1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 24 * Copyright (c) 2014 Integros [integros.com] 25 * Copyright (c) 2018 Datto Inc. 26 */ 27 28 /* Portions Copyright 2010 Robert Milkowski */ 29 30 #include <sys/zfs_context.h> 31 #include <sys/spa.h> 32 #include <sys/spa_impl.h> 33 #include <sys/dmu.h> 34 #include <sys/zap.h> 35 #include <sys/arc.h> 36 #include <sys/stat.h> 37 #include <sys/zil.h> 38 #include <sys/zil_impl.h> 39 #include <sys/dsl_dataset.h> 40 #include <sys/vdev_impl.h> 41 #include <sys/dmu_tx.h> 42 #include <sys/dsl_pool.h> 43 #include <sys/metaslab.h> 44 #include <sys/trace_zfs.h> 45 #include <sys/abd.h> 46 #include <sys/wmsum.h> 47 48 /* 49 * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system 50 * calls that change the file system. Each itx has enough information to 51 * be able to replay them after a system crash, power loss, or 52 * equivalent failure mode. These are stored in memory until either: 53 * 54 * 1. they are committed to the pool by the DMU transaction group 55 * (txg), at which point they can be discarded; or 56 * 2. they are committed to the on-disk ZIL for the dataset being 57 * modified (e.g. due to an fsync, O_DSYNC, or other synchronous 58 * requirement). 59 * 60 * In the event of a crash or power loss, the itxs contained by each 61 * dataset's on-disk ZIL will be replayed when that dataset is first 62 * instantiated (e.g. if the dataset is a normal filesystem, when it is 63 * first mounted). 64 * 65 * As hinted at above, there is one ZIL per dataset (both the in-memory 66 * representation, and the on-disk representation). The on-disk format 67 * consists of 3 parts: 68 * 69 * - a single, per-dataset, ZIL header; which points to a chain of 70 * - zero or more ZIL blocks; each of which contains 71 * - zero or more ZIL records 72 * 73 * A ZIL record holds the information necessary to replay a single 74 * system call transaction. A ZIL block can hold many ZIL records, and 75 * the blocks are chained together, similarly to a singly linked list. 76 * 77 * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL 78 * block in the chain, and the ZIL header points to the first block in 79 * the chain. 80 * 81 * Note, there is not a fixed place in the pool to hold these ZIL 82 * blocks; they are dynamically allocated and freed as needed from the 83 * blocks available on the pool, though they can be preferentially 84 * allocated from a dedicated "log" vdev. 85 */ 86 87 /* 88 * This controls the amount of time that a ZIL block (lwb) will remain 89 * "open" when it isn't "full", and it has a thread waiting for it to be 90 * committed to stable storage. Please refer to the zil_commit_waiter() 91 * function (and the comments within it) for more details. 92 */ 93 static uint_t zfs_commit_timeout_pct = 5; 94 95 /* 96 * See zil.h for more information about these fields. 97 */ 98 static zil_kstat_values_t zil_stats = { 99 { "zil_commit_count", KSTAT_DATA_UINT64 }, 100 { "zil_commit_writer_count", KSTAT_DATA_UINT64 }, 101 { "zil_itx_count", KSTAT_DATA_UINT64 }, 102 { "zil_itx_indirect_count", KSTAT_DATA_UINT64 }, 103 { "zil_itx_indirect_bytes", KSTAT_DATA_UINT64 }, 104 { "zil_itx_copied_count", KSTAT_DATA_UINT64 }, 105 { "zil_itx_copied_bytes", KSTAT_DATA_UINT64 }, 106 { "zil_itx_needcopy_count", KSTAT_DATA_UINT64 }, 107 { "zil_itx_needcopy_bytes", KSTAT_DATA_UINT64 }, 108 { "zil_itx_metaslab_normal_count", KSTAT_DATA_UINT64 }, 109 { "zil_itx_metaslab_normal_bytes", KSTAT_DATA_UINT64 }, 110 { "zil_itx_metaslab_slog_count", KSTAT_DATA_UINT64 }, 111 { "zil_itx_metaslab_slog_bytes", KSTAT_DATA_UINT64 }, 112 }; 113 114 static zil_sums_t zil_sums_global; 115 static kstat_t *zil_kstats_global; 116 117 /* 118 * Disable intent logging replay. This global ZIL switch affects all pools. 119 */ 120 int zil_replay_disable = 0; 121 122 /* 123 * Disable the DKIOCFLUSHWRITECACHE commands that are normally sent to 124 * the disk(s) by the ZIL after an LWB write has completed. Setting this 125 * will cause ZIL corruption on power loss if a volatile out-of-order 126 * write cache is enabled. 127 */ 128 static int zil_nocacheflush = 0; 129 130 /* 131 * Limit SLOG write size per commit executed with synchronous priority. 132 * Any writes above that will be executed with lower (asynchronous) priority 133 * to limit potential SLOG device abuse by single active ZIL writer. 134 */ 135 static uint64_t zil_slog_bulk = 768 * 1024; 136 137 static kmem_cache_t *zil_lwb_cache; 138 static kmem_cache_t *zil_zcw_cache; 139 140 #define LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \ 141 sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused)) 142 143 static int 144 zil_bp_compare(const void *x1, const void *x2) 145 { 146 const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva; 147 const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva; 148 149 int cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2)); 150 if (likely(cmp)) 151 return (cmp); 152 153 return (TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2))); 154 } 155 156 static void 157 zil_bp_tree_init(zilog_t *zilog) 158 { 159 avl_create(&zilog->zl_bp_tree, zil_bp_compare, 160 sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node)); 161 } 162 163 static void 164 zil_bp_tree_fini(zilog_t *zilog) 165 { 166 avl_tree_t *t = &zilog->zl_bp_tree; 167 zil_bp_node_t *zn; 168 void *cookie = NULL; 169 170 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL) 171 kmem_free(zn, sizeof (zil_bp_node_t)); 172 173 avl_destroy(t); 174 } 175 176 int 177 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp) 178 { 179 avl_tree_t *t = &zilog->zl_bp_tree; 180 const dva_t *dva; 181 zil_bp_node_t *zn; 182 avl_index_t where; 183 184 if (BP_IS_EMBEDDED(bp)) 185 return (0); 186 187 dva = BP_IDENTITY(bp); 188 189 if (avl_find(t, dva, &where) != NULL) 190 return (SET_ERROR(EEXIST)); 191 192 zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP); 193 zn->zn_dva = *dva; 194 avl_insert(t, zn, where); 195 196 return (0); 197 } 198 199 static zil_header_t * 200 zil_header_in_syncing_context(zilog_t *zilog) 201 { 202 return ((zil_header_t *)zilog->zl_header); 203 } 204 205 static void 206 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp) 207 { 208 zio_cksum_t *zc = &bp->blk_cksum; 209 210 (void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_0], 211 sizeof (zc->zc_word[ZIL_ZC_GUID_0])); 212 (void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_1], 213 sizeof (zc->zc_word[ZIL_ZC_GUID_1])); 214 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os); 215 zc->zc_word[ZIL_ZC_SEQ] = 1ULL; 216 } 217 218 static int 219 zil_kstats_global_update(kstat_t *ksp, int rw) 220 { 221 zil_kstat_values_t *zs = ksp->ks_data; 222 ASSERT3P(&zil_stats, ==, zs); 223 224 if (rw == KSTAT_WRITE) { 225 return (SET_ERROR(EACCES)); 226 } 227 228 zil_kstat_values_update(zs, &zil_sums_global); 229 230 return (0); 231 } 232 233 /* 234 * Read a log block and make sure it's valid. 235 */ 236 static int 237 zil_read_log_block(zilog_t *zilog, boolean_t decrypt, const blkptr_t *bp, 238 blkptr_t *nbp, void *dst, char **end) 239 { 240 zio_flag_t zio_flags = ZIO_FLAG_CANFAIL; 241 arc_flags_t aflags = ARC_FLAG_WAIT; 242 arc_buf_t *abuf = NULL; 243 zbookmark_phys_t zb; 244 int error; 245 246 if (zilog->zl_header->zh_claim_txg == 0) 247 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; 248 249 if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) 250 zio_flags |= ZIO_FLAG_SPECULATIVE; 251 252 if (!decrypt) 253 zio_flags |= ZIO_FLAG_RAW; 254 255 SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET], 256 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); 257 258 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, 259 &abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); 260 261 if (error == 0) { 262 zio_cksum_t cksum = bp->blk_cksum; 263 264 /* 265 * Validate the checksummed log block. 266 * 267 * Sequence numbers should be... sequential. The checksum 268 * verifier for the next block should be bp's checksum plus 1. 269 * 270 * Also check the log chain linkage and size used. 271 */ 272 cksum.zc_word[ZIL_ZC_SEQ]++; 273 274 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { 275 zil_chain_t *zilc = abuf->b_data; 276 char *lr = (char *)(zilc + 1); 277 uint64_t len = zilc->zc_nused - sizeof (zil_chain_t); 278 279 if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum, 280 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) { 281 error = SET_ERROR(ECKSUM); 282 } else { 283 ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE); 284 memcpy(dst, lr, len); 285 *end = (char *)dst + len; 286 *nbp = zilc->zc_next_blk; 287 } 288 } else { 289 char *lr = abuf->b_data; 290 uint64_t size = BP_GET_LSIZE(bp); 291 zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1; 292 293 if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum, 294 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) || 295 (zilc->zc_nused > (size - sizeof (*zilc)))) { 296 error = SET_ERROR(ECKSUM); 297 } else { 298 ASSERT3U(zilc->zc_nused, <=, 299 SPA_OLD_MAXBLOCKSIZE); 300 memcpy(dst, lr, zilc->zc_nused); 301 *end = (char *)dst + zilc->zc_nused; 302 *nbp = zilc->zc_next_blk; 303 } 304 } 305 306 arc_buf_destroy(abuf, &abuf); 307 } 308 309 return (error); 310 } 311 312 /* 313 * Read a TX_WRITE log data block. 314 */ 315 static int 316 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf) 317 { 318 zio_flag_t zio_flags = ZIO_FLAG_CANFAIL; 319 const blkptr_t *bp = &lr->lr_blkptr; 320 arc_flags_t aflags = ARC_FLAG_WAIT; 321 arc_buf_t *abuf = NULL; 322 zbookmark_phys_t zb; 323 int error; 324 325 if (BP_IS_HOLE(bp)) { 326 if (wbuf != NULL) 327 memset(wbuf, 0, MAX(BP_GET_LSIZE(bp), lr->lr_length)); 328 return (0); 329 } 330 331 if (zilog->zl_header->zh_claim_txg == 0) 332 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; 333 334 /* 335 * If we are not using the resulting data, we are just checking that 336 * it hasn't been corrupted so we don't need to waste CPU time 337 * decompressing and decrypting it. 338 */ 339 if (wbuf == NULL) 340 zio_flags |= ZIO_FLAG_RAW; 341 342 ASSERT3U(BP_GET_LSIZE(bp), !=, 0); 343 SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid, 344 ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp)); 345 346 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf, 347 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); 348 349 if (error == 0) { 350 if (wbuf != NULL) 351 memcpy(wbuf, abuf->b_data, arc_buf_size(abuf)); 352 arc_buf_destroy(abuf, &abuf); 353 } 354 355 return (error); 356 } 357 358 void 359 zil_sums_init(zil_sums_t *zs) 360 { 361 wmsum_init(&zs->zil_commit_count, 0); 362 wmsum_init(&zs->zil_commit_writer_count, 0); 363 wmsum_init(&zs->zil_itx_count, 0); 364 wmsum_init(&zs->zil_itx_indirect_count, 0); 365 wmsum_init(&zs->zil_itx_indirect_bytes, 0); 366 wmsum_init(&zs->zil_itx_copied_count, 0); 367 wmsum_init(&zs->zil_itx_copied_bytes, 0); 368 wmsum_init(&zs->zil_itx_needcopy_count, 0); 369 wmsum_init(&zs->zil_itx_needcopy_bytes, 0); 370 wmsum_init(&zs->zil_itx_metaslab_normal_count, 0); 371 wmsum_init(&zs->zil_itx_metaslab_normal_bytes, 0); 372 wmsum_init(&zs->zil_itx_metaslab_slog_count, 0); 373 wmsum_init(&zs->zil_itx_metaslab_slog_bytes, 0); 374 } 375 376 void 377 zil_sums_fini(zil_sums_t *zs) 378 { 379 wmsum_fini(&zs->zil_commit_count); 380 wmsum_fini(&zs->zil_commit_writer_count); 381 wmsum_fini(&zs->zil_itx_count); 382 wmsum_fini(&zs->zil_itx_indirect_count); 383 wmsum_fini(&zs->zil_itx_indirect_bytes); 384 wmsum_fini(&zs->zil_itx_copied_count); 385 wmsum_fini(&zs->zil_itx_copied_bytes); 386 wmsum_fini(&zs->zil_itx_needcopy_count); 387 wmsum_fini(&zs->zil_itx_needcopy_bytes); 388 wmsum_fini(&zs->zil_itx_metaslab_normal_count); 389 wmsum_fini(&zs->zil_itx_metaslab_normal_bytes); 390 wmsum_fini(&zs->zil_itx_metaslab_slog_count); 391 wmsum_fini(&zs->zil_itx_metaslab_slog_bytes); 392 } 393 394 void 395 zil_kstat_values_update(zil_kstat_values_t *zs, zil_sums_t *zil_sums) 396 { 397 zs->zil_commit_count.value.ui64 = 398 wmsum_value(&zil_sums->zil_commit_count); 399 zs->zil_commit_writer_count.value.ui64 = 400 wmsum_value(&zil_sums->zil_commit_writer_count); 401 zs->zil_itx_count.value.ui64 = 402 wmsum_value(&zil_sums->zil_itx_count); 403 zs->zil_itx_indirect_count.value.ui64 = 404 wmsum_value(&zil_sums->zil_itx_indirect_count); 405 zs->zil_itx_indirect_bytes.value.ui64 = 406 wmsum_value(&zil_sums->zil_itx_indirect_bytes); 407 zs->zil_itx_copied_count.value.ui64 = 408 wmsum_value(&zil_sums->zil_itx_copied_count); 409 zs->zil_itx_copied_bytes.value.ui64 = 410 wmsum_value(&zil_sums->zil_itx_copied_bytes); 411 zs->zil_itx_needcopy_count.value.ui64 = 412 wmsum_value(&zil_sums->zil_itx_needcopy_count); 413 zs->zil_itx_needcopy_bytes.value.ui64 = 414 wmsum_value(&zil_sums->zil_itx_needcopy_bytes); 415 zs->zil_itx_metaslab_normal_count.value.ui64 = 416 wmsum_value(&zil_sums->zil_itx_metaslab_normal_count); 417 zs->zil_itx_metaslab_normal_bytes.value.ui64 = 418 wmsum_value(&zil_sums->zil_itx_metaslab_normal_bytes); 419 zs->zil_itx_metaslab_slog_count.value.ui64 = 420 wmsum_value(&zil_sums->zil_itx_metaslab_slog_count); 421 zs->zil_itx_metaslab_slog_bytes.value.ui64 = 422 wmsum_value(&zil_sums->zil_itx_metaslab_slog_bytes); 423 } 424 425 /* 426 * Parse the intent log, and call parse_func for each valid record within. 427 */ 428 int 429 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func, 430 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg, 431 boolean_t decrypt) 432 { 433 const zil_header_t *zh = zilog->zl_header; 434 boolean_t claimed = !!zh->zh_claim_txg; 435 uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX; 436 uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX; 437 uint64_t max_blk_seq = 0; 438 uint64_t max_lr_seq = 0; 439 uint64_t blk_count = 0; 440 uint64_t lr_count = 0; 441 blkptr_t blk, next_blk = {{{{0}}}}; 442 char *lrbuf, *lrp; 443 int error = 0; 444 445 /* 446 * Old logs didn't record the maximum zh_claim_lr_seq. 447 */ 448 if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) 449 claim_lr_seq = UINT64_MAX; 450 451 /* 452 * Starting at the block pointed to by zh_log we read the log chain. 453 * For each block in the chain we strongly check that block to 454 * ensure its validity. We stop when an invalid block is found. 455 * For each block pointer in the chain we call parse_blk_func(). 456 * For each record in each valid block we call parse_lr_func(). 457 * If the log has been claimed, stop if we encounter a sequence 458 * number greater than the highest claimed sequence number. 459 */ 460 lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE); 461 zil_bp_tree_init(zilog); 462 463 for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) { 464 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; 465 int reclen; 466 char *end = NULL; 467 468 if (blk_seq > claim_blk_seq) 469 break; 470 471 error = parse_blk_func(zilog, &blk, arg, txg); 472 if (error != 0) 473 break; 474 ASSERT3U(max_blk_seq, <, blk_seq); 475 max_blk_seq = blk_seq; 476 blk_count++; 477 478 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq) 479 break; 480 481 error = zil_read_log_block(zilog, decrypt, &blk, &next_blk, 482 lrbuf, &end); 483 if (error != 0) { 484 if (claimed) { 485 char name[ZFS_MAX_DATASET_NAME_LEN]; 486 487 dmu_objset_name(zilog->zl_os, name); 488 489 cmn_err(CE_WARN, "ZFS read log block error %d, " 490 "dataset %s, seq 0x%llx\n", error, name, 491 (u_longlong_t)blk_seq); 492 } 493 break; 494 } 495 496 for (lrp = lrbuf; lrp < end; lrp += reclen) { 497 lr_t *lr = (lr_t *)lrp; 498 reclen = lr->lrc_reclen; 499 ASSERT3U(reclen, >=, sizeof (lr_t)); 500 if (lr->lrc_seq > claim_lr_seq) 501 goto done; 502 503 error = parse_lr_func(zilog, lr, arg, txg); 504 if (error != 0) 505 goto done; 506 ASSERT3U(max_lr_seq, <, lr->lrc_seq); 507 max_lr_seq = lr->lrc_seq; 508 lr_count++; 509 } 510 } 511 done: 512 zilog->zl_parse_error = error; 513 zilog->zl_parse_blk_seq = max_blk_seq; 514 zilog->zl_parse_lr_seq = max_lr_seq; 515 zilog->zl_parse_blk_count = blk_count; 516 zilog->zl_parse_lr_count = lr_count; 517 518 zil_bp_tree_fini(zilog); 519 zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE); 520 521 return (error); 522 } 523 524 static int 525 zil_clear_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx, 526 uint64_t first_txg) 527 { 528 (void) tx; 529 ASSERT(!BP_IS_HOLE(bp)); 530 531 /* 532 * As we call this function from the context of a rewind to a 533 * checkpoint, each ZIL block whose txg is later than the txg 534 * that we rewind to is invalid. Thus, we return -1 so 535 * zil_parse() doesn't attempt to read it. 536 */ 537 if (bp->blk_birth >= first_txg) 538 return (-1); 539 540 if (zil_bp_tree_add(zilog, bp) != 0) 541 return (0); 542 543 zio_free(zilog->zl_spa, first_txg, bp); 544 return (0); 545 } 546 547 static int 548 zil_noop_log_record(zilog_t *zilog, const lr_t *lrc, void *tx, 549 uint64_t first_txg) 550 { 551 (void) zilog, (void) lrc, (void) tx, (void) first_txg; 552 return (0); 553 } 554 555 static int 556 zil_claim_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx, 557 uint64_t first_txg) 558 { 559 /* 560 * Claim log block if not already committed and not already claimed. 561 * If tx == NULL, just verify that the block is claimable. 562 */ 563 if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg || 564 zil_bp_tree_add(zilog, bp) != 0) 565 return (0); 566 567 return (zio_wait(zio_claim(NULL, zilog->zl_spa, 568 tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL, 569 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB))); 570 } 571 572 static int 573 zil_claim_log_record(zilog_t *zilog, const lr_t *lrc, void *tx, 574 uint64_t first_txg) 575 { 576 lr_write_t *lr = (lr_write_t *)lrc; 577 int error; 578 579 if (lrc->lrc_txtype != TX_WRITE) 580 return (0); 581 582 /* 583 * If the block is not readable, don't claim it. This can happen 584 * in normal operation when a log block is written to disk before 585 * some of the dmu_sync() blocks it points to. In this case, the 586 * transaction cannot have been committed to anyone (we would have 587 * waited for all writes to be stable first), so it is semantically 588 * correct to declare this the end of the log. 589 */ 590 if (lr->lr_blkptr.blk_birth >= first_txg) { 591 error = zil_read_log_data(zilog, lr, NULL); 592 if (error != 0) 593 return (error); 594 } 595 596 return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg)); 597 } 598 599 static int 600 zil_free_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx, 601 uint64_t claim_txg) 602 { 603 (void) claim_txg; 604 605 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp); 606 607 return (0); 608 } 609 610 static int 611 zil_free_log_record(zilog_t *zilog, const lr_t *lrc, void *tx, 612 uint64_t claim_txg) 613 { 614 lr_write_t *lr = (lr_write_t *)lrc; 615 blkptr_t *bp = &lr->lr_blkptr; 616 617 /* 618 * If we previously claimed it, we need to free it. 619 */ 620 if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE && 621 bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 && 622 !BP_IS_HOLE(bp)) 623 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp); 624 625 return (0); 626 } 627 628 static int 629 zil_lwb_vdev_compare(const void *x1, const void *x2) 630 { 631 const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev; 632 const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev; 633 634 return (TREE_CMP(v1, v2)); 635 } 636 637 static lwb_t * 638 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg, 639 boolean_t fastwrite) 640 { 641 lwb_t *lwb; 642 643 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); 644 lwb->lwb_zilog = zilog; 645 lwb->lwb_blk = *bp; 646 lwb->lwb_fastwrite = fastwrite; 647 lwb->lwb_slog = slog; 648 lwb->lwb_state = LWB_STATE_CLOSED; 649 lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp)); 650 lwb->lwb_max_txg = txg; 651 lwb->lwb_write_zio = NULL; 652 lwb->lwb_root_zio = NULL; 653 lwb->lwb_issued_timestamp = 0; 654 lwb->lwb_issued_txg = 0; 655 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { 656 lwb->lwb_nused = sizeof (zil_chain_t); 657 lwb->lwb_sz = BP_GET_LSIZE(bp); 658 } else { 659 lwb->lwb_nused = 0; 660 lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t); 661 } 662 663 mutex_enter(&zilog->zl_lock); 664 list_insert_tail(&zilog->zl_lwb_list, lwb); 665 mutex_exit(&zilog->zl_lock); 666 667 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock)); 668 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree)); 669 VERIFY(list_is_empty(&lwb->lwb_waiters)); 670 VERIFY(list_is_empty(&lwb->lwb_itxs)); 671 672 return (lwb); 673 } 674 675 static void 676 zil_free_lwb(zilog_t *zilog, lwb_t *lwb) 677 { 678 ASSERT(MUTEX_HELD(&zilog->zl_lock)); 679 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock)); 680 VERIFY(list_is_empty(&lwb->lwb_waiters)); 681 VERIFY(list_is_empty(&lwb->lwb_itxs)); 682 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree)); 683 ASSERT3P(lwb->lwb_write_zio, ==, NULL); 684 ASSERT3P(lwb->lwb_root_zio, ==, NULL); 685 ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa)); 686 ASSERT(lwb->lwb_state == LWB_STATE_CLOSED || 687 lwb->lwb_state == LWB_STATE_FLUSH_DONE); 688 689 /* 690 * Clear the zilog's field to indicate this lwb is no longer 691 * valid, and prevent use-after-free errors. 692 */ 693 if (zilog->zl_last_lwb_opened == lwb) 694 zilog->zl_last_lwb_opened = NULL; 695 696 kmem_cache_free(zil_lwb_cache, lwb); 697 } 698 699 /* 700 * Called when we create in-memory log transactions so that we know 701 * to cleanup the itxs at the end of spa_sync(). 702 */ 703 static void 704 zilog_dirty(zilog_t *zilog, uint64_t txg) 705 { 706 dsl_pool_t *dp = zilog->zl_dmu_pool; 707 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 708 709 ASSERT(spa_writeable(zilog->zl_spa)); 710 711 if (ds->ds_is_snapshot) 712 panic("dirtying snapshot!"); 713 714 if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) { 715 /* up the hold count until we can be written out */ 716 dmu_buf_add_ref(ds->ds_dbuf, zilog); 717 718 zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg); 719 } 720 } 721 722 /* 723 * Determine if the zil is dirty in the specified txg. Callers wanting to 724 * ensure that the dirty state does not change must hold the itxg_lock for 725 * the specified txg. Holding the lock will ensure that the zil cannot be 726 * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current 727 * state. 728 */ 729 static boolean_t __maybe_unused 730 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg) 731 { 732 dsl_pool_t *dp = zilog->zl_dmu_pool; 733 734 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK)) 735 return (B_TRUE); 736 return (B_FALSE); 737 } 738 739 /* 740 * Determine if the zil is dirty. The zil is considered dirty if it has 741 * any pending itx records that have not been cleaned by zil_clean(). 742 */ 743 static boolean_t 744 zilog_is_dirty(zilog_t *zilog) 745 { 746 dsl_pool_t *dp = zilog->zl_dmu_pool; 747 748 for (int t = 0; t < TXG_SIZE; t++) { 749 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t)) 750 return (B_TRUE); 751 } 752 return (B_FALSE); 753 } 754 755 /* 756 * Its called in zil_commit context (zil_process_commit_list()/zil_create()). 757 * It activates SPA_FEATURE_ZILSAXATTR feature, if its enabled. 758 * Check dsl_dataset_feature_is_active to avoid txg_wait_synced() on every 759 * zil_commit. 760 */ 761 static void 762 zil_commit_activate_saxattr_feature(zilog_t *zilog) 763 { 764 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 765 uint64_t txg = 0; 766 dmu_tx_t *tx = NULL; 767 768 if (spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) && 769 dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL && 770 !dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR)) { 771 tx = dmu_tx_create(zilog->zl_os); 772 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 773 dsl_dataset_dirty(ds, tx); 774 txg = dmu_tx_get_txg(tx); 775 776 mutex_enter(&ds->ds_lock); 777 ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] = 778 (void *)B_TRUE; 779 mutex_exit(&ds->ds_lock); 780 dmu_tx_commit(tx); 781 txg_wait_synced(zilog->zl_dmu_pool, txg); 782 } 783 } 784 785 /* 786 * Create an on-disk intent log. 787 */ 788 static lwb_t * 789 zil_create(zilog_t *zilog) 790 { 791 const zil_header_t *zh = zilog->zl_header; 792 lwb_t *lwb = NULL; 793 uint64_t txg = 0; 794 dmu_tx_t *tx = NULL; 795 blkptr_t blk; 796 int error = 0; 797 boolean_t fastwrite = FALSE; 798 boolean_t slog = FALSE; 799 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 800 801 802 /* 803 * Wait for any previous destroy to complete. 804 */ 805 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 806 807 ASSERT(zh->zh_claim_txg == 0); 808 ASSERT(zh->zh_replay_seq == 0); 809 810 blk = zh->zh_log; 811 812 /* 813 * Allocate an initial log block if: 814 * - there isn't one already 815 * - the existing block is the wrong endianness 816 */ 817 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) { 818 tx = dmu_tx_create(zilog->zl_os); 819 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 820 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 821 txg = dmu_tx_get_txg(tx); 822 823 if (!BP_IS_HOLE(&blk)) { 824 zio_free(zilog->zl_spa, txg, &blk); 825 BP_ZERO(&blk); 826 } 827 828 error = zio_alloc_zil(zilog->zl_spa, zilog->zl_os, txg, &blk, 829 ZIL_MIN_BLKSZ, &slog); 830 fastwrite = TRUE; 831 832 if (error == 0) 833 zil_init_log_chain(zilog, &blk); 834 } 835 836 /* 837 * Allocate a log write block (lwb) for the first log block. 838 */ 839 if (error == 0) 840 lwb = zil_alloc_lwb(zilog, &blk, slog, txg, fastwrite); 841 842 /* 843 * If we just allocated the first log block, commit our transaction 844 * and wait for zil_sync() to stuff the block pointer into zh_log. 845 * (zh is part of the MOS, so we cannot modify it in open context.) 846 */ 847 if (tx != NULL) { 848 /* 849 * If "zilsaxattr" feature is enabled on zpool, then activate 850 * it now when we're creating the ZIL chain. We can't wait with 851 * this until we write the first xattr log record because we 852 * need to wait for the feature activation to sync out. 853 */ 854 if (spa_feature_is_enabled(zilog->zl_spa, 855 SPA_FEATURE_ZILSAXATTR) && dmu_objset_type(zilog->zl_os) != 856 DMU_OST_ZVOL) { 857 mutex_enter(&ds->ds_lock); 858 ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] = 859 (void *)B_TRUE; 860 mutex_exit(&ds->ds_lock); 861 } 862 863 dmu_tx_commit(tx); 864 txg_wait_synced(zilog->zl_dmu_pool, txg); 865 } else { 866 /* 867 * This branch covers the case where we enable the feature on a 868 * zpool that has existing ZIL headers. 869 */ 870 zil_commit_activate_saxattr_feature(zilog); 871 } 872 IMPLY(spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) && 873 dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL, 874 dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR)); 875 876 ASSERT(error != 0 || memcmp(&blk, &zh->zh_log, sizeof (blk)) == 0); 877 IMPLY(error == 0, lwb != NULL); 878 879 return (lwb); 880 } 881 882 /* 883 * In one tx, free all log blocks and clear the log header. If keep_first 884 * is set, then we're replaying a log with no content. We want to keep the 885 * first block, however, so that the first synchronous transaction doesn't 886 * require a txg_wait_synced() in zil_create(). We don't need to 887 * txg_wait_synced() here either when keep_first is set, because both 888 * zil_create() and zil_destroy() will wait for any in-progress destroys 889 * to complete. 890 * Return B_TRUE if there were any entries to replay. 891 */ 892 boolean_t 893 zil_destroy(zilog_t *zilog, boolean_t keep_first) 894 { 895 const zil_header_t *zh = zilog->zl_header; 896 lwb_t *lwb; 897 dmu_tx_t *tx; 898 uint64_t txg; 899 900 /* 901 * Wait for any previous destroy to complete. 902 */ 903 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 904 905 zilog->zl_old_header = *zh; /* debugging aid */ 906 907 if (BP_IS_HOLE(&zh->zh_log)) 908 return (B_FALSE); 909 910 tx = dmu_tx_create(zilog->zl_os); 911 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 912 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 913 txg = dmu_tx_get_txg(tx); 914 915 mutex_enter(&zilog->zl_lock); 916 917 ASSERT3U(zilog->zl_destroy_txg, <, txg); 918 zilog->zl_destroy_txg = txg; 919 zilog->zl_keep_first = keep_first; 920 921 if (!list_is_empty(&zilog->zl_lwb_list)) { 922 ASSERT(zh->zh_claim_txg == 0); 923 VERIFY(!keep_first); 924 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 925 if (lwb->lwb_fastwrite) 926 metaslab_fastwrite_unmark(zilog->zl_spa, 927 &lwb->lwb_blk); 928 929 list_remove(&zilog->zl_lwb_list, lwb); 930 if (lwb->lwb_buf != NULL) 931 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 932 zio_free(zilog->zl_spa, txg, &lwb->lwb_blk); 933 zil_free_lwb(zilog, lwb); 934 } 935 } else if (!keep_first) { 936 zil_destroy_sync(zilog, tx); 937 } 938 mutex_exit(&zilog->zl_lock); 939 940 dmu_tx_commit(tx); 941 942 return (B_TRUE); 943 } 944 945 void 946 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx) 947 { 948 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 949 (void) zil_parse(zilog, zil_free_log_block, 950 zil_free_log_record, tx, zilog->zl_header->zh_claim_txg, B_FALSE); 951 } 952 953 int 954 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg) 955 { 956 dmu_tx_t *tx = txarg; 957 zilog_t *zilog; 958 uint64_t first_txg; 959 zil_header_t *zh; 960 objset_t *os; 961 int error; 962 963 error = dmu_objset_own_obj(dp, ds->ds_object, 964 DMU_OST_ANY, B_FALSE, B_FALSE, FTAG, &os); 965 if (error != 0) { 966 /* 967 * EBUSY indicates that the objset is inconsistent, in which 968 * case it can not have a ZIL. 969 */ 970 if (error != EBUSY) { 971 cmn_err(CE_WARN, "can't open objset for %llu, error %u", 972 (unsigned long long)ds->ds_object, error); 973 } 974 975 return (0); 976 } 977 978 zilog = dmu_objset_zil(os); 979 zh = zil_header_in_syncing_context(zilog); 980 ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa)); 981 first_txg = spa_min_claim_txg(zilog->zl_spa); 982 983 /* 984 * If the spa_log_state is not set to be cleared, check whether 985 * the current uberblock is a checkpoint one and if the current 986 * header has been claimed before moving on. 987 * 988 * If the current uberblock is a checkpointed uberblock then 989 * one of the following scenarios took place: 990 * 991 * 1] We are currently rewinding to the checkpoint of the pool. 992 * 2] We crashed in the middle of a checkpoint rewind but we 993 * did manage to write the checkpointed uberblock to the 994 * vdev labels, so when we tried to import the pool again 995 * the checkpointed uberblock was selected from the import 996 * procedure. 997 * 998 * In both cases we want to zero out all the ZIL blocks, except 999 * the ones that have been claimed at the time of the checkpoint 1000 * (their zh_claim_txg != 0). The reason is that these blocks 1001 * may be corrupted since we may have reused their locations on 1002 * disk after we took the checkpoint. 1003 * 1004 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier 1005 * when we first figure out whether the current uberblock is 1006 * checkpointed or not. Unfortunately, that would discard all 1007 * the logs, including the ones that are claimed, and we would 1008 * leak space. 1009 */ 1010 if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR || 1011 (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 && 1012 zh->zh_claim_txg == 0)) { 1013 if (!BP_IS_HOLE(&zh->zh_log)) { 1014 (void) zil_parse(zilog, zil_clear_log_block, 1015 zil_noop_log_record, tx, first_txg, B_FALSE); 1016 } 1017 BP_ZERO(&zh->zh_log); 1018 if (os->os_encrypted) 1019 os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE; 1020 dsl_dataset_dirty(dmu_objset_ds(os), tx); 1021 dmu_objset_disown(os, B_FALSE, FTAG); 1022 return (0); 1023 } 1024 1025 /* 1026 * If we are not rewinding and opening the pool normally, then 1027 * the min_claim_txg should be equal to the first txg of the pool. 1028 */ 1029 ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa)); 1030 1031 /* 1032 * Claim all log blocks if we haven't already done so, and remember 1033 * the highest claimed sequence number. This ensures that if we can 1034 * read only part of the log now (e.g. due to a missing device), 1035 * but we can read the entire log later, we will not try to replay 1036 * or destroy beyond the last block we successfully claimed. 1037 */ 1038 ASSERT3U(zh->zh_claim_txg, <=, first_txg); 1039 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) { 1040 (void) zil_parse(zilog, zil_claim_log_block, 1041 zil_claim_log_record, tx, first_txg, B_FALSE); 1042 zh->zh_claim_txg = first_txg; 1043 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq; 1044 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq; 1045 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1) 1046 zh->zh_flags |= ZIL_REPLAY_NEEDED; 1047 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID; 1048 if (os->os_encrypted) 1049 os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE; 1050 dsl_dataset_dirty(dmu_objset_ds(os), tx); 1051 } 1052 1053 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1)); 1054 dmu_objset_disown(os, B_FALSE, FTAG); 1055 return (0); 1056 } 1057 1058 /* 1059 * Check the log by walking the log chain. 1060 * Checksum errors are ok as they indicate the end of the chain. 1061 * Any other error (no device or read failure) returns an error. 1062 */ 1063 int 1064 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx) 1065 { 1066 (void) dp; 1067 zilog_t *zilog; 1068 objset_t *os; 1069 blkptr_t *bp; 1070 int error; 1071 1072 ASSERT(tx == NULL); 1073 1074 error = dmu_objset_from_ds(ds, &os); 1075 if (error != 0) { 1076 cmn_err(CE_WARN, "can't open objset %llu, error %d", 1077 (unsigned long long)ds->ds_object, error); 1078 return (0); 1079 } 1080 1081 zilog = dmu_objset_zil(os); 1082 bp = (blkptr_t *)&zilog->zl_header->zh_log; 1083 1084 if (!BP_IS_HOLE(bp)) { 1085 vdev_t *vd; 1086 boolean_t valid = B_TRUE; 1087 1088 /* 1089 * Check the first block and determine if it's on a log device 1090 * which may have been removed or faulted prior to loading this 1091 * pool. If so, there's no point in checking the rest of the 1092 * log as its content should have already been synced to the 1093 * pool. 1094 */ 1095 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER); 1096 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0])); 1097 if (vd->vdev_islog && vdev_is_dead(vd)) 1098 valid = vdev_log_state_valid(vd); 1099 spa_config_exit(os->os_spa, SCL_STATE, FTAG); 1100 1101 if (!valid) 1102 return (0); 1103 1104 /* 1105 * Check whether the current uberblock is checkpointed (e.g. 1106 * we are rewinding) and whether the current header has been 1107 * claimed or not. If it hasn't then skip verifying it. We 1108 * do this because its ZIL blocks may be part of the pool's 1109 * state before the rewind, which is no longer valid. 1110 */ 1111 zil_header_t *zh = zil_header_in_syncing_context(zilog); 1112 if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 && 1113 zh->zh_claim_txg == 0) 1114 return (0); 1115 } 1116 1117 /* 1118 * Because tx == NULL, zil_claim_log_block() will not actually claim 1119 * any blocks, but just determine whether it is possible to do so. 1120 * In addition to checking the log chain, zil_claim_log_block() 1121 * will invoke zio_claim() with a done func of spa_claim_notify(), 1122 * which will update spa_max_claim_txg. See spa_load() for details. 1123 */ 1124 error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx, 1125 zilog->zl_header->zh_claim_txg ? -1ULL : 1126 spa_min_claim_txg(os->os_spa), B_FALSE); 1127 1128 return ((error == ECKSUM || error == ENOENT) ? 0 : error); 1129 } 1130 1131 /* 1132 * When an itx is "skipped", this function is used to properly mark the 1133 * waiter as "done, and signal any thread(s) waiting on it. An itx can 1134 * be skipped (and not committed to an lwb) for a variety of reasons, 1135 * one of them being that the itx was committed via spa_sync(), prior to 1136 * it being committed to an lwb; this can happen if a thread calling 1137 * zil_commit() is racing with spa_sync(). 1138 */ 1139 static void 1140 zil_commit_waiter_skip(zil_commit_waiter_t *zcw) 1141 { 1142 mutex_enter(&zcw->zcw_lock); 1143 ASSERT3B(zcw->zcw_done, ==, B_FALSE); 1144 zcw->zcw_done = B_TRUE; 1145 cv_broadcast(&zcw->zcw_cv); 1146 mutex_exit(&zcw->zcw_lock); 1147 } 1148 1149 /* 1150 * This function is used when the given waiter is to be linked into an 1151 * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb. 1152 * At this point, the waiter will no longer be referenced by the itx, 1153 * and instead, will be referenced by the lwb. 1154 */ 1155 static void 1156 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb) 1157 { 1158 /* 1159 * The lwb_waiters field of the lwb is protected by the zilog's 1160 * zl_lock, thus it must be held when calling this function. 1161 */ 1162 ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_lock)); 1163 1164 mutex_enter(&zcw->zcw_lock); 1165 ASSERT(!list_link_active(&zcw->zcw_node)); 1166 ASSERT3P(zcw->zcw_lwb, ==, NULL); 1167 ASSERT3P(lwb, !=, NULL); 1168 ASSERT(lwb->lwb_state == LWB_STATE_OPENED || 1169 lwb->lwb_state == LWB_STATE_ISSUED || 1170 lwb->lwb_state == LWB_STATE_WRITE_DONE); 1171 1172 list_insert_tail(&lwb->lwb_waiters, zcw); 1173 zcw->zcw_lwb = lwb; 1174 mutex_exit(&zcw->zcw_lock); 1175 } 1176 1177 /* 1178 * This function is used when zio_alloc_zil() fails to allocate a ZIL 1179 * block, and the given waiter must be linked to the "nolwb waiters" 1180 * list inside of zil_process_commit_list(). 1181 */ 1182 static void 1183 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb) 1184 { 1185 mutex_enter(&zcw->zcw_lock); 1186 ASSERT(!list_link_active(&zcw->zcw_node)); 1187 ASSERT3P(zcw->zcw_lwb, ==, NULL); 1188 list_insert_tail(nolwb, zcw); 1189 mutex_exit(&zcw->zcw_lock); 1190 } 1191 1192 void 1193 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp) 1194 { 1195 avl_tree_t *t = &lwb->lwb_vdev_tree; 1196 avl_index_t where; 1197 zil_vdev_node_t *zv, zvsearch; 1198 int ndvas = BP_GET_NDVAS(bp); 1199 int i; 1200 1201 if (zil_nocacheflush) 1202 return; 1203 1204 mutex_enter(&lwb->lwb_vdev_lock); 1205 for (i = 0; i < ndvas; i++) { 1206 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]); 1207 if (avl_find(t, &zvsearch, &where) == NULL) { 1208 zv = kmem_alloc(sizeof (*zv), KM_SLEEP); 1209 zv->zv_vdev = zvsearch.zv_vdev; 1210 avl_insert(t, zv, where); 1211 } 1212 } 1213 mutex_exit(&lwb->lwb_vdev_lock); 1214 } 1215 1216 static void 1217 zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb) 1218 { 1219 avl_tree_t *src = &lwb->lwb_vdev_tree; 1220 avl_tree_t *dst = &nlwb->lwb_vdev_tree; 1221 void *cookie = NULL; 1222 zil_vdev_node_t *zv; 1223 1224 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE); 1225 ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE); 1226 ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE); 1227 1228 /* 1229 * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does 1230 * not need the protection of lwb_vdev_lock (it will only be modified 1231 * while holding zilog->zl_lock) as its writes and those of its 1232 * children have all completed. The younger 'nlwb' may be waiting on 1233 * future writes to additional vdevs. 1234 */ 1235 mutex_enter(&nlwb->lwb_vdev_lock); 1236 /* 1237 * Tear down the 'lwb' vdev tree, ensuring that entries which do not 1238 * exist in 'nlwb' are moved to it, freeing any would-be duplicates. 1239 */ 1240 while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) { 1241 avl_index_t where; 1242 1243 if (avl_find(dst, zv, &where) == NULL) { 1244 avl_insert(dst, zv, where); 1245 } else { 1246 kmem_free(zv, sizeof (*zv)); 1247 } 1248 } 1249 mutex_exit(&nlwb->lwb_vdev_lock); 1250 } 1251 1252 void 1253 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg) 1254 { 1255 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg); 1256 } 1257 1258 /* 1259 * This function is a called after all vdevs associated with a given lwb 1260 * write have completed their DKIOCFLUSHWRITECACHE command; or as soon 1261 * as the lwb write completes, if "zil_nocacheflush" is set. Further, 1262 * all "previous" lwb's will have completed before this function is 1263 * called; i.e. this function is called for all previous lwbs before 1264 * it's called for "this" lwb (enforced via zio the dependencies 1265 * configured in zil_lwb_set_zio_dependency()). 1266 * 1267 * The intention is for this function to be called as soon as the 1268 * contents of an lwb are considered "stable" on disk, and will survive 1269 * any sudden loss of power. At this point, any threads waiting for the 1270 * lwb to reach this state are signalled, and the "waiter" structures 1271 * are marked "done". 1272 */ 1273 static void 1274 zil_lwb_flush_vdevs_done(zio_t *zio) 1275 { 1276 lwb_t *lwb = zio->io_private; 1277 zilog_t *zilog = lwb->lwb_zilog; 1278 zil_commit_waiter_t *zcw; 1279 itx_t *itx; 1280 uint64_t txg; 1281 1282 spa_config_exit(zilog->zl_spa, SCL_STATE, lwb); 1283 1284 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 1285 1286 mutex_enter(&zilog->zl_lock); 1287 1288 /* 1289 * If we have had an allocation failure and the txg is 1290 * waiting to sync then we want zil_sync() to remove the lwb so 1291 * that it's not picked up as the next new one in 1292 * zil_process_commit_list(). zil_sync() will only remove the 1293 * lwb if lwb_buf is null. 1294 */ 1295 lwb->lwb_buf = NULL; 1296 1297 ASSERT3U(lwb->lwb_issued_timestamp, >, 0); 1298 zilog->zl_last_lwb_latency = gethrtime() - lwb->lwb_issued_timestamp; 1299 1300 lwb->lwb_root_zio = NULL; 1301 1302 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE); 1303 lwb->lwb_state = LWB_STATE_FLUSH_DONE; 1304 1305 if (zilog->zl_last_lwb_opened == lwb) { 1306 /* 1307 * Remember the highest committed log sequence number 1308 * for ztest. We only update this value when all the log 1309 * writes succeeded, because ztest wants to ASSERT that 1310 * it got the whole log chain. 1311 */ 1312 zilog->zl_commit_lr_seq = zilog->zl_lr_seq; 1313 } 1314 1315 while ((itx = list_head(&lwb->lwb_itxs)) != NULL) { 1316 list_remove(&lwb->lwb_itxs, itx); 1317 zil_itx_destroy(itx); 1318 } 1319 1320 while ((zcw = list_head(&lwb->lwb_waiters)) != NULL) { 1321 mutex_enter(&zcw->zcw_lock); 1322 1323 ASSERT(list_link_active(&zcw->zcw_node)); 1324 list_remove(&lwb->lwb_waiters, zcw); 1325 1326 ASSERT3P(zcw->zcw_lwb, ==, lwb); 1327 zcw->zcw_lwb = NULL; 1328 /* 1329 * We expect any ZIO errors from child ZIOs to have been 1330 * propagated "up" to this specific LWB's root ZIO, in 1331 * order for this error handling to work correctly. This 1332 * includes ZIO errors from either this LWB's write or 1333 * flush, as well as any errors from other dependent LWBs 1334 * (e.g. a root LWB ZIO that might be a child of this LWB). 1335 * 1336 * With that said, it's important to note that LWB flush 1337 * errors are not propagated up to the LWB root ZIO. 1338 * This is incorrect behavior, and results in VDEV flush 1339 * errors not being handled correctly here. See the 1340 * comment above the call to "zio_flush" for details. 1341 */ 1342 1343 zcw->zcw_zio_error = zio->io_error; 1344 1345 ASSERT3B(zcw->zcw_done, ==, B_FALSE); 1346 zcw->zcw_done = B_TRUE; 1347 cv_broadcast(&zcw->zcw_cv); 1348 1349 mutex_exit(&zcw->zcw_lock); 1350 } 1351 1352 mutex_exit(&zilog->zl_lock); 1353 1354 mutex_enter(&zilog->zl_lwb_io_lock); 1355 txg = lwb->lwb_issued_txg; 1356 ASSERT3U(zilog->zl_lwb_inflight[txg & TXG_MASK], >, 0); 1357 zilog->zl_lwb_inflight[txg & TXG_MASK]--; 1358 if (zilog->zl_lwb_inflight[txg & TXG_MASK] == 0) 1359 cv_broadcast(&zilog->zl_lwb_io_cv); 1360 mutex_exit(&zilog->zl_lwb_io_lock); 1361 } 1362 1363 /* 1364 * Wait for the completion of all issued write/flush of that txg provided. 1365 * It guarantees zil_lwb_flush_vdevs_done() is called and returned. 1366 */ 1367 static void 1368 zil_lwb_flush_wait_all(zilog_t *zilog, uint64_t txg) 1369 { 1370 ASSERT3U(txg, ==, spa_syncing_txg(zilog->zl_spa)); 1371 1372 mutex_enter(&zilog->zl_lwb_io_lock); 1373 while (zilog->zl_lwb_inflight[txg & TXG_MASK] > 0) 1374 cv_wait(&zilog->zl_lwb_io_cv, &zilog->zl_lwb_io_lock); 1375 mutex_exit(&zilog->zl_lwb_io_lock); 1376 1377 #ifdef ZFS_DEBUG 1378 mutex_enter(&zilog->zl_lock); 1379 mutex_enter(&zilog->zl_lwb_io_lock); 1380 lwb_t *lwb = list_head(&zilog->zl_lwb_list); 1381 while (lwb != NULL && lwb->lwb_max_txg <= txg) { 1382 if (lwb->lwb_issued_txg <= txg) { 1383 ASSERT(lwb->lwb_state != LWB_STATE_ISSUED); 1384 ASSERT(lwb->lwb_state != LWB_STATE_WRITE_DONE); 1385 IMPLY(lwb->lwb_issued_txg > 0, 1386 lwb->lwb_state == LWB_STATE_FLUSH_DONE); 1387 } 1388 IMPLY(lwb->lwb_state == LWB_STATE_FLUSH_DONE, 1389 lwb->lwb_buf == NULL); 1390 lwb = list_next(&zilog->zl_lwb_list, lwb); 1391 } 1392 mutex_exit(&zilog->zl_lwb_io_lock); 1393 mutex_exit(&zilog->zl_lock); 1394 #endif 1395 } 1396 1397 /* 1398 * This is called when an lwb's write zio completes. The callback's 1399 * purpose is to issue the DKIOCFLUSHWRITECACHE commands for the vdevs 1400 * in the lwb's lwb_vdev_tree. The tree will contain the vdevs involved 1401 * in writing out this specific lwb's data, and in the case that cache 1402 * flushes have been deferred, vdevs involved in writing the data for 1403 * previous lwbs. The writes corresponding to all the vdevs in the 1404 * lwb_vdev_tree will have completed by the time this is called, due to 1405 * the zio dependencies configured in zil_lwb_set_zio_dependency(), 1406 * which takes deferred flushes into account. The lwb will be "done" 1407 * once zil_lwb_flush_vdevs_done() is called, which occurs in the zio 1408 * completion callback for the lwb's root zio. 1409 */ 1410 static void 1411 zil_lwb_write_done(zio_t *zio) 1412 { 1413 lwb_t *lwb = zio->io_private; 1414 spa_t *spa = zio->io_spa; 1415 zilog_t *zilog = lwb->lwb_zilog; 1416 avl_tree_t *t = &lwb->lwb_vdev_tree; 1417 void *cookie = NULL; 1418 zil_vdev_node_t *zv; 1419 lwb_t *nlwb; 1420 1421 ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0); 1422 1423 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 1424 ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG); 1425 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 1426 ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER); 1427 ASSERT(!BP_IS_GANG(zio->io_bp)); 1428 ASSERT(!BP_IS_HOLE(zio->io_bp)); 1429 ASSERT(BP_GET_FILL(zio->io_bp) == 0); 1430 1431 abd_free(zio->io_abd); 1432 1433 mutex_enter(&zilog->zl_lock); 1434 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED); 1435 lwb->lwb_state = LWB_STATE_WRITE_DONE; 1436 lwb->lwb_write_zio = NULL; 1437 lwb->lwb_fastwrite = FALSE; 1438 nlwb = list_next(&zilog->zl_lwb_list, lwb); 1439 mutex_exit(&zilog->zl_lock); 1440 1441 if (avl_numnodes(t) == 0) 1442 return; 1443 1444 /* 1445 * If there was an IO error, we're not going to call zio_flush() 1446 * on these vdevs, so we simply empty the tree and free the 1447 * nodes. We avoid calling zio_flush() since there isn't any 1448 * good reason for doing so, after the lwb block failed to be 1449 * written out. 1450 * 1451 * Additionally, we don't perform any further error handling at 1452 * this point (e.g. setting "zcw_zio_error" appropriately), as 1453 * we expect that to occur in "zil_lwb_flush_vdevs_done" (thus, 1454 * we expect any error seen here, to have been propagated to 1455 * that function). 1456 */ 1457 if (zio->io_error != 0) { 1458 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) 1459 kmem_free(zv, sizeof (*zv)); 1460 return; 1461 } 1462 1463 /* 1464 * If this lwb does not have any threads waiting for it to 1465 * complete, we want to defer issuing the DKIOCFLUSHWRITECACHE 1466 * command to the vdevs written to by "this" lwb, and instead 1467 * rely on the "next" lwb to handle the DKIOCFLUSHWRITECACHE 1468 * command for those vdevs. Thus, we merge the vdev tree of 1469 * "this" lwb with the vdev tree of the "next" lwb in the list, 1470 * and assume the "next" lwb will handle flushing the vdevs (or 1471 * deferring the flush(s) again). 1472 * 1473 * This is a useful performance optimization, especially for 1474 * workloads with lots of async write activity and few sync 1475 * write and/or fsync activity, as it has the potential to 1476 * coalesce multiple flush commands to a vdev into one. 1477 */ 1478 if (list_head(&lwb->lwb_waiters) == NULL && nlwb != NULL) { 1479 zil_lwb_flush_defer(lwb, nlwb); 1480 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree)); 1481 return; 1482 } 1483 1484 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) { 1485 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev); 1486 if (vd != NULL) { 1487 /* 1488 * The "ZIO_FLAG_DONT_PROPAGATE" is currently 1489 * always used within "zio_flush". This means, 1490 * any errors when flushing the vdev(s), will 1491 * (unfortunately) not be handled correctly, 1492 * since these "zio_flush" errors will not be 1493 * propagated up to "zil_lwb_flush_vdevs_done". 1494 */ 1495 zio_flush(lwb->lwb_root_zio, vd); 1496 } 1497 kmem_free(zv, sizeof (*zv)); 1498 } 1499 } 1500 1501 static void 1502 zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb) 1503 { 1504 lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened; 1505 1506 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1507 ASSERT(MUTEX_HELD(&zilog->zl_lock)); 1508 1509 /* 1510 * The zilog's "zl_last_lwb_opened" field is used to build the 1511 * lwb/zio dependency chain, which is used to preserve the 1512 * ordering of lwb completions that is required by the semantics 1513 * of the ZIL. Each new lwb zio becomes a parent of the 1514 * "previous" lwb zio, such that the new lwb's zio cannot 1515 * complete until the "previous" lwb's zio completes. 1516 * 1517 * This is required by the semantics of zil_commit(); the commit 1518 * waiters attached to the lwbs will be woken in the lwb zio's 1519 * completion callback, so this zio dependency graph ensures the 1520 * waiters are woken in the correct order (the same order the 1521 * lwbs were created). 1522 */ 1523 if (last_lwb_opened != NULL && 1524 last_lwb_opened->lwb_state != LWB_STATE_FLUSH_DONE) { 1525 ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED || 1526 last_lwb_opened->lwb_state == LWB_STATE_ISSUED || 1527 last_lwb_opened->lwb_state == LWB_STATE_WRITE_DONE); 1528 1529 ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL); 1530 zio_add_child(lwb->lwb_root_zio, 1531 last_lwb_opened->lwb_root_zio); 1532 1533 /* 1534 * If the previous lwb's write hasn't already completed, 1535 * we also want to order the completion of the lwb write 1536 * zios (above, we only order the completion of the lwb 1537 * root zios). This is required because of how we can 1538 * defer the DKIOCFLUSHWRITECACHE commands for each lwb. 1539 * 1540 * When the DKIOCFLUSHWRITECACHE commands are deferred, 1541 * the previous lwb will rely on this lwb to flush the 1542 * vdevs written to by that previous lwb. Thus, we need 1543 * to ensure this lwb doesn't issue the flush until 1544 * after the previous lwb's write completes. We ensure 1545 * this ordering by setting the zio parent/child 1546 * relationship here. 1547 * 1548 * Without this relationship on the lwb's write zio, 1549 * it's possible for this lwb's write to complete prior 1550 * to the previous lwb's write completing; and thus, the 1551 * vdevs for the previous lwb would be flushed prior to 1552 * that lwb's data being written to those vdevs (the 1553 * vdevs are flushed in the lwb write zio's completion 1554 * handler, zil_lwb_write_done()). 1555 */ 1556 if (last_lwb_opened->lwb_state != LWB_STATE_WRITE_DONE) { 1557 ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED || 1558 last_lwb_opened->lwb_state == LWB_STATE_ISSUED); 1559 1560 ASSERT3P(last_lwb_opened->lwb_write_zio, !=, NULL); 1561 zio_add_child(lwb->lwb_write_zio, 1562 last_lwb_opened->lwb_write_zio); 1563 } 1564 } 1565 } 1566 1567 1568 /* 1569 * This function's purpose is to "open" an lwb such that it is ready to 1570 * accept new itxs being committed to it. To do this, the lwb's zio 1571 * structures are created, and linked to the lwb. This function is 1572 * idempotent; if the passed in lwb has already been opened, this 1573 * function is essentially a no-op. 1574 */ 1575 static void 1576 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb) 1577 { 1578 zbookmark_phys_t zb; 1579 zio_priority_t prio; 1580 1581 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1582 ASSERT3P(lwb, !=, NULL); 1583 EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED); 1584 EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED); 1585 1586 SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1587 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, 1588 lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]); 1589 1590 /* Lock so zil_sync() doesn't fastwrite_unmark after zio is created */ 1591 mutex_enter(&zilog->zl_lock); 1592 if (lwb->lwb_root_zio == NULL) { 1593 abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf, 1594 BP_GET_LSIZE(&lwb->lwb_blk)); 1595 1596 if (!lwb->lwb_fastwrite) { 1597 metaslab_fastwrite_mark(zilog->zl_spa, &lwb->lwb_blk); 1598 lwb->lwb_fastwrite = 1; 1599 } 1600 1601 if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk) 1602 prio = ZIO_PRIORITY_SYNC_WRITE; 1603 else 1604 prio = ZIO_PRIORITY_ASYNC_WRITE; 1605 1606 lwb->lwb_root_zio = zio_root(zilog->zl_spa, 1607 zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL); 1608 ASSERT3P(lwb->lwb_root_zio, !=, NULL); 1609 1610 lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio, 1611 zilog->zl_spa, 0, &lwb->lwb_blk, lwb_abd, 1612 BP_GET_LSIZE(&lwb->lwb_blk), zil_lwb_write_done, lwb, 1613 prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_FASTWRITE, &zb); 1614 ASSERT3P(lwb->lwb_write_zio, !=, NULL); 1615 1616 lwb->lwb_state = LWB_STATE_OPENED; 1617 1618 zil_lwb_set_zio_dependency(zilog, lwb); 1619 zilog->zl_last_lwb_opened = lwb; 1620 } 1621 mutex_exit(&zilog->zl_lock); 1622 1623 ASSERT3P(lwb->lwb_root_zio, !=, NULL); 1624 ASSERT3P(lwb->lwb_write_zio, !=, NULL); 1625 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED); 1626 } 1627 1628 /* 1629 * Define a limited set of intent log block sizes. 1630 * 1631 * These must be a multiple of 4KB. Note only the amount used (again 1632 * aligned to 4KB) actually gets written. However, we can't always just 1633 * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted. 1634 */ 1635 static const struct { 1636 uint64_t limit; 1637 uint64_t blksz; 1638 } zil_block_buckets[] = { 1639 { 4096, 4096 }, /* non TX_WRITE */ 1640 { 8192 + 4096, 8192 + 4096 }, /* database */ 1641 { 32768 + 4096, 32768 + 4096 }, /* NFS writes */ 1642 { 65536 + 4096, 65536 + 4096 }, /* 64KB writes */ 1643 { 131072, 131072 }, /* < 128KB writes */ 1644 { 131072 +4096, 65536 + 4096 }, /* 128KB writes */ 1645 { UINT64_MAX, SPA_OLD_MAXBLOCKSIZE}, /* > 128KB writes */ 1646 }; 1647 1648 /* 1649 * Maximum block size used by the ZIL. This is picked up when the ZIL is 1650 * initialized. Otherwise this should not be used directly; see 1651 * zl_max_block_size instead. 1652 */ 1653 static uint_t zil_maxblocksize = SPA_OLD_MAXBLOCKSIZE; 1654 1655 /* 1656 * Start a log block write and advance to the next log block. 1657 * Calls are serialized. 1658 */ 1659 static lwb_t * 1660 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb) 1661 { 1662 lwb_t *nlwb = NULL; 1663 zil_chain_t *zilc; 1664 spa_t *spa = zilog->zl_spa; 1665 blkptr_t *bp; 1666 dmu_tx_t *tx; 1667 uint64_t txg; 1668 uint64_t zil_blksz, wsz; 1669 int i, error; 1670 boolean_t slog; 1671 1672 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1673 ASSERT3P(lwb->lwb_root_zio, !=, NULL); 1674 ASSERT3P(lwb->lwb_write_zio, !=, NULL); 1675 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED); 1676 1677 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) { 1678 zilc = (zil_chain_t *)lwb->lwb_buf; 1679 bp = &zilc->zc_next_blk; 1680 } else { 1681 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz); 1682 bp = &zilc->zc_next_blk; 1683 } 1684 1685 ASSERT(lwb->lwb_nused <= lwb->lwb_sz); 1686 1687 /* 1688 * Allocate the next block and save its address in this block 1689 * before writing it in order to establish the log chain. 1690 */ 1691 1692 tx = dmu_tx_create(zilog->zl_os); 1693 1694 /* 1695 * Since we are not going to create any new dirty data, and we 1696 * can even help with clearing the existing dirty data, we 1697 * should not be subject to the dirty data based delays. We 1698 * use TXG_NOTHROTTLE to bypass the delay mechanism. 1699 */ 1700 VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE)); 1701 1702 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 1703 txg = dmu_tx_get_txg(tx); 1704 1705 mutex_enter(&zilog->zl_lwb_io_lock); 1706 lwb->lwb_issued_txg = txg; 1707 zilog->zl_lwb_inflight[txg & TXG_MASK]++; 1708 zilog->zl_lwb_max_issued_txg = MAX(txg, zilog->zl_lwb_max_issued_txg); 1709 mutex_exit(&zilog->zl_lwb_io_lock); 1710 1711 /* 1712 * Log blocks are pre-allocated. Here we select the size of the next 1713 * block, based on size used in the last block. 1714 * - first find the smallest bucket that will fit the block from a 1715 * limited set of block sizes. This is because it's faster to write 1716 * blocks allocated from the same metaslab as they are adjacent or 1717 * close. 1718 * - next find the maximum from the new suggested size and an array of 1719 * previous sizes. This lessens a picket fence effect of wrongly 1720 * guessing the size if we have a stream of say 2k, 64k, 2k, 64k 1721 * requests. 1722 * 1723 * Note we only write what is used, but we can't just allocate 1724 * the maximum block size because we can exhaust the available 1725 * pool log space. 1726 */ 1727 zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t); 1728 for (i = 0; zil_blksz > zil_block_buckets[i].limit; i++) 1729 continue; 1730 zil_blksz = MIN(zil_block_buckets[i].blksz, zilog->zl_max_block_size); 1731 zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz; 1732 for (i = 0; i < ZIL_PREV_BLKS; i++) 1733 zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]); 1734 zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1); 1735 1736 BP_ZERO(bp); 1737 error = zio_alloc_zil(spa, zilog->zl_os, txg, bp, zil_blksz, &slog); 1738 if (slog) { 1739 ZIL_STAT_BUMP(zilog, zil_itx_metaslab_slog_count); 1740 ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_bytes, 1741 lwb->lwb_nused); 1742 } else { 1743 ZIL_STAT_BUMP(zilog, zil_itx_metaslab_normal_count); 1744 ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_bytes, 1745 lwb->lwb_nused); 1746 } 1747 if (error == 0) { 1748 ASSERT3U(bp->blk_birth, ==, txg); 1749 bp->blk_cksum = lwb->lwb_blk.blk_cksum; 1750 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++; 1751 1752 /* 1753 * Allocate a new log write block (lwb). 1754 */ 1755 nlwb = zil_alloc_lwb(zilog, bp, slog, txg, TRUE); 1756 } 1757 1758 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) { 1759 /* For Slim ZIL only write what is used. */ 1760 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t); 1761 ASSERT3U(wsz, <=, lwb->lwb_sz); 1762 zio_shrink(lwb->lwb_write_zio, wsz); 1763 1764 } else { 1765 wsz = lwb->lwb_sz; 1766 } 1767 1768 zilc->zc_pad = 0; 1769 zilc->zc_nused = lwb->lwb_nused; 1770 zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum; 1771 1772 /* 1773 * clear unused data for security 1774 */ 1775 memset(lwb->lwb_buf + lwb->lwb_nused, 0, wsz - lwb->lwb_nused); 1776 1777 spa_config_enter(zilog->zl_spa, SCL_STATE, lwb, RW_READER); 1778 1779 zil_lwb_add_block(lwb, &lwb->lwb_blk); 1780 lwb->lwb_issued_timestamp = gethrtime(); 1781 lwb->lwb_state = LWB_STATE_ISSUED; 1782 1783 zio_nowait(lwb->lwb_root_zio); 1784 zio_nowait(lwb->lwb_write_zio); 1785 1786 dmu_tx_commit(tx); 1787 1788 /* 1789 * If there was an allocation failure then nlwb will be null which 1790 * forces a txg_wait_synced(). 1791 */ 1792 return (nlwb); 1793 } 1794 1795 /* 1796 * Maximum amount of write data that can be put into single log block. 1797 */ 1798 uint64_t 1799 zil_max_log_data(zilog_t *zilog) 1800 { 1801 return (zilog->zl_max_block_size - 1802 sizeof (zil_chain_t) - sizeof (lr_write_t)); 1803 } 1804 1805 /* 1806 * Maximum amount of log space we agree to waste to reduce number of 1807 * WR_NEED_COPY chunks to reduce zl_get_data() overhead (~12%). 1808 */ 1809 static inline uint64_t 1810 zil_max_waste_space(zilog_t *zilog) 1811 { 1812 return (zil_max_log_data(zilog) / 8); 1813 } 1814 1815 /* 1816 * Maximum amount of write data for WR_COPIED. For correctness, consumers 1817 * must fall back to WR_NEED_COPY if we can't fit the entire record into one 1818 * maximum sized log block, because each WR_COPIED record must fit in a 1819 * single log block. For space efficiency, we want to fit two records into a 1820 * max-sized log block. 1821 */ 1822 uint64_t 1823 zil_max_copied_data(zilog_t *zilog) 1824 { 1825 return ((zilog->zl_max_block_size - sizeof (zil_chain_t)) / 2 - 1826 sizeof (lr_write_t)); 1827 } 1828 1829 static lwb_t * 1830 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb) 1831 { 1832 lr_t *lrcb, *lrc; 1833 lr_write_t *lrwb, *lrw; 1834 char *lr_buf; 1835 uint64_t dlen, dnow, dpad, lwb_sp, reclen, txg, max_log_data; 1836 1837 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1838 ASSERT3P(lwb, !=, NULL); 1839 ASSERT3P(lwb->lwb_buf, !=, NULL); 1840 1841 zil_lwb_write_open(zilog, lwb); 1842 1843 lrc = &itx->itx_lr; 1844 lrw = (lr_write_t *)lrc; 1845 1846 /* 1847 * A commit itx doesn't represent any on-disk state; instead 1848 * it's simply used as a place holder on the commit list, and 1849 * provides a mechanism for attaching a "commit waiter" onto the 1850 * correct lwb (such that the waiter can be signalled upon 1851 * completion of that lwb). Thus, we don't process this itx's 1852 * log record if it's a commit itx (these itx's don't have log 1853 * records), and instead link the itx's waiter onto the lwb's 1854 * list of waiters. 1855 * 1856 * For more details, see the comment above zil_commit(). 1857 */ 1858 if (lrc->lrc_txtype == TX_COMMIT) { 1859 mutex_enter(&zilog->zl_lock); 1860 zil_commit_waiter_link_lwb(itx->itx_private, lwb); 1861 itx->itx_private = NULL; 1862 mutex_exit(&zilog->zl_lock); 1863 return (lwb); 1864 } 1865 1866 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) { 1867 dlen = P2ROUNDUP_TYPED( 1868 lrw->lr_length, sizeof (uint64_t), uint64_t); 1869 dpad = dlen - lrw->lr_length; 1870 } else { 1871 dlen = dpad = 0; 1872 } 1873 reclen = lrc->lrc_reclen; 1874 zilog->zl_cur_used += (reclen + dlen); 1875 txg = lrc->lrc_txg; 1876 1877 ASSERT3U(zilog->zl_cur_used, <, UINT64_MAX - (reclen + dlen)); 1878 1879 cont: 1880 /* 1881 * If this record won't fit in the current log block, start a new one. 1882 * For WR_NEED_COPY optimize layout for minimal number of chunks. 1883 */ 1884 lwb_sp = lwb->lwb_sz - lwb->lwb_nused; 1885 max_log_data = zil_max_log_data(zilog); 1886 if (reclen > lwb_sp || (reclen + dlen > lwb_sp && 1887 lwb_sp < zil_max_waste_space(zilog) && 1888 (dlen % max_log_data == 0 || 1889 lwb_sp < reclen + dlen % max_log_data))) { 1890 lwb = zil_lwb_write_issue(zilog, lwb); 1891 if (lwb == NULL) 1892 return (NULL); 1893 zil_lwb_write_open(zilog, lwb); 1894 ASSERT(LWB_EMPTY(lwb)); 1895 lwb_sp = lwb->lwb_sz - lwb->lwb_nused; 1896 1897 /* 1898 * There must be enough space in the new, empty log block to 1899 * hold reclen. For WR_COPIED, we need to fit the whole 1900 * record in one block, and reclen is the header size + the 1901 * data size. For WR_NEED_COPY, we can create multiple 1902 * records, splitting the data into multiple blocks, so we 1903 * only need to fit one word of data per block; in this case 1904 * reclen is just the header size (no data). 1905 */ 1906 ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp); 1907 } 1908 1909 dnow = MIN(dlen, lwb_sp - reclen); 1910 lr_buf = lwb->lwb_buf + lwb->lwb_nused; 1911 memcpy(lr_buf, lrc, reclen); 1912 lrcb = (lr_t *)lr_buf; /* Like lrc, but inside lwb. */ 1913 lrwb = (lr_write_t *)lrcb; /* Like lrw, but inside lwb. */ 1914 1915 ZIL_STAT_BUMP(zilog, zil_itx_count); 1916 1917 /* 1918 * If it's a write, fetch the data or get its blkptr as appropriate. 1919 */ 1920 if (lrc->lrc_txtype == TX_WRITE) { 1921 if (txg > spa_freeze_txg(zilog->zl_spa)) 1922 txg_wait_synced(zilog->zl_dmu_pool, txg); 1923 if (itx->itx_wr_state == WR_COPIED) { 1924 ZIL_STAT_BUMP(zilog, zil_itx_copied_count); 1925 ZIL_STAT_INCR(zilog, zil_itx_copied_bytes, 1926 lrw->lr_length); 1927 } else { 1928 char *dbuf; 1929 int error; 1930 1931 if (itx->itx_wr_state == WR_NEED_COPY) { 1932 dbuf = lr_buf + reclen; 1933 lrcb->lrc_reclen += dnow; 1934 if (lrwb->lr_length > dnow) 1935 lrwb->lr_length = dnow; 1936 lrw->lr_offset += dnow; 1937 lrw->lr_length -= dnow; 1938 ZIL_STAT_BUMP(zilog, zil_itx_needcopy_count); 1939 ZIL_STAT_INCR(zilog, zil_itx_needcopy_bytes, 1940 dnow); 1941 } else { 1942 ASSERT3S(itx->itx_wr_state, ==, WR_INDIRECT); 1943 dbuf = NULL; 1944 ZIL_STAT_BUMP(zilog, zil_itx_indirect_count); 1945 ZIL_STAT_INCR(zilog, zil_itx_indirect_bytes, 1946 lrw->lr_length); 1947 } 1948 1949 /* 1950 * We pass in the "lwb_write_zio" rather than 1951 * "lwb_root_zio" so that the "lwb_write_zio" 1952 * becomes the parent of any zio's created by 1953 * the "zl_get_data" callback. The vdevs are 1954 * flushed after the "lwb_write_zio" completes, 1955 * so we want to make sure that completion 1956 * callback waits for these additional zio's, 1957 * such that the vdevs used by those zio's will 1958 * be included in the lwb's vdev tree, and those 1959 * vdevs will be properly flushed. If we passed 1960 * in "lwb_root_zio" here, then these additional 1961 * vdevs may not be flushed; e.g. if these zio's 1962 * completed after "lwb_write_zio" completed. 1963 */ 1964 error = zilog->zl_get_data(itx->itx_private, 1965 itx->itx_gen, lrwb, dbuf, lwb, 1966 lwb->lwb_write_zio); 1967 if (dbuf != NULL && error == 0 && dnow == dlen) 1968 /* Zero any padding bytes in the last block. */ 1969 memset((char *)dbuf + lrwb->lr_length, 0, dpad); 1970 1971 if (error == EIO) { 1972 txg_wait_synced(zilog->zl_dmu_pool, txg); 1973 return (lwb); 1974 } 1975 if (error != 0) { 1976 ASSERT(error == ENOENT || error == EEXIST || 1977 error == EALREADY); 1978 return (lwb); 1979 } 1980 } 1981 } 1982 1983 /* 1984 * We're actually making an entry, so update lrc_seq to be the 1985 * log record sequence number. Note that this is generally not 1986 * equal to the itx sequence number because not all transactions 1987 * are synchronous, and sometimes spa_sync() gets there first. 1988 */ 1989 lrcb->lrc_seq = ++zilog->zl_lr_seq; 1990 lwb->lwb_nused += reclen + dnow; 1991 1992 zil_lwb_add_txg(lwb, txg); 1993 1994 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz); 1995 ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t))); 1996 1997 dlen -= dnow; 1998 if (dlen > 0) { 1999 zilog->zl_cur_used += reclen; 2000 goto cont; 2001 } 2002 2003 return (lwb); 2004 } 2005 2006 itx_t * 2007 zil_itx_create(uint64_t txtype, size_t olrsize) 2008 { 2009 size_t itxsize, lrsize; 2010 itx_t *itx; 2011 2012 lrsize = P2ROUNDUP_TYPED(olrsize, sizeof (uint64_t), size_t); 2013 itxsize = offsetof(itx_t, itx_lr) + lrsize; 2014 2015 itx = zio_data_buf_alloc(itxsize); 2016 itx->itx_lr.lrc_txtype = txtype; 2017 itx->itx_lr.lrc_reclen = lrsize; 2018 itx->itx_lr.lrc_seq = 0; /* defensive */ 2019 memset((char *)&itx->itx_lr + olrsize, 0, lrsize - olrsize); 2020 itx->itx_sync = B_TRUE; /* default is synchronous */ 2021 itx->itx_callback = NULL; 2022 itx->itx_callback_data = NULL; 2023 itx->itx_size = itxsize; 2024 2025 return (itx); 2026 } 2027 2028 void 2029 zil_itx_destroy(itx_t *itx) 2030 { 2031 IMPLY(itx->itx_lr.lrc_txtype == TX_COMMIT, itx->itx_callback == NULL); 2032 IMPLY(itx->itx_callback != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT); 2033 2034 if (itx->itx_callback != NULL) 2035 itx->itx_callback(itx->itx_callback_data); 2036 2037 zio_data_buf_free(itx, itx->itx_size); 2038 } 2039 2040 /* 2041 * Free up the sync and async itxs. The itxs_t has already been detached 2042 * so no locks are needed. 2043 */ 2044 static void 2045 zil_itxg_clean(void *arg) 2046 { 2047 itx_t *itx; 2048 list_t *list; 2049 avl_tree_t *t; 2050 void *cookie; 2051 itxs_t *itxs = arg; 2052 itx_async_node_t *ian; 2053 2054 list = &itxs->i_sync_list; 2055 while ((itx = list_head(list)) != NULL) { 2056 /* 2057 * In the general case, commit itxs will not be found 2058 * here, as they'll be committed to an lwb via 2059 * zil_lwb_commit(), and free'd in that function. Having 2060 * said that, it is still possible for commit itxs to be 2061 * found here, due to the following race: 2062 * 2063 * - a thread calls zil_commit() which assigns the 2064 * commit itx to a per-txg i_sync_list 2065 * - zil_itxg_clean() is called (e.g. via spa_sync()) 2066 * while the waiter is still on the i_sync_list 2067 * 2068 * There's nothing to prevent syncing the txg while the 2069 * waiter is on the i_sync_list. This normally doesn't 2070 * happen because spa_sync() is slower than zil_commit(), 2071 * but if zil_commit() calls txg_wait_synced() (e.g. 2072 * because zil_create() or zil_commit_writer_stall() is 2073 * called) we will hit this case. 2074 */ 2075 if (itx->itx_lr.lrc_txtype == TX_COMMIT) 2076 zil_commit_waiter_skip(itx->itx_private); 2077 2078 list_remove(list, itx); 2079 zil_itx_destroy(itx); 2080 } 2081 2082 cookie = NULL; 2083 t = &itxs->i_async_tree; 2084 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { 2085 list = &ian->ia_list; 2086 while ((itx = list_head(list)) != NULL) { 2087 list_remove(list, itx); 2088 /* commit itxs should never be on the async lists. */ 2089 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT); 2090 zil_itx_destroy(itx); 2091 } 2092 list_destroy(list); 2093 kmem_free(ian, sizeof (itx_async_node_t)); 2094 } 2095 avl_destroy(t); 2096 2097 kmem_free(itxs, sizeof (itxs_t)); 2098 } 2099 2100 static int 2101 zil_aitx_compare(const void *x1, const void *x2) 2102 { 2103 const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid; 2104 const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid; 2105 2106 return (TREE_CMP(o1, o2)); 2107 } 2108 2109 /* 2110 * Remove all async itx with the given oid. 2111 */ 2112 void 2113 zil_remove_async(zilog_t *zilog, uint64_t oid) 2114 { 2115 uint64_t otxg, txg; 2116 itx_async_node_t *ian; 2117 avl_tree_t *t; 2118 avl_index_t where; 2119 list_t clean_list; 2120 itx_t *itx; 2121 2122 ASSERT(oid != 0); 2123 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node)); 2124 2125 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 2126 otxg = ZILTEST_TXG; 2127 else 2128 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 2129 2130 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 2131 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 2132 2133 mutex_enter(&itxg->itxg_lock); 2134 if (itxg->itxg_txg != txg) { 2135 mutex_exit(&itxg->itxg_lock); 2136 continue; 2137 } 2138 2139 /* 2140 * Locate the object node and append its list. 2141 */ 2142 t = &itxg->itxg_itxs->i_async_tree; 2143 ian = avl_find(t, &oid, &where); 2144 if (ian != NULL) 2145 list_move_tail(&clean_list, &ian->ia_list); 2146 mutex_exit(&itxg->itxg_lock); 2147 } 2148 while ((itx = list_head(&clean_list)) != NULL) { 2149 list_remove(&clean_list, itx); 2150 /* commit itxs should never be on the async lists. */ 2151 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT); 2152 zil_itx_destroy(itx); 2153 } 2154 list_destroy(&clean_list); 2155 } 2156 2157 void 2158 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx) 2159 { 2160 uint64_t txg; 2161 itxg_t *itxg; 2162 itxs_t *itxs, *clean = NULL; 2163 2164 /* 2165 * Ensure the data of a renamed file is committed before the rename. 2166 */ 2167 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME) 2168 zil_async_to_sync(zilog, itx->itx_oid); 2169 2170 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) 2171 txg = ZILTEST_TXG; 2172 else 2173 txg = dmu_tx_get_txg(tx); 2174 2175 itxg = &zilog->zl_itxg[txg & TXG_MASK]; 2176 mutex_enter(&itxg->itxg_lock); 2177 itxs = itxg->itxg_itxs; 2178 if (itxg->itxg_txg != txg) { 2179 if (itxs != NULL) { 2180 /* 2181 * The zil_clean callback hasn't got around to cleaning 2182 * this itxg. Save the itxs for release below. 2183 * This should be rare. 2184 */ 2185 zfs_dbgmsg("zil_itx_assign: missed itx cleanup for " 2186 "txg %llu", (u_longlong_t)itxg->itxg_txg); 2187 clean = itxg->itxg_itxs; 2188 } 2189 itxg->itxg_txg = txg; 2190 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), 2191 KM_SLEEP); 2192 2193 list_create(&itxs->i_sync_list, sizeof (itx_t), 2194 offsetof(itx_t, itx_node)); 2195 avl_create(&itxs->i_async_tree, zil_aitx_compare, 2196 sizeof (itx_async_node_t), 2197 offsetof(itx_async_node_t, ia_node)); 2198 } 2199 if (itx->itx_sync) { 2200 list_insert_tail(&itxs->i_sync_list, itx); 2201 } else { 2202 avl_tree_t *t = &itxs->i_async_tree; 2203 uint64_t foid = 2204 LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid); 2205 itx_async_node_t *ian; 2206 avl_index_t where; 2207 2208 ian = avl_find(t, &foid, &where); 2209 if (ian == NULL) { 2210 ian = kmem_alloc(sizeof (itx_async_node_t), 2211 KM_SLEEP); 2212 list_create(&ian->ia_list, sizeof (itx_t), 2213 offsetof(itx_t, itx_node)); 2214 ian->ia_foid = foid; 2215 avl_insert(t, ian, where); 2216 } 2217 list_insert_tail(&ian->ia_list, itx); 2218 } 2219 2220 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx); 2221 2222 /* 2223 * We don't want to dirty the ZIL using ZILTEST_TXG, because 2224 * zil_clean() will never be called using ZILTEST_TXG. Thus, we 2225 * need to be careful to always dirty the ZIL using the "real" 2226 * TXG (not itxg_txg) even when the SPA is frozen. 2227 */ 2228 zilog_dirty(zilog, dmu_tx_get_txg(tx)); 2229 mutex_exit(&itxg->itxg_lock); 2230 2231 /* Release the old itxs now we've dropped the lock */ 2232 if (clean != NULL) 2233 zil_itxg_clean(clean); 2234 } 2235 2236 /* 2237 * If there are any in-memory intent log transactions which have now been 2238 * synced then start up a taskq to free them. We should only do this after we 2239 * have written out the uberblocks (i.e. txg has been committed) so that 2240 * don't inadvertently clean out in-memory log records that would be required 2241 * by zil_commit(). 2242 */ 2243 void 2244 zil_clean(zilog_t *zilog, uint64_t synced_txg) 2245 { 2246 itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK]; 2247 itxs_t *clean_me; 2248 2249 ASSERT3U(synced_txg, <, ZILTEST_TXG); 2250 2251 mutex_enter(&itxg->itxg_lock); 2252 if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) { 2253 mutex_exit(&itxg->itxg_lock); 2254 return; 2255 } 2256 ASSERT3U(itxg->itxg_txg, <=, synced_txg); 2257 ASSERT3U(itxg->itxg_txg, !=, 0); 2258 clean_me = itxg->itxg_itxs; 2259 itxg->itxg_itxs = NULL; 2260 itxg->itxg_txg = 0; 2261 mutex_exit(&itxg->itxg_lock); 2262 /* 2263 * Preferably start a task queue to free up the old itxs but 2264 * if taskq_dispatch can't allocate resources to do that then 2265 * free it in-line. This should be rare. Note, using TQ_SLEEP 2266 * created a bad performance problem. 2267 */ 2268 ASSERT3P(zilog->zl_dmu_pool, !=, NULL); 2269 ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL); 2270 taskqid_t id = taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq, 2271 zil_itxg_clean, clean_me, TQ_NOSLEEP); 2272 if (id == TASKQID_INVALID) 2273 zil_itxg_clean(clean_me); 2274 } 2275 2276 /* 2277 * This function will traverse the queue of itxs that need to be 2278 * committed, and move them onto the ZIL's zl_itx_commit_list. 2279 */ 2280 static void 2281 zil_get_commit_list(zilog_t *zilog) 2282 { 2283 uint64_t otxg, txg; 2284 list_t *commit_list = &zilog->zl_itx_commit_list; 2285 2286 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2287 2288 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 2289 otxg = ZILTEST_TXG; 2290 else 2291 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 2292 2293 /* 2294 * This is inherently racy, since there is nothing to prevent 2295 * the last synced txg from changing. That's okay since we'll 2296 * only commit things in the future. 2297 */ 2298 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 2299 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 2300 2301 mutex_enter(&itxg->itxg_lock); 2302 if (itxg->itxg_txg != txg) { 2303 mutex_exit(&itxg->itxg_lock); 2304 continue; 2305 } 2306 2307 /* 2308 * If we're adding itx records to the zl_itx_commit_list, 2309 * then the zil better be dirty in this "txg". We can assert 2310 * that here since we're holding the itxg_lock which will 2311 * prevent spa_sync from cleaning it. Once we add the itxs 2312 * to the zl_itx_commit_list we must commit it to disk even 2313 * if it's unnecessary (i.e. the txg was synced). 2314 */ 2315 ASSERT(zilog_is_dirty_in_txg(zilog, txg) || 2316 spa_freeze_txg(zilog->zl_spa) != UINT64_MAX); 2317 list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list); 2318 2319 mutex_exit(&itxg->itxg_lock); 2320 } 2321 } 2322 2323 /* 2324 * Move the async itxs for a specified object to commit into sync lists. 2325 */ 2326 void 2327 zil_async_to_sync(zilog_t *zilog, uint64_t foid) 2328 { 2329 uint64_t otxg, txg; 2330 itx_async_node_t *ian; 2331 avl_tree_t *t; 2332 avl_index_t where; 2333 2334 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 2335 otxg = ZILTEST_TXG; 2336 else 2337 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 2338 2339 /* 2340 * This is inherently racy, since there is nothing to prevent 2341 * the last synced txg from changing. 2342 */ 2343 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 2344 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 2345 2346 mutex_enter(&itxg->itxg_lock); 2347 if (itxg->itxg_txg != txg) { 2348 mutex_exit(&itxg->itxg_lock); 2349 continue; 2350 } 2351 2352 /* 2353 * If a foid is specified then find that node and append its 2354 * list. Otherwise walk the tree appending all the lists 2355 * to the sync list. We add to the end rather than the 2356 * beginning to ensure the create has happened. 2357 */ 2358 t = &itxg->itxg_itxs->i_async_tree; 2359 if (foid != 0) { 2360 ian = avl_find(t, &foid, &where); 2361 if (ian != NULL) { 2362 list_move_tail(&itxg->itxg_itxs->i_sync_list, 2363 &ian->ia_list); 2364 } 2365 } else { 2366 void *cookie = NULL; 2367 2368 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { 2369 list_move_tail(&itxg->itxg_itxs->i_sync_list, 2370 &ian->ia_list); 2371 list_destroy(&ian->ia_list); 2372 kmem_free(ian, sizeof (itx_async_node_t)); 2373 } 2374 } 2375 mutex_exit(&itxg->itxg_lock); 2376 } 2377 } 2378 2379 /* 2380 * This function will prune commit itxs that are at the head of the 2381 * commit list (it won't prune past the first non-commit itx), and 2382 * either: a) attach them to the last lwb that's still pending 2383 * completion, or b) skip them altogether. 2384 * 2385 * This is used as a performance optimization to prevent commit itxs 2386 * from generating new lwbs when it's unnecessary to do so. 2387 */ 2388 static void 2389 zil_prune_commit_list(zilog_t *zilog) 2390 { 2391 itx_t *itx; 2392 2393 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2394 2395 while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) { 2396 lr_t *lrc = &itx->itx_lr; 2397 if (lrc->lrc_txtype != TX_COMMIT) 2398 break; 2399 2400 mutex_enter(&zilog->zl_lock); 2401 2402 lwb_t *last_lwb = zilog->zl_last_lwb_opened; 2403 if (last_lwb == NULL || 2404 last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) { 2405 /* 2406 * All of the itxs this waiter was waiting on 2407 * must have already completed (or there were 2408 * never any itx's for it to wait on), so it's 2409 * safe to skip this waiter and mark it done. 2410 */ 2411 zil_commit_waiter_skip(itx->itx_private); 2412 } else { 2413 zil_commit_waiter_link_lwb(itx->itx_private, last_lwb); 2414 itx->itx_private = NULL; 2415 } 2416 2417 mutex_exit(&zilog->zl_lock); 2418 2419 list_remove(&zilog->zl_itx_commit_list, itx); 2420 zil_itx_destroy(itx); 2421 } 2422 2423 IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT); 2424 } 2425 2426 static void 2427 zil_commit_writer_stall(zilog_t *zilog) 2428 { 2429 /* 2430 * When zio_alloc_zil() fails to allocate the next lwb block on 2431 * disk, we must call txg_wait_synced() to ensure all of the 2432 * lwbs in the zilog's zl_lwb_list are synced and then freed (in 2433 * zil_sync()), such that any subsequent ZIL writer (i.e. a call 2434 * to zil_process_commit_list()) will have to call zil_create(), 2435 * and start a new ZIL chain. 2436 * 2437 * Since zil_alloc_zil() failed, the lwb that was previously 2438 * issued does not have a pointer to the "next" lwb on disk. 2439 * Thus, if another ZIL writer thread was to allocate the "next" 2440 * on-disk lwb, that block could be leaked in the event of a 2441 * crash (because the previous lwb on-disk would not point to 2442 * it). 2443 * 2444 * We must hold the zilog's zl_issuer_lock while we do this, to 2445 * ensure no new threads enter zil_process_commit_list() until 2446 * all lwb's in the zl_lwb_list have been synced and freed 2447 * (which is achieved via the txg_wait_synced() call). 2448 */ 2449 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2450 txg_wait_synced(zilog->zl_dmu_pool, 0); 2451 ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL); 2452 } 2453 2454 /* 2455 * This function will traverse the commit list, creating new lwbs as 2456 * needed, and committing the itxs from the commit list to these newly 2457 * created lwbs. Additionally, as a new lwb is created, the previous 2458 * lwb will be issued to the zio layer to be written to disk. 2459 */ 2460 static void 2461 zil_process_commit_list(zilog_t *zilog) 2462 { 2463 spa_t *spa = zilog->zl_spa; 2464 list_t nolwb_itxs; 2465 list_t nolwb_waiters; 2466 lwb_t *lwb; 2467 itx_t *itx; 2468 2469 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2470 2471 /* 2472 * Return if there's nothing to commit before we dirty the fs by 2473 * calling zil_create(). 2474 */ 2475 if (list_head(&zilog->zl_itx_commit_list) == NULL) 2476 return; 2477 2478 list_create(&nolwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node)); 2479 list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t), 2480 offsetof(zil_commit_waiter_t, zcw_node)); 2481 2482 lwb = list_tail(&zilog->zl_lwb_list); 2483 if (lwb == NULL) { 2484 lwb = zil_create(zilog); 2485 } else { 2486 /* 2487 * Activate SPA_FEATURE_ZILSAXATTR for the cases where ZIL will 2488 * have already been created (zl_lwb_list not empty). 2489 */ 2490 zil_commit_activate_saxattr_feature(zilog); 2491 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED); 2492 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE); 2493 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE); 2494 } 2495 2496 while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) { 2497 lr_t *lrc = &itx->itx_lr; 2498 uint64_t txg = lrc->lrc_txg; 2499 2500 ASSERT3U(txg, !=, 0); 2501 2502 if (lrc->lrc_txtype == TX_COMMIT) { 2503 DTRACE_PROBE2(zil__process__commit__itx, 2504 zilog_t *, zilog, itx_t *, itx); 2505 } else { 2506 DTRACE_PROBE2(zil__process__normal__itx, 2507 zilog_t *, zilog, itx_t *, itx); 2508 } 2509 2510 list_remove(&zilog->zl_itx_commit_list, itx); 2511 2512 boolean_t synced = txg <= spa_last_synced_txg(spa); 2513 boolean_t frozen = txg > spa_freeze_txg(spa); 2514 2515 /* 2516 * If the txg of this itx has already been synced out, then 2517 * we don't need to commit this itx to an lwb. This is 2518 * because the data of this itx will have already been 2519 * written to the main pool. This is inherently racy, and 2520 * it's still ok to commit an itx whose txg has already 2521 * been synced; this will result in a write that's 2522 * unnecessary, but will do no harm. 2523 * 2524 * With that said, we always want to commit TX_COMMIT itxs 2525 * to an lwb, regardless of whether or not that itx's txg 2526 * has been synced out. We do this to ensure any OPENED lwb 2527 * will always have at least one zil_commit_waiter_t linked 2528 * to the lwb. 2529 * 2530 * As a counter-example, if we skipped TX_COMMIT itx's 2531 * whose txg had already been synced, the following 2532 * situation could occur if we happened to be racing with 2533 * spa_sync: 2534 * 2535 * 1. We commit a non-TX_COMMIT itx to an lwb, where the 2536 * itx's txg is 10 and the last synced txg is 9. 2537 * 2. spa_sync finishes syncing out txg 10. 2538 * 3. We move to the next itx in the list, it's a TX_COMMIT 2539 * whose txg is 10, so we skip it rather than committing 2540 * it to the lwb used in (1). 2541 * 2542 * If the itx that is skipped in (3) is the last TX_COMMIT 2543 * itx in the commit list, than it's possible for the lwb 2544 * used in (1) to remain in the OPENED state indefinitely. 2545 * 2546 * To prevent the above scenario from occurring, ensuring 2547 * that once an lwb is OPENED it will transition to ISSUED 2548 * and eventually DONE, we always commit TX_COMMIT itx's to 2549 * an lwb here, even if that itx's txg has already been 2550 * synced. 2551 * 2552 * Finally, if the pool is frozen, we _always_ commit the 2553 * itx. The point of freezing the pool is to prevent data 2554 * from being written to the main pool via spa_sync, and 2555 * instead rely solely on the ZIL to persistently store the 2556 * data; i.e. when the pool is frozen, the last synced txg 2557 * value can't be trusted. 2558 */ 2559 if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) { 2560 if (lwb != NULL) { 2561 lwb = zil_lwb_commit(zilog, itx, lwb); 2562 2563 if (lwb == NULL) 2564 list_insert_tail(&nolwb_itxs, itx); 2565 else 2566 list_insert_tail(&lwb->lwb_itxs, itx); 2567 } else { 2568 if (lrc->lrc_txtype == TX_COMMIT) { 2569 zil_commit_waiter_link_nolwb( 2570 itx->itx_private, &nolwb_waiters); 2571 } 2572 2573 list_insert_tail(&nolwb_itxs, itx); 2574 } 2575 } else { 2576 ASSERT3S(lrc->lrc_txtype, !=, TX_COMMIT); 2577 zil_itx_destroy(itx); 2578 } 2579 } 2580 2581 if (lwb == NULL) { 2582 /* 2583 * This indicates zio_alloc_zil() failed to allocate the 2584 * "next" lwb on-disk. When this happens, we must stall 2585 * the ZIL write pipeline; see the comment within 2586 * zil_commit_writer_stall() for more details. 2587 */ 2588 zil_commit_writer_stall(zilog); 2589 2590 /* 2591 * Additionally, we have to signal and mark the "nolwb" 2592 * waiters as "done" here, since without an lwb, we 2593 * can't do this via zil_lwb_flush_vdevs_done() like 2594 * normal. 2595 */ 2596 zil_commit_waiter_t *zcw; 2597 while ((zcw = list_head(&nolwb_waiters)) != NULL) { 2598 zil_commit_waiter_skip(zcw); 2599 list_remove(&nolwb_waiters, zcw); 2600 } 2601 2602 /* 2603 * And finally, we have to destroy the itx's that 2604 * couldn't be committed to an lwb; this will also call 2605 * the itx's callback if one exists for the itx. 2606 */ 2607 while ((itx = list_head(&nolwb_itxs)) != NULL) { 2608 list_remove(&nolwb_itxs, itx); 2609 zil_itx_destroy(itx); 2610 } 2611 } else { 2612 ASSERT(list_is_empty(&nolwb_waiters)); 2613 ASSERT3P(lwb, !=, NULL); 2614 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED); 2615 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE); 2616 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE); 2617 2618 /* 2619 * At this point, the ZIL block pointed at by the "lwb" 2620 * variable is in one of the following states: "closed" 2621 * or "open". 2622 * 2623 * If it's "closed", then no itxs have been committed to 2624 * it, so there's no point in issuing its zio (i.e. it's 2625 * "empty"). 2626 * 2627 * If it's "open", then it contains one or more itxs that 2628 * eventually need to be committed to stable storage. In 2629 * this case we intentionally do not issue the lwb's zio 2630 * to disk yet, and instead rely on one of the following 2631 * two mechanisms for issuing the zio: 2632 * 2633 * 1. Ideally, there will be more ZIL activity occurring 2634 * on the system, such that this function will be 2635 * immediately called again (not necessarily by the same 2636 * thread) and this lwb's zio will be issued via 2637 * zil_lwb_commit(). This way, the lwb is guaranteed to 2638 * be "full" when it is issued to disk, and we'll make 2639 * use of the lwb's size the best we can. 2640 * 2641 * 2. If there isn't sufficient ZIL activity occurring on 2642 * the system, such that this lwb's zio isn't issued via 2643 * zil_lwb_commit(), zil_commit_waiter() will issue the 2644 * lwb's zio. If this occurs, the lwb is not guaranteed 2645 * to be "full" by the time its zio is issued, and means 2646 * the size of the lwb was "too large" given the amount 2647 * of ZIL activity occurring on the system at that time. 2648 * 2649 * We do this for a couple of reasons: 2650 * 2651 * 1. To try and reduce the number of IOPs needed to 2652 * write the same number of itxs. If an lwb has space 2653 * available in its buffer for more itxs, and more itxs 2654 * will be committed relatively soon (relative to the 2655 * latency of performing a write), then it's beneficial 2656 * to wait for these "next" itxs. This way, more itxs 2657 * can be committed to stable storage with fewer writes. 2658 * 2659 * 2. To try and use the largest lwb block size that the 2660 * incoming rate of itxs can support. Again, this is to 2661 * try and pack as many itxs into as few lwbs as 2662 * possible, without significantly impacting the latency 2663 * of each individual itx. 2664 */ 2665 } 2666 } 2667 2668 /* 2669 * This function is responsible for ensuring the passed in commit waiter 2670 * (and associated commit itx) is committed to an lwb. If the waiter is 2671 * not already committed to an lwb, all itxs in the zilog's queue of 2672 * itxs will be processed. The assumption is the passed in waiter's 2673 * commit itx will found in the queue just like the other non-commit 2674 * itxs, such that when the entire queue is processed, the waiter will 2675 * have been committed to an lwb. 2676 * 2677 * The lwb associated with the passed in waiter is not guaranteed to 2678 * have been issued by the time this function completes. If the lwb is 2679 * not issued, we rely on future calls to zil_commit_writer() to issue 2680 * the lwb, or the timeout mechanism found in zil_commit_waiter(). 2681 */ 2682 static void 2683 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw) 2684 { 2685 ASSERT(!MUTEX_HELD(&zilog->zl_lock)); 2686 ASSERT(spa_writeable(zilog->zl_spa)); 2687 2688 mutex_enter(&zilog->zl_issuer_lock); 2689 2690 if (zcw->zcw_lwb != NULL || zcw->zcw_done) { 2691 /* 2692 * It's possible that, while we were waiting to acquire 2693 * the "zl_issuer_lock", another thread committed this 2694 * waiter to an lwb. If that occurs, we bail out early, 2695 * without processing any of the zilog's queue of itxs. 2696 * 2697 * On certain workloads and system configurations, the 2698 * "zl_issuer_lock" can become highly contended. In an 2699 * attempt to reduce this contention, we immediately drop 2700 * the lock if the waiter has already been processed. 2701 * 2702 * We've measured this optimization to reduce CPU spent 2703 * contending on this lock by up to 5%, using a system 2704 * with 32 CPUs, low latency storage (~50 usec writes), 2705 * and 1024 threads performing sync writes. 2706 */ 2707 goto out; 2708 } 2709 2710 ZIL_STAT_BUMP(zilog, zil_commit_writer_count); 2711 2712 zil_get_commit_list(zilog); 2713 zil_prune_commit_list(zilog); 2714 zil_process_commit_list(zilog); 2715 2716 out: 2717 mutex_exit(&zilog->zl_issuer_lock); 2718 } 2719 2720 static void 2721 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw) 2722 { 2723 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock)); 2724 ASSERT(MUTEX_HELD(&zcw->zcw_lock)); 2725 ASSERT3B(zcw->zcw_done, ==, B_FALSE); 2726 2727 lwb_t *lwb = zcw->zcw_lwb; 2728 ASSERT3P(lwb, !=, NULL); 2729 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED); 2730 2731 /* 2732 * If the lwb has already been issued by another thread, we can 2733 * immediately return since there's no work to be done (the 2734 * point of this function is to issue the lwb). Additionally, we 2735 * do this prior to acquiring the zl_issuer_lock, to avoid 2736 * acquiring it when it's not necessary to do so. 2737 */ 2738 if (lwb->lwb_state == LWB_STATE_ISSUED || 2739 lwb->lwb_state == LWB_STATE_WRITE_DONE || 2740 lwb->lwb_state == LWB_STATE_FLUSH_DONE) 2741 return; 2742 2743 /* 2744 * In order to call zil_lwb_write_issue() we must hold the 2745 * zilog's "zl_issuer_lock". We can't simply acquire that lock, 2746 * since we're already holding the commit waiter's "zcw_lock", 2747 * and those two locks are acquired in the opposite order 2748 * elsewhere. 2749 */ 2750 mutex_exit(&zcw->zcw_lock); 2751 mutex_enter(&zilog->zl_issuer_lock); 2752 mutex_enter(&zcw->zcw_lock); 2753 2754 /* 2755 * Since we just dropped and re-acquired the commit waiter's 2756 * lock, we have to re-check to see if the waiter was marked 2757 * "done" during that process. If the waiter was marked "done", 2758 * the "lwb" pointer is no longer valid (it can be free'd after 2759 * the waiter is marked "done"), so without this check we could 2760 * wind up with a use-after-free error below. 2761 */ 2762 if (zcw->zcw_done) 2763 goto out; 2764 2765 ASSERT3P(lwb, ==, zcw->zcw_lwb); 2766 2767 /* 2768 * We've already checked this above, but since we hadn't acquired 2769 * the zilog's zl_issuer_lock, we have to perform this check a 2770 * second time while holding the lock. 2771 * 2772 * We don't need to hold the zl_lock since the lwb cannot transition 2773 * from OPENED to ISSUED while we hold the zl_issuer_lock. The lwb 2774 * _can_ transition from ISSUED to DONE, but it's OK to race with 2775 * that transition since we treat the lwb the same, whether it's in 2776 * the ISSUED or DONE states. 2777 * 2778 * The important thing, is we treat the lwb differently depending on 2779 * if it's ISSUED or OPENED, and block any other threads that might 2780 * attempt to issue this lwb. For that reason we hold the 2781 * zl_issuer_lock when checking the lwb_state; we must not call 2782 * zil_lwb_write_issue() if the lwb had already been issued. 2783 * 2784 * See the comment above the lwb_state_t structure definition for 2785 * more details on the lwb states, and locking requirements. 2786 */ 2787 if (lwb->lwb_state == LWB_STATE_ISSUED || 2788 lwb->lwb_state == LWB_STATE_WRITE_DONE || 2789 lwb->lwb_state == LWB_STATE_FLUSH_DONE) 2790 goto out; 2791 2792 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED); 2793 2794 /* 2795 * As described in the comments above zil_commit_waiter() and 2796 * zil_process_commit_list(), we need to issue this lwb's zio 2797 * since we've reached the commit waiter's timeout and it still 2798 * hasn't been issued. 2799 */ 2800 lwb_t *nlwb = zil_lwb_write_issue(zilog, lwb); 2801 2802 IMPLY(nlwb != NULL, lwb->lwb_state != LWB_STATE_OPENED); 2803 2804 /* 2805 * Since the lwb's zio hadn't been issued by the time this thread 2806 * reached its timeout, we reset the zilog's "zl_cur_used" field 2807 * to influence the zil block size selection algorithm. 2808 * 2809 * By having to issue the lwb's zio here, it means the size of the 2810 * lwb was too large, given the incoming throughput of itxs. By 2811 * setting "zl_cur_used" to zero, we communicate this fact to the 2812 * block size selection algorithm, so it can take this information 2813 * into account, and potentially select a smaller size for the 2814 * next lwb block that is allocated. 2815 */ 2816 zilog->zl_cur_used = 0; 2817 2818 if (nlwb == NULL) { 2819 /* 2820 * When zil_lwb_write_issue() returns NULL, this 2821 * indicates zio_alloc_zil() failed to allocate the 2822 * "next" lwb on-disk. When this occurs, the ZIL write 2823 * pipeline must be stalled; see the comment within the 2824 * zil_commit_writer_stall() function for more details. 2825 * 2826 * We must drop the commit waiter's lock prior to 2827 * calling zil_commit_writer_stall() or else we can wind 2828 * up with the following deadlock: 2829 * 2830 * - This thread is waiting for the txg to sync while 2831 * holding the waiter's lock; txg_wait_synced() is 2832 * used within txg_commit_writer_stall(). 2833 * 2834 * - The txg can't sync because it is waiting for this 2835 * lwb's zio callback to call dmu_tx_commit(). 2836 * 2837 * - The lwb's zio callback can't call dmu_tx_commit() 2838 * because it's blocked trying to acquire the waiter's 2839 * lock, which occurs prior to calling dmu_tx_commit() 2840 */ 2841 mutex_exit(&zcw->zcw_lock); 2842 zil_commit_writer_stall(zilog); 2843 mutex_enter(&zcw->zcw_lock); 2844 } 2845 2846 out: 2847 mutex_exit(&zilog->zl_issuer_lock); 2848 ASSERT(MUTEX_HELD(&zcw->zcw_lock)); 2849 } 2850 2851 /* 2852 * This function is responsible for performing the following two tasks: 2853 * 2854 * 1. its primary responsibility is to block until the given "commit 2855 * waiter" is considered "done". 2856 * 2857 * 2. its secondary responsibility is to issue the zio for the lwb that 2858 * the given "commit waiter" is waiting on, if this function has 2859 * waited "long enough" and the lwb is still in the "open" state. 2860 * 2861 * Given a sufficient amount of itxs being generated and written using 2862 * the ZIL, the lwb's zio will be issued via the zil_lwb_commit() 2863 * function. If this does not occur, this secondary responsibility will 2864 * ensure the lwb is issued even if there is not other synchronous 2865 * activity on the system. 2866 * 2867 * For more details, see zil_process_commit_list(); more specifically, 2868 * the comment at the bottom of that function. 2869 */ 2870 static void 2871 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw) 2872 { 2873 ASSERT(!MUTEX_HELD(&zilog->zl_lock)); 2874 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock)); 2875 ASSERT(spa_writeable(zilog->zl_spa)); 2876 2877 mutex_enter(&zcw->zcw_lock); 2878 2879 /* 2880 * The timeout is scaled based on the lwb latency to avoid 2881 * significantly impacting the latency of each individual itx. 2882 * For more details, see the comment at the bottom of the 2883 * zil_process_commit_list() function. 2884 */ 2885 int pct = MAX(zfs_commit_timeout_pct, 1); 2886 hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100; 2887 hrtime_t wakeup = gethrtime() + sleep; 2888 boolean_t timedout = B_FALSE; 2889 2890 while (!zcw->zcw_done) { 2891 ASSERT(MUTEX_HELD(&zcw->zcw_lock)); 2892 2893 lwb_t *lwb = zcw->zcw_lwb; 2894 2895 /* 2896 * Usually, the waiter will have a non-NULL lwb field here, 2897 * but it's possible for it to be NULL as a result of 2898 * zil_commit() racing with spa_sync(). 2899 * 2900 * When zil_clean() is called, it's possible for the itxg 2901 * list (which may be cleaned via a taskq) to contain 2902 * commit itxs. When this occurs, the commit waiters linked 2903 * off of these commit itxs will not be committed to an 2904 * lwb. Additionally, these commit waiters will not be 2905 * marked done until zil_commit_waiter_skip() is called via 2906 * zil_itxg_clean(). 2907 * 2908 * Thus, it's possible for this commit waiter (i.e. the 2909 * "zcw" variable) to be found in this "in between" state; 2910 * where it's "zcw_lwb" field is NULL, and it hasn't yet 2911 * been skipped, so it's "zcw_done" field is still B_FALSE. 2912 */ 2913 IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED); 2914 2915 if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) { 2916 ASSERT3B(timedout, ==, B_FALSE); 2917 2918 /* 2919 * If the lwb hasn't been issued yet, then we 2920 * need to wait with a timeout, in case this 2921 * function needs to issue the lwb after the 2922 * timeout is reached; responsibility (2) from 2923 * the comment above this function. 2924 */ 2925 int rc = cv_timedwait_hires(&zcw->zcw_cv, 2926 &zcw->zcw_lock, wakeup, USEC2NSEC(1), 2927 CALLOUT_FLAG_ABSOLUTE); 2928 2929 if (rc != -1 || zcw->zcw_done) 2930 continue; 2931 2932 timedout = B_TRUE; 2933 zil_commit_waiter_timeout(zilog, zcw); 2934 2935 if (!zcw->zcw_done) { 2936 /* 2937 * If the commit waiter has already been 2938 * marked "done", it's possible for the 2939 * waiter's lwb structure to have already 2940 * been freed. Thus, we can only reliably 2941 * make these assertions if the waiter 2942 * isn't done. 2943 */ 2944 ASSERT3P(lwb, ==, zcw->zcw_lwb); 2945 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED); 2946 } 2947 } else { 2948 /* 2949 * If the lwb isn't open, then it must have already 2950 * been issued. In that case, there's no need to 2951 * use a timeout when waiting for the lwb to 2952 * complete. 2953 * 2954 * Additionally, if the lwb is NULL, the waiter 2955 * will soon be signaled and marked done via 2956 * zil_clean() and zil_itxg_clean(), so no timeout 2957 * is required. 2958 */ 2959 2960 IMPLY(lwb != NULL, 2961 lwb->lwb_state == LWB_STATE_ISSUED || 2962 lwb->lwb_state == LWB_STATE_WRITE_DONE || 2963 lwb->lwb_state == LWB_STATE_FLUSH_DONE); 2964 cv_wait(&zcw->zcw_cv, &zcw->zcw_lock); 2965 } 2966 } 2967 2968 mutex_exit(&zcw->zcw_lock); 2969 } 2970 2971 static zil_commit_waiter_t * 2972 zil_alloc_commit_waiter(void) 2973 { 2974 zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP); 2975 2976 cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL); 2977 mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL); 2978 list_link_init(&zcw->zcw_node); 2979 zcw->zcw_lwb = NULL; 2980 zcw->zcw_done = B_FALSE; 2981 zcw->zcw_zio_error = 0; 2982 2983 return (zcw); 2984 } 2985 2986 static void 2987 zil_free_commit_waiter(zil_commit_waiter_t *zcw) 2988 { 2989 ASSERT(!list_link_active(&zcw->zcw_node)); 2990 ASSERT3P(zcw->zcw_lwb, ==, NULL); 2991 ASSERT3B(zcw->zcw_done, ==, B_TRUE); 2992 mutex_destroy(&zcw->zcw_lock); 2993 cv_destroy(&zcw->zcw_cv); 2994 kmem_cache_free(zil_zcw_cache, zcw); 2995 } 2996 2997 /* 2998 * This function is used to create a TX_COMMIT itx and assign it. This 2999 * way, it will be linked into the ZIL's list of synchronous itxs, and 3000 * then later committed to an lwb (or skipped) when 3001 * zil_process_commit_list() is called. 3002 */ 3003 static void 3004 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw) 3005 { 3006 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os); 3007 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 3008 3009 itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t)); 3010 itx->itx_sync = B_TRUE; 3011 itx->itx_private = zcw; 3012 3013 zil_itx_assign(zilog, itx, tx); 3014 3015 dmu_tx_commit(tx); 3016 } 3017 3018 /* 3019 * Commit ZFS Intent Log transactions (itxs) to stable storage. 3020 * 3021 * When writing ZIL transactions to the on-disk representation of the 3022 * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple 3023 * itxs can be committed to a single lwb. Once a lwb is written and 3024 * committed to stable storage (i.e. the lwb is written, and vdevs have 3025 * been flushed), each itx that was committed to that lwb is also 3026 * considered to be committed to stable storage. 3027 * 3028 * When an itx is committed to an lwb, the log record (lr_t) contained 3029 * by the itx is copied into the lwb's zio buffer, and once this buffer 3030 * is written to disk, it becomes an on-disk ZIL block. 3031 * 3032 * As itxs are generated, they're inserted into the ZIL's queue of 3033 * uncommitted itxs. The semantics of zil_commit() are such that it will 3034 * block until all itxs that were in the queue when it was called, are 3035 * committed to stable storage. 3036 * 3037 * If "foid" is zero, this means all "synchronous" and "asynchronous" 3038 * itxs, for all objects in the dataset, will be committed to stable 3039 * storage prior to zil_commit() returning. If "foid" is non-zero, all 3040 * "synchronous" itxs for all objects, but only "asynchronous" itxs 3041 * that correspond to the foid passed in, will be committed to stable 3042 * storage prior to zil_commit() returning. 3043 * 3044 * Generally speaking, when zil_commit() is called, the consumer doesn't 3045 * actually care about _all_ of the uncommitted itxs. Instead, they're 3046 * simply trying to waiting for a specific itx to be committed to disk, 3047 * but the interface(s) for interacting with the ZIL don't allow such 3048 * fine-grained communication. A better interface would allow a consumer 3049 * to create and assign an itx, and then pass a reference to this itx to 3050 * zil_commit(); such that zil_commit() would return as soon as that 3051 * specific itx was committed to disk (instead of waiting for _all_ 3052 * itxs to be committed). 3053 * 3054 * When a thread calls zil_commit() a special "commit itx" will be 3055 * generated, along with a corresponding "waiter" for this commit itx. 3056 * zil_commit() will wait on this waiter's CV, such that when the waiter 3057 * is marked done, and signaled, zil_commit() will return. 3058 * 3059 * This commit itx is inserted into the queue of uncommitted itxs. This 3060 * provides an easy mechanism for determining which itxs were in the 3061 * queue prior to zil_commit() having been called, and which itxs were 3062 * added after zil_commit() was called. 3063 * 3064 * The commit itx is special; it doesn't have any on-disk representation. 3065 * When a commit itx is "committed" to an lwb, the waiter associated 3066 * with it is linked onto the lwb's list of waiters. Then, when that lwb 3067 * completes, each waiter on the lwb's list is marked done and signaled 3068 * -- allowing the thread waiting on the waiter to return from zil_commit(). 3069 * 3070 * It's important to point out a few critical factors that allow us 3071 * to make use of the commit itxs, commit waiters, per-lwb lists of 3072 * commit waiters, and zio completion callbacks like we're doing: 3073 * 3074 * 1. The list of waiters for each lwb is traversed, and each commit 3075 * waiter is marked "done" and signaled, in the zio completion 3076 * callback of the lwb's zio[*]. 3077 * 3078 * * Actually, the waiters are signaled in the zio completion 3079 * callback of the root zio for the DKIOCFLUSHWRITECACHE commands 3080 * that are sent to the vdevs upon completion of the lwb zio. 3081 * 3082 * 2. When the itxs are inserted into the ZIL's queue of uncommitted 3083 * itxs, the order in which they are inserted is preserved[*]; as 3084 * itxs are added to the queue, they are added to the tail of 3085 * in-memory linked lists. 3086 * 3087 * When committing the itxs to lwbs (to be written to disk), they 3088 * are committed in the same order in which the itxs were added to 3089 * the uncommitted queue's linked list(s); i.e. the linked list of 3090 * itxs to commit is traversed from head to tail, and each itx is 3091 * committed to an lwb in that order. 3092 * 3093 * * To clarify: 3094 * 3095 * - the order of "sync" itxs is preserved w.r.t. other 3096 * "sync" itxs, regardless of the corresponding objects. 3097 * - the order of "async" itxs is preserved w.r.t. other 3098 * "async" itxs corresponding to the same object. 3099 * - the order of "async" itxs is *not* preserved w.r.t. other 3100 * "async" itxs corresponding to different objects. 3101 * - the order of "sync" itxs w.r.t. "async" itxs (or vice 3102 * versa) is *not* preserved, even for itxs that correspond 3103 * to the same object. 3104 * 3105 * For more details, see: zil_itx_assign(), zil_async_to_sync(), 3106 * zil_get_commit_list(), and zil_process_commit_list(). 3107 * 3108 * 3. The lwbs represent a linked list of blocks on disk. Thus, any 3109 * lwb cannot be considered committed to stable storage, until its 3110 * "previous" lwb is also committed to stable storage. This fact, 3111 * coupled with the fact described above, means that itxs are 3112 * committed in (roughly) the order in which they were generated. 3113 * This is essential because itxs are dependent on prior itxs. 3114 * Thus, we *must not* deem an itx as being committed to stable 3115 * storage, until *all* prior itxs have also been committed to 3116 * stable storage. 3117 * 3118 * To enforce this ordering of lwb zio's, while still leveraging as 3119 * much of the underlying storage performance as possible, we rely 3120 * on two fundamental concepts: 3121 * 3122 * 1. The creation and issuance of lwb zio's is protected by 3123 * the zilog's "zl_issuer_lock", which ensures only a single 3124 * thread is creating and/or issuing lwb's at a time 3125 * 2. The "previous" lwb is a child of the "current" lwb 3126 * (leveraging the zio parent-child dependency graph) 3127 * 3128 * By relying on this parent-child zio relationship, we can have 3129 * many lwb zio's concurrently issued to the underlying storage, 3130 * but the order in which they complete will be the same order in 3131 * which they were created. 3132 */ 3133 void 3134 zil_commit(zilog_t *zilog, uint64_t foid) 3135 { 3136 /* 3137 * We should never attempt to call zil_commit on a snapshot for 3138 * a couple of reasons: 3139 * 3140 * 1. A snapshot may never be modified, thus it cannot have any 3141 * in-flight itxs that would have modified the dataset. 3142 * 3143 * 2. By design, when zil_commit() is called, a commit itx will 3144 * be assigned to this zilog; as a result, the zilog will be 3145 * dirtied. We must not dirty the zilog of a snapshot; there's 3146 * checks in the code that enforce this invariant, and will 3147 * cause a panic if it's not upheld. 3148 */ 3149 ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE); 3150 3151 if (zilog->zl_sync == ZFS_SYNC_DISABLED) 3152 return; 3153 3154 if (!spa_writeable(zilog->zl_spa)) { 3155 /* 3156 * If the SPA is not writable, there should never be any 3157 * pending itxs waiting to be committed to disk. If that 3158 * weren't true, we'd skip writing those itxs out, and 3159 * would break the semantics of zil_commit(); thus, we're 3160 * verifying that truth before we return to the caller. 3161 */ 3162 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3163 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL); 3164 for (int i = 0; i < TXG_SIZE; i++) 3165 ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL); 3166 return; 3167 } 3168 3169 /* 3170 * If the ZIL is suspended, we don't want to dirty it by calling 3171 * zil_commit_itx_assign() below, nor can we write out 3172 * lwbs like would be done in zil_commit_write(). Thus, we 3173 * simply rely on txg_wait_synced() to maintain the necessary 3174 * semantics, and avoid calling those functions altogether. 3175 */ 3176 if (zilog->zl_suspend > 0) { 3177 txg_wait_synced(zilog->zl_dmu_pool, 0); 3178 return; 3179 } 3180 3181 zil_commit_impl(zilog, foid); 3182 } 3183 3184 void 3185 zil_commit_impl(zilog_t *zilog, uint64_t foid) 3186 { 3187 ZIL_STAT_BUMP(zilog, zil_commit_count); 3188 3189 /* 3190 * Move the "async" itxs for the specified foid to the "sync" 3191 * queues, such that they will be later committed (or skipped) 3192 * to an lwb when zil_process_commit_list() is called. 3193 * 3194 * Since these "async" itxs must be committed prior to this 3195 * call to zil_commit returning, we must perform this operation 3196 * before we call zil_commit_itx_assign(). 3197 */ 3198 zil_async_to_sync(zilog, foid); 3199 3200 /* 3201 * We allocate a new "waiter" structure which will initially be 3202 * linked to the commit itx using the itx's "itx_private" field. 3203 * Since the commit itx doesn't represent any on-disk state, 3204 * when it's committed to an lwb, rather than copying the its 3205 * lr_t into the lwb's buffer, the commit itx's "waiter" will be 3206 * added to the lwb's list of waiters. Then, when the lwb is 3207 * committed to stable storage, each waiter in the lwb's list of 3208 * waiters will be marked "done", and signalled. 3209 * 3210 * We must create the waiter and assign the commit itx prior to 3211 * calling zil_commit_writer(), or else our specific commit itx 3212 * is not guaranteed to be committed to an lwb prior to calling 3213 * zil_commit_waiter(). 3214 */ 3215 zil_commit_waiter_t *zcw = zil_alloc_commit_waiter(); 3216 zil_commit_itx_assign(zilog, zcw); 3217 3218 zil_commit_writer(zilog, zcw); 3219 zil_commit_waiter(zilog, zcw); 3220 3221 if (zcw->zcw_zio_error != 0) { 3222 /* 3223 * If there was an error writing out the ZIL blocks that 3224 * this thread is waiting on, then we fallback to 3225 * relying on spa_sync() to write out the data this 3226 * thread is waiting on. Obviously this has performance 3227 * implications, but the expectation is for this to be 3228 * an exceptional case, and shouldn't occur often. 3229 */ 3230 DTRACE_PROBE2(zil__commit__io__error, 3231 zilog_t *, zilog, zil_commit_waiter_t *, zcw); 3232 txg_wait_synced(zilog->zl_dmu_pool, 0); 3233 } 3234 3235 zil_free_commit_waiter(zcw); 3236 } 3237 3238 /* 3239 * Called in syncing context to free committed log blocks and update log header. 3240 */ 3241 void 3242 zil_sync(zilog_t *zilog, dmu_tx_t *tx) 3243 { 3244 zil_header_t *zh = zil_header_in_syncing_context(zilog); 3245 uint64_t txg = dmu_tx_get_txg(tx); 3246 spa_t *spa = zilog->zl_spa; 3247 uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK]; 3248 lwb_t *lwb; 3249 3250 /* 3251 * We don't zero out zl_destroy_txg, so make sure we don't try 3252 * to destroy it twice. 3253 */ 3254 if (spa_sync_pass(spa) != 1) 3255 return; 3256 3257 zil_lwb_flush_wait_all(zilog, txg); 3258 3259 mutex_enter(&zilog->zl_lock); 3260 3261 ASSERT(zilog->zl_stop_sync == 0); 3262 3263 if (*replayed_seq != 0) { 3264 ASSERT(zh->zh_replay_seq < *replayed_seq); 3265 zh->zh_replay_seq = *replayed_seq; 3266 *replayed_seq = 0; 3267 } 3268 3269 if (zilog->zl_destroy_txg == txg) { 3270 blkptr_t blk = zh->zh_log; 3271 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 3272 3273 ASSERT(list_head(&zilog->zl_lwb_list) == NULL); 3274 3275 memset(zh, 0, sizeof (zil_header_t)); 3276 memset(zilog->zl_replayed_seq, 0, 3277 sizeof (zilog->zl_replayed_seq)); 3278 3279 if (zilog->zl_keep_first) { 3280 /* 3281 * If this block was part of log chain that couldn't 3282 * be claimed because a device was missing during 3283 * zil_claim(), but that device later returns, 3284 * then this block could erroneously appear valid. 3285 * To guard against this, assign a new GUID to the new 3286 * log chain so it doesn't matter what blk points to. 3287 */ 3288 zil_init_log_chain(zilog, &blk); 3289 zh->zh_log = blk; 3290 } else { 3291 /* 3292 * A destroyed ZIL chain can't contain any TX_SETSAXATTR 3293 * records. So, deactivate the feature for this dataset. 3294 * We activate it again when we start a new ZIL chain. 3295 */ 3296 if (dsl_dataset_feature_is_active(ds, 3297 SPA_FEATURE_ZILSAXATTR)) 3298 dsl_dataset_deactivate_feature(ds, 3299 SPA_FEATURE_ZILSAXATTR, tx); 3300 } 3301 } 3302 3303 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 3304 zh->zh_log = lwb->lwb_blk; 3305 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg) 3306 break; 3307 list_remove(&zilog->zl_lwb_list, lwb); 3308 zio_free(spa, txg, &lwb->lwb_blk); 3309 zil_free_lwb(zilog, lwb); 3310 3311 /* 3312 * If we don't have anything left in the lwb list then 3313 * we've had an allocation failure and we need to zero 3314 * out the zil_header blkptr so that we don't end 3315 * up freeing the same block twice. 3316 */ 3317 if (list_head(&zilog->zl_lwb_list) == NULL) 3318 BP_ZERO(&zh->zh_log); 3319 } 3320 3321 /* 3322 * Remove fastwrite on any blocks that have been pre-allocated for 3323 * the next commit. This prevents fastwrite counter pollution by 3324 * unused, long-lived LWBs. 3325 */ 3326 for (; lwb != NULL; lwb = list_next(&zilog->zl_lwb_list, lwb)) { 3327 if (lwb->lwb_fastwrite && !lwb->lwb_write_zio) { 3328 metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk); 3329 lwb->lwb_fastwrite = 0; 3330 } 3331 } 3332 3333 mutex_exit(&zilog->zl_lock); 3334 } 3335 3336 static int 3337 zil_lwb_cons(void *vbuf, void *unused, int kmflag) 3338 { 3339 (void) unused, (void) kmflag; 3340 lwb_t *lwb = vbuf; 3341 list_create(&lwb->lwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node)); 3342 list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t), 3343 offsetof(zil_commit_waiter_t, zcw_node)); 3344 avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare, 3345 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node)); 3346 mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL); 3347 return (0); 3348 } 3349 3350 static void 3351 zil_lwb_dest(void *vbuf, void *unused) 3352 { 3353 (void) unused; 3354 lwb_t *lwb = vbuf; 3355 mutex_destroy(&lwb->lwb_vdev_lock); 3356 avl_destroy(&lwb->lwb_vdev_tree); 3357 list_destroy(&lwb->lwb_waiters); 3358 list_destroy(&lwb->lwb_itxs); 3359 } 3360 3361 void 3362 zil_init(void) 3363 { 3364 zil_lwb_cache = kmem_cache_create("zil_lwb_cache", 3365 sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0); 3366 3367 zil_zcw_cache = kmem_cache_create("zil_zcw_cache", 3368 sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 3369 3370 zil_sums_init(&zil_sums_global); 3371 zil_kstats_global = kstat_create("zfs", 0, "zil", "misc", 3372 KSTAT_TYPE_NAMED, sizeof (zil_stats) / sizeof (kstat_named_t), 3373 KSTAT_FLAG_VIRTUAL); 3374 3375 if (zil_kstats_global != NULL) { 3376 zil_kstats_global->ks_data = &zil_stats; 3377 zil_kstats_global->ks_update = zil_kstats_global_update; 3378 zil_kstats_global->ks_private = NULL; 3379 kstat_install(zil_kstats_global); 3380 } 3381 } 3382 3383 void 3384 zil_fini(void) 3385 { 3386 kmem_cache_destroy(zil_zcw_cache); 3387 kmem_cache_destroy(zil_lwb_cache); 3388 3389 if (zil_kstats_global != NULL) { 3390 kstat_delete(zil_kstats_global); 3391 zil_kstats_global = NULL; 3392 } 3393 3394 zil_sums_fini(&zil_sums_global); 3395 } 3396 3397 void 3398 zil_set_sync(zilog_t *zilog, uint64_t sync) 3399 { 3400 zilog->zl_sync = sync; 3401 } 3402 3403 void 3404 zil_set_logbias(zilog_t *zilog, uint64_t logbias) 3405 { 3406 zilog->zl_logbias = logbias; 3407 } 3408 3409 zilog_t * 3410 zil_alloc(objset_t *os, zil_header_t *zh_phys) 3411 { 3412 zilog_t *zilog; 3413 3414 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP); 3415 3416 zilog->zl_header = zh_phys; 3417 zilog->zl_os = os; 3418 zilog->zl_spa = dmu_objset_spa(os); 3419 zilog->zl_dmu_pool = dmu_objset_pool(os); 3420 zilog->zl_destroy_txg = TXG_INITIAL - 1; 3421 zilog->zl_logbias = dmu_objset_logbias(os); 3422 zilog->zl_sync = dmu_objset_syncprop(os); 3423 zilog->zl_dirty_max_txg = 0; 3424 zilog->zl_last_lwb_opened = NULL; 3425 zilog->zl_last_lwb_latency = 0; 3426 zilog->zl_max_block_size = zil_maxblocksize; 3427 3428 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL); 3429 mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL); 3430 mutex_init(&zilog->zl_lwb_io_lock, NULL, MUTEX_DEFAULT, NULL); 3431 3432 for (int i = 0; i < TXG_SIZE; i++) { 3433 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL, 3434 MUTEX_DEFAULT, NULL); 3435 } 3436 3437 list_create(&zilog->zl_lwb_list, sizeof (lwb_t), 3438 offsetof(lwb_t, lwb_node)); 3439 3440 list_create(&zilog->zl_itx_commit_list, sizeof (itx_t), 3441 offsetof(itx_t, itx_node)); 3442 3443 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL); 3444 cv_init(&zilog->zl_lwb_io_cv, NULL, CV_DEFAULT, NULL); 3445 3446 return (zilog); 3447 } 3448 3449 void 3450 zil_free(zilog_t *zilog) 3451 { 3452 int i; 3453 3454 zilog->zl_stop_sync = 1; 3455 3456 ASSERT0(zilog->zl_suspend); 3457 ASSERT0(zilog->zl_suspending); 3458 3459 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3460 list_destroy(&zilog->zl_lwb_list); 3461 3462 ASSERT(list_is_empty(&zilog->zl_itx_commit_list)); 3463 list_destroy(&zilog->zl_itx_commit_list); 3464 3465 for (i = 0; i < TXG_SIZE; i++) { 3466 /* 3467 * It's possible for an itx to be generated that doesn't dirty 3468 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean() 3469 * callback to remove the entry. We remove those here. 3470 * 3471 * Also free up the ziltest itxs. 3472 */ 3473 if (zilog->zl_itxg[i].itxg_itxs) 3474 zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs); 3475 mutex_destroy(&zilog->zl_itxg[i].itxg_lock); 3476 } 3477 3478 mutex_destroy(&zilog->zl_issuer_lock); 3479 mutex_destroy(&zilog->zl_lock); 3480 mutex_destroy(&zilog->zl_lwb_io_lock); 3481 3482 cv_destroy(&zilog->zl_cv_suspend); 3483 cv_destroy(&zilog->zl_lwb_io_cv); 3484 3485 kmem_free(zilog, sizeof (zilog_t)); 3486 } 3487 3488 /* 3489 * Open an intent log. 3490 */ 3491 zilog_t * 3492 zil_open(objset_t *os, zil_get_data_t *get_data, zil_sums_t *zil_sums) 3493 { 3494 zilog_t *zilog = dmu_objset_zil(os); 3495 3496 ASSERT3P(zilog->zl_get_data, ==, NULL); 3497 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL); 3498 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3499 3500 zilog->zl_get_data = get_data; 3501 zilog->zl_sums = zil_sums; 3502 3503 return (zilog); 3504 } 3505 3506 /* 3507 * Close an intent log. 3508 */ 3509 void 3510 zil_close(zilog_t *zilog) 3511 { 3512 lwb_t *lwb; 3513 uint64_t txg; 3514 3515 if (!dmu_objset_is_snapshot(zilog->zl_os)) { 3516 zil_commit(zilog, 0); 3517 } else { 3518 ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL); 3519 ASSERT0(zilog->zl_dirty_max_txg); 3520 ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE); 3521 } 3522 3523 mutex_enter(&zilog->zl_lock); 3524 lwb = list_tail(&zilog->zl_lwb_list); 3525 if (lwb == NULL) 3526 txg = zilog->zl_dirty_max_txg; 3527 else 3528 txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg); 3529 mutex_exit(&zilog->zl_lock); 3530 3531 /* 3532 * zl_lwb_max_issued_txg may be larger than lwb_max_txg. It depends 3533 * on the time when the dmu_tx transaction is assigned in 3534 * zil_lwb_write_issue(). 3535 */ 3536 mutex_enter(&zilog->zl_lwb_io_lock); 3537 txg = MAX(zilog->zl_lwb_max_issued_txg, txg); 3538 mutex_exit(&zilog->zl_lwb_io_lock); 3539 3540 /* 3541 * We need to use txg_wait_synced() to wait until that txg is synced. 3542 * zil_sync() will guarantee all lwbs up to that txg have been 3543 * written out, flushed, and cleaned. 3544 */ 3545 if (txg != 0) 3546 txg_wait_synced(zilog->zl_dmu_pool, txg); 3547 3548 if (zilog_is_dirty(zilog)) 3549 zfs_dbgmsg("zil (%px) is dirty, txg %llu", zilog, 3550 (u_longlong_t)txg); 3551 if (txg < spa_freeze_txg(zilog->zl_spa)) 3552 VERIFY(!zilog_is_dirty(zilog)); 3553 3554 zilog->zl_get_data = NULL; 3555 3556 /* 3557 * We should have only one lwb left on the list; remove it now. 3558 */ 3559 mutex_enter(&zilog->zl_lock); 3560 lwb = list_head(&zilog->zl_lwb_list); 3561 if (lwb != NULL) { 3562 ASSERT3P(lwb, ==, list_tail(&zilog->zl_lwb_list)); 3563 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED); 3564 3565 if (lwb->lwb_fastwrite) 3566 metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk); 3567 3568 list_remove(&zilog->zl_lwb_list, lwb); 3569 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 3570 zil_free_lwb(zilog, lwb); 3571 } 3572 mutex_exit(&zilog->zl_lock); 3573 } 3574 3575 static const char *suspend_tag = "zil suspending"; 3576 3577 /* 3578 * Suspend an intent log. While in suspended mode, we still honor 3579 * synchronous semantics, but we rely on txg_wait_synced() to do it. 3580 * On old version pools, we suspend the log briefly when taking a 3581 * snapshot so that it will have an empty intent log. 3582 * 3583 * Long holds are not really intended to be used the way we do here -- 3584 * held for such a short time. A concurrent caller of dsl_dataset_long_held() 3585 * could fail. Therefore we take pains to only put a long hold if it is 3586 * actually necessary. Fortunately, it will only be necessary if the 3587 * objset is currently mounted (or the ZVOL equivalent). In that case it 3588 * will already have a long hold, so we are not really making things any worse. 3589 * 3590 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or 3591 * zvol_state_t), and use their mechanism to prevent their hold from being 3592 * dropped (e.g. VFS_HOLD()). However, that would be even more pain for 3593 * very little gain. 3594 * 3595 * if cookiep == NULL, this does both the suspend & resume. 3596 * Otherwise, it returns with the dataset "long held", and the cookie 3597 * should be passed into zil_resume(). 3598 */ 3599 int 3600 zil_suspend(const char *osname, void **cookiep) 3601 { 3602 objset_t *os; 3603 zilog_t *zilog; 3604 const zil_header_t *zh; 3605 int error; 3606 3607 error = dmu_objset_hold(osname, suspend_tag, &os); 3608 if (error != 0) 3609 return (error); 3610 zilog = dmu_objset_zil(os); 3611 3612 mutex_enter(&zilog->zl_lock); 3613 zh = zilog->zl_header; 3614 3615 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */ 3616 mutex_exit(&zilog->zl_lock); 3617 dmu_objset_rele(os, suspend_tag); 3618 return (SET_ERROR(EBUSY)); 3619 } 3620 3621 /* 3622 * Don't put a long hold in the cases where we can avoid it. This 3623 * is when there is no cookie so we are doing a suspend & resume 3624 * (i.e. called from zil_vdev_offline()), and there's nothing to do 3625 * for the suspend because it's already suspended, or there's no ZIL. 3626 */ 3627 if (cookiep == NULL && !zilog->zl_suspending && 3628 (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) { 3629 mutex_exit(&zilog->zl_lock); 3630 dmu_objset_rele(os, suspend_tag); 3631 return (0); 3632 } 3633 3634 dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag); 3635 dsl_pool_rele(dmu_objset_pool(os), suspend_tag); 3636 3637 zilog->zl_suspend++; 3638 3639 if (zilog->zl_suspend > 1) { 3640 /* 3641 * Someone else is already suspending it. 3642 * Just wait for them to finish. 3643 */ 3644 3645 while (zilog->zl_suspending) 3646 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock); 3647 mutex_exit(&zilog->zl_lock); 3648 3649 if (cookiep == NULL) 3650 zil_resume(os); 3651 else 3652 *cookiep = os; 3653 return (0); 3654 } 3655 3656 /* 3657 * If there is no pointer to an on-disk block, this ZIL must not 3658 * be active (e.g. filesystem not mounted), so there's nothing 3659 * to clean up. 3660 */ 3661 if (BP_IS_HOLE(&zh->zh_log)) { 3662 ASSERT(cookiep != NULL); /* fast path already handled */ 3663 3664 *cookiep = os; 3665 mutex_exit(&zilog->zl_lock); 3666 return (0); 3667 } 3668 3669 /* 3670 * The ZIL has work to do. Ensure that the associated encryption 3671 * key will remain mapped while we are committing the log by 3672 * grabbing a reference to it. If the key isn't loaded we have no 3673 * choice but to return an error until the wrapping key is loaded. 3674 */ 3675 if (os->os_encrypted && 3676 dsl_dataset_create_key_mapping(dmu_objset_ds(os)) != 0) { 3677 zilog->zl_suspend--; 3678 mutex_exit(&zilog->zl_lock); 3679 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag); 3680 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag); 3681 return (SET_ERROR(EACCES)); 3682 } 3683 3684 zilog->zl_suspending = B_TRUE; 3685 mutex_exit(&zilog->zl_lock); 3686 3687 /* 3688 * We need to use zil_commit_impl to ensure we wait for all 3689 * LWB_STATE_OPENED and LWB_STATE_ISSUED lwbs to be committed 3690 * to disk before proceeding. If we used zil_commit instead, it 3691 * would just call txg_wait_synced(), because zl_suspend is set. 3692 * txg_wait_synced() doesn't wait for these lwb's to be 3693 * LWB_STATE_FLUSH_DONE before returning. 3694 */ 3695 zil_commit_impl(zilog, 0); 3696 3697 /* 3698 * Now that we've ensured all lwb's are LWB_STATE_FLUSH_DONE, we 3699 * use txg_wait_synced() to ensure the data from the zilog has 3700 * migrated to the main pool before calling zil_destroy(). 3701 */ 3702 txg_wait_synced(zilog->zl_dmu_pool, 0); 3703 3704 zil_destroy(zilog, B_FALSE); 3705 3706 mutex_enter(&zilog->zl_lock); 3707 zilog->zl_suspending = B_FALSE; 3708 cv_broadcast(&zilog->zl_cv_suspend); 3709 mutex_exit(&zilog->zl_lock); 3710 3711 if (os->os_encrypted) 3712 dsl_dataset_remove_key_mapping(dmu_objset_ds(os)); 3713 3714 if (cookiep == NULL) 3715 zil_resume(os); 3716 else 3717 *cookiep = os; 3718 return (0); 3719 } 3720 3721 void 3722 zil_resume(void *cookie) 3723 { 3724 objset_t *os = cookie; 3725 zilog_t *zilog = dmu_objset_zil(os); 3726 3727 mutex_enter(&zilog->zl_lock); 3728 ASSERT(zilog->zl_suspend != 0); 3729 zilog->zl_suspend--; 3730 mutex_exit(&zilog->zl_lock); 3731 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag); 3732 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag); 3733 } 3734 3735 typedef struct zil_replay_arg { 3736 zil_replay_func_t *const *zr_replay; 3737 void *zr_arg; 3738 boolean_t zr_byteswap; 3739 char *zr_lr; 3740 } zil_replay_arg_t; 3741 3742 static int 3743 zil_replay_error(zilog_t *zilog, const lr_t *lr, int error) 3744 { 3745 char name[ZFS_MAX_DATASET_NAME_LEN]; 3746 3747 zilog->zl_replaying_seq--; /* didn't actually replay this one */ 3748 3749 dmu_objset_name(zilog->zl_os, name); 3750 3751 cmn_err(CE_WARN, "ZFS replay transaction error %d, " 3752 "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name, 3753 (u_longlong_t)lr->lrc_seq, 3754 (u_longlong_t)(lr->lrc_txtype & ~TX_CI), 3755 (lr->lrc_txtype & TX_CI) ? "CI" : ""); 3756 3757 return (error); 3758 } 3759 3760 static int 3761 zil_replay_log_record(zilog_t *zilog, const lr_t *lr, void *zra, 3762 uint64_t claim_txg) 3763 { 3764 zil_replay_arg_t *zr = zra; 3765 const zil_header_t *zh = zilog->zl_header; 3766 uint64_t reclen = lr->lrc_reclen; 3767 uint64_t txtype = lr->lrc_txtype; 3768 int error = 0; 3769 3770 zilog->zl_replaying_seq = lr->lrc_seq; 3771 3772 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */ 3773 return (0); 3774 3775 if (lr->lrc_txg < claim_txg) /* already committed */ 3776 return (0); 3777 3778 /* Strip case-insensitive bit, still present in log record */ 3779 txtype &= ~TX_CI; 3780 3781 if (txtype == 0 || txtype >= TX_MAX_TYPE) 3782 return (zil_replay_error(zilog, lr, EINVAL)); 3783 3784 /* 3785 * If this record type can be logged out of order, the object 3786 * (lr_foid) may no longer exist. That's legitimate, not an error. 3787 */ 3788 if (TX_OOO(txtype)) { 3789 error = dmu_object_info(zilog->zl_os, 3790 LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL); 3791 if (error == ENOENT || error == EEXIST) 3792 return (0); 3793 } 3794 3795 /* 3796 * Make a copy of the data so we can revise and extend it. 3797 */ 3798 memcpy(zr->zr_lr, lr, reclen); 3799 3800 /* 3801 * If this is a TX_WRITE with a blkptr, suck in the data. 3802 */ 3803 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) { 3804 error = zil_read_log_data(zilog, (lr_write_t *)lr, 3805 zr->zr_lr + reclen); 3806 if (error != 0) 3807 return (zil_replay_error(zilog, lr, error)); 3808 } 3809 3810 /* 3811 * The log block containing this lr may have been byteswapped 3812 * so that we can easily examine common fields like lrc_txtype. 3813 * However, the log is a mix of different record types, and only the 3814 * replay vectors know how to byteswap their records. Therefore, if 3815 * the lr was byteswapped, undo it before invoking the replay vector. 3816 */ 3817 if (zr->zr_byteswap) 3818 byteswap_uint64_array(zr->zr_lr, reclen); 3819 3820 /* 3821 * We must now do two things atomically: replay this log record, 3822 * and update the log header sequence number to reflect the fact that 3823 * we did so. At the end of each replay function the sequence number 3824 * is updated if we are in replay mode. 3825 */ 3826 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap); 3827 if (error != 0) { 3828 /* 3829 * The DMU's dnode layer doesn't see removes until the txg 3830 * commits, so a subsequent claim can spuriously fail with 3831 * EEXIST. So if we receive any error we try syncing out 3832 * any removes then retry the transaction. Note that we 3833 * specify B_FALSE for byteswap now, so we don't do it twice. 3834 */ 3835 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0); 3836 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE); 3837 if (error != 0) 3838 return (zil_replay_error(zilog, lr, error)); 3839 } 3840 return (0); 3841 } 3842 3843 static int 3844 zil_incr_blks(zilog_t *zilog, const blkptr_t *bp, void *arg, uint64_t claim_txg) 3845 { 3846 (void) bp, (void) arg, (void) claim_txg; 3847 3848 zilog->zl_replay_blks++; 3849 3850 return (0); 3851 } 3852 3853 /* 3854 * If this dataset has a non-empty intent log, replay it and destroy it. 3855 * Return B_TRUE if there were any entries to replay. 3856 */ 3857 boolean_t 3858 zil_replay(objset_t *os, void *arg, 3859 zil_replay_func_t *const replay_func[TX_MAX_TYPE]) 3860 { 3861 zilog_t *zilog = dmu_objset_zil(os); 3862 const zil_header_t *zh = zilog->zl_header; 3863 zil_replay_arg_t zr; 3864 3865 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) { 3866 return (zil_destroy(zilog, B_TRUE)); 3867 } 3868 3869 zr.zr_replay = replay_func; 3870 zr.zr_arg = arg; 3871 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log); 3872 zr.zr_lr = vmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP); 3873 3874 /* 3875 * Wait for in-progress removes to sync before starting replay. 3876 */ 3877 txg_wait_synced(zilog->zl_dmu_pool, 0); 3878 3879 zilog->zl_replay = B_TRUE; 3880 zilog->zl_replay_time = ddi_get_lbolt(); 3881 ASSERT(zilog->zl_replay_blks == 0); 3882 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr, 3883 zh->zh_claim_txg, B_TRUE); 3884 vmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE); 3885 3886 zil_destroy(zilog, B_FALSE); 3887 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 3888 zilog->zl_replay = B_FALSE; 3889 3890 return (B_TRUE); 3891 } 3892 3893 boolean_t 3894 zil_replaying(zilog_t *zilog, dmu_tx_t *tx) 3895 { 3896 if (zilog->zl_sync == ZFS_SYNC_DISABLED) 3897 return (B_TRUE); 3898 3899 if (zilog->zl_replay) { 3900 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 3901 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] = 3902 zilog->zl_replaying_seq; 3903 return (B_TRUE); 3904 } 3905 3906 return (B_FALSE); 3907 } 3908 3909 int 3910 zil_reset(const char *osname, void *arg) 3911 { 3912 (void) arg; 3913 3914 int error = zil_suspend(osname, NULL); 3915 /* EACCES means crypto key not loaded */ 3916 if ((error == EACCES) || (error == EBUSY)) 3917 return (SET_ERROR(error)); 3918 if (error != 0) 3919 return (SET_ERROR(EEXIST)); 3920 return (0); 3921 } 3922 3923 EXPORT_SYMBOL(zil_alloc); 3924 EXPORT_SYMBOL(zil_free); 3925 EXPORT_SYMBOL(zil_open); 3926 EXPORT_SYMBOL(zil_close); 3927 EXPORT_SYMBOL(zil_replay); 3928 EXPORT_SYMBOL(zil_replaying); 3929 EXPORT_SYMBOL(zil_destroy); 3930 EXPORT_SYMBOL(zil_destroy_sync); 3931 EXPORT_SYMBOL(zil_itx_create); 3932 EXPORT_SYMBOL(zil_itx_destroy); 3933 EXPORT_SYMBOL(zil_itx_assign); 3934 EXPORT_SYMBOL(zil_commit); 3935 EXPORT_SYMBOL(zil_claim); 3936 EXPORT_SYMBOL(zil_check_log_chain); 3937 EXPORT_SYMBOL(zil_sync); 3938 EXPORT_SYMBOL(zil_clean); 3939 EXPORT_SYMBOL(zil_suspend); 3940 EXPORT_SYMBOL(zil_resume); 3941 EXPORT_SYMBOL(zil_lwb_add_block); 3942 EXPORT_SYMBOL(zil_bp_tree_add); 3943 EXPORT_SYMBOL(zil_set_sync); 3944 EXPORT_SYMBOL(zil_set_logbias); 3945 EXPORT_SYMBOL(zil_sums_init); 3946 EXPORT_SYMBOL(zil_sums_fini); 3947 EXPORT_SYMBOL(zil_kstat_values_update); 3948 3949 ZFS_MODULE_PARAM(zfs, zfs_, commit_timeout_pct, UINT, ZMOD_RW, 3950 "ZIL block open timeout percentage"); 3951 3952 ZFS_MODULE_PARAM(zfs_zil, zil_, replay_disable, INT, ZMOD_RW, 3953 "Disable intent logging replay"); 3954 3955 ZFS_MODULE_PARAM(zfs_zil, zil_, nocacheflush, INT, ZMOD_RW, 3956 "Disable ZIL cache flushes"); 3957 3958 ZFS_MODULE_PARAM(zfs_zil, zil_, slog_bulk, U64, ZMOD_RW, 3959 "Limit in bytes slog sync writes per commit"); 3960 3961 ZFS_MODULE_PARAM(zfs_zil, zil_, maxblocksize, UINT, ZMOD_RW, 3962 "Limit in bytes of ZIL log block size"); 3963