xref: /freebsd/sys/contrib/openzfs/module/zfs/zil.c (revision 62ff619dcc3540659a319be71c9a489f1659e14a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24  * Copyright (c) 2014 Integros [integros.com]
25  * Copyright (c) 2018 Datto Inc.
26  */
27 
28 /* Portions Copyright 2010 Robert Milkowski */
29 
30 #include <sys/zfs_context.h>
31 #include <sys/spa.h>
32 #include <sys/spa_impl.h>
33 #include <sys/dmu.h>
34 #include <sys/zap.h>
35 #include <sys/arc.h>
36 #include <sys/stat.h>
37 #include <sys/zil.h>
38 #include <sys/zil_impl.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/vdev_impl.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/dsl_pool.h>
43 #include <sys/metaslab.h>
44 #include <sys/trace_zfs.h>
45 #include <sys/abd.h>
46 
47 /*
48  * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system
49  * calls that change the file system. Each itx has enough information to
50  * be able to replay them after a system crash, power loss, or
51  * equivalent failure mode. These are stored in memory until either:
52  *
53  *   1. they are committed to the pool by the DMU transaction group
54  *      (txg), at which point they can be discarded; or
55  *   2. they are committed to the on-disk ZIL for the dataset being
56  *      modified (e.g. due to an fsync, O_DSYNC, or other synchronous
57  *      requirement).
58  *
59  * In the event of a crash or power loss, the itxs contained by each
60  * dataset's on-disk ZIL will be replayed when that dataset is first
61  * instantiated (e.g. if the dataset is a normal filesystem, when it is
62  * first mounted).
63  *
64  * As hinted at above, there is one ZIL per dataset (both the in-memory
65  * representation, and the on-disk representation). The on-disk format
66  * consists of 3 parts:
67  *
68  * 	- a single, per-dataset, ZIL header; which points to a chain of
69  * 	- zero or more ZIL blocks; each of which contains
70  * 	- zero or more ZIL records
71  *
72  * A ZIL record holds the information necessary to replay a single
73  * system call transaction. A ZIL block can hold many ZIL records, and
74  * the blocks are chained together, similarly to a singly linked list.
75  *
76  * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL
77  * block in the chain, and the ZIL header points to the first block in
78  * the chain.
79  *
80  * Note, there is not a fixed place in the pool to hold these ZIL
81  * blocks; they are dynamically allocated and freed as needed from the
82  * blocks available on the pool, though they can be preferentially
83  * allocated from a dedicated "log" vdev.
84  */
85 
86 /*
87  * This controls the amount of time that a ZIL block (lwb) will remain
88  * "open" when it isn't "full", and it has a thread waiting for it to be
89  * committed to stable storage. Please refer to the zil_commit_waiter()
90  * function (and the comments within it) for more details.
91  */
92 static int zfs_commit_timeout_pct = 5;
93 
94 /*
95  * See zil.h for more information about these fields.
96  */
97 static zil_stats_t zil_stats = {
98 	{ "zil_commit_count",			KSTAT_DATA_UINT64 },
99 	{ "zil_commit_writer_count",		KSTAT_DATA_UINT64 },
100 	{ "zil_itx_count",			KSTAT_DATA_UINT64 },
101 	{ "zil_itx_indirect_count",		KSTAT_DATA_UINT64 },
102 	{ "zil_itx_indirect_bytes",		KSTAT_DATA_UINT64 },
103 	{ "zil_itx_copied_count",		KSTAT_DATA_UINT64 },
104 	{ "zil_itx_copied_bytes",		KSTAT_DATA_UINT64 },
105 	{ "zil_itx_needcopy_count",		KSTAT_DATA_UINT64 },
106 	{ "zil_itx_needcopy_bytes",		KSTAT_DATA_UINT64 },
107 	{ "zil_itx_metaslab_normal_count",	KSTAT_DATA_UINT64 },
108 	{ "zil_itx_metaslab_normal_bytes",	KSTAT_DATA_UINT64 },
109 	{ "zil_itx_metaslab_slog_count",	KSTAT_DATA_UINT64 },
110 	{ "zil_itx_metaslab_slog_bytes",	KSTAT_DATA_UINT64 },
111 };
112 
113 static kstat_t *zil_ksp;
114 
115 /*
116  * Disable intent logging replay.  This global ZIL switch affects all pools.
117  */
118 int zil_replay_disable = 0;
119 
120 /*
121  * Disable the DKIOCFLUSHWRITECACHE commands that are normally sent to
122  * the disk(s) by the ZIL after an LWB write has completed. Setting this
123  * will cause ZIL corruption on power loss if a volatile out-of-order
124  * write cache is enabled.
125  */
126 static int zil_nocacheflush = 0;
127 
128 /*
129  * Limit SLOG write size per commit executed with synchronous priority.
130  * Any writes above that will be executed with lower (asynchronous) priority
131  * to limit potential SLOG device abuse by single active ZIL writer.
132  */
133 static unsigned long zil_slog_bulk = 768 * 1024;
134 
135 static kmem_cache_t *zil_lwb_cache;
136 static kmem_cache_t *zil_zcw_cache;
137 
138 #define	LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
139     sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
140 
141 static int
142 zil_bp_compare(const void *x1, const void *x2)
143 {
144 	const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
145 	const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
146 
147 	int cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2));
148 	if (likely(cmp))
149 		return (cmp);
150 
151 	return (TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2)));
152 }
153 
154 static void
155 zil_bp_tree_init(zilog_t *zilog)
156 {
157 	avl_create(&zilog->zl_bp_tree, zil_bp_compare,
158 	    sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
159 }
160 
161 static void
162 zil_bp_tree_fini(zilog_t *zilog)
163 {
164 	avl_tree_t *t = &zilog->zl_bp_tree;
165 	zil_bp_node_t *zn;
166 	void *cookie = NULL;
167 
168 	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
169 		kmem_free(zn, sizeof (zil_bp_node_t));
170 
171 	avl_destroy(t);
172 }
173 
174 int
175 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
176 {
177 	avl_tree_t *t = &zilog->zl_bp_tree;
178 	const dva_t *dva;
179 	zil_bp_node_t *zn;
180 	avl_index_t where;
181 
182 	if (BP_IS_EMBEDDED(bp))
183 		return (0);
184 
185 	dva = BP_IDENTITY(bp);
186 
187 	if (avl_find(t, dva, &where) != NULL)
188 		return (SET_ERROR(EEXIST));
189 
190 	zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
191 	zn->zn_dva = *dva;
192 	avl_insert(t, zn, where);
193 
194 	return (0);
195 }
196 
197 static zil_header_t *
198 zil_header_in_syncing_context(zilog_t *zilog)
199 {
200 	return ((zil_header_t *)zilog->zl_header);
201 }
202 
203 static void
204 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
205 {
206 	zio_cksum_t *zc = &bp->blk_cksum;
207 
208 	(void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_0],
209 	    sizeof (zc->zc_word[ZIL_ZC_GUID_0]));
210 	(void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_1],
211 	    sizeof (zc->zc_word[ZIL_ZC_GUID_1]));
212 	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
213 	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
214 }
215 
216 /*
217  * Read a log block and make sure it's valid.
218  */
219 static int
220 zil_read_log_block(zilog_t *zilog, boolean_t decrypt, const blkptr_t *bp,
221     blkptr_t *nbp, void *dst, char **end)
222 {
223 	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
224 	arc_flags_t aflags = ARC_FLAG_WAIT;
225 	arc_buf_t *abuf = NULL;
226 	zbookmark_phys_t zb;
227 	int error;
228 
229 	if (zilog->zl_header->zh_claim_txg == 0)
230 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
231 
232 	if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
233 		zio_flags |= ZIO_FLAG_SPECULATIVE;
234 
235 	if (!decrypt)
236 		zio_flags |= ZIO_FLAG_RAW;
237 
238 	SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
239 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
240 
241 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func,
242 	    &abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
243 
244 	if (error == 0) {
245 		zio_cksum_t cksum = bp->blk_cksum;
246 
247 		/*
248 		 * Validate the checksummed log block.
249 		 *
250 		 * Sequence numbers should be... sequential.  The checksum
251 		 * verifier for the next block should be bp's checksum plus 1.
252 		 *
253 		 * Also check the log chain linkage and size used.
254 		 */
255 		cksum.zc_word[ZIL_ZC_SEQ]++;
256 
257 		if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
258 			zil_chain_t *zilc = abuf->b_data;
259 			char *lr = (char *)(zilc + 1);
260 			uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
261 
262 			if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
263 			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
264 				error = SET_ERROR(ECKSUM);
265 			} else {
266 				ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
267 				memcpy(dst, lr, len);
268 				*end = (char *)dst + len;
269 				*nbp = zilc->zc_next_blk;
270 			}
271 		} else {
272 			char *lr = abuf->b_data;
273 			uint64_t size = BP_GET_LSIZE(bp);
274 			zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
275 
276 			if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
277 			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
278 			    (zilc->zc_nused > (size - sizeof (*zilc)))) {
279 				error = SET_ERROR(ECKSUM);
280 			} else {
281 				ASSERT3U(zilc->zc_nused, <=,
282 				    SPA_OLD_MAXBLOCKSIZE);
283 				memcpy(dst, lr, zilc->zc_nused);
284 				*end = (char *)dst + zilc->zc_nused;
285 				*nbp = zilc->zc_next_blk;
286 			}
287 		}
288 
289 		arc_buf_destroy(abuf, &abuf);
290 	}
291 
292 	return (error);
293 }
294 
295 /*
296  * Read a TX_WRITE log data block.
297  */
298 static int
299 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
300 {
301 	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
302 	const blkptr_t *bp = &lr->lr_blkptr;
303 	arc_flags_t aflags = ARC_FLAG_WAIT;
304 	arc_buf_t *abuf = NULL;
305 	zbookmark_phys_t zb;
306 	int error;
307 
308 	if (BP_IS_HOLE(bp)) {
309 		if (wbuf != NULL)
310 			memset(wbuf, 0, MAX(BP_GET_LSIZE(bp), lr->lr_length));
311 		return (0);
312 	}
313 
314 	if (zilog->zl_header->zh_claim_txg == 0)
315 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
316 
317 	/*
318 	 * If we are not using the resulting data, we are just checking that
319 	 * it hasn't been corrupted so we don't need to waste CPU time
320 	 * decompressing and decrypting it.
321 	 */
322 	if (wbuf == NULL)
323 		zio_flags |= ZIO_FLAG_RAW;
324 
325 	SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
326 	    ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
327 
328 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
329 	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
330 
331 	if (error == 0) {
332 		if (wbuf != NULL)
333 			memcpy(wbuf, abuf->b_data, arc_buf_size(abuf));
334 		arc_buf_destroy(abuf, &abuf);
335 	}
336 
337 	return (error);
338 }
339 
340 /*
341  * Parse the intent log, and call parse_func for each valid record within.
342  */
343 int
344 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
345     zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg,
346     boolean_t decrypt)
347 {
348 	const zil_header_t *zh = zilog->zl_header;
349 	boolean_t claimed = !!zh->zh_claim_txg;
350 	uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
351 	uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
352 	uint64_t max_blk_seq = 0;
353 	uint64_t max_lr_seq = 0;
354 	uint64_t blk_count = 0;
355 	uint64_t lr_count = 0;
356 	blkptr_t blk, next_blk = {{{{0}}}};
357 	char *lrbuf, *lrp;
358 	int error = 0;
359 
360 	/*
361 	 * Old logs didn't record the maximum zh_claim_lr_seq.
362 	 */
363 	if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
364 		claim_lr_seq = UINT64_MAX;
365 
366 	/*
367 	 * Starting at the block pointed to by zh_log we read the log chain.
368 	 * For each block in the chain we strongly check that block to
369 	 * ensure its validity.  We stop when an invalid block is found.
370 	 * For each block pointer in the chain we call parse_blk_func().
371 	 * For each record in each valid block we call parse_lr_func().
372 	 * If the log has been claimed, stop if we encounter a sequence
373 	 * number greater than the highest claimed sequence number.
374 	 */
375 	lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
376 	zil_bp_tree_init(zilog);
377 
378 	for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
379 		uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
380 		int reclen;
381 		char *end = NULL;
382 
383 		if (blk_seq > claim_blk_seq)
384 			break;
385 
386 		error = parse_blk_func(zilog, &blk, arg, txg);
387 		if (error != 0)
388 			break;
389 		ASSERT3U(max_blk_seq, <, blk_seq);
390 		max_blk_seq = blk_seq;
391 		blk_count++;
392 
393 		if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
394 			break;
395 
396 		error = zil_read_log_block(zilog, decrypt, &blk, &next_blk,
397 		    lrbuf, &end);
398 		if (error != 0)
399 			break;
400 
401 		for (lrp = lrbuf; lrp < end; lrp += reclen) {
402 			lr_t *lr = (lr_t *)lrp;
403 			reclen = lr->lrc_reclen;
404 			ASSERT3U(reclen, >=, sizeof (lr_t));
405 			if (lr->lrc_seq > claim_lr_seq)
406 				goto done;
407 
408 			error = parse_lr_func(zilog, lr, arg, txg);
409 			if (error != 0)
410 				goto done;
411 			ASSERT3U(max_lr_seq, <, lr->lrc_seq);
412 			max_lr_seq = lr->lrc_seq;
413 			lr_count++;
414 		}
415 	}
416 done:
417 	zilog->zl_parse_error = error;
418 	zilog->zl_parse_blk_seq = max_blk_seq;
419 	zilog->zl_parse_lr_seq = max_lr_seq;
420 	zilog->zl_parse_blk_count = blk_count;
421 	zilog->zl_parse_lr_count = lr_count;
422 
423 	ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
424 	    (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq) ||
425 	    (decrypt && error == EIO));
426 
427 	zil_bp_tree_fini(zilog);
428 	zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
429 
430 	return (error);
431 }
432 
433 static int
434 zil_clear_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
435     uint64_t first_txg)
436 {
437 	(void) tx;
438 	ASSERT(!BP_IS_HOLE(bp));
439 
440 	/*
441 	 * As we call this function from the context of a rewind to a
442 	 * checkpoint, each ZIL block whose txg is later than the txg
443 	 * that we rewind to is invalid. Thus, we return -1 so
444 	 * zil_parse() doesn't attempt to read it.
445 	 */
446 	if (bp->blk_birth >= first_txg)
447 		return (-1);
448 
449 	if (zil_bp_tree_add(zilog, bp) != 0)
450 		return (0);
451 
452 	zio_free(zilog->zl_spa, first_txg, bp);
453 	return (0);
454 }
455 
456 static int
457 zil_noop_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
458     uint64_t first_txg)
459 {
460 	(void) zilog, (void) lrc, (void) tx, (void) first_txg;
461 	return (0);
462 }
463 
464 static int
465 zil_claim_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
466     uint64_t first_txg)
467 {
468 	/*
469 	 * Claim log block if not already committed and not already claimed.
470 	 * If tx == NULL, just verify that the block is claimable.
471 	 */
472 	if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
473 	    zil_bp_tree_add(zilog, bp) != 0)
474 		return (0);
475 
476 	return (zio_wait(zio_claim(NULL, zilog->zl_spa,
477 	    tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
478 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
479 }
480 
481 static int
482 zil_claim_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
483     uint64_t first_txg)
484 {
485 	lr_write_t *lr = (lr_write_t *)lrc;
486 	int error;
487 
488 	if (lrc->lrc_txtype != TX_WRITE)
489 		return (0);
490 
491 	/*
492 	 * If the block is not readable, don't claim it.  This can happen
493 	 * in normal operation when a log block is written to disk before
494 	 * some of the dmu_sync() blocks it points to.  In this case, the
495 	 * transaction cannot have been committed to anyone (we would have
496 	 * waited for all writes to be stable first), so it is semantically
497 	 * correct to declare this the end of the log.
498 	 */
499 	if (lr->lr_blkptr.blk_birth >= first_txg) {
500 		error = zil_read_log_data(zilog, lr, NULL);
501 		if (error != 0)
502 			return (error);
503 	}
504 
505 	return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
506 }
507 
508 static int
509 zil_free_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
510     uint64_t claim_txg)
511 {
512 	(void) claim_txg;
513 
514 	zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
515 
516 	return (0);
517 }
518 
519 static int
520 zil_free_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
521     uint64_t claim_txg)
522 {
523 	lr_write_t *lr = (lr_write_t *)lrc;
524 	blkptr_t *bp = &lr->lr_blkptr;
525 
526 	/*
527 	 * If we previously claimed it, we need to free it.
528 	 */
529 	if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
530 	    bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
531 	    !BP_IS_HOLE(bp))
532 		zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
533 
534 	return (0);
535 }
536 
537 static int
538 zil_lwb_vdev_compare(const void *x1, const void *x2)
539 {
540 	const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
541 	const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
542 
543 	return (TREE_CMP(v1, v2));
544 }
545 
546 static lwb_t *
547 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg,
548     boolean_t fastwrite)
549 {
550 	lwb_t *lwb;
551 
552 	lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
553 	lwb->lwb_zilog = zilog;
554 	lwb->lwb_blk = *bp;
555 	lwb->lwb_fastwrite = fastwrite;
556 	lwb->lwb_slog = slog;
557 	lwb->lwb_state = LWB_STATE_CLOSED;
558 	lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
559 	lwb->lwb_max_txg = txg;
560 	lwb->lwb_write_zio = NULL;
561 	lwb->lwb_root_zio = NULL;
562 	lwb->lwb_tx = NULL;
563 	lwb->lwb_issued_timestamp = 0;
564 	if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
565 		lwb->lwb_nused = sizeof (zil_chain_t);
566 		lwb->lwb_sz = BP_GET_LSIZE(bp);
567 	} else {
568 		lwb->lwb_nused = 0;
569 		lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
570 	}
571 
572 	mutex_enter(&zilog->zl_lock);
573 	list_insert_tail(&zilog->zl_lwb_list, lwb);
574 	mutex_exit(&zilog->zl_lock);
575 
576 	ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
577 	ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
578 	VERIFY(list_is_empty(&lwb->lwb_waiters));
579 	VERIFY(list_is_empty(&lwb->lwb_itxs));
580 
581 	return (lwb);
582 }
583 
584 static void
585 zil_free_lwb(zilog_t *zilog, lwb_t *lwb)
586 {
587 	ASSERT(MUTEX_HELD(&zilog->zl_lock));
588 	ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
589 	VERIFY(list_is_empty(&lwb->lwb_waiters));
590 	VERIFY(list_is_empty(&lwb->lwb_itxs));
591 	ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
592 	ASSERT3P(lwb->lwb_write_zio, ==, NULL);
593 	ASSERT3P(lwb->lwb_root_zio, ==, NULL);
594 	ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa));
595 	ASSERT(lwb->lwb_state == LWB_STATE_CLOSED ||
596 	    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
597 
598 	/*
599 	 * Clear the zilog's field to indicate this lwb is no longer
600 	 * valid, and prevent use-after-free errors.
601 	 */
602 	if (zilog->zl_last_lwb_opened == lwb)
603 		zilog->zl_last_lwb_opened = NULL;
604 
605 	kmem_cache_free(zil_lwb_cache, lwb);
606 }
607 
608 /*
609  * Called when we create in-memory log transactions so that we know
610  * to cleanup the itxs at the end of spa_sync().
611  */
612 static void
613 zilog_dirty(zilog_t *zilog, uint64_t txg)
614 {
615 	dsl_pool_t *dp = zilog->zl_dmu_pool;
616 	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
617 
618 	ASSERT(spa_writeable(zilog->zl_spa));
619 
620 	if (ds->ds_is_snapshot)
621 		panic("dirtying snapshot!");
622 
623 	if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
624 		/* up the hold count until we can be written out */
625 		dmu_buf_add_ref(ds->ds_dbuf, zilog);
626 
627 		zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg);
628 	}
629 }
630 
631 /*
632  * Determine if the zil is dirty in the specified txg. Callers wanting to
633  * ensure that the dirty state does not change must hold the itxg_lock for
634  * the specified txg. Holding the lock will ensure that the zil cannot be
635  * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
636  * state.
637  */
638 static boolean_t __maybe_unused
639 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
640 {
641 	dsl_pool_t *dp = zilog->zl_dmu_pool;
642 
643 	if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
644 		return (B_TRUE);
645 	return (B_FALSE);
646 }
647 
648 /*
649  * Determine if the zil is dirty. The zil is considered dirty if it has
650  * any pending itx records that have not been cleaned by zil_clean().
651  */
652 static boolean_t
653 zilog_is_dirty(zilog_t *zilog)
654 {
655 	dsl_pool_t *dp = zilog->zl_dmu_pool;
656 
657 	for (int t = 0; t < TXG_SIZE; t++) {
658 		if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
659 			return (B_TRUE);
660 	}
661 	return (B_FALSE);
662 }
663 
664 /*
665  * Its called in zil_commit context (zil_process_commit_list()/zil_create()).
666  * It activates SPA_FEATURE_ZILSAXATTR feature, if its enabled.
667  * Check dsl_dataset_feature_is_active to avoid txg_wait_synced() on every
668  * zil_commit.
669  */
670 static void
671 zil_commit_activate_saxattr_feature(zilog_t *zilog)
672 {
673 	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
674 	uint64_t txg = 0;
675 	dmu_tx_t *tx = NULL;
676 
677 	if (spa_feature_is_enabled(zilog->zl_spa,
678 	    SPA_FEATURE_ZILSAXATTR) &&
679 	    dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL &&
680 	    !dsl_dataset_feature_is_active(ds,
681 	    SPA_FEATURE_ZILSAXATTR)) {
682 		tx = dmu_tx_create(zilog->zl_os);
683 		VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
684 		dsl_dataset_dirty(ds, tx);
685 		txg = dmu_tx_get_txg(tx);
686 
687 		mutex_enter(&ds->ds_lock);
688 		ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] =
689 		    (void *)B_TRUE;
690 		mutex_exit(&ds->ds_lock);
691 		dmu_tx_commit(tx);
692 		txg_wait_synced(zilog->zl_dmu_pool, txg);
693 	}
694 }
695 
696 /*
697  * Create an on-disk intent log.
698  */
699 static lwb_t *
700 zil_create(zilog_t *zilog)
701 {
702 	const zil_header_t *zh = zilog->zl_header;
703 	lwb_t *lwb = NULL;
704 	uint64_t txg = 0;
705 	dmu_tx_t *tx = NULL;
706 	blkptr_t blk;
707 	int error = 0;
708 	boolean_t fastwrite = FALSE;
709 	boolean_t slog = FALSE;
710 	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
711 
712 
713 	/*
714 	 * Wait for any previous destroy to complete.
715 	 */
716 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
717 
718 	ASSERT(zh->zh_claim_txg == 0);
719 	ASSERT(zh->zh_replay_seq == 0);
720 
721 	blk = zh->zh_log;
722 
723 	/*
724 	 * Allocate an initial log block if:
725 	 *    - there isn't one already
726 	 *    - the existing block is the wrong endianness
727 	 */
728 	if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
729 		tx = dmu_tx_create(zilog->zl_os);
730 		VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
731 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
732 		txg = dmu_tx_get_txg(tx);
733 
734 		if (!BP_IS_HOLE(&blk)) {
735 			zio_free(zilog->zl_spa, txg, &blk);
736 			BP_ZERO(&blk);
737 		}
738 
739 		error = zio_alloc_zil(zilog->zl_spa, zilog->zl_os, txg, &blk,
740 		    ZIL_MIN_BLKSZ, &slog);
741 		fastwrite = TRUE;
742 
743 		if (error == 0)
744 			zil_init_log_chain(zilog, &blk);
745 	}
746 
747 	/*
748 	 * Allocate a log write block (lwb) for the first log block.
749 	 */
750 	if (error == 0)
751 		lwb = zil_alloc_lwb(zilog, &blk, slog, txg, fastwrite);
752 
753 	/*
754 	 * If we just allocated the first log block, commit our transaction
755 	 * and wait for zil_sync() to stuff the block pointer into zh_log.
756 	 * (zh is part of the MOS, so we cannot modify it in open context.)
757 	 */
758 	if (tx != NULL) {
759 		/*
760 		 * If "zilsaxattr" feature is enabled on zpool, then activate
761 		 * it now when we're creating the ZIL chain. We can't wait with
762 		 * this until we write the first xattr log record because we
763 		 * need to wait for the feature activation to sync out.
764 		 */
765 		if (spa_feature_is_enabled(zilog->zl_spa,
766 		    SPA_FEATURE_ZILSAXATTR) && dmu_objset_type(zilog->zl_os) !=
767 		    DMU_OST_ZVOL) {
768 			mutex_enter(&ds->ds_lock);
769 			ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] =
770 			    (void *)B_TRUE;
771 			mutex_exit(&ds->ds_lock);
772 		}
773 
774 		dmu_tx_commit(tx);
775 		txg_wait_synced(zilog->zl_dmu_pool, txg);
776 	} else {
777 		/*
778 		 * This branch covers the case where we enable the feature on a
779 		 * zpool that has existing ZIL headers.
780 		 */
781 		zil_commit_activate_saxattr_feature(zilog);
782 	}
783 	IMPLY(spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) &&
784 	    dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL,
785 	    dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR));
786 
787 	ASSERT(error != 0 || memcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
788 	IMPLY(error == 0, lwb != NULL);
789 
790 	return (lwb);
791 }
792 
793 /*
794  * In one tx, free all log blocks and clear the log header. If keep_first
795  * is set, then we're replaying a log with no content. We want to keep the
796  * first block, however, so that the first synchronous transaction doesn't
797  * require a txg_wait_synced() in zil_create(). We don't need to
798  * txg_wait_synced() here either when keep_first is set, because both
799  * zil_create() and zil_destroy() will wait for any in-progress destroys
800  * to complete.
801  */
802 void
803 zil_destroy(zilog_t *zilog, boolean_t keep_first)
804 {
805 	const zil_header_t *zh = zilog->zl_header;
806 	lwb_t *lwb;
807 	dmu_tx_t *tx;
808 	uint64_t txg;
809 
810 	/*
811 	 * Wait for any previous destroy to complete.
812 	 */
813 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
814 
815 	zilog->zl_old_header = *zh;		/* debugging aid */
816 
817 	if (BP_IS_HOLE(&zh->zh_log))
818 		return;
819 
820 	tx = dmu_tx_create(zilog->zl_os);
821 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
822 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
823 	txg = dmu_tx_get_txg(tx);
824 
825 	mutex_enter(&zilog->zl_lock);
826 
827 	ASSERT3U(zilog->zl_destroy_txg, <, txg);
828 	zilog->zl_destroy_txg = txg;
829 	zilog->zl_keep_first = keep_first;
830 
831 	if (!list_is_empty(&zilog->zl_lwb_list)) {
832 		ASSERT(zh->zh_claim_txg == 0);
833 		VERIFY(!keep_first);
834 		while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
835 			if (lwb->lwb_fastwrite)
836 				metaslab_fastwrite_unmark(zilog->zl_spa,
837 				    &lwb->lwb_blk);
838 
839 			list_remove(&zilog->zl_lwb_list, lwb);
840 			if (lwb->lwb_buf != NULL)
841 				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
842 			zio_free(zilog->zl_spa, txg, &lwb->lwb_blk);
843 			zil_free_lwb(zilog, lwb);
844 		}
845 	} else if (!keep_first) {
846 		zil_destroy_sync(zilog, tx);
847 	}
848 	mutex_exit(&zilog->zl_lock);
849 
850 	dmu_tx_commit(tx);
851 }
852 
853 void
854 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
855 {
856 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
857 	(void) zil_parse(zilog, zil_free_log_block,
858 	    zil_free_log_record, tx, zilog->zl_header->zh_claim_txg, B_FALSE);
859 }
860 
861 int
862 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
863 {
864 	dmu_tx_t *tx = txarg;
865 	zilog_t *zilog;
866 	uint64_t first_txg;
867 	zil_header_t *zh;
868 	objset_t *os;
869 	int error;
870 
871 	error = dmu_objset_own_obj(dp, ds->ds_object,
872 	    DMU_OST_ANY, B_FALSE, B_FALSE, FTAG, &os);
873 	if (error != 0) {
874 		/*
875 		 * EBUSY indicates that the objset is inconsistent, in which
876 		 * case it can not have a ZIL.
877 		 */
878 		if (error != EBUSY) {
879 			cmn_err(CE_WARN, "can't open objset for %llu, error %u",
880 			    (unsigned long long)ds->ds_object, error);
881 		}
882 
883 		return (0);
884 	}
885 
886 	zilog = dmu_objset_zil(os);
887 	zh = zil_header_in_syncing_context(zilog);
888 	ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa));
889 	first_txg = spa_min_claim_txg(zilog->zl_spa);
890 
891 	/*
892 	 * If the spa_log_state is not set to be cleared, check whether
893 	 * the current uberblock is a checkpoint one and if the current
894 	 * header has been claimed before moving on.
895 	 *
896 	 * If the current uberblock is a checkpointed uberblock then
897 	 * one of the following scenarios took place:
898 	 *
899 	 * 1] We are currently rewinding to the checkpoint of the pool.
900 	 * 2] We crashed in the middle of a checkpoint rewind but we
901 	 *    did manage to write the checkpointed uberblock to the
902 	 *    vdev labels, so when we tried to import the pool again
903 	 *    the checkpointed uberblock was selected from the import
904 	 *    procedure.
905 	 *
906 	 * In both cases we want to zero out all the ZIL blocks, except
907 	 * the ones that have been claimed at the time of the checkpoint
908 	 * (their zh_claim_txg != 0). The reason is that these blocks
909 	 * may be corrupted since we may have reused their locations on
910 	 * disk after we took the checkpoint.
911 	 *
912 	 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier
913 	 * when we first figure out whether the current uberblock is
914 	 * checkpointed or not. Unfortunately, that would discard all
915 	 * the logs, including the ones that are claimed, and we would
916 	 * leak space.
917 	 */
918 	if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR ||
919 	    (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
920 	    zh->zh_claim_txg == 0)) {
921 		if (!BP_IS_HOLE(&zh->zh_log)) {
922 			(void) zil_parse(zilog, zil_clear_log_block,
923 			    zil_noop_log_record, tx, first_txg, B_FALSE);
924 		}
925 		BP_ZERO(&zh->zh_log);
926 		if (os->os_encrypted)
927 			os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
928 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
929 		dmu_objset_disown(os, B_FALSE, FTAG);
930 		return (0);
931 	}
932 
933 	/*
934 	 * If we are not rewinding and opening the pool normally, then
935 	 * the min_claim_txg should be equal to the first txg of the pool.
936 	 */
937 	ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa));
938 
939 	/*
940 	 * Claim all log blocks if we haven't already done so, and remember
941 	 * the highest claimed sequence number.  This ensures that if we can
942 	 * read only part of the log now (e.g. due to a missing device),
943 	 * but we can read the entire log later, we will not try to replay
944 	 * or destroy beyond the last block we successfully claimed.
945 	 */
946 	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
947 	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
948 		(void) zil_parse(zilog, zil_claim_log_block,
949 		    zil_claim_log_record, tx, first_txg, B_FALSE);
950 		zh->zh_claim_txg = first_txg;
951 		zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
952 		zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
953 		if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
954 			zh->zh_flags |= ZIL_REPLAY_NEEDED;
955 		zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
956 		if (os->os_encrypted)
957 			os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
958 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
959 	}
960 
961 	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
962 	dmu_objset_disown(os, B_FALSE, FTAG);
963 	return (0);
964 }
965 
966 /*
967  * Check the log by walking the log chain.
968  * Checksum errors are ok as they indicate the end of the chain.
969  * Any other error (no device or read failure) returns an error.
970  */
971 int
972 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
973 {
974 	(void) dp;
975 	zilog_t *zilog;
976 	objset_t *os;
977 	blkptr_t *bp;
978 	int error;
979 
980 	ASSERT(tx == NULL);
981 
982 	error = dmu_objset_from_ds(ds, &os);
983 	if (error != 0) {
984 		cmn_err(CE_WARN, "can't open objset %llu, error %d",
985 		    (unsigned long long)ds->ds_object, error);
986 		return (0);
987 	}
988 
989 	zilog = dmu_objset_zil(os);
990 	bp = (blkptr_t *)&zilog->zl_header->zh_log;
991 
992 	if (!BP_IS_HOLE(bp)) {
993 		vdev_t *vd;
994 		boolean_t valid = B_TRUE;
995 
996 		/*
997 		 * Check the first block and determine if it's on a log device
998 		 * which may have been removed or faulted prior to loading this
999 		 * pool.  If so, there's no point in checking the rest of the
1000 		 * log as its content should have already been synced to the
1001 		 * pool.
1002 		 */
1003 		spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
1004 		vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
1005 		if (vd->vdev_islog && vdev_is_dead(vd))
1006 			valid = vdev_log_state_valid(vd);
1007 		spa_config_exit(os->os_spa, SCL_STATE, FTAG);
1008 
1009 		if (!valid)
1010 			return (0);
1011 
1012 		/*
1013 		 * Check whether the current uberblock is checkpointed (e.g.
1014 		 * we are rewinding) and whether the current header has been
1015 		 * claimed or not. If it hasn't then skip verifying it. We
1016 		 * do this because its ZIL blocks may be part of the pool's
1017 		 * state before the rewind, which is no longer valid.
1018 		 */
1019 		zil_header_t *zh = zil_header_in_syncing_context(zilog);
1020 		if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
1021 		    zh->zh_claim_txg == 0)
1022 			return (0);
1023 	}
1024 
1025 	/*
1026 	 * Because tx == NULL, zil_claim_log_block() will not actually claim
1027 	 * any blocks, but just determine whether it is possible to do so.
1028 	 * In addition to checking the log chain, zil_claim_log_block()
1029 	 * will invoke zio_claim() with a done func of spa_claim_notify(),
1030 	 * which will update spa_max_claim_txg.  See spa_load() for details.
1031 	 */
1032 	error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
1033 	    zilog->zl_header->zh_claim_txg ? -1ULL :
1034 	    spa_min_claim_txg(os->os_spa), B_FALSE);
1035 
1036 	return ((error == ECKSUM || error == ENOENT) ? 0 : error);
1037 }
1038 
1039 /*
1040  * When an itx is "skipped", this function is used to properly mark the
1041  * waiter as "done, and signal any thread(s) waiting on it. An itx can
1042  * be skipped (and not committed to an lwb) for a variety of reasons,
1043  * one of them being that the itx was committed via spa_sync(), prior to
1044  * it being committed to an lwb; this can happen if a thread calling
1045  * zil_commit() is racing with spa_sync().
1046  */
1047 static void
1048 zil_commit_waiter_skip(zil_commit_waiter_t *zcw)
1049 {
1050 	mutex_enter(&zcw->zcw_lock);
1051 	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1052 	zcw->zcw_done = B_TRUE;
1053 	cv_broadcast(&zcw->zcw_cv);
1054 	mutex_exit(&zcw->zcw_lock);
1055 }
1056 
1057 /*
1058  * This function is used when the given waiter is to be linked into an
1059  * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb.
1060  * At this point, the waiter will no longer be referenced by the itx,
1061  * and instead, will be referenced by the lwb.
1062  */
1063 static void
1064 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb)
1065 {
1066 	/*
1067 	 * The lwb_waiters field of the lwb is protected by the zilog's
1068 	 * zl_lock, thus it must be held when calling this function.
1069 	 */
1070 	ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_lock));
1071 
1072 	mutex_enter(&zcw->zcw_lock);
1073 	ASSERT(!list_link_active(&zcw->zcw_node));
1074 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
1075 	ASSERT3P(lwb, !=, NULL);
1076 	ASSERT(lwb->lwb_state == LWB_STATE_OPENED ||
1077 	    lwb->lwb_state == LWB_STATE_ISSUED ||
1078 	    lwb->lwb_state == LWB_STATE_WRITE_DONE);
1079 
1080 	list_insert_tail(&lwb->lwb_waiters, zcw);
1081 	zcw->zcw_lwb = lwb;
1082 	mutex_exit(&zcw->zcw_lock);
1083 }
1084 
1085 /*
1086  * This function is used when zio_alloc_zil() fails to allocate a ZIL
1087  * block, and the given waiter must be linked to the "nolwb waiters"
1088  * list inside of zil_process_commit_list().
1089  */
1090 static void
1091 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb)
1092 {
1093 	mutex_enter(&zcw->zcw_lock);
1094 	ASSERT(!list_link_active(&zcw->zcw_node));
1095 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
1096 	list_insert_tail(nolwb, zcw);
1097 	mutex_exit(&zcw->zcw_lock);
1098 }
1099 
1100 void
1101 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp)
1102 {
1103 	avl_tree_t *t = &lwb->lwb_vdev_tree;
1104 	avl_index_t where;
1105 	zil_vdev_node_t *zv, zvsearch;
1106 	int ndvas = BP_GET_NDVAS(bp);
1107 	int i;
1108 
1109 	if (zil_nocacheflush)
1110 		return;
1111 
1112 	mutex_enter(&lwb->lwb_vdev_lock);
1113 	for (i = 0; i < ndvas; i++) {
1114 		zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
1115 		if (avl_find(t, &zvsearch, &where) == NULL) {
1116 			zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
1117 			zv->zv_vdev = zvsearch.zv_vdev;
1118 			avl_insert(t, zv, where);
1119 		}
1120 	}
1121 	mutex_exit(&lwb->lwb_vdev_lock);
1122 }
1123 
1124 static void
1125 zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb)
1126 {
1127 	avl_tree_t *src = &lwb->lwb_vdev_tree;
1128 	avl_tree_t *dst = &nlwb->lwb_vdev_tree;
1129 	void *cookie = NULL;
1130 	zil_vdev_node_t *zv;
1131 
1132 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1133 	ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
1134 	ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1135 
1136 	/*
1137 	 * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does
1138 	 * not need the protection of lwb_vdev_lock (it will only be modified
1139 	 * while holding zilog->zl_lock) as its writes and those of its
1140 	 * children have all completed.  The younger 'nlwb' may be waiting on
1141 	 * future writes to additional vdevs.
1142 	 */
1143 	mutex_enter(&nlwb->lwb_vdev_lock);
1144 	/*
1145 	 * Tear down the 'lwb' vdev tree, ensuring that entries which do not
1146 	 * exist in 'nlwb' are moved to it, freeing any would-be duplicates.
1147 	 */
1148 	while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) {
1149 		avl_index_t where;
1150 
1151 		if (avl_find(dst, zv, &where) == NULL) {
1152 			avl_insert(dst, zv, where);
1153 		} else {
1154 			kmem_free(zv, sizeof (*zv));
1155 		}
1156 	}
1157 	mutex_exit(&nlwb->lwb_vdev_lock);
1158 }
1159 
1160 void
1161 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg)
1162 {
1163 	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1164 }
1165 
1166 /*
1167  * This function is a called after all vdevs associated with a given lwb
1168  * write have completed their DKIOCFLUSHWRITECACHE command; or as soon
1169  * as the lwb write completes, if "zil_nocacheflush" is set. Further,
1170  * all "previous" lwb's will have completed before this function is
1171  * called; i.e. this function is called for all previous lwbs before
1172  * it's called for "this" lwb (enforced via zio the dependencies
1173  * configured in zil_lwb_set_zio_dependency()).
1174  *
1175  * The intention is for this function to be called as soon as the
1176  * contents of an lwb are considered "stable" on disk, and will survive
1177  * any sudden loss of power. At this point, any threads waiting for the
1178  * lwb to reach this state are signalled, and the "waiter" structures
1179  * are marked "done".
1180  */
1181 static void
1182 zil_lwb_flush_vdevs_done(zio_t *zio)
1183 {
1184 	lwb_t *lwb = zio->io_private;
1185 	zilog_t *zilog = lwb->lwb_zilog;
1186 	dmu_tx_t *tx = lwb->lwb_tx;
1187 	zil_commit_waiter_t *zcw;
1188 	itx_t *itx;
1189 
1190 	spa_config_exit(zilog->zl_spa, SCL_STATE, lwb);
1191 
1192 	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1193 
1194 	mutex_enter(&zilog->zl_lock);
1195 
1196 	/*
1197 	 * Ensure the lwb buffer pointer is cleared before releasing the
1198 	 * txg. If we have had an allocation failure and the txg is
1199 	 * waiting to sync then we want zil_sync() to remove the lwb so
1200 	 * that it's not picked up as the next new one in
1201 	 * zil_process_commit_list(). zil_sync() will only remove the
1202 	 * lwb if lwb_buf is null.
1203 	 */
1204 	lwb->lwb_buf = NULL;
1205 	lwb->lwb_tx = NULL;
1206 
1207 	ASSERT3U(lwb->lwb_issued_timestamp, >, 0);
1208 	zilog->zl_last_lwb_latency = gethrtime() - lwb->lwb_issued_timestamp;
1209 
1210 	lwb->lwb_root_zio = NULL;
1211 
1212 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1213 	lwb->lwb_state = LWB_STATE_FLUSH_DONE;
1214 
1215 	if (zilog->zl_last_lwb_opened == lwb) {
1216 		/*
1217 		 * Remember the highest committed log sequence number
1218 		 * for ztest. We only update this value when all the log
1219 		 * writes succeeded, because ztest wants to ASSERT that
1220 		 * it got the whole log chain.
1221 		 */
1222 		zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1223 	}
1224 
1225 	while ((itx = list_head(&lwb->lwb_itxs)) != NULL) {
1226 		list_remove(&lwb->lwb_itxs, itx);
1227 		zil_itx_destroy(itx);
1228 	}
1229 
1230 	while ((zcw = list_head(&lwb->lwb_waiters)) != NULL) {
1231 		mutex_enter(&zcw->zcw_lock);
1232 
1233 		ASSERT(list_link_active(&zcw->zcw_node));
1234 		list_remove(&lwb->lwb_waiters, zcw);
1235 
1236 		ASSERT3P(zcw->zcw_lwb, ==, lwb);
1237 		zcw->zcw_lwb = NULL;
1238 		/*
1239 		 * We expect any ZIO errors from child ZIOs to have been
1240 		 * propagated "up" to this specific LWB's root ZIO, in
1241 		 * order for this error handling to work correctly. This
1242 		 * includes ZIO errors from either this LWB's write or
1243 		 * flush, as well as any errors from other dependent LWBs
1244 		 * (e.g. a root LWB ZIO that might be a child of this LWB).
1245 		 *
1246 		 * With that said, it's important to note that LWB flush
1247 		 * errors are not propagated up to the LWB root ZIO.
1248 		 * This is incorrect behavior, and results in VDEV flush
1249 		 * errors not being handled correctly here. See the
1250 		 * comment above the call to "zio_flush" for details.
1251 		 */
1252 
1253 		zcw->zcw_zio_error = zio->io_error;
1254 
1255 		ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1256 		zcw->zcw_done = B_TRUE;
1257 		cv_broadcast(&zcw->zcw_cv);
1258 
1259 		mutex_exit(&zcw->zcw_lock);
1260 	}
1261 
1262 	mutex_exit(&zilog->zl_lock);
1263 
1264 	/*
1265 	 * Now that we've written this log block, we have a stable pointer
1266 	 * to the next block in the chain, so it's OK to let the txg in
1267 	 * which we allocated the next block sync.
1268 	 */
1269 	dmu_tx_commit(tx);
1270 }
1271 
1272 /*
1273  * This is called when an lwb's write zio completes. The callback's
1274  * purpose is to issue the DKIOCFLUSHWRITECACHE commands for the vdevs
1275  * in the lwb's lwb_vdev_tree. The tree will contain the vdevs involved
1276  * in writing out this specific lwb's data, and in the case that cache
1277  * flushes have been deferred, vdevs involved in writing the data for
1278  * previous lwbs. The writes corresponding to all the vdevs in the
1279  * lwb_vdev_tree will have completed by the time this is called, due to
1280  * the zio dependencies configured in zil_lwb_set_zio_dependency(),
1281  * which takes deferred flushes into account. The lwb will be "done"
1282  * once zil_lwb_flush_vdevs_done() is called, which occurs in the zio
1283  * completion callback for the lwb's root zio.
1284  */
1285 static void
1286 zil_lwb_write_done(zio_t *zio)
1287 {
1288 	lwb_t *lwb = zio->io_private;
1289 	spa_t *spa = zio->io_spa;
1290 	zilog_t *zilog = lwb->lwb_zilog;
1291 	avl_tree_t *t = &lwb->lwb_vdev_tree;
1292 	void *cookie = NULL;
1293 	zil_vdev_node_t *zv;
1294 	lwb_t *nlwb;
1295 
1296 	ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0);
1297 
1298 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1299 	ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
1300 	ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
1301 	ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
1302 	ASSERT(!BP_IS_GANG(zio->io_bp));
1303 	ASSERT(!BP_IS_HOLE(zio->io_bp));
1304 	ASSERT(BP_GET_FILL(zio->io_bp) == 0);
1305 
1306 	abd_free(zio->io_abd);
1307 
1308 	mutex_enter(&zilog->zl_lock);
1309 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED);
1310 	lwb->lwb_state = LWB_STATE_WRITE_DONE;
1311 	lwb->lwb_write_zio = NULL;
1312 	lwb->lwb_fastwrite = FALSE;
1313 	nlwb = list_next(&zilog->zl_lwb_list, lwb);
1314 	mutex_exit(&zilog->zl_lock);
1315 
1316 	if (avl_numnodes(t) == 0)
1317 		return;
1318 
1319 	/*
1320 	 * If there was an IO error, we're not going to call zio_flush()
1321 	 * on these vdevs, so we simply empty the tree and free the
1322 	 * nodes. We avoid calling zio_flush() since there isn't any
1323 	 * good reason for doing so, after the lwb block failed to be
1324 	 * written out.
1325 	 *
1326 	 * Additionally, we don't perform any further error handling at
1327 	 * this point (e.g. setting "zcw_zio_error" appropriately), as
1328 	 * we expect that to occur in "zil_lwb_flush_vdevs_done" (thus,
1329 	 * we expect any error seen here, to have been propagated to
1330 	 * that function).
1331 	 */
1332 	if (zio->io_error != 0) {
1333 		while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
1334 			kmem_free(zv, sizeof (*zv));
1335 		return;
1336 	}
1337 
1338 	/*
1339 	 * If this lwb does not have any threads waiting for it to
1340 	 * complete, we want to defer issuing the DKIOCFLUSHWRITECACHE
1341 	 * command to the vdevs written to by "this" lwb, and instead
1342 	 * rely on the "next" lwb to handle the DKIOCFLUSHWRITECACHE
1343 	 * command for those vdevs. Thus, we merge the vdev tree of
1344 	 * "this" lwb with the vdev tree of the "next" lwb in the list,
1345 	 * and assume the "next" lwb will handle flushing the vdevs (or
1346 	 * deferring the flush(s) again).
1347 	 *
1348 	 * This is a useful performance optimization, especially for
1349 	 * workloads with lots of async write activity and few sync
1350 	 * write and/or fsync activity, as it has the potential to
1351 	 * coalesce multiple flush commands to a vdev into one.
1352 	 */
1353 	if (list_head(&lwb->lwb_waiters) == NULL && nlwb != NULL) {
1354 		zil_lwb_flush_defer(lwb, nlwb);
1355 		ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
1356 		return;
1357 	}
1358 
1359 	while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
1360 		vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
1361 		if (vd != NULL) {
1362 			/*
1363 			 * The "ZIO_FLAG_DONT_PROPAGATE" is currently
1364 			 * always used within "zio_flush". This means,
1365 			 * any errors when flushing the vdev(s), will
1366 			 * (unfortunately) not be handled correctly,
1367 			 * since these "zio_flush" errors will not be
1368 			 * propagated up to "zil_lwb_flush_vdevs_done".
1369 			 */
1370 			zio_flush(lwb->lwb_root_zio, vd);
1371 		}
1372 		kmem_free(zv, sizeof (*zv));
1373 	}
1374 }
1375 
1376 static void
1377 zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb)
1378 {
1379 	lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened;
1380 
1381 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1382 	ASSERT(MUTEX_HELD(&zilog->zl_lock));
1383 
1384 	/*
1385 	 * The zilog's "zl_last_lwb_opened" field is used to build the
1386 	 * lwb/zio dependency chain, which is used to preserve the
1387 	 * ordering of lwb completions that is required by the semantics
1388 	 * of the ZIL. Each new lwb zio becomes a parent of the
1389 	 * "previous" lwb zio, such that the new lwb's zio cannot
1390 	 * complete until the "previous" lwb's zio completes.
1391 	 *
1392 	 * This is required by the semantics of zil_commit(); the commit
1393 	 * waiters attached to the lwbs will be woken in the lwb zio's
1394 	 * completion callback, so this zio dependency graph ensures the
1395 	 * waiters are woken in the correct order (the same order the
1396 	 * lwbs were created).
1397 	 */
1398 	if (last_lwb_opened != NULL &&
1399 	    last_lwb_opened->lwb_state != LWB_STATE_FLUSH_DONE) {
1400 		ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1401 		    last_lwb_opened->lwb_state == LWB_STATE_ISSUED ||
1402 		    last_lwb_opened->lwb_state == LWB_STATE_WRITE_DONE);
1403 
1404 		ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL);
1405 		zio_add_child(lwb->lwb_root_zio,
1406 		    last_lwb_opened->lwb_root_zio);
1407 
1408 		/*
1409 		 * If the previous lwb's write hasn't already completed,
1410 		 * we also want to order the completion of the lwb write
1411 		 * zios (above, we only order the completion of the lwb
1412 		 * root zios). This is required because of how we can
1413 		 * defer the DKIOCFLUSHWRITECACHE commands for each lwb.
1414 		 *
1415 		 * When the DKIOCFLUSHWRITECACHE commands are deferred,
1416 		 * the previous lwb will rely on this lwb to flush the
1417 		 * vdevs written to by that previous lwb. Thus, we need
1418 		 * to ensure this lwb doesn't issue the flush until
1419 		 * after the previous lwb's write completes. We ensure
1420 		 * this ordering by setting the zio parent/child
1421 		 * relationship here.
1422 		 *
1423 		 * Without this relationship on the lwb's write zio,
1424 		 * it's possible for this lwb's write to complete prior
1425 		 * to the previous lwb's write completing; and thus, the
1426 		 * vdevs for the previous lwb would be flushed prior to
1427 		 * that lwb's data being written to those vdevs (the
1428 		 * vdevs are flushed in the lwb write zio's completion
1429 		 * handler, zil_lwb_write_done()).
1430 		 */
1431 		if (last_lwb_opened->lwb_state != LWB_STATE_WRITE_DONE) {
1432 			ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1433 			    last_lwb_opened->lwb_state == LWB_STATE_ISSUED);
1434 
1435 			ASSERT3P(last_lwb_opened->lwb_write_zio, !=, NULL);
1436 			zio_add_child(lwb->lwb_write_zio,
1437 			    last_lwb_opened->lwb_write_zio);
1438 		}
1439 	}
1440 }
1441 
1442 
1443 /*
1444  * This function's purpose is to "open" an lwb such that it is ready to
1445  * accept new itxs being committed to it. To do this, the lwb's zio
1446  * structures are created, and linked to the lwb. This function is
1447  * idempotent; if the passed in lwb has already been opened, this
1448  * function is essentially a no-op.
1449  */
1450 static void
1451 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb)
1452 {
1453 	zbookmark_phys_t zb;
1454 	zio_priority_t prio;
1455 
1456 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1457 	ASSERT3P(lwb, !=, NULL);
1458 	EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED);
1459 	EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED);
1460 
1461 	SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1462 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
1463 	    lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
1464 
1465 	/* Lock so zil_sync() doesn't fastwrite_unmark after zio is created */
1466 	mutex_enter(&zilog->zl_lock);
1467 	if (lwb->lwb_root_zio == NULL) {
1468 		abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf,
1469 		    BP_GET_LSIZE(&lwb->lwb_blk));
1470 
1471 		if (!lwb->lwb_fastwrite) {
1472 			metaslab_fastwrite_mark(zilog->zl_spa, &lwb->lwb_blk);
1473 			lwb->lwb_fastwrite = 1;
1474 		}
1475 
1476 		if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk)
1477 			prio = ZIO_PRIORITY_SYNC_WRITE;
1478 		else
1479 			prio = ZIO_PRIORITY_ASYNC_WRITE;
1480 
1481 		lwb->lwb_root_zio = zio_root(zilog->zl_spa,
1482 		    zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL);
1483 		ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1484 
1485 		lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio,
1486 		    zilog->zl_spa, 0, &lwb->lwb_blk, lwb_abd,
1487 		    BP_GET_LSIZE(&lwb->lwb_blk), zil_lwb_write_done, lwb,
1488 		    prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_FASTWRITE, &zb);
1489 		ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1490 
1491 		lwb->lwb_state = LWB_STATE_OPENED;
1492 
1493 		zil_lwb_set_zio_dependency(zilog, lwb);
1494 		zilog->zl_last_lwb_opened = lwb;
1495 	}
1496 	mutex_exit(&zilog->zl_lock);
1497 
1498 	ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1499 	ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1500 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1501 }
1502 
1503 /*
1504  * Define a limited set of intent log block sizes.
1505  *
1506  * These must be a multiple of 4KB. Note only the amount used (again
1507  * aligned to 4KB) actually gets written. However, we can't always just
1508  * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
1509  */
1510 static const struct {
1511 	uint64_t	limit;
1512 	uint64_t	blksz;
1513 } zil_block_buckets[] = {
1514 	{ 4096,		4096 },			/* non TX_WRITE */
1515 	{ 8192 + 4096,	8192 + 4096 },		/* database */
1516 	{ 32768 + 4096,	32768 + 4096 },		/* NFS writes */
1517 	{ 65536 + 4096,	65536 + 4096 },		/* 64KB writes */
1518 	{ 131072,	131072 },		/* < 128KB writes */
1519 	{ 131072 +4096,	65536 + 4096 },		/* 128KB writes */
1520 	{ UINT64_MAX,	SPA_OLD_MAXBLOCKSIZE},	/* > 128KB writes */
1521 };
1522 
1523 /*
1524  * Maximum block size used by the ZIL.  This is picked up when the ZIL is
1525  * initialized.  Otherwise this should not be used directly; see
1526  * zl_max_block_size instead.
1527  */
1528 static int zil_maxblocksize = SPA_OLD_MAXBLOCKSIZE;
1529 
1530 /*
1531  * Start a log block write and advance to the next log block.
1532  * Calls are serialized.
1533  */
1534 static lwb_t *
1535 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb)
1536 {
1537 	lwb_t *nlwb = NULL;
1538 	zil_chain_t *zilc;
1539 	spa_t *spa = zilog->zl_spa;
1540 	blkptr_t *bp;
1541 	dmu_tx_t *tx;
1542 	uint64_t txg;
1543 	uint64_t zil_blksz, wsz;
1544 	int i, error;
1545 	boolean_t slog;
1546 
1547 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1548 	ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1549 	ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1550 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1551 
1552 	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1553 		zilc = (zil_chain_t *)lwb->lwb_buf;
1554 		bp = &zilc->zc_next_blk;
1555 	} else {
1556 		zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
1557 		bp = &zilc->zc_next_blk;
1558 	}
1559 
1560 	ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
1561 
1562 	/*
1563 	 * Allocate the next block and save its address in this block
1564 	 * before writing it in order to establish the log chain.
1565 	 * Note that if the allocation of nlwb synced before we wrote
1566 	 * the block that points at it (lwb), we'd leak it if we crashed.
1567 	 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
1568 	 * We dirty the dataset to ensure that zil_sync() will be called
1569 	 * to clean up in the event of allocation failure or I/O failure.
1570 	 */
1571 
1572 	tx = dmu_tx_create(zilog->zl_os);
1573 
1574 	/*
1575 	 * Since we are not going to create any new dirty data, and we
1576 	 * can even help with clearing the existing dirty data, we
1577 	 * should not be subject to the dirty data based delays. We
1578 	 * use TXG_NOTHROTTLE to bypass the delay mechanism.
1579 	 */
1580 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));
1581 
1582 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1583 	txg = dmu_tx_get_txg(tx);
1584 
1585 	lwb->lwb_tx = tx;
1586 
1587 	/*
1588 	 * Log blocks are pre-allocated. Here we select the size of the next
1589 	 * block, based on size used in the last block.
1590 	 * - first find the smallest bucket that will fit the block from a
1591 	 *   limited set of block sizes. This is because it's faster to write
1592 	 *   blocks allocated from the same metaslab as they are adjacent or
1593 	 *   close.
1594 	 * - next find the maximum from the new suggested size and an array of
1595 	 *   previous sizes. This lessens a picket fence effect of wrongly
1596 	 *   guessing the size if we have a stream of say 2k, 64k, 2k, 64k
1597 	 *   requests.
1598 	 *
1599 	 * Note we only write what is used, but we can't just allocate
1600 	 * the maximum block size because we can exhaust the available
1601 	 * pool log space.
1602 	 */
1603 	zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1604 	for (i = 0; zil_blksz > zil_block_buckets[i].limit; i++)
1605 		continue;
1606 	zil_blksz = MIN(zil_block_buckets[i].blksz, zilog->zl_max_block_size);
1607 	zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1608 	for (i = 0; i < ZIL_PREV_BLKS; i++)
1609 		zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1610 	zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1611 
1612 	BP_ZERO(bp);
1613 	error = zio_alloc_zil(spa, zilog->zl_os, txg, bp, zil_blksz, &slog);
1614 	if (slog) {
1615 		ZIL_STAT_BUMP(zil_itx_metaslab_slog_count);
1616 		ZIL_STAT_INCR(zil_itx_metaslab_slog_bytes, lwb->lwb_nused);
1617 	} else {
1618 		ZIL_STAT_BUMP(zil_itx_metaslab_normal_count);
1619 		ZIL_STAT_INCR(zil_itx_metaslab_normal_bytes, lwb->lwb_nused);
1620 	}
1621 	if (error == 0) {
1622 		ASSERT3U(bp->blk_birth, ==, txg);
1623 		bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1624 		bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1625 
1626 		/*
1627 		 * Allocate a new log write block (lwb).
1628 		 */
1629 		nlwb = zil_alloc_lwb(zilog, bp, slog, txg, TRUE);
1630 	}
1631 
1632 	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1633 		/* For Slim ZIL only write what is used. */
1634 		wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1635 		ASSERT3U(wsz, <=, lwb->lwb_sz);
1636 		zio_shrink(lwb->lwb_write_zio, wsz);
1637 
1638 	} else {
1639 		wsz = lwb->lwb_sz;
1640 	}
1641 
1642 	zilc->zc_pad = 0;
1643 	zilc->zc_nused = lwb->lwb_nused;
1644 	zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1645 
1646 	/*
1647 	 * clear unused data for security
1648 	 */
1649 	memset(lwb->lwb_buf + lwb->lwb_nused, 0, wsz - lwb->lwb_nused);
1650 
1651 	spa_config_enter(zilog->zl_spa, SCL_STATE, lwb, RW_READER);
1652 
1653 	zil_lwb_add_block(lwb, &lwb->lwb_blk);
1654 	lwb->lwb_issued_timestamp = gethrtime();
1655 	lwb->lwb_state = LWB_STATE_ISSUED;
1656 
1657 	zio_nowait(lwb->lwb_root_zio);
1658 	zio_nowait(lwb->lwb_write_zio);
1659 
1660 	/*
1661 	 * If there was an allocation failure then nlwb will be null which
1662 	 * forces a txg_wait_synced().
1663 	 */
1664 	return (nlwb);
1665 }
1666 
1667 /*
1668  * Maximum amount of write data that can be put into single log block.
1669  */
1670 uint64_t
1671 zil_max_log_data(zilog_t *zilog)
1672 {
1673 	return (zilog->zl_max_block_size -
1674 	    sizeof (zil_chain_t) - sizeof (lr_write_t));
1675 }
1676 
1677 /*
1678  * Maximum amount of log space we agree to waste to reduce number of
1679  * WR_NEED_COPY chunks to reduce zl_get_data() overhead (~12%).
1680  */
1681 static inline uint64_t
1682 zil_max_waste_space(zilog_t *zilog)
1683 {
1684 	return (zil_max_log_data(zilog) / 8);
1685 }
1686 
1687 /*
1688  * Maximum amount of write data for WR_COPIED.  For correctness, consumers
1689  * must fall back to WR_NEED_COPY if we can't fit the entire record into one
1690  * maximum sized log block, because each WR_COPIED record must fit in a
1691  * single log block.  For space efficiency, we want to fit two records into a
1692  * max-sized log block.
1693  */
1694 uint64_t
1695 zil_max_copied_data(zilog_t *zilog)
1696 {
1697 	return ((zilog->zl_max_block_size - sizeof (zil_chain_t)) / 2 -
1698 	    sizeof (lr_write_t));
1699 }
1700 
1701 static lwb_t *
1702 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1703 {
1704 	lr_t *lrcb, *lrc;
1705 	lr_write_t *lrwb, *lrw;
1706 	char *lr_buf;
1707 	uint64_t dlen, dnow, dpad, lwb_sp, reclen, txg, max_log_data;
1708 
1709 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1710 	ASSERT3P(lwb, !=, NULL);
1711 	ASSERT3P(lwb->lwb_buf, !=, NULL);
1712 
1713 	zil_lwb_write_open(zilog, lwb);
1714 
1715 	lrc = &itx->itx_lr;
1716 	lrw = (lr_write_t *)lrc;
1717 
1718 	/*
1719 	 * A commit itx doesn't represent any on-disk state; instead
1720 	 * it's simply used as a place holder on the commit list, and
1721 	 * provides a mechanism for attaching a "commit waiter" onto the
1722 	 * correct lwb (such that the waiter can be signalled upon
1723 	 * completion of that lwb). Thus, we don't process this itx's
1724 	 * log record if it's a commit itx (these itx's don't have log
1725 	 * records), and instead link the itx's waiter onto the lwb's
1726 	 * list of waiters.
1727 	 *
1728 	 * For more details, see the comment above zil_commit().
1729 	 */
1730 	if (lrc->lrc_txtype == TX_COMMIT) {
1731 		mutex_enter(&zilog->zl_lock);
1732 		zil_commit_waiter_link_lwb(itx->itx_private, lwb);
1733 		itx->itx_private = NULL;
1734 		mutex_exit(&zilog->zl_lock);
1735 		return (lwb);
1736 	}
1737 
1738 	if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
1739 		dlen = P2ROUNDUP_TYPED(
1740 		    lrw->lr_length, sizeof (uint64_t), uint64_t);
1741 		dpad = dlen - lrw->lr_length;
1742 	} else {
1743 		dlen = dpad = 0;
1744 	}
1745 	reclen = lrc->lrc_reclen;
1746 	zilog->zl_cur_used += (reclen + dlen);
1747 	txg = lrc->lrc_txg;
1748 
1749 	ASSERT3U(zilog->zl_cur_used, <, UINT64_MAX - (reclen + dlen));
1750 
1751 cont:
1752 	/*
1753 	 * If this record won't fit in the current log block, start a new one.
1754 	 * For WR_NEED_COPY optimize layout for minimal number of chunks.
1755 	 */
1756 	lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1757 	max_log_data = zil_max_log_data(zilog);
1758 	if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
1759 	    lwb_sp < zil_max_waste_space(zilog) &&
1760 	    (dlen % max_log_data == 0 ||
1761 	    lwb_sp < reclen + dlen % max_log_data))) {
1762 		lwb = zil_lwb_write_issue(zilog, lwb);
1763 		if (lwb == NULL)
1764 			return (NULL);
1765 		zil_lwb_write_open(zilog, lwb);
1766 		ASSERT(LWB_EMPTY(lwb));
1767 		lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1768 
1769 		/*
1770 		 * There must be enough space in the new, empty log block to
1771 		 * hold reclen.  For WR_COPIED, we need to fit the whole
1772 		 * record in one block, and reclen is the header size + the
1773 		 * data size. For WR_NEED_COPY, we can create multiple
1774 		 * records, splitting the data into multiple blocks, so we
1775 		 * only need to fit one word of data per block; in this case
1776 		 * reclen is just the header size (no data).
1777 		 */
1778 		ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
1779 	}
1780 
1781 	dnow = MIN(dlen, lwb_sp - reclen);
1782 	lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1783 	memcpy(lr_buf, lrc, reclen);
1784 	lrcb = (lr_t *)lr_buf;		/* Like lrc, but inside lwb. */
1785 	lrwb = (lr_write_t *)lrcb;	/* Like lrw, but inside lwb. */
1786 
1787 	ZIL_STAT_BUMP(zil_itx_count);
1788 
1789 	/*
1790 	 * If it's a write, fetch the data or get its blkptr as appropriate.
1791 	 */
1792 	if (lrc->lrc_txtype == TX_WRITE) {
1793 		if (txg > spa_freeze_txg(zilog->zl_spa))
1794 			txg_wait_synced(zilog->zl_dmu_pool, txg);
1795 		if (itx->itx_wr_state == WR_COPIED) {
1796 			ZIL_STAT_BUMP(zil_itx_copied_count);
1797 			ZIL_STAT_INCR(zil_itx_copied_bytes, lrw->lr_length);
1798 		} else {
1799 			char *dbuf;
1800 			int error;
1801 
1802 			if (itx->itx_wr_state == WR_NEED_COPY) {
1803 				dbuf = lr_buf + reclen;
1804 				lrcb->lrc_reclen += dnow;
1805 				if (lrwb->lr_length > dnow)
1806 					lrwb->lr_length = dnow;
1807 				lrw->lr_offset += dnow;
1808 				lrw->lr_length -= dnow;
1809 				ZIL_STAT_BUMP(zil_itx_needcopy_count);
1810 				ZIL_STAT_INCR(zil_itx_needcopy_bytes, dnow);
1811 			} else {
1812 				ASSERT3S(itx->itx_wr_state, ==, WR_INDIRECT);
1813 				dbuf = NULL;
1814 				ZIL_STAT_BUMP(zil_itx_indirect_count);
1815 				ZIL_STAT_INCR(zil_itx_indirect_bytes,
1816 				    lrw->lr_length);
1817 			}
1818 
1819 			/*
1820 			 * We pass in the "lwb_write_zio" rather than
1821 			 * "lwb_root_zio" so that the "lwb_write_zio"
1822 			 * becomes the parent of any zio's created by
1823 			 * the "zl_get_data" callback. The vdevs are
1824 			 * flushed after the "lwb_write_zio" completes,
1825 			 * so we want to make sure that completion
1826 			 * callback waits for these additional zio's,
1827 			 * such that the vdevs used by those zio's will
1828 			 * be included in the lwb's vdev tree, and those
1829 			 * vdevs will be properly flushed. If we passed
1830 			 * in "lwb_root_zio" here, then these additional
1831 			 * vdevs may not be flushed; e.g. if these zio's
1832 			 * completed after "lwb_write_zio" completed.
1833 			 */
1834 			error = zilog->zl_get_data(itx->itx_private,
1835 			    itx->itx_gen, lrwb, dbuf, lwb,
1836 			    lwb->lwb_write_zio);
1837 			if (dbuf != NULL && error == 0 && dnow == dlen)
1838 				/* Zero any padding bytes in the last block. */
1839 				memset((char *)dbuf + lrwb->lr_length, 0, dpad);
1840 
1841 			if (error == EIO) {
1842 				txg_wait_synced(zilog->zl_dmu_pool, txg);
1843 				return (lwb);
1844 			}
1845 			if (error != 0) {
1846 				ASSERT(error == ENOENT || error == EEXIST ||
1847 				    error == EALREADY);
1848 				return (lwb);
1849 			}
1850 		}
1851 	}
1852 
1853 	/*
1854 	 * We're actually making an entry, so update lrc_seq to be the
1855 	 * log record sequence number.  Note that this is generally not
1856 	 * equal to the itx sequence number because not all transactions
1857 	 * are synchronous, and sometimes spa_sync() gets there first.
1858 	 */
1859 	lrcb->lrc_seq = ++zilog->zl_lr_seq;
1860 	lwb->lwb_nused += reclen + dnow;
1861 
1862 	zil_lwb_add_txg(lwb, txg);
1863 
1864 	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1865 	ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1866 
1867 	dlen -= dnow;
1868 	if (dlen > 0) {
1869 		zilog->zl_cur_used += reclen;
1870 		goto cont;
1871 	}
1872 
1873 	return (lwb);
1874 }
1875 
1876 itx_t *
1877 zil_itx_create(uint64_t txtype, size_t olrsize)
1878 {
1879 	size_t itxsize, lrsize;
1880 	itx_t *itx;
1881 
1882 	lrsize = P2ROUNDUP_TYPED(olrsize, sizeof (uint64_t), size_t);
1883 	itxsize = offsetof(itx_t, itx_lr) + lrsize;
1884 
1885 	itx = zio_data_buf_alloc(itxsize);
1886 	itx->itx_lr.lrc_txtype = txtype;
1887 	itx->itx_lr.lrc_reclen = lrsize;
1888 	itx->itx_lr.lrc_seq = 0;	/* defensive */
1889 	memset((char *)&itx->itx_lr + olrsize, 0, lrsize - olrsize);
1890 	itx->itx_sync = B_TRUE;		/* default is synchronous */
1891 	itx->itx_callback = NULL;
1892 	itx->itx_callback_data = NULL;
1893 	itx->itx_size = itxsize;
1894 
1895 	return (itx);
1896 }
1897 
1898 void
1899 zil_itx_destroy(itx_t *itx)
1900 {
1901 	IMPLY(itx->itx_lr.lrc_txtype == TX_COMMIT, itx->itx_callback == NULL);
1902 	IMPLY(itx->itx_callback != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
1903 
1904 	if (itx->itx_callback != NULL)
1905 		itx->itx_callback(itx->itx_callback_data);
1906 
1907 	zio_data_buf_free(itx, itx->itx_size);
1908 }
1909 
1910 /*
1911  * Free up the sync and async itxs. The itxs_t has already been detached
1912  * so no locks are needed.
1913  */
1914 static void
1915 zil_itxg_clean(void *arg)
1916 {
1917 	itx_t *itx;
1918 	list_t *list;
1919 	avl_tree_t *t;
1920 	void *cookie;
1921 	itxs_t *itxs = arg;
1922 	itx_async_node_t *ian;
1923 
1924 	list = &itxs->i_sync_list;
1925 	while ((itx = list_head(list)) != NULL) {
1926 		/*
1927 		 * In the general case, commit itxs will not be found
1928 		 * here, as they'll be committed to an lwb via
1929 		 * zil_lwb_commit(), and free'd in that function. Having
1930 		 * said that, it is still possible for commit itxs to be
1931 		 * found here, due to the following race:
1932 		 *
1933 		 *	- a thread calls zil_commit() which assigns the
1934 		 *	  commit itx to a per-txg i_sync_list
1935 		 *	- zil_itxg_clean() is called (e.g. via spa_sync())
1936 		 *	  while the waiter is still on the i_sync_list
1937 		 *
1938 		 * There's nothing to prevent syncing the txg while the
1939 		 * waiter is on the i_sync_list. This normally doesn't
1940 		 * happen because spa_sync() is slower than zil_commit(),
1941 		 * but if zil_commit() calls txg_wait_synced() (e.g.
1942 		 * because zil_create() or zil_commit_writer_stall() is
1943 		 * called) we will hit this case.
1944 		 */
1945 		if (itx->itx_lr.lrc_txtype == TX_COMMIT)
1946 			zil_commit_waiter_skip(itx->itx_private);
1947 
1948 		list_remove(list, itx);
1949 		zil_itx_destroy(itx);
1950 	}
1951 
1952 	cookie = NULL;
1953 	t = &itxs->i_async_tree;
1954 	while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1955 		list = &ian->ia_list;
1956 		while ((itx = list_head(list)) != NULL) {
1957 			list_remove(list, itx);
1958 			/* commit itxs should never be on the async lists. */
1959 			ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
1960 			zil_itx_destroy(itx);
1961 		}
1962 		list_destroy(list);
1963 		kmem_free(ian, sizeof (itx_async_node_t));
1964 	}
1965 	avl_destroy(t);
1966 
1967 	kmem_free(itxs, sizeof (itxs_t));
1968 }
1969 
1970 static int
1971 zil_aitx_compare(const void *x1, const void *x2)
1972 {
1973 	const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1974 	const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1975 
1976 	return (TREE_CMP(o1, o2));
1977 }
1978 
1979 /*
1980  * Remove all async itx with the given oid.
1981  */
1982 void
1983 zil_remove_async(zilog_t *zilog, uint64_t oid)
1984 {
1985 	uint64_t otxg, txg;
1986 	itx_async_node_t *ian;
1987 	avl_tree_t *t;
1988 	avl_index_t where;
1989 	list_t clean_list;
1990 	itx_t *itx;
1991 
1992 	ASSERT(oid != 0);
1993 	list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1994 
1995 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1996 		otxg = ZILTEST_TXG;
1997 	else
1998 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1999 
2000 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2001 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2002 
2003 		mutex_enter(&itxg->itxg_lock);
2004 		if (itxg->itxg_txg != txg) {
2005 			mutex_exit(&itxg->itxg_lock);
2006 			continue;
2007 		}
2008 
2009 		/*
2010 		 * Locate the object node and append its list.
2011 		 */
2012 		t = &itxg->itxg_itxs->i_async_tree;
2013 		ian = avl_find(t, &oid, &where);
2014 		if (ian != NULL)
2015 			list_move_tail(&clean_list, &ian->ia_list);
2016 		mutex_exit(&itxg->itxg_lock);
2017 	}
2018 	while ((itx = list_head(&clean_list)) != NULL) {
2019 		list_remove(&clean_list, itx);
2020 		/* commit itxs should never be on the async lists. */
2021 		ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
2022 		zil_itx_destroy(itx);
2023 	}
2024 	list_destroy(&clean_list);
2025 }
2026 
2027 void
2028 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
2029 {
2030 	uint64_t txg;
2031 	itxg_t *itxg;
2032 	itxs_t *itxs, *clean = NULL;
2033 
2034 	/*
2035 	 * Ensure the data of a renamed file is committed before the rename.
2036 	 */
2037 	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
2038 		zil_async_to_sync(zilog, itx->itx_oid);
2039 
2040 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
2041 		txg = ZILTEST_TXG;
2042 	else
2043 		txg = dmu_tx_get_txg(tx);
2044 
2045 	itxg = &zilog->zl_itxg[txg & TXG_MASK];
2046 	mutex_enter(&itxg->itxg_lock);
2047 	itxs = itxg->itxg_itxs;
2048 	if (itxg->itxg_txg != txg) {
2049 		if (itxs != NULL) {
2050 			/*
2051 			 * The zil_clean callback hasn't got around to cleaning
2052 			 * this itxg. Save the itxs for release below.
2053 			 * This should be rare.
2054 			 */
2055 			zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
2056 			    "txg %llu", (u_longlong_t)itxg->itxg_txg);
2057 			clean = itxg->itxg_itxs;
2058 		}
2059 		itxg->itxg_txg = txg;
2060 		itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t),
2061 		    KM_SLEEP);
2062 
2063 		list_create(&itxs->i_sync_list, sizeof (itx_t),
2064 		    offsetof(itx_t, itx_node));
2065 		avl_create(&itxs->i_async_tree, zil_aitx_compare,
2066 		    sizeof (itx_async_node_t),
2067 		    offsetof(itx_async_node_t, ia_node));
2068 	}
2069 	if (itx->itx_sync) {
2070 		list_insert_tail(&itxs->i_sync_list, itx);
2071 	} else {
2072 		avl_tree_t *t = &itxs->i_async_tree;
2073 		uint64_t foid =
2074 		    LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid);
2075 		itx_async_node_t *ian;
2076 		avl_index_t where;
2077 
2078 		ian = avl_find(t, &foid, &where);
2079 		if (ian == NULL) {
2080 			ian = kmem_alloc(sizeof (itx_async_node_t),
2081 			    KM_SLEEP);
2082 			list_create(&ian->ia_list, sizeof (itx_t),
2083 			    offsetof(itx_t, itx_node));
2084 			ian->ia_foid = foid;
2085 			avl_insert(t, ian, where);
2086 		}
2087 		list_insert_tail(&ian->ia_list, itx);
2088 	}
2089 
2090 	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
2091 
2092 	/*
2093 	 * We don't want to dirty the ZIL using ZILTEST_TXG, because
2094 	 * zil_clean() will never be called using ZILTEST_TXG. Thus, we
2095 	 * need to be careful to always dirty the ZIL using the "real"
2096 	 * TXG (not itxg_txg) even when the SPA is frozen.
2097 	 */
2098 	zilog_dirty(zilog, dmu_tx_get_txg(tx));
2099 	mutex_exit(&itxg->itxg_lock);
2100 
2101 	/* Release the old itxs now we've dropped the lock */
2102 	if (clean != NULL)
2103 		zil_itxg_clean(clean);
2104 }
2105 
2106 /*
2107  * If there are any in-memory intent log transactions which have now been
2108  * synced then start up a taskq to free them. We should only do this after we
2109  * have written out the uberblocks (i.e. txg has been committed) so that
2110  * don't inadvertently clean out in-memory log records that would be required
2111  * by zil_commit().
2112  */
2113 void
2114 zil_clean(zilog_t *zilog, uint64_t synced_txg)
2115 {
2116 	itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
2117 	itxs_t *clean_me;
2118 
2119 	ASSERT3U(synced_txg, <, ZILTEST_TXG);
2120 
2121 	mutex_enter(&itxg->itxg_lock);
2122 	if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
2123 		mutex_exit(&itxg->itxg_lock);
2124 		return;
2125 	}
2126 	ASSERT3U(itxg->itxg_txg, <=, synced_txg);
2127 	ASSERT3U(itxg->itxg_txg, !=, 0);
2128 	clean_me = itxg->itxg_itxs;
2129 	itxg->itxg_itxs = NULL;
2130 	itxg->itxg_txg = 0;
2131 	mutex_exit(&itxg->itxg_lock);
2132 	/*
2133 	 * Preferably start a task queue to free up the old itxs but
2134 	 * if taskq_dispatch can't allocate resources to do that then
2135 	 * free it in-line. This should be rare. Note, using TQ_SLEEP
2136 	 * created a bad performance problem.
2137 	 */
2138 	ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
2139 	ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
2140 	taskqid_t id = taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
2141 	    zil_itxg_clean, clean_me, TQ_NOSLEEP);
2142 	if (id == TASKQID_INVALID)
2143 		zil_itxg_clean(clean_me);
2144 }
2145 
2146 /*
2147  * This function will traverse the queue of itxs that need to be
2148  * committed, and move them onto the ZIL's zl_itx_commit_list.
2149  */
2150 static void
2151 zil_get_commit_list(zilog_t *zilog)
2152 {
2153 	uint64_t otxg, txg;
2154 	list_t *commit_list = &zilog->zl_itx_commit_list;
2155 
2156 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2157 
2158 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2159 		otxg = ZILTEST_TXG;
2160 	else
2161 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2162 
2163 	/*
2164 	 * This is inherently racy, since there is nothing to prevent
2165 	 * the last synced txg from changing. That's okay since we'll
2166 	 * only commit things in the future.
2167 	 */
2168 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2169 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2170 
2171 		mutex_enter(&itxg->itxg_lock);
2172 		if (itxg->itxg_txg != txg) {
2173 			mutex_exit(&itxg->itxg_lock);
2174 			continue;
2175 		}
2176 
2177 		/*
2178 		 * If we're adding itx records to the zl_itx_commit_list,
2179 		 * then the zil better be dirty in this "txg". We can assert
2180 		 * that here since we're holding the itxg_lock which will
2181 		 * prevent spa_sync from cleaning it. Once we add the itxs
2182 		 * to the zl_itx_commit_list we must commit it to disk even
2183 		 * if it's unnecessary (i.e. the txg was synced).
2184 		 */
2185 		ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
2186 		    spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
2187 		list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
2188 
2189 		mutex_exit(&itxg->itxg_lock);
2190 	}
2191 }
2192 
2193 /*
2194  * Move the async itxs for a specified object to commit into sync lists.
2195  */
2196 void
2197 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
2198 {
2199 	uint64_t otxg, txg;
2200 	itx_async_node_t *ian;
2201 	avl_tree_t *t;
2202 	avl_index_t where;
2203 
2204 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2205 		otxg = ZILTEST_TXG;
2206 	else
2207 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2208 
2209 	/*
2210 	 * This is inherently racy, since there is nothing to prevent
2211 	 * the last synced txg from changing.
2212 	 */
2213 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2214 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2215 
2216 		mutex_enter(&itxg->itxg_lock);
2217 		if (itxg->itxg_txg != txg) {
2218 			mutex_exit(&itxg->itxg_lock);
2219 			continue;
2220 		}
2221 
2222 		/*
2223 		 * If a foid is specified then find that node and append its
2224 		 * list. Otherwise walk the tree appending all the lists
2225 		 * to the sync list. We add to the end rather than the
2226 		 * beginning to ensure the create has happened.
2227 		 */
2228 		t = &itxg->itxg_itxs->i_async_tree;
2229 		if (foid != 0) {
2230 			ian = avl_find(t, &foid, &where);
2231 			if (ian != NULL) {
2232 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
2233 				    &ian->ia_list);
2234 			}
2235 		} else {
2236 			void *cookie = NULL;
2237 
2238 			while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
2239 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
2240 				    &ian->ia_list);
2241 				list_destroy(&ian->ia_list);
2242 				kmem_free(ian, sizeof (itx_async_node_t));
2243 			}
2244 		}
2245 		mutex_exit(&itxg->itxg_lock);
2246 	}
2247 }
2248 
2249 /*
2250  * This function will prune commit itxs that are at the head of the
2251  * commit list (it won't prune past the first non-commit itx), and
2252  * either: a) attach them to the last lwb that's still pending
2253  * completion, or b) skip them altogether.
2254  *
2255  * This is used as a performance optimization to prevent commit itxs
2256  * from generating new lwbs when it's unnecessary to do so.
2257  */
2258 static void
2259 zil_prune_commit_list(zilog_t *zilog)
2260 {
2261 	itx_t *itx;
2262 
2263 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2264 
2265 	while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) {
2266 		lr_t *lrc = &itx->itx_lr;
2267 		if (lrc->lrc_txtype != TX_COMMIT)
2268 			break;
2269 
2270 		mutex_enter(&zilog->zl_lock);
2271 
2272 		lwb_t *last_lwb = zilog->zl_last_lwb_opened;
2273 		if (last_lwb == NULL ||
2274 		    last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) {
2275 			/*
2276 			 * All of the itxs this waiter was waiting on
2277 			 * must have already completed (or there were
2278 			 * never any itx's for it to wait on), so it's
2279 			 * safe to skip this waiter and mark it done.
2280 			 */
2281 			zil_commit_waiter_skip(itx->itx_private);
2282 		} else {
2283 			zil_commit_waiter_link_lwb(itx->itx_private, last_lwb);
2284 			itx->itx_private = NULL;
2285 		}
2286 
2287 		mutex_exit(&zilog->zl_lock);
2288 
2289 		list_remove(&zilog->zl_itx_commit_list, itx);
2290 		zil_itx_destroy(itx);
2291 	}
2292 
2293 	IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
2294 }
2295 
2296 static void
2297 zil_commit_writer_stall(zilog_t *zilog)
2298 {
2299 	/*
2300 	 * When zio_alloc_zil() fails to allocate the next lwb block on
2301 	 * disk, we must call txg_wait_synced() to ensure all of the
2302 	 * lwbs in the zilog's zl_lwb_list are synced and then freed (in
2303 	 * zil_sync()), such that any subsequent ZIL writer (i.e. a call
2304 	 * to zil_process_commit_list()) will have to call zil_create(),
2305 	 * and start a new ZIL chain.
2306 	 *
2307 	 * Since zil_alloc_zil() failed, the lwb that was previously
2308 	 * issued does not have a pointer to the "next" lwb on disk.
2309 	 * Thus, if another ZIL writer thread was to allocate the "next"
2310 	 * on-disk lwb, that block could be leaked in the event of a
2311 	 * crash (because the previous lwb on-disk would not point to
2312 	 * it).
2313 	 *
2314 	 * We must hold the zilog's zl_issuer_lock while we do this, to
2315 	 * ensure no new threads enter zil_process_commit_list() until
2316 	 * all lwb's in the zl_lwb_list have been synced and freed
2317 	 * (which is achieved via the txg_wait_synced() call).
2318 	 */
2319 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2320 	txg_wait_synced(zilog->zl_dmu_pool, 0);
2321 	ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
2322 }
2323 
2324 /*
2325  * This function will traverse the commit list, creating new lwbs as
2326  * needed, and committing the itxs from the commit list to these newly
2327  * created lwbs. Additionally, as a new lwb is created, the previous
2328  * lwb will be issued to the zio layer to be written to disk.
2329  */
2330 static void
2331 zil_process_commit_list(zilog_t *zilog)
2332 {
2333 	spa_t *spa = zilog->zl_spa;
2334 	list_t nolwb_itxs;
2335 	list_t nolwb_waiters;
2336 	lwb_t *lwb;
2337 	itx_t *itx;
2338 
2339 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2340 
2341 	/*
2342 	 * Return if there's nothing to commit before we dirty the fs by
2343 	 * calling zil_create().
2344 	 */
2345 	if (list_head(&zilog->zl_itx_commit_list) == NULL)
2346 		return;
2347 
2348 	list_create(&nolwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
2349 	list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t),
2350 	    offsetof(zil_commit_waiter_t, zcw_node));
2351 
2352 	lwb = list_tail(&zilog->zl_lwb_list);
2353 	if (lwb == NULL) {
2354 		lwb = zil_create(zilog);
2355 	} else {
2356 		/*
2357 		 * Activate SPA_FEATURE_ZILSAXATTR for the cases where ZIL will
2358 		 * have already been created (zl_lwb_list not empty).
2359 		 */
2360 		zil_commit_activate_saxattr_feature(zilog);
2361 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2362 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
2363 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
2364 	}
2365 
2366 	while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) {
2367 		lr_t *lrc = &itx->itx_lr;
2368 		uint64_t txg = lrc->lrc_txg;
2369 
2370 		ASSERT3U(txg, !=, 0);
2371 
2372 		if (lrc->lrc_txtype == TX_COMMIT) {
2373 			DTRACE_PROBE2(zil__process__commit__itx,
2374 			    zilog_t *, zilog, itx_t *, itx);
2375 		} else {
2376 			DTRACE_PROBE2(zil__process__normal__itx,
2377 			    zilog_t *, zilog, itx_t *, itx);
2378 		}
2379 
2380 		list_remove(&zilog->zl_itx_commit_list, itx);
2381 
2382 		boolean_t synced = txg <= spa_last_synced_txg(spa);
2383 		boolean_t frozen = txg > spa_freeze_txg(spa);
2384 
2385 		/*
2386 		 * If the txg of this itx has already been synced out, then
2387 		 * we don't need to commit this itx to an lwb. This is
2388 		 * because the data of this itx will have already been
2389 		 * written to the main pool. This is inherently racy, and
2390 		 * it's still ok to commit an itx whose txg has already
2391 		 * been synced; this will result in a write that's
2392 		 * unnecessary, but will do no harm.
2393 		 *
2394 		 * With that said, we always want to commit TX_COMMIT itxs
2395 		 * to an lwb, regardless of whether or not that itx's txg
2396 		 * has been synced out. We do this to ensure any OPENED lwb
2397 		 * will always have at least one zil_commit_waiter_t linked
2398 		 * to the lwb.
2399 		 *
2400 		 * As a counter-example, if we skipped TX_COMMIT itx's
2401 		 * whose txg had already been synced, the following
2402 		 * situation could occur if we happened to be racing with
2403 		 * spa_sync:
2404 		 *
2405 		 * 1. We commit a non-TX_COMMIT itx to an lwb, where the
2406 		 *    itx's txg is 10 and the last synced txg is 9.
2407 		 * 2. spa_sync finishes syncing out txg 10.
2408 		 * 3. We move to the next itx in the list, it's a TX_COMMIT
2409 		 *    whose txg is 10, so we skip it rather than committing
2410 		 *    it to the lwb used in (1).
2411 		 *
2412 		 * If the itx that is skipped in (3) is the last TX_COMMIT
2413 		 * itx in the commit list, than it's possible for the lwb
2414 		 * used in (1) to remain in the OPENED state indefinitely.
2415 		 *
2416 		 * To prevent the above scenario from occurring, ensuring
2417 		 * that once an lwb is OPENED it will transition to ISSUED
2418 		 * and eventually DONE, we always commit TX_COMMIT itx's to
2419 		 * an lwb here, even if that itx's txg has already been
2420 		 * synced.
2421 		 *
2422 		 * Finally, if the pool is frozen, we _always_ commit the
2423 		 * itx.  The point of freezing the pool is to prevent data
2424 		 * from being written to the main pool via spa_sync, and
2425 		 * instead rely solely on the ZIL to persistently store the
2426 		 * data; i.e.  when the pool is frozen, the last synced txg
2427 		 * value can't be trusted.
2428 		 */
2429 		if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) {
2430 			if (lwb != NULL) {
2431 				lwb = zil_lwb_commit(zilog, itx, lwb);
2432 
2433 				if (lwb == NULL)
2434 					list_insert_tail(&nolwb_itxs, itx);
2435 				else
2436 					list_insert_tail(&lwb->lwb_itxs, itx);
2437 			} else {
2438 				if (lrc->lrc_txtype == TX_COMMIT) {
2439 					zil_commit_waiter_link_nolwb(
2440 					    itx->itx_private, &nolwb_waiters);
2441 				}
2442 
2443 				list_insert_tail(&nolwb_itxs, itx);
2444 			}
2445 		} else {
2446 			ASSERT3S(lrc->lrc_txtype, !=, TX_COMMIT);
2447 			zil_itx_destroy(itx);
2448 		}
2449 	}
2450 
2451 	if (lwb == NULL) {
2452 		/*
2453 		 * This indicates zio_alloc_zil() failed to allocate the
2454 		 * "next" lwb on-disk. When this happens, we must stall
2455 		 * the ZIL write pipeline; see the comment within
2456 		 * zil_commit_writer_stall() for more details.
2457 		 */
2458 		zil_commit_writer_stall(zilog);
2459 
2460 		/*
2461 		 * Additionally, we have to signal and mark the "nolwb"
2462 		 * waiters as "done" here, since without an lwb, we
2463 		 * can't do this via zil_lwb_flush_vdevs_done() like
2464 		 * normal.
2465 		 */
2466 		zil_commit_waiter_t *zcw;
2467 		while ((zcw = list_head(&nolwb_waiters)) != NULL) {
2468 			zil_commit_waiter_skip(zcw);
2469 			list_remove(&nolwb_waiters, zcw);
2470 		}
2471 
2472 		/*
2473 		 * And finally, we have to destroy the itx's that
2474 		 * couldn't be committed to an lwb; this will also call
2475 		 * the itx's callback if one exists for the itx.
2476 		 */
2477 		while ((itx = list_head(&nolwb_itxs)) != NULL) {
2478 			list_remove(&nolwb_itxs, itx);
2479 			zil_itx_destroy(itx);
2480 		}
2481 	} else {
2482 		ASSERT(list_is_empty(&nolwb_waiters));
2483 		ASSERT3P(lwb, !=, NULL);
2484 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2485 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
2486 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
2487 
2488 		/*
2489 		 * At this point, the ZIL block pointed at by the "lwb"
2490 		 * variable is in one of the following states: "closed"
2491 		 * or "open".
2492 		 *
2493 		 * If it's "closed", then no itxs have been committed to
2494 		 * it, so there's no point in issuing its zio (i.e. it's
2495 		 * "empty").
2496 		 *
2497 		 * If it's "open", then it contains one or more itxs that
2498 		 * eventually need to be committed to stable storage. In
2499 		 * this case we intentionally do not issue the lwb's zio
2500 		 * to disk yet, and instead rely on one of the following
2501 		 * two mechanisms for issuing the zio:
2502 		 *
2503 		 * 1. Ideally, there will be more ZIL activity occurring
2504 		 * on the system, such that this function will be
2505 		 * immediately called again (not necessarily by the same
2506 		 * thread) and this lwb's zio will be issued via
2507 		 * zil_lwb_commit(). This way, the lwb is guaranteed to
2508 		 * be "full" when it is issued to disk, and we'll make
2509 		 * use of the lwb's size the best we can.
2510 		 *
2511 		 * 2. If there isn't sufficient ZIL activity occurring on
2512 		 * the system, such that this lwb's zio isn't issued via
2513 		 * zil_lwb_commit(), zil_commit_waiter() will issue the
2514 		 * lwb's zio. If this occurs, the lwb is not guaranteed
2515 		 * to be "full" by the time its zio is issued, and means
2516 		 * the size of the lwb was "too large" given the amount
2517 		 * of ZIL activity occurring on the system at that time.
2518 		 *
2519 		 * We do this for a couple of reasons:
2520 		 *
2521 		 * 1. To try and reduce the number of IOPs needed to
2522 		 * write the same number of itxs. If an lwb has space
2523 		 * available in its buffer for more itxs, and more itxs
2524 		 * will be committed relatively soon (relative to the
2525 		 * latency of performing a write), then it's beneficial
2526 		 * to wait for these "next" itxs. This way, more itxs
2527 		 * can be committed to stable storage with fewer writes.
2528 		 *
2529 		 * 2. To try and use the largest lwb block size that the
2530 		 * incoming rate of itxs can support. Again, this is to
2531 		 * try and pack as many itxs into as few lwbs as
2532 		 * possible, without significantly impacting the latency
2533 		 * of each individual itx.
2534 		 */
2535 	}
2536 }
2537 
2538 /*
2539  * This function is responsible for ensuring the passed in commit waiter
2540  * (and associated commit itx) is committed to an lwb. If the waiter is
2541  * not already committed to an lwb, all itxs in the zilog's queue of
2542  * itxs will be processed. The assumption is the passed in waiter's
2543  * commit itx will found in the queue just like the other non-commit
2544  * itxs, such that when the entire queue is processed, the waiter will
2545  * have been committed to an lwb.
2546  *
2547  * The lwb associated with the passed in waiter is not guaranteed to
2548  * have been issued by the time this function completes. If the lwb is
2549  * not issued, we rely on future calls to zil_commit_writer() to issue
2550  * the lwb, or the timeout mechanism found in zil_commit_waiter().
2551  */
2552 static void
2553 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw)
2554 {
2555 	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2556 	ASSERT(spa_writeable(zilog->zl_spa));
2557 
2558 	mutex_enter(&zilog->zl_issuer_lock);
2559 
2560 	if (zcw->zcw_lwb != NULL || zcw->zcw_done) {
2561 		/*
2562 		 * It's possible that, while we were waiting to acquire
2563 		 * the "zl_issuer_lock", another thread committed this
2564 		 * waiter to an lwb. If that occurs, we bail out early,
2565 		 * without processing any of the zilog's queue of itxs.
2566 		 *
2567 		 * On certain workloads and system configurations, the
2568 		 * "zl_issuer_lock" can become highly contended. In an
2569 		 * attempt to reduce this contention, we immediately drop
2570 		 * the lock if the waiter has already been processed.
2571 		 *
2572 		 * We've measured this optimization to reduce CPU spent
2573 		 * contending on this lock by up to 5%, using a system
2574 		 * with 32 CPUs, low latency storage (~50 usec writes),
2575 		 * and 1024 threads performing sync writes.
2576 		 */
2577 		goto out;
2578 	}
2579 
2580 	ZIL_STAT_BUMP(zil_commit_writer_count);
2581 
2582 	zil_get_commit_list(zilog);
2583 	zil_prune_commit_list(zilog);
2584 	zil_process_commit_list(zilog);
2585 
2586 out:
2587 	mutex_exit(&zilog->zl_issuer_lock);
2588 }
2589 
2590 static void
2591 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw)
2592 {
2593 	ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2594 	ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2595 	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
2596 
2597 	lwb_t *lwb = zcw->zcw_lwb;
2598 	ASSERT3P(lwb, !=, NULL);
2599 	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED);
2600 
2601 	/*
2602 	 * If the lwb has already been issued by another thread, we can
2603 	 * immediately return since there's no work to be done (the
2604 	 * point of this function is to issue the lwb). Additionally, we
2605 	 * do this prior to acquiring the zl_issuer_lock, to avoid
2606 	 * acquiring it when it's not necessary to do so.
2607 	 */
2608 	if (lwb->lwb_state == LWB_STATE_ISSUED ||
2609 	    lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2610 	    lwb->lwb_state == LWB_STATE_FLUSH_DONE)
2611 		return;
2612 
2613 	/*
2614 	 * In order to call zil_lwb_write_issue() we must hold the
2615 	 * zilog's "zl_issuer_lock". We can't simply acquire that lock,
2616 	 * since we're already holding the commit waiter's "zcw_lock",
2617 	 * and those two locks are acquired in the opposite order
2618 	 * elsewhere.
2619 	 */
2620 	mutex_exit(&zcw->zcw_lock);
2621 	mutex_enter(&zilog->zl_issuer_lock);
2622 	mutex_enter(&zcw->zcw_lock);
2623 
2624 	/*
2625 	 * Since we just dropped and re-acquired the commit waiter's
2626 	 * lock, we have to re-check to see if the waiter was marked
2627 	 * "done" during that process. If the waiter was marked "done",
2628 	 * the "lwb" pointer is no longer valid (it can be free'd after
2629 	 * the waiter is marked "done"), so without this check we could
2630 	 * wind up with a use-after-free error below.
2631 	 */
2632 	if (zcw->zcw_done)
2633 		goto out;
2634 
2635 	ASSERT3P(lwb, ==, zcw->zcw_lwb);
2636 
2637 	/*
2638 	 * We've already checked this above, but since we hadn't acquired
2639 	 * the zilog's zl_issuer_lock, we have to perform this check a
2640 	 * second time while holding the lock.
2641 	 *
2642 	 * We don't need to hold the zl_lock since the lwb cannot transition
2643 	 * from OPENED to ISSUED while we hold the zl_issuer_lock. The lwb
2644 	 * _can_ transition from ISSUED to DONE, but it's OK to race with
2645 	 * that transition since we treat the lwb the same, whether it's in
2646 	 * the ISSUED or DONE states.
2647 	 *
2648 	 * The important thing, is we treat the lwb differently depending on
2649 	 * if it's ISSUED or OPENED, and block any other threads that might
2650 	 * attempt to issue this lwb. For that reason we hold the
2651 	 * zl_issuer_lock when checking the lwb_state; we must not call
2652 	 * zil_lwb_write_issue() if the lwb had already been issued.
2653 	 *
2654 	 * See the comment above the lwb_state_t structure definition for
2655 	 * more details on the lwb states, and locking requirements.
2656 	 */
2657 	if (lwb->lwb_state == LWB_STATE_ISSUED ||
2658 	    lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2659 	    lwb->lwb_state == LWB_STATE_FLUSH_DONE)
2660 		goto out;
2661 
2662 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
2663 
2664 	/*
2665 	 * As described in the comments above zil_commit_waiter() and
2666 	 * zil_process_commit_list(), we need to issue this lwb's zio
2667 	 * since we've reached the commit waiter's timeout and it still
2668 	 * hasn't been issued.
2669 	 */
2670 	lwb_t *nlwb = zil_lwb_write_issue(zilog, lwb);
2671 
2672 	IMPLY(nlwb != NULL, lwb->lwb_state != LWB_STATE_OPENED);
2673 
2674 	/*
2675 	 * Since the lwb's zio hadn't been issued by the time this thread
2676 	 * reached its timeout, we reset the zilog's "zl_cur_used" field
2677 	 * to influence the zil block size selection algorithm.
2678 	 *
2679 	 * By having to issue the lwb's zio here, it means the size of the
2680 	 * lwb was too large, given the incoming throughput of itxs.  By
2681 	 * setting "zl_cur_used" to zero, we communicate this fact to the
2682 	 * block size selection algorithm, so it can take this information
2683 	 * into account, and potentially select a smaller size for the
2684 	 * next lwb block that is allocated.
2685 	 */
2686 	zilog->zl_cur_used = 0;
2687 
2688 	if (nlwb == NULL) {
2689 		/*
2690 		 * When zil_lwb_write_issue() returns NULL, this
2691 		 * indicates zio_alloc_zil() failed to allocate the
2692 		 * "next" lwb on-disk. When this occurs, the ZIL write
2693 		 * pipeline must be stalled; see the comment within the
2694 		 * zil_commit_writer_stall() function for more details.
2695 		 *
2696 		 * We must drop the commit waiter's lock prior to
2697 		 * calling zil_commit_writer_stall() or else we can wind
2698 		 * up with the following deadlock:
2699 		 *
2700 		 * - This thread is waiting for the txg to sync while
2701 		 *   holding the waiter's lock; txg_wait_synced() is
2702 		 *   used within txg_commit_writer_stall().
2703 		 *
2704 		 * - The txg can't sync because it is waiting for this
2705 		 *   lwb's zio callback to call dmu_tx_commit().
2706 		 *
2707 		 * - The lwb's zio callback can't call dmu_tx_commit()
2708 		 *   because it's blocked trying to acquire the waiter's
2709 		 *   lock, which occurs prior to calling dmu_tx_commit()
2710 		 */
2711 		mutex_exit(&zcw->zcw_lock);
2712 		zil_commit_writer_stall(zilog);
2713 		mutex_enter(&zcw->zcw_lock);
2714 	}
2715 
2716 out:
2717 	mutex_exit(&zilog->zl_issuer_lock);
2718 	ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2719 }
2720 
2721 /*
2722  * This function is responsible for performing the following two tasks:
2723  *
2724  * 1. its primary responsibility is to block until the given "commit
2725  *    waiter" is considered "done".
2726  *
2727  * 2. its secondary responsibility is to issue the zio for the lwb that
2728  *    the given "commit waiter" is waiting on, if this function has
2729  *    waited "long enough" and the lwb is still in the "open" state.
2730  *
2731  * Given a sufficient amount of itxs being generated and written using
2732  * the ZIL, the lwb's zio will be issued via the zil_lwb_commit()
2733  * function. If this does not occur, this secondary responsibility will
2734  * ensure the lwb is issued even if there is not other synchronous
2735  * activity on the system.
2736  *
2737  * For more details, see zil_process_commit_list(); more specifically,
2738  * the comment at the bottom of that function.
2739  */
2740 static void
2741 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw)
2742 {
2743 	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2744 	ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2745 	ASSERT(spa_writeable(zilog->zl_spa));
2746 
2747 	mutex_enter(&zcw->zcw_lock);
2748 
2749 	/*
2750 	 * The timeout is scaled based on the lwb latency to avoid
2751 	 * significantly impacting the latency of each individual itx.
2752 	 * For more details, see the comment at the bottom of the
2753 	 * zil_process_commit_list() function.
2754 	 */
2755 	int pct = MAX(zfs_commit_timeout_pct, 1);
2756 	hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100;
2757 	hrtime_t wakeup = gethrtime() + sleep;
2758 	boolean_t timedout = B_FALSE;
2759 
2760 	while (!zcw->zcw_done) {
2761 		ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2762 
2763 		lwb_t *lwb = zcw->zcw_lwb;
2764 
2765 		/*
2766 		 * Usually, the waiter will have a non-NULL lwb field here,
2767 		 * but it's possible for it to be NULL as a result of
2768 		 * zil_commit() racing with spa_sync().
2769 		 *
2770 		 * When zil_clean() is called, it's possible for the itxg
2771 		 * list (which may be cleaned via a taskq) to contain
2772 		 * commit itxs. When this occurs, the commit waiters linked
2773 		 * off of these commit itxs will not be committed to an
2774 		 * lwb.  Additionally, these commit waiters will not be
2775 		 * marked done until zil_commit_waiter_skip() is called via
2776 		 * zil_itxg_clean().
2777 		 *
2778 		 * Thus, it's possible for this commit waiter (i.e. the
2779 		 * "zcw" variable) to be found in this "in between" state;
2780 		 * where it's "zcw_lwb" field is NULL, and it hasn't yet
2781 		 * been skipped, so it's "zcw_done" field is still B_FALSE.
2782 		 */
2783 		IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED);
2784 
2785 		if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) {
2786 			ASSERT3B(timedout, ==, B_FALSE);
2787 
2788 			/*
2789 			 * If the lwb hasn't been issued yet, then we
2790 			 * need to wait with a timeout, in case this
2791 			 * function needs to issue the lwb after the
2792 			 * timeout is reached; responsibility (2) from
2793 			 * the comment above this function.
2794 			 */
2795 			int rc = cv_timedwait_hires(&zcw->zcw_cv,
2796 			    &zcw->zcw_lock, wakeup, USEC2NSEC(1),
2797 			    CALLOUT_FLAG_ABSOLUTE);
2798 
2799 			if (rc != -1 || zcw->zcw_done)
2800 				continue;
2801 
2802 			timedout = B_TRUE;
2803 			zil_commit_waiter_timeout(zilog, zcw);
2804 
2805 			if (!zcw->zcw_done) {
2806 				/*
2807 				 * If the commit waiter has already been
2808 				 * marked "done", it's possible for the
2809 				 * waiter's lwb structure to have already
2810 				 * been freed.  Thus, we can only reliably
2811 				 * make these assertions if the waiter
2812 				 * isn't done.
2813 				 */
2814 				ASSERT3P(lwb, ==, zcw->zcw_lwb);
2815 				ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
2816 			}
2817 		} else {
2818 			/*
2819 			 * If the lwb isn't open, then it must have already
2820 			 * been issued. In that case, there's no need to
2821 			 * use a timeout when waiting for the lwb to
2822 			 * complete.
2823 			 *
2824 			 * Additionally, if the lwb is NULL, the waiter
2825 			 * will soon be signaled and marked done via
2826 			 * zil_clean() and zil_itxg_clean(), so no timeout
2827 			 * is required.
2828 			 */
2829 
2830 			IMPLY(lwb != NULL,
2831 			    lwb->lwb_state == LWB_STATE_ISSUED ||
2832 			    lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2833 			    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
2834 			cv_wait(&zcw->zcw_cv, &zcw->zcw_lock);
2835 		}
2836 	}
2837 
2838 	mutex_exit(&zcw->zcw_lock);
2839 }
2840 
2841 static zil_commit_waiter_t *
2842 zil_alloc_commit_waiter(void)
2843 {
2844 	zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP);
2845 
2846 	cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL);
2847 	mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL);
2848 	list_link_init(&zcw->zcw_node);
2849 	zcw->zcw_lwb = NULL;
2850 	zcw->zcw_done = B_FALSE;
2851 	zcw->zcw_zio_error = 0;
2852 
2853 	return (zcw);
2854 }
2855 
2856 static void
2857 zil_free_commit_waiter(zil_commit_waiter_t *zcw)
2858 {
2859 	ASSERT(!list_link_active(&zcw->zcw_node));
2860 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
2861 	ASSERT3B(zcw->zcw_done, ==, B_TRUE);
2862 	mutex_destroy(&zcw->zcw_lock);
2863 	cv_destroy(&zcw->zcw_cv);
2864 	kmem_cache_free(zil_zcw_cache, zcw);
2865 }
2866 
2867 /*
2868  * This function is used to create a TX_COMMIT itx and assign it. This
2869  * way, it will be linked into the ZIL's list of synchronous itxs, and
2870  * then later committed to an lwb (or skipped) when
2871  * zil_process_commit_list() is called.
2872  */
2873 static void
2874 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw)
2875 {
2876 	dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
2877 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
2878 
2879 	itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t));
2880 	itx->itx_sync = B_TRUE;
2881 	itx->itx_private = zcw;
2882 
2883 	zil_itx_assign(zilog, itx, tx);
2884 
2885 	dmu_tx_commit(tx);
2886 }
2887 
2888 /*
2889  * Commit ZFS Intent Log transactions (itxs) to stable storage.
2890  *
2891  * When writing ZIL transactions to the on-disk representation of the
2892  * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple
2893  * itxs can be committed to a single lwb. Once a lwb is written and
2894  * committed to stable storage (i.e. the lwb is written, and vdevs have
2895  * been flushed), each itx that was committed to that lwb is also
2896  * considered to be committed to stable storage.
2897  *
2898  * When an itx is committed to an lwb, the log record (lr_t) contained
2899  * by the itx is copied into the lwb's zio buffer, and once this buffer
2900  * is written to disk, it becomes an on-disk ZIL block.
2901  *
2902  * As itxs are generated, they're inserted into the ZIL's queue of
2903  * uncommitted itxs. The semantics of zil_commit() are such that it will
2904  * block until all itxs that were in the queue when it was called, are
2905  * committed to stable storage.
2906  *
2907  * If "foid" is zero, this means all "synchronous" and "asynchronous"
2908  * itxs, for all objects in the dataset, will be committed to stable
2909  * storage prior to zil_commit() returning. If "foid" is non-zero, all
2910  * "synchronous" itxs for all objects, but only "asynchronous" itxs
2911  * that correspond to the foid passed in, will be committed to stable
2912  * storage prior to zil_commit() returning.
2913  *
2914  * Generally speaking, when zil_commit() is called, the consumer doesn't
2915  * actually care about _all_ of the uncommitted itxs. Instead, they're
2916  * simply trying to waiting for a specific itx to be committed to disk,
2917  * but the interface(s) for interacting with the ZIL don't allow such
2918  * fine-grained communication. A better interface would allow a consumer
2919  * to create and assign an itx, and then pass a reference to this itx to
2920  * zil_commit(); such that zil_commit() would return as soon as that
2921  * specific itx was committed to disk (instead of waiting for _all_
2922  * itxs to be committed).
2923  *
2924  * When a thread calls zil_commit() a special "commit itx" will be
2925  * generated, along with a corresponding "waiter" for this commit itx.
2926  * zil_commit() will wait on this waiter's CV, such that when the waiter
2927  * is marked done, and signaled, zil_commit() will return.
2928  *
2929  * This commit itx is inserted into the queue of uncommitted itxs. This
2930  * provides an easy mechanism for determining which itxs were in the
2931  * queue prior to zil_commit() having been called, and which itxs were
2932  * added after zil_commit() was called.
2933  *
2934  * The commit it is special; it doesn't have any on-disk representation.
2935  * When a commit itx is "committed" to an lwb, the waiter associated
2936  * with it is linked onto the lwb's list of waiters. Then, when that lwb
2937  * completes, each waiter on the lwb's list is marked done and signaled
2938  * -- allowing the thread waiting on the waiter to return from zil_commit().
2939  *
2940  * It's important to point out a few critical factors that allow us
2941  * to make use of the commit itxs, commit waiters, per-lwb lists of
2942  * commit waiters, and zio completion callbacks like we're doing:
2943  *
2944  *   1. The list of waiters for each lwb is traversed, and each commit
2945  *      waiter is marked "done" and signaled, in the zio completion
2946  *      callback of the lwb's zio[*].
2947  *
2948  *      * Actually, the waiters are signaled in the zio completion
2949  *        callback of the root zio for the DKIOCFLUSHWRITECACHE commands
2950  *        that are sent to the vdevs upon completion of the lwb zio.
2951  *
2952  *   2. When the itxs are inserted into the ZIL's queue of uncommitted
2953  *      itxs, the order in which they are inserted is preserved[*]; as
2954  *      itxs are added to the queue, they are added to the tail of
2955  *      in-memory linked lists.
2956  *
2957  *      When committing the itxs to lwbs (to be written to disk), they
2958  *      are committed in the same order in which the itxs were added to
2959  *      the uncommitted queue's linked list(s); i.e. the linked list of
2960  *      itxs to commit is traversed from head to tail, and each itx is
2961  *      committed to an lwb in that order.
2962  *
2963  *      * To clarify:
2964  *
2965  *        - the order of "sync" itxs is preserved w.r.t. other
2966  *          "sync" itxs, regardless of the corresponding objects.
2967  *        - the order of "async" itxs is preserved w.r.t. other
2968  *          "async" itxs corresponding to the same object.
2969  *        - the order of "async" itxs is *not* preserved w.r.t. other
2970  *          "async" itxs corresponding to different objects.
2971  *        - the order of "sync" itxs w.r.t. "async" itxs (or vice
2972  *          versa) is *not* preserved, even for itxs that correspond
2973  *          to the same object.
2974  *
2975  *      For more details, see: zil_itx_assign(), zil_async_to_sync(),
2976  *      zil_get_commit_list(), and zil_process_commit_list().
2977  *
2978  *   3. The lwbs represent a linked list of blocks on disk. Thus, any
2979  *      lwb cannot be considered committed to stable storage, until its
2980  *      "previous" lwb is also committed to stable storage. This fact,
2981  *      coupled with the fact described above, means that itxs are
2982  *      committed in (roughly) the order in which they were generated.
2983  *      This is essential because itxs are dependent on prior itxs.
2984  *      Thus, we *must not* deem an itx as being committed to stable
2985  *      storage, until *all* prior itxs have also been committed to
2986  *      stable storage.
2987  *
2988  *      To enforce this ordering of lwb zio's, while still leveraging as
2989  *      much of the underlying storage performance as possible, we rely
2990  *      on two fundamental concepts:
2991  *
2992  *          1. The creation and issuance of lwb zio's is protected by
2993  *             the zilog's "zl_issuer_lock", which ensures only a single
2994  *             thread is creating and/or issuing lwb's at a time
2995  *          2. The "previous" lwb is a child of the "current" lwb
2996  *             (leveraging the zio parent-child dependency graph)
2997  *
2998  *      By relying on this parent-child zio relationship, we can have
2999  *      many lwb zio's concurrently issued to the underlying storage,
3000  *      but the order in which they complete will be the same order in
3001  *      which they were created.
3002  */
3003 void
3004 zil_commit(zilog_t *zilog, uint64_t foid)
3005 {
3006 	/*
3007 	 * We should never attempt to call zil_commit on a snapshot for
3008 	 * a couple of reasons:
3009 	 *
3010 	 * 1. A snapshot may never be modified, thus it cannot have any
3011 	 *    in-flight itxs that would have modified the dataset.
3012 	 *
3013 	 * 2. By design, when zil_commit() is called, a commit itx will
3014 	 *    be assigned to this zilog; as a result, the zilog will be
3015 	 *    dirtied. We must not dirty the zilog of a snapshot; there's
3016 	 *    checks in the code that enforce this invariant, and will
3017 	 *    cause a panic if it's not upheld.
3018 	 */
3019 	ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE);
3020 
3021 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3022 		return;
3023 
3024 	if (!spa_writeable(zilog->zl_spa)) {
3025 		/*
3026 		 * If the SPA is not writable, there should never be any
3027 		 * pending itxs waiting to be committed to disk. If that
3028 		 * weren't true, we'd skip writing those itxs out, and
3029 		 * would break the semantics of zil_commit(); thus, we're
3030 		 * verifying that truth before we return to the caller.
3031 		 */
3032 		ASSERT(list_is_empty(&zilog->zl_lwb_list));
3033 		ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
3034 		for (int i = 0; i < TXG_SIZE; i++)
3035 			ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL);
3036 		return;
3037 	}
3038 
3039 	/*
3040 	 * If the ZIL is suspended, we don't want to dirty it by calling
3041 	 * zil_commit_itx_assign() below, nor can we write out
3042 	 * lwbs like would be done in zil_commit_write(). Thus, we
3043 	 * simply rely on txg_wait_synced() to maintain the necessary
3044 	 * semantics, and avoid calling those functions altogether.
3045 	 */
3046 	if (zilog->zl_suspend > 0) {
3047 		txg_wait_synced(zilog->zl_dmu_pool, 0);
3048 		return;
3049 	}
3050 
3051 	zil_commit_impl(zilog, foid);
3052 }
3053 
3054 void
3055 zil_commit_impl(zilog_t *zilog, uint64_t foid)
3056 {
3057 	ZIL_STAT_BUMP(zil_commit_count);
3058 
3059 	/*
3060 	 * Move the "async" itxs for the specified foid to the "sync"
3061 	 * queues, such that they will be later committed (or skipped)
3062 	 * to an lwb when zil_process_commit_list() is called.
3063 	 *
3064 	 * Since these "async" itxs must be committed prior to this
3065 	 * call to zil_commit returning, we must perform this operation
3066 	 * before we call zil_commit_itx_assign().
3067 	 */
3068 	zil_async_to_sync(zilog, foid);
3069 
3070 	/*
3071 	 * We allocate a new "waiter" structure which will initially be
3072 	 * linked to the commit itx using the itx's "itx_private" field.
3073 	 * Since the commit itx doesn't represent any on-disk state,
3074 	 * when it's committed to an lwb, rather than copying the its
3075 	 * lr_t into the lwb's buffer, the commit itx's "waiter" will be
3076 	 * added to the lwb's list of waiters. Then, when the lwb is
3077 	 * committed to stable storage, each waiter in the lwb's list of
3078 	 * waiters will be marked "done", and signalled.
3079 	 *
3080 	 * We must create the waiter and assign the commit itx prior to
3081 	 * calling zil_commit_writer(), or else our specific commit itx
3082 	 * is not guaranteed to be committed to an lwb prior to calling
3083 	 * zil_commit_waiter().
3084 	 */
3085 	zil_commit_waiter_t *zcw = zil_alloc_commit_waiter();
3086 	zil_commit_itx_assign(zilog, zcw);
3087 
3088 	zil_commit_writer(zilog, zcw);
3089 	zil_commit_waiter(zilog, zcw);
3090 
3091 	if (zcw->zcw_zio_error != 0) {
3092 		/*
3093 		 * If there was an error writing out the ZIL blocks that
3094 		 * this thread is waiting on, then we fallback to
3095 		 * relying on spa_sync() to write out the data this
3096 		 * thread is waiting on. Obviously this has performance
3097 		 * implications, but the expectation is for this to be
3098 		 * an exceptional case, and shouldn't occur often.
3099 		 */
3100 		DTRACE_PROBE2(zil__commit__io__error,
3101 		    zilog_t *, zilog, zil_commit_waiter_t *, zcw);
3102 		txg_wait_synced(zilog->zl_dmu_pool, 0);
3103 	}
3104 
3105 	zil_free_commit_waiter(zcw);
3106 }
3107 
3108 /*
3109  * Called in syncing context to free committed log blocks and update log header.
3110  */
3111 void
3112 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
3113 {
3114 	zil_header_t *zh = zil_header_in_syncing_context(zilog);
3115 	uint64_t txg = dmu_tx_get_txg(tx);
3116 	spa_t *spa = zilog->zl_spa;
3117 	uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
3118 	lwb_t *lwb;
3119 
3120 	/*
3121 	 * We don't zero out zl_destroy_txg, so make sure we don't try
3122 	 * to destroy it twice.
3123 	 */
3124 	if (spa_sync_pass(spa) != 1)
3125 		return;
3126 
3127 	mutex_enter(&zilog->zl_lock);
3128 
3129 	ASSERT(zilog->zl_stop_sync == 0);
3130 
3131 	if (*replayed_seq != 0) {
3132 		ASSERT(zh->zh_replay_seq < *replayed_seq);
3133 		zh->zh_replay_seq = *replayed_seq;
3134 		*replayed_seq = 0;
3135 	}
3136 
3137 	if (zilog->zl_destroy_txg == txg) {
3138 		blkptr_t blk = zh->zh_log;
3139 		dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
3140 
3141 		ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
3142 
3143 		memset(zh, 0, sizeof (zil_header_t));
3144 		memset(zilog->zl_replayed_seq, 0,
3145 		    sizeof (zilog->zl_replayed_seq));
3146 
3147 		if (zilog->zl_keep_first) {
3148 			/*
3149 			 * If this block was part of log chain that couldn't
3150 			 * be claimed because a device was missing during
3151 			 * zil_claim(), but that device later returns,
3152 			 * then this block could erroneously appear valid.
3153 			 * To guard against this, assign a new GUID to the new
3154 			 * log chain so it doesn't matter what blk points to.
3155 			 */
3156 			zil_init_log_chain(zilog, &blk);
3157 			zh->zh_log = blk;
3158 		} else {
3159 			/*
3160 			 * A destroyed ZIL chain can't contain any TX_SETSAXATTR
3161 			 * records. So, deactivate the feature for this dataset.
3162 			 * We activate it again when we start a new ZIL chain.
3163 			 */
3164 			if (dsl_dataset_feature_is_active(ds,
3165 			    SPA_FEATURE_ZILSAXATTR))
3166 				dsl_dataset_deactivate_feature(ds,
3167 				    SPA_FEATURE_ZILSAXATTR, tx);
3168 		}
3169 	}
3170 
3171 	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
3172 		zh->zh_log = lwb->lwb_blk;
3173 		if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
3174 			break;
3175 		list_remove(&zilog->zl_lwb_list, lwb);
3176 		zio_free(spa, txg, &lwb->lwb_blk);
3177 		zil_free_lwb(zilog, lwb);
3178 
3179 		/*
3180 		 * If we don't have anything left in the lwb list then
3181 		 * we've had an allocation failure and we need to zero
3182 		 * out the zil_header blkptr so that we don't end
3183 		 * up freeing the same block twice.
3184 		 */
3185 		if (list_head(&zilog->zl_lwb_list) == NULL)
3186 			BP_ZERO(&zh->zh_log);
3187 	}
3188 
3189 	/*
3190 	 * Remove fastwrite on any blocks that have been pre-allocated for
3191 	 * the next commit. This prevents fastwrite counter pollution by
3192 	 * unused, long-lived LWBs.
3193 	 */
3194 	for (; lwb != NULL; lwb = list_next(&zilog->zl_lwb_list, lwb)) {
3195 		if (lwb->lwb_fastwrite && !lwb->lwb_write_zio) {
3196 			metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk);
3197 			lwb->lwb_fastwrite = 0;
3198 		}
3199 	}
3200 
3201 	mutex_exit(&zilog->zl_lock);
3202 }
3203 
3204 static int
3205 zil_lwb_cons(void *vbuf, void *unused, int kmflag)
3206 {
3207 	(void) unused, (void) kmflag;
3208 	lwb_t *lwb = vbuf;
3209 	list_create(&lwb->lwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
3210 	list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t),
3211 	    offsetof(zil_commit_waiter_t, zcw_node));
3212 	avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare,
3213 	    sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
3214 	mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
3215 	return (0);
3216 }
3217 
3218 static void
3219 zil_lwb_dest(void *vbuf, void *unused)
3220 {
3221 	(void) unused;
3222 	lwb_t *lwb = vbuf;
3223 	mutex_destroy(&lwb->lwb_vdev_lock);
3224 	avl_destroy(&lwb->lwb_vdev_tree);
3225 	list_destroy(&lwb->lwb_waiters);
3226 	list_destroy(&lwb->lwb_itxs);
3227 }
3228 
3229 void
3230 zil_init(void)
3231 {
3232 	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
3233 	    sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0);
3234 
3235 	zil_zcw_cache = kmem_cache_create("zil_zcw_cache",
3236 	    sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
3237 
3238 	zil_ksp = kstat_create("zfs", 0, "zil", "misc",
3239 	    KSTAT_TYPE_NAMED, sizeof (zil_stats) / sizeof (kstat_named_t),
3240 	    KSTAT_FLAG_VIRTUAL);
3241 
3242 	if (zil_ksp != NULL) {
3243 		zil_ksp->ks_data = &zil_stats;
3244 		kstat_install(zil_ksp);
3245 	}
3246 }
3247 
3248 void
3249 zil_fini(void)
3250 {
3251 	kmem_cache_destroy(zil_zcw_cache);
3252 	kmem_cache_destroy(zil_lwb_cache);
3253 
3254 	if (zil_ksp != NULL) {
3255 		kstat_delete(zil_ksp);
3256 		zil_ksp = NULL;
3257 	}
3258 }
3259 
3260 void
3261 zil_set_sync(zilog_t *zilog, uint64_t sync)
3262 {
3263 	zilog->zl_sync = sync;
3264 }
3265 
3266 void
3267 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
3268 {
3269 	zilog->zl_logbias = logbias;
3270 }
3271 
3272 zilog_t *
3273 zil_alloc(objset_t *os, zil_header_t *zh_phys)
3274 {
3275 	zilog_t *zilog;
3276 
3277 	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
3278 
3279 	zilog->zl_header = zh_phys;
3280 	zilog->zl_os = os;
3281 	zilog->zl_spa = dmu_objset_spa(os);
3282 	zilog->zl_dmu_pool = dmu_objset_pool(os);
3283 	zilog->zl_destroy_txg = TXG_INITIAL - 1;
3284 	zilog->zl_logbias = dmu_objset_logbias(os);
3285 	zilog->zl_sync = dmu_objset_syncprop(os);
3286 	zilog->zl_dirty_max_txg = 0;
3287 	zilog->zl_last_lwb_opened = NULL;
3288 	zilog->zl_last_lwb_latency = 0;
3289 	zilog->zl_max_block_size = zil_maxblocksize;
3290 
3291 	mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
3292 	mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL);
3293 
3294 	for (int i = 0; i < TXG_SIZE; i++) {
3295 		mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
3296 		    MUTEX_DEFAULT, NULL);
3297 	}
3298 
3299 	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
3300 	    offsetof(lwb_t, lwb_node));
3301 
3302 	list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
3303 	    offsetof(itx_t, itx_node));
3304 
3305 	cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
3306 
3307 	return (zilog);
3308 }
3309 
3310 void
3311 zil_free(zilog_t *zilog)
3312 {
3313 	int i;
3314 
3315 	zilog->zl_stop_sync = 1;
3316 
3317 	ASSERT0(zilog->zl_suspend);
3318 	ASSERT0(zilog->zl_suspending);
3319 
3320 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
3321 	list_destroy(&zilog->zl_lwb_list);
3322 
3323 	ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
3324 	list_destroy(&zilog->zl_itx_commit_list);
3325 
3326 	for (i = 0; i < TXG_SIZE; i++) {
3327 		/*
3328 		 * It's possible for an itx to be generated that doesn't dirty
3329 		 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
3330 		 * callback to remove the entry. We remove those here.
3331 		 *
3332 		 * Also free up the ziltest itxs.
3333 		 */
3334 		if (zilog->zl_itxg[i].itxg_itxs)
3335 			zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
3336 		mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
3337 	}
3338 
3339 	mutex_destroy(&zilog->zl_issuer_lock);
3340 	mutex_destroy(&zilog->zl_lock);
3341 
3342 	cv_destroy(&zilog->zl_cv_suspend);
3343 
3344 	kmem_free(zilog, sizeof (zilog_t));
3345 }
3346 
3347 /*
3348  * Open an intent log.
3349  */
3350 zilog_t *
3351 zil_open(objset_t *os, zil_get_data_t *get_data)
3352 {
3353 	zilog_t *zilog = dmu_objset_zil(os);
3354 
3355 	ASSERT3P(zilog->zl_get_data, ==, NULL);
3356 	ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
3357 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
3358 
3359 	zilog->zl_get_data = get_data;
3360 
3361 	return (zilog);
3362 }
3363 
3364 /*
3365  * Close an intent log.
3366  */
3367 void
3368 zil_close(zilog_t *zilog)
3369 {
3370 	lwb_t *lwb;
3371 	uint64_t txg;
3372 
3373 	if (!dmu_objset_is_snapshot(zilog->zl_os)) {
3374 		zil_commit(zilog, 0);
3375 	} else {
3376 		ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
3377 		ASSERT0(zilog->zl_dirty_max_txg);
3378 		ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE);
3379 	}
3380 
3381 	mutex_enter(&zilog->zl_lock);
3382 	lwb = list_tail(&zilog->zl_lwb_list);
3383 	if (lwb == NULL)
3384 		txg = zilog->zl_dirty_max_txg;
3385 	else
3386 		txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg);
3387 	mutex_exit(&zilog->zl_lock);
3388 
3389 	/*
3390 	 * We need to use txg_wait_synced() to wait long enough for the
3391 	 * ZIL to be clean, and to wait for all pending lwbs to be
3392 	 * written out.
3393 	 */
3394 	if (txg != 0)
3395 		txg_wait_synced(zilog->zl_dmu_pool, txg);
3396 
3397 	if (zilog_is_dirty(zilog))
3398 		zfs_dbgmsg("zil (%px) is dirty, txg %llu", zilog,
3399 		    (u_longlong_t)txg);
3400 	if (txg < spa_freeze_txg(zilog->zl_spa))
3401 		VERIFY(!zilog_is_dirty(zilog));
3402 
3403 	zilog->zl_get_data = NULL;
3404 
3405 	/*
3406 	 * We should have only one lwb left on the list; remove it now.
3407 	 */
3408 	mutex_enter(&zilog->zl_lock);
3409 	lwb = list_head(&zilog->zl_lwb_list);
3410 	if (lwb != NULL) {
3411 		ASSERT3P(lwb, ==, list_tail(&zilog->zl_lwb_list));
3412 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
3413 
3414 		if (lwb->lwb_fastwrite)
3415 			metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk);
3416 
3417 		list_remove(&zilog->zl_lwb_list, lwb);
3418 		zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
3419 		zil_free_lwb(zilog, lwb);
3420 	}
3421 	mutex_exit(&zilog->zl_lock);
3422 }
3423 
3424 static char *suspend_tag = "zil suspending";
3425 
3426 /*
3427  * Suspend an intent log.  While in suspended mode, we still honor
3428  * synchronous semantics, but we rely on txg_wait_synced() to do it.
3429  * On old version pools, we suspend the log briefly when taking a
3430  * snapshot so that it will have an empty intent log.
3431  *
3432  * Long holds are not really intended to be used the way we do here --
3433  * held for such a short time.  A concurrent caller of dsl_dataset_long_held()
3434  * could fail.  Therefore we take pains to only put a long hold if it is
3435  * actually necessary.  Fortunately, it will only be necessary if the
3436  * objset is currently mounted (or the ZVOL equivalent).  In that case it
3437  * will already have a long hold, so we are not really making things any worse.
3438  *
3439  * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
3440  * zvol_state_t), and use their mechanism to prevent their hold from being
3441  * dropped (e.g. VFS_HOLD()).  However, that would be even more pain for
3442  * very little gain.
3443  *
3444  * if cookiep == NULL, this does both the suspend & resume.
3445  * Otherwise, it returns with the dataset "long held", and the cookie
3446  * should be passed into zil_resume().
3447  */
3448 int
3449 zil_suspend(const char *osname, void **cookiep)
3450 {
3451 	objset_t *os;
3452 	zilog_t *zilog;
3453 	const zil_header_t *zh;
3454 	int error;
3455 
3456 	error = dmu_objset_hold(osname, suspend_tag, &os);
3457 	if (error != 0)
3458 		return (error);
3459 	zilog = dmu_objset_zil(os);
3460 
3461 	mutex_enter(&zilog->zl_lock);
3462 	zh = zilog->zl_header;
3463 
3464 	if (zh->zh_flags & ZIL_REPLAY_NEEDED) {		/* unplayed log */
3465 		mutex_exit(&zilog->zl_lock);
3466 		dmu_objset_rele(os, suspend_tag);
3467 		return (SET_ERROR(EBUSY));
3468 	}
3469 
3470 	/*
3471 	 * Don't put a long hold in the cases where we can avoid it.  This
3472 	 * is when there is no cookie so we are doing a suspend & resume
3473 	 * (i.e. called from zil_vdev_offline()), and there's nothing to do
3474 	 * for the suspend because it's already suspended, or there's no ZIL.
3475 	 */
3476 	if (cookiep == NULL && !zilog->zl_suspending &&
3477 	    (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
3478 		mutex_exit(&zilog->zl_lock);
3479 		dmu_objset_rele(os, suspend_tag);
3480 		return (0);
3481 	}
3482 
3483 	dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
3484 	dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
3485 
3486 	zilog->zl_suspend++;
3487 
3488 	if (zilog->zl_suspend > 1) {
3489 		/*
3490 		 * Someone else is already suspending it.
3491 		 * Just wait for them to finish.
3492 		 */
3493 
3494 		while (zilog->zl_suspending)
3495 			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
3496 		mutex_exit(&zilog->zl_lock);
3497 
3498 		if (cookiep == NULL)
3499 			zil_resume(os);
3500 		else
3501 			*cookiep = os;
3502 		return (0);
3503 	}
3504 
3505 	/*
3506 	 * If there is no pointer to an on-disk block, this ZIL must not
3507 	 * be active (e.g. filesystem not mounted), so there's nothing
3508 	 * to clean up.
3509 	 */
3510 	if (BP_IS_HOLE(&zh->zh_log)) {
3511 		ASSERT(cookiep != NULL); /* fast path already handled */
3512 
3513 		*cookiep = os;
3514 		mutex_exit(&zilog->zl_lock);
3515 		return (0);
3516 	}
3517 
3518 	/*
3519 	 * The ZIL has work to do. Ensure that the associated encryption
3520 	 * key will remain mapped while we are committing the log by
3521 	 * grabbing a reference to it. If the key isn't loaded we have no
3522 	 * choice but to return an error until the wrapping key is loaded.
3523 	 */
3524 	if (os->os_encrypted &&
3525 	    dsl_dataset_create_key_mapping(dmu_objset_ds(os)) != 0) {
3526 		zilog->zl_suspend--;
3527 		mutex_exit(&zilog->zl_lock);
3528 		dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3529 		dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3530 		return (SET_ERROR(EACCES));
3531 	}
3532 
3533 	zilog->zl_suspending = B_TRUE;
3534 	mutex_exit(&zilog->zl_lock);
3535 
3536 	/*
3537 	 * We need to use zil_commit_impl to ensure we wait for all
3538 	 * LWB_STATE_OPENED and LWB_STATE_ISSUED lwbs to be committed
3539 	 * to disk before proceeding. If we used zil_commit instead, it
3540 	 * would just call txg_wait_synced(), because zl_suspend is set.
3541 	 * txg_wait_synced() doesn't wait for these lwb's to be
3542 	 * LWB_STATE_FLUSH_DONE before returning.
3543 	 */
3544 	zil_commit_impl(zilog, 0);
3545 
3546 	/*
3547 	 * Now that we've ensured all lwb's are LWB_STATE_FLUSH_DONE, we
3548 	 * use txg_wait_synced() to ensure the data from the zilog has
3549 	 * migrated to the main pool before calling zil_destroy().
3550 	 */
3551 	txg_wait_synced(zilog->zl_dmu_pool, 0);
3552 
3553 	zil_destroy(zilog, B_FALSE);
3554 
3555 	mutex_enter(&zilog->zl_lock);
3556 	zilog->zl_suspending = B_FALSE;
3557 	cv_broadcast(&zilog->zl_cv_suspend);
3558 	mutex_exit(&zilog->zl_lock);
3559 
3560 	if (os->os_encrypted)
3561 		dsl_dataset_remove_key_mapping(dmu_objset_ds(os));
3562 
3563 	if (cookiep == NULL)
3564 		zil_resume(os);
3565 	else
3566 		*cookiep = os;
3567 	return (0);
3568 }
3569 
3570 void
3571 zil_resume(void *cookie)
3572 {
3573 	objset_t *os = cookie;
3574 	zilog_t *zilog = dmu_objset_zil(os);
3575 
3576 	mutex_enter(&zilog->zl_lock);
3577 	ASSERT(zilog->zl_suspend != 0);
3578 	zilog->zl_suspend--;
3579 	mutex_exit(&zilog->zl_lock);
3580 	dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3581 	dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3582 }
3583 
3584 typedef struct zil_replay_arg {
3585 	zil_replay_func_t *const *zr_replay;
3586 	void		*zr_arg;
3587 	boolean_t	zr_byteswap;
3588 	char		*zr_lr;
3589 } zil_replay_arg_t;
3590 
3591 static int
3592 zil_replay_error(zilog_t *zilog, const lr_t *lr, int error)
3593 {
3594 	char name[ZFS_MAX_DATASET_NAME_LEN];
3595 
3596 	zilog->zl_replaying_seq--;	/* didn't actually replay this one */
3597 
3598 	dmu_objset_name(zilog->zl_os, name);
3599 
3600 	cmn_err(CE_WARN, "ZFS replay transaction error %d, "
3601 	    "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
3602 	    (u_longlong_t)lr->lrc_seq,
3603 	    (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
3604 	    (lr->lrc_txtype & TX_CI) ? "CI" : "");
3605 
3606 	return (error);
3607 }
3608 
3609 static int
3610 zil_replay_log_record(zilog_t *zilog, const lr_t *lr, void *zra,
3611     uint64_t claim_txg)
3612 {
3613 	zil_replay_arg_t *zr = zra;
3614 	const zil_header_t *zh = zilog->zl_header;
3615 	uint64_t reclen = lr->lrc_reclen;
3616 	uint64_t txtype = lr->lrc_txtype;
3617 	int error = 0;
3618 
3619 	zilog->zl_replaying_seq = lr->lrc_seq;
3620 
3621 	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
3622 		return (0);
3623 
3624 	if (lr->lrc_txg < claim_txg)		/* already committed */
3625 		return (0);
3626 
3627 	/* Strip case-insensitive bit, still present in log record */
3628 	txtype &= ~TX_CI;
3629 
3630 	if (txtype == 0 || txtype >= TX_MAX_TYPE)
3631 		return (zil_replay_error(zilog, lr, EINVAL));
3632 
3633 	/*
3634 	 * If this record type can be logged out of order, the object
3635 	 * (lr_foid) may no longer exist.  That's legitimate, not an error.
3636 	 */
3637 	if (TX_OOO(txtype)) {
3638 		error = dmu_object_info(zilog->zl_os,
3639 		    LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL);
3640 		if (error == ENOENT || error == EEXIST)
3641 			return (0);
3642 	}
3643 
3644 	/*
3645 	 * Make a copy of the data so we can revise and extend it.
3646 	 */
3647 	memcpy(zr->zr_lr, lr, reclen);
3648 
3649 	/*
3650 	 * If this is a TX_WRITE with a blkptr, suck in the data.
3651 	 */
3652 	if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
3653 		error = zil_read_log_data(zilog, (lr_write_t *)lr,
3654 		    zr->zr_lr + reclen);
3655 		if (error != 0)
3656 			return (zil_replay_error(zilog, lr, error));
3657 	}
3658 
3659 	/*
3660 	 * The log block containing this lr may have been byteswapped
3661 	 * so that we can easily examine common fields like lrc_txtype.
3662 	 * However, the log is a mix of different record types, and only the
3663 	 * replay vectors know how to byteswap their records.  Therefore, if
3664 	 * the lr was byteswapped, undo it before invoking the replay vector.
3665 	 */
3666 	if (zr->zr_byteswap)
3667 		byteswap_uint64_array(zr->zr_lr, reclen);
3668 
3669 	/*
3670 	 * We must now do two things atomically: replay this log record,
3671 	 * and update the log header sequence number to reflect the fact that
3672 	 * we did so. At the end of each replay function the sequence number
3673 	 * is updated if we are in replay mode.
3674 	 */
3675 	error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
3676 	if (error != 0) {
3677 		/*
3678 		 * The DMU's dnode layer doesn't see removes until the txg
3679 		 * commits, so a subsequent claim can spuriously fail with
3680 		 * EEXIST. So if we receive any error we try syncing out
3681 		 * any removes then retry the transaction.  Note that we
3682 		 * specify B_FALSE for byteswap now, so we don't do it twice.
3683 		 */
3684 		txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
3685 		error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
3686 		if (error != 0)
3687 			return (zil_replay_error(zilog, lr, error));
3688 	}
3689 	return (0);
3690 }
3691 
3692 static int
3693 zil_incr_blks(zilog_t *zilog, const blkptr_t *bp, void *arg, uint64_t claim_txg)
3694 {
3695 	(void) bp, (void) arg, (void) claim_txg;
3696 
3697 	zilog->zl_replay_blks++;
3698 
3699 	return (0);
3700 }
3701 
3702 /*
3703  * If this dataset has a non-empty intent log, replay it and destroy it.
3704  */
3705 void
3706 zil_replay(objset_t *os, void *arg,
3707     zil_replay_func_t *const replay_func[TX_MAX_TYPE])
3708 {
3709 	zilog_t *zilog = dmu_objset_zil(os);
3710 	const zil_header_t *zh = zilog->zl_header;
3711 	zil_replay_arg_t zr;
3712 
3713 	if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
3714 		zil_destroy(zilog, B_TRUE);
3715 		return;
3716 	}
3717 
3718 	zr.zr_replay = replay_func;
3719 	zr.zr_arg = arg;
3720 	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
3721 	zr.zr_lr = vmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
3722 
3723 	/*
3724 	 * Wait for in-progress removes to sync before starting replay.
3725 	 */
3726 	txg_wait_synced(zilog->zl_dmu_pool, 0);
3727 
3728 	zilog->zl_replay = B_TRUE;
3729 	zilog->zl_replay_time = ddi_get_lbolt();
3730 	ASSERT(zilog->zl_replay_blks == 0);
3731 	(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
3732 	    zh->zh_claim_txg, B_TRUE);
3733 	vmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
3734 
3735 	zil_destroy(zilog, B_FALSE);
3736 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
3737 	zilog->zl_replay = B_FALSE;
3738 }
3739 
3740 boolean_t
3741 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
3742 {
3743 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3744 		return (B_TRUE);
3745 
3746 	if (zilog->zl_replay) {
3747 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
3748 		zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
3749 		    zilog->zl_replaying_seq;
3750 		return (B_TRUE);
3751 	}
3752 
3753 	return (B_FALSE);
3754 }
3755 
3756 int
3757 zil_reset(const char *osname, void *arg)
3758 {
3759 	(void) arg;
3760 
3761 	int error = zil_suspend(osname, NULL);
3762 	/* EACCES means crypto key not loaded */
3763 	if ((error == EACCES) || (error == EBUSY))
3764 		return (SET_ERROR(error));
3765 	if (error != 0)
3766 		return (SET_ERROR(EEXIST));
3767 	return (0);
3768 }
3769 
3770 EXPORT_SYMBOL(zil_alloc);
3771 EXPORT_SYMBOL(zil_free);
3772 EXPORT_SYMBOL(zil_open);
3773 EXPORT_SYMBOL(zil_close);
3774 EXPORT_SYMBOL(zil_replay);
3775 EXPORT_SYMBOL(zil_replaying);
3776 EXPORT_SYMBOL(zil_destroy);
3777 EXPORT_SYMBOL(zil_destroy_sync);
3778 EXPORT_SYMBOL(zil_itx_create);
3779 EXPORT_SYMBOL(zil_itx_destroy);
3780 EXPORT_SYMBOL(zil_itx_assign);
3781 EXPORT_SYMBOL(zil_commit);
3782 EXPORT_SYMBOL(zil_claim);
3783 EXPORT_SYMBOL(zil_check_log_chain);
3784 EXPORT_SYMBOL(zil_sync);
3785 EXPORT_SYMBOL(zil_clean);
3786 EXPORT_SYMBOL(zil_suspend);
3787 EXPORT_SYMBOL(zil_resume);
3788 EXPORT_SYMBOL(zil_lwb_add_block);
3789 EXPORT_SYMBOL(zil_bp_tree_add);
3790 EXPORT_SYMBOL(zil_set_sync);
3791 EXPORT_SYMBOL(zil_set_logbias);
3792 
3793 ZFS_MODULE_PARAM(zfs, zfs_, commit_timeout_pct, INT, ZMOD_RW,
3794 	"ZIL block open timeout percentage");
3795 
3796 ZFS_MODULE_PARAM(zfs_zil, zil_, replay_disable, INT, ZMOD_RW,
3797 	"Disable intent logging replay");
3798 
3799 ZFS_MODULE_PARAM(zfs_zil, zil_, nocacheflush, INT, ZMOD_RW,
3800 	"Disable ZIL cache flushes");
3801 
3802 ZFS_MODULE_PARAM(zfs_zil, zil_, slog_bulk, ULONG, ZMOD_RW,
3803 	"Limit in bytes slog sync writes per commit");
3804 
3805 ZFS_MODULE_PARAM(zfs_zil, zil_, maxblocksize, INT, ZMOD_RW,
3806 	"Limit in bytes of ZIL log block size");
3807