1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 24 * Copyright (c) 2014 Integros [integros.com] 25 * Copyright (c) 2018 Datto Inc. 26 */ 27 28 /* Portions Copyright 2010 Robert Milkowski */ 29 30 #include <sys/zfs_context.h> 31 #include <sys/spa.h> 32 #include <sys/spa_impl.h> 33 #include <sys/dmu.h> 34 #include <sys/zap.h> 35 #include <sys/arc.h> 36 #include <sys/stat.h> 37 #include <sys/zil.h> 38 #include <sys/zil_impl.h> 39 #include <sys/dsl_dataset.h> 40 #include <sys/vdev_impl.h> 41 #include <sys/dmu_tx.h> 42 #include <sys/dsl_pool.h> 43 #include <sys/metaslab.h> 44 #include <sys/trace_zfs.h> 45 #include <sys/abd.h> 46 #include <sys/brt.h> 47 #include <sys/wmsum.h> 48 49 /* 50 * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system 51 * calls that change the file system. Each itx has enough information to 52 * be able to replay them after a system crash, power loss, or 53 * equivalent failure mode. These are stored in memory until either: 54 * 55 * 1. they are committed to the pool by the DMU transaction group 56 * (txg), at which point they can be discarded; or 57 * 2. they are committed to the on-disk ZIL for the dataset being 58 * modified (e.g. due to an fsync, O_DSYNC, or other synchronous 59 * requirement). 60 * 61 * In the event of a crash or power loss, the itxs contained by each 62 * dataset's on-disk ZIL will be replayed when that dataset is first 63 * instantiated (e.g. if the dataset is a normal filesystem, when it is 64 * first mounted). 65 * 66 * As hinted at above, there is one ZIL per dataset (both the in-memory 67 * representation, and the on-disk representation). The on-disk format 68 * consists of 3 parts: 69 * 70 * - a single, per-dataset, ZIL header; which points to a chain of 71 * - zero or more ZIL blocks; each of which contains 72 * - zero or more ZIL records 73 * 74 * A ZIL record holds the information necessary to replay a single 75 * system call transaction. A ZIL block can hold many ZIL records, and 76 * the blocks are chained together, similarly to a singly linked list. 77 * 78 * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL 79 * block in the chain, and the ZIL header points to the first block in 80 * the chain. 81 * 82 * Note, there is not a fixed place in the pool to hold these ZIL 83 * blocks; they are dynamically allocated and freed as needed from the 84 * blocks available on the pool, though they can be preferentially 85 * allocated from a dedicated "log" vdev. 86 */ 87 88 /* 89 * This controls the amount of time that a ZIL block (lwb) will remain 90 * "open" when it isn't "full", and it has a thread waiting for it to be 91 * committed to stable storage. Please refer to the zil_commit_waiter() 92 * function (and the comments within it) for more details. 93 */ 94 static uint_t zfs_commit_timeout_pct = 5; 95 96 /* 97 * Minimal time we care to delay commit waiting for more ZIL records. 98 * At least FreeBSD kernel can't sleep for less than 2us at its best. 99 * So requests to sleep for less then 5us is a waste of CPU time with 100 * a risk of significant log latency increase due to oversleep. 101 */ 102 static uint64_t zil_min_commit_timeout = 5000; 103 104 /* 105 * See zil.h for more information about these fields. 106 */ 107 static zil_kstat_values_t zil_stats = { 108 { "zil_commit_count", KSTAT_DATA_UINT64 }, 109 { "zil_commit_writer_count", KSTAT_DATA_UINT64 }, 110 { "zil_itx_count", KSTAT_DATA_UINT64 }, 111 { "zil_itx_indirect_count", KSTAT_DATA_UINT64 }, 112 { "zil_itx_indirect_bytes", KSTAT_DATA_UINT64 }, 113 { "zil_itx_copied_count", KSTAT_DATA_UINT64 }, 114 { "zil_itx_copied_bytes", KSTAT_DATA_UINT64 }, 115 { "zil_itx_needcopy_count", KSTAT_DATA_UINT64 }, 116 { "zil_itx_needcopy_bytes", KSTAT_DATA_UINT64 }, 117 { "zil_itx_metaslab_normal_count", KSTAT_DATA_UINT64 }, 118 { "zil_itx_metaslab_normal_bytes", KSTAT_DATA_UINT64 }, 119 { "zil_itx_metaslab_normal_write", KSTAT_DATA_UINT64 }, 120 { "zil_itx_metaslab_normal_alloc", KSTAT_DATA_UINT64 }, 121 { "zil_itx_metaslab_slog_count", KSTAT_DATA_UINT64 }, 122 { "zil_itx_metaslab_slog_bytes", KSTAT_DATA_UINT64 }, 123 { "zil_itx_metaslab_slog_write", KSTAT_DATA_UINT64 }, 124 { "zil_itx_metaslab_slog_alloc", KSTAT_DATA_UINT64 }, 125 }; 126 127 static zil_sums_t zil_sums_global; 128 static kstat_t *zil_kstats_global; 129 130 /* 131 * Disable intent logging replay. This global ZIL switch affects all pools. 132 */ 133 int zil_replay_disable = 0; 134 135 /* 136 * Disable the DKIOCFLUSHWRITECACHE commands that are normally sent to 137 * the disk(s) by the ZIL after an LWB write has completed. Setting this 138 * will cause ZIL corruption on power loss if a volatile out-of-order 139 * write cache is enabled. 140 */ 141 static int zil_nocacheflush = 0; 142 143 /* 144 * Limit SLOG write size per commit executed with synchronous priority. 145 * Any writes above that will be executed with lower (asynchronous) priority 146 * to limit potential SLOG device abuse by single active ZIL writer. 147 */ 148 static uint64_t zil_slog_bulk = 768 * 1024; 149 150 static kmem_cache_t *zil_lwb_cache; 151 static kmem_cache_t *zil_zcw_cache; 152 153 static void zil_lwb_commit(zilog_t *zilog, lwb_t *lwb, itx_t *itx); 154 static void zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb); 155 static itx_t *zil_itx_clone(itx_t *oitx); 156 157 static int 158 zil_bp_compare(const void *x1, const void *x2) 159 { 160 const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva; 161 const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva; 162 163 int cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2)); 164 if (likely(cmp)) 165 return (cmp); 166 167 return (TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2))); 168 } 169 170 static void 171 zil_bp_tree_init(zilog_t *zilog) 172 { 173 avl_create(&zilog->zl_bp_tree, zil_bp_compare, 174 sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node)); 175 } 176 177 static void 178 zil_bp_tree_fini(zilog_t *zilog) 179 { 180 avl_tree_t *t = &zilog->zl_bp_tree; 181 zil_bp_node_t *zn; 182 void *cookie = NULL; 183 184 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL) 185 kmem_free(zn, sizeof (zil_bp_node_t)); 186 187 avl_destroy(t); 188 } 189 190 int 191 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp) 192 { 193 avl_tree_t *t = &zilog->zl_bp_tree; 194 const dva_t *dva; 195 zil_bp_node_t *zn; 196 avl_index_t where; 197 198 if (BP_IS_EMBEDDED(bp)) 199 return (0); 200 201 dva = BP_IDENTITY(bp); 202 203 if (avl_find(t, dva, &where) != NULL) 204 return (SET_ERROR(EEXIST)); 205 206 zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP); 207 zn->zn_dva = *dva; 208 avl_insert(t, zn, where); 209 210 return (0); 211 } 212 213 static zil_header_t * 214 zil_header_in_syncing_context(zilog_t *zilog) 215 { 216 return ((zil_header_t *)zilog->zl_header); 217 } 218 219 static void 220 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp) 221 { 222 zio_cksum_t *zc = &bp->blk_cksum; 223 224 (void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_0], 225 sizeof (zc->zc_word[ZIL_ZC_GUID_0])); 226 (void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_1], 227 sizeof (zc->zc_word[ZIL_ZC_GUID_1])); 228 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os); 229 zc->zc_word[ZIL_ZC_SEQ] = 1ULL; 230 } 231 232 static int 233 zil_kstats_global_update(kstat_t *ksp, int rw) 234 { 235 zil_kstat_values_t *zs = ksp->ks_data; 236 ASSERT3P(&zil_stats, ==, zs); 237 238 if (rw == KSTAT_WRITE) { 239 return (SET_ERROR(EACCES)); 240 } 241 242 zil_kstat_values_update(zs, &zil_sums_global); 243 244 return (0); 245 } 246 247 /* 248 * Read a log block and make sure it's valid. 249 */ 250 static int 251 zil_read_log_block(zilog_t *zilog, boolean_t decrypt, const blkptr_t *bp, 252 blkptr_t *nbp, char **begin, char **end, arc_buf_t **abuf) 253 { 254 zio_flag_t zio_flags = ZIO_FLAG_CANFAIL; 255 arc_flags_t aflags = ARC_FLAG_WAIT; 256 zbookmark_phys_t zb; 257 int error; 258 259 if (zilog->zl_header->zh_claim_txg == 0) 260 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; 261 262 if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) 263 zio_flags |= ZIO_FLAG_SPECULATIVE; 264 265 if (!decrypt) 266 zio_flags |= ZIO_FLAG_RAW; 267 268 SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET], 269 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); 270 271 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, 272 abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); 273 274 if (error == 0) { 275 zio_cksum_t cksum = bp->blk_cksum; 276 277 /* 278 * Validate the checksummed log block. 279 * 280 * Sequence numbers should be... sequential. The checksum 281 * verifier for the next block should be bp's checksum plus 1. 282 * 283 * Also check the log chain linkage and size used. 284 */ 285 cksum.zc_word[ZIL_ZC_SEQ]++; 286 287 uint64_t size = BP_GET_LSIZE(bp); 288 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { 289 zil_chain_t *zilc = (*abuf)->b_data; 290 char *lr = (char *)(zilc + 1); 291 292 if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum, 293 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) || 294 zilc->zc_nused < sizeof (*zilc) || 295 zilc->zc_nused > size) { 296 error = SET_ERROR(ECKSUM); 297 } else { 298 *begin = lr; 299 *end = lr + zilc->zc_nused - sizeof (*zilc); 300 *nbp = zilc->zc_next_blk; 301 } 302 } else { 303 char *lr = (*abuf)->b_data; 304 zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1; 305 306 if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum, 307 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) || 308 (zilc->zc_nused > (size - sizeof (*zilc)))) { 309 error = SET_ERROR(ECKSUM); 310 } else { 311 *begin = lr; 312 *end = lr + zilc->zc_nused; 313 *nbp = zilc->zc_next_blk; 314 } 315 } 316 } 317 318 return (error); 319 } 320 321 /* 322 * Read a TX_WRITE log data block. 323 */ 324 static int 325 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf) 326 { 327 zio_flag_t zio_flags = ZIO_FLAG_CANFAIL; 328 const blkptr_t *bp = &lr->lr_blkptr; 329 arc_flags_t aflags = ARC_FLAG_WAIT; 330 arc_buf_t *abuf = NULL; 331 zbookmark_phys_t zb; 332 int error; 333 334 if (BP_IS_HOLE(bp)) { 335 if (wbuf != NULL) 336 memset(wbuf, 0, MAX(BP_GET_LSIZE(bp), lr->lr_length)); 337 return (0); 338 } 339 340 if (zilog->zl_header->zh_claim_txg == 0) 341 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; 342 343 /* 344 * If we are not using the resulting data, we are just checking that 345 * it hasn't been corrupted so we don't need to waste CPU time 346 * decompressing and decrypting it. 347 */ 348 if (wbuf == NULL) 349 zio_flags |= ZIO_FLAG_RAW; 350 351 ASSERT3U(BP_GET_LSIZE(bp), !=, 0); 352 SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid, 353 ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp)); 354 355 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf, 356 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); 357 358 if (error == 0) { 359 if (wbuf != NULL) 360 memcpy(wbuf, abuf->b_data, arc_buf_size(abuf)); 361 arc_buf_destroy(abuf, &abuf); 362 } 363 364 return (error); 365 } 366 367 void 368 zil_sums_init(zil_sums_t *zs) 369 { 370 wmsum_init(&zs->zil_commit_count, 0); 371 wmsum_init(&zs->zil_commit_writer_count, 0); 372 wmsum_init(&zs->zil_itx_count, 0); 373 wmsum_init(&zs->zil_itx_indirect_count, 0); 374 wmsum_init(&zs->zil_itx_indirect_bytes, 0); 375 wmsum_init(&zs->zil_itx_copied_count, 0); 376 wmsum_init(&zs->zil_itx_copied_bytes, 0); 377 wmsum_init(&zs->zil_itx_needcopy_count, 0); 378 wmsum_init(&zs->zil_itx_needcopy_bytes, 0); 379 wmsum_init(&zs->zil_itx_metaslab_normal_count, 0); 380 wmsum_init(&zs->zil_itx_metaslab_normal_bytes, 0); 381 wmsum_init(&zs->zil_itx_metaslab_normal_write, 0); 382 wmsum_init(&zs->zil_itx_metaslab_normal_alloc, 0); 383 wmsum_init(&zs->zil_itx_metaslab_slog_count, 0); 384 wmsum_init(&zs->zil_itx_metaslab_slog_bytes, 0); 385 wmsum_init(&zs->zil_itx_metaslab_slog_write, 0); 386 wmsum_init(&zs->zil_itx_metaslab_slog_alloc, 0); 387 } 388 389 void 390 zil_sums_fini(zil_sums_t *zs) 391 { 392 wmsum_fini(&zs->zil_commit_count); 393 wmsum_fini(&zs->zil_commit_writer_count); 394 wmsum_fini(&zs->zil_itx_count); 395 wmsum_fini(&zs->zil_itx_indirect_count); 396 wmsum_fini(&zs->zil_itx_indirect_bytes); 397 wmsum_fini(&zs->zil_itx_copied_count); 398 wmsum_fini(&zs->zil_itx_copied_bytes); 399 wmsum_fini(&zs->zil_itx_needcopy_count); 400 wmsum_fini(&zs->zil_itx_needcopy_bytes); 401 wmsum_fini(&zs->zil_itx_metaslab_normal_count); 402 wmsum_fini(&zs->zil_itx_metaslab_normal_bytes); 403 wmsum_fini(&zs->zil_itx_metaslab_normal_write); 404 wmsum_fini(&zs->zil_itx_metaslab_normal_alloc); 405 wmsum_fini(&zs->zil_itx_metaslab_slog_count); 406 wmsum_fini(&zs->zil_itx_metaslab_slog_bytes); 407 wmsum_fini(&zs->zil_itx_metaslab_slog_write); 408 wmsum_fini(&zs->zil_itx_metaslab_slog_alloc); 409 } 410 411 void 412 zil_kstat_values_update(zil_kstat_values_t *zs, zil_sums_t *zil_sums) 413 { 414 zs->zil_commit_count.value.ui64 = 415 wmsum_value(&zil_sums->zil_commit_count); 416 zs->zil_commit_writer_count.value.ui64 = 417 wmsum_value(&zil_sums->zil_commit_writer_count); 418 zs->zil_itx_count.value.ui64 = 419 wmsum_value(&zil_sums->zil_itx_count); 420 zs->zil_itx_indirect_count.value.ui64 = 421 wmsum_value(&zil_sums->zil_itx_indirect_count); 422 zs->zil_itx_indirect_bytes.value.ui64 = 423 wmsum_value(&zil_sums->zil_itx_indirect_bytes); 424 zs->zil_itx_copied_count.value.ui64 = 425 wmsum_value(&zil_sums->zil_itx_copied_count); 426 zs->zil_itx_copied_bytes.value.ui64 = 427 wmsum_value(&zil_sums->zil_itx_copied_bytes); 428 zs->zil_itx_needcopy_count.value.ui64 = 429 wmsum_value(&zil_sums->zil_itx_needcopy_count); 430 zs->zil_itx_needcopy_bytes.value.ui64 = 431 wmsum_value(&zil_sums->zil_itx_needcopy_bytes); 432 zs->zil_itx_metaslab_normal_count.value.ui64 = 433 wmsum_value(&zil_sums->zil_itx_metaslab_normal_count); 434 zs->zil_itx_metaslab_normal_bytes.value.ui64 = 435 wmsum_value(&zil_sums->zil_itx_metaslab_normal_bytes); 436 zs->zil_itx_metaslab_normal_write.value.ui64 = 437 wmsum_value(&zil_sums->zil_itx_metaslab_normal_write); 438 zs->zil_itx_metaslab_normal_alloc.value.ui64 = 439 wmsum_value(&zil_sums->zil_itx_metaslab_normal_alloc); 440 zs->zil_itx_metaslab_slog_count.value.ui64 = 441 wmsum_value(&zil_sums->zil_itx_metaslab_slog_count); 442 zs->zil_itx_metaslab_slog_bytes.value.ui64 = 443 wmsum_value(&zil_sums->zil_itx_metaslab_slog_bytes); 444 zs->zil_itx_metaslab_slog_write.value.ui64 = 445 wmsum_value(&zil_sums->zil_itx_metaslab_slog_write); 446 zs->zil_itx_metaslab_slog_alloc.value.ui64 = 447 wmsum_value(&zil_sums->zil_itx_metaslab_slog_alloc); 448 } 449 450 /* 451 * Parse the intent log, and call parse_func for each valid record within. 452 */ 453 int 454 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func, 455 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg, 456 boolean_t decrypt) 457 { 458 const zil_header_t *zh = zilog->zl_header; 459 boolean_t claimed = !!zh->zh_claim_txg; 460 uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX; 461 uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX; 462 uint64_t max_blk_seq = 0; 463 uint64_t max_lr_seq = 0; 464 uint64_t blk_count = 0; 465 uint64_t lr_count = 0; 466 blkptr_t blk, next_blk = {{{{0}}}}; 467 int error = 0; 468 469 /* 470 * Old logs didn't record the maximum zh_claim_lr_seq. 471 */ 472 if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) 473 claim_lr_seq = UINT64_MAX; 474 475 /* 476 * Starting at the block pointed to by zh_log we read the log chain. 477 * For each block in the chain we strongly check that block to 478 * ensure its validity. We stop when an invalid block is found. 479 * For each block pointer in the chain we call parse_blk_func(). 480 * For each record in each valid block we call parse_lr_func(). 481 * If the log has been claimed, stop if we encounter a sequence 482 * number greater than the highest claimed sequence number. 483 */ 484 zil_bp_tree_init(zilog); 485 486 for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) { 487 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; 488 int reclen; 489 char *lrp, *end; 490 arc_buf_t *abuf = NULL; 491 492 if (blk_seq > claim_blk_seq) 493 break; 494 495 error = parse_blk_func(zilog, &blk, arg, txg); 496 if (error != 0) 497 break; 498 ASSERT3U(max_blk_seq, <, blk_seq); 499 max_blk_seq = blk_seq; 500 blk_count++; 501 502 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq) 503 break; 504 505 error = zil_read_log_block(zilog, decrypt, &blk, &next_blk, 506 &lrp, &end, &abuf); 507 if (error != 0) { 508 if (abuf) 509 arc_buf_destroy(abuf, &abuf); 510 if (claimed) { 511 char name[ZFS_MAX_DATASET_NAME_LEN]; 512 513 dmu_objset_name(zilog->zl_os, name); 514 515 cmn_err(CE_WARN, "ZFS read log block error %d, " 516 "dataset %s, seq 0x%llx\n", error, name, 517 (u_longlong_t)blk_seq); 518 } 519 break; 520 } 521 522 for (; lrp < end; lrp += reclen) { 523 lr_t *lr = (lr_t *)lrp; 524 reclen = lr->lrc_reclen; 525 ASSERT3U(reclen, >=, sizeof (lr_t)); 526 if (lr->lrc_seq > claim_lr_seq) { 527 arc_buf_destroy(abuf, &abuf); 528 goto done; 529 } 530 531 error = parse_lr_func(zilog, lr, arg, txg); 532 if (error != 0) { 533 arc_buf_destroy(abuf, &abuf); 534 goto done; 535 } 536 ASSERT3U(max_lr_seq, <, lr->lrc_seq); 537 max_lr_seq = lr->lrc_seq; 538 lr_count++; 539 } 540 arc_buf_destroy(abuf, &abuf); 541 } 542 done: 543 zilog->zl_parse_error = error; 544 zilog->zl_parse_blk_seq = max_blk_seq; 545 zilog->zl_parse_lr_seq = max_lr_seq; 546 zilog->zl_parse_blk_count = blk_count; 547 zilog->zl_parse_lr_count = lr_count; 548 549 zil_bp_tree_fini(zilog); 550 551 return (error); 552 } 553 554 static int 555 zil_clear_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx, 556 uint64_t first_txg) 557 { 558 (void) tx; 559 ASSERT(!BP_IS_HOLE(bp)); 560 561 /* 562 * As we call this function from the context of a rewind to a 563 * checkpoint, each ZIL block whose txg is later than the txg 564 * that we rewind to is invalid. Thus, we return -1 so 565 * zil_parse() doesn't attempt to read it. 566 */ 567 if (bp->blk_birth >= first_txg) 568 return (-1); 569 570 if (zil_bp_tree_add(zilog, bp) != 0) 571 return (0); 572 573 zio_free(zilog->zl_spa, first_txg, bp); 574 return (0); 575 } 576 577 static int 578 zil_noop_log_record(zilog_t *zilog, const lr_t *lrc, void *tx, 579 uint64_t first_txg) 580 { 581 (void) zilog, (void) lrc, (void) tx, (void) first_txg; 582 return (0); 583 } 584 585 static int 586 zil_claim_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx, 587 uint64_t first_txg) 588 { 589 /* 590 * Claim log block if not already committed and not already claimed. 591 * If tx == NULL, just verify that the block is claimable. 592 */ 593 if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg || 594 zil_bp_tree_add(zilog, bp) != 0) 595 return (0); 596 597 return (zio_wait(zio_claim(NULL, zilog->zl_spa, 598 tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL, 599 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB))); 600 } 601 602 static int 603 zil_claim_write(zilog_t *zilog, const lr_t *lrc, void *tx, uint64_t first_txg) 604 { 605 lr_write_t *lr = (lr_write_t *)lrc; 606 int error; 607 608 ASSERT(lrc->lrc_txtype == TX_WRITE); 609 610 /* 611 * If the block is not readable, don't claim it. This can happen 612 * in normal operation when a log block is written to disk before 613 * some of the dmu_sync() blocks it points to. In this case, the 614 * transaction cannot have been committed to anyone (we would have 615 * waited for all writes to be stable first), so it is semantically 616 * correct to declare this the end of the log. 617 */ 618 if (lr->lr_blkptr.blk_birth >= first_txg) { 619 error = zil_read_log_data(zilog, lr, NULL); 620 if (error != 0) 621 return (error); 622 } 623 624 return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg)); 625 } 626 627 static int 628 zil_claim_clone_range(zilog_t *zilog, const lr_t *lrc, void *tx) 629 { 630 const lr_clone_range_t *lr = (const lr_clone_range_t *)lrc; 631 const blkptr_t *bp; 632 spa_t *spa; 633 uint_t ii; 634 635 ASSERT(lrc->lrc_txtype == TX_CLONE_RANGE); 636 637 if (tx == NULL) { 638 return (0); 639 } 640 641 /* 642 * XXX: Do we need to byteswap lr? 643 */ 644 645 spa = zilog->zl_spa; 646 647 for (ii = 0; ii < lr->lr_nbps; ii++) { 648 bp = &lr->lr_bps[ii]; 649 650 /* 651 * When data in embedded into BP there is no need to create 652 * BRT entry as there is no data block. Just copy the BP as 653 * it contains the data. 654 */ 655 if (!BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) { 656 brt_pending_add(spa, bp, tx); 657 } 658 } 659 660 return (0); 661 } 662 663 static int 664 zil_claim_log_record(zilog_t *zilog, const lr_t *lrc, void *tx, 665 uint64_t first_txg) 666 { 667 668 switch (lrc->lrc_txtype) { 669 case TX_WRITE: 670 return (zil_claim_write(zilog, lrc, tx, first_txg)); 671 case TX_CLONE_RANGE: 672 return (zil_claim_clone_range(zilog, lrc, tx)); 673 default: 674 return (0); 675 } 676 } 677 678 static int 679 zil_free_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx, 680 uint64_t claim_txg) 681 { 682 (void) claim_txg; 683 684 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp); 685 686 return (0); 687 } 688 689 static int 690 zil_free_write(zilog_t *zilog, const lr_t *lrc, void *tx, uint64_t claim_txg) 691 { 692 lr_write_t *lr = (lr_write_t *)lrc; 693 blkptr_t *bp = &lr->lr_blkptr; 694 695 ASSERT(lrc->lrc_txtype == TX_WRITE); 696 697 /* 698 * If we previously claimed it, we need to free it. 699 */ 700 if (bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 && 701 !BP_IS_HOLE(bp)) { 702 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp); 703 } 704 705 return (0); 706 } 707 708 static int 709 zil_free_clone_range(zilog_t *zilog, const lr_t *lrc, void *tx) 710 { 711 const lr_clone_range_t *lr = (const lr_clone_range_t *)lrc; 712 const blkptr_t *bp; 713 spa_t *spa; 714 uint_t ii; 715 716 ASSERT(lrc->lrc_txtype == TX_CLONE_RANGE); 717 718 if (tx == NULL) { 719 return (0); 720 } 721 722 spa = zilog->zl_spa; 723 724 for (ii = 0; ii < lr->lr_nbps; ii++) { 725 bp = &lr->lr_bps[ii]; 726 727 if (!BP_IS_HOLE(bp)) { 728 zio_free(spa, dmu_tx_get_txg(tx), bp); 729 } 730 } 731 732 return (0); 733 } 734 735 static int 736 zil_free_log_record(zilog_t *zilog, const lr_t *lrc, void *tx, 737 uint64_t claim_txg) 738 { 739 740 if (claim_txg == 0) { 741 return (0); 742 } 743 744 switch (lrc->lrc_txtype) { 745 case TX_WRITE: 746 return (zil_free_write(zilog, lrc, tx, claim_txg)); 747 case TX_CLONE_RANGE: 748 return (zil_free_clone_range(zilog, lrc, tx)); 749 default: 750 return (0); 751 } 752 } 753 754 static int 755 zil_lwb_vdev_compare(const void *x1, const void *x2) 756 { 757 const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev; 758 const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev; 759 760 return (TREE_CMP(v1, v2)); 761 } 762 763 static lwb_t * 764 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg, 765 boolean_t fastwrite) 766 { 767 lwb_t *lwb; 768 769 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); 770 lwb->lwb_zilog = zilog; 771 lwb->lwb_blk = *bp; 772 lwb->lwb_fastwrite = fastwrite; 773 lwb->lwb_slog = slog; 774 lwb->lwb_indirect = B_FALSE; 775 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { 776 lwb->lwb_nused = lwb->lwb_nfilled = sizeof (zil_chain_t); 777 lwb->lwb_sz = BP_GET_LSIZE(bp); 778 } else { 779 lwb->lwb_nused = lwb->lwb_nfilled = 0; 780 lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t); 781 } 782 lwb->lwb_state = LWB_STATE_CLOSED; 783 lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp)); 784 lwb->lwb_write_zio = NULL; 785 lwb->lwb_root_zio = NULL; 786 lwb->lwb_issued_timestamp = 0; 787 lwb->lwb_issued_txg = 0; 788 lwb->lwb_max_txg = txg; 789 790 mutex_enter(&zilog->zl_lock); 791 list_insert_tail(&zilog->zl_lwb_list, lwb); 792 mutex_exit(&zilog->zl_lock); 793 794 return (lwb); 795 } 796 797 static void 798 zil_free_lwb(zilog_t *zilog, lwb_t *lwb) 799 { 800 ASSERT(MUTEX_HELD(&zilog->zl_lock)); 801 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock)); 802 VERIFY(list_is_empty(&lwb->lwb_waiters)); 803 VERIFY(list_is_empty(&lwb->lwb_itxs)); 804 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree)); 805 ASSERT3P(lwb->lwb_write_zio, ==, NULL); 806 ASSERT3P(lwb->lwb_root_zio, ==, NULL); 807 ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa)); 808 ASSERT(lwb->lwb_state == LWB_STATE_CLOSED || 809 lwb->lwb_state == LWB_STATE_FLUSH_DONE); 810 811 /* 812 * Clear the zilog's field to indicate this lwb is no longer 813 * valid, and prevent use-after-free errors. 814 */ 815 if (zilog->zl_last_lwb_opened == lwb) 816 zilog->zl_last_lwb_opened = NULL; 817 818 kmem_cache_free(zil_lwb_cache, lwb); 819 } 820 821 /* 822 * Called when we create in-memory log transactions so that we know 823 * to cleanup the itxs at the end of spa_sync(). 824 */ 825 static void 826 zilog_dirty(zilog_t *zilog, uint64_t txg) 827 { 828 dsl_pool_t *dp = zilog->zl_dmu_pool; 829 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 830 831 ASSERT(spa_writeable(zilog->zl_spa)); 832 833 if (ds->ds_is_snapshot) 834 panic("dirtying snapshot!"); 835 836 if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) { 837 /* up the hold count until we can be written out */ 838 dmu_buf_add_ref(ds->ds_dbuf, zilog); 839 840 zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg); 841 } 842 } 843 844 /* 845 * Determine if the zil is dirty in the specified txg. Callers wanting to 846 * ensure that the dirty state does not change must hold the itxg_lock for 847 * the specified txg. Holding the lock will ensure that the zil cannot be 848 * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current 849 * state. 850 */ 851 static boolean_t __maybe_unused 852 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg) 853 { 854 dsl_pool_t *dp = zilog->zl_dmu_pool; 855 856 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK)) 857 return (B_TRUE); 858 return (B_FALSE); 859 } 860 861 /* 862 * Determine if the zil is dirty. The zil is considered dirty if it has 863 * any pending itx records that have not been cleaned by zil_clean(). 864 */ 865 static boolean_t 866 zilog_is_dirty(zilog_t *zilog) 867 { 868 dsl_pool_t *dp = zilog->zl_dmu_pool; 869 870 for (int t = 0; t < TXG_SIZE; t++) { 871 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t)) 872 return (B_TRUE); 873 } 874 return (B_FALSE); 875 } 876 877 /* 878 * Its called in zil_commit context (zil_process_commit_list()/zil_create()). 879 * It activates SPA_FEATURE_ZILSAXATTR feature, if its enabled. 880 * Check dsl_dataset_feature_is_active to avoid txg_wait_synced() on every 881 * zil_commit. 882 */ 883 static void 884 zil_commit_activate_saxattr_feature(zilog_t *zilog) 885 { 886 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 887 uint64_t txg = 0; 888 dmu_tx_t *tx = NULL; 889 890 if (spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) && 891 dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL && 892 !dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR)) { 893 tx = dmu_tx_create(zilog->zl_os); 894 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 895 dsl_dataset_dirty(ds, tx); 896 txg = dmu_tx_get_txg(tx); 897 898 mutex_enter(&ds->ds_lock); 899 ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] = 900 (void *)B_TRUE; 901 mutex_exit(&ds->ds_lock); 902 dmu_tx_commit(tx); 903 txg_wait_synced(zilog->zl_dmu_pool, txg); 904 } 905 } 906 907 /* 908 * Create an on-disk intent log. 909 */ 910 static lwb_t * 911 zil_create(zilog_t *zilog) 912 { 913 const zil_header_t *zh = zilog->zl_header; 914 lwb_t *lwb = NULL; 915 uint64_t txg = 0; 916 dmu_tx_t *tx = NULL; 917 blkptr_t blk; 918 int error = 0; 919 boolean_t fastwrite = FALSE; 920 boolean_t slog = FALSE; 921 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 922 923 924 /* 925 * Wait for any previous destroy to complete. 926 */ 927 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 928 929 ASSERT(zh->zh_claim_txg == 0); 930 ASSERT(zh->zh_replay_seq == 0); 931 932 blk = zh->zh_log; 933 934 /* 935 * Allocate an initial log block if: 936 * - there isn't one already 937 * - the existing block is the wrong endianness 938 */ 939 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) { 940 tx = dmu_tx_create(zilog->zl_os); 941 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 942 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 943 txg = dmu_tx_get_txg(tx); 944 945 if (!BP_IS_HOLE(&blk)) { 946 zio_free(zilog->zl_spa, txg, &blk); 947 BP_ZERO(&blk); 948 } 949 950 error = zio_alloc_zil(zilog->zl_spa, zilog->zl_os, txg, &blk, 951 ZIL_MIN_BLKSZ, &slog); 952 fastwrite = TRUE; 953 954 if (error == 0) 955 zil_init_log_chain(zilog, &blk); 956 } 957 958 /* 959 * Allocate a log write block (lwb) for the first log block. 960 */ 961 if (error == 0) 962 lwb = zil_alloc_lwb(zilog, &blk, slog, txg, fastwrite); 963 964 /* 965 * If we just allocated the first log block, commit our transaction 966 * and wait for zil_sync() to stuff the block pointer into zh_log. 967 * (zh is part of the MOS, so we cannot modify it in open context.) 968 */ 969 if (tx != NULL) { 970 /* 971 * If "zilsaxattr" feature is enabled on zpool, then activate 972 * it now when we're creating the ZIL chain. We can't wait with 973 * this until we write the first xattr log record because we 974 * need to wait for the feature activation to sync out. 975 */ 976 if (spa_feature_is_enabled(zilog->zl_spa, 977 SPA_FEATURE_ZILSAXATTR) && dmu_objset_type(zilog->zl_os) != 978 DMU_OST_ZVOL) { 979 mutex_enter(&ds->ds_lock); 980 ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] = 981 (void *)B_TRUE; 982 mutex_exit(&ds->ds_lock); 983 } 984 985 dmu_tx_commit(tx); 986 txg_wait_synced(zilog->zl_dmu_pool, txg); 987 } else { 988 /* 989 * This branch covers the case where we enable the feature on a 990 * zpool that has existing ZIL headers. 991 */ 992 zil_commit_activate_saxattr_feature(zilog); 993 } 994 IMPLY(spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) && 995 dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL, 996 dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR)); 997 998 ASSERT(error != 0 || memcmp(&blk, &zh->zh_log, sizeof (blk)) == 0); 999 IMPLY(error == 0, lwb != NULL); 1000 1001 return (lwb); 1002 } 1003 1004 /* 1005 * In one tx, free all log blocks and clear the log header. If keep_first 1006 * is set, then we're replaying a log with no content. We want to keep the 1007 * first block, however, so that the first synchronous transaction doesn't 1008 * require a txg_wait_synced() in zil_create(). We don't need to 1009 * txg_wait_synced() here either when keep_first is set, because both 1010 * zil_create() and zil_destroy() will wait for any in-progress destroys 1011 * to complete. 1012 * Return B_TRUE if there were any entries to replay. 1013 */ 1014 boolean_t 1015 zil_destroy(zilog_t *zilog, boolean_t keep_first) 1016 { 1017 const zil_header_t *zh = zilog->zl_header; 1018 lwb_t *lwb; 1019 dmu_tx_t *tx; 1020 uint64_t txg; 1021 1022 /* 1023 * Wait for any previous destroy to complete. 1024 */ 1025 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 1026 1027 zilog->zl_old_header = *zh; /* debugging aid */ 1028 1029 if (BP_IS_HOLE(&zh->zh_log)) 1030 return (B_FALSE); 1031 1032 tx = dmu_tx_create(zilog->zl_os); 1033 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 1034 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 1035 txg = dmu_tx_get_txg(tx); 1036 1037 mutex_enter(&zilog->zl_lock); 1038 1039 ASSERT3U(zilog->zl_destroy_txg, <, txg); 1040 zilog->zl_destroy_txg = txg; 1041 zilog->zl_keep_first = keep_first; 1042 1043 if (!list_is_empty(&zilog->zl_lwb_list)) { 1044 ASSERT(zh->zh_claim_txg == 0); 1045 VERIFY(!keep_first); 1046 while ((lwb = list_remove_head(&zilog->zl_lwb_list)) != NULL) { 1047 if (lwb->lwb_fastwrite) 1048 metaslab_fastwrite_unmark(zilog->zl_spa, 1049 &lwb->lwb_blk); 1050 if (lwb->lwb_buf != NULL) 1051 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 1052 zio_free(zilog->zl_spa, txg, &lwb->lwb_blk); 1053 zil_free_lwb(zilog, lwb); 1054 } 1055 } else if (!keep_first) { 1056 zil_destroy_sync(zilog, tx); 1057 } 1058 mutex_exit(&zilog->zl_lock); 1059 1060 dmu_tx_commit(tx); 1061 1062 return (B_TRUE); 1063 } 1064 1065 void 1066 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx) 1067 { 1068 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 1069 (void) zil_parse(zilog, zil_free_log_block, 1070 zil_free_log_record, tx, zilog->zl_header->zh_claim_txg, B_FALSE); 1071 } 1072 1073 int 1074 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg) 1075 { 1076 dmu_tx_t *tx = txarg; 1077 zilog_t *zilog; 1078 uint64_t first_txg; 1079 zil_header_t *zh; 1080 objset_t *os; 1081 int error; 1082 1083 error = dmu_objset_own_obj(dp, ds->ds_object, 1084 DMU_OST_ANY, B_FALSE, B_FALSE, FTAG, &os); 1085 if (error != 0) { 1086 /* 1087 * EBUSY indicates that the objset is inconsistent, in which 1088 * case it can not have a ZIL. 1089 */ 1090 if (error != EBUSY) { 1091 cmn_err(CE_WARN, "can't open objset for %llu, error %u", 1092 (unsigned long long)ds->ds_object, error); 1093 } 1094 1095 return (0); 1096 } 1097 1098 zilog = dmu_objset_zil(os); 1099 zh = zil_header_in_syncing_context(zilog); 1100 ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa)); 1101 first_txg = spa_min_claim_txg(zilog->zl_spa); 1102 1103 /* 1104 * If the spa_log_state is not set to be cleared, check whether 1105 * the current uberblock is a checkpoint one and if the current 1106 * header has been claimed before moving on. 1107 * 1108 * If the current uberblock is a checkpointed uberblock then 1109 * one of the following scenarios took place: 1110 * 1111 * 1] We are currently rewinding to the checkpoint of the pool. 1112 * 2] We crashed in the middle of a checkpoint rewind but we 1113 * did manage to write the checkpointed uberblock to the 1114 * vdev labels, so when we tried to import the pool again 1115 * the checkpointed uberblock was selected from the import 1116 * procedure. 1117 * 1118 * In both cases we want to zero out all the ZIL blocks, except 1119 * the ones that have been claimed at the time of the checkpoint 1120 * (their zh_claim_txg != 0). The reason is that these blocks 1121 * may be corrupted since we may have reused their locations on 1122 * disk after we took the checkpoint. 1123 * 1124 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier 1125 * when we first figure out whether the current uberblock is 1126 * checkpointed or not. Unfortunately, that would discard all 1127 * the logs, including the ones that are claimed, and we would 1128 * leak space. 1129 */ 1130 if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR || 1131 (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 && 1132 zh->zh_claim_txg == 0)) { 1133 if (!BP_IS_HOLE(&zh->zh_log)) { 1134 (void) zil_parse(zilog, zil_clear_log_block, 1135 zil_noop_log_record, tx, first_txg, B_FALSE); 1136 } 1137 BP_ZERO(&zh->zh_log); 1138 if (os->os_encrypted) 1139 os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE; 1140 dsl_dataset_dirty(dmu_objset_ds(os), tx); 1141 dmu_objset_disown(os, B_FALSE, FTAG); 1142 return (0); 1143 } 1144 1145 /* 1146 * If we are not rewinding and opening the pool normally, then 1147 * the min_claim_txg should be equal to the first txg of the pool. 1148 */ 1149 ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa)); 1150 1151 /* 1152 * Claim all log blocks if we haven't already done so, and remember 1153 * the highest claimed sequence number. This ensures that if we can 1154 * read only part of the log now (e.g. due to a missing device), 1155 * but we can read the entire log later, we will not try to replay 1156 * or destroy beyond the last block we successfully claimed. 1157 */ 1158 ASSERT3U(zh->zh_claim_txg, <=, first_txg); 1159 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) { 1160 (void) zil_parse(zilog, zil_claim_log_block, 1161 zil_claim_log_record, tx, first_txg, B_FALSE); 1162 zh->zh_claim_txg = first_txg; 1163 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq; 1164 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq; 1165 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1) 1166 zh->zh_flags |= ZIL_REPLAY_NEEDED; 1167 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID; 1168 if (os->os_encrypted) 1169 os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE; 1170 dsl_dataset_dirty(dmu_objset_ds(os), tx); 1171 } 1172 1173 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1)); 1174 dmu_objset_disown(os, B_FALSE, FTAG); 1175 return (0); 1176 } 1177 1178 /* 1179 * Check the log by walking the log chain. 1180 * Checksum errors are ok as they indicate the end of the chain. 1181 * Any other error (no device or read failure) returns an error. 1182 */ 1183 int 1184 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx) 1185 { 1186 (void) dp; 1187 zilog_t *zilog; 1188 objset_t *os; 1189 blkptr_t *bp; 1190 int error; 1191 1192 ASSERT(tx == NULL); 1193 1194 error = dmu_objset_from_ds(ds, &os); 1195 if (error != 0) { 1196 cmn_err(CE_WARN, "can't open objset %llu, error %d", 1197 (unsigned long long)ds->ds_object, error); 1198 return (0); 1199 } 1200 1201 zilog = dmu_objset_zil(os); 1202 bp = (blkptr_t *)&zilog->zl_header->zh_log; 1203 1204 if (!BP_IS_HOLE(bp)) { 1205 vdev_t *vd; 1206 boolean_t valid = B_TRUE; 1207 1208 /* 1209 * Check the first block and determine if it's on a log device 1210 * which may have been removed or faulted prior to loading this 1211 * pool. If so, there's no point in checking the rest of the 1212 * log as its content should have already been synced to the 1213 * pool. 1214 */ 1215 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER); 1216 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0])); 1217 if (vd->vdev_islog && vdev_is_dead(vd)) 1218 valid = vdev_log_state_valid(vd); 1219 spa_config_exit(os->os_spa, SCL_STATE, FTAG); 1220 1221 if (!valid) 1222 return (0); 1223 1224 /* 1225 * Check whether the current uberblock is checkpointed (e.g. 1226 * we are rewinding) and whether the current header has been 1227 * claimed or not. If it hasn't then skip verifying it. We 1228 * do this because its ZIL blocks may be part of the pool's 1229 * state before the rewind, which is no longer valid. 1230 */ 1231 zil_header_t *zh = zil_header_in_syncing_context(zilog); 1232 if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 && 1233 zh->zh_claim_txg == 0) 1234 return (0); 1235 } 1236 1237 /* 1238 * Because tx == NULL, zil_claim_log_block() will not actually claim 1239 * any blocks, but just determine whether it is possible to do so. 1240 * In addition to checking the log chain, zil_claim_log_block() 1241 * will invoke zio_claim() with a done func of spa_claim_notify(), 1242 * which will update spa_max_claim_txg. See spa_load() for details. 1243 */ 1244 error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx, 1245 zilog->zl_header->zh_claim_txg ? -1ULL : 1246 spa_min_claim_txg(os->os_spa), B_FALSE); 1247 1248 return ((error == ECKSUM || error == ENOENT) ? 0 : error); 1249 } 1250 1251 /* 1252 * When an itx is "skipped", this function is used to properly mark the 1253 * waiter as "done, and signal any thread(s) waiting on it. An itx can 1254 * be skipped (and not committed to an lwb) for a variety of reasons, 1255 * one of them being that the itx was committed via spa_sync(), prior to 1256 * it being committed to an lwb; this can happen if a thread calling 1257 * zil_commit() is racing with spa_sync(). 1258 */ 1259 static void 1260 zil_commit_waiter_skip(zil_commit_waiter_t *zcw) 1261 { 1262 mutex_enter(&zcw->zcw_lock); 1263 ASSERT3B(zcw->zcw_done, ==, B_FALSE); 1264 zcw->zcw_done = B_TRUE; 1265 cv_broadcast(&zcw->zcw_cv); 1266 mutex_exit(&zcw->zcw_lock); 1267 } 1268 1269 /* 1270 * This function is used when the given waiter is to be linked into an 1271 * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb. 1272 * At this point, the waiter will no longer be referenced by the itx, 1273 * and instead, will be referenced by the lwb. 1274 */ 1275 static void 1276 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb) 1277 { 1278 /* 1279 * The lwb_waiters field of the lwb is protected by the zilog's 1280 * zl_lock, thus it must be held when calling this function. 1281 */ 1282 ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_lock)); 1283 1284 mutex_enter(&zcw->zcw_lock); 1285 ASSERT(!list_link_active(&zcw->zcw_node)); 1286 ASSERT3P(zcw->zcw_lwb, ==, NULL); 1287 ASSERT3P(lwb, !=, NULL); 1288 ASSERT(lwb->lwb_state == LWB_STATE_OPENED || 1289 lwb->lwb_state == LWB_STATE_ISSUED || 1290 lwb->lwb_state == LWB_STATE_WRITE_DONE); 1291 1292 list_insert_tail(&lwb->lwb_waiters, zcw); 1293 zcw->zcw_lwb = lwb; 1294 mutex_exit(&zcw->zcw_lock); 1295 } 1296 1297 /* 1298 * This function is used when zio_alloc_zil() fails to allocate a ZIL 1299 * block, and the given waiter must be linked to the "nolwb waiters" 1300 * list inside of zil_process_commit_list(). 1301 */ 1302 static void 1303 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb) 1304 { 1305 mutex_enter(&zcw->zcw_lock); 1306 ASSERT(!list_link_active(&zcw->zcw_node)); 1307 ASSERT3P(zcw->zcw_lwb, ==, NULL); 1308 list_insert_tail(nolwb, zcw); 1309 mutex_exit(&zcw->zcw_lock); 1310 } 1311 1312 void 1313 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp) 1314 { 1315 avl_tree_t *t = &lwb->lwb_vdev_tree; 1316 avl_index_t where; 1317 zil_vdev_node_t *zv, zvsearch; 1318 int ndvas = BP_GET_NDVAS(bp); 1319 int i; 1320 1321 if (zil_nocacheflush) 1322 return; 1323 1324 mutex_enter(&lwb->lwb_vdev_lock); 1325 for (i = 0; i < ndvas; i++) { 1326 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]); 1327 if (avl_find(t, &zvsearch, &where) == NULL) { 1328 zv = kmem_alloc(sizeof (*zv), KM_SLEEP); 1329 zv->zv_vdev = zvsearch.zv_vdev; 1330 avl_insert(t, zv, where); 1331 } 1332 } 1333 mutex_exit(&lwb->lwb_vdev_lock); 1334 } 1335 1336 static void 1337 zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb) 1338 { 1339 avl_tree_t *src = &lwb->lwb_vdev_tree; 1340 avl_tree_t *dst = &nlwb->lwb_vdev_tree; 1341 void *cookie = NULL; 1342 zil_vdev_node_t *zv; 1343 1344 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE); 1345 ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE); 1346 ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE); 1347 1348 /* 1349 * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does 1350 * not need the protection of lwb_vdev_lock (it will only be modified 1351 * while holding zilog->zl_lock) as its writes and those of its 1352 * children have all completed. The younger 'nlwb' may be waiting on 1353 * future writes to additional vdevs. 1354 */ 1355 mutex_enter(&nlwb->lwb_vdev_lock); 1356 /* 1357 * Tear down the 'lwb' vdev tree, ensuring that entries which do not 1358 * exist in 'nlwb' are moved to it, freeing any would-be duplicates. 1359 */ 1360 while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) { 1361 avl_index_t where; 1362 1363 if (avl_find(dst, zv, &where) == NULL) { 1364 avl_insert(dst, zv, where); 1365 } else { 1366 kmem_free(zv, sizeof (*zv)); 1367 } 1368 } 1369 mutex_exit(&nlwb->lwb_vdev_lock); 1370 } 1371 1372 void 1373 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg) 1374 { 1375 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg); 1376 } 1377 1378 /* 1379 * This function is a called after all vdevs associated with a given lwb 1380 * write have completed their DKIOCFLUSHWRITECACHE command; or as soon 1381 * as the lwb write completes, if "zil_nocacheflush" is set. Further, 1382 * all "previous" lwb's will have completed before this function is 1383 * called; i.e. this function is called for all previous lwbs before 1384 * it's called for "this" lwb (enforced via zio the dependencies 1385 * configured in zil_lwb_set_zio_dependency()). 1386 * 1387 * The intention is for this function to be called as soon as the 1388 * contents of an lwb are considered "stable" on disk, and will survive 1389 * any sudden loss of power. At this point, any threads waiting for the 1390 * lwb to reach this state are signalled, and the "waiter" structures 1391 * are marked "done". 1392 */ 1393 static void 1394 zil_lwb_flush_vdevs_done(zio_t *zio) 1395 { 1396 lwb_t *lwb = zio->io_private; 1397 zilog_t *zilog = lwb->lwb_zilog; 1398 zil_commit_waiter_t *zcw; 1399 itx_t *itx; 1400 uint64_t txg; 1401 list_t itxs, waiters; 1402 1403 spa_config_exit(zilog->zl_spa, SCL_STATE, lwb); 1404 1405 list_create(&itxs, sizeof (itx_t), offsetof(itx_t, itx_node)); 1406 list_create(&waiters, sizeof (zil_commit_waiter_t), 1407 offsetof(zil_commit_waiter_t, zcw_node)); 1408 1409 hrtime_t t = gethrtime() - lwb->lwb_issued_timestamp; 1410 1411 mutex_enter(&zilog->zl_lock); 1412 1413 zilog->zl_last_lwb_latency = (zilog->zl_last_lwb_latency * 7 + t) / 8; 1414 1415 lwb->lwb_root_zio = NULL; 1416 1417 if (zilog->zl_last_lwb_opened == lwb) { 1418 /* 1419 * Remember the highest committed log sequence number 1420 * for ztest. We only update this value when all the log 1421 * writes succeeded, because ztest wants to ASSERT that 1422 * it got the whole log chain. 1423 */ 1424 zilog->zl_commit_lr_seq = zilog->zl_lr_seq; 1425 } 1426 1427 list_move_tail(&itxs, &lwb->lwb_itxs); 1428 list_move_tail(&waiters, &lwb->lwb_waiters); 1429 txg = lwb->lwb_issued_txg; 1430 1431 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE); 1432 lwb->lwb_state = LWB_STATE_FLUSH_DONE; 1433 1434 mutex_exit(&zilog->zl_lock); 1435 1436 while ((itx = list_remove_head(&itxs)) != NULL) 1437 zil_itx_destroy(itx); 1438 list_destroy(&itxs); 1439 1440 while ((zcw = list_remove_head(&waiters)) != NULL) { 1441 mutex_enter(&zcw->zcw_lock); 1442 1443 zcw->zcw_lwb = NULL; 1444 /* 1445 * We expect any ZIO errors from child ZIOs to have been 1446 * propagated "up" to this specific LWB's root ZIO, in 1447 * order for this error handling to work correctly. This 1448 * includes ZIO errors from either this LWB's write or 1449 * flush, as well as any errors from other dependent LWBs 1450 * (e.g. a root LWB ZIO that might be a child of this LWB). 1451 * 1452 * With that said, it's important to note that LWB flush 1453 * errors are not propagated up to the LWB root ZIO. 1454 * This is incorrect behavior, and results in VDEV flush 1455 * errors not being handled correctly here. See the 1456 * comment above the call to "zio_flush" for details. 1457 */ 1458 1459 zcw->zcw_zio_error = zio->io_error; 1460 1461 ASSERT3B(zcw->zcw_done, ==, B_FALSE); 1462 zcw->zcw_done = B_TRUE; 1463 cv_broadcast(&zcw->zcw_cv); 1464 1465 mutex_exit(&zcw->zcw_lock); 1466 } 1467 list_destroy(&waiters); 1468 1469 mutex_enter(&zilog->zl_lwb_io_lock); 1470 ASSERT3U(zilog->zl_lwb_inflight[txg & TXG_MASK], >, 0); 1471 zilog->zl_lwb_inflight[txg & TXG_MASK]--; 1472 if (zilog->zl_lwb_inflight[txg & TXG_MASK] == 0) 1473 cv_broadcast(&zilog->zl_lwb_io_cv); 1474 mutex_exit(&zilog->zl_lwb_io_lock); 1475 } 1476 1477 /* 1478 * Wait for the completion of all issued write/flush of that txg provided. 1479 * It guarantees zil_lwb_flush_vdevs_done() is called and returned. 1480 */ 1481 static void 1482 zil_lwb_flush_wait_all(zilog_t *zilog, uint64_t txg) 1483 { 1484 ASSERT3U(txg, ==, spa_syncing_txg(zilog->zl_spa)); 1485 1486 mutex_enter(&zilog->zl_lwb_io_lock); 1487 while (zilog->zl_lwb_inflight[txg & TXG_MASK] > 0) 1488 cv_wait(&zilog->zl_lwb_io_cv, &zilog->zl_lwb_io_lock); 1489 mutex_exit(&zilog->zl_lwb_io_lock); 1490 1491 #ifdef ZFS_DEBUG 1492 mutex_enter(&zilog->zl_lock); 1493 mutex_enter(&zilog->zl_lwb_io_lock); 1494 lwb_t *lwb = list_head(&zilog->zl_lwb_list); 1495 while (lwb != NULL && lwb->lwb_max_txg <= txg) { 1496 if (lwb->lwb_issued_txg <= txg) { 1497 ASSERT(lwb->lwb_state != LWB_STATE_ISSUED); 1498 ASSERT(lwb->lwb_state != LWB_STATE_WRITE_DONE); 1499 IMPLY(lwb->lwb_issued_txg > 0, 1500 lwb->lwb_state == LWB_STATE_FLUSH_DONE); 1501 } 1502 IMPLY(lwb->lwb_state == LWB_STATE_WRITE_DONE || 1503 lwb->lwb_state == LWB_STATE_FLUSH_DONE, 1504 lwb->lwb_buf == NULL); 1505 lwb = list_next(&zilog->zl_lwb_list, lwb); 1506 } 1507 mutex_exit(&zilog->zl_lwb_io_lock); 1508 mutex_exit(&zilog->zl_lock); 1509 #endif 1510 } 1511 1512 /* 1513 * This is called when an lwb's write zio completes. The callback's 1514 * purpose is to issue the DKIOCFLUSHWRITECACHE commands for the vdevs 1515 * in the lwb's lwb_vdev_tree. The tree will contain the vdevs involved 1516 * in writing out this specific lwb's data, and in the case that cache 1517 * flushes have been deferred, vdevs involved in writing the data for 1518 * previous lwbs. The writes corresponding to all the vdevs in the 1519 * lwb_vdev_tree will have completed by the time this is called, due to 1520 * the zio dependencies configured in zil_lwb_set_zio_dependency(), 1521 * which takes deferred flushes into account. The lwb will be "done" 1522 * once zil_lwb_flush_vdevs_done() is called, which occurs in the zio 1523 * completion callback for the lwb's root zio. 1524 */ 1525 static void 1526 zil_lwb_write_done(zio_t *zio) 1527 { 1528 lwb_t *lwb = zio->io_private; 1529 spa_t *spa = zio->io_spa; 1530 zilog_t *zilog = lwb->lwb_zilog; 1531 avl_tree_t *t = &lwb->lwb_vdev_tree; 1532 void *cookie = NULL; 1533 zil_vdev_node_t *zv; 1534 lwb_t *nlwb; 1535 1536 ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0); 1537 1538 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 1539 ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG); 1540 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 1541 ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER); 1542 ASSERT(!BP_IS_GANG(zio->io_bp)); 1543 ASSERT(!BP_IS_HOLE(zio->io_bp)); 1544 ASSERT(BP_GET_FILL(zio->io_bp) == 0); 1545 1546 abd_free(zio->io_abd); 1547 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 1548 lwb->lwb_buf = NULL; 1549 1550 mutex_enter(&zilog->zl_lock); 1551 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED); 1552 lwb->lwb_state = LWB_STATE_WRITE_DONE; 1553 lwb->lwb_write_zio = NULL; 1554 lwb->lwb_fastwrite = FALSE; 1555 nlwb = list_next(&zilog->zl_lwb_list, lwb); 1556 mutex_exit(&zilog->zl_lock); 1557 1558 if (avl_numnodes(t) == 0) 1559 return; 1560 1561 /* 1562 * If there was an IO error, we're not going to call zio_flush() 1563 * on these vdevs, so we simply empty the tree and free the 1564 * nodes. We avoid calling zio_flush() since there isn't any 1565 * good reason for doing so, after the lwb block failed to be 1566 * written out. 1567 * 1568 * Additionally, we don't perform any further error handling at 1569 * this point (e.g. setting "zcw_zio_error" appropriately), as 1570 * we expect that to occur in "zil_lwb_flush_vdevs_done" (thus, 1571 * we expect any error seen here, to have been propagated to 1572 * that function). 1573 */ 1574 if (zio->io_error != 0) { 1575 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) 1576 kmem_free(zv, sizeof (*zv)); 1577 return; 1578 } 1579 1580 /* 1581 * If this lwb does not have any threads waiting for it to 1582 * complete, we want to defer issuing the DKIOCFLUSHWRITECACHE 1583 * command to the vdevs written to by "this" lwb, and instead 1584 * rely on the "next" lwb to handle the DKIOCFLUSHWRITECACHE 1585 * command for those vdevs. Thus, we merge the vdev tree of 1586 * "this" lwb with the vdev tree of the "next" lwb in the list, 1587 * and assume the "next" lwb will handle flushing the vdevs (or 1588 * deferring the flush(s) again). 1589 * 1590 * This is a useful performance optimization, especially for 1591 * workloads with lots of async write activity and few sync 1592 * write and/or fsync activity, as it has the potential to 1593 * coalesce multiple flush commands to a vdev into one. 1594 */ 1595 if (list_is_empty(&lwb->lwb_waiters) && nlwb != NULL) { 1596 zil_lwb_flush_defer(lwb, nlwb); 1597 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree)); 1598 return; 1599 } 1600 1601 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) { 1602 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev); 1603 if (vd != NULL && !vd->vdev_nowritecache) { 1604 /* 1605 * The "ZIO_FLAG_DONT_PROPAGATE" is currently 1606 * always used within "zio_flush". This means, 1607 * any errors when flushing the vdev(s), will 1608 * (unfortunately) not be handled correctly, 1609 * since these "zio_flush" errors will not be 1610 * propagated up to "zil_lwb_flush_vdevs_done". 1611 */ 1612 zio_flush(lwb->lwb_root_zio, vd); 1613 } 1614 kmem_free(zv, sizeof (*zv)); 1615 } 1616 } 1617 1618 static void 1619 zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb) 1620 { 1621 lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened; 1622 1623 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1624 ASSERT(MUTEX_HELD(&zilog->zl_lock)); 1625 1626 /* 1627 * The zilog's "zl_last_lwb_opened" field is used to build the 1628 * lwb/zio dependency chain, which is used to preserve the 1629 * ordering of lwb completions that is required by the semantics 1630 * of the ZIL. Each new lwb zio becomes a parent of the 1631 * "previous" lwb zio, such that the new lwb's zio cannot 1632 * complete until the "previous" lwb's zio completes. 1633 * 1634 * This is required by the semantics of zil_commit(); the commit 1635 * waiters attached to the lwbs will be woken in the lwb zio's 1636 * completion callback, so this zio dependency graph ensures the 1637 * waiters are woken in the correct order (the same order the 1638 * lwbs were created). 1639 */ 1640 if (last_lwb_opened != NULL && 1641 last_lwb_opened->lwb_state != LWB_STATE_FLUSH_DONE) { 1642 ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED || 1643 last_lwb_opened->lwb_state == LWB_STATE_ISSUED || 1644 last_lwb_opened->lwb_state == LWB_STATE_WRITE_DONE); 1645 1646 ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL); 1647 zio_add_child(lwb->lwb_root_zio, 1648 last_lwb_opened->lwb_root_zio); 1649 1650 /* 1651 * If the previous lwb's write hasn't already completed, 1652 * we also want to order the completion of the lwb write 1653 * zios (above, we only order the completion of the lwb 1654 * root zios). This is required because of how we can 1655 * defer the DKIOCFLUSHWRITECACHE commands for each lwb. 1656 * 1657 * When the DKIOCFLUSHWRITECACHE commands are deferred, 1658 * the previous lwb will rely on this lwb to flush the 1659 * vdevs written to by that previous lwb. Thus, we need 1660 * to ensure this lwb doesn't issue the flush until 1661 * after the previous lwb's write completes. We ensure 1662 * this ordering by setting the zio parent/child 1663 * relationship here. 1664 * 1665 * Without this relationship on the lwb's write zio, 1666 * it's possible for this lwb's write to complete prior 1667 * to the previous lwb's write completing; and thus, the 1668 * vdevs for the previous lwb would be flushed prior to 1669 * that lwb's data being written to those vdevs (the 1670 * vdevs are flushed in the lwb write zio's completion 1671 * handler, zil_lwb_write_done()). 1672 */ 1673 if (last_lwb_opened->lwb_state != LWB_STATE_WRITE_DONE) { 1674 ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED || 1675 last_lwb_opened->lwb_state == LWB_STATE_ISSUED); 1676 1677 ASSERT3P(last_lwb_opened->lwb_write_zio, !=, NULL); 1678 zio_add_child(lwb->lwb_write_zio, 1679 last_lwb_opened->lwb_write_zio); 1680 } 1681 } 1682 } 1683 1684 1685 /* 1686 * This function's purpose is to "open" an lwb such that it is ready to 1687 * accept new itxs being committed to it. To do this, the lwb's zio 1688 * structures are created, and linked to the lwb. This function is 1689 * idempotent; if the passed in lwb has already been opened, this 1690 * function is essentially a no-op. 1691 */ 1692 static void 1693 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb) 1694 { 1695 zbookmark_phys_t zb; 1696 zio_priority_t prio; 1697 1698 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1699 ASSERT3P(lwb, !=, NULL); 1700 EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED); 1701 EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED); 1702 1703 if (lwb->lwb_root_zio != NULL) 1704 return; 1705 1706 lwb->lwb_root_zio = zio_root(zilog->zl_spa, 1707 zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL); 1708 1709 abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf, 1710 BP_GET_LSIZE(&lwb->lwb_blk)); 1711 1712 if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk) 1713 prio = ZIO_PRIORITY_SYNC_WRITE; 1714 else 1715 prio = ZIO_PRIORITY_ASYNC_WRITE; 1716 1717 SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1718 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, 1719 lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]); 1720 1721 /* Lock so zil_sync() doesn't fastwrite_unmark after zio is created */ 1722 mutex_enter(&zilog->zl_lock); 1723 if (!lwb->lwb_fastwrite) { 1724 metaslab_fastwrite_mark(zilog->zl_spa, &lwb->lwb_blk); 1725 lwb->lwb_fastwrite = 1; 1726 } 1727 1728 lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio, zilog->zl_spa, 0, 1729 &lwb->lwb_blk, lwb_abd, BP_GET_LSIZE(&lwb->lwb_blk), 1730 zil_lwb_write_done, lwb, prio, 1731 ZIO_FLAG_CANFAIL | ZIO_FLAG_FASTWRITE, &zb); 1732 1733 lwb->lwb_state = LWB_STATE_OPENED; 1734 1735 zil_lwb_set_zio_dependency(zilog, lwb); 1736 zilog->zl_last_lwb_opened = lwb; 1737 mutex_exit(&zilog->zl_lock); 1738 } 1739 1740 /* 1741 * Define a limited set of intent log block sizes. 1742 * 1743 * These must be a multiple of 4KB. Note only the amount used (again 1744 * aligned to 4KB) actually gets written. However, we can't always just 1745 * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted. 1746 */ 1747 static const struct { 1748 uint64_t limit; 1749 uint64_t blksz; 1750 } zil_block_buckets[] = { 1751 { 4096, 4096 }, /* non TX_WRITE */ 1752 { 8192 + 4096, 8192 + 4096 }, /* database */ 1753 { 32768 + 4096, 32768 + 4096 }, /* NFS writes */ 1754 { 65536 + 4096, 65536 + 4096 }, /* 64KB writes */ 1755 { 131072, 131072 }, /* < 128KB writes */ 1756 { 131072 +4096, 65536 + 4096 }, /* 128KB writes */ 1757 { UINT64_MAX, SPA_OLD_MAXBLOCKSIZE}, /* > 128KB writes */ 1758 }; 1759 1760 /* 1761 * Maximum block size used by the ZIL. This is picked up when the ZIL is 1762 * initialized. Otherwise this should not be used directly; see 1763 * zl_max_block_size instead. 1764 */ 1765 static uint_t zil_maxblocksize = SPA_OLD_MAXBLOCKSIZE; 1766 1767 /* 1768 * Close the log block for being issued and allocate the next one. 1769 * Has to be called under zl_issuer_lock to chain more lwbs. 1770 */ 1771 static lwb_t * 1772 zil_lwb_write_close(zilog_t *zilog, lwb_t *lwb, list_t *ilwbs) 1773 { 1774 lwb_t *nlwb = NULL; 1775 zil_chain_t *zilc; 1776 spa_t *spa = zilog->zl_spa; 1777 blkptr_t *bp; 1778 dmu_tx_t *tx; 1779 uint64_t txg; 1780 uint64_t zil_blksz; 1781 int i, error; 1782 boolean_t slog; 1783 1784 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1785 ASSERT3P(lwb->lwb_root_zio, !=, NULL); 1786 ASSERT3P(lwb->lwb_write_zio, !=, NULL); 1787 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED); 1788 1789 /* 1790 * If this lwb includes indirect writes, we have to commit before 1791 * creating the transaction, otherwise we may end up in dead lock. 1792 */ 1793 if (lwb->lwb_indirect) { 1794 for (itx_t *itx = list_head(&lwb->lwb_itxs); itx; 1795 itx = list_next(&lwb->lwb_itxs, itx)) 1796 zil_lwb_commit(zilog, lwb, itx); 1797 lwb->lwb_nused = lwb->lwb_nfilled; 1798 } 1799 1800 /* 1801 * Allocate the next block and save its address in this block 1802 * before writing it in order to establish the log chain. 1803 */ 1804 1805 tx = dmu_tx_create(zilog->zl_os); 1806 1807 /* 1808 * Since we are not going to create any new dirty data, and we 1809 * can even help with clearing the existing dirty data, we 1810 * should not be subject to the dirty data based delays. We 1811 * use TXG_NOTHROTTLE to bypass the delay mechanism. 1812 */ 1813 VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE)); 1814 1815 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 1816 txg = dmu_tx_get_txg(tx); 1817 1818 mutex_enter(&zilog->zl_lwb_io_lock); 1819 lwb->lwb_issued_txg = txg; 1820 zilog->zl_lwb_inflight[txg & TXG_MASK]++; 1821 zilog->zl_lwb_max_issued_txg = MAX(txg, zilog->zl_lwb_max_issued_txg); 1822 mutex_exit(&zilog->zl_lwb_io_lock); 1823 1824 /* 1825 * Log blocks are pre-allocated. Here we select the size of the next 1826 * block, based on size used in the last block. 1827 * - first find the smallest bucket that will fit the block from a 1828 * limited set of block sizes. This is because it's faster to write 1829 * blocks allocated from the same metaslab as they are adjacent or 1830 * close. 1831 * - next find the maximum from the new suggested size and an array of 1832 * previous sizes. This lessens a picket fence effect of wrongly 1833 * guessing the size if we have a stream of say 2k, 64k, 2k, 64k 1834 * requests. 1835 * 1836 * Note we only write what is used, but we can't just allocate 1837 * the maximum block size because we can exhaust the available 1838 * pool log space. 1839 */ 1840 zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t); 1841 for (i = 0; zil_blksz > zil_block_buckets[i].limit; i++) 1842 continue; 1843 zil_blksz = MIN(zil_block_buckets[i].blksz, zilog->zl_max_block_size); 1844 zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz; 1845 for (i = 0; i < ZIL_PREV_BLKS; i++) 1846 zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]); 1847 DTRACE_PROBE3(zil__block__size, zilog_t *, zilog, 1848 uint64_t, zil_blksz, 1849 uint64_t, zilog->zl_prev_blks[zilog->zl_prev_rotor]); 1850 zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1); 1851 1852 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) 1853 zilc = (zil_chain_t *)lwb->lwb_buf; 1854 else 1855 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz); 1856 bp = &zilc->zc_next_blk; 1857 BP_ZERO(bp); 1858 error = zio_alloc_zil(spa, zilog->zl_os, txg, bp, zil_blksz, &slog); 1859 if (error == 0) { 1860 ASSERT3U(bp->blk_birth, ==, txg); 1861 bp->blk_cksum = lwb->lwb_blk.blk_cksum; 1862 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++; 1863 1864 /* 1865 * Allocate a new log write block (lwb). 1866 */ 1867 nlwb = zil_alloc_lwb(zilog, bp, slog, txg, TRUE); 1868 } 1869 1870 lwb->lwb_state = LWB_STATE_ISSUED; 1871 1872 dmu_tx_commit(tx); 1873 1874 /* 1875 * We need to acquire the config lock for the lwb to issue it later. 1876 * However, if we already have a queue of closed parent lwbs already 1877 * holding the config lock (but not yet issued), we can't block here 1878 * waiting on the lock or we will deadlock. In that case we must 1879 * first issue to parent IOs before waiting on the lock. 1880 */ 1881 if (ilwbs && !list_is_empty(ilwbs)) { 1882 if (!spa_config_tryenter(spa, SCL_STATE, lwb, RW_READER)) { 1883 lwb_t *tlwb; 1884 while ((tlwb = list_remove_head(ilwbs)) != NULL) 1885 zil_lwb_write_issue(zilog, tlwb); 1886 spa_config_enter(spa, SCL_STATE, lwb, RW_READER); 1887 } 1888 } else { 1889 spa_config_enter(spa, SCL_STATE, lwb, RW_READER); 1890 } 1891 1892 if (ilwbs) 1893 list_insert_tail(ilwbs, lwb); 1894 1895 /* 1896 * If there was an allocation failure then nlwb will be null which 1897 * forces a txg_wait_synced(). 1898 */ 1899 return (nlwb); 1900 } 1901 1902 /* 1903 * Finalize previously closed block and issue the write zio. 1904 * Does not require locking. 1905 */ 1906 static void 1907 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb) 1908 { 1909 zil_chain_t *zilc; 1910 int wsz; 1911 1912 /* Actually fill the lwb with the data if not yet. */ 1913 if (!lwb->lwb_indirect) { 1914 for (itx_t *itx = list_head(&lwb->lwb_itxs); itx; 1915 itx = list_next(&lwb->lwb_itxs, itx)) 1916 zil_lwb_commit(zilog, lwb, itx); 1917 lwb->lwb_nused = lwb->lwb_nfilled; 1918 } 1919 1920 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) { 1921 /* For Slim ZIL only write what is used. */ 1922 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, int); 1923 ASSERT3S(wsz, <=, lwb->lwb_sz); 1924 zio_shrink(lwb->lwb_write_zio, wsz); 1925 wsz = lwb->lwb_write_zio->io_size; 1926 1927 zilc = (zil_chain_t *)lwb->lwb_buf; 1928 } else { 1929 wsz = lwb->lwb_sz; 1930 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz); 1931 } 1932 zilc->zc_pad = 0; 1933 zilc->zc_nused = lwb->lwb_nused; 1934 zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum; 1935 1936 /* 1937 * clear unused data for security 1938 */ 1939 memset(lwb->lwb_buf + lwb->lwb_nused, 0, wsz - lwb->lwb_nused); 1940 1941 if (lwb->lwb_slog) { 1942 ZIL_STAT_BUMP(zilog, zil_itx_metaslab_slog_count); 1943 ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_bytes, 1944 lwb->lwb_nused); 1945 ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_write, 1946 wsz); 1947 ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_alloc, 1948 BP_GET_LSIZE(&lwb->lwb_blk)); 1949 } else { 1950 ZIL_STAT_BUMP(zilog, zil_itx_metaslab_normal_count); 1951 ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_bytes, 1952 lwb->lwb_nused); 1953 ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_write, 1954 wsz); 1955 ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_alloc, 1956 BP_GET_LSIZE(&lwb->lwb_blk)); 1957 } 1958 ASSERT(spa_config_held(zilog->zl_spa, SCL_STATE, RW_READER)); 1959 zil_lwb_add_block(lwb, &lwb->lwb_blk); 1960 lwb->lwb_issued_timestamp = gethrtime(); 1961 zio_nowait(lwb->lwb_root_zio); 1962 zio_nowait(lwb->lwb_write_zio); 1963 } 1964 1965 /* 1966 * Maximum amount of data that can be put into single log block. 1967 */ 1968 uint64_t 1969 zil_max_log_data(zilog_t *zilog, size_t hdrsize) 1970 { 1971 return (zilog->zl_max_block_size - sizeof (zil_chain_t) - hdrsize); 1972 } 1973 1974 /* 1975 * Maximum amount of log space we agree to waste to reduce number of 1976 * WR_NEED_COPY chunks to reduce zl_get_data() overhead (~12%). 1977 */ 1978 static inline uint64_t 1979 zil_max_waste_space(zilog_t *zilog) 1980 { 1981 return (zil_max_log_data(zilog, sizeof (lr_write_t)) / 8); 1982 } 1983 1984 /* 1985 * Maximum amount of write data for WR_COPIED. For correctness, consumers 1986 * must fall back to WR_NEED_COPY if we can't fit the entire record into one 1987 * maximum sized log block, because each WR_COPIED record must fit in a 1988 * single log block. For space efficiency, we want to fit two records into a 1989 * max-sized log block. 1990 */ 1991 uint64_t 1992 zil_max_copied_data(zilog_t *zilog) 1993 { 1994 return ((zilog->zl_max_block_size - sizeof (zil_chain_t)) / 2 - 1995 sizeof (lr_write_t)); 1996 } 1997 1998 /* 1999 * Estimate space needed in the lwb for the itx. Allocate more lwbs or 2000 * split the itx as needed, but don't touch the actual transaction data. 2001 * Has to be called under zl_issuer_lock to call zil_lwb_write_close() 2002 * to chain more lwbs. 2003 */ 2004 static lwb_t * 2005 zil_lwb_assign(zilog_t *zilog, lwb_t *lwb, itx_t *itx, list_t *ilwbs) 2006 { 2007 itx_t *citx; 2008 lr_t *lr, *clr; 2009 lr_write_t *lrw; 2010 uint64_t dlen, dnow, lwb_sp, reclen, max_log_data; 2011 2012 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2013 ASSERT3P(lwb, !=, NULL); 2014 ASSERT3P(lwb->lwb_buf, !=, NULL); 2015 2016 zil_lwb_write_open(zilog, lwb); 2017 2018 lr = &itx->itx_lr; 2019 lrw = (lr_write_t *)lr; 2020 2021 /* 2022 * A commit itx doesn't represent any on-disk state; instead 2023 * it's simply used as a place holder on the commit list, and 2024 * provides a mechanism for attaching a "commit waiter" onto the 2025 * correct lwb (such that the waiter can be signalled upon 2026 * completion of that lwb). Thus, we don't process this itx's 2027 * log record if it's a commit itx (these itx's don't have log 2028 * records), and instead link the itx's waiter onto the lwb's 2029 * list of waiters. 2030 * 2031 * For more details, see the comment above zil_commit(). 2032 */ 2033 if (lr->lrc_txtype == TX_COMMIT) { 2034 mutex_enter(&zilog->zl_lock); 2035 zil_commit_waiter_link_lwb(itx->itx_private, lwb); 2036 itx->itx_private = NULL; 2037 mutex_exit(&zilog->zl_lock); 2038 list_insert_tail(&lwb->lwb_itxs, itx); 2039 return (lwb); 2040 } 2041 2042 if (lr->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) { 2043 dlen = P2ROUNDUP_TYPED( 2044 lrw->lr_length, sizeof (uint64_t), uint64_t); 2045 } else { 2046 dlen = 0; 2047 } 2048 reclen = lr->lrc_reclen; 2049 zilog->zl_cur_used += (reclen + dlen); 2050 2051 cont: 2052 /* 2053 * If this record won't fit in the current log block, start a new one. 2054 * For WR_NEED_COPY optimize layout for minimal number of chunks. 2055 */ 2056 lwb_sp = lwb->lwb_sz - lwb->lwb_nused; 2057 max_log_data = zil_max_log_data(zilog, sizeof (lr_write_t)); 2058 if (reclen > lwb_sp || (reclen + dlen > lwb_sp && 2059 lwb_sp < zil_max_waste_space(zilog) && 2060 (dlen % max_log_data == 0 || 2061 lwb_sp < reclen + dlen % max_log_data))) { 2062 lwb = zil_lwb_write_close(zilog, lwb, ilwbs); 2063 if (lwb == NULL) 2064 return (NULL); 2065 zil_lwb_write_open(zilog, lwb); 2066 lwb_sp = lwb->lwb_sz - lwb->lwb_nused; 2067 2068 /* 2069 * There must be enough space in the new, empty log block to 2070 * hold reclen. For WR_COPIED, we need to fit the whole 2071 * record in one block, and reclen is the header size + the 2072 * data size. For WR_NEED_COPY, we can create multiple 2073 * records, splitting the data into multiple blocks, so we 2074 * only need to fit one word of data per block; in this case 2075 * reclen is just the header size (no data). 2076 */ 2077 ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp); 2078 } 2079 2080 dnow = MIN(dlen, lwb_sp - reclen); 2081 if (dlen > dnow) { 2082 ASSERT3U(lr->lrc_txtype, ==, TX_WRITE); 2083 ASSERT3U(itx->itx_wr_state, ==, WR_NEED_COPY); 2084 citx = zil_itx_clone(itx); 2085 clr = &citx->itx_lr; 2086 lr_write_t *clrw = (lr_write_t *)clr; 2087 clrw->lr_length = dnow; 2088 lrw->lr_offset += dnow; 2089 lrw->lr_length -= dnow; 2090 } else { 2091 citx = itx; 2092 clr = lr; 2093 } 2094 2095 /* 2096 * We're actually making an entry, so update lrc_seq to be the 2097 * log record sequence number. Note that this is generally not 2098 * equal to the itx sequence number because not all transactions 2099 * are synchronous, and sometimes spa_sync() gets there first. 2100 */ 2101 clr->lrc_seq = ++zilog->zl_lr_seq; 2102 2103 lwb->lwb_nused += reclen + dnow; 2104 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz); 2105 ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t))); 2106 2107 zil_lwb_add_txg(lwb, lr->lrc_txg); 2108 list_insert_tail(&lwb->lwb_itxs, citx); 2109 2110 dlen -= dnow; 2111 if (dlen > 0) { 2112 zilog->zl_cur_used += reclen; 2113 goto cont; 2114 } 2115 2116 /* 2117 * We have to really issue all queued LWBs before we may have to 2118 * wait for a txg sync. Otherwise we may end up in a dead lock. 2119 */ 2120 if (lr->lrc_txtype == TX_WRITE) { 2121 boolean_t frozen = lr->lrc_txg > spa_freeze_txg(zilog->zl_spa); 2122 if (frozen || itx->itx_wr_state == WR_INDIRECT) { 2123 lwb_t *tlwb; 2124 while ((tlwb = list_remove_head(ilwbs)) != NULL) 2125 zil_lwb_write_issue(zilog, tlwb); 2126 } 2127 if (itx->itx_wr_state == WR_INDIRECT) 2128 lwb->lwb_indirect = B_TRUE; 2129 if (frozen) 2130 txg_wait_synced(zilog->zl_dmu_pool, lr->lrc_txg); 2131 } 2132 2133 return (lwb); 2134 } 2135 2136 /* 2137 * Fill the actual transaction data into the lwb, following zil_lwb_assign(). 2138 * Does not require locking. 2139 */ 2140 static void 2141 zil_lwb_commit(zilog_t *zilog, lwb_t *lwb, itx_t *itx) 2142 { 2143 lr_t *lr, *lrb; 2144 lr_write_t *lrw, *lrwb; 2145 char *lr_buf; 2146 uint64_t dlen, reclen; 2147 2148 lr = &itx->itx_lr; 2149 lrw = (lr_write_t *)lr; 2150 2151 if (lr->lrc_txtype == TX_COMMIT) 2152 return; 2153 2154 if (lr->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) { 2155 dlen = P2ROUNDUP_TYPED( 2156 lrw->lr_length, sizeof (uint64_t), uint64_t); 2157 } else { 2158 dlen = 0; 2159 } 2160 reclen = lr->lrc_reclen; 2161 ASSERT3U(reclen + dlen, <=, lwb->lwb_nused - lwb->lwb_nfilled); 2162 2163 lr_buf = lwb->lwb_buf + lwb->lwb_nfilled; 2164 memcpy(lr_buf, lr, reclen); 2165 lrb = (lr_t *)lr_buf; /* Like lr, but inside lwb. */ 2166 lrwb = (lr_write_t *)lrb; /* Like lrw, but inside lwb. */ 2167 2168 ZIL_STAT_BUMP(zilog, zil_itx_count); 2169 2170 /* 2171 * If it's a write, fetch the data or get its blkptr as appropriate. 2172 */ 2173 if (lr->lrc_txtype == TX_WRITE) { 2174 if (itx->itx_wr_state == WR_COPIED) { 2175 ZIL_STAT_BUMP(zilog, zil_itx_copied_count); 2176 ZIL_STAT_INCR(zilog, zil_itx_copied_bytes, 2177 lrw->lr_length); 2178 } else { 2179 char *dbuf; 2180 int error; 2181 2182 if (itx->itx_wr_state == WR_NEED_COPY) { 2183 dbuf = lr_buf + reclen; 2184 lrb->lrc_reclen += dlen; 2185 ZIL_STAT_BUMP(zilog, zil_itx_needcopy_count); 2186 ZIL_STAT_INCR(zilog, zil_itx_needcopy_bytes, 2187 dlen); 2188 } else { 2189 ASSERT3S(itx->itx_wr_state, ==, WR_INDIRECT); 2190 dbuf = NULL; 2191 ZIL_STAT_BUMP(zilog, zil_itx_indirect_count); 2192 ZIL_STAT_INCR(zilog, zil_itx_indirect_bytes, 2193 lrw->lr_length); 2194 } 2195 2196 /* 2197 * We pass in the "lwb_write_zio" rather than 2198 * "lwb_root_zio" so that the "lwb_write_zio" 2199 * becomes the parent of any zio's created by 2200 * the "zl_get_data" callback. The vdevs are 2201 * flushed after the "lwb_write_zio" completes, 2202 * so we want to make sure that completion 2203 * callback waits for these additional zio's, 2204 * such that the vdevs used by those zio's will 2205 * be included in the lwb's vdev tree, and those 2206 * vdevs will be properly flushed. If we passed 2207 * in "lwb_root_zio" here, then these additional 2208 * vdevs may not be flushed; e.g. if these zio's 2209 * completed after "lwb_write_zio" completed. 2210 */ 2211 error = zilog->zl_get_data(itx->itx_private, 2212 itx->itx_gen, lrwb, dbuf, lwb, 2213 lwb->lwb_write_zio); 2214 if (dbuf != NULL && error == 0) { 2215 /* Zero any padding bytes in the last block. */ 2216 memset((char *)dbuf + lrwb->lr_length, 0, 2217 dlen - lrwb->lr_length); 2218 } 2219 2220 /* 2221 * Typically, the only return values we should see from 2222 * ->zl_get_data() are 0, EIO, ENOENT, EEXIST or 2223 * EALREADY. However, it is also possible to see other 2224 * error values such as ENOSPC or EINVAL from 2225 * dmu_read() -> dnode_hold() -> dnode_hold_impl() or 2226 * ENXIO as well as a multitude of others from the 2227 * block layer through dmu_buf_hold() -> dbuf_read() 2228 * -> zio_wait(), as well as through dmu_read() -> 2229 * dnode_hold() -> dnode_hold_impl() -> dbuf_read() -> 2230 * zio_wait(). When these errors happen, we can assume 2231 * that neither an immediate write nor an indirect 2232 * write occurred, so we need to fall back to 2233 * txg_wait_synced(). This is unusual, so we print to 2234 * dmesg whenever one of these errors occurs. 2235 */ 2236 switch (error) { 2237 case 0: 2238 break; 2239 default: 2240 cmn_err(CE_WARN, "zil_lwb_commit() received " 2241 "unexpected error %d from ->zl_get_data()" 2242 ". Falling back to txg_wait_synced().", 2243 error); 2244 zfs_fallthrough; 2245 case EIO: 2246 if (lwb->lwb_indirect) { 2247 txg_wait_synced(zilog->zl_dmu_pool, 2248 lr->lrc_txg); 2249 } else { 2250 lwb->lwb_write_zio->io_error = error; 2251 } 2252 zfs_fallthrough; 2253 case ENOENT: 2254 zfs_fallthrough; 2255 case EEXIST: 2256 zfs_fallthrough; 2257 case EALREADY: 2258 return; 2259 } 2260 } 2261 } 2262 2263 lwb->lwb_nfilled += reclen + dlen; 2264 ASSERT3S(lwb->lwb_nfilled, <=, lwb->lwb_nused); 2265 ASSERT0(P2PHASE(lwb->lwb_nfilled, sizeof (uint64_t))); 2266 } 2267 2268 itx_t * 2269 zil_itx_create(uint64_t txtype, size_t olrsize) 2270 { 2271 size_t itxsize, lrsize; 2272 itx_t *itx; 2273 2274 lrsize = P2ROUNDUP_TYPED(olrsize, sizeof (uint64_t), size_t); 2275 itxsize = offsetof(itx_t, itx_lr) + lrsize; 2276 2277 itx = zio_data_buf_alloc(itxsize); 2278 itx->itx_lr.lrc_txtype = txtype; 2279 itx->itx_lr.lrc_reclen = lrsize; 2280 itx->itx_lr.lrc_seq = 0; /* defensive */ 2281 memset((char *)&itx->itx_lr + olrsize, 0, lrsize - olrsize); 2282 itx->itx_sync = B_TRUE; /* default is synchronous */ 2283 itx->itx_callback = NULL; 2284 itx->itx_callback_data = NULL; 2285 itx->itx_size = itxsize; 2286 2287 return (itx); 2288 } 2289 2290 static itx_t * 2291 zil_itx_clone(itx_t *oitx) 2292 { 2293 itx_t *itx = zio_data_buf_alloc(oitx->itx_size); 2294 memcpy(itx, oitx, oitx->itx_size); 2295 itx->itx_callback = NULL; 2296 itx->itx_callback_data = NULL; 2297 return (itx); 2298 } 2299 2300 void 2301 zil_itx_destroy(itx_t *itx) 2302 { 2303 IMPLY(itx->itx_lr.lrc_txtype == TX_COMMIT, itx->itx_callback == NULL); 2304 IMPLY(itx->itx_callback != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT); 2305 2306 if (itx->itx_callback != NULL) 2307 itx->itx_callback(itx->itx_callback_data); 2308 2309 zio_data_buf_free(itx, itx->itx_size); 2310 } 2311 2312 /* 2313 * Free up the sync and async itxs. The itxs_t has already been detached 2314 * so no locks are needed. 2315 */ 2316 static void 2317 zil_itxg_clean(void *arg) 2318 { 2319 itx_t *itx; 2320 list_t *list; 2321 avl_tree_t *t; 2322 void *cookie; 2323 itxs_t *itxs = arg; 2324 itx_async_node_t *ian; 2325 2326 list = &itxs->i_sync_list; 2327 while ((itx = list_remove_head(list)) != NULL) { 2328 /* 2329 * In the general case, commit itxs will not be found 2330 * here, as they'll be committed to an lwb via 2331 * zil_lwb_assign(), and free'd in that function. Having 2332 * said that, it is still possible for commit itxs to be 2333 * found here, due to the following race: 2334 * 2335 * - a thread calls zil_commit() which assigns the 2336 * commit itx to a per-txg i_sync_list 2337 * - zil_itxg_clean() is called (e.g. via spa_sync()) 2338 * while the waiter is still on the i_sync_list 2339 * 2340 * There's nothing to prevent syncing the txg while the 2341 * waiter is on the i_sync_list. This normally doesn't 2342 * happen because spa_sync() is slower than zil_commit(), 2343 * but if zil_commit() calls txg_wait_synced() (e.g. 2344 * because zil_create() or zil_commit_writer_stall() is 2345 * called) we will hit this case. 2346 */ 2347 if (itx->itx_lr.lrc_txtype == TX_COMMIT) 2348 zil_commit_waiter_skip(itx->itx_private); 2349 2350 zil_itx_destroy(itx); 2351 } 2352 2353 cookie = NULL; 2354 t = &itxs->i_async_tree; 2355 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { 2356 list = &ian->ia_list; 2357 while ((itx = list_remove_head(list)) != NULL) { 2358 /* commit itxs should never be on the async lists. */ 2359 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT); 2360 zil_itx_destroy(itx); 2361 } 2362 list_destroy(list); 2363 kmem_free(ian, sizeof (itx_async_node_t)); 2364 } 2365 avl_destroy(t); 2366 2367 kmem_free(itxs, sizeof (itxs_t)); 2368 } 2369 2370 static int 2371 zil_aitx_compare(const void *x1, const void *x2) 2372 { 2373 const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid; 2374 const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid; 2375 2376 return (TREE_CMP(o1, o2)); 2377 } 2378 2379 /* 2380 * Remove all async itx with the given oid. 2381 */ 2382 void 2383 zil_remove_async(zilog_t *zilog, uint64_t oid) 2384 { 2385 uint64_t otxg, txg; 2386 itx_async_node_t *ian; 2387 avl_tree_t *t; 2388 avl_index_t where; 2389 list_t clean_list; 2390 itx_t *itx; 2391 2392 ASSERT(oid != 0); 2393 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node)); 2394 2395 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 2396 otxg = ZILTEST_TXG; 2397 else 2398 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 2399 2400 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 2401 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 2402 2403 mutex_enter(&itxg->itxg_lock); 2404 if (itxg->itxg_txg != txg) { 2405 mutex_exit(&itxg->itxg_lock); 2406 continue; 2407 } 2408 2409 /* 2410 * Locate the object node and append its list. 2411 */ 2412 t = &itxg->itxg_itxs->i_async_tree; 2413 ian = avl_find(t, &oid, &where); 2414 if (ian != NULL) 2415 list_move_tail(&clean_list, &ian->ia_list); 2416 mutex_exit(&itxg->itxg_lock); 2417 } 2418 while ((itx = list_remove_head(&clean_list)) != NULL) { 2419 /* commit itxs should never be on the async lists. */ 2420 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT); 2421 zil_itx_destroy(itx); 2422 } 2423 list_destroy(&clean_list); 2424 } 2425 2426 void 2427 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx) 2428 { 2429 uint64_t txg; 2430 itxg_t *itxg; 2431 itxs_t *itxs, *clean = NULL; 2432 2433 /* 2434 * Ensure the data of a renamed file is committed before the rename. 2435 */ 2436 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME) 2437 zil_async_to_sync(zilog, itx->itx_oid); 2438 2439 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) 2440 txg = ZILTEST_TXG; 2441 else 2442 txg = dmu_tx_get_txg(tx); 2443 2444 itxg = &zilog->zl_itxg[txg & TXG_MASK]; 2445 mutex_enter(&itxg->itxg_lock); 2446 itxs = itxg->itxg_itxs; 2447 if (itxg->itxg_txg != txg) { 2448 if (itxs != NULL) { 2449 /* 2450 * The zil_clean callback hasn't got around to cleaning 2451 * this itxg. Save the itxs for release below. 2452 * This should be rare. 2453 */ 2454 zfs_dbgmsg("zil_itx_assign: missed itx cleanup for " 2455 "txg %llu", (u_longlong_t)itxg->itxg_txg); 2456 clean = itxg->itxg_itxs; 2457 } 2458 itxg->itxg_txg = txg; 2459 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), 2460 KM_SLEEP); 2461 2462 list_create(&itxs->i_sync_list, sizeof (itx_t), 2463 offsetof(itx_t, itx_node)); 2464 avl_create(&itxs->i_async_tree, zil_aitx_compare, 2465 sizeof (itx_async_node_t), 2466 offsetof(itx_async_node_t, ia_node)); 2467 } 2468 if (itx->itx_sync) { 2469 list_insert_tail(&itxs->i_sync_list, itx); 2470 } else { 2471 avl_tree_t *t = &itxs->i_async_tree; 2472 uint64_t foid = 2473 LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid); 2474 itx_async_node_t *ian; 2475 avl_index_t where; 2476 2477 ian = avl_find(t, &foid, &where); 2478 if (ian == NULL) { 2479 ian = kmem_alloc(sizeof (itx_async_node_t), 2480 KM_SLEEP); 2481 list_create(&ian->ia_list, sizeof (itx_t), 2482 offsetof(itx_t, itx_node)); 2483 ian->ia_foid = foid; 2484 avl_insert(t, ian, where); 2485 } 2486 list_insert_tail(&ian->ia_list, itx); 2487 } 2488 2489 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx); 2490 2491 /* 2492 * We don't want to dirty the ZIL using ZILTEST_TXG, because 2493 * zil_clean() will never be called using ZILTEST_TXG. Thus, we 2494 * need to be careful to always dirty the ZIL using the "real" 2495 * TXG (not itxg_txg) even when the SPA is frozen. 2496 */ 2497 zilog_dirty(zilog, dmu_tx_get_txg(tx)); 2498 mutex_exit(&itxg->itxg_lock); 2499 2500 /* Release the old itxs now we've dropped the lock */ 2501 if (clean != NULL) 2502 zil_itxg_clean(clean); 2503 } 2504 2505 /* 2506 * If there are any in-memory intent log transactions which have now been 2507 * synced then start up a taskq to free them. We should only do this after we 2508 * have written out the uberblocks (i.e. txg has been committed) so that 2509 * don't inadvertently clean out in-memory log records that would be required 2510 * by zil_commit(). 2511 */ 2512 void 2513 zil_clean(zilog_t *zilog, uint64_t synced_txg) 2514 { 2515 itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK]; 2516 itxs_t *clean_me; 2517 2518 ASSERT3U(synced_txg, <, ZILTEST_TXG); 2519 2520 mutex_enter(&itxg->itxg_lock); 2521 if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) { 2522 mutex_exit(&itxg->itxg_lock); 2523 return; 2524 } 2525 ASSERT3U(itxg->itxg_txg, <=, synced_txg); 2526 ASSERT3U(itxg->itxg_txg, !=, 0); 2527 clean_me = itxg->itxg_itxs; 2528 itxg->itxg_itxs = NULL; 2529 itxg->itxg_txg = 0; 2530 mutex_exit(&itxg->itxg_lock); 2531 /* 2532 * Preferably start a task queue to free up the old itxs but 2533 * if taskq_dispatch can't allocate resources to do that then 2534 * free it in-line. This should be rare. Note, using TQ_SLEEP 2535 * created a bad performance problem. 2536 */ 2537 ASSERT3P(zilog->zl_dmu_pool, !=, NULL); 2538 ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL); 2539 taskqid_t id = taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq, 2540 zil_itxg_clean, clean_me, TQ_NOSLEEP); 2541 if (id == TASKQID_INVALID) 2542 zil_itxg_clean(clean_me); 2543 } 2544 2545 /* 2546 * This function will traverse the queue of itxs that need to be 2547 * committed, and move them onto the ZIL's zl_itx_commit_list. 2548 */ 2549 static uint64_t 2550 zil_get_commit_list(zilog_t *zilog) 2551 { 2552 uint64_t otxg, txg, wtxg = 0; 2553 list_t *commit_list = &zilog->zl_itx_commit_list; 2554 2555 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2556 2557 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 2558 otxg = ZILTEST_TXG; 2559 else 2560 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 2561 2562 /* 2563 * This is inherently racy, since there is nothing to prevent 2564 * the last synced txg from changing. That's okay since we'll 2565 * only commit things in the future. 2566 */ 2567 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 2568 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 2569 2570 mutex_enter(&itxg->itxg_lock); 2571 if (itxg->itxg_txg != txg) { 2572 mutex_exit(&itxg->itxg_lock); 2573 continue; 2574 } 2575 2576 /* 2577 * If we're adding itx records to the zl_itx_commit_list, 2578 * then the zil better be dirty in this "txg". We can assert 2579 * that here since we're holding the itxg_lock which will 2580 * prevent spa_sync from cleaning it. Once we add the itxs 2581 * to the zl_itx_commit_list we must commit it to disk even 2582 * if it's unnecessary (i.e. the txg was synced). 2583 */ 2584 ASSERT(zilog_is_dirty_in_txg(zilog, txg) || 2585 spa_freeze_txg(zilog->zl_spa) != UINT64_MAX); 2586 list_t *sync_list = &itxg->itxg_itxs->i_sync_list; 2587 if (unlikely(zilog->zl_suspend > 0)) { 2588 /* 2589 * ZIL was just suspended, but we lost the race. 2590 * Allow all earlier itxs to be committed, but ask 2591 * caller to do txg_wait_synced(txg) for any new. 2592 */ 2593 if (!list_is_empty(sync_list)) 2594 wtxg = MAX(wtxg, txg); 2595 } else { 2596 list_move_tail(commit_list, sync_list); 2597 } 2598 2599 mutex_exit(&itxg->itxg_lock); 2600 } 2601 return (wtxg); 2602 } 2603 2604 /* 2605 * Move the async itxs for a specified object to commit into sync lists. 2606 */ 2607 void 2608 zil_async_to_sync(zilog_t *zilog, uint64_t foid) 2609 { 2610 uint64_t otxg, txg; 2611 itx_async_node_t *ian; 2612 avl_tree_t *t; 2613 avl_index_t where; 2614 2615 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 2616 otxg = ZILTEST_TXG; 2617 else 2618 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 2619 2620 /* 2621 * This is inherently racy, since there is nothing to prevent 2622 * the last synced txg from changing. 2623 */ 2624 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 2625 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 2626 2627 mutex_enter(&itxg->itxg_lock); 2628 if (itxg->itxg_txg != txg) { 2629 mutex_exit(&itxg->itxg_lock); 2630 continue; 2631 } 2632 2633 /* 2634 * If a foid is specified then find that node and append its 2635 * list. Otherwise walk the tree appending all the lists 2636 * to the sync list. We add to the end rather than the 2637 * beginning to ensure the create has happened. 2638 */ 2639 t = &itxg->itxg_itxs->i_async_tree; 2640 if (foid != 0) { 2641 ian = avl_find(t, &foid, &where); 2642 if (ian != NULL) { 2643 list_move_tail(&itxg->itxg_itxs->i_sync_list, 2644 &ian->ia_list); 2645 } 2646 } else { 2647 void *cookie = NULL; 2648 2649 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { 2650 list_move_tail(&itxg->itxg_itxs->i_sync_list, 2651 &ian->ia_list); 2652 list_destroy(&ian->ia_list); 2653 kmem_free(ian, sizeof (itx_async_node_t)); 2654 } 2655 } 2656 mutex_exit(&itxg->itxg_lock); 2657 } 2658 } 2659 2660 /* 2661 * This function will prune commit itxs that are at the head of the 2662 * commit list (it won't prune past the first non-commit itx), and 2663 * either: a) attach them to the last lwb that's still pending 2664 * completion, or b) skip them altogether. 2665 * 2666 * This is used as a performance optimization to prevent commit itxs 2667 * from generating new lwbs when it's unnecessary to do so. 2668 */ 2669 static void 2670 zil_prune_commit_list(zilog_t *zilog) 2671 { 2672 itx_t *itx; 2673 2674 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2675 2676 while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) { 2677 lr_t *lrc = &itx->itx_lr; 2678 if (lrc->lrc_txtype != TX_COMMIT) 2679 break; 2680 2681 mutex_enter(&zilog->zl_lock); 2682 2683 lwb_t *last_lwb = zilog->zl_last_lwb_opened; 2684 if (last_lwb == NULL || 2685 last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) { 2686 /* 2687 * All of the itxs this waiter was waiting on 2688 * must have already completed (or there were 2689 * never any itx's for it to wait on), so it's 2690 * safe to skip this waiter and mark it done. 2691 */ 2692 zil_commit_waiter_skip(itx->itx_private); 2693 } else { 2694 zil_commit_waiter_link_lwb(itx->itx_private, last_lwb); 2695 itx->itx_private = NULL; 2696 } 2697 2698 mutex_exit(&zilog->zl_lock); 2699 2700 list_remove(&zilog->zl_itx_commit_list, itx); 2701 zil_itx_destroy(itx); 2702 } 2703 2704 IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT); 2705 } 2706 2707 static void 2708 zil_commit_writer_stall(zilog_t *zilog) 2709 { 2710 /* 2711 * When zio_alloc_zil() fails to allocate the next lwb block on 2712 * disk, we must call txg_wait_synced() to ensure all of the 2713 * lwbs in the zilog's zl_lwb_list are synced and then freed (in 2714 * zil_sync()), such that any subsequent ZIL writer (i.e. a call 2715 * to zil_process_commit_list()) will have to call zil_create(), 2716 * and start a new ZIL chain. 2717 * 2718 * Since zil_alloc_zil() failed, the lwb that was previously 2719 * issued does not have a pointer to the "next" lwb on disk. 2720 * Thus, if another ZIL writer thread was to allocate the "next" 2721 * on-disk lwb, that block could be leaked in the event of a 2722 * crash (because the previous lwb on-disk would not point to 2723 * it). 2724 * 2725 * We must hold the zilog's zl_issuer_lock while we do this, to 2726 * ensure no new threads enter zil_process_commit_list() until 2727 * all lwb's in the zl_lwb_list have been synced and freed 2728 * (which is achieved via the txg_wait_synced() call). 2729 */ 2730 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2731 txg_wait_synced(zilog->zl_dmu_pool, 0); 2732 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 2733 } 2734 2735 /* 2736 * This function will traverse the commit list, creating new lwbs as 2737 * needed, and committing the itxs from the commit list to these newly 2738 * created lwbs. Additionally, as a new lwb is created, the previous 2739 * lwb will be issued to the zio layer to be written to disk. 2740 */ 2741 static void 2742 zil_process_commit_list(zilog_t *zilog, zil_commit_waiter_t *zcw, list_t *ilwbs) 2743 { 2744 spa_t *spa = zilog->zl_spa; 2745 list_t nolwb_itxs; 2746 list_t nolwb_waiters; 2747 lwb_t *lwb, *plwb; 2748 itx_t *itx; 2749 boolean_t first = B_TRUE; 2750 2751 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2752 2753 /* 2754 * Return if there's nothing to commit before we dirty the fs by 2755 * calling zil_create(). 2756 */ 2757 if (list_is_empty(&zilog->zl_itx_commit_list)) 2758 return; 2759 2760 list_create(&nolwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node)); 2761 list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t), 2762 offsetof(zil_commit_waiter_t, zcw_node)); 2763 2764 lwb = list_tail(&zilog->zl_lwb_list); 2765 if (lwb == NULL) { 2766 lwb = zil_create(zilog); 2767 } else { 2768 /* 2769 * Activate SPA_FEATURE_ZILSAXATTR for the cases where ZIL will 2770 * have already been created (zl_lwb_list not empty). 2771 */ 2772 zil_commit_activate_saxattr_feature(zilog); 2773 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED); 2774 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE); 2775 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE); 2776 first = (lwb->lwb_state != LWB_STATE_OPENED) && 2777 ((plwb = list_prev(&zilog->zl_lwb_list, lwb)) == NULL || 2778 plwb->lwb_state == LWB_STATE_FLUSH_DONE); 2779 } 2780 2781 while ((itx = list_remove_head(&zilog->zl_itx_commit_list)) != NULL) { 2782 lr_t *lrc = &itx->itx_lr; 2783 uint64_t txg = lrc->lrc_txg; 2784 2785 ASSERT3U(txg, !=, 0); 2786 2787 if (lrc->lrc_txtype == TX_COMMIT) { 2788 DTRACE_PROBE2(zil__process__commit__itx, 2789 zilog_t *, zilog, itx_t *, itx); 2790 } else { 2791 DTRACE_PROBE2(zil__process__normal__itx, 2792 zilog_t *, zilog, itx_t *, itx); 2793 } 2794 2795 boolean_t synced = txg <= spa_last_synced_txg(spa); 2796 boolean_t frozen = txg > spa_freeze_txg(spa); 2797 2798 /* 2799 * If the txg of this itx has already been synced out, then 2800 * we don't need to commit this itx to an lwb. This is 2801 * because the data of this itx will have already been 2802 * written to the main pool. This is inherently racy, and 2803 * it's still ok to commit an itx whose txg has already 2804 * been synced; this will result in a write that's 2805 * unnecessary, but will do no harm. 2806 * 2807 * With that said, we always want to commit TX_COMMIT itxs 2808 * to an lwb, regardless of whether or not that itx's txg 2809 * has been synced out. We do this to ensure any OPENED lwb 2810 * will always have at least one zil_commit_waiter_t linked 2811 * to the lwb. 2812 * 2813 * As a counter-example, if we skipped TX_COMMIT itx's 2814 * whose txg had already been synced, the following 2815 * situation could occur if we happened to be racing with 2816 * spa_sync: 2817 * 2818 * 1. We commit a non-TX_COMMIT itx to an lwb, where the 2819 * itx's txg is 10 and the last synced txg is 9. 2820 * 2. spa_sync finishes syncing out txg 10. 2821 * 3. We move to the next itx in the list, it's a TX_COMMIT 2822 * whose txg is 10, so we skip it rather than committing 2823 * it to the lwb used in (1). 2824 * 2825 * If the itx that is skipped in (3) is the last TX_COMMIT 2826 * itx in the commit list, than it's possible for the lwb 2827 * used in (1) to remain in the OPENED state indefinitely. 2828 * 2829 * To prevent the above scenario from occurring, ensuring 2830 * that once an lwb is OPENED it will transition to ISSUED 2831 * and eventually DONE, we always commit TX_COMMIT itx's to 2832 * an lwb here, even if that itx's txg has already been 2833 * synced. 2834 * 2835 * Finally, if the pool is frozen, we _always_ commit the 2836 * itx. The point of freezing the pool is to prevent data 2837 * from being written to the main pool via spa_sync, and 2838 * instead rely solely on the ZIL to persistently store the 2839 * data; i.e. when the pool is frozen, the last synced txg 2840 * value can't be trusted. 2841 */ 2842 if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) { 2843 if (lwb != NULL) { 2844 lwb = zil_lwb_assign(zilog, lwb, itx, ilwbs); 2845 if (lwb == NULL) { 2846 list_insert_tail(&nolwb_itxs, itx); 2847 } else if ((zcw->zcw_lwb != NULL && 2848 zcw->zcw_lwb != lwb) || zcw->zcw_done) { 2849 /* 2850 * Our lwb is done, leave the rest of 2851 * itx list to somebody else who care. 2852 */ 2853 first = B_FALSE; 2854 break; 2855 } 2856 } else { 2857 if (lrc->lrc_txtype == TX_COMMIT) { 2858 zil_commit_waiter_link_nolwb( 2859 itx->itx_private, &nolwb_waiters); 2860 } 2861 list_insert_tail(&nolwb_itxs, itx); 2862 } 2863 } else { 2864 ASSERT3S(lrc->lrc_txtype, !=, TX_COMMIT); 2865 zil_itx_destroy(itx); 2866 } 2867 } 2868 2869 if (lwb == NULL) { 2870 /* 2871 * This indicates zio_alloc_zil() failed to allocate the 2872 * "next" lwb on-disk. When this happens, we must stall 2873 * the ZIL write pipeline; see the comment within 2874 * zil_commit_writer_stall() for more details. 2875 */ 2876 while ((lwb = list_remove_head(ilwbs)) != NULL) 2877 zil_lwb_write_issue(zilog, lwb); 2878 zil_commit_writer_stall(zilog); 2879 2880 /* 2881 * Additionally, we have to signal and mark the "nolwb" 2882 * waiters as "done" here, since without an lwb, we 2883 * can't do this via zil_lwb_flush_vdevs_done() like 2884 * normal. 2885 */ 2886 zil_commit_waiter_t *zcw; 2887 while ((zcw = list_remove_head(&nolwb_waiters)) != NULL) 2888 zil_commit_waiter_skip(zcw); 2889 2890 /* 2891 * And finally, we have to destroy the itx's that 2892 * couldn't be committed to an lwb; this will also call 2893 * the itx's callback if one exists for the itx. 2894 */ 2895 while ((itx = list_remove_head(&nolwb_itxs)) != NULL) 2896 zil_itx_destroy(itx); 2897 } else { 2898 ASSERT(list_is_empty(&nolwb_waiters)); 2899 ASSERT3P(lwb, !=, NULL); 2900 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED); 2901 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE); 2902 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE); 2903 2904 /* 2905 * At this point, the ZIL block pointed at by the "lwb" 2906 * variable is in one of the following states: "closed" 2907 * or "open". 2908 * 2909 * If it's "closed", then no itxs have been committed to 2910 * it, so there's no point in issuing its zio (i.e. it's 2911 * "empty"). 2912 * 2913 * If it's "open", then it contains one or more itxs that 2914 * eventually need to be committed to stable storage. In 2915 * this case we intentionally do not issue the lwb's zio 2916 * to disk yet, and instead rely on one of the following 2917 * two mechanisms for issuing the zio: 2918 * 2919 * 1. Ideally, there will be more ZIL activity occurring 2920 * on the system, such that this function will be 2921 * immediately called again (not necessarily by the same 2922 * thread) and this lwb's zio will be issued via 2923 * zil_lwb_assign(). This way, the lwb is guaranteed to 2924 * be "full" when it is issued to disk, and we'll make 2925 * use of the lwb's size the best we can. 2926 * 2927 * 2. If there isn't sufficient ZIL activity occurring on 2928 * the system, such that this lwb's zio isn't issued via 2929 * zil_lwb_assign(), zil_commit_waiter() will issue the 2930 * lwb's zio. If this occurs, the lwb is not guaranteed 2931 * to be "full" by the time its zio is issued, and means 2932 * the size of the lwb was "too large" given the amount 2933 * of ZIL activity occurring on the system at that time. 2934 * 2935 * We do this for a couple of reasons: 2936 * 2937 * 1. To try and reduce the number of IOPs needed to 2938 * write the same number of itxs. If an lwb has space 2939 * available in its buffer for more itxs, and more itxs 2940 * will be committed relatively soon (relative to the 2941 * latency of performing a write), then it's beneficial 2942 * to wait for these "next" itxs. This way, more itxs 2943 * can be committed to stable storage with fewer writes. 2944 * 2945 * 2. To try and use the largest lwb block size that the 2946 * incoming rate of itxs can support. Again, this is to 2947 * try and pack as many itxs into as few lwbs as 2948 * possible, without significantly impacting the latency 2949 * of each individual itx. 2950 * 2951 * If we had no already running or open LWBs, it can be 2952 * the workload is single-threaded. And if the ZIL write 2953 * latency is very small or if the LWB is almost full, it 2954 * may be cheaper to bypass the delay. 2955 */ 2956 if (lwb->lwb_state == LWB_STATE_OPENED && first) { 2957 hrtime_t sleep = zilog->zl_last_lwb_latency * 2958 zfs_commit_timeout_pct / 100; 2959 if (sleep < zil_min_commit_timeout || 2960 lwb->lwb_sz - lwb->lwb_nused < lwb->lwb_sz / 8) { 2961 lwb = zil_lwb_write_close(zilog, lwb, ilwbs); 2962 zilog->zl_cur_used = 0; 2963 if (lwb == NULL) { 2964 while ((lwb = list_remove_head(ilwbs)) 2965 != NULL) 2966 zil_lwb_write_issue(zilog, lwb); 2967 zil_commit_writer_stall(zilog); 2968 } 2969 } 2970 } 2971 } 2972 } 2973 2974 /* 2975 * This function is responsible for ensuring the passed in commit waiter 2976 * (and associated commit itx) is committed to an lwb. If the waiter is 2977 * not already committed to an lwb, all itxs in the zilog's queue of 2978 * itxs will be processed. The assumption is the passed in waiter's 2979 * commit itx will found in the queue just like the other non-commit 2980 * itxs, such that when the entire queue is processed, the waiter will 2981 * have been committed to an lwb. 2982 * 2983 * The lwb associated with the passed in waiter is not guaranteed to 2984 * have been issued by the time this function completes. If the lwb is 2985 * not issued, we rely on future calls to zil_commit_writer() to issue 2986 * the lwb, or the timeout mechanism found in zil_commit_waiter(). 2987 */ 2988 static uint64_t 2989 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw) 2990 { 2991 list_t ilwbs; 2992 lwb_t *lwb; 2993 uint64_t wtxg = 0; 2994 2995 ASSERT(!MUTEX_HELD(&zilog->zl_lock)); 2996 ASSERT(spa_writeable(zilog->zl_spa)); 2997 2998 list_create(&ilwbs, sizeof (lwb_t), offsetof(lwb_t, lwb_issue_node)); 2999 mutex_enter(&zilog->zl_issuer_lock); 3000 3001 if (zcw->zcw_lwb != NULL || zcw->zcw_done) { 3002 /* 3003 * It's possible that, while we were waiting to acquire 3004 * the "zl_issuer_lock", another thread committed this 3005 * waiter to an lwb. If that occurs, we bail out early, 3006 * without processing any of the zilog's queue of itxs. 3007 * 3008 * On certain workloads and system configurations, the 3009 * "zl_issuer_lock" can become highly contended. In an 3010 * attempt to reduce this contention, we immediately drop 3011 * the lock if the waiter has already been processed. 3012 * 3013 * We've measured this optimization to reduce CPU spent 3014 * contending on this lock by up to 5%, using a system 3015 * with 32 CPUs, low latency storage (~50 usec writes), 3016 * and 1024 threads performing sync writes. 3017 */ 3018 goto out; 3019 } 3020 3021 ZIL_STAT_BUMP(zilog, zil_commit_writer_count); 3022 3023 wtxg = zil_get_commit_list(zilog); 3024 zil_prune_commit_list(zilog); 3025 zil_process_commit_list(zilog, zcw, &ilwbs); 3026 3027 out: 3028 mutex_exit(&zilog->zl_issuer_lock); 3029 while ((lwb = list_remove_head(&ilwbs)) != NULL) 3030 zil_lwb_write_issue(zilog, lwb); 3031 list_destroy(&ilwbs); 3032 return (wtxg); 3033 } 3034 3035 static void 3036 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw) 3037 { 3038 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock)); 3039 ASSERT(MUTEX_HELD(&zcw->zcw_lock)); 3040 ASSERT3B(zcw->zcw_done, ==, B_FALSE); 3041 3042 lwb_t *lwb = zcw->zcw_lwb; 3043 ASSERT3P(lwb, !=, NULL); 3044 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED); 3045 3046 /* 3047 * If the lwb has already been issued by another thread, we can 3048 * immediately return since there's no work to be done (the 3049 * point of this function is to issue the lwb). Additionally, we 3050 * do this prior to acquiring the zl_issuer_lock, to avoid 3051 * acquiring it when it's not necessary to do so. 3052 */ 3053 if (lwb->lwb_state == LWB_STATE_ISSUED || 3054 lwb->lwb_state == LWB_STATE_WRITE_DONE || 3055 lwb->lwb_state == LWB_STATE_FLUSH_DONE) 3056 return; 3057 3058 /* 3059 * In order to call zil_lwb_write_close() we must hold the 3060 * zilog's "zl_issuer_lock". We can't simply acquire that lock, 3061 * since we're already holding the commit waiter's "zcw_lock", 3062 * and those two locks are acquired in the opposite order 3063 * elsewhere. 3064 */ 3065 mutex_exit(&zcw->zcw_lock); 3066 mutex_enter(&zilog->zl_issuer_lock); 3067 mutex_enter(&zcw->zcw_lock); 3068 3069 /* 3070 * Since we just dropped and re-acquired the commit waiter's 3071 * lock, we have to re-check to see if the waiter was marked 3072 * "done" during that process. If the waiter was marked "done", 3073 * the "lwb" pointer is no longer valid (it can be free'd after 3074 * the waiter is marked "done"), so without this check we could 3075 * wind up with a use-after-free error below. 3076 */ 3077 if (zcw->zcw_done) { 3078 lwb = NULL; 3079 goto out; 3080 } 3081 3082 ASSERT3P(lwb, ==, zcw->zcw_lwb); 3083 3084 /* 3085 * We've already checked this above, but since we hadn't acquired 3086 * the zilog's zl_issuer_lock, we have to perform this check a 3087 * second time while holding the lock. 3088 * 3089 * We don't need to hold the zl_lock since the lwb cannot transition 3090 * from OPENED to ISSUED while we hold the zl_issuer_lock. The lwb 3091 * _can_ transition from ISSUED to DONE, but it's OK to race with 3092 * that transition since we treat the lwb the same, whether it's in 3093 * the ISSUED or DONE states. 3094 * 3095 * The important thing, is we treat the lwb differently depending on 3096 * if it's ISSUED or OPENED, and block any other threads that might 3097 * attempt to issue this lwb. For that reason we hold the 3098 * zl_issuer_lock when checking the lwb_state; we must not call 3099 * zil_lwb_write_close() if the lwb had already been issued. 3100 * 3101 * See the comment above the lwb_state_t structure definition for 3102 * more details on the lwb states, and locking requirements. 3103 */ 3104 if (lwb->lwb_state == LWB_STATE_ISSUED || 3105 lwb->lwb_state == LWB_STATE_WRITE_DONE || 3106 lwb->lwb_state == LWB_STATE_FLUSH_DONE) { 3107 lwb = NULL; 3108 goto out; 3109 } 3110 3111 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED); 3112 3113 /* 3114 * As described in the comments above zil_commit_waiter() and 3115 * zil_process_commit_list(), we need to issue this lwb's zio 3116 * since we've reached the commit waiter's timeout and it still 3117 * hasn't been issued. 3118 */ 3119 lwb_t *nlwb = zil_lwb_write_close(zilog, lwb, NULL); 3120 3121 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED); 3122 3123 /* 3124 * Since the lwb's zio hadn't been issued by the time this thread 3125 * reached its timeout, we reset the zilog's "zl_cur_used" field 3126 * to influence the zil block size selection algorithm. 3127 * 3128 * By having to issue the lwb's zio here, it means the size of the 3129 * lwb was too large, given the incoming throughput of itxs. By 3130 * setting "zl_cur_used" to zero, we communicate this fact to the 3131 * block size selection algorithm, so it can take this information 3132 * into account, and potentially select a smaller size for the 3133 * next lwb block that is allocated. 3134 */ 3135 zilog->zl_cur_used = 0; 3136 3137 if (nlwb == NULL) { 3138 /* 3139 * When zil_lwb_write_close() returns NULL, this 3140 * indicates zio_alloc_zil() failed to allocate the 3141 * "next" lwb on-disk. When this occurs, the ZIL write 3142 * pipeline must be stalled; see the comment within the 3143 * zil_commit_writer_stall() function for more details. 3144 * 3145 * We must drop the commit waiter's lock prior to 3146 * calling zil_commit_writer_stall() or else we can wind 3147 * up with the following deadlock: 3148 * 3149 * - This thread is waiting for the txg to sync while 3150 * holding the waiter's lock; txg_wait_synced() is 3151 * used within txg_commit_writer_stall(). 3152 * 3153 * - The txg can't sync because it is waiting for this 3154 * lwb's zio callback to call dmu_tx_commit(). 3155 * 3156 * - The lwb's zio callback can't call dmu_tx_commit() 3157 * because it's blocked trying to acquire the waiter's 3158 * lock, which occurs prior to calling dmu_tx_commit() 3159 */ 3160 mutex_exit(&zcw->zcw_lock); 3161 zil_lwb_write_issue(zilog, lwb); 3162 lwb = NULL; 3163 zil_commit_writer_stall(zilog); 3164 mutex_enter(&zcw->zcw_lock); 3165 } 3166 3167 out: 3168 mutex_exit(&zilog->zl_issuer_lock); 3169 if (lwb) 3170 zil_lwb_write_issue(zilog, lwb); 3171 ASSERT(MUTEX_HELD(&zcw->zcw_lock)); 3172 } 3173 3174 /* 3175 * This function is responsible for performing the following two tasks: 3176 * 3177 * 1. its primary responsibility is to block until the given "commit 3178 * waiter" is considered "done". 3179 * 3180 * 2. its secondary responsibility is to issue the zio for the lwb that 3181 * the given "commit waiter" is waiting on, if this function has 3182 * waited "long enough" and the lwb is still in the "open" state. 3183 * 3184 * Given a sufficient amount of itxs being generated and written using 3185 * the ZIL, the lwb's zio will be issued via the zil_lwb_assign() 3186 * function. If this does not occur, this secondary responsibility will 3187 * ensure the lwb is issued even if there is not other synchronous 3188 * activity on the system. 3189 * 3190 * For more details, see zil_process_commit_list(); more specifically, 3191 * the comment at the bottom of that function. 3192 */ 3193 static void 3194 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw) 3195 { 3196 ASSERT(!MUTEX_HELD(&zilog->zl_lock)); 3197 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock)); 3198 ASSERT(spa_writeable(zilog->zl_spa)); 3199 3200 mutex_enter(&zcw->zcw_lock); 3201 3202 /* 3203 * The timeout is scaled based on the lwb latency to avoid 3204 * significantly impacting the latency of each individual itx. 3205 * For more details, see the comment at the bottom of the 3206 * zil_process_commit_list() function. 3207 */ 3208 int pct = MAX(zfs_commit_timeout_pct, 1); 3209 hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100; 3210 hrtime_t wakeup = gethrtime() + sleep; 3211 boolean_t timedout = B_FALSE; 3212 3213 while (!zcw->zcw_done) { 3214 ASSERT(MUTEX_HELD(&zcw->zcw_lock)); 3215 3216 lwb_t *lwb = zcw->zcw_lwb; 3217 3218 /* 3219 * Usually, the waiter will have a non-NULL lwb field here, 3220 * but it's possible for it to be NULL as a result of 3221 * zil_commit() racing with spa_sync(). 3222 * 3223 * When zil_clean() is called, it's possible for the itxg 3224 * list (which may be cleaned via a taskq) to contain 3225 * commit itxs. When this occurs, the commit waiters linked 3226 * off of these commit itxs will not be committed to an 3227 * lwb. Additionally, these commit waiters will not be 3228 * marked done until zil_commit_waiter_skip() is called via 3229 * zil_itxg_clean(). 3230 * 3231 * Thus, it's possible for this commit waiter (i.e. the 3232 * "zcw" variable) to be found in this "in between" state; 3233 * where it's "zcw_lwb" field is NULL, and it hasn't yet 3234 * been skipped, so it's "zcw_done" field is still B_FALSE. 3235 */ 3236 IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED); 3237 3238 if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) { 3239 ASSERT3B(timedout, ==, B_FALSE); 3240 3241 /* 3242 * If the lwb hasn't been issued yet, then we 3243 * need to wait with a timeout, in case this 3244 * function needs to issue the lwb after the 3245 * timeout is reached; responsibility (2) from 3246 * the comment above this function. 3247 */ 3248 int rc = cv_timedwait_hires(&zcw->zcw_cv, 3249 &zcw->zcw_lock, wakeup, USEC2NSEC(1), 3250 CALLOUT_FLAG_ABSOLUTE); 3251 3252 if (rc != -1 || zcw->zcw_done) 3253 continue; 3254 3255 timedout = B_TRUE; 3256 zil_commit_waiter_timeout(zilog, zcw); 3257 3258 if (!zcw->zcw_done) { 3259 /* 3260 * If the commit waiter has already been 3261 * marked "done", it's possible for the 3262 * waiter's lwb structure to have already 3263 * been freed. Thus, we can only reliably 3264 * make these assertions if the waiter 3265 * isn't done. 3266 */ 3267 ASSERT3P(lwb, ==, zcw->zcw_lwb); 3268 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED); 3269 } 3270 } else { 3271 /* 3272 * If the lwb isn't open, then it must have already 3273 * been issued. In that case, there's no need to 3274 * use a timeout when waiting for the lwb to 3275 * complete. 3276 * 3277 * Additionally, if the lwb is NULL, the waiter 3278 * will soon be signaled and marked done via 3279 * zil_clean() and zil_itxg_clean(), so no timeout 3280 * is required. 3281 */ 3282 3283 IMPLY(lwb != NULL, 3284 lwb->lwb_state == LWB_STATE_ISSUED || 3285 lwb->lwb_state == LWB_STATE_WRITE_DONE || 3286 lwb->lwb_state == LWB_STATE_FLUSH_DONE); 3287 cv_wait(&zcw->zcw_cv, &zcw->zcw_lock); 3288 } 3289 } 3290 3291 mutex_exit(&zcw->zcw_lock); 3292 } 3293 3294 static zil_commit_waiter_t * 3295 zil_alloc_commit_waiter(void) 3296 { 3297 zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP); 3298 3299 cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL); 3300 mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL); 3301 list_link_init(&zcw->zcw_node); 3302 zcw->zcw_lwb = NULL; 3303 zcw->zcw_done = B_FALSE; 3304 zcw->zcw_zio_error = 0; 3305 3306 return (zcw); 3307 } 3308 3309 static void 3310 zil_free_commit_waiter(zil_commit_waiter_t *zcw) 3311 { 3312 ASSERT(!list_link_active(&zcw->zcw_node)); 3313 ASSERT3P(zcw->zcw_lwb, ==, NULL); 3314 ASSERT3B(zcw->zcw_done, ==, B_TRUE); 3315 mutex_destroy(&zcw->zcw_lock); 3316 cv_destroy(&zcw->zcw_cv); 3317 kmem_cache_free(zil_zcw_cache, zcw); 3318 } 3319 3320 /* 3321 * This function is used to create a TX_COMMIT itx and assign it. This 3322 * way, it will be linked into the ZIL's list of synchronous itxs, and 3323 * then later committed to an lwb (or skipped) when 3324 * zil_process_commit_list() is called. 3325 */ 3326 static void 3327 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw) 3328 { 3329 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os); 3330 3331 /* 3332 * Since we are not going to create any new dirty data, and we 3333 * can even help with clearing the existing dirty data, we 3334 * should not be subject to the dirty data based delays. We 3335 * use TXG_NOTHROTTLE to bypass the delay mechanism. 3336 */ 3337 VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE)); 3338 3339 itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t)); 3340 itx->itx_sync = B_TRUE; 3341 itx->itx_private = zcw; 3342 3343 zil_itx_assign(zilog, itx, tx); 3344 3345 dmu_tx_commit(tx); 3346 } 3347 3348 /* 3349 * Commit ZFS Intent Log transactions (itxs) to stable storage. 3350 * 3351 * When writing ZIL transactions to the on-disk representation of the 3352 * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple 3353 * itxs can be committed to a single lwb. Once a lwb is written and 3354 * committed to stable storage (i.e. the lwb is written, and vdevs have 3355 * been flushed), each itx that was committed to that lwb is also 3356 * considered to be committed to stable storage. 3357 * 3358 * When an itx is committed to an lwb, the log record (lr_t) contained 3359 * by the itx is copied into the lwb's zio buffer, and once this buffer 3360 * is written to disk, it becomes an on-disk ZIL block. 3361 * 3362 * As itxs are generated, they're inserted into the ZIL's queue of 3363 * uncommitted itxs. The semantics of zil_commit() are such that it will 3364 * block until all itxs that were in the queue when it was called, are 3365 * committed to stable storage. 3366 * 3367 * If "foid" is zero, this means all "synchronous" and "asynchronous" 3368 * itxs, for all objects in the dataset, will be committed to stable 3369 * storage prior to zil_commit() returning. If "foid" is non-zero, all 3370 * "synchronous" itxs for all objects, but only "asynchronous" itxs 3371 * that correspond to the foid passed in, will be committed to stable 3372 * storage prior to zil_commit() returning. 3373 * 3374 * Generally speaking, when zil_commit() is called, the consumer doesn't 3375 * actually care about _all_ of the uncommitted itxs. Instead, they're 3376 * simply trying to waiting for a specific itx to be committed to disk, 3377 * but the interface(s) for interacting with the ZIL don't allow such 3378 * fine-grained communication. A better interface would allow a consumer 3379 * to create and assign an itx, and then pass a reference to this itx to 3380 * zil_commit(); such that zil_commit() would return as soon as that 3381 * specific itx was committed to disk (instead of waiting for _all_ 3382 * itxs to be committed). 3383 * 3384 * When a thread calls zil_commit() a special "commit itx" will be 3385 * generated, along with a corresponding "waiter" for this commit itx. 3386 * zil_commit() will wait on this waiter's CV, such that when the waiter 3387 * is marked done, and signaled, zil_commit() will return. 3388 * 3389 * This commit itx is inserted into the queue of uncommitted itxs. This 3390 * provides an easy mechanism for determining which itxs were in the 3391 * queue prior to zil_commit() having been called, and which itxs were 3392 * added after zil_commit() was called. 3393 * 3394 * The commit itx is special; it doesn't have any on-disk representation. 3395 * When a commit itx is "committed" to an lwb, the waiter associated 3396 * with it is linked onto the lwb's list of waiters. Then, when that lwb 3397 * completes, each waiter on the lwb's list is marked done and signaled 3398 * -- allowing the thread waiting on the waiter to return from zil_commit(). 3399 * 3400 * It's important to point out a few critical factors that allow us 3401 * to make use of the commit itxs, commit waiters, per-lwb lists of 3402 * commit waiters, and zio completion callbacks like we're doing: 3403 * 3404 * 1. The list of waiters for each lwb is traversed, and each commit 3405 * waiter is marked "done" and signaled, in the zio completion 3406 * callback of the lwb's zio[*]. 3407 * 3408 * * Actually, the waiters are signaled in the zio completion 3409 * callback of the root zio for the DKIOCFLUSHWRITECACHE commands 3410 * that are sent to the vdevs upon completion of the lwb zio. 3411 * 3412 * 2. When the itxs are inserted into the ZIL's queue of uncommitted 3413 * itxs, the order in which they are inserted is preserved[*]; as 3414 * itxs are added to the queue, they are added to the tail of 3415 * in-memory linked lists. 3416 * 3417 * When committing the itxs to lwbs (to be written to disk), they 3418 * are committed in the same order in which the itxs were added to 3419 * the uncommitted queue's linked list(s); i.e. the linked list of 3420 * itxs to commit is traversed from head to tail, and each itx is 3421 * committed to an lwb in that order. 3422 * 3423 * * To clarify: 3424 * 3425 * - the order of "sync" itxs is preserved w.r.t. other 3426 * "sync" itxs, regardless of the corresponding objects. 3427 * - the order of "async" itxs is preserved w.r.t. other 3428 * "async" itxs corresponding to the same object. 3429 * - the order of "async" itxs is *not* preserved w.r.t. other 3430 * "async" itxs corresponding to different objects. 3431 * - the order of "sync" itxs w.r.t. "async" itxs (or vice 3432 * versa) is *not* preserved, even for itxs that correspond 3433 * to the same object. 3434 * 3435 * For more details, see: zil_itx_assign(), zil_async_to_sync(), 3436 * zil_get_commit_list(), and zil_process_commit_list(). 3437 * 3438 * 3. The lwbs represent a linked list of blocks on disk. Thus, any 3439 * lwb cannot be considered committed to stable storage, until its 3440 * "previous" lwb is also committed to stable storage. This fact, 3441 * coupled with the fact described above, means that itxs are 3442 * committed in (roughly) the order in which they were generated. 3443 * This is essential because itxs are dependent on prior itxs. 3444 * Thus, we *must not* deem an itx as being committed to stable 3445 * storage, until *all* prior itxs have also been committed to 3446 * stable storage. 3447 * 3448 * To enforce this ordering of lwb zio's, while still leveraging as 3449 * much of the underlying storage performance as possible, we rely 3450 * on two fundamental concepts: 3451 * 3452 * 1. The creation and issuance of lwb zio's is protected by 3453 * the zilog's "zl_issuer_lock", which ensures only a single 3454 * thread is creating and/or issuing lwb's at a time 3455 * 2. The "previous" lwb is a child of the "current" lwb 3456 * (leveraging the zio parent-child dependency graph) 3457 * 3458 * By relying on this parent-child zio relationship, we can have 3459 * many lwb zio's concurrently issued to the underlying storage, 3460 * but the order in which they complete will be the same order in 3461 * which they were created. 3462 */ 3463 void 3464 zil_commit(zilog_t *zilog, uint64_t foid) 3465 { 3466 /* 3467 * We should never attempt to call zil_commit on a snapshot for 3468 * a couple of reasons: 3469 * 3470 * 1. A snapshot may never be modified, thus it cannot have any 3471 * in-flight itxs that would have modified the dataset. 3472 * 3473 * 2. By design, when zil_commit() is called, a commit itx will 3474 * be assigned to this zilog; as a result, the zilog will be 3475 * dirtied. We must not dirty the zilog of a snapshot; there's 3476 * checks in the code that enforce this invariant, and will 3477 * cause a panic if it's not upheld. 3478 */ 3479 ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE); 3480 3481 if (zilog->zl_sync == ZFS_SYNC_DISABLED) 3482 return; 3483 3484 if (!spa_writeable(zilog->zl_spa)) { 3485 /* 3486 * If the SPA is not writable, there should never be any 3487 * pending itxs waiting to be committed to disk. If that 3488 * weren't true, we'd skip writing those itxs out, and 3489 * would break the semantics of zil_commit(); thus, we're 3490 * verifying that truth before we return to the caller. 3491 */ 3492 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3493 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL); 3494 for (int i = 0; i < TXG_SIZE; i++) 3495 ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL); 3496 return; 3497 } 3498 3499 /* 3500 * If the ZIL is suspended, we don't want to dirty it by calling 3501 * zil_commit_itx_assign() below, nor can we write out 3502 * lwbs like would be done in zil_commit_write(). Thus, we 3503 * simply rely on txg_wait_synced() to maintain the necessary 3504 * semantics, and avoid calling those functions altogether. 3505 */ 3506 if (zilog->zl_suspend > 0) { 3507 txg_wait_synced(zilog->zl_dmu_pool, 0); 3508 return; 3509 } 3510 3511 zil_commit_impl(zilog, foid); 3512 } 3513 3514 void 3515 zil_commit_impl(zilog_t *zilog, uint64_t foid) 3516 { 3517 ZIL_STAT_BUMP(zilog, zil_commit_count); 3518 3519 /* 3520 * Move the "async" itxs for the specified foid to the "sync" 3521 * queues, such that they will be later committed (or skipped) 3522 * to an lwb when zil_process_commit_list() is called. 3523 * 3524 * Since these "async" itxs must be committed prior to this 3525 * call to zil_commit returning, we must perform this operation 3526 * before we call zil_commit_itx_assign(). 3527 */ 3528 zil_async_to_sync(zilog, foid); 3529 3530 /* 3531 * We allocate a new "waiter" structure which will initially be 3532 * linked to the commit itx using the itx's "itx_private" field. 3533 * Since the commit itx doesn't represent any on-disk state, 3534 * when it's committed to an lwb, rather than copying the its 3535 * lr_t into the lwb's buffer, the commit itx's "waiter" will be 3536 * added to the lwb's list of waiters. Then, when the lwb is 3537 * committed to stable storage, each waiter in the lwb's list of 3538 * waiters will be marked "done", and signalled. 3539 * 3540 * We must create the waiter and assign the commit itx prior to 3541 * calling zil_commit_writer(), or else our specific commit itx 3542 * is not guaranteed to be committed to an lwb prior to calling 3543 * zil_commit_waiter(). 3544 */ 3545 zil_commit_waiter_t *zcw = zil_alloc_commit_waiter(); 3546 zil_commit_itx_assign(zilog, zcw); 3547 3548 uint64_t wtxg = zil_commit_writer(zilog, zcw); 3549 zil_commit_waiter(zilog, zcw); 3550 3551 if (zcw->zcw_zio_error != 0) { 3552 /* 3553 * If there was an error writing out the ZIL blocks that 3554 * this thread is waiting on, then we fallback to 3555 * relying on spa_sync() to write out the data this 3556 * thread is waiting on. Obviously this has performance 3557 * implications, but the expectation is for this to be 3558 * an exceptional case, and shouldn't occur often. 3559 */ 3560 DTRACE_PROBE2(zil__commit__io__error, 3561 zilog_t *, zilog, zil_commit_waiter_t *, zcw); 3562 txg_wait_synced(zilog->zl_dmu_pool, 0); 3563 } else if (wtxg != 0) { 3564 txg_wait_synced(zilog->zl_dmu_pool, wtxg); 3565 } 3566 3567 zil_free_commit_waiter(zcw); 3568 } 3569 3570 /* 3571 * Called in syncing context to free committed log blocks and update log header. 3572 */ 3573 void 3574 zil_sync(zilog_t *zilog, dmu_tx_t *tx) 3575 { 3576 zil_header_t *zh = zil_header_in_syncing_context(zilog); 3577 uint64_t txg = dmu_tx_get_txg(tx); 3578 spa_t *spa = zilog->zl_spa; 3579 uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK]; 3580 lwb_t *lwb; 3581 3582 /* 3583 * We don't zero out zl_destroy_txg, so make sure we don't try 3584 * to destroy it twice. 3585 */ 3586 if (spa_sync_pass(spa) != 1) 3587 return; 3588 3589 zil_lwb_flush_wait_all(zilog, txg); 3590 3591 mutex_enter(&zilog->zl_lock); 3592 3593 ASSERT(zilog->zl_stop_sync == 0); 3594 3595 if (*replayed_seq != 0) { 3596 ASSERT(zh->zh_replay_seq < *replayed_seq); 3597 zh->zh_replay_seq = *replayed_seq; 3598 *replayed_seq = 0; 3599 } 3600 3601 if (zilog->zl_destroy_txg == txg) { 3602 blkptr_t blk = zh->zh_log; 3603 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 3604 3605 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3606 3607 memset(zh, 0, sizeof (zil_header_t)); 3608 memset(zilog->zl_replayed_seq, 0, 3609 sizeof (zilog->zl_replayed_seq)); 3610 3611 if (zilog->zl_keep_first) { 3612 /* 3613 * If this block was part of log chain that couldn't 3614 * be claimed because a device was missing during 3615 * zil_claim(), but that device later returns, 3616 * then this block could erroneously appear valid. 3617 * To guard against this, assign a new GUID to the new 3618 * log chain so it doesn't matter what blk points to. 3619 */ 3620 zil_init_log_chain(zilog, &blk); 3621 zh->zh_log = blk; 3622 } else { 3623 /* 3624 * A destroyed ZIL chain can't contain any TX_SETSAXATTR 3625 * records. So, deactivate the feature for this dataset. 3626 * We activate it again when we start a new ZIL chain. 3627 */ 3628 if (dsl_dataset_feature_is_active(ds, 3629 SPA_FEATURE_ZILSAXATTR)) 3630 dsl_dataset_deactivate_feature(ds, 3631 SPA_FEATURE_ZILSAXATTR, tx); 3632 } 3633 } 3634 3635 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 3636 zh->zh_log = lwb->lwb_blk; 3637 if (lwb->lwb_state != LWB_STATE_FLUSH_DONE || 3638 lwb->lwb_max_txg > txg) 3639 break; 3640 list_remove(&zilog->zl_lwb_list, lwb); 3641 zio_free(spa, txg, &lwb->lwb_blk); 3642 zil_free_lwb(zilog, lwb); 3643 3644 /* 3645 * If we don't have anything left in the lwb list then 3646 * we've had an allocation failure and we need to zero 3647 * out the zil_header blkptr so that we don't end 3648 * up freeing the same block twice. 3649 */ 3650 if (list_is_empty(&zilog->zl_lwb_list)) 3651 BP_ZERO(&zh->zh_log); 3652 } 3653 3654 /* 3655 * Remove fastwrite on any blocks that have been pre-allocated for 3656 * the next commit. This prevents fastwrite counter pollution by 3657 * unused, long-lived LWBs. 3658 */ 3659 for (; lwb != NULL; lwb = list_next(&zilog->zl_lwb_list, lwb)) { 3660 if (lwb->lwb_fastwrite && !lwb->lwb_write_zio) { 3661 metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk); 3662 lwb->lwb_fastwrite = 0; 3663 } 3664 } 3665 3666 mutex_exit(&zilog->zl_lock); 3667 } 3668 3669 static int 3670 zil_lwb_cons(void *vbuf, void *unused, int kmflag) 3671 { 3672 (void) unused, (void) kmflag; 3673 lwb_t *lwb = vbuf; 3674 list_create(&lwb->lwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node)); 3675 list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t), 3676 offsetof(zil_commit_waiter_t, zcw_node)); 3677 avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare, 3678 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node)); 3679 mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL); 3680 return (0); 3681 } 3682 3683 static void 3684 zil_lwb_dest(void *vbuf, void *unused) 3685 { 3686 (void) unused; 3687 lwb_t *lwb = vbuf; 3688 mutex_destroy(&lwb->lwb_vdev_lock); 3689 avl_destroy(&lwb->lwb_vdev_tree); 3690 list_destroy(&lwb->lwb_waiters); 3691 list_destroy(&lwb->lwb_itxs); 3692 } 3693 3694 void 3695 zil_init(void) 3696 { 3697 zil_lwb_cache = kmem_cache_create("zil_lwb_cache", 3698 sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0); 3699 3700 zil_zcw_cache = kmem_cache_create("zil_zcw_cache", 3701 sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 3702 3703 zil_sums_init(&zil_sums_global); 3704 zil_kstats_global = kstat_create("zfs", 0, "zil", "misc", 3705 KSTAT_TYPE_NAMED, sizeof (zil_stats) / sizeof (kstat_named_t), 3706 KSTAT_FLAG_VIRTUAL); 3707 3708 if (zil_kstats_global != NULL) { 3709 zil_kstats_global->ks_data = &zil_stats; 3710 zil_kstats_global->ks_update = zil_kstats_global_update; 3711 zil_kstats_global->ks_private = NULL; 3712 kstat_install(zil_kstats_global); 3713 } 3714 } 3715 3716 void 3717 zil_fini(void) 3718 { 3719 kmem_cache_destroy(zil_zcw_cache); 3720 kmem_cache_destroy(zil_lwb_cache); 3721 3722 if (zil_kstats_global != NULL) { 3723 kstat_delete(zil_kstats_global); 3724 zil_kstats_global = NULL; 3725 } 3726 3727 zil_sums_fini(&zil_sums_global); 3728 } 3729 3730 void 3731 zil_set_sync(zilog_t *zilog, uint64_t sync) 3732 { 3733 zilog->zl_sync = sync; 3734 } 3735 3736 void 3737 zil_set_logbias(zilog_t *zilog, uint64_t logbias) 3738 { 3739 zilog->zl_logbias = logbias; 3740 } 3741 3742 zilog_t * 3743 zil_alloc(objset_t *os, zil_header_t *zh_phys) 3744 { 3745 zilog_t *zilog; 3746 3747 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP); 3748 3749 zilog->zl_header = zh_phys; 3750 zilog->zl_os = os; 3751 zilog->zl_spa = dmu_objset_spa(os); 3752 zilog->zl_dmu_pool = dmu_objset_pool(os); 3753 zilog->zl_destroy_txg = TXG_INITIAL - 1; 3754 zilog->zl_logbias = dmu_objset_logbias(os); 3755 zilog->zl_sync = dmu_objset_syncprop(os); 3756 zilog->zl_dirty_max_txg = 0; 3757 zilog->zl_last_lwb_opened = NULL; 3758 zilog->zl_last_lwb_latency = 0; 3759 zilog->zl_max_block_size = zil_maxblocksize; 3760 3761 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL); 3762 mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL); 3763 mutex_init(&zilog->zl_lwb_io_lock, NULL, MUTEX_DEFAULT, NULL); 3764 3765 for (int i = 0; i < TXG_SIZE; i++) { 3766 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL, 3767 MUTEX_DEFAULT, NULL); 3768 } 3769 3770 list_create(&zilog->zl_lwb_list, sizeof (lwb_t), 3771 offsetof(lwb_t, lwb_node)); 3772 3773 list_create(&zilog->zl_itx_commit_list, sizeof (itx_t), 3774 offsetof(itx_t, itx_node)); 3775 3776 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL); 3777 cv_init(&zilog->zl_lwb_io_cv, NULL, CV_DEFAULT, NULL); 3778 3779 return (zilog); 3780 } 3781 3782 void 3783 zil_free(zilog_t *zilog) 3784 { 3785 int i; 3786 3787 zilog->zl_stop_sync = 1; 3788 3789 ASSERT0(zilog->zl_suspend); 3790 ASSERT0(zilog->zl_suspending); 3791 3792 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3793 list_destroy(&zilog->zl_lwb_list); 3794 3795 ASSERT(list_is_empty(&zilog->zl_itx_commit_list)); 3796 list_destroy(&zilog->zl_itx_commit_list); 3797 3798 for (i = 0; i < TXG_SIZE; i++) { 3799 /* 3800 * It's possible for an itx to be generated that doesn't dirty 3801 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean() 3802 * callback to remove the entry. We remove those here. 3803 * 3804 * Also free up the ziltest itxs. 3805 */ 3806 if (zilog->zl_itxg[i].itxg_itxs) 3807 zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs); 3808 mutex_destroy(&zilog->zl_itxg[i].itxg_lock); 3809 } 3810 3811 mutex_destroy(&zilog->zl_issuer_lock); 3812 mutex_destroy(&zilog->zl_lock); 3813 mutex_destroy(&zilog->zl_lwb_io_lock); 3814 3815 cv_destroy(&zilog->zl_cv_suspend); 3816 cv_destroy(&zilog->zl_lwb_io_cv); 3817 3818 kmem_free(zilog, sizeof (zilog_t)); 3819 } 3820 3821 /* 3822 * Open an intent log. 3823 */ 3824 zilog_t * 3825 zil_open(objset_t *os, zil_get_data_t *get_data, zil_sums_t *zil_sums) 3826 { 3827 zilog_t *zilog = dmu_objset_zil(os); 3828 3829 ASSERT3P(zilog->zl_get_data, ==, NULL); 3830 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL); 3831 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3832 3833 zilog->zl_get_data = get_data; 3834 zilog->zl_sums = zil_sums; 3835 3836 return (zilog); 3837 } 3838 3839 /* 3840 * Close an intent log. 3841 */ 3842 void 3843 zil_close(zilog_t *zilog) 3844 { 3845 lwb_t *lwb; 3846 uint64_t txg; 3847 3848 if (!dmu_objset_is_snapshot(zilog->zl_os)) { 3849 zil_commit(zilog, 0); 3850 } else { 3851 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3852 ASSERT0(zilog->zl_dirty_max_txg); 3853 ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE); 3854 } 3855 3856 mutex_enter(&zilog->zl_lock); 3857 lwb = list_tail(&zilog->zl_lwb_list); 3858 if (lwb == NULL) 3859 txg = zilog->zl_dirty_max_txg; 3860 else 3861 txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg); 3862 mutex_exit(&zilog->zl_lock); 3863 3864 /* 3865 * zl_lwb_max_issued_txg may be larger than lwb_max_txg. It depends 3866 * on the time when the dmu_tx transaction is assigned in 3867 * zil_lwb_write_close(). 3868 */ 3869 mutex_enter(&zilog->zl_lwb_io_lock); 3870 txg = MAX(zilog->zl_lwb_max_issued_txg, txg); 3871 mutex_exit(&zilog->zl_lwb_io_lock); 3872 3873 /* 3874 * We need to use txg_wait_synced() to wait until that txg is synced. 3875 * zil_sync() will guarantee all lwbs up to that txg have been 3876 * written out, flushed, and cleaned. 3877 */ 3878 if (txg != 0) 3879 txg_wait_synced(zilog->zl_dmu_pool, txg); 3880 3881 if (zilog_is_dirty(zilog)) 3882 zfs_dbgmsg("zil (%px) is dirty, txg %llu", zilog, 3883 (u_longlong_t)txg); 3884 if (txg < spa_freeze_txg(zilog->zl_spa)) 3885 VERIFY(!zilog_is_dirty(zilog)); 3886 3887 zilog->zl_get_data = NULL; 3888 3889 /* 3890 * We should have only one lwb left on the list; remove it now. 3891 */ 3892 mutex_enter(&zilog->zl_lock); 3893 lwb = list_remove_head(&zilog->zl_lwb_list); 3894 if (lwb != NULL) { 3895 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3896 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED); 3897 3898 if (lwb->lwb_fastwrite) 3899 metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk); 3900 3901 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 3902 zil_free_lwb(zilog, lwb); 3903 } 3904 mutex_exit(&zilog->zl_lock); 3905 } 3906 3907 static const char *suspend_tag = "zil suspending"; 3908 3909 /* 3910 * Suspend an intent log. While in suspended mode, we still honor 3911 * synchronous semantics, but we rely on txg_wait_synced() to do it. 3912 * On old version pools, we suspend the log briefly when taking a 3913 * snapshot so that it will have an empty intent log. 3914 * 3915 * Long holds are not really intended to be used the way we do here -- 3916 * held for such a short time. A concurrent caller of dsl_dataset_long_held() 3917 * could fail. Therefore we take pains to only put a long hold if it is 3918 * actually necessary. Fortunately, it will only be necessary if the 3919 * objset is currently mounted (or the ZVOL equivalent). In that case it 3920 * will already have a long hold, so we are not really making things any worse. 3921 * 3922 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or 3923 * zvol_state_t), and use their mechanism to prevent their hold from being 3924 * dropped (e.g. VFS_HOLD()). However, that would be even more pain for 3925 * very little gain. 3926 * 3927 * if cookiep == NULL, this does both the suspend & resume. 3928 * Otherwise, it returns with the dataset "long held", and the cookie 3929 * should be passed into zil_resume(). 3930 */ 3931 int 3932 zil_suspend(const char *osname, void **cookiep) 3933 { 3934 objset_t *os; 3935 zilog_t *zilog; 3936 const zil_header_t *zh; 3937 int error; 3938 3939 error = dmu_objset_hold(osname, suspend_tag, &os); 3940 if (error != 0) 3941 return (error); 3942 zilog = dmu_objset_zil(os); 3943 3944 mutex_enter(&zilog->zl_lock); 3945 zh = zilog->zl_header; 3946 3947 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */ 3948 mutex_exit(&zilog->zl_lock); 3949 dmu_objset_rele(os, suspend_tag); 3950 return (SET_ERROR(EBUSY)); 3951 } 3952 3953 /* 3954 * Don't put a long hold in the cases where we can avoid it. This 3955 * is when there is no cookie so we are doing a suspend & resume 3956 * (i.e. called from zil_vdev_offline()), and there's nothing to do 3957 * for the suspend because it's already suspended, or there's no ZIL. 3958 */ 3959 if (cookiep == NULL && !zilog->zl_suspending && 3960 (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) { 3961 mutex_exit(&zilog->zl_lock); 3962 dmu_objset_rele(os, suspend_tag); 3963 return (0); 3964 } 3965 3966 dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag); 3967 dsl_pool_rele(dmu_objset_pool(os), suspend_tag); 3968 3969 zilog->zl_suspend++; 3970 3971 if (zilog->zl_suspend > 1) { 3972 /* 3973 * Someone else is already suspending it. 3974 * Just wait for them to finish. 3975 */ 3976 3977 while (zilog->zl_suspending) 3978 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock); 3979 mutex_exit(&zilog->zl_lock); 3980 3981 if (cookiep == NULL) 3982 zil_resume(os); 3983 else 3984 *cookiep = os; 3985 return (0); 3986 } 3987 3988 /* 3989 * If there is no pointer to an on-disk block, this ZIL must not 3990 * be active (e.g. filesystem not mounted), so there's nothing 3991 * to clean up. 3992 */ 3993 if (BP_IS_HOLE(&zh->zh_log)) { 3994 ASSERT(cookiep != NULL); /* fast path already handled */ 3995 3996 *cookiep = os; 3997 mutex_exit(&zilog->zl_lock); 3998 return (0); 3999 } 4000 4001 /* 4002 * The ZIL has work to do. Ensure that the associated encryption 4003 * key will remain mapped while we are committing the log by 4004 * grabbing a reference to it. If the key isn't loaded we have no 4005 * choice but to return an error until the wrapping key is loaded. 4006 */ 4007 if (os->os_encrypted && 4008 dsl_dataset_create_key_mapping(dmu_objset_ds(os)) != 0) { 4009 zilog->zl_suspend--; 4010 mutex_exit(&zilog->zl_lock); 4011 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag); 4012 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag); 4013 return (SET_ERROR(EACCES)); 4014 } 4015 4016 zilog->zl_suspending = B_TRUE; 4017 mutex_exit(&zilog->zl_lock); 4018 4019 /* 4020 * We need to use zil_commit_impl to ensure we wait for all 4021 * LWB_STATE_OPENED and LWB_STATE_ISSUED lwbs to be committed 4022 * to disk before proceeding. If we used zil_commit instead, it 4023 * would just call txg_wait_synced(), because zl_suspend is set. 4024 * txg_wait_synced() doesn't wait for these lwb's to be 4025 * LWB_STATE_FLUSH_DONE before returning. 4026 */ 4027 zil_commit_impl(zilog, 0); 4028 4029 /* 4030 * Now that we've ensured all lwb's are LWB_STATE_FLUSH_DONE, we 4031 * use txg_wait_synced() to ensure the data from the zilog has 4032 * migrated to the main pool before calling zil_destroy(). 4033 */ 4034 txg_wait_synced(zilog->zl_dmu_pool, 0); 4035 4036 zil_destroy(zilog, B_FALSE); 4037 4038 mutex_enter(&zilog->zl_lock); 4039 zilog->zl_suspending = B_FALSE; 4040 cv_broadcast(&zilog->zl_cv_suspend); 4041 mutex_exit(&zilog->zl_lock); 4042 4043 if (os->os_encrypted) 4044 dsl_dataset_remove_key_mapping(dmu_objset_ds(os)); 4045 4046 if (cookiep == NULL) 4047 zil_resume(os); 4048 else 4049 *cookiep = os; 4050 return (0); 4051 } 4052 4053 void 4054 zil_resume(void *cookie) 4055 { 4056 objset_t *os = cookie; 4057 zilog_t *zilog = dmu_objset_zil(os); 4058 4059 mutex_enter(&zilog->zl_lock); 4060 ASSERT(zilog->zl_suspend != 0); 4061 zilog->zl_suspend--; 4062 mutex_exit(&zilog->zl_lock); 4063 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag); 4064 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag); 4065 } 4066 4067 typedef struct zil_replay_arg { 4068 zil_replay_func_t *const *zr_replay; 4069 void *zr_arg; 4070 boolean_t zr_byteswap; 4071 char *zr_lr; 4072 } zil_replay_arg_t; 4073 4074 static int 4075 zil_replay_error(zilog_t *zilog, const lr_t *lr, int error) 4076 { 4077 char name[ZFS_MAX_DATASET_NAME_LEN]; 4078 4079 zilog->zl_replaying_seq--; /* didn't actually replay this one */ 4080 4081 dmu_objset_name(zilog->zl_os, name); 4082 4083 cmn_err(CE_WARN, "ZFS replay transaction error %d, " 4084 "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name, 4085 (u_longlong_t)lr->lrc_seq, 4086 (u_longlong_t)(lr->lrc_txtype & ~TX_CI), 4087 (lr->lrc_txtype & TX_CI) ? "CI" : ""); 4088 4089 return (error); 4090 } 4091 4092 static int 4093 zil_replay_log_record(zilog_t *zilog, const lr_t *lr, void *zra, 4094 uint64_t claim_txg) 4095 { 4096 zil_replay_arg_t *zr = zra; 4097 const zil_header_t *zh = zilog->zl_header; 4098 uint64_t reclen = lr->lrc_reclen; 4099 uint64_t txtype = lr->lrc_txtype; 4100 int error = 0; 4101 4102 zilog->zl_replaying_seq = lr->lrc_seq; 4103 4104 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */ 4105 return (0); 4106 4107 if (lr->lrc_txg < claim_txg) /* already committed */ 4108 return (0); 4109 4110 /* Strip case-insensitive bit, still present in log record */ 4111 txtype &= ~TX_CI; 4112 4113 if (txtype == 0 || txtype >= TX_MAX_TYPE) 4114 return (zil_replay_error(zilog, lr, EINVAL)); 4115 4116 /* 4117 * If this record type can be logged out of order, the object 4118 * (lr_foid) may no longer exist. That's legitimate, not an error. 4119 */ 4120 if (TX_OOO(txtype)) { 4121 error = dmu_object_info(zilog->zl_os, 4122 LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL); 4123 if (error == ENOENT || error == EEXIST) 4124 return (0); 4125 } 4126 4127 /* 4128 * Make a copy of the data so we can revise and extend it. 4129 */ 4130 memcpy(zr->zr_lr, lr, reclen); 4131 4132 /* 4133 * If this is a TX_WRITE with a blkptr, suck in the data. 4134 */ 4135 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) { 4136 error = zil_read_log_data(zilog, (lr_write_t *)lr, 4137 zr->zr_lr + reclen); 4138 if (error != 0) 4139 return (zil_replay_error(zilog, lr, error)); 4140 } 4141 4142 /* 4143 * The log block containing this lr may have been byteswapped 4144 * so that we can easily examine common fields like lrc_txtype. 4145 * However, the log is a mix of different record types, and only the 4146 * replay vectors know how to byteswap their records. Therefore, if 4147 * the lr was byteswapped, undo it before invoking the replay vector. 4148 */ 4149 if (zr->zr_byteswap) 4150 byteswap_uint64_array(zr->zr_lr, reclen); 4151 4152 /* 4153 * We must now do two things atomically: replay this log record, 4154 * and update the log header sequence number to reflect the fact that 4155 * we did so. At the end of each replay function the sequence number 4156 * is updated if we are in replay mode. 4157 */ 4158 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap); 4159 if (error != 0) { 4160 /* 4161 * The DMU's dnode layer doesn't see removes until the txg 4162 * commits, so a subsequent claim can spuriously fail with 4163 * EEXIST. So if we receive any error we try syncing out 4164 * any removes then retry the transaction. Note that we 4165 * specify B_FALSE for byteswap now, so we don't do it twice. 4166 */ 4167 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0); 4168 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE); 4169 if (error != 0) 4170 return (zil_replay_error(zilog, lr, error)); 4171 } 4172 return (0); 4173 } 4174 4175 static int 4176 zil_incr_blks(zilog_t *zilog, const blkptr_t *bp, void *arg, uint64_t claim_txg) 4177 { 4178 (void) bp, (void) arg, (void) claim_txg; 4179 4180 zilog->zl_replay_blks++; 4181 4182 return (0); 4183 } 4184 4185 /* 4186 * If this dataset has a non-empty intent log, replay it and destroy it. 4187 * Return B_TRUE if there were any entries to replay. 4188 */ 4189 boolean_t 4190 zil_replay(objset_t *os, void *arg, 4191 zil_replay_func_t *const replay_func[TX_MAX_TYPE]) 4192 { 4193 zilog_t *zilog = dmu_objset_zil(os); 4194 const zil_header_t *zh = zilog->zl_header; 4195 zil_replay_arg_t zr; 4196 4197 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) { 4198 return (zil_destroy(zilog, B_TRUE)); 4199 } 4200 4201 zr.zr_replay = replay_func; 4202 zr.zr_arg = arg; 4203 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log); 4204 zr.zr_lr = vmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP); 4205 4206 /* 4207 * Wait for in-progress removes to sync before starting replay. 4208 */ 4209 txg_wait_synced(zilog->zl_dmu_pool, 0); 4210 4211 zilog->zl_replay = B_TRUE; 4212 zilog->zl_replay_time = ddi_get_lbolt(); 4213 ASSERT(zilog->zl_replay_blks == 0); 4214 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr, 4215 zh->zh_claim_txg, B_TRUE); 4216 vmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE); 4217 4218 zil_destroy(zilog, B_FALSE); 4219 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 4220 zilog->zl_replay = B_FALSE; 4221 4222 return (B_TRUE); 4223 } 4224 4225 boolean_t 4226 zil_replaying(zilog_t *zilog, dmu_tx_t *tx) 4227 { 4228 if (zilog->zl_sync == ZFS_SYNC_DISABLED) 4229 return (B_TRUE); 4230 4231 if (zilog->zl_replay) { 4232 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 4233 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] = 4234 zilog->zl_replaying_seq; 4235 return (B_TRUE); 4236 } 4237 4238 return (B_FALSE); 4239 } 4240 4241 int 4242 zil_reset(const char *osname, void *arg) 4243 { 4244 (void) arg; 4245 4246 int error = zil_suspend(osname, NULL); 4247 /* EACCES means crypto key not loaded */ 4248 if ((error == EACCES) || (error == EBUSY)) 4249 return (SET_ERROR(error)); 4250 if (error != 0) 4251 return (SET_ERROR(EEXIST)); 4252 return (0); 4253 } 4254 4255 EXPORT_SYMBOL(zil_alloc); 4256 EXPORT_SYMBOL(zil_free); 4257 EXPORT_SYMBOL(zil_open); 4258 EXPORT_SYMBOL(zil_close); 4259 EXPORT_SYMBOL(zil_replay); 4260 EXPORT_SYMBOL(zil_replaying); 4261 EXPORT_SYMBOL(zil_destroy); 4262 EXPORT_SYMBOL(zil_destroy_sync); 4263 EXPORT_SYMBOL(zil_itx_create); 4264 EXPORT_SYMBOL(zil_itx_destroy); 4265 EXPORT_SYMBOL(zil_itx_assign); 4266 EXPORT_SYMBOL(zil_commit); 4267 EXPORT_SYMBOL(zil_claim); 4268 EXPORT_SYMBOL(zil_check_log_chain); 4269 EXPORT_SYMBOL(zil_sync); 4270 EXPORT_SYMBOL(zil_clean); 4271 EXPORT_SYMBOL(zil_suspend); 4272 EXPORT_SYMBOL(zil_resume); 4273 EXPORT_SYMBOL(zil_lwb_add_block); 4274 EXPORT_SYMBOL(zil_bp_tree_add); 4275 EXPORT_SYMBOL(zil_set_sync); 4276 EXPORT_SYMBOL(zil_set_logbias); 4277 EXPORT_SYMBOL(zil_sums_init); 4278 EXPORT_SYMBOL(zil_sums_fini); 4279 EXPORT_SYMBOL(zil_kstat_values_update); 4280 4281 ZFS_MODULE_PARAM(zfs, zfs_, commit_timeout_pct, UINT, ZMOD_RW, 4282 "ZIL block open timeout percentage"); 4283 4284 ZFS_MODULE_PARAM(zfs_zil, zil_, min_commit_timeout, U64, ZMOD_RW, 4285 "Minimum delay we care for ZIL block commit"); 4286 4287 ZFS_MODULE_PARAM(zfs_zil, zil_, replay_disable, INT, ZMOD_RW, 4288 "Disable intent logging replay"); 4289 4290 ZFS_MODULE_PARAM(zfs_zil, zil_, nocacheflush, INT, ZMOD_RW, 4291 "Disable ZIL cache flushes"); 4292 4293 ZFS_MODULE_PARAM(zfs_zil, zil_, slog_bulk, U64, ZMOD_RW, 4294 "Limit in bytes slog sync writes per commit"); 4295 4296 ZFS_MODULE_PARAM(zfs_zil, zil_, maxblocksize, UINT, ZMOD_RW, 4297 "Limit in bytes of ZIL log block size"); 4298