1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 24 * Copyright (c) 2014 Integros [integros.com] 25 * Copyright (c) 2018 Datto Inc. 26 */ 27 28 /* Portions Copyright 2010 Robert Milkowski */ 29 30 #include <sys/zfs_context.h> 31 #include <sys/spa.h> 32 #include <sys/spa_impl.h> 33 #include <sys/dmu.h> 34 #include <sys/zap.h> 35 #include <sys/arc.h> 36 #include <sys/stat.h> 37 #include <sys/zil.h> 38 #include <sys/zil_impl.h> 39 #include <sys/dsl_dataset.h> 40 #include <sys/vdev_impl.h> 41 #include <sys/dmu_tx.h> 42 #include <sys/dsl_pool.h> 43 #include <sys/metaslab.h> 44 #include <sys/trace_zfs.h> 45 #include <sys/abd.h> 46 47 /* 48 * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system 49 * calls that change the file system. Each itx has enough information to 50 * be able to replay them after a system crash, power loss, or 51 * equivalent failure mode. These are stored in memory until either: 52 * 53 * 1. they are committed to the pool by the DMU transaction group 54 * (txg), at which point they can be discarded; or 55 * 2. they are committed to the on-disk ZIL for the dataset being 56 * modified (e.g. due to an fsync, O_DSYNC, or other synchronous 57 * requirement). 58 * 59 * In the event of a crash or power loss, the itxs contained by each 60 * dataset's on-disk ZIL will be replayed when that dataset is first 61 * instantiated (e.g. if the dataset is a normal filesystem, when it is 62 * first mounted). 63 * 64 * As hinted at above, there is one ZIL per dataset (both the in-memory 65 * representation, and the on-disk representation). The on-disk format 66 * consists of 3 parts: 67 * 68 * - a single, per-dataset, ZIL header; which points to a chain of 69 * - zero or more ZIL blocks; each of which contains 70 * - zero or more ZIL records 71 * 72 * A ZIL record holds the information necessary to replay a single 73 * system call transaction. A ZIL block can hold many ZIL records, and 74 * the blocks are chained together, similarly to a singly linked list. 75 * 76 * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL 77 * block in the chain, and the ZIL header points to the first block in 78 * the chain. 79 * 80 * Note, there is not a fixed place in the pool to hold these ZIL 81 * blocks; they are dynamically allocated and freed as needed from the 82 * blocks available on the pool, though they can be preferentially 83 * allocated from a dedicated "log" vdev. 84 */ 85 86 /* 87 * This controls the amount of time that a ZIL block (lwb) will remain 88 * "open" when it isn't "full", and it has a thread waiting for it to be 89 * committed to stable storage. Please refer to the zil_commit_waiter() 90 * function (and the comments within it) for more details. 91 */ 92 int zfs_commit_timeout_pct = 5; 93 94 /* 95 * See zil.h for more information about these fields. 96 */ 97 zil_stats_t zil_stats = { 98 { "zil_commit_count", KSTAT_DATA_UINT64 }, 99 { "zil_commit_writer_count", KSTAT_DATA_UINT64 }, 100 { "zil_itx_count", KSTAT_DATA_UINT64 }, 101 { "zil_itx_indirect_count", KSTAT_DATA_UINT64 }, 102 { "zil_itx_indirect_bytes", KSTAT_DATA_UINT64 }, 103 { "zil_itx_copied_count", KSTAT_DATA_UINT64 }, 104 { "zil_itx_copied_bytes", KSTAT_DATA_UINT64 }, 105 { "zil_itx_needcopy_count", KSTAT_DATA_UINT64 }, 106 { "zil_itx_needcopy_bytes", KSTAT_DATA_UINT64 }, 107 { "zil_itx_metaslab_normal_count", KSTAT_DATA_UINT64 }, 108 { "zil_itx_metaslab_normal_bytes", KSTAT_DATA_UINT64 }, 109 { "zil_itx_metaslab_slog_count", KSTAT_DATA_UINT64 }, 110 { "zil_itx_metaslab_slog_bytes", KSTAT_DATA_UINT64 }, 111 }; 112 113 static kstat_t *zil_ksp; 114 115 /* 116 * Disable intent logging replay. This global ZIL switch affects all pools. 117 */ 118 int zil_replay_disable = 0; 119 120 /* 121 * Disable the DKIOCFLUSHWRITECACHE commands that are normally sent to 122 * the disk(s) by the ZIL after an LWB write has completed. Setting this 123 * will cause ZIL corruption on power loss if a volatile out-of-order 124 * write cache is enabled. 125 */ 126 int zil_nocacheflush = 0; 127 128 /* 129 * Limit SLOG write size per commit executed with synchronous priority. 130 * Any writes above that will be executed with lower (asynchronous) priority 131 * to limit potential SLOG device abuse by single active ZIL writer. 132 */ 133 unsigned long zil_slog_bulk = 768 * 1024; 134 135 static kmem_cache_t *zil_lwb_cache; 136 static kmem_cache_t *zil_zcw_cache; 137 138 #define LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \ 139 sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused)) 140 141 static int 142 zil_bp_compare(const void *x1, const void *x2) 143 { 144 const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva; 145 const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva; 146 147 int cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2)); 148 if (likely(cmp)) 149 return (cmp); 150 151 return (TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2))); 152 } 153 154 static void 155 zil_bp_tree_init(zilog_t *zilog) 156 { 157 avl_create(&zilog->zl_bp_tree, zil_bp_compare, 158 sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node)); 159 } 160 161 static void 162 zil_bp_tree_fini(zilog_t *zilog) 163 { 164 avl_tree_t *t = &zilog->zl_bp_tree; 165 zil_bp_node_t *zn; 166 void *cookie = NULL; 167 168 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL) 169 kmem_free(zn, sizeof (zil_bp_node_t)); 170 171 avl_destroy(t); 172 } 173 174 int 175 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp) 176 { 177 avl_tree_t *t = &zilog->zl_bp_tree; 178 const dva_t *dva; 179 zil_bp_node_t *zn; 180 avl_index_t where; 181 182 if (BP_IS_EMBEDDED(bp)) 183 return (0); 184 185 dva = BP_IDENTITY(bp); 186 187 if (avl_find(t, dva, &where) != NULL) 188 return (SET_ERROR(EEXIST)); 189 190 zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP); 191 zn->zn_dva = *dva; 192 avl_insert(t, zn, where); 193 194 return (0); 195 } 196 197 static zil_header_t * 198 zil_header_in_syncing_context(zilog_t *zilog) 199 { 200 return ((zil_header_t *)zilog->zl_header); 201 } 202 203 static void 204 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp) 205 { 206 zio_cksum_t *zc = &bp->blk_cksum; 207 208 zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL); 209 zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL); 210 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os); 211 zc->zc_word[ZIL_ZC_SEQ] = 1ULL; 212 } 213 214 /* 215 * Read a log block and make sure it's valid. 216 */ 217 static int 218 zil_read_log_block(zilog_t *zilog, boolean_t decrypt, const blkptr_t *bp, 219 blkptr_t *nbp, void *dst, char **end) 220 { 221 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL; 222 arc_flags_t aflags = ARC_FLAG_WAIT; 223 arc_buf_t *abuf = NULL; 224 zbookmark_phys_t zb; 225 int error; 226 227 if (zilog->zl_header->zh_claim_txg == 0) 228 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; 229 230 if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) 231 zio_flags |= ZIO_FLAG_SPECULATIVE; 232 233 if (!decrypt) 234 zio_flags |= ZIO_FLAG_RAW; 235 236 SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET], 237 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); 238 239 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, 240 &abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); 241 242 if (error == 0) { 243 zio_cksum_t cksum = bp->blk_cksum; 244 245 /* 246 * Validate the checksummed log block. 247 * 248 * Sequence numbers should be... sequential. The checksum 249 * verifier for the next block should be bp's checksum plus 1. 250 * 251 * Also check the log chain linkage and size used. 252 */ 253 cksum.zc_word[ZIL_ZC_SEQ]++; 254 255 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { 256 zil_chain_t *zilc = abuf->b_data; 257 char *lr = (char *)(zilc + 1); 258 uint64_t len = zilc->zc_nused - sizeof (zil_chain_t); 259 260 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum, 261 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) { 262 error = SET_ERROR(ECKSUM); 263 } else { 264 ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE); 265 bcopy(lr, dst, len); 266 *end = (char *)dst + len; 267 *nbp = zilc->zc_next_blk; 268 } 269 } else { 270 char *lr = abuf->b_data; 271 uint64_t size = BP_GET_LSIZE(bp); 272 zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1; 273 274 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum, 275 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) || 276 (zilc->zc_nused > (size - sizeof (*zilc)))) { 277 error = SET_ERROR(ECKSUM); 278 } else { 279 ASSERT3U(zilc->zc_nused, <=, 280 SPA_OLD_MAXBLOCKSIZE); 281 bcopy(lr, dst, zilc->zc_nused); 282 *end = (char *)dst + zilc->zc_nused; 283 *nbp = zilc->zc_next_blk; 284 } 285 } 286 287 arc_buf_destroy(abuf, &abuf); 288 } 289 290 return (error); 291 } 292 293 /* 294 * Read a TX_WRITE log data block. 295 */ 296 static int 297 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf) 298 { 299 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL; 300 const blkptr_t *bp = &lr->lr_blkptr; 301 arc_flags_t aflags = ARC_FLAG_WAIT; 302 arc_buf_t *abuf = NULL; 303 zbookmark_phys_t zb; 304 int error; 305 306 if (BP_IS_HOLE(bp)) { 307 if (wbuf != NULL) 308 bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length)); 309 return (0); 310 } 311 312 if (zilog->zl_header->zh_claim_txg == 0) 313 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; 314 315 /* 316 * If we are not using the resulting data, we are just checking that 317 * it hasn't been corrupted so we don't need to waste CPU time 318 * decompressing and decrypting it. 319 */ 320 if (wbuf == NULL) 321 zio_flags |= ZIO_FLAG_RAW; 322 323 SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid, 324 ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp)); 325 326 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf, 327 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); 328 329 if (error == 0) { 330 if (wbuf != NULL) 331 bcopy(abuf->b_data, wbuf, arc_buf_size(abuf)); 332 arc_buf_destroy(abuf, &abuf); 333 } 334 335 return (error); 336 } 337 338 /* 339 * Parse the intent log, and call parse_func for each valid record within. 340 */ 341 int 342 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func, 343 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg, 344 boolean_t decrypt) 345 { 346 const zil_header_t *zh = zilog->zl_header; 347 boolean_t claimed = !!zh->zh_claim_txg; 348 uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX; 349 uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX; 350 uint64_t max_blk_seq = 0; 351 uint64_t max_lr_seq = 0; 352 uint64_t blk_count = 0; 353 uint64_t lr_count = 0; 354 blkptr_t blk, next_blk; 355 char *lrbuf, *lrp; 356 int error = 0; 357 358 bzero(&next_blk, sizeof (blkptr_t)); 359 360 /* 361 * Old logs didn't record the maximum zh_claim_lr_seq. 362 */ 363 if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) 364 claim_lr_seq = UINT64_MAX; 365 366 /* 367 * Starting at the block pointed to by zh_log we read the log chain. 368 * For each block in the chain we strongly check that block to 369 * ensure its validity. We stop when an invalid block is found. 370 * For each block pointer in the chain we call parse_blk_func(). 371 * For each record in each valid block we call parse_lr_func(). 372 * If the log has been claimed, stop if we encounter a sequence 373 * number greater than the highest claimed sequence number. 374 */ 375 lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE); 376 zil_bp_tree_init(zilog); 377 378 for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) { 379 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; 380 int reclen; 381 char *end = NULL; 382 383 if (blk_seq > claim_blk_seq) 384 break; 385 386 error = parse_blk_func(zilog, &blk, arg, txg); 387 if (error != 0) 388 break; 389 ASSERT3U(max_blk_seq, <, blk_seq); 390 max_blk_seq = blk_seq; 391 blk_count++; 392 393 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq) 394 break; 395 396 error = zil_read_log_block(zilog, decrypt, &blk, &next_blk, 397 lrbuf, &end); 398 if (error != 0) 399 break; 400 401 for (lrp = lrbuf; lrp < end; lrp += reclen) { 402 lr_t *lr = (lr_t *)lrp; 403 reclen = lr->lrc_reclen; 404 ASSERT3U(reclen, >=, sizeof (lr_t)); 405 if (lr->lrc_seq > claim_lr_seq) 406 goto done; 407 408 error = parse_lr_func(zilog, lr, arg, txg); 409 if (error != 0) 410 goto done; 411 ASSERT3U(max_lr_seq, <, lr->lrc_seq); 412 max_lr_seq = lr->lrc_seq; 413 lr_count++; 414 } 415 } 416 done: 417 zilog->zl_parse_error = error; 418 zilog->zl_parse_blk_seq = max_blk_seq; 419 zilog->zl_parse_lr_seq = max_lr_seq; 420 zilog->zl_parse_blk_count = blk_count; 421 zilog->zl_parse_lr_count = lr_count; 422 423 ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) || 424 (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq) || 425 (decrypt && error == EIO)); 426 427 zil_bp_tree_fini(zilog); 428 zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE); 429 430 return (error); 431 } 432 433 /* ARGSUSED */ 434 static int 435 zil_clear_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx, 436 uint64_t first_txg) 437 { 438 ASSERT(!BP_IS_HOLE(bp)); 439 440 /* 441 * As we call this function from the context of a rewind to a 442 * checkpoint, each ZIL block whose txg is later than the txg 443 * that we rewind to is invalid. Thus, we return -1 so 444 * zil_parse() doesn't attempt to read it. 445 */ 446 if (bp->blk_birth >= first_txg) 447 return (-1); 448 449 if (zil_bp_tree_add(zilog, bp) != 0) 450 return (0); 451 452 zio_free(zilog->zl_spa, first_txg, bp); 453 return (0); 454 } 455 456 /* ARGSUSED */ 457 static int 458 zil_noop_log_record(zilog_t *zilog, const lr_t *lrc, void *tx, 459 uint64_t first_txg) 460 { 461 return (0); 462 } 463 464 static int 465 zil_claim_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx, 466 uint64_t first_txg) 467 { 468 /* 469 * Claim log block if not already committed and not already claimed. 470 * If tx == NULL, just verify that the block is claimable. 471 */ 472 if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg || 473 zil_bp_tree_add(zilog, bp) != 0) 474 return (0); 475 476 return (zio_wait(zio_claim(NULL, zilog->zl_spa, 477 tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL, 478 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB))); 479 } 480 481 static int 482 zil_claim_log_record(zilog_t *zilog, const lr_t *lrc, void *tx, 483 uint64_t first_txg) 484 { 485 lr_write_t *lr = (lr_write_t *)lrc; 486 int error; 487 488 if (lrc->lrc_txtype != TX_WRITE) 489 return (0); 490 491 /* 492 * If the block is not readable, don't claim it. This can happen 493 * in normal operation when a log block is written to disk before 494 * some of the dmu_sync() blocks it points to. In this case, the 495 * transaction cannot have been committed to anyone (we would have 496 * waited for all writes to be stable first), so it is semantically 497 * correct to declare this the end of the log. 498 */ 499 if (lr->lr_blkptr.blk_birth >= first_txg) { 500 error = zil_read_log_data(zilog, lr, NULL); 501 if (error != 0) 502 return (error); 503 } 504 505 return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg)); 506 } 507 508 /* ARGSUSED */ 509 static int 510 zil_free_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx, 511 uint64_t claim_txg) 512 { 513 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp); 514 515 return (0); 516 } 517 518 static int 519 zil_free_log_record(zilog_t *zilog, const lr_t *lrc, void *tx, 520 uint64_t claim_txg) 521 { 522 lr_write_t *lr = (lr_write_t *)lrc; 523 blkptr_t *bp = &lr->lr_blkptr; 524 525 /* 526 * If we previously claimed it, we need to free it. 527 */ 528 if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE && 529 bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 && 530 !BP_IS_HOLE(bp)) 531 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp); 532 533 return (0); 534 } 535 536 static int 537 zil_lwb_vdev_compare(const void *x1, const void *x2) 538 { 539 const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev; 540 const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev; 541 542 return (TREE_CMP(v1, v2)); 543 } 544 545 static lwb_t * 546 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg, 547 boolean_t fastwrite) 548 { 549 lwb_t *lwb; 550 551 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); 552 lwb->lwb_zilog = zilog; 553 lwb->lwb_blk = *bp; 554 lwb->lwb_fastwrite = fastwrite; 555 lwb->lwb_slog = slog; 556 lwb->lwb_state = LWB_STATE_CLOSED; 557 lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp)); 558 lwb->lwb_max_txg = txg; 559 lwb->lwb_write_zio = NULL; 560 lwb->lwb_root_zio = NULL; 561 lwb->lwb_tx = NULL; 562 lwb->lwb_issued_timestamp = 0; 563 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { 564 lwb->lwb_nused = sizeof (zil_chain_t); 565 lwb->lwb_sz = BP_GET_LSIZE(bp); 566 } else { 567 lwb->lwb_nused = 0; 568 lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t); 569 } 570 571 mutex_enter(&zilog->zl_lock); 572 list_insert_tail(&zilog->zl_lwb_list, lwb); 573 mutex_exit(&zilog->zl_lock); 574 575 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock)); 576 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree)); 577 VERIFY(list_is_empty(&lwb->lwb_waiters)); 578 VERIFY(list_is_empty(&lwb->lwb_itxs)); 579 580 return (lwb); 581 } 582 583 static void 584 zil_free_lwb(zilog_t *zilog, lwb_t *lwb) 585 { 586 ASSERT(MUTEX_HELD(&zilog->zl_lock)); 587 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock)); 588 VERIFY(list_is_empty(&lwb->lwb_waiters)); 589 VERIFY(list_is_empty(&lwb->lwb_itxs)); 590 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree)); 591 ASSERT3P(lwb->lwb_write_zio, ==, NULL); 592 ASSERT3P(lwb->lwb_root_zio, ==, NULL); 593 ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa)); 594 ASSERT(lwb->lwb_state == LWB_STATE_CLOSED || 595 lwb->lwb_state == LWB_STATE_FLUSH_DONE); 596 597 /* 598 * Clear the zilog's field to indicate this lwb is no longer 599 * valid, and prevent use-after-free errors. 600 */ 601 if (zilog->zl_last_lwb_opened == lwb) 602 zilog->zl_last_lwb_opened = NULL; 603 604 kmem_cache_free(zil_lwb_cache, lwb); 605 } 606 607 /* 608 * Called when we create in-memory log transactions so that we know 609 * to cleanup the itxs at the end of spa_sync(). 610 */ 611 static void 612 zilog_dirty(zilog_t *zilog, uint64_t txg) 613 { 614 dsl_pool_t *dp = zilog->zl_dmu_pool; 615 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 616 617 ASSERT(spa_writeable(zilog->zl_spa)); 618 619 if (ds->ds_is_snapshot) 620 panic("dirtying snapshot!"); 621 622 if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) { 623 /* up the hold count until we can be written out */ 624 dmu_buf_add_ref(ds->ds_dbuf, zilog); 625 626 zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg); 627 } 628 } 629 630 /* 631 * Determine if the zil is dirty in the specified txg. Callers wanting to 632 * ensure that the dirty state does not change must hold the itxg_lock for 633 * the specified txg. Holding the lock will ensure that the zil cannot be 634 * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current 635 * state. 636 */ 637 static boolean_t __maybe_unused 638 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg) 639 { 640 dsl_pool_t *dp = zilog->zl_dmu_pool; 641 642 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK)) 643 return (B_TRUE); 644 return (B_FALSE); 645 } 646 647 /* 648 * Determine if the zil is dirty. The zil is considered dirty if it has 649 * any pending itx records that have not been cleaned by zil_clean(). 650 */ 651 static boolean_t 652 zilog_is_dirty(zilog_t *zilog) 653 { 654 dsl_pool_t *dp = zilog->zl_dmu_pool; 655 656 for (int t = 0; t < TXG_SIZE; t++) { 657 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t)) 658 return (B_TRUE); 659 } 660 return (B_FALSE); 661 } 662 663 /* 664 * Create an on-disk intent log. 665 */ 666 static lwb_t * 667 zil_create(zilog_t *zilog) 668 { 669 const zil_header_t *zh = zilog->zl_header; 670 lwb_t *lwb = NULL; 671 uint64_t txg = 0; 672 dmu_tx_t *tx = NULL; 673 blkptr_t blk; 674 int error = 0; 675 boolean_t fastwrite = FALSE; 676 boolean_t slog = FALSE; 677 678 /* 679 * Wait for any previous destroy to complete. 680 */ 681 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 682 683 ASSERT(zh->zh_claim_txg == 0); 684 ASSERT(zh->zh_replay_seq == 0); 685 686 blk = zh->zh_log; 687 688 /* 689 * Allocate an initial log block if: 690 * - there isn't one already 691 * - the existing block is the wrong endianness 692 */ 693 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) { 694 tx = dmu_tx_create(zilog->zl_os); 695 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 696 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 697 txg = dmu_tx_get_txg(tx); 698 699 if (!BP_IS_HOLE(&blk)) { 700 zio_free(zilog->zl_spa, txg, &blk); 701 BP_ZERO(&blk); 702 } 703 704 error = zio_alloc_zil(zilog->zl_spa, zilog->zl_os, txg, &blk, 705 ZIL_MIN_BLKSZ, &slog); 706 fastwrite = TRUE; 707 708 if (error == 0) 709 zil_init_log_chain(zilog, &blk); 710 } 711 712 /* 713 * Allocate a log write block (lwb) for the first log block. 714 */ 715 if (error == 0) 716 lwb = zil_alloc_lwb(zilog, &blk, slog, txg, fastwrite); 717 718 /* 719 * If we just allocated the first log block, commit our transaction 720 * and wait for zil_sync() to stuff the block pointer into zh_log. 721 * (zh is part of the MOS, so we cannot modify it in open context.) 722 */ 723 if (tx != NULL) { 724 dmu_tx_commit(tx); 725 txg_wait_synced(zilog->zl_dmu_pool, txg); 726 } 727 728 ASSERT(error != 0 || bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0); 729 IMPLY(error == 0, lwb != NULL); 730 731 return (lwb); 732 } 733 734 /* 735 * In one tx, free all log blocks and clear the log header. If keep_first 736 * is set, then we're replaying a log with no content. We want to keep the 737 * first block, however, so that the first synchronous transaction doesn't 738 * require a txg_wait_synced() in zil_create(). We don't need to 739 * txg_wait_synced() here either when keep_first is set, because both 740 * zil_create() and zil_destroy() will wait for any in-progress destroys 741 * to complete. 742 */ 743 void 744 zil_destroy(zilog_t *zilog, boolean_t keep_first) 745 { 746 const zil_header_t *zh = zilog->zl_header; 747 lwb_t *lwb; 748 dmu_tx_t *tx; 749 uint64_t txg; 750 751 /* 752 * Wait for any previous destroy to complete. 753 */ 754 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 755 756 zilog->zl_old_header = *zh; /* debugging aid */ 757 758 if (BP_IS_HOLE(&zh->zh_log)) 759 return; 760 761 tx = dmu_tx_create(zilog->zl_os); 762 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 763 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 764 txg = dmu_tx_get_txg(tx); 765 766 mutex_enter(&zilog->zl_lock); 767 768 ASSERT3U(zilog->zl_destroy_txg, <, txg); 769 zilog->zl_destroy_txg = txg; 770 zilog->zl_keep_first = keep_first; 771 772 if (!list_is_empty(&zilog->zl_lwb_list)) { 773 ASSERT(zh->zh_claim_txg == 0); 774 VERIFY(!keep_first); 775 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 776 if (lwb->lwb_fastwrite) 777 metaslab_fastwrite_unmark(zilog->zl_spa, 778 &lwb->lwb_blk); 779 780 list_remove(&zilog->zl_lwb_list, lwb); 781 if (lwb->lwb_buf != NULL) 782 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 783 zio_free(zilog->zl_spa, txg, &lwb->lwb_blk); 784 zil_free_lwb(zilog, lwb); 785 } 786 } else if (!keep_first) { 787 zil_destroy_sync(zilog, tx); 788 } 789 mutex_exit(&zilog->zl_lock); 790 791 dmu_tx_commit(tx); 792 } 793 794 void 795 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx) 796 { 797 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 798 (void) zil_parse(zilog, zil_free_log_block, 799 zil_free_log_record, tx, zilog->zl_header->zh_claim_txg, B_FALSE); 800 } 801 802 int 803 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg) 804 { 805 dmu_tx_t *tx = txarg; 806 zilog_t *zilog; 807 uint64_t first_txg; 808 zil_header_t *zh; 809 objset_t *os; 810 int error; 811 812 error = dmu_objset_own_obj(dp, ds->ds_object, 813 DMU_OST_ANY, B_FALSE, B_FALSE, FTAG, &os); 814 if (error != 0) { 815 /* 816 * EBUSY indicates that the objset is inconsistent, in which 817 * case it can not have a ZIL. 818 */ 819 if (error != EBUSY) { 820 cmn_err(CE_WARN, "can't open objset for %llu, error %u", 821 (unsigned long long)ds->ds_object, error); 822 } 823 824 return (0); 825 } 826 827 zilog = dmu_objset_zil(os); 828 zh = zil_header_in_syncing_context(zilog); 829 ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa)); 830 first_txg = spa_min_claim_txg(zilog->zl_spa); 831 832 /* 833 * If the spa_log_state is not set to be cleared, check whether 834 * the current uberblock is a checkpoint one and if the current 835 * header has been claimed before moving on. 836 * 837 * If the current uberblock is a checkpointed uberblock then 838 * one of the following scenarios took place: 839 * 840 * 1] We are currently rewinding to the checkpoint of the pool. 841 * 2] We crashed in the middle of a checkpoint rewind but we 842 * did manage to write the checkpointed uberblock to the 843 * vdev labels, so when we tried to import the pool again 844 * the checkpointed uberblock was selected from the import 845 * procedure. 846 * 847 * In both cases we want to zero out all the ZIL blocks, except 848 * the ones that have been claimed at the time of the checkpoint 849 * (their zh_claim_txg != 0). The reason is that these blocks 850 * may be corrupted since we may have reused their locations on 851 * disk after we took the checkpoint. 852 * 853 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier 854 * when we first figure out whether the current uberblock is 855 * checkpointed or not. Unfortunately, that would discard all 856 * the logs, including the ones that are claimed, and we would 857 * leak space. 858 */ 859 if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR || 860 (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 && 861 zh->zh_claim_txg == 0)) { 862 if (!BP_IS_HOLE(&zh->zh_log)) { 863 (void) zil_parse(zilog, zil_clear_log_block, 864 zil_noop_log_record, tx, first_txg, B_FALSE); 865 } 866 BP_ZERO(&zh->zh_log); 867 if (os->os_encrypted) 868 os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE; 869 dsl_dataset_dirty(dmu_objset_ds(os), tx); 870 dmu_objset_disown(os, B_FALSE, FTAG); 871 return (0); 872 } 873 874 /* 875 * If we are not rewinding and opening the pool normally, then 876 * the min_claim_txg should be equal to the first txg of the pool. 877 */ 878 ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa)); 879 880 /* 881 * Claim all log blocks if we haven't already done so, and remember 882 * the highest claimed sequence number. This ensures that if we can 883 * read only part of the log now (e.g. due to a missing device), 884 * but we can read the entire log later, we will not try to replay 885 * or destroy beyond the last block we successfully claimed. 886 */ 887 ASSERT3U(zh->zh_claim_txg, <=, first_txg); 888 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) { 889 (void) zil_parse(zilog, zil_claim_log_block, 890 zil_claim_log_record, tx, first_txg, B_FALSE); 891 zh->zh_claim_txg = first_txg; 892 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq; 893 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq; 894 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1) 895 zh->zh_flags |= ZIL_REPLAY_NEEDED; 896 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID; 897 if (os->os_encrypted) 898 os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE; 899 dsl_dataset_dirty(dmu_objset_ds(os), tx); 900 } 901 902 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1)); 903 dmu_objset_disown(os, B_FALSE, FTAG); 904 return (0); 905 } 906 907 /* 908 * Check the log by walking the log chain. 909 * Checksum errors are ok as they indicate the end of the chain. 910 * Any other error (no device or read failure) returns an error. 911 */ 912 /* ARGSUSED */ 913 int 914 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx) 915 { 916 zilog_t *zilog; 917 objset_t *os; 918 blkptr_t *bp; 919 int error; 920 921 ASSERT(tx == NULL); 922 923 error = dmu_objset_from_ds(ds, &os); 924 if (error != 0) { 925 cmn_err(CE_WARN, "can't open objset %llu, error %d", 926 (unsigned long long)ds->ds_object, error); 927 return (0); 928 } 929 930 zilog = dmu_objset_zil(os); 931 bp = (blkptr_t *)&zilog->zl_header->zh_log; 932 933 if (!BP_IS_HOLE(bp)) { 934 vdev_t *vd; 935 boolean_t valid = B_TRUE; 936 937 /* 938 * Check the first block and determine if it's on a log device 939 * which may have been removed or faulted prior to loading this 940 * pool. If so, there's no point in checking the rest of the 941 * log as its content should have already been synced to the 942 * pool. 943 */ 944 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER); 945 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0])); 946 if (vd->vdev_islog && vdev_is_dead(vd)) 947 valid = vdev_log_state_valid(vd); 948 spa_config_exit(os->os_spa, SCL_STATE, FTAG); 949 950 if (!valid) 951 return (0); 952 953 /* 954 * Check whether the current uberblock is checkpointed (e.g. 955 * we are rewinding) and whether the current header has been 956 * claimed or not. If it hasn't then skip verifying it. We 957 * do this because its ZIL blocks may be part of the pool's 958 * state before the rewind, which is no longer valid. 959 */ 960 zil_header_t *zh = zil_header_in_syncing_context(zilog); 961 if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 && 962 zh->zh_claim_txg == 0) 963 return (0); 964 } 965 966 /* 967 * Because tx == NULL, zil_claim_log_block() will not actually claim 968 * any blocks, but just determine whether it is possible to do so. 969 * In addition to checking the log chain, zil_claim_log_block() 970 * will invoke zio_claim() with a done func of spa_claim_notify(), 971 * which will update spa_max_claim_txg. See spa_load() for details. 972 */ 973 error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx, 974 zilog->zl_header->zh_claim_txg ? -1ULL : 975 spa_min_claim_txg(os->os_spa), B_FALSE); 976 977 return ((error == ECKSUM || error == ENOENT) ? 0 : error); 978 } 979 980 /* 981 * When an itx is "skipped", this function is used to properly mark the 982 * waiter as "done, and signal any thread(s) waiting on it. An itx can 983 * be skipped (and not committed to an lwb) for a variety of reasons, 984 * one of them being that the itx was committed via spa_sync(), prior to 985 * it being committed to an lwb; this can happen if a thread calling 986 * zil_commit() is racing with spa_sync(). 987 */ 988 static void 989 zil_commit_waiter_skip(zil_commit_waiter_t *zcw) 990 { 991 mutex_enter(&zcw->zcw_lock); 992 ASSERT3B(zcw->zcw_done, ==, B_FALSE); 993 zcw->zcw_done = B_TRUE; 994 cv_broadcast(&zcw->zcw_cv); 995 mutex_exit(&zcw->zcw_lock); 996 } 997 998 /* 999 * This function is used when the given waiter is to be linked into an 1000 * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb. 1001 * At this point, the waiter will no longer be referenced by the itx, 1002 * and instead, will be referenced by the lwb. 1003 */ 1004 static void 1005 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb) 1006 { 1007 /* 1008 * The lwb_waiters field of the lwb is protected by the zilog's 1009 * zl_lock, thus it must be held when calling this function. 1010 */ 1011 ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_lock)); 1012 1013 mutex_enter(&zcw->zcw_lock); 1014 ASSERT(!list_link_active(&zcw->zcw_node)); 1015 ASSERT3P(zcw->zcw_lwb, ==, NULL); 1016 ASSERT3P(lwb, !=, NULL); 1017 ASSERT(lwb->lwb_state == LWB_STATE_OPENED || 1018 lwb->lwb_state == LWB_STATE_ISSUED || 1019 lwb->lwb_state == LWB_STATE_WRITE_DONE); 1020 1021 list_insert_tail(&lwb->lwb_waiters, zcw); 1022 zcw->zcw_lwb = lwb; 1023 mutex_exit(&zcw->zcw_lock); 1024 } 1025 1026 /* 1027 * This function is used when zio_alloc_zil() fails to allocate a ZIL 1028 * block, and the given waiter must be linked to the "nolwb waiters" 1029 * list inside of zil_process_commit_list(). 1030 */ 1031 static void 1032 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb) 1033 { 1034 mutex_enter(&zcw->zcw_lock); 1035 ASSERT(!list_link_active(&zcw->zcw_node)); 1036 ASSERT3P(zcw->zcw_lwb, ==, NULL); 1037 list_insert_tail(nolwb, zcw); 1038 mutex_exit(&zcw->zcw_lock); 1039 } 1040 1041 void 1042 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp) 1043 { 1044 avl_tree_t *t = &lwb->lwb_vdev_tree; 1045 avl_index_t where; 1046 zil_vdev_node_t *zv, zvsearch; 1047 int ndvas = BP_GET_NDVAS(bp); 1048 int i; 1049 1050 if (zil_nocacheflush) 1051 return; 1052 1053 mutex_enter(&lwb->lwb_vdev_lock); 1054 for (i = 0; i < ndvas; i++) { 1055 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]); 1056 if (avl_find(t, &zvsearch, &where) == NULL) { 1057 zv = kmem_alloc(sizeof (*zv), KM_SLEEP); 1058 zv->zv_vdev = zvsearch.zv_vdev; 1059 avl_insert(t, zv, where); 1060 } 1061 } 1062 mutex_exit(&lwb->lwb_vdev_lock); 1063 } 1064 1065 static void 1066 zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb) 1067 { 1068 avl_tree_t *src = &lwb->lwb_vdev_tree; 1069 avl_tree_t *dst = &nlwb->lwb_vdev_tree; 1070 void *cookie = NULL; 1071 zil_vdev_node_t *zv; 1072 1073 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE); 1074 ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE); 1075 ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE); 1076 1077 /* 1078 * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does 1079 * not need the protection of lwb_vdev_lock (it will only be modified 1080 * while holding zilog->zl_lock) as its writes and those of its 1081 * children have all completed. The younger 'nlwb' may be waiting on 1082 * future writes to additional vdevs. 1083 */ 1084 mutex_enter(&nlwb->lwb_vdev_lock); 1085 /* 1086 * Tear down the 'lwb' vdev tree, ensuring that entries which do not 1087 * exist in 'nlwb' are moved to it, freeing any would-be duplicates. 1088 */ 1089 while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) { 1090 avl_index_t where; 1091 1092 if (avl_find(dst, zv, &where) == NULL) { 1093 avl_insert(dst, zv, where); 1094 } else { 1095 kmem_free(zv, sizeof (*zv)); 1096 } 1097 } 1098 mutex_exit(&nlwb->lwb_vdev_lock); 1099 } 1100 1101 void 1102 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg) 1103 { 1104 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg); 1105 } 1106 1107 /* 1108 * This function is a called after all vdevs associated with a given lwb 1109 * write have completed their DKIOCFLUSHWRITECACHE command; or as soon 1110 * as the lwb write completes, if "zil_nocacheflush" is set. Further, 1111 * all "previous" lwb's will have completed before this function is 1112 * called; i.e. this function is called for all previous lwbs before 1113 * it's called for "this" lwb (enforced via zio the dependencies 1114 * configured in zil_lwb_set_zio_dependency()). 1115 * 1116 * The intention is for this function to be called as soon as the 1117 * contents of an lwb are considered "stable" on disk, and will survive 1118 * any sudden loss of power. At this point, any threads waiting for the 1119 * lwb to reach this state are signalled, and the "waiter" structures 1120 * are marked "done". 1121 */ 1122 static void 1123 zil_lwb_flush_vdevs_done(zio_t *zio) 1124 { 1125 lwb_t *lwb = zio->io_private; 1126 zilog_t *zilog = lwb->lwb_zilog; 1127 dmu_tx_t *tx = lwb->lwb_tx; 1128 zil_commit_waiter_t *zcw; 1129 itx_t *itx; 1130 1131 spa_config_exit(zilog->zl_spa, SCL_STATE, lwb); 1132 1133 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 1134 1135 mutex_enter(&zilog->zl_lock); 1136 1137 /* 1138 * Ensure the lwb buffer pointer is cleared before releasing the 1139 * txg. If we have had an allocation failure and the txg is 1140 * waiting to sync then we want zil_sync() to remove the lwb so 1141 * that it's not picked up as the next new one in 1142 * zil_process_commit_list(). zil_sync() will only remove the 1143 * lwb if lwb_buf is null. 1144 */ 1145 lwb->lwb_buf = NULL; 1146 lwb->lwb_tx = NULL; 1147 1148 ASSERT3U(lwb->lwb_issued_timestamp, >, 0); 1149 zilog->zl_last_lwb_latency = gethrtime() - lwb->lwb_issued_timestamp; 1150 1151 lwb->lwb_root_zio = NULL; 1152 1153 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE); 1154 lwb->lwb_state = LWB_STATE_FLUSH_DONE; 1155 1156 if (zilog->zl_last_lwb_opened == lwb) { 1157 /* 1158 * Remember the highest committed log sequence number 1159 * for ztest. We only update this value when all the log 1160 * writes succeeded, because ztest wants to ASSERT that 1161 * it got the whole log chain. 1162 */ 1163 zilog->zl_commit_lr_seq = zilog->zl_lr_seq; 1164 } 1165 1166 while ((itx = list_head(&lwb->lwb_itxs)) != NULL) { 1167 list_remove(&lwb->lwb_itxs, itx); 1168 zil_itx_destroy(itx); 1169 } 1170 1171 while ((zcw = list_head(&lwb->lwb_waiters)) != NULL) { 1172 mutex_enter(&zcw->zcw_lock); 1173 1174 ASSERT(list_link_active(&zcw->zcw_node)); 1175 list_remove(&lwb->lwb_waiters, zcw); 1176 1177 ASSERT3P(zcw->zcw_lwb, ==, lwb); 1178 zcw->zcw_lwb = NULL; 1179 1180 zcw->zcw_zio_error = zio->io_error; 1181 1182 ASSERT3B(zcw->zcw_done, ==, B_FALSE); 1183 zcw->zcw_done = B_TRUE; 1184 cv_broadcast(&zcw->zcw_cv); 1185 1186 mutex_exit(&zcw->zcw_lock); 1187 } 1188 1189 mutex_exit(&zilog->zl_lock); 1190 1191 /* 1192 * Now that we've written this log block, we have a stable pointer 1193 * to the next block in the chain, so it's OK to let the txg in 1194 * which we allocated the next block sync. 1195 */ 1196 dmu_tx_commit(tx); 1197 } 1198 1199 /* 1200 * This is called when an lwb's write zio completes. The callback's 1201 * purpose is to issue the DKIOCFLUSHWRITECACHE commands for the vdevs 1202 * in the lwb's lwb_vdev_tree. The tree will contain the vdevs involved 1203 * in writing out this specific lwb's data, and in the case that cache 1204 * flushes have been deferred, vdevs involved in writing the data for 1205 * previous lwbs. The writes corresponding to all the vdevs in the 1206 * lwb_vdev_tree will have completed by the time this is called, due to 1207 * the zio dependencies configured in zil_lwb_set_zio_dependency(), 1208 * which takes deferred flushes into account. The lwb will be "done" 1209 * once zil_lwb_flush_vdevs_done() is called, which occurs in the zio 1210 * completion callback for the lwb's root zio. 1211 */ 1212 static void 1213 zil_lwb_write_done(zio_t *zio) 1214 { 1215 lwb_t *lwb = zio->io_private; 1216 spa_t *spa = zio->io_spa; 1217 zilog_t *zilog = lwb->lwb_zilog; 1218 avl_tree_t *t = &lwb->lwb_vdev_tree; 1219 void *cookie = NULL; 1220 zil_vdev_node_t *zv; 1221 lwb_t *nlwb; 1222 1223 ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0); 1224 1225 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 1226 ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG); 1227 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 1228 ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER); 1229 ASSERT(!BP_IS_GANG(zio->io_bp)); 1230 ASSERT(!BP_IS_HOLE(zio->io_bp)); 1231 ASSERT(BP_GET_FILL(zio->io_bp) == 0); 1232 1233 abd_free(zio->io_abd); 1234 1235 mutex_enter(&zilog->zl_lock); 1236 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED); 1237 lwb->lwb_state = LWB_STATE_WRITE_DONE; 1238 lwb->lwb_write_zio = NULL; 1239 lwb->lwb_fastwrite = FALSE; 1240 nlwb = list_next(&zilog->zl_lwb_list, lwb); 1241 mutex_exit(&zilog->zl_lock); 1242 1243 if (avl_numnodes(t) == 0) 1244 return; 1245 1246 /* 1247 * If there was an IO error, we're not going to call zio_flush() 1248 * on these vdevs, so we simply empty the tree and free the 1249 * nodes. We avoid calling zio_flush() since there isn't any 1250 * good reason for doing so, after the lwb block failed to be 1251 * written out. 1252 */ 1253 if (zio->io_error != 0) { 1254 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) 1255 kmem_free(zv, sizeof (*zv)); 1256 return; 1257 } 1258 1259 /* 1260 * If this lwb does not have any threads waiting for it to 1261 * complete, we want to defer issuing the DKIOCFLUSHWRITECACHE 1262 * command to the vdevs written to by "this" lwb, and instead 1263 * rely on the "next" lwb to handle the DKIOCFLUSHWRITECACHE 1264 * command for those vdevs. Thus, we merge the vdev tree of 1265 * "this" lwb with the vdev tree of the "next" lwb in the list, 1266 * and assume the "next" lwb will handle flushing the vdevs (or 1267 * deferring the flush(s) again). 1268 * 1269 * This is a useful performance optimization, especially for 1270 * workloads with lots of async write activity and few sync 1271 * write and/or fsync activity, as it has the potential to 1272 * coalesce multiple flush commands to a vdev into one. 1273 */ 1274 if (list_head(&lwb->lwb_waiters) == NULL && nlwb != NULL) { 1275 zil_lwb_flush_defer(lwb, nlwb); 1276 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree)); 1277 return; 1278 } 1279 1280 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) { 1281 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev); 1282 if (vd != NULL) 1283 zio_flush(lwb->lwb_root_zio, vd); 1284 kmem_free(zv, sizeof (*zv)); 1285 } 1286 } 1287 1288 static void 1289 zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb) 1290 { 1291 lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened; 1292 1293 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1294 ASSERT(MUTEX_HELD(&zilog->zl_lock)); 1295 1296 /* 1297 * The zilog's "zl_last_lwb_opened" field is used to build the 1298 * lwb/zio dependency chain, which is used to preserve the 1299 * ordering of lwb completions that is required by the semantics 1300 * of the ZIL. Each new lwb zio becomes a parent of the 1301 * "previous" lwb zio, such that the new lwb's zio cannot 1302 * complete until the "previous" lwb's zio completes. 1303 * 1304 * This is required by the semantics of zil_commit(); the commit 1305 * waiters attached to the lwbs will be woken in the lwb zio's 1306 * completion callback, so this zio dependency graph ensures the 1307 * waiters are woken in the correct order (the same order the 1308 * lwbs were created). 1309 */ 1310 if (last_lwb_opened != NULL && 1311 last_lwb_opened->lwb_state != LWB_STATE_FLUSH_DONE) { 1312 ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED || 1313 last_lwb_opened->lwb_state == LWB_STATE_ISSUED || 1314 last_lwb_opened->lwb_state == LWB_STATE_WRITE_DONE); 1315 1316 ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL); 1317 zio_add_child(lwb->lwb_root_zio, 1318 last_lwb_opened->lwb_root_zio); 1319 1320 /* 1321 * If the previous lwb's write hasn't already completed, 1322 * we also want to order the completion of the lwb write 1323 * zios (above, we only order the completion of the lwb 1324 * root zios). This is required because of how we can 1325 * defer the DKIOCFLUSHWRITECACHE commands for each lwb. 1326 * 1327 * When the DKIOCFLUSHWRITECACHE commands are deferred, 1328 * the previous lwb will rely on this lwb to flush the 1329 * vdevs written to by that previous lwb. Thus, we need 1330 * to ensure this lwb doesn't issue the flush until 1331 * after the previous lwb's write completes. We ensure 1332 * this ordering by setting the zio parent/child 1333 * relationship here. 1334 * 1335 * Without this relationship on the lwb's write zio, 1336 * it's possible for this lwb's write to complete prior 1337 * to the previous lwb's write completing; and thus, the 1338 * vdevs for the previous lwb would be flushed prior to 1339 * that lwb's data being written to those vdevs (the 1340 * vdevs are flushed in the lwb write zio's completion 1341 * handler, zil_lwb_write_done()). 1342 */ 1343 if (last_lwb_opened->lwb_state != LWB_STATE_WRITE_DONE) { 1344 ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED || 1345 last_lwb_opened->lwb_state == LWB_STATE_ISSUED); 1346 1347 ASSERT3P(last_lwb_opened->lwb_write_zio, !=, NULL); 1348 zio_add_child(lwb->lwb_write_zio, 1349 last_lwb_opened->lwb_write_zio); 1350 } 1351 } 1352 } 1353 1354 1355 /* 1356 * This function's purpose is to "open" an lwb such that it is ready to 1357 * accept new itxs being committed to it. To do this, the lwb's zio 1358 * structures are created, and linked to the lwb. This function is 1359 * idempotent; if the passed in lwb has already been opened, this 1360 * function is essentially a no-op. 1361 */ 1362 static void 1363 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb) 1364 { 1365 zbookmark_phys_t zb; 1366 zio_priority_t prio; 1367 1368 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1369 ASSERT3P(lwb, !=, NULL); 1370 EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED); 1371 EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED); 1372 1373 SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1374 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, 1375 lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]); 1376 1377 /* Lock so zil_sync() doesn't fastwrite_unmark after zio is created */ 1378 mutex_enter(&zilog->zl_lock); 1379 if (lwb->lwb_root_zio == NULL) { 1380 abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf, 1381 BP_GET_LSIZE(&lwb->lwb_blk)); 1382 1383 if (!lwb->lwb_fastwrite) { 1384 metaslab_fastwrite_mark(zilog->zl_spa, &lwb->lwb_blk); 1385 lwb->lwb_fastwrite = 1; 1386 } 1387 1388 if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk) 1389 prio = ZIO_PRIORITY_SYNC_WRITE; 1390 else 1391 prio = ZIO_PRIORITY_ASYNC_WRITE; 1392 1393 lwb->lwb_root_zio = zio_root(zilog->zl_spa, 1394 zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL); 1395 ASSERT3P(lwb->lwb_root_zio, !=, NULL); 1396 1397 lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio, 1398 zilog->zl_spa, 0, &lwb->lwb_blk, lwb_abd, 1399 BP_GET_LSIZE(&lwb->lwb_blk), zil_lwb_write_done, lwb, 1400 prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | 1401 ZIO_FLAG_FASTWRITE, &zb); 1402 ASSERT3P(lwb->lwb_write_zio, !=, NULL); 1403 1404 lwb->lwb_state = LWB_STATE_OPENED; 1405 1406 zil_lwb_set_zio_dependency(zilog, lwb); 1407 zilog->zl_last_lwb_opened = lwb; 1408 } 1409 mutex_exit(&zilog->zl_lock); 1410 1411 ASSERT3P(lwb->lwb_root_zio, !=, NULL); 1412 ASSERT3P(lwb->lwb_write_zio, !=, NULL); 1413 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED); 1414 } 1415 1416 /* 1417 * Define a limited set of intent log block sizes. 1418 * 1419 * These must be a multiple of 4KB. Note only the amount used (again 1420 * aligned to 4KB) actually gets written. However, we can't always just 1421 * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted. 1422 */ 1423 struct { 1424 uint64_t limit; 1425 uint64_t blksz; 1426 } zil_block_buckets[] = { 1427 { 4096, 4096 }, /* non TX_WRITE */ 1428 { 8192 + 4096, 8192 + 4096 }, /* database */ 1429 { 32768 + 4096, 32768 + 4096 }, /* NFS writes */ 1430 { 65536 + 4096, 65536 + 4096 }, /* 64KB writes */ 1431 { 131072, 131072 }, /* < 128KB writes */ 1432 { 131072 +4096, 65536 + 4096 }, /* 128KB writes */ 1433 { UINT64_MAX, SPA_OLD_MAXBLOCKSIZE}, /* > 128KB writes */ 1434 }; 1435 1436 /* 1437 * Maximum block size used by the ZIL. This is picked up when the ZIL is 1438 * initialized. Otherwise this should not be used directly; see 1439 * zl_max_block_size instead. 1440 */ 1441 int zil_maxblocksize = SPA_OLD_MAXBLOCKSIZE; 1442 1443 /* 1444 * Start a log block write and advance to the next log block. 1445 * Calls are serialized. 1446 */ 1447 static lwb_t * 1448 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb) 1449 { 1450 lwb_t *nlwb = NULL; 1451 zil_chain_t *zilc; 1452 spa_t *spa = zilog->zl_spa; 1453 blkptr_t *bp; 1454 dmu_tx_t *tx; 1455 uint64_t txg; 1456 uint64_t zil_blksz, wsz; 1457 int i, error; 1458 boolean_t slog; 1459 1460 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1461 ASSERT3P(lwb->lwb_root_zio, !=, NULL); 1462 ASSERT3P(lwb->lwb_write_zio, !=, NULL); 1463 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED); 1464 1465 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) { 1466 zilc = (zil_chain_t *)lwb->lwb_buf; 1467 bp = &zilc->zc_next_blk; 1468 } else { 1469 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz); 1470 bp = &zilc->zc_next_blk; 1471 } 1472 1473 ASSERT(lwb->lwb_nused <= lwb->lwb_sz); 1474 1475 /* 1476 * Allocate the next block and save its address in this block 1477 * before writing it in order to establish the log chain. 1478 * Note that if the allocation of nlwb synced before we wrote 1479 * the block that points at it (lwb), we'd leak it if we crashed. 1480 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done(). 1481 * We dirty the dataset to ensure that zil_sync() will be called 1482 * to clean up in the event of allocation failure or I/O failure. 1483 */ 1484 1485 tx = dmu_tx_create(zilog->zl_os); 1486 1487 /* 1488 * Since we are not going to create any new dirty data, and we 1489 * can even help with clearing the existing dirty data, we 1490 * should not be subject to the dirty data based delays. We 1491 * use TXG_NOTHROTTLE to bypass the delay mechanism. 1492 */ 1493 VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE)); 1494 1495 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 1496 txg = dmu_tx_get_txg(tx); 1497 1498 lwb->lwb_tx = tx; 1499 1500 /* 1501 * Log blocks are pre-allocated. Here we select the size of the next 1502 * block, based on size used in the last block. 1503 * - first find the smallest bucket that will fit the block from a 1504 * limited set of block sizes. This is because it's faster to write 1505 * blocks allocated from the same metaslab as they are adjacent or 1506 * close. 1507 * - next find the maximum from the new suggested size and an array of 1508 * previous sizes. This lessens a picket fence effect of wrongly 1509 * guessing the size if we have a stream of say 2k, 64k, 2k, 64k 1510 * requests. 1511 * 1512 * Note we only write what is used, but we can't just allocate 1513 * the maximum block size because we can exhaust the available 1514 * pool log space. 1515 */ 1516 zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t); 1517 for (i = 0; zil_blksz > zil_block_buckets[i].limit; i++) 1518 continue; 1519 zil_blksz = MIN(zil_block_buckets[i].blksz, zilog->zl_max_block_size); 1520 zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz; 1521 for (i = 0; i < ZIL_PREV_BLKS; i++) 1522 zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]); 1523 zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1); 1524 1525 BP_ZERO(bp); 1526 error = zio_alloc_zil(spa, zilog->zl_os, txg, bp, zil_blksz, &slog); 1527 if (slog) { 1528 ZIL_STAT_BUMP(zil_itx_metaslab_slog_count); 1529 ZIL_STAT_INCR(zil_itx_metaslab_slog_bytes, lwb->lwb_nused); 1530 } else { 1531 ZIL_STAT_BUMP(zil_itx_metaslab_normal_count); 1532 ZIL_STAT_INCR(zil_itx_metaslab_normal_bytes, lwb->lwb_nused); 1533 } 1534 if (error == 0) { 1535 ASSERT3U(bp->blk_birth, ==, txg); 1536 bp->blk_cksum = lwb->lwb_blk.blk_cksum; 1537 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++; 1538 1539 /* 1540 * Allocate a new log write block (lwb). 1541 */ 1542 nlwb = zil_alloc_lwb(zilog, bp, slog, txg, TRUE); 1543 } 1544 1545 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) { 1546 /* For Slim ZIL only write what is used. */ 1547 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t); 1548 ASSERT3U(wsz, <=, lwb->lwb_sz); 1549 zio_shrink(lwb->lwb_write_zio, wsz); 1550 1551 } else { 1552 wsz = lwb->lwb_sz; 1553 } 1554 1555 zilc->zc_pad = 0; 1556 zilc->zc_nused = lwb->lwb_nused; 1557 zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum; 1558 1559 /* 1560 * clear unused data for security 1561 */ 1562 bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused); 1563 1564 spa_config_enter(zilog->zl_spa, SCL_STATE, lwb, RW_READER); 1565 1566 zil_lwb_add_block(lwb, &lwb->lwb_blk); 1567 lwb->lwb_issued_timestamp = gethrtime(); 1568 lwb->lwb_state = LWB_STATE_ISSUED; 1569 1570 zio_nowait(lwb->lwb_root_zio); 1571 zio_nowait(lwb->lwb_write_zio); 1572 1573 /* 1574 * If there was an allocation failure then nlwb will be null which 1575 * forces a txg_wait_synced(). 1576 */ 1577 return (nlwb); 1578 } 1579 1580 /* 1581 * Maximum amount of write data that can be put into single log block. 1582 */ 1583 uint64_t 1584 zil_max_log_data(zilog_t *zilog) 1585 { 1586 return (zilog->zl_max_block_size - 1587 sizeof (zil_chain_t) - sizeof (lr_write_t)); 1588 } 1589 1590 /* 1591 * Maximum amount of log space we agree to waste to reduce number of 1592 * WR_NEED_COPY chunks to reduce zl_get_data() overhead (~12%). 1593 */ 1594 static inline uint64_t 1595 zil_max_waste_space(zilog_t *zilog) 1596 { 1597 return (zil_max_log_data(zilog) / 8); 1598 } 1599 1600 /* 1601 * Maximum amount of write data for WR_COPIED. For correctness, consumers 1602 * must fall back to WR_NEED_COPY if we can't fit the entire record into one 1603 * maximum sized log block, because each WR_COPIED record must fit in a 1604 * single log block. For space efficiency, we want to fit two records into a 1605 * max-sized log block. 1606 */ 1607 uint64_t 1608 zil_max_copied_data(zilog_t *zilog) 1609 { 1610 return ((zilog->zl_max_block_size - sizeof (zil_chain_t)) / 2 - 1611 sizeof (lr_write_t)); 1612 } 1613 1614 static lwb_t * 1615 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb) 1616 { 1617 lr_t *lrcb, *lrc; 1618 lr_write_t *lrwb, *lrw; 1619 char *lr_buf; 1620 uint64_t dlen, dnow, lwb_sp, reclen, txg, max_log_data; 1621 1622 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1623 ASSERT3P(lwb, !=, NULL); 1624 ASSERT3P(lwb->lwb_buf, !=, NULL); 1625 1626 zil_lwb_write_open(zilog, lwb); 1627 1628 lrc = &itx->itx_lr; 1629 lrw = (lr_write_t *)lrc; 1630 1631 /* 1632 * A commit itx doesn't represent any on-disk state; instead 1633 * it's simply used as a place holder on the commit list, and 1634 * provides a mechanism for attaching a "commit waiter" onto the 1635 * correct lwb (such that the waiter can be signalled upon 1636 * completion of that lwb). Thus, we don't process this itx's 1637 * log record if it's a commit itx (these itx's don't have log 1638 * records), and instead link the itx's waiter onto the lwb's 1639 * list of waiters. 1640 * 1641 * For more details, see the comment above zil_commit(). 1642 */ 1643 if (lrc->lrc_txtype == TX_COMMIT) { 1644 mutex_enter(&zilog->zl_lock); 1645 zil_commit_waiter_link_lwb(itx->itx_private, lwb); 1646 itx->itx_private = NULL; 1647 mutex_exit(&zilog->zl_lock); 1648 return (lwb); 1649 } 1650 1651 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) { 1652 dlen = P2ROUNDUP_TYPED( 1653 lrw->lr_length, sizeof (uint64_t), uint64_t); 1654 } else { 1655 dlen = 0; 1656 } 1657 reclen = lrc->lrc_reclen; 1658 zilog->zl_cur_used += (reclen + dlen); 1659 txg = lrc->lrc_txg; 1660 1661 ASSERT3U(zilog->zl_cur_used, <, UINT64_MAX - (reclen + dlen)); 1662 1663 cont: 1664 /* 1665 * If this record won't fit in the current log block, start a new one. 1666 * For WR_NEED_COPY optimize layout for minimal number of chunks. 1667 */ 1668 lwb_sp = lwb->lwb_sz - lwb->lwb_nused; 1669 max_log_data = zil_max_log_data(zilog); 1670 if (reclen > lwb_sp || (reclen + dlen > lwb_sp && 1671 lwb_sp < zil_max_waste_space(zilog) && 1672 (dlen % max_log_data == 0 || 1673 lwb_sp < reclen + dlen % max_log_data))) { 1674 lwb = zil_lwb_write_issue(zilog, lwb); 1675 if (lwb == NULL) 1676 return (NULL); 1677 zil_lwb_write_open(zilog, lwb); 1678 ASSERT(LWB_EMPTY(lwb)); 1679 lwb_sp = lwb->lwb_sz - lwb->lwb_nused; 1680 1681 /* 1682 * There must be enough space in the new, empty log block to 1683 * hold reclen. For WR_COPIED, we need to fit the whole 1684 * record in one block, and reclen is the header size + the 1685 * data size. For WR_NEED_COPY, we can create multiple 1686 * records, splitting the data into multiple blocks, so we 1687 * only need to fit one word of data per block; in this case 1688 * reclen is just the header size (no data). 1689 */ 1690 ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp); 1691 } 1692 1693 dnow = MIN(dlen, lwb_sp - reclen); 1694 lr_buf = lwb->lwb_buf + lwb->lwb_nused; 1695 bcopy(lrc, lr_buf, reclen); 1696 lrcb = (lr_t *)lr_buf; /* Like lrc, but inside lwb. */ 1697 lrwb = (lr_write_t *)lrcb; /* Like lrw, but inside lwb. */ 1698 1699 ZIL_STAT_BUMP(zil_itx_count); 1700 1701 /* 1702 * If it's a write, fetch the data or get its blkptr as appropriate. 1703 */ 1704 if (lrc->lrc_txtype == TX_WRITE) { 1705 if (txg > spa_freeze_txg(zilog->zl_spa)) 1706 txg_wait_synced(zilog->zl_dmu_pool, txg); 1707 if (itx->itx_wr_state == WR_COPIED) { 1708 ZIL_STAT_BUMP(zil_itx_copied_count); 1709 ZIL_STAT_INCR(zil_itx_copied_bytes, lrw->lr_length); 1710 } else { 1711 char *dbuf; 1712 int error; 1713 1714 if (itx->itx_wr_state == WR_NEED_COPY) { 1715 dbuf = lr_buf + reclen; 1716 lrcb->lrc_reclen += dnow; 1717 if (lrwb->lr_length > dnow) 1718 lrwb->lr_length = dnow; 1719 lrw->lr_offset += dnow; 1720 lrw->lr_length -= dnow; 1721 ZIL_STAT_BUMP(zil_itx_needcopy_count); 1722 ZIL_STAT_INCR(zil_itx_needcopy_bytes, dnow); 1723 } else { 1724 ASSERT3S(itx->itx_wr_state, ==, WR_INDIRECT); 1725 dbuf = NULL; 1726 ZIL_STAT_BUMP(zil_itx_indirect_count); 1727 ZIL_STAT_INCR(zil_itx_indirect_bytes, 1728 lrw->lr_length); 1729 } 1730 1731 /* 1732 * We pass in the "lwb_write_zio" rather than 1733 * "lwb_root_zio" so that the "lwb_write_zio" 1734 * becomes the parent of any zio's created by 1735 * the "zl_get_data" callback. The vdevs are 1736 * flushed after the "lwb_write_zio" completes, 1737 * so we want to make sure that completion 1738 * callback waits for these additional zio's, 1739 * such that the vdevs used by those zio's will 1740 * be included in the lwb's vdev tree, and those 1741 * vdevs will be properly flushed. If we passed 1742 * in "lwb_root_zio" here, then these additional 1743 * vdevs may not be flushed; e.g. if these zio's 1744 * completed after "lwb_write_zio" completed. 1745 */ 1746 error = zilog->zl_get_data(itx->itx_private, 1747 itx->itx_gen, lrwb, dbuf, lwb, 1748 lwb->lwb_write_zio); 1749 1750 if (error == EIO) { 1751 txg_wait_synced(zilog->zl_dmu_pool, txg); 1752 return (lwb); 1753 } 1754 if (error != 0) { 1755 ASSERT(error == ENOENT || error == EEXIST || 1756 error == EALREADY); 1757 return (lwb); 1758 } 1759 } 1760 } 1761 1762 /* 1763 * We're actually making an entry, so update lrc_seq to be the 1764 * log record sequence number. Note that this is generally not 1765 * equal to the itx sequence number because not all transactions 1766 * are synchronous, and sometimes spa_sync() gets there first. 1767 */ 1768 lrcb->lrc_seq = ++zilog->zl_lr_seq; 1769 lwb->lwb_nused += reclen + dnow; 1770 1771 zil_lwb_add_txg(lwb, txg); 1772 1773 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz); 1774 ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t))); 1775 1776 dlen -= dnow; 1777 if (dlen > 0) { 1778 zilog->zl_cur_used += reclen; 1779 goto cont; 1780 } 1781 1782 return (lwb); 1783 } 1784 1785 itx_t * 1786 zil_itx_create(uint64_t txtype, size_t lrsize) 1787 { 1788 size_t itxsize; 1789 itx_t *itx; 1790 1791 lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t); 1792 itxsize = offsetof(itx_t, itx_lr) + lrsize; 1793 1794 itx = zio_data_buf_alloc(itxsize); 1795 itx->itx_lr.lrc_txtype = txtype; 1796 itx->itx_lr.lrc_reclen = lrsize; 1797 itx->itx_lr.lrc_seq = 0; /* defensive */ 1798 itx->itx_sync = B_TRUE; /* default is synchronous */ 1799 itx->itx_callback = NULL; 1800 itx->itx_callback_data = NULL; 1801 itx->itx_size = itxsize; 1802 1803 return (itx); 1804 } 1805 1806 void 1807 zil_itx_destroy(itx_t *itx) 1808 { 1809 IMPLY(itx->itx_lr.lrc_txtype == TX_COMMIT, itx->itx_callback == NULL); 1810 IMPLY(itx->itx_callback != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT); 1811 1812 if (itx->itx_callback != NULL) 1813 itx->itx_callback(itx->itx_callback_data); 1814 1815 zio_data_buf_free(itx, itx->itx_size); 1816 } 1817 1818 /* 1819 * Free up the sync and async itxs. The itxs_t has already been detached 1820 * so no locks are needed. 1821 */ 1822 static void 1823 zil_itxg_clean(itxs_t *itxs) 1824 { 1825 itx_t *itx; 1826 list_t *list; 1827 avl_tree_t *t; 1828 void *cookie; 1829 itx_async_node_t *ian; 1830 1831 list = &itxs->i_sync_list; 1832 while ((itx = list_head(list)) != NULL) { 1833 /* 1834 * In the general case, commit itxs will not be found 1835 * here, as they'll be committed to an lwb via 1836 * zil_lwb_commit(), and free'd in that function. Having 1837 * said that, it is still possible for commit itxs to be 1838 * found here, due to the following race: 1839 * 1840 * - a thread calls zil_commit() which assigns the 1841 * commit itx to a per-txg i_sync_list 1842 * - zil_itxg_clean() is called (e.g. via spa_sync()) 1843 * while the waiter is still on the i_sync_list 1844 * 1845 * There's nothing to prevent syncing the txg while the 1846 * waiter is on the i_sync_list. This normally doesn't 1847 * happen because spa_sync() is slower than zil_commit(), 1848 * but if zil_commit() calls txg_wait_synced() (e.g. 1849 * because zil_create() or zil_commit_writer_stall() is 1850 * called) we will hit this case. 1851 */ 1852 if (itx->itx_lr.lrc_txtype == TX_COMMIT) 1853 zil_commit_waiter_skip(itx->itx_private); 1854 1855 list_remove(list, itx); 1856 zil_itx_destroy(itx); 1857 } 1858 1859 cookie = NULL; 1860 t = &itxs->i_async_tree; 1861 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { 1862 list = &ian->ia_list; 1863 while ((itx = list_head(list)) != NULL) { 1864 list_remove(list, itx); 1865 /* commit itxs should never be on the async lists. */ 1866 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT); 1867 zil_itx_destroy(itx); 1868 } 1869 list_destroy(list); 1870 kmem_free(ian, sizeof (itx_async_node_t)); 1871 } 1872 avl_destroy(t); 1873 1874 kmem_free(itxs, sizeof (itxs_t)); 1875 } 1876 1877 static int 1878 zil_aitx_compare(const void *x1, const void *x2) 1879 { 1880 const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid; 1881 const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid; 1882 1883 return (TREE_CMP(o1, o2)); 1884 } 1885 1886 /* 1887 * Remove all async itx with the given oid. 1888 */ 1889 void 1890 zil_remove_async(zilog_t *zilog, uint64_t oid) 1891 { 1892 uint64_t otxg, txg; 1893 itx_async_node_t *ian; 1894 avl_tree_t *t; 1895 avl_index_t where; 1896 list_t clean_list; 1897 itx_t *itx; 1898 1899 ASSERT(oid != 0); 1900 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node)); 1901 1902 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 1903 otxg = ZILTEST_TXG; 1904 else 1905 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 1906 1907 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 1908 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 1909 1910 mutex_enter(&itxg->itxg_lock); 1911 if (itxg->itxg_txg != txg) { 1912 mutex_exit(&itxg->itxg_lock); 1913 continue; 1914 } 1915 1916 /* 1917 * Locate the object node and append its list. 1918 */ 1919 t = &itxg->itxg_itxs->i_async_tree; 1920 ian = avl_find(t, &oid, &where); 1921 if (ian != NULL) 1922 list_move_tail(&clean_list, &ian->ia_list); 1923 mutex_exit(&itxg->itxg_lock); 1924 } 1925 while ((itx = list_head(&clean_list)) != NULL) { 1926 list_remove(&clean_list, itx); 1927 /* commit itxs should never be on the async lists. */ 1928 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT); 1929 zil_itx_destroy(itx); 1930 } 1931 list_destroy(&clean_list); 1932 } 1933 1934 void 1935 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx) 1936 { 1937 uint64_t txg; 1938 itxg_t *itxg; 1939 itxs_t *itxs, *clean = NULL; 1940 1941 /* 1942 * Ensure the data of a renamed file is committed before the rename. 1943 */ 1944 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME) 1945 zil_async_to_sync(zilog, itx->itx_oid); 1946 1947 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) 1948 txg = ZILTEST_TXG; 1949 else 1950 txg = dmu_tx_get_txg(tx); 1951 1952 itxg = &zilog->zl_itxg[txg & TXG_MASK]; 1953 mutex_enter(&itxg->itxg_lock); 1954 itxs = itxg->itxg_itxs; 1955 if (itxg->itxg_txg != txg) { 1956 if (itxs != NULL) { 1957 /* 1958 * The zil_clean callback hasn't got around to cleaning 1959 * this itxg. Save the itxs for release below. 1960 * This should be rare. 1961 */ 1962 zfs_dbgmsg("zil_itx_assign: missed itx cleanup for " 1963 "txg %llu", itxg->itxg_txg); 1964 clean = itxg->itxg_itxs; 1965 } 1966 itxg->itxg_txg = txg; 1967 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), 1968 KM_SLEEP); 1969 1970 list_create(&itxs->i_sync_list, sizeof (itx_t), 1971 offsetof(itx_t, itx_node)); 1972 avl_create(&itxs->i_async_tree, zil_aitx_compare, 1973 sizeof (itx_async_node_t), 1974 offsetof(itx_async_node_t, ia_node)); 1975 } 1976 if (itx->itx_sync) { 1977 list_insert_tail(&itxs->i_sync_list, itx); 1978 } else { 1979 avl_tree_t *t = &itxs->i_async_tree; 1980 uint64_t foid = 1981 LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid); 1982 itx_async_node_t *ian; 1983 avl_index_t where; 1984 1985 ian = avl_find(t, &foid, &where); 1986 if (ian == NULL) { 1987 ian = kmem_alloc(sizeof (itx_async_node_t), 1988 KM_SLEEP); 1989 list_create(&ian->ia_list, sizeof (itx_t), 1990 offsetof(itx_t, itx_node)); 1991 ian->ia_foid = foid; 1992 avl_insert(t, ian, where); 1993 } 1994 list_insert_tail(&ian->ia_list, itx); 1995 } 1996 1997 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx); 1998 1999 /* 2000 * We don't want to dirty the ZIL using ZILTEST_TXG, because 2001 * zil_clean() will never be called using ZILTEST_TXG. Thus, we 2002 * need to be careful to always dirty the ZIL using the "real" 2003 * TXG (not itxg_txg) even when the SPA is frozen. 2004 */ 2005 zilog_dirty(zilog, dmu_tx_get_txg(tx)); 2006 mutex_exit(&itxg->itxg_lock); 2007 2008 /* Release the old itxs now we've dropped the lock */ 2009 if (clean != NULL) 2010 zil_itxg_clean(clean); 2011 } 2012 2013 /* 2014 * If there are any in-memory intent log transactions which have now been 2015 * synced then start up a taskq to free them. We should only do this after we 2016 * have written out the uberblocks (i.e. txg has been committed) so that 2017 * don't inadvertently clean out in-memory log records that would be required 2018 * by zil_commit(). 2019 */ 2020 void 2021 zil_clean(zilog_t *zilog, uint64_t synced_txg) 2022 { 2023 itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK]; 2024 itxs_t *clean_me; 2025 2026 ASSERT3U(synced_txg, <, ZILTEST_TXG); 2027 2028 mutex_enter(&itxg->itxg_lock); 2029 if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) { 2030 mutex_exit(&itxg->itxg_lock); 2031 return; 2032 } 2033 ASSERT3U(itxg->itxg_txg, <=, synced_txg); 2034 ASSERT3U(itxg->itxg_txg, !=, 0); 2035 clean_me = itxg->itxg_itxs; 2036 itxg->itxg_itxs = NULL; 2037 itxg->itxg_txg = 0; 2038 mutex_exit(&itxg->itxg_lock); 2039 /* 2040 * Preferably start a task queue to free up the old itxs but 2041 * if taskq_dispatch can't allocate resources to do that then 2042 * free it in-line. This should be rare. Note, using TQ_SLEEP 2043 * created a bad performance problem. 2044 */ 2045 ASSERT3P(zilog->zl_dmu_pool, !=, NULL); 2046 ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL); 2047 taskqid_t id = taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq, 2048 (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP); 2049 if (id == TASKQID_INVALID) 2050 zil_itxg_clean(clean_me); 2051 } 2052 2053 /* 2054 * This function will traverse the queue of itxs that need to be 2055 * committed, and move them onto the ZIL's zl_itx_commit_list. 2056 */ 2057 static void 2058 zil_get_commit_list(zilog_t *zilog) 2059 { 2060 uint64_t otxg, txg; 2061 list_t *commit_list = &zilog->zl_itx_commit_list; 2062 2063 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2064 2065 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 2066 otxg = ZILTEST_TXG; 2067 else 2068 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 2069 2070 /* 2071 * This is inherently racy, since there is nothing to prevent 2072 * the last synced txg from changing. That's okay since we'll 2073 * only commit things in the future. 2074 */ 2075 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 2076 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 2077 2078 mutex_enter(&itxg->itxg_lock); 2079 if (itxg->itxg_txg != txg) { 2080 mutex_exit(&itxg->itxg_lock); 2081 continue; 2082 } 2083 2084 /* 2085 * If we're adding itx records to the zl_itx_commit_list, 2086 * then the zil better be dirty in this "txg". We can assert 2087 * that here since we're holding the itxg_lock which will 2088 * prevent spa_sync from cleaning it. Once we add the itxs 2089 * to the zl_itx_commit_list we must commit it to disk even 2090 * if it's unnecessary (i.e. the txg was synced). 2091 */ 2092 ASSERT(zilog_is_dirty_in_txg(zilog, txg) || 2093 spa_freeze_txg(zilog->zl_spa) != UINT64_MAX); 2094 list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list); 2095 2096 mutex_exit(&itxg->itxg_lock); 2097 } 2098 } 2099 2100 /* 2101 * Move the async itxs for a specified object to commit into sync lists. 2102 */ 2103 void 2104 zil_async_to_sync(zilog_t *zilog, uint64_t foid) 2105 { 2106 uint64_t otxg, txg; 2107 itx_async_node_t *ian; 2108 avl_tree_t *t; 2109 avl_index_t where; 2110 2111 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 2112 otxg = ZILTEST_TXG; 2113 else 2114 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 2115 2116 /* 2117 * This is inherently racy, since there is nothing to prevent 2118 * the last synced txg from changing. 2119 */ 2120 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 2121 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 2122 2123 mutex_enter(&itxg->itxg_lock); 2124 if (itxg->itxg_txg != txg) { 2125 mutex_exit(&itxg->itxg_lock); 2126 continue; 2127 } 2128 2129 /* 2130 * If a foid is specified then find that node and append its 2131 * list. Otherwise walk the tree appending all the lists 2132 * to the sync list. We add to the end rather than the 2133 * beginning to ensure the create has happened. 2134 */ 2135 t = &itxg->itxg_itxs->i_async_tree; 2136 if (foid != 0) { 2137 ian = avl_find(t, &foid, &where); 2138 if (ian != NULL) { 2139 list_move_tail(&itxg->itxg_itxs->i_sync_list, 2140 &ian->ia_list); 2141 } 2142 } else { 2143 void *cookie = NULL; 2144 2145 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { 2146 list_move_tail(&itxg->itxg_itxs->i_sync_list, 2147 &ian->ia_list); 2148 list_destroy(&ian->ia_list); 2149 kmem_free(ian, sizeof (itx_async_node_t)); 2150 } 2151 } 2152 mutex_exit(&itxg->itxg_lock); 2153 } 2154 } 2155 2156 /* 2157 * This function will prune commit itxs that are at the head of the 2158 * commit list (it won't prune past the first non-commit itx), and 2159 * either: a) attach them to the last lwb that's still pending 2160 * completion, or b) skip them altogether. 2161 * 2162 * This is used as a performance optimization to prevent commit itxs 2163 * from generating new lwbs when it's unnecessary to do so. 2164 */ 2165 static void 2166 zil_prune_commit_list(zilog_t *zilog) 2167 { 2168 itx_t *itx; 2169 2170 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2171 2172 while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) { 2173 lr_t *lrc = &itx->itx_lr; 2174 if (lrc->lrc_txtype != TX_COMMIT) 2175 break; 2176 2177 mutex_enter(&zilog->zl_lock); 2178 2179 lwb_t *last_lwb = zilog->zl_last_lwb_opened; 2180 if (last_lwb == NULL || 2181 last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) { 2182 /* 2183 * All of the itxs this waiter was waiting on 2184 * must have already completed (or there were 2185 * never any itx's for it to wait on), so it's 2186 * safe to skip this waiter and mark it done. 2187 */ 2188 zil_commit_waiter_skip(itx->itx_private); 2189 } else { 2190 zil_commit_waiter_link_lwb(itx->itx_private, last_lwb); 2191 itx->itx_private = NULL; 2192 } 2193 2194 mutex_exit(&zilog->zl_lock); 2195 2196 list_remove(&zilog->zl_itx_commit_list, itx); 2197 zil_itx_destroy(itx); 2198 } 2199 2200 IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT); 2201 } 2202 2203 static void 2204 zil_commit_writer_stall(zilog_t *zilog) 2205 { 2206 /* 2207 * When zio_alloc_zil() fails to allocate the next lwb block on 2208 * disk, we must call txg_wait_synced() to ensure all of the 2209 * lwbs in the zilog's zl_lwb_list are synced and then freed (in 2210 * zil_sync()), such that any subsequent ZIL writer (i.e. a call 2211 * to zil_process_commit_list()) will have to call zil_create(), 2212 * and start a new ZIL chain. 2213 * 2214 * Since zil_alloc_zil() failed, the lwb that was previously 2215 * issued does not have a pointer to the "next" lwb on disk. 2216 * Thus, if another ZIL writer thread was to allocate the "next" 2217 * on-disk lwb, that block could be leaked in the event of a 2218 * crash (because the previous lwb on-disk would not point to 2219 * it). 2220 * 2221 * We must hold the zilog's zl_issuer_lock while we do this, to 2222 * ensure no new threads enter zil_process_commit_list() until 2223 * all lwb's in the zl_lwb_list have been synced and freed 2224 * (which is achieved via the txg_wait_synced() call). 2225 */ 2226 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2227 txg_wait_synced(zilog->zl_dmu_pool, 0); 2228 ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL); 2229 } 2230 2231 /* 2232 * This function will traverse the commit list, creating new lwbs as 2233 * needed, and committing the itxs from the commit list to these newly 2234 * created lwbs. Additionally, as a new lwb is created, the previous 2235 * lwb will be issued to the zio layer to be written to disk. 2236 */ 2237 static void 2238 zil_process_commit_list(zilog_t *zilog) 2239 { 2240 spa_t *spa = zilog->zl_spa; 2241 list_t nolwb_itxs; 2242 list_t nolwb_waiters; 2243 lwb_t *lwb; 2244 itx_t *itx; 2245 2246 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2247 2248 /* 2249 * Return if there's nothing to commit before we dirty the fs by 2250 * calling zil_create(). 2251 */ 2252 if (list_head(&zilog->zl_itx_commit_list) == NULL) 2253 return; 2254 2255 list_create(&nolwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node)); 2256 list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t), 2257 offsetof(zil_commit_waiter_t, zcw_node)); 2258 2259 lwb = list_tail(&zilog->zl_lwb_list); 2260 if (lwb == NULL) { 2261 lwb = zil_create(zilog); 2262 } else { 2263 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED); 2264 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE); 2265 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE); 2266 } 2267 2268 while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) { 2269 lr_t *lrc = &itx->itx_lr; 2270 uint64_t txg = lrc->lrc_txg; 2271 2272 ASSERT3U(txg, !=, 0); 2273 2274 if (lrc->lrc_txtype == TX_COMMIT) { 2275 DTRACE_PROBE2(zil__process__commit__itx, 2276 zilog_t *, zilog, itx_t *, itx); 2277 } else { 2278 DTRACE_PROBE2(zil__process__normal__itx, 2279 zilog_t *, zilog, itx_t *, itx); 2280 } 2281 2282 list_remove(&zilog->zl_itx_commit_list, itx); 2283 2284 boolean_t synced = txg <= spa_last_synced_txg(spa); 2285 boolean_t frozen = txg > spa_freeze_txg(spa); 2286 2287 /* 2288 * If the txg of this itx has already been synced out, then 2289 * we don't need to commit this itx to an lwb. This is 2290 * because the data of this itx will have already been 2291 * written to the main pool. This is inherently racy, and 2292 * it's still ok to commit an itx whose txg has already 2293 * been synced; this will result in a write that's 2294 * unnecessary, but will do no harm. 2295 * 2296 * With that said, we always want to commit TX_COMMIT itxs 2297 * to an lwb, regardless of whether or not that itx's txg 2298 * has been synced out. We do this to ensure any OPENED lwb 2299 * will always have at least one zil_commit_waiter_t linked 2300 * to the lwb. 2301 * 2302 * As a counter-example, if we skipped TX_COMMIT itx's 2303 * whose txg had already been synced, the following 2304 * situation could occur if we happened to be racing with 2305 * spa_sync: 2306 * 2307 * 1. We commit a non-TX_COMMIT itx to an lwb, where the 2308 * itx's txg is 10 and the last synced txg is 9. 2309 * 2. spa_sync finishes syncing out txg 10. 2310 * 3. We move to the next itx in the list, it's a TX_COMMIT 2311 * whose txg is 10, so we skip it rather than committing 2312 * it to the lwb used in (1). 2313 * 2314 * If the itx that is skipped in (3) is the last TX_COMMIT 2315 * itx in the commit list, than it's possible for the lwb 2316 * used in (1) to remain in the OPENED state indefinitely. 2317 * 2318 * To prevent the above scenario from occurring, ensuring 2319 * that once an lwb is OPENED it will transition to ISSUED 2320 * and eventually DONE, we always commit TX_COMMIT itx's to 2321 * an lwb here, even if that itx's txg has already been 2322 * synced. 2323 * 2324 * Finally, if the pool is frozen, we _always_ commit the 2325 * itx. The point of freezing the pool is to prevent data 2326 * from being written to the main pool via spa_sync, and 2327 * instead rely solely on the ZIL to persistently store the 2328 * data; i.e. when the pool is frozen, the last synced txg 2329 * value can't be trusted. 2330 */ 2331 if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) { 2332 if (lwb != NULL) { 2333 lwb = zil_lwb_commit(zilog, itx, lwb); 2334 2335 if (lwb == NULL) 2336 list_insert_tail(&nolwb_itxs, itx); 2337 else 2338 list_insert_tail(&lwb->lwb_itxs, itx); 2339 } else { 2340 if (lrc->lrc_txtype == TX_COMMIT) { 2341 zil_commit_waiter_link_nolwb( 2342 itx->itx_private, &nolwb_waiters); 2343 } 2344 2345 list_insert_tail(&nolwb_itxs, itx); 2346 } 2347 } else { 2348 ASSERT3S(lrc->lrc_txtype, !=, TX_COMMIT); 2349 zil_itx_destroy(itx); 2350 } 2351 } 2352 2353 if (lwb == NULL) { 2354 /* 2355 * This indicates zio_alloc_zil() failed to allocate the 2356 * "next" lwb on-disk. When this happens, we must stall 2357 * the ZIL write pipeline; see the comment within 2358 * zil_commit_writer_stall() for more details. 2359 */ 2360 zil_commit_writer_stall(zilog); 2361 2362 /* 2363 * Additionally, we have to signal and mark the "nolwb" 2364 * waiters as "done" here, since without an lwb, we 2365 * can't do this via zil_lwb_flush_vdevs_done() like 2366 * normal. 2367 */ 2368 zil_commit_waiter_t *zcw; 2369 while ((zcw = list_head(&nolwb_waiters)) != NULL) { 2370 zil_commit_waiter_skip(zcw); 2371 list_remove(&nolwb_waiters, zcw); 2372 } 2373 2374 /* 2375 * And finally, we have to destroy the itx's that 2376 * couldn't be committed to an lwb; this will also call 2377 * the itx's callback if one exists for the itx. 2378 */ 2379 while ((itx = list_head(&nolwb_itxs)) != NULL) { 2380 list_remove(&nolwb_itxs, itx); 2381 zil_itx_destroy(itx); 2382 } 2383 } else { 2384 ASSERT(list_is_empty(&nolwb_waiters)); 2385 ASSERT3P(lwb, !=, NULL); 2386 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED); 2387 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE); 2388 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE); 2389 2390 /* 2391 * At this point, the ZIL block pointed at by the "lwb" 2392 * variable is in one of the following states: "closed" 2393 * or "open". 2394 * 2395 * If it's "closed", then no itxs have been committed to 2396 * it, so there's no point in issuing its zio (i.e. it's 2397 * "empty"). 2398 * 2399 * If it's "open", then it contains one or more itxs that 2400 * eventually need to be committed to stable storage. In 2401 * this case we intentionally do not issue the lwb's zio 2402 * to disk yet, and instead rely on one of the following 2403 * two mechanisms for issuing the zio: 2404 * 2405 * 1. Ideally, there will be more ZIL activity occurring 2406 * on the system, such that this function will be 2407 * immediately called again (not necessarily by the same 2408 * thread) and this lwb's zio will be issued via 2409 * zil_lwb_commit(). This way, the lwb is guaranteed to 2410 * be "full" when it is issued to disk, and we'll make 2411 * use of the lwb's size the best we can. 2412 * 2413 * 2. If there isn't sufficient ZIL activity occurring on 2414 * the system, such that this lwb's zio isn't issued via 2415 * zil_lwb_commit(), zil_commit_waiter() will issue the 2416 * lwb's zio. If this occurs, the lwb is not guaranteed 2417 * to be "full" by the time its zio is issued, and means 2418 * the size of the lwb was "too large" given the amount 2419 * of ZIL activity occurring on the system at that time. 2420 * 2421 * We do this for a couple of reasons: 2422 * 2423 * 1. To try and reduce the number of IOPs needed to 2424 * write the same number of itxs. If an lwb has space 2425 * available in its buffer for more itxs, and more itxs 2426 * will be committed relatively soon (relative to the 2427 * latency of performing a write), then it's beneficial 2428 * to wait for these "next" itxs. This way, more itxs 2429 * can be committed to stable storage with fewer writes. 2430 * 2431 * 2. To try and use the largest lwb block size that the 2432 * incoming rate of itxs can support. Again, this is to 2433 * try and pack as many itxs into as few lwbs as 2434 * possible, without significantly impacting the latency 2435 * of each individual itx. 2436 */ 2437 } 2438 } 2439 2440 /* 2441 * This function is responsible for ensuring the passed in commit waiter 2442 * (and associated commit itx) is committed to an lwb. If the waiter is 2443 * not already committed to an lwb, all itxs in the zilog's queue of 2444 * itxs will be processed. The assumption is the passed in waiter's 2445 * commit itx will found in the queue just like the other non-commit 2446 * itxs, such that when the entire queue is processed, the waiter will 2447 * have been committed to an lwb. 2448 * 2449 * The lwb associated with the passed in waiter is not guaranteed to 2450 * have been issued by the time this function completes. If the lwb is 2451 * not issued, we rely on future calls to zil_commit_writer() to issue 2452 * the lwb, or the timeout mechanism found in zil_commit_waiter(). 2453 */ 2454 static void 2455 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw) 2456 { 2457 ASSERT(!MUTEX_HELD(&zilog->zl_lock)); 2458 ASSERT(spa_writeable(zilog->zl_spa)); 2459 2460 mutex_enter(&zilog->zl_issuer_lock); 2461 2462 if (zcw->zcw_lwb != NULL || zcw->zcw_done) { 2463 /* 2464 * It's possible that, while we were waiting to acquire 2465 * the "zl_issuer_lock", another thread committed this 2466 * waiter to an lwb. If that occurs, we bail out early, 2467 * without processing any of the zilog's queue of itxs. 2468 * 2469 * On certain workloads and system configurations, the 2470 * "zl_issuer_lock" can become highly contended. In an 2471 * attempt to reduce this contention, we immediately drop 2472 * the lock if the waiter has already been processed. 2473 * 2474 * We've measured this optimization to reduce CPU spent 2475 * contending on this lock by up to 5%, using a system 2476 * with 32 CPUs, low latency storage (~50 usec writes), 2477 * and 1024 threads performing sync writes. 2478 */ 2479 goto out; 2480 } 2481 2482 ZIL_STAT_BUMP(zil_commit_writer_count); 2483 2484 zil_get_commit_list(zilog); 2485 zil_prune_commit_list(zilog); 2486 zil_process_commit_list(zilog); 2487 2488 out: 2489 mutex_exit(&zilog->zl_issuer_lock); 2490 } 2491 2492 static void 2493 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw) 2494 { 2495 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock)); 2496 ASSERT(MUTEX_HELD(&zcw->zcw_lock)); 2497 ASSERT3B(zcw->zcw_done, ==, B_FALSE); 2498 2499 lwb_t *lwb = zcw->zcw_lwb; 2500 ASSERT3P(lwb, !=, NULL); 2501 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED); 2502 2503 /* 2504 * If the lwb has already been issued by another thread, we can 2505 * immediately return since there's no work to be done (the 2506 * point of this function is to issue the lwb). Additionally, we 2507 * do this prior to acquiring the zl_issuer_lock, to avoid 2508 * acquiring it when it's not necessary to do so. 2509 */ 2510 if (lwb->lwb_state == LWB_STATE_ISSUED || 2511 lwb->lwb_state == LWB_STATE_WRITE_DONE || 2512 lwb->lwb_state == LWB_STATE_FLUSH_DONE) 2513 return; 2514 2515 /* 2516 * In order to call zil_lwb_write_issue() we must hold the 2517 * zilog's "zl_issuer_lock". We can't simply acquire that lock, 2518 * since we're already holding the commit waiter's "zcw_lock", 2519 * and those two locks are acquired in the opposite order 2520 * elsewhere. 2521 */ 2522 mutex_exit(&zcw->zcw_lock); 2523 mutex_enter(&zilog->zl_issuer_lock); 2524 mutex_enter(&zcw->zcw_lock); 2525 2526 /* 2527 * Since we just dropped and re-acquired the commit waiter's 2528 * lock, we have to re-check to see if the waiter was marked 2529 * "done" during that process. If the waiter was marked "done", 2530 * the "lwb" pointer is no longer valid (it can be free'd after 2531 * the waiter is marked "done"), so without this check we could 2532 * wind up with a use-after-free error below. 2533 */ 2534 if (zcw->zcw_done) 2535 goto out; 2536 2537 ASSERT3P(lwb, ==, zcw->zcw_lwb); 2538 2539 /* 2540 * We've already checked this above, but since we hadn't acquired 2541 * the zilog's zl_issuer_lock, we have to perform this check a 2542 * second time while holding the lock. 2543 * 2544 * We don't need to hold the zl_lock since the lwb cannot transition 2545 * from OPENED to ISSUED while we hold the zl_issuer_lock. The lwb 2546 * _can_ transition from ISSUED to DONE, but it's OK to race with 2547 * that transition since we treat the lwb the same, whether it's in 2548 * the ISSUED or DONE states. 2549 * 2550 * The important thing, is we treat the lwb differently depending on 2551 * if it's ISSUED or OPENED, and block any other threads that might 2552 * attempt to issue this lwb. For that reason we hold the 2553 * zl_issuer_lock when checking the lwb_state; we must not call 2554 * zil_lwb_write_issue() if the lwb had already been issued. 2555 * 2556 * See the comment above the lwb_state_t structure definition for 2557 * more details on the lwb states, and locking requirements. 2558 */ 2559 if (lwb->lwb_state == LWB_STATE_ISSUED || 2560 lwb->lwb_state == LWB_STATE_WRITE_DONE || 2561 lwb->lwb_state == LWB_STATE_FLUSH_DONE) 2562 goto out; 2563 2564 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED); 2565 2566 /* 2567 * As described in the comments above zil_commit_waiter() and 2568 * zil_process_commit_list(), we need to issue this lwb's zio 2569 * since we've reached the commit waiter's timeout and it still 2570 * hasn't been issued. 2571 */ 2572 lwb_t *nlwb = zil_lwb_write_issue(zilog, lwb); 2573 2574 IMPLY(nlwb != NULL, lwb->lwb_state != LWB_STATE_OPENED); 2575 2576 /* 2577 * Since the lwb's zio hadn't been issued by the time this thread 2578 * reached its timeout, we reset the zilog's "zl_cur_used" field 2579 * to influence the zil block size selection algorithm. 2580 * 2581 * By having to issue the lwb's zio here, it means the size of the 2582 * lwb was too large, given the incoming throughput of itxs. By 2583 * setting "zl_cur_used" to zero, we communicate this fact to the 2584 * block size selection algorithm, so it can take this information 2585 * into account, and potentially select a smaller size for the 2586 * next lwb block that is allocated. 2587 */ 2588 zilog->zl_cur_used = 0; 2589 2590 if (nlwb == NULL) { 2591 /* 2592 * When zil_lwb_write_issue() returns NULL, this 2593 * indicates zio_alloc_zil() failed to allocate the 2594 * "next" lwb on-disk. When this occurs, the ZIL write 2595 * pipeline must be stalled; see the comment within the 2596 * zil_commit_writer_stall() function for more details. 2597 * 2598 * We must drop the commit waiter's lock prior to 2599 * calling zil_commit_writer_stall() or else we can wind 2600 * up with the following deadlock: 2601 * 2602 * - This thread is waiting for the txg to sync while 2603 * holding the waiter's lock; txg_wait_synced() is 2604 * used within txg_commit_writer_stall(). 2605 * 2606 * - The txg can't sync because it is waiting for this 2607 * lwb's zio callback to call dmu_tx_commit(). 2608 * 2609 * - The lwb's zio callback can't call dmu_tx_commit() 2610 * because it's blocked trying to acquire the waiter's 2611 * lock, which occurs prior to calling dmu_tx_commit() 2612 */ 2613 mutex_exit(&zcw->zcw_lock); 2614 zil_commit_writer_stall(zilog); 2615 mutex_enter(&zcw->zcw_lock); 2616 } 2617 2618 out: 2619 mutex_exit(&zilog->zl_issuer_lock); 2620 ASSERT(MUTEX_HELD(&zcw->zcw_lock)); 2621 } 2622 2623 /* 2624 * This function is responsible for performing the following two tasks: 2625 * 2626 * 1. its primary responsibility is to block until the given "commit 2627 * waiter" is considered "done". 2628 * 2629 * 2. its secondary responsibility is to issue the zio for the lwb that 2630 * the given "commit waiter" is waiting on, if this function has 2631 * waited "long enough" and the lwb is still in the "open" state. 2632 * 2633 * Given a sufficient amount of itxs being generated and written using 2634 * the ZIL, the lwb's zio will be issued via the zil_lwb_commit() 2635 * function. If this does not occur, this secondary responsibility will 2636 * ensure the lwb is issued even if there is not other synchronous 2637 * activity on the system. 2638 * 2639 * For more details, see zil_process_commit_list(); more specifically, 2640 * the comment at the bottom of that function. 2641 */ 2642 static void 2643 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw) 2644 { 2645 ASSERT(!MUTEX_HELD(&zilog->zl_lock)); 2646 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock)); 2647 ASSERT(spa_writeable(zilog->zl_spa)); 2648 2649 mutex_enter(&zcw->zcw_lock); 2650 2651 /* 2652 * The timeout is scaled based on the lwb latency to avoid 2653 * significantly impacting the latency of each individual itx. 2654 * For more details, see the comment at the bottom of the 2655 * zil_process_commit_list() function. 2656 */ 2657 int pct = MAX(zfs_commit_timeout_pct, 1); 2658 hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100; 2659 hrtime_t wakeup = gethrtime() + sleep; 2660 boolean_t timedout = B_FALSE; 2661 2662 while (!zcw->zcw_done) { 2663 ASSERT(MUTEX_HELD(&zcw->zcw_lock)); 2664 2665 lwb_t *lwb = zcw->zcw_lwb; 2666 2667 /* 2668 * Usually, the waiter will have a non-NULL lwb field here, 2669 * but it's possible for it to be NULL as a result of 2670 * zil_commit() racing with spa_sync(). 2671 * 2672 * When zil_clean() is called, it's possible for the itxg 2673 * list (which may be cleaned via a taskq) to contain 2674 * commit itxs. When this occurs, the commit waiters linked 2675 * off of these commit itxs will not be committed to an 2676 * lwb. Additionally, these commit waiters will not be 2677 * marked done until zil_commit_waiter_skip() is called via 2678 * zil_itxg_clean(). 2679 * 2680 * Thus, it's possible for this commit waiter (i.e. the 2681 * "zcw" variable) to be found in this "in between" state; 2682 * where it's "zcw_lwb" field is NULL, and it hasn't yet 2683 * been skipped, so it's "zcw_done" field is still B_FALSE. 2684 */ 2685 IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED); 2686 2687 if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) { 2688 ASSERT3B(timedout, ==, B_FALSE); 2689 2690 /* 2691 * If the lwb hasn't been issued yet, then we 2692 * need to wait with a timeout, in case this 2693 * function needs to issue the lwb after the 2694 * timeout is reached; responsibility (2) from 2695 * the comment above this function. 2696 */ 2697 int rc = cv_timedwait_hires(&zcw->zcw_cv, 2698 &zcw->zcw_lock, wakeup, USEC2NSEC(1), 2699 CALLOUT_FLAG_ABSOLUTE); 2700 2701 if (rc != -1 || zcw->zcw_done) 2702 continue; 2703 2704 timedout = B_TRUE; 2705 zil_commit_waiter_timeout(zilog, zcw); 2706 2707 if (!zcw->zcw_done) { 2708 /* 2709 * If the commit waiter has already been 2710 * marked "done", it's possible for the 2711 * waiter's lwb structure to have already 2712 * been freed. Thus, we can only reliably 2713 * make these assertions if the waiter 2714 * isn't done. 2715 */ 2716 ASSERT3P(lwb, ==, zcw->zcw_lwb); 2717 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED); 2718 } 2719 } else { 2720 /* 2721 * If the lwb isn't open, then it must have already 2722 * been issued. In that case, there's no need to 2723 * use a timeout when waiting for the lwb to 2724 * complete. 2725 * 2726 * Additionally, if the lwb is NULL, the waiter 2727 * will soon be signaled and marked done via 2728 * zil_clean() and zil_itxg_clean(), so no timeout 2729 * is required. 2730 */ 2731 2732 IMPLY(lwb != NULL, 2733 lwb->lwb_state == LWB_STATE_ISSUED || 2734 lwb->lwb_state == LWB_STATE_WRITE_DONE || 2735 lwb->lwb_state == LWB_STATE_FLUSH_DONE); 2736 cv_wait(&zcw->zcw_cv, &zcw->zcw_lock); 2737 } 2738 } 2739 2740 mutex_exit(&zcw->zcw_lock); 2741 } 2742 2743 static zil_commit_waiter_t * 2744 zil_alloc_commit_waiter(void) 2745 { 2746 zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP); 2747 2748 cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL); 2749 mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL); 2750 list_link_init(&zcw->zcw_node); 2751 zcw->zcw_lwb = NULL; 2752 zcw->zcw_done = B_FALSE; 2753 zcw->zcw_zio_error = 0; 2754 2755 return (zcw); 2756 } 2757 2758 static void 2759 zil_free_commit_waiter(zil_commit_waiter_t *zcw) 2760 { 2761 ASSERT(!list_link_active(&zcw->zcw_node)); 2762 ASSERT3P(zcw->zcw_lwb, ==, NULL); 2763 ASSERT3B(zcw->zcw_done, ==, B_TRUE); 2764 mutex_destroy(&zcw->zcw_lock); 2765 cv_destroy(&zcw->zcw_cv); 2766 kmem_cache_free(zil_zcw_cache, zcw); 2767 } 2768 2769 /* 2770 * This function is used to create a TX_COMMIT itx and assign it. This 2771 * way, it will be linked into the ZIL's list of synchronous itxs, and 2772 * then later committed to an lwb (or skipped) when 2773 * zil_process_commit_list() is called. 2774 */ 2775 static void 2776 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw) 2777 { 2778 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os); 2779 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 2780 2781 itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t)); 2782 itx->itx_sync = B_TRUE; 2783 itx->itx_private = zcw; 2784 2785 zil_itx_assign(zilog, itx, tx); 2786 2787 dmu_tx_commit(tx); 2788 } 2789 2790 /* 2791 * Commit ZFS Intent Log transactions (itxs) to stable storage. 2792 * 2793 * When writing ZIL transactions to the on-disk representation of the 2794 * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple 2795 * itxs can be committed to a single lwb. Once a lwb is written and 2796 * committed to stable storage (i.e. the lwb is written, and vdevs have 2797 * been flushed), each itx that was committed to that lwb is also 2798 * considered to be committed to stable storage. 2799 * 2800 * When an itx is committed to an lwb, the log record (lr_t) contained 2801 * by the itx is copied into the lwb's zio buffer, and once this buffer 2802 * is written to disk, it becomes an on-disk ZIL block. 2803 * 2804 * As itxs are generated, they're inserted into the ZIL's queue of 2805 * uncommitted itxs. The semantics of zil_commit() are such that it will 2806 * block until all itxs that were in the queue when it was called, are 2807 * committed to stable storage. 2808 * 2809 * If "foid" is zero, this means all "synchronous" and "asynchronous" 2810 * itxs, for all objects in the dataset, will be committed to stable 2811 * storage prior to zil_commit() returning. If "foid" is non-zero, all 2812 * "synchronous" itxs for all objects, but only "asynchronous" itxs 2813 * that correspond to the foid passed in, will be committed to stable 2814 * storage prior to zil_commit() returning. 2815 * 2816 * Generally speaking, when zil_commit() is called, the consumer doesn't 2817 * actually care about _all_ of the uncommitted itxs. Instead, they're 2818 * simply trying to waiting for a specific itx to be committed to disk, 2819 * but the interface(s) for interacting with the ZIL don't allow such 2820 * fine-grained communication. A better interface would allow a consumer 2821 * to create and assign an itx, and then pass a reference to this itx to 2822 * zil_commit(); such that zil_commit() would return as soon as that 2823 * specific itx was committed to disk (instead of waiting for _all_ 2824 * itxs to be committed). 2825 * 2826 * When a thread calls zil_commit() a special "commit itx" will be 2827 * generated, along with a corresponding "waiter" for this commit itx. 2828 * zil_commit() will wait on this waiter's CV, such that when the waiter 2829 * is marked done, and signaled, zil_commit() will return. 2830 * 2831 * This commit itx is inserted into the queue of uncommitted itxs. This 2832 * provides an easy mechanism for determining which itxs were in the 2833 * queue prior to zil_commit() having been called, and which itxs were 2834 * added after zil_commit() was called. 2835 * 2836 * The commit it is special; it doesn't have any on-disk representation. 2837 * When a commit itx is "committed" to an lwb, the waiter associated 2838 * with it is linked onto the lwb's list of waiters. Then, when that lwb 2839 * completes, each waiter on the lwb's list is marked done and signaled 2840 * -- allowing the thread waiting on the waiter to return from zil_commit(). 2841 * 2842 * It's important to point out a few critical factors that allow us 2843 * to make use of the commit itxs, commit waiters, per-lwb lists of 2844 * commit waiters, and zio completion callbacks like we're doing: 2845 * 2846 * 1. The list of waiters for each lwb is traversed, and each commit 2847 * waiter is marked "done" and signaled, in the zio completion 2848 * callback of the lwb's zio[*]. 2849 * 2850 * * Actually, the waiters are signaled in the zio completion 2851 * callback of the root zio for the DKIOCFLUSHWRITECACHE commands 2852 * that are sent to the vdevs upon completion of the lwb zio. 2853 * 2854 * 2. When the itxs are inserted into the ZIL's queue of uncommitted 2855 * itxs, the order in which they are inserted is preserved[*]; as 2856 * itxs are added to the queue, they are added to the tail of 2857 * in-memory linked lists. 2858 * 2859 * When committing the itxs to lwbs (to be written to disk), they 2860 * are committed in the same order in which the itxs were added to 2861 * the uncommitted queue's linked list(s); i.e. the linked list of 2862 * itxs to commit is traversed from head to tail, and each itx is 2863 * committed to an lwb in that order. 2864 * 2865 * * To clarify: 2866 * 2867 * - the order of "sync" itxs is preserved w.r.t. other 2868 * "sync" itxs, regardless of the corresponding objects. 2869 * - the order of "async" itxs is preserved w.r.t. other 2870 * "async" itxs corresponding to the same object. 2871 * - the order of "async" itxs is *not* preserved w.r.t. other 2872 * "async" itxs corresponding to different objects. 2873 * - the order of "sync" itxs w.r.t. "async" itxs (or vice 2874 * versa) is *not* preserved, even for itxs that correspond 2875 * to the same object. 2876 * 2877 * For more details, see: zil_itx_assign(), zil_async_to_sync(), 2878 * zil_get_commit_list(), and zil_process_commit_list(). 2879 * 2880 * 3. The lwbs represent a linked list of blocks on disk. Thus, any 2881 * lwb cannot be considered committed to stable storage, until its 2882 * "previous" lwb is also committed to stable storage. This fact, 2883 * coupled with the fact described above, means that itxs are 2884 * committed in (roughly) the order in which they were generated. 2885 * This is essential because itxs are dependent on prior itxs. 2886 * Thus, we *must not* deem an itx as being committed to stable 2887 * storage, until *all* prior itxs have also been committed to 2888 * stable storage. 2889 * 2890 * To enforce this ordering of lwb zio's, while still leveraging as 2891 * much of the underlying storage performance as possible, we rely 2892 * on two fundamental concepts: 2893 * 2894 * 1. The creation and issuance of lwb zio's is protected by 2895 * the zilog's "zl_issuer_lock", which ensures only a single 2896 * thread is creating and/or issuing lwb's at a time 2897 * 2. The "previous" lwb is a child of the "current" lwb 2898 * (leveraging the zio parent-child dependency graph) 2899 * 2900 * By relying on this parent-child zio relationship, we can have 2901 * many lwb zio's concurrently issued to the underlying storage, 2902 * but the order in which they complete will be the same order in 2903 * which they were created. 2904 */ 2905 void 2906 zil_commit(zilog_t *zilog, uint64_t foid) 2907 { 2908 /* 2909 * We should never attempt to call zil_commit on a snapshot for 2910 * a couple of reasons: 2911 * 2912 * 1. A snapshot may never be modified, thus it cannot have any 2913 * in-flight itxs that would have modified the dataset. 2914 * 2915 * 2. By design, when zil_commit() is called, a commit itx will 2916 * be assigned to this zilog; as a result, the zilog will be 2917 * dirtied. We must not dirty the zilog of a snapshot; there's 2918 * checks in the code that enforce this invariant, and will 2919 * cause a panic if it's not upheld. 2920 */ 2921 ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE); 2922 2923 if (zilog->zl_sync == ZFS_SYNC_DISABLED) 2924 return; 2925 2926 if (!spa_writeable(zilog->zl_spa)) { 2927 /* 2928 * If the SPA is not writable, there should never be any 2929 * pending itxs waiting to be committed to disk. If that 2930 * weren't true, we'd skip writing those itxs out, and 2931 * would break the semantics of zil_commit(); thus, we're 2932 * verifying that truth before we return to the caller. 2933 */ 2934 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 2935 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL); 2936 for (int i = 0; i < TXG_SIZE; i++) 2937 ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL); 2938 return; 2939 } 2940 2941 /* 2942 * If the ZIL is suspended, we don't want to dirty it by calling 2943 * zil_commit_itx_assign() below, nor can we write out 2944 * lwbs like would be done in zil_commit_write(). Thus, we 2945 * simply rely on txg_wait_synced() to maintain the necessary 2946 * semantics, and avoid calling those functions altogether. 2947 */ 2948 if (zilog->zl_suspend > 0) { 2949 txg_wait_synced(zilog->zl_dmu_pool, 0); 2950 return; 2951 } 2952 2953 zil_commit_impl(zilog, foid); 2954 } 2955 2956 void 2957 zil_commit_impl(zilog_t *zilog, uint64_t foid) 2958 { 2959 ZIL_STAT_BUMP(zil_commit_count); 2960 2961 /* 2962 * Move the "async" itxs for the specified foid to the "sync" 2963 * queues, such that they will be later committed (or skipped) 2964 * to an lwb when zil_process_commit_list() is called. 2965 * 2966 * Since these "async" itxs must be committed prior to this 2967 * call to zil_commit returning, we must perform this operation 2968 * before we call zil_commit_itx_assign(). 2969 */ 2970 zil_async_to_sync(zilog, foid); 2971 2972 /* 2973 * We allocate a new "waiter" structure which will initially be 2974 * linked to the commit itx using the itx's "itx_private" field. 2975 * Since the commit itx doesn't represent any on-disk state, 2976 * when it's committed to an lwb, rather than copying the its 2977 * lr_t into the lwb's buffer, the commit itx's "waiter" will be 2978 * added to the lwb's list of waiters. Then, when the lwb is 2979 * committed to stable storage, each waiter in the lwb's list of 2980 * waiters will be marked "done", and signalled. 2981 * 2982 * We must create the waiter and assign the commit itx prior to 2983 * calling zil_commit_writer(), or else our specific commit itx 2984 * is not guaranteed to be committed to an lwb prior to calling 2985 * zil_commit_waiter(). 2986 */ 2987 zil_commit_waiter_t *zcw = zil_alloc_commit_waiter(); 2988 zil_commit_itx_assign(zilog, zcw); 2989 2990 zil_commit_writer(zilog, zcw); 2991 zil_commit_waiter(zilog, zcw); 2992 2993 if (zcw->zcw_zio_error != 0) { 2994 /* 2995 * If there was an error writing out the ZIL blocks that 2996 * this thread is waiting on, then we fallback to 2997 * relying on spa_sync() to write out the data this 2998 * thread is waiting on. Obviously this has performance 2999 * implications, but the expectation is for this to be 3000 * an exceptional case, and shouldn't occur often. 3001 */ 3002 DTRACE_PROBE2(zil__commit__io__error, 3003 zilog_t *, zilog, zil_commit_waiter_t *, zcw); 3004 txg_wait_synced(zilog->zl_dmu_pool, 0); 3005 } 3006 3007 zil_free_commit_waiter(zcw); 3008 } 3009 3010 /* 3011 * Called in syncing context to free committed log blocks and update log header. 3012 */ 3013 void 3014 zil_sync(zilog_t *zilog, dmu_tx_t *tx) 3015 { 3016 zil_header_t *zh = zil_header_in_syncing_context(zilog); 3017 uint64_t txg = dmu_tx_get_txg(tx); 3018 spa_t *spa = zilog->zl_spa; 3019 uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK]; 3020 lwb_t *lwb; 3021 3022 /* 3023 * We don't zero out zl_destroy_txg, so make sure we don't try 3024 * to destroy it twice. 3025 */ 3026 if (spa_sync_pass(spa) != 1) 3027 return; 3028 3029 mutex_enter(&zilog->zl_lock); 3030 3031 ASSERT(zilog->zl_stop_sync == 0); 3032 3033 if (*replayed_seq != 0) { 3034 ASSERT(zh->zh_replay_seq < *replayed_seq); 3035 zh->zh_replay_seq = *replayed_seq; 3036 *replayed_seq = 0; 3037 } 3038 3039 if (zilog->zl_destroy_txg == txg) { 3040 blkptr_t blk = zh->zh_log; 3041 3042 ASSERT(list_head(&zilog->zl_lwb_list) == NULL); 3043 3044 bzero(zh, sizeof (zil_header_t)); 3045 bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq)); 3046 3047 if (zilog->zl_keep_first) { 3048 /* 3049 * If this block was part of log chain that couldn't 3050 * be claimed because a device was missing during 3051 * zil_claim(), but that device later returns, 3052 * then this block could erroneously appear valid. 3053 * To guard against this, assign a new GUID to the new 3054 * log chain so it doesn't matter what blk points to. 3055 */ 3056 zil_init_log_chain(zilog, &blk); 3057 zh->zh_log = blk; 3058 } 3059 } 3060 3061 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 3062 zh->zh_log = lwb->lwb_blk; 3063 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg) 3064 break; 3065 list_remove(&zilog->zl_lwb_list, lwb); 3066 zio_free(spa, txg, &lwb->lwb_blk); 3067 zil_free_lwb(zilog, lwb); 3068 3069 /* 3070 * If we don't have anything left in the lwb list then 3071 * we've had an allocation failure and we need to zero 3072 * out the zil_header blkptr so that we don't end 3073 * up freeing the same block twice. 3074 */ 3075 if (list_head(&zilog->zl_lwb_list) == NULL) 3076 BP_ZERO(&zh->zh_log); 3077 } 3078 3079 /* 3080 * Remove fastwrite on any blocks that have been pre-allocated for 3081 * the next commit. This prevents fastwrite counter pollution by 3082 * unused, long-lived LWBs. 3083 */ 3084 for (; lwb != NULL; lwb = list_next(&zilog->zl_lwb_list, lwb)) { 3085 if (lwb->lwb_fastwrite && !lwb->lwb_write_zio) { 3086 metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk); 3087 lwb->lwb_fastwrite = 0; 3088 } 3089 } 3090 3091 mutex_exit(&zilog->zl_lock); 3092 } 3093 3094 /* ARGSUSED */ 3095 static int 3096 zil_lwb_cons(void *vbuf, void *unused, int kmflag) 3097 { 3098 lwb_t *lwb = vbuf; 3099 list_create(&lwb->lwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node)); 3100 list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t), 3101 offsetof(zil_commit_waiter_t, zcw_node)); 3102 avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare, 3103 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node)); 3104 mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL); 3105 return (0); 3106 } 3107 3108 /* ARGSUSED */ 3109 static void 3110 zil_lwb_dest(void *vbuf, void *unused) 3111 { 3112 lwb_t *lwb = vbuf; 3113 mutex_destroy(&lwb->lwb_vdev_lock); 3114 avl_destroy(&lwb->lwb_vdev_tree); 3115 list_destroy(&lwb->lwb_waiters); 3116 list_destroy(&lwb->lwb_itxs); 3117 } 3118 3119 void 3120 zil_init(void) 3121 { 3122 zil_lwb_cache = kmem_cache_create("zil_lwb_cache", 3123 sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0); 3124 3125 zil_zcw_cache = kmem_cache_create("zil_zcw_cache", 3126 sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 3127 3128 zil_ksp = kstat_create("zfs", 0, "zil", "misc", 3129 KSTAT_TYPE_NAMED, sizeof (zil_stats) / sizeof (kstat_named_t), 3130 KSTAT_FLAG_VIRTUAL); 3131 3132 if (zil_ksp != NULL) { 3133 zil_ksp->ks_data = &zil_stats; 3134 kstat_install(zil_ksp); 3135 } 3136 } 3137 3138 void 3139 zil_fini(void) 3140 { 3141 kmem_cache_destroy(zil_zcw_cache); 3142 kmem_cache_destroy(zil_lwb_cache); 3143 3144 if (zil_ksp != NULL) { 3145 kstat_delete(zil_ksp); 3146 zil_ksp = NULL; 3147 } 3148 } 3149 3150 void 3151 zil_set_sync(zilog_t *zilog, uint64_t sync) 3152 { 3153 zilog->zl_sync = sync; 3154 } 3155 3156 void 3157 zil_set_logbias(zilog_t *zilog, uint64_t logbias) 3158 { 3159 zilog->zl_logbias = logbias; 3160 } 3161 3162 zilog_t * 3163 zil_alloc(objset_t *os, zil_header_t *zh_phys) 3164 { 3165 zilog_t *zilog; 3166 3167 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP); 3168 3169 zilog->zl_header = zh_phys; 3170 zilog->zl_os = os; 3171 zilog->zl_spa = dmu_objset_spa(os); 3172 zilog->zl_dmu_pool = dmu_objset_pool(os); 3173 zilog->zl_destroy_txg = TXG_INITIAL - 1; 3174 zilog->zl_logbias = dmu_objset_logbias(os); 3175 zilog->zl_sync = dmu_objset_syncprop(os); 3176 zilog->zl_dirty_max_txg = 0; 3177 zilog->zl_last_lwb_opened = NULL; 3178 zilog->zl_last_lwb_latency = 0; 3179 zilog->zl_max_block_size = zil_maxblocksize; 3180 3181 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL); 3182 mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL); 3183 3184 for (int i = 0; i < TXG_SIZE; i++) { 3185 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL, 3186 MUTEX_DEFAULT, NULL); 3187 } 3188 3189 list_create(&zilog->zl_lwb_list, sizeof (lwb_t), 3190 offsetof(lwb_t, lwb_node)); 3191 3192 list_create(&zilog->zl_itx_commit_list, sizeof (itx_t), 3193 offsetof(itx_t, itx_node)); 3194 3195 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL); 3196 3197 return (zilog); 3198 } 3199 3200 void 3201 zil_free(zilog_t *zilog) 3202 { 3203 int i; 3204 3205 zilog->zl_stop_sync = 1; 3206 3207 ASSERT0(zilog->zl_suspend); 3208 ASSERT0(zilog->zl_suspending); 3209 3210 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3211 list_destroy(&zilog->zl_lwb_list); 3212 3213 ASSERT(list_is_empty(&zilog->zl_itx_commit_list)); 3214 list_destroy(&zilog->zl_itx_commit_list); 3215 3216 for (i = 0; i < TXG_SIZE; i++) { 3217 /* 3218 * It's possible for an itx to be generated that doesn't dirty 3219 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean() 3220 * callback to remove the entry. We remove those here. 3221 * 3222 * Also free up the ziltest itxs. 3223 */ 3224 if (zilog->zl_itxg[i].itxg_itxs) 3225 zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs); 3226 mutex_destroy(&zilog->zl_itxg[i].itxg_lock); 3227 } 3228 3229 mutex_destroy(&zilog->zl_issuer_lock); 3230 mutex_destroy(&zilog->zl_lock); 3231 3232 cv_destroy(&zilog->zl_cv_suspend); 3233 3234 kmem_free(zilog, sizeof (zilog_t)); 3235 } 3236 3237 /* 3238 * Open an intent log. 3239 */ 3240 zilog_t * 3241 zil_open(objset_t *os, zil_get_data_t *get_data) 3242 { 3243 zilog_t *zilog = dmu_objset_zil(os); 3244 3245 ASSERT3P(zilog->zl_get_data, ==, NULL); 3246 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL); 3247 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3248 3249 zilog->zl_get_data = get_data; 3250 3251 return (zilog); 3252 } 3253 3254 /* 3255 * Close an intent log. 3256 */ 3257 void 3258 zil_close(zilog_t *zilog) 3259 { 3260 lwb_t *lwb; 3261 uint64_t txg; 3262 3263 if (!dmu_objset_is_snapshot(zilog->zl_os)) { 3264 zil_commit(zilog, 0); 3265 } else { 3266 ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL); 3267 ASSERT0(zilog->zl_dirty_max_txg); 3268 ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE); 3269 } 3270 3271 mutex_enter(&zilog->zl_lock); 3272 lwb = list_tail(&zilog->zl_lwb_list); 3273 if (lwb == NULL) 3274 txg = zilog->zl_dirty_max_txg; 3275 else 3276 txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg); 3277 mutex_exit(&zilog->zl_lock); 3278 3279 /* 3280 * We need to use txg_wait_synced() to wait long enough for the 3281 * ZIL to be clean, and to wait for all pending lwbs to be 3282 * written out. 3283 */ 3284 if (txg != 0) 3285 txg_wait_synced(zilog->zl_dmu_pool, txg); 3286 3287 if (zilog_is_dirty(zilog)) 3288 zfs_dbgmsg("zil (%px) is dirty, txg %llu", zilog, txg); 3289 if (txg < spa_freeze_txg(zilog->zl_spa)) 3290 VERIFY(!zilog_is_dirty(zilog)); 3291 3292 zilog->zl_get_data = NULL; 3293 3294 /* 3295 * We should have only one lwb left on the list; remove it now. 3296 */ 3297 mutex_enter(&zilog->zl_lock); 3298 lwb = list_head(&zilog->zl_lwb_list); 3299 if (lwb != NULL) { 3300 ASSERT3P(lwb, ==, list_tail(&zilog->zl_lwb_list)); 3301 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED); 3302 3303 if (lwb->lwb_fastwrite) 3304 metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk); 3305 3306 list_remove(&zilog->zl_lwb_list, lwb); 3307 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 3308 zil_free_lwb(zilog, lwb); 3309 } 3310 mutex_exit(&zilog->zl_lock); 3311 } 3312 3313 static char *suspend_tag = "zil suspending"; 3314 3315 /* 3316 * Suspend an intent log. While in suspended mode, we still honor 3317 * synchronous semantics, but we rely on txg_wait_synced() to do it. 3318 * On old version pools, we suspend the log briefly when taking a 3319 * snapshot so that it will have an empty intent log. 3320 * 3321 * Long holds are not really intended to be used the way we do here -- 3322 * held for such a short time. A concurrent caller of dsl_dataset_long_held() 3323 * could fail. Therefore we take pains to only put a long hold if it is 3324 * actually necessary. Fortunately, it will only be necessary if the 3325 * objset is currently mounted (or the ZVOL equivalent). In that case it 3326 * will already have a long hold, so we are not really making things any worse. 3327 * 3328 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or 3329 * zvol_state_t), and use their mechanism to prevent their hold from being 3330 * dropped (e.g. VFS_HOLD()). However, that would be even more pain for 3331 * very little gain. 3332 * 3333 * if cookiep == NULL, this does both the suspend & resume. 3334 * Otherwise, it returns with the dataset "long held", and the cookie 3335 * should be passed into zil_resume(). 3336 */ 3337 int 3338 zil_suspend(const char *osname, void **cookiep) 3339 { 3340 objset_t *os; 3341 zilog_t *zilog; 3342 const zil_header_t *zh; 3343 int error; 3344 3345 error = dmu_objset_hold(osname, suspend_tag, &os); 3346 if (error != 0) 3347 return (error); 3348 zilog = dmu_objset_zil(os); 3349 3350 mutex_enter(&zilog->zl_lock); 3351 zh = zilog->zl_header; 3352 3353 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */ 3354 mutex_exit(&zilog->zl_lock); 3355 dmu_objset_rele(os, suspend_tag); 3356 return (SET_ERROR(EBUSY)); 3357 } 3358 3359 /* 3360 * Don't put a long hold in the cases where we can avoid it. This 3361 * is when there is no cookie so we are doing a suspend & resume 3362 * (i.e. called from zil_vdev_offline()), and there's nothing to do 3363 * for the suspend because it's already suspended, or there's no ZIL. 3364 */ 3365 if (cookiep == NULL && !zilog->zl_suspending && 3366 (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) { 3367 mutex_exit(&zilog->zl_lock); 3368 dmu_objset_rele(os, suspend_tag); 3369 return (0); 3370 } 3371 3372 dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag); 3373 dsl_pool_rele(dmu_objset_pool(os), suspend_tag); 3374 3375 zilog->zl_suspend++; 3376 3377 if (zilog->zl_suspend > 1) { 3378 /* 3379 * Someone else is already suspending it. 3380 * Just wait for them to finish. 3381 */ 3382 3383 while (zilog->zl_suspending) 3384 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock); 3385 mutex_exit(&zilog->zl_lock); 3386 3387 if (cookiep == NULL) 3388 zil_resume(os); 3389 else 3390 *cookiep = os; 3391 return (0); 3392 } 3393 3394 /* 3395 * If there is no pointer to an on-disk block, this ZIL must not 3396 * be active (e.g. filesystem not mounted), so there's nothing 3397 * to clean up. 3398 */ 3399 if (BP_IS_HOLE(&zh->zh_log)) { 3400 ASSERT(cookiep != NULL); /* fast path already handled */ 3401 3402 *cookiep = os; 3403 mutex_exit(&zilog->zl_lock); 3404 return (0); 3405 } 3406 3407 /* 3408 * The ZIL has work to do. Ensure that the associated encryption 3409 * key will remain mapped while we are committing the log by 3410 * grabbing a reference to it. If the key isn't loaded we have no 3411 * choice but to return an error until the wrapping key is loaded. 3412 */ 3413 if (os->os_encrypted && 3414 dsl_dataset_create_key_mapping(dmu_objset_ds(os)) != 0) { 3415 zilog->zl_suspend--; 3416 mutex_exit(&zilog->zl_lock); 3417 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag); 3418 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag); 3419 return (SET_ERROR(EACCES)); 3420 } 3421 3422 zilog->zl_suspending = B_TRUE; 3423 mutex_exit(&zilog->zl_lock); 3424 3425 /* 3426 * We need to use zil_commit_impl to ensure we wait for all 3427 * LWB_STATE_OPENED and LWB_STATE_ISSUED lwbs to be committed 3428 * to disk before proceeding. If we used zil_commit instead, it 3429 * would just call txg_wait_synced(), because zl_suspend is set. 3430 * txg_wait_synced() doesn't wait for these lwb's to be 3431 * LWB_STATE_FLUSH_DONE before returning. 3432 */ 3433 zil_commit_impl(zilog, 0); 3434 3435 /* 3436 * Now that we've ensured all lwb's are LWB_STATE_FLUSH_DONE, we 3437 * use txg_wait_synced() to ensure the data from the zilog has 3438 * migrated to the main pool before calling zil_destroy(). 3439 */ 3440 txg_wait_synced(zilog->zl_dmu_pool, 0); 3441 3442 zil_destroy(zilog, B_FALSE); 3443 3444 mutex_enter(&zilog->zl_lock); 3445 zilog->zl_suspending = B_FALSE; 3446 cv_broadcast(&zilog->zl_cv_suspend); 3447 mutex_exit(&zilog->zl_lock); 3448 3449 if (os->os_encrypted) 3450 dsl_dataset_remove_key_mapping(dmu_objset_ds(os)); 3451 3452 if (cookiep == NULL) 3453 zil_resume(os); 3454 else 3455 *cookiep = os; 3456 return (0); 3457 } 3458 3459 void 3460 zil_resume(void *cookie) 3461 { 3462 objset_t *os = cookie; 3463 zilog_t *zilog = dmu_objset_zil(os); 3464 3465 mutex_enter(&zilog->zl_lock); 3466 ASSERT(zilog->zl_suspend != 0); 3467 zilog->zl_suspend--; 3468 mutex_exit(&zilog->zl_lock); 3469 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag); 3470 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag); 3471 } 3472 3473 typedef struct zil_replay_arg { 3474 zil_replay_func_t **zr_replay; 3475 void *zr_arg; 3476 boolean_t zr_byteswap; 3477 char *zr_lr; 3478 } zil_replay_arg_t; 3479 3480 static int 3481 zil_replay_error(zilog_t *zilog, const lr_t *lr, int error) 3482 { 3483 char name[ZFS_MAX_DATASET_NAME_LEN]; 3484 3485 zilog->zl_replaying_seq--; /* didn't actually replay this one */ 3486 3487 dmu_objset_name(zilog->zl_os, name); 3488 3489 cmn_err(CE_WARN, "ZFS replay transaction error %d, " 3490 "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name, 3491 (u_longlong_t)lr->lrc_seq, 3492 (u_longlong_t)(lr->lrc_txtype & ~TX_CI), 3493 (lr->lrc_txtype & TX_CI) ? "CI" : ""); 3494 3495 return (error); 3496 } 3497 3498 static int 3499 zil_replay_log_record(zilog_t *zilog, const lr_t *lr, void *zra, 3500 uint64_t claim_txg) 3501 { 3502 zil_replay_arg_t *zr = zra; 3503 const zil_header_t *zh = zilog->zl_header; 3504 uint64_t reclen = lr->lrc_reclen; 3505 uint64_t txtype = lr->lrc_txtype; 3506 int error = 0; 3507 3508 zilog->zl_replaying_seq = lr->lrc_seq; 3509 3510 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */ 3511 return (0); 3512 3513 if (lr->lrc_txg < claim_txg) /* already committed */ 3514 return (0); 3515 3516 /* Strip case-insensitive bit, still present in log record */ 3517 txtype &= ~TX_CI; 3518 3519 if (txtype == 0 || txtype >= TX_MAX_TYPE) 3520 return (zil_replay_error(zilog, lr, EINVAL)); 3521 3522 /* 3523 * If this record type can be logged out of order, the object 3524 * (lr_foid) may no longer exist. That's legitimate, not an error. 3525 */ 3526 if (TX_OOO(txtype)) { 3527 error = dmu_object_info(zilog->zl_os, 3528 LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL); 3529 if (error == ENOENT || error == EEXIST) 3530 return (0); 3531 } 3532 3533 /* 3534 * Make a copy of the data so we can revise and extend it. 3535 */ 3536 bcopy(lr, zr->zr_lr, reclen); 3537 3538 /* 3539 * If this is a TX_WRITE with a blkptr, suck in the data. 3540 */ 3541 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) { 3542 error = zil_read_log_data(zilog, (lr_write_t *)lr, 3543 zr->zr_lr + reclen); 3544 if (error != 0) 3545 return (zil_replay_error(zilog, lr, error)); 3546 } 3547 3548 /* 3549 * The log block containing this lr may have been byteswapped 3550 * so that we can easily examine common fields like lrc_txtype. 3551 * However, the log is a mix of different record types, and only the 3552 * replay vectors know how to byteswap their records. Therefore, if 3553 * the lr was byteswapped, undo it before invoking the replay vector. 3554 */ 3555 if (zr->zr_byteswap) 3556 byteswap_uint64_array(zr->zr_lr, reclen); 3557 3558 /* 3559 * We must now do two things atomically: replay this log record, 3560 * and update the log header sequence number to reflect the fact that 3561 * we did so. At the end of each replay function the sequence number 3562 * is updated if we are in replay mode. 3563 */ 3564 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap); 3565 if (error != 0) { 3566 /* 3567 * The DMU's dnode layer doesn't see removes until the txg 3568 * commits, so a subsequent claim can spuriously fail with 3569 * EEXIST. So if we receive any error we try syncing out 3570 * any removes then retry the transaction. Note that we 3571 * specify B_FALSE for byteswap now, so we don't do it twice. 3572 */ 3573 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0); 3574 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE); 3575 if (error != 0) 3576 return (zil_replay_error(zilog, lr, error)); 3577 } 3578 return (0); 3579 } 3580 3581 /* ARGSUSED */ 3582 static int 3583 zil_incr_blks(zilog_t *zilog, const blkptr_t *bp, void *arg, uint64_t claim_txg) 3584 { 3585 zilog->zl_replay_blks++; 3586 3587 return (0); 3588 } 3589 3590 /* 3591 * If this dataset has a non-empty intent log, replay it and destroy it. 3592 */ 3593 void 3594 zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE]) 3595 { 3596 zilog_t *zilog = dmu_objset_zil(os); 3597 const zil_header_t *zh = zilog->zl_header; 3598 zil_replay_arg_t zr; 3599 3600 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) { 3601 zil_destroy(zilog, B_TRUE); 3602 return; 3603 } 3604 3605 zr.zr_replay = replay_func; 3606 zr.zr_arg = arg; 3607 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log); 3608 zr.zr_lr = vmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP); 3609 3610 /* 3611 * Wait for in-progress removes to sync before starting replay. 3612 */ 3613 txg_wait_synced(zilog->zl_dmu_pool, 0); 3614 3615 zilog->zl_replay = B_TRUE; 3616 zilog->zl_replay_time = ddi_get_lbolt(); 3617 ASSERT(zilog->zl_replay_blks == 0); 3618 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr, 3619 zh->zh_claim_txg, B_TRUE); 3620 vmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE); 3621 3622 zil_destroy(zilog, B_FALSE); 3623 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 3624 zilog->zl_replay = B_FALSE; 3625 } 3626 3627 boolean_t 3628 zil_replaying(zilog_t *zilog, dmu_tx_t *tx) 3629 { 3630 if (zilog->zl_sync == ZFS_SYNC_DISABLED) 3631 return (B_TRUE); 3632 3633 if (zilog->zl_replay) { 3634 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 3635 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] = 3636 zilog->zl_replaying_seq; 3637 return (B_TRUE); 3638 } 3639 3640 return (B_FALSE); 3641 } 3642 3643 /* ARGSUSED */ 3644 int 3645 zil_reset(const char *osname, void *arg) 3646 { 3647 int error; 3648 3649 error = zil_suspend(osname, NULL); 3650 /* EACCES means crypto key not loaded */ 3651 if ((error == EACCES) || (error == EBUSY)) 3652 return (SET_ERROR(error)); 3653 if (error != 0) 3654 return (SET_ERROR(EEXIST)); 3655 return (0); 3656 } 3657 3658 EXPORT_SYMBOL(zil_alloc); 3659 EXPORT_SYMBOL(zil_free); 3660 EXPORT_SYMBOL(zil_open); 3661 EXPORT_SYMBOL(zil_close); 3662 EXPORT_SYMBOL(zil_replay); 3663 EXPORT_SYMBOL(zil_replaying); 3664 EXPORT_SYMBOL(zil_destroy); 3665 EXPORT_SYMBOL(zil_destroy_sync); 3666 EXPORT_SYMBOL(zil_itx_create); 3667 EXPORT_SYMBOL(zil_itx_destroy); 3668 EXPORT_SYMBOL(zil_itx_assign); 3669 EXPORT_SYMBOL(zil_commit); 3670 EXPORT_SYMBOL(zil_claim); 3671 EXPORT_SYMBOL(zil_check_log_chain); 3672 EXPORT_SYMBOL(zil_sync); 3673 EXPORT_SYMBOL(zil_clean); 3674 EXPORT_SYMBOL(zil_suspend); 3675 EXPORT_SYMBOL(zil_resume); 3676 EXPORT_SYMBOL(zil_lwb_add_block); 3677 EXPORT_SYMBOL(zil_bp_tree_add); 3678 EXPORT_SYMBOL(zil_set_sync); 3679 EXPORT_SYMBOL(zil_set_logbias); 3680 3681 /* BEGIN CSTYLED */ 3682 ZFS_MODULE_PARAM(zfs, zfs_, commit_timeout_pct, INT, ZMOD_RW, 3683 "ZIL block open timeout percentage"); 3684 3685 ZFS_MODULE_PARAM(zfs_zil, zil_, replay_disable, INT, ZMOD_RW, 3686 "Disable intent logging replay"); 3687 3688 ZFS_MODULE_PARAM(zfs_zil, zil_, nocacheflush, INT, ZMOD_RW, 3689 "Disable ZIL cache flushes"); 3690 3691 ZFS_MODULE_PARAM(zfs_zil, zil_, slog_bulk, ULONG, ZMOD_RW, 3692 "Limit in bytes slog sync writes per commit"); 3693 3694 ZFS_MODULE_PARAM(zfs_zil, zil_, maxblocksize, INT, ZMOD_RW, 3695 "Limit in bytes of ZIL log block size"); 3696 /* END CSTYLED */ 3697