1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 24 * Copyright (c) 2014 Integros [integros.com] 25 * Copyright (c) 2018 Datto Inc. 26 */ 27 28 /* Portions Copyright 2010 Robert Milkowski */ 29 30 #include <sys/zfs_context.h> 31 #include <sys/spa.h> 32 #include <sys/spa_impl.h> 33 #include <sys/dmu.h> 34 #include <sys/zap.h> 35 #include <sys/arc.h> 36 #include <sys/stat.h> 37 #include <sys/zil.h> 38 #include <sys/zil_impl.h> 39 #include <sys/dsl_dataset.h> 40 #include <sys/vdev_impl.h> 41 #include <sys/dmu_tx.h> 42 #include <sys/dsl_pool.h> 43 #include <sys/metaslab.h> 44 #include <sys/trace_zfs.h> 45 #include <sys/abd.h> 46 #include <sys/brt.h> 47 #include <sys/wmsum.h> 48 49 /* 50 * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system 51 * calls that change the file system. Each itx has enough information to 52 * be able to replay them after a system crash, power loss, or 53 * equivalent failure mode. These are stored in memory until either: 54 * 55 * 1. they are committed to the pool by the DMU transaction group 56 * (txg), at which point they can be discarded; or 57 * 2. they are committed to the on-disk ZIL for the dataset being 58 * modified (e.g. due to an fsync, O_DSYNC, or other synchronous 59 * requirement). 60 * 61 * In the event of a crash or power loss, the itxs contained by each 62 * dataset's on-disk ZIL will be replayed when that dataset is first 63 * instantiated (e.g. if the dataset is a normal filesystem, when it is 64 * first mounted). 65 * 66 * As hinted at above, there is one ZIL per dataset (both the in-memory 67 * representation, and the on-disk representation). The on-disk format 68 * consists of 3 parts: 69 * 70 * - a single, per-dataset, ZIL header; which points to a chain of 71 * - zero or more ZIL blocks; each of which contains 72 * - zero or more ZIL records 73 * 74 * A ZIL record holds the information necessary to replay a single 75 * system call transaction. A ZIL block can hold many ZIL records, and 76 * the blocks are chained together, similarly to a singly linked list. 77 * 78 * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL 79 * block in the chain, and the ZIL header points to the first block in 80 * the chain. 81 * 82 * Note, there is not a fixed place in the pool to hold these ZIL 83 * blocks; they are dynamically allocated and freed as needed from the 84 * blocks available on the pool, though they can be preferentially 85 * allocated from a dedicated "log" vdev. 86 */ 87 88 /* 89 * This controls the amount of time that a ZIL block (lwb) will remain 90 * "open" when it isn't "full", and it has a thread waiting for it to be 91 * committed to stable storage. Please refer to the zil_commit_waiter() 92 * function (and the comments within it) for more details. 93 */ 94 static uint_t zfs_commit_timeout_pct = 5; 95 96 /* 97 * Minimal time we care to delay commit waiting for more ZIL records. 98 * At least FreeBSD kernel can't sleep for less than 2us at its best. 99 * So requests to sleep for less then 5us is a waste of CPU time with 100 * a risk of significant log latency increase due to oversleep. 101 */ 102 static uint64_t zil_min_commit_timeout = 5000; 103 104 /* 105 * See zil.h for more information about these fields. 106 */ 107 static zil_kstat_values_t zil_stats = { 108 { "zil_commit_count", KSTAT_DATA_UINT64 }, 109 { "zil_commit_writer_count", KSTAT_DATA_UINT64 }, 110 { "zil_itx_count", KSTAT_DATA_UINT64 }, 111 { "zil_itx_indirect_count", KSTAT_DATA_UINT64 }, 112 { "zil_itx_indirect_bytes", KSTAT_DATA_UINT64 }, 113 { "zil_itx_copied_count", KSTAT_DATA_UINT64 }, 114 { "zil_itx_copied_bytes", KSTAT_DATA_UINT64 }, 115 { "zil_itx_needcopy_count", KSTAT_DATA_UINT64 }, 116 { "zil_itx_needcopy_bytes", KSTAT_DATA_UINT64 }, 117 { "zil_itx_metaslab_normal_count", KSTAT_DATA_UINT64 }, 118 { "zil_itx_metaslab_normal_bytes", KSTAT_DATA_UINT64 }, 119 { "zil_itx_metaslab_normal_write", KSTAT_DATA_UINT64 }, 120 { "zil_itx_metaslab_normal_alloc", KSTAT_DATA_UINT64 }, 121 { "zil_itx_metaslab_slog_count", KSTAT_DATA_UINT64 }, 122 { "zil_itx_metaslab_slog_bytes", KSTAT_DATA_UINT64 }, 123 { "zil_itx_metaslab_slog_write", KSTAT_DATA_UINT64 }, 124 { "zil_itx_metaslab_slog_alloc", KSTAT_DATA_UINT64 }, 125 }; 126 127 static zil_sums_t zil_sums_global; 128 static kstat_t *zil_kstats_global; 129 130 /* 131 * Disable intent logging replay. This global ZIL switch affects all pools. 132 */ 133 int zil_replay_disable = 0; 134 135 /* 136 * Disable the DKIOCFLUSHWRITECACHE commands that are normally sent to 137 * the disk(s) by the ZIL after an LWB write has completed. Setting this 138 * will cause ZIL corruption on power loss if a volatile out-of-order 139 * write cache is enabled. 140 */ 141 static int zil_nocacheflush = 0; 142 143 /* 144 * Limit SLOG write size per commit executed with synchronous priority. 145 * Any writes above that will be executed with lower (asynchronous) priority 146 * to limit potential SLOG device abuse by single active ZIL writer. 147 */ 148 static uint64_t zil_slog_bulk = 768 * 1024; 149 150 static kmem_cache_t *zil_lwb_cache; 151 static kmem_cache_t *zil_zcw_cache; 152 153 static void zil_lwb_commit(zilog_t *zilog, lwb_t *lwb, itx_t *itx); 154 static itx_t *zil_itx_clone(itx_t *oitx); 155 156 static int 157 zil_bp_compare(const void *x1, const void *x2) 158 { 159 const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva; 160 const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva; 161 162 int cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2)); 163 if (likely(cmp)) 164 return (cmp); 165 166 return (TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2))); 167 } 168 169 static void 170 zil_bp_tree_init(zilog_t *zilog) 171 { 172 avl_create(&zilog->zl_bp_tree, zil_bp_compare, 173 sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node)); 174 } 175 176 static void 177 zil_bp_tree_fini(zilog_t *zilog) 178 { 179 avl_tree_t *t = &zilog->zl_bp_tree; 180 zil_bp_node_t *zn; 181 void *cookie = NULL; 182 183 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL) 184 kmem_free(zn, sizeof (zil_bp_node_t)); 185 186 avl_destroy(t); 187 } 188 189 int 190 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp) 191 { 192 avl_tree_t *t = &zilog->zl_bp_tree; 193 const dva_t *dva; 194 zil_bp_node_t *zn; 195 avl_index_t where; 196 197 if (BP_IS_EMBEDDED(bp)) 198 return (0); 199 200 dva = BP_IDENTITY(bp); 201 202 if (avl_find(t, dva, &where) != NULL) 203 return (SET_ERROR(EEXIST)); 204 205 zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP); 206 zn->zn_dva = *dva; 207 avl_insert(t, zn, where); 208 209 return (0); 210 } 211 212 static zil_header_t * 213 zil_header_in_syncing_context(zilog_t *zilog) 214 { 215 return ((zil_header_t *)zilog->zl_header); 216 } 217 218 static void 219 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp) 220 { 221 zio_cksum_t *zc = &bp->blk_cksum; 222 223 (void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_0], 224 sizeof (zc->zc_word[ZIL_ZC_GUID_0])); 225 (void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_1], 226 sizeof (zc->zc_word[ZIL_ZC_GUID_1])); 227 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os); 228 zc->zc_word[ZIL_ZC_SEQ] = 1ULL; 229 } 230 231 static int 232 zil_kstats_global_update(kstat_t *ksp, int rw) 233 { 234 zil_kstat_values_t *zs = ksp->ks_data; 235 ASSERT3P(&zil_stats, ==, zs); 236 237 if (rw == KSTAT_WRITE) { 238 return (SET_ERROR(EACCES)); 239 } 240 241 zil_kstat_values_update(zs, &zil_sums_global); 242 243 return (0); 244 } 245 246 /* 247 * Read a log block and make sure it's valid. 248 */ 249 static int 250 zil_read_log_block(zilog_t *zilog, boolean_t decrypt, const blkptr_t *bp, 251 blkptr_t *nbp, char **begin, char **end, arc_buf_t **abuf) 252 { 253 zio_flag_t zio_flags = ZIO_FLAG_CANFAIL; 254 arc_flags_t aflags = ARC_FLAG_WAIT; 255 zbookmark_phys_t zb; 256 int error; 257 258 if (zilog->zl_header->zh_claim_txg == 0) 259 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; 260 261 if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) 262 zio_flags |= ZIO_FLAG_SPECULATIVE; 263 264 if (!decrypt) 265 zio_flags |= ZIO_FLAG_RAW; 266 267 SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET], 268 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); 269 270 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, 271 abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); 272 273 if (error == 0) { 274 zio_cksum_t cksum = bp->blk_cksum; 275 276 /* 277 * Validate the checksummed log block. 278 * 279 * Sequence numbers should be... sequential. The checksum 280 * verifier for the next block should be bp's checksum plus 1. 281 * 282 * Also check the log chain linkage and size used. 283 */ 284 cksum.zc_word[ZIL_ZC_SEQ]++; 285 286 uint64_t size = BP_GET_LSIZE(bp); 287 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { 288 zil_chain_t *zilc = (*abuf)->b_data; 289 char *lr = (char *)(zilc + 1); 290 291 if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum, 292 sizeof (cksum)) || 293 zilc->zc_nused < sizeof (*zilc) || 294 zilc->zc_nused > size) { 295 error = SET_ERROR(ECKSUM); 296 } else { 297 *begin = lr; 298 *end = lr + zilc->zc_nused - sizeof (*zilc); 299 *nbp = zilc->zc_next_blk; 300 } 301 } else { 302 char *lr = (*abuf)->b_data; 303 zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1; 304 305 if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum, 306 sizeof (cksum)) || 307 (zilc->zc_nused > (size - sizeof (*zilc)))) { 308 error = SET_ERROR(ECKSUM); 309 } else { 310 *begin = lr; 311 *end = lr + zilc->zc_nused; 312 *nbp = zilc->zc_next_blk; 313 } 314 } 315 } 316 317 return (error); 318 } 319 320 /* 321 * Read a TX_WRITE log data block. 322 */ 323 static int 324 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf) 325 { 326 zio_flag_t zio_flags = ZIO_FLAG_CANFAIL; 327 const blkptr_t *bp = &lr->lr_blkptr; 328 arc_flags_t aflags = ARC_FLAG_WAIT; 329 arc_buf_t *abuf = NULL; 330 zbookmark_phys_t zb; 331 int error; 332 333 if (BP_IS_HOLE(bp)) { 334 if (wbuf != NULL) 335 memset(wbuf, 0, MAX(BP_GET_LSIZE(bp), lr->lr_length)); 336 return (0); 337 } 338 339 if (zilog->zl_header->zh_claim_txg == 0) 340 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; 341 342 /* 343 * If we are not using the resulting data, we are just checking that 344 * it hasn't been corrupted so we don't need to waste CPU time 345 * decompressing and decrypting it. 346 */ 347 if (wbuf == NULL) 348 zio_flags |= ZIO_FLAG_RAW; 349 350 ASSERT3U(BP_GET_LSIZE(bp), !=, 0); 351 SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid, 352 ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp)); 353 354 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf, 355 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); 356 357 if (error == 0) { 358 if (wbuf != NULL) 359 memcpy(wbuf, abuf->b_data, arc_buf_size(abuf)); 360 arc_buf_destroy(abuf, &abuf); 361 } 362 363 return (error); 364 } 365 366 void 367 zil_sums_init(zil_sums_t *zs) 368 { 369 wmsum_init(&zs->zil_commit_count, 0); 370 wmsum_init(&zs->zil_commit_writer_count, 0); 371 wmsum_init(&zs->zil_itx_count, 0); 372 wmsum_init(&zs->zil_itx_indirect_count, 0); 373 wmsum_init(&zs->zil_itx_indirect_bytes, 0); 374 wmsum_init(&zs->zil_itx_copied_count, 0); 375 wmsum_init(&zs->zil_itx_copied_bytes, 0); 376 wmsum_init(&zs->zil_itx_needcopy_count, 0); 377 wmsum_init(&zs->zil_itx_needcopy_bytes, 0); 378 wmsum_init(&zs->zil_itx_metaslab_normal_count, 0); 379 wmsum_init(&zs->zil_itx_metaslab_normal_bytes, 0); 380 wmsum_init(&zs->zil_itx_metaslab_normal_write, 0); 381 wmsum_init(&zs->zil_itx_metaslab_normal_alloc, 0); 382 wmsum_init(&zs->zil_itx_metaslab_slog_count, 0); 383 wmsum_init(&zs->zil_itx_metaslab_slog_bytes, 0); 384 wmsum_init(&zs->zil_itx_metaslab_slog_write, 0); 385 wmsum_init(&zs->zil_itx_metaslab_slog_alloc, 0); 386 } 387 388 void 389 zil_sums_fini(zil_sums_t *zs) 390 { 391 wmsum_fini(&zs->zil_commit_count); 392 wmsum_fini(&zs->zil_commit_writer_count); 393 wmsum_fini(&zs->zil_itx_count); 394 wmsum_fini(&zs->zil_itx_indirect_count); 395 wmsum_fini(&zs->zil_itx_indirect_bytes); 396 wmsum_fini(&zs->zil_itx_copied_count); 397 wmsum_fini(&zs->zil_itx_copied_bytes); 398 wmsum_fini(&zs->zil_itx_needcopy_count); 399 wmsum_fini(&zs->zil_itx_needcopy_bytes); 400 wmsum_fini(&zs->zil_itx_metaslab_normal_count); 401 wmsum_fini(&zs->zil_itx_metaslab_normal_bytes); 402 wmsum_fini(&zs->zil_itx_metaslab_normal_write); 403 wmsum_fini(&zs->zil_itx_metaslab_normal_alloc); 404 wmsum_fini(&zs->zil_itx_metaslab_slog_count); 405 wmsum_fini(&zs->zil_itx_metaslab_slog_bytes); 406 wmsum_fini(&zs->zil_itx_metaslab_slog_write); 407 wmsum_fini(&zs->zil_itx_metaslab_slog_alloc); 408 } 409 410 void 411 zil_kstat_values_update(zil_kstat_values_t *zs, zil_sums_t *zil_sums) 412 { 413 zs->zil_commit_count.value.ui64 = 414 wmsum_value(&zil_sums->zil_commit_count); 415 zs->zil_commit_writer_count.value.ui64 = 416 wmsum_value(&zil_sums->zil_commit_writer_count); 417 zs->zil_itx_count.value.ui64 = 418 wmsum_value(&zil_sums->zil_itx_count); 419 zs->zil_itx_indirect_count.value.ui64 = 420 wmsum_value(&zil_sums->zil_itx_indirect_count); 421 zs->zil_itx_indirect_bytes.value.ui64 = 422 wmsum_value(&zil_sums->zil_itx_indirect_bytes); 423 zs->zil_itx_copied_count.value.ui64 = 424 wmsum_value(&zil_sums->zil_itx_copied_count); 425 zs->zil_itx_copied_bytes.value.ui64 = 426 wmsum_value(&zil_sums->zil_itx_copied_bytes); 427 zs->zil_itx_needcopy_count.value.ui64 = 428 wmsum_value(&zil_sums->zil_itx_needcopy_count); 429 zs->zil_itx_needcopy_bytes.value.ui64 = 430 wmsum_value(&zil_sums->zil_itx_needcopy_bytes); 431 zs->zil_itx_metaslab_normal_count.value.ui64 = 432 wmsum_value(&zil_sums->zil_itx_metaslab_normal_count); 433 zs->zil_itx_metaslab_normal_bytes.value.ui64 = 434 wmsum_value(&zil_sums->zil_itx_metaslab_normal_bytes); 435 zs->zil_itx_metaslab_normal_write.value.ui64 = 436 wmsum_value(&zil_sums->zil_itx_metaslab_normal_write); 437 zs->zil_itx_metaslab_normal_alloc.value.ui64 = 438 wmsum_value(&zil_sums->zil_itx_metaslab_normal_alloc); 439 zs->zil_itx_metaslab_slog_count.value.ui64 = 440 wmsum_value(&zil_sums->zil_itx_metaslab_slog_count); 441 zs->zil_itx_metaslab_slog_bytes.value.ui64 = 442 wmsum_value(&zil_sums->zil_itx_metaslab_slog_bytes); 443 zs->zil_itx_metaslab_slog_write.value.ui64 = 444 wmsum_value(&zil_sums->zil_itx_metaslab_slog_write); 445 zs->zil_itx_metaslab_slog_alloc.value.ui64 = 446 wmsum_value(&zil_sums->zil_itx_metaslab_slog_alloc); 447 } 448 449 /* 450 * Parse the intent log, and call parse_func for each valid record within. 451 */ 452 int 453 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func, 454 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg, 455 boolean_t decrypt) 456 { 457 const zil_header_t *zh = zilog->zl_header; 458 boolean_t claimed = !!zh->zh_claim_txg; 459 uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX; 460 uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX; 461 uint64_t max_blk_seq = 0; 462 uint64_t max_lr_seq = 0; 463 uint64_t blk_count = 0; 464 uint64_t lr_count = 0; 465 blkptr_t blk, next_blk = {{{{0}}}}; 466 int error = 0; 467 468 /* 469 * Old logs didn't record the maximum zh_claim_lr_seq. 470 */ 471 if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) 472 claim_lr_seq = UINT64_MAX; 473 474 /* 475 * Starting at the block pointed to by zh_log we read the log chain. 476 * For each block in the chain we strongly check that block to 477 * ensure its validity. We stop when an invalid block is found. 478 * For each block pointer in the chain we call parse_blk_func(). 479 * For each record in each valid block we call parse_lr_func(). 480 * If the log has been claimed, stop if we encounter a sequence 481 * number greater than the highest claimed sequence number. 482 */ 483 zil_bp_tree_init(zilog); 484 485 for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) { 486 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; 487 int reclen; 488 char *lrp, *end; 489 arc_buf_t *abuf = NULL; 490 491 if (blk_seq > claim_blk_seq) 492 break; 493 494 error = parse_blk_func(zilog, &blk, arg, txg); 495 if (error != 0) 496 break; 497 ASSERT3U(max_blk_seq, <, blk_seq); 498 max_blk_seq = blk_seq; 499 blk_count++; 500 501 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq) 502 break; 503 504 error = zil_read_log_block(zilog, decrypt, &blk, &next_blk, 505 &lrp, &end, &abuf); 506 if (error != 0) { 507 if (abuf) 508 arc_buf_destroy(abuf, &abuf); 509 if (claimed) { 510 char name[ZFS_MAX_DATASET_NAME_LEN]; 511 512 dmu_objset_name(zilog->zl_os, name); 513 514 cmn_err(CE_WARN, "ZFS read log block error %d, " 515 "dataset %s, seq 0x%llx\n", error, name, 516 (u_longlong_t)blk_seq); 517 } 518 break; 519 } 520 521 for (; lrp < end; lrp += reclen) { 522 lr_t *lr = (lr_t *)lrp; 523 reclen = lr->lrc_reclen; 524 ASSERT3U(reclen, >=, sizeof (lr_t)); 525 if (lr->lrc_seq > claim_lr_seq) { 526 arc_buf_destroy(abuf, &abuf); 527 goto done; 528 } 529 530 error = parse_lr_func(zilog, lr, arg, txg); 531 if (error != 0) { 532 arc_buf_destroy(abuf, &abuf); 533 goto done; 534 } 535 ASSERT3U(max_lr_seq, <, lr->lrc_seq); 536 max_lr_seq = lr->lrc_seq; 537 lr_count++; 538 } 539 arc_buf_destroy(abuf, &abuf); 540 } 541 done: 542 zilog->zl_parse_error = error; 543 zilog->zl_parse_blk_seq = max_blk_seq; 544 zilog->zl_parse_lr_seq = max_lr_seq; 545 zilog->zl_parse_blk_count = blk_count; 546 zilog->zl_parse_lr_count = lr_count; 547 548 zil_bp_tree_fini(zilog); 549 550 return (error); 551 } 552 553 static int 554 zil_clear_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx, 555 uint64_t first_txg) 556 { 557 (void) tx; 558 ASSERT(!BP_IS_HOLE(bp)); 559 560 /* 561 * As we call this function from the context of a rewind to a 562 * checkpoint, each ZIL block whose txg is later than the txg 563 * that we rewind to is invalid. Thus, we return -1 so 564 * zil_parse() doesn't attempt to read it. 565 */ 566 if (bp->blk_birth >= first_txg) 567 return (-1); 568 569 if (zil_bp_tree_add(zilog, bp) != 0) 570 return (0); 571 572 zio_free(zilog->zl_spa, first_txg, bp); 573 return (0); 574 } 575 576 static int 577 zil_noop_log_record(zilog_t *zilog, const lr_t *lrc, void *tx, 578 uint64_t first_txg) 579 { 580 (void) zilog, (void) lrc, (void) tx, (void) first_txg; 581 return (0); 582 } 583 584 static int 585 zil_claim_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx, 586 uint64_t first_txg) 587 { 588 /* 589 * Claim log block if not already committed and not already claimed. 590 * If tx == NULL, just verify that the block is claimable. 591 */ 592 if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg || 593 zil_bp_tree_add(zilog, bp) != 0) 594 return (0); 595 596 return (zio_wait(zio_claim(NULL, zilog->zl_spa, 597 tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL, 598 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB))); 599 } 600 601 static int 602 zil_claim_write(zilog_t *zilog, const lr_t *lrc, void *tx, uint64_t first_txg) 603 { 604 lr_write_t *lr = (lr_write_t *)lrc; 605 int error; 606 607 ASSERT(lrc->lrc_txtype == TX_WRITE); 608 609 /* 610 * If the block is not readable, don't claim it. This can happen 611 * in normal operation when a log block is written to disk before 612 * some of the dmu_sync() blocks it points to. In this case, the 613 * transaction cannot have been committed to anyone (we would have 614 * waited for all writes to be stable first), so it is semantically 615 * correct to declare this the end of the log. 616 */ 617 if (lr->lr_blkptr.blk_birth >= first_txg) { 618 error = zil_read_log_data(zilog, lr, NULL); 619 if (error != 0) 620 return (error); 621 } 622 623 return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg)); 624 } 625 626 static int 627 zil_claim_clone_range(zilog_t *zilog, const lr_t *lrc, void *tx) 628 { 629 const lr_clone_range_t *lr = (const lr_clone_range_t *)lrc; 630 const blkptr_t *bp; 631 spa_t *spa; 632 uint_t ii; 633 634 ASSERT(lrc->lrc_txtype == TX_CLONE_RANGE); 635 636 if (tx == NULL) { 637 return (0); 638 } 639 640 /* 641 * XXX: Do we need to byteswap lr? 642 */ 643 644 spa = zilog->zl_spa; 645 646 for (ii = 0; ii < lr->lr_nbps; ii++) { 647 bp = &lr->lr_bps[ii]; 648 649 /* 650 * When data in embedded into BP there is no need to create 651 * BRT entry as there is no data block. Just copy the BP as 652 * it contains the data. 653 */ 654 if (!BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) { 655 brt_pending_add(spa, bp, tx); 656 } 657 } 658 659 return (0); 660 } 661 662 static int 663 zil_claim_log_record(zilog_t *zilog, const lr_t *lrc, void *tx, 664 uint64_t first_txg) 665 { 666 667 switch (lrc->lrc_txtype) { 668 case TX_WRITE: 669 return (zil_claim_write(zilog, lrc, tx, first_txg)); 670 case TX_CLONE_RANGE: 671 return (zil_claim_clone_range(zilog, lrc, tx)); 672 default: 673 return (0); 674 } 675 } 676 677 static int 678 zil_free_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx, 679 uint64_t claim_txg) 680 { 681 (void) claim_txg; 682 683 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp); 684 685 return (0); 686 } 687 688 static int 689 zil_free_write(zilog_t *zilog, const lr_t *lrc, void *tx, uint64_t claim_txg) 690 { 691 lr_write_t *lr = (lr_write_t *)lrc; 692 blkptr_t *bp = &lr->lr_blkptr; 693 694 ASSERT(lrc->lrc_txtype == TX_WRITE); 695 696 /* 697 * If we previously claimed it, we need to free it. 698 */ 699 if (bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 && 700 !BP_IS_HOLE(bp)) { 701 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp); 702 } 703 704 return (0); 705 } 706 707 static int 708 zil_free_clone_range(zilog_t *zilog, const lr_t *lrc, void *tx) 709 { 710 const lr_clone_range_t *lr = (const lr_clone_range_t *)lrc; 711 const blkptr_t *bp; 712 spa_t *spa; 713 uint_t ii; 714 715 ASSERT(lrc->lrc_txtype == TX_CLONE_RANGE); 716 717 if (tx == NULL) { 718 return (0); 719 } 720 721 spa = zilog->zl_spa; 722 723 for (ii = 0; ii < lr->lr_nbps; ii++) { 724 bp = &lr->lr_bps[ii]; 725 726 if (!BP_IS_HOLE(bp)) { 727 zio_free(spa, dmu_tx_get_txg(tx), bp); 728 } 729 } 730 731 return (0); 732 } 733 734 static int 735 zil_free_log_record(zilog_t *zilog, const lr_t *lrc, void *tx, 736 uint64_t claim_txg) 737 { 738 739 if (claim_txg == 0) { 740 return (0); 741 } 742 743 switch (lrc->lrc_txtype) { 744 case TX_WRITE: 745 return (zil_free_write(zilog, lrc, tx, claim_txg)); 746 case TX_CLONE_RANGE: 747 return (zil_free_clone_range(zilog, lrc, tx)); 748 default: 749 return (0); 750 } 751 } 752 753 static int 754 zil_lwb_vdev_compare(const void *x1, const void *x2) 755 { 756 const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev; 757 const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev; 758 759 return (TREE_CMP(v1, v2)); 760 } 761 762 /* 763 * Allocate a new lwb. We may already have a block pointer for it, in which 764 * case we get size and version from there. Or we may not yet, in which case 765 * we choose them here and later make the block allocation match. 766 */ 767 static lwb_t * 768 zil_alloc_lwb(zilog_t *zilog, int sz, blkptr_t *bp, boolean_t slog, 769 uint64_t txg, lwb_state_t state) 770 { 771 lwb_t *lwb; 772 773 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); 774 lwb->lwb_zilog = zilog; 775 if (bp) { 776 lwb->lwb_blk = *bp; 777 lwb->lwb_slim = (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2); 778 sz = BP_GET_LSIZE(bp); 779 } else { 780 BP_ZERO(&lwb->lwb_blk); 781 lwb->lwb_slim = (spa_version(zilog->zl_spa) >= 782 SPA_VERSION_SLIM_ZIL); 783 } 784 lwb->lwb_slog = slog; 785 lwb->lwb_error = 0; 786 if (lwb->lwb_slim) { 787 lwb->lwb_nmax = sz; 788 lwb->lwb_nused = lwb->lwb_nfilled = sizeof (zil_chain_t); 789 } else { 790 lwb->lwb_nmax = sz - sizeof (zil_chain_t); 791 lwb->lwb_nused = lwb->lwb_nfilled = 0; 792 } 793 lwb->lwb_sz = sz; 794 lwb->lwb_state = state; 795 lwb->lwb_buf = zio_buf_alloc(sz); 796 lwb->lwb_child_zio = NULL; 797 lwb->lwb_write_zio = NULL; 798 lwb->lwb_root_zio = NULL; 799 lwb->lwb_issued_timestamp = 0; 800 lwb->lwb_issued_txg = 0; 801 lwb->lwb_alloc_txg = txg; 802 lwb->lwb_max_txg = 0; 803 804 mutex_enter(&zilog->zl_lock); 805 list_insert_tail(&zilog->zl_lwb_list, lwb); 806 if (state != LWB_STATE_NEW) 807 zilog->zl_last_lwb_opened = lwb; 808 mutex_exit(&zilog->zl_lock); 809 810 return (lwb); 811 } 812 813 static void 814 zil_free_lwb(zilog_t *zilog, lwb_t *lwb) 815 { 816 ASSERT(MUTEX_HELD(&zilog->zl_lock)); 817 ASSERT(lwb->lwb_state == LWB_STATE_NEW || 818 lwb->lwb_state == LWB_STATE_FLUSH_DONE); 819 ASSERT3P(lwb->lwb_child_zio, ==, NULL); 820 ASSERT3P(lwb->lwb_write_zio, ==, NULL); 821 ASSERT3P(lwb->lwb_root_zio, ==, NULL); 822 ASSERT3U(lwb->lwb_alloc_txg, <=, spa_syncing_txg(zilog->zl_spa)); 823 ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa)); 824 VERIFY(list_is_empty(&lwb->lwb_itxs)); 825 VERIFY(list_is_empty(&lwb->lwb_waiters)); 826 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree)); 827 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock)); 828 829 /* 830 * Clear the zilog's field to indicate this lwb is no longer 831 * valid, and prevent use-after-free errors. 832 */ 833 if (zilog->zl_last_lwb_opened == lwb) 834 zilog->zl_last_lwb_opened = NULL; 835 836 kmem_cache_free(zil_lwb_cache, lwb); 837 } 838 839 /* 840 * Called when we create in-memory log transactions so that we know 841 * to cleanup the itxs at the end of spa_sync(). 842 */ 843 static void 844 zilog_dirty(zilog_t *zilog, uint64_t txg) 845 { 846 dsl_pool_t *dp = zilog->zl_dmu_pool; 847 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 848 849 ASSERT(spa_writeable(zilog->zl_spa)); 850 851 if (ds->ds_is_snapshot) 852 panic("dirtying snapshot!"); 853 854 if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) { 855 /* up the hold count until we can be written out */ 856 dmu_buf_add_ref(ds->ds_dbuf, zilog); 857 858 zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg); 859 } 860 } 861 862 /* 863 * Determine if the zil is dirty in the specified txg. Callers wanting to 864 * ensure that the dirty state does not change must hold the itxg_lock for 865 * the specified txg. Holding the lock will ensure that the zil cannot be 866 * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current 867 * state. 868 */ 869 static boolean_t __maybe_unused 870 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg) 871 { 872 dsl_pool_t *dp = zilog->zl_dmu_pool; 873 874 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK)) 875 return (B_TRUE); 876 return (B_FALSE); 877 } 878 879 /* 880 * Determine if the zil is dirty. The zil is considered dirty if it has 881 * any pending itx records that have not been cleaned by zil_clean(). 882 */ 883 static boolean_t 884 zilog_is_dirty(zilog_t *zilog) 885 { 886 dsl_pool_t *dp = zilog->zl_dmu_pool; 887 888 for (int t = 0; t < TXG_SIZE; t++) { 889 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t)) 890 return (B_TRUE); 891 } 892 return (B_FALSE); 893 } 894 895 /* 896 * Its called in zil_commit context (zil_process_commit_list()/zil_create()). 897 * It activates SPA_FEATURE_ZILSAXATTR feature, if its enabled. 898 * Check dsl_dataset_feature_is_active to avoid txg_wait_synced() on every 899 * zil_commit. 900 */ 901 static void 902 zil_commit_activate_saxattr_feature(zilog_t *zilog) 903 { 904 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 905 uint64_t txg = 0; 906 dmu_tx_t *tx = NULL; 907 908 if (spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) && 909 dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL && 910 !dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR)) { 911 tx = dmu_tx_create(zilog->zl_os); 912 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 913 dsl_dataset_dirty(ds, tx); 914 txg = dmu_tx_get_txg(tx); 915 916 mutex_enter(&ds->ds_lock); 917 ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] = 918 (void *)B_TRUE; 919 mutex_exit(&ds->ds_lock); 920 dmu_tx_commit(tx); 921 txg_wait_synced(zilog->zl_dmu_pool, txg); 922 } 923 } 924 925 /* 926 * Create an on-disk intent log. 927 */ 928 static lwb_t * 929 zil_create(zilog_t *zilog) 930 { 931 const zil_header_t *zh = zilog->zl_header; 932 lwb_t *lwb = NULL; 933 uint64_t txg = 0; 934 dmu_tx_t *tx = NULL; 935 blkptr_t blk; 936 int error = 0; 937 boolean_t slog = FALSE; 938 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 939 940 941 /* 942 * Wait for any previous destroy to complete. 943 */ 944 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 945 946 ASSERT(zh->zh_claim_txg == 0); 947 ASSERT(zh->zh_replay_seq == 0); 948 949 blk = zh->zh_log; 950 951 /* 952 * Allocate an initial log block if: 953 * - there isn't one already 954 * - the existing block is the wrong endianness 955 */ 956 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) { 957 tx = dmu_tx_create(zilog->zl_os); 958 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 959 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 960 txg = dmu_tx_get_txg(tx); 961 962 if (!BP_IS_HOLE(&blk)) { 963 zio_free(zilog->zl_spa, txg, &blk); 964 BP_ZERO(&blk); 965 } 966 967 error = zio_alloc_zil(zilog->zl_spa, zilog->zl_os, txg, &blk, 968 ZIL_MIN_BLKSZ, &slog); 969 if (error == 0) 970 zil_init_log_chain(zilog, &blk); 971 } 972 973 /* 974 * Allocate a log write block (lwb) for the first log block. 975 */ 976 if (error == 0) 977 lwb = zil_alloc_lwb(zilog, 0, &blk, slog, txg, LWB_STATE_NEW); 978 979 /* 980 * If we just allocated the first log block, commit our transaction 981 * and wait for zil_sync() to stuff the block pointer into zh_log. 982 * (zh is part of the MOS, so we cannot modify it in open context.) 983 */ 984 if (tx != NULL) { 985 /* 986 * If "zilsaxattr" feature is enabled on zpool, then activate 987 * it now when we're creating the ZIL chain. We can't wait with 988 * this until we write the first xattr log record because we 989 * need to wait for the feature activation to sync out. 990 */ 991 if (spa_feature_is_enabled(zilog->zl_spa, 992 SPA_FEATURE_ZILSAXATTR) && dmu_objset_type(zilog->zl_os) != 993 DMU_OST_ZVOL) { 994 mutex_enter(&ds->ds_lock); 995 ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] = 996 (void *)B_TRUE; 997 mutex_exit(&ds->ds_lock); 998 } 999 1000 dmu_tx_commit(tx); 1001 txg_wait_synced(zilog->zl_dmu_pool, txg); 1002 } else { 1003 /* 1004 * This branch covers the case where we enable the feature on a 1005 * zpool that has existing ZIL headers. 1006 */ 1007 zil_commit_activate_saxattr_feature(zilog); 1008 } 1009 IMPLY(spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) && 1010 dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL, 1011 dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR)); 1012 1013 ASSERT(error != 0 || memcmp(&blk, &zh->zh_log, sizeof (blk)) == 0); 1014 IMPLY(error == 0, lwb != NULL); 1015 1016 return (lwb); 1017 } 1018 1019 /* 1020 * In one tx, free all log blocks and clear the log header. If keep_first 1021 * is set, then we're replaying a log with no content. We want to keep the 1022 * first block, however, so that the first synchronous transaction doesn't 1023 * require a txg_wait_synced() in zil_create(). We don't need to 1024 * txg_wait_synced() here either when keep_first is set, because both 1025 * zil_create() and zil_destroy() will wait for any in-progress destroys 1026 * to complete. 1027 * Return B_TRUE if there were any entries to replay. 1028 */ 1029 boolean_t 1030 zil_destroy(zilog_t *zilog, boolean_t keep_first) 1031 { 1032 const zil_header_t *zh = zilog->zl_header; 1033 lwb_t *lwb; 1034 dmu_tx_t *tx; 1035 uint64_t txg; 1036 1037 /* 1038 * Wait for any previous destroy to complete. 1039 */ 1040 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 1041 1042 zilog->zl_old_header = *zh; /* debugging aid */ 1043 1044 if (BP_IS_HOLE(&zh->zh_log)) 1045 return (B_FALSE); 1046 1047 tx = dmu_tx_create(zilog->zl_os); 1048 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 1049 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 1050 txg = dmu_tx_get_txg(tx); 1051 1052 mutex_enter(&zilog->zl_lock); 1053 1054 ASSERT3U(zilog->zl_destroy_txg, <, txg); 1055 zilog->zl_destroy_txg = txg; 1056 zilog->zl_keep_first = keep_first; 1057 1058 if (!list_is_empty(&zilog->zl_lwb_list)) { 1059 ASSERT(zh->zh_claim_txg == 0); 1060 VERIFY(!keep_first); 1061 while ((lwb = list_remove_head(&zilog->zl_lwb_list)) != NULL) { 1062 if (lwb->lwb_buf != NULL) 1063 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 1064 if (!BP_IS_HOLE(&lwb->lwb_blk)) 1065 zio_free(zilog->zl_spa, txg, &lwb->lwb_blk); 1066 zil_free_lwb(zilog, lwb); 1067 } 1068 } else if (!keep_first) { 1069 zil_destroy_sync(zilog, tx); 1070 } 1071 mutex_exit(&zilog->zl_lock); 1072 1073 dmu_tx_commit(tx); 1074 1075 return (B_TRUE); 1076 } 1077 1078 void 1079 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx) 1080 { 1081 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 1082 (void) zil_parse(zilog, zil_free_log_block, 1083 zil_free_log_record, tx, zilog->zl_header->zh_claim_txg, B_FALSE); 1084 } 1085 1086 int 1087 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg) 1088 { 1089 dmu_tx_t *tx = txarg; 1090 zilog_t *zilog; 1091 uint64_t first_txg; 1092 zil_header_t *zh; 1093 objset_t *os; 1094 int error; 1095 1096 error = dmu_objset_own_obj(dp, ds->ds_object, 1097 DMU_OST_ANY, B_FALSE, B_FALSE, FTAG, &os); 1098 if (error != 0) { 1099 /* 1100 * EBUSY indicates that the objset is inconsistent, in which 1101 * case it can not have a ZIL. 1102 */ 1103 if (error != EBUSY) { 1104 cmn_err(CE_WARN, "can't open objset for %llu, error %u", 1105 (unsigned long long)ds->ds_object, error); 1106 } 1107 1108 return (0); 1109 } 1110 1111 zilog = dmu_objset_zil(os); 1112 zh = zil_header_in_syncing_context(zilog); 1113 ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa)); 1114 first_txg = spa_min_claim_txg(zilog->zl_spa); 1115 1116 /* 1117 * If the spa_log_state is not set to be cleared, check whether 1118 * the current uberblock is a checkpoint one and if the current 1119 * header has been claimed before moving on. 1120 * 1121 * If the current uberblock is a checkpointed uberblock then 1122 * one of the following scenarios took place: 1123 * 1124 * 1] We are currently rewinding to the checkpoint of the pool. 1125 * 2] We crashed in the middle of a checkpoint rewind but we 1126 * did manage to write the checkpointed uberblock to the 1127 * vdev labels, so when we tried to import the pool again 1128 * the checkpointed uberblock was selected from the import 1129 * procedure. 1130 * 1131 * In both cases we want to zero out all the ZIL blocks, except 1132 * the ones that have been claimed at the time of the checkpoint 1133 * (their zh_claim_txg != 0). The reason is that these blocks 1134 * may be corrupted since we may have reused their locations on 1135 * disk after we took the checkpoint. 1136 * 1137 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier 1138 * when we first figure out whether the current uberblock is 1139 * checkpointed or not. Unfortunately, that would discard all 1140 * the logs, including the ones that are claimed, and we would 1141 * leak space. 1142 */ 1143 if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR || 1144 (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 && 1145 zh->zh_claim_txg == 0)) { 1146 if (!BP_IS_HOLE(&zh->zh_log)) { 1147 (void) zil_parse(zilog, zil_clear_log_block, 1148 zil_noop_log_record, tx, first_txg, B_FALSE); 1149 } 1150 BP_ZERO(&zh->zh_log); 1151 if (os->os_encrypted) 1152 os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE; 1153 dsl_dataset_dirty(dmu_objset_ds(os), tx); 1154 dmu_objset_disown(os, B_FALSE, FTAG); 1155 return (0); 1156 } 1157 1158 /* 1159 * If we are not rewinding and opening the pool normally, then 1160 * the min_claim_txg should be equal to the first txg of the pool. 1161 */ 1162 ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa)); 1163 1164 /* 1165 * Claim all log blocks if we haven't already done so, and remember 1166 * the highest claimed sequence number. This ensures that if we can 1167 * read only part of the log now (e.g. due to a missing device), 1168 * but we can read the entire log later, we will not try to replay 1169 * or destroy beyond the last block we successfully claimed. 1170 */ 1171 ASSERT3U(zh->zh_claim_txg, <=, first_txg); 1172 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) { 1173 (void) zil_parse(zilog, zil_claim_log_block, 1174 zil_claim_log_record, tx, first_txg, B_FALSE); 1175 zh->zh_claim_txg = first_txg; 1176 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq; 1177 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq; 1178 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1) 1179 zh->zh_flags |= ZIL_REPLAY_NEEDED; 1180 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID; 1181 if (os->os_encrypted) 1182 os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE; 1183 dsl_dataset_dirty(dmu_objset_ds(os), tx); 1184 } 1185 1186 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1)); 1187 dmu_objset_disown(os, B_FALSE, FTAG); 1188 return (0); 1189 } 1190 1191 /* 1192 * Check the log by walking the log chain. 1193 * Checksum errors are ok as they indicate the end of the chain. 1194 * Any other error (no device or read failure) returns an error. 1195 */ 1196 int 1197 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx) 1198 { 1199 (void) dp; 1200 zilog_t *zilog; 1201 objset_t *os; 1202 blkptr_t *bp; 1203 int error; 1204 1205 ASSERT(tx == NULL); 1206 1207 error = dmu_objset_from_ds(ds, &os); 1208 if (error != 0) { 1209 cmn_err(CE_WARN, "can't open objset %llu, error %d", 1210 (unsigned long long)ds->ds_object, error); 1211 return (0); 1212 } 1213 1214 zilog = dmu_objset_zil(os); 1215 bp = (blkptr_t *)&zilog->zl_header->zh_log; 1216 1217 if (!BP_IS_HOLE(bp)) { 1218 vdev_t *vd; 1219 boolean_t valid = B_TRUE; 1220 1221 /* 1222 * Check the first block and determine if it's on a log device 1223 * which may have been removed or faulted prior to loading this 1224 * pool. If so, there's no point in checking the rest of the 1225 * log as its content should have already been synced to the 1226 * pool. 1227 */ 1228 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER); 1229 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0])); 1230 if (vd->vdev_islog && vdev_is_dead(vd)) 1231 valid = vdev_log_state_valid(vd); 1232 spa_config_exit(os->os_spa, SCL_STATE, FTAG); 1233 1234 if (!valid) 1235 return (0); 1236 1237 /* 1238 * Check whether the current uberblock is checkpointed (e.g. 1239 * we are rewinding) and whether the current header has been 1240 * claimed or not. If it hasn't then skip verifying it. We 1241 * do this because its ZIL blocks may be part of the pool's 1242 * state before the rewind, which is no longer valid. 1243 */ 1244 zil_header_t *zh = zil_header_in_syncing_context(zilog); 1245 if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 && 1246 zh->zh_claim_txg == 0) 1247 return (0); 1248 } 1249 1250 /* 1251 * Because tx == NULL, zil_claim_log_block() will not actually claim 1252 * any blocks, but just determine whether it is possible to do so. 1253 * In addition to checking the log chain, zil_claim_log_block() 1254 * will invoke zio_claim() with a done func of spa_claim_notify(), 1255 * which will update spa_max_claim_txg. See spa_load() for details. 1256 */ 1257 error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx, 1258 zilog->zl_header->zh_claim_txg ? -1ULL : 1259 spa_min_claim_txg(os->os_spa), B_FALSE); 1260 1261 return ((error == ECKSUM || error == ENOENT) ? 0 : error); 1262 } 1263 1264 /* 1265 * When an itx is "skipped", this function is used to properly mark the 1266 * waiter as "done, and signal any thread(s) waiting on it. An itx can 1267 * be skipped (and not committed to an lwb) for a variety of reasons, 1268 * one of them being that the itx was committed via spa_sync(), prior to 1269 * it being committed to an lwb; this can happen if a thread calling 1270 * zil_commit() is racing with spa_sync(). 1271 */ 1272 static void 1273 zil_commit_waiter_skip(zil_commit_waiter_t *zcw) 1274 { 1275 mutex_enter(&zcw->zcw_lock); 1276 ASSERT3B(zcw->zcw_done, ==, B_FALSE); 1277 zcw->zcw_done = B_TRUE; 1278 cv_broadcast(&zcw->zcw_cv); 1279 mutex_exit(&zcw->zcw_lock); 1280 } 1281 1282 /* 1283 * This function is used when the given waiter is to be linked into an 1284 * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb. 1285 * At this point, the waiter will no longer be referenced by the itx, 1286 * and instead, will be referenced by the lwb. 1287 */ 1288 static void 1289 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb) 1290 { 1291 /* 1292 * The lwb_waiters field of the lwb is protected by the zilog's 1293 * zl_issuer_lock while the lwb is open and zl_lock otherwise. 1294 * zl_issuer_lock also protects leaving the open state. 1295 * zcw_lwb setting is protected by zl_issuer_lock and state != 1296 * flush_done, which transition is protected by zl_lock. 1297 */ 1298 ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_issuer_lock)); 1299 IMPLY(lwb->lwb_state != LWB_STATE_OPENED, 1300 MUTEX_HELD(&lwb->lwb_zilog->zl_lock)); 1301 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_NEW); 1302 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE); 1303 1304 ASSERT(!list_link_active(&zcw->zcw_node)); 1305 list_insert_tail(&lwb->lwb_waiters, zcw); 1306 ASSERT3P(zcw->zcw_lwb, ==, NULL); 1307 zcw->zcw_lwb = lwb; 1308 } 1309 1310 /* 1311 * This function is used when zio_alloc_zil() fails to allocate a ZIL 1312 * block, and the given waiter must be linked to the "nolwb waiters" 1313 * list inside of zil_process_commit_list(). 1314 */ 1315 static void 1316 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb) 1317 { 1318 ASSERT(!list_link_active(&zcw->zcw_node)); 1319 list_insert_tail(nolwb, zcw); 1320 ASSERT3P(zcw->zcw_lwb, ==, NULL); 1321 } 1322 1323 void 1324 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp) 1325 { 1326 avl_tree_t *t = &lwb->lwb_vdev_tree; 1327 avl_index_t where; 1328 zil_vdev_node_t *zv, zvsearch; 1329 int ndvas = BP_GET_NDVAS(bp); 1330 int i; 1331 1332 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE); 1333 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE); 1334 1335 if (zil_nocacheflush) 1336 return; 1337 1338 mutex_enter(&lwb->lwb_vdev_lock); 1339 for (i = 0; i < ndvas; i++) { 1340 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]); 1341 if (avl_find(t, &zvsearch, &where) == NULL) { 1342 zv = kmem_alloc(sizeof (*zv), KM_SLEEP); 1343 zv->zv_vdev = zvsearch.zv_vdev; 1344 avl_insert(t, zv, where); 1345 } 1346 } 1347 mutex_exit(&lwb->lwb_vdev_lock); 1348 } 1349 1350 static void 1351 zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb) 1352 { 1353 avl_tree_t *src = &lwb->lwb_vdev_tree; 1354 avl_tree_t *dst = &nlwb->lwb_vdev_tree; 1355 void *cookie = NULL; 1356 zil_vdev_node_t *zv; 1357 1358 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE); 1359 ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE); 1360 ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE); 1361 1362 /* 1363 * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does 1364 * not need the protection of lwb_vdev_lock (it will only be modified 1365 * while holding zilog->zl_lock) as its writes and those of its 1366 * children have all completed. The younger 'nlwb' may be waiting on 1367 * future writes to additional vdevs. 1368 */ 1369 mutex_enter(&nlwb->lwb_vdev_lock); 1370 /* 1371 * Tear down the 'lwb' vdev tree, ensuring that entries which do not 1372 * exist in 'nlwb' are moved to it, freeing any would-be duplicates. 1373 */ 1374 while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) { 1375 avl_index_t where; 1376 1377 if (avl_find(dst, zv, &where) == NULL) { 1378 avl_insert(dst, zv, where); 1379 } else { 1380 kmem_free(zv, sizeof (*zv)); 1381 } 1382 } 1383 mutex_exit(&nlwb->lwb_vdev_lock); 1384 } 1385 1386 void 1387 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg) 1388 { 1389 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg); 1390 } 1391 1392 /* 1393 * This function is a called after all vdevs associated with a given lwb 1394 * write have completed their DKIOCFLUSHWRITECACHE command; or as soon 1395 * as the lwb write completes, if "zil_nocacheflush" is set. Further, 1396 * all "previous" lwb's will have completed before this function is 1397 * called; i.e. this function is called for all previous lwbs before 1398 * it's called for "this" lwb (enforced via zio the dependencies 1399 * configured in zil_lwb_set_zio_dependency()). 1400 * 1401 * The intention is for this function to be called as soon as the 1402 * contents of an lwb are considered "stable" on disk, and will survive 1403 * any sudden loss of power. At this point, any threads waiting for the 1404 * lwb to reach this state are signalled, and the "waiter" structures 1405 * are marked "done". 1406 */ 1407 static void 1408 zil_lwb_flush_vdevs_done(zio_t *zio) 1409 { 1410 lwb_t *lwb = zio->io_private; 1411 zilog_t *zilog = lwb->lwb_zilog; 1412 zil_commit_waiter_t *zcw; 1413 itx_t *itx; 1414 1415 spa_config_exit(zilog->zl_spa, SCL_STATE, lwb); 1416 1417 hrtime_t t = gethrtime() - lwb->lwb_issued_timestamp; 1418 1419 mutex_enter(&zilog->zl_lock); 1420 1421 zilog->zl_last_lwb_latency = (zilog->zl_last_lwb_latency * 7 + t) / 8; 1422 1423 lwb->lwb_root_zio = NULL; 1424 1425 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE); 1426 lwb->lwb_state = LWB_STATE_FLUSH_DONE; 1427 1428 if (zilog->zl_last_lwb_opened == lwb) { 1429 /* 1430 * Remember the highest committed log sequence number 1431 * for ztest. We only update this value when all the log 1432 * writes succeeded, because ztest wants to ASSERT that 1433 * it got the whole log chain. 1434 */ 1435 zilog->zl_commit_lr_seq = zilog->zl_lr_seq; 1436 } 1437 1438 while ((itx = list_remove_head(&lwb->lwb_itxs)) != NULL) 1439 zil_itx_destroy(itx); 1440 1441 while ((zcw = list_remove_head(&lwb->lwb_waiters)) != NULL) { 1442 mutex_enter(&zcw->zcw_lock); 1443 1444 ASSERT3P(zcw->zcw_lwb, ==, lwb); 1445 zcw->zcw_lwb = NULL; 1446 /* 1447 * We expect any ZIO errors from child ZIOs to have been 1448 * propagated "up" to this specific LWB's root ZIO, in 1449 * order for this error handling to work correctly. This 1450 * includes ZIO errors from either this LWB's write or 1451 * flush, as well as any errors from other dependent LWBs 1452 * (e.g. a root LWB ZIO that might be a child of this LWB). 1453 * 1454 * With that said, it's important to note that LWB flush 1455 * errors are not propagated up to the LWB root ZIO. 1456 * This is incorrect behavior, and results in VDEV flush 1457 * errors not being handled correctly here. See the 1458 * comment above the call to "zio_flush" for details. 1459 */ 1460 1461 zcw->zcw_zio_error = zio->io_error; 1462 1463 ASSERT3B(zcw->zcw_done, ==, B_FALSE); 1464 zcw->zcw_done = B_TRUE; 1465 cv_broadcast(&zcw->zcw_cv); 1466 1467 mutex_exit(&zcw->zcw_lock); 1468 } 1469 1470 uint64_t txg = lwb->lwb_issued_txg; 1471 1472 /* Once we drop the lock, lwb may be freed by zil_sync(). */ 1473 mutex_exit(&zilog->zl_lock); 1474 1475 mutex_enter(&zilog->zl_lwb_io_lock); 1476 ASSERT3U(zilog->zl_lwb_inflight[txg & TXG_MASK], >, 0); 1477 zilog->zl_lwb_inflight[txg & TXG_MASK]--; 1478 if (zilog->zl_lwb_inflight[txg & TXG_MASK] == 0) 1479 cv_broadcast(&zilog->zl_lwb_io_cv); 1480 mutex_exit(&zilog->zl_lwb_io_lock); 1481 } 1482 1483 /* 1484 * Wait for the completion of all issued write/flush of that txg provided. 1485 * It guarantees zil_lwb_flush_vdevs_done() is called and returned. 1486 */ 1487 static void 1488 zil_lwb_flush_wait_all(zilog_t *zilog, uint64_t txg) 1489 { 1490 ASSERT3U(txg, ==, spa_syncing_txg(zilog->zl_spa)); 1491 1492 mutex_enter(&zilog->zl_lwb_io_lock); 1493 while (zilog->zl_lwb_inflight[txg & TXG_MASK] > 0) 1494 cv_wait(&zilog->zl_lwb_io_cv, &zilog->zl_lwb_io_lock); 1495 mutex_exit(&zilog->zl_lwb_io_lock); 1496 1497 #ifdef ZFS_DEBUG 1498 mutex_enter(&zilog->zl_lock); 1499 mutex_enter(&zilog->zl_lwb_io_lock); 1500 lwb_t *lwb = list_head(&zilog->zl_lwb_list); 1501 while (lwb != NULL) { 1502 if (lwb->lwb_issued_txg <= txg) { 1503 ASSERT(lwb->lwb_state != LWB_STATE_ISSUED); 1504 ASSERT(lwb->lwb_state != LWB_STATE_WRITE_DONE); 1505 IMPLY(lwb->lwb_issued_txg > 0, 1506 lwb->lwb_state == LWB_STATE_FLUSH_DONE); 1507 } 1508 IMPLY(lwb->lwb_state == LWB_STATE_WRITE_DONE || 1509 lwb->lwb_state == LWB_STATE_FLUSH_DONE, 1510 lwb->lwb_buf == NULL); 1511 lwb = list_next(&zilog->zl_lwb_list, lwb); 1512 } 1513 mutex_exit(&zilog->zl_lwb_io_lock); 1514 mutex_exit(&zilog->zl_lock); 1515 #endif 1516 } 1517 1518 /* 1519 * This is called when an lwb's write zio completes. The callback's 1520 * purpose is to issue the DKIOCFLUSHWRITECACHE commands for the vdevs 1521 * in the lwb's lwb_vdev_tree. The tree will contain the vdevs involved 1522 * in writing out this specific lwb's data, and in the case that cache 1523 * flushes have been deferred, vdevs involved in writing the data for 1524 * previous lwbs. The writes corresponding to all the vdevs in the 1525 * lwb_vdev_tree will have completed by the time this is called, due to 1526 * the zio dependencies configured in zil_lwb_set_zio_dependency(), 1527 * which takes deferred flushes into account. The lwb will be "done" 1528 * once zil_lwb_flush_vdevs_done() is called, which occurs in the zio 1529 * completion callback for the lwb's root zio. 1530 */ 1531 static void 1532 zil_lwb_write_done(zio_t *zio) 1533 { 1534 lwb_t *lwb = zio->io_private; 1535 spa_t *spa = zio->io_spa; 1536 zilog_t *zilog = lwb->lwb_zilog; 1537 avl_tree_t *t = &lwb->lwb_vdev_tree; 1538 void *cookie = NULL; 1539 zil_vdev_node_t *zv; 1540 lwb_t *nlwb; 1541 1542 ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0); 1543 1544 abd_free(zio->io_abd); 1545 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 1546 lwb->lwb_buf = NULL; 1547 1548 mutex_enter(&zilog->zl_lock); 1549 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED); 1550 lwb->lwb_state = LWB_STATE_WRITE_DONE; 1551 lwb->lwb_child_zio = NULL; 1552 lwb->lwb_write_zio = NULL; 1553 1554 /* 1555 * If nlwb is not yet issued, zil_lwb_set_zio_dependency() is not 1556 * called for it yet, and when it will be, it won't be able to make 1557 * its write ZIO a parent this ZIO. In such case we can not defer 1558 * our flushes or below may be a race between the done callbacks. 1559 */ 1560 nlwb = list_next(&zilog->zl_lwb_list, lwb); 1561 if (nlwb && nlwb->lwb_state != LWB_STATE_ISSUED) 1562 nlwb = NULL; 1563 mutex_exit(&zilog->zl_lock); 1564 1565 if (avl_numnodes(t) == 0) 1566 return; 1567 1568 /* 1569 * If there was an IO error, we're not going to call zio_flush() 1570 * on these vdevs, so we simply empty the tree and free the 1571 * nodes. We avoid calling zio_flush() since there isn't any 1572 * good reason for doing so, after the lwb block failed to be 1573 * written out. 1574 * 1575 * Additionally, we don't perform any further error handling at 1576 * this point (e.g. setting "zcw_zio_error" appropriately), as 1577 * we expect that to occur in "zil_lwb_flush_vdevs_done" (thus, 1578 * we expect any error seen here, to have been propagated to 1579 * that function). 1580 */ 1581 if (zio->io_error != 0) { 1582 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) 1583 kmem_free(zv, sizeof (*zv)); 1584 return; 1585 } 1586 1587 /* 1588 * If this lwb does not have any threads waiting for it to 1589 * complete, we want to defer issuing the DKIOCFLUSHWRITECACHE 1590 * command to the vdevs written to by "this" lwb, and instead 1591 * rely on the "next" lwb to handle the DKIOCFLUSHWRITECACHE 1592 * command for those vdevs. Thus, we merge the vdev tree of 1593 * "this" lwb with the vdev tree of the "next" lwb in the list, 1594 * and assume the "next" lwb will handle flushing the vdevs (or 1595 * deferring the flush(s) again). 1596 * 1597 * This is a useful performance optimization, especially for 1598 * workloads with lots of async write activity and few sync 1599 * write and/or fsync activity, as it has the potential to 1600 * coalesce multiple flush commands to a vdev into one. 1601 */ 1602 if (list_is_empty(&lwb->lwb_waiters) && nlwb != NULL) { 1603 zil_lwb_flush_defer(lwb, nlwb); 1604 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree)); 1605 return; 1606 } 1607 1608 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) { 1609 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev); 1610 if (vd != NULL && !vd->vdev_nowritecache) { 1611 /* 1612 * The "ZIO_FLAG_DONT_PROPAGATE" is currently 1613 * always used within "zio_flush". This means, 1614 * any errors when flushing the vdev(s), will 1615 * (unfortunately) not be handled correctly, 1616 * since these "zio_flush" errors will not be 1617 * propagated up to "zil_lwb_flush_vdevs_done". 1618 */ 1619 zio_flush(lwb->lwb_root_zio, vd); 1620 } 1621 kmem_free(zv, sizeof (*zv)); 1622 } 1623 } 1624 1625 /* 1626 * Build the zio dependency chain, which is used to preserve the ordering of 1627 * lwb completions that is required by the semantics of the ZIL. Each new lwb 1628 * zio becomes a parent of the previous lwb zio, such that the new lwb's zio 1629 * cannot complete until the previous lwb's zio completes. 1630 * 1631 * This is required by the semantics of zil_commit(): the commit waiters 1632 * attached to the lwbs will be woken in the lwb zio's completion callback, 1633 * so this zio dependency graph ensures the waiters are woken in the correct 1634 * order (the same order the lwbs were created). 1635 */ 1636 static void 1637 zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb) 1638 { 1639 ASSERT(MUTEX_HELD(&zilog->zl_lock)); 1640 1641 lwb_t *prev_lwb = list_prev(&zilog->zl_lwb_list, lwb); 1642 if (prev_lwb == NULL || 1643 prev_lwb->lwb_state == LWB_STATE_FLUSH_DONE) 1644 return; 1645 1646 /* 1647 * If the previous lwb's write hasn't already completed, we also want 1648 * to order the completion of the lwb write zios (above, we only order 1649 * the completion of the lwb root zios). This is required because of 1650 * how we can defer the DKIOCFLUSHWRITECACHE commands for each lwb. 1651 * 1652 * When the DKIOCFLUSHWRITECACHE commands are deferred, the previous 1653 * lwb will rely on this lwb to flush the vdevs written to by that 1654 * previous lwb. Thus, we need to ensure this lwb doesn't issue the 1655 * flush until after the previous lwb's write completes. We ensure 1656 * this ordering by setting the zio parent/child relationship here. 1657 * 1658 * Without this relationship on the lwb's write zio, it's possible 1659 * for this lwb's write to complete prior to the previous lwb's write 1660 * completing; and thus, the vdevs for the previous lwb would be 1661 * flushed prior to that lwb's data being written to those vdevs (the 1662 * vdevs are flushed in the lwb write zio's completion handler, 1663 * zil_lwb_write_done()). 1664 */ 1665 if (prev_lwb->lwb_state == LWB_STATE_ISSUED) { 1666 ASSERT3P(prev_lwb->lwb_write_zio, !=, NULL); 1667 zio_add_child(lwb->lwb_write_zio, prev_lwb->lwb_write_zio); 1668 } else { 1669 ASSERT3S(prev_lwb->lwb_state, ==, LWB_STATE_WRITE_DONE); 1670 } 1671 1672 ASSERT3P(prev_lwb->lwb_root_zio, !=, NULL); 1673 zio_add_child(lwb->lwb_root_zio, prev_lwb->lwb_root_zio); 1674 } 1675 1676 1677 /* 1678 * This function's purpose is to "open" an lwb such that it is ready to 1679 * accept new itxs being committed to it. This function is idempotent; if 1680 * the passed in lwb has already been opened, it is essentially a no-op. 1681 */ 1682 static void 1683 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb) 1684 { 1685 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1686 1687 if (lwb->lwb_state != LWB_STATE_NEW) { 1688 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED); 1689 return; 1690 } 1691 1692 mutex_enter(&zilog->zl_lock); 1693 lwb->lwb_state = LWB_STATE_OPENED; 1694 zilog->zl_last_lwb_opened = lwb; 1695 mutex_exit(&zilog->zl_lock); 1696 } 1697 1698 /* 1699 * Define a limited set of intent log block sizes. 1700 * 1701 * These must be a multiple of 4KB. Note only the amount used (again 1702 * aligned to 4KB) actually gets written. However, we can't always just 1703 * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted. 1704 */ 1705 static const struct { 1706 uint64_t limit; 1707 uint64_t blksz; 1708 } zil_block_buckets[] = { 1709 { 4096, 4096 }, /* non TX_WRITE */ 1710 { 8192 + 4096, 8192 + 4096 }, /* database */ 1711 { 32768 + 4096, 32768 + 4096 }, /* NFS writes */ 1712 { 65536 + 4096, 65536 + 4096 }, /* 64KB writes */ 1713 { 131072, 131072 }, /* < 128KB writes */ 1714 { 131072 +4096, 65536 + 4096 }, /* 128KB writes */ 1715 { UINT64_MAX, SPA_OLD_MAXBLOCKSIZE}, /* > 128KB writes */ 1716 }; 1717 1718 /* 1719 * Maximum block size used by the ZIL. This is picked up when the ZIL is 1720 * initialized. Otherwise this should not be used directly; see 1721 * zl_max_block_size instead. 1722 */ 1723 static uint_t zil_maxblocksize = SPA_OLD_MAXBLOCKSIZE; 1724 1725 /* 1726 * Close the log block for being issued and allocate the next one. 1727 * Has to be called under zl_issuer_lock to chain more lwbs. 1728 */ 1729 static lwb_t * 1730 zil_lwb_write_close(zilog_t *zilog, lwb_t *lwb, lwb_state_t state) 1731 { 1732 int i; 1733 1734 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1735 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED); 1736 lwb->lwb_state = LWB_STATE_CLOSED; 1737 1738 /* 1739 * If there was an allocation failure then returned NULL will trigger 1740 * zil_commit_writer_stall() at the caller. This is inherently racy, 1741 * since allocation may not have happened yet. 1742 */ 1743 if (lwb->lwb_error != 0) 1744 return (NULL); 1745 1746 /* 1747 * Log blocks are pre-allocated. Here we select the size of the next 1748 * block, based on size used in the last block. 1749 * - first find the smallest bucket that will fit the block from a 1750 * limited set of block sizes. This is because it's faster to write 1751 * blocks allocated from the same metaslab as they are adjacent or 1752 * close. 1753 * - next find the maximum from the new suggested size and an array of 1754 * previous sizes. This lessens a picket fence effect of wrongly 1755 * guessing the size if we have a stream of say 2k, 64k, 2k, 64k 1756 * requests. 1757 * 1758 * Note we only write what is used, but we can't just allocate 1759 * the maximum block size because we can exhaust the available 1760 * pool log space. 1761 */ 1762 uint64_t zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t); 1763 for (i = 0; zil_blksz > zil_block_buckets[i].limit; i++) 1764 continue; 1765 zil_blksz = MIN(zil_block_buckets[i].blksz, zilog->zl_max_block_size); 1766 zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz; 1767 for (i = 0; i < ZIL_PREV_BLKS; i++) 1768 zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]); 1769 DTRACE_PROBE3(zil__block__size, zilog_t *, zilog, 1770 uint64_t, zil_blksz, 1771 uint64_t, zilog->zl_prev_blks[zilog->zl_prev_rotor]); 1772 zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1); 1773 1774 return (zil_alloc_lwb(zilog, zil_blksz, NULL, 0, 0, state)); 1775 } 1776 1777 /* 1778 * Finalize previously closed block and issue the write zio. 1779 */ 1780 static void 1781 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb) 1782 { 1783 spa_t *spa = zilog->zl_spa; 1784 zil_chain_t *zilc; 1785 boolean_t slog; 1786 zbookmark_phys_t zb; 1787 zio_priority_t prio; 1788 int error; 1789 1790 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_CLOSED); 1791 1792 /* Actually fill the lwb with the data. */ 1793 for (itx_t *itx = list_head(&lwb->lwb_itxs); itx; 1794 itx = list_next(&lwb->lwb_itxs, itx)) 1795 zil_lwb_commit(zilog, lwb, itx); 1796 lwb->lwb_nused = lwb->lwb_nfilled; 1797 1798 lwb->lwb_root_zio = zio_root(spa, zil_lwb_flush_vdevs_done, lwb, 1799 ZIO_FLAG_CANFAIL); 1800 1801 /* 1802 * The lwb is now ready to be issued, but it can be only if it already 1803 * got its block pointer allocated or the allocation has failed. 1804 * Otherwise leave it as-is, relying on some other thread to issue it 1805 * after allocating its block pointer via calling zil_lwb_write_issue() 1806 * for the previous lwb(s) in the chain. 1807 */ 1808 mutex_enter(&zilog->zl_lock); 1809 lwb->lwb_state = LWB_STATE_READY; 1810 if (BP_IS_HOLE(&lwb->lwb_blk) && lwb->lwb_error == 0) { 1811 mutex_exit(&zilog->zl_lock); 1812 return; 1813 } 1814 mutex_exit(&zilog->zl_lock); 1815 1816 next_lwb: 1817 if (lwb->lwb_slim) 1818 zilc = (zil_chain_t *)lwb->lwb_buf; 1819 else 1820 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_nmax); 1821 int wsz = lwb->lwb_sz; 1822 if (lwb->lwb_error == 0) { 1823 abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf, lwb->lwb_sz); 1824 if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk) 1825 prio = ZIO_PRIORITY_SYNC_WRITE; 1826 else 1827 prio = ZIO_PRIORITY_ASYNC_WRITE; 1828 SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1829 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, 1830 lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]); 1831 lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio, spa, 0, 1832 &lwb->lwb_blk, lwb_abd, lwb->lwb_sz, zil_lwb_write_done, 1833 lwb, prio, ZIO_FLAG_CANFAIL, &zb); 1834 zil_lwb_add_block(lwb, &lwb->lwb_blk); 1835 1836 if (lwb->lwb_slim) { 1837 /* For Slim ZIL only write what is used. */ 1838 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, 1839 int); 1840 ASSERT3S(wsz, <=, lwb->lwb_sz); 1841 zio_shrink(lwb->lwb_write_zio, wsz); 1842 wsz = lwb->lwb_write_zio->io_size; 1843 } 1844 memset(lwb->lwb_buf + lwb->lwb_nused, 0, wsz - lwb->lwb_nused); 1845 zilc->zc_pad = 0; 1846 zilc->zc_nused = lwb->lwb_nused; 1847 zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum; 1848 } else { 1849 /* 1850 * We can't write the lwb if there was an allocation failure, 1851 * so create a null zio instead just to maintain dependencies. 1852 */ 1853 lwb->lwb_write_zio = zio_null(lwb->lwb_root_zio, spa, NULL, 1854 zil_lwb_write_done, lwb, ZIO_FLAG_CANFAIL); 1855 lwb->lwb_write_zio->io_error = lwb->lwb_error; 1856 } 1857 if (lwb->lwb_child_zio) 1858 zio_add_child(lwb->lwb_write_zio, lwb->lwb_child_zio); 1859 1860 /* 1861 * Open transaction to allocate the next block pointer. 1862 */ 1863 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os); 1864 VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE)); 1865 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 1866 uint64_t txg = dmu_tx_get_txg(tx); 1867 1868 /* 1869 * Allocate next the block pointer unless we are already in error. 1870 */ 1871 lwb_t *nlwb = list_next(&zilog->zl_lwb_list, lwb); 1872 blkptr_t *bp = &zilc->zc_next_blk; 1873 BP_ZERO(bp); 1874 error = lwb->lwb_error; 1875 if (error == 0) { 1876 error = zio_alloc_zil(spa, zilog->zl_os, txg, bp, nlwb->lwb_sz, 1877 &slog); 1878 } 1879 if (error == 0) { 1880 ASSERT3U(bp->blk_birth, ==, txg); 1881 BP_SET_CHECKSUM(bp, nlwb->lwb_slim ? ZIO_CHECKSUM_ZILOG2 : 1882 ZIO_CHECKSUM_ZILOG); 1883 bp->blk_cksum = lwb->lwb_blk.blk_cksum; 1884 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++; 1885 } 1886 1887 /* 1888 * Reduce TXG open time by incrementing inflight counter and committing 1889 * the transaciton. zil_sync() will wait for it to return to zero. 1890 */ 1891 mutex_enter(&zilog->zl_lwb_io_lock); 1892 lwb->lwb_issued_txg = txg; 1893 zilog->zl_lwb_inflight[txg & TXG_MASK]++; 1894 zilog->zl_lwb_max_issued_txg = MAX(txg, zilog->zl_lwb_max_issued_txg); 1895 mutex_exit(&zilog->zl_lwb_io_lock); 1896 dmu_tx_commit(tx); 1897 1898 spa_config_enter(spa, SCL_STATE, lwb, RW_READER); 1899 1900 /* 1901 * We've completed all potentially blocking operations. Update the 1902 * nlwb and allow it proceed without possible lock order reversals. 1903 */ 1904 mutex_enter(&zilog->zl_lock); 1905 zil_lwb_set_zio_dependency(zilog, lwb); 1906 lwb->lwb_state = LWB_STATE_ISSUED; 1907 1908 if (nlwb) { 1909 nlwb->lwb_blk = *bp; 1910 nlwb->lwb_error = error; 1911 nlwb->lwb_slog = slog; 1912 nlwb->lwb_alloc_txg = txg; 1913 if (nlwb->lwb_state != LWB_STATE_READY) 1914 nlwb = NULL; 1915 } 1916 mutex_exit(&zilog->zl_lock); 1917 1918 if (lwb->lwb_slog) { 1919 ZIL_STAT_BUMP(zilog, zil_itx_metaslab_slog_count); 1920 ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_bytes, 1921 lwb->lwb_nused); 1922 ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_write, 1923 wsz); 1924 ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_alloc, 1925 BP_GET_LSIZE(&lwb->lwb_blk)); 1926 } else { 1927 ZIL_STAT_BUMP(zilog, zil_itx_metaslab_normal_count); 1928 ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_bytes, 1929 lwb->lwb_nused); 1930 ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_write, 1931 wsz); 1932 ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_alloc, 1933 BP_GET_LSIZE(&lwb->lwb_blk)); 1934 } 1935 lwb->lwb_issued_timestamp = gethrtime(); 1936 if (lwb->lwb_child_zio) 1937 zio_nowait(lwb->lwb_child_zio); 1938 zio_nowait(lwb->lwb_write_zio); 1939 zio_nowait(lwb->lwb_root_zio); 1940 1941 /* 1942 * If nlwb was ready when we gave it the block pointer, 1943 * it is on us to issue it and possibly following ones. 1944 */ 1945 lwb = nlwb; 1946 if (lwb) 1947 goto next_lwb; 1948 } 1949 1950 /* 1951 * Maximum amount of data that can be put into single log block. 1952 */ 1953 uint64_t 1954 zil_max_log_data(zilog_t *zilog, size_t hdrsize) 1955 { 1956 return (zilog->zl_max_block_size - sizeof (zil_chain_t) - hdrsize); 1957 } 1958 1959 /* 1960 * Maximum amount of log space we agree to waste to reduce number of 1961 * WR_NEED_COPY chunks to reduce zl_get_data() overhead (~6%). 1962 */ 1963 static inline uint64_t 1964 zil_max_waste_space(zilog_t *zilog) 1965 { 1966 return (zil_max_log_data(zilog, sizeof (lr_write_t)) / 16); 1967 } 1968 1969 /* 1970 * Maximum amount of write data for WR_COPIED. For correctness, consumers 1971 * must fall back to WR_NEED_COPY if we can't fit the entire record into one 1972 * maximum sized log block, because each WR_COPIED record must fit in a 1973 * single log block. Below that it is a tradeoff of additional memory copy 1974 * and possibly worse log space efficiency vs additional range lock/unlock. 1975 */ 1976 static uint_t zil_maxcopied = 7680; 1977 1978 uint64_t 1979 zil_max_copied_data(zilog_t *zilog) 1980 { 1981 uint64_t max_data = zil_max_log_data(zilog, sizeof (lr_write_t)); 1982 return (MIN(max_data, zil_maxcopied)); 1983 } 1984 1985 /* 1986 * Estimate space needed in the lwb for the itx. Allocate more lwbs or 1987 * split the itx as needed, but don't touch the actual transaction data. 1988 * Has to be called under zl_issuer_lock to call zil_lwb_write_close() 1989 * to chain more lwbs. 1990 */ 1991 static lwb_t * 1992 zil_lwb_assign(zilog_t *zilog, lwb_t *lwb, itx_t *itx, list_t *ilwbs) 1993 { 1994 itx_t *citx; 1995 lr_t *lr, *clr; 1996 lr_write_t *lrw; 1997 uint64_t dlen, dnow, lwb_sp, reclen, max_log_data; 1998 1999 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2000 ASSERT3P(lwb, !=, NULL); 2001 ASSERT3P(lwb->lwb_buf, !=, NULL); 2002 2003 zil_lwb_write_open(zilog, lwb); 2004 2005 lr = &itx->itx_lr; 2006 lrw = (lr_write_t *)lr; 2007 2008 /* 2009 * A commit itx doesn't represent any on-disk state; instead 2010 * it's simply used as a place holder on the commit list, and 2011 * provides a mechanism for attaching a "commit waiter" onto the 2012 * correct lwb (such that the waiter can be signalled upon 2013 * completion of that lwb). Thus, we don't process this itx's 2014 * log record if it's a commit itx (these itx's don't have log 2015 * records), and instead link the itx's waiter onto the lwb's 2016 * list of waiters. 2017 * 2018 * For more details, see the comment above zil_commit(). 2019 */ 2020 if (lr->lrc_txtype == TX_COMMIT) { 2021 zil_commit_waiter_link_lwb(itx->itx_private, lwb); 2022 list_insert_tail(&lwb->lwb_itxs, itx); 2023 return (lwb); 2024 } 2025 2026 if (lr->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) { 2027 dlen = P2ROUNDUP_TYPED( 2028 lrw->lr_length, sizeof (uint64_t), uint64_t); 2029 } else { 2030 dlen = 0; 2031 } 2032 reclen = lr->lrc_reclen; 2033 zilog->zl_cur_used += (reclen + dlen); 2034 2035 cont: 2036 /* 2037 * If this record won't fit in the current log block, start a new one. 2038 * For WR_NEED_COPY optimize layout for minimal number of chunks. 2039 */ 2040 lwb_sp = lwb->lwb_nmax - lwb->lwb_nused; 2041 max_log_data = zil_max_log_data(zilog, sizeof (lr_write_t)); 2042 if (reclen > lwb_sp || (reclen + dlen > lwb_sp && 2043 lwb_sp < zil_max_waste_space(zilog) && 2044 (dlen % max_log_data == 0 || 2045 lwb_sp < reclen + dlen % max_log_data))) { 2046 list_insert_tail(ilwbs, lwb); 2047 lwb = zil_lwb_write_close(zilog, lwb, LWB_STATE_OPENED); 2048 if (lwb == NULL) 2049 return (NULL); 2050 lwb_sp = lwb->lwb_nmax - lwb->lwb_nused; 2051 2052 /* 2053 * There must be enough space in the new, empty log block to 2054 * hold reclen. For WR_COPIED, we need to fit the whole 2055 * record in one block, and reclen is the header size + the 2056 * data size. For WR_NEED_COPY, we can create multiple 2057 * records, splitting the data into multiple blocks, so we 2058 * only need to fit one word of data per block; in this case 2059 * reclen is just the header size (no data). 2060 */ 2061 ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp); 2062 } 2063 2064 dnow = MIN(dlen, lwb_sp - reclen); 2065 if (dlen > dnow) { 2066 ASSERT3U(lr->lrc_txtype, ==, TX_WRITE); 2067 ASSERT3U(itx->itx_wr_state, ==, WR_NEED_COPY); 2068 citx = zil_itx_clone(itx); 2069 clr = &citx->itx_lr; 2070 lr_write_t *clrw = (lr_write_t *)clr; 2071 clrw->lr_length = dnow; 2072 lrw->lr_offset += dnow; 2073 lrw->lr_length -= dnow; 2074 } else { 2075 citx = itx; 2076 clr = lr; 2077 } 2078 2079 /* 2080 * We're actually making an entry, so update lrc_seq to be the 2081 * log record sequence number. Note that this is generally not 2082 * equal to the itx sequence number because not all transactions 2083 * are synchronous, and sometimes spa_sync() gets there first. 2084 */ 2085 clr->lrc_seq = ++zilog->zl_lr_seq; 2086 2087 lwb->lwb_nused += reclen + dnow; 2088 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_nmax); 2089 ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t))); 2090 2091 zil_lwb_add_txg(lwb, lr->lrc_txg); 2092 list_insert_tail(&lwb->lwb_itxs, citx); 2093 2094 dlen -= dnow; 2095 if (dlen > 0) { 2096 zilog->zl_cur_used += reclen; 2097 goto cont; 2098 } 2099 2100 if (lr->lrc_txtype == TX_WRITE && 2101 lr->lrc_txg > spa_freeze_txg(zilog->zl_spa)) 2102 txg_wait_synced(zilog->zl_dmu_pool, lr->lrc_txg); 2103 2104 return (lwb); 2105 } 2106 2107 /* 2108 * Fill the actual transaction data into the lwb, following zil_lwb_assign(). 2109 * Does not require locking. 2110 */ 2111 static void 2112 zil_lwb_commit(zilog_t *zilog, lwb_t *lwb, itx_t *itx) 2113 { 2114 lr_t *lr, *lrb; 2115 lr_write_t *lrw, *lrwb; 2116 char *lr_buf; 2117 uint64_t dlen, reclen; 2118 2119 lr = &itx->itx_lr; 2120 lrw = (lr_write_t *)lr; 2121 2122 if (lr->lrc_txtype == TX_COMMIT) 2123 return; 2124 2125 if (lr->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) { 2126 dlen = P2ROUNDUP_TYPED( 2127 lrw->lr_length, sizeof (uint64_t), uint64_t); 2128 } else { 2129 dlen = 0; 2130 } 2131 reclen = lr->lrc_reclen; 2132 ASSERT3U(reclen + dlen, <=, lwb->lwb_nused - lwb->lwb_nfilled); 2133 2134 lr_buf = lwb->lwb_buf + lwb->lwb_nfilled; 2135 memcpy(lr_buf, lr, reclen); 2136 lrb = (lr_t *)lr_buf; /* Like lr, but inside lwb. */ 2137 lrwb = (lr_write_t *)lrb; /* Like lrw, but inside lwb. */ 2138 2139 ZIL_STAT_BUMP(zilog, zil_itx_count); 2140 2141 /* 2142 * If it's a write, fetch the data or get its blkptr as appropriate. 2143 */ 2144 if (lr->lrc_txtype == TX_WRITE) { 2145 if (itx->itx_wr_state == WR_COPIED) { 2146 ZIL_STAT_BUMP(zilog, zil_itx_copied_count); 2147 ZIL_STAT_INCR(zilog, zil_itx_copied_bytes, 2148 lrw->lr_length); 2149 } else { 2150 char *dbuf; 2151 int error; 2152 2153 if (itx->itx_wr_state == WR_NEED_COPY) { 2154 dbuf = lr_buf + reclen; 2155 lrb->lrc_reclen += dlen; 2156 ZIL_STAT_BUMP(zilog, zil_itx_needcopy_count); 2157 ZIL_STAT_INCR(zilog, zil_itx_needcopy_bytes, 2158 dlen); 2159 } else { 2160 ASSERT3S(itx->itx_wr_state, ==, WR_INDIRECT); 2161 dbuf = NULL; 2162 ZIL_STAT_BUMP(zilog, zil_itx_indirect_count); 2163 ZIL_STAT_INCR(zilog, zil_itx_indirect_bytes, 2164 lrw->lr_length); 2165 if (lwb->lwb_child_zio == NULL) { 2166 lwb->lwb_child_zio = zio_root( 2167 zilog->zl_spa, NULL, NULL, 2168 ZIO_FLAG_CANFAIL); 2169 } 2170 } 2171 2172 /* 2173 * The "lwb_child_zio" we pass in will become a child of 2174 * "lwb_write_zio", when one is created, so one will be 2175 * a parent of any zio's created by the "zl_get_data". 2176 * This way "lwb_write_zio" will first wait for children 2177 * block pointers before own writing, and then for their 2178 * writing completion before the vdev cache flushing. 2179 */ 2180 error = zilog->zl_get_data(itx->itx_private, 2181 itx->itx_gen, lrwb, dbuf, lwb, 2182 lwb->lwb_child_zio); 2183 if (dbuf != NULL && error == 0) { 2184 /* Zero any padding bytes in the last block. */ 2185 memset((char *)dbuf + lrwb->lr_length, 0, 2186 dlen - lrwb->lr_length); 2187 } 2188 2189 /* 2190 * Typically, the only return values we should see from 2191 * ->zl_get_data() are 0, EIO, ENOENT, EEXIST or 2192 * EALREADY. However, it is also possible to see other 2193 * error values such as ENOSPC or EINVAL from 2194 * dmu_read() -> dnode_hold() -> dnode_hold_impl() or 2195 * ENXIO as well as a multitude of others from the 2196 * block layer through dmu_buf_hold() -> dbuf_read() 2197 * -> zio_wait(), as well as through dmu_read() -> 2198 * dnode_hold() -> dnode_hold_impl() -> dbuf_read() -> 2199 * zio_wait(). When these errors happen, we can assume 2200 * that neither an immediate write nor an indirect 2201 * write occurred, so we need to fall back to 2202 * txg_wait_synced(). This is unusual, so we print to 2203 * dmesg whenever one of these errors occurs. 2204 */ 2205 switch (error) { 2206 case 0: 2207 break; 2208 default: 2209 cmn_err(CE_WARN, "zil_lwb_commit() received " 2210 "unexpected error %d from ->zl_get_data()" 2211 ". Falling back to txg_wait_synced().", 2212 error); 2213 zfs_fallthrough; 2214 case EIO: 2215 txg_wait_synced(zilog->zl_dmu_pool, 2216 lr->lrc_txg); 2217 zfs_fallthrough; 2218 case ENOENT: 2219 zfs_fallthrough; 2220 case EEXIST: 2221 zfs_fallthrough; 2222 case EALREADY: 2223 return; 2224 } 2225 } 2226 } 2227 2228 lwb->lwb_nfilled += reclen + dlen; 2229 ASSERT3S(lwb->lwb_nfilled, <=, lwb->lwb_nused); 2230 ASSERT0(P2PHASE(lwb->lwb_nfilled, sizeof (uint64_t))); 2231 } 2232 2233 itx_t * 2234 zil_itx_create(uint64_t txtype, size_t olrsize) 2235 { 2236 size_t itxsize, lrsize; 2237 itx_t *itx; 2238 2239 lrsize = P2ROUNDUP_TYPED(olrsize, sizeof (uint64_t), size_t); 2240 itxsize = offsetof(itx_t, itx_lr) + lrsize; 2241 2242 itx = zio_data_buf_alloc(itxsize); 2243 itx->itx_lr.lrc_txtype = txtype; 2244 itx->itx_lr.lrc_reclen = lrsize; 2245 itx->itx_lr.lrc_seq = 0; /* defensive */ 2246 memset((char *)&itx->itx_lr + olrsize, 0, lrsize - olrsize); 2247 itx->itx_sync = B_TRUE; /* default is synchronous */ 2248 itx->itx_callback = NULL; 2249 itx->itx_callback_data = NULL; 2250 itx->itx_size = itxsize; 2251 2252 return (itx); 2253 } 2254 2255 static itx_t * 2256 zil_itx_clone(itx_t *oitx) 2257 { 2258 itx_t *itx = zio_data_buf_alloc(oitx->itx_size); 2259 memcpy(itx, oitx, oitx->itx_size); 2260 itx->itx_callback = NULL; 2261 itx->itx_callback_data = NULL; 2262 return (itx); 2263 } 2264 2265 void 2266 zil_itx_destroy(itx_t *itx) 2267 { 2268 IMPLY(itx->itx_lr.lrc_txtype == TX_COMMIT, itx->itx_callback == NULL); 2269 IMPLY(itx->itx_callback != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT); 2270 2271 if (itx->itx_callback != NULL) 2272 itx->itx_callback(itx->itx_callback_data); 2273 2274 zio_data_buf_free(itx, itx->itx_size); 2275 } 2276 2277 /* 2278 * Free up the sync and async itxs. The itxs_t has already been detached 2279 * so no locks are needed. 2280 */ 2281 static void 2282 zil_itxg_clean(void *arg) 2283 { 2284 itx_t *itx; 2285 list_t *list; 2286 avl_tree_t *t; 2287 void *cookie; 2288 itxs_t *itxs = arg; 2289 itx_async_node_t *ian; 2290 2291 list = &itxs->i_sync_list; 2292 while ((itx = list_remove_head(list)) != NULL) { 2293 /* 2294 * In the general case, commit itxs will not be found 2295 * here, as they'll be committed to an lwb via 2296 * zil_lwb_assign(), and free'd in that function. Having 2297 * said that, it is still possible for commit itxs to be 2298 * found here, due to the following race: 2299 * 2300 * - a thread calls zil_commit() which assigns the 2301 * commit itx to a per-txg i_sync_list 2302 * - zil_itxg_clean() is called (e.g. via spa_sync()) 2303 * while the waiter is still on the i_sync_list 2304 * 2305 * There's nothing to prevent syncing the txg while the 2306 * waiter is on the i_sync_list. This normally doesn't 2307 * happen because spa_sync() is slower than zil_commit(), 2308 * but if zil_commit() calls txg_wait_synced() (e.g. 2309 * because zil_create() or zil_commit_writer_stall() is 2310 * called) we will hit this case. 2311 */ 2312 if (itx->itx_lr.lrc_txtype == TX_COMMIT) 2313 zil_commit_waiter_skip(itx->itx_private); 2314 2315 zil_itx_destroy(itx); 2316 } 2317 2318 cookie = NULL; 2319 t = &itxs->i_async_tree; 2320 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { 2321 list = &ian->ia_list; 2322 while ((itx = list_remove_head(list)) != NULL) { 2323 /* commit itxs should never be on the async lists. */ 2324 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT); 2325 zil_itx_destroy(itx); 2326 } 2327 list_destroy(list); 2328 kmem_free(ian, sizeof (itx_async_node_t)); 2329 } 2330 avl_destroy(t); 2331 2332 kmem_free(itxs, sizeof (itxs_t)); 2333 } 2334 2335 static int 2336 zil_aitx_compare(const void *x1, const void *x2) 2337 { 2338 const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid; 2339 const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid; 2340 2341 return (TREE_CMP(o1, o2)); 2342 } 2343 2344 /* 2345 * Remove all async itx with the given oid. 2346 */ 2347 void 2348 zil_remove_async(zilog_t *zilog, uint64_t oid) 2349 { 2350 uint64_t otxg, txg; 2351 itx_async_node_t *ian; 2352 avl_tree_t *t; 2353 avl_index_t where; 2354 list_t clean_list; 2355 itx_t *itx; 2356 2357 ASSERT(oid != 0); 2358 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node)); 2359 2360 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 2361 otxg = ZILTEST_TXG; 2362 else 2363 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 2364 2365 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 2366 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 2367 2368 mutex_enter(&itxg->itxg_lock); 2369 if (itxg->itxg_txg != txg) { 2370 mutex_exit(&itxg->itxg_lock); 2371 continue; 2372 } 2373 2374 /* 2375 * Locate the object node and append its list. 2376 */ 2377 t = &itxg->itxg_itxs->i_async_tree; 2378 ian = avl_find(t, &oid, &where); 2379 if (ian != NULL) 2380 list_move_tail(&clean_list, &ian->ia_list); 2381 mutex_exit(&itxg->itxg_lock); 2382 } 2383 while ((itx = list_remove_head(&clean_list)) != NULL) { 2384 /* commit itxs should never be on the async lists. */ 2385 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT); 2386 zil_itx_destroy(itx); 2387 } 2388 list_destroy(&clean_list); 2389 } 2390 2391 void 2392 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx) 2393 { 2394 uint64_t txg; 2395 itxg_t *itxg; 2396 itxs_t *itxs, *clean = NULL; 2397 2398 /* 2399 * Ensure the data of a renamed file is committed before the rename. 2400 */ 2401 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME) 2402 zil_async_to_sync(zilog, itx->itx_oid); 2403 2404 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) 2405 txg = ZILTEST_TXG; 2406 else 2407 txg = dmu_tx_get_txg(tx); 2408 2409 itxg = &zilog->zl_itxg[txg & TXG_MASK]; 2410 mutex_enter(&itxg->itxg_lock); 2411 itxs = itxg->itxg_itxs; 2412 if (itxg->itxg_txg != txg) { 2413 if (itxs != NULL) { 2414 /* 2415 * The zil_clean callback hasn't got around to cleaning 2416 * this itxg. Save the itxs for release below. 2417 * This should be rare. 2418 */ 2419 zfs_dbgmsg("zil_itx_assign: missed itx cleanup for " 2420 "txg %llu", (u_longlong_t)itxg->itxg_txg); 2421 clean = itxg->itxg_itxs; 2422 } 2423 itxg->itxg_txg = txg; 2424 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), 2425 KM_SLEEP); 2426 2427 list_create(&itxs->i_sync_list, sizeof (itx_t), 2428 offsetof(itx_t, itx_node)); 2429 avl_create(&itxs->i_async_tree, zil_aitx_compare, 2430 sizeof (itx_async_node_t), 2431 offsetof(itx_async_node_t, ia_node)); 2432 } 2433 if (itx->itx_sync) { 2434 list_insert_tail(&itxs->i_sync_list, itx); 2435 } else { 2436 avl_tree_t *t = &itxs->i_async_tree; 2437 uint64_t foid = 2438 LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid); 2439 itx_async_node_t *ian; 2440 avl_index_t where; 2441 2442 ian = avl_find(t, &foid, &where); 2443 if (ian == NULL) { 2444 ian = kmem_alloc(sizeof (itx_async_node_t), 2445 KM_SLEEP); 2446 list_create(&ian->ia_list, sizeof (itx_t), 2447 offsetof(itx_t, itx_node)); 2448 ian->ia_foid = foid; 2449 avl_insert(t, ian, where); 2450 } 2451 list_insert_tail(&ian->ia_list, itx); 2452 } 2453 2454 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx); 2455 2456 /* 2457 * We don't want to dirty the ZIL using ZILTEST_TXG, because 2458 * zil_clean() will never be called using ZILTEST_TXG. Thus, we 2459 * need to be careful to always dirty the ZIL using the "real" 2460 * TXG (not itxg_txg) even when the SPA is frozen. 2461 */ 2462 zilog_dirty(zilog, dmu_tx_get_txg(tx)); 2463 mutex_exit(&itxg->itxg_lock); 2464 2465 /* Release the old itxs now we've dropped the lock */ 2466 if (clean != NULL) 2467 zil_itxg_clean(clean); 2468 } 2469 2470 /* 2471 * If there are any in-memory intent log transactions which have now been 2472 * synced then start up a taskq to free them. We should only do this after we 2473 * have written out the uberblocks (i.e. txg has been committed) so that 2474 * don't inadvertently clean out in-memory log records that would be required 2475 * by zil_commit(). 2476 */ 2477 void 2478 zil_clean(zilog_t *zilog, uint64_t synced_txg) 2479 { 2480 itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK]; 2481 itxs_t *clean_me; 2482 2483 ASSERT3U(synced_txg, <, ZILTEST_TXG); 2484 2485 mutex_enter(&itxg->itxg_lock); 2486 if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) { 2487 mutex_exit(&itxg->itxg_lock); 2488 return; 2489 } 2490 ASSERT3U(itxg->itxg_txg, <=, synced_txg); 2491 ASSERT3U(itxg->itxg_txg, !=, 0); 2492 clean_me = itxg->itxg_itxs; 2493 itxg->itxg_itxs = NULL; 2494 itxg->itxg_txg = 0; 2495 mutex_exit(&itxg->itxg_lock); 2496 /* 2497 * Preferably start a task queue to free up the old itxs but 2498 * if taskq_dispatch can't allocate resources to do that then 2499 * free it in-line. This should be rare. Note, using TQ_SLEEP 2500 * created a bad performance problem. 2501 */ 2502 ASSERT3P(zilog->zl_dmu_pool, !=, NULL); 2503 ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL); 2504 taskqid_t id = taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq, 2505 zil_itxg_clean, clean_me, TQ_NOSLEEP); 2506 if (id == TASKQID_INVALID) 2507 zil_itxg_clean(clean_me); 2508 } 2509 2510 /* 2511 * This function will traverse the queue of itxs that need to be 2512 * committed, and move them onto the ZIL's zl_itx_commit_list. 2513 */ 2514 static uint64_t 2515 zil_get_commit_list(zilog_t *zilog) 2516 { 2517 uint64_t otxg, txg, wtxg = 0; 2518 list_t *commit_list = &zilog->zl_itx_commit_list; 2519 2520 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2521 2522 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 2523 otxg = ZILTEST_TXG; 2524 else 2525 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 2526 2527 /* 2528 * This is inherently racy, since there is nothing to prevent 2529 * the last synced txg from changing. That's okay since we'll 2530 * only commit things in the future. 2531 */ 2532 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 2533 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 2534 2535 mutex_enter(&itxg->itxg_lock); 2536 if (itxg->itxg_txg != txg) { 2537 mutex_exit(&itxg->itxg_lock); 2538 continue; 2539 } 2540 2541 /* 2542 * If we're adding itx records to the zl_itx_commit_list, 2543 * then the zil better be dirty in this "txg". We can assert 2544 * that here since we're holding the itxg_lock which will 2545 * prevent spa_sync from cleaning it. Once we add the itxs 2546 * to the zl_itx_commit_list we must commit it to disk even 2547 * if it's unnecessary (i.e. the txg was synced). 2548 */ 2549 ASSERT(zilog_is_dirty_in_txg(zilog, txg) || 2550 spa_freeze_txg(zilog->zl_spa) != UINT64_MAX); 2551 list_t *sync_list = &itxg->itxg_itxs->i_sync_list; 2552 if (unlikely(zilog->zl_suspend > 0)) { 2553 /* 2554 * ZIL was just suspended, but we lost the race. 2555 * Allow all earlier itxs to be committed, but ask 2556 * caller to do txg_wait_synced(txg) for any new. 2557 */ 2558 if (!list_is_empty(sync_list)) 2559 wtxg = MAX(wtxg, txg); 2560 } else { 2561 list_move_tail(commit_list, sync_list); 2562 } 2563 2564 mutex_exit(&itxg->itxg_lock); 2565 } 2566 return (wtxg); 2567 } 2568 2569 /* 2570 * Move the async itxs for a specified object to commit into sync lists. 2571 */ 2572 void 2573 zil_async_to_sync(zilog_t *zilog, uint64_t foid) 2574 { 2575 uint64_t otxg, txg; 2576 itx_async_node_t *ian; 2577 avl_tree_t *t; 2578 avl_index_t where; 2579 2580 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 2581 otxg = ZILTEST_TXG; 2582 else 2583 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 2584 2585 /* 2586 * This is inherently racy, since there is nothing to prevent 2587 * the last synced txg from changing. 2588 */ 2589 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 2590 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 2591 2592 mutex_enter(&itxg->itxg_lock); 2593 if (itxg->itxg_txg != txg) { 2594 mutex_exit(&itxg->itxg_lock); 2595 continue; 2596 } 2597 2598 /* 2599 * If a foid is specified then find that node and append its 2600 * list. Otherwise walk the tree appending all the lists 2601 * to the sync list. We add to the end rather than the 2602 * beginning to ensure the create has happened. 2603 */ 2604 t = &itxg->itxg_itxs->i_async_tree; 2605 if (foid != 0) { 2606 ian = avl_find(t, &foid, &where); 2607 if (ian != NULL) { 2608 list_move_tail(&itxg->itxg_itxs->i_sync_list, 2609 &ian->ia_list); 2610 } 2611 } else { 2612 void *cookie = NULL; 2613 2614 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { 2615 list_move_tail(&itxg->itxg_itxs->i_sync_list, 2616 &ian->ia_list); 2617 list_destroy(&ian->ia_list); 2618 kmem_free(ian, sizeof (itx_async_node_t)); 2619 } 2620 } 2621 mutex_exit(&itxg->itxg_lock); 2622 } 2623 } 2624 2625 /* 2626 * This function will prune commit itxs that are at the head of the 2627 * commit list (it won't prune past the first non-commit itx), and 2628 * either: a) attach them to the last lwb that's still pending 2629 * completion, or b) skip them altogether. 2630 * 2631 * This is used as a performance optimization to prevent commit itxs 2632 * from generating new lwbs when it's unnecessary to do so. 2633 */ 2634 static void 2635 zil_prune_commit_list(zilog_t *zilog) 2636 { 2637 itx_t *itx; 2638 2639 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2640 2641 while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) { 2642 lr_t *lrc = &itx->itx_lr; 2643 if (lrc->lrc_txtype != TX_COMMIT) 2644 break; 2645 2646 mutex_enter(&zilog->zl_lock); 2647 2648 lwb_t *last_lwb = zilog->zl_last_lwb_opened; 2649 if (last_lwb == NULL || 2650 last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) { 2651 /* 2652 * All of the itxs this waiter was waiting on 2653 * must have already completed (or there were 2654 * never any itx's for it to wait on), so it's 2655 * safe to skip this waiter and mark it done. 2656 */ 2657 zil_commit_waiter_skip(itx->itx_private); 2658 } else { 2659 zil_commit_waiter_link_lwb(itx->itx_private, last_lwb); 2660 } 2661 2662 mutex_exit(&zilog->zl_lock); 2663 2664 list_remove(&zilog->zl_itx_commit_list, itx); 2665 zil_itx_destroy(itx); 2666 } 2667 2668 IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT); 2669 } 2670 2671 static void 2672 zil_commit_writer_stall(zilog_t *zilog) 2673 { 2674 /* 2675 * When zio_alloc_zil() fails to allocate the next lwb block on 2676 * disk, we must call txg_wait_synced() to ensure all of the 2677 * lwbs in the zilog's zl_lwb_list are synced and then freed (in 2678 * zil_sync()), such that any subsequent ZIL writer (i.e. a call 2679 * to zil_process_commit_list()) will have to call zil_create(), 2680 * and start a new ZIL chain. 2681 * 2682 * Since zil_alloc_zil() failed, the lwb that was previously 2683 * issued does not have a pointer to the "next" lwb on disk. 2684 * Thus, if another ZIL writer thread was to allocate the "next" 2685 * on-disk lwb, that block could be leaked in the event of a 2686 * crash (because the previous lwb on-disk would not point to 2687 * it). 2688 * 2689 * We must hold the zilog's zl_issuer_lock while we do this, to 2690 * ensure no new threads enter zil_process_commit_list() until 2691 * all lwb's in the zl_lwb_list have been synced and freed 2692 * (which is achieved via the txg_wait_synced() call). 2693 */ 2694 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2695 txg_wait_synced(zilog->zl_dmu_pool, 0); 2696 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 2697 } 2698 2699 /* 2700 * This function will traverse the commit list, creating new lwbs as 2701 * needed, and committing the itxs from the commit list to these newly 2702 * created lwbs. Additionally, as a new lwb is created, the previous 2703 * lwb will be issued to the zio layer to be written to disk. 2704 */ 2705 static void 2706 zil_process_commit_list(zilog_t *zilog, zil_commit_waiter_t *zcw, list_t *ilwbs) 2707 { 2708 spa_t *spa = zilog->zl_spa; 2709 list_t nolwb_itxs; 2710 list_t nolwb_waiters; 2711 lwb_t *lwb, *plwb; 2712 itx_t *itx; 2713 boolean_t first = B_TRUE; 2714 2715 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2716 2717 /* 2718 * Return if there's nothing to commit before we dirty the fs by 2719 * calling zil_create(). 2720 */ 2721 if (list_is_empty(&zilog->zl_itx_commit_list)) 2722 return; 2723 2724 list_create(&nolwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node)); 2725 list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t), 2726 offsetof(zil_commit_waiter_t, zcw_node)); 2727 2728 lwb = list_tail(&zilog->zl_lwb_list); 2729 if (lwb == NULL) { 2730 lwb = zil_create(zilog); 2731 } else { 2732 /* 2733 * Activate SPA_FEATURE_ZILSAXATTR for the cases where ZIL will 2734 * have already been created (zl_lwb_list not empty). 2735 */ 2736 zil_commit_activate_saxattr_feature(zilog); 2737 ASSERT(lwb->lwb_state == LWB_STATE_NEW || 2738 lwb->lwb_state == LWB_STATE_OPENED); 2739 first = (lwb->lwb_state == LWB_STATE_NEW) && 2740 ((plwb = list_prev(&zilog->zl_lwb_list, lwb)) == NULL || 2741 plwb->lwb_state == LWB_STATE_FLUSH_DONE); 2742 } 2743 2744 while ((itx = list_remove_head(&zilog->zl_itx_commit_list)) != NULL) { 2745 lr_t *lrc = &itx->itx_lr; 2746 uint64_t txg = lrc->lrc_txg; 2747 2748 ASSERT3U(txg, !=, 0); 2749 2750 if (lrc->lrc_txtype == TX_COMMIT) { 2751 DTRACE_PROBE2(zil__process__commit__itx, 2752 zilog_t *, zilog, itx_t *, itx); 2753 } else { 2754 DTRACE_PROBE2(zil__process__normal__itx, 2755 zilog_t *, zilog, itx_t *, itx); 2756 } 2757 2758 boolean_t synced = txg <= spa_last_synced_txg(spa); 2759 boolean_t frozen = txg > spa_freeze_txg(spa); 2760 2761 /* 2762 * If the txg of this itx has already been synced out, then 2763 * we don't need to commit this itx to an lwb. This is 2764 * because the data of this itx will have already been 2765 * written to the main pool. This is inherently racy, and 2766 * it's still ok to commit an itx whose txg has already 2767 * been synced; this will result in a write that's 2768 * unnecessary, but will do no harm. 2769 * 2770 * With that said, we always want to commit TX_COMMIT itxs 2771 * to an lwb, regardless of whether or not that itx's txg 2772 * has been synced out. We do this to ensure any OPENED lwb 2773 * will always have at least one zil_commit_waiter_t linked 2774 * to the lwb. 2775 * 2776 * As a counter-example, if we skipped TX_COMMIT itx's 2777 * whose txg had already been synced, the following 2778 * situation could occur if we happened to be racing with 2779 * spa_sync: 2780 * 2781 * 1. We commit a non-TX_COMMIT itx to an lwb, where the 2782 * itx's txg is 10 and the last synced txg is 9. 2783 * 2. spa_sync finishes syncing out txg 10. 2784 * 3. We move to the next itx in the list, it's a TX_COMMIT 2785 * whose txg is 10, so we skip it rather than committing 2786 * it to the lwb used in (1). 2787 * 2788 * If the itx that is skipped in (3) is the last TX_COMMIT 2789 * itx in the commit list, than it's possible for the lwb 2790 * used in (1) to remain in the OPENED state indefinitely. 2791 * 2792 * To prevent the above scenario from occurring, ensuring 2793 * that once an lwb is OPENED it will transition to ISSUED 2794 * and eventually DONE, we always commit TX_COMMIT itx's to 2795 * an lwb here, even if that itx's txg has already been 2796 * synced. 2797 * 2798 * Finally, if the pool is frozen, we _always_ commit the 2799 * itx. The point of freezing the pool is to prevent data 2800 * from being written to the main pool via spa_sync, and 2801 * instead rely solely on the ZIL to persistently store the 2802 * data; i.e. when the pool is frozen, the last synced txg 2803 * value can't be trusted. 2804 */ 2805 if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) { 2806 if (lwb != NULL) { 2807 lwb = zil_lwb_assign(zilog, lwb, itx, ilwbs); 2808 if (lwb == NULL) { 2809 list_insert_tail(&nolwb_itxs, itx); 2810 } else if ((zcw->zcw_lwb != NULL && 2811 zcw->zcw_lwb != lwb) || zcw->zcw_done) { 2812 /* 2813 * Our lwb is done, leave the rest of 2814 * itx list to somebody else who care. 2815 */ 2816 first = B_FALSE; 2817 break; 2818 } 2819 } else { 2820 if (lrc->lrc_txtype == TX_COMMIT) { 2821 zil_commit_waiter_link_nolwb( 2822 itx->itx_private, &nolwb_waiters); 2823 } 2824 list_insert_tail(&nolwb_itxs, itx); 2825 } 2826 } else { 2827 ASSERT3S(lrc->lrc_txtype, !=, TX_COMMIT); 2828 zil_itx_destroy(itx); 2829 } 2830 } 2831 2832 if (lwb == NULL) { 2833 /* 2834 * This indicates zio_alloc_zil() failed to allocate the 2835 * "next" lwb on-disk. When this happens, we must stall 2836 * the ZIL write pipeline; see the comment within 2837 * zil_commit_writer_stall() for more details. 2838 */ 2839 while ((lwb = list_remove_head(ilwbs)) != NULL) 2840 zil_lwb_write_issue(zilog, lwb); 2841 zil_commit_writer_stall(zilog); 2842 2843 /* 2844 * Additionally, we have to signal and mark the "nolwb" 2845 * waiters as "done" here, since without an lwb, we 2846 * can't do this via zil_lwb_flush_vdevs_done() like 2847 * normal. 2848 */ 2849 zil_commit_waiter_t *zcw; 2850 while ((zcw = list_remove_head(&nolwb_waiters)) != NULL) 2851 zil_commit_waiter_skip(zcw); 2852 2853 /* 2854 * And finally, we have to destroy the itx's that 2855 * couldn't be committed to an lwb; this will also call 2856 * the itx's callback if one exists for the itx. 2857 */ 2858 while ((itx = list_remove_head(&nolwb_itxs)) != NULL) 2859 zil_itx_destroy(itx); 2860 } else { 2861 ASSERT(list_is_empty(&nolwb_waiters)); 2862 ASSERT3P(lwb, !=, NULL); 2863 ASSERT(lwb->lwb_state == LWB_STATE_NEW || 2864 lwb->lwb_state == LWB_STATE_OPENED); 2865 2866 /* 2867 * At this point, the ZIL block pointed at by the "lwb" 2868 * variable is in "new" or "opened" state. 2869 * 2870 * If it's "new", then no itxs have been committed to it, so 2871 * there's no point in issuing its zio (i.e. it's "empty"). 2872 * 2873 * If it's "opened", then it contains one or more itxs that 2874 * eventually need to be committed to stable storage. In 2875 * this case we intentionally do not issue the lwb's zio 2876 * to disk yet, and instead rely on one of the following 2877 * two mechanisms for issuing the zio: 2878 * 2879 * 1. Ideally, there will be more ZIL activity occurring on 2880 * the system, such that this function will be immediately 2881 * called again by different thread and this lwb will be 2882 * closed by zil_lwb_assign(). This way, the lwb will be 2883 * "full" when it is issued to disk, and we'll make use of 2884 * the lwb's size the best we can. 2885 * 2886 * 2. If there isn't sufficient ZIL activity occurring on 2887 * the system, zil_commit_waiter() will close it and issue 2888 * the zio. If this occurs, the lwb is not guaranteed 2889 * to be "full" by the time its zio is issued, and means 2890 * the size of the lwb was "too large" given the amount 2891 * of ZIL activity occurring on the system at that time. 2892 * 2893 * We do this for a couple of reasons: 2894 * 2895 * 1. To try and reduce the number of IOPs needed to 2896 * write the same number of itxs. If an lwb has space 2897 * available in its buffer for more itxs, and more itxs 2898 * will be committed relatively soon (relative to the 2899 * latency of performing a write), then it's beneficial 2900 * to wait for these "next" itxs. This way, more itxs 2901 * can be committed to stable storage with fewer writes. 2902 * 2903 * 2. To try and use the largest lwb block size that the 2904 * incoming rate of itxs can support. Again, this is to 2905 * try and pack as many itxs into as few lwbs as 2906 * possible, without significantly impacting the latency 2907 * of each individual itx. 2908 * 2909 * If we had no already running or open LWBs, it can be 2910 * the workload is single-threaded. And if the ZIL write 2911 * latency is very small or if the LWB is almost full, it 2912 * may be cheaper to bypass the delay. 2913 */ 2914 if (lwb->lwb_state == LWB_STATE_OPENED && first) { 2915 hrtime_t sleep = zilog->zl_last_lwb_latency * 2916 zfs_commit_timeout_pct / 100; 2917 if (sleep < zil_min_commit_timeout || 2918 lwb->lwb_nmax - lwb->lwb_nused < 2919 lwb->lwb_nmax / 8) { 2920 list_insert_tail(ilwbs, lwb); 2921 lwb = zil_lwb_write_close(zilog, lwb, 2922 LWB_STATE_NEW); 2923 zilog->zl_cur_used = 0; 2924 if (lwb == NULL) { 2925 while ((lwb = list_remove_head(ilwbs)) 2926 != NULL) 2927 zil_lwb_write_issue(zilog, lwb); 2928 zil_commit_writer_stall(zilog); 2929 } 2930 } 2931 } 2932 } 2933 } 2934 2935 /* 2936 * This function is responsible for ensuring the passed in commit waiter 2937 * (and associated commit itx) is committed to an lwb. If the waiter is 2938 * not already committed to an lwb, all itxs in the zilog's queue of 2939 * itxs will be processed. The assumption is the passed in waiter's 2940 * commit itx will found in the queue just like the other non-commit 2941 * itxs, such that when the entire queue is processed, the waiter will 2942 * have been committed to an lwb. 2943 * 2944 * The lwb associated with the passed in waiter is not guaranteed to 2945 * have been issued by the time this function completes. If the lwb is 2946 * not issued, we rely on future calls to zil_commit_writer() to issue 2947 * the lwb, or the timeout mechanism found in zil_commit_waiter(). 2948 */ 2949 static uint64_t 2950 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw) 2951 { 2952 list_t ilwbs; 2953 lwb_t *lwb; 2954 uint64_t wtxg = 0; 2955 2956 ASSERT(!MUTEX_HELD(&zilog->zl_lock)); 2957 ASSERT(spa_writeable(zilog->zl_spa)); 2958 2959 list_create(&ilwbs, sizeof (lwb_t), offsetof(lwb_t, lwb_issue_node)); 2960 mutex_enter(&zilog->zl_issuer_lock); 2961 2962 if (zcw->zcw_lwb != NULL || zcw->zcw_done) { 2963 /* 2964 * It's possible that, while we were waiting to acquire 2965 * the "zl_issuer_lock", another thread committed this 2966 * waiter to an lwb. If that occurs, we bail out early, 2967 * without processing any of the zilog's queue of itxs. 2968 * 2969 * On certain workloads and system configurations, the 2970 * "zl_issuer_lock" can become highly contended. In an 2971 * attempt to reduce this contention, we immediately drop 2972 * the lock if the waiter has already been processed. 2973 * 2974 * We've measured this optimization to reduce CPU spent 2975 * contending on this lock by up to 5%, using a system 2976 * with 32 CPUs, low latency storage (~50 usec writes), 2977 * and 1024 threads performing sync writes. 2978 */ 2979 goto out; 2980 } 2981 2982 ZIL_STAT_BUMP(zilog, zil_commit_writer_count); 2983 2984 wtxg = zil_get_commit_list(zilog); 2985 zil_prune_commit_list(zilog); 2986 zil_process_commit_list(zilog, zcw, &ilwbs); 2987 2988 out: 2989 mutex_exit(&zilog->zl_issuer_lock); 2990 while ((lwb = list_remove_head(&ilwbs)) != NULL) 2991 zil_lwb_write_issue(zilog, lwb); 2992 list_destroy(&ilwbs); 2993 return (wtxg); 2994 } 2995 2996 static void 2997 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw) 2998 { 2999 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock)); 3000 ASSERT(MUTEX_HELD(&zcw->zcw_lock)); 3001 ASSERT3B(zcw->zcw_done, ==, B_FALSE); 3002 3003 lwb_t *lwb = zcw->zcw_lwb; 3004 ASSERT3P(lwb, !=, NULL); 3005 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_NEW); 3006 3007 /* 3008 * If the lwb has already been issued by another thread, we can 3009 * immediately return since there's no work to be done (the 3010 * point of this function is to issue the lwb). Additionally, we 3011 * do this prior to acquiring the zl_issuer_lock, to avoid 3012 * acquiring it when it's not necessary to do so. 3013 */ 3014 if (lwb->lwb_state != LWB_STATE_OPENED) 3015 return; 3016 3017 /* 3018 * In order to call zil_lwb_write_close() we must hold the 3019 * zilog's "zl_issuer_lock". We can't simply acquire that lock, 3020 * since we're already holding the commit waiter's "zcw_lock", 3021 * and those two locks are acquired in the opposite order 3022 * elsewhere. 3023 */ 3024 mutex_exit(&zcw->zcw_lock); 3025 mutex_enter(&zilog->zl_issuer_lock); 3026 mutex_enter(&zcw->zcw_lock); 3027 3028 /* 3029 * Since we just dropped and re-acquired the commit waiter's 3030 * lock, we have to re-check to see if the waiter was marked 3031 * "done" during that process. If the waiter was marked "done", 3032 * the "lwb" pointer is no longer valid (it can be free'd after 3033 * the waiter is marked "done"), so without this check we could 3034 * wind up with a use-after-free error below. 3035 */ 3036 if (zcw->zcw_done) { 3037 mutex_exit(&zilog->zl_issuer_lock); 3038 return; 3039 } 3040 3041 ASSERT3P(lwb, ==, zcw->zcw_lwb); 3042 3043 /* 3044 * We've already checked this above, but since we hadn't acquired 3045 * the zilog's zl_issuer_lock, we have to perform this check a 3046 * second time while holding the lock. 3047 * 3048 * We don't need to hold the zl_lock since the lwb cannot transition 3049 * from OPENED to CLOSED while we hold the zl_issuer_lock. The lwb 3050 * _can_ transition from CLOSED to DONE, but it's OK to race with 3051 * that transition since we treat the lwb the same, whether it's in 3052 * the CLOSED, ISSUED or DONE states. 3053 * 3054 * The important thing, is we treat the lwb differently depending on 3055 * if it's OPENED or CLOSED, and block any other threads that might 3056 * attempt to close/issue this lwb. For that reason we hold the 3057 * zl_issuer_lock when checking the lwb_state; we must not call 3058 * zil_lwb_write_close() if the lwb had already been closed/issued. 3059 * 3060 * See the comment above the lwb_state_t structure definition for 3061 * more details on the lwb states, and locking requirements. 3062 */ 3063 if (lwb->lwb_state != LWB_STATE_OPENED) { 3064 mutex_exit(&zilog->zl_issuer_lock); 3065 return; 3066 } 3067 3068 /* 3069 * We do not need zcw_lock once we hold zl_issuer_lock and know lwb 3070 * is still open. But we have to drop it to avoid a deadlock in case 3071 * callback of zio issued by zil_lwb_write_issue() try to get it, 3072 * while zil_lwb_write_issue() is blocked on attempt to issue next 3073 * lwb it found in LWB_STATE_READY state. 3074 */ 3075 mutex_exit(&zcw->zcw_lock); 3076 3077 /* 3078 * As described in the comments above zil_commit_waiter() and 3079 * zil_process_commit_list(), we need to issue this lwb's zio 3080 * since we've reached the commit waiter's timeout and it still 3081 * hasn't been issued. 3082 */ 3083 lwb_t *nlwb = zil_lwb_write_close(zilog, lwb, LWB_STATE_NEW); 3084 3085 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_CLOSED); 3086 3087 /* 3088 * Since the lwb's zio hadn't been issued by the time this thread 3089 * reached its timeout, we reset the zilog's "zl_cur_used" field 3090 * to influence the zil block size selection algorithm. 3091 * 3092 * By having to issue the lwb's zio here, it means the size of the 3093 * lwb was too large, given the incoming throughput of itxs. By 3094 * setting "zl_cur_used" to zero, we communicate this fact to the 3095 * block size selection algorithm, so it can take this information 3096 * into account, and potentially select a smaller size for the 3097 * next lwb block that is allocated. 3098 */ 3099 zilog->zl_cur_used = 0; 3100 3101 if (nlwb == NULL) { 3102 /* 3103 * When zil_lwb_write_close() returns NULL, this 3104 * indicates zio_alloc_zil() failed to allocate the 3105 * "next" lwb on-disk. When this occurs, the ZIL write 3106 * pipeline must be stalled; see the comment within the 3107 * zil_commit_writer_stall() function for more details. 3108 */ 3109 zil_lwb_write_issue(zilog, lwb); 3110 zil_commit_writer_stall(zilog); 3111 mutex_exit(&zilog->zl_issuer_lock); 3112 } else { 3113 mutex_exit(&zilog->zl_issuer_lock); 3114 zil_lwb_write_issue(zilog, lwb); 3115 } 3116 mutex_enter(&zcw->zcw_lock); 3117 } 3118 3119 /* 3120 * This function is responsible for performing the following two tasks: 3121 * 3122 * 1. its primary responsibility is to block until the given "commit 3123 * waiter" is considered "done". 3124 * 3125 * 2. its secondary responsibility is to issue the zio for the lwb that 3126 * the given "commit waiter" is waiting on, if this function has 3127 * waited "long enough" and the lwb is still in the "open" state. 3128 * 3129 * Given a sufficient amount of itxs being generated and written using 3130 * the ZIL, the lwb's zio will be issued via the zil_lwb_assign() 3131 * function. If this does not occur, this secondary responsibility will 3132 * ensure the lwb is issued even if there is not other synchronous 3133 * activity on the system. 3134 * 3135 * For more details, see zil_process_commit_list(); more specifically, 3136 * the comment at the bottom of that function. 3137 */ 3138 static void 3139 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw) 3140 { 3141 ASSERT(!MUTEX_HELD(&zilog->zl_lock)); 3142 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock)); 3143 ASSERT(spa_writeable(zilog->zl_spa)); 3144 3145 mutex_enter(&zcw->zcw_lock); 3146 3147 /* 3148 * The timeout is scaled based on the lwb latency to avoid 3149 * significantly impacting the latency of each individual itx. 3150 * For more details, see the comment at the bottom of the 3151 * zil_process_commit_list() function. 3152 */ 3153 int pct = MAX(zfs_commit_timeout_pct, 1); 3154 hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100; 3155 hrtime_t wakeup = gethrtime() + sleep; 3156 boolean_t timedout = B_FALSE; 3157 3158 while (!zcw->zcw_done) { 3159 ASSERT(MUTEX_HELD(&zcw->zcw_lock)); 3160 3161 lwb_t *lwb = zcw->zcw_lwb; 3162 3163 /* 3164 * Usually, the waiter will have a non-NULL lwb field here, 3165 * but it's possible for it to be NULL as a result of 3166 * zil_commit() racing with spa_sync(). 3167 * 3168 * When zil_clean() is called, it's possible for the itxg 3169 * list (which may be cleaned via a taskq) to contain 3170 * commit itxs. When this occurs, the commit waiters linked 3171 * off of these commit itxs will not be committed to an 3172 * lwb. Additionally, these commit waiters will not be 3173 * marked done until zil_commit_waiter_skip() is called via 3174 * zil_itxg_clean(). 3175 * 3176 * Thus, it's possible for this commit waiter (i.e. the 3177 * "zcw" variable) to be found in this "in between" state; 3178 * where it's "zcw_lwb" field is NULL, and it hasn't yet 3179 * been skipped, so it's "zcw_done" field is still B_FALSE. 3180 */ 3181 IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_NEW); 3182 3183 if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) { 3184 ASSERT3B(timedout, ==, B_FALSE); 3185 3186 /* 3187 * If the lwb hasn't been issued yet, then we 3188 * need to wait with a timeout, in case this 3189 * function needs to issue the lwb after the 3190 * timeout is reached; responsibility (2) from 3191 * the comment above this function. 3192 */ 3193 int rc = cv_timedwait_hires(&zcw->zcw_cv, 3194 &zcw->zcw_lock, wakeup, USEC2NSEC(1), 3195 CALLOUT_FLAG_ABSOLUTE); 3196 3197 if (rc != -1 || zcw->zcw_done) 3198 continue; 3199 3200 timedout = B_TRUE; 3201 zil_commit_waiter_timeout(zilog, zcw); 3202 3203 if (!zcw->zcw_done) { 3204 /* 3205 * If the commit waiter has already been 3206 * marked "done", it's possible for the 3207 * waiter's lwb structure to have already 3208 * been freed. Thus, we can only reliably 3209 * make these assertions if the waiter 3210 * isn't done. 3211 */ 3212 ASSERT3P(lwb, ==, zcw->zcw_lwb); 3213 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED); 3214 } 3215 } else { 3216 /* 3217 * If the lwb isn't open, then it must have already 3218 * been issued. In that case, there's no need to 3219 * use a timeout when waiting for the lwb to 3220 * complete. 3221 * 3222 * Additionally, if the lwb is NULL, the waiter 3223 * will soon be signaled and marked done via 3224 * zil_clean() and zil_itxg_clean(), so no timeout 3225 * is required. 3226 */ 3227 3228 IMPLY(lwb != NULL, 3229 lwb->lwb_state == LWB_STATE_CLOSED || 3230 lwb->lwb_state == LWB_STATE_READY || 3231 lwb->lwb_state == LWB_STATE_ISSUED || 3232 lwb->lwb_state == LWB_STATE_WRITE_DONE || 3233 lwb->lwb_state == LWB_STATE_FLUSH_DONE); 3234 cv_wait(&zcw->zcw_cv, &zcw->zcw_lock); 3235 } 3236 } 3237 3238 mutex_exit(&zcw->zcw_lock); 3239 } 3240 3241 static zil_commit_waiter_t * 3242 zil_alloc_commit_waiter(void) 3243 { 3244 zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP); 3245 3246 cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL); 3247 mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL); 3248 list_link_init(&zcw->zcw_node); 3249 zcw->zcw_lwb = NULL; 3250 zcw->zcw_done = B_FALSE; 3251 zcw->zcw_zio_error = 0; 3252 3253 return (zcw); 3254 } 3255 3256 static void 3257 zil_free_commit_waiter(zil_commit_waiter_t *zcw) 3258 { 3259 ASSERT(!list_link_active(&zcw->zcw_node)); 3260 ASSERT3P(zcw->zcw_lwb, ==, NULL); 3261 ASSERT3B(zcw->zcw_done, ==, B_TRUE); 3262 mutex_destroy(&zcw->zcw_lock); 3263 cv_destroy(&zcw->zcw_cv); 3264 kmem_cache_free(zil_zcw_cache, zcw); 3265 } 3266 3267 /* 3268 * This function is used to create a TX_COMMIT itx and assign it. This 3269 * way, it will be linked into the ZIL's list of synchronous itxs, and 3270 * then later committed to an lwb (or skipped) when 3271 * zil_process_commit_list() is called. 3272 */ 3273 static void 3274 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw) 3275 { 3276 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os); 3277 3278 /* 3279 * Since we are not going to create any new dirty data, and we 3280 * can even help with clearing the existing dirty data, we 3281 * should not be subject to the dirty data based delays. We 3282 * use TXG_NOTHROTTLE to bypass the delay mechanism. 3283 */ 3284 VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE)); 3285 3286 itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t)); 3287 itx->itx_sync = B_TRUE; 3288 itx->itx_private = zcw; 3289 3290 zil_itx_assign(zilog, itx, tx); 3291 3292 dmu_tx_commit(tx); 3293 } 3294 3295 /* 3296 * Commit ZFS Intent Log transactions (itxs) to stable storage. 3297 * 3298 * When writing ZIL transactions to the on-disk representation of the 3299 * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple 3300 * itxs can be committed to a single lwb. Once a lwb is written and 3301 * committed to stable storage (i.e. the lwb is written, and vdevs have 3302 * been flushed), each itx that was committed to that lwb is also 3303 * considered to be committed to stable storage. 3304 * 3305 * When an itx is committed to an lwb, the log record (lr_t) contained 3306 * by the itx is copied into the lwb's zio buffer, and once this buffer 3307 * is written to disk, it becomes an on-disk ZIL block. 3308 * 3309 * As itxs are generated, they're inserted into the ZIL's queue of 3310 * uncommitted itxs. The semantics of zil_commit() are such that it will 3311 * block until all itxs that were in the queue when it was called, are 3312 * committed to stable storage. 3313 * 3314 * If "foid" is zero, this means all "synchronous" and "asynchronous" 3315 * itxs, for all objects in the dataset, will be committed to stable 3316 * storage prior to zil_commit() returning. If "foid" is non-zero, all 3317 * "synchronous" itxs for all objects, but only "asynchronous" itxs 3318 * that correspond to the foid passed in, will be committed to stable 3319 * storage prior to zil_commit() returning. 3320 * 3321 * Generally speaking, when zil_commit() is called, the consumer doesn't 3322 * actually care about _all_ of the uncommitted itxs. Instead, they're 3323 * simply trying to waiting for a specific itx to be committed to disk, 3324 * but the interface(s) for interacting with the ZIL don't allow such 3325 * fine-grained communication. A better interface would allow a consumer 3326 * to create and assign an itx, and then pass a reference to this itx to 3327 * zil_commit(); such that zil_commit() would return as soon as that 3328 * specific itx was committed to disk (instead of waiting for _all_ 3329 * itxs to be committed). 3330 * 3331 * When a thread calls zil_commit() a special "commit itx" will be 3332 * generated, along with a corresponding "waiter" for this commit itx. 3333 * zil_commit() will wait on this waiter's CV, such that when the waiter 3334 * is marked done, and signaled, zil_commit() will return. 3335 * 3336 * This commit itx is inserted into the queue of uncommitted itxs. This 3337 * provides an easy mechanism for determining which itxs were in the 3338 * queue prior to zil_commit() having been called, and which itxs were 3339 * added after zil_commit() was called. 3340 * 3341 * The commit itx is special; it doesn't have any on-disk representation. 3342 * When a commit itx is "committed" to an lwb, the waiter associated 3343 * with it is linked onto the lwb's list of waiters. Then, when that lwb 3344 * completes, each waiter on the lwb's list is marked done and signaled 3345 * -- allowing the thread waiting on the waiter to return from zil_commit(). 3346 * 3347 * It's important to point out a few critical factors that allow us 3348 * to make use of the commit itxs, commit waiters, per-lwb lists of 3349 * commit waiters, and zio completion callbacks like we're doing: 3350 * 3351 * 1. The list of waiters for each lwb is traversed, and each commit 3352 * waiter is marked "done" and signaled, in the zio completion 3353 * callback of the lwb's zio[*]. 3354 * 3355 * * Actually, the waiters are signaled in the zio completion 3356 * callback of the root zio for the DKIOCFLUSHWRITECACHE commands 3357 * that are sent to the vdevs upon completion of the lwb zio. 3358 * 3359 * 2. When the itxs are inserted into the ZIL's queue of uncommitted 3360 * itxs, the order in which they are inserted is preserved[*]; as 3361 * itxs are added to the queue, they are added to the tail of 3362 * in-memory linked lists. 3363 * 3364 * When committing the itxs to lwbs (to be written to disk), they 3365 * are committed in the same order in which the itxs were added to 3366 * the uncommitted queue's linked list(s); i.e. the linked list of 3367 * itxs to commit is traversed from head to tail, and each itx is 3368 * committed to an lwb in that order. 3369 * 3370 * * To clarify: 3371 * 3372 * - the order of "sync" itxs is preserved w.r.t. other 3373 * "sync" itxs, regardless of the corresponding objects. 3374 * - the order of "async" itxs is preserved w.r.t. other 3375 * "async" itxs corresponding to the same object. 3376 * - the order of "async" itxs is *not* preserved w.r.t. other 3377 * "async" itxs corresponding to different objects. 3378 * - the order of "sync" itxs w.r.t. "async" itxs (or vice 3379 * versa) is *not* preserved, even for itxs that correspond 3380 * to the same object. 3381 * 3382 * For more details, see: zil_itx_assign(), zil_async_to_sync(), 3383 * zil_get_commit_list(), and zil_process_commit_list(). 3384 * 3385 * 3. The lwbs represent a linked list of blocks on disk. Thus, any 3386 * lwb cannot be considered committed to stable storage, until its 3387 * "previous" lwb is also committed to stable storage. This fact, 3388 * coupled with the fact described above, means that itxs are 3389 * committed in (roughly) the order in which they were generated. 3390 * This is essential because itxs are dependent on prior itxs. 3391 * Thus, we *must not* deem an itx as being committed to stable 3392 * storage, until *all* prior itxs have also been committed to 3393 * stable storage. 3394 * 3395 * To enforce this ordering of lwb zio's, while still leveraging as 3396 * much of the underlying storage performance as possible, we rely 3397 * on two fundamental concepts: 3398 * 3399 * 1. The creation and issuance of lwb zio's is protected by 3400 * the zilog's "zl_issuer_lock", which ensures only a single 3401 * thread is creating and/or issuing lwb's at a time 3402 * 2. The "previous" lwb is a child of the "current" lwb 3403 * (leveraging the zio parent-child dependency graph) 3404 * 3405 * By relying on this parent-child zio relationship, we can have 3406 * many lwb zio's concurrently issued to the underlying storage, 3407 * but the order in which they complete will be the same order in 3408 * which they were created. 3409 */ 3410 void 3411 zil_commit(zilog_t *zilog, uint64_t foid) 3412 { 3413 /* 3414 * We should never attempt to call zil_commit on a snapshot for 3415 * a couple of reasons: 3416 * 3417 * 1. A snapshot may never be modified, thus it cannot have any 3418 * in-flight itxs that would have modified the dataset. 3419 * 3420 * 2. By design, when zil_commit() is called, a commit itx will 3421 * be assigned to this zilog; as a result, the zilog will be 3422 * dirtied. We must not dirty the zilog of a snapshot; there's 3423 * checks in the code that enforce this invariant, and will 3424 * cause a panic if it's not upheld. 3425 */ 3426 ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE); 3427 3428 if (zilog->zl_sync == ZFS_SYNC_DISABLED) 3429 return; 3430 3431 if (!spa_writeable(zilog->zl_spa)) { 3432 /* 3433 * If the SPA is not writable, there should never be any 3434 * pending itxs waiting to be committed to disk. If that 3435 * weren't true, we'd skip writing those itxs out, and 3436 * would break the semantics of zil_commit(); thus, we're 3437 * verifying that truth before we return to the caller. 3438 */ 3439 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3440 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL); 3441 for (int i = 0; i < TXG_SIZE; i++) 3442 ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL); 3443 return; 3444 } 3445 3446 /* 3447 * If the ZIL is suspended, we don't want to dirty it by calling 3448 * zil_commit_itx_assign() below, nor can we write out 3449 * lwbs like would be done in zil_commit_write(). Thus, we 3450 * simply rely on txg_wait_synced() to maintain the necessary 3451 * semantics, and avoid calling those functions altogether. 3452 */ 3453 if (zilog->zl_suspend > 0) { 3454 txg_wait_synced(zilog->zl_dmu_pool, 0); 3455 return; 3456 } 3457 3458 zil_commit_impl(zilog, foid); 3459 } 3460 3461 void 3462 zil_commit_impl(zilog_t *zilog, uint64_t foid) 3463 { 3464 ZIL_STAT_BUMP(zilog, zil_commit_count); 3465 3466 /* 3467 * Move the "async" itxs for the specified foid to the "sync" 3468 * queues, such that they will be later committed (or skipped) 3469 * to an lwb when zil_process_commit_list() is called. 3470 * 3471 * Since these "async" itxs must be committed prior to this 3472 * call to zil_commit returning, we must perform this operation 3473 * before we call zil_commit_itx_assign(). 3474 */ 3475 zil_async_to_sync(zilog, foid); 3476 3477 /* 3478 * We allocate a new "waiter" structure which will initially be 3479 * linked to the commit itx using the itx's "itx_private" field. 3480 * Since the commit itx doesn't represent any on-disk state, 3481 * when it's committed to an lwb, rather than copying the its 3482 * lr_t into the lwb's buffer, the commit itx's "waiter" will be 3483 * added to the lwb's list of waiters. Then, when the lwb is 3484 * committed to stable storage, each waiter in the lwb's list of 3485 * waiters will be marked "done", and signalled. 3486 * 3487 * We must create the waiter and assign the commit itx prior to 3488 * calling zil_commit_writer(), or else our specific commit itx 3489 * is not guaranteed to be committed to an lwb prior to calling 3490 * zil_commit_waiter(). 3491 */ 3492 zil_commit_waiter_t *zcw = zil_alloc_commit_waiter(); 3493 zil_commit_itx_assign(zilog, zcw); 3494 3495 uint64_t wtxg = zil_commit_writer(zilog, zcw); 3496 zil_commit_waiter(zilog, zcw); 3497 3498 if (zcw->zcw_zio_error != 0) { 3499 /* 3500 * If there was an error writing out the ZIL blocks that 3501 * this thread is waiting on, then we fallback to 3502 * relying on spa_sync() to write out the data this 3503 * thread is waiting on. Obviously this has performance 3504 * implications, but the expectation is for this to be 3505 * an exceptional case, and shouldn't occur often. 3506 */ 3507 DTRACE_PROBE2(zil__commit__io__error, 3508 zilog_t *, zilog, zil_commit_waiter_t *, zcw); 3509 txg_wait_synced(zilog->zl_dmu_pool, 0); 3510 } else if (wtxg != 0) { 3511 txg_wait_synced(zilog->zl_dmu_pool, wtxg); 3512 } 3513 3514 zil_free_commit_waiter(zcw); 3515 } 3516 3517 /* 3518 * Called in syncing context to free committed log blocks and update log header. 3519 */ 3520 void 3521 zil_sync(zilog_t *zilog, dmu_tx_t *tx) 3522 { 3523 zil_header_t *zh = zil_header_in_syncing_context(zilog); 3524 uint64_t txg = dmu_tx_get_txg(tx); 3525 spa_t *spa = zilog->zl_spa; 3526 uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK]; 3527 lwb_t *lwb; 3528 3529 /* 3530 * We don't zero out zl_destroy_txg, so make sure we don't try 3531 * to destroy it twice. 3532 */ 3533 if (spa_sync_pass(spa) != 1) 3534 return; 3535 3536 zil_lwb_flush_wait_all(zilog, txg); 3537 3538 mutex_enter(&zilog->zl_lock); 3539 3540 ASSERT(zilog->zl_stop_sync == 0); 3541 3542 if (*replayed_seq != 0) { 3543 ASSERT(zh->zh_replay_seq < *replayed_seq); 3544 zh->zh_replay_seq = *replayed_seq; 3545 *replayed_seq = 0; 3546 } 3547 3548 if (zilog->zl_destroy_txg == txg) { 3549 blkptr_t blk = zh->zh_log; 3550 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 3551 3552 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3553 3554 memset(zh, 0, sizeof (zil_header_t)); 3555 memset(zilog->zl_replayed_seq, 0, 3556 sizeof (zilog->zl_replayed_seq)); 3557 3558 if (zilog->zl_keep_first) { 3559 /* 3560 * If this block was part of log chain that couldn't 3561 * be claimed because a device was missing during 3562 * zil_claim(), but that device later returns, 3563 * then this block could erroneously appear valid. 3564 * To guard against this, assign a new GUID to the new 3565 * log chain so it doesn't matter what blk points to. 3566 */ 3567 zil_init_log_chain(zilog, &blk); 3568 zh->zh_log = blk; 3569 } else { 3570 /* 3571 * A destroyed ZIL chain can't contain any TX_SETSAXATTR 3572 * records. So, deactivate the feature for this dataset. 3573 * We activate it again when we start a new ZIL chain. 3574 */ 3575 if (dsl_dataset_feature_is_active(ds, 3576 SPA_FEATURE_ZILSAXATTR)) 3577 dsl_dataset_deactivate_feature(ds, 3578 SPA_FEATURE_ZILSAXATTR, tx); 3579 } 3580 } 3581 3582 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 3583 zh->zh_log = lwb->lwb_blk; 3584 if (lwb->lwb_state != LWB_STATE_FLUSH_DONE || 3585 lwb->lwb_alloc_txg > txg || lwb->lwb_max_txg > txg) 3586 break; 3587 list_remove(&zilog->zl_lwb_list, lwb); 3588 if (!BP_IS_HOLE(&lwb->lwb_blk)) 3589 zio_free(spa, txg, &lwb->lwb_blk); 3590 zil_free_lwb(zilog, lwb); 3591 3592 /* 3593 * If we don't have anything left in the lwb list then 3594 * we've had an allocation failure and we need to zero 3595 * out the zil_header blkptr so that we don't end 3596 * up freeing the same block twice. 3597 */ 3598 if (list_is_empty(&zilog->zl_lwb_list)) 3599 BP_ZERO(&zh->zh_log); 3600 } 3601 3602 mutex_exit(&zilog->zl_lock); 3603 } 3604 3605 static int 3606 zil_lwb_cons(void *vbuf, void *unused, int kmflag) 3607 { 3608 (void) unused, (void) kmflag; 3609 lwb_t *lwb = vbuf; 3610 list_create(&lwb->lwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node)); 3611 list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t), 3612 offsetof(zil_commit_waiter_t, zcw_node)); 3613 avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare, 3614 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node)); 3615 mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL); 3616 return (0); 3617 } 3618 3619 static void 3620 zil_lwb_dest(void *vbuf, void *unused) 3621 { 3622 (void) unused; 3623 lwb_t *lwb = vbuf; 3624 mutex_destroy(&lwb->lwb_vdev_lock); 3625 avl_destroy(&lwb->lwb_vdev_tree); 3626 list_destroy(&lwb->lwb_waiters); 3627 list_destroy(&lwb->lwb_itxs); 3628 } 3629 3630 void 3631 zil_init(void) 3632 { 3633 zil_lwb_cache = kmem_cache_create("zil_lwb_cache", 3634 sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0); 3635 3636 zil_zcw_cache = kmem_cache_create("zil_zcw_cache", 3637 sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 3638 3639 zil_sums_init(&zil_sums_global); 3640 zil_kstats_global = kstat_create("zfs", 0, "zil", "misc", 3641 KSTAT_TYPE_NAMED, sizeof (zil_stats) / sizeof (kstat_named_t), 3642 KSTAT_FLAG_VIRTUAL); 3643 3644 if (zil_kstats_global != NULL) { 3645 zil_kstats_global->ks_data = &zil_stats; 3646 zil_kstats_global->ks_update = zil_kstats_global_update; 3647 zil_kstats_global->ks_private = NULL; 3648 kstat_install(zil_kstats_global); 3649 } 3650 } 3651 3652 void 3653 zil_fini(void) 3654 { 3655 kmem_cache_destroy(zil_zcw_cache); 3656 kmem_cache_destroy(zil_lwb_cache); 3657 3658 if (zil_kstats_global != NULL) { 3659 kstat_delete(zil_kstats_global); 3660 zil_kstats_global = NULL; 3661 } 3662 3663 zil_sums_fini(&zil_sums_global); 3664 } 3665 3666 void 3667 zil_set_sync(zilog_t *zilog, uint64_t sync) 3668 { 3669 zilog->zl_sync = sync; 3670 } 3671 3672 void 3673 zil_set_logbias(zilog_t *zilog, uint64_t logbias) 3674 { 3675 zilog->zl_logbias = logbias; 3676 } 3677 3678 zilog_t * 3679 zil_alloc(objset_t *os, zil_header_t *zh_phys) 3680 { 3681 zilog_t *zilog; 3682 3683 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP); 3684 3685 zilog->zl_header = zh_phys; 3686 zilog->zl_os = os; 3687 zilog->zl_spa = dmu_objset_spa(os); 3688 zilog->zl_dmu_pool = dmu_objset_pool(os); 3689 zilog->zl_destroy_txg = TXG_INITIAL - 1; 3690 zilog->zl_logbias = dmu_objset_logbias(os); 3691 zilog->zl_sync = dmu_objset_syncprop(os); 3692 zilog->zl_dirty_max_txg = 0; 3693 zilog->zl_last_lwb_opened = NULL; 3694 zilog->zl_last_lwb_latency = 0; 3695 zilog->zl_max_block_size = zil_maxblocksize; 3696 3697 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL); 3698 mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL); 3699 mutex_init(&zilog->zl_lwb_io_lock, NULL, MUTEX_DEFAULT, NULL); 3700 3701 for (int i = 0; i < TXG_SIZE; i++) { 3702 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL, 3703 MUTEX_DEFAULT, NULL); 3704 } 3705 3706 list_create(&zilog->zl_lwb_list, sizeof (lwb_t), 3707 offsetof(lwb_t, lwb_node)); 3708 3709 list_create(&zilog->zl_itx_commit_list, sizeof (itx_t), 3710 offsetof(itx_t, itx_node)); 3711 3712 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL); 3713 cv_init(&zilog->zl_lwb_io_cv, NULL, CV_DEFAULT, NULL); 3714 3715 return (zilog); 3716 } 3717 3718 void 3719 zil_free(zilog_t *zilog) 3720 { 3721 int i; 3722 3723 zilog->zl_stop_sync = 1; 3724 3725 ASSERT0(zilog->zl_suspend); 3726 ASSERT0(zilog->zl_suspending); 3727 3728 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3729 list_destroy(&zilog->zl_lwb_list); 3730 3731 ASSERT(list_is_empty(&zilog->zl_itx_commit_list)); 3732 list_destroy(&zilog->zl_itx_commit_list); 3733 3734 for (i = 0; i < TXG_SIZE; i++) { 3735 /* 3736 * It's possible for an itx to be generated that doesn't dirty 3737 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean() 3738 * callback to remove the entry. We remove those here. 3739 * 3740 * Also free up the ziltest itxs. 3741 */ 3742 if (zilog->zl_itxg[i].itxg_itxs) 3743 zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs); 3744 mutex_destroy(&zilog->zl_itxg[i].itxg_lock); 3745 } 3746 3747 mutex_destroy(&zilog->zl_issuer_lock); 3748 mutex_destroy(&zilog->zl_lock); 3749 mutex_destroy(&zilog->zl_lwb_io_lock); 3750 3751 cv_destroy(&zilog->zl_cv_suspend); 3752 cv_destroy(&zilog->zl_lwb_io_cv); 3753 3754 kmem_free(zilog, sizeof (zilog_t)); 3755 } 3756 3757 /* 3758 * Open an intent log. 3759 */ 3760 zilog_t * 3761 zil_open(objset_t *os, zil_get_data_t *get_data, zil_sums_t *zil_sums) 3762 { 3763 zilog_t *zilog = dmu_objset_zil(os); 3764 3765 ASSERT3P(zilog->zl_get_data, ==, NULL); 3766 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL); 3767 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3768 3769 zilog->zl_get_data = get_data; 3770 zilog->zl_sums = zil_sums; 3771 3772 return (zilog); 3773 } 3774 3775 /* 3776 * Close an intent log. 3777 */ 3778 void 3779 zil_close(zilog_t *zilog) 3780 { 3781 lwb_t *lwb; 3782 uint64_t txg; 3783 3784 if (!dmu_objset_is_snapshot(zilog->zl_os)) { 3785 zil_commit(zilog, 0); 3786 } else { 3787 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3788 ASSERT0(zilog->zl_dirty_max_txg); 3789 ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE); 3790 } 3791 3792 mutex_enter(&zilog->zl_lock); 3793 txg = zilog->zl_dirty_max_txg; 3794 lwb = list_tail(&zilog->zl_lwb_list); 3795 if (lwb != NULL) { 3796 txg = MAX(txg, lwb->lwb_alloc_txg); 3797 txg = MAX(txg, lwb->lwb_max_txg); 3798 } 3799 mutex_exit(&zilog->zl_lock); 3800 3801 /* 3802 * zl_lwb_max_issued_txg may be larger than lwb_max_txg. It depends 3803 * on the time when the dmu_tx transaction is assigned in 3804 * zil_lwb_write_issue(). 3805 */ 3806 mutex_enter(&zilog->zl_lwb_io_lock); 3807 txg = MAX(zilog->zl_lwb_max_issued_txg, txg); 3808 mutex_exit(&zilog->zl_lwb_io_lock); 3809 3810 /* 3811 * We need to use txg_wait_synced() to wait until that txg is synced. 3812 * zil_sync() will guarantee all lwbs up to that txg have been 3813 * written out, flushed, and cleaned. 3814 */ 3815 if (txg != 0) 3816 txg_wait_synced(zilog->zl_dmu_pool, txg); 3817 3818 if (zilog_is_dirty(zilog)) 3819 zfs_dbgmsg("zil (%px) is dirty, txg %llu", zilog, 3820 (u_longlong_t)txg); 3821 if (txg < spa_freeze_txg(zilog->zl_spa)) 3822 VERIFY(!zilog_is_dirty(zilog)); 3823 3824 zilog->zl_get_data = NULL; 3825 3826 /* 3827 * We should have only one lwb left on the list; remove it now. 3828 */ 3829 mutex_enter(&zilog->zl_lock); 3830 lwb = list_remove_head(&zilog->zl_lwb_list); 3831 if (lwb != NULL) { 3832 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3833 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_NEW); 3834 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 3835 zil_free_lwb(zilog, lwb); 3836 } 3837 mutex_exit(&zilog->zl_lock); 3838 } 3839 3840 static const char *suspend_tag = "zil suspending"; 3841 3842 /* 3843 * Suspend an intent log. While in suspended mode, we still honor 3844 * synchronous semantics, but we rely on txg_wait_synced() to do it. 3845 * On old version pools, we suspend the log briefly when taking a 3846 * snapshot so that it will have an empty intent log. 3847 * 3848 * Long holds are not really intended to be used the way we do here -- 3849 * held for such a short time. A concurrent caller of dsl_dataset_long_held() 3850 * could fail. Therefore we take pains to only put a long hold if it is 3851 * actually necessary. Fortunately, it will only be necessary if the 3852 * objset is currently mounted (or the ZVOL equivalent). In that case it 3853 * will already have a long hold, so we are not really making things any worse. 3854 * 3855 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or 3856 * zvol_state_t), and use their mechanism to prevent their hold from being 3857 * dropped (e.g. VFS_HOLD()). However, that would be even more pain for 3858 * very little gain. 3859 * 3860 * if cookiep == NULL, this does both the suspend & resume. 3861 * Otherwise, it returns with the dataset "long held", and the cookie 3862 * should be passed into zil_resume(). 3863 */ 3864 int 3865 zil_suspend(const char *osname, void **cookiep) 3866 { 3867 objset_t *os; 3868 zilog_t *zilog; 3869 const zil_header_t *zh; 3870 int error; 3871 3872 error = dmu_objset_hold(osname, suspend_tag, &os); 3873 if (error != 0) 3874 return (error); 3875 zilog = dmu_objset_zil(os); 3876 3877 mutex_enter(&zilog->zl_lock); 3878 zh = zilog->zl_header; 3879 3880 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */ 3881 mutex_exit(&zilog->zl_lock); 3882 dmu_objset_rele(os, suspend_tag); 3883 return (SET_ERROR(EBUSY)); 3884 } 3885 3886 /* 3887 * Don't put a long hold in the cases where we can avoid it. This 3888 * is when there is no cookie so we are doing a suspend & resume 3889 * (i.e. called from zil_vdev_offline()), and there's nothing to do 3890 * for the suspend because it's already suspended, or there's no ZIL. 3891 */ 3892 if (cookiep == NULL && !zilog->zl_suspending && 3893 (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) { 3894 mutex_exit(&zilog->zl_lock); 3895 dmu_objset_rele(os, suspend_tag); 3896 return (0); 3897 } 3898 3899 dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag); 3900 dsl_pool_rele(dmu_objset_pool(os), suspend_tag); 3901 3902 zilog->zl_suspend++; 3903 3904 if (zilog->zl_suspend > 1) { 3905 /* 3906 * Someone else is already suspending it. 3907 * Just wait for them to finish. 3908 */ 3909 3910 while (zilog->zl_suspending) 3911 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock); 3912 mutex_exit(&zilog->zl_lock); 3913 3914 if (cookiep == NULL) 3915 zil_resume(os); 3916 else 3917 *cookiep = os; 3918 return (0); 3919 } 3920 3921 /* 3922 * If there is no pointer to an on-disk block, this ZIL must not 3923 * be active (e.g. filesystem not mounted), so there's nothing 3924 * to clean up. 3925 */ 3926 if (BP_IS_HOLE(&zh->zh_log)) { 3927 ASSERT(cookiep != NULL); /* fast path already handled */ 3928 3929 *cookiep = os; 3930 mutex_exit(&zilog->zl_lock); 3931 return (0); 3932 } 3933 3934 /* 3935 * The ZIL has work to do. Ensure that the associated encryption 3936 * key will remain mapped while we are committing the log by 3937 * grabbing a reference to it. If the key isn't loaded we have no 3938 * choice but to return an error until the wrapping key is loaded. 3939 */ 3940 if (os->os_encrypted && 3941 dsl_dataset_create_key_mapping(dmu_objset_ds(os)) != 0) { 3942 zilog->zl_suspend--; 3943 mutex_exit(&zilog->zl_lock); 3944 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag); 3945 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag); 3946 return (SET_ERROR(EACCES)); 3947 } 3948 3949 zilog->zl_suspending = B_TRUE; 3950 mutex_exit(&zilog->zl_lock); 3951 3952 /* 3953 * We need to use zil_commit_impl to ensure we wait for all 3954 * LWB_STATE_OPENED, _CLOSED and _READY lwbs to be committed 3955 * to disk before proceeding. If we used zil_commit instead, it 3956 * would just call txg_wait_synced(), because zl_suspend is set. 3957 * txg_wait_synced() doesn't wait for these lwb's to be 3958 * LWB_STATE_FLUSH_DONE before returning. 3959 */ 3960 zil_commit_impl(zilog, 0); 3961 3962 /* 3963 * Now that we've ensured all lwb's are LWB_STATE_FLUSH_DONE, we 3964 * use txg_wait_synced() to ensure the data from the zilog has 3965 * migrated to the main pool before calling zil_destroy(). 3966 */ 3967 txg_wait_synced(zilog->zl_dmu_pool, 0); 3968 3969 zil_destroy(zilog, B_FALSE); 3970 3971 mutex_enter(&zilog->zl_lock); 3972 zilog->zl_suspending = B_FALSE; 3973 cv_broadcast(&zilog->zl_cv_suspend); 3974 mutex_exit(&zilog->zl_lock); 3975 3976 if (os->os_encrypted) 3977 dsl_dataset_remove_key_mapping(dmu_objset_ds(os)); 3978 3979 if (cookiep == NULL) 3980 zil_resume(os); 3981 else 3982 *cookiep = os; 3983 return (0); 3984 } 3985 3986 void 3987 zil_resume(void *cookie) 3988 { 3989 objset_t *os = cookie; 3990 zilog_t *zilog = dmu_objset_zil(os); 3991 3992 mutex_enter(&zilog->zl_lock); 3993 ASSERT(zilog->zl_suspend != 0); 3994 zilog->zl_suspend--; 3995 mutex_exit(&zilog->zl_lock); 3996 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag); 3997 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag); 3998 } 3999 4000 typedef struct zil_replay_arg { 4001 zil_replay_func_t *const *zr_replay; 4002 void *zr_arg; 4003 boolean_t zr_byteswap; 4004 char *zr_lr; 4005 } zil_replay_arg_t; 4006 4007 static int 4008 zil_replay_error(zilog_t *zilog, const lr_t *lr, int error) 4009 { 4010 char name[ZFS_MAX_DATASET_NAME_LEN]; 4011 4012 zilog->zl_replaying_seq--; /* didn't actually replay this one */ 4013 4014 dmu_objset_name(zilog->zl_os, name); 4015 4016 cmn_err(CE_WARN, "ZFS replay transaction error %d, " 4017 "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name, 4018 (u_longlong_t)lr->lrc_seq, 4019 (u_longlong_t)(lr->lrc_txtype & ~TX_CI), 4020 (lr->lrc_txtype & TX_CI) ? "CI" : ""); 4021 4022 return (error); 4023 } 4024 4025 static int 4026 zil_replay_log_record(zilog_t *zilog, const lr_t *lr, void *zra, 4027 uint64_t claim_txg) 4028 { 4029 zil_replay_arg_t *zr = zra; 4030 const zil_header_t *zh = zilog->zl_header; 4031 uint64_t reclen = lr->lrc_reclen; 4032 uint64_t txtype = lr->lrc_txtype; 4033 int error = 0; 4034 4035 zilog->zl_replaying_seq = lr->lrc_seq; 4036 4037 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */ 4038 return (0); 4039 4040 if (lr->lrc_txg < claim_txg) /* already committed */ 4041 return (0); 4042 4043 /* Strip case-insensitive bit, still present in log record */ 4044 txtype &= ~TX_CI; 4045 4046 if (txtype == 0 || txtype >= TX_MAX_TYPE) 4047 return (zil_replay_error(zilog, lr, EINVAL)); 4048 4049 /* 4050 * If this record type can be logged out of order, the object 4051 * (lr_foid) may no longer exist. That's legitimate, not an error. 4052 */ 4053 if (TX_OOO(txtype)) { 4054 error = dmu_object_info(zilog->zl_os, 4055 LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL); 4056 if (error == ENOENT || error == EEXIST) 4057 return (0); 4058 } 4059 4060 /* 4061 * Make a copy of the data so we can revise and extend it. 4062 */ 4063 memcpy(zr->zr_lr, lr, reclen); 4064 4065 /* 4066 * If this is a TX_WRITE with a blkptr, suck in the data. 4067 */ 4068 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) { 4069 error = zil_read_log_data(zilog, (lr_write_t *)lr, 4070 zr->zr_lr + reclen); 4071 if (error != 0) 4072 return (zil_replay_error(zilog, lr, error)); 4073 } 4074 4075 /* 4076 * The log block containing this lr may have been byteswapped 4077 * so that we can easily examine common fields like lrc_txtype. 4078 * However, the log is a mix of different record types, and only the 4079 * replay vectors know how to byteswap their records. Therefore, if 4080 * the lr was byteswapped, undo it before invoking the replay vector. 4081 */ 4082 if (zr->zr_byteswap) 4083 byteswap_uint64_array(zr->zr_lr, reclen); 4084 4085 /* 4086 * We must now do two things atomically: replay this log record, 4087 * and update the log header sequence number to reflect the fact that 4088 * we did so. At the end of each replay function the sequence number 4089 * is updated if we are in replay mode. 4090 */ 4091 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap); 4092 if (error != 0) { 4093 /* 4094 * The DMU's dnode layer doesn't see removes until the txg 4095 * commits, so a subsequent claim can spuriously fail with 4096 * EEXIST. So if we receive any error we try syncing out 4097 * any removes then retry the transaction. Note that we 4098 * specify B_FALSE for byteswap now, so we don't do it twice. 4099 */ 4100 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0); 4101 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE); 4102 if (error != 0) 4103 return (zil_replay_error(zilog, lr, error)); 4104 } 4105 return (0); 4106 } 4107 4108 static int 4109 zil_incr_blks(zilog_t *zilog, const blkptr_t *bp, void *arg, uint64_t claim_txg) 4110 { 4111 (void) bp, (void) arg, (void) claim_txg; 4112 4113 zilog->zl_replay_blks++; 4114 4115 return (0); 4116 } 4117 4118 /* 4119 * If this dataset has a non-empty intent log, replay it and destroy it. 4120 * Return B_TRUE if there were any entries to replay. 4121 */ 4122 boolean_t 4123 zil_replay(objset_t *os, void *arg, 4124 zil_replay_func_t *const replay_func[TX_MAX_TYPE]) 4125 { 4126 zilog_t *zilog = dmu_objset_zil(os); 4127 const zil_header_t *zh = zilog->zl_header; 4128 zil_replay_arg_t zr; 4129 4130 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) { 4131 return (zil_destroy(zilog, B_TRUE)); 4132 } 4133 4134 zr.zr_replay = replay_func; 4135 zr.zr_arg = arg; 4136 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log); 4137 zr.zr_lr = vmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP); 4138 4139 /* 4140 * Wait for in-progress removes to sync before starting replay. 4141 */ 4142 txg_wait_synced(zilog->zl_dmu_pool, 0); 4143 4144 zilog->zl_replay = B_TRUE; 4145 zilog->zl_replay_time = ddi_get_lbolt(); 4146 ASSERT(zilog->zl_replay_blks == 0); 4147 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr, 4148 zh->zh_claim_txg, B_TRUE); 4149 vmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE); 4150 4151 zil_destroy(zilog, B_FALSE); 4152 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 4153 zilog->zl_replay = B_FALSE; 4154 4155 return (B_TRUE); 4156 } 4157 4158 boolean_t 4159 zil_replaying(zilog_t *zilog, dmu_tx_t *tx) 4160 { 4161 if (zilog->zl_sync == ZFS_SYNC_DISABLED) 4162 return (B_TRUE); 4163 4164 if (zilog->zl_replay) { 4165 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 4166 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] = 4167 zilog->zl_replaying_seq; 4168 return (B_TRUE); 4169 } 4170 4171 return (B_FALSE); 4172 } 4173 4174 int 4175 zil_reset(const char *osname, void *arg) 4176 { 4177 (void) arg; 4178 4179 int error = zil_suspend(osname, NULL); 4180 /* EACCES means crypto key not loaded */ 4181 if ((error == EACCES) || (error == EBUSY)) 4182 return (SET_ERROR(error)); 4183 if (error != 0) 4184 return (SET_ERROR(EEXIST)); 4185 return (0); 4186 } 4187 4188 EXPORT_SYMBOL(zil_alloc); 4189 EXPORT_SYMBOL(zil_free); 4190 EXPORT_SYMBOL(zil_open); 4191 EXPORT_SYMBOL(zil_close); 4192 EXPORT_SYMBOL(zil_replay); 4193 EXPORT_SYMBOL(zil_replaying); 4194 EXPORT_SYMBOL(zil_destroy); 4195 EXPORT_SYMBOL(zil_destroy_sync); 4196 EXPORT_SYMBOL(zil_itx_create); 4197 EXPORT_SYMBOL(zil_itx_destroy); 4198 EXPORT_SYMBOL(zil_itx_assign); 4199 EXPORT_SYMBOL(zil_commit); 4200 EXPORT_SYMBOL(zil_claim); 4201 EXPORT_SYMBOL(zil_check_log_chain); 4202 EXPORT_SYMBOL(zil_sync); 4203 EXPORT_SYMBOL(zil_clean); 4204 EXPORT_SYMBOL(zil_suspend); 4205 EXPORT_SYMBOL(zil_resume); 4206 EXPORT_SYMBOL(zil_lwb_add_block); 4207 EXPORT_SYMBOL(zil_bp_tree_add); 4208 EXPORT_SYMBOL(zil_set_sync); 4209 EXPORT_SYMBOL(zil_set_logbias); 4210 EXPORT_SYMBOL(zil_sums_init); 4211 EXPORT_SYMBOL(zil_sums_fini); 4212 EXPORT_SYMBOL(zil_kstat_values_update); 4213 4214 ZFS_MODULE_PARAM(zfs, zfs_, commit_timeout_pct, UINT, ZMOD_RW, 4215 "ZIL block open timeout percentage"); 4216 4217 ZFS_MODULE_PARAM(zfs_zil, zil_, min_commit_timeout, U64, ZMOD_RW, 4218 "Minimum delay we care for ZIL block commit"); 4219 4220 ZFS_MODULE_PARAM(zfs_zil, zil_, replay_disable, INT, ZMOD_RW, 4221 "Disable intent logging replay"); 4222 4223 ZFS_MODULE_PARAM(zfs_zil, zil_, nocacheflush, INT, ZMOD_RW, 4224 "Disable ZIL cache flushes"); 4225 4226 ZFS_MODULE_PARAM(zfs_zil, zil_, slog_bulk, U64, ZMOD_RW, 4227 "Limit in bytes slog sync writes per commit"); 4228 4229 ZFS_MODULE_PARAM(zfs_zil, zil_, maxblocksize, UINT, ZMOD_RW, 4230 "Limit in bytes of ZIL log block size"); 4231 4232 ZFS_MODULE_PARAM(zfs_zil, zil_, maxcopied, UINT, ZMOD_RW, 4233 "Limit in bytes WR_COPIED size"); 4234