 		 * it got the whole log chain.
1311 		 */
1312 		zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1313 	}
1314 
1315 	while ((itx = list_head(&lwb->lwb_itxs)) != NULL) {
1316 		list_remove(&lwb->lwb_itxs, itx);
1317 		zil_itx_destroy(itx);
1318 	}
1319 
1320 	while ((zcw = list_head(&lwb->lwb_waiters)) != NULL) {
1321 		mutex_enter(&zcw->zcw_lock);
1322 
1323 		ASSERT(list_link_active(&zcw->zcw_node));
1324 		list_remove(&lwb->lwb_waiters, zcw);
1325 
1326 		ASSERT3P(zcw->zcw_lwb, ==, lwb);
1327 		zcw->zcw_lwb = NULL;
1328 		/*
1329 		 * We expect any ZIO errors from child ZIOs to have been
1330 		 * propagated "up" to this specific LWB's root ZIO, in
1331 		 * order for this error handling to work correctly. This
1332 		 * includes ZIO errors from either this LWB's write or
1333 		 * flush, as well as any errors from other dependent LWBs
1334 		 * (e.g. a root LWB ZIO that might be a child of this LWB).
1335 		 *
1336 		 * With that said, it's important to note that LWB flush
1337 		 * errors are not propagated up to the LWB root ZIO.
1338 		 * This is incorrect behavior, and results in VDEV flush
1339 		 * errors not being handled correctly here. See the
1340 		 * comment above the call to "zio_flush" for details.
1341 		 */
1342 
1343 		zcw->zcw_zio_error = zio->io_error;
1344 
1345 		ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1346 		zcw->zcw_done = B_TRUE;
1347 		cv_broadcast(&zcw->zcw_cv);
1348 
1349 		mutex_exit(&zcw->zcw_lock);
1350 	}
1351 
1352 	mutex_exit(&zilog->zl_lock);
1353 
1354 	mutex_enter(&zilog->zl_lwb_io_lock);
1355 	txg = lwb->lwb_issued_txg;
1356 	ASSERT3U(zilog->zl_lwb_inflight[txg & TXG_MASK], >, 0);
1357 	zilog->zl_lwb_inflight[txg & TXG_MASK]--;
1358 	if (zilog->zl_lwb_inflight[txg & TXG_MASK] == 0)
1359 		cv_broadcast(&zilog->zl_lwb_io_cv);
1360 	mutex_exit(&zilog->zl_lwb_io_lock);
1361 }
1362 
1363 /*
1364  * Wait for the completion of all issued write/flush of that txg provided.
1365  * It guarantees zil_lwb_flush_vdevs_done() is called and returned.
1366  */
1367 static void
1368 zil_lwb_flush_wait_all(zilog_t *zilog, uint64_t txg)
1369 {
1370 	ASSERT3U(txg, ==, spa_syncing_txg(zilog->zl_spa));
1371 
1372 	mutex_enter(&zilog->zl_lwb_io_lock);
1373 	while (zilog->zl_lwb_inflight[txg & TXG_MASK] > 0)
1374 		cv_wait(&zilog->zl_lwb_io_cv, &zilog->zl_lwb_io_lock);
1375 	mutex_exit(&zilog->zl_lwb_io_lock);
1376 
1377 #ifdef ZFS_DEBUG
1378 	mutex_enter(&zilog->zl_lock);
1379 	mutex_enter(&zilog->zl_lwb_io_lock);
1380 	lwb_t *lwb = list_head(&zilog->zl_lwb_list);
1381 	while (lwb != NULL && lwb->lwb_max_txg <= txg) {
1382 		if (lwb->lwb_issued_txg <= txg) {
1383 			ASSERT(lwb->lwb_state != LWB_STATE_ISSUED);
1384 			ASSERT(lwb->lwb_state != LWB_STATE_WRITE_DONE);
1385 			IMPLY(lwb->lwb_issued_txg > 0,
1386 			    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
1387 		}
1388 		IMPLY(lwb->lwb_state == LWB_STATE_FLUSH_DONE,
1389 		    lwb->lwb_buf == NULL);
1390 		lwb = list_next(&zilog->zl_lwb_list, lwb);
1391 	}
1392 	mutex_exit(&zilog->zl_lwb_io_lock);
1393 	mutex_exit(&zilog->zl_lock);
1394 #endif
1395 }
1396 
1397 /*
1398  * This is called when an lwb's write zio completes. The callback's
1399  * purpose is to issue the DKIOCFLUSHWRITECACHE commands for the vdevs
1400  * in the lwb's lwb_vdev_tree. The tree will contain the vdevs involved
1401  * in writing out this specific lwb's data, and in the case that cache
1402  * flushes have been deferred, vdevs involved in writing the data for
1403  * previous lwbs. The writes corresponding to all the vdevs in the
1404  * lwb_vdev_tree will have completed by the time this is called, due to
1405  * the zio dependencies configured in zil_lwb_set_zio_dependency(),
1406  * which takes deferred flushes into account. The lwb will be "done"
1407  * once zil_lwb_flush_vdevs_done() is called, which occurs in the zio
1408  * completion callback for the lwb's root zio.
1409  */
1410 static void
1411 zil_lwb_write_done(zio_t *zio)
1412 {
1413 	lwb_t *lwb = zio->io_private;
1414 	spa_t *spa = zio->io_spa;
1415 	zilog_t *zilog = lwb->lwb_zilog;
1416 	avl_tree_t *t = &lwb->lwb_vdev_tree;
1417 	void *cookie = NULL;
1418 	zil_vdev_node_t *zv;
1419 	lwb_t *nlwb;
1420 
1421 	ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0);
1422 
1423 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1424 	ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
1425 	ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
1426 	ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
1427 	ASSERT(!BP_IS_GANG(zio->io_bp));
1428 	ASSERT(!BP_IS_HOLE(zio->io_bp));
1429 	ASSERT(BP_GET_FILL(zio->io_bp) == 0);
1430 
1431 	abd_free(zio->io_abd);
1432 
1433 	mutex_enter(&zilog->zl_lock);
1434 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED);
1435 	lwb->lwb_state = LWB_STATE_WRITE_DONE;
1436 	lwb->lwb_write_zio = NULL;
1437 	lwb->lwb_fastwrite = FALSE;
1438 	nlwb = list_next(&zilog->zl_lwb_list, lwb);
1439 	mutex_exit(&zilog->zl_lock);
1440 
1441 	if (avl_numnodes(t) == 0)
1442 		return;
1443 
1444 	/*
1445 	 * If there was an IO error, we're not going to call zio_flush()
1446 	 * on these vdevs, so we simply empty the tree and free the
1447 	 * nodes. We avoid calling zio_flush() since there isn't any
1448 	 * good reason for doing so, after the lwb block failed to be
1449 	 * written out.
1450 	 *
1451 	 * Additionally, we don't perform any further error handling at
1452 	 * this point (e.g. setting "zcw_zio_error" appropriately), as
1453 	 * we expect that to occur in "zil_lwb_flush_vdevs_done" (thus,
1454 	 * we expect any error seen here, to have been propagated to
1455 	 * that function).
1456 	 */
1457 	if (zio->io_error != 0) {
1458 		while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
1459 			kmem_free(zv, sizeof (*zv));
1460 		return;
1461 	}
1462 
1463 	/*
1464 	 * If this lwb does not have any threads waiting for it to
1465 	 * complete, we want to defer issuing the DKIOCFLUSHWRITECACHE
1466 	 * command to the vdevs written to by "this" lwb, and instead
1467 	 * rely on the "next" lwb to handle the DKIOCFLUSHWRITECACHE
1468 	 * command for those vdevs. Thus, we merge the vdev tree of
1469 	 * "this" lwb with the vdev tree of the "next" lwb in the list,
1470 	 * and assume the "next" lwb will handle flushing the vdevs (or
1471 	 * deferring the flush(s) again).
1472 	 *
1473 	 * This is a useful performance optimization, especially for
1474 	 * workloads with lots of async write activity and few sync
1475 	 * write and/or fsync activity, as it has the potential to
1476 	 * coalesce multiple flush commands to a vdev into one.
1477 	 */
1478 	if (list_head(&lwb->lwb_waiters) == NULL && nlwb != NULL) {
1479 		zil_lwb_flush_defer(lwb, nlwb);
1480 		ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
1481 		return;
1482 	}
1483 
1484 	while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
1485 		vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
1486 		if (vd != NULL) {
1487 			/*
1488 			 * The "ZIO_FLAG_DONT_PROPAGATE" is currently
1489 			 * always used within "zio_flush". This means,
1490 			 * any errors when flushing the vdev(s), will
1491 			 * (unfortunately) not be handled correctly,
1492 			 * since these "zio_flush" errors will not be
1493 			 * propagated up to "zil_lwb_flush_vdevs_done".
1494 			 */
1495 			zio_flush(lwb->lwb_root_zio, vd);
1496 		}
1497 		kmem_free(zv, sizeof (*zv));
1498 	}
1499 }
1500 
1501 static void
1502 zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb)
1503 {
1504 	lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened;
1505 
1506 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1507 	ASSERT(MUTEX_HELD(&zilog->zl_lock));
1508 
1509 	/*
1510 	 * The zilog's "zl_last_lwb_opened" field is used to build the
1511 	 * lwb/zio dependency chain, which is used to preserve the
1512 	 * ordering of lwb completions that is required by the semantics
1513 	 * of the ZIL. Each new lwb zio becomes a parent of the
1514 	 * "previous" lwb zio, such that the new lwb's zio cannot
1515 	 * complete until the "previous" lwb's zio completes.
1516 	 *
1517 	 * This is required by the semantics of zil_commit(); the commit
1518 	 * waiters attached to the lwbs will be woken in the lwb zio's
1519 	 * completion callback, so this zio dependency graph ensures the
1520 	 * waiters are woken in the correct order (the same order the
1521 	 * lwbs were created).
1522 	 */
1523 	if (last_lwb_opened != NULL &&
1524 	    last_lwb_opened->lwb_state != LWB_STATE_FLUSH_DONE) {
1525 		ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1526 		    last_lwb_opened->lwb_state == LWB_STATE_ISSUED ||
1527 		    last_lwb_opened->lwb_state == LWB_STATE_WRITE_DONE);
1528 
1529 		ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL);
1530 		zio_add_child(lwb->lwb_root_zio,
1531 		    last_lwb_opened->lwb_root_zio);
1532 
1533 		/*
1534 		 * If the previous lwb's write hasn't already completed,
1535 		 * we also want to order the completion of the lwb write
1536 		 * zios (above, we only order the completion of the lwb
1537 		 * root zios). This is required because of how we can
1538 		 * defer the DKIOCFLUSHWRITECACHE commands for each lwb.
1539 		 *
1540 		 * When the DKIOCFLUSHWRITECACHE commands are deferred,
1541 		 * the previous lwb will rely on this lwb to flush the
1542 		 * vdevs written to by that previous lwb. Thus, we need
1543 		 * to ensure this lwb doesn't issue the flush until
1544 		 * after the previous lwb's write completes. We ensure
1545 		 * this ordering by setting the zio parent/child
1546 		 * relationship here.
1547 		 *
1548 		 * Without this relationship on the lwb's write zio,
1549 		 * it's possible for this lwb's write to complete prior
1550 		 * to the previous lwb's write completing; and thus, the
1551 		 * vdevs for the previous lwb would be flushed prior to
1552 		 * that lwb's data being written to those vdevs (the
1553 		 * vdevs are flushed in the lwb write zio's completion
1554 		 * handler, zil_lwb_write_done()).
1555 		 */
1556 		if (last_lwb_opened->lwb_state != LWB_STATE_WRITE_DONE) {
1557 			ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1558 			    last_lwb_opened->lwb_state == LWB_STATE_ISSUED);
1559 
1560 			ASSERT3P(last_lwb_opened->lwb_write_zio, !=, NULL);
1561 			zio_add_child(lwb->lwb_write_zio,
1562 			    last_lwb_opened->lwb_write_zio);
1563 		}
1564 	}
1565 }
1566 
1567 
1568 /*
1569  * This function's purpose is to "open" an lwb such that it is ready to
1570  * accept new itxs being committed to it. To do this, the lwb's zio
1571  * structures are created, and linked to the lwb. This function is
1572  * idempotent; if the passed in lwb has already been opened, this
1573  * function is essentially a no-op.
1574  */
1575 static void
1576 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb)
1577 {
1578 	zbookmark_phys_t zb;
1579 	zio_priority_t prio;
1580 
1581 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1582 	ASSERT3P(lwb, !=, NULL);
1583 	EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED);
1584 	EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED);
1585 
1586 	SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1587 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
1588 	    lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
1589 
1590 	/* Lock so zil_sync() doesn't fastwrite_unmark after zio is created */
1591 	mutex_enter(&zilog->zl_lock);
1592 	if (lwb->lwb_root_zio == NULL) {
1593 		abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf,
1594 		    BP_GET_LSIZE(&lwb->lwb_blk));
1595 
1596 		if (!lwb->lwb_fastwrite) {
1597 			metaslab_fastwrite_mark(zilog->zl_spa, &lwb->lwb_blk);
1598 			lwb->lwb_fastwrite = 1;
1599 		}
1600 
1601 		if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk)
1602 			prio = ZIO_PRIORITY_SYNC_WRITE;
1603 		else
1604 			prio = ZIO_PRIORITY_ASYNC_WRITE;
1605 
1606 		lwb->lwb_root_zio = zio_root(zilog->zl_spa,
1607 		    zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL);
1608 		ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1609 
1610 		lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio,
1611 		    zilog->zl_spa, 0, &lwb->lwb_blk, lwb_abd,
1612 		    BP_GET_LSIZE(&lwb->lwb_blk), zil_lwb_write_done, lwb,
1613 		    prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_FASTWRITE, &zb);
1614 		ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1615 
1616 		lwb->lwb_state = LWB_STATE_OPENED;
1617 
1618 		zil_lwb_set_zio_dependency(zilog, lwb);
1619 		zilog->zl_last_lwb_opened = lwb;
1620 	}
1621 	mutex_exit(&zilog->zl_lock);
1622 
1623 	ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1624 	ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1625 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1626 }
1627 
1628 /*
1629  * Define a limited set of intent log block sizes.
1630  *
1631  * These must be a multiple of 4KB. Note only the amount used (again
1632  * aligned to 4KB) actually gets written. However, we can't always just
1633  * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
1634  */
1635 static const struct {
1636 	uint64_t	limit;
1637 	uint64_t	blksz;
1638 } zil_block_buckets[] = {
1639 	{ 4096,		4096 },			/* non TX_WRITE */
1640 	{ 8192 + 4096,	8192 + 4096 },		/* database */
1641 	{ 32768 + 4096,	32768 + 4096 },		/* NFS writes */
1642 	{ 65536 + 4096,	65536 + 4096 },		/* 64KB writes */
1643 	{ 131072,	131072 },		/* < 128KB writes */
1644 	{ 131072 +4096,	65536 + 4096 },		/* 128KB writes */
1645 	{ UINT64_MAX,	SPA_OLD_MAXBLOCKSIZE},	/* > 128KB writes */
1646 };
1647 
1648 /*
1649  * Maximum block size used by the ZIL.  This is picked up when the ZIL is
1650  * initialized.  Otherwise this should not be used directly; see
1651  * zl_max_block_size instead.
1652  */
1653 static uint_t zil_maxblocksize = SPA_OLD_MAXBLOCKSIZE;
1654 
1655 /*
1656  * Start a log block write and advance to the next log block.
1657  * Calls are serialized.
1658  */
1659 static lwb_t *
1660 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb)
1661 {
1662 	lwb_t *nlwb = NULL;
1663 	zil_chain_t *zilc;
1664 	spa_t *spa = zilog->zl_spa;
1665 	blkptr_t *bp;
1666 	dmu_tx_t *tx;
1667 	uint64_t txg;
1668 	uint64_t zil_blksz, wsz;
1669 	int i, error;
1670 	boolean_t slog;
1671 
1672 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1673 	ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1674 	ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1675 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1676 
1677 	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1678 		zilc = (zil_chain_t *)lwb->lwb_buf;
1679 		bp = &zilc->zc_next_blk;
1680 	} else {
1681 		zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
1682 		bp = &zilc->zc_next_blk;
1683 	}
1684 
1685 	ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
1686 
1687 	/*
1688 	 * Allocate the next block and save its address in this block
1689 	 * before writing it in order to establish the log chain.
1690 	 */
1691 
1692 	tx = dmu_tx_create(zilog->zl_os);
1693 
1694 	/*
1695 	 * Since we are not going to create any new dirty data, and we
1696 	 * can even help with clearing the existing dirty data, we
1697 	 * should not be subject to the dirty data based delays. We
1698 	 * use TXG_NOTHROTTLE to bypass the delay mechanism.
1699 	 */
1700 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));
1701 
1702 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1703 	txg = dmu_tx_get_txg(tx);
1704 
1705 	mutex_enter(&zilog->zl_lwb_io_lock);
1706 	lwb->lwb_issued_txg = txg;
1707 	zilog->zl_lwb_inflight[txg & TXG_MASK]++;
1708 	zilog->zl_lwb_max_issued_txg = MAX(txg, zilog->zl_lwb_max_issued_txg);
1709 	mutex_exit(&zilog->zl_lwb_io_lock);
1710 
1711 	/*
1712 	 * Log blocks are pre-allocated. Here we select the size of the next
1713 	 * block, based on size used in the last block.
1714 	 * - first find the smallest bucket that will fit the block from a
1715 	 *   limited set of block sizes. This is because it's faster to write
1716 	 *   blocks allocated from the same metaslab as they are adjacent or
1717 	 *   close.
1718 	 * - next find the maximum from the new suggested size and an array of
1719 	 *   previous sizes. This lessens a picket fence effect of wrongly
1720 	 *   guessing the size if we have a stream of say 2k, 64k, 2k, 64k
1721 	 *   requests.
1722 	 *
1723 	 * Note we only write what is used, but we can't just allocate
1724 	 * the maximum block size because we can exhaust the available
1725 	 * pool log space.
1726 	 */
1727 	zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1728 	for (i = 0; zil_blksz > zil_block_buckets[i].limit; i++)
1729 		continue;
1730 	zil_blksz = MIN(zil_block_buckets[i].blksz, zilog->zl_max_block_size);
1731 	zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1732 	for (i = 0; i < ZIL_PREV_BLKS; i++)
1733 		zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1734 	zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1735 
1736 	BP_ZERO(bp);
1737 	error = zio_alloc_zil(spa, zilog->zl_os, txg, bp, zil_blksz, &slog);
1738 	if (slog) {
1739 		ZIL_STAT_BUMP(zilog, zil_itx_metaslab_slog_count);
1740 		ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_bytes,
1741 		    lwb->lwb_nused);
1742 	} else {
1743 		ZIL_STAT_BUMP(zilog, zil_itx_metaslab_normal_count);
1744 		ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_bytes,
1745 		    lwb->lwb_nused);
1746 	}
1747 	if (error == 0) {
1748 		ASSERT3U(bp->blk_birth, ==, txg);
1749 		bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1750 		bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1751 
1752 		/*
1753 		 * Allocate a new log write block (lwb).
1754 		 */
1755 		nlwb = zil_alloc_lwb(zilog, bp, slog, txg, TRUE);
1756 	}
1757 
1758 	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1759 		/* For Slim ZIL only write what is used. */
1760 		wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1761 		ASSERT3U(wsz, <=, lwb->lwb_sz);
1762 		zio_shrink(lwb->lwb_write_zio, wsz);
1763 
1764 	} else {
1765 		wsz = lwb->lwb_sz;
1766 	}
1767 
1768 	zilc->zc_pad = 0;
1769 	zilc->zc_nused = lwb->lwb_nused;
1770 	zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1771 
1772 	/*
1773 	 * clear unused data for security
1774 	 */
1775 	memset(lwb->lwb_buf + lwb->lwb_nused, 0, wsz - lwb->lwb_nused);
1776 
1777 	spa_config_enter(zilog->zl_spa, SCL_STATE, lwb, RW_READER);
1778 
1779 	zil_lwb_add_block(lwb, &lwb->lwb_blk);
1780 	lwb->lwb_issued_timestamp = gethrtime();
1781 	lwb->lwb_state = LWB_STATE_ISSUED;
1782 
1783 	zio_nowait(lwb->lwb_root_zio);
1784 	zio_nowait(lwb->lwb_write_zio);
1785 
1786 	dmu_tx_commit(tx);
1787 
1788 	/*
1789 	 * If there was an allocation failure then nlwb will be null which
1790 	 * forces a txg_wait_synced().
1791 	 */
1792 	return (nlwb);
1793 }
1794 
1795 /*
1796  * Maximum amount of write data that can be put into single log block.
1797  */
1798 uint64_t
1799 zil_max_log_data(zilog_t *zilog)
1800 {
1801 	return (zilog->zl_max_block_size -
1802 	    sizeof (zil_chain_t) - sizeof (lr_write_t));
1803 }
1804 
1805 /*
1806  * Maximum amount of log space we agree to waste to reduce number of
1807  * WR_NEED_COPY chunks to reduce zl_get_data() overhead (~12%).
1808  */
1809 static inline uint64_t
1810 zil_max_waste_space(zilog_t *zilog)
1811 {
1812 	return (zil_max_log_data(zilog) / 8);
1813 }
1814 
1815 /*
1816  * Maximum amount of write data for WR_COPIED.  For correctness, consumers
1817  * must fall back to WR_NEED_COPY if we can't fit the entire record into one
1818  * maximum sized log block, because each WR_COPIED record must fit in a
1819  * single log block.  For space efficiency, we want to fit two records into a
1820  * max-sized log block.
1821  */
1822 uint64_t
1823 zil_max_copied_data(zilog_t *zilog)
1824 {
1825 	return ((zilog->zl_max_block_size - sizeof (zil_chain_t)) / 2 -
1826 	    sizeof (lr_write_t));
1827 }
1828 
1829 static lwb_t *
1830 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1831 {
1832 	lr_t *lrcb, *lrc;
1833 	lr_write_t *lrwb, *lrw;
1834 	char *lr_buf;
1835 	uint64_t dlen, dnow, dpad, lwb_sp, reclen, txg, max_log_data;
1836 
1837 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1838 	ASSERT3P(lwb, !=, NULL);
1839 	ASSERT3P(lwb->lwb_buf, !=, NULL);
1840 
1841 	zil_lwb_write_open(zilog, lwb);
1842 
1843 	lrc = &itx->itx_lr;
1844 	lrw = (lr_write_t *)lrc;
1845 
1846 	/*
1847 	 * A commit itx doesn't represent any on-disk state; instead
1848 	 * it's simply used as a place holder on the commit list, and
1849 	 * provides a mechanism for attaching a "commit waiter" onto the
1850 	 * correct lwb (such that the waiter can be signalled upon
1851 	 * completion of that lwb). Thus, we don't process this itx's
1852 	 * log record if it's a commit itx (these itx's don't have log
1853 	 * records), and instead link the itx's waiter onto the lwb's
1854 	 * list of waiters.
1855 	 *
1856 	 * For more details, see the comment above zil_commit().
1857 	 */
1858 	if (lrc->lrc_txtype == TX_COMMIT) {
1859 		mutex_enter(&zilog->zl_lock);
1860 		zil_commit_waiter_link_lwb(itx->itx_private, lwb);
1861 		itx->itx_private = NULL;
1862 		mutex_exit(&zilog->zl_lock);
1863 		return (lwb);
1864 	}
1865 
1866 	if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
1867 		dlen = P2ROUNDUP_TYPED(
1868 		    lrw->lr_length, sizeof (uint64_t), uint64_t);
1869 		dpad = dlen - lrw->lr_length;
1870 	} else {
1871 		dlen = dpad = 0;
1872 	}
1873 	reclen = lrc->lrc_reclen;
1874 	zilog->zl_cur_used += (reclen + dlen);
1875 	txg = lrc->lrc_txg;
1876 
1877 	ASSERT3U(zilog->zl_cur_used, <, UINT64_MAX - (reclen + dlen));
1878 
1879 cont:
1880 	/*
1881 	 * If this record won't fit in the current log block, start a new one.
1882 	 * For WR_NEED_COPY optimize layout for minimal number of chunks.
1883 	 */
1884 	lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1885 	max_log_data = zil_max_log_data(zilog);
1886 	if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
1887 	    lwb_sp < zil_max_waste_space(zilog) &&
1888 	    (dlen % max_log_data == 0 ||
1889 	    lwb_sp < reclen + dlen % max_log_data))) {
1890 		lwb = zil_lwb_write_issue(zilog, lwb);
1891 		if (lwb == NULL)
1892 			return (NULL);
1893 		zil_lwb_write_open(zilog, lwb);
1894 		ASSERT(LWB_EMPTY(lwb));
1895 		lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1896 
1897 		/*
1898 		 * There must be enough space in the new, empty log block to
1899 		 * hold reclen.  For WR_COPIED, we need to fit the whole
1900 		 * record in one block, and reclen is the header size + the
1901 		 * data size. For WR_NEED_COPY, we can create multiple
1902 		 * records, splitting the data into multiple blocks, so we
1903 		 * only need to fit one word of data per block; in this case
1904 		 * reclen is just the header size (no data).
1905 		 */
1906 		ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
1907 	}
1908 
1909 	dnow = MIN(dlen, lwb_sp - reclen);
1910 	lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1911 	memcpy(lr_buf, lrc, reclen);
1912 	lrcb = (lr_t *)lr_buf;		/* Like lrc, but inside lwb. */
1913 	lrwb = (lr_write_t *)lrcb;	/* Like lrw, but inside lwb. */
1914 
1915 	ZIL_STAT_BUMP(zilog, zil_itx_count);
1916 
1917 	/*
1918 	 * If it's a write, fetch the data or get its blkptr as appropriate.
1919 	 */
1920 	if (lrc->lrc_txtype == TX_WRITE) {
1921 		if (txg > spa_freeze_txg(zilog->zl_spa))
1922 			txg_wait_synced(zilog->zl_dmu_pool, txg);
1923 		if (itx->itx_wr_state == WR_COPIED) {
1924 			ZIL_STAT_BUMP(zilog, zil_itx_copied_count);
1925 			ZIL_STAT_INCR(zilog, zil_itx_copied_bytes,
1926 			    lrw->lr_length);
1927 		} else {
1928 			char *dbuf;
1929 			int error;
1930 
1931 			if (itx->itx_wr_state == WR_NEED_COPY) {
1932 				dbuf = lr_buf + reclen;
1933 				lrcb->lrc_reclen += dnow;
1934 				if (lrwb->lr_length > dnow)
1935 					lrwb->lr_length = dnow;
1936 				lrw->lr_offset += dnow;
1937 				lrw->lr_length -= dnow;
1938 				ZIL_STAT_BUMP(zilog, zil_itx_needcopy_count);
1939 				ZIL_STAT_INCR(zilog, zil_itx_needcopy_bytes,
1940 				    dnow);
1941 			} else {
1942 				ASSERT3S(itx->itx_wr_state, ==, WR_INDIRECT);
1943 				dbuf = NULL;
1944 				ZIL_STAT_BUMP(zilog, zil_itx_indirect_count);
1945 				ZIL_STAT_INCR(zilog, zil_itx_indirect_bytes,
1946 				    lrw->lr_length);
1947 			}
1948 
1949 			/*
1950 			 * We pass in the "lwb_write_zio" rather than
1951 			 * "lwb_root_zio" so that the "lwb_write_zio"
1952 			 * becomes the parent of any zio's created by
1953 			 * the "zl_get_data" callback. The vdevs are
1954 			 * flushed after the "lwb_write_zio" completes,
1955 			 * so we want to make sure that completion
1956 			 * callback waits for these additional zio's,
1957 			 * such that the vdevs used by those zio's will
1958 			 * be included in the lwb's vdev tree, and those
1959 			 * vdevs will be properly flushed. If we passed
1960 			 * in "lwb_root_zio" here, then these additional
1961 			 * vdevs may not be flushed; e.g. if these zio's
1962 			 * completed after "lwb_write_zio" completed.
1963 			 */
1964 			error = zilog->zl_get_data(itx->itx_private,
1965 			    itx->itx_gen, lrwb, dbuf, lwb,
1966 			    lwb->lwb_write_zio);
1967 			if (dbuf != NULL && error == 0 && dnow == dlen)
1968 				/* Zero any padding bytes in the last block. */
1969 				memset((char *)dbuf + lrwb->lr_length, 0, dpad);
1970 
1971 			if (error == EIO) {
1972 				txg_wait_synced(zilog->zl_dmu_pool, txg);
1973 				return (lwb);
1974 			}
1975 			if (error != 0) {
1976 				ASSERT(error == ENOENT || error == EEXIST ||
1977 				    error == EALREADY);
1978 				return (lwb);
1979 			}
1980 		}
1981 	}
1982 
1983 	/*
1984 	 * We're actually making an entry, so update lrc_seq to be the
1985 	 * log record sequence number.  Note that this is generally not
1986 	 * equal to the itx sequence number because not all transactions
1987 	 * are synchronous, and sometimes spa_sync() gets there first.
1988 	 */
1989 	lrcb->lrc_seq = ++zilog->zl_lr_seq;
1990 	lwb->lwb_nused += reclen + dnow;
1991 
1992 	zil_lwb_add_txg(lwb, txg);
1993 
1994 	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1995 	ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1996 
1997 	dlen -= dnow;
1998 	if (dlen > 0) {
1999 		zilog->zl_cur_used += reclen;
2000 		goto cont;
2001 	}
2002 
2003 	return (lwb);
2004 }
2005 
2006 itx_t *
2007 zil_itx_create(uint64_t txtype, size_t olrsize)
2008 {
2009 	size_t itxsize, lrsize;
2010 	itx_t *itx;
2011 
2012 	lrsize = P2ROUNDUP_TYPED(olrsize, sizeof (uint64_t), size_t);
2013 	itxsize = offsetof(itx_t, itx_lr) + lrsize;
2014 
2015 	itx = zio_data_buf_alloc(itxsize);
2016 	itx->itx_lr.lrc_txtype = txtype;
2017 	itx->itx_lr.lrc_reclen = lrsize;
2018 	itx->itx_lr.lrc_seq = 0;	/* defensive */
2019 	memset((char *)&itx->itx_lr + olrsize, 0, lrsize - olrsize);
2020 	itx->itx_sync = B_TRUE;		/* default is synchronous */
2021 	itx->itx_callback = NULL;
2022 	itx->itx_callback_data = NULL;
2023 	itx->itx_size = itxsize;
2024 
2025 	return (itx);
2026 }
2027 
2028 void
2029 zil_itx_destroy(itx_t *itx)
2030 {
2031 	IMPLY(itx->itx_lr.lrc_txtype == TX_COMMIT, itx->itx_callback == NULL);
2032 	IMPLY(itx->itx_callback != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
2033 
2034 	if (itx->itx_callback != NULL)
2035 		itx->itx_callback(itx->itx_callback_data);
2036 
2037 	zio_data_buf_free(itx, itx->itx_size);
2038 }
2039 
2040 /*
2041  * Free up the sync and async itxs. The itxs_t has already been detached
2042  * so no locks are needed.
2043  */
2044 static void
2045 zil_itxg_clean(void *arg)
2046 {
2047 	itx_t *itx;
2048 	list_t *list;
2049 	avl_tree_t *t;
2050 	void *cookie;
2051 	itxs_t *itxs = arg;
2052 	itx_async_node_t *ian;
2053 
2054 	list = &itxs->i_sync_list;
2055 	while ((itx = list_head(list)) != NULL) {
2056 		/*
2057 		 * In the general case, commit itxs will not be found
2058 		 * here, as they'll be committed to an lwb via
2059 		 * zil_lwb_commit(), and free'd in that function. Having
2060 		 * said that, it is still possible for commit itxs to be
2061 		 * found here, due to the following race:
2062 		 *
2063 		 *	- a thread calls zil_commit() which assigns the
2064 		 *	  commit itx to a per-txg i_sync_list
2065 		 *	- zil_itxg_clean() is called (e.g. via spa_sync())
2066 		 *	  while the waiter is still on the i_sync_list
2067 		 *
2068 		 * There's nothing to prevent syncing the txg while the
2069 		 * waiter is on the i_sync_list. This normally doesn't
2070 		 * happen because spa_sync() is slower than zil_commit(),
2071 		 * but if zil_commit() calls txg_wait_synced() (e.g.
2072 		 * because zil_create() or zil_commit_writer_stall() is
2073 		 * called) we will hit this case.
2074 		 */
2075 		if (itx->itx_lr.lrc_txtype == TX_COMMIT)
2076 			zil_commit_waiter_skip(itx->itx_private);
2077 
2078 		list_remove(list, itx);
2079 		zil_itx_destroy(itx);
2080 	}
2081 
2082 	cookie = NULL;
2083 	t = &itxs->i_async_tree;
2084 	while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
2085 		list = &ian->ia_list;
2086 		while ((itx = list_head(list)) != NULL) {
2087 			list_remove(list, itx);
2088 			/* commit itxs should never be on the async lists. */
2089 			ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
2090 			zil_itx_destroy(itx);
2091 		}
2092 		list_destroy(list);
2093 		kmem_free(ian, sizeof (itx_async_node_t));
2094 	}
2095 	avl_destroy(t);
2096 
2097 	kmem_free(itxs, sizeof (itxs_t));
2098 }
2099 
2100 static int
2101 zil_aitx_compare(const void *x1, const void *x2)
2102 {
2103 	const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
2104 	const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
2105 
2106 	return (TREE_CMP(o1, o2));
2107 }
2108 
2109 /*
2110  * Remove all async itx with the given oid.
2111  */
2112 void
2113 zil_remove_async(zilog_t *zilog, uint64_t oid)
2114 {
2115 	uint64_t otxg, txg;
2116 	itx_async_node_t *ian;
2117 	avl_tree_t *t;
2118 	avl_index_t where;
2119 	list_t clean_list;
2120 	itx_t *itx;
2121 
2122 	ASSERT(oid != 0);
2123 	list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
2124 
2125 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2126 		otxg = ZILTEST_TXG;
2127 	else
2128 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2129 
2130 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2131 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2132 
2133 		mutex_enter(&itxg->itxg_lock);
2134 		if (itxg->itxg_txg != txg) {
2135 			mutex_exit(&itxg->itxg_lock);
2136 			continue;
2137 		}
2138 
2139 		/*
2140 		 * Locate the object node and append its list.
2141 		 */
2142 		t = &itxg->itxg_itxs->i_async_tree;
2143 		ian = avl_find(t, &oid, &where);
2144 		if (ian != NULL)
2145 			list_move_tail(&clean_list, &ian->ia_list);
2146 		mutex_exit(&itxg->itxg_lock);
2147 	}
2148 	while ((itx = list_head(&clean_list)) != NULL) {
2149 		list_remove(&clean_list, itx);
2150 		/* commit itxs should never be on the async lists. */
2151 		ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
2152 		zil_itx_destroy(itx);
2153 	}
2154 	list_destroy(&clean_list);
2155 }
2156 
2157 void
2158 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
2159 {
2160 	uint64_t txg;
2161 	itxg_t *itxg;
2162 	itxs_t *itxs, *clean = NULL;
2163 
2164 	/*
2165 	 * Ensure the data of a renamed file is committed before the rename.
2166 	 */
2167 	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
2168 		zil_async_to_sync(zilog, itx->itx_oid);
2169 
2170 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
2171 		txg = ZILTEST_TXG;
2172 	else
2173 		txg = dmu_tx_get_txg(tx);
2174 
2175 	itxg = &zilog->zl_itxg[txg & TXG_MASK];
2176 	mutex_enter(&itxg->itxg_lock);
2177 	itxs = itxg->itxg_itxs;
2178 	if (itxg->itxg_txg != txg) {
2179 		if (itxs != NULL) {
2180 			/*
2181 			 * The zil_clean callback hasn't got around to cleaning
2182 			 * this itxg. Save the itxs for release below.
2183 			 * This should be rare.
2184 			 */
2185 			zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
2186 			    "txg %llu", (u_longlong_t)itxg->itxg_txg);
2187 			clean = itxg->itxg_itxs;
2188 		}
2189 		itxg->itxg_txg = txg;
2190 		itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t),
2191 		    KM_SLEEP);
2192 
2193 		list_create(&itxs->i_sync_list, sizeof (itx_t),
2194 		    offsetof(itx_t, itx_node));
2195 		avl_create(&itxs->i_async_tree, zil_aitx_compare,
2196 		    sizeof (itx_async_node_t),
2197 		    offsetof(itx_async_node_t, ia_node));
2198 	}
2199 	if (itx->itx_sync) {
2200 		list_insert_tail(&itxs->i_sync_list, itx);
2201 	} else {
2202 		avl_tree_t *t = &itxs->i_async_tree;
2203 		uint64_t foid =
2204 		    LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid);
2205 		itx_async_node_t *ian;
2206 		avl_index_t where;
2207 
2208 		ian = avl_find(t, &foid, &where);
2209 		if (ian == NULL) {
2210 			ian = kmem_alloc(sizeof (itx_async_node_t),
2211 			    KM_SLEEP);
2212 			list_create(&ian->ia_list, sizeof (itx_t),
2213 			    offsetof(itx_t, itx_node));
2214 			ian->ia_foid = foid;
2215 			avl_insert(t, ian, where);
2216 		}
2217 		list_insert_tail(&ian->ia_list, itx);
2218 	}
2219 
2220 	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
2221 
2222 	/*
2223 	 * We don't want to dirty the ZIL using ZILTEST_TXG, because
2224 	 * zil_clean() will never be called using ZILTEST_TXG. Thus, we
2225 	 * need to be careful to always dirty the ZIL using the "real"
2226 	 * TXG (not itxg_txg) even when the SPA is frozen.
2227 	 */
2228 	zilog_dirty(zilog, dmu_tx_get_txg(tx));
2229 	mutex_exit(&itxg->itxg_lock);
2230 
2231 	/* Release the old itxs now we've dropped the lock */
2232 	if (clean != NULL)
2233 		zil_itxg_clean(clean);
2234 }
2235 
2236 /*
2237  * If there are any in-memory intent log transactions which have now been
2238  * synced then start up a taskq to free them. We should only do this after we
2239  * have written out the uberblocks (i.e. txg has been committed) so that
2240  * don't inadvertently clean out in-memory log records that would be required
2241  * by zil_commit().
2242  */
2243 void
2244 zil_clean(zilog_t *zilog, uint64_t synced_txg)
2245 {
2246 	itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
2247 	itxs_t *clean_me;
2248 
2249 	ASSERT3U(synced_txg, <, ZILTEST_TXG);
2250 
2251 	mutex_enter(&itxg->itxg_lock);
2252 	if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
2253 		mutex_exit(&itxg->itxg_lock);
2254 		return;
2255 	}
2256 	ASSERT3U(itxg->itxg_txg, <=, synced_txg);
2257 	ASSERT3U(itxg->itxg_txg, !=, 0);
2258 	clean_me = itxg->itxg_itxs;
2259 	itxg->itxg_itxs = NULL;
2260 	itxg->itxg_txg = 0;
2261 	mutex_exit(&itxg->itxg_lock);
2262 	/*
2263 	 * Preferably start a task queue to free up the old itxs but
2264 	 * if taskq_dispatch can't allocate resources to do that then
2265 	 * free it in-line. This should be rare. Note, using TQ_SLEEP
2266 	 * created a bad performance problem.
2267 	 */
2268 	ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
2269 	ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
2270 	taskqid_t id = taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
2271 	    zil_itxg_clean, clean_me, TQ_NOSLEEP);
2272 	if (id == TASKQID_INVALID)
2273 		zil_itxg_clean(clean_me);
2274 }
2275 
2276 /*
2277  * This function will traverse the queue of itxs that need to be
2278  * committed, and move them onto the ZIL's zl_itx_commit_list.
2279  */
2280 static void
2281 zil_get_commit_list(zilog_t *zilog)
2282 {
2283 	uint64_t otxg, txg;
2284 	list_t *commit_list = &zilog->zl_itx_commit_list;
2285 
2286 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2287 
2288 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2289 		otxg = ZILTEST_TXG;
2290 	else
2291 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2292 
2293 	/*
2294 	 * This is inherently racy, since there is nothing to prevent
2295 	 * the last synced txg from changing. That's okay since we'll
2296 	 * only commit things in the future.
2297 	 */
2298 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2299 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2300 
2301 		mutex_enter(&itxg->itxg_lock);
2302 		if (itxg->itxg_txg != txg) {
2303 			mutex_exit(&itxg->itxg_lock);
2304 			continue;
2305 		}
2306 
2307 		/*
2308 		 * If we're adding itx records to the zl_itx_commit_list,
2309 		 * then the zil better be dirty in this "txg". We can assert
2310 		 * that here since we're holding the itxg_lock which will
2311 		 * prevent spa_sync from cleaning it. Once we add the itxs
2312 		 * to the zl_itx_commit_list we must commit it to disk even
2313 		 * if it's unnecessary (i.e. the txg was synced).
2314 		 */
2315 		ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
2316 		    spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
2317 		list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
2318 
2319 		mutex_exit(&itxg->itxg_lock);
2320 	}
2321 }
2322 
2323 /*
2324  * Move the async itxs for a specified object to commit into sync lists.
2325  */
2326 void
2327 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
2328 {
2329 	uint64_t otxg, txg;
2330 	itx_async_node_t *ian;
2331 	avl_tree_t *t;
2332 	avl_index_t where;
2333 
2334 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2335 		otxg = ZILTEST_TXG;
2336 	else
2337 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2338 
2339 	/*
2340 	 * This is inherently racy, since there is nothing to prevent
2341 	 * the last synced txg from changing.
2342 	 */
2343 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2344 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2345 
2346 		mutex_enter(&itxg->itxg_lock);
2347 		if (itxg->itxg_txg != txg) {
2348 			mutex_exit(&itxg->itxg_lock);
2349 			continue;
2350 		}
2351 
2352 		/*
2353 		 * If a foid is specified then find that node and append its
2354 		 * list. Otherwise walk the tree appending all the lists
2355 		 * to the sync list. We add to the end rather than the
2356 		 * beginning to ensure the create has happened.
2357 		 */
2358 		t = &itxg->itxg_itxs->i_async_tree;
2359 		if (foid != 0) {
2360 			ian = avl_find(t, &foid, &where);
2361 			if (ian != NULL) {
2362 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
2363 				    &ian->ia_list);
2364 			}
2365 		} else {
2366 			void *cookie = NULL;
2367 
2368 			while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
2369 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
2370 				    &ian->ia_list);
2371 				list_destroy(&ian->ia_list);
2372 				kmem_free(ian, sizeof (itx_async_node_t));
2373 			}
2374 		}
2375 		mutex_exit(&itxg->itxg_lock);
2376 	}
2377 }
2378 
2379 /*
2380  * This function will prune commit itxs that are at the head of the
2381  * commit list (it won't prune past the first non-commit itx), and
2382  * either: a) attach them to the last lwb that's still pending
2383  * completion, or b) skip them altogether.
2384  *
2385  * This is used as a performance optimization to prevent commit itxs
2386  * from generating new lwbs when it's unnecessary to do so.
2387  */
2388 static void
2389 zil_prune_commit_list(zilog_t *zilog)
2390 {
2391 	itx_t *itx;
2392 
2393 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2394 
2395 	while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) {
2396 		lr_t *lrc = &itx->itx_lr;
2397 		if (lrc->lrc_txtype != TX_COMMIT)
2398 			break;
2399 
2400 		mutex_enter(&zilog->zl_lock);
2401 
2402 		lwb_t *last_lwb = zilog->zl_last_lwb_opened;
2403 		if (last_lwb == NULL ||
2404 		    last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) {
2405 			/*
2406 			 * All of the itxs this waiter was waiting on
2407 			 * must have already completed (or there were
2408 			 * never any itx's for it to wait on), so it's
2409 			 * safe to skip this waiter and mark it done.
2410 			 */
2411 			zil_commit_waiter_skip(itx->itx_private);
2412 		} else {
2413 			zil_commit_waiter_link_lwb(itx->itx_private, last_lwb);
2414 			itx->itx_private = NULL;
2415 		}
2416 
2417 		mutex_exit(&zilog->zl_lock);
2418 
2419 		list_remove(&zilog->zl_itx_commit_list, itx);
2420 		zil_itx_destroy(itx);
2421 	}
2422 
2423 	IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
2424 }
2425 
2426 static void
2427 zil_commit_writer_stall(zilog_t *zilog)
2428 {
2429 	/*
2430 	 * When zio_alloc_zil() fails to allocate the next lwb block on
2431 	 * disk, we must call txg_wait_synced() to ensure all of the
2432 	 * lwbs in the zilog's zl_lwb_list are synced and then freed (in
2433 	 * zil_sync()), such that any subsequent ZIL writer (i.e. a call
2434 	 * to zil_process_commit_list()) will have to call zil_create(),
2435 	 * and start a new ZIL chain.
2436 	 *
2437 	 * Since zil_alloc_zil() failed, the lwb that was previously
2438 	 * issued does not have a pointer to the "next" lwb on disk.
2439 	 * Thus, if another ZIL writer thread was to allocate the "next"
2440 	 * on-disk lwb, that block could be leaked in the event of a
2441 	 * crash (because the previous lwb on-disk would not point to
2442 	 * it).
2443 	 *
2444 	 * We must hold the zilog's zl_issuer_lock while we do this, to
2445 	 * ensure no new threads enter zil_process_commit_list() until
2446 	 * all lwb's in the zl_lwb_list have been synced and freed
2447 	 * (which is achieved via the txg_wait_synced() call).
2448 	 */
2449 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2450 	txg_wait_synced(zilog->zl_dmu_pool, 0);
2451 	ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
2452 }
2453 
2454 /*
2455  * This function will traverse the commit list, creating new lwbs as
2456  * needed, and committing the itxs from the commit list to these newly
2457  * created lwbs. Additionally, as a new lwb is created, the previous
2458  * lwb will be issued to the zio layer to be written to disk.
2459  */
2460 static void
2461 zil_process_commit_list(zilog_t *zilog)
2462 {
2463 	spa_t *spa = zilog->zl_spa;
2464 	list_t nolwb_itxs;
2465 	list_t nolwb_waiters;
2466 	lwb_t *lwb;
2467 	itx_t *itx;
2468 
2469 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2470 
2471 	/*
2472 	 * Return if there's nothing to commit before we dirty the fs by
2473 	 * calling zil_create().
2474 	 */
2475 	if (list_head(&zilog->zl_itx_commit_list) == NULL)
2476 		return;
2477 
2478 	list_create(&nolwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
2479 	list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t),
2480 	    offsetof(zil_commit_waiter_t, zcw_node));
2481 
2482 	lwb = list_tail(&zilog->zl_lwb_list);
2483 	if (lwb == NULL) {
2484 		lwb = zil_create(zilog);
2485 	} else {
2486 		/*
2487 		 * Activate SPA_FEATURE_ZILSAXATTR for the cases where ZIL will
2488 		 * have already been created (zl_lwb_list not empty).
2489 		 */
2490 		zil_commit_activate_saxattr_feature(zilog);
2491 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2492 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
2493 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
2494 	}
2495 
2496 	while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) {
2497 		lr_t *lrc = &itx->itx_lr;
2498 		uint64_t txg = lrc->lrc_txg;
2499 
2500 		ASSERT3U(txg, !=, 0);
2501 
2502 		if (lrc->lrc_txtype == TX_COMMIT) {
2503 			DTRACE_PROBE2(zil__process__commit__itx,
2504 			    zilog_t *, zilog, itx_t *, itx);
2505 		} else {
2506 			DTRACE_PROBE2(zil__process__normal__itx,
2507 			    zilog_t *, zilog, itx_t *, itx);
2508 		}
2509 
2510 		list_remove(&zilog->zl_itx_commit_list, itx);
2511 
2512 		boolean_t synced = txg <= spa_last_synced_txg(spa);
2513 		boolean_t frozen = txg > spa_freeze_txg(spa);
2514 
2515 		/*
2516 		 * If the txg of this itx has already been synced out, then
2517 		 * we don't need to commit this itx to an lwb. This is
2518 		 * because the data of this itx will have already been
2519 		 * written to the main pool. This is inherently racy, and
2520 		 * it's still ok to commit an itx whose txg has already
2521 		 * been synced; this will result in a write that's
2522 		 * unnecessary, but will do no harm.
2523 		 *
2524 		 * With that said, we always want to commit TX_COMMIT itxs
2525 		 * to an lwb, regardless of whether or not that itx's txg
2526 		 * has been synced out. We do this to ensure any OPENED lwb
2527 		 * will always have at least one zil_commit_waiter_t linked
2528 		 * to the lwb.
2529 		 *
2530 		 * As a counter-example, if we skipped TX_COMMIT itx's
2531 		 * whose txg had already been synced, the following
2532 		 * situation could occur if we happened to be racing with
2533 		 * spa_sync:
2534 		 *
2535 		 * 1. We commit a non-TX_COMMIT itx to an lwb, where the
2536 		 *    itx's txg is 10 and the last synced txg is 9.
2537 		 * 2. spa_sync finishes syncing out txg 10.
2538 		 * 3. We move to the next itx in the list, it's a TX_COMMIT
2539 		 *    whose txg is 10, so we skip it rather than committing
2540 		 *    it to the lwb used in (1).
2541 		 *
2542 		 * If the itx that is skipped in (3) is the last TX_COMMIT
2543 		 * itx in the commit list, than it's possible for the lwb
2544 		 * used in (1) to remain in the OPENED state indefinitely.
2545 		 *
2546 		 * To prevent the above scenario from occurring, ensuring
2547 		 * that once an lwb is OPENED it will transition to ISSUED
2548 		 * and eventually DONE, we always commit TX_COMMIT itx's to
2549 		 * an lwb here, even if that itx's txg has already been
2550 		 * synced.
2551 		 *
2552 		 * Finally, if the pool is frozen, we _always_ commit the
2553 		 * itx.  The point of freezing the pool is to prevent data
2554 		 * from being written to the main pool via spa_sync, and
2555 		 * instead rely solely on the ZIL to persistently store the
2556 		 * data; i.e.  when the pool is frozen, the last synced txg
2557 		 * value can't be trusted.
2558 		 */
2559 		if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) {
2560 			if (lwb != NULL) {
2561 				lwb = zil_lwb_commit(zilog, itx, lwb);
2562 
2563 				if (lwb == NULL)
2564 					list_insert_tail(&nolwb_itxs, itx);
2565 				else
2566 					list_insert_tail(&lwb->lwb_itxs, itx);
2567 			} else {
2568 				if (lrc->lrc_txtype == TX_COMMIT) {
2569 					zil_commit_waiter_link_nolwb(
2570 					    itx->itx_private, &nolwb_waiters);
2571 				}
2572 
2573 				list_insert_tail(&nolwb_itxs, itx);
2574 			}
2575 		} else {
2576 			ASSERT3S(lrc->lrc_txtype, !=, TX_COMMIT);
2577 			zil_itx_destroy(itx);
2578 		}
2579 	}
2580 
2581 	if (lwb == NULL) {
2582 		/*
2583 		 * This indicates zio_alloc_zil() failed to allocate the
2584 		 * "next" lwb on-disk. When this happens, we must stall
2585 		 * the ZIL write pipeline; see the comment within
2586 		 * zil_commit_writer_stall() for more details.
2587 		 */
2588 		zil_commit_writer_stall(zilog);
2589 
2590 		/*
2591 		 * Additionally, we have to signal and mark the "nolwb"
2592 		 * waiters as "done" here, since without an lwb, we
2593 		 * can't do this via zil_lwb_flush_vdevs_done() like
2594 		 * normal.
2595 		 */
2596 		zil_commit_waiter_t *zcw;
2597 		while ((zcw = list_head(&nolwb_waiters)) != NULL) {
2598 			zil_commit_waiter_skip(zcw);
2599 			list_remove(&nolwb_waiters, zcw);
2600 		}
2601 
2602 		/*
2603 		 * And finally, we have to destroy the itx's that
2604 		 * couldn't be committed to an lwb; this will also call
2605 		 * the itx's callback if one exists for the itx.
2606 		 */
2607 		while ((itx = list_head(&nolwb_itxs)) != NULL) {
2608 			list_remove(&nolwb_itxs, itx);
2609 			zil_itx_destroy(itx);
2610 		}
2611 	} else {
2612 		ASSERT(list_is_empty(&nolwb_waiters));
2613 		ASSERT3P(lwb, !=, NULL);
2614 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2615 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
2616 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
2617 
2618 		/*
2619 		 * At this point, the ZIL block pointed at by the "lwb"
2620 		 * variable is in one of the following states: "closed"
2621 		 * or "open".
2622 		 *
2623 		 * If it's "closed", then no itxs have been committed to
2624 		 * it, so there's no point in issuing its zio (i.e. it's
2625 		 * "empty").
2626 		 *
2627 		 * If it's "open", then it contains one or more itxs that
2628 		 * eventually need to be committed to stable storage. In
2629 		 * this case we intentionally do not issue the lwb's zio
2630 		 * to disk yet, and instead rely on one of the following
2631 		 * two mechanisms for issuing the zio:
2632 		 *
2633 		 * 1. Ideally, there will be more ZIL activity occurring
2634 		 * on the system, such that this function will be
2635 		 * immediately called again (not necessarily by the same
2636 		 * thread) and this lwb's zio will be issued via
2637 		 * zil_lwb_commit(). This way, the lwb is guaranteed to
2638 		 * be "full" when it is issued to disk, and we'll make
2639 		 * use of the lwb's size the best we can.
2640 		 *
2641 		 * 2. If there isn't sufficient ZIL activity occurring on
2642 		 * the system, such that this lwb's zio isn't issued via
2643 		 * zil_lwb_commit(), zil_commit_waiter() will issue the
2644 		 * lwb's zio. If this occurs, the lwb is not guaranteed
2645 		 * to be "full" by the time its zio is issued, and means
2646 		 * the size of the lwb was "too large" given the amount
2647 		 * of ZIL activity occurring on the system at that time.
2648 		 *
2649 		 * We do this for a couple of reasons:
2650 		 *
2651 		 * 1. To try and reduce the number of IOPs needed to
2652 		 * write the same number of itxs. If an lwb has space
2653 		 * available in its buffer for more itxs, and more itxs
2654 		 * will be committed relatively soon (relative to the
2655 		 * latency of performing a write), then it's beneficial
2656 		 * to wait for these "next" itxs. This way, more itxs
2657 		 * can be committed to stable storage with fewer writes.
2658 		 *
2659 		 * 2. To try and use the largest lwb block size that the
2660 		 * incoming rate of itxs can support. Again, this is to
2661 		 * try and pack as many itxs into as few lwbs as
2662 		 * possible, without significantly impacting the latency
2663 		 * of each individual itx.
2664 		 */
2665 	}
2666 }
2667 
2668 /*
2669  * This function is responsible for ensuring the passed in commit waiter
2670  * (and associated commit itx) is committed to an lwb. If the waiter is
2671  * not already committed to an lwb, all itxs in the zilog's queue of
2672  * itxs will be processed. The assumption is the passed in waiter's
2673  * commit itx will found in the queue just like the other non-commit
2674  * itxs, such that when the entire queue is processed, the waiter will
2675  * have been committed to an lwb.
2676  *
2677  * The lwb associated with the passed in waiter is not guaranteed to
2678  * have been issued by the time this function completes. If the lwb is
2679  * not issued, we rely on future calls to zil_commit_writer() to issue
2680  * the lwb, or the timeout mechanism found in zil_commit_waiter().
2681  */
2682 static void
2683 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw)
2684 {
2685 	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2686 	ASSERT(spa_writeable(zilog->zl_spa));
2687 
2688 	mutex_enter(&zilog->zl_issuer_lock);
2689 
2690 	if (zcw->zcw_lwb != NULL || zcw->zcw_done) {
2691 		/*
2692 		 * It's possible that, while we were waiting to acquire
2693 		 * the "zl_issuer_lock", another thread committed this
2694 		 * waiter to an lwb. If that occurs, we bail out early,
2695 		 * without processing any of the zilog's queue of itxs.
2696 		 *
2697 		 * On certain workloads and system configurations, the
2698 		 * "zl_issuer_lock" can become highly contended. In an
2699 		 * attempt to reduce this contention, we immediately drop
2700 		 * the lock if the waiter has already been processed.
2701 		 *
2702 		 * We've measured this optimization to reduce CPU spent
2703 		 * contending on this lock by up to 5%, using a system
2704 		 * with 32 CPUs, low latency storage (~50 usec writes),
2705 		 * and 1024 threads performing sync writes.
2706 		 */
2707 		goto out;
2708 	}
2709 
2710 	ZIL_STAT_BUMP(zilog, zil_commit_writer_count);
2711 
2712 	zil_get_commit_list(zilog);
2713 	zil_prune_commit_list(zilog);
2714 	zil_process_commit_list(zilog);
2715 
2716 out:
2717 	mutex_exit(&zilog->zl_issuer_lock);
2718 }
2719 
2720 static void
2721 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw)
2722 {
2723 	ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2724 	ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2725 	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
2726 
2727 	lwb_t *lwb = zcw->zcw_lwb;
2728 	ASSERT3P(lwb, !=, NULL);
2729 	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED);
2730 
2731 	/*
2732 	 * If the lwb has already been issued by another thread, we can
2733 	 * immediately return since there's no work to be done (the
2734 	 * point of this function is to issue the lwb). Additionally, we
2735 	 * do this prior to acquiring the zl_issuer_lock, to avoid
2736 	 * acquiring it when it's not necessary to do so.
2737 	 */
2738 	if (lwb->lwb_state == LWB_STATE_ISSUED ||
2739 	    lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2740 	    lwb->lwb_state == LWB_STATE_FLUSH_DONE)
2741 		return;
2742 
2743 	/*
2744 	 * In order to call zil_lwb_write_issue() we must hold the
2745 	 * zilog's "zl_issuer_lock". We can't simply acquire that lock,
2746 	 * since we're already holding the commit waiter's "zcw_lock",
2747 	 * and those two locks are acquired in the opposite order
2748 	 * elsewhere.
2749 	 */
2750 	mutex_exit(&zcw->zcw_lock);
2751 	mutex_enter(&zilog->zl_issuer_lock);
2752 	mutex_enter(&zcw->zcw_lock);
2753 
2754 	/*
2755 	 * Since we just dropped and re-acquired the commit waiter's
2756 	 * lock, we have to re-check to see if the waiter was marked
2757 	 * "done" during that process. If the waiter was marked "done",
2758 	 * the "lwb" pointer is no longer valid (it can be free'd after
2759 	 * the waiter is marked "done"), so without this check we could
2760 	 * wind up with a use-after-free error below.
2761 	 */
2762 	if (zcw->zcw_done)
2763 		goto out;
2764 
2765 	ASSERT3P(lwb, ==, zcw->zcw_lwb);
2766 
2767 	/*
2768 	 * We've already checked this above, but since we hadn't acquired
2769 	 * the zilog's zl_issuer_lock, we have to perform this check a
2770 	 * second time while holding the lock.
2771 	 *
2772 	 * We don't need to hold the zl_lock since the lwb cannot transition
2773 	 * from OPENED to ISSUED while we hold the zl_issuer_lock. The lwb
2774 	 * _can_ transition from ISSUED to DONE, but it's OK to race with
2775 	 * that transition since we treat the lwb the same, whether it's in
2776 	 * the ISSUED or DONE states.
2777 	 *
2778 	 * The important thing, is we treat the lwb differently depending on
2779 	 * if it's ISSUED or OPENED, and block any other threads that might
2780 	 * attempt to issue this lwb. For that reason we hold the
2781 	 * zl_issuer_lock when checking the lwb_state; we must not call
2782 	 * zil_lwb_write_issue() if the lwb had already been issued.
2783 	 *
2784 	 * See the comment above the lwb_state_t structure definition for
2785 	 * more details on the lwb states, and locking requirements.
2786 	 */
2787 	if (lwb->lwb_state == LWB_STATE_ISSUED ||
2788 	    lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2789 	    lwb->lwb_state == LWB_STATE_FLUSH_DONE)
2790 		goto out;
2791 
2792 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
2793 
2794 	/*
2795 	 * As described in the comments above zil_commit_waiter() and
2796 	 * zil_process_commit_list(), we need to issue this lwb's zio
2797 	 * since we've reached the commit waiter's timeout and it still
2798 	 * hasn't been issued.
2799 	 */
2800 	lwb_t *nlwb = zil_lwb_write_issue(zilog, lwb);
2801 
2802 	IMPLY(nlwb != NULL, lwb->lwb_state != LWB_STATE_OPENED);
2803 
2804 	/*
2805 	 * Since the lwb's zio hadn't been issued by the time this thread
2806 	 * reached its timeout, we reset the zilog's "zl_cur_used" field
2807 	 * to influence the zil block size selection algorithm.
2808 	 *
2809 	 * By having to issue the lwb's zio here, it means the size of the
2810 	 * lwb was too large, given the incoming throughput of itxs.  By
2811 	 * setting "zl_cur_used" to zero, we communicate this fact to the
2812 	 * block size selection algorithm, so it can take this information
2813 	 * into account, and potentially select a smaller size for the
2814 	 * next lwb block that is allocated.
2815 	 */
2816 	zilog->zl_cur_used = 0;
2817 
2818 	if (nlwb == NULL) {
2819 		/*
2820 		 * When zil_lwb_write_issue() returns NULL, this
2821 		 * indicates zio_alloc_zil() failed to allocate the
2822 		 * "next" lwb on-disk. When this occurs, the ZIL write
2823 		 * pipeline must be stalled; see the comment within the
2824 		 * zil_commit_writer_stall() function for more details.
2825 		 *
2826 		 * We must drop the commit waiter's lock prior to
2827 		 * calling zil_commit_writer_stall() or else we can wind
2828 		 * up with the following deadlock:
2829 		 *
2830 		 * - This thread is waiting for the txg to sync while
2831 		 *   holding the waiter's lock; txg_wait_synced() is
2832 		 *   used within txg_commit_writer_stall().
2833 		 *
2834 		 * - The txg can't sync because it is waiting for this
2835 		 *   lwb's zio callback to call dmu_tx_commit().
2836 		 *
2837 		 * - The lwb's zio callback can't call dmu_tx_commit()
2838 		 *   because it's blocked trying to acquire the waiter's
2839 		 *   lock, which occurs prior to calling dmu_tx_commit()
2840 		 */
2841 		mutex_exit(&zcw->zcw_lock);
2842 		zil_commit_writer_stall(zilog);
2843 		mutex_enter(&zcw->zcw_lock);
2844 	}
2845 
2846 out:
2847 	mutex_exit(&zilog->zl_issuer_lock);
2848 	ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2849 }
2850 
2851 /*
2852  * This function is responsible for performing the following two tasks:
2853  *
2854  * 1. its primary responsibility is to block until the given "commit
2855  *    waiter" is considered "done".
2856  *
2857  * 2. its secondary responsibility is to issue the zio for the lwb that
2858  *    the given "commit waiter" is waiting on, if this function has
2859  *    waited "long enough" and the lwb is still in the "open" state.
2860  *
2861  * Given a sufficient amount of itxs being generated and written using
2862  * the ZIL, the lwb's zio will be issued via the zil_lwb_commit()
2863  * function. If this does not occur, this secondary responsibility will
2864  * ensure the lwb is issued even if there is not other synchronous
2865  * activity on the system.
2866  *
2867  * For more details, see zil_process_commit_list(); more specifically,
2868  * the comment at the bottom of that function.
2869  */
2870 static void
2871 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw)
2872 {
2873 	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2874 	ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2875 	ASSERT(spa_writeable(zilog->zl_spa));
2876 
2877 	mutex_enter(&zcw->zcw_lock);
2878 
2879 	/*
2880 	 * The timeout is scaled based on the lwb latency to avoid
2881 	 * significantly impacting the latency of each individual itx.
2882 	 * For more details, see the comment at the bottom of the
2883 	 * zil_process_commit_list() function.
2884 	 */
2885 	int pct = MAX(zfs_commit_timeout_pct, 1);
2886 	hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100;
2887 	hrtime_t wakeup = gethrtime() + sleep;
2888 	boolean_t timedout = B_FALSE;
2889 
2890 	while (!zcw->zcw_done) {
2891 		ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2892 
2893 		lwb_t *lwb = zcw->zcw_lwb;
2894 
2895 		/*
2896 		 * Usually, the waiter will have a non-NULL lwb field here,
2897 		 * but it's possible for it to be NULL as a result of
2898 		 * zil_commit() racing with spa_sync().
2899 		 *
2900 		 * When zil_clean() is called, it's possible for the itxg
2901 		 * list (which may be cleaned via a taskq) to contain
2902 		 * commit itxs. When this occurs, the commit waiters linked
2903 		 * off of these commit itxs will not be committed to an
2904 		 * lwb.  Additionally, these commit waiters will not be
2905 		 * marked done until zil_commit_waiter_skip() is called via
2906 		 * zil_itxg_clean().
2907 		 *
2908 		 * Thus, it's possible for this commit waiter (i.e. the
2909 		 * "zcw" variable) to be found in this "in between" state;
2910 		 * where it's "zcw_lwb" field is NULL, and it hasn't yet
2911 		 * been skipped, so it's "zcw_done" field is still B_FALSE.
2912 		 */
2913 		IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED);
2914 
2915 		if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) {
2916 			ASSERT3B(timedout, ==, B_FALSE);
2917 
2918 			/*
2919 			 * If the lwb hasn't been issued yet, then we
2920 			 * need to wait with a timeout, in case this
2921 			 * function needs to issue the lwb after the
2922 			 * timeout is reached; responsibility (2) from
2923 			 * the comment above this function.
2924 			 */
2925 			int rc = cv_timedwait_hires(&zcw->zcw_cv,
2926 			    &zcw->zcw_lock, wakeup, USEC2NSEC(1),
2927 			    CALLOUT_FLAG_ABSOLUTE);
2928 
2929 			if (rc != -1 || zcw->zcw_done)
2930 				continue;
2931 
2932 			timedout = B_TRUE;
2933 			zil_commit_waiter_timeout(zilog, zcw);
2934 
2935 			if (!zcw->zcw_done) {
2936 				/*
2937 				 * If the commit waiter has already been
2938 				 * marked "done", it's possible for the
2939 				 * waiter's lwb structure to have already
2940 				 * been freed.  Thus, we can only reliably
2941 				 * make these assertions if the waiter
2942 				 * isn't done.
2943 				 */
2944 				ASSERT3P(lwb, ==, zcw->zcw_lwb);
2945 				ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
2946 			}
2947 		} else {
2948 			/*
2949 			 * If the lwb isn't open, then it must have already
2950 			 * been issued. In that case, there's no need to
2951 			 * use a timeout when waiting for the lwb to
2952 			 * complete.
2953 			 *
2954 			 * Additionally, if the lwb is NULL, the waiter
2955 			 * will soon be signaled and marked done via
2956 			 * zil_clean() and zil_itxg_clean(), so no timeout
2957 			 * is required.
2958 			 */
2959 
2960 			IMPLY(lwb != NULL,
2961 			    lwb->lwb_state == LWB_STATE_ISSUED ||
2962 			    lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2963 			    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
2964 			cv_wait(&zcw->zcw_cv, &zcw->zcw_lock);
2965 		}
2966 	}
2967 
2968 	mutex_exit(&zcw->zcw_lock);
2969 }
2970 
2971 static zil_commit_waiter_t *
2972 zil_alloc_commit_waiter(void)
2973 {
2974 	zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP);
2975 
2976 	cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL);
2977 	mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL);
2978 	list_link_init(&zcw->zcw_node);
2979 	zcw->zcw_lwb = NULL;
2980 	zcw->zcw_done = B_FALSE;
2981 	zcw->zcw_zio_error = 0;
2982 
2983 	return (zcw);
2984 }
2985 
2986 static void
2987 zil_free_commit_waiter(zil_commit_waiter_t *zcw)
2988 {
2989 	ASSERT(!list_link_active(&zcw->zcw_node));
2990 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
2991 	ASSERT3B(zcw->zcw_done, ==, B_TRUE);
2992 	mutex_destroy(&zcw->zcw_lock);
2993 	cv_destroy(&zcw->zcw_cv);
2994 	kmem_cache_free(zil_zcw_cache, zcw);
2995 }
2996 
2997 /*
2998  * This function is used to create a TX_COMMIT itx and assign it. This
2999  * way, it will be linked into the ZIL's list of synchronous itxs, and
3000  * then later committed to an lwb (or skipped) when
3001  * zil_process_commit_list() is called.
3002  */
3003 static void
3004 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw)
3005 {
3006 	dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
3007 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
3008 
3009 	itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t));
3010 	itx->itx_sync = B_TRUE;
3011 	itx->itx_private = zcw;
3012 
3013 	zil_itx_assign(zilog, itx, tx);
3014 
3015 	dmu_tx_commit(tx);
3016 }
3017 
3018 /*
3019  * Commit ZFS Intent Log transactions (itxs) to stable storage.
3020  *
3021  * When writing ZIL transactions to the on-disk representation of the
3022  * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple
3023  * itxs can be committed to a single lwb. Once a lwb is written and
3024  * committed to stable storage (i.e. the lwb is written, and vdevs have
3025  * been flushed), each itx that was committed to that lwb is also
3026  * considered to be committed to stable storage.
3027  *
3028  * When an itx is committed to an lwb, the log record (lr_t) contained
3029  * by the itx is copied into the lwb's zio buffer, and once this buffer
3030  * is written to disk, it becomes an on-disk ZIL block.
3031  *
3032  * As itxs are generated, they're inserted into the ZIL's queue of
3033  * uncommitted itxs. The semantics of zil_commit() are such that it will
3034  * block until all itxs that were in the queue when it was called, are
3035  * committed to stable storage.
3036  *
3037  * If "foid" is zero, this means all "synchronous" and "asynchronous"
3038  * itxs, for all objects in the dataset, will be committed to stable
3039  * storage prior to zil_commit() returning. If "foid" is non-zero, all
3040  * "synchronous" itxs for all objects, but only "asynchronous" itxs
3041  * that correspond to the foid passed in, will be committed to stable
3042  * storage prior to zil_commit() returning.
3043  *
3044  * Generally speaking, when zil_commit() is called, the consumer doesn't
3045  * actually care about _all_ of the uncommitted itxs. Instead, they're
3046  * simply trying to waiting for a specific itx to be committed to disk,
3047  * but the interface(s) for interacting with the ZIL don't allow such
3048  * fine-grained communication. A better interface would allow a consumer
3049  * to create and assign an itx, and then pass a reference to this itx to
3050  * zil_commit(); such that zil_commit() would return as soon as that
3051  * specific itx was committed to disk (instead of waiting for _all_
3052  * itxs to be committed).
3053  *
3054  * When a thread calls zil_commit() a special "commit itx" will be
3055  * generated, along with a corresponding "waiter" for this commit itx.
3056  * zil_commit() will wait on this waiter's CV, such that when the waiter
3057  * is marked done, and signaled, zil_commit() will return.
3058  *
3059  * This commit itx is inserted into the queue of uncommitted itxs. This
3060  * provides an easy mechanism for determining which itxs were in the
3061  * queue prior to zil_commit() having been called, and which itxs were
3062  * added after zil_commit() was called.
3063  *
3064  * The commit itx is special; it doesn't have any on-disk representation.
3065  * When a commit itx is "committed" to an lwb, the waiter associated
3066  * with it is linked onto the lwb's list of waiters. Then, when that lwb
3067  * completes, each waiter on the lwb's list is marked done and signaled
3068  * -- allowing the thread waiting on the waiter to return from zil_commit().
3069  *
3070  * It's important to point out a few critical factors that allow us
3071  * to make use of the commit itxs, commit waiters, per-lwb lists of
3072  * commit waiters, and zio completion callbacks like we're doing:
3073  *
3074  *   1. The list of waiters for each lwb is traversed, and each commit
3075  *      waiter is marked "done" and signaled, in the zio completion
3076  *      callback of the lwb's zio[*].
3077  *
3078  *      * Actually, the waiters are signaled in the zio completion
3079  *        callback of the root zio for the DKIOCFLUSHWRITECACHE commands
3080  *        that are sent to the vdevs upon completion of the lwb zio.
3081  *
3082  *   2. When the itxs are inserted into the ZIL's queue of uncommitted
3083  *      itxs, the order in which they are inserted is preserved[*]; as
3084  *      itxs are added to the queue, they are added to the tail of
3085  *      in-memory linked lists.
3086  *
3087  *      When committing the itxs to lwbs (to be written to disk), they
3088  *      are committed in the same order in which the itxs were added to
3089  *      the uncommitted queue's linked list(s); i.e. the linked list of
3090  *      itxs to commit is traversed from head to tail, and each itx is
3091  *      committed to an lwb in that order.
3092  *
3093  *      * To clarify:
3094  *
3095  *        - the order of "sync" itxs is preserved w.r.t. other
3096  *          "sync" itxs, regardless of the corresponding objects.
3097  *        - the order of "async" itxs is preserved w.r.t. other
3098  *          "async" itxs corresponding to the same object.
3099  *        - the order of "async" itxs is *not* preserved w.r.t. other
3100  *          "async" itxs corresponding to different objects.
3101  *        - the order of "sync" itxs w.r.t. "async" itxs (or vice
3102  *          versa) is *not* preserved, even for itxs that correspond
3103  *          to the same object.
3104  *
3105  *      For more details, see: zil_itx_assign(), zil_async_to_sync(),
3106  *      zil_get_commit_list(), and zil_process_commit_list().
3107  *
3108  *   3. The lwbs represent a linked list of blocks on disk. Thus, any
3109  *      lwb cannot be considered committed to stable storage, until its
3110  *      "previous" lwb is also committed to stable storage. This fact,
3111  *      coupled with the fact described above, means that itxs are
3112  *      committed in (roughly) the order in which they were generated.
3113  *      This is essential because itxs are dependent on prior itxs.
3114  *      Thus, we *must not* deem an itx as being committed to stable
3115  *      storage, until *all* prior itxs have also been committed to
3116  *      stable storage.
3117  *
3118  *      To enforce this ordering of lwb zio's, while still leveraging as
3119  *      much of the underlying storage performance as possible, we rely
3120  *      on two fundamental concepts:
3121  *
3122  *          1. The creation and issuance of lwb zio's is protected by
3123  *             the zilog's "zl_issuer_lock", which ensures only a single
3124  *             thread is creating and/or issuing lwb's at a time
3125  *          2. The "previous" lwb is a child of the "current" lwb
3126  *             (leveraging the zio parent-child dependency graph)
3127  *
3128  *      By relying on this parent-child zio relationship, we can have
3129  *      many lwb zio's concurrently issued to the underlying storage,
3130  *      but the order in which they complete will be the same order in
3131  *      which they were created.
3132  */
3133 void
3134 zil_commit(zilog_t *zilog, uint64_t foid)
3135 {
3136 	/*
3137 	 * We should never attempt to call zil_commit on a snapshot for
3138 	 * a couple of reasons:
3139 	 *
3140 	 * 1. A snapshot may never be modified, thus it cannot have any
3141 	 *    in-flight itxs that would have modified the dataset.
3142 	 *
3143 	 * 2. By design, when zil_commit() is called, a commit itx will
3144 	 *    be assigned to this zilog; as a result, the zilog will be
3145 	 *    dirtied. We must not dirty the zilog of a snapshot; there's
3146 	 *    checks in the code that enforce this invariant, and will
3147 	 *    cause a panic if it's not upheld.
3148 	 */
3149 	ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE);
3150 
3151 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3152 		return;
3153 
3154 	if (!spa_writeable(zilog->zl_spa)) {
3155 		/*
3156 		 * If the SPA is not writable, there should never be any
3157 		 * pending itxs waiting to be committed to disk. If that
3158 		 * weren't true, we'd skip writing those itxs out, and
3159 		 * would break the semantics of zil_commit(); thus, we're
3160 		 * verifying that truth before we return to the caller.
3161 		 */
3162 		ASSERT(list_is_empty(&zilog->zl_lwb_list));
3163 		ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
3164 		for (int i = 0; i < TXG_SIZE; i++)
3165 			ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL);
3166 		return;
3167 	}
3168 
3169 	/*
3170 	 * If the ZIL is suspended, we don't want to dirty it by calling
3171 	 * zil_commit_itx_assign() below, nor can we write out
3172 	 * lwbs like would be done in zil_commit_write(). Thus, we
3173 	 * simply rely on txg_wait_synced() to maintain the necessary
3174 	 * semantics, and avoid calling those functions altogether.
3175 	 */
3176 	if (zilog->zl_suspend > 0) {
3177 		txg_wait_synced(zilog->zl_dmu_pool, 0);
3178 		return;
3179 	}
3180 
3181 	zil_commit_impl(zilog, foid);
3182 }
3183 
3184 void
3185 zil_commit_impl(zilog_t *zilog, uint64_t foid)
3186 {
3187 	ZIL_STAT_BUMP(zilog, zil_commit_count);
3188 
3189 	/*
3190 	 * Move the "async" itxs for the specified foid to the "sync"
3191 	 * queues, such that they will be later committed (or skipped)
3192 	 * to an lwb when zil_process_commit_list() is called.
3193 	 *
3194 	 * Since these "async" itxs must be committed prior to this
3195 	 * call to zil_commit returning, we must perform this operation
3196 	 * before we call zil_commit_itx_assign().
3197 	 */
3198 	zil_async_to_sync(zilog, foid);
3199 
3200 	/*
3201 	 * We allocate a new "waiter" structure which will initially be
3202 	 * linked to the commit itx using the itx's "itx_private" field.
3203 	 * Since the commit itx doesn't represent any on-disk state,
3204 	 * when it's committed to an lwb, rather than copying the its
3205 	 * lr_t into the lwb's buffer, the commit itx's "waiter" will be
3206 	 * added to the lwb's list of waiters. Then, when the lwb is
3207 	 * committed to stable storage, each waiter in the lwb's list of
3208 	 * waiters will be marked "done", and signalled.
3209 	 *
3210 	 * We must create the waiter and assign the commit itx prior to
3211 	 * calling zil_commit_writer(), or else our specific commit itx
3212 	 * is not guaranteed to be committed to an lwb prior to calling
3213 	 * zil_commit_waiter().
3214 	 */
3215 	zil_commit_waiter_t *zcw = zil_alloc_commit_waiter();
3216 	zil_commit_itx_assign(zilog, zcw);
3217 
3218 	zil_commit_writer(zilog, zcw);
3219 	zil_commit_waiter(zilog, zcw);
3220 
3221 	if (zcw->zcw_zio_error != 0) {
3222 		/*
3223 		 * If there was an error writing out the ZIL blocks that
3224 		 * this thread is waiting on, then we fallback to
3225 		 * relying on spa_sync() to write out the data this
3226 		 * thread is waiting on. Obviously this has performance
3227 		 * implications, but the expectation is for this to be
3228 		 * an exceptional case, and shouldn't occur often.
3229 		 */
3230 		DTRACE_PROBE2(zil__commit__io__error,
3231 		    zilog_t *, zilog, zil_commit_waiter_t *, zcw);
3232 		txg_wait_synced(zilog->zl_dmu_pool, 0);
3233 	}
3234 
3235 	zil_free_commit_waiter(zcw);
3236 }
3237 
3238 /*
3239  * Called in syncing context to free committed log blocks and update log header.
3240  */
3241 void
3242 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
3243 {
3244 	zil_header_t *zh = zil_header_in_syncing_context(zilog);
3245 	uint64_t txg = dmu_tx_get_txg(tx);
3246 	spa_t *spa = zilog->zl_spa;
3247 	uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
3248 	lwb_t *lwb;
3249 
3250 	/*
3251 	 * We don't zero out zl_destroy_txg, so make sure we don't try
3252 	 * to destroy it twice.
3253 	 */
3254 	if (spa_sync_pass(spa) != 1)
3255 		return;
3256 
3257 	zil_lwb_flush_wait_all(zilog, txg);
3258 
3259 	mutex_enter(&zilog->zl_lock);
3260 
3261 	ASSERT(zilog->zl_stop_sync == 0);
3262 
3263 	if (*replayed_seq != 0) {
3264 		ASSERT(zh->zh_replay_seq < *replayed_seq);
3265 		zh->zh_replay_seq = *replayed_seq;
3266 		*replayed_seq = 0;
3267 	}
3268 
3269 	if (zilog->zl_destroy_txg == txg) {
3270 		blkptr_t blk = zh->zh_log;
3271 		dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
3272 
3273 		ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
3274 
3275 		memset(zh, 0, sizeof (zil_header_t));
3276 		memset(zilog->zl_replayed_seq, 0,
3277 		    sizeof (zilog->zl_replayed_seq));
3278 
3279 		if (zilog->zl_keep_first) {
3280 			/*
3281 			 * If this block was part of log chain that couldn't
3282 			 * be claimed because a device was missing during
3283 			 * zil_claim(), but that device later returns,
3284 			 * then this block could erroneously appear valid.
3285 			 * To guard against this, assign a new GUID to the new
3286 			 * log chain so it doesn't matter what blk points to.
3287 			 */
3288 			zil_init_log_chain(zilog, &blk);
3289 			zh->zh_log = blk;
3290 		} else {
3291 			/*
3292 			 * A destroyed ZIL chain can't contain any TX_SETSAXATTR
3293 			 * records. So, deactivate the feature for this dataset.
3294 			 * We activate it again when we start a new ZIL chain.
3295 			 */
3296 			if (dsl_dataset_feature_is_active(ds,
3297 			    SPA_FEATURE_ZILSAXATTR))
3298 				dsl_dataset_deactivate_feature(ds,
3299 				    SPA_FEATURE_ZILSAXATTR, tx);
3300 		}
3301 	}
3302 
3303 	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
3304 		zh->zh_log = lwb->lwb_blk;
3305 		if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
3306 			break;
3307 		list_remove(&zilog->zl_lwb_list, lwb);
3308 		zio_free(spa, txg, &lwb->lwb_blk);
3309 		zil_free_lwb(zilog, lwb);
3310 
3311 		/*
3312 		 * If we don't have anything left in the lwb list then
3313 		 * we've had an allocation failure and we need to zero
3314 		 * out the zil_header blkptr so that we don't end
3315 		 * up freeing the same block twice.
3316 		 */
3317 		if (list_head(&zilog->zl_lwb_list) == NULL)
3318 			BP_ZERO(&zh->zh_log);
3319 	}
3320 
3321 	/*
3322 	 * Remove fastwrite on any blocks that have been pre-allocated for
3323 	 * the next commit. This prevents fastwrite counter pollution by
3324 	 * unused, long-lived LWBs.
3325 	 */
3326 	for (; lwb != NULL; lwb = list_next(&zilog->zl_lwb_list, lwb)) {
3327 		if (lwb->lwb_fastwrite && !lwb->lwb_write_zio) {
3328 			metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk);
3329 			lwb->lwb_fastwrite = 0;
3330 		}
3331 	}
3332 
3333 	mutex_exit(&zilog->zl_lock);
3334 }
3335 
3336 static int
3337 zil_lwb_cons(void *vbuf, void *unused, int kmflag)
3338 {
3339 	(void) unused, (void) kmflag;
3340 	lwb_t *lwb = vbuf;
3341 	list_create(&lwb->lwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
3342 	list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t),
3343 	    offsetof(zil_commit_waiter_t, zcw_node));
3344 	avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare,
3345 	    sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
3346 	mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
3347 	return (0);
3348 }
3349 
3350 static void
3351 zil_lwb_dest(void *vbuf, void *unused)
3352 {
3353 	(void) unused;
3354 	lwb_t *lwb = vbuf;
3355 	mutex_destroy(&lwb->lwb_vdev_lock);
3356 	avl_destroy(&lwb->lwb_vdev_tree);
3357 	list_destroy(&lwb->lwb_waiters);
3358 	list_destroy(&lwb->lwb_itxs);
3359 }
3360 
3361 void
3362 zil_init(void)
3363 {
3364 	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
3365 	    sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0);
3366 
3367 	zil_zcw_cache = kmem_cache_create("zil_zcw_cache",
3368 	    sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
3369 
3370 	zil_sums_init(&zil_sums_global);
3371 	zil_kstats_global = kstat_create("zfs", 0, "zil", "misc",
3372 	    KSTAT_TYPE_NAMED, sizeof (zil_stats) / sizeof (kstat_named_t),
3373 	    KSTAT_FLAG_VIRTUAL);
3374 
3375 	if (zil_kstats_global != NULL) {
3376 		zil_kstats_global->ks_data = &zil_stats;
3377 		zil_kstats_global->ks_update = zil_kstats_global_update;
3378 		zil_kstats_global->ks_private = NULL;
3379 		kstat_install(zil_kstats_global);
3380 	}
3381 }
3382 
3383 void
3384 zil_fini(void)
3385 {
3386 	kmem_cache_destroy(zil_zcw_cache);
3387 	kmem_cache_destroy(zil_lwb_cache);
3388 
3389 	if (zil_kstats_global != NULL) {
3390 		kstat_delete(zil_kstats_global);
3391 		zil_kstats_global = NULL;
3392 	}
3393 
3394 	zil_sums_fini(&zil_sums_global);
3395 }
3396 
3397 void
3398 zil_set_sync(zilog_t *zilog, uint64_t sync)
3399 {
3400 	zilog->zl_sync = sync;
3401 }
3402 
3403 void
3404 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
3405 {
3406 	zilog->zl_logbias = logbias;
3407 }
3408 
3409 zilog_t *
3410 zil_alloc(objset_t *os, zil_header_t *zh_phys)
3411 {
3412 	zilog_t *zilog;
3413 
3414 	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
3415 
3416 	zilog->zl_header = zh_phys;
3417 	zilog->zl_os = os;
3418 	zilog->zl_spa = dmu_objset_spa(os);
3419 	zilog->zl_dmu_pool = dmu_objset_pool(os);
3420 	zilog->zl_destroy_txg = TXG_INITIAL - 1;
3421 	zilog->zl_logbias = dmu_objset_logbias(os);
3422 	zilog->zl_sync = dmu_objset_syncprop(os);
3423 	zilog->zl_dirty_max_txg = 0;
3424 	zilog->zl_last_lwb_opened = NULL;
3425 	zilog->zl_last_lwb_latency = 0;
3426 	zilog->zl_max_block_size = zil_maxblocksize;
3427 
3428 	mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
3429 	mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL);
3430 	mutex_init(&zilog->zl_lwb_io_lock, NULL, MUTEX_DEFAULT, NULL);
3431 
3432 	for (int i = 0; i < TXG_SIZE; i++) {
3433 		mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
3434 		    MUTEX_DEFAULT, NULL);
3435 	}
3436 
3437 	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
3438 	    offsetof(lwb_t, lwb_node));
3439 
3440 	list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
3441 	    offsetof(itx_t, itx_node));
3442 
3443 	cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
3444 	cv_init(&zilog->zl_lwb_io_cv, NULL, CV_DEFAULT, NULL);
3445 
3446 	return (zilog);
3447 }
3448 
3449 void
3450 zil_free(zilog_t *zilog)
3451 {
3452 	int i;
3453 
3454 	zilog->zl_stop_sync = 1;
3455 
3456 	ASSERT0(zilog->zl_suspend);
3457 	ASSERT0(zilog->zl_suspending);
3458 
3459 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
3460 	list_destroy(&zilog->zl_lwb_list);
3461 
3462 	ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
3463 	list_destroy(&zilog->zl_itx_commit_list);
3464 
3465 	for (i = 0; i < TXG_SIZE; i++) {
3466 		/*
3467 		 * It's possible for an itx to be generated that doesn't dirty
3468 		 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
3469 		 * callback to remove the entry. We remove those here.
3470 		 *
3471 		 * Also free up the ziltest itxs.
3472 		 */
3473 		if (zilog->zl_itxg[i].itxg_itxs)
3474 			zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
3475 		mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
3476 	}
3477 
3478 	mutex_destroy(&zilog->zl_issuer_lock);
3479 	mutex_destroy(&zilog->zl_lock);
3480 	mutex_destroy(&zilog->zl_lwb_io_lock);
3481 
3482 	cv_destroy(&zilog->zl_cv_suspend);
3483 	cv_destroy(&zilog->zl_lwb_io_cv);
3484 
3485 	kmem_free(zilog, sizeof (zilog_t));
3486 }
3487 
3488 /*
3489  * Open an intent log.
3490  */
3491 zilog_t *
3492 zil_open(objset_t *os, zil_get_data_t *get_data, zil_sums_t *zil_sums)
3493 {
3494 	zilog_t *zilog = dmu_objset_zil(os);
3495 
3496 	ASSERT3P(zilog->zl_get_data, ==, NULL);
3497 	ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
3498 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
3499 
3500 	zilog->zl_get_data = get_data;
3501 	zilog->zl_sums = zil_sums;
3502 
3503 	return (zilog);
3504 }
3505 
3506 /*
3507  * Close an intent log.
3508  */
3509 void
3510 zil_close(zilog_t *zilog)
3511 {
3512 	lwb_t *lwb;
3513 	uint64_t txg;
3514 
3515 	if (!dmu_objset_is_snapshot(zilog->zl_os)) {
3516 		zil_commit(zilog, 0);
3517 	} else {
3518 		ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
3519 		ASSERT0(zilog->zl_dirty_max_txg);
3520 		ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE);
3521 	}
3522 
3523 	mutex_enter(&zilog->zl_lock);
3524 	lwb = list_tail(&zilog->zl_lwb_list);
3525 	if (lwb == NULL)
3526 		txg = zilog->zl_dirty_max_txg;
3527 	else
3528 		txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg);
3529 	mutex_exit(&zilog->zl_lock);
3530 
3531 	/*
3532 	 * zl_lwb_max_issued_txg may be larger than lwb_max_txg. It depends
3533 	 * on the time when the dmu_tx transaction is assigned in
3534 	 * zil_lwb_write_issue().
3535 	 */
3536 	mutex_enter(&zilog->zl_lwb_io_lock);
3537 	txg = MAX(zilog->zl_lwb_max_issued_txg, txg);
3538 	mutex_exit(&zilog->zl_lwb_io_lock);
3539 
3540 	/*
3541 	 * We need to use txg_wait_synced() to wait until that txg is synced.
3542 	 * zil_sync() will guarantee all lwbs up to that txg have been
3543 	 * written out, flushed, and cleaned.
3544 	 */
3545 	if (txg != 0)
3546 		txg_wait_synced(zilog->zl_dmu_pool, txg);
3547 
3548 	if (zilog_is_dirty(zilog))
3549 		zfs_dbgmsg("zil (%px) is dirty, txg %llu", zilog,
3550 		    (u_longlong_t)txg);
3551 	if (txg < spa_freeze_txg(zilog->zl_spa))
3552 		VERIFY(!zilog_is_dirty(zilog));
3553 
3554 	zilog->zl_get_data = NULL;
3555 
3556 	/*
3557 	 * We should have only one lwb left on the list; remove it now.
3558 	 */
3559 	mutex_enter(&zilog->zl_lock);
3560 	lwb = list_head(&zilog->zl_lwb_list);
3561 	if (lwb != NULL) {
3562 		ASSERT3P(lwb, ==, list_tail(&zilog->zl_lwb_list));
3563 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
3564 
3565 		if (lwb->lwb_fastwrite)
3566 			metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk);
3567 
3568 		list_remove(&zilog->zl_lwb_list, lwb);
3569 		zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
3570 		zil_free_lwb(zilog, lwb);
3571 	}
3572 	mutex_exit(&zilog->zl_lock);
3573 }
3574 
3575 static const char *suspend_tag = "zil suspending";
3576 
3577 /*
3578  * Suspend an intent log.  While in suspended mode, we still honor
3579  * synchronous semantics, but we rely on txg_wait_synced() to do it.
3580  * On old version pools, we suspend the log briefly when taking a
3581  * snapshot so that it will have an empty intent log.
3582  *
3583  * Long holds are not really intended to be used the way we do here --
3584  * held for such a short time.  A concurrent caller of dsl_dataset_long_held()
3585  * could fail.  Therefore we take pains to only put a long hold if it is
3586  * actually necessary.  Fortunately, it will only be necessary if the
3587  * objset is currently mounted (or the ZVOL equivalent).  In that case it
3588  * will already have a long hold, so we are not really making things any worse.
3589  *
3590  * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
3591  * zvol_state_t), and use their mechanism to prevent their hold from being
3592  * dropped (e.g. VFS_HOLD()).  However, that would be even more pain for
3593  * very little gain.
3594  *
3595  * if cookiep == NULL, this does both the suspend & resume.
3596  * Otherwise, it returns with the dataset "long held", and the cookie
3597  * should be passed into zil_resume().
3598  */
3599 int
3600 zil_suspend(const char *osname, void **cookiep)
3601 {
3602 	objset_t *os;
3603 	zilog_t *zilog;
3604 	const zil_header_t *zh;
3605 	int error;
3606 
3607 	error = dmu_objset_hold(osname, suspend_tag, &os);
3608 	if (error != 0)
3609 		return (error);
3610 	zilog = dmu_objset_zil(os);
3611 
3612 	mutex_enter(&zilog->zl_lock);
3613 	zh = zilog->zl_header;
3614 
3615 	if (zh->zh_flags & ZIL_REPLAY_NEEDED) {		/* unplayed log */
3616 		mutex_exit(&zilog->zl_lock);
3617 		dmu_objset_rele(os, suspend_tag);
3618 		return (SET_ERROR(EBUSY));
3619 	}
3620 
3621 	/*
3622 	 * Don't put a long hold in the cases where we can avoid it.  This
3623 	 * is when there is no cookie so we are doing a suspend & resume
3624 	 * (i.e. called from zil_vdev_offline()), and there's nothing to do
3625 	 * for the suspend because it's already suspended, or there's no ZIL.
3626 	 */
3627 	if (cookiep == NULL && !zilog->zl_suspending &&
3628 	    (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
3629 		mutex_exit(&zilog->zl_lock);
3630 		dmu_objset_rele(os, suspend_tag);
3631 		return (0);
3632 	}
3633 
3634 	dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
3635 	dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
3636 
3637 	zilog->zl_suspend++;
3638 
3639 	if (zilog->zl_suspend > 1) {
3640 		/*
3641 		 * Someone else is already suspending it.
3642 		 * Just wait for them to finish.
3643 		 */
3644 
3645 		while (zilog->zl_suspending)
3646 			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
3647 		mutex_exit(&zilog->zl_lock);
3648 
3649 		if (cookiep == NULL)
3650 			zil_resume(os);
3651 		else
3652 			*cookiep = os;
3653 		return (0);
3654 	}
3655 
3656 	/*
3657 	 * If there is no pointer to an on-disk block, this ZIL must not
3658 	 * be active (e.g. filesystem not mounted), so there's nothing
3659 	 * to clean up.
3660 	 */
3661 	if (BP_IS_HOLE(&zh->zh_log)) {
3662 		ASSERT(cookiep != NULL); /* fast path already handled */
3663 
3664 		*cookiep = os;
3665 		mutex_exit(&zilog->zl_lock);
3666 		return (0);
3667 	}
3668 
3669 	/*
3670 	 * The ZIL has work to do. Ensure that the associated encryption
3671 	 * key will remain mapped while we are committing the log by
3672 	 * grabbing a reference to it. If the key isn't loaded we have no
3673 	 * choice but to return an error until the wrapping key is loaded.
3674 	 */
3675 	if (os->os_encrypted &&
3676 	    dsl_dataset_create_key_mapping(dmu_objset_ds(os)) != 0) {
3677 		zilog->zl_suspend--;
3678 		mutex_exit(&zilog->zl_lock);
3679 		dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3680 		dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3681 		return (SET_ERROR(EACCES));
3682 	}
3683 
3684 	zilog->zl_suspending = B_TRUE;
3685 	mutex_exit(&zilog->zl_lock);
3686 
3687 	/*
3688 	 * We need to use zil_commit_impl to ensure we wait for all
3689 	 * LWB_STATE_OPENED and LWB_STATE_ISSUED lwbs to be committed
3690 	 * to disk before proceeding. If we used zil_commit instead, it
3691 	 * would just call txg_wait_synced(), because zl_suspend is set.
3692 	 * txg_wait_synced() doesn't wait for these lwb's to be
3693 	 * LWB_STATE_FLUSH_DONE before returning.
3694 	 */
3695 	zil_commit_impl(zilog, 0);
3696 
3697 	/*
3698 	 * Now that we've ensured all lwb's are LWB_STATE_FLUSH_DONE, we
3699 	 * use txg_wait_synced() to ensure the data from the zilog has
3700 	 * migrated to the main pool before calling zil_destroy().
3701 	 */
3702 	txg_wait_synced(zilog->zl_dmu_pool, 0);
3703 
3704 	zil_destroy(zilog, B_FALSE);
3705 
3706 	mutex_enter(&zilog->zl_lock);
3707 	zilog->zl_suspending = B_FALSE;
3708 	cv_broadcast(&zilog->zl_cv_suspend);
3709 	mutex_exit(&zilog->zl_lock);
3710 
3711 	if (os->os_encrypted)
3712 		dsl_dataset_remove_key_mapping(dmu_objset_ds(os));
3713 
3714 	if (cookiep == NULL)
3715 		zil_resume(os);
3716 	else
3717 		*cookiep = os;
3718 	return (0);
3719 }
3720 
3721 void
3722 zil_resume(void *cookie)
3723 {
3724 	objset_t *os = cookie;
3725 	zilog_t *zilog = dmu_objset_zil(os);
3726 
3727 	mutex_enter(&zilog->zl_lock);
3728 	ASSERT(zilog->zl_suspend != 0);
3729 	zilog->zl_suspend--;
3730 	mutex_exit(&zilog->zl_lock);
3731 	dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3732 	dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3733 }
3734 
3735 typedef struct zil_replay_arg {
3736 	zil_replay_func_t *const *zr_replay;
3737 	void		*zr_arg;
3738 	boolean_t	zr_byteswap;
3739 	char		*zr_lr;
3740 } zil_replay_arg_t;
3741 
3742 static int
3743 zil_replay_error(zilog_t *zilog, const lr_t *lr, int error)
3744 {
3745 	char name[ZFS_MAX_DATASET_NAME_LEN];
3746 
3747 	zilog->zl_replaying_seq--;	/* didn't actually replay this one */
3748 
3749 	dmu_objset_name(zilog->zl_os, name);
3750 
3751 	cmn_err(CE_WARN, "ZFS replay transaction error %d, "
3752 	    "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
3753 	    (u_longlong_t)lr->lrc_seq,
3754 	    (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
3755 	    (lr->lrc_txtype & TX_CI) ? "CI" : "");
3756 
3757 	return (error);
3758 }
3759 
3760 static int
3761 zil_replay_log_record(zilog_t *zilog, const lr_t *lr, void *zra,
3762     uint64_t claim_txg)
3763 {
3764 	zil_replay_arg_t *zr = zra;
3765 	const zil_header_t *zh = zilog->zl_header;
3766 	uint64_t reclen = lr->lrc_reclen;
3767 	uint64_t txtype = lr->lrc_txtype;
3768 	int error = 0;
3769 
3770 	zilog->zl_replaying_seq = lr->lrc_seq;
3771 
3772 	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
3773 		return (0);
3774 
3775 	if (lr->lrc_txg < claim_txg)		/* already committed */
3776 		return (0);
3777 
3778 	/* Strip case-insensitive bit, still present in log record */
3779 	txtype &= ~TX_CI;
3780 
3781 	if (txtype == 0 || txtype >= TX_MAX_TYPE)
3782 		return (zil_replay_error(zilog, lr, EINVAL));
3783 
3784 	/*
3785 	 * If this record type can be logged out of order, the object
3786 	 * (lr_foid) may no longer exist.  That's legitimate, not an error.
3787 	 */
3788 	if (TX_OOO(txtype)) {
3789 		error = dmu_object_info(zilog->zl_os,
3790 		    LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL);
3791 		if (error == ENOENT || error == EEXIST)
3792 			return (0);
3793 	}
3794 
3795 	/*
3796 	 * Make a copy of the data so we can revise and extend it.
3797 	 */
3798 	memcpy(zr->zr_lr, lr, reclen);
3799 
3800 	/*
3801 	 * If this is a TX_WRITE with a blkptr, suck in the data.
3802 	 */
3803 	if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
3804 		error = zil_read_log_data(zilog, (lr_write_t *)lr,
3805 		    zr->zr_lr + reclen);
3806 		if (error != 0)
3807 			return (zil_replay_error(zilog, lr, error));
3808 	}
3809 
3810 	/*
3811 	 * The log block containing this lr may have been byteswapped
3812 	 * so that we can easily examine common fields like lrc_txtype.
3813 	 * However, the log is a mix of different record types, and only the
3814 	 * replay vectors know how to byteswap their records.  Therefore, if
3815 	 * the lr was byteswapped, undo it before invoking the replay vector.
3816 	 */
3817 	if (zr->zr_byteswap)
3818 		byteswap_uint64_array(zr->zr_lr, reclen);
3819 
3820 	/*
3821 	 * We must now do two things atomically: replay this log record,
3822 	 * and update the log header sequence number to reflect the fact that
3823 	 * we did so. At the end of each replay function the sequence number
3824 	 * is updated if we are in replay mode.
3825 	 */
3826 	error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
3827 	if (error != 0) {
3828 		/*
3829 		 * The DMU's dnode layer doesn't see removes until the txg
3830 		 * commits, so a subsequent claim can spuriously fail with
3831 		 * EEXIST. So if we receive any error we try syncing out
3832 		 * any removes then retry the transaction.  Note that we
3833 		 * specify B_FALSE for byteswap now, so we don't do it twice.
3834 		 */
3835 		txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
3836 		error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
3837 		if (error != 0)
3838 			return (zil_replay_error(zilog, lr, error));
3839 	}
3840 	return (0);
3841 }
3842 
3843 static int
3844 zil_incr_blks(zilog_t *zilog, const blkptr_t *bp, void *arg, uint64_t claim_txg)
3845 {
3846 	(void) bp, (void) arg, (void) claim_txg;
3847 
3848 	zilog->zl_replay_blks++;
3849 
3850 	return (0);
3851 }
3852 
3853 /*
3854  * If this dataset has a non-empty intent log, replay it and destroy it.
3855  * Return B_TRUE if there were any entries to replay.
3856  */
3857 boolean_t
3858 zil_replay(objset_t *os, void *arg,
3859     zil_replay_func_t *const replay_func[TX_MAX_TYPE])
3860 {
3861 	zilog_t *zilog = dmu_objset_zil(os);
3862 	const zil_header_t *zh = zilog->zl_header;
3863 	zil_replay_arg_t zr;
3864 
3865 	if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
3866 		return (zil_destroy(zilog, B_TRUE));
3867 	}
3868 
3869 	zr.zr_replay = replay_func;
3870 	zr.zr_arg = arg;
3871 	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
3872 	zr.zr_lr = vmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
3873 
3874 	/*
3875 	 * Wait for in-progress removes to sync before starting replay.
3876 	 */
3877 	txg_wait_synced(zilog->zl_dmu_pool, 0);
3878 
3879 	zilog->zl_replay = B_TRUE;
3880 	zilog->zl_replay_time = ddi_get_lbolt();
3881 	ASSERT(zilog->zl_replay_blks == 0);
3882 	(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
3883 	    zh->zh_claim_txg, B_TRUE);
3884 	vmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
3885 
3886 	zil_destroy(zilog, B_FALSE);
3887 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
3888 	zilog->zl_replay = B_FALSE;
3889 
3890 	return (B_TRUE);
3891 }
3892 
3893 boolean_t
3894 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
3895 {
3896 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3897 		return (B_TRUE);
3898 
3899 	if (zilog->zl_replay) {
3900 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
3901 		zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
3902 		    zilog->zl_replaying_seq;
3903 		return (B_TRUE);
3904 	}
3905 
3906 	return (B_FALSE);
3907 }
3908 
3909 int
3910 zil_reset(const char *osname, void *arg)
3911 {
3912 	(void) arg;
3913 
3914 	int error = zil_suspend(osname, NULL);
3915 	/* EACCES means crypto key not loaded */
3916 	if ((error == EACCES) || (error == EBUSY))
3917 		return (SET_ERROR(error));
3918 	if (error != 0)
3919 		return (SET_ERROR(EEXIST));
3920 	return (0);
3921 }
3922 
3923 EXPORT_SYMBOL(zil_alloc);
3924 EXPORT_SYMBOL(zil_free);
3925 EXPORT_SYMBOL(zil_open);
3926 EXPORT_SYMBOL(zil_close);
3927 EXPORT_SYMBOL(zil_replay);
3928 EXPORT_SYMBOL(zil_replaying);
3929 EXPORT_SYMBOL(zil_destroy);
3930 EXPORT_SYMBOL(zil_destroy_sync);
3931 EXPORT_SYMBOL(zil_itx_create);
3932 EXPORT_SYMBOL(zil_itx_destroy);
3933 EXPORT_SYMBOL(zil_itx_assign);
3934 EXPORT_SYMBOL(zil_commit);
3935 EXPORT_SYMBOL(zil_claim);
3936 EXPORT_SYMBOL(zil_check_log_chain);
3937 EXPORT_SYMBOL(zil_sync);
3938 EXPORT_SYMBOL(zil_clean);
3939 EXPORT_SYMBOL(zil_suspend);
3940 EXPORT_SYMBOL(zil_resume);
3941 EXPORT_SYMBOL(zil_lwb_add_block);
3942 EXPORT_SYMBOL(zil_bp_tree_add);
3943 EXPORT_SYMBOL(zil_set_sync);
3944 EXPORT_SYMBOL(zil_set_logbias);
3945 EXPORT_SYMBOL(zil_sums_init);
3946 EXPORT_SYMBOL(zil_sums_fini);
3947 EXPORT_SYMBOL(zil_kstat_values_update);
3948 
3949 ZFS_MODULE_PARAM(zfs, zfs_, commit_timeout_pct, UINT, ZMOD_RW,
3950 	"ZIL block open timeout percentage");
3951 
3952 ZFS_MODULE_PARAM(zfs_zil, zil_, replay_disable, INT, ZMOD_RW,
3953 	"Disable intent logging replay");
3954 
3955 ZFS_MODULE_PARAM(zfs_zil, zil_, nocacheflush, INT, ZMOD_RW,
3956 	"Disable ZIL cache flushes");
3957 
3958 ZFS_MODULE_PARAM(zfs_zil, zil_, slog_bulk, U64, ZMOD_RW,
3959 	"Limit in bytes slog sync writes per commit");
3960 
3961 ZFS_MODULE_PARAM(zfs_zil, zil_, maxblocksize, UINT, ZMOD_RW,
3962 	"Limit in bytes of ZIL log block size");
3963